
ptg7041395

ptg7041395

Praise for
Agile Software Engineering with Visual Studio

“Agile dominates projects increasingly from IT to product and business development,
and Sam Guckenheimer and Neno Loje provide pragmatic context for users seeking
clarity and specifics with this book. Their knowledge of past history and current
practice, combined with acuity and details about Visual Studio’s agile capabilities,
enable a precise path to execution. Yet their voice and advice remain non-dogmatic and
wise. Their examples are clear and relevant, enabling a valuable perspective to those
seeking a broad and deep historical background along with a definitive understanding
of the way in which Visual Studio can incorporate agile approaches.”
—Melinda Ballou, Program Director, Application Lifecycle Management and Executive

Strategies Service, International Data Corporation (IDC)

“Sam Guckenheimer and Neno Loje have forgotten more about software development
processes than most development ‘gurus’ ever knew, and that’s a good thing! In Agile
Software Engineering with Visual Studio, Sam and Neno distill the essence of years of
hard-won experience and hundreds of pages of process theory into what really
matters—the techniques that high performance software teams use to get stuff done. By
combining these critical techniques with examples of how they work in Visual Studio,
they created a de-facto user guide that no Visual Studio developer should be without.”

—Jeffrey Hammond, Principal Analyst, Forrester Research

“If you employ Microsoft’s Team Foundation Server and are considering Agile projects,
this text will give you a sound foundation of the principles behind its agile template and
the choices you will need to make. The insights from Microsoft’s own experience in
adopting agile help illustrate challenges with scale and the issues beyond pure
functionality that a team needs to deal with. This book pulls together into one location a
wide set of knowledge and practices to create a solid foundation to guide the decisions
and effective transition, and will be a valuable addition to any team manager’s
bookshelf.”

—Thomas Murphy, Research Director, Gartner

“This book presents software practices you should want to implement on your team
and the tools available to do so. It paints a picture of how first class teams can work,
and in my opinion, is a must read for anyone involved in software development. It will
be mandatory reading for all our consultants.”

—Claude Remillard, President, InCycle

“This book is the perfect tool for teams and organizations implementing agile practices
using Microsoft’s Application Lifecycle Management platform. It proves disciplined
engineering and agility are not at odds; each needs the other to be truly effective.”

—David Starr, Scrum.org

ptg7041395

“Sam Guckenheimer and Neno Loje have written a very practical book on how Agile
teams can optimize their practices with Visual Studio. It describes not only how Agile
and Visual Studio work, but also the motivation and context for many of the functions
provided in the platform. If you are using Agile and Visual Studio, this book should be
a required read for everyone on the team. If you are not using Agile or Visual Studio,
then reading this book will describe a place that perhaps you want to get to with your
process and tools.”

—Dave West, Analyst, Forrester Research

“Sam Guckenheimer and Neno Loje are leading authorities on agile methods and Visual
Studio. The book you are holding in your hand is the authoritative way to bring these
two technologies together. If you are a Visual Studio user doing agile, this book is a
must read.”

—Dr. James A. Whittaker, Software Engineering Director, Google

“Agile development practices are a core part of modern software development.
Drawing from our own lessons in adopting agile practices at Microsoft, Sam
Guckenheimer and Neno Loje not only outline the benefits, but also deliver a hands-on,
practical guide to implementing those practices in teams of any size. This book will help
your team get up and running in no time!”

—Jason Zander, Corporate Vice President, Microsoft Corporation

ptg7041395

Agile Software Engineering
with Visual Studio
From Concept to Continuous Feedback

ptg7041395

The award-winning Microsoft .NET Development Series was

established in 2002 to provide professional developers with the

most comprehensive, practical coverage of the latest .NET technologies.

Authors in this series include Microsoft architects, MVPs, and other

experts and leaders in the field of Microsoft development technologies.

Each book provides developers with the vital information and critical

insight they need to write highly effective applications.

Visit informit.com/msdotnetseries for a complete list of available products.

Microsoft
®

 .NET Development Series

ptg7041395

From Concept to Continuous Feedback

Sam Guckenheimer
Neno Loje

Agile Software
Engineering
with
Visual Studio

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco

New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

ptg7041395

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for inci-
dental or consequential damages in connection with or arising out of the use of the information or programs
contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or spe-
cial sales, which may include electronic versions and/or custom covers and content particular to your busi-
ness, training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/aw

The Library of Congress cataloging-in-publication data is on file.

Copyright © 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

The .NET logo is either a registered trademark or trademark of Microsoft Corporation in the United States
and/or other countries and is used under license from Microsoft.

Microsoft, Windows, Visual Studio, Team Foundation Server, Visual Basic, Visual C#, and Visual C++ are
either registered trademarks or trademarks of Microsoft Corporation in the U.S.A. and/or other coun-
tries/regions.

ISBN-13: 978-0-321-68585-8
ISBN-10: 0-321-68585-7

Text printed in the United States on recycled paper at R.R. Donnelly in Crawfordsville, Indiana.

First printing September 2011

ptg7041395

To Monica, Zoe, Grace, Eli, and Nick,
whose support made this book possible.

—Sam

ptg7041395

This page intentionally left blank

ptg7041395

Contents

Foreword xvii
Preface xix
Acknowledgements xxvi
About the Authors xxvii

1 The Agile Consensus 1
The Origins of Agile 1
Agile Emerged to Handle Complexity 2
Empirical Process Models 4
A New Consensus 4
Scrum 6

Potentially Shippable 7

Increasing the Flow of Value in Software 8

Reducing Waste in Software 9

Transparency 11

Technical Debt 11

An Example 12
Self-Managing Teams 13

Back to Basics 15

Summary 15
End Notes 16

ix

ptg7041395

2 Scrum, Agile Practices, and Visual Studio 19
Visual Studio and Process Enactment 20
Process Templates 21

Teams 22

Process Cycles and TFS 23
Release 24

Sprint 26

Bottom-Up Cycles 30

Personal Development Preparation 30

Check-In 30

Test Cycle 31

Definition of Done at Every Cycle 35

Inspect and Adapt 36
Task Boards 36
Kanban 38
Fit the Process to the Project 39

Geographic Distribution 40

Tacit Knowledge or Required Documentation 41

Governance, Risk Management, and Compliance 41

One Project at a Time Versus Many Projects at Once 41

Summary 42
End Notes 43

3 Product Ownership 45
What Is Product Ownership? 46

The Business Value Problem: Peanut Butter 47

The Customer Value Problem: Dead Parrots 47

The Scope-Creep Problem: Ships That Sink 48

The Perishable Requirements Problem: Ineffective Armor 49

Scrum Product Ownership 50
Release Planning 51

Business Value 52

Customer Value 52

Exciters, Satisfiers, and Dissatisfiers: Kano Analysis 55

Design Thinking 58

Customer Validation 62

Contentsx

ptg7041395

Qualities of Service 63
Security and Privacy 64

Performance 64

User Experience 65

Manageability 66

How Many Levels of Requirements 67
Work Breakdown 68

Summary 70
End Notes 70

4 Running the Sprint 73
Empirical over Defined Process Control 75
Scrum Mastery 76

Team Size 77

Rapid Estimation (Planning Poker) 78

A Contrasting Analogy 80

Use Descriptive Rather Than Prescriptive Metrics 81
Prevent Distortion 84

Avoid Broken Windows 85

Answering Everyday Questions with Dashboards 86
Burndown 87

Quality 88

Bugs 90

Test 91

Build 93

Choosing and Customizing Dashboards 94
Using Microsoft Outlook to Manage the Sprint 95
Summary 96
End Notes 96

5 Architecture 99
Architecture in the Agile Consensus 100

Inspect and Adapt: Emergent Architecture 100

Architecture and Transparency 101

Design for Maintainability 102

Contents xi

ptg7041395

Exploring Existing Architectures 103
Understanding the Code 103

Maintaining Control 109

Understanding the Domain 113

Summary 121
End Notes 123

6 Development 125
Development in the Agile Consensus 126
The Sprint Cycle 127

Smells to Avoid in the Daily Cycle 127

Keeping the Code Base Clean 128
Catching Errors at Check-In 128

Shelving Instead of Checking In 134

Detecting Programming Errors Early 135
Test-Driven Development Provides Clarity 135

Catching Programming Errors with Code Reviews,

Automated and Manual 148

Catching Side Effects 152
Isolating Unexpected Behavior 152

Isolating the Root Cause in Production 155

Tuning Performance 156

Preventing Version Skew 160
What to Version 160

Branching 162

Working on Different Versions in Parallel 163

Merging and Tracking Changes Across Branches 165

Working with Eclipse or the Windows Shell Directly 167

Making Work Transparent 168
Summary 169
End Notes 171

Contentsxii

ptg7041395

7 Build and Lab 173
Cycle Time 174
Defining Done 175
Continuous Integration 177
Automating the Build 179

Daily Build 180

BVTs 181

Build Report 181

Maintaining the Build Definitions 183

Maintaining the Build Agents 183

Automating Deployment to Test Lab 185
Setting Up a Test Lab 185

Does It Work in Production as Well as in the Lab? 187

Automating Deployment and Test 190

Elimination of Waste 196
Get PBIs Done 196

Integrate As Frequently As Possible 197

Detecting Inefficiencies Within the Flow 198

Summary 201
End Notes 202

8 Test 203
Testing in the Agile Consensus 204

Testing and Flow of Value 205

Inspect and Adapt: Exploratory Testing 206

Testing and Reduction of Waste 206

Testing and Transparency 207

Testing Product Backlog Items 207
The Most Important Tests First 209

Actionable Test Results and Bug Reports 212
No More “No Repro” 214

Use Exploratory Testing to Avoid False Confidence 216

Handling Bugs 218
Which Tests Should Be Automated? 219

Contents xiii

ptg7041395

Automating Scenario Tests 220
Testing “Underneath the Browser” Using HTTP 221

Load Tests, as Part of the Sprint 225
Understanding the Output 228

Diagnosing the Performance Problem 229

Production-Realistic Test Environments 230
Risk-Based Testing 232

Capturing Risks as Work Items 234

Security Testing 235

Summary 235
End Notes 236

9 Lessons Learned at Microsoft Developer Division 239
Scale 240
Business Background 241

Culture 241

Waste 243

Debt Crisis 244

Improvements After 2005 245
Get Clean, Stay Clean 245

Tighter Timeboxes 246

Feature Crews 246

Defining Done 246

Product Backlog 249

Iteration Backlog 251

Engineering Principles 254

Results 254
Law of Unintended Consequences 255

Social Contracts Need Renewal 255

Lessons (Re)Learned 256

Celebrate Successes, but Don’t Declare Victory 258

What’s Next? 259
End Notes 259

Contentsxiv

ptg7041395

10 Continuous Feedback 261
Agile Consensus in Action 262
The Next Version 263
Product Ownership and Stakeholder Engagement 264

Storyboarding 264

Getting Feedback on Working Software 265

Balancing Capacity 267

Managing Work Visually 268

Staying in the Groove 270
Collaborating on Code 272

Cleaning Up the Campground 273

Testing to Create Value 275
TFS in the Cloud 275
Conclusion 276

Living on the Edge of Chaos 278

End Notes 279

Index 281

Contents xv

ptg7041395

This page intentionally left blank

ptg7041395

Foreword

It is my honor to write a foreword for Sam’s book, Agile Software Engineer-
ing with Visual Studio. Sam is both a practitioner of software development
and a scholar. I have worked with Sam for the past three years to merge
Scrum with modern engineering practices and an excellent toolset,
Microsoft’s VS 2010. We are both indebted to Aaron Bjork of Microsoft, who
developed the Scrum template that instantiates Scrum in VS 2010 through
the Scrum template.

I do not want Scrum to be prescriptive. I left many holes, such as what
is the syntax and organization of the product backlog, the engineering prac-
tices that turned product backlog items into a potentially shippable incre-
ment, and the magic that would create self-organizing teams. In his book,
Sam has superbly described one way of filling in these holes. He describes
the techniques and tooling, as well as the rationale of the approach that he
prescribes. He does this in detail, with scope and humor. Since I have
worked with Microsoft since 2004 and Sam since 2009 on these practices
and tooling, I am delighted. Our first launch was a course, the Professional
Scrum Developer .NET course, that taught developers how to use solid
increments using modern engineering practices on VS 2010 (working in
self-organizing, cross-functional teams). Sam’s book is the bible to this
course and more, laying it all out in detail and philosophy. If you are on a
Scrum team building software with .NET technologies, this is the book for
you. If you are using Java, this book is compelling enough to read anyway,
and may be worth switching to .NET.

xvii

ptg7041395

When we devised and signed the Agile Manifesto in 2001, our first value
was “Individuals and interactions over processes and tools.” Well, we have
the processes and tools nailed for the Microsoft environment. In Sam’s
book, we have something developers, who are also people, can use to
understand the approach and value of the processes and tools. Now for the
really hard work, people. After 20 years of being treated as resources,
becoming accountable, creative, responsible people is hard. Our first chal-
lenge will be the people who manage the developers. They could use the
metrics from the VS 2010 tooling to micromanage the processes and devel-
opers, squeezing the last bit of creativity out and leaving agility flat. Or,
they could use the metrics from the tools to understand the challenges fac-
ing the developers. They could then coach and lead them to a better, more
creative, and more productive place. This is the challenge of any tool. It
may be excellent, but how it is used will determine its success.

Thanks for the book, Sam and Neno.

Ken Schwaber
Co-Creator of Scrum

Forewordxviii

ptg7041395

Preface

Five years ago, we extended the world’s leading product for individual
developers, Microsoft Visual Studio, into Visual Studio Team System, and
it quickly became the world’s leading product for development teams. This
addition of Application Lifecycle Management (ALM) to Visual Studio
made life easier and more productive for hundreds of thousands of our
users and tens of thousands of our Microsoft colleagues. In 2010, we
shipped Visual Studio 2010 Premium, Ultimate, Test Professional, and
Team Foundation Server. (We’ve dropped the Team System name.)

We’ve learned a lot from our customers in the past five years. Visual Stu-
dio 2010 is a huge release that enables a high-performance Agile software
team to release higher-quality software more frequently. We set out to
enable a broad set of scenarios for our customers. We systematically
attacked major root causes of waste in the application lifecycle, elevated
transparency for the broadly engaged team, and focused on flow of value
for the end customer. We have eliminated unnecessary silos among roles, to
focus on empowering a multidisciplinary, self-managing team. Here are
some examples.

No more no repro. One of the greatest sources of waste in software
development is a developer’s inability to reproduce a reported defect. Tra-
ditionally, this is called a “no repro” bug. A tester or user files a bug and
later receives a response to the effect of “Cannot reproduce,” or “It works
on my machine,” or “Please provide more information,” or something of
the sort. Usually this is the first volley in a long game of Bug Ping-Pong, in
which no software gets improved but huge frustration gets vented. Bug

xix

ptg7041395

Ping-Pong is especially difficult for a geographically distributed team. As
detailed in Chapters 1 and 8, VS 2010 shortens or eliminates this no-win
game.

No more waiting for build setup. Many development teams have mas-
tered the practice of continuous integration to produce regular builds of
their software many times a day, even for highly distributed Web-based
systems. Nonetheless, testers regularly wait for days to get a new build
to test, because of the complexity of getting the build deployed into a
production-realistic lab. By virtualizing the test lab and automating the
deployment as part of the build, VS 2010 enables testers to take fresh builds
daily or intraday with no interruptions. Chapter 7, “Build and Lab,”
describes how to work with build and lab automation.

No more UI regressions. The most effective user interface (UI) testing is
often exploratory, unscripted manual testing. However, when bugs are
fixed, it is often hard to tell whether they have actually been fixed or if they
simply haven’t been found again. VS 2010 removes the ambiguity by cap-
turing the action log of the tester’s exploration and allowing it to be con-
verted into an automated test. Now fixes can be retested reliably and
automation can focus on the actually observed bugs, not the conjectured
ones. Chapter 8, “Test,” covers both exploratory and automated testing.

No more performance regressions. Most teams know the quickest way
to lose a customer is with a slow application or Web site. Yet teams don’t
know how to quantify performance requirements and accordingly, don’t
test for load capacity until right before release, when it’s too late to fix the
bugs that are found. VS 2010 enables teams to begin load testing early.
Performance does not need to be quantified in advance, because the test can
answer the simple question, “What has gotten slower?” And from the end-
to-end result, VS profiles the hot paths in the code and points the developer
directly to the trouble spots. Chapters 6 and 8 cover profiling and load
testing.

No more missed changes. Software projects have many moving parts,
and the more iterative they are, the more the parts move. It’s easy for devel-
opers and testers to misunderstand requirements or overlook the impact
of changes. To address this, Visual Studio Test Professional introduces test

Prefacexx

ptg7041395

impact analysis. This capability compares the changes between any two
builds and recommends which tests to run, both by looking at the work
completed between the builds and by analyzing which tests cover the
changed code based on prior coverage. Chapters 3 and 4 describe the prod-
uct backlog and change management, and Chapters 6 through 8 show test
impact analysis and the corresponding safety nets from unit testing, build
automation, and acceptance testing.

No more planning black box. In the past, teams have often had to guess
at their historical velocity and future capacity. VS 2010 draws these directly
from the Team Foundation Server database and builds an Excel worksheet
that allows the team to see how heavily loaded every individual is in the
sprint. The team can then transparently shift work as needed. Examples of
Agile planning are discussed in Chapters 2 and 4.

No more late surprises. Agile teams, working iteratively and incre-
mentally, often use burndown charts to assess their progress. Not only does
VS 2010 automate the burndowns, but project dashboards go beyond burn-
downs to provide a real-time view of quality and progress from many
dimensions: requirements, tasks, tests, bugs, code churn, code coverage,
build health, and impediments. Chapter 4, “Running the Sprint,” intro-
duces the “happy path” of running a project and discusses how to trou-
bleshoot project “smells.”

No more legacy fear. Very few software projects are truly “greenfield,”
developing brand new software on a new project. More frequently, teams
extend or improve existing systems. Unfortunately, the people who worked
on earlier versions are often no longer available to explain the assets they
have left behind. VS 2010 makes it much easier to work with the existing
code by introducing tools for architectural discovery. VS 2010 reveals the
patterns in the software and enables you to automatically enforce rules that
reduce or eliminate unwanted dependencies. These rules can become part
of the check-in policies that ensure the team’s definition of done to prevent
inadvertent architectural drift. Architectural changes can also be tied to
bugs or work, to maintain transparency. Chapter 5, “Architecture,” covers
the discovery of existing architecture, and Chapter 7 shows you how to
automate the definition of done.

Preface xxi

ptg7041395

No more distributed development pain. Distributed development is a
necessity for many reasons: geographic distribution, project complexity,
release evolution. VS 2010 takes much of the pain out of distributed devel-
opment processes both proactively and retrospectively. Gated check-in
proactively forces a clean build with verification tests before accepting a
check-in. Branch visualization retrospectively lets you see where changes
have been applied. The changes are visible both as code and work item
updates (for example, bug fixes) that describe the changes. You can visually
spot where changes have been made and where they still need to be pro-
moted. Chapters 6 and 7 show you how to work with source, branches, and
backlogs across distributed teams.

No more technology silos. More and more software projects use mul-
tiple technologies. In the past, teams often have had to choose different
tools based on their runtime targets. As a consequence, .NET and Java
teams have not been able to share data across their silos. Visual Studio Team
Foundation Server 2010 integrates the two by offering clients in both the
Visual Studio and Eclipse integrated development environments (IDEs), for
.NET and Java respectively. This changes the either-or choice into a
both-and, so that everyone wins. Again, Chapters 6 and 7 include examples
of working with your Java assets alongside .NET.

These scenarios are not an exhaustive list, but a sampling of the moti-
vation for VS 2010. All of these illustrate our simple priorities: reduce
waste, increase transparency, and accelerate the flow of value to the end
customer. This book is written for software teams considering running a
software project using VS 2010. This book is more about the why than the
how.

This book is written for the team as a whole. It presents information in
a style that will help all team members get a sense of each other’s view-
point. I’ve tried to keep the topics engaging to all team members. I’m fond
of Einstein’s dictum “As simple as possible, but no simpler,” and I’ve tried
to write that way. I hope you’ll agree and recommend the book to your col-
leagues (and maybe your boss) when you’ve finished with it.

Prefacexxii

ptg7041395

Preface xxiii

Enough About Visual Studio 2010 to Get You Started

When I write about Visual Studio (or VS) I’m referring to the full product
line. As shown in Figure P.1, the VS 2010 family is made up of a server and
a small selection of client-side tools, all available as VS Ultimate.

Figure P-1: Team Foundation Server, now including Lab Management, forms the server of VS

2010. The client components are available in VS Ultimate.

Team Foundation Server (TFS) is the ALM backbone, providing source con-
trol management, build automation, work item tracking, test case manage-
ment, reporting, and dashboards. Part of TFS is Lab Management, which
extends the build automation of TFS to integrate physical and virtual test
labs into the development process.

If you just have TFS, you get a client called Team Explorer that launches
either standalone or as a plug-in to the Visual Studio Professional IDE.
Team Explorer Everywhere, a comparable client written in Java, launches
as an Eclipse plug-in. You also get Team Web Access and plug-ins that
let you connect from Microsoft Excel or Project. SharePoint hosts the
dashboards.

Visual Studio Premium adds the scenarios that are described in Chapter
6, “Development,” around working with the code. Visual Studio Test

ptg7041395

Professional, although it bears the VS name, is a separate application outside
the IDE, designed with the tester in mind. You can see lots of Test Profes-
sional examples in Chapter 8. VS Ultimate, which includes Test Professional,
adds architectural modeling and discovery, discussed in Chapter 5.

There is also a rich community of partner products that use the extensi-
bility to provide additional client experiences on top of TFS. Figure P.2
shows examples of third-party extensions that enable MindManager,
Microsoft Word, and Microsoft Outlook as clients of TFS. You can find a
directory at www.visualstudiowidgets.com/.

Prefacexxiv

Ekobit TeamCompanion uses Microsoft Outlook to connect to TFS.

AIT WordtoTFS makes Microsoft Word a TFS client. Artiso Requirements Mapper turns
Mindjet MindManager into a TFS Client.

Figure P-2: A broad catalog of partner products extend TFS. Shown here are Artiso

Requirements Mapper, Ekobit TeamCompanion, and AIT WordtoTFS.

www.visualstudiowidgets.com/

ptg7041395

Of course, all the clients read and feed data into TFS, and their trends sur-
face on the dashboards, typically hosted on SharePoint. Using Excel Ser-
vices or SQL Server Reporting Services, you can customize these
dashboards. Dashboard examples are the focus of Chapter 4.

Unlike earlier versions, VS 2010 does not have role-based editions. This
follows our belief in multidisciplinary, self-managing teams. We want to
smooth the transitions and focus on the end-to-end flow. Of course, there’s
plenty more to learn about VS at the Developer Center of http://msdn.
microsoft.com/vstudio/.

Preface xxv

http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/vstudio/

ptg7041395

Acknowledgments

Hundreds of colleagues and millions of customers have contributed to
shaping Visual Studio. In particular, the roughly two hundred “ALM
MVPs” who relentlessly critique our ideas have enormous influence.
Regarding this book, there are a number of individuals who must be sin-
gled out for the direct impact they made. Ken Schwaber convinced me that
this book was necessary. The inexhaustible Brian Harry and Cameron Skin-
ner provided detail and inspiration. Jason Zander gave me space and
encouragement to write. Tyler Gibson illustrated the Scrum cycles to unify
the chapters. Among our reviewers, David Starr, Claude Remillard, Aaron
Bjork, David Chappell, and Adam Cogan stand out for their thorough and
careful comments. And a special thanks goes to Joan Murray, our editor at
Pearson, whose patience was limitless.

ptg7041395

About the Authors

Sam Guckenheimer
When I wrote the predecessor of this book, I had been at Microsoft less than three
years. I described my history like this:

I joined Microsoft in 2003 to work on Visual Studio Team System (VSTS),
the new product line that was just released at the end of 2005. As the group
product planner, I have played chief customer advocate, a role that I have
loved. I have been in the IT industry for twenty-some years, spending most
of my career as a tester, project manager, analyst, and developer.

As a tester, I’ve always understood the theoretical value of advanced
developer practices, such as unit testing, code coverage, static analysis, and
memory and performance profiling. At the same time, I never understood
how anyone had the patience to learn the obscure tools that you needed to
follow the right practices.

As a project manager, I was always troubled that the only decent data
we could get was about bugs. Driving a project from bug data alone is like
driving a car with your eyes closed and only turning the wheel when you
hit something. You really want to see the right indicators that you are on
course, not just feel the bumps when you stray off it. Here, too, I always
understood the value of metrics, such as code coverage and project veloc-
ity, but I never understood how anyone could realistically collect all that
stuff.

As an analyst, I fell in love with modeling. I think visually, and I found
graphical models compelling ways to document and communicate. But
the models always got out of date as soon as it came time to implement

xxvii

ptg7041395

anything. And the models just didn’t handle the key concerns of develop-
ers, testers, and operations.

In all these cases, I was frustrated by how hard it was to connect the dots
for the whole team. I loved the idea in Scrum (one of the Agile processes)
of a “single product backlog”—one place where you could see all the
work—but the tools people could actually use would fragment the work
every which way. What do these requirements have to do with those tasks,
and the model elements here, and the tests over there? And where’s the
source code in that mix?

From a historical perspective, I think IT turned the corner when it
stopped trying to automate manual processes and instead asked the ques-
tion, “With automation, how can we reengineer our core business
processes?” That’s when IT started to deliver real business value.

They say the cobbler’s children go shoeless. That’s true for IT, too. While
we’ve been busy automating other business processes, we’ve largely neg-
lected our own. Nearly all tools targeted for IT professionals and teams
seem to still be automating the old manual processes. Those processes
required high overhead before automation, and with automation, they still
have high overhead. How many times have you gone to a 1-hour project
meeting where the first 90 minutes were an argument about whose num-
bers were right?

Now, with Visual Studio, we are seriously asking, “With automation,
how can we reengineer our core IT processes? How can we remove the
overhead from following good process? How can we make all these differ-
ent roles individually more productive while integrating them as a high-
performance team?”

Obviously, that’s all still true.

About the Authorsxxviii

ptg7041395

Neno Loje
I started my career as a software developer—first as a hobby, later as pro-
fession. At the beginning of high school, I fell in love with writing software
because it enabled me to create something useful by transforming an idea
into something of actual value for someone else. Later, I learned that this
was generating customer value.

However, the impact and value were limited by the fact that I was just
a single developer working in a small company, so I decided to focus on
helping and teaching other developers. I started by delivering pure techni-
cal training, but the topics soon expanded to include process and people,
because I realized that just introducing a new tool or a technology by itself
does not necessarily make teams more successful.

During the past six years as an independent ALM consultant and TFS
specialist, I have helped many companies set up a team environment and
software development process with VS. It has been fascinating to watch
how removing unnecessary, manual activities makes developers and entire
projects more productive. Every team is different and has its own problems.
I’ve been surprised to see how many ways exist (both in process and tools)
to achieve the same goal: deliver customer value faster though great
software.

When teams look back at how they worked before, without VS, they
often ask themselves how they could have survived without the tools they
use now. However, what had changed from the past were not only the
tools, but also the way they work as a team.

Application Lifecycle Management and practices from the Agile Con-
sensus help your team to focus on the important things. VS and TFS are a
pragmatic approach to implement ALM (even for small, nondistributed
teams). If you’re still not convinced, I urge you to try it out and judge for
yourself.

About the Authors xxix

ptg7041395

This page intentionally left blank

ptg7041395

1
The Agile Consensus

A crisis is a terrible thing to waste.
—Paul Romer (attributed)

Wars and recessions become focal points for economic and engineering
trends that have developed gradually for many years before. The

Great Recession of 2007 through 2010 is a case in point. In 2008, for exam-
ple, Toyota—youngest of the world’s major automobile manufacturers—
became the world market leader, as it predicted it would six years earlier.1

Then in 2009, two of the three American manufacturers went through bank-
ruptcy, while the third narrowly escaped. The emergence from this crisis
underscored how much the Detroit manufacturers had failed to adapt to
competitive practices that had been visible and documented for decades. In
1990, Jim Womack and colleagues had coined the term Lean in their exquis-
itely researched book The Machine That Changed the World to describe a new
way of working that Toyota had invented.2 By 2010, Lean had become a
requirement of doing business. As the New York Times headline read, “G.M.
and Ford Channel Toyota to Beat Toyota.”3

The Origins of Agile

Software companies, of course, experienced their own spate of bankrupt-
cies in the years 2000–02 and 2008–10, while internal IT organizations were

1

ptg7041395

newly challenged to justify their business value. In this period, many
industry leaders asked how Lean could have a similarly major impact on
software engineering.

Lean was one of several approaches that became known as “Agile
processes.” On a weekend in 2001, 17 software luminaries convened to dis-
cuss “lightweight methods,” alternatives to the more heavyweight devel-
opment processes in common use. At the end of the weekend, they
launched the Agile Alliance, initially charged around the Agile Manifesto.4

At the end of the decade, in a 2010 study of 4,770 developers in 91 countries,
90% of respondents worked in organizations that used Agile development
practices to some degree (up from 84% the previous year).5 Contrary to the
early days of Agile, the most frequent champions for introducing Agile
practices are now in management roles. By now, “agility” is mainstream.
In the words of Forrester Research:

Agile adoption is a reality. Organizations across all industries are
increasingly adopting Agile principles, and software engineers and
other project team members are picking up Agile techniques.6

It seems that every industry analyst advocates Agile, every business
executive espouses it, and everyone tries to get more of it.

Agile Emerged to Handle Complexity

In prior decades, managers and engineers alike assumed that software engi-
neering was much like engineering a bridge or designing a house. When you
build a bridge, road, or house, for example, you can safely study hundreds of
very similar examples. The starting conditions, requirements, technology,
and desired outcome are all well understood. Indeed, most of the time, con-
struction economics dictate that you build the current house or bridge
according to a proven plan very much like a previous one. In this case, the
requirements are known, the technology is known, and the risk is low.

These circumstances lend themselves to a defined process model, where
you lay out the steps well in advance according to a previously exercised
baseline, derived from the process you followed in building the previous

The Agile Consensus2

ptg7041395

similar examples. Most process models taught in business and engineering
schools, such as the Project Management Body of Knowledge (PMBOK),7

are defined process models that assume you can know the tasks needed to
projected completion.

Software is rarely like that. With software, if someone has built a system
just like you need, or close to what you need, chances are you can license
it commercially (or even find it as freeware). No sane business is going to
spend money building software that it can buy more economically. With
thousands of software products available for commercial license, it is
almost always cheaper to buy, if what you need already exists.

Accordingly, the software projects that are worth funding are the ones
that haven’t been done before. This has a significant implication for the
process to follow. Ken Schwaber, inventor of Scrum, has adapted a graph
from the book Strategic Management and Organisational Dynamics, by Ralph
D. Stacey, to explain the management context. Stacey divided management
situations into the four categories of simple, complicated, complex, and
anarchic (as shown in Figure 1-1).8

Agile Emerged to Handle Complexity 3

R
eq

u
ir

em
en

ts

Technology

Complex

Chaos

Complicated

ComplicatedSimple

Far from
Certainty

Close to
Certainty

C
lo

se
 to

A
gr

ee
m

en
t

Fa
r

fr
om

A
gr

ee
m

en
t

Figure 1-1: The Stacey Matrix distinguishes simple, complicated, complex, and anarchic
management contexts and has been an inspiration for Scrum and other Agile practices.

ptg7041395

Empirical Process Models

When requirements are agreed and technology is well understood, as in the
house or bridge, the project falls in the simple or complicated regions. The-
oretically, these simple and complicated regions would also include soft-
ware projects that are easy and low risk, but as I discussed earlier, because
they’ve been done before, those don’t get funded.

When the requirements are not necessarily well agreed or the technol-
ogy is not well known (at least to the current team), the project falls in the
complex region. That is exactly where many software projects do get
funded, because that is where the greatest opportunity for competitive
business differentiation lies.

The uncertainties put these projects in Stacey’s complex category, often
referred to as the “edge of chaos.” The uncertainties also make the defined
process model quite ill suited to these projects. In these cases, rather than
laying out elaborate plans that you know will change, it is often better that
you create more fluid options, try a little, inspect the results, and adapt the
next steps based on the experience. Indeed, this is exactly what’s known as
the empirical process model, based on what works well in product develop-
ment and industries with continuous process control.9

An everyday example of an empirical process control is the thermostat.
We don’t look up hourly weather forecasts and set our heaters and air con-
ditioners based on Gantt charts of expected temperatures. Rather, we rely
on a simple feedback mechanism to adjust the temperature a little bit at a
time when it is too hot or too cold. A sophisticated system might take into
account the latency of response—for example, to cool down an auditorium
in anticipation of a crowd or heat a stone in anticipation of a cold spell—but
then the adjustment is made based on actual temperature. It’s a simple con-
trol system based on “inspect and adapt.”

A New Consensus

As software economics have favored complex projects, there has been a
growing movement to apply the empirical models to software process.
Since 1992, Agile, Lean, Scrum,10 Kanban,11 Theory of Constraints,12 System

The Agile Consensus4

ptg7041395

Thinking,13 XP,14 and Flow-Based Product Development15 have all been part
of the trend. All of these overlap and are converging into a new paradigm
of software engineering. No single term has captured the emerging para-
digm, but for simplicity, I’ll call this the Agile Consensus.

The Agile Consensus stresses three fundamental principles that rein-
force each other:

1. Flow of value, where value is defined by the customer who is paying
for or using this project

2. Continual reduction of waste impeding the flow

3. Transparency, enabling team members to continually improve the
above two

These three principles reinforce each other (as shown in Figure 1-2). Flow of
value enables transparency, in that you can measure what is important to
the customer (namely, potentially shippable software). Transparency
enables discovery of waste. Reducing waste, in turn, accelerates flow and
enables greater transparency. These three aspects work together like three
legs of a stool.

A New Consensus 5

Transparency

Fl
ow

of
Va

lu
e

R
eduction

ofW
aste

Agile
Consensus

Figure 1-2: Flow of value, transparency, and reduction of waste form the basis of the Agile
Consensus.

Microsoft’s Visual Studio Team System 2005 and its successor Visual Studio
Team System 2008 were among the first commercial products to support
software teams applying these practices. Visual Studio 2010 (VS 2010;

ptg7041395

Microsoft has dropped the words Team System from the name) has made
another great leap forward to create transparency, improve flow, and
reduce waste in software development. VS 2010 is also one of the first prod-
ucts to tackle end-to-end Agile engineering and project management prac-
tices. A key set of these practices come from Scrum.

Scrum

As Forrester Research found recently, “When it comes to selecting an Agile
methodology, Scrum is the overwhelming favorite.”16 Scrum leads over the
nearest contender by a factor of three. Scrum has won acceptance because
it simplifies putting the principles of flow of value, reduction of waste, and
transparency into practice.

Scrum identifies three interlocking cadences: release or product plan-
ning, sprint (usually 2–4 weeks), and day; and for each cadence, it pre-
scribes specific meetings and maximum lengths for the meetings to keep
the overhead under 10% of the total time of the cycle. To ensure flow, every
Sprint produces a potentially shippable increment of software that deliv-
ers a subset of the product backlog in a working form. Figure 1-3 shows the
cycles.17

Core to Scrum is the concept of self-managing teams. Rather than rely
on a conventional hierarchical structure with a conventional project man-
ager, a self-managing team uses transparently available metrics to control
its own work in process and improve its own velocity of flow. Team mem-
bers are encouraged to make improvements whenever necessary to reduce
waste. The sprint cadence formally ensures that a “retrospective” is used
at least monthly to identify and prioritize actionable process improve-
ments. Scrum characterizes this cycle as “inspect and adapt.” Although
more nuanced than a thermostat, the idea is similar. Observation of the
actual process and its results drives the incremental changes to the
process.

The Agile Consensus6

ptg7041395

Figure 1-3: The central image of the Scrum methodology is a great illustration of flow in
the management sense.

Potentially Shippable
Scrum also enables transparency by prescribing the delivery of “potentially
shippable increments” of working software at the end of every sprint. For
example, a team working on a consumer Web site might focus one sprint on
catalog search. Without a working checkout process, the site would be
incomplete and not actually shippable or publicly deployable. However, if
the catalog search were usable and exercised the product database, busi-
ness logic, and display pages, it would be a reasonable potentially shippable
increment. Both stakeholders and the team can assess the results of the
sprint, provide feedback, and recommend changes before the next sprint.
Based on these changes, the product owner can adjust the product backlog,
and the team can adjust its internal processes.

Scrum 7

Potentially
Shippable
Increment

Sprint

Daily
Standup

Product
Backlog

Sprint
Backlog

ptg7041395

Increasing the Flow of Value in Software
Central to Agile Consensus is an emphasis on flow. The flow of customer
value is the primary measure of the system of delivery. David J. Anderson
summarizes this view in Agile Management for Software Engineering:

Flow means that there is a steady movement of value through the
system. Client-valued functionality is moving regularly through the
stages of transformation—and the steady arrival of throughput—
with working code being delivered.18

In this paradigm, you do not measure planned tasks completed as the
primary indicator of progress; you count units of value delivered.

Scrum introduced the concept of the product backlog, “a prioritized list of
everything that might be needed in the product.”19 This is a stack-ranked
list of requirements maintained by the product owner on the basis of stake-
holder needs. The product backlog contains the definition of the intended
customer value. The product backlog is described in depth in Chapter 3,
“Product Ownership.”

The product backlog provides the yardstick against which flow of value
can be measured. Consistent with Scrum, Visual Studio 2010 offers an
always-visible product backlog to increase the communication about the
flow of customer-valued deliverables. The product backlog is the current
agreement between stakeholders and the development team regarding the
next increments to build, and it is kept in terms understandable to the
stakeholders. Usually, product backlog items are written as user stories, dis-
cussed more in Chapter 3. The report in Figure 1-4 shows product backlog
and the test status against the product backlog. This bird’s eye view of
progress in the sprint lets the team see where backlog items are flowing and
where they are blocked. More detailed examples of a common dashboard,
showing both progress and impediments, are discussed in Chapter 4,
“Running the Sprint.”

The Agile Consensus8

ptg7041395
Figure 1-4: The Stories Overview report shows each product backlog Item on a row, with a
task perspective under Work Progress, a Test Results perspective reflecting the tests run,
and a Bugs perspective for the bugs actually found.

Reducing Waste in Software
The enemy of flow is waste. This opposition is so strong that reduction of
waste is the most widely recognized aspect of Lean. Taiichi Ohno of Toyota,
the father of Lean, developed the taxonomy of muda (Japanese for “waste”),
mura (“inconsistency”), and muri (“unreasonableness”), such that these
became common business terms.20 Ohno categorized seven types of muda
with an approach for reducing every one. Mary and Tom Poppendieck
introduced the muda taxonomy to software in their first book.21 Table 1-1
shows an updated version of this taxonomy, which provides a valuable per-
spective for thinking about impediments in the software development
process, too.

Scrum 9

ptg7041395

Consistent with Ohno’s taxonomy, in-process inventory, transportation,
motion, and waiting often get overlooked in software development. Espe-
cially when many specialist roles are involved, waste appears in many sub-
tle ways. As Kent Beck observed, “The greater the flow, the greater the need
to support transitions between activities.”22 Some of the transitions take
seconds or minutes, such as the time a developer spends in the cycle of cod-
ing and unit testing. Other transitions too often take days, weeks, or unfor-
tunately, months. All the little delays add up.

Table 1-1: Taiichi Ohno’s Taxonomy of Waste, Updated to Software Practices

Muda In-Process Inventory Partially implemented user stories, bug
debt and incomplete work carried
forward. Requires multiple handling,
creates overhead and stress.

Overproduction Teams create low-priority features and
make them self-justifying. This work
squeezes capacity from the high-priority
work.

Extra Processing Bug debt, reactivations, triage, redun-
dant testing, relearning of others’ code,
handling broken dependencies.

Transportation Handoffs across roles, teams, divisions,
and so on.

Motion Managing tools, access rights, data
transfer, lab setup, parallel release work.

Waiting Delays, blocking bugs, incomplete
incoming components or dependencies.

Correction Scrap and rework of code.

Mura Unevenness Varying granularity of work, creating
unpredictability in the flow.

Inconsistency Different definitions of done, process
variations that make assessment of
“potentially shippable” impossible.

Muri Absurdity Stress due to excessive scope.

Unreasonableness Expectations of heroic actions and com-
mitments to perform heroic actions.

Overburden Stress due to excessive overhead.

The Agile Consensus10

ptg7041395

Scrum 11

Transparency
Scrum and all Agile processes emphasize self-managing teams. Successful
self-management requires transparency. Transparency, in turn, requires
measurement with minimal overhead. Burndown charts of work remaining
in tasks became an early icon for transparency. VS takes this idea further,
to provide dashboards that measure not just the tasks, but multidimen-
sional indicators of quality.

VS enables and instruments the process, tying source code, testing, work
items, and metrics together. Work items include all the work that needs to
be tracked on a project, such as scenarios, development tasks, test tasks,
bugs, and impediments. These can be viewed and edited in the Team
Explorer, Team Web Access, Visual Studio, Microsoft Excel, or Microsoft
Project.

Technical Debt
In 2008, the plight of the financial sector plunged the world economy into
the steepest recession of the past 70 years. Economists broadly agree that
the problem was a shadow banking system with undisclosed and unmea-
sured financial debts hidden by murky derivatives. Fortunately, this crisis
has led legislators to remember the words of U.S. Supreme Court Justice
Louis Brandeis, “Sunlight is said to be the best of disinfectants; electric light
the most efficient policeman.”23

For software teams, the equivalent of these unknown liabilities is tech-
nical debt. Technical debt refers to work that needs to be done to achieve the
potentially shippable threshold, such as fixing bugs, unit testing, integration
testing, performance improvement, security hardening, or refactoring for
sustainability. Technical debt is an unfortunately common form of waste.
Unanticipated technical debt can crush a software project, leading to unpre-
dictable delays, costs, and late cancellation. And similar to the contingent
financial liabilities, technical debt is often not disclosed or measured until it
is too late.

Among the problems with technical debt is the fact that it prevents the
stakeholders from seeing what software is actually in a potentially ship-
pable state. This obstacle is the reason that Scrum prescribes that every
product backlog item must be delivered according to a definition of done

ptg7041395

agreed by the team. This is discussed more in Chapter 2, “Scrum, Agile
Practices, and Visual Studio.” Think of the transparency like Louis Bran-
deis’s electric light: It makes the policeman less necessary. Together, the
common definition of done and transparent view of progress prevent the
accumulation of technical debt, and thereby enable the team and its stake-
holders to assess the team’s true velocity.

An Example

Consider the effort spent in making a new build available for testing. Or
think about the handling cost of a bug that is reported fixed and then has
to get reactivated. Or consider writing specs for requirements that ulti-
mately get cut. All of these wastes are common to software projects.

VS 2010 has focused on reducing the key sources of waste in the soft-
ware development process. The build automation in VS Team Foundation
Server allows continuous or regularly scheduled builds, and with “gated
check-in” can force builds before accepting changed code. Lab Manage-
ment can automatically deploy those builds directly into virtualized test
environments. These are discussed in Chapter 7, “Build and Lab.”

An egregious example of waste is “Bug Ping-Pong.” Every tester or
product owner has countless stories of filing bugs with meticulous descrip-
tions, only to receive a “Cannot reproduce” response from a programmer.
There are many variants of this “No repro” response, such as “Need more
information” or “Works on my machine.” This usually leads to a repetitive
cycle that involves every type of muda as the tester and programmer try to
isolate the fault. And the cycle often leads to frustration, blame, and low
morale.

Bug Ping-Pong happens not because testers and developers are incom-
petent or lazy, but because software bugs are often truly hard to isolate.
Some bugs may demonstrate themselves only after thousands of asyn-
chronous events occur, and the exact repro sequence cannot be re-created
deterministically. Bugs like this are usually found by manual or exploratory
testing, not by test automation.

The Agile Consensus12

ptg7041395

When a tester files a bug, VS 2010 automatically invokes up to six mech-
anisms to eliminate the guesswork from fault isolation:

1. All the tester’s interactions with the software under test are captured
in an action log, grouped according to the prescribed test steps (if
any).

2. A full-motion video captures what the tester sees, time-indexed to the
test steps.

3. Screenshots highlight anything the tester needs to point out during
the sequence.

4. System configurations are automatically captured for each machine
involved in the test environment.

5. An IntelliTrace log records application events and the sequence of
code executed on the server, to enable future debugging based on
this actual execution history.

6. Virtual machine snapshots record the state of all the machines in the
test environment in their actual state at the time of failure.

Eliminating Bug Ping-Pong is one of the clearest ways in which VS 2010
reduces work in process and allows quick turnaround and small batches in
testing. Another is test impact analysis, which recommends the highest-
priority tests for each build, based both on completed work and historical
code coverage. This is shown in more detail in Chapter 8, “Test.”

Self-Managing Teams
A lot of ink has been used in the past 20 years on the concept of governance
with regard to software development. Consider this quote from an IBM
Redbook, for example:

Development governance addresses an organization-wide measure-
ment program whose purpose is to drive consistent progress assessment
across development programs, as well as the use of consistent steering
mechanisms. [Emphasis added.]24

An Example 13

ptg7041395

Most of the discussion conveys a bias that problems in software quality
can be traced to a lack of central control over the development process. If
only we measured developers’ activities better, the reasoning goes, we
could control them better. The Agile Consensus takes a very different atti-
tude to command and control. Contrast the preceding quote with the fol-
lowing analysis:

Toyota has long believed that first-line employees can be more than
cogs in a soulless manufacturing machine; they can be problem solvers,
innovators, and change agents. While American companies relied on
staff experts to come up with process improvements, Toyota gave
every employee the skills, the tools, and the permission to solve
problems as they arose and to head off new problems before they
occurred. The result: Year after year, Toyota has been able to get more
out of its people than its competitors have been able to get out of
theirs. Such is the power of management orthodoxy that it was only
after American carmakers had exhausted every other explanation for
Toyota’s success—an undervalued yen, a docile workforce, Japanese
culture, superior automation—that they were finally able to admit
that Toyota’s real advantage was its ability to harness the intellect of “ordi-
nary” employees.25

The difference in attitude couldn’t be stronger. The “ordinary” employ-
ees—members of the software team—are the ones who can best judge how
to do their jobs. They need tools, suitable processes, and a supportive envi-
ronment, not command and control.

Lean turns governance on its head, by trusting teams to work toward a
shared goal, and using measurement transparency to allow teams to
improve the flow of value and reduce waste themselves. In VS, this trans-
parency is fundamental and available both to the software team and its
stakeholders. The metrics and dashboards are instruments for the team to
use to inspect its own process and adapt its own ways of working, rather
than tools designed for steering from above.

The Agile Consensus14

ptg7041395

Back to Basics
It’s hard to disagree with Lean expert Jim Womack’s words:

The critical starting point for lean thinking is value. Value can only be
defined by the ultimate customer.26

Similarly for software, the Agile Consensus changes the way we work to
focus on value to the customer, reduce the waste impeding the flow, and
transparently communicate, measure, and improve the process. The auto
industry took 50 years to absorb the lessons of Lean, until customer and
investor patience wore out. In mid-2009, on the day General Motors
emerged from bankruptcy, CEO Fritz Henderson held a news conference in
Detroit and said the following:

At the new GM, we’re going to make the customer the center of
everything. And we’re going to be obsessed with this, because if we
don’t get this right, nothing else is going to work.27

Six months later, when GM had failed to show suitable obsession, Hen-
derson was out of a job. It may be relatively easy to dismiss the woes of
Detroit as self-inflicted, but we in the software industry have carried plenty
of our own technical debt, too. That technical debt has cost many a CIO his
job, as well.

Summary

For a long time, Scrum creator Ken Schwaber has said, “Scrum is all about
common sense,” but a lesson of the past decade is that we need supportive
tooling, too.28 To prevent the practice from diverging from common sense,
the tools need to reinforce the flow of value, reduce the waste, and make the
process transparent. These Agile principles have been consistently reflected
in five years of customer feedback that are reflected in VS 2010.

In practice, most software processes require a good deal of manual
work, which makes collecting data and tracking progress expensive. Up
front, such processes need documentation, training, and management, and

Summary 15

ptg7041395

they have high operating and maintenance costs. Most significantly, the
process artifacts and effort do not contribute in any direct way to the deliv-
ery of customer value. Project managers in these situations can often spend
40 hours a week cutting and pasting to report status.

In contrast, the business forces driving software engineering today
require a different paradigm. A team today needs to embrace customer
value, change, variance, and situationally specific actions as a part of every-
day practice. This is true whether projects are in-house or outsourced and
whether they are local or geographically distributed. Managing such a
process usually requires an Agile approach.

And the Agile Consensus requires supportive tooling. Collecting, main-
taining, and reporting the data without overhead is simply not practical
otherwise. In situations where regulatory compliance and auditing are
required, the tooling is necessary to provide the change management and
audit trails. Making the handoffs between different team members as effi-
cient as possible becomes more important than ever, because these handoffs
happen so much more often in an iterative process. VS 2010 does that and
makes Agile practices available to any motivated software team. The rest of
this book describes the use of VS to support this paradigm.

In the next chapter, I look at the implementation of Scrum and other
processes with VS. This chapter focuses on how VS represents the time-
boxes and cycles. Chapter 3 pulls the camera lens a little further out and
looks at product ownership broadly and the grooming of the product back-
log, and Chapter 4 puts these topics together to discuss how to run the
sprint using VS.

End Notes

1 James P. Womack and Daniel T. Jones, Lean Thinking: Banish Waste
and Create Wealth in Your Corporation (New York: Free Press, 2003),
150.

2 James P. Womack, Daniel T. Jones, and Daniel Roos, The Machine
That Changed the World: How Japan’s Secret Weapon in the Global
Auto Wars Will Revolutionize Western Industry (New York: Rawson
Associates, 1990).

The Agile Consensus16

ptg7041395

3 “G.M. and Ford Channel Toyota to Beat Toyota,” New York Times,
March 7, 2010, BU1.

4 www.agilemanifesto.org
5 “5th Annual State of Agile Survey” by Analysis.Net Research, avail-

able from http://agilescout.com/5th-annual-state-of-agile-survey-
from-version-one/.

6 Dave West and Tom Grant, “Agile Development: Mainstream
Adoption Has Changed Agility Trends in Real-World Adoption of
Agile Methods,” available from www.forrester.com/rb/Research/
agile_development_mainstream_adoption_has_changed_agility/
q/id/56100/t/2, 17.

7 Available from www.pmi.org/Resources/Pages/Library-of-PMI-
Global-Standards-Projects.aspx.

8 Ken Schwaber, adapted from Ralph. D. Stacey, Strategic Management
and Organisational Dynamics, 2nd Edition (Prentice Hall, 2007).

9 Ken Schwaber and Mike Beedle, Agile Software Development with
Scrum (Upper Saddle River, NJ: Prentice Hall, 2001).

10 Ken Schwaber and Jeff Sutherland, Scrum: Developed and Sustained
(also known as the Scrum Guide), February 2010, www.scrum.org/
scrumguides.

11 Henrik Kniberg and Mattias Skarin, “Kanban and Scrum - making
the most of both,” InfoQ, 2009, www.infoq.com/minibooks/kanban-
scrum-minibook.

12 Eliyahu M. Goldratt, The Goal (North River Press, 1986).
13 Gerald M. Weinberg, Quality Software Management, Volume I: Systems

Thinking (New York: Dorset House, 1992).
14 Kent Beck and Cynthia Andres, Extreme Programming Explained:

Embrace Change (Boston: Addison-Wesley, 2003).
15 Donald G. Reinertsen, The Principles of Product Development Flow:

Second Generation Lean Product Development (Redondo Beach, CA:
Celeritas Publishing, 2009).

16 West, op cit., 4.

End Notes 17

www.agilemanifesto.org
http://agilescout.com/5th-annual-state-of-agile-survey-from-version-one/
http://agilescout.com/5th-annual-state-of-agile-survey-from-version-one/
www.forrester.com/rb/Research/agile_development_mainstream_adoption_has_changed_agility/q/id/56100/t/2
www.forrester.com/rb/Research/agile_development_mainstream_adoption_has_changed_agility/q/id/56100/t/2
www.forrester.com/rb/Research/agile_development_mainstream_adoption_has_changed_agility/q/id/56100/t/2
www.pmi.org/Resources/Pages/Library-of-PMI-Global-Standards-Projects.aspx
www.pmi.org/Resources/Pages/Library-of-PMI-Global-Standards-Projects.aspx
www.scrum.org/scrumguides
www.scrum.org/scrumguides
www.infoq.com/minibooks/kanban-scrum-minibook
www.infoq.com/minibooks/kanban-scrum-minibook

ptg7041395

17 This variation of the diagram is available from
http://msdn.microsoft.com/.

18 David J. Anderson, Agile Management for Software Engineering: Apply-
ing the Theory of Constraints for Business Results (Upper Saddle River,
NJ: Prentice Hall, 2004), 77.

19 Schwaber and Sutherland, op. cit.
20 Taiichi Ohno, Toyota Production System: Beyond Large-Scale Production

(Cambridge, MA: Productivity Press, 1988).
21 Mary B. Poppendieck and Thomas D. Poppendieck, Lean Software

Development: An Agile Toolkit (Boston: Addison-Wesley, 2003).
22 Kent Beck, “Tools for Agility,” Three Rivers Institute, 6/27/2008,

www.microsoft.com/downloads/details.aspx?FamilyId=AE7E07E8-
0872-47C4-B1E7-2C1DE7FACF96&displaylang=en.

23 Louis Brandeis, “What Publicity Can Do,” in Harper’s Weekly,
December 20, 1913, available from www.law.louisville.edu/library/
collections/brandeis/node/196.

24 IBM IT Governance Approach: Business Performance through IT
Execution, February 2008, www.redbooks.ibm.com/Redbooks.nsf/
RedbookAbstracts/sg247517.html, 35.

25 Gary Hamel, “The Why, What, and How of Management Innova-
tion,” Harvard Business Review 84:2 (February 2006), 72–84.

26 Womack and Jones (2003), op. cit., 16.
27 All Things Considered, National Public Radio, July 10, 2009,

www.npr.org/templates/story/story.php?storyId=106459662.
28 Schwaber and Sutherland, op. cit.

The Agile Consensus18

www.microsoft.com/downloads/details.aspx?FamilyId=AE7E07E8-0872-47C4-B1E7-2C1DE7FACF96&displaylang=en
www.microsoft.com/downloads/details.aspx?FamilyId=AE7E07E8-0872-47C4-B1E7-2C1DE7FACF96&displaylang=en
www.law.louisville.edu/library/collections/brandeis/node/196
www.law.louisville.edu/library/collections/brandeis/node/196
www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg247517.html
www.redbooks.ibm.com/Redbooks.nsf/RedbookAbstracts/sg247517.html
www.npr.org/templates/story/story.php?storyId=106459662
http://msdn.microsoft.com/

ptg7041395

2
Scrum, Agile Practices, and
Visual Studio

One methodology cannot possibly be the “right” one, but…
there is an appropriate, different way of working for each project
and project team.1

—Alistair Cockburn

19

Figure 2-1: The rhythm of a crew rowing in unison is a perfect example of flow in both the
human and management senses. Individuals experience the elation of performing optimally,
and the coordinated teamwork enables the system as a whole (here, the boat) to achieve its
optimum performance. It’s the ideal feeling of a “sprint.”

ptg7041395

The preceding chapter discussed the Agile Consensus of the past decade.
That chapter distinguished between complicated projects, with well-

controlled business or technical risk, and complex ones, where the tech-
nology and business risks are greater. Most new software projects are
complex; otherwise, the software would not be worth building.

This chapter covers the next level of detail—the characteristics of soft-
ware engineering and management practices, the “situationally specific”
contexts to consider, and the examples that you can apply in Visual Studio
(VS). In this chapter, you learn about the mechanisms that VS (primarily
Team Foundation Server [TFS]) provides to support the team enacting the
process. Whereas Chapter 1, “The Agile Consensus,” gave an outside-in
view of what a team needs, this chapter provides an inside-out overview
of the tooling that makes the enactment possible.

Visual Studio and Process Enactment

Through three classes of mechanisms, VS helps the team follow a defined
software process:

1. As illustrated in Chapter 1, TFS captures backlogs, workflow, status,
and metrics. Together, these keep the work transparent and guide
the users to the next appropriate actions. TFS also helps ensure the
“done-ness” of work so that the team cannot accrue technical debt
without warning and visibility.

2. Each team project tracked by TFS starts off with a process template
that defines the standard workflows, reports, roles, and artifacts for
the process. These are often changed later during the course of the
team project as the team learns and tunes its process, but their initial
defaults are set according to the chosen process template.

3. On the IDE clients (VS or Eclipse), there are user experiences that
interact with the server to ensure that the policies are followed and
that any warnings from policy violations are obvious.

Scrum, Agile Practices, and Visual Studio20

ptg7041395

Process Templates

The process template supports the workflow of the team by setting the
default work item types, reports, queries, roles (i.e. security groups), team
portal, and artifacts. Work item types are the most visible of these because
they determine the database schema that team members use to manage the
backlog, select work, and record status as it is done. When a team member
creates a team project, the Project Creation Wizard asks for a choice of
process template, as shown in Figure 2-2.

Process Templates 21

Figure 2-2: The Project Creation Wizard lets you create a team project based on any of the
currently installed process templates.

Microsoft provides three process templates as standard:

1. Scrum: This process template directly supports Scrum, and was
developed in collaboration with Ken Schwaber based on the Scrum
Guide.2 The Scrum process template defines work item types for
Product Backlog Item, Bug, Task, Impediment, Test Case, Shared
(Test) Steps, and Sprint. The reports are Release Burndown, Sprint
Burndown, and Velocity.

ptg7041395

2. MSF for Agile Software Development: MSF Agile is also built
around a Scrum base but incorporates a broader set of artifacts than
the Scrum process template. In MSF Agile, product backlog items are
called user stories and impediments are called issues. The report
shown in Figure 1.4 is taken from MSF Agile.

3. MSF for CMMI Process Improvement: This process template is also
designed for iterative work practices, but with more formality than
the other templates. This one is designed to facilitate a team’s prac-
tice of Capability Maturity Model Integration (CMMI) Level 3 as
defined by the Software Engineering Institute.3 Accordingly, it
extends MSF Agile with more formal planning, more documentation
and work products, more sign-off gates, and more time tracking.
Notably, this process template adds Change Request and Risk work
item types and uses a Requirement work item type that is more elab-
orate than the user stories of MSF Agile.

Other companies provide their own process templates and can have
these certified by Microsoft. For example, Sogeti has released a version of
its Test Management Approach (TMap) methodology as a certified process
template, downloadable from http://msdn.microsoft.com/vstudio/.

When you create a team project with VS TFS, you choose the process
template to apply, as shown in Figure 2-2.

Teams
Processes tend to prescribe team structure. Scrum, for example, has three
roles. The Product Owner is responsible for the external definition of the
product, captured in the product backlog, and the management of the stake-
holders and customers. The Team of Developers is responsible for the imple-
mentation. And the Scrum Master is responsible for ensuring that the Scrum
process is followed.

In Scrum, the team has 7±2 developers—in other words, 5 to 9 dedicated
members. Lots of evidence indicates that this is the size that works best for
close communication. Often, one of the developers doubles as the Scrum
Master. If work is larger than can be handled by one team, it should be split
across multiple teams, and the Scrum Masters can coordinate in a scrum of

Scrum, Agile Practices, and Visual Studio22

http://msdn.microsoft.com/vstudio/

ptg7041395

scrums. A Product Owner can serve across multiple scrum teams but
should not double as a Scrum Master.

In most cases, it is bad Scrum to use tooling to enforce permissions
rather than to rely on the team to manage itself. Instead, it is generally bet-
ter to assume trust, following the principle that “responsibility cannot be
assigned; it can only be accepted.”4 TFS always captures the history of
every work item change, thereby making it easy to trace any unexpected
changes and reverse any errors.

Nonetheless, sometimes permissions are important (perhaps because of
regulatory or contractual circumstances, for example). Accordingly, you
can enforce permissions in a team project in four ways:

1. By role

2. By work item type down to the field and value

3. By component of the system (through the area path hierarchy of
work items and the folder and branch hierarchy of source control)

4. By builds, reports, and team site

For example, you can set a rule on the Product Backlog Item (PBI) work
item type that only a Product Owner can update PBIs. In practice, this is
rarely done.

Process Cycles and TFS

A core concept of the convergent evolution discussed in Chapter 1 is itera-
tive and incremental development. Scrum stresses the basis of iteration in
empirical process control, because through rapid iteration the team reduces
uncertainty, learns by doing, inspects and adapts based on its progress, and
improves as it goes.5 Accordingly, Scrum provides the most common rep-
resentation of the main macro cycles in a software project: the release and
the sprint (a synonym for iteration), as shown in Figure 2-3. Scrum provides
some simple rules for managing these.

Process Cycles and TFS 23

ptg7041395
Figure 2-3: Software projects proceed on many interlocking cycles, ranging from the “code-
edit-test-debug-check in” cycle, measured in minutes, to continuous integration, to daily
testing cycles, to the sprint. These are views of both the process and the flow of data, auto-
mated by the process tooling.

Release
The release is the path from vision to delivered software. As Ken Schwaber
and Jeff Sutherland explain in the Scrum Guide:

Release planning answers the questions, “How can we turn the
vision into a winning product in best possible way? How can we
meet or exceed the desired customer satisfaction and Return on
Investment?” The release plan establishes the goal of the release, the
highest priority Product Backlog, the major risks, and the overall fea-
tures and functionality that the release will contain. It also establishes
a probable delivery date and cost that should hold if nothing
changes.6

The release definition is contained in the product backlog, which consists of
requirements, unsurprisingly named product backlog items, as shown in

Scrum, Agile Practices, and Visual Studio24

Continuous
Integration

Potentially
Shippable
Increment

Sprint
Daily
Standup

Check-in

Sprint
Backlog

Acceptance
Testing

Deploy
to Lab

Daily
Build

ptg7041395

Figure 2-4. Throughout the release, the Product Owner keeps the PBIs stack
ranked to remove ambiguity about what to do next. As DeMarco and Lister
have put it:

Rank-ordering for all functions and features is the cure for two ugly
project maladies: The first is the assumption that all parts of the prod-
uct are equally important. This fiction is preserved on many projects
because it assures that no one has to confront the stakeholders who
have added their favorite bells and whistles as a price for their coop-
eration. The same fiction facilitates the second malady, piling on, in
which features are added with the intention of overloading the proj-
ect and making it fail, a favorite tactic of those who oppose the project
in the first place but find it convenient to present themselves as enthu-
siastic project champions rather than as project adversaries.7

Process Cycles and TFS 25

Figure 2-4: A product backlog item, shown here as accessed inside the VS IDE, can also be
viewed from the Web Portal, Microsoft Excel, Microsoft Project, and many third-party plug-
in tools available for TFS.

ptg7041395

A common and useful practice is stating the PBIs, especially the func-
tional requirements, as user stories. User stories take the form As a <target
customer persona>, I can <achieve result> in order to <realize value>. Chapter
3, “Product Ownership,” goes into more detail about user stories and other
forms of requirements.

Sprint
In a Scrum project, every sprint has the same duration, typically two to four
weeks. Prior to the sprint, the team helps the Product Owner groom the
product backlog, estimating a rough order of magnitude for the top PBIs.
This estimation has to include all costs associated with completing the PBI
according to the team’s agreed definition of done. The rough estimation
method most widely favored these days is Planning Poker, adapted by Mike
Cohn as a simple, fast application of what had been described by Barry
Boehm as the Wideband Delphi Method.8 Planning Poker is easy and fast,
making it possible with minimal effort to provide estimates that are gener-
ally as good as those derived from much longer analysis. Estimates from
Planning Poker get entered as story points in the PBI work item. Planning
Poker is discussed further in Chapter 4, “Running the Sprint.”

Another great practice is to define at least one acceptance test for each
PBI. These are captured in TFS as test cases, a standard work item type.
Defining acceptance tests early has three benefits:

1. They clarify the intent of the PBI.

2. They provide a done criterion for PBI completion.

3. They help inform the estimate of PBI size.

At the beginning of the sprint, the team commits to delivering a poten-
tially shippable increment of software realizing some of the top-ranked prod-
uct backlogs. The commitment factors the cumulative estimate of the PBIs,
the team’s capacity, and the need to deliver customer value in the poten-
tially shippable increment. Then, only the PBIs committed for the current

Scrum, Agile Practices, and Visual Studio26

ptg7041395

Figure 2-5: The sprint backlog, shown here as accessed from the Web Portal, consists of the
tasks for the current sprint, derived from the PBIs to which the team has committed.

Don’t Confuse Product Backlog and Sprint Backlog

In my experience, the most common confusion around Scrum terminology
is the use of the word backlog in two different instances. To some extent, the
confusion is a holdover from earlier project management techniques. The
product backlog holds only requirements and bugs deferred to future
sprints, and is the interface between the Product Owner, representing cus-
tomers and other stakeholders, and the team. PBIs are assessed in story
points only.

Process Cycles and TFS 27

sprint are broken down by the team into tasks. These tasks are collectively
called the sprint backlog (see Figure 2-5).

ptg7041395

The sprint backlog consists of implementation tasks, test cases, bugs of
the current sprint, and impediments, and is for the implementation team.
When working on a task, a team member updates the remaining hours on
these tasks, but typically does not touch the PBI, except to mark it as ready
for test or completed. Stakeholders should not be concerned with the sprint
backlog, only with the PBIs.

Handling Bugs

Bugs should be managed according to context. Different teams view bugs
differently. Product teams tend to think of anything that detracts from cus-
tomer value as a bug, whereas contractors stick to a much tighter definition.

In either case, do not consider a PBI done if there are outstanding bugs,
because doing so would create technical debt. Accordingly, treat bugs that
are found in PBIs of the current sprint as simply undone work and manage
them in the current iteration backlog.

In addition, you often discover bugs unrelated to the current PBIs, and
these can be added to the product backlog, unless you have spare capacity
in the current sprint. (The committed work of the sprint should normally
take precedence, unless the bug found is an impediment to achieving the
sprint goal.) This can create a small nuisance for grooming the product
backlog, in that individual bugs are usually too fine-grained and numerous
to be stack ranked against the heftier PBIs. In such a case, create a PBI as a
container or allotment for a selection of the bugs, make it a “parent” of them
in TFS, and rank the container PBI against its peers (see Figure 2-6).

Scrum, Agile Practices, and Visual Studio28

ptg7041395

Figure 2-6: The product backlog contains the PBIs that express requirements and the bugs
that are not handled in the current sprint. This can be accessed from any of the TFS clients;
here it is shown in the VS IDE.

Avoiding Analysis Paralysis

A great discipline of Scrum is the strict timeboxing of the sprint planning
meeting, used for commitment of the product backlog (the “what”) and for
initial task breakdown of the sprint backlog (the “how”). For a one-month
sprint, the sprint planning meeting is limited to a day before work begins
on the sprint. For shorter sprints, the meeting should take a proportionally
shorter length of time.

Note that this does not mean that all tasks are known on the first day of
the sprint. On the contrary, tasks may be added to the sprint backlog when-
ever necessary. Rather, timeboxing sprint planning means that the team

Process Cycles and TFS 29

ptg7041395

needs to understand the committed PBIs well enough to start work. In this
way, only 5% of the sprint time is consumed by planning before work
begins. (Another 5% of the calendar, the last day of a monthly sprint,
is devoted to review and retrospective.) In this way, 90% of the sprint is
devoted to working through the sprint backlog.

Bottom-Up Cycles
In addition to the two macro cycles of release and sprint, TFS uses the two
finer-grained cycles of check-in and test to collect data and trigger automa-
tion. In this way, with no overhead for the users, TFS can provide mecha-
nisms to support both automating definitions of done and transparently
collecting project metrics.

Personal Development Preparation
As discussed in Chapter 6, “Development,” VS provides continuous feed-
back to the developer to practice test-driven development, correct syntax
suggestions with IntelliSense, and check for errors with local builds, tests,
and check-in policy reviews. These are private activities, in the sense that
VS makes no attempt to persist any data from these activities before the
developer decides to check in.

Check-In
The finest-grained coding cycle at which TFS collects data and applies
workflow is the check-in (that is, any delivery of code by the developer
from a private workspace to a shared branch). This cycle provides the first
opportunity to measure done on working code. The most common Agile
practice for the check-in cycle is continuous integration, in which every
check-in triggers a team build from a TFS build definition. The team build
gets the latest versions of all checked-in source from all contributors,
provisions a build server, and runs the defined build workflow, including
any code analysis, lab deployment, or build verification tests that have
been defined in the build. (See Chapter 7, “Build and Lab,” for more
information.)

Scrum, Agile Practices, and Visual Studio30

ptg7041395

Continuous integration is a great practice, if build breaks are rare. In that
case, it is a great way to keep a clean, running drop of the code at all times.
The larger the project, however, the more frequent build breaks can
become. For example, imagine a source base with 100 contributors. Sup-
pose that they are all extraordinary developers, who make an average of
only one build break per three months. With continuous integration, their
build would be broken every day.

To avoid the frequent broken builds, TFS offers a form of continuous
integration called gated check-in. Gated check-in extends the continuous
integration workflow, in that it provisions a server and runs the team build
before check-in. Only if the full build passes, then the server accepts the code
as checked in. Otherwise, the check-in is returned to the developer as a
shelveset with a warning detailing the errors. Chapter 9, “Lessons Learned
at Microsoft Developer Division,” describes how we use this at Microsoft.

In addition, prior to the server mechanisms of continuous integration or
gated check-in, TFS runs check-in policies. These are the earliest and fastest
automated warnings for the developer. They can validate whether unit
tests and code analysis have been run locally, work items associated, check-
in notes completed, and other “doneness” criteria met before the code goes
to the server for either continuous integration or gated check-in.

Test Cycle
Completed PBIs need to be tested, as do bug fixes. Typically, team members
check in code in small increments many times before completing a PBI.
However, when a PBI is completed, a test cycle may start. In addition, many
PBIs and bug fixes are often completed in rapid succession, and these can
be combined into a single test cycle. Accordingly, a simple way to handle
test cycles is to make them daily.

TFS allows for multiple team build definitions, and a good practice is to
have a daily build in addition to the continuous integration or gated check-
in build. When you do this, every daily “build details” page shows the
increment in functionality delivered since the previous daily build, as
shown in Figure 2-7.

Process Cycles and TFS 31

ptg7041395

Figure 2-7: Every build has a “build details” page that serves as an automated release
note, accessible from the dashboard or inside the IDE clients. In this case, it is shown inside
Eclipse, as a team working with Java code would see.

In addition, Microsoft Test Manager (MTM, part of the VS product line)
enables you to compare the current build against the last one tested to see
the most important tests to run based on both backlog changes and new or
churned code, as shown in Figure 2-8. (See Chapter 8, “Test,” for more
information.)

Scrum, Agile Practices, and Visual Studio32

ptg7041395

Figure 2-8: This build assignment in Microsoft Test Manager is a great way to start the test
cycle because it shows the new work delivered since the last tested build and can recom-
mend tests accordingly.

Daily Cycle

The Scrum process specifies a daily scrum, often called a “daily stand-up
meeting,” to inspect progress and adapt to the situation. Daily scrums
should last no more than 15 minutes. As the Scrum Guide explains, during
the meeting, each team member explains the following:

1. What has the team member accomplished since the last meeting?

2. What will the team member accomplish before the next meeting?

3. What obstacles currently impede the team member?

Process Cycles and TFS 33

ptg7041395

Daily scrums improve communications, eliminate other meetings, iden-
tify and remove impediments to development, highlight and promote quick
decision-making, and improve everyone’s level of project knowledge.

Although TFS does not require daily builds, and the process rules do not
mandate combining the daily and testing cycles, treating the daily cycle
and test cycle as the same is certainly convenient. TFS helps considerably
with preparation for the Scrum questions:

• As Figures 2-7 and 2-8 show, the automated release note of the
“build details” page and the test recommendations of MTM help
resolve any discrepancies in assumptions for question 1.

• The My Active Items query should align with question 2.

• The Open Impediments or Open Issues query, shown in Figure 2-9,
should match question 3.

These tools don’t replace the daily scrum, but they remove any dispute
about the data of record. In this way, the team members can focus the meet-
ing to on crucial interpersonal communication rather than questions about
whose data to trust.

Scrum, Agile Practices, and Visual Studio34

ptg7041395

Figure 2-9: The Open Impediments query shows the current state of blocking issues as of
the daily scrum.

Definition of Done at Every Cycle
For each of these cycles—check-in, test, release, and sprint—the team
should have a common definition of done and treat it as a social contract.
The entire team should be able to see the status of done transparently at all
times. Without this social contract, it is impossible to assess technical debt,
and accordingly, impossible to ship increments of software predictably.

With Scrum and TFS working together, every cycle has a done mecha-
nism. Check-in has its policies and the build workflows, test has the test
plans for the cycle, and sprint and release have work items to capture their
done lists.

Process Cycles and TFS 35

ptg7041395

Inspect and Adapt

In addition to the daily 15 minutes, Scrum prescribes that the team have
two meetings at the end of the sprint to inspect progress (the sprint review)
and identify opportunities for process improvement (the sprint retrospec-
tive). Together, these should take about 5% of the sprint, or one day for a
monthly sprint. Alistair Cockburn has described the goal of the retrospec-
tive well: “Can we deliver more easily or better?”9 Retrospectives force the
team to reflect on opportunities for improvement while the experience
is fresh.

Based on the retrospective, the sprint end is a good boundary at which
to make process changes. You can tune based on experience, and you can
adjust for context. For example, you might increase the check-in require-
ments for code review as your project approaches production and use TFS
check-in policies, check-in notes, and build workflow to enforce these
requirements.

Task Boards

Scrum uses the sprint cadence as a common cycle to coordinate prioritiza-
tion of the product backlog and implementation of the iteration backlog.
The team manages its capacity by determining how much product backlog
to take into the coming sprint, usually based on the story points delivered
in prior sprints. This is an effective model for running an empirical process
in complex contexts, as defined in Figure 1-3 in Chapter 1.

Scrum teams often visualize the tasks of the sprint backlog on the wall
with a task board. Manual task boards use sticky notes, where rows group
the tasks related to a particular PBI and columns show the progress of tasks
from planned to in progress to done. As a task progresses, the task owner
moves it along the board.

Several automated task boards currently visualize the sprint backlog of
TFS, as shown in Figure 2-10. They provide a graphical way to interact with
TFS work items and an instant visual indicator of sprint status. Automated
task boards are especially useful for geographically distributed teams and
scrums. You can hang large touch screens in meeting areas at multiple sites,

Scrum, Agile Practices, and Visual Studio36

ptg7041395

and other participants can see the same images on their laptops. Because
they all connect to the same TFS database, they are all current and visible.

Task Boards 37

Figure 2-10: Many TFS add-ins display the product and sprint backlogs as a task board.
This add-in is called Urban Turtle and is available from http://urbanturtle.com

At Microsoft, we use these to coordinate Scrum teams across Redmond,
Raleigh, Hyderabad, Shanghai, and many smaller sites. In Chapter 10,
“Continuous Feedback,” you can see how we have productized our inter-
nal taskboards in the next version of TFS.

The history of task boards is an interesting study in idea diffusion. For
Agile teams, they were modeled after the so-called Kanban (Japanese for
“signboards”) that Taiichi Ohno of Toyota had pioneered for just-in-time
manufacturing. Ohno created his own model after observing how Ameri-
can supermarkets stocked their shelves in the 1950s.10 Ohno observed that
supermarket shelves were stocked not by store employees, but by distrib-
utors, and that the card at the back of the cans of soup, for example, was the
signal to put more soup on the shelf. Ohno introduced this to the factory,
where the card became the signal for the component supplier to bring a
new bin of parts.

Surprisingly, only in the past few years have software teams discovered
the value of the visual and tactile metaphor of the task board. And Toyota
only recently looked to bring Agile methods into its software practices,

http://urbanturtle.com

ptg7041395

Scrum, Agile Practices, and Visual Studio38

based not on its manufacturing but on its observation again of Western
work practices.11 So, we’ve seen an idea move from American supermarkets
to Japanese factories to American software teams back to Japanese software
teams, over a period of 50 years.

Kanban

In software practices, Kanban has become the name of more than the task
board; it is also the name of an alternative process, most closely associated
with David J. Anderson, who has been its primary proponent.12 Where
Scrum uses the team’s commitments for the sprint to regulate capacity,
Kanban uses work-in-progress (WIP) limits. Kanban models workflow
more deterministically with finer state transitions on PBIs, such as Analysis
Ready, Dev Ready, Test Ready, Release Ready, and so on. The PBIs in each
such state are treated as a queue, and each queue is governed by a WIP
limit. When a queue is above the WIP limit, no more work may be pulled
from earlier states, and when it falls below, new work is pulled.

Kanban is more prescriptive than Scrum in managing queues. The Kan-
ban control mechanism allows for continuous adjustment, in contrast to
Scrum, which relies on the team commitment, reviewed at sprint boundaries.

Recent conferences have featured many experience reports comparing
Scrum and Kanban. Kanban clearly works well where the team’s workflow
is relatively stable, the PBIs are fairly consistent, and the release vision well
understood. For example, sustaining engineering projects often have a
backlog of maintenance requests that are similarly sized and lend them-
selves well to Kanban.

In other words, in the Stacey terminology of Figure 1-1, Kanban works
well for complicated or simple projects. The jury is out with regard to complex
projects. Where higher degrees of uncertainty exist in the process, the
explicit sprint cadence of Scrum can prove invaluable. In my experience,
the concept of team commitment and the sprint rhythm are empowering
to teams working in uncharted territory, the common ground of software
development.

ptg7041395

Fit the Process to the Project

Based on your project context and your retrospectives, you may choose to
customize your process template. Ideally, this is a team decision, but certain
stakeholders may have special influence. Even then, every team member
should understand the rationale of the choice and the value of any practice
that the process prescribes. If the value cannot be identified, it is unlikely
that it can be realized. Sometimes the purpose might not be intuitive (cer-
tain legal requirements for example), but if understood can still be
achieved.

As Barry Boehm and Richard Turner have described, it is best to start
small:

Build Your Method Up, Don’t Tailor It Down

Plan-driven methods have had a tradition of developing all-inclusive
methods that can be tailored down to fit a particular situation.
Experts can do this, but nonexperts tend to play it safe and use the
whole thing, often at considerable unnecessary expense. Agilists
offer a better approach of starting with relatively minimal sets of
practices and only adding extras where they can be clearly justified
by cost-benefit.13

Fortunately, TFS assumes that a team will “stretch the process to fit”—
that is, take a small core of values and practices and add more as necessary
(see Figure 2-11).

One of the tenets of the Agile Consensus is to keep overhead to a mini-
mum. Extra process is waste unless it has a clear purpose whose return
justifies the cost. Three common factors might lead to more steps or done
criteria in the process than others: geographic distribution; tacit knowledge
or required documentation; and governance, risk management, and
compliance.

Fit the Process to the Project 39

ptg7041395

Figure 2-11: The Process Template Editor (in the TFS Power Tools on the VS Gallery) enables
you to customize work item types, form design, and workflows.

Geographic Distribution
Most organizations are now geographically distributed. Individual Scrum
teams of seven are best collocated, but multiple Scrum teams across multi-
ple locations often need to coordinate work. For example, on VS, we are
running scrums of scrums and coordinating sprint reviews and planning
across Redmond, Raleigh, and Hyderabad, and several smaller sites, a
spread of 12 time zones. In addition to TFS with large screens, we use
Microsoft Lync for the video and screen sharing, and we record meetings
and sprint review demos so that not everyone needs to be awake at weird
hours to see others’ work.

Scrum, Agile Practices, and Visual Studio40

ptg7041395

Tacit Knowledge or Required Documentation
When you have a geographically distributed team, it is harder to have
spontaneous conversations than when you’re all in one place, although
instant messaging and video chat help a lot. When you’re spread out, you
cannot rely just on tacit knowledge. You can also use internal documenta-
tion to record contract, consensus, architecture, maintainability, or approval
for future audit. Whatever the purpose, write the documentation for its
audience and to its purpose and then stop writing. Once the documentation
serves its purpose, more effort on it is waste. Wherever possible, use TFS
work items as the official record so that there is a “single source of truth.”
Third-party products such as Ekobit TeamCompanion, shown in Chapter 4,
can help by converting email into TFS work items for a visiable and
auditable record.

Governance, Risk Management, and Compliance
Governance, risk management, and compliance (GRC) are closely related terms
that are usually considered together since the passage of the Sarbanes-
Oxley Act of 2002 (SOX) in the United States. For public and otherwise reg-
ulated companies, GRC policies specify how management maintains its
accountability for IT. GRC policies may require more formality in docu-
mentation or in the fields and states of TFS work items than a team would
otherwise capture.

One Project at a Time Versus Many Projects at Once
One of the most valuable planning actions is to ensure that your team mem-
bers can focus on the project at hand without other commitments that drain
their time and attention. Gerald Weinberg once proposed a rule of thumb to
compute the waste caused by project switching, shown in Table 2-1.14

Fit the Process to the Project 41

ptg7041395

Table 2-1: Waste Caused by Project Switching

Number of Percent of Working Loss to

Simultaneous Time Available per Context

Projects Project Switching

1 100% 0%

2 40% 20%

3 20% 40%

4 10% 60%

5 5% 75%

That was 20 years ago, without suitable tooling. In many organizations
today, it is a fact of life that individuals have to work on multiple projects,
and VS is much easier to handle now than it was when Weinberg wrote. In
Chapter 10, I discuss how VS is continuing to help you stay in the groove
despite context switching, but it is still a cognitive challenge.

Summary

As discussed in Chapter 1, in the decade since the Agile Manifesto, the
industry has largely reached consensus on software process. Scrum is at its
core, complemented with Agile engineering practices, and based on Lean
principles. This convergent evolution is the basis for the practices sup-
ported by VS.

This chapter addressed how VS, and TFS in particular, enacts process.
Microsoft provides three process templates with TFS: Scrum, MSF for Agile
Software Development, and MSF for CMMI Process Improvement. All are
Agile processes, relying on iterative development, iterative prioritization,
continuous improvement, constituency-based risk management, and situ-
ationally specific adaptation of the process to the project. Microsoft partners
provide more process templates and you can customize your own.

Core to all the processes is the idea of work in nested cycles: check-in,
test, sprint, and release. Each cycle has its own definition of done, reinforced

Scrum, Agile Practices, and Visual Studio42

ptg7041395

with tooling in TFS. The definitions of done by cycle are the best guards
against the accumulation of technical debt, and thus the best aids in main-
taining the flow of potentially shippable software in every sprint.

Consistent with Scrum, it is important to inspect and adapt not just the
software but also the process itself. TFS provides a Process Template Edi-
tor to adapt the process to the needs of the project. The process design
should reflect meaningful business circumstances and what the team learns
as it matures from sprint to sprint.

Finally, inspect and adapt. Plan on investing in process and tooling early
to improve the economics of the project over its lifespan. By following an
Agile approach, you can achieve considerable long-term benefits, such as
the development of high-quality and modifiable software without a long
tail of technical debt. However, such an approach, and its attendant bene-
fits, requires conscious investment.

The next chapter pulls back to the context around the sprint and dis-
cusses product ownership and the many cycles for collecting and acting on
feedback. That chapter covers the requirements in their many forms and
the techniques for eliciting them and keeping them current in the backlog.

End Notes

1 Alistair Cockburn coined the phrase stretch to fit in his Crystal family
of methodologies and largely pioneered this discussion of context
with his paper “A Methodology per Project,” available at http://
alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.
html.

2 Ken Schwaber and Jeff Sutherland, Scrum Guide, February 2010,
available at www.scrum.org/scrumguides/.

3 www.sei.cmu.edu
4 Kent Beck with Cynthia Andres, Extreme Programming Explained:

Embrace Change, Second Edition (Boston: Addison-Wesley, 2005), 34.
5 Mentioned in the Scrum Guide, and discussed in somewhat greater

length in Ken Schwaber and Mike Beedle, Agile Software Development
with Scrum (Prentice Hall, 2001), 25.

End Notes 43

www.scrum.org/scrumguides/
www.sei.cmu.edu
http://alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.html
http://alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.html
http://alistair.cockburn.us/crystal/articles/mpp/methodologyperproject.html

ptg7041395

6 Scrum Guide, 9.
7 Tom DeMarco and Timothy Lister, Waltzing with Bears: Managing

Risk on Software Projects (New York: Dorset House, 2003), 130.
8 Mike Cohn, Agile Estimating and Planning (Prentice Hall, 2005).
9 Cockburn, op. cit.

10 Ohno, op. cit., 26.
11 Henrik Kniberg, “Toyota’s journey from Waterfall to Lean software

development,” posted March 16, 2010, at http://blog.crisp.se/
henrikkniberg/2010/03/16/1268757660000.html.

12 David J. Anderson, Kanban, Successful Evolutionary Change for Your
Technology Business (Seattle: Blue Hole Press, 2010). This control
mechanism is very similar to the drum-buffer-rope described by
Eli Goldratt in The Goal.

13 Barry Boehm and Richard Turner, Balancing Agility with Discipline:
A Guide for the Perplexed (Boston: Addison-Wesley, 2004), 152.

14 Gerald M. Weinberg, Quality Software Management: Systems Thinking
(New York: Dorset House, 1992), 284.

Scrum, Agile Practices, and Visual Studio44

http://blog.crisp.se/henrikkniberg/2010/03/16/1268757660000.html
http://blog.crisp.se/henrikkniberg/2010/03/16/1268757660000.html

ptg7041395

3
Product Ownership

The single hardest part of building a software system is deciding
precisely what to build.1

—Frederick Brooks,
Mythical Man-Month

45

Figure 3-1: Edison patented the light bulb in 1880, but it has gone through more design
change in the past 20 years than in the prior 100 years. The compact fluorescent at the right
is just one of the unforeseeable evolutions of the original.2

ptg7041395

The preceding chapter focused heavily on what happens inside the cycle
of the sprint and how the team can manage tasks and activities with

Team Foundation Server (TFS). Of course, the sprint starts with a product
backlog, and on the first day, the team commits to implementing the tasks
for the most important PBIs of that backlog.

Now we pull the lens back and look at the product backlog: its creation,
maintenance (“grooming”), and the feedback cycles around it. Continuous
feedback is as important a part of “inspect and adapt” as the internal team
practices are. Although I discuss several techniques in an order, I don’t
mean that you apply these feedback practices only once or sequentially.
Continuous feedback reduces uncertainty, keeps you on course, and almost
certainly produces a result most fit for purpose.

What Is Product Ownership?

Frederick Brooks wrote the opening quote of the chapter in the 1960s, based
on his experience at IBM. For the next 40 years, it has commonplace to
blame software project failure on poorly understood requirements, and
entertainingly on customers’ not knowing their requirements.

More recently, Agile practices, notably Scrum, have taken a two-prong
approach to the requirements problem. First, by creating small batches and
frequent iteration, the team gets rapid feedback and course correction.
That’s the idea of the short sprint.

Second, Scrum (similar to XP) defines a unique authority to avoid ambi-
guity and randomization. As the Scrum Guide puts it:

The Product Owner is the one and only person responsible for man-
aging the Product Backlog and ensuring the value of the work the
Team performs. This person maintains the Product Backlog and
ensures that it is visible to everyone. Everyone knows what items have
the highest priority, so everyone knows what will be worked on.3 [Empha-
sis added.]

Product Ownership46

ptg7041395

Having an authority on the product backlog is great for helping the Scrum
team execute, but getting the product backlog right and keeping it in the
right shape remains complex work. This chapter covers some techniques
for that. Let’s start with the problems a good product backlog solves.

The Business Value Problem: Peanut Butter
In 2006, the Wall Street Journal published a leaked email from Yahoo! under
the title “Yahoo Memo: The ‘Peanut Butter Manifesto.’”4 In it, Brad Gar-
linghouse, a Yahoo! senior vice president, complained of three gaps in
Yahoo!’s business approach:

1. We lack a focused, cohesive vision for our company.

I have heard our strategy described as spreading peanut butter
across the myriad opportunities that continue to evolve in the online
world. The result: a thin layer of investment spread across every-
thing we do and thus we focus on nothing in particular.

2. We lack clarity of ownership and accountability.

3. We lack decisiveness.

Peanut butter was a term in widespread use outside of Yahoo! too, because
it is a pervasive problem that affects businesses in general and software
teams in particular. In the absence of clear prioritization, teams default to
what they know best, not necessarily what is best for the business or its
customers. This is the waste of overproduction described previously in
Table 1-1.

The Customer Value Problem: Dead Parrots
It is tempting to say that a Product Owner just needs to make sure we give
the customers what they ask for. However, customer requests aren’t always
clear. Consider a Monty Python sketch, The Pet Shoppe, in which a man goes
to a pet store to return a parrot he bought (see Figure 3-2). He did not spec-
ify that the parrot must be alive, so the pet dealer sold him a dead one. The
sketch is hilarious because it reveals such a frequent misunderstanding.

What Is Product Ownership? 47

ptg7041395

Figure 3-2: The Pet Shoppe customer: I wish to complain about this parrot what I purchased
not half an hour ago from this very boutique.
Owner: Oh yes, the, uh, the Norwegian Blue: What’s, uh … What’s wrong with it?
Customer: I’ll tell you what’s wrong with it, my lad. ‘E’s dead, that’s what’s wrong with it!5

In Monty Python, a dishonest pet dealer exploits the misunderstanding.
In everyday software teams, statements such as “You didn’t tell me X,”
“The customer didn’t specify X,” and “X didn’t show up in our research”
are usually honest symptoms of failing to consider the customer’s context.

The Scope-Creep Problem: Ships That Sink
One of Sweden’s greatest tourist attractions is the Vasa, a warship that
launched in 1628 and sank a mile from port in calm weather. The Vasa was
built to be the most powerful and impressive vessel of its day to prove Swe-
den’s new military might, with every armament and ornament the king
ordered. Unfortunately, all the accoutrements made the ship keel over
when she tried to sail (see Figure 3-3).

It is easy to get cocky about the foolish Swedish king, but almost every
modern weapon system suffers the same fate of scope creep. Long pro-
curement cycles, the lack of prompt feedback, and the ability of too many
stakeholders to pile on requirements are problems as common today as 400
years ago.

Product Ownership48

Python (Monty) Pictures LTD

ptg7041395

Figure 3-3: The Vasa was so well built that the construction survived three centuries under-
water and it has now been fully restored. Unfortunately, its bloated requirements made the
ship too top heavy to sail.6 It’s a vivid image of scope creep.

The Perishable Requirements Problem: Ineffective Armor
Another lesson that is unfortunately all too visible in recent military history
is that requirements are perishable. The U.S. and NATO forces entered the
recent Middle East wars with armored vehicles designed to withstand con-
frontational attacks from heavy artillery in a European war. Unfortunately,
the blasts they faced came from improvised explosive devices (IEDs) trig-
gered by cell phones, and the armor proved useless.

This fatal history plays out to the fallacy that we can “just get the
requirements right.” Requirements are not static, but constantly change. In
the context of modern software, there are many aspects to this pattern:

• The business environment or problem space changes. Competi-
tors, regulators, customers, users, technology, and management all
have a way of altering the assumptions on which your requirements
are based. If you let too much time lapse between the definition of
requirements and their implementation, you risk discovering that
you’re “fighting the last war.”

• The knowledge behind the requirements becomes stale. When an
analyst or team is capturing requirements, knowledge of the require-
ments is at its peak. The more closely you couple the implementa-
tion to the requirements definition, the less you allow that
knowledge to decay.

What Is Product Ownership? 49

ptg7041395

• There is a psychological limit to the number of requirements that
a team can meaningfully consider in detail at one time. The
smaller you make the batch of requirements, the more attention you
get to quality design and implementation. Conversely, the larger you
allow the requirements scope of an iteration to grow, the more you
risk confusion and carelessness.

• The implementation of one sprint’s requirements influences the
detailed design of the requirements of the next sprint. Design
doesn’t happen in a vacuum. What you learn from one iteration
enables you to complete the design for the next.

Scrum Product Ownership

Figure 1-3 showed the most well-known view of Scrum, a drawing that
focuses on the core execution work of the Scrum team of 7±2 members,
working in sprints typically of two to four weeks. Key to that picture is the
central notion of a product backlog that contains the best current under-
standing of what the product is intended to do. From this, the sprint back-
logs get started.

In Scrum, the Product Owner ensures that the product backlog is well
maintained (“groomed” in typical Scrum terminology), for which the Prod-
uct Owner engages the whole team and all the relevant stakeholders. Let’s
step back and look at the broader context of the Product Owner’s work in
Figure 3-4.

Many cycles of activity around the sprint feed the product backlog. The
next sections discuss these in detail.

Product Ownership50

ptg7041395

Release Planning 51

Acceptance
Testing

Release
Planning

Potentially
Shippable
Increment

Sprint

Sprint
Backlog

Grooming

Product
Backlog

Customer
Feedback

Product
Feedback

Release

Business
Value

Release
Backlog

Daily
Standup

Figure 3-4: Many cycles outside the sprint execution influence the product backlog.

Release Planning

The Product Owner drives release planning to create the initial product
backlog. The goal is to wrestle ambiguous, often conflicting inputs into a
clear release vision and an initial stack rank of requirements to begin the
first sprints.

Release planning is the best time to form a high-functioning team with
shared context. When everyone on the team has the hands-on experience of
articulating business and customer value, makes choices in priority, and
airs points of view in a safe environment, the team can accelerate its growth
through forming-storming-norming-performing.7 Inside Microsoft product
divisions, we use release planning not only to create the release vision, but
also to reorganize the leadership and teams around that vision. In this way,
the decisions governing release priorities and formal organizational struc-
ture inform each other.

ptg7041395

Timebox release planning just as you would timebox the execution
sprints. Use two- to four-week increments, with a clear backlog for each
increment, and inspect and adapt the results. The release plan goals are a
credible vision, enough of a product backlog to start execution sprints, and
a well-formed team.

Business Value
Business strategy is hard. If it weren’t, we wouldn’t see so many companies
struggle with it in every annual report. In nearly every case I have seen,
there are many lenses that apply to business strategy, and they don’t all
focus in the same direction. Conflicts are typical among time to market,
innovation, growing new segments, deepening share in existing segments,
developing business partners, improving margins, addressing competitive
threats, and many more. There are never crystal-ball answers.8

Customer Value
Understanding customer value isn’t necessarily easier than business value,
but it does have the advantage that you can use many mechanisms to elicit
feedback. The Web has made it very easy to get huge volumes of feedback,
but that volume has made it only more important that you balance your
knowledge of whom you are serving (that is, whose feedback you want).
As in all discussions, it’s not always the loudest voice that is the most
important or representative.

Be Clear About the Customer

To get clear goals for a project, you need to know the intended users. Start
with recognizable, realistic, appealing personas. By now, personas have
become commonplace in usability engineering literature, but before the
term personas became popular there, the technique had been identified as
a means of product definition in market research. Geoffrey Moore
described the technique well:

The place most . . . marketing segmentation gets into trouble is at the
beginning, when they focus on a target market or target segment
instead of on a target customer… We need something that feels a lot

Product Ownership52

ptg7041395

more like real people… Then, once we have their images in mind, we
can let them guide us to developing a truly responsive approach to
their needs.9

Understand the Pain Points

Often, the goals are chosen to address pain points (that is, issues that the user
faces with current alternatives, which the new solution is intended to
solve). When this is true, you should capture the pain points with the goals.
At other times, the goals are intended to capture exciters. Be sure to tag
these as well so that you can test how much delight the scenario actually
brings.

Distill a Clear Vision Everyone Can Cite

Except in smallest start-ups, the Product Owner will be a key stakeholder
but not an owner of the business strategy. Nonetheless, the Product Owner
is responsible for condensing the strategy into a release vision that every
stakeholder can understand.

A sign of a successful vision statement is that all project team members
can recite it from memory and connect their daily work to it. A useful for-
mat for thinking about the key values of such a strategic project, and hence
the vision statement, is the “elevator pitch.”10 It captures the vision crisply
enough that the customer or investor can remember it from that short
encounter. Moore invented a succinct form for the evaluator pitch, as illus-
trated in Table 3-1.

Table 3-1: Release Vision Elevator Pitch

For (the target customer segment only)

Who are dissatisfied with (the current . . . alternative)

Our solution is a (product category)

That provides (key problem-solving capability)

Unlike (the product alternative)

We have assembled (key requirements for your solution)

Release Planning 53

ptg7041395

User Story Form

The most common form for capturing requirements in the product backlog
is a user story, as popularized by Mike Cohn in his book User Stories Applied:
For Agile Software Development.11 User stories take the following form:

As a <target customer persona>,

I can <achieve result>

In order to <realize value>

This useful short form can describe functional requirements at both
coarse and fine level. It works well because it keeps focus on the customer
persona and the value to be achieved. User stories can and should serve as
the basis of acceptance tests to verify the “doneness” of the corresponding
functionality.

Scale

It is important to think of PBIs (product backlog items) at multiple levels
of granularity. For broad communication, prioritization, and initial estima-
tion (see planning poker in the next chapter), you need a coarse under-
standing that is easy to grasp. On the other hand, for implementation of a
PBI within the current iteration, you need a much more detailed under-
standing. Indeed, the ultimate PBI definition is the associated test case (see
Chapters 6 and 8).

At the fine level of the product backlog, it is important that user stories

• Be small enough for a single sprint, yet

• Be large enough to convey value that a product owner can assess

Often, this is finer-grained than the customer value needed to describe a
release, and the result is a hierarchy in which epics are the largest-grained
stories, and these contain themes that in turn contain user stories. There is
no “one size fits all” prescription here. Regardless of the scale, the user-
story form is a great convention to focus the appropriate PBIs on customer
value. In Chapter 9, “Lessons Learned at Microsoft Developer Division,”
I describe how we have done this at Microsoft.

Product Ownership54

ptg7041395

Exciters, Satisfiers, and Dissatisfiers: Kano Analysis
Not all user stories are made alike. It is easy to focus on requirements of a
solution that make users enjoy the solution and achieve their goals. You can
think of these as satisfiers. When the goals are important and the scenario
compelling enough to elicit a “Wow!” from the customer, we can call the
scenario an exciter.

At the same time, potential attributes of a solution (or absence of attrib-
utes) can really annoy users or disrupt their experience. These are must-
haves if present or dissatisfiers if absent. Customers just take them for granted.
Dissatisfiers frequently occur because qualities of service haven’t been con-
sidered fully. “The system’s too slow,” “Spyware picked up my ID,” “I can
no longer run my favorite app,” and “It doesn’t scale” are all examples of
dissatisfiers that result from the corresponding qualities of service not
being addressed.

Exciters are a third group of scenarios that delight the customer dispro-
portionately when present. Sometimes they are not described or imagined
because they may require true innovation to achieve. However, sometimes
they are simple conveniences that make a huge perceived difference. For a
brief period, minivan manufacturers competed based on the number of
cupholders in the backseats, then on the number of sliding doors, then on
backseat video equipment, and now on the navigational electronics. All
these pieces of product differentiation were small, evolutionary features,
which initially came to the market as exciters and over time came to be rec-
ognized as must-haves.

A useful technique called Kano analysis (named for its inventor) plots
exciters, satisfiers, and dissatisfiers on the same axes, as illustrated in
Figure 3-5. The X-axis identifies the extent to which a scenario or quality
of service is implemented, and the Y-axis plots the resulting customer
satisfaction.12

Release Planning 55

ptg7041395

Figure 3-5: The X-axis shows the extent to which different solution requirements are imple-
mented; the Y-axis shows the resulting customer response.

Applying Kano Analysis

Although conceived as a quantitative technique, Kano analysis is most
effective as a means to a structured conversation. At Microsoft, we
hold software design reviews with customers such as the one shown in
Figure 3-6.

The charts on the wall are formatted like Table 3-2 to measure pain and
dissatisfaction. The rows are a list of potential customer pain points. For
every 15 rows, customers are given five green dots and five red dots to use
in the importance columns. In this way, each participant selects the one-
third most important, one-third least important, and one-third neutral pain
points. At the same time, they have unlimited blue dots to answer the sat-
isfaction and approval columns.

Product Ownership56

C
us

to
m

er

D
el

ig
ht

ed

C
us

to
m

er

D
is

gu
st

ed

Feature

Absent

Feature Fully

Implemented

Must-haves

Satisfiers

Exciters/
delighters

Indifferent
features

ptg7041395

Release Planning 57

Figure 3-6: In this software design review at Microsoft, Stephanie Cuthbertson, a Group
Program Manager, is facilitating a discussion among Visual Studio (VS) customers around
potential areas of investment while the product team takes notes.

Table 3-2: Using Kano Analysis to Understand Customer Pain

Pain Importance to Are You Satisfied Is the Proposed Why?
Described Your Business with Your Solution Heading

Current Solution? in the Right
Direction?

Most Least Yes No Don’t Yes No Don’t
important important know know
third third

ptg7041395

The goal of the wall charts is to focus conversation on areas of disagreement
or puzzlement. Sometimes obvious patterns emerge that do not need much
discussion:

• A cluster of least important means “Don’t waste your time.” The
same applies to a cluster of Yes for currently satisfied.

• A cluster of most important, along with No for currently satisfied
and Yes for right direction, is an obvious investment area.

In contrast, areas of disagreement reveal the most interesting insights. For
example, you might see green and red next to each other. For example, cus-
tomers with regulatory concerns might rate something very important that
unregulated customers don’t care about. Or you might discover that there
is an area of high importance and low satisfaction, where your proposal is
heading in the wrong direction. That’s an obvious time to rethink.

We try to do these reviews with customers whenever needed, both
in person, as shown in Figure 3-6, and via Lync or Skype. (In all cases,
we broadcast and record the sessions for remote participants and later
reviewers.) We’ve found that it is important to develop communities of par-
ticipants who share sufficient common business context yet hold diverse-
enough opinions to yield a rich discussion. When the business interests and
context are too diverse, we split the participants into parallel groups.

Although Kano analysis is widely used as a quantitative technique, we
achieve the best results when we use the numbers strictly as an impetus to
discussion. We capture the insights of the discussion, and then throw away
the numbers.

Design Thinking
While business value and customer value are key inputs, effective release
planning has to transform the data into key insights. Tim Brown, CEO of
Ideo and author of Change by Design, has a simple picture of the forces at
play, shown in Figure 3-7.13

Product Ownership58

ptg7041395

Release Planning 59

DESIRABILITY VIABILITY

FEASIBILITY

Figure 3-7: Tim Brown distills three successful forces of design that apply to release plan-
ning: desirability, viability, and feasibility.

The forces Brown identifies are as follows:

• Feasibility: Can the desired product be built within the business
constraints (time, cost, technology, quality expectations, and so on).
In other words, would the proposed solution be usable and possible?

• Viability: If built, would the proposed product make sense? If com-
mercially available alternatives do the same thing as well or better,
then probably not. If there aren’t good alternatives, what would
make the proposed product useful and worth building?

• Desirability: We all live and work in marketplaces with lots of
options. What makes this particular solution the most desirable one?
Especially among consumer products, it is easy to see how certain
products capture the imagination of the market and others become
also-rans. In the business world, criteria may be different and tasks
less volatile, but the same dynamics apply.

The intent of Brown’s design thinking is to foster rapid ideation and expan-
sive thinking, not to condemn visions with analysis paralysis. In Microsoft,
we use paper and pen at this stage to do paper prototyping, literally the man-
ual sketching of as many ideas as possible (often hundreds) as quickly as
possible (often in five-minute cycles). We also do this together as a team
exercise, both to leverage the wisdom of the crowd and to help form more

ptg7041395

cohesive teams. Figure 3-8 shows example output from such an exercise by
the Visual Studio Ultimate team atMicrosoft.

Product Ownership60

Figure 3-8: Hundreds of paper prototypes hanging in a hallway indicate the rapid ideation
nature of the exercise. There are many, many attempts to shape each idea and many people
who participate in each one.

Storyboards

Once an idea looks promising, it is often worth fleshing out the detailed
interaction flow, especially when you have rich data and state in the solu-
tion being designed. Wireframes and storyboards can do this. Across an
epic, you might have one screen per user story, and test that the user sto-
ries hang together as a coherent experience. Figure 3-9 is an excerpt of such
a storyboard. Figure 3-10, in turn, is a single frame drawn to highlight key
points.

ptg7041395

Figure 3-9: A storyboard used to assess the overall interaction flow across an epic.

Release Planning 61

Figure 3-10: One wireframe illustrates the key points of an interaction. It is worth noting
that this particular wireframe was drawn in 2004. It is not a “spec” in the traditional sense.
Not all the user stories were implemented until VS 2010, and when they were, the imple-
mentation often improved on the ideas in the drawing. (See Chapter 6, “Development,” and
Chapter 8, “Test,” for the description of what was implemented.)

ptg7041395

As you can see in Figures 3-9 and 3-10, we often use PowerPoint for story-
boarding at Microsoft. Other tools may be used, as well. Express Sketchflow
produces executable prototypes that can be evolved into working Web
applications. See Chapter 10, “Continuous Feedback,” for a preview of how
we productized this storyboarding with the next version of TFS.

Customer Validation
I’m conscious in describing these techniques that it might sound as if I am
advocating for a “big design up front.” On the contrary, I’m not. I am advo-
cating for creating as many feedback loops as possible, where customers
and stakeholders can “inspect and adapt” the intended product and par-
ticipate with the product team.

Early in a project, this validation can be done in design reviews or con-
textual interviews with scenarios as lists and then as wireframes. Story-
boards and live functionality, as it becomes available, can also be tested in
a usability lab, as shown in Figure 3-11.

Product Ownership62

Figure 3-11: This is a frame from the streaming video of a usability lab. The bulk of the
image is the computer screen as the user sees it. The user is superimposed in the lower
right so that observers can watch and listen to the user working through the lab
assignments.

ptg7041395

Usability labs are settings in which a target user is given a set of goals to
accomplish without coaching in a setting that is as realistic as possible. His-
torically at Microsoft, we have rooms outfitted with one-way mirrors and
video recording that enable spectators to watch behind the glass or over
streaming video. In Chapter 10, I describe how we have virtualized the
usability lab in the next version, so that you can get the same kind of feed-
back from your customer with no special facility, just an ordinary webcam.

The three keys to making a usability lab effective are as follows:

1. Create a trusting atmosphere in which the user knows that the soft-
ware is being tested, not the user.

2. Have the user think out loud continually so that you can hear the
unfiltered internal monologue.

3. Don’t “lead the witness”—that is, don’t interfere with the user’s
exploration and discovery of the software under test.

Usability labs, like focus groups and contextual interviews, are ways to
challenge your assumptions regularly. Remember that requirements are
perishable and that you need to revisit user expectations and satisfaction
with the path that your solution is taking.

Qualities of Service

Not all product backlog items are user stories or epics and themes made up
solely from user stories. They need to be understood in the context of qual-
ities of service (QoS). (QoS are sometimes called nonfunctional require-
ments or quality attributes, but because these terms are less descriptive, I
stick to QoS here. Sometimes they’re called ’ilities, which is a useful short-
hand.)

QoS are appropriately treated in two different ways. Those attributes
that always apply to every PBI belong on your definition of done. For exam-
ple, in Microsoft, all functionality must go through a security review that
includes threat modeling and protections for personally identifying infor-
mation (PII). Both the security review of the planned implementation and
the security test of the actual implementation are on our definition of done.

Qualities of Ser vice 63

ptg7041395

On the other hand, some QoS are quite specific and should be treated
as PBIs in themselves. For example, the performance requirement that “for
95% of orders placed, confirmation must appear within three seconds at
1,000-user load” is a specific performance QoS about a scenario of placing
an order. That would be a new PBI.

Not all QoS apply to all systems, but you should know which ones
apply to yours. Often QoS imply large architectural requirements or risk, so
they should be negotiated with stakeholders early in a project.

There is no definitive list of all the QoS that you need to consider. There
have been several standards, but they tend to become obsolete as technol-
ogy evolves.14 For example, security and privacy issues are not covered in
many major standards, even though they are the most important ones in
many modern systems.15

The following four sections list some of the most common QoS to con-
sider on a project.

Security and Privacy
Unfortunately, the spread of the Internet has made security and privacy
every computer user’s concern. These two QoS are important for both
application development and operations, and customers are now sophisti-
cated enough to demand to know what measures you are taking to pro-
tect them. Increasingly, they are becoming the subject of government
regulation.

• Security: The ability of the software to prevent access and disrup-
tion by unauthorized users, viruses, worms, spyware, and other
agents.

• Privacy: The ability of the software to prevent unauthorized access
or viewing of PII.

Performance
Performance is most often noticed when it is poor. In designing, develop-
ing, and testing for performance, it is important to differentiate the various
QoS that influence the end experience of overall performance:

Product Ownership64

ptg7041395

• Responsiveness: The absence of delay when the software responds
to an action, call, or event

• Concurrency: The capability of the software to perform well when
operated concurrently with other software

• Efficiency: The capability of the software to provide appropriate
performance relative to the resources used under stated conditions

• Fault tolerance: The capability of the software to maintain a speci-
fied level of performance in cases of software faults or of infringe-
ment of its specified interface

• Scalability: The ability of the software to handle simultaneous oper-
ational loads

User Experience
Even though the term easy to use has become a cliché, a significant body of
knowledge has grown around design for user experience:

• Accessibility: The extent to which individuals with disabilities have
access to and use of information and data that is comparable to the
access to and use by individuals without disabilities

• Attractiveness: The capability of the software to be attractive to the
user

• Compatibility: The conformance of the software to conventions and
expectations

• Discoverability: The ability of the user to find and learn features of
the software

• Ease of use: The cognitive efficiency with which a target user can
perform desired tasks with the software

• World readiness: The extent to which the software can be adapted to
conform to the linguistic, cultural, and conventional needs and
expectations of a specific group of users

Qualities of Ser vice 65

ptg7041395

Manageability
Most modern solutions are multitier, distributed, service-oriented, and
often cloud-hosted. The cost of operating these applications often exceeds
the cost of developing them by a large factor, yet few development teams
know how to design for operations. Appropriate QoS factors to consider
include the following:

• Availability: The degree to which a system or component is opera-
tional and accessible when required for use. Often expressed as a
Service Level Agreement (SLA) with a probability. This is cited as
“nines,” as in “three nines,” meaning 99.9% availability, or a maxi-
mum of 40 minutes downtime per month.

• Recoverability: The capability of the software to reestablish a speci-
fied level of performance and recover the data directly affected in
the case of a failure. This is typically stated as Mean Time to
Recover (MTTR), in minutes. An MTTR of 5:00 minutes means that
the service can be restored in five minutes.

If you’re consuming services, the previous two QoS are probably all you
care about. If you’re also building services, you may care about some of
these as well:

• Reliability: The capability to maintain a specified level of perform-
ance when used under specified conditions (often stated as mean
time between failures [MTBF]).

• Installability and uninstallability: The capability to be installed in a
specific environment and uninstalled without altering the environ-
ment’s initial state.

• Maintainability: The ease with which a software system or compo-
nent can be modified to correct faults, improve performance or other
attributes, or adapt to a changed environment.

• Monitorability: The extent to which health and operational data can
be automatically collected from the software in operation.

• Operability: The extent to which the software can be controlled
automatically in operation.

Product Ownership66

ptg7041395

• Portability: The capability of the software to be transferred from one
environment to another.

• Testability: The degree to which a system or component facilitates
the establishment of test criteria and the performance of tests to
determine whether those criteria have been met.

• Serviceability: The extent to which operational problems can be cor-
rected in the software without disruption. Microsoft Update is an
example of a system that delivers weekly updates to hundreds of
millions of customers for servicing.

• Conformance to standards: The extent to which the software
adheres to applicable rules.

• Interoperability: The capability of the software to interact with one
or more specified systems.

What makes a good QoS requirement? As with user stories, QoS require-
ments need to be explicitly understandable to their stakeholder audiences,
defined early, and when planned for a sprint, they need to be testable. You
may start with a general statement about performance, for example, but in
the sprint you need specific targets on specific transactions at specific load.
If you cannot state how to test satisfaction of the requirement when it
becomes time to assess it, you cannot measure the completion.

How Many Levels of Requirements

In the early days of Agile, a widely espoused belief held that a user story
needed to fit on a single 3x5 card and that the product backlog should con-
sist of a flat list of user stories. Although this is great if you have fewer than
100 user stories, many teams find that they need to scale into large-grained
requirements. The typical terminology is that themes contain user stories
and epics contain themes.

The four key elements in determining the appropriate granularity of
requirements are as follows:

How Many Levels of Requirements 67

ptg7041395

1. Do they communicate effectively to the stakeholders and allow for
the feedback loops described earlier?

2. Are they clear enough to allow acceptance tests?

3. Are they discrete enough to be implemented in a sprint? If not, do
their children fit cleanly into sprints with discrete acceptance tests?

4. Are there few enough requirements at this granularity that they can
meaningfully be stack ranked?

Our experience on VS is that we need three levels of requirements, which
we call scenarios (for epics), experiences for themes, and features which are typ-
ically user stories or QoS. (See Chapter 9 for more detail.) TFS makes it easy
to track progress at all the levels, so that teams can stakeholders can focus on
dashboards appropriate to their needs.

Work Breakdown
One of the practical aspects of PBIs at the level of user stories is that they are
both requirements objects and units of work breakdown. Accordingly, they
form a great level for measuring done and for forming the social contract
around the sprint. Figure 3-12 shows a view in Excel of the PBIs broken
down by the team into tasks, along with the status of each.

This multiple value does not mean that coarser-grained requirements
should be treated as units of work breakdown, however. It is completely
normal that a single user story will roll up into multiple themes or epics.
For example, consider a user story to the effect of “As a registered user of
this site, I can log in once and stay logged in so that I’m not distracted by
multiple requests for credentials.” There are probably dozens of experi-
ences whose flows include a login somewhere, and whose “doneness”
might require login working, but that doesn’t mean that login should be
implemented multiple times.

Product Ownership68

ptg7041395
Figure 3-12: Using Excel as the client on TFS, the team can see the hierarchy of PBIs to
tasks, effectively the PBIs in their dual role as both agreed requirements and work break-
down hierarchy with the status of each task.

This distinction between the natural requirements structure and the
work breakdown structure directly contradicts historical practices that
depended on well-formed hierarchies, often based on the Project Manage-
ment Body of Knowledge (PMBOK) and Microsoft Project. This distinction
between hierarchy for work breakdown and a network for requirements
may be hard for traditional product managers to come to terms with,
although TFS can greatly simplify the reporting.

Remember the execution contract with the team is the sprint and the
user stories or other PBIs taken into the sprint. The Product Owner needs to
ensure that the sequencing makes sense and that the rollup into whole
experience comes together.

How Many Levels of Requirements 69

ptg7041395

Summary

Like Chapter 1, “The Agile Consensus,” this is an outside-in chapter to
describe product ownership in the Agile Consensus. I broadened the per-
spective of the project to include the creation, grooming, and feedback on
the product backlog. I did not spent much time here (yet) on the tools for
this in VS.

Among the most important Agile discoveries of the past decade is the
ability to scale Agile practices to the very large and the ability to draw feed-
back into product ownership as readily as into the execution sprints. I hope
I convinced you.

In the remaining chapters, we delve into running the project using VS
and TFS. There, I assume that these concepts are familiar and that you’re
itching to see examples. In Chapter 9, we return to some of the topics
explored in this chapter and discuss the lessons learned from applying
these practices to our own teams within Microsoft. In Chapter 10, you will
see how the vNext provides more “in-the-box” support for the Product
Owner.

Before we get that far, let’s look at running the sprint in Chapter 4.

End Notes

1 Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on Software
Engineering, Anniversary Edition (Addison-Wesley, 1995), 199.

2 United States Patent and Trademark Office and
http://genet.gelighting.com/LightProducts/Dispatcher?REQUEST
=PHOTOGALLERY&PRODUCTCODE=85383&SELECTED=Pack-
age Photo&COLOR=Yes

3 Scrum Guide, 7.
4 “Yahoo Memo: The ‘Peanut Butter Manifesto’,” Wall Street Journal,

November 18, 2006, available at http://online.wsj.com/public/arti-
cle/SB116379821933826657-0mbjXoHnQwDMFH_PVeb_jqe3Chk_
20061125.html

Product Ownership70

http://genet.gelighting.com/LightProducts/Dispatcher?REQUEST=PHOTOGALLERY&PRODUCTCODE=85383&SELECTED=PackagePhoto&COLOR=Yes
http://genet.gelighting.com/LightProducts/Dispatcher?REQUEST=PHOTOGALLERY&PRODUCTCODE=85383&SELECTED=PackagePhoto&COLOR=Yes
http://genet.gelighting.com/LightProducts/Dispatcher?REQUEST=PHOTOGALLERY&PRODUCTCODE=85383&SELECTED=PackagePhoto&COLOR=Yes
http://online.wsj.com/public/article/SB116379821933826657-0mbjXoHnQwDMFH_PVeb_jqe3Chk_20061125.html
http://online.wsj.com/public/article/SB116379821933826657-0mbjXoHnQwDMFH_PVeb_jqe3Chk_20061125.html
http://online.wsj.com/public/article/SB116379821933826657-0mbjXoHnQwDMFH_PVeb_jqe3Chk_20061125.html

ptg7041395

5 Monty Python’s Flying Circus, “The Dead Parrot Sketch,” available
on The 16-Ton Monty Python DVD Megaset, Disc 3 (A&E Home
Video, 2005).

6 http://mobile.vasamuseum.com/Default.aspx?s=84&p=3817 and
www.mmk.su.se/~magnuss/images/vasa-hull2.jpg

7 Bruce Tuckman, “Developmental Sequence in Small Groups,”
Psychological Bulletin 63:6 (1965): 384–99.

8 In fact, there is a growing consensus among economists that accurate
long-term business strategy is as elusive as accurate long-term
weather forecasting. See Beinhofer, The Origins of Wealth.

9 Geoffrey A. Moore, Crossing the Chasm: Marketing and Selling High-
Tech Products to Mainstream Customers (New York: HarperCollins,
2002), 93–4.

10 Adapted from Moore, 154.
11 Mike Cohn, User Stories Applied: For Agile Software Development

(Boston: Addison-Wesley, 2004).
12 N. Kano, N. Seraku, F. Takahashi, S. and Tsuji, “Attractive quality

and must-be quality,” originally published in “Hinshitsu” (Quality),
The Journal of the Japanese Society for Quality Control, XIV:2 (1996):
39–48, April 1984, translated in The Best On Quality, edited by John
D. Hromi. Volume 7 of the Book Series of the International Academy
for Quality (Milwaukee: ASQC Quality Press, 1996).

13 Tim Brown, Change by Design (New York: HarperCollins, 2009), 19.
Also discussed at www.ideo.com/cbd

14 For example, ISO/IEC 9126/2001 and IEEE Std 610.12-1990, from
which many of these examples are drawn. Section 504 of the Reha-
bilitation Act, 29 U.S.C. § 794d, is available from
www.usdoj.gov/crt/508/508law.html.

15 They are beginning to show up in weak form from the Payment
Card Industry Security Standards Council, www.pcisecurity-
standards.org/index.shtml.

End Notes 71

http://mobile.vasamuseum.com/Default.aspx?s=84&p=3817
www.mmk.su.se/~magnuss/images/vasa-hull2.jpg
www.ideo.com/cbd
www.usdoj.gov/crt/508/508law.html
www.pcisecurity-standards.org/index.shtml
www.pcisecurity-standards.org/index.shtml

ptg7041395

This page intentionally left blank

ptg7041395

4
Running the Sprint

The deficiencies of the theory of the project and of the theory of
management reinforce each other and their detrimental effects
propagate through the life cycle of a project. Typically, customer
requirements are poorly investigated at the outset, and the
process of requirement clarification and change leads disruption
in the progress of the project. The actual progress starts to drift
from the plan, the updating of which is too cumbersome to be
done regularly. Without an up-to-date plan, the work
authorization system transforms to an approach of informal
management. Increasingly, tasks are commenced without all
inputs and prerequisites at hand, leading to low efficiency or
task interruption and increased variability downstream.
Correspondingly, controlling by means of a performance
baseline that is not based on the actual status becomes ineffective
or simply counterproductive. All in all, systematic project
management is transformed to a facade, behind which the job
actually gets done, even if with reduced efficiency and lessened
value to the customer.1

—L. Koskela and G. Howell, “The Underlying Theory of Project
Management Is Obsolete”

73

ptg7041395

Figure 4-1: Without transparent data, project management can descend into a game of
hedging bets based on partial information and divergent perspectives of stakeholders.
Poker is a good metaphor for this pattern.

The preceding chapter addressed the grooming of the product backlog.
This chapter and the following four focus on implementing the require-

ments taken from the product backlog into the sprint.
First, let’s cover some concepts that are core to the Agile Consensus:

• Empirical over defined process control

• Scrum mastery

• Team size

• Rapid estimation

• Descriptive rather than prescriptive metrics

• Multiple dimensions of project health

Running the Sprint74

“A Friend in Need” by C.M. Coolidge, c.1870

ptg7041395

Empirical over Defined Process Control

In the 1970s, 1980s, and 1990s, the “iron triangle” was an icon of project
management based on the defined process control paradigm.2 The iron tri-
angle is the notion that a project manager can work with only three vari-
ables: time, functionality, and resources (including people, who are reduced to
units of production). In the past ten years, quality was acknowledged as a
fourth dimension, making a tetrahedron, as shown in Figure 4-2.

Empirical over Defined Process Control 75

Resources Time
Quality

Functionality

Figure 4-2: The iron triangle (or tetrahedron) treats a project as a fixed stock of work, in
classic defined process terms. To stretch one face of the tetrahedron, you need to stretch
the others.

In Rapid Development, Steve McConnell summarizes the iron triangle as
follows:

To keep the triangle balanced, you have to balance schedule, cost,
and product. If you want to load up the product corner of the trian-
gle, you also have to load up cost or schedule or both. The same goes
for the other combinations. If you want to change one of the corners
of the triangle, you have to change at least one of the others to keep
it in balance.3

According to this view, a project has an initial stock of resources and time.
Any change to functionality or quality requires a corresponding increase
in time or resources. You cannot stretch one face without stretching the oth-
ers, because they are all connected.

ptg7041395

Although widely practiced, this paradigm is a counterproductive
model. Think of your project as a pipe intended to deliver a smooth flow
of value. The iron triangle is like a cross-section at a particular point in the
pipe. So long as there is a kink in the pipe downstream, expanding the pipe
section upstream won’t help.

Most of us have experienced this in spades. Pouring water into a sink
with a clogged drain doesn’t clear the drain. Eventually the sink overflows,
your feet get wet, and your floor gets ruined. Similarly, if builds are broken,
adding code only creates technical debt until the builds are fixed. If debt is
accumulating in the form of bugs or missing tests, adding debt only raises
risk and creates exponentially more handling later.

Scrum is a very pleasant antidote to iron-triangle thinking. The iron tri-
angle assumes a defined process model, in which there are no opportunities
for improvements in flow or reduction of waste. Scrum and the Agile Con-
sensus, on the other hand, assume an empirical model, in which the small
batches done in sprints are inspected and the process is adapted for
improvement continually.

Teams following Scrum and the Agile Consensus have demonstrated
experiences that pleasantly contradict the iron triangle. For example, in
iron-triangle thought, a stringent definition of done may appear to require
extra resources or time because it mandates more upfront activity. In prac-
tice, it shortens time to delivery because it prevents the accumulation of
technical debt elsewhere in the pipe. To extend the analogy of the sink,
imagine replacing the drain with clear glass so that so you can always see
the rate of flow and always clear any blockage as soon as it occurs.

Scrum Mastery

Nowadays, there are more Scrum Master courses than most Scrum teams
have fingers to count them on. It was tempting to position this chapter as
reading for the Scrum Master to make a nice parallel with Chapter 3, “Prod-
uct Ownership.” Yet mastery of Scrum is really for the whole team, not just
a designated individual. The Scrum Master does very little when the team
is functioning well, other than make sure that the rules of Scrum are being

Running the Sprint76

ptg7041395

followed. Accordingly, on most high-functioning teams, being a Scrum
Master is a very part-time role.

We have already covered most of the rules of Scrum. If you’re not famil-
iar with the rest, I’ll give you a very quick recap of the Scrum Guide.4 There
are timeboxed sprints, usually two to four weeks, usually of equal length.
The first and last days of the sprint are special. The first day is sprint plan-
ning, which is broken into two halves. The morning is a review of the top of
the product backlog with the Product Owner, including rapid estimation as
discussed later, with a goal of committing to the right set of product back-
log items (PBIs) for the sprint. The afternoon is a discussion of how to build
the chosen PBIs and with a goal of fleshing out the initial set of tasks in the
iteration backlog.

The last day has a sprint review and a sprint retrospective. These form
a scheduled time to inspect and adapt. The sprint review focuses on the
output of the sprint, including the team’s live demonstration of the deliv-
ered software relative to the PBIs committed. The sprint retrospective, as
the name suggests, is an explicit opportunity for the team to inspect the
process followed during the sprint and adapt it to improve the next sprint.

On the other days of the sprint, there is a 15-minute daily scrum (also
known as the daily stand-up meeting). It is not a status meeting. As made
clear in Chapter 2, “Scrum, Agile Practices, and Visual Studio,” your status
should be visible to everyone in Team Foundation Server (TFS), and you
don’t need a meeting to ask each other if you meant what you typed. This
is a daily planning meeting for the team, affording them the opportunity
to create a plan for the next 24 hours. The focus is on looking ahead, not
behind (unlike many conventional status meetings). By sticking to these
simple meetings, Scrum keeps 90% of the team time scheduled on task and
limits 10% to communication overhead (2 days out of 20).

Team Size
Scrum specifies a team size of 7±2. There’s no magic here. That’s how large
a group you can put together and still have everyone talk to each other reg-
ularly. As projects get larger, you need to split the teams. As you accumu-
late more teams, you need to introduce coordination. The good news is that

Scrum Mastery 77

ptg7041395

TFS can do the bookkeeping for you of tracking integrations and depend-
encies across multiple teams’ backlogs. In Chapter 9, “Lessons Learned at
Microsoft Developer Division,” I describe how we do this at Microsoft.

Rapid Estimation (Planning Poker)
This is the usually the time where the boss (pointy-haired or otherwise) gets
squeamish, so some explanation is in order. Planning Poker is the estima-
tion technique that has matured over time with Scrum. Planning Poker esti-
mates PBIs in units of story points. By convention, a story point estimate is
usually a number from the Fibonacci series: 1, 2, 3, 5, 8, 13, 21, 34, with val-
ues allowed for 0 and ?, as well.5 In this way, the estimates are suitably
spread out, and they obey simple addition. For example, big 13 costs as much
as the 2, 3, 3, and 5 together. Is it really worth it?

Story points are intentionally not units of implementation such as hours.
Their sole purpose is to allow tradeoffs among user stories in the product
backlog. In practice, hours tend to lead to debates of whether we mean
“ideal hours” free of distraction or “actual hours,” including overhead
tasks. And by keeping user stories compared to user stories, the team does
not have to waste time on detailed estimation to decide what part of the
backlog to accept into the sprint.

In Planning Poker, every “player” (that is, estimator) has a deck of cards
marked with valid story point estimates (Fibonacci numbers), as shown in
Figure 4-3. In each hand, the dealer selects a PBI, and every player puts a
card from his or her hand face down. When all players have put their cards
face down, the dealer, often the Product Owner, says, “Show!”

At this point, differences in the estimates are discussed. If players agree
through the discussion, the dealer records the estimate and chooses the next
PBI. Otherwise, the players redraw cards for this PBI. The dealer has the
privilege to declare the discussion finished and to average the current esti-
mates for the PBI and record the average.

Running the Sprint78

ptg7041395

Figure 4-3: In Planning Poker, every player has a deck marked with the same Fibonacci
numbers for estimation.6

Planning Poker is extraordinarily effective because it plays to at least
four human cognitive strengths:

1. Comparison of quantities: We are very good at making approxi-
mate judgments about how much bigger or smaller one pile of fruit
is than another, without counting or weighing. Unlike time esti-
mates, story points may be added together to see the size of several
items simultaneously. Time estimates often overlap when work is
executed nonsequentially, whereas story points do not.

2. Rapid cognition:7 Very often, the conclusion you draw in two sec-
onds is indeed your best, especially where you have expertise, and
with more time you only talk yourself into inferior results through
further analysis. Quick judgments rely on a different and more reli-
able neural pathway than long analyses. The rapid pace of Planning
Poker does not give you time to do the double-talk.

Scrum Mastery 79

ptg7041395

3. Wisdom of crowds:8 Every hand of the game is effectively a predic-
tion market among experienced players, who are judging individu-
ally. To the extent that any one estimate is off, the law of large
numbers tends to average out the roughness of the estimates.

4. Inspect and adapt: The team gets better with every round. “Last
time we saw one of these widgets, we estimated 5 but it took 8, so
we should call this an 8.” Of course, this is part of the team’s
storming-norming-forming-performing.

At the conclusion of a sprint, you can measure the story points achieved.
This is your team’s velocity. (Velocity = story points achieved to the defini-
tion of done in the sprint.) This gives you a basis for estimating the capac-
ity of the next sprint. Obviously, you can make adjustments for calendar
issues, absences, team changes, and so on.

A frequent objection to Planning Poker is the seaming arbitrariness of
story points as a size measure. In fact, story points are optimized for rapid
estimation, as discussed earlier, and at the conclusion of a sprint can be con-
verted into observable units of work. Consider a simple example. Imagine
you have a team of seven, who completed a sprint of 20 workdays (4 weeks
x 5 days), and delivered 140 story points. The team’s velocity is 140 story
points, averaging 1 story point per team member per day. (7 x 20 = 140.)

Don’t stretch this too far. The purpose of story-point estimation is to
allow the team to examine the highest stack-ranked PBIs and to make a
commitment for the coming sprint, nothing more or less. Do not create
reward systems out of story points. Do not use story points for comparisons
across teams. If someone outside the team becomes enamored with a con-
version of story points to time worked, it is likely that the estimation will no
longer be as effective, as you’ll see in Figure 4-4 later in this chapter.

A Contrasting Analogy
Remember your schooldays and the ritual of “picture day,” when you
would have to dress up, your parents would overpay, a photographer
would come to take your picture, and a month later the teacher would hand
out prints that you hated anyway.

Running the Sprint80

ptg7041395

Consider two photographers, whom we will name Dr. Pangloss and
Jonathan Swift. Both photographers want to minimize unnecessary adjust-
ments of the tripod and therefore want all of their subjects arranged by
height. Dr. Pangloss carries a measuring tape and carefully measures the
height of each pupil, records the height on a card with the pupil’s name,
and then asks the teacher to arrange the pupils in a line by height. Dr. Pan-
gloss can proudly tell you that the 30 subjects average 1.5m in height with
a standard deviation of .2m.

Mr. Swift, however, walks in the class and announces, “Class, please
arrange yourselves along this wall from shortest to tallest.” Mr. Swift has no
idea what the class measurements are, but he finds that this way he finishes
two hours faster and can handle two more schools per day than Dr. Pan-
gloss. Whose technique would you use?

Use Descriptive Rather Than Prescriptive Metrics

Often, there are tacit or even explicit assumptions about the “right”
answers to metrics. These expectations can determine how individuals are
recognized or not recognized for their performance. Developers are praised
for completing tasks on time. Testers are praised for running lots of tests or
finding lots of bugs. Hotline specialists are praised for handling lots of calls
and marking them resolved. Everyone is praised for keeping billable hours
up. And so on. Unfortunately, using metrics to evaluate individual per-
formance is often horribly counterproductive, as Robert Austin describes:

When a measurement system is put in place, performance measures
begin to increase. At first, the true value of an organization’s output
may also increase. This happens in part because workers do not
understand the measurement system very well early on, so their
safest course is to strive to fulfill the spirit of the system architects’
intentions. Real improvement may result as well, because early tar-
gets are modest and do not drive workers into taking severe short-
cuts. Over time, however, as the organization demands ever greater
performance measurements, by increasing explicit quotas or induc-
ing competition between coworkers, ways of increasing measures

Use Descriptive Rather Than Prescriptive Metrics 81

ptg7041395

that are not consistent with the spirit of intentions are used. Once one
group of workers sees another group cutting corners, the “slower”
group feels pressure to imitate. Gradually, measures fall (or, more
accurately, are pushed) out of synchronization with true perform-
ance, as workers succumb to pressures to take shortcuts. Measured
performance trends upward; true performance declines sharply. In
this way, the measurement system becomes dysfunctional.9

These are prescriptive metrics. They can have unforeseen side effects.
There is a well-identified pattern of organizational behavior adapting to fit
the expectations of a prescriptive measurement program, as shown in Fig-
ure 4-4. Typically, a metrics program produces an initial boost in produc-
tivity, followed by a steep return to the status quo ante but with different
numbers. For example, if bug find and fix rates are critically monitored, bug
curves start conforming to desirable expectations.

Running the Sprint82

Level of Performance

Time

Measurement
Indicators

True Performance

Figure 4-4: This graph summarizes the common experience with prescriptive, one-
dimensional metrics programs. Performance shoots up early in accord with management
aspirations, and the numbers get better and better, but the desired effect tapers off quickly.

Consider some examples of prescriptive metric misuse:

• Imagine measuring programmer productivity based on lines of code
written per day. An individual has a choice of calling a framework
method (perhaps 5 lines with error handling) or of copying 200 lines

ptg7041395

of open-source example code. Which one gets rewarded? Which one
is easier to maintain, to code-review, to security-review, to test, and
to integrate? Or similarly, the individual has the chance to refactor
three overlapping methods into one, reducing the size of the code
base. (Now ask the same questions.)

• Imagine rewarding programmers based on number of bugs fixed.
This was once the subject of a Dilbert cartoon, shown in Figure 4-5,
which ended with Wally saying, “I’m going to write me a new mini-
van this afternoon.”11

• Imagine rewarding the team for creating tests and code to achieve
90% code coverage. Do they spend their time writing complex test
setups for every error condition, or easily comment out the error-
handling code that tests aren’t able to trigger? After all, if the tests
cannot invoke those conditions, how important can they be? (Not
very, until a customer encounters them.)

• Imagine measuring testers based on the number of bugs found. Do
they look for easy-to-find, overlapping, simple bugs or go after sig-
nificant ones that require setting up complex customer data and con-
figurations? Which approach gets rewarded? Which one yields more
customer value?

Use Descriptive Rather Than Prescriptive Metrics 83

Figure 4-5: Prescriptive metrics distort behavior, as captured in this classic Dilbert comic
strip.

Source: Dilbert © 1995 Scott Adams. Used by permission of UNIVERSAL UCLICK. All rights reserved.

ptg7041395

Each example leads to obvious dysfunction—discouraging reuse and
maintainability, encouraging buggy check-ins, reducing error handling,
and discouraging finding the important bugs. Other dysfunctions from
misuse of prescriptive metrics are less obvious but equally severe. People
who don’t get the best scores will be demoralized and face the choice of
gaming the numbers or leaving the team.

Prevent Distortion
At the root of the distortion is the prescriptive, rather than descriptive, use
of these metrics. This problem has at least four causes. First, the metrics are
only approximations of the business objective, such as customer satisfac-
tion or solution marketability. The team aims to deliver customer value, but
that cannot be counted easily on a daily basis. So the available metrics, such
as task completion, test pass rate, or bug count, are imperfect but easily
countable proxies.

Under the Agile Consensus, you give credit only for potentially ship-
pable increments to the agreed definition of done.10 With sprints of two to
four weeks and assessment at the end of the iteration, this practice allows
for intervals of project monitoring at iteration boundaries. Treat all interim
measurements as hypothetical until you can assess delivery of working sce-
narios at known qualities of service.

Second, the measurements are made one dimension at a time. The negative
consequences of a one-dimensional view are dramatic. If you’re measuring
only one dimension at a time and are prescribing expected results, behav-
ioral distortion is a natural consequence. Most experienced project man-
agers know this. However, gathering data from multiple sources at the
same time in a manner that lends itself to reasonable correlation is histori-
cally very difficult without suitable tooling.

Third, when applied to individuals, metrics create all sorts of disincen-
tives, as illustrated in the previous examples. Keep the observations, even
descriptive ones, at the team level.

Fourth, variation is normal. Don’t reward the most prolific coder or
highest-count bug finder. Expect the numbers to show variance, and don’t
punish cases of in-control variance. Instead, reward a team based on
customer-deliverable units of functionality and make the assessment cycle
frequent.

Running the Sprint84

ptg7041395

Avoid Broken Windows
In Chapter 3, I discussed the importance of the definition of done, agreed
and respected by the team. A risk exists that, despite such definition, teams
let undone work escape from the sprint without accounting for the remain-
ing debt in the backlog. Sometimes this is a side-effect of the misuse of met-
rics, where team members are effectively punished for being transparent.
An example might be the vice president’s innocent question, “Why is this
team reporting so many more bugs and issues than that team?” None-
theless, don’t shy away from the transparency. Use it as an opportunity to
educate.

Every time you defer resolving or closing a bug, you impose additional
future liability on the project for three reasons: The bug itself will have to be
handled multiple times, someone (usually a developer) will have a longer
lag before returning to the code for analysis and fixing, and you’ll create a
“broken windows” effect. The broken windows theory holds that in neigh-
borhoods where small details, such as broken windows, go unaddressed,
other acts of crime are more likely to be ignored. Cem Kaner, software test-
ing professor and former public prosecutor, describes this well:12

The challenge with graffiti and broken windows is that they identify
a community standard. If the community can’t even keep itself mod-
erately clean, then: (1) Problems like these are not worth reporting,
and so citizens will stop reporting them. (We also see the converse
of this, as a well-established phenomenon. In communities that start
actually prosecuting domestic violence or rape, the reported inci-
dence of these crimes rises substantially—presumably, the visible
enforcement causes a higher probability of a report of a crime, rather
than more crime). In software, many bugs are kept off the lists as not
worth reporting. (2) People will be less likely to clean these bugs up
on their own because their small effort won’t make much of a differ-
ence. (3) Some people will feel it is acceptable (socially tolerated in
this community) to commit more graffiti or to break more windows.
(4) Many people will feel that if these are tolerated, there probably
isn’t much bandwidth available to enforce laws against more serious
street crimes.

Use Descriptive Rather Than Prescriptive Metrics 85

ptg7041395

Similarly, in projects with large bug backlogs, overall attention to qual-
ity issues is likely to decline. This is one of many reasons to keep the bug
backlog as close to zero as possible.

Answering Everyday Questions with Dashboards

One of the principles of the Agile Consensus is transparency. Because soft-
ware projects have many interacting dimensions, any of them can be rele-
vant. Looking at these dimensions helps you see the whole story and
provides an opportunity for early discovery of exceptions and bottlenecks
that need course corrections.

TFS uses a team portal with a series of dashboards to present the data.
The examples that follow are taken from the standard Agile project tem-
plate that is installed with TFS. There are five dashboards designed to help
the team run the sprint, plus a sixth (My Dashboard) that each user can per-
sonally customize. Because the Web parts of these dashboards are Excel
graphs or TFS queries, no special skills are needed for customization.

“Five dashboards,” I imagine some readers asking. “Don’t you just need
a burndown chart for the Scrum team?” Actually, you need more, precisely
to understand the multiple dimensions of project health:

• Burndown focuses on showing the rate and quantity of completed
items.

• Quality examines several dimensions of quality simultaneously to
help you spot anomalies not represented by the reported work.

• Bugs drills more specifically into bug trends to provide an early
warning against accumulating technical debt.

• Test looks at the relationships of test activity planned to executed,
and test results to product backlog. This is a key indicator to achiev-
ing “Done Done” on the PBIs.

• Build is like the EKG for the project. It’s there to ensure that the
build automation is acting as the effective heartbeat for the project
and to warn of problems, such as broken build verification tests
(BVTs) or incomplete test lab deployments.

Running the Sprint86

ptg7041395

Burndown
The purpose of the Burndown dashboard, as shown in Figure 4-6, is to give
the team a view of progress against the sprint plan from the standpoint of
the sprint backlog and the chosen PBIs.

Answering Everyday Questions with Dashboards 87

Figure 4-6: The Burndown dashboard provides the perspective of the PBIs, tasks, and
impediments.

The middle left chart on this dashboard is a picture of how quickly the
team is working through the PBIs that have been taken into the sprint. It is
essential that there be a smooth flow to closure. An antipattern to watch for

ptg7041395

is a big bulge in the resolved band in the middle, indicating that PBIs are
not getting closed (that is, test and carried to done), which is a sign that the
team is allowing technical debt to build up during the sprint.

The top two charts are sprint burndown charts. These are the icons of
tracking tasks in Scrum. The left one shows hours, and the right one the
count of tasks to complete. This example is typical, in that the team dis-
covers additional work in the first few days of the sprint, forcing both
remaining work and total work (the top line) to rise. As the sprint pro-
gresses, work completion accelerates, and the team hits the completion date
on time.

The middle right chart looks at impediments, called issues in this process
template. Although new impediments arise throughout the sprint, they are
getting handled promptly. The total active never climbs above three, and
there are no open issues currently, as shown by the query at the bottom of
the page. The antipattern to watch for here is the buildup of active issues
that are not getting closed. Not only is this debt, but it can also be actively
blocking progress on the current sprint backlog.

Quality
Quality has many dimensions, as discussed earlier, and they interact sub-
tly. The Quality dashboard pulls together the key indicators so that you can
look at key correlations or discrepancies, all in one place, as shown in Fig-
ure 4-7. In turn, more detail is provided for each of the areas on the three
subsequent dashboards, as shown in Figures 4-8, 4-9, and 4-10 in the sec-
tions that follow.

The upper-left chart tracks the overall progress of test cases in the sprint,
as they progress from not run, to blocked, to failed, to passed. In this exam-
ple, there is an initial period of blocked test plans, which might be related
to the status of builds in the upper right.

Every day’s builds are shown. Note that for the first half of the sprint,
more than half the builds fail or only partially succeed. A partially success-
ful build is one that might succeed at compilation but fail at subsequent
steps such as deployment or BVTs. That could explain why many test plans
were blocked; they could be waiting on successful builds.

Running the Sprint88

ptg7041395

Figure 4-7: The Quality dashboard summarizes the many engineering perspectives on
progress toward the potentially shippable increment of the sprint.

The middle two charts look at bugs. On the left, you see total bugs in the
sprint as they progress from active to resolved and then to closed. Note that
the sprint finished with five bugs resolved not closed, so they need to go
on the product backlog for handling in subsequent sprints.

The right chart tracks bug reactivations. This is a key early-warning
indicator. Bug reactivations are bugs whose state went from active to

Answering Everyday Questions with Dashboards 89

ptg7041395

resolved and back to active. In other words, they had fixes checked in that
turned out not to be fixes. This can be a huge source of waste, for many rea-
sons. Obviously, these bugs go through repeated handling, forcing team
members to switch contexts unnecessarily. More subtly, they are a sign of
misdiagnosis, crossed communication, or sloppy practices, such as inade-
quate unit testing. In this example, no more than two bugs are reactivated
and still active at any time. If you see this lower line climb in your sprint,
it is a definite sign of team dysfunction, and you should investigate the
cause immediately.

The third row looks at code coverage and code churn. Code coverage is
the percentage of code exercised by testing. By itself, it is not a very mean-
ingful number, but its trend can be. As you can see in this example, a sud-
den dip occurs in the code coverage from BVTs, which could be a warning
that BVTs aren’t running or that new code is missing tests. Sure enough, it
corresponds to a spike in code churn (that is, the newly added code, on the
right), but the BVTs quickly catch up.

An antipattern to watch for is a dip in code coverage and a rise in code
churn without the subsequent recovery in code coverage. That combination
often indicates that the tests are stale and the new code is going untested.

Bugs
The Bugs dashboard repeats the bug trend chart from the Quality dash-
board and drills into more detail, as shown in Figure 4-8. It shows the
seven-day arrival (that is, newly active), resolved, and closed rates, to
smooth out variation for days of the week. It also breaks out the trend chart
by priority and shows a query of the individual bugs that are currently
active.

Running the Sprint90

ptg7041395

Figure 4-8: The Bugs dashboard drills into additional detail on the bug trends and queries
for the currently active bugs.

Test
The Test dashboard is designed to provide insight into the key aspects of
test activity, as shown in Figure 4-9.

Answering Everyday Questions with Dashboards 91

ptg7041395

Figure 4-9: The Test dashboard offers several lenses on test progress toward the doneness
of the potentially shippable increment and gives you the opportunity to look for early-
warning signs of issues that might surface.

Running the Sprint92

ptg7041395

The upper left shows the same Test Plan Progress chart as on the Quality
dashboard to provide the overall view of how well testing as whole is pro-
ceeding. In the upper right is a trend of test case readiness (that is, how
many of the test cases are ready to run). If test cases are stuck in design, you
clearly have a problem of prioritization of the backlog of test tasks.

The middle chart, User Story Test Status, is my favorite of all the dash-
board charts. Each row is a PBI that has been taken into the sprint. The total
length of the bar indicates the number of test cases for that PBI, and the col-
ors show the last test result for each test case. In this example, for the first
story (“As an Admin…”), there is one test case that has never been run, two
that are failing, and two that are currently passing.

The bottom left shows how many test results have been collected by
manual testing. Use this chart to watch for manual testing continuing to
rise indefinitely (indicating that no tests are getting automated). The bot-
tom right breaks out the reasons for test-run failures. Use this one to watch
for the antipatterns of rising regressions or rising known issues, either of
which is a warning sign of accumulating technical debt.

Build
The Build dashboard, shown in Figure 4-10, repeats the code metrics from
the Quality dashboard and provides details for each of the recently com-
pleted builds.

Answering Everyday Questions with Dashboards 93

ptg7041395

Figure 4-10: The Build dashboard lets you see the heartbeat of builds and select any one.

Choosing and Customizing Dashboards

The dashboards previously discussed are the standard ones that are installed
for a team project using the MSF for Agile process template. The pages are
rendered by Microsoft SharePoint Server, and the parts are a combination of
graphs from Microsoft Excel services and queries from Team Web Access.

Of course, you can customize all of these at three levels:

1. There is a My Dashboard page for every user in every team project.

2. Any team member with project admin rights can customize all the
dashboards with new queries or new databound Excel worksheets
or queries.

Running the Sprint94

ptg7041395

3. You can customize your own process template so that all your proj-
ects have a customer set of dashboards to your specification.

Because the dashboards rely on SharePoint, you need to have a full TFS
installation (Advanced, not Basic configuration), and your team members
need SharePoint Enterprise client access licenses (CALs). (If you install TFS
with the Basic configuration option, you skip SharePoint and SQL Server
Reporting Services and will not get the dashboards.)

Using Microsoft Outlook to Manage the Sprint

In addition to the tools provided directly by TFS in Team Web Access,
SharePoint, Excel, and the VS IDE, the company Ekobit has produced a
product called TeamCompanion that lets you manage the sprint from
Microsoft Outlook, as shown in Figure 4-11. TeamCompanion started with
the easy unification of email and TFS work items, and it has grown into a
richly capable client for TFS to help the team see the status of its sprints.

Using Microsoft Outlook to Manage the Sprint 95

Figure 4-11: TeamCompanion from Ekobit connects Microsoft Outlook to TFS and enables
you to monitor the sprint backlog and status there.

ptg7041395

Summary

This chapter covered monitoring and managing the sprint using TFS and
assuming development and testing practices from VS Ultimate. The next
chapters drill into those practices.

This chapter started by reviewing the difference between defined and
empirical process control and reviewed basic practices of Scrum for run-
ning a sprint. Some time was spent on Planning Poker because its rapid
estimation makes a huge difference in eliminating waste for teams that use
more-complicated estimation.

The next section extended the discussion of empirical process control to
the difference between prescriptive and descriptive metrics. Using descrip-
tive metrics sheds enormous light on the workings of the sprint, without
the Dilbertesque side-effects of prescriptive metrics. TFS reports and dash-
boards are designed to help you see that light and recognize early warnings
when they occur.

This chapter also covered lots of “Scrumdamentals,” such as meetings,
team size, Planning Poker, and maintaining the definition of done. I don’t
intend this chapter to replace your reading the Scrum Guide, which is a
quick 20 pages and the definitive reference. Instead, I see this as a practical
complement that puts the Scrum Guide rules into action with examples.

Chapter 5, “Architecture,” and Chapter 6, “Development,” focus heav-
ily on the VS Ultimate IDE. Chapter 5 delves into Agile architectural prac-
tices, notably working with existing assets and ensuring that you get clean
and stay clean. Chapter 6 focuses on everyday Agile development. All of
these are in the context of the discussion here: one team, one backlog, one
concept of done, and one drive to a potentially shippable increment.

End Notes

1 L. Koskela and G. Howell, “The Underlying Theory of Project
Management is Obsolete.” Proceedings of the PMI Research Confer-
ence, 2002, 293–302, available at www.leanconstruction.org/pdf/
ObsoleteTheory.pdf.

Running the Sprint96

www.leanconstruction.org/pdf/ObsoleteTheory.pdf
www.leanconstruction.org/pdf/ObsoleteTheory.pdf

ptg7041395

2 See, for example, the teachings of the Project Management Institute
Body of Knowledge, www.pmi.org.

3 Steve McConnell, Rapid Development (Redmond, WA: Microsoft
Press, 1996), 126.

4 Ken Schwaber and Jeff Sutherland, Scrum Guide, February 2010,
available at www.scrum.org/scrumguides/.

5 Mike Cohn has popularized a rounding of the series to …13, 20, 40,
100, which has become the more popular form. Ken Schwaber
prefers the pure Fibonacci series. (http://kenschwaber.wordpress.
com/2011/03/11/planning-poker/)

6 Photo by author
7 Malcom Gladwell, Blink: The Power of Thinking without Thinking

(Boston: Back Bay Books, 2007).
8 James Surowiecki, The Wisdom of Crowds: Why the Many Are Smarter

Than the Few and How Collective Wisdom Shapes Business, Economies,
Societies and Nations (Doubleday, 2004).

9 Robert D. Austin, Measuring and Managing Performance in Organiza-
tions (New York: Dorset House, 1996), 15.

10 Kent Beck with Cynthia Andres, Extreme Programming Explained:
Embrace Change, Second Edition (Boston: Addison-Wesley, 2005), 72–3.

11 http://dilbert.com/strips/comic/1995-11-13/
12 Cem Kaner, private email. Malcolm Gladwell, The Tipping Point (Lit-

tle Brown & Co., 2000), 141, has popularized the discussion, based
on Mayor Giuliani’s use in New York City. The statistical evidence
supporting the theory is disputable; see Steven D. Levitt and
Stephen J. Dubner, Freakonomics: A Rogue Economist Explores the Hid-
den Side of Everything (New York: HarperCollins, 2005). Nonetheless,
the psychological argument that communities, including software
teams, can become habituated to conditions of disrepair is widely
consistent with experience.

End Notes 97

www.pmi.org
www.scrum.org/scrumguides/
http://kenschwaber.wordpress.com/2011/03/11/planning-poker/
http://kenschwaber.wordpress.com/2011/03/11/planning-poker/
http://dilbert.com/strips/comic/1995-11-13/

ptg7041395

This page intentionally left blank

ptg7041395

5
Architecture

“Simple things should be simple; complex things should be possible.”

—Alan Kay

99

Source: LilKar/Shutterstock.com

Figure 5-1: Every system has an architecture. A beehive is a great example of an emergent
architecture.

ptg7041395

Architecture100

In the previous chapters, you read about how development is done in
sprints and how progress is monitored by the team. In the next four chap-

ters, I focus on the activities during a sprint, where product backlog items
(PBIs) get transformed to pieces of potentially working software. This chap-
ter covers the specifics of how and when architecture happens and the
accompanying tooling provided by Visual Studio (VS).

Architecture in the Agile Consensus

In Scrum, there’s no explicit architect role; instead, the team is responsible
for the architecture. The first design session happens no later than sprint
planning, when PBIs are broken down into actionable tasks. This is where
the team agrees on how to transform a PBI into working software. The team
collaboratively chooses one from many possible solutions to each design
problem and with its collective wisdom ensures that a best fit emerges.

Therefore, this chapter is not targeted just to architects, but to all devel-
opers and the architectural design tasks developers do on a daily basis.

Inspect and Adapt: Emergent Architecture
In the Agile Consensus, success is measured in terms of value delivered per
sprint. The ultimate goal is being able to present value, in the form of PBIs
that are done, at the end of each sprint. This practice contrasts strongly with
the un-Agile notion of a rather long architectural “phase” to get the archi-
tecture “in place,” before the actual implementation work is started. If
teams are used to such phases, the shift can be a challenge.

Scrum prescribes designing “just enough” architecture to fulfill your
sprint goals and thus get the PBIs done, according to the team’s definition
of done. There are no sprints dedicated to architecture, because every sprint
is supposed to deliver value that the customer cares about. By delivering
PBIs as well as the required architecture, each sprint proves that the actual
architecture works and satisfies all acceptance criteria. This approach has
two major benefits:

ptg7041395

Architecture in the Agile Consensus 101

• First, it ensures that not too much architecture is done upfront,
based on vague assumptions about future requirements, which leads
to waste.

• Second, the risk is minimized because the architectural design is val-
idated by showing PBIs that are built on top of it, at the end of each
sprint.

Delivering a “slice” of functionality, each sprint allows the team to
inspect and adapt the architecture supporting the features. An experienced
Scrum team will not invest too much in architecture upfront, because they
realize that trying to make architecture “perfect” creates potential waste (as
business requirements might change over time, and architecture will have
to adapt to reflect the new needs). The team is aware of the PBIs likely to
be implemented in the not too distant future and keeps those in mind when
planning the implementation of the PBIs in the current sprint.

The term that is used to describe this way of delivering architecture in
“slices” is emergent architecture. Architectural decisions that do not neces-
sarily have to be done to fulfill the goals of a sprint are deferred to a later
sprint, when they become relevant. For example, a team might defer the
decision to interface to some external component to a later sprint, when this
actually becomes their sprint commitment. In contrast, the team must make
some basic decisions in the first sprints about the technology stack to use.

Architecture and Transparency
In Scrum, the primary way to inspect progress and architectural readiness
is to inspect the working software. Teams need to have at least one PBI with
customer value to demonstrate at the sprint review. (See Chapter 4, “Run-
ning the Sprint,” for more information about the sprint review meeting.)
Because teams are self-organizing in Scrum, they choose what kind of doc-
umentation they want to create and maintain within the team, and what
can be reduced to eliminate waste.

Teams new to Scrum often complain that their architecture and infra-
structure is so complex that it is impossible to get anything done within a
single sprint. Imagine the simple scenario where a team wants to prove

ptg7041395

their architecture is working, but the hardware has not arrived yet and so
they cannot show it on a production-realistic infrastructure.

In this case, the team needs to be aware that their work cannot be fully
validated and therefore is not potentially shippable. As a consequence, they
are deferring work to later sprints. Because the exact amount of work left
is unknown, risk increases. It is very important to capture the “undone”
work on the product backlog to make sure it is transparent for everyone
else, and not hidden.

Teams that add undone work to the backlog with every sprint, and fail
to resolve those deferred items as quickly as possible, accumulate technical
debt on the backlog. Just as with bank loans, such teams must “pay interest”
as the effort to resolve them increases over time. (You can read more
about the unfortunate effects of technical debt in Chapter 1, “The Agile
Consensus.”)

A similar problem exists if a team has many sprints until a release and
the definition of done contains too complex qualities of service (QoS), such
as performance. Forcing all QoS criteria to be fulfilled after each sprint
might actually slow the team down. All QoS need to be understood as early
as possible, but in some cases it is acceptable for their fulfillment to be
deferred, to be able to deliver customer value in each sprint and keep a
steady flow of value to gain feedback.

Consider a team that develops an application that needs to support
5,000 users simultaneously. During each spring, they might test for 1,000
users as part of their definition of done (so as to not slow down develop-
ment). However, they must recognize that the goal of 5,000 has to be
reached, and some additional performance and scale tuning work will have
to be done later, closer to release. Although not all QoS are fulfilled at the
end of each sprint, it is important that all QoS are understood and made vis-
ible on the backlog through PBIs.

Design for Maintainability
One of the primary values of good architecture is maintainability and sup-
portability. The design intent of good architecture should be that code is
maximally maintainable in the future by others. It helps if you imagine

Architecture102

ptg7041395

yourself in the shoes of a developer who comes in two years from now and
has to do something with the code that he has never seen before.

Of course, designing a system for maintainability is not something you
do once. Instead, the team should agree to follow design principles and use
well-known patterns, wherever possible, so that people other than the orig-
inal author can easily maintain the code. Many practices that have been
around for years allow for this, such as KISS1 (“Keep it simple, Stupid”),
YAGNI2 (“You ain’t gonna need it”), and many more. Furthermore, there
are not only code-related patterns, but also patterns that apply to Applica-
tion Lifecycle Management (ALM) and working as a team (for example,
branching patterns, as covered in the next chapter).

Exploring Existing Architectures

Understanding the Code
Many developers work on code that belongs to existing systems, referred to
as brownfield projects, in contrast to freshly started greenfield projects that do
not contain any existing code. The major challenge for teams on brownfield
projects is the inherent complexity inherited from the legacy application.

Besides adding new functionality, the team needs to make sure it does
not break any existing features, because the sprint result needs to be poten-
tially shippable. Changes to a legacy codebase are a challenge, especially
if there are no automated tests available to act as a safety net for future
refactoring. As a result, developers responsible for changes to that code
need to have a good understanding of the system to safely modify and
leverage it.

A key piece of architectural discovery in VS is the ability to generate
dependency graphs from a snapshot of the current system. Figure 5-2 shows
a dependency graph from a Web site and all references between the com-
ponents represented as namespaces. The relationships are shown as arrows,
where a wider arrow indicates more references from/to the same node.

Exploring Existing Architectures 103

ptg7041395

Figure 5-2: VS generates dependency graphs that represent all the actual references in
code to understand how individual parts of the system fit together. The wider the arrows,
the more references exist between two nodes.

An interesting point to be aware of is that dependency graphs in VS are
not scoped or limited to VS solutions and projects. They can be much
broader if necessary (for example, to include components from other teams
or third parties). Even references to the underlying .NET Framework
classes get added (as an Externals node) and can be safely removed from
the graph if not required. Note that only static dependencies can be dis-
covered, not dynamic ones.

Dependency graphs can be created on different levels, showing assem-
blies, namespaces, or classes as root nodes. (Figure 5-3 shows a complete
list of options.) While trying to gain a deeper understanding of the code
and its relationships, you can follow references by hovering over them and
clicking one of the arrows, as shown in Figure 5-4, or you can drill down
by opening a node to see its child nodes. (For example, a class node con-
tains the methods as child nodes.)

Architecture104

ptg7041395

Figure 5-3: Dependency graphs can be created on different levels, showing assemblies,
namespaces, classes, or methods (with their corresponding relationships and child objects).

Exploring Existing Architectures 105

Figure 5-4: Dependency graphs support many features, including zooming, searching,
grouping. Using the upper-right arrows, you can drill down to see child nodes and then
double-click to jump into the source code behind them.

ptg7041395

Figure 5-5 shows a slightly different layout, the Quick Cluster, which
groups nodes with a higher coupling so that classes that are heavily refer-
encing one another are easily spotted. Those should be checked because
they might indicate a poorly maintainable architecture. For readability, the
Externals node, containing all external references, and the Generics node,
containing all generic types, were manually removed from the graph.

Architecture106

Figure 5-5: A Quick Cluster layout on a dependency graph places nodes with many depend-
encies between each other closer to each other and functions as a cohesion graph.

Dependency graphs usually provide a better understanding of the indi-
vidual parts of the application and how they depend on each other. For fur-
ther analysis, it makes sense to look at the sequence of interactions between
them. For this purpose, VS supports generating sequence diagrams, from
the actual code, where the depth of the diagram and the references to
include/exclude can be configured, as shown in Figure 5-6.

ptg7041395

Figure 5-6: VS supports generating UML sequence diagrams directly from code (by right-
clicking the method). This dialog shows the options to include or exclude external
references.

A sequence diagram, generated from code, is a great way to visualize
and understand how a particular method is implemented in the actual
code.

The MSDN Library describes them as follows:

A sequence diagram describes an interaction between objects as a
series of lifelines and messages. Lifelines represent instances of
objects, and messages represent method calls between those objects.

Figure 5-7 shows a sequence diagram for the ������ method of the ��	��
class. Conditional statements and loops are framed with a gray border, to
indicate that those parts are optional or potentially repeated. For readabil-
ity, you can group the vertical lifelines of two classes so that they appear as
a single line.

Exploring Existing Architectures 107

ptg7041395

Figure 5-7: A UML sequence diagram that was generated from code shows the sequence of
interactions between classes. Conditional blocks (like if-statements) and loops are shown in
gray boxes.

Besides just “reading” the diagram as it was generated from code, Fig-
ure 5-8 shows how the toolbar was used to draw proposed changes right
onto the diagram surface, as a basis of discussion with the team, and anno-
tate the diagram with comments.

Architecture108

ptg7041395

Figure 5-8: This UML sequence diagram additionally includes a proposed change to the
sequence (highlighted in a different color), as well as a comment with further explanations.

Maintaining Control
The essential challenge in emerging software architecture is to maintain
control of structure, in particular the clean layering of dependencies. As
systems continue to evolve over time, and as new developers join the team,
both need guardrails. If layering stays clean, the system can be readily
refactored and maintained. Otherwise, it risks becoming a ball of mud.

Architecture is often represented on a whiteboard as a couple of boxes
and lines. Similarly, VS enables you to draw the intended logical structure
on a design surface called a layer diagram. On that diagram, you can draw
layers that limit the intended dependencies by drawing allowed references
between them, as shown in Figure 5-9. This is a purely logical/conceptual
view that you need to create manually. (There is no autodiscovery for your
intended structure.)

Exploring Existing Architectures 109

ptg7041395

Architecture110

Figure 5-9: The layer diagram is the logical intended structure of your system. It can be
complicated or simple, as you need it.

Once you define your intended layering and despondencies, you then
map your code to the blocks on this graph. VS allows you to drag files, or
VS projects, directly from Solution Explorer to the design surface. You can
also use the more sophisticated Architecture Explorer, shown in Figure
5-10, to query for all kind of types, such as assemblies, namespaces, classes,
and methods, to drag and drop them onto the layers. As with dependency
graphs, you are not limited to a VS solution.

ptg7041395

Figure 5-10: Architecture Explorer enables you to query, search, and filter for assemblies,
namespaces, types, and methods from your system. You can drag and drop these onto the
surface to assign them to a logical layer.

You can now use the layer diagram to validate the current structure
against your intended one and show all unwanted dependencies, as shown
in Figure 5-11. The validation can run locally in the VS integrated develop-
ment environment (IDE) or as part of the server-side automated build.3 The
result is a list of invalid dependencies that are not allowed according to
your intended structure (if there are any). Running layer validation as part
of your automated build ensures the build “fails fast” for newly introduced
unwanted dependencies. As with all errors in VS, users can use the context
menu to quickly create work items out of the validation errors that include
all the necessary details to track the progress.

Exploring Existing Architectures 111

ptg7041395

Figure 5-11: Layer diagrams validate the actual code against the logical structure and gen-
erate errors for unwanted dependencies. The validation happens locally on the client and
optionally on the build server.

Emergence also applies to existing code. For existing codebases, the
layer diagram helps to move to an intended architecture and remove
unwanted dependencies incrementally over time. After drawing the
desired layer diagram, and mapping the system to it, the team selects the
top few validation errors in order to tackle them in the same sprint (while
suppressing the rest). The team can then reveal all the suppressed errors for
the next sprint plan. Based on the increased knowledge of the team, they
then select the next few top validation errors and include them in the sprint
backlog and suppress the rest. Effectively, the team iteratively implements
more of the intended architecture with each sprint.

Furthermore, the layer diagram itself is extensible with custom com-
mands and validations. For example, you can download the VS extension
Application Architecture Guide Layer Diagrams from the Extension Man-
ager in the VS IDE, which includes layer diagram templates for five com-
mon application types.

In brief, VS layer diagrams reduce technical debt. On new, greenfield proj-
ects, a layer diagram ensures that developers adhere to the intended struc-
ture. On existing, brownfield projects, layer diagrams help to detect the
discrepancy between the actual and the intended structure so that the team
can improve the structure progressively over time. In both cases, the diagram
serves as a documentation of the intended structure and references and
enables us to emerge architecture deliberately rather than by accident (even
with new developers on the team).

Architecture112

ptg7041395

Understanding the Domain
Complex systems are often not only complex in terms of code and the num-
ber of modules, classes, and operations they consist of. Today, the problem
domain itself and the required knowledge about business processes are also
quite complex.

UML4 emerged as the de facto standard notation used to document
models. Those models are then used to collaborate and spread under-
standing within your team, and especially among external, outsourced
teams that by nature have an increased need for more formal documenta-
tion.

Diagrams in VS are stored in a separate modeling project, which offers the
five most frequently used UML diagrams besides the layer diagram, as
shown in Figure 5-12.

Exploring Existing Architectures 113

Figure 5-12: VS supports the five most frequently used UML diagram types and stores
those diagrams in separate modeling projects that are stored and versioned in the system
along with all other artifacts in the system.

ptg7041395

The two high-level diagrams, the use case diagram and the activity dia-
gram, can help you to describe requirements in more detail. The use case
diagram (shown in Figure 5-13) provides context about actors and use cases
available to them. The activity diagram (shown in Figure 5-14) allows for
documentation of business workflows using a simple graphical represen-
tation rather than plain text to limit potential misunderstanding. The vari-
ous elements on the diagrams, such as use cases, can then be linked with
PBIs and other work items, as shown later.

Architecture114

Figure 5-13: The UML use case diagram can provide some interesting context about the
business domain, the involved actors, and associated use cases that can be performed by
the actors.

Figure 5-14: The UML activity diagram is a great way to document a workflow of activities in
a graphical way so that it can be understood by business owners as well as developers.

ptg7041395

The three lower-level diagrams (component, class, and sequence) are a
way of documenting a proposed architecture or an existing one. The last
two can be generated though reverse-engineering from your code, as
shown in Figures 5-15, 5-16, and previously in Figure 5-7. Some teams,
especially distributed ones, prefer those diagrams to whiteboards for doc-
umenting architectural design decisions that happen during the second
part of sprint planning, when the team decides how they want to transform
the selected PBIs into an increment of potentially shippable software in that
particular sprint.

Exploring Existing Architectures 115

Figure 5-15: A UML component diagram is a logical view that represents your component
architecture on a higher level than looking at code or VS projects.

ptg7041395

Figure 5-16: A UML class diagram can be generated from existing code or used as a logical
model to generate template-based code. It is a great basis for a discussion among team
members.

In VS, modeling artifacts are version-controlled right along with every-
thing else in your solution, to help minimize the chance they get completely
out-of-date. In addition, all artifacts used on the diagrams can be shared
among different diagrams through the UML Model Explorer (see Figure
5-17).

Architecture116

ptg7041395

Figure 5-17: The UML Model Explorer enables sharing of artifacts across different UML dia-
grams. To ensure easy maintenance, a change to an artifact impacts its instances on all dia-
grams where it is used.

Connections to the corresponding PBIs in the work item tracking data-
base make the diagrams in VS all the more useful. Every element on the dia-
grams can be linked to a work item, as shown in Figure 5-18. Figure 5-19
shows a work item with a Model Link to a use case diagram. When the link
is double-clicked, VS takes care of opening the modeling project from
version control, opening the appropriate diagram, and focusing the linked
element (in this scenario, a use case).

Exploring Existing Architectures 117

ptg7041395

Figure 5-18: Every element on a diagram in VS can be linked to one or more work items
(PBIs, for example). From the context menu, users can choose to link with an existing work
item or create a new one.

Architecture118

ptg7041395

Figure 5-19: Model Links appear in work items that are linked to elements on diagrams.
When you double-click the link, the diagram is opened from version control and focused on
the linked element.

Diagram Extensibility

Sometimes it is necessary to do problem-specific activities from the dia-
gram itself. By providing specific project templates, VS makes it simple to
extend the diagrams (for example, by adding new menu items to any UML
diagram and adding business logic behind it, as shown in Figures 5-20 and
5-21).

Exploring Existing Architectures 119

ptg7041395
Figure 5-20: VS provides project templates that enable developers to easily use the exist-
ing UML diagrams as a platform for custom, domain-driven extensions.

Architecture120

Figure 5-21: VS makes it easy to write custom command extensions to hook into the UML
diagrams, execute some business logic, and access the underlying metadata.

ptg7041395

The underlying file format that all VS dependency graphs share is an
XML-based format called Directed Graph Markup Language (DGML).5

This makes it easy to generate dependency graphs from other sources, as
well. Figure 5-22 shows the Work Item Visualization tool6 from Codeplex as
an example that generates a graph showing work items and their relation-
ships to other work items and changesets in VS.

Summary 121

Figure 5-22: The VS extension Work Item Visualizer creates DGML files out of the relation-
ships between work items (such as User Stories, Tasks, and Test Cases) and links them with
version-control changesets.

Summary

This chapter looked at the approach to architecture in the context of the
Agile Consensus. The chapter talked about architecture as a development
activity, done during every sprint, by the team itself, with the goal to

ptg7041395

deliver custom value with each sprint. Architectural design is validated by
functioning software, and the period of time between design and imple-
mentation is minimized to reduce risk and potential waste.

In software development, a good architecture is broadly agreed to be
one that is maintainable. It does consider the near future but is far from
being complete or perfect. Instead, its main goal is to lay the foundations
for further development and future architectural changes. This means that
the system has cleanly layered dependencies and few or no circular
dependencies. In contrast, a “bad” architecture has tangled dependencies
and no clear layers, often referred to as a ball of mud.

Using VS tools, I showed that you can quickly use dependency graphs
and sequence diagrams to shorten the learning curve, even when con-
fronted with unknown code and even with large codebases. When doing
bug fixing in existing codebases, this enables you to make the right fix, and
get to root cause of the issue, instead of just fixing the symptoms.

The layer diagram represents the logical structure that limits the
intended dependencies among large portions of the systems. You can use
it to make sure that the only actual dependencies introduced are those that
conform to the architectural layering rules. In this way, VS supports the
practice of incrementally fixing issues in existing, brownfield code with
each sprint, by helping maintain control over the intended architecture and
making all unwanted dependencies clearly visible and transparent to the
team.

Documenting selected parts of the business domain and processes as
UML diagrams helps the team to communicate its ideas and collaborate
with each other. Lastly, through the extensibility mechanisms, the layer and
UML diagrams themselves serve as a platform for domain-specific
extensions.

These VS modeling and diagram capabilities help an Agile team create
enough documentation for the team to communicate the intent and to use
that documentation as a basis for discussion and collaboration, while
avoiding the trap of too much documentation that may create waste and
actually hurt productivity. VS integrates the diagrams with both version
control and work item tracking.

Architecture122

ptg7041395

The next chapter covers the daily development activities that happen in
the Agile Consensus. These include test driven development, the red-
green-refactor cycle, continuous integration, source management, and the
done lists of daily development. Chapter 7, “Build and Lab,” will take this
a step further with the next layer of done and its automation with contin-
uous integration and continuous deployment into the test lab. At any place
along these cycles, architectural validation may apply, relying on the pat-
terns of clean architecture covered here.

End Notes

1 http://c2.com/cgi/wiki?KeepItSimple
2 http://c2.com/xp/YouArentGonnaNeedIt.html
3 http://blogs.msdn.com/b/camerons/archive/2009/11/25/team-

build-and-layer-validation.aspx
4 www.uml.org
5 http://blogs.msdn.com/b/camerons/archive/2009/01/26/

directed-graph-markup-language-dgml.aspx
6 Work Item Visualizer by Jeff Levinson, http://visualization.

codeplex.com/

End Notes 123

www.uml.org
http://c2.com/cgi/wiki?KeepItSimple
http://c2.com/xp/YouArentGonnaNeedIt.html
http://blogs.msdn.com/b/camerons/archive/2009/11/25/team-build-and-layer-validation.aspx
http://blogs.msdn.com/b/camerons/archive/2009/11/25/team-build-and-layer-validation.aspx
http://blogs.msdn.com/b/camerons/archive/2009/01/26/directed-graph-markup-language-dgml.aspx
http://blogs.msdn.com/b/camerons/archive/2009/01/26/directed-graph-markup-language-dgml.aspx
http://visualization.codeplex.com/
http://visualization.codeplex.com/

ptg7041395

This page intentionally left blank

ptg7041395

6
Development

Working software over comprehensive documentation
—The Agile Manifesto1

125

Figure 6-1: Newton’s Cradle is a common desktop toy. When you apply force from one end,
the balls swing in a predictable regular motion. When you add a force from the opposite
end, the balls start bouncing chaotically against each other. It is a metaphor for develop-
ment practice. Simple, directional force encourages predictability, whereas contradictory
forces can create chaos.

ptg7041395

This chapter is not about programming languages or design patterns.
These important topics are well covered in many other books. Instead,

this chapter is about getting that code into deliverable software using
Visual Studio.

For purposes of this chapter, I assume that you are a skilled developer.
Also, I assume that you, like nearly every developer I have ever met, want
to do quality work and remove any impediments to delivering that quality.

Development in the Agile Consensus

For 30 years, we’ve known that ensuring quality early is much cheaper than
removing bugs later.2 Only in the past ten years, however, have practices
shifted to the Agile Consensus, where the only deliverables measured are
the ones that the customer values. More than anything else, this means
working code of quality suitable for customer delivery. Scrum calls this the
potentially shippable increment, as shown in Figure 6-2.

Development126

Continuous
Integration

Potentially
Shippable
Increment

Sprint
Daily
Standup

Check-in

Sprint
Backlog

Red-Green-
Refactor

Figure 6-2: During a sprint, the team turns product backlog items into a potentially ship-
pable increment. The sprint backlog contains the tasks required to achieve this, and the
developers repeat the Red-Green-Refactor cycle multiple times until the code is being
checked in to version control.

ptg7041395

The Sprint Cycle

During a sprint, the team transforms the selected product backlog items
(PBIs) into potentially shippable working software. It’s the responsibility of
the team to self-organize and choose which practices and technologies
should be used to accomplish that goal in an efficient way. Figure 6-2 shows
the cycles involved.

In Chapter 3, “Product Ownership,” I discussed how to define and man-
age the product backlog to minimize problems related to requirement
misunderstandings. The team has responsibility for ensuring that the con-
versations happen to clarify the design necessary to implement the require-
ments stated in the product backlog items.

The team organizes the work by creating tasks on the sprint backlog for
each selected PBI, which is typically a user story. The tasks represent all the
work that needs to be completed for a user story to be done, according to
the team’s definition of done (as discussed in Chapter 2, “Scrum, Agile Prac-
tices, and Visual Studio” and Chapter 7, “Build and Lab”). An initial set of
tasks is created during a sprint planning meeting at the beginning of the
sprint, and it is normal that the list evolves further as the team gains more
knowledge and experience.

In this chapter, we look at the development activities that happen in a
typical day. Team members work on the tasks for one PBI and carry it to
done before starting another. Done work is checked into version control to
feed the build and to be shared with the team. Accordingly, much of this
chapter is about the individual developer working in the team context.

The next chapter will continue on the same path and covers the auto-
mated builds and deployment that are triggered by the check-in. You
should think of these two chapters together as describing the development
loop of the daily Scrum cycle.

Smells to Avoid in the Daily Cycle
There are four antipatterns that lead (directly or indirectly) to huge annoy-
ance, quality problems, and impediments in a developer’s work. They clog

The Sprint Cycle 127

ptg7041395

the flow in the daily cycle by introducing waste, specifically Extra Process-
ing, Waiting, Correction, Inconsistency, Overburden, in the taxonomy of Table
1.1. They are:

1. Undetected programming errors. People write code, and people
make mistakes. In particular, it is often very hard to write code that
takes all the necessary definition of done into account.

2. Inability to detect side effects immediately. Even developers with
the best unit tests often discover their software behaves unexpect-
edly in the wild and they have to respond.

3. Version skews. There are a lot of moving files in a software project
and they all need to be versioned, tracked to work items, matched to
configurations, and usually branched. The complexities of branching
can exacerbate the drift over time.

4. Lack of transparency. The development infrastructure, project man-
agement system, and bug/change request tracking and metrics (if
any) are treated as disconnected black boxes. In this situation, there
are many surprises at the end of the sprint, or worse, much later.

These four broad categories are the focus of this chapter.

Keeping the Code Base Clean

Benjamin Franklin quipped that an ounce of prevention is worth a pound
of cure. Developers who’ve worked with bad code recognize that it’s much
harder to isolate the four smells and clean them out than not to let them
sneak in at all. To this end, TFS does everything possible to help the team
catch code errors and keep the code base clean before the smells can be
committed. Teams can use TFS’ check-in process to maintain cleanliness.

Catching Errors at Check-In
TFS has built-in version control that keeps the full history of changes to the
team’s source base, all the related files in your VS solution, any others that

Development128

ptg7041395

you include, and all the work items that you associate. When you start to
edit a file, it is automatically checked out for you, unless someone else has
it locked.

The primary way that you interact with version control is by checking in
files. When you check in, you are in effect saying that your files are ready
to be used in the team build (see Figures 6-3, 6-4, and 6-5) as well as by other
team members.

Keeping the Code Base Clean 129

Figure 6-3: The Check In dialog shows you files that have been changed on the first pane so
that you can select the ones to check in. Note the four tab icons on the left that let you flip
among source files, work items, check-in notes, and policy warnings.

When you check in, VS prompts for three things: the list of files, the
work items that you are resolving with this check in, and the check-in notes
that you are using to describe the changes. Together, these three items form
a changeset, which ties together the data of a check in. The changeset
includes the newly added, modified, or deleted lines of code, the work item
state changes associated with that code, and the check-in notes.

ptg7041395

Figure 6-4: The second tab shows the work items that you want to associate with the check
in. If your check in completes the delivery of the code for a task or other work item, you set
the Check-in Action to Resolve. The resolution happens on the next successful team build. If
you are making a partial delivery and keeping the work item active, change the Check-in
Action to Associate.

Development130

Figure 6-5: On the third pane, enter notes for this check in. The fields used for the notes are
determined by your setting for the team project on the Team Foundation Server.

ptg7041395

Check-In Policies Provide a Local Done List

Most importantly, VS verifies that you have complied with the team’s check-
in policies, as shown in Figure 6-6. Three standard check-in policies make
sure that you have associated work items with your changes, have run unit
tests, and have performed static code analysis. The TFS Power Tools3 add
additional policies (for example, to make sure a comment was entered for
the changeset), as shown in Figure 6-7. Your team may choose to write other
policies and have these evaluated at check in, too. These act as an auto-
mated definition of done for the check-in.

Keeping the Code Base Clean 131

Figure 6-6: These policy warnings act like a checklist to remind the developer on each
check in. For special cases, it is possible to override the policies explicitly.

ptg7041395

Figure 6-7: Check-in policies ensure that check-ins comply with certain rules or that speci-
fied actions have been completed. A different set of policies can be applied to different team
projects.

Development132

CHECK-IN POLICIES

Out of the box, TFS comes with four check-in policies. Four additional
ones are supplied by installing the TFS Power Tools. More policies are
available online from the VS community. For a good list, refer to
http://www.teamsystempro.com/go/checkinpolicies.aspx.

For details on how to set up policies for your team projects, I recom-
mend you refer to this book: Professional Team Foundation Server 2010 by
Blankenship, Woodward, Holliday, Keller (Wrox 2011).

To learn how to create custom check-in policies, see this blog post:
http://blogs.msdn.com/b/jimlamb/archive/2010/03/31/how-to-
implement-package-and-deploy-custom-check-in-policy-for-tfs-
2010.aspx.

Gated Check-In Provides Server Enforcement of Done

A stricter way to enforce rules is to start a build on the build server to
ensure that the code changes did not break the build or the automated tests.
Check-ins in VS optionally can either trigger an automated continuous inte-
gration (CI) build or a gated check-in build. In the latter case, the code
changes are not directly committed to the version control system, but rather

http://www.teamsystempro.com/go/checkinpolicies.aspx
http://blogs.msdn.com/b/jimlamb/archive/2010/03/31/how-to-implement-package-and-deploy-custom-check-in-policy-for-tfs-2010.aspx
http://blogs.msdn.com/b/jimlamb/archive/2010/03/31/how-to-implement-package-and-deploy-custom-check-in-policy-for-tfs-2010.aspx
http://blogs.msdn.com/b/jimlamb/archive/2010/03/31/how-to-implement-package-and-deploy-custom-check-in-policy-for-tfs-2010.aspx

ptg7041395

packaged as a shelveset and submitted to the build server for validation,
as shown in Figure 6-8. The validation build, upon success, creates a
changeset in the name of the originator. If any errors are encountered, the
changes are not committed and are returned to the originator as a shelveset
for inspection and correction, as illustrated in Figure 6-9.

Keeping the Code Base Clean 133

Figure 6-8: If gated check-in is enabled, check-ins are stored in shelvesets and validated by
the build server, running all the usual build steps, before being committed to the version
control repository. If the build fails, the check-in is not committed.

Figure 6-9: When a check-in is rejected by the verification build, it is easy to open the “bro-
ken” change by unshelving it from version control to fix and then revalidate and submit the
change again.

In addition, a build check-in policy can be set up to prevent other devel-
opers from checking in code until your gated check-in succeeds. In this
case, the project alerts system notifies subscribers about the broken build,
as shown in Figure 6-10.

ptg7041395
Figure 6-10: The build report shows the detailed compilation and test results from a verifi-
cation build triggered by a gated check-in. If errors are encountered, the changes are not
committed. At the same time, the production build never broke and remained stable.

Shelving Instead of Checking In
Often you want to back up, store, or share your code without submitting it
for the next build or without affecting other team members; for instance,
when the code is not fully completed or does not meet the team’s done list.
Because changesets delivered by check-in automatically feed the build sys-
tem and are available for the rest of the team, you need a different mecha-
nism. In VS, you shelve your code in these cases, as shown previously in
Figure 6-6. When you shelve your code, it is stored centrally, and others can
view your changes (as long as they have permission), but nothing is sub-
mitted for the next build. When you subsequently unshelve your code,
there is no record of the shelveset and correspondingly no history to clean
up in the source database.

Development134

ptg7041395

Shelving is very useful in a number of situations. If you need to leave the
office before your code is ready for the build, you can back it up. If you need
to share your code with someone else prior to check-in for a code review
or buddy test, you can shelve your code. When you want to experiment
with two solutions to a problem, you can try one, shelve it, try the second,
and switch between the shelvesets for local testing. Additionally, some
team members might not be permitted to check in code directly and will
shelve their changes instead. Those shelvesets can then be reviewed by a
dev lead before check-in.

Detecting Programming Errors Early 135

SHELVESETS

In VS, unfinished work can be stored in a shelveset on the server. This
gives you the advantages of a server (backup, for example) while not
affecting the work of other team members.

Shelving supports multiple everyday life scenarios, such as switching
between multiple tasks, handing over code for review by other team
members, and creating a checkpoint of your work that is a backup of
the current state of the code in the local workspace.

To learn how to shelve and unshelve changes, see this MSDN topic:
Working with Shelvesets: Shelve and Unshelve Pending Changes
(http://msdn.microsoft.com/en-us/library/ms181404.aspx).

Detecting Programming Errors Early

Test-Driven Development Provides Clarity
Unit testing is probably the single most important quality practice for a
developer. As a practice, unit testing has been advocated for at least 30
years.4 However, only in the past ten years, with simple tools, such as
NUnit and JUnit, has test-driven development (TDD) become widespread.
TDD gained visibility through Kent Beck’s eXtreme Programming (XP) and
is now one of the practices of the Agile Consensus, although a slightly con-
troversial one. TDD requires discipline and the unlearning of old habits of
coding. In exchange, it supports clean, maintainable code.

http://msdn.microsoft.com/en-us/library/ms181404.aspx

ptg7041395

With TDD, you do not write a single line of code until you have written a
corresponding failing test. Next, you write just enough code to pass the test,
and refactor the code, if needed, to keep the code base clean and maintain-
able. This loop is then repeated. This loop is commonly known as Red-
Green-Refactor (see Figure 6-11) and can be repeated multiple times before
a check in to version control (see Figure 6-12). Coding with TDD leads to
demonstrably higher quality code and better designed application archi-
tectures than coding without the safety harness that this practice provides.
Advocates of TDD document repeatedly that the practice forces clear
requirements, catches mistakes, enables refactoring, and removes stress.5

Development136

RED

REFACTOR GREEN

(1)

(2)(3)

Figure 6-11:TDD is a practice in which you do not write a single line of code until you have
written a test that fails in the absence of that code (red). Next, you write just enough code to
pass the test (green), then you refactor the code to clean it up and eliminate duplications
(refactor), and then write a new test that fails, and keep repeating the tight loop.

The strongest argument in favor of TDD is that it uses tests as technical
product requirements. Because you must write a test before writing the
code under test, you are forced to understand the design and wring out any
ambiguity as you define the test. This process, in turn, makes you think in
small increments and in terms of reuse, so that you do not write any unnec-
essary code. In other words, TDD imposes a clear and modular design,
which is easy to grow and maintain. To facilitate TDD, VS supports direct
test creation and execution, with code coverage, inside the IDE, as shown in
Figure 6-4.

ptg7041395Figure 6-12: VS supports unit testing directly in the IDE. This is a view of test run results
from the last run, with the source code under test in the upper window. The dark shading
(red on a color screen) indicates an uncovered exception handler.

The next argument is that TDD helps with continual refactoring to keep
the code lean (see Figure 6-13). If you have tests that cover 100% of your
code, and immediately report failing results when any side effects from
refactoring occur, you have the safety net to refactor with confidence.
Indeed, the experience of TDD is that you do much less debugging of your
code because your unit tests pinpoint the source of errors that you would
otherwise isolate only by laboriously stepping through the execution with
the debugger.

Detecting Programming Errors Early 137

ptg7041395
Figure 6-13: Refactoring is also supported directly, making VS a powerful IDE for TDD.

The result is that you do not check in code that does not have unit tests
that run and pass with it, and if someone else (or the build system) gets
your code and runs your tests, those tests should pass. In that way, your
unit tests become a safety net not just for yourself but also for the whole
team.

When You Have Code without Tests

Frequently you have to work on existing code you did not write. Often, it
comes without unit tests. VS can help you build up those unit tests. Indi-
vidually, you can right-click and generate tests for that code, as shown in
Figure 6-14.

Development138

ptg7041395
Figure 6-14: If you are working with code that does not have unit tests or want to extend
the tests for a particular area of the code (by method, class, or namespace), you can right-
click and generate tests from the source.

Generating Tests for Existing Code

An alternative approach to creating the tests one at a time is to generate
them programmatically. This has the benefit of creating lots of tests auto-
matically, and the drawback that you now have twice as much code (the
original and the generated tests), that you have to understand.

VS can generate an initial set of unit tests with high coverage by ana-
lyzing the program code using Pex,6 a power tool originally developed by
Microsoft Research (see Figure 6.15). Although this does not replace a good
test strategy and thoughtful creation of additional tests, it creates a good
starting point and an essential safety net before changing or fixing existing
legacy code.

A related power tool, Moles, enables you to isolate parts of the code that
you want to test from other layers by creating stubs for .NET Framework
methods.

Detecting Programming Errors Early 139

ptg7041395

Figure 6-15: The Pex power tool automatically generates test suites with high code cover-
age. Moles enables you to replace any .NET method with a delegate.

Development140

PEX AND MOLES

Pex and Moles are VS 2010 power tools that help to create an initial set
of unit tests for existing .NET applications. Both are available for
MSDN subscribers at http://msdn.microsoft.com/subscriptions.

Equally important as testing code is to test logic stored in the SQL database
(for example, stored procedures, user-defined functions, or triggers). VS
enables you to do that by writing T-SQL unit tests that execute against a
database. Optionally, this database gets created during the test run using
the current schema checked in to source control and populated with test
data using a configurable test-data-generation plan.

VERIFYING DATABASE CODE BY USING UNIT TESTS

To understand how to create and run unit tests against database code
in VS, see this MSDN topic: Verifying Database Code by Using Unit
Tests (http://msdn.microsoft.com/en-us/library/dd172118.aspx).

http://msdn.microsoft.com/subscriptions
http://msdn.microsoft.com/en-us/library/dd172118.aspx

ptg7041395

Use Code Coverage to Pinpoint Gaps in Unit Tests

When you run tests, VS provides code coverage reporting with the test run
results, as shown in Figure 6-16. You need to choose which assemblies to
instrument for coverage because not all might be relevant to the testing at
hand. Code coverage choices are stored in the Test Settings (see Chapter 8,
“Test,” for more details on Test Settings).

Detecting Programming Errors Early 141

Figure 6-16: When you create or edit a test run configuration, you choose the assemblies
for which you want to collect code coverage. Only select those from the code under test.

At the completion of a test run, you can use the toolbar of the Test
Results Viewer to show the coverage in the source that you just exercised.
This lets you pinpoint any code that your tests failed to exercise; skipped
code is painted red, as shown in Figure 6-17. You can then right-click
this code to generate a new test for it, or you can extend an existing test to
cover it.

ptg7041395Figure 6-17: At the completion of a test run, you can see the source code under test painted
to show code coverage. This lets you identify at a glance blocks of code that are not being
tested. In a monochrome rendering, they are darker; in color, they appear red. You can then
right-click in the uncovered code to create a new test to exercise this area.

Code coverage is a valuable tool for showing you which blocks of code
have not been exercised by your tests. Use code coverage to identify gaps
where you need more unit tests. Do not let good code coverage make you
too confident, however. Code coverage tells you neither that your tests are
good, nor that your code is good, nor that you have written sufficient code
to catch error conditions that need to be handled.

Do not be seduced by the question, How much code coverage is enough?
The ideal is obviously 100%, but this is rarely obtainable. Frequently, there
is some error-handling, generated code, integration code, or something else
for which it is impractically expensive to write unit tests. Focus on writing
unit tests first for the code you write and making sure you have an ade-
quate safety net for the refactoring you need to do. Do not focus on cover-
age for its own sake. You can always use check-in notes to document your
choices.

Development142

ptg7041395

Test Impact Analysis: Run the Most Important Tests First

Every change to the application’s code base or database structure comes
with the inherent risk of side effects. The complexity of today’s software
may make some other part of the application behave differently. Ideally
you’d like to find out right away.

VS helps you verify your changes before checking them in by showing
a list of changed methods in code in the Test Impact view, comparing the
current build against a baseline build (the last successful build). Then,
based on the methods and historical code coverage, VS looks up which tests
invoke the methods and their dependents and suggests those tests to be
run, as shown in Figure 6-18. The list of impacted tests contains available
unit tests as well as test cases. (Chapter 8, covers test impact data on the
server in more detail.)

Detecting Programming Errors Early 143

Figure 6-18: The Test Impact window shows all changes to the source code and automated
tests impacted by those changes. A developer may choose to run only the impacted tests
from the set of all tests available.

ptg7041395

Making Tests Better by Varying the Data

Both security and the cloud have raised our awareness of the need for good
error handling and negative testing. When you’re thinking about unit tests,
it’s key that you start with a good list of tests.7 Consider simultaneously the
four variables: output, methods invoked, code path, and error conditions.
Make sure that you have inputs that maximize the diversity of those vari-
ables. Include negative tests that broadly check for error conditions. There
may be a way of using test data to uncover gaps in your error-handling
code. You may want a buddy or a tester to help brainstorm possible error
conditions that you haven’t thought of handling yet.8

Development144

VARYING THE DATA AND CONFIGURATIONS USED BY
YOUR TESTS

Think of using your unit tests more broadly by varying the data and by
running the tests with multiple configurations. VS makes doing so
straightforward.

See these MSDN topics:

How to: Create a Data-Driven Unit Test (http://msdn.microsoft.com/
en-us/library/ms182527.aspx)

Setting Up Machines and Collecting Diagnostic Information Using
Test Settings (http://msdn.microsoft.com/en-us/library/dd286743.
aspx)

VS makes this easy, as shown in Figure 6-19. You can bind to many differ-
ent sources, such as simple CSV files or Excel spreadsheets, which make it
easy to invite domain experts to provide valid test data.

If you have no real data available that you can use for testing, VS can
help you generate fictitious test data based on rules you define and save it
to a SQL database to be used with your automated tests, as shown in Figure
6-20.

http://msdn.microsoft.com/en-us/library/ms182527.aspx
http://msdn.microsoft.com/en-us/library/ms182527.aspx
http://msdn.microsoft.com/en-us/library/dd286743.aspx
http://msdn.microsoft.com/en-us/library/dd286743.aspx

ptg7041395

Figure 6-19: You can drive your unit tests with variable sets of data. Datasets can be main-
tained in OLEDB providers and specified as properties on the test.

Detecting Programming Errors Early 145

Figure 6-20: Data generation plans generate random test data based on the database
schema and additional rules provided. They execute against a database server instance to
prepare it for running automated tests. This is useful to create a volume of data for driving
interfaces or web services under load.

ptg7041395

Reusing Unit Tests as Build Verification Tests

Build verification tests (BVTs) are tests that run as part of the automated
build. The purpose of BVTs is to look for unforeseen side effects and errors
due to changes in the new code. See Chapter 7 for more information on
automated builds and deployment.

Your unit tests should be reusable as BVTs, along with component inte-
gration tests and the majority of scenario tests (see Chapter 8). To set up
BVTs for an automated build in VS, you identify which tests to use by
assigning them to the appropriate test category (see Figure 6-21) and then
refer to the category within the Build Definition Wizard, as shown in Figure
6-22.

Development146

Figure 6-21: VS lets you organize your tests into test categories so that you can group them
for execution. Typically, you add new tests to these categories as they become available.

ptg7041395

Figure 6-22: The build definition includes the designation of the test categories that you
want to run as the build verification tests.

Detecting Programming Errors Early 147

SPECIFYING TESTS FOR BVTS

In VS, BVTs are ordinary tests that have been marked with an appro-
priate test category. You need to group tests into test categories for
your BVTs.

See these MSDN topics:

• How to: Group and Run Automated Tests Using Test
Categories (http://msdn.microsoft.com/en-us/library/
dd286683.aspx)

• How to: Configure and Run Scheduled Tests After Building
Your Application (http://msdn.microsoft.com/en-us/library/
ms182465.aspx)

http://msdn.microsoft.com/en-us/library/dd286683.aspx
http://msdn.microsoft.com/en-us/library/dd286683.aspx
http://msdn.microsoft.com/en-us/library/ms182465.aspx
http://msdn.microsoft.com/en-us/library/ms182465.aspx

ptg7041395

Catching Programming Errors with Code Reviews, Automated and
Manual
A completely different approach from testing that catches programming
errors is the code review. Code review approaches include informal walk-
throughs, formal inspections, and pair programming 9, which provides a
continuous review as the code is being written by a pair of developers. Suc-
cess with manual code reviews varies according to the experience of the
reviewer and the degree of safety created in the review environment.

Automated Code Analysis

Automated code analysis, or static analysis, is a technology that scans code
for detectable classes of errors. Microsoft developed code analysis tools for
its own product teams (FXCop for managed code and PreFAST for unman-
aged code) that are included as part of VS. They cover coding practices in
the areas of design, globalization, interoperability, maintainability, mobil-
ity, naming conventions, performance, portability, reliability, and security.
You can decide which rulesets to include globally and when to apply spe-
cific rules to specific instances of code.

VS enables code analysis on the local build (F5) and presents the code
analysis warnings and errors in the same window as the rest of the build
output (see Figure 6-23).

To encourage consistent practices across the team, VS enables you to set
a check-in policy that ensures that code analysis has been run before every
check-in (see Figure 6-24). In addition, code analysis can be performed as
part of the server-side build process, which can optionally be enforced to
run prior to the check in being committed on the server through a gated
check-in.

In addition to code analysis, VS enables you to look for early warning
signals in your code, by calculating code metrics of your VS solution (see

Development148

ptg7041395

Figure 6-23: The warnings from code analysis appear in the IDE in the same way as build
warnings. You can click each warning and jump to the source for viewing and editing.

Detecting Programming Errors Early 149

Figure 6-25). Those metrics include the cyclomatic complexity (the number
of logical paths in your code), depth of inheritance, class coupling, and lines
of code. Based on those values, a maintainability index is calculated, which
ranges between 0 and 100, where higher values mean that the code is eas-
ier to maintain, and lower numbers indicate that the code might be a good
candidate for a future refactoring.

ptg7041395

Figure 6-24: Check-in policies warn you when you have skipped steps before checking in
your source code. In this example, static code analysis hasn’t been run before the
attempted check-in.

Development150

Figure 6-25: Metrics such as the complexity, depth of inheritance, and lines of code are
shown are shown in the IDE because they can be early warning signs for decreasing main-
tainability.

MANAGED AND UNMANAGED CODE ANALYSIS

In VS, there are three different code analysis mechanisms:

1. One for C/C++ that works from the source

2. One for managed code that works from the managed assemblies

3. One for T-SQL code

ptg7041395

Manual Code Reviews

To facilitate manual code reviews, VS lets you shelve your code changes and
share them privately with your reviewers prior to check in (see Figure 6-
26; more on shelving later). In return, reviewers can give you suggestions
and comments on the code in a shelveset, and only when you’re ready do
you check it in for the build. For an enhanced workflow around code
review, see Chapter 10, “Continuous Feedback.”

Detecting Programming Errors Early 151

Figure 6-26: In the version control database, a shelveset is a temporary set of changes that
may or may not be checked in later. One use of shelving is to make new source code avail-
able for a code review before check in.

The steps that you need to follow vary depending on which you use.

See this MSDN topic: Analyzing Application Quality by Using Code
Analysis Tools (http://msdn.microsoft.com/en-us/library/dd264897.
aspx).

http://msdn.microsoft.com/en-us/library/dd264897.aspx
http://msdn.microsoft.com/en-us/library/dd264897.aspx

ptg7041395

Catching Side Effects

Despite developers’ best efforts to catch programming errors as early as
possible, applications will still behave in unexpected ways. Sometimes
developers will see them, and unfortunately sometimes they will first be
reported by testers and customers.

Isolating Unexpected Behavior
Traditionally, isolating unexpected errors requires debugging. You as a
developer have to create an experiment, imagining the initial conditions
that led to the error and then manually forcing the steps to re-create the
observed conditions. This experiment often requires lengthy trial and
error, repeating the almost-same steps while trying to reproduce and
locate the problem, while setting breakpoints, stepping through code, and
writing log files to understand the command flow during the applica-
tion’s execution.

During each debugging pass you look for any value that differs from
what you expect. To investigate when and where the value was set, you
typically set a few breakpoints, maybe improve your log files, and then
restart the debugger and try to reproduce the behavior again (with the hope
that it will recur).

VS reverses this manual and tedious approach with a feature called
IntelliTrace, which is similar to a flight recorder in an airplane. IntelliTrace
allows offline debugging, separating by time and space the investigation
of a fault from the place of its occurrence.

During capture, IntelliTrace records two kinds of diagnostic informa-
tion: a log with events and optionally the full call stack of the program’s
execution. You can control the amount of data collected and the categories
of events to record via the Options dialog.

Development152

WORKING WITH SHELVESETS FOR CODE REVIEWS AND
OTHER UNCOMMITTED CHANGES

To understand how to create and use shelvesets in VS, see this MSDN
topic: Working with Shelvesets (http://msdn.microsoft.com/en-us/
library/ms181403.aspx).

http://msdn.microsoft.com/en-us/library/ms181403.aspx
http://msdn.microsoft.com/en-us/library/ms181403.aspx

ptg7041395

So, instead of setting breakpoints and restarting the debugger, you can
break into the debugger at the very moment where the unexpected behav-
ior is observed and be presented with the logged events and the executed
calls. Then you can step both backward and forward.

Those IntelliTrace events are triggered by predefined actions in the .NET
Framework, mostly raised by classes that access resources (such as file,
Registry, or database access) or interaction with the UI (such as a message
box or a control that was clicked or an exception that was thrown or
caught), as shown in Figure 6-27. Often, just by looking at the events, you
can get a sense of what has actually happened or even understand what
caused it. Double-clicking an event jumps to the relevant line of code.

Catching Side Effects 153

Figure 6-27: VS automatically creates an event log by logging certain events from the .NET
class library, such as access to resources (files, Registry, database, Web requests).

When configured to collect call information also, IntelliTrace records a
list of all executed methods, including the arguments and return values,
and shows them in the Locals window of the IDE. So that you can find out
what happened during execution, IntelliTrace enables you to navigate
through the method calls to an earlier point in time, by stepping back and
forth, and updates the Locals window accordingly, as shown in Figure 6-28.

ptg7041395Figure 6-28: IntelliTrace enables you to step back in a recorded session and see the full
stack trace beginning, from the start of the application, including relevant function parame-
ters and return values.

Development154

ENABLING INTELLITRACE DATA COLLECTION

In VS Ultimate, by default, only the IntelliTrace events are collected for
every debugging session. The collection of call information needs to be
explicitly turned on, because it might impact the overall debugging
performance.

In addition, Microsoft Test Manager supports recording of IntelliTrace
information and attaches the logs to any bugs created during manual
testing. (See Chapter 8, for a more detailed description of the
tester/developer workflow.) Furthermore, IntelliTrace can be collected
on additional test machines through a test agent.

Be aware that IntelliTrace is targeted at development and test envi-
ronments. For production machines, System Center Operations Man-
ager offers a Connector to TFS that provides equivalent information.

ptg7041395

Isolating the Root Cause in Production
Similar to IntelliTrace, but for production issues, you can integrate TFS with
operations. System Center Operations Manager forwards operational issues
(a new work item type) to TFS, as shown in Figure 6-29.

Catching Side Effects 155

Figure 6-29: Operational Issues now appear in TFS automatically, through the Connector,
already available for Microsoft System Center Operations Manager 2007 R2 and TFS 2010.

The payload of an operational issue is similar to an IntelliTrace log.
When you open an operational issue, you can see the precise circumstances
under which the event occurred, repeat occurrences, similar and related
events, performance counters, exceptions, parameters, a stack trace, and the
lines of code involved, as shown in Figure 6-30. You can further click to
navigate from the execution context of the code to the source view, so that
you can correct the error in the right branch and produce a new build for
operations.

ptg7041395

Figure 6-30: In VS, you can open the operational issue, see the code fragment in the context
of the failure, and then jump to the line of code in the appropriate version of the right
branch to make the fix.

Tuning Performance
Unit testing and code analysis are tools that you should apply before every
check-in, to make sure that your code does the right thing in the right way.
Performance profiling is different. When you have performance problems,
it might be a small portion of your code that is culpable, or it might be an
external call, so you should focus your tuning efforts there. Frequently, the
problems appear under load tests (discussed in Chapter 8); sometimes,
though, you can discover them through routine functional testing or
exploratory walkthroughs. Usually the first step is to find the parts of your
application that are underperforming.

To diagnose performance errors, you launch a profiling session and
select from the current solution the code projects on which you want to col-
lect data (see Figure 6-31). Enabling the Multi-Tier Analysis feature on Web
or database applications includes executed SQL statements as well as
ASP.NET Web requests in the resulting performance report. This gives you

Development156

ptg7041395

an end-to-end view on the performance behavior and possible bottlenecks
in your multitier application.

Catching Side Effects 157

Figure 6-31: VS provides a wizard that instruments the code under test for profiling.

USING TESTS TO DRIVE PERFORMANCE PROFILING

You can use your unit tests in VS to drive performance profiling ses-
sions. See this MSDN topic: How to: Create a Performance Session for
a Test (http://msdn.microsoft.com/en-us/library/ms184783.aspx).

You need to choose between four profiling techniques. Sampling
enables you to collect data without perceivable overhead, indicating how
often a method appears in the call stack, as shown in Figure 6-32. Typically,
you start with sampling. Instrumented profiling, on the other hand, lets
you walk traced call sequences with much more data, at the cost of some
overhead and expanded binary size. Use instrumented profiling to drill
into the hot spots that sampling reveals. The .NET Memory Allocation

http://msdn.microsoft.com/en-us/library/ms184783.aspx

ptg7041395

mode helps you identify methods that allocate too much memory. Use this
if you suspect parts of your application take up more memory than you
expected. Finally, use Concurrency mode to drill down into your multi-
threaded application to see how it is performing and to determine whether
it is experiencing any synchronization issues.

Development158

Figure 6-32: Profiling data appears in a pyramid of information, with the most important
data on the Summary page, as shown here. This might be all you need. From here, you can
either drill down into further detail or jump to the source of method shown.

After you have selected your target and the technique, you can either
drive the application manually or run a test that exercises it. When you stop
the profiling session, you’ll see a report that lets you drill down from a
high-level summary into the details of the calls. A “hot path” button marks
the most time-consuming parts of your code to give you a starting point for

ptg7041395

further investigation. As there is always a “hot path,” this doesn’t neces-
sarily indicate a problem that needs to be fixed, but it would be the first
place to look at when hunting performance issues. You can compare the
results with an earlier profiling session to see the areas of improvement or
degradation and easily answer the question “What has gotten slower?” (see
Figure 6-33).

In addition, when profiling in Sampling mode, you can click View
Guidance on the Results Summary page to see error warnings generated
by the profiler and suggestions about how to fix the errors, as shown in Fig-
ure 6-34.

Catching Side Effects 159

Figure 6-33: By comparing two performance sessions, you can see the progress and relative
changes in performance between the two points of analysis.

ptg7041395
Figure 6-34: Profiling rules analyze the performance session to offer guidance on how to
tackle the trouble spots (for example, by using more suitable classes or functions from the
.NET class library).

Preventing Version Skew

I’ve already discussed how TFS goes beyond source code control to provide
a safety net before check-in, to integrate work items and source code in
changesets, and to provide build automation, more of which will be cov-
ered in the next chapter. TFS also provides a rich and flexible branching
capability to support teams’ parallel development.

What to Version
Versioning is not just for source code. You should version all files associated
with compiling, configuring, deploying, testing, and running your system
(see Figure 6-35). By default, the tests and most of the configuration files are
part of your VS solution and appear as files to check in when you look at the
Check In dialog.

Development160

ptg7041395Figure 6-35: TFS “Source control” tracks all the files in your workspace, including tests,
XML files, icons, and so on. Check in your tests with your source.

Remember that your database is also part of your application. Database
schema is checked in and versioned the same way as source code, and
stored as a set of SQL scripts. Schema Compare analyzes the versioned
schema against another version or a physical SQL Server instance and
optionally applies those updates directly or saves them as a SQL script, as
shown in Figure 6-36. (VS provides a Data Compare, too. However the data
itself is not versioned.)

If you expect to maintain your solution for a long time, it is worth creat-
ing a “tools” team project in which you keep the versions of the compiler
and support programs (for example, msbuild and mstest) that you use to re-
create and retest the solution. For example, commercial software companies
may have contracts to support products for ten years, and in many govern-
ment situations, contracts are longer. In a world where tool updates are
available quarterly, having a definitive record of the build and test environ-
ment may be necessary to support your customer. Similarly simple depend-
encies (such as DLLs) should be kept in version control, making it easy to
re-create a complete development environment with a simple GET operation.

Preventing Version Skew 161

ptg7041395Figure 6-36: Database schema gets checked in to version control as a set of SQL scripts.
That versioned schema can be compared and synchronized with “live” SQL Server
instances.

Branching
If you’ve used other source control systems, you’re probably familiar with
the concept of branching. The good news is that having branches lets you
keep parallel versions of files that evolve separately. The bad news is that,
whenever you branch, you may be creating a future need to merge. The bugs you
fix for version 1 probably need to be fixed in version 2 as well. If you have
multiple branches, you will have multiple merges to consider.

Therefore, use branches sparingly and intentionally. If you need to do
something temporary, use a shelveset instead. They don’t require the main-
tenance, and when you’re done with your shelveset, it goes away. Branches
are for separations of code that you intend to maintain separately for
extended periods.

Development162

ptg7041395

Working on Different Versions in Parallel
Branches give you multiple, isolated versions of the same codebase. The
main two reasons to branch are:

• Isolate work by team, feature, or purpose (Branch by feature)

• Separate released versions for maintenance and hot-fixing
(Branch by release)

Examples for work isolation include branching to support large teams
efficiently, or the creation of experimental branches, which are used to try
out new things without interfering with any other ongoing work. An exam-
ple of a branch plan that uses two branches is shown in Figure 6-37, where
development takes place on the development branch and completed PBIs
are reverse integrated into a main line that is always kept in a stable and
releasable state to minimize risk.

Preventing Version Skew 163

Sprint 1

Check-in

Reverse
Integration

Resolve
Conflicts

Resolve
Conflicts

Resolve
Conflicts

Branch

MAIN

DEVELOPMENT

Forward
Integration

Check-in Check-in

Check-in

Check-in complete
User Story 1

Check-in
completes
User Story 2

Check-in

Check-in
completes
User Story 3

Reverse
Integration

Forward
Integration

Reverse
Integration

Forward
Integration

Check-in
Label End of

Sprint

Sprint 2

Figure 6-37: Branching by feature allows teams to work in parallel work streams and inte-
grate changes once they meet a defined set of done criteria.

The second frequent use of branches is to track multiple released ver-
sions of a solution. When releasing version 1, you can branch before you
start work on version 2. If you subsequently need to fix bugs or issue a serv-
ice release (perhaps for new environments) for version 1, you can do so in
its branch without having to pull in any version 2 code. This is often called
branching by release. Figure 6.38 shows an example branching plan.

ptg7041395Figure 6-38: This is a mature branching scheme with a development line branched by
feature and a main line branched by release, as described in http://tfsbranchingguideiii.
codeplex.com/.

In VS, branches are a special form of folder and indicated by a special
icon (see Figure 6-39). In addition to regular folders they have an assigned
owner and description, and their branch relationships can be shown as a
hierarchy (see Figure 6-40).

Development164

The two DEV
branches are

created as
sequential tasks,
but as one unit

work.

DEV...

DEV-1

MAIN

SERVICE PACK

HOT FIX

RTM

B
ra

nc
h

B
ra

nc
h

B
ra

nc
h

B
ra

nc
h

B
ra

nc
h

B
ra

nc
h

B
ra

nc
h

B
ra

nc
h

B
ra

nc
h

F
1

R1 (SP)

R1 (SP0) R1 (SP1) R2 (SP0)

R1 (SP0) R1 (SP1) R2 (SP0)

R2 (SP)

2

2

1

3 6

4

5 8

7

The RTM branch
is a read-only copy

of what was released

When MAIN is
ready to

release, create the
SERVICE PACK, HOT

FIX, and RELEASE
branches at the same

time.

Figure 6-39: In the TFS Source Code Explorer, branches are a special type of folder, and
therefore use different icons to help find the relevant branch folders to work in.

http://tfsbranchingguideiii.codeplex.com/
http://tfsbranchingguideiii.codeplex.com/

ptg7041395

Figure 6-40: A visual representation of the full branch hierarchy helps in understanding
branch relationships, which do not have to correlate with the source control folder structures.

Merging and Tracking Changes Across Branches
TFS tracks changes by changeset. The operation to copy changes from one
branch to another is called merging. As changes are merged using VS, those
changesets can be tracked using a view that shows the branch hierarchy, or in
a timeline view as shown in Figure 6-41 and 6-42. Best of all, if a work item
such as a user story or task has associated changesets, the work items itself
can be tracked using the same view and the merge performed by work item.

Preventing Version Skew 165

Figure 6-41: Tracking a changeset: A change, specifically changeset 39, has been checked
into the “Version 1” branch, but has not been merged into the two other branches yet.

In some special situations it might be necessary to merge changes
between branches which do not have a direct branch relationship, as it’s
shown in the branch hierarchy. VS enables those baseless merges and tracks
them accordingly as if they were regular merges (see Figure 6-43).

ptg7041395

Development166

Figure 6-43: Changeset 39 has been merged to a branch that does not have a direct branch
relationship using a “baseless merge.”

DEFINING A BRANCHING STRATEGY

For details on how to use branches to structure your development,
see the following MSDN topic as well as the Branching Guide on
CodePlex:

MSDN topic: Branch Strategically

http://msdn.microsoft.com/en-us/library/ee782536.aspx

Visual Studio TFS Branching Guide on CodePlex:

http://tfsbranchingguideiii.codeplex.com/

Figure 6-42: The merge of changeset 39 to the DEV branch, committed as changeset 41,
shown in timeline view.

http://msdn.microsoft.com/en-us/library/ee782536.aspx
http://tfsbranchingguideiii.codeplex.com/

ptg7041395

Figure 6-44: Team Explorer Everywhere integrates all the TFS capabilities (such as work
items, team builds, and version control) right into the Eclipse IDE.

Preventing Version Skew 167

Working with Eclipse or the Windows Shell Directly
Most of the tooling presented so far (check-in policies, shelvesets, branching,
and gated check ins) is not only available within the VS IDE but also in
Eclipse, through the Team Explorer Everywhere (TEE) plug-in, or through
Windows Explorer, using the TFS Power Tools (see Figures 6-44 and 6-45).

ptg7041395

Making Work Transparent

VS applies the same transparency to the developer activities that it does to
the work item backlog and the rest of the team activities. It treats all team
members as part of one integrated workflow. Because all work items of all
types are stored in the common database, when you check in you can (and
should) identify the tasks and the PBIs that the delivered code and tests
implement. This creates a link from those work items that traces their res-
olution to the corresponding changesets.

This traceability in turn drives reports such as the ones on the dash-
boards discussed in Chapter 4, “Running the Sprint.” When it is time to esti-
mate the next iteration, you have a daily record available of the current and
prior sprints’ history. These metrics are collected for you, and they take the
guesswork (and grunt work) out of determining the actual baseline trends.

Consider, for example, Figure 6-46, the Build Quality Indicators report.
Trends have been automatically captured for the team, and they trends
show correlations. In this example, rising code churn, falling code coverage,

Development168

Figure 6-45: If you use a Windows shell extension version, control operations can be
directly executed from Windows Explorer without the need to open an IDE.

ptg7041395

Figure 6-46: This Build Quality Indicators report shows a decrease code is being checked in
without corresponding unit tests to cover it.

Summary

The Agile Consensus is all about delivering working code of customer-
ready quality in a continual flow. This chapter described how to achieve the
flow in the daily cycle of development. The first issue is to use TFS not

Summary 169

Active Bugs (count)

Inconclusive Tests

10/1/2009 10/2/2009 10/3/2009 10/4/2009 10/5/2009

140

120

100

80

60

40

20

0

Code Churn (lines)

Failed Tests

C
o

u
n

t

Code Coverage (percent)

Passed Tests

20

70

25

20

75

20

20

80

20

10

20

15

8590

30

and falling test pass rates are an early warning that tests—in particular,
BVTs—are getting stale and that the team should probably update the BVTs
now. Typically, this kind of pattern might not show up until the end of the
sprint, but with TFS, it shows up every day.

Similarly, this traceability drives the Build report, shown in the next
chapter in Figure 7-3, so that the whole team (notably testers) can auto-
matically see what work is available in which build with what quality.
There’s no mystery of “Did feature X make it in?” or “Did it pass BVTs?”
The build report provides a reliable, friction-free view to trigger the testing
cycle based on builds. (See Chapter 7 for details.)

ptg7041395

merely as source control, but as an early warning system and gatekeeper
to catch problems before they enter the code base. If you keep the code
clean, you don’t need to worry about the rework of fixing it later.

Next, the chapter covered the four project smells that you are trying to
detect early: errors, side effects, version skew, and lack of transparency.
First, test-driven development is your best guard against programming
errors. The practice forces clarification of requirements before you begin
implementation. The testing support directly inside VS makes it easy to cre-
ate and run unit tests, apply test data, and to promote these tests for reuse
with every build. You can also use code analysis and reviews to check for
programming errors that might not be caught in unit testing.

Second, unforeseen side effects in behavior or environment can be diag-
nosed with IntelliTrace, an offline type of debugging available from an
application log. A similar capability from System Center Operations Man-
ager lets you isolate production errors to the line of code in the right version
of source maintained by TFS. Further, VS lets you extend unit testing with
test data and configurations and supports direct performance profiling
from the test runs to isolate performance hotspots.

Third is the complexity of version control and the tracking of as-built soft-
ware to the source code. Not only does VS integrate version control and work
item and build automation, but it supports a full branching strategy for the
team to maintain parallel versions over time. Branching strategies are dis-
cussed so that your team can settle on the right approach for your context.

The fourth and last issue is the difficulty of transparently keeping track
of all the information sources. VS does the bookkeeping for you automati-
cally. TFS provides an audit trail of source and work item changes going
into every build. Check-in policies work as reminders to support a done list
for the team. It supports transparency of the process with its common work
item database, metrics warehouse and integration of code and test changes
with work items and the build system. In this way, VS lets you, as a devel-
oper, focus on the substance of your work without overhead.

The next chapter looks at the automated build and deployment process
and how automating the definition of done further accelerates the flow of
value.

Development170

ptg7041395

End Notes

1 www.agilemanifesto.org
2 Barry W. Boehm, Software Engineering Economics (Englewood Cliffs,

NJ: Prentice Hall, 1981).
3 TFS Power Tools, http://msdn.microsoft.com/en-

us/vstudio/bb980963.aspx, available from the VS Gallery.
4 Glenford J. Myers, The Art of Software Testing (New York: John Wiley

& Sons, 1979).
5 For example, K. Beck and E. Gamma, “Test infected: Programmers

love writing tests,” Java Report 3:7, 51–56, 1998.
6 Pex and Moles - Isolation and White box Unit Testing for .NET,

http://research.microsoft.com/projects/pex/
7 For example, http://www.testing.com/writings/short-catalog.pdf
8 Brian Marick, “Faults of Omission,” first published in Software Test-

ing and Quality Engineering Magazine, January 2000, available
from http://www.testing.com/writings/omissions.html

9 http://www.extremeprogramming.org/rules/pair.html and
http://c2.com/cgi/wiki?PairProgramming

End Notes 171

www.agilemanifesto.org
http://msdn.microsoft.com/en-us/vstudio/bb980963.aspx
http://msdn.microsoft.com/en-us/vstudio/bb980963.aspx
http://www.testing.com/writings/short-catalog.pdf
http://research.microsoft.com/projects/pex/
http://www.testing.com/writings/omissions.html
http://c2.com/cgi/wiki?PairProgramming
http://www.extremeprogramming.org/rules/pair.html

ptg7041395

This page intentionally left blank

ptg7041395

7
Build and Lab

Continuous deployment is continuous flow applied to software.
The goal of both is to eliminate waste. The biggest waste in
manufacturing is created from having to transport products
from one place to another. The biggest waste in software is
created from waiting for software as it moves from one state to
another: Waiting to code, waiting to test, waiting to deploy.
Reducing or eliminating these waits leads to faster iterations
which is the key to success.

—Eric Ries1

173

Source: Andrejs Segorovs/Shutterstock.com

Figure 7-1: If the flow of value is kept constant, like the wheel rotates at a constant speed,
and the individual team members focus on the work at their normal pace, a highly produc-
tive yet unstressful environment may be created.

ptg7041395

An Agile software development team strives to increase customer value
delivered through working software. The cycle time required to deliver

the smallest product backlog item (PBI), say a 1-line change, to production,
so that the customer can use it and benefit, is a good measure of team’s mas-
tery of flow. The shorter the cycle time, the more effectively the team can
embrace new PBIs from the customer.

Cycle Time

Of course, cycle time for PBIs is a much more involved concept than it is for
the flow of a stream on a waterwheel. First a PBI is broken into tasks in the
sprint backlog. Then the team does the tasks, mostly in code and tests
driven by related tooling through the intermediate cycles shown in Figure
7.2. For each task, each intermediate cycle, including check in, integration
with other changes, verification, acceptance testing, and deployment, can
happen one to many times.

Build and Lab174

Continuous
Integration

Potentially
Shippable
Increment

Sprint
Daily
Standup

Sprint
Backlog

Acceptance
Testing

Deploy
to Lab

Daily
Build

Figure 7-2: The developer’s check-in triggers a continuous integration build, and the daily
build feeds the deployment of a potentially shippable increment into a test lab, including
build verification tests (BVTs).

ptg7041395

In order to achieve continuous flow through the whole cycle, the smaller
cycles need to flow too. It’s a circulatory system, where a blockage in one
area will quickly create negative feedback that saps resources and flow
from the others, causing delivery to become unpredictable or stop alto-
gether. This chapter is about the supporting processes and tools that enable
your team to establish continuous delivery of value, by ensuring that inter-
mediate flows are continuous, and thereby enable the continuous deploy-
ment of working software.

Defining Done

Delivering software continuously is only useful if the software works. The
goal is to deliver every piece of functionality in a potentially shippable form
with the same defined quality. One of the most important aspects to achieve
a constant quality is to have a clear definition of done in place. Without the
consistent, measurable definition of done, technical debt will grow
inevitably.

Although this seems obvious, many teams do not take the time to reflect
during release planning and make their definition of done for a given proj-
ect explicit. I urge every team to do that first. During such a discussion,
many different perspectives are usually presented about what quality is
and what the relevant done criteria are. As discussed in Chapter 3, “Prod-
uct Ownership,” the definition of done belongs to the whole team.

When creating your team’s definition of done, consider the following:

• Explicit definition of done: The resulting definition of done should
be made transparent to everyone (for example, putting it on the wall
so that everybody on the team can see it).

• Constant quality: All criteria defined as part of the definition of done
must be fulfilled for every product backlog item (PBI), in addition to
any acceptance criteria defined in the PBI itself.

• Important for estimates: A clear understanding of what done means
and what activities are included is a prerequisite for estimation and
sprint planning. In addition, if the definition of done changes

Defining Done 175

ptg7041395

between sprints, the measured velocity (number of story points
delivered within a sprint) may not be true and might therefore be
worthless.

• Enterprise standards: The definition of done is owned by the team,
but organizational requirements might also influence it.

• Measurable: Done criteria should be measurable. This means that
every developer on the team should have the same understanding
about what it takes to fulfill specific done criteria.

• Automated: Because a sprint usually lasts 2 to 4 weeks (which
comes down to 10 to 20 working days, minus time for meetings), it
makes sense to automate as much of the done as possible.

The definition of done sets the minimum quality bar the team has to
reach for each PBI. If the team does not reach it, the PBI is not complete and
therefore not potentially shippable. If a team is serious about its definition
of done, that will prevent accumulation of technical debt and the customer
can expect a defined and constant level of quality, without regard to
whether a feature was implemented at the beginning of a project or shortly
before release. Remember that the definition of done defined only the mini-
mum set. You can still do more if it makes sense or doing so is defined in
the PBI itself.

A typical antipattern in many teams is a squishy done criterion, where
developers can get away with doing less when pressured for time. An
example of that would be “write maintainable code” without a way of
determining of what makes code maintainable. In contrast, a good done
definition might include a goal that the changes do not increase the
measured complexity of the code base, a code review process (manual and
automated), and a set of conventions and patterns to apply. Layer diagrams
that validate dependencies against the intended structure, as shown in
Chapter 5, “Architecture,” are a great example of the automated review.

The rest of this chapter focuses on automated checking against the
definition of done so that individual team members have more time to

Build and Lab176

ptg7041395

concentrate on their core activities. Manual activities should be kept to a
minimum. For instance, new builds should be available for testing without
any manual intervention. The first assessment that happens right after the
developers check in is the continuous integration cycle, shown in Figure
7-2. It can occur many times a day, after the developer finishes working on
a task.

Continuous Integration

Continuous integration2 (CI) refers to the practice of automatically trigger-
ing a build after every check-in to verify the changes made to the system.
This is an essential Agile practice to automate the definition of done by val-
idating the checked-in changes against a set of defined criteria.

CI has been proven very successful in eXtreme Programming and the
Agile Consensus in that it delivers immediate feedback about integration
errors to a developer who has just checked in. It is much easier for devel-
opers to investigate and fix bugs they just checked in a few minutes ago
than three weeks later when they are probably working on something else.

Ideally, if the build breaks, the developer who broke the build can fix it
right away without losing context. During that time, no other developer
should check in.

The larger a team is, or more specifically the larger the number of devel-
opers checking in to a folder or branch, the more likely it is that the build
will break. Without a build, there is no “heartbeat” to the project (because
the testers depend on a working build to validate against the require-
ments). In this way, CI also warns the rest of the team about “patient
health.”

Visual Studio (VS) has two different CI modes: (classic) continuous inte-
gration (CI) and gated check-in (GC). You can set up any build definition
for CI and trigger the build from check-in events (see Figure 7-3).

Continuous Integration 177

ptg7041395

Figure 7-3: Create a separate build definition to perform CI. Keeping the daily build as a
separate build definition will keep trend metrics tracked to the daily build.

A less permissive form of CI is the gated check-in. The GC acts as the
“gatekeeper” of the source code repository. In contrast to the classic CI
approach, which is optimistic (after all, the build is validated after it has
already been committed to version control), a GC turns this process the
other way around. When a developer checks in code, it is not automatically
committed. Rather, the GC triggers the build definition first, including all
validation steps (such as test runs and code analysis) and checks in the code
on behalf of the developer only after the build completes successfully. Fig-
ure 7-4 shows a team project that is guarded by a build definition with GC.

Build and Lab178

ptg7041395

Figure 7-4: GCs ensure that checked-in changes are validated through an automated build
definition before being committed to the repository. The Reconcile option gets the local
workspaces in sync with the server by removing the committed pending changes.

With GCs, bad check-ins affecting the work of other team members are
kept to a minimum.

The next step of validating the definition of done occurs at the daily build
cycle. This cycle gathers important metrics and produces the official bina-
ries for testing and later release.

Automating the Build

CI is only part of an automated build system, as shown in Figure 7-2. The
build system needs to automate not only compilation but also the tracking
and testing of the binaries against the source versions. The build needs to
provide as many quality checks as possible so that any errors can be cor-
rected before investment of further testing. This approach ensures that test-
ing time (especially human time) is used appropriately.

In VS, automated builds can be configured from Team Explorer (see Fig-
ure 7-5). You can have differently named build definitions, such as a daily
build, a CI or GC build, and a branch build, each running separate scripts
and tests. The team should designate which build definition produces the
official binaries that are going to be deployed for further testing and
released afterward.

Automating the Build 179

ptg7041395Figure 7-5: In this dialog, you can create a build definition (that is, the daily build and other
regular builds that you automate for the full team project).

Build and Lab180

CONFIGURING BUILD DEFINITIONS

For more information about build definition options in VS, see this
MSDN topic: Creating and Working with Build Definitions
(http://msdn.microsoft.com/en-us/library/ms181715.aspx).

Daily Build
Using separate build definitions for CI and daily builds ensures that daily
metrics are gathered through the daily builds3. At a minimum, you should
have a build configuration for daily builds that not only creates the binaries
that you install but also runs all the code analysis and BVTs and generates
the metrics that track the health of your project. This allows appropriate
trends to be gathered in the metrics warehouse and shown in reports and
dashboards, like the ones used in Chapter 4, “Running the Sprint.”

http://msdn.microsoft.com/en-us/library/ms181715.aspx

ptg7041395

BVTs
Every build should go through a consistent series of BVTs to automate the
definition of done. On many projects, these are the primary regression tests
performed. The objectives of the BVTs are to

• Isolate any errors introduced by check-ins or the build process,
including unanticipated integration errors

• Determine whether the software is ready for further testing

BVTs should include all unit tests and component integration tests that are
run prior to check-in, plus any other tests that are needed to ensure that it
is worth spending time testing the software further. BVTs are automated. In
VS, builds can also perform an architectural layer validation, to detect
whether changes are following the defined logical application design. (For
more information about the architecture validation toolset, see Chapter 5.)

Typically, a tester or designated developer “scouts” a build for the team;
that is, he or she runs a further series of tests beyond the BVTs, often man-
ually. For example, scenario tests may require using a new graphical user
interface (GUI) that is still rapidly evolving, and automation may not be
cost-effective yet. For this reason, the report contains a Build Quality field
that you can set manually. After build completion, the field is empty. You
can set it after that to Rejected, Under Investigation, Ready for Initial Test,
Lab Test Passed, Initial Test Passed, UAT Passed, Ready for Deployment,
Released, or other values that you have customized.

Build Report
Upon completion of the daily build, you get a Build report (see Figure 7-6).
This shows you the results of build completion, code analysis, and BVT
runs. In the case of a failed build, it gives you a link to the Bug work item
that was created so that you can notify the appropriate team member to fix
and restart the build.

Use the Build report to monitor the execution of a build and view the
details of a completed build and the work item changes documenting what
went into the build. The test result details show you the BVT results and the

Automating the Build 181

ptg7041395

code coverage from BVTs. Build warnings include the results from static
code analysis. From this report, you can publish the build quality status.

Build and Lab182

Figure 7-6: The Build report both monitors the real-time execution of a build and aggre-
gates the details of a build upon completion.

The list of associated changesets and work items is calculated between
the current and the last successful build of the same build definition. There-
fore, a daily build shows all code changes and work items incorporated
since the last daily build, whereas a release build shows a list of all changes
checked in since the last release.

Note that you can navigate directly from the Build report to the change-
sets that are included, the code-analysis warnings, and the test results. The
data shown on the Build report is fed directly to the metrics warehouse to
create historical data for the project.

ptg7041395

Maintaining the Build Definitions
In VS, multiple build definitions are defined for the same project to serve
different purposes (such as CI build or daily build) or to support different
branches. Those build definitions are based on build process templates (which
can be customized themselves). Changing basic settings of what a build
definition does is mostly accomplished by changing build definition
parameters, which are supplied to the build process template file upon exe-
cution. Build process template files are created using Windows Workflow
Foundation from .NET Framework 4.0 and are stored in XAML files. You
can customize these workflows to extend the build process beyond the
built-in functionality. A single build process template can serve multiple
build definitions and can be used for as many projects as necessary, which
eases the central maintenance of build processes.

Automating the Build 183

CUSTOMIZING BUILD PROCESS TEMPLATES

For information about how to customize build process template files
in VS, refer to Inside the Microsoft Build Engine: Using MSBuild and
Team Foundation Build, by Sayed Ibrahim Hashimi and William
Bartholomew (Microsoft Press, 2011).

Maintaining the Build Agents
Build definitions execute on build agents. A controller manages those
agents. At minimum, you need one build controller and one build agent.
You can have as many agents as necessary to support different needs. Build
agents are categorized using tags, and the required tags can be defined as
part of the build definition (see Figures 7-7 and 7-8).

ptg7041395

Figure 7-7: Different build agents can be used for different projects and purposes. Each
build agent can be categorized using tags.

Build and Lab184

Figure 7-8: When triggering, a build definition looks for a build agent with a matching set of
tags.

ptg7041395

Using automated builds and BVTs ensures that a build is ready to be
considered for further testing. BVTs are executed on the build server, and
should contain tests that check whether the code actually does what it is
supposed to, but they do not answer whether the application works in a
production environment. The next step is to validate the application in
a test lab environment. Ideally, the test environment matches the later
production environment, so that automated and manual testing can be con-
ducted against that environment with confidence.

Automating Deployment to Test Lab

VS optimizes the way you work with virtual machines for labs4, by sup-
porting the following scenarios:

• Speeding up the creation and maintenance of virtual machines with
different configurations that are as equal as possible to the produc-
tion environment in use

• Automating deployment to the VMs right from the build process
(a potentially long, vastly manual, error-prone and recurring
process)

• Running automated tests on the VMs before handover to manual
testers (and saves time by making sure the current build actually
works)

• Enabling snapshots of complete test environments (to aid later bug
reproduction)

Setting Up a Test Lab
When you have combinations to test, cycling physical test lab machines
among them can be a huge drain on time. Normally, you must clean each
machine after a previous installation by restoring it to the base operating
system, installing the components, and then configuring them. If you are
rotating many configurations, this preparation time can dwarf the actual
time available for testing.

Automating Deployment to Test Lab 185

ptg7041395

A great amount of time is wasted in manually setting up test environ-
ments and verifying that current builds actually work (which can be com-
plex for multitier applications, as shown in Figure 7-9). In the worst case,
you might spend time deploying the application only to discover that it
actually does not even start as expected. Because this is often a manual
process, testers tend to work with a build for quite a while (sometimes even
weeks) before (manually) deploying the next one. This leads to unneces-
sarily long cycle times (because testers usually prefer to test what they have
than to wait with nothing to test while a new build, even if fresher, is being
deployed).

Build and Lab186

Figure 7-9: A Web application might require a complex test environment (because it con-
sists of a client, a Web server, and a database server).

An alternative is to set up the different configurations on “virtual
machines” using Microsoft Hyper-V Server, System Center Virtual Machine
Manager, and the Lab Management feature included in TFS (see Figure
7-10). Instead of installing and configuring physical machines, you install
and configure virtual machines and store them in the VM library. When the
virtual machine is running, it appears to the software and network to be
identical to a physical machine, but you can save the entire machine image
as a disk file and reload it on command.

ptg7041395

Figure 7-10: TFS includes System Center Virtual Machine Manager and Hyper-V to enable
the creation of complex, virtualized lab environments, in which applications get automati-
cally deployed and tested.

Does It Work in Production as Well as in the Lab?
Have you ever filed a bug and heard the response, “But it works on my
machine”? Or have you ever heard the datacenter complain about the cost
of staging because the software as tested never works without reconfigu-
ration for the production environment?

These are symptoms of inadequate configuration testing. Configuration
testing is critical in three cases:

1. Datacenters lock down their servers with very specific settings and
often have a defined number of managed configurations. It is essen-
tial that the settings of the test environment match the datacenter
environment in all applicable ways.

2. Software vendors and other organizations that cannot precisely con-
trol customers’ configurations need to be able to validate their soft-
ware across the breadth of configurations that will actually be used.

3. Software that is used internationally will encounter different operat-
ing system settings in different countries, including different charac-
ter sets, hardware, and input methods, which will require specific
testing.

Automating Deployment to Test Lab 187

ptg7041395

Figure 7-12: Test environments consist of one or more virtual or physical machines that are
required to adequately represent the production environment.

Fortunately, VS supports explicit configuration testing both: by enabling you
to set up test labs with virtual as well as physical machines and by explic-
itly tracking test configurations and recording all test results against which
all test results are reported. That means that you have to install and prepare
virtual machines just once, store them as templates in the library, and then
you can create as many test environments from them as necessary. Figures
7-11 to 7-14 show the creation of new test environments. Test machines are
installed like regular machines, with the exception that an agent that
supports automated deployment and testing is installed on them.

Build and Lab188

Figure 7-11: Agents are installed on the test machines to enable automated deployment,
running of tests, and extensive data collection for bug reporting.

ptg7041395

Automating Deployment to Test Lab 189

Figure 7-13: Your solution might need to run in different target environments. These might
be different localized versions of the operating system, different versions of supporting
components (such as databases and Web servers), or different configurations of your solu-
tion. Virtual machines are a low-overhead way of capturing the environments in software so
that you can run tests in a self-contained image for the specific configuration.

Figure 7-14: VS supports running automated tests through agents on the test machines. In
addition, you can spin up multiple environments without worrying about name or IP address
conflicts.

Setting up a library of virtual machines means that you will go through
the setup and configuration time once, not with every test cycle.

ptg7041395

After test environments have been defined, you can use physical
machines right away; virtual machines can be deployed to real Hyper-V
hosts (Figure 7-15). If different team members have to work in parallel, you
usually deploy multiple copies of a single test environment.

Build and Lab190

Figure 7-15: Deploying an environment deploys the contained virtual machines to a Hyper-
V host and leaves them in a state ready to be used for testing.

CREATING VIRTUAL ENVIRONMENTS

To learn how to create virtual lab test environments in VS, see this
MSDN topic: Creating Virtual Environments (http://msdn.microsoft.
com/en-us/library/dd380688.aspx).

Automating Deployment and Test
Your process goal, as suggested in Figure 7-2, should be to have every daily
build deployed into the test lab automatically for a full testing cycle. Any-
thing else slows down the cycle and flow of PBIs to completion. Accord-
ingly, part of your daily build definition should be the deployment.

http://msdn.microsoft.com/en-us/library/dd380688.aspx
http://msdn.microsoft.com/en-us/library/dd380688.aspx

ptg7041395

In VS, a section of the build definition is responsible for the deployment
of the build to the appropriate test machines in the lab environment (as
shown in Figures 7-16 to 7-19). Optionally, you can revert to a clean state
using virtual machine snapshots, if desired, and you can run a set of auto-
mated tests, including UI tests that exercise the user interface. (See Figures
7-20 and 7-21 and Chapter 8, “Test,” for more information about UI testing.)
Manual testing does not begin to verify the changes in the test environ-
ments until automated tests certify a defined level of quality.

Automating Deployment to Test Lab 191

Figure 7-16: A build process template manages deployment and running of tests of applica-
tions through a build definition.

ptg7041395

Figure 7-18: The version of the application that gets deployed can either be the output of
the current build (the normal case) or a pointer to the output of another build.

Figure 7-17: Snapshots can be used to revert to a clean state each time before the applica-
tion gets deployed to the actual test environment for testing.

Build and Lab192

ptg7041395

Automating Deployment to Test Lab 193

Figure 7-19: For each machine in a test environment, you can specify the deployment
scripts that will do the actual deployment steps, such as copy files, install applications, or
attach databases.

Figure 7-20: After the application is deployed to a test environment, VS supports running
a defined set of automated tests to ensure no regressions are found before manual testing
happens.

ptg7041395Figure 7-21: The Build Results report shows the outcome of the deployment and the associ-
ated test results.

After the current daily build of the application has been deployed to the
test environment, it is ready for further review and acceptance testing (see
Figure 7-22 and the next chapter). If the lab is virtualized, the application
can be run in parallel so that each tester or developer gets his own test envi-
ronment to work with. Environments that are already in use are marked as
busy. As shown earlier, it is easy to deploy multiple instances of the test
environment, if necessary (see Figure 7-23). The network-isolation feature
in VS ensures against machine name and IP address conflicts (even though
more than one instance of the test environment, and therefore the same vir-
tual machines, run concurrently); this requires Hyper-V.

Build and Lab194

ptg7041395

Figure 7-22: After a test environment has been deployed, it is ready to be used for auto-
mated and manual testing. Using Microsoft Test Manager (part of VS), you can connect to
the corresponding machines.

Automating Deployment to Test Lab 195

Alternatively, if the daily build is unsuccessful, the team should focus its
efforts on fixing it, because a working build is a prerequisite for the accept-
ance test cycle and a broken build will impede the flow. Testing can con-
tinue on an earlier build, but to return to the heartbeat analogy, oxygen is
not getting to the arteries without automated daily deployment of new
builds flowing smoothly.

ptg7041395

Figure 7-23: Multiple instances of a test environment can exist. Environments that are in
use are marked with a red icon in the In-use column.

Build and Lab196

RUNNING AUTOMATED TESTS IN VIRTUAL ENVIRONMENTS

To learn how to configure automated tests to run in a virtual lab test
environments in VS, see this MSDN topic: How to Configure and Run
Scheduled Tests After Building and Deploying Your Application
(http://msdn.microsoft.com/en-us/library/ee702477.aspx).

Elimination of Waste

Get PBIs Done
It is important for a team to understand that only PBIs that are done at the
end of the sprint provide value. Undone or “almost done” items are coun-
terproductive. They are not potentially shippable and cannot be evaluated

http://msdn.microsoft.com/en-us/library/ee702477.aspx

ptg7041395

by the product owner. Therefore, the team should concentrate its effort on
finishing the top PBI (in the order of importance). When it is complete, the
team should move on to the next one. This reduces risk; for whatever
unforeseen things happen, the team can present those completed PBIs at
the sprint review.

An example of a dysfunction is the team that commits to a handful of
PBIs and at the end of the sprint has many of those PBIs all “almost done,”
with at least one done criterion unfulfilled. In most cases, this would be
either integration work or testing. This creates insidious technical debt. The
product owner cannot tell how much work remains before the PBIs really
are potentially shippable—usually the team can’t either. Unpredictability
ensues. If you see this, stop. Put the undone work back on the backlog,
review your done criteria, review your dashboard, and improve your
transparency.

Integrate As Frequently As Possible
In Scrum, every sprint ends with a sprint review, during which the newly
implemented user stories are presented to the stakeholders. Only stories
that have been tested and integrated are potentially shippable and may be
shown.

A potential dysfunction is that integration fails. Integration issues, such
as merging,5 are a common source of unhappiness and waste in teams. Inte-
gration work, where changes from multiple sources are merged into the
main version, can be difficult, error-prone, and long lasting. These issues
arise when developers work in isolation and do not integrate their code and
tests on a regular basis. A long integration “phase” at the end of a sprint is
a typical indication of an unsteady flow of value, technical debt and waste.

The more frequently teams integrate code and tests, the less difficult it
becomes. Regular integration ensures appropriately loose coupling of code
and builds up integration tests that can become BVTs and prevent future
problems. And when problems occur, there are only a few of them to fix.

In TFS, each branch, as well as each workspace, is an isolated version of
the source code and should be integrated often (or retired if not required

Elimination of Waste 197

ptg7041395

anymore). Every branch can add overhead and complexity. Therefore, a
team should create just enough branches as necessary to support parallel
development and maintenance of released versions, but not more.

Detecting Inefficiencies Within the Flow
It is a team responsibility to deliver working, tested, and integrated soft-
ware during each sprint. If the software isn’t passing the BVTs, or if the
BVTs and unit tests are inadequate, or if the changes are stuck in testing, the
problem should be fixed at its source. VS helps to discover inefficiencies or
first signs of those in the following reports.

Remaining Work

One of the several ways to track the continuous flow is to track work as it
flows from development, to testing, to a completed state. Besides the very
useful Stories Overview report you saw in Figure 1-4, one of the most use-
ful diagrams to do that is a cumulative flow diagram (see Figure 7-24).6 It
gives you an understanding of the flow over time. This proves most useful
when looking at days within an iteration or iterations within a project.

Build and Lab198

Figure 7-24: How much work is left and when will it be done? This cumulative flow diagram
shows work remaining measured as PBIs being resolved and closed in the sprint.

Each data series is a colored band (reproduced here as shading) that rep-
resents the number of stories that have reached the corresponding state as

ptg7041395

of the given date. The total height is the total amount of work to be done
in the iteration:

• If the top line increases, total work is increasing. Typically, the rea-
son is that unplanned work is adding to the total required. That may
be expected if you’ve scheduled a buffer for unplanned work (such
as for fixing newly discovered bugs).

• If the top line decreases, total work is decreasing, probably because
work is being rescheduled out of the iteration.

Current status is measured by height on a particular date:

• The remaining backlog is measured by the current height of the left-
most area (Active in this case).

• The current completions are shown by the current height of the
rightmost area, Closed.

• The height of the band in-between indicates the work in progress (in
this case, items Resolved but not Closed).

Watch for variation in the middle bands. An expansion can reveal a bottle-
neck (for example, if too many items are waiting to be tested and testing
resources are inadequate). Alternatively, a significant narrowing of the
band could indicate spare capacity.

Visually, it is easy to extrapolate an end completion inventory or end
date for the backlog from a cumulative flow diagram like Figure 7-24. A
small caution applies, however. Many projects observe an S-curve pattern,
where progress is steepest in the middle.8 The commonsense explanation
for the slower starting and ending rates is that startup is always a little dif-
ficult and that unforeseen tough problems need to be handled before the
end of a cycle.

Build Failures

Once again, a daily build is the heartbeat of your project. If your builds are
not completing successfully or are not passing BVTs, as shown in Figure
7-25, you need to do what is necessary to fix the problem immediately.

Elimination of Waste 199

ptg7041395

Otherwise, there’s a risk that the flow of new PBIs gets stuck. Usually, the
team will self-correct and restore the working build. The Build Success
Over Time report, shown in Figure 7-26, helps to determine whether there
are only individual build problems or if there are permanent or frequently
recurring issues.

Build and Lab200

Figure 7-25: This build summary shows that some builds are completing and others are fail-
ing BVTs. A growing number of failed builds can be a symptom of dysfunction.

Figure 7-26: This Build Success Over Time report shows the current results of all build defi-
nitions over a specified time range using colors for the different results.

ptg7041395

Summary

This chapter covers automating builds and deployment to create a smooth
flow and short cycle time, the measurement from concept to potentially
shippable increment of working software. In order to achieve the smooth
flow, your team needs to agree on a consistent definition of done, implement
continuous integration (conventional or gated check-in), and automate the
done criteria with CI. In this way, you will not check in “undone” work and
build up technical debt.

The next step is continuous deployment7 into the test lab. Automatically
deploying new builds when they become available (and pass BVTs) and
running “smoke” tests in a preproduction lab are the logical next cycles.
Automated tooling can significantly help to make continuous deployment
a reality, as you have seen in this chapter using VS, and further prevent
against unwanted debt.

To reduce cycle time should be a major goal of every software develop-
ment team. The more quickly a PBI can be turned into working, deployed
software, the more satisfied the customer will be and the more the team can
respond to new priorities in the product backlog. The less undone work
impedes the team’s ability to begin new PBIs, the greater the satisfaction the
team will have at staying in the groove of delivery. And, of course, Scrum
prescribes that teams need to present a fully tested, integrated, and poten-
tially shippable increment of the application at the end of each sprint.

The next chapter looks at the extended testing process under the Agile
Consensus and its contribution to delivering the potentially shippable
increment. Where this chapter focused on reducing waste through automa-
tion, the next one focuses on adding value through human activities where
not everything can be automated. It’s a piece of the Agile Consensus that’s
often underappreciated.

Summary 201

ptg7041395

End Notes

1 http://www.startuplessonslearned.com/2010/01/case-study-
continuous-deployment-makes.html

2 For example, http://www.martinfowler.com/articles/continuousIn-
tegration.html and http://c2.com/cgi/wiki?ContinuousIntegration

3 For example, http://www.stevemcconnell.com/ieeesoftware/
bp04.htm

4 Rational User Conference (RUC) 2002, “Using Rational PurifyPlus
and VMware Virtual Machines in the Development of the Quality
Engineering Process” by Daniel Kerns and “Automated Configura-
tion Testing with Virtual Machine Technology,” Scott Devine

5 Continuous Integration, talk by Ray Osherove at TechEd Developers
2006, http://download.microsoft.com/download/2/3/8/238556cb-
06dc-4e16-8f81-4874e83ded23/CI%20with%20Team%20System.ppt

6 Cumulative flow diagrams were introduced to software in Anderson
2004, op.cit., 61.

7 http://continuousdelivery.com/2010/02/continuous-delivery/

Build and Lab202

http://www.startuplessonslearned.com/2010/01/case-study-continuous-deployment-makes.html
http://www.startuplessonslearned.com/2010/01/case-study-continuous-deployment-makes.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://c2.com/cgi/wiki?ContinuousIntegration
http://www.stevemcconnell.com/ieeesoftware/bp04.htm
http://www.stevemcconnell.com/ieeesoftware/bp04.htm
http://download.microsoft.com/download/2/3/8/238556cb-06dc-4e16-8f81-4874e83ded23/CI%20with%20Team%20System.ppt
http://download.microsoft.com/download/2/3/8/238556cb-06dc-4e16-8f81-4874e83ded23/CI%20with%20Team%20System.ppt
http://continuousdelivery.com/2010/02/continuous-delivery/

ptg7041395

8
Test

The role of professional testing will inevitably change from
“adult supervision” to something more closely resembling an
amplifier for the communication between those who generally
have a feeling for what the system should do and those who will
make it do.1

—Kent Beck

203

Figure 8-1: Testing is a primary assessment of done for the sprint, the landing of the prod-

uct backlog items as intended.2

ptg7041395

The previous chapters have all been about driving quality upstream,
ensuring that we have a clean product backlog, clean code and unit

tests, and a reliable build process that cleanly deploys new bits into a test
lab (see Figure 8-2). This cleanliness allows acceptance testing to focus on
issues related to the completeness of product backlog items (PBIs) that can’t
be caught earlier.

Test204

Acceptance
Testing

Potentially
Shippable
Increment

Deploy
to Lab

Sprint

Daily
Build

Daily
Standup

Sprint
Backlog

Figure 8-2: The daily build is the natural unit to deploy into the test lab automatically for
acceptance testing.

Testing in the Agile Consensus

Chapter 1, “The Agile Consensus,” discussed the need to focus on flow of
value, reduction of waste, and trustworthy transparency as the three mutu-
ally supporting tenets of the Agile Consensus. The discrepancy between
frequently practiced work rituals and these values hit me vividly recently.
I spoke to an industry analyst who shared that his most frequent customer
inquiry was, “Can we get rid of our testers?” For all the money that gets

ptg7041395

spent on software testing, it is amazing how rarely teams and their organ-
izations can clearly answer what the testers do or should be doing.

In this chapter, I try to fix that.

Testing and Flow of Value
The primary unit of customer value is the product backlog item (PBI). The
team’s goal in terms of flow has to be to move each PBI to done. Testing is
the usually the primary measure of done, where the testing is done on the
software in a production-realistic environment from a deployed installation
of the software. Testing like this ought usually to include the following:

• Acceptance testing for functionality. In other words, does the soft-
ware meet the requirements of the PBI from the user perspective?

• Acceptance testing for qualities of service (QoS), such as perform-
ance, world-readiness, security, and other attributes as may apply
from Chapter 3, “Product Ownership.”

• Environmental compatibility with anything else deployed in pro-
duction, to prevent future problems in deployment.

Accordingly, there are often several test cases per PBI. As discussed in
Chapter 4, “Running the Sprint,” and shown here in Figure 8-3, the User
Story Test Status shows, for each PBI taken into the sprint, how many test
cases have never been run, are blocked, are failing, or are passing as of their
last test run.

Testing in the Agile Consensus 205

Figure 8-3: Throughout the sprint, the User Story Test Status shows how many tests for
each PBI have been run and have passed.

ptg7041395

Inspect and Adapt: Exploratory Testing
Unfortunately, planned test cases cover only what you anticipated before you
saw the working software. Testing, as much as any discipline, requires
inspecting the product and adapting techniques to learn more. As soon as
one testing approach fails to yield bugs, consider how you can vary your
approach to find more. That’s the philosophy of exploratory testing.3 It’s about
using varying techniques, sometimes called tours, to look for blind spots.

Consider the difference in perspective between these two sentences:

1. As an admin, I want to use security groups to prevent unauthorized
access to key data.

2. Given that I want to prevent unauthorized access to key data, when
there is an attempted intrusion by an unauthorized user, I want
immediate notification, tagging of all compromised data, an audit
log of the attempt, correlation to other breach attempts, and the
intrusion blocked.

They might be describing the same user story. There might be 15 other
“given/when/then” phrases that testers discover by exploring this PBI. In
fact, good testers will discover acceptance criteria in this way as much as
they are validating the existing statements of requirements. In this way,
testers round out the work of the product owner.

The “given/when/then” approach is also a good way to devise negative
tests (that is, tests of what should not be possible as part of the user story),
which typically correspond to error paths that the software under test
should handle gracefully. James Whittaker calls these back-alley tours. A sim-
ple example is withdrawing a negative amount of money from a back
account. Not only should it not be allowed, it should also not be caught just
when input (lest it mysteriously increment the account balance). More com-
plex examples might be security attacks, such as SQL injection or buffer
overruns.4

Testing and Reduction of Waste
In the past, testing happened in its own silo. Under the Agile Consensus,
testing is an integral part of the flow from backlog to working software.

Test206

ptg7041395

Getting software into a testable state under production-realistic conditions
is an integral part of the team’s responsibility, because a PBI cannot be
brought to done otherwise.

An additional tenet is to bring PBIs to done in the shortest possible time
(a few days) and thereby to keep work in process to a minimum. In other
words, the team does not try to start many PBIs at once, but tries to bring
active PBIs to done before starting new ones. This means that developers
and testers are working in parallel on a very few PBIs on any given day. It
also means that testers are not waiting long for working software to test,
because it is flowing continuously.

Testing and Transparency
Testing is necessary for transparency. While burndown charts show task
completion, they show no assessment of the end result, the working soft-
ware. Testing does that. When the software is failing its tests, the team
works to fix the software until the tests run green. That’s why the Stories
Overview report, shown previously in Figure 1-4, combines both sources of
data tasks and tests. Similarly, of the five dashboards in Figures 4-6 through
4-10, only one displays burndowns; the remaining four cover quality, test,
bugs, and builds to give you the best insight into real progress of PBIs
toward done.

There should be planned test cases for every PBI, and may be additional
test cases for QoS and risks, but you never know for certain whether
unforeseen gaps remain in your end product. For this reason, it is important
to measure test progress and coverage from as many dimensions as possi-
ble and to continue to explore the software for potential bugs or opportu-
nities for improvement. For examples, see the Quality and Test dashboards
of Chapter 4.

Testing Product Backlog Items

In Visual Studio (VS), a separate user interface (UI) is provided for testing:
the Microsoft Test Manager (MTM), as shown in Figure 8-4.5 With MTM,
you can capture and manage test cases, associate them with user stories and
other PBIs, run automatic and manual tests, and track test results as well

Testing Product Backlog Items 207

ptg7041395

as bugs found during testing. All information in MTM is stored on the
server and therefore immediately shared with the team.

Test208

Figure 8-4: In VS, you can describe manual tests as Test Case work items with prescriptive
steps and notes to the tester. The test results are captured, tracked, and fed to the ware-
house for manual and automated tests.

VS does not require that you explicitly define test cases. If you have
them, they will appear in MTM. In addition, MTM infers test cases from the
user stories or other requirements (see Figure 8-4). By doing so, MTM cre-
ates a test suite for each user story, and test cases are grouped into those
suites. Every test case contained in a test suite gets automatically linked to
the corresponding user story, which ensures later reporting can identify
coverage and gaps by requirement. In addition, you can define other test
cases bottoms up, independent of requirements, and link them explicitly
as you want for reporting or group them as you want for execution.

ptg7041395

VS uses two types of high-level containers to organize and track test
cases: test suites and query-based suites. Test suites are conceptual group-
ings around intent. For example, all the test cases related to one user story
might be a test suite. Query-based suites allow a dynamic selection of test
cases based on a work item query. For example, a test suite could include all
test cases with a high priority to make sure all important test cases are rerun
in each iteration. Test suites can contain other test suites, too.

Test plans, in contrast, are collections of suites with run settings and test
environments grouped to identify what should be tested in a sprint. This
allows the doneness of the sprint, from the testing viewpoint, to match the
completion of the test plan for the iteration.6

The Most Important Tests First
Normally, one of the hardest pieces of test management is knowing what to
test next. Especially when testing is heavily manual, the cost of not testing
the most important changes first is enormously wasteful, because it delays
providing critical feedback to the whole team.

A great way to identify what to test next is the list of Recommended Tests
in MTM. This makes clear what tasks and user stories have actually been
delivered and integrated in the recent build, compared to the previously
tested build, and which automated and manual tests were impacted, based
on a comparison of the last successful test run and the analysis of code
changes checked in by the developers (see Figure 8-5).

Testing Product Backlog Items 209

ptg7041395
Figure 8-5: The Assign Build command of MTM computes differences between two builds
based on the work completed from the earlier build to the current one and the changes in
the code over that period. Based on these two streams of data, MTM suggests what backlog
items are ready to test and which test cases ought to be run first. You can use the Assign
Build command to assess build changes before deciding to take the build into the testing
cycle.

Moreover, based on an analysis of the existing action recordings from
manual and automated tests, MTM recommends which tests to rerun (see
Figure 8-6). This helps identify unforeseen side effects (where other, less-
expected parts of the application are impacted by those changes) and
allows for more focused testing. Furthermore, if you have reasonable build
verification tests (BVTs), you can check their results and code coverage.

Test210

ptg7041395

Figure 8-6: After you assign a new build for testing, MTM provides a list of recommended
tests, whose prior results may have been affected by the changes checked in to the build.
These are recommended because of the impact of changes to code, requirements, and bugs
on existing test cases. The recommended tests are the ones most likely to find bugs and are
therefore the ones you should run first.

Test cases include test steps, which can either be simple actions or vali-
dations where the tester compares the actual to an expected result. Option-
ally, parameters can be used to reference test data that does not have to be
part of the steps themselves (see Figure 8-7). In addition, because test cases
are regular work items in VS, and they can be customized like all other
work item types. A special form of a case is a Shared Steps work item. It can
be used to share common steps that are frequently used and referenced in
other test cases. For example, think of a bunch of login steps. If those steps
change, only the steps in the referenced shared step need to be updated;
upon doing so, all referencing test cases are immediately up-to-date.

Testing Product Backlog Items 211

ptg7041395

Figure 8-7: Test cases are managed and tracked like every other work item and capture
prescriptive steps, attachments, as well as optional parameters for a test.

Actionable Test Results and Bug Reports

Another common source of waste in most testing comes from the difficulty
of capturing enough information to reproduce an observed failure. This
leads to the all-too-common bug resolution of “no repro” or the standing
joke of the developer saying, “But it works on my machine!”

MTM addresses this problem with diagnostic data adapters (DDAs).
The DDAs collect valuable information to eliminate the need for subse-
quent reproduction of the test run. For example, DDAs include full-screen
video, system information, an action recording that can be used to auto-
mate the test at a later stage, an IntelliTrace log for post-mortem server
debugging, and, if the test lab is in use, snapshots of the virtual machine
images.

Test212

ptg7041395

Test settings (as shown in Figure 8-8) organize which DDAs are turned
on and off and therefore what information will be collected. Separate set-
tings can be defined for manual and automated tests. Because most modern
applications use multiple tiers, test settings specify which DDAs to enable
for the test agents running on each of the machine roles involved in the test.

Actionable Test Results and Bug Reports 213

Figure 8-8: Test settings define what data is collected during automated and manual test-
ing and from which machine roles to collect that data.

When you “run” a test, MTM collapses its UI into a narrow panel and
docks itself along the edge of the screen, usually placing the application
under test to the right, as shown in Figure 8-9. This layout is used whether
you are trying exploratory testing, recording a test, or replaying previously
recorded steps, as shown in this example.

A manual test often includes a certain sequence of steps that the tester
follows each time (for example, to bring the application into a meaningful
state before the interesting part of the test begins). If the test was exercised
before, MTM can replay those recorded UI actions and fast forward up to
a more meaningful step, where the tester takes over again and validates the
result (as shown in Figure 8-9).

ptg7041395Figure 8-9: If a test case has been manually executed in the past, you can click Play to
replay the UI actions and fast forward to a certain step that requires manual verification, to
save time.

No More “No Repro”
In the Preface, I claimed that one of the greatest sources of waste in software
development today is the developer’s inability to reproduce a reported bug
and the ensuing ping-pong game to collect the information. VS fundamen-
tally attacks this source of waste. When you click the Create Bug button on
the MTM test runner panel, all the data specified in the test settings is gath-
ered from the test run and attached to the bug automatically.

Whether using MTM or VS, developers can see within the bug both the
actual behavior of the app and its root cause (see Figure 8-10) by looking
at the various test result attachments, such as the following:

• The steps followed so far and the results, taken from the test runner.

• A screenshot, if added by the tester using the test runner.

Test214

ptg7041395

• A full-screen video index so that every step has the corresponding
starting time from the video to directly jump to that point of the
recording.

• Configuration information of the systems under test.

• A list of all UI actions recorded (as text and HTML files).

• The IntelliTrace logs from the running application. (For more infor-
mation about IntelliTrace, see Chapter 6, “Development.”)

• A snapshot of the (virtualized) test environment. (For more informa-
tion about test environments and lab management, see Chapter 7,
“Build and Lab.”)

This approach to bug reporting fundamentally changes the tester’s job.
Testers get to be experts in testing, not in filing defects. We can stop the
debate about “what makes a good bug report?” because VS handles that for
us now. All the tester needs to type is the headline.

Actionable Test Results and Bug Reports 215

Figure 8-10: The details of a bug captured from a test case show all the test steps, the time-
stamped video recording, the action log, the IntelliTrace from the server, the system configu-
ration information, and if applicable, the snapshot of the virtualized test environment.

ptg7041395

Use Exploratory Testing to Avoid False Confidence
When you have highly scripted or automated testing, you run the risk of
what Boris Beizer calls the pesticide paradox:7

Every method you use to prevent or find bugs leaves a residue of
subtler bugs against which those methods are ineffectual.

In other words, you can make your software immune to the tests that you
already have. This pattern is especially a concern when the only testing
being done is regression testing and the test pool is very stable. Exploratory
testing is the best antidote to the pesticide paradox. Just like microbes
evolve to develop resistance to pesticides, your software evolves to not
have bugs where the old tests look for them. Therefore your tests also need
to evolve to find the remaining bugs. Vary the data, the sequences, the envi-
ronments, the preconditions, the complexity of the scenarios, the error-
recovery choices, and so on until you see different behavior.

Exploratory testing using a test case in MTM captures rich bug infor-
mation, as described earlier for manual test cases. Although you can
explore for as long as you like, when you file the bugs you find during an
exploratory test session, you can decide how much of the recorded data
you want to include, as shown in Figure 8-11. In other words, you can dis-
card the extraneous part of the exploration.

Test216

ptg7041395

Figure 8-11: When running an exploratory test, MTM enables you to snip the data collection
to only the last few seconds or minutes of history so that you focus the bug reader on the
right data.

When new bugs are discovered during exploratory testing, MTM sup-
ports creating new test cases out of those (see Figure 8-12). They can then be
reused for future regression testing.

Actionable Test Results and Bug Reports 217

ptg7041395

Figure 8-12: A test case that was created out of a bug report. The test steps are inferred
from the UI interactions that were recording while the bug was filed using MTM.

Handling Bugs

There are two different paths for handling bugs on a Scrum team, depend-
ing on content of the bug. When the bug found relates to a PBI that is being
implemented in the current sprint, the bug is simply the result of undone
work and is treated like any task related to the completion of the PBI: It goes
on the sprint backlog.

However, there are many bugs found (and sometimes inherited) that are
not related to the PBIs of the current sprint. These should be treated as part
of the product backlog. Often, these bugs are much smaller than the other
PBIs, and there are too many of them to stack rank individually against
each other and the meatier PBIs. Together, however, they might feel like
death by a thousand paper cuts.

Test218

ptg7041395

In this case, it makes sense to create a PBI to the effect of “Remove the
top dissatisfiers” and group bugs of suitable priority by making them chil-
dren of that PBI. Then they can be collectively stack ranked as a group
against other PBIs of comparable granularity. In Chapter 3, “Product Own-
ership,” I discussed how to group these paper cuts into a sufficiently large
PBI to be stack ranked into a sprint.

An alternative that I discuss in the next chapter is an approach for han-
dling accumulated technical debt by investing in a debt payoff period in the
schedule to remove all accumulated bugs and broken tests. In any event,
handling out-of-sprint bugs, like other product backlog decisions, is a ques-
tion of priority. It belongs to the product owner in consultation with stake-
holders and the team, and it should be transparent and consistent.

Which Tests Should Be Automated?

In the past ten years, a lot has been written about the pitfalls and benefits
of test automation.8 I simplify the argument here. Automation is useful
when it achieves high coverage and when the tests will be used many times
for many configurations across many changes in the software under test
(SUT).

However, automation is expensive and hard to maintain, especially if
based on the SUT’s UI. Moreover, automation often leads to a false sense
of security, especially when its results are not balanced against views of
coverage and when its test cases are not balanced with harsh exploratory
and negative testing.

These considerations lead to some guidelines:

1. Automate tests that support programming, such as unit tests, com-
ponent/service integration tests, and BVTs, and make sure that they
achieve very high code coverage, as discussed in Chapter 6. This cat-
egory includes negative tests that exercise correct error handling
under fault conditions.

2. Automate configuration tests whenever you can.
If you expect your software to be long-lived, then …

Which Tests Should Be Automated? 219

ptg7041395

3. Automate scenario tests for the PBIs when possible, but expect that
they will need maintenance.

4. Automate load tests, but again, expect that they will need
maintenance.

And …

5. Guard against a false sense of confidence with exploratory testing, to
keep your testing diverse.

Automating Scenario Tests

The primary way to automate scenario tests in VS is as coded UI tests (see
Figure 8-13). Coded UI tests interact with applications, both Windows or
Web-based, as the user would: by playing back all actions, such as clicks
and keystrokes, to simulate a real user. Using VS, a developer can record
Coded UI Tests either from scratch or by converting an automation strip of
a previous manual test run.

Remember that software test automation is fundamentally software and
will need to be maintained like other software. Expect that if the UI
changes, your UI tests need to change. Accordingly, if you know the UI is
temporary, it is probably too early to automate UI testing.

However, if you expect the UI not to change and want to be able to test
for regression and configurations, coded UI tests are a convenient way to
do that. Because UI tests are easy to create, they are also easy to re-create
when a scenario changes. For maintenance, they are also easy to compo-
nentize. MTM lets you record small components called shared steps to
handle repeated tasks, such as a common login. Use shared steps when
you can.

Test220

ptg7041395

Figure 8-13: Coded UI tests record and replay UI actions on different types of applications,
such as classic Windows apps and browser-based apps.

Automating Scenario Tests 221

SUPPORTED CONFIGURATIONS AND PLATFORMS FOR CODED
UI TESTS

Coded UI tests support UI automation of both rich client applications
and Web applications running in the browser. You can find a full list
of supported configurations on the MSDN Web site, at

http://msdn.microsoft.com/en-us/library/dd380742.aspx.

Testing “Underneath the Browser” Using HTTP
Coded UI tests are designed to exercise the full UI of the application (for
example, all the JavaScript running in the browser and all the mouse activ-
ity of the user). An alternative way to automate scenario tests with VS,
bypassing the UI, is to create Web performance tests, which allow you to auto-
mate the server interaction happening behind the scenes. As with coded UI
tests, you can create Web performance tests by either recording or pro-
gramming, and still enhance and maintain them in Visual Basic or C# (see
Figure 8-14).

http://msdn.microsoft.com/en-us/library/dd380742.aspx

ptg7041395

Figure 8-14: When you add a Web performance test in VS, you drive the scenario as a user
would—but the instrumented Web browser captures the interaction at the HTTP level and
produces a parameterized test against the server.

Although Web performance tests are created by recording, they do not
depend on the browser UI for running because they exercise the SUT at the
server level. During playback, you can see both the browser interaction and
the HTTP or HTTPS traffic (see Figure 8-15). Web performance tests are the
primary way to do automated performance and load testing.

Test222

ptg7041395Figure 8-15: The playback of the test shows you both what was rendered in the browser and
what happened in the HTTP stream so that you can watch the full server interaction, includ-
ing the invisible parts of the traffic.

Using Test Data

Varying test data to represent a mix of realistic inputs is an important part
of scenario testing, whether you are running UI tests or Web tests (see Fig-
ure 8-16). Depending on the domain, the best way to capture requirements
from your stakeholder may be as spreadsheets of test data representing
similar cases of desired behavior, often called equivalence classes.

Accordingly, you can have your automated tests access external test
data from any OLEDB data source, including CSV files, Excel, Access, and
SQL Server databases. If you want to test with a larger amount of auto-
matically generated test data that fits the structure and rules of your data,
VS can help you fill those databases with data generation plans, as
explained in Chapter 6.

Automating Scenario Tests 223

ptg7041395
Figure 8-16: In almost all cases, you should vary the data used for testing, either to cover
different combinations based on different equivalence classes or to apply unique values for
each transaction present in a multiuser workload.

Web tests are easy to create. When the scenario changes and requires a
new execution sequence, it may be easier to re-create the test and reuse the
data than to try to edit the test. Consider this carefully as part of your test
maintenance.

Test224

WALKTHROUGH: ADDING DATA BINDING TO A WEB
PERFORMANCE TEST

For a step-by-step example of how to add a dataset to a Web test so that
you can vary the data, consult http://msdn.microsoft.com/en-us/
library/ms243142.aspx.

http://msdn.microsoft.com/en-us/library/ms243142.aspx
http://msdn.microsoft.com/en-us/library/ms243142.aspx

ptg7041395

Load Tests, as Part of the Sprint

In the past, load testing was considered a specialist activity requiring rare
skills with expensive tools and equipment. Although it is true that
sometimes you need to wait until late in the release cycle to run some of the
load tests, in a healthy development process, you shouldn’t wait for all of
them.

With VS, you can create and run load tests as part of every sprint. The
earlier you identify performance problems, the cheaper it is to fix them.
When you design a load test, you need to look at two primary questions:

1. Does the software respond appropriately under expected load con-
ditions? To answer this, you compose performance tests that com-
bine reasonable scenario tests, data, and workloads.

2. Under which stress conditions does the software stop responding
well? For this, you take the same scenarios and data and crank up
the workload progressively, watching the corresponding effect on
performance and system indicators.

All the automated tests managed by VS—Web performance tests, unit tests,
coded UI tests, and any additional test types you create—can be used for
load testing (see Figures 8-17 through 8-23). With VS, you can model the
workload to represent a realistic mix of users, each running different tests.
Finally, VS automatically collects diagnostic data from the servers under
test to highlight problems for you.

Load Tests, as Part of the Sprint 225

ptg7041395

Figure 8-17: In VS, a load test is a container for any arbitrary set of tests with workload set-
tings. First, you choose how to ramp the load. Often, you want to observe the system with
gradually increasing user load so that you can spot any “hockey stick” effect in the
response time as the user load increases.

Test226

Figure 8-18: You use load modeling options to more accurately predict/model the expected
real-world usage of a Web site or application that you are load testing. It is important to do
this because a load test that is not based on an accurate load model can generate mislead-
ing results.

ptg7041395

Figure 8-19: Next, you choose the tests (unit, Web, or other) and the percentage of load to
create from each of the specific tests.

Load Tests, as Part of the Sprint 227

Figure 8-20: You then choose the browser and network mixes that best reflect your end-
user population.

ptg7041395

Figure 8-21: Load tests can generate huge amounts of data from the SUTs, and it is often
hard to know what is relevant. VS simplifies this by asking you to choose only which serv-
ices to watch on which machines and by automating the rest of the decisions.

Understanding the Output
While a load test runs, and after it completes, you need to look at two lev-
els of data (see Figure 8-22). Average response time shows you the end-to-
end response time for a page to finish loading, exactly as a user would
experience it. That’s straightforward, and you can assess whether the range
is within acceptable limits. At the same time, while the test runs, all the rel-
evant performance data is collected from the chosen servers, and these
counters give you clues as to where the bottlenecks are in the running sys-
tem. VS sets thresholds by default according to the type of application and
triggers warnings and errors if any levels are being exceeded.

Test228

ptg7041395
Figure 8-22: This graph shows two kinds of data together. Average Page Response Time is
the page load time as a user would experience it. Requests/Sec is a measurement of the
server under test, indicating a cause of the slowdown. Note also the warning and error icons
that flag problems among the tree of counters in the upper left. Some of these may lead you
to configuration problems that can be tuned in the server settings; others may point to
application errors that need to be fixed in code.

Diagnosing the Performance Problem
When a load test points to a likely application performance problem, the
developer of the suspect code is usually the best person to diagnose the
problem. As a tester, you can attach the test result to a bug directly to for-
ward it to an appropriate teammate, and when your teammate opens the
bug, the same graphs will be available for viewing. Your teammate can then
use the Performance Wizard to instrument the application and rerun the
test that you ran, as shown in Figure 8-23.

Load Tests, as Part of the Sprint 229

ptg7041395

Figure 8-23: In addition to the information offered by the perfmon counters, you can rerun
the test with profiling (or attach the test result to a bug and have a colleague open it and
rerun with profiling). This takes you from the System view to the Code view of the applica-
tion and lets you drill into the hot path of the specific methods and call sequences that may
be involved during the slowdown.

The profiling report can rank the actual suspect functions in a “hot path
analysis” that leads you straight to the code that may need optimizing. This
sequence of load testing to profiling is an efficient way to determine how
to tune an application. You can use it in any iteration as soon as enough of
the system is available to drive under load.

Production-Realistic Test Environments

Chapter 7 describes how to connect test environments to the build work-
flow, so that you can always test the latest build in a production-realistic
environment. MTM enables you to choose which test environment to use

Test230

ptg7041395

when running a set of tests so that you can be sure to run tests across the
appropriate mix of configurations (see Figure 8-24).

Production-Realistic Test Environments 231

Figure 8-24: When you run a set of tests plan in MTM, one of the choices is the test environ-
ment to use. Here it is <Local>, but it could be any virtualized or physical environment,
as shown in Chapter 7.

Reporting

Of course, you need to track test configurations and report what has been
tested so that you can identify gaps in configuration coverage and prioritize
your next testing appropriately. Fortunately, VS tracks the configuration
used on every test. A test configuration in VS consists of one or more vari-
ables, such as the OS version, browser version, or similar run (see Figure
8-25). Because the results are stored in the data warehouse, this makes it
easy to track the configurations that have been used and those that lack
good test coverage.

ptg7041395
Figure 8-25: Test configurations can capture the representative target environments of the
SUTs. The metrics warehouse accumulates test results by configuration so that you can
build a picture over time of the test coverage against configurations.

It is usually a good idea to vary the configurations with every round of
testing so that you cycle through the different configurations as a matter of
course. Because the test results are always tracked against the test config-
uration, you also have the information to reproduce any results, and you
improve your coverage of configurations this way.

Risk-Based Testing

Most risk testing is negative testing (that is, “tests aimed at showing that
the software does not work”9). These tests attempt to do things that should
not be possible to do, such as spending money beyond a credit limit, reveal-
ing someone else’s credit card number, or raising an airplane’s landing gear
before takeoff.

Test232

ptg7041395

Risk testing can give you a lens that other approaches do not offer. Note
that coverage testing does not provide any clue about the amount of nega-
tive testing that has been done, and requirements-based coverage helps
only to the extent that the requirements capture error prevention, which is
usually at much too cursory a level. In testing for risks, you are typically
looking for errors of omission, such as an unwritten error handler (no code
to cover) or an implicit (and hence untraceable) requirement.

To design effective negative tests, you need a good idea of what could go
wrong. This is sometimes called a fault model. You can derive your fault
model from any number of knowledge sources. Table 8-1 lists sources of a
fault model illustrating constituency-based knowledge.

Risk-Based Testing 233

Source Sample Fault to Test For

Business rules Customers can’t spend over their credit limits.

Technical architecture The authentication server could be down.

Domain knowledge This spending pattern, although legal, could indi-
cate a stolen credit card.

User understanding If there’s no rapid confirmation, a user could click
the Submit button many times.

Bug databases Under this pattern of usage, the server times out.

Table 8-1: Typical Sources and Examples for a Fault Model

VS lets you capture these potential faults in the work item database as risks.
You usually start during early test planning, and you review and update
the risk list in planning every iteration (and probably more frequently). The
same traceability that tracks Test Cases to User Story work items enables
you to trace Tests to Risk work items so that you can report on testing
against risks in the same way (see Figures 8-26 and 8-27).

ptg7041395

Figure 8- 26: Risks are captured as work items so that they can be managed in the same
backlog, tracked to test cases, and reported in the same way as other work item types.

Test234

Figure 8-27: Because risks are a type of work item, you can measure test coverage against
risks in a manner similar to the coverage against user stories.

Capturing Risks as Work Items
By default, a Risk work item type is available in Microsoft Solutions Frame-
work (MSF) for Capability Maturity Model Integration (CMMI) Process
Improvement, but not in the other TFS process templates. Of course, you
can still capture risks as PBIs or customize your process template to include
them.

ptg7041395

Security Testing
Security testing is a specialized type of negative testing. In security testing,
you are trying to prove that the software under test is not vulnerable to
attack in ways that it should not be. The essence of security testing is to use
a fault model, based on vulnerabilities observed on other systems, and a
series of attacks to exploit the vulnerabilities.

Many published attack patterns can identify the vast majority of vul-
nerabilities.10 Many companies provide penetration testing services, and
many community tools are available to facilitate security testing. You can
drive the tools from VS test suites, but they are not delivered as part of the
VS product itself.

Summary 235

TESTING FOR SECURITY VIOLATIONS

VS uses the code analysis described in Chapter 6 to check for security
violations, but there are tools and process templates available for free
as part of the Microsoft Security Development Lifecycle (SDL) guid-
ance. See http://www.microsoft.com/security/sdl/getstarted/tools.
aspx for a current list.

Summary

This chapter is about the testing of high-functioning teams following the
Agile Consensus. Far from the misconceptions that agilists only do unit
tests, or that testers have no role on Agile teams, tests of PBIs are essential
to the definition of done. Indeed, work should be sequenced to facilitate get-
ting PBIs through acceptance testing to done as quickly as possible.

VS has a unique approach to supporting Agile teams. It flows from the
idea that only the bugs that get fixed add customer value, and all the activ-
ity around reporting bugs that don’t get fixed is, from the customer view-
point, waste. MTM is designed to make every bug captured fully
actionable, so that a developer does not need to attempt to reproduce the
case but can instead work directly from the captured data.

VS also enables early load testing, so that design flaws affecting per-
formance can be caught in early sprints, when there is time to refactor and
change the design. Configuration testing with virtualized labs is built in to

http://www.microsoft.com/security/sdl/getstarted/tools.aspx
http://www.microsoft.com/security/sdl/getstarted/tools.aspx

ptg7041395

the build automation workflow, and so testing can happen immediately in
production-realistic environments.

This is a fundamentally collaborative approach to testing, where the
multidisciplinary team can work as a unit toward a common goal. It breaks
down the traditional walls among disciplines, avoids the messy handoffs of
work, and focuses instead on a single flow of customer value and reduction
of waste.

The next chapter is an experience report of our application inside
Microsoft of the principles you’ve read so far. Not everything was perfect,
and we had to repeatedly inspect and adapt. You’ll soon understand how
that experience shaped the product line described thus far.

End Notes

1 Kent Beck, Test-Driven Development (Addison Wesley, 2002), 86.
2 Sarony and Major, The Landing of the Pilgrims, on Plymouth Rock, Dec.

11th 1620 (lithograph, published 1846).
3 James Bach, “Exploratory Testing Explained,” 2002, available from

www.satisfice.com/articles.shtml; and James A. Whittaker,
Exploratory Software Testing (Pearson Education, 2010).

4 James A. Whittaker and Herbert H. Thompson, How to Break Software
Security (Addison Wesley, 2003); and Michael Howard, David
LeBlanc, and John Viega, 24 Deadly Sins of Software Security:
Programming Flaws and How to Fix Them (McGraw-Hill Osborne
Media, 2009).

5 This chapter provides a drive-by look at the testing capability in VS
2010. For an in-depth survey, see Jeff Levinson, Software Testing with
Visual Studio 2010 (Addison Wesley Professional, 2011).

6 Anutthara Bharadwaj, “Guidance for Creating Test Plans and
Suites,” September 22, 2010, http://blogs.msdn.com/b/anutthara/
archive/ 2010/09/22/guidance-for-creating-test-plans-and-test-
suites.aspx.

Test236

www.satisfice.com/articles.shtml
http://blogs.msdn.com/b/anutthara/archive/2010/09/22/guidance-for-creating-test-plans-and-test-suites.aspx
http://blogs.msdn.com/b/anutthara/archive/2010/09/22/guidance-for-creating-test-plans-and-test-suites.aspx
http://blogs.msdn.com/b/anutthara/archive/2010/09/22/guidance-for-creating-test-plans-and-test-suites.aspx

ptg7041395

7 Boris Beizer, Software Testing Techniques (Boston: International Thom-
son Computer Press, 1990), 9.

8 For a classic discussion of the risks of bad automation, see James
Bach, “Test Automation Snake Oil,” originally published in Windows
Tech Journal (November 1996), available at www.satisfice.com/
articles/test_automation_snake_oil.pdf.

9 Beizer, op. cit., 535.
10 Whittaker and Thompson, op. cit. Whittaker and Thompson have

identified 19 attack patterns that are standard approaches to hacking
systems.

End Notes 237

www.satisfice.com/articles/test_automation_snake_oil.pdf
www.satisfice.com/articles/test_automation_snake_oil.pdf

ptg7041395

This page intentionally left blank

ptg7041395

9
Lessons Learned at Microsoft
Developer Division

We must, indeed, all hang together or, most assuredly, we shall
all hang separately.

—Benjamin Franklin, upon signing the treasonous
Declaration of Independence

239

Figure 9-1: At any one time, Developer Division has to balance multiple competing business
goals.

ptg7041395

Ijoined Microsoft Developer Division (DevDiv) in 2003 to participate in
the vision of turning the world’s most popular individual development

environment, Visual Studio (VS), into the world’s most popular team devel-
opment environment. Of course, that meant embracing modern software
engineering practices for our customers.

At the same time, DevDiv faced significant challenges to improve its
own agility. I had no idea how long a road lay ahead of our internal teams
to change their culture, practices, and tooling. It has been and continues to
be a fascinating journey.

Scale

First, let me review the scale of work. DevDiv is responsible for shipping the
VS product line and .NET Framework. In this chapter, I compare the release
of VS 2005 with .NET 3.0 and VS 2008 with .NET 3.5.1 These major releases
are used by millions of customers around the world. They have ten-year
support contracts. They are localized into nine languages. More than 3,500
engineers contribute to a release of the stack. Our divisional Team Founda-
tion Server (TFS) instance manages more than 20,000,000 source files,
700,000 work items, 2,000 monthly builds, and 15 terabytes of data.2

We are also continually “dogfooding” our own products and processes.
This means that we experiment internally on ourselves before releasing
functionality to customers. For example, we implemented the hierarchical
product backlog I describe on TFS 2005 although TFS didn’t really support
hierarchy until its 2010 release, and our internal experience drove the TFS
product changes. In the next chapter, I describe a breadth of practices we
pioneered internally and will be releasing in vNext.

Like many customers at our scale, we had to customize our TFS process
template, both to allow the innovations and to deal with specific con-
straints, notably interoperation with our own legacy systems. As we have
been developing TFS, we have had to interoperate with five separate inter-
nal predecessors for source control, bug tracking, build automation, test
case management, and test labs. These predecessor systems were all home-
grown and designed over decades in isolation of each other, not to men-
tion of TFS.3

Lessons Learned at Microsoft Developer Division240

ptg7041395

Business Background

As with any organization, it’s important to start with the business context.
DevDiv provides tools and frameworks that support many different
Microsoft product lines. Many of DevDiv’s products, such as the .NET
Framework, Internet Explorer’s F12 tools, and Visual Studio Express, are
free. They exist not to make money, but to make it easier for the commu-
nity and customers to develop software to target Windows, Windows
Azure, Office, SQL Server, and other Microsoft technologies. Other prod-
ucts, such as the rest of the VS product line and MSDN, are commercial,
typically licensed by subscription.

An obvious tension exists among the business goals. Different internal
and external stakeholders have very different priorities. And very fre-
quently the number one top item for one constituency is invisible to other
groups.

As I’ve explained this situation to customers over the years, I’ve realized
that these sorts of tensions among conflicting business priorities are quite
common. Every business has different specifics, but the idea that you can-
not simply optimize for one goal over the rest is common. As a result, diver-
gent business goals create conflicting priorities among stakeholders.

Scrum teaches us that the right way to reconcile these priorities is
through a single product owner and common product backlog, and at this
scale, we have to aggregate to coarser-grained portfolio items. When I
started in 2003, prior to the availability of TFS, the division had no way to
look at its investments as a single backlog or portfolio. No one (literally)
had the ability to comprehend a list of more than a thousand features.
Accordingly, the primary portfolio management technique when I joined
was head-count allocation. Head count, in turn, had become the cherished
currency of status.

Culture
Microsoft has three very healthy HR practices:

1. Hiring the best, brightest, and most passionate candidates, usually
straight from university

Business Background 241

ptg7041395

2. Delegating as much responsibility as far down the organization as
possible

3. Encouraging career development and promotion through rotation
into new roles and challenges

These practices make Microsoft a great place to work. In 2003 DevDiv, how-
ever, they were creating an unexpected consequence of reinforcing Con-
way’s law, that organizations which design systems … are constrained to produce
designs which are copies of the communication structures of these organizations.4

USC Professor Dave Logan and his colleagues have probably studied
company culture as much as anyone. In their book Tribal Leadership, Logan
et al. identify five stages of organizational maturity. Stage Three covers 48%
of the professionals that they have studied.

The essence of Stage Three is “I’m great.” Unstated and lurking in the
background is “and you’re not.” …The key words are “I,” “me,” and
“my.” 5

This dysfunctional tribalism was widely visible in the DevDiv I saw in
1993. At the time, the main organizational tribe was a “product unit” (PU),
averaging roughly 60 people. The dysfunction was characterized by five
behaviors, which I stereotype here:

• Don’t ask, don’t tell. There was an implicit convention that no man-
ager would push on another’s assertions, in order not to be ques-
tioned on his own.

• Schedule chicken. Scheduling was a game of who blinked first.
Each PU self-fulfillingly knew that the schedule would slip, because
someone else would be late. Therefore, each PU kept an invisible
assumption that it would be able to catch up during the other team’s
slippage.

Lessons Learned at Microsoft Developer Division242

ptg7041395

• Metrics are for others. No PU particularly saw the need for itself to
be accountable to any metrics, although accountability was clearly a
good idea for the other guys, because they were slipping the sched-
ule first.

• Our customers are different. Because DevDiv has such a broad
product line, with many million users of VS and hundreds of mil-
lions of users of .NET, it was very easy for any PU to claim different
sources of customer evidence from another and to argue for its own
agenda.

• Our tribe is better. Individuals took great pride in their individual
PUs, and their PUMs (product unit managers) went to lengths to
reinforce PU morale. Rarely did that allegiance align to a greater
whole.

Waste
In 2003, DevDiv experienced every kind of waste listed in Table 1.1 in
Chapter 1, “The Agile Consensus.” One illustration of this is in Figure 9-2.
This chart shows the bug trends to Beta 1 of what became VS 2005. Differ-
ent colors show different teams, and the red downward-sloped line shows
the desired active bug “step down” for Beta 1. This is a prescriptive metric
with all the negative behavioral implications listed in Chapter 4, “Running
the Sprint.”

More important than the “successful” tracking of the step down is the
roughly flat line on top. This represents the 30,000 bugs whose handling
was deferred to the next milestone, Beta 2. Imagine a huge transfer station
of nondegradable waste, all of which has to be manually sorted for further
disposal. This multiple handling is one waste from bug deferral.

Business Background 243

ptg7041395

Figure 9-2: This chart shows the actual VS 2005 bug stepdown, as of two weeks before
Beta 1.

Debt Crisis
In everyday life, debt incurs interest, and the less creditworthy the bor-
rower, the higher the interest rate. When the subprime lending bubble of
2003–8 burst, it clearly showed the “moral hazard” of not following such
basic economic principles. Similarly, the uneven product quality implied by
this high bug count creates its own moral hazards:

• It makes the beta ineffective as a feedback mechanism. Customers
see too many broken windows to comment on the positive qualities.

• Internal teams see others’ bug backlogs and play schedule chicken.

• Teams are encouraged to overproduce (that is, put in pet features)
rather than fix the fundamentals.

Lessons Learned at Microsoft Developer Division244

This line is the consequence of the prescription: a growing invisible backlog of deferred bug debt.

This sloped
line is the
prescribed
level of bugs
for Beta 1.

ptg7041395

• The endgame is very hard to predict. No one knows how much of
the iceberg still lies below the water, and therefore how much real
work remains in the release.

Not surprisingly, we experienced significant schedule slippage in the
2005 release cycle and, by the time we shipped, had very uneven morale.

Improvements After 2005

So what did we do differently the next time? Broadly speaking, we put
seven changes in place for the next release cycle. I cover each in turn:

• Get clean, stay clean

• Tighter timeboxes

• Feature crews

• Defining done

• Product backlog

• Iteration backlog

• Engineering principles

Get Clean, Stay Clean
Prior to the start of any product work, we instituted a milestone for qual-
ity (MQ for short). The purpose of MQ was to eliminate our technical debt
and to put in place an engineering system that would prevent its future
accumulation. The two main areas of technical debt we addressed were
bugs and tests. Both of these were large sources of multiple handling.

The goal was to have zero known bugs at the end of MQ. This meant
that any bug that had been previously deferred needed to be fixed (and val-
idated with an automated regression test) or closed permanently. As a
result, we would no longer waste time reconsidering bugs from earlier
releases. This idea runs contrary to a common practice of seeding a release
by looking at previously deferred work. It is enormously healthy; you start
the new release plan from zero inventory.

Improvements After 2005 245

ptg7041395

The goal with tests was to have all tests run green reliably. Unreliable
tests would be purged and not used again. In other words, we wanted to
eliminate the need for manual analysis of test runs, especially build verifi-
cation tests (BVTs). In the past, we had found that test results were plagued
by false negatives (that is, reported test failures that were not due to prod-
uct failures but to flaky test runs). This then led to a long manual analysis
of test runs before the “true” results could be acted on. (Have you ever seen
that?) Eliminating the test debt required both refactoring tests to be more
resilient and making improvements to test tooling and infrastructure. (You
can see the partial productization of these capabilities in the build and lab
management capabilities of VS 2010.)

Tighter Timeboxes
At the same time, we went from a schedule of three-month milestones to
five-week sprints. (By now, we’ve improved further to the point where we
use three-week sprints.) Within each sprint, teams had the opportunity to
deliver one or more features (product backlog items), provided they met
the done criteria discussed later. Our goal for the end of each sprint was to
deliver a potentially shippable increment of software, called a customer tech-
nical preview (CTP). We released only those CTPs on which we actually
wanted to collect external feedback, but we deployed each CTP internally
for dogfooding. In this way, we could assess quality with every sprint.

Feature Crews
We formed small multidisciplinary Scrum teams, called feature crews. They
usually had five or six developers and testers and a “program manager,”
i.e. product owner, who might have responsibility across more than one
feature crew. Feature crews worked on one or a few product backlog items
(features) at a time. Each feature crew worked in an isolated branch of the
source tree until its source code and tests met the definition of done.

Defining Done
Staying clean required improving our definitions of done, automating many
of the done criteria, and updating our code branching structure to support
the automation and promotion of code. We instituted four levels of done

Lessons Learned at Microsoft Developer Division246

ptg7041395

criteria matching four cycles. The most granular was the level of done for
a feature crew. The feature crew was responsible for completing its prod-
uct backlog items to the second definition of done, which we called quality
gates. Figure 9-3 shows the quality gates.

Improvements After 2005 247

Figure 9-3: Divisional quality gates were the definition of done for the feature crew.

Different quality gates applied to different components of the product line.
For example, redistributable platform components, such as the .NET
Framework, required architectural reviews around compatibility and lay-
ering that were not necessary for the VS IDE. These rules were visible to the
whole division.

Integration and Isolation

When developing a complex product like VS, a constant tension exists
between the need of feature crews to be isolated from other teams’ changes
and the need to have the full source base integrated so that all teams can
work on the latest code. To solve this, we allowed feature crews to work in

ptg7041395

isolated branches, and then to integrate with closely related crews, and then
to integrate into Main. Figure 9-4 shows the branching structure to support
the feature crews.

Lessons Learned at Microsoft Developer Division248

Reverse
Integrate (RI)

1. NDP model –
all PU branches

under Main

2. VSPro model –
all PU branches

under a BU
branch

3. VSTS model –
no PU branches,
just a BU branch

Forward
Integrate (FI)RI)

F
Inte

PU Branch

PU Branch PU Branch

BU Branch

Dev10 Main

BU Branch

Feature
Branch

Feature
Branch

PU Branch

Feature
Branch

Feature
Branch

Feature
Branch

Feature
Branch

Feature
Branch

Feature
Branch

Feature
Branch

Feature
Branch

Feature
Branch

Feature
Branch

Feature
Branch

Figure 9-4: The branching structure balances isolated workspaces for the feature crews
during the sprint with easy integration of related features by value propositions in a PU.

The third level of done was the integration tests to support the promotion
of code across branches. When the feature passed the quality gates, the
source code, and tests, the feature crew promoted it to the “product unit
branch,” where the integration tests would run. Upon satisfying these, the
crew then promoted the feature into Main and it became part of the divi-
sional build. The fourth level of done criteria was applied to Main. Both
nightly and weekly test cycles were run here.

It’s worth noting that both the branch visualization and gated check-in of
VS 2010, as described in Chapter 6, “Development,” and Chapter 7, “Build
and Lab,” were designed based largely on our internal experience of enforc-
ing quality gates for feature promotion. The core idea is to automate the
definition of done and ensure that code and test quality live up to the social
contract.

ptg7041395

Product Backlog
DevDiv was an organization conditioned over a decade to think in terms of
features. Define the features, break them down into tasks, work through the
tasks, and so on. The problem with this granularity is that it encourages
“peanut buttering” (as described in Chapter 3, “Product Ownership”), an
insidious form of overproduction. Peanut buttering is the mindset that
whatever feature exists in the product today needs to be enhanced in the
next release, alongside whatever new capability is introduced. From a busi-
ness standpoint, this is obviously an endless path into bloat. This is a big
risk on many existing products.

A key to reverse the peanut-buttering trend is the need to conceptual-
ize the backlog at the right granularity. You have to test that proposed
enhancements really do move customer value forward, when seen from the
product line as a whole. At the same time, you need to make sure that you
don’t neglect the small dissatisfiers.

Accordingly, we took a holistic and consistent approach to product plan-
ning. We introduced a structure of functional product definition that covered
value propositions, experiences, and features. For each level, we used a canon-
ical question to frame the granularity. We rolled out training for all the teams.

Conceptually, the taxonomy is shown in Figure 9-5. To manage this data,
we set up a team project in our TFS with separate work item types for each
of the value proposition, experience, and feature.

Improvements After 2005 249

In your business,
do you need to…?

Epic: What if you
could…? Would
you buy or upgrade?

Theme: Let me show
you how to…? Would
you use it that way?

User story: As a …,
I can…, in order to …

Scenario

Value
Proposition

Value
Proposition

Experience

Feature Feature

Experience

Feature Feature

Scenario

Value
Proposition

Value
Proposition

Experience

Feature

Experience

Feature Feature

Figure 9-5: To keep the backlog at the right level of granularity for a product line of this
scope, we used scenarios, experiences, and features, each at the appropriate level of concern.

ptg7041395

Scenarios

In Agile terms, scenarios are epics. In a scenario, we start by considering the
value propositions that motivate customers (teams or individuals) to pur-
chase or upgrade to the new version of our platform and tools. We consider
the complete customer experience during development, and we follow
through to examine what it will take to make customers satisfied enough to
want to buy more, renew, upgrade, and recommend our software to others.

A scenario is a way of defining tangible customer value with our prod-
ucts. It addresses a problem that customers face, stated in terms that a cus-
tomer will relate to. In defining a scenario, we ask teams to capture its value
proposition with the question: What if you could…, would that influence you to
buy or upgrade? This question helps keep the scenario sufficiently large to
matter and its customer value sufficiently obvious.

We also created two categories that didn’t really belong to scenarios, but
were managed similarly. These were called Fundamentals and Remove Cus-
tomer Dissatisfiers. Fundamentals speak to ensuring that the qualities of
service are suitably met. In the case of the VS product line, these include
compatibility, compliance, reliability, performance, security, world readi-
ness, user experience, and ecosystem experience.

Remove Customer Dissatisfiers, in turn, was there to ensure that our
users didn’t “die from a thousand paper cuts.” Plenty of small complaints
can show up individually as either low-priority bugs or small convenience
features, but can collectively create large distractions. If these items are
triaged individually, they usually don’t get fixed. This is an example of the
aggregation of small items in the product backlog into meatier ones for stack
ranking that I described in Chapter 3. Accordingly, we suggested a discre-
tionary level of investment by teams in this area.

Experiences

Scenarios translate into one or more experiences. Experiences are stories
that describe how we envision users doing work with our product: What user
tasks are required to deliver on a value proposition? The test question here
is to imagine the demo to a customer: Let me show you how….

Features

Experiences, in turn, drive features. As we flesh out what experiences
look like, we define the features that we need to support the experience. A

Lessons Learned at Microsoft Developer Division250

ptg7041395

feature can support more than one experience. (In fact, this is common.)
Most features are defined as user stories.

Figure 9-6 shows a top-down report of the product backlog. It is opened
to drill down from a scenario (called value propositions here) into the expe-
riences and features.

Improvements After 2005 251

Figure 9-6: An internal custom TFS report showed the status of features, rolling up to expe-
riences, rolling up to scenarios (value propositions). This has been superseded in TFS 2010
by hierarchical queries.

Iteration Backlog
Features were the connection between the product backlog and iteration
backlog (see Figure 9-7). As we moved into a sprint, feature crews commit-
ted to delivering one or more features according to the quality gates.
This affected how we had to define features when grooming the product
backlog.

ptg7041395

Figure 9-7: Because features were the deliverable units of the product backlog, overall
progress could be tracked as a cumulative flow of features. Again, this was a custom report,
now superseded by the TFS dashboards.

Because features turned into units of delivery, we tried to define them to
optimize productivity. Well-defined features were coarse-grained enough to
be visible to a customer or consumed by another feature, and fine-grained
enough to be delivered in a sprint. To pass the quality gates, they needed to be
independently testable. Dependencies among features needed to be clearly
defined. Figure 9-8 shows a track of remaining work for a single feature,
and Figure 9-9 illustrates an intermediate organizational view of features in
flight.

Lessons Learned at Microsoft Developer Division252

ptg7041395

Figure 9-8: This simple burndown chart measures the progress of a single feature.

Improvements After 2005 253

Figure 9-9: Features in progress can be viewed by organizational structure. The black verti-
cal line shows today’s date. There are three status colors on this chart: dark green for com-
pleted more than seven days ago, light green for completed in the last seven days, and red
for remaining.

ptg7041395

Engineering Principles
In summary, we applied most of the practices described as engineering
principles in Chapter 2, “Scrum, Agile Practices, and Visual Studio.” We
eliminated technical debt and put in place rules and automation to prevent
deferral of work. Small feature crews and short timeboxes kept work in
process low. A consistent definition of done, coupled to the right branching
strategy and automation, kept the code base potentially shippable. Auto-
mated testing was used widely, and exploratory testing was used selec-
tively where new scenarios were not ready for automation.

Results

The results were impressive. Figure 9-10 shows the contrast between the
bug debt at Beta 1 for VS 2005 and VS 2008. Unlike 2005, there is no over-
hang of deferral, and the reduction in debt was greater than 15x. At the same
time, the schedule from beginning of the release work to general availabil-
ity was half as long. And the transparency of process allowed reasonable
engagement of stakeholders all along the way. Post release, we saw the
results, as well. There has been a huge (and ongoing) rise in customer sat-
isfaction with the VS product line.

Lessons Learned at Microsoft Developer Division254

Total bug debt at Beta 1 of VS 2008.

Figure 9-10: Comparison of bug debt at Beta 1 between VS 2005 and VS 2008. The left chart
is identical to Figure 9-2, and the right shows the total bug debt leading to Beta 1 of VS
2008. The improvement is a reduction from 30,000 to 2,000 at comparable points in the
product cycle.

ptg7041395

In addition to improving our product delivery, this experience improved
the VS product line. Many of the practices that we applied internally
became product scenarios, especially for TFS.

Law of Unintended Consequences

Although the improvements we achieved from the 2005 to 2008 releases of
VS were very real, there were some subsequent surprises. Newton’s third
law states that actions beget reactions, whether good or bad. For DevDiv,
some of these were due to “soft” issues around people and culture; others
resulted from unforeseen effects of the engineering practices.

When we ship a release at Microsoft, people often change jobs. For
employees, this rotation is an opportunity both to develop a career and
improve personal satisfaction in trying new challenges. Indeed, several of
Microsoft’s divisions build a reorganization period into the beginning of
their release planning. Although this is a healthy pattern for the company
and its employees overall, in the short term it can create a sort of amnesia.

Social Contracts Need Renewal
Unfortunately, one success is not enough to create long-term habits. In 2008,
DevDiv experienced excessive optimism after a successfully executed
release. As many new managers took their jobs, they confidently plowed
ahead without an MQ and without planning and grooming the backlog.
Accordingly, the road to the 2010 release suffered from some considerable
backslides.

It was reminiscent of a scene in 1981, when an assassination attempt
incapacitated President Ronald Reagan, the vice president was abroad, and
Secretary of State Al Haig convened the White House press corps to
announce, “I am in charge here.” Haig prompted wide and immediate
ridicule, because he demonstrated his own ignorance of the line of succes-
sion specified by a constitutional amendment two decades earlier. During
the reorganization after we shipped VS 2008, some positions were vacant
longer than usual, and in the interim, several folks declared themselves in
control of release planning. Of course, this self-declared authority did not
work here either.

Law of Unintended Consequences 255

ptg7041395

Lessons (Re)Learned
DevDiv recovered, and in the end, VS 2010 has been the best release of the
VS product line ever. The progress was not linear, however. We learned sev-
eral engineering lessons from the sloppy start in 2008 and skipping MQ in
particular.

Product Ownership Needs Explicit Agreement

With ambiguous product ownership, there was no clear prioritization of
the backlog and no way to resolve conflicting viewpoints. We did not yet
have a consistent organizational process, and we needed to renegotiate the
social contract.

Planning and Grooming the Product Backlog Cannot Be Skipped

If you don’t have a backlog that provides a clear line of sight to customer
value, all prioritization decisions seem arbitrary. As a result, individuals
revert to the local tribes that they know best.

The Backlog Needs to Ensure Qualities of Service

A particular oversight was the lack of suitable requirements in the backlog
around the fundamentals, such as performance and reliability, and lack of
clear product ownership for these. With both betas of VS 2010, we earned
significant negative feedback regarding product performance. Figure 9-11
shows example results of the performance instrumentation that we
introduced after Beta 1 to make performance visible for common customer
experiences.

Fortunately, we recovered by the time of release to manufacturing
(RTM), but at considerable cost (including some schedule delay). Had we
set the fundamentals early, established the ownership, and put in place the
instrumentation and transparent reporting at the beginning of the release
cycle, we would not have had to pay for the recovery.

Lessons Learned at Microsoft Developer Division256

ptg7041395

Figure 9-11: The chart compares an early build of VS 2010 and VS 2008 SP1 through a com-
mon scenario from starting the IDE to producing a simple application and closing the IDE.
This is an example of transparent measurement raising awareness and focusing action.

One Team’s Enhancement Is Another’s Breaking Change

In a product line this complex, it is easy for one team’s great enhancements
to be crippling changes for another team. We had put a clear definition of
done in place for the previous release, and automated much of it, but we
didn’t maintain the practices or the automation cleanly. Most visibly, our
integration tests were not acting as a suitable safety net. As a result, we had
significant friction around code integration.

Test Automation Needs Maintenance

We had invested heavily in test automation to validate configurations and
prevent regressions, but we let the tests get stale. They effectively tested
2005 functionality, but not the new technologies from 2008. Without an MQ

Law of Unintended Consequences 257

ptg7041395

Lessons Learned at Microsoft Developer Division258

to update the integration tests in particular, we discovered we could not
predict the effects of integration. As a result, a team promoting changes had
no way of determining the effects on other teams until the recipients com-
plained.

Complicating the problem was the false sense of security given by auto-
mated test runs. If the tests are not finding important problems fast, and
catching quality gaps prior to integration, they are the wrong tests.

Broken Quality Gates Create Change Impedance

There is a heinous side effect to having the engineering infrastructure in
this broken state. There were still quality gates, but they weren’t ensuring
the intended quality because we hadn’t maintained them. As a result, they
became impediments to change rather than enablers. As we realized this,
we cleaned up the problem, but again much later than we should have. This
pointed out clearly not only why it was important to get clean at a point in
time, but also why we then needed to stay clean.

Celebrate Successes, but Don’t Declare Victory
The overriding management lesson for me is to celebrate successes but not
declare victory. In our case, we forgot the pain of the VS 2005 release, and
after the success of VS 2008, we decided to skip MQ, neglect our backlog,
and underinvest in our engineering processes. We have since recovered,
but with the reminder that we have to stay vigilant and self-critical.

It takes strong leadership, a strong social contract, and consistent lan-
guage among the tribe to counteract this tendency. Part of this is the move
from dysfunctional to functional tribalism, or in Dave Logan’s terminology,
from Stage Three to Four. People in a Stage Four organization do the
following:

Build values-based relationships between others. At the same time,
the words of Stage Four people are centered on “we’re great” …
When people at Stage Four cluster together, they radiate tribal pride.6

ptg7041395

What’s Next?

Fortunately, we have the opportunity to act on our learnings not just in
organizational improvement, but also in product. Many of the scenarios
enabled by VS 2010 are based on what we discovered through our own
usage. At the time of this writing, we have rolled VS 2010 out through our
own organization, updated our quality gates and automation, groomed our
backlog, and made sure that our organization matches the vision.

Even better, we’ve been able to productize many of these lessons into
our vNext, as I’ll show in Chapter 10, “Continuous Feedback.” We’re dog-
fooding that release now, in three-weekly sprints. You can read about the
concepts and capability in the next chapter, and by the time you’re reading
this, you can probably download the product and try it too.

Look for a new experience report in a couple years.

End Notes

1 For simplicity, I refer to these as VS 2005 and 2008, without differen-
tiating the .NET platform components, the VS IDE, TFS, or the ALM
components formerly known as Team System. I also skip the dozens
of power tools and releases of Internet Information Services (IIS),
ASP.NET, Silverlight, and so on that shipped in between the major
releases.

2 There are approximately 30 other instances in Microsoft, but I’m
writing here about DevDiv, where I have firsthand experience.

3 You can download the process template we used internally from
http://mpt.codeplex.com/. However, the process templates that we
ship are much leaner, take advantage of the 2010 features, and aren’t
tinged by the internal constraints.

4 Melvin E. Conway, “How Do Committees Invent?” Datamation 14:5
(April, 1968): 28–31, available at www.melconway.com/research/
committees.html. Amazingly, Conway’s law was completely anec-
dotal for 40 years, until empirical validation by Microsoft Research
in Nachiappan Nagappan, Brendan Murphy, and Victor Basili,

End Notes 259

www.melconway.com/research/committees.html
www.melconway.com/research/committees.html
http://mpt.codeplex.com/

ptg7041395

“The Influence of Organizational Structure On Software Quality:
An Empirical Case Study,” January 2008, available at http://
research.microsoft.com/apps/pubs/default.aspx?id=70535.

5 Dave Logan, John King, and Halee Fischer-Wright, Tribal Leadership:
Leveraging Natural Groups to Build a Thriving Organization (New York:
HarperCollins, 2008), 77.

6 Logan, op. cit., 255.

Lessons Learned at Microsoft Developer Division260

http://research.microsoft.com/apps/pubs/default.aspx?id=70535
http://research.microsoft.com/apps/pubs/default.aspx?id=70535

ptg7041395

10
Continuous Feedback

The best way to predict the future is to invent it.1

—Alan C. Kay

261

21

13

2
1 1

3

8
5

Figure 10-1: Fibonacci described his numeric sequence in his Liber Abaci (Book of Calcula-
tion) in 1202. It is now one of the most widely discovered sequences in nature. Its reuse for
estimation (Chapter 3, “Product Ownership”) nearly a millennium later is hardly a
coincidence.2

ptg7041395

By now, I hope I’ve convinced you of three things:

1. The Agile Consensus is empirically sound, practical, and here to
stay.

2. Visual Studio (VS) 2010 provides broad tooling to help you follow
the Agile Consensus practices.

3. And if you do, you can practically improve the flow of value to your
customers, reduce waste, and improve transparency in your soft-
ware development.

This chapter summarizes these points and builds on them, showing you
where VS is going in its next release and how it will help you even further.

Agile Consensus in Action
You’ve now seen the idea of an empirical process model from many lenses.
Scrum puts the idea into action by mandating short sprints, each resulting
in a potentially shippable increment, and ending with a sprint review and
retrospective to inspect and adapt both the output and the process. Figure
10-2 shows a simplified view.

Continuous Feedback262

Sprint
Potentially
Shippable
Increment

Monitor

Product
Backlog

Figure 10-2: The simplest view of the continuous feedback cycle.

ptg7041395

There are many advantages to the virtuous cycle this creates:

1. Continuous integration, validation and deployment. By automat-
ing builds, build verification tests (BVTs), lab deployments, and pro-
duction deployments, you create a regular process that prevents
technical debt from entering the project and accumulating. When
errors arise, they appear and get corrected immediately.

2. Continuous learning. People can retain only so much in their heads.
By batching work into product backlog items (PBIs) and PBIs into
small sprints, all the team players focus more closely on the work at
hand. The entire team learns from each iteration, improving the
accuracy, quality, and suitability of the finished product.

3. Continuous feedback. Stakeholders (customers, users, manage-
ment) see results quickly and become more engaged in the project,
offering more time, insight, and funding. The most energizing phe-
nomenon on a software team is seeing early releases perform (or be
demoed) in action. No amount of spec review can substitute for the
value of working bits.

4. Continuous risk management. In an uncertain business climate, it is
important to review priorities frequently and treat investments as
options. The more transparency you gain through frequent check-
points, the more valuable the options become. To manage risks, you
must prove or disprove your assumptions incrementally, starting
with the highest-risk elements. Small iterations enable you to reduce
the margin of error in your estimates and product backlog.

As cycles get faster, the opportunity to expand this continuous flow of
value grows ever greater.

The Next Version

So far in this book, I have described what is possible with VS 2010. Now I
shift to give you an early look at what will be possible with the next version
of the VS product line. For simplicity, I call it vNext.

The Next Version 263

ptg7041395

Product Ownership and Stakeholder Engagement

Communication with stakeholders is usually an incredibly difficult job for
the product owner. vNext tackles this in two ways, one when envisioning
the product experience and one when collecting feedback on the realized
software.

Storyboarding
As a Product Owner, you can now quickly sketch your ideas as storyboards
to get feedback from stakeholders and to present the user stories or epics
in tangible form to the team. The storyboarding tool is an extension to
PowerPoint, as shown in Figure 10-3. The Storyboarding menu on the rib-
bon gives you access to a palette of useful shapes and animations, and you
can add your own custom shapes for your common user interface (UI)
patterns. The storyboards are attached to PBIs in Team Foundation Server
(TFS).

Because PowerPoint is so familiar, there is nothing special for you to
learn. And because it is already oriented to presentation, no extra work is
required to convert your storyboards into presentations. Remote stake-
holders can add comments directly from the Review ribbon of PowerPoint
with no extra software. As a Product Owner, you can merge multiple files
from different reviewers and preserve the comments.

Continuous Feedback264

ptg7041395

Figure 10-3: The Storyboard Assistant helps you quickly mock up a UI in PowerPoint to
share with stakeholders as a tangible view of a user story. In this example, the Storyboard-
ing Ribbon is visible at the top and the Shapes library for storyboarding at the right. In this
example, a base Windows Phone shape has been dragged onto the slide surface.

Getting Feedback on Working Software
The second half of the stakeholder communication problem is the difficulty
of getting concrete, actionable feedback from stakeholders on potentially
shippable increments at or after the sprint review. In Figure 3-11, I showed
a physical usability lab to gather user feedback on potentially shippable
software, but even when these are available, they involve all the logistics
of appointments and travel. As a result of the shortage of feedback, Product
Owners have had to make decisions about the potentially shippable incre-
ment at the end of the sprint largely in a vacuum. Even when you shipped

Product Ownership and Stakeholder Engagement 265

ptg7041395

the software, you had a hard time deciphering what users were trying to
tell you.

To this end, vNext includes a feedback assistant, a virtual usability lab in
a lightweight TFS client for the stakeholder. As Product Owner, when you
create a request for feedback, TFS generates an email for you, such as
shown in Figure 10-4. The feedback request contains links to the feedback
assistant.

Continuous Feedback266

Figure 10-4: To solicit stakeholder feedback, the Product Owner sends an email, with an
automated hyperlink, and the gesture creates a placeholder for a Feedback work item.

ptg7041395

The feedback assistant lets you collect the controlled usability feedback
from the right stakeholders, similar to what you would get from a physi-
cal lab, but without the hassle or expense. At the same time, vNext auto-
matically tracks the responses against the PBIs as linked work items in TFS
so that all the responses are kept in the right place. In this way, vNext lets
you distribute sprint reviews or collect feedback on each of the PBIs as fin-
ished, well before the end of the sprint. At Microsoft, we’ve started using
this during sprint reviews and design meetings to record the conversations
and make sure none of the ideas get lost.

Balancing Capacity
As you work on a sprint, the team learns more about the tasks to be done
and captures these updates in the sprint backlog. In the past, the main way
of viewing progress and remaining work has been the task burndown
chart. As tasks are added, vNext refreshes capacity immediately for both
the team and the members, as shown in Figure 10-5. Bars show remaining
work against remaining capacity and are colored red or green to indicate
over or under. The Backlog view includes a real-time burndown chart in the
upper right that expands to full screen when clicked.

As always, tasks do not need to be assigned to individuals immediately,
but when they are, the individual’s capacity is immediately updated.

Product Ownership and Stakeholder Engagement 267

ptg7041395

Continuous Feedback268

Figure 10-5: Sprint planning lets you directly enter the tasks for PBIs and see available
capacity for each team member adjusted immediately in the green or red bars.

Managing Work Visually
Of course, team members want to get a visual overview of sprint status.
Manual taskboards with sticky notes have been iconic for collocated Scrum
teams. These have led to comical experience reports of cleaning crews re-
arranging the stickies from the floor and distributed teams feeling out of
touch.

With TFS, now there is one source of truth. The zoomable taskboard,
shown in Figure 10-6, works directly from the data in TFS. If you have geo-
graphically dispersed teams, each team can use a large touch screen on the
same TFS project to update its status.

ptg7041395

Product Ownership and Stakeholder Engagement 269

Figure 10-6: The taskboard updates the status of work items automatically as they are
dragged across columns. The burndown chart in the upper right updates automatically
when you drag the items.

The taskboard contains a row for each PBI, which is shown in the left
column, with a total of its remaining work. Each of the other columns rep-
resents a state for the task work item type, again with cumulative remain-
ing work shown in the header. The individual tasks are shown as cards
with remaining work and owner. As you drag a card from one column to
another, its state is updated and any appropriate rules are run. For example,
if you drag a task to done, remaining work is set to zero automatically. A
tiled burndown chart in the upper right is updated, too, and if you click the
tile, the chart is maximized to give you an overview of progress.

Although the taskboard visualization evolved from Scrum practices,
TFS in vNext provides the taskboard regardless of process template. The
rows and columns adjust according to the schema of the process template

ptg7041395

Figure 10-7: The Team Explorer is now a much simplified hub for everything in the team
project.

Handling Interruptions

One of the greatest sources of waste, error, and frustration is the difficulty
of restoring your concentration after switching tasks. As a developer with

of the team project, effectively enabling you to use the same modern prac-
tices, regardless of your team’s choice of process template, be it Scrum,
Agile, CMMI, or one you have customized for your own circumstances.

Staying in the Groove

vNext is not just about the team, it is also about the individual developer
and tester. Unlike the historical orientation of the VS IDE around just code
and tests, with work item associations made at check-in, vNext creates and
remembers context around work items from the time you start work.

Inside the VS IDE, vNext simplifies the Team Explorer, as shown in Fig-
ure 10-7. It becomes a simple navigational hub to access everything related
to the team project without unnecessary distraction. Note that the first
selection is My Work.

Continuous Feedback270

ptg7041395

Staying in the Groove 271

VS vNext, you can stay in the flow to minimize the impact of interruptions
on your work. vNext helps you do that by organizing your work around
tasks, as shown in Figure 10-8.

Figure 10-8: The My Work pane displays the work item at top that is currently in progress,
with sections below for other active work items not yet started (To Do), and Unfinished and
Under Review items that already have associated shelvesets and workflow.

When you are working, the Team Explorer pane puts the currently
active task at the top of the My Work area. Three default commands apply
to this work item and all of the currently open code and tests: Check In,
Request Review, and Suspend. As you might guess, Check In checks in all
the current changes and resolves this work item as a current changeset, and
then lets you pick the next item off the active To Do list. (The next section
discusses reviews.) When you suspend, TFS automatically creates a
shelveset of all the open changes, attaches it to the in-progress work item,
and moves the work item to the unfinished section of My Work.

ptg7041395

In this way, you can switch to a different task (for example, a high-
priority bug or special-request task) and preserve all the context of the pre-
vious work item, with its code, tests, and IDE settings. You can handle the
interruption, and when you’re done, you can click the suspended task in
the unfinished area, and the IDE state is restored to the state exactly as you
had it before.

Collaborating on Code
As before, work items are also the basis of collaboration, but vNext simpli-
fies the workflow. When you pick Request Review from the Team Explorer,
as shown in Figure 10-8, a Code Review Request work item is created and
associated with a shelveset of all your open changes and assigned to your
designated reviewers. In your Team Explorer, you will see the item move to
the Under Review section.

A reviewer you have designated will see a review request. The reviewer
will probably suspend any active work and then open the review request.
The Team Explorer shows comments you’ve made for the reviewers, and
the code document shows changes colored in adjacent lines, as shown in
Figure 10-9, or in side-by-side windows, depending on preferences. The
reviewers can annotate the code further and resolve the code review, reas-
signing it to you. Of course, when you open the review, as with a sus-
pended item, all the appropriate shelveset files open within the right
solution.

Continuous Feedback272

ptg7041395

Staying in the Groove 273

Figure 10-9: A designated reviewer sees the shelveset with the colored code changes and
review comments. The reviewer can edit or annotate the shelveset further, and when done,
the changes and comments are automatically returned to the requestor and the correspon-
ding work item updated.

Cleaning Up the Campground
Bob Martin famously advised developers to follow the Boy Scout rule of
“Leave the campground cleaner than you found it” when handling code.3

Martin was observing that, much of the time, developers have to maintain
code that they did not create. When you do, you should exercise the same
pride of craftsmanship that you exercise with your own code.

When you maintain existing code, however, it is often hard to under-
stand what to change and what side effects you might cause, as discussed
in Chapter 5, “Architecture.” Indeed, one of the nastiest characteristics of
working with old code is not knowing whether you have fixed a problem
everywhere you need to.

This happens because old code is often highly redundant. Your prede-
cessors may not have refactored diligently, but instead resorted to copy and
paste. In other words, often they just repeated lines of source, instead of
neatly extracting every duplicate method. (Remember the fallacy of

ptg7041395

rewarding developers for lines of code discussed in Chapter 4, “Running
the Sprint”?)

vNext helps you with this problem. It has a new command to find clones
of selected code, as shown in Figure 10-10. Clones are either exact matches
or semantically equivalent patterns (for example, with renamed methods
and renamed parameters). In this way, if you plan to fix code in one spot, you
can instantly search for all similar occurrences. By finding the clones, you can
extract duplicates to a single method, fix the code once, and keep it fixed.

Continuous Feedback274

Figure 10-10: The output window from Code Clone Analysis shows all the locations of
matches for a selected piece of code.

Removing clones is an obvious case where you apply the Red-Green-
Refactor cycle described in Chapter 6, “Development,” although with a
slight twist. Because you have the code, you want to write the unit tests that
validate the current behavior, and using coverage, ensure that they do
cover the existing code well. Then you have a better safety net for extract-
ing the duplicate code into a unique method that can be called from the
repeat occurrences. After each refactor, you can run the unit tests. In fact,
to help keep you in the groove, vNext automatically runs the unit tests in
the background for you after each code change.

ptg7041395

Testing to Create Value

Chapter 8, “Test,” stressed the importance of exploratory testing to discover
acceptance criteria for a PBI. As shown in Figure 10-11, vNext has extended
the testing experience to include an explicit exploratory test session. When
you are in an exploratory session, the diagnostic data adapters are running
and recording your actions, and you can pause at any point to capture the
last n actions as the repro steps for a bug or needed steps for a test case.

Testing to Create Value 275

Figure 10-11: Exploratory testing allows you to file a bug or test case by selecting back-
ward in time the number of steps to include as the appropriate repro sequence.

TFS in the Cloud

I’ve saved the most significant for last. The largest transformation of com-
puting since the Internet explosion is the cloud. Microsoft’s cloud offering is
Windows Azure, and we have been moving TFS to Windows Azure to
make it available as a software as a service (SaaS) offering. Figure 10-12
shows an example.

ptg7041395

Continuous Feedback276

Figure 10-12: Team Foundation Server on Windows Azure looks like TFS on premise, except
for the difference in the URL.

Other than the URL, TFS on Azure does not look very different from TFS
on premise. In the initial release, the cloud release will contain some func-
tional gaps. However, in the fullness of time, the Azure architecture will
become the dominant code line and will supersede its predecessor. Most
important, the hosted TFS is now up and running with a 0.999 service level
agreement (SLA),4 which effectively means that from now it will be per-
manently up and available worldwide for any team that signs up.

Conclusion

I’ve just offered a whirlwind tour of many of the capabilities of VS vNext.
Not surprisingly, vNext extends our vision of enabling a continuous flow of
value. You can think of the flow in terms of two measures:

ptg7041395

1. How long does it take from an idea entering the product backlog to
the availability of working software in the user’s hands? In standard
Lean terminology, this is cycle time.

2. How long does it take from the discovery of a problem in produc-
tion to the availability of fixed working software in the user’s
hands? This is commonly called mean time to repair (MTTR).5

These two measures are shown in Figure 10-13. All the activities described
in this book support reducing these metrics, but the quantum improvement
is when you can see the total impact on flow together.

Conclusion 277

Sprint
Potentially
Shippable
Increment

Cycle Time

Mean time to
Repair

Monitor

Product
Backlog

Figure 10-13: Cycle time and MTTR are the two key end-to-end measures of the flow of value.

ptg7041395

These are the ultimate measures of continuous flow. The transformation
of computing to cloud platforms, such as Windows Azure, is going to accel-
erate these flows and make the end-to-end measures ever more important.
The pressure to increase transparency, reduce waste, and improve flow of
value shown in Figure 1-2 will be more intense than ever. Not only will the
most sophisticated Web sites practice continuous delivery, but the cloud
will also help democratize the practice broadly and demand that we all
practice continuous feedback, as described previously.

Living on the Edge of Chaos
The Great Recession changed many perspectives. At the beginning of this
book, I cited the 2009 bankruptcies of Detroit manufacturers who had failed
to catch up to Lean. Toyota, however, had its own surprises. It had mas-
tered Lean, but not Agile. In the terminology of the Stacey Matrix of Figure
1-1, it adapted to a complicated world, but not a complex one. When safety
problems became apparent with cars in use, Toyota stumbled in a massive
recall and PR blunder. Here’s what the New York Times reported:

“The very culture that works so well for [Toyota] when things are
stable and predictable really doesn’t work when you’re dealing with
a fast-paced crisis,” Jeremy Anwyl, the chief executive of the vehicle
information Web site Edmunds.com, said.6

The Great Recession changed how many of us look at software practices,
too. This period of economic crisis flipped the perspective on Agile prac-
tices from let’s wait and see to we can’t afford not to. Everything wasteful,
everything contextual not core, everything not central to the customer’s
definition of value suddenly became superfluous.

Welcome to the edge of chaos. For the foreseeable future, we will be
applying new technology as fast as we can. We will try to stay ahead of
ambiguous customer desires as insightfully as we can. We will use contin-
uous feedback loops to adjust as frequently as we can. The shorter our
sprints, the more opportunities we have to inspect and adapt.

Continuous Feedback278

ptg7041395

Figure 10-14: In chaos theory, the butterfly effect is the phenomenon of extreme sensitivity
in a system to initial conditions, such as weather, leading to unpredictability. The only prac-
tical approach is to frequently inspect and adapt.7

End Notes

1 Alan C. Kay, “Predicting The Future,” Stanford Engineering 1:1
(Autumn 1989), 1–6, www.ecotopia.com/webpress/futures.htm.

2 http://www.aishdas.org/gallery/fibonac_8.gif and http://www.
mathacademy.com/pr/prime/articles/fibonac/index.asp

3 Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsman-
ship (Prentice Hall, 2008), 14.

4 0.999 translates to 40 minutes downtime for maintenance per month.
5 There is an equally important use of MTTR as mean time to recov-

ery, which is strictly in operations, keeping the site up so that the
user does not experience the failure again. This may be done by
masking the root cause (for example, by rebooting after a period of
time, rather than by fixing the underlying problem).

Conclusion 279

www.ecotopia.com/webpress/futures.htm
http://www.aishdas.org/gallery/fibonac_8.gif
http://www.mathacademy.com/pr/prime/articles/fibonac/index.asp
http://www.mathacademy.com/pr/prime/articles/fibonac/index.asp

ptg7041395

6 Nick Bunkley, “Recall Study Finds Flaws at Toyota,” New York Times,
May 23, 2011, B1.

7 http://en.wikipedia.org/wiki/File:Lorenz_attractor_yb.svg

Continuous Feedback280

http://en.wikipedia.org/wiki/File:Lorenz_attractor_yb.svg

ptg7041395

Index

281

A
acceptance testing. See testing
accessibility, 65
action logs, 13
actionable test results, 212-213
activity diagrams, 114
advantages of Visual Studio 2010, xix-xxii
Agile Alliance, 2
Agile Consensus

advantages of, 2-3, 15
architecture, 100

dependency graphs, 103-106
diagram extensibility, 119-121
emergent architecture, 100-101
layer diagrams, 109-112
maintainability, 102-103
modeling projects, 113-119
sequence diagrams, 106-108
transparency, 101-102

builds
automated builds, 179-180
build agents, 183-185
build definitions, maintaining, 183
Build Quality Indicators report,

168-169
Build reports, 181-182
BVTs (build verification tests),

146-147, 181, 246
CI (continuous integration), 177-179
cycle time, 174-175
daily builds, 180
done, definition of, 35, 80, 175-177
elimination of waste, 196-200
failures, 199-200

continuous feedback cycle
advantages of, 263
illustration, 262

descriptive metrics, 81-86
development. See development
empirical process control, 75-76

empirical process models, 4
flow, 8
multiple dimensions of project health, 86
origins of, 1-2
principles of, 4-6
product ownership. See product

ownership
rapid estimation, 78-81
Scrum

explained, 6
potentially shippable increments, 7
product backlog, 8-9
reduction of waste, 9-13
technical debt, 11-12
transparency, 11
user stories, 8

Scrum mastery, 76-77
self-managing teams, 13-14
team size, 77
testing in, 204

exploratory testing, 206
flow of value, 205
reduction of waste, 206-207
transparency, 207

transparency, 5
Agile Management for Software Engineering

(Anderson), 8
analysis paralysis, 29-30
Anderson, David J., 8, 38
architecture, 100

dependency graphs, 103-106
diagram extensibility, 119-121
emergent architecture, 100-101
layer diagrams, 109-112
maintainability, 102-103
modeling projects, 113

activity diagrams, 114
class diagrams, 115-116
component diagrams, 115
Model Links, 117-119
sequence diagrams, 115

ptg7041395

UML Model Explorer, 116-117
use case diagrams, 114

sequence diagrams, 106-108
transparency, 101-102

attractiveness, 65
Austin, Robert, 81
automated builds, 179-180
automated deployment, 190-196
automated testing, 219-220

coded UI tests, 220-221
equivalence classes, 223-224
Web performance tests, 221-223

automatic code analysis, 148-149
availability, 66

B
backlogs

iteration backlog, 251-253
product backlog, 8-9, 24

Microsoft Developer Division case
study, 249-251

PBIs (product backlog items),
174-175, 196-197

problems solved by, 47-50
testing product backlog items,

207-211
sprint backlog, 27-28

balancing capacity, 267
baseless merges, 165-166
Beck, Kent, 10, 135, 203
Beizer, Boris, 216
Boehm, Barry, 26, 39
bottom-up cycles, 30
branching, 162-166

branch visualization, 248
branching by release, 163

Brandeis, Louis, 11
broken windows’ effect, 85-86
Brooks, Frederick, 45-46
Brown, Tim, 58
Bug Ping-Pong, 12-13
bugs

debugging
Multi-Tier Analysis, 156
operational issues, 155-156
performance errors, 156-160
profiling, 156-160
with IntelliTrace, 152-154

handling, 28-29, 218-219
Bugs dashboard, 90-91
build check-in policy, 133-134
build process templates, 183
Build Quality Indicators report, 168-169
Build reports, 181-182
Build Success Over Time report, 200
build verification tests (BVTs), 146-147, 181, 246
builds. See also deployment

automated builds, 179-180
build agents, 183-185
build definitions, maintaining, 183

Build Quality Indicators report, 168-169
Build reports, 181-182
BVTs (build verification tests), 146-147,

181, 246
CI (continuous integration), 177-179
cycle time, 174-175
daily builds, 180
done, definition of, 35, 80, 175-177
elimination of waste

detecting inefficiencies, 198-200
integrating code and tests, 197-198
PBIs (product backlog items), 196-197

failures, 199-200
Builds dashboard, 93-94
Burndown dashboard, 87-88
business background (Microsoft Developer

Division case study)
culture, 241-243
debt crisis, 244-245
waste, 243

business value problem, 47
butterfly effect, 279
BVTs (build verification tests), 146-147, 181, 246

C
Capability Maturity Model Integration

(CMMI), 22
capacity, balancing, 267
catching errors at check-in, 128-130

build check-in policy, 133-134
changesets, 129
check-in policies, 131-132
gated check-in, 132-134
shelving, 134-135

Change by Design (Brown), 58
changesets, 129
chaos theory, 279
check-in policies, 30-31, 131-132
check-in, catching errors at, 128-130

build check-in policy, 133-134
changesets, 129
check-in policies, 30-31, 131-132
gated check-in, 132-134
shelving, 134-135

choosing dashboards, 94-95
CI (continuous integration), 177-179
class diagrams, 115-116
classic continuous integration (CI), 177
clones, finding, 273-274
cloud, TFS (Team Foundation Server) on,

275-276
CMMI (Capability Maturity Model

Integration), 22
Cockburn, Alistair, 19
code coverage, 141-142
Code Review Requests, 272
code reviews

automatic code analysis, 148-149
manual code reviews, 151

code, collaborating on, 272

INDEX282

ptg7041395

coded UI tests, 220-221
Cohn, Mike, 26, 54, 97
collaborating on code, 272
compatibility, 65
component diagrams, 115
concurrency, 65
configuration testing, 187-190
conformance to standards, 67
continuous feedback cycle

advantages of, 263
illustration, 262

continuous integration (CI), 177-179
correction, 10
Create Bug feature, 214-215
crowds, wisdom of, 80
CTPs (customer technical previews), 246
culture (Microsoft Developer Division case

study), 241-243
cumulative flow diagrams, 198-199
customer technical previews (CTPs), 246
customer validation, 62-63
customer value problem, 47-48
customizing dashboards, 94-95
cycle time, 174-175

D
daily builds, 180
daily cycle, 33-35
daily stand-up meeting, 33, 77
dashboards

Bugs, 90-91
Builds, 93-94
Burndown, 87-88
choosing, 94-95
customizing, 94-95
importance of, 86
Quality, 88, 90
Test, 91-93

DDAs (diagnostic data adapters), 212
debugging

with IntelliTrace, 152-154
Multi-Tier Analysis, 156
operational issues, 155-156
performance errors, 156-160
profiling, 156-160

defined process control, 75
defined process model, 2
dependency graphs, 103-106
deployment test labs

automating deployment and test, 190-196
configuration testing, 187-190
setting up, 185-186

descriptive metrics, 81-86
design thinking, 58-60
desirability, 59
detecting inefficiencies, 198-200
DevDiv. See Microsoft Developer Division

case study
Developer Division. See Microsoft Developer

Division case study

development, 126
branching, 162-166
catching errors at check-in, 128-130

build check-in policy, 133-134
changesets, 129
check-in policies, 131-132
gated check-in, 132-134
shelving, 134-135

common problems, 127-128
debugging

IntelliTrace, 152-154
Multi-Tier Analysis, 156
operational issues, 155-156
performance errors, 156-160
profiling, 156-160

Eclipse Team Explorer Everywhere (TEE)
plug-in, 167

merging, 165
sprint cycle, 127
TDD (test-driven development)

advantages of, 136-138
BVTs (build verification tests),

146-147
code coverage, 141-142
code reviews, 148-151
explained, 135-136
generating tests for existing code,

138-140
Red-Green-Refactor, 136
test impact analysis, 143
variable data, 144-145

TFS Power Tools, 167-168
transparency, 168-169
versioning, 160-161

DGML (Directed Graph Markup
Language), 121

diagnostic data adapters (DDAs), 212
diagrams

activity diagrams, 114
class diagrams, 115-116
component diagrams, 115
cumulative flow diagrams, 198-199
extensibility, 119-121
layer diagrams, 109-112
Model Links, 117-119
sequence diagrams, 106-108, 115
use case diagrams, 114

dimensions of project health, 86.
See also dashboards

Directed Graph Markup Language
(DGML), 121

discoverability, 65
dissatisfiers, 55
distortion, preventing, 84
documentation, 41
done

definition of, 35, 80, 175-177
Microsoft Developer Division case study,

246-248

INDEX 283

ptg7041395

E
ease of use, 65
Eclipse Team Explorer Everywhere (TEE)

plug-in, 167
efficiency, 65
Ekobit TeamCompanion, 95
eliminating waste

detecting inefficiencies, 198-200
integrating code and tests, 197-198
PBIs (product backlog items), 196-197

emergent architecture, 100-101
empirical process control, 75-76
empirical process models, 4
enforcing permissions, 23
engineering principles (Microsoft Developer

Division case study), 254
epics, 54
equivalence classes, 223-224
errors, catching at check-in, 128-130

build check-in policy, 133-134
changesets, 129
check-in policies, 131-132
gated check-ins, 132-134
shelving, 134-135

exciters, 55
experiences (Microsoft Developer Division case

study), 250
exploratory testing, 206, 216-218, 275
extensibility (diagrams), 119-121
extra processing, 10

F
failures (build), 199-200
fault model, 233
fault tolerance, 65
feasibility, 59
feature crews (Microsoft Developer Division

case study), 246
features (Microsoft Developer Division case

study), 250
feedback

continuous feedback cycle
advantages of, 263
illustration, 262

in next version of VS product line, 265-267
feedback assistant, 265-267
Fibonacci sequence, 78, 261
15-minute daily scrum, 33, 77
finding clones, 273-274
fitting processes to projects, 39

documentation, 41
geographic distribution, 40
governance, risk management, and

compliance (GRC), 41
project switching, 41-42

flow, 8
cumulative flow diagrams, 198-199
flow of value, testing and, 205

forming-storming-norming-performing, 51
Franklin, Benjamin, 128, 239

full-motion video, 13
functionality, 75
FXCop, 148

G
Garlinghouse, Brad, 47
gated check-in (GC), 31, 132-134, 177-178, 248
General Motors (GM), 15
generating tests for existing code, 138-140
geographic distribution, 40
GM (General Motors), 15
granularity of requirements, 67-68
graphs, dependency, 103-106
GRC (governance, risk management, and

compliance), 41
Great Recession, impact on software

practices, 278

H-I
Haig, Al, 255
Howell, G., 73

inefficiencies, detecting, 198-200
installability, 66
integration

integrating code and tests, 197-198
Microsoft Developer Division case study,

247-248
IntelliTrace, 13, 152-154
interoperability, 67
interruptions, handling, 270-272
iron triangle, 75
isolation (Microsoft Developer Division case

study), 247-248
iteration backlog (Microsoft Developer Division

case study), 251-253

K-L
Kanban, 38
Kano analysis, 55-58
Kay, Alan C., 99, 261
Koskela, L., 73

Lab Management, xxiii
layer diagrams, 109-112
Lean, 1
Liber Abaci (Fibonacci), 261
lightweight methods, 2
links, Model Links, 117-119
load modeling, 226
load testing

diagnosing performance problems with,
229-230

example, 226-228
explained, 225
load modeling, 226
output, 228-229

Logan, Dave, 242, 258
logs, 13

INDEX284

ptg7041395

M
The Machine That Changed the World

(Womack), 1
maintainability, 66

build agents, 183-185
build definitions, 183
designing for, 102-103

manageability, 66-67
managing work visually, 268-270
manual code reviews, 151
Martin, Bob, 273
McConnell, Steve, 75
Mean Time to Recover (MTTR), 66
mean time to repair (MTTR), 277
merging, 165
metrics, descriptive versus prescriptive, 81-86
Microsoft Developer Division case study, 240

culture, 241-243
debt crisis, 244-245
done, definition of, 246-248
engineering principles, 254
feature crews, 246
future plans, 259
integration and isolation, 247-248
iteration backlog, 251-253
management lesson, 258
MQ (milestone for quality), 245-246
product backlog, 249-251
results, 254-255
scale, 240
timeboxes, 246
unintended consequences, 255-258
waste, 243

Microsoft Outlook, managing sprints from, 95
Microsoft Test Manager. See MTM (Microsoft

Test Manager)
milestone for quality (MQ), 245-246
Model Explorer, 116-117
Model Links, 117-119
modeling projects, 113

activity diagrams, 114
class diagrams, 115-116
component diagrams, 115
Model Links, 117-119
sequence diagrams, 115
UML Model Explorer, 116-117
use case diagrams, 114

Moles, 139
monitorability, 66
Moore, Geoffrey, 52
motion, 10
MQ (milestone for quality), 245-246
MSF Agile process template, 22
MSF for CMMI Process Improvement process

template, 22
MTM (Microsoft Test Manager), 32, 207-211

actionable test results, 212-213
Create Bug feature, 214-215
DDAs (diagnotic data adapters), 212
exploratory testing, 216-218

query-based suites, 209
Recommended Tests, 209-210
Shared Steps, 211
test data, 211
test plans, 209
test settings, 213
test steps, 211
test suites, 209

MTTR (Mean Time to Recover), 66
MTTR (mean time to repair), 277
muda, 9-10
Multi-Tier Analysis, 156
multiple dimensions of project health, 86.

See also dashboards
mura, 9-10
muri, 9-10
must-haves, 55

N-O
negative testing, 206
Newton’s Cradle, 125
“No Repro” results, eliminating, 214-215

Ohno, Taiichi, 10, 37
operability, 66
operational issues, 155-156
Outlook, managing sprints from, 95
overburden, 10
overproduction, 10

P
pain points, 53
paper prototyping, 59
PBIs (product backlog items), 24, 174-175,

196-197
Peanut Butter Manifesto, 47
peanut buttering, 249
performance, 64-65

performance problems, diagnosing,
229-230

tuning, 156-160
Web performance tests, 221-222

perishable requirements problem, 49-50
permissions, enforcing, 23
personal development preparation, 30
personas, 52
pesticide paradox, 216
The Pet Shoppe, 47
Pex, 139
planning

Planning Poker, 78-80
releases, 51-54

business value, 52
customer value, 52-53
pain points, 53
scale, 54
user story form, 54
vision statements, 53

sprints, 77
Planning Poker, 78-81

INDEX 285

ptg7041395

PMBOK (Project Management Body of
Knowledge), 3, 69

policies
build check-in policy, 133-134
check-in policies, 31, 131-132

Poppendieck, Tom, 9
portability, 67
potentially shippable increments, 7, 26, 126
PowerPoint, 62
PreFAST, 148
prescriptive metrics, 81-86
preventing distortion, 84
privacy, 64
process cycles, 23-24

bottom-up cycles, 30
check-in, 30-31
daily cycle, 33-35
definition of done at every cycle, 35
personal development preparation, 30
releases, 24-26
sprints

avoiding analysis paralysis, 29-30
explained, 26-27
handling bugs, 28-29
retrospectives, 36
reviews, 36
sprint backlogs, 27-28

test cycle, 31-32
process enactment, 20
process models

defined process model, 2
empirical process models, 4

process templates, 21-22
processes, fitting to projects, 39

documentation, 41
geographic distribution, 40
governance, risk management, and

compliance (GRC), 41
project switching, 41-42

product backlog, 8-9
Microsoft Developer Division case study,

249-251
experiences, 250
features, 250
scenarios, 250

PBIs (product backlog items), 24, 174-175,
196-197

problems solved by
business value problem, 47
customer value problem, 47-48
perishable requirements problem,

49-50
scope creep problem, 48

testing product backlog items, 207-211
Product Owners, 22. See also producct

ownership
product ownership, 256

customer validation, 62-63
design thinking, 58-60

explained, 46-47, 50
granularity of requirements, 67-68
in next version of VS product line

balancing capacity, 267
feedback assistant, 265-267
storyboarding, 264
taskboard visualization, 268-270

Kano analysis, 55-58
qualities of service (QoS), 63-64

manageability, 66-67
performance, 64-65
security and privacy, 64
user experience, 65

release planning, 51-54
business value, 52
customer value, 52-53
pain points, 53
scale, 54
user story form, 54
vision statements, 53

storyboarding, 60-62
work breakdown, 68-70

production-realistic test environments, 230-231
profiling, 156-160
Project Creation Wizard, 21
Project Management Body of Knowledge

(PMBOK), 3, 69
project switching, 41-42
projects, fitting processes to, 39

documentation, 41
geographic distribution, 40
governance, risk management, and

compliance (GRC), 41
project switching, 41-42

Q-R
QoS (qualities of service), 63-64

manageability, 66-67
performance, 64-65
security and privacy, 64
user experience, 65

quality, 75
Quality dashboard, 88-90
quality gates, 247
quantities, comparison of, 79
query-based suites, 209
Quick Cluster, 106

rapid cognition, 79
Rapid Development (McConnell), 75
rapid estimation, 78-81
Reagan, Ronald, 255
Recommended Tests, 209-210
recoverability, 66
Red-Green-Refactor, 136
reduction of waste, 9-10

Bug Ping-Pong, 12-13
Taiichi Ohno’s taxonomy of waste, 10
testing and, 206-207

INDEX286

ptg7041395

releases
explained, 23-26
planning, 51-54

business value, 52
customer value, 52-53
pain points, 53
scale, 54
user story form, 54
vision statements, 53

reliability, 66
reporting, 231-232

Build Quality Indicators report, 168-169
Build reports, 181-182
Build Success Over Time report, 200

resources, 75
responsiveness, 65
results (Microsoft Developer Division case

study), 254-255
retrospectives (sprint), 36, 77
reviews (sprint), 36, 77
Ries, Eric, 173
risk-based testing, 232-235
roles

Product Owner, 22
customer validation, 62-63
design thinking, 58-60
explained, 46-50
granularity of requirements, 67-68
Kano analysis, 55-58
qualities of service (QoS), 63-67
release planning, 51-54
storyboarding, 60-62
work breakdown, 68-70

Scrum Master, 22
Team of Developers, 22

Romer, Paul, 1

S
SaaS (software as a service), 275
satisfiers, 55
scalability, 65
scale, 54, 240
scenarios, 250
Schema Compare, 161
Schwaber, Ken, 3, 15, 24, 97
scope creep, 48
screenshots, 13
Scrum

daily cycle, 33-35
explained, 6
Planning Poker, 78-80
potentially shippable increments, 7, 126
product backlog, 8-9
product ownership

customer validation, 62-63
design thinking, 58-60
explained, 46-47, 50
granularity of requirements, 67-68
Kano analysis, 55-58
qualities of service (QoS), 63-67

release planning, 51-54
storyboarding, 60-62
work breakdown, 68-70

reduction of waste, 9-10
Bug Ping-Pong, 12-13
Taiichi Ohno’s taxonomy of waste, 10
testing and, 206-207

releases, 23-26, 51-54
Scrum Guide, 24, 77
Scrum mastery, 76-77
sprints, 23, 30

avoiding analysis paralysis, 29-30
definition of, 77
explained, 26-27
handling bugs, 28-29
planning, 77
retrospectives, 36, 77
reviews, 36, 77
sprint backlogs, 27-28

task boards, 36-38
team size, 77
teams, 22-23
technical debt, 11-12
transparency, 11
user stories, 8

Scrum Guide, 24, 77
Scrum Master, 22
Scrum process template, 21
security, 64
security testing, 235
self-managing teams, 13-14
sequence diagrams, 106-108, 115
serviceability, 67
Shared Steps, 211, 220
shelving, 134-135
size of teams, 77
Sketchflow, 62
software as a service (SaaS), 275
software under test (SUT), 219
sprint backlogs, 27-28
sprints, 23, 30

avoiding analysis paralysis, 29-30
definition of, 77
done, 80
explained, 26-27
handling bugs, 28-29
managing

with dashboards. See dashboards
with Microsoft Outlook, 95

planning, 77
Planning Poker, 78-80
retrospectives, 36, 77
reviews, 36, 77
sprint backlogs, 27-28
sprint cycle, 127

Stacey Matrix, 3
Stacey, Ralph D., 3
standards, conformance to, 67
static code analysis, 148-149
story points, 78

INDEX 287

ptg7041395

story-point estimation, 78-80
storyboarding, 60-62, 264
Strategic Management and Organisational

Dynamics (Stacey), 3
stubs, 139
SUT (software under test), 219
Sutherland, Jeff, 24
system configurations, 13

T
task boards, 36-38
taskboard visualization, 268-270
TDD (test-driven development)

advantages of, 136-138
BVTs (build verification tests), 146-147
code coverage, 141-142
code reviews

automatic code analysis, 148-149
manual code reviews, 151

explained, 135-136
generating tests for existing code, 138-140
Red-Green-Refactor, 136
test impact analysis, 143
variable data, 144-145

Team Explorer, xxiii
Team Explorer Everywhere (TEE), xxiii, 167
Team Foundation Server. See TFS
Team of Developers, 22
team projects, 20
TeamCompanion, 95
teams, 22-23

self-managing teams, 13-14
size of, 77

technical debt, 11-12, 244-245
TEE (Team Explorer Everywhere), xxiii, 167
templates, process templates, 21-22
Test dashboard, 91-93
test-driven development. See TDD
test impact analysis, 143
Test Management Approach (TMap), 22
testability, 67
testing. See also debugging

in Agile Consensus, 204
exploratory testing, 206
flow of value, 205
reduction of waste, 206-207
transparency, 207

automated testing, 219-220
coded UI tests, 220-221
equivalence classes, 223-224
Web performance tests, 221-223

exploratory testing, 275
fault model, 233
integrating code and tests, 197-198
load testing

diagnosing performance problems
with, 229-230

example, 226-228
explained, 225

load modeling, 226
output, 228-229

MTM (Microsoft Test Manager), 207-211
actionable test results, 212-213
Create Bug feature, 214-215
DDAs (diagnostic data adapters), 212
exploratory testing, 216-218
query-based suites, 209
Recommended Tests, 209-210
Shared Steps, 211
test data, 211
test plans, 209
test settings, 213
test steps, 211
test suites, 209

negative testing, 206
production-realistic test environments,

230-231
reporting, 231-232
risk-based testing, 232-235
security testing, 235
SUT (software under test), 219
TDD (test-driven development)

advantages of, 136-138
BVTs (build verification tests),

146-147
code coverage, 141-142
code reviews, 148-151
explained, 135-136
generating tests for existing code,

138-140
Red-Green-Refactor, 136
test impact analysis, 143
variable data, 144-145

test automation, 257
test category, 146
test configurations, 188
test cycle, 31-32
test data, 211
test labs

automating deployment and test,
190-196

configuration testing, 187-190
setting up, 185-186

test plans, 209
test settings, 213
test steps, 211
test suites, 209

TFS (Team Foundation Server), 20
explained, xxiii-xxv
fitting processes to projects, 39

documentation, 41
geographic distribution, 40
governance, risk management, and

compliance (GRC), 41
project switching, 41-42

Power Tools, 167-168
process cycles, 23

bottom-up cycles, 30
check-in, 30-31

INDEX288

ptg7041395

daily cycle, 33-35
definition of done at every cycle, 35
personal development

preparation, 30
releases, 24-26
sprints, 26-30
test cycle, 31-32

on Windows Azure, 275-276
themes, 54
time, 75
timeboxes (Microsoft Developer Division case

study), 246
TMap (Test Management Approach), 22
tours, 206
Toyota, 1, 14, 37
transparency, 5, 11

architecture, 101-102
development, 168-169
testing and, 207

Tribal Leadership (Logan et al), 242
tuning performance, 156-160
Turner, Richard, 39

U
UML

activity diagrams, 114
class diagrams, 115-116
component diagrams, 115
Model Explorer, 116-117
sequence diagrams, 115
use case diagrams, 114

“The Underlying Theory of Project
Management Is Obsolete” (Koskela and
Howell), 73

uninstallability, 66
unintended consequences (Microsoft Developer

Division case study), 255-258
unreasonableness, 10
use case diagrams, 114
user experience, 65
user stories, 8
User Stories Applied: For Agile Software

Development (Cohn), 54
user story form, 54

V
validation, customer, 62-63
variable data, 144-145
Vasa, 48
velocity, 80
version skew, preventing

branching, 162-166
merging, 165
versioning, 160-161

versioning, 160-161
viability, 59
virtual machine snapshots, 13
vision statements, 53

Visual Studio Premium, xxiii
Visual Studio Test Professional, xxiii
Visual Studio. See VS
visualization, taskboard, 268-270
vNext (next version of VS product line), 263

balancing capacity, 267
clones, finding, 273-274
Code Review Requests, 272
exploratory testing, 275
feedback assistant, 265-267
impact on flow of value, 276-278
interruptions, handling, 270-272
storyboarding, 264
taskboard visualization, 268-270
Team Foundation Server on Windows

Azure, 275-276
VS (Visual Studio)

process enactment, 20
process templates, 21-22
vNext (next version of VS product

line), 263
balancing capacity, 267
clones, finding, 273-274
Code Review Requests, 272
exploratory testing, 275
feedback assistant, 265-267
impact on flow of value, 276-278
interruptions, handling, 270, 272
storyboarding, 264
taskboard visualization, 268-270
Team Foundation Server on

Windows Azure, 275-276

W-X-Y-Z
waiting, 10
waste

eliminating
detecting inefficiencies, 198-200
integrating code and tests, 197-198
PBIs (product backlog items), 196-197

Microsoft Developer Division case
study, 243

reducing, 9-10
Bug Ping-Pong, 12-13
Taiichi Ohno’s taxonomy of waste, 10
testing and, 206-207

Web performance tests, 221-223
Weinberg, Gerald, 41
Wideband Delphi Method, 26
Windows Azure, TFS (Team Foundation Server)

on, 275-276
WIP (work-in-progress) limits, 38
wizards, Project Creation Wizard, 21
Womack, Jim, 1, 15
work breakdown, 68-70
work item types, 21
work-in-progress (WIP) limits, 38
world readiness, 65

INDEX 289

	Contents
	Foreword
	Preface
	Acknowledgements
	About the Authors
	1 The Agile Consensus
	The Origins of Agile
	Agile Emerged to Handle Complexity
	Empirical Process Models
	A New Consensus
	Scrum
	Potentially Shippable
	Increasing the Flow of Value in Software
	Reducing Waste in Software
	Transparency
	Technical Debt

	An Example
	Self-Managing Teams
	Back to Basics

	Summary
	End Notes

	2 Scrum, Agile Practices, and Visual Studio
	Visual Studio and Process Enactment
	Process Templates
	Teams

	Process Cycles and TFS
	Release
	Sprint
	Bottom-Up Cycles
	Personal Development Preparation
	Check-In
	Test Cycle
	Definition of Done at Every Cycle

	Inspect and Adapt
	Task Boards
	Kanban
	Fit the Process to the Project
	Geographic Distribution
	Tacit Knowledge or Required Documentation
	Governance, Risk Management, and Compliance
	One Project at a Time Versus Many Projects at Once

	Summary
	End Notes

	3 Product Ownership
	What Is Product Ownership?
	The Business Value Problem: Peanut Butter
	The Customer Value Problem: Dead Parrots
	The Scope-Creep Problem: Ships That Sink
	The Perishable Requirements Problem: Ineffective Armor

	Scrum Product Ownership
	Release Planning
	Business Value
	Customer Value
	Exciters, Satisfiers, and Dissatisfiers: Kano Analysis
	Design Thinking
	Customer Validation

	Qualities of Service
	Security and Privacy
	Performance
	User Experience
	Manageability

	How Many Levels of Requirements
	Work Breakdown

	Summary
	End Notes

	4 Running the Sprint
	Empirical over Defined Process Control
	Scrum Mastery
	Team Size
	Rapid Estimation (Planning Poker)
	A Contrasting Analogy

	Use Descriptive Rather Than Prescriptive Metrics
	Prevent Distortion
	Avoid Broken Windows

	Answering Everyday Questions with Dashboards
	Burndown
	Quality
	Bugs
	Test
	Build

	Choosing and Customizing Dashboards
	Using Microsoft Outlook to Manage the Sprint
	Summary
	End Notes

	5 Architecture
	Architecture in the Agile Consensus
	Inspect and Adapt: Emergent Architecture
	Architecture and Transparency
	Design for Maintainability

	Exploring Existing Architectures
	Understanding the Code
	Maintaining Control
	Understanding the Domain

	Summary
	End Notes

	6 Development
	Development in the Agile Consensus
	The Sprint Cycle
	Smells to Avoid in the Daily Cycle

	Keeping the Code Base Clean
	Catching Errors at Check-In
	Shelving Instead of Checking In

	Detecting Programming Errors Early
	Test-Driven Development Provides Clarity
	Catching Programming Errors with Code Reviews, Automated and Manual

	Catching Side Effects
	Isolating Unexpected Behavior
	Isolating the Root Cause in Production
	Tuning Performance

	Preventing Version Skew
	What to Version
	Branching
	Working on Different Versions in Parallel
	Merging and Tracking Changes Across Branches
	Working with Eclipse or the Windows Shell Directly

	Making Work Transparent
	Summary
	End Notes

	7 Build and Lab
	Cycle Time
	Defining Done
	Continuous Integration
	Automating the Build
	Daily Build
	BVTs
	Build Report
	Maintaining the Build Definitions
	Maintaining the Build Agents

	Automating Deployment to Test Lab
	Setting Up a Test Lab
	Does It Work in Production as Well as in the Lab?
	Automating Deployment and Test

	Elimination of Waste
	Get PBIs Done
	Integrate As Frequently As Possible
	Detecting Inefficiencies Within the Flow

	Summary
	End Notes

	8 Test
	Testing in the Agile Consensus
	Testing and Flow of Value
	Inspect and Adapt: Exploratory Testing
	Testing and Reduction of Waste
	Testing and Transparency

	Testing Product Backlog Items
	The Most Important Tests First

	Actionable Test Results and Bug Reports
	No More “No Repro”
	Use Exploratory Testing to Avoid False Confidence

	Handling Bugs
	Which Tests Should Be Automated?
	Automating Scenario Tests
	Testing “Underneath the Browser” Using HTTP

	Load Tests, as Part of the Sprint
	Understanding the Output
	Diagnosing the Performance Problem

	Production-Realistic Test Environments
	Risk-Based Testing
	Capturing Risks as Work Items
	Security Testing

	Summary
	End Notes

	9 Lessons Learned at Microsoft Developer Division
	Scale
	Business Background
	Culture
	Waste
	Debt Crisis

	Improvements After 2005
	Get Clean, Stay Clean
	Tighter Timeboxes
	Feature Crews
	Defining Done
	Product Backlog
	Iteration Backlog
	Engineering Principles

	Results
	Law of Unintended Consequences
	Social Contracts Need Renewal
	Lessons (Re)Learned
	Celebrate Successes, but Don’t Declare Victory

	What’s Next?
	End Notes

	10 Continuous Feedback
	Agile Consensus in Action
	The Next Version
	Product Ownership and Stakeholder Engagement
	Storyboarding
	Getting Feedback on Working Software
	Balancing Capacity
	Managing Work Visually

	Staying in the Groove
	Collaborating on Code
	Cleaning Up the Campground

	Testing to Create Value
	TFS in the Cloud
	Conclusion
	Living on the Edge of Chaos

	End Notes

	Index
	A
	B
	C
	D
	E
	F
	G
	H-I
	K-L
	M
	N-O
	P
	Q-R
	S
	T
	U
	V
	W-X-Y-Z

