
PROFESSIONAL

Scrum with Team Foundation

Server 2010

Steve Resnick
Aaron Bjork

Michael de la Maza

ffirs.indd vffirs.indd v 3/24/11 4:33:40 PM3/24/11 4:33:40 PM

Professional Scrum with Team Foundation Server 2010

Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright ©2011 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-94333-5
ISBN: 978-1-118-09633-8 (ebk)
ISBN: 978-1-118-09632-1 (ebk)
ISBN: 978-1-118-09631-4 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online
at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including without
limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information the
organization or Web site may provide or recommendations it may make. Further, readers should be aware that Internet Web
sites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Library of Congress Control Number: 2011924124

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affi liates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners.
Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

ffirs.indd viffirs.indd vi 3/24/11 4:33:41 PM3/24/11 4:33:41 PM

CONTENTS

FOREWORD xxiii

INTRODUCTION xxv

CHAPTER 1: SHIPPING SOFTWARE 1

What Do You Need to Ship Software? 1

Vision 2

Insight 3

Resources 4

Planning 6

Product Features 10

Approaches to Project Management 12

Scrum 12

Microsoft Solutions Framework 15

The Waterfall Method 18

Comparing Methodologies 20

Product Defi nition 20

Adaptability 20

Scheduling 21

People 21

Documentation 22

Project Duration 22

Summary 22

CHAPTER 2: ORGANIZING A SCRUM TEAM 25

Scrum Roles 25

The ScrumMaster 26

The Product Owner 29

Team Members 34

Scaling a Scrum Team 36

Team Specialization 36

The Scrum of Scrums Meeting 38

The Product Backlog 39

Sprint Synchronization 39

Common Architecture 39

TOC.indd xviiTOC.indd xvii 3/24/11 4:16:07 PM3/24/11 4:16:07 PM

xviii

CONTENTS

Comparing MSF and Scrum 40

The Product Manager 41

The Program Manager 42

The Development Manager 43

Quality Assurance Manager 44

The Training Manager 46

Release Management 46

IT Roles in Scrum 47

The Project Manager 47

The Architect 48

Release Management 48

The QA Manager 49

Transitioning to Scrum 50

Increasing User Involvement 50

Decreasing Documentation 50

Simplifying the Schedule 51

Finding Problems Earlier 51

Summary 52

CHAPTER 3: TRACKING WHAT’S IMPORTANT
IN TEAM FOUNDATION SERVER 53

Understanding Your Data in TFS 53

Reporting Capabilities in TFS 54

Choosing Scrum 56

Scrum Artifacts 58

The Product Backlog 59

The Sprint Backlog 61

The Sprint Burndown 63

The Release Burndown 64

Scrum Activities 65

The Release Planning Meeting 65

Backlog Grooming 65

The Sprint 66

The Sprint Planning Meeting 67

The Daily Scrum 70

The Sprint Review 72

The Sprint Retrospective 73

Summary 74

TOC.indd xviiiTOC.indd xviii 3/24/11 4:16:07 PM3/24/11 4:16:07 PM

xix

CONTENTS

CHAPTER 4: GETTING STARTED WITH THE TFS
SCRUM TEMPLATE 75

Getting Started with the Scrum Template 76

Downloading and Installing the Scrum Template 76

Importing the Scrum Template into TFS 77

Creating a New PBI 80

Understanding Releases 82

The Release Planning Meeting 83

Acceptance Criteria 86

Other PBI-Related Information 86

Planning Poker 88

The Release Burndown Chart 89

The Release Goal 92

The Importance of Shipping Software 95

The Importance of Quality 96

Ensuring Repeatability 96

Understanding Sprints 97

Summary 99

CHAPTER 5: WORK ITEMS, QUERIES, AND REPORTS 101

Work Items 101

The Area Path and Iteration Path Fields 102

Product Backlog Items 104

Tasks 106

Sprints 108

Impediments 110

Bugs 112

Test Cases 114

Shared Steps 116

Work Item Queries 117

Query Types 118

Work Item Queries 121

Reports 128

Scrum Reports 129

Engineering Reports 132

Building Custom Reports 134

Summary 146

TOC.indd xixTOC.indd xix 3/24/11 4:16:08 PM3/24/11 4:16:08 PM

xx

CONTENTS

CHAPTER 6: THE PRODUCT BACKLOG 147

Managing the Product Backlog 147

Creating and Prioritizing PBIs 150

Choosing a Tool for Creating PBIs 150

The PBI Workfl ow 151

Prioritizing PBIs 153

Documenting PBIs 154

Linking Artifacts: PBIs, Tasks, and Bugs 160

Linking PBIs to Test Cases 160

Linking PBIs to Bugs 163

Linking Bugs to PBIs 164

Linking Bugs to Test Cases 167

Linking PBIs to Tasks 168

Linking Tasks to PBIs 169

Linking Tasks to Bugs 171

Using the Unfi nished Work Query 173

Understanding Impediments 174

Summary 176

CHAPTER 7: TRACKING QUALITY 177

Knowing What to Measure 178

Tracking and Resolving Bugs and Tasks 178

The Workfl ow for Resolving Bugs 179

Entering Bugs 181

Viewing the Bug List 183

The Workfl ow for Tasks 186

Entering Tasks 186

The Unfi nished Work Query 188

Test Cases 189

Acceptance Criteria in a PBI 189

Defi ning Test Cases 190

Using Microsoft Test Manager to Defi ne Test Plans 197

Organizing Test Plans 199

Organizing Test Suites 200

Summary 202

TOC.indd xxTOC.indd xx 3/24/11 4:16:08 PM3/24/11 4:16:08 PM

xxi

CONTENTS

CHAPTER 8: RUNNING A RELEASE 203

Creating a Release 203

Developing the Product Backlog 205

Creating User Stories 206

Tasks 208

Verifying That You Have a SharePoint Portal 209

Entering PBIs 211

Entering PBIs in Excel 211

Entering PBIs Using the SharePoint Portal 220

Entering PBIs Using Visual Studio 223

Product Backlog and User Story Success and Failure Patterns 224

Product Backlog and User Story Success Patterns 224

Product Backlog and User Story Failure Patterns 226

Linking User Stories and Tasks 229

PBI Reports 232

Summary 232

CHAPTER 9: RUNNING A SPRINT 233

Creating Sprints 233

Working with PBIs 234

The Sprint Planning Meeting 234

How the Product Owner Works with PBIs 235

How a Scrum Team Works with PBIs 235

Measuring the Velocity of a Scrum Team 235

Using Story Points to Determine Velocity 236

How to Calculate Velocity Based on Story Points 237

Testing Your Understanding of Velocity 238

The Velocity Report 239

Tracking Burndown 240

Calculating Burndown by Hand 240

The Sprint Burndown Chart Report 240

Working with Bugs 241

Creating a Bug Workfl ow 242

Creating Backlog Items from Bugs 243

Tracking Bugs 245

Bug Reports 248

Summary 250

TOC.indd xxiTOC.indd xxi 3/24/11 4:16:08 PM3/24/11 4:16:08 PM

xxii

CONTENTS

CHAPTER 10: THE RETROSPECTIVE 251

Common Practices Related to Retrospectives 252

Answering “What Worked?” 252

Answering “What Didn’t Work?” 252

Answering “What Will We Do Diff erently?” 253

Scrum Template Support for the Three Retrospective Questions 253

How to Answer the “What Worked?” Question 255

How to Answer the “What Didn’t Work?” Question 258

How to Answer the “What Will We Do Diff erently?” Question 260

Summary 261

CHAPTER 11: IMPROVING SCRUM BY USING SPIKES 263

What Is a Spike? 263

Types of Spikes 265

Spikes Between Sprints 265

Spikes During a Sprint 270

Executing a Spike 273

Code Quality 274

Architectural Slices 274

Summary 275

APPENDIX A: WORKING WITH SCRUM ASSESSMENTS 277

Using Assessment Templates 277

Assessing the Daily Scrum 277

Assessing the Demo 279

Assessing the Retrospective 280

Assessing the Planning Meeting 280

A Sample Assessment 281

Planning Meeting Assessment 281

Daily Scrum Assessment 282

Demo Meeting Assessment 283

Retrospective Meeting Assessment 284

Working with Checklists 284

A Checklist for the Product Owner 284

A Checklist for the ScrumMaster 285

APPENDIX B: REFERENCES 289

INDEX 291

TOC.indd xxiiTOC.indd xxii 3/24/11 4:16:08 PM3/24/11 4:16:08 PM

 FOREWORD

 Agile was always something you could be before it was a particular process you could do. And it
was always possible for a team to line up in a tight formation and move together in mutual support
toward a goal. Teams performed scrum behaviors long before there was the proper name, Scrum,
and long before there were any specifi ed Scrum roles and terminology or any particular Scrum -
 prescribed deeds to be done.

 Just ask the Romans.

 So before there was Agile, there was agility, and before there was Scrum, there were teams living
and breathing scrumish essence. It is good to remember this. Beginning in 1992, I was part of just
such an agile, scrumish team, the original Visual C++ team at Microsoft, a truly great software
team that pioneered many of the ways a software team could show actual agility. The number and
extent of this team ’ s accomplishments are staggering and have been pretty thoroughly documented
elsewhere. No real history of software development processes and/or teamwork can safely ignore a
team that was surely among the most agile of all commercial software teams.

 In a period of about four years, this team, using specifi c agility - demanding - and - exploiting
techniques, coalesced almost like magic and went on — in a sequence of increasingly impressive
product releases — to reduce its previously victorious competition to a memory and to set business,
technical, and process standards that defi ne key aspects of the programming and general software
development environment in which we live and create today. Take this team ’ s standard behaviors,
add pair programming, a pinch of nomenclature, and voilà! You have the fundamentals of today ’ s
most desired project practices, as defi ned by Agile, which fi rst appeared in the next decade.

 It is natural and fi tting, therefore, that such winning practices eventually become a type of
orthodoxy, that their characteristics become normative, and that technology evolve to embody tools
supporting these best practices. That such technology can be found in Visual Studio is doubly fi tting
(and personally satisfying), given its heritage. That Visual Studio should proffer such technology
also provides a certain nice self - referential quality and a pleasing reminder of the larger fractal
reality in which software development always takes place.

 The present volume promises to elucidate for the reader the ways and means of conducting the
prevailing best practices using the prevailing technology. It is time, and past time, for such a book
describing such a reality. Its publication marks a particular moment in the evolution of things: when
technique and technology have aligned in time.

 The current moment is one wherein a technology is synergistically both created by and creates a
technique. In this case, Scrum and Agile (techniques) create and henceforward co - evolve with TFS
and Visual Studio (technologies).

 So it shall likely be; as it is ever so.

FLAST.indd xxiiiFLAST.indd xxiii 3/23/11 2:45:22 PM3/23/11 2:45:22 PM

 It is commonplace to observe that things go faster and faster. Thirty - fi ve years ago, there was
essentially nothing to program except a few ungainly huge and hugely limited machines. And
twenty years ago, there was no way to program all the things there were with any sort of predictable
result. Today, I think it can be safely stated, if you carefully follow the advice in this book, and if
you connect with the rational energy or the results - oriented spirit of the technical culture that gave
rise to — and lies behind — Agile, Scrum, and TFS, you will be able to deliver software of a desired
degree of stability at a desired time and at the anticipated expense.

 But please notice that, historically speaking, it is only just now that we can reliably develop
software. That we can now do so will have profound impact on our world. We can expect even
greater technical change than heretofore, and soon — and ever sooner still as time progresses. While
our burgeoning technical culture is more a nascence than a Renaissance, there is no reason to
expect that it will be of any less import. There is every reason to expect that it will be global,
deeply unifying, and promotional of the freedom of information and people.

 Since software is basically the codifi cation and distribution of intelligence, and we can now do
more and more of it, faster and better, what happens next? Now that we can generate software
at will, and, using practices like Scrum and technology like TFS, we can deliver it more or less as
desired. What, then, shall we do with this brand - new, unlimited, and unimaginably great power?
What civilization shall we build? What intelligence shall we distribute?

 These are the questions to ask an Agile team — and to ask only an Agile team — because only
such a team can reasonably even consider the questions. When they gather up, when they Scrum,
when they charge downfi eld together toward a goal in a mutually supportive way, a goal they will
therefore surely reach, just what goal is worth hitting? What world do they choose to build?

 What is your vision?

 Master the lessons in and around this book, and then answer that question in what you create.

 Jim McCarthy
 Woodinville, Washington

 2011

FOREWORD

xxiv

FLAST.indd xxivFLAST.indd xxiv 3/23/11 2:45:23 PM3/23/11 2:45:23 PM

 INTRODUCTION

 LET ’ S FACE IT: Shipping great software is diffi cult. Is it rewarding? Yes. Is it profi table? Yes. Does it
mix art and engineering? Yes. Is it easy? No.

 Yet some companies and organizations do ship great software. They deliver products that their
customers love. They do it on time and on budget. They deliver solutions and services that are
highly valued in the marketplace. So how do they do it?

 The answer is deceptively simple: They rely on a combination of technology, talent, and process.
Each of these three elements is necessary, but each by itself is insuffi cient to deliver a great product.
If you ’ re missing one element, you will certainly fail. If you have all three, then you have the
necessary raw ingredients to succeed.

 This book focuses on one element of shipping great software: the process. It offers a road map for
how to use Scrum to organize teams and activities. It shows you how to use Visual Studio Team
Foundation Server (TFS) to execute a Scrum project — from planning the sprints to tracking
progress. By focusing on just this one ingredient in successful software, this book provides the
details you need.

 In this book, you ’ ll learn best practices for running a Scrum project and for using TFS. The book
even includes templates to help you get started. Even with all this help, you will still face diffi cult
questions for which there is no standard answers. You ’ ll need to rely on your insight and experience.

 This book is a collaborative effort of three authors with three distinct perspectives. We believe that
by offering multiple views, we ’ ll better prepare you to navigate the unique situations that you ’ ll
undoubtedly face. Each of us has years of experience with Scrum and project management. We ’ ve
each shipped successful products, and we all write from experience.

 It is our hope that our experience in software project management can accelerate you on your path
to shipping great software with Scrum and TFS.

 WHO THIS BOOK IS FOR

 This book is for software developers and managers who are interested in using Scrum and TFS to
build and ship great software. If you ’ re new to Scrum and haven ’ t used TFS before, this book is a great
starting point. If you have experience with Scrum but you ’ re new to TFS, then this book can be your
guide to applying what you already know with a new tool. Finally, if you have experience with Scrum
and you ’ ve used the other team management templates within TFS, then reading this book is a great
way to learn the new features of the Scrum 1.0 template.

 We don ’ t assume that you have great familiarity with Scrum. Chapters 1 through 4 are enough to
get you started. Of course, one book isn ’ t a substitute for training, and training is not as effective as

FLAST.indd xxvFLAST.indd xxv 3/23/11 2:45:24 PM3/23/11 2:45:24 PM

xxvi

INTRODUCTION

coaching, and coaching alone is no substitute for real experience, but this book will help you at any
level. We can say that because it ’ s not a book about just Scrum and it ’ s not a book about just TFS.
Each of those topics fi lls entire books on its own. This book is specifi cally written to help you use a
great tool, TFS, to implement a great process, Scrum. It ’ s a practical guide to doing it.

 Everyone on a Scrum team is responsible for shipping the product, so everyone needs to understand
the process and tools. This is one of the unique characteristics of Scrum: The whole team — not
just the project leads — is responsible for shipping. Because everyone needs to know the process and
tools, this book can be helpful for everyone on the team.

 Finally, project sponsors will fi nd this book helpful. You may be the business executive who funded
a project, the manager who hired a consulting fi rm to build a product, or a venture capitalist who
funded a company. If your team is using Scrum, you should be grounded in its principles. You ’ ll fi nd
the early chapters helpful and can refer your teams to the later sections.

 WHAT THIS BOOK COVERS

 In writing this book, we set out to cover everything you need to run a Scrum project with TFS. It ’ s
an ambitious goal but constrained enough that we believe we ’ ve delivered. We assume that you ’ re
familiar with Visual Studio but not too familiar with TFS. We assume that you ’ ve been on software
development teams before, although maybe you ’ ve never run a project by yourself.

 HOW THIS BOOK IS STRUCTURED

 This book is organized into 11 chapters and 2 appendixes.

 Chapter 1, “ Shipping Software ”

 This introductory chapter focuses on the basics of software project management — initiating a project,
allocating resources, and organizing the team. It describes three common methodologies — Scrum, MSF,
and Waterfall — and compares their essential attributes. We look at how each of these methodologies
organizes teams, what its process looks like, and how it tracks progress and milestones. By the time you
fi nish the chapter, you ’ ll be able to translate your experience in one of the other methodologies into the
common terms of Scrum.

 Chapter 2, “ Organizing a Scrum Team ”

 This chapter describes the organization of a Scrum team. It introduces the roles and responsibilities
of an effective team. It describes the interactions among team members on a typical project. This
chapter also discusses ways to scale a team to handle larger or more complex efforts.

 This chapter also reviews the typical organization of MSF and Waterfall projects. It does this for two
reasons. First, if you ’ re familiar with those methodologies but new to Scrum, this chapter will help
you understand the Scrum team organization. Second, by comparing the three team organizations, you
can gain insight into how similar functions are accomplished using different methods.

xxvi

FLAST.indd xxviFLAST.indd xxvi 3/23/11 2:45:24 PM3/23/11 2:45:24 PM

INTRODUCTION

xxvii

 There are only three roles in Scrum — product owner, ScrumMaster, and team member — but there
are many more within IT. Recognizing this disparity, we put the Scrum team in the context of the
broader IT community. We briefl y discuss how traditional IT roles, such as database administrator
and architect, are handled in Scrum.

 By the end of this chapter, you ’ ll have a good understanding of how to organize a Scrum team and
how to transition from one method to another.

 Chapter 3, “ Tracking What ’ s Important in Team Foundation Server ”

 This chapter introduces you to the tracking and reporting functions of TFS. Many developers and
managers are familiar with the source control, or automated build capabilities, of TFS. However,
the Scrum template builds on the tracking and reporting features in TFS.

 Scrum artifacts, including the product backlog, tasks, test cases, and bugs, are all stored in TFS.
Rather than just describing how and where these are stored, this chapter puts them in the context of
a Scrum project. The goal of this chapter is to give you a good grounding in what you should track
and how to do it with the Scrum template.

 Chapter 4, “ Getting Started with the TFS Scrum Template ”

 If you ’ re already comfortable with Scrum and have a good understanding of TFS, you might want to
start with this chapter. It begins with step - by - step instructions for downloading and installing the
Scrum 1.0 template. It then goes through all the high - level steps of a Scrum project.

 You ’ ll learn how to defi ne product backlog items (PBIs) from user stories through acceptance
criteria. You ’ ll learn how to estimate PBIs using Planning Poker. You ’ ll also learn about the
burndown chart, a basic tracking tool for Scrum. In addition, you ’ ll learn how to use TFS to initiate
and track releases, sprints, and quality.

 By the time you fi nish this chapter, you will know how to use TFS to enter and track Scrum artifacts.

 Chapter 5, “ Work Items, Queries, and Reports ”

 This chapter goes step - by - step through the major Scrum artifacts and provides guidance and insight into
how to use them in TFS. It describes each Scrum artifact in terms of its intent and data fi elds. The chapter
also provides examples of how to fi ll them out and what value they deliver to the Scrum process.

 This chapter describes areas, tasks, releases, sprints, impediments, bugs, and test cases. It also
describes the two primary ways to work with these items in TFS: by using queries and reports. TFS
enables you to create sophisticated reports in Excel, and this chapter describes how in detail.

 After reading this chapter, you ’ ll know how to use the Scrum artifacts for your specifi c project and
how to use TFS to manage them.

 Chapter 6, “ The Product Backlog ”

 The product backlog is the queue of features to be built, the user needs to be met, and the bugs to be
fi xed. Managed by the product owner, the product backlog represents the single stream of input to
the team. It ’ s central to Scrum.

FLAST.indd xxviiFLAST.indd xxvii 3/23/11 2:45:24 PM3/23/11 2:45:24 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

xxviii

INTRODUCTION

 In this chapter, you ’ ll learn how to create PBIs and how to use the various fi elds that they contain.
PBIs are related to other Scrum artifacts in TFS. In this chapter you ’ ll learn how to link them to test
cases, bugs, and tasks. You ’ ll learn how to do this using Visual Studio as well as Excel.

 By the end of this chapter, you will have a solid understanding of the role of PBIs and how to
manage them in TFS.

 Chapter 7, “ Tracking Quality ”

 This chapter describes three aspects of tracking and managing quality: test cases, bugs, and tasks.
First, you ’ ll learn how to use TFS to enter and track test cases. You ’ ll see how to create test plans,
individual test cases, and shared steps, and you ’ ll learn how to handle manual and automated test
cases. This chapter reviews the built - in reports you can use to assess your test plan readiness.

 After discussing test plans and test cases, this chapter covers how bugs are stored and tracked in
TFS. Like PBIs, bugs represent work that must be estimated, scheduled, and completed. They can be
linked to tasks and other elements. As with PBIs, you can work with them in Visual Studio or Excel.
This chapter describes the steps involved.

 Chapter 8, “ Running a Release ”

 This chapter is where you start to see the big picture — using TFS to manage a product release
with Scrum. This chapter starts by defi ning what a release is in TFS and then describes the PBIs
for the release.

 In Chapters 5 and 6, you learned how to enter PBIs. In this chapter, you work with PBIs as part of
a release. This chapter offers practical advice on what makes a good user story and how to test it. It
presents success patterns and failure patterns. You will learn how PBIs relate to tasks in the context
of a project and how to effi ciently use Excel to monitor progress.

 By the end of this chapter, you will know how to defi ne the Scrum artifacts for a release.

 Chapter 9, “ Running a Sprint ”

 Sprints are a hallmark of Scrum. A sprint is a fi xed time period during which a team builds a set of
product features. This chapter describes how to create and track sprint progress in TFS.

 Scrum measures sprint and release progress by tracking PBIs. The rate at which PBIs are
implemented is the velocity. A common way to track PBIs and the associated velocity is by using
a burndown chart. In this chapter, you ’ ll learn how to measure velocity and how to track PBIs by
using a burndown chart.

 Chapter 10, “ The Retrospective ”

 One advantage of iterative development is that your team can change how it operates after each iteration.
You can change the team, change the duration of a sprint, and change the pace of development. In a very
real sense, this makes a team agile. Ideally, changes that you introduce between iterations will improve
the quality or velocity of subsequent iterations.

FLAST.indd xxviiiFLAST.indd xxviii 3/23/11 2:45:25 PM3/23/11 2:45:25 PM

INTRODUCTION

xxix

 Scrum formalizes this process in a meeting called a retrospective. In this chapter, you ’ ll learn how to
run a retrospective meeting and how to use TFS to capture information from the team.

 Chapter 11, “ Improving Scrum by Using Spikes ”

 A spike is a time - boxed technical investigation that is meant to produce the answer to a problem
that is blocking a team. It ’ s used when the team is facing decisions that will signifi cantly affect
subsequent sprints. The primary difference between a sprint and a spike is that sprints produce
customer - valued features, while spikes answer technical or design questions that must be answered
in order to move the project forward.

 This chapter describes how to use spikes within a release. Should you run them earlier or later?
Should you run them in parallel with sprints or as mini - sprints? When you fi nish reading the
chapter, you ’ ll know when and how to run spikes within a Scrum release.

 Appendix A, “ Working with Scrum Assessments ”

 TFS is the primary tool for storing and tracking Scrum artifacts and driving a project forward. To
help get you started with the various meetings and ceremonies that occur in Scrum, this appendix
includes some templates. It offers a template for the daily Scrum, the end - of - sprint retrospective, the
sprint planning meeting, and the product demo.

 We, the authors of this book, have used the templates included in this appendix in the fi eld. Using
these templates is an effective way to ensure consistency and quality across projects.

 Appendix B, “ References ”

 There are many good books and helpful websites available for Agile software project management
in general and Scrum in particular. They tend to be quite readable and offer complementary and
differing viewpoints on the topic. In this appendix, we list the resources we ’ ve used over the years to
learn and master the topic.

 WHAT YOU NEED TO USE THIS BOOK

 To get the most out of this book, you need a few tools and an open mind. For tools, you need
Microsoft Visual Studio 2010, Team Foundation Server, and Microsoft Offi ce. Having an open
mind will help you transition from the old way of running software projects to Scrum.

 There are many versions of Visual Studio 2010. Fortunately, they all ship with access to Team
Foundation Server. If you ’ re doing high - end development, then the higher - end versions of Visual
Studio 2010 are worth purchasing. The versions are listed on Microsoft ’ s website, at www.microsoft
.com/visualstudio/ . With only one exception, all versions of Visual Studio 2010 will work for the
features described in this book. Microsoft Test Manager, which is briefl y described in Chapter 7, ships
only with the Ultimate and Test Professional editions.

 You need a copy of Offi ce. We recommend Offi ce 2010, but Offi ce 2007 will suffi ce. If you ’ re still
using an old version of Offi ce, do yourself a favor: Upgrade.

FLAST.indd xxixFLAST.indd xxix 3/23/11 2:45:25 PM3/23/11 2:45:25 PM

xxx

INTRODUCTION

 You need a copy of Team Foundation Server 2010 (TFS), which ships with Visual Studio. To install
TFS, you need IIS, SQL Server, and Windows SharePoint Services. The installation is surprisingly
easy if you have the underlying platform properly confi gured. You can install TFS directly on
hardware, or you can install it in a virtual machine. As you might imagine, Hyper - V works very
well for this purpose.

 As an alternative to installing TFS on local hardware, you can use a hosting provider. If you sign up
with a reliable provider, the experience is fl awless. All the examples in this book were created using
a hosted version of TFS, through the hosting company SaaS Made Easy (www.saasmadeeasy.com).
SaaS Made Easy is one of the leading TFS providers in Microsoft ’ s BizSpark program. The company
provides excellent service for TFS hosting — at a reasonable price. If you don ’ t want to install TFS
locally, try using SaaS Made Easy.

 As mentioned earlier, in addition to needing some software, you need an open mind. Transitioning
from one way of doing things to another can be diffi cult. Truth be told, the best practices for
software development haven ’ t changed much since Jim McCarthy wrote Dynamics of Software
Development nearly 20 years ago. But Scrum does codify techniques so they can be repeated and
improved over time. So keep an open mind and watch for big opportunities.

 CONVENTIONS

 To help you get the most from the text and keep track of what ’ s happening, we ’ ve used a number of
conventions throughout the book.

 Boxes with a warning icon like this one hold important, not - to - be forgotten
information that is directly relevant to the surrounding text.

 ERRATA

 We make every effort to ensure that there are no errors in the text. However, no one is perfect, and
mistakes do occur. If you fi nd an error in one of our books, we would be very grateful for your
feedback. By sending in errata you may save another reader hours of frustration and at the same
time you will be helping us provide even higher quality information.

 To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you

 The pencil icon indicates notes, tips, hints, tricks, and asides to the current
discussion.

FLAST.indd xxxFLAST.indd xxx 3/23/11 2:45:26 PM3/23/11 2:45:26 PM

INTRODUCTION

xxxi

can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book ’ s errata is also available at www.wrox.com/
misc-pages/booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We ’ ll check
the information and, if appropriate, post a message to the book ’ s errata page and fi x the problem in
subsequent editions of the book.

 P2P.WROX.COM

 For author and peer discussion, join the P2P forums at http://p2p.wrox.com . The forums are a
Web - based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e - mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors,
editors, other industry experts, and your fellow readers are present on these forums.

 At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and
complete the joining process.

 You can read messages in the forums without joining P2P, but in order to post
your own messages, you must join.

 Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the Web. If you would like to have new messages from a particular forum
e - mailed to you, click the Subscribe to this Forum icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

FLAST.indd xxxiFLAST.indd xxxi 3/23/11 2:45:43 PM3/23/11 2:45:43 PM

FLAST.indd xxxiiFLAST.indd xxxii 3/23/11 2:45:49 PM3/23/11 2:45:49 PM

Shipping Software

 WHAT ’ S IN THIS CHAPTER?

 Understanding what you need to ship software: vision, insight,

resources, planning, and product features.

 Understanding three approaches to management methodologies:

Scrum, MSF, and Waterfall.

 Comparing the three project management methodologies.

 This chapter covers the high - level process of shipping software. You ’ ll learn how to start with
a compelling vision and the resources you need to build a product. You ’ ll also learn about the
relationship among competing constraints. You ’ ll read about three popular software project
management techniques: Scrum, Microsoft Solutions Framework (MSF), and Waterfall. By the
end of this chapter, you ’ ll be able to use what you know about the MSF and Waterfall methods
to gain insight into Scrum.

 This book is about using a specifi c tool, Visual Studio Team Foundation Server (TFS), to
support the Scrum process for shipping great software. The fundamental concept is to put
customer value at the center of everything you do. While maximizing customer value, you also
maximize your team ’ s productivity and predictability with each release, creating a sustainable
team environment for shipping great software. In this book, you ’ ll learn how to use the tools
in TFS to manage a software development project using Scrum.

 WHAT DO YOU NEED TO SHIP SOFTWARE?

 Before you can ship great software, you need to build it. Before you can build it, you need to
envision how it might work and look. Before you can envision it, you need to know why and
how someone would use it. And before that, you need insight into the problem you ’ re trying

➤

➤

➤

 1

c01.indd 1c01.indd 1 3/24/11 3:30:47 PM3/24/11 3:30:47 PM

2 ❘ CHAPTER 1 SHIPPING SOFTWARE

to solve. So, shipping great software really begins with vision and insight into how something
works, how it can be improved, and why people care.

 This section discusses the following requirements for shipping software:

 Vision

 Insight

 Resources

 Planning

 Product features

 Vision

 Great software starts with a great vision. It starts with a simple description of what you ’ re setting
out to build, for whom, and why. If you can ’ t defi ne this before starting the project, you should
think about it some more. Creating software requires a surprising amount of resources, and you
need to have a compelling vision in order to attract and allocate the resources you ’ ll need.

 The vision should be a meaningful description of the product goals and an inspiring outcome. It doesn ’ t
need to be melodramatic — helping the world ’ s neediest people or creating the world ’ s newest
billionaire — but it must resonate with all stakeholders. The vision should describe the needs and benefi ts
in terms that the user cares about. It should describe the problem being solved and the opportunity in
solving it. The vision should pique the interest of customers, sponsors, and the project team.

 The product vision should be relatively short; a few paragraphs generally suffi ce. It should include a
description of the problem and opportunity as well as the solution and the benefi t. Everyone on the
project team will read it. They will talk to their colleagues, friends, and families about it. It should
be clear yet comprehensive enough to resonate with these audiences.

 The product vision is typically accompanied by a defi nition of scope. The scope clearly sets the
path for the vision, from problem to solution. It should include high - level features, time lines, and
constraints. You can defi ne the scope of a prototype, a beta, and the fi rst few releases. Earlier
milestones should have greater granularity; later milestones can be more vague. The scope should
clearly defi ne what is being proposed and what is not being proposed.

 Often, the vision and scope are combined into a single document, cleverly called a vision/scope. This
document is the fi rst opportunity to defi ne a series of releases. Thinking and communicating in terms
of successive releases is critical with Scrum. You can defi ne the rough features that will be in each
release, so everyone learns to expect incremental progress as the team iterates toward the solution.

 For example, say you enjoy fantasy football, a game in which you create virtual football teams
that compete based on the statistics of the individual players. The fantasy football sites have great
features for building teams and leagues, but they don ’ t combine that with great search capabilities.
Using Google or Bing for searching just doesn ’ t give you the data you want. In a moment of
inspiration, you decide to fi x the problem by building a search engine for this purpose. You could
create the following vision for this product:

 Create a search engine for fantasy sports enthusiasts.

➤

➤

➤

➤

➤

c01.indd 2c01.indd 2 3/24/11 3:30:51 PM3/24/11 3:30:51 PM

 Based on your vision, the reader will conjure up ideas about what the product may do. It ’ s a good
start, but this vision, as stated, is much broader than your intent. Your idea involved fantasy
football, and the vision you ’ ve created could be interpreted much more broadly. Therefore, you
might rewrite the vision as follows:

 Many websites are available for fantasy football leagues. They have great features
but lack powerful search capabilities. We will create a fantasy football search
engine so that fans have access to more data and can create the best teams.

 This is better, as it constrains the problem to what you initially had in mind — fantasy football. It
also adds a purpose: creating the best teams. Now you need to scope the problem. You want to solve
the problem for fantasy football, but you also realize that the solution would work just as well with
other sports. So you can broaden the vision and then constrain it with the scope:

 Many websites are available for fantasy sports leagues. They have great features
but lack powerful search capabilities. We will create a fantasy sports search
engine so that fans have access to more data and can create the best teams.

 The immediate market for fantasy sports is 50 dedicated websites, reaching
over 3 million users. The indirect market, including news and sports sites, is
approximately 500 sites that reach over 20 million people.

 The fi rst release will target American football and provide an interface for
existing websites. It will contain data for all NFL teams and will support
parametric searches on player characteristics. Subsequent releases will add more
sports leagues; will support features for managing teams, players, standings, and
trading; and will have an interface for mobile apps.

 From this vision/scope, the reader will have an idea of the problem being solved, the benefi t of the
solution, and the iterative path for expanding the product over time. After this, you can defi ne a
business case, technical solution concept, and critical assumptions.

 There are many examples of vision/scope documents online. They commonly have
sections for vision, requirements, solution, assumptions, limitations, and risks.
While Scrum doesn ’ t prescribe a vision/scope document prior to initiating a
project, it ’ s a best practice to create one in software project management as it
forces you to articulate the big picture.

 Insight

 It ’ s one thing to have a great vision; it ’ s quite another to turn that vision into a great product. This is
true of engineering in general and software engineering in particular. Product management has a broad

What Do You Need to Ship Software? ❘ 3

c01.indd 3c01.indd 3 3/24/11 3:30:52 PM3/24/11 3:30:52 PM

4 ❘ CHAPTER 1 SHIPPING SOFTWARE

role in engineering and design. It involves translating the needs and desires of the user or market
into instructions for engineering. (We use the term instructions very loosely here, as it may take the
form of requirements, storyboards, user stories, mockups, visual comps, or other design artifacts.)

 As you ’ ll read in Chapter 2, product management is an essential element of Scrum. Say that you ’ re
working with a highly skilled, cohesive, experienced engineering team. And say that the working
environment allows the team to fl ourish. This is a great start, but it’s insuffi cient to build a successful
product. In this case, the success of the product depends on product management. Specifi cally, it
depends on product management to determine what ’ s needed, by whom, why, and at what cost.

 The product owner, who fi lls the product management role in Scrum, is embedded in the Scrum
team and is counted on to know the user intimately. This person must know the user ’ s likes and
dislikes, tolerances, and aspirations. The product owner must know what the users love, what they
don ’ t like, and what they don ’ t care about. Essentially, the product owner must have insight into
how the user will value the product.

 As you ’ ll read further in this chapter and Chapters 2 and 3, Scrum is an Agile process for developing
software. It prescribes planning and design up front, and it involves more planning and design as
you iteratively build the solution. It ’ s far from random and far from chaotic, but it does move fast
and allows for unexpected results. Because of this, the product owner ’ s insight into user needs is
essential.

 Several factors drive the need for insight in the product owner role in Scrum:

 Decision making — One person, rather than a group, makes product management
decisions. Decisions are made faster than in traditional software creation, but if the product
owner lacks suffi cient insight into the problem, he or she will make wrong decisions or lack
confi dence to make any decisions at all.

 Minimal prototyping — There is minimal prototyping before the project starts because it ’ s
done in early sprints of the project. This means the product owner ’ s insight will quickly be
refl ected in the product.

 Iterative nature — The product features are defi ned iteratively and frequently. They come in
and out of scope based on product owner decisions, which directly impact the value of the
product.

 Customer feedback — Customer feedback comes early and often. Good insight is necessary
to sift out valuable data from extraneous data.

 Resources

 Building a software product is a very resource - intensive activity. It requires people from many different
disciplines working together toward a common goal. These people include visual designers, domain
experts, software developers, and product managers. Depending on the domain, building software may
also require business analysts, security experts, information architects, and marketing specialists.

 It ’ s easy to underestimate the true cost of building production - quality software. When you wrote
your fi rst computer program, it was pretty easy: You were the designer, developer, tester, and possibly
customer. Indeed, it was a lot of fun, and that ’ s how many of us got hooked on creating software.

➤

➤

➤

➤

c01.indd 4c01.indd 4 3/24/11 3:31:15 PM3/24/11 3:31:15 PM

 Building a commercial product is much more diffi cult than creating software for yourself. You need
to clearly understand what the customer wants before you can start building. You need to know
how much the customer is willing to spend before you begin to buy technology or hire the team
for the job. Whether you ’ re building something for just one customer or thousands, the work
requires signifi cantly more resources than building something for your own use.

 As you ’ ll see later in this chapter when we compare different strategies for software
project management, Scrum optimizes resources by iterating toward a solution.
This enables you to adjust your plans along the way, based on the realities you
encounter with technology, the team, and customers.

 Time and Money

 You need many resources to build and ship a great software product. At the highest level, you
need time and money. To be sure, these are not interchangeable, no matter how much you have
of either.

 The saying “ Timing is everything ” holds quite true in software development. A perfect product
released at the wrong time is generally not very useful. It may be interesting or thought provoking,
and it may even be amusing, but if the timing is wrong, the product won ’ t be useful. Similarly, the
wrong product at the right time isn ’ t very useful either. It may garner a lot of attention because of its
potential, but if the product is lacking some critical element, it won ’ t be very successful. On the other
hand, the right product at the right time is very valuable: Even if it has fl aws, if you release the right
product at the right time, you ’ ll have a success on your hands.

 AN EXAMPLE OF A GOOD PRODUCT WITH PERFECT TIMING

 One example of the right product at the right time was Microsoft Windows 95.
It was a good product with perfect timing. It was the early 1990s, and Microsoft
was developing Windows 95 as the next operating system for personal computing,
gaming, and business productivity. But a confl uence of events occurred during its
development cycle that made Microsoft rethink its plan. The Mosaic browser was
written and distributed as Netscape Navigator; Senator Al Gore sponsored legislation
to increase investments in the publicly funded Internet; and consumer websites such
as Amazon, eBay, and Yahoo! began to create real value. Microsoft faced a dilemma:
Should it delay Windows 95 until it could include a web browser, or should it ship
Windows 95 without one and continue to develop an integrated browser in parallel?

 Microsoft knew that people would be upgrading their PCs to get to the Internet, and
the company didn ’ t want to miss the opportunity to sell those people an operating
system. Microsoft chose the latter route and released Window 95 without a browser
but in time to catch the Internet wave. While Windows 95 was far from perfect, its
timing was ideal. Windows 95 was included on hundreds of millions of computers,
and this cemented Microsoft ’ s place as the desktop of choice for the next decade.

What Do You Need to Ship Software? ❘ 5

c01.indd 5c01.indd 5 3/24/11 3:31:16 PM3/24/11 3:31:16 PM

6 ❘ CHAPTER 1 SHIPPING SOFTWARE

 People and Technology

 Unlike time, money can easily be converted to other resources you might need. Two obvious
resources you need for software development are people and equipment.

 For people, you ’ ll likely want a mix of generalists and specialists. You ’ ll need product managers to
defi ne the feature set that exactly meets your client ’ s needs. You ’ ll need software architects to stay
with the project from beginning to end and to defi ne the technical architecture and design patterns
for the product. You may need user interface specialists, database specialists, security experts, and
performance - tuning engineers. The bulk of the technical work will likely be done by generalists:
engineers skilled in coding and testing.

 If your project needs a high percentage of specialists rather than generalists,
you might want to increase your time and cost estimates. Finding and replacing
specialists can be a more time - consuming and costly activity than swapping
generalists.

 You can convert money into people by hiring a team. Some team members will be employees — people
you want to retain for the duration of the project and beyond. Others will be contractors — people with
specialized skills that you need during certain phases of the project.

 You ’ ll also need to convert money into technology. You can buy it, lease it, or rent it for remote
access. This is true for both hardware and software. You can allocate technology to problems as
they arise and then shift resources (such as money) as circumstances change. For instance, you may
need signifi cant hardware capacity during a performance - testing phase of a project. In this case, you
can acquire the technology on a temporary basis and then shift it elsewhere when you ’ re done.

 Planning

 Planning is an essential ingredient in shipping great software. Planning takes a great deal of time
before a project begins and even more time once a project is under way. This is true whether you ’ re
using Scrum or another project management methodology. Depending on which methodology you
use, the specifi c planning activities will vary dramatically.

 For instance, planning a project using a traditional software development methodology involves
allocating time for requirements defi nition, design, development, testing, user acceptance, release
management, and support. Software development occurs solely during the development phase.
Planning a project using Scrum involves allocating time to build features in fi xed - duration “ sprints. ”
During each sprint, the team conducts the same activities as in the Waterfall method,
but it does so in a small set of features. Figure 1 - 1 shows a high - level view of Waterfall and
Scrum planning.

c01.indd 6c01.indd 6 3/24/11 3:31:23 PM3/24/11 3:31:23 PM

 One place where Scrum is different from traditional software project management methodologies
(such as the Waterfall method) is with respect to predictability. Waterfall assumes that you can
predict how long tasks will take. You allocate people and time to tasks and then schedule them
accordingly. Scrum assumes the opposite. You cannot accurately predict how long something will
take unless you ’ ve done it with the same resources (technology and people) before.

 If you cannot predict how long a single task will take, how can you predict how long a whole series
of tasks will take? Using Scrum, you accept the fact that you can ’ t. Rather than predict the product
schedule, you predict smaller units of work that can be completed within a sprint. At the end of
each sprint, features are complete and can be included in a potentially shippable product. This way,
you predict features by time rather than predicting time by features, which is essentially a time - box
approach.

 A sprint is the smallest cycle time within Scrum. Chapter 9 focuses on running sprints. Sprints can
be as long as a month or two and as short as a day or two. The ScrumMaster decides the duration
before the sprint begins. Each sprint starts with a sprint planning meeting, during which the team
looks at the product backlog and decides which features to build during the sprint. The team
members use their experience in the previous sprint(s) to predict how much they can accomplish
in the next sprint. This is signifi cantly different from the Waterfall method, which involves
predicting the release and features up front and allocating time and people to the tasks.

 FIGURE 1 - 1: Waterfall and Scrum planning.

 The Waterfall method of project management is the method most commonly
used to run software projects. When using the Waterfall method, you schedule
tasks sequentially, completing one phase of activity before beginning the next.
Later in the chapter, in the “ Approaches to Project Management ” section, we ’ ll
look more closely at the Waterfall method and compare it with Scrum.

What Do You Need to Ship Software? ❘ 7

c01.indd 7c01.indd 7 3/24/11 3:31:28 PM3/24/11 3:31:28 PM

8 ❘ CHAPTER 1 SHIPPING SOFTWARE

 Figure 1 - 2 shows a Gantt chart from a project
planned using the Waterfall method. Note that
each task is scheduled with a known duration.
If a task completes early or late, this will impact
all other tasks in the release. This works well
if you have a high degree of confi dence in your
task estimates, but it falls apart quickly if the
estimates are incorrect.

 In a Scrum project, you must plan tasks.
Software project management requires a lot of
planning, and Scrum doesn ’ t change that need.
However, rather than plan tasks to manage
dependencies, you plan tasks to manage feature
delivery. The team focuses on building the
product rather than keeping to the schedule. The
schedule in Scrum is simple: It ’ s the sprint cycle.
Planning within a sprint focuses on the product
rather than the schedule because the schedule is so simple. Figure 1 - 3 shows a project artifact that
you ’ ll use for intra - sprint planning. This report, and many others like it, is covered in Chapter 6.

 FIGURE 1 - 2: Waterfall method Gantt chart.

 FIGURE 1 - 3: A Scrum project artifact.

c01.indd 8c01.indd 8 3/24/11 3:31:32 PM3/24/11 3:31:32 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Budget Planning

 It is extremely diffi cult to accurately forecast the cost of software development before you start. We
all wish this weren ’ t the case, but indeed it is. There are many unknowns in the factors that impact
cost, such as requirements, technology choices, and team composition. For instance, while you may
have a list of high - level or even detailed requirements, you may be two or three steps removed from
the source of the requirements when you ’ re preparing the estimate. Or, while you may assume that
technology used on a previous project is good for this one, you may get into unfamiliar territory
when working on specifi c features for this new project. And, in the realm of people, you may not
be able to assume that a specifi c person will be on the project team. Rather, you tend to work with
roles such as senior architect or database developer when estimating projects.

 The project management triangle in Figure 1 - 4 depicts the three constraints that defi ne a project:
cost, time, and features. If you have a full understanding of the features, you ’ ll be able to provide an
accurate estimate of the cost and time. This is the case in auto repair and home renovation, so why
not with software? The answer has to do with unknowns; in the world of software, you can ’ t know
everything before you start. And what you don ’ t know will have to be factored into the triangle,
resulting in varying costs, times, and features.

 An artifact is something that is useful to a project but isn ’ t part of the product
itself. Common examples of artifacts are task lists, schedules, and test cases.
Figure 1 - 3 shows a list that combines backlog items and tasks, to easily organize
and use them together.

 Some people and texts refer to the project management triangle as an “ iron
triangle ” to highlight the fact that you cannot bend it to suit your needs.

 Because of these unknowns and the fi xed constraints in the triangle,
you simply cannot offer a fi xed - cost commitment for a fi xed - feature
product. You therefore have two alternatives: Vary the cost or vary the
features. If you must deliver a fi xed budget, then the answer is simple:
Vary the features.

 Scrum offers this alternative. The cost of a Scrum team can be
fi xed. If you have two product owners, six team members, and one
ScrumMaster, then you can add up their weekly wages to determine
the weekly cost. If sprints are fi xed at four weeks, then you know that
a sprint will cost four times the weekly cost of the team. Now you can
accurately predict the cost and duration of a sprint. However, customers
rarely pay for sprints; they pay for products. This leaves the third
element of the triangle: features.

TimeCost

Features

 FIGURE 1 - 4: The project

management triangle.

What Do You Need to Ship Software? ❘ 9

c01.indd 9c01.indd 9 3/24/11 3:31:33 PM3/24/11 3:31:33 PM

10 ❘ CHAPTER 1 SHIPPING SOFTWARE

 You need a well - developed product backlog. The backlog items must be ranked into a list, based
on the value they deliver to the customer. By looking at the prioritized backlog, you can identify
the fi rst set of backlog items to implement. You might even be able to identify the second or
third set of related backlog items. In other words, by working with the backlog, you can make a
reasonable estimate of how much you can get done within a fi xed time period. Your estimate is
for a fi xed time period with a fi xed team, but the feature set that you deliver will vary. The Scrum
approach therefore meets the goals of budgetary control and also addresses the realities of software
development with respect to unknowns.

 People Planning

 Scrum projects are inherently team - driven activities, with all members involved with all aspects
of the project. The team composition is simple, with just 3 roles defi ned. Team size tends to be
small — up to 10 people or so. Because there are so few roles and so few people, team members are
highly interdependent. The individuals on the team will succeed or fail together.

 Scrum requires a cohesive team, one that is assembled early in the project and remains consistent
from sprint to sprint. Of course, people will come and go, as families, careers, and projects take us
in unexpected directions, but team consistency is more important in a Scrum project than in other
project management methodologies.

 In later chapters, we describe how sprint planning begins with a measure of velocity , the speed at
which a team can implement items on the product backlog. With each sprint, the team estimates the
effort needed to complete a set of backlog items. The team commits to completing the items, and
then it actually does the work. The team ’ s estimates improve with each sprint, as long as nothing
dramatic changes. The measure of velocity becomes more accurate as the team executes sprints.

 Changing the team between sprints negatively affects the predictability of the sprints. For instance,
if Manny, Moe, and Jack are replaced with Tom, Dick, and Harry, is it fair to assume that they ’ ll
complete the same amount of work as the original team? Without knowing how much work these
new team members can do, the team will have a diffi cult time committing to backlog items.

 While changing team members between sprints is disruptive and negatively affects productivity and
predictability, it ’ s far worse to change team members within a sprint. You should avoid this if at
all possible. Changing people will have a ripple effect not only within the team but also potentially
within the customer base. For instance, if the product owner told some customers that they can see
a feature at the end of a four - week sprint, and team changes within the sprint prevent that feature
from being complete, the customer will be dissatisfi ed.

 As with any other process, it ’ s important that participants know who ’ s supposed to do what and
when. People do well when they know what ’ s expected of them. The alternative — uncertainty —
causes stress. Therefore, you should plan to educate the team on Scrum prior to the project. There
are many good books and resources on Scrum methodologies that you can use to help train the team
on what to expect. Appendix B provides suggestions on where to begin.

 Product Features

 Time and money — the latter being converted to people and equipment — are the limited resources
for building a product. These resources have a direct relationship to the feature set that ultimately

c01.indd 10c01.indd 10 3/24/11 3:31:42 PM3/24/11 3:31:42 PM

defi nes a product. Assuming that there is variability in terms of product features, your job is
to optimize the use of time and resources to build a feature set that maximizes the value of the
product.

 In some business discussions, people are referred to as resources . This is
offensive to some and misleading to others. Here, we refer to resources as just
what it sounds like — sources of supply. A resource can be a supply of labor,
money, or equipment. Resources can be exchanged, either directly (for example,
paying a wage changes money to labor) or indirectly (for example, paying a wage
to build equipment changes money to labor to equipment).

 Quality is a feature you can control. You can create a product with more quality or less, depending
on how you allocate the resources of time and money. If you run out of time before completing
adequate testing on a project, you may implicitly decide to cut quality. The project team has
complete control over how much quality to build into a product, as long as quality is considered
a feature that requires resources to complete.

 Shipping is another feature that you control. You can build a product and not ship it. You may
not get paid very much in this case, but it is important to realize that it ’ s a feature. Like quality or
other features in the product, shipping takes time and money, so it ’ s important to allocate both. For
instance, if you ’ re working on a minor release of a product and you choose to not ship that release,
you can re - allocate the time planned for shipping activities (“ release ” build, fi nal regression test,
escrow code, and so on) to other features.

 If you have more time or money, you can build more features and quality into a
product. Conversely, if you have less time or money, you can either cut features
or reduce quality.

 The geometry of the project management triangle, with constant angles, dictates the fact that you cannot
change just one side of the triangle without adjusting the others. If you increase the features, then you ’ ll
have to increase the time and cost lines. If you increase time, then you ’ ll get more features, but it will cost
more. If you want to decrease cost, you ’ ll spend less time and get fewer features.

 FEATURES VERSUS SCOPE

 In general, products have features, and projects have scope. Features refer to attributes
of the product — such as functions, style, security, or performance. Scope refers to the
work or effort associated with a project. As constraints on the project management
triangle, they ’ re synonymous. But because Scrum is product focused rather than
project focused, it ’ s common to think in terms of features rather than scope.

What Do You Need to Ship Software? ❘ 11

c01.indd 11c01.indd 11 3/24/11 3:31:43 PM3/24/11 3:31:43 PM

12 ❘ CHAPTER 1 SHIPPING SOFTWARE

 Using Scrum doesn ’ t change the reality of the constraints that defi ne a project. However, Scrum is
designed to react to changes gracefully. With respect to scope, Scrum assumes that the feature set is
not fully defi ned up front. Rather, as the product emerges with successive sprints, features are added
to and cut from scope. Scrum also assumes that building a product will take a variable amount of time
and that you cannot predict the amount of time too early in the project. Once you have achieved a
predictable burndown velocity, you can begin to predict scope completion dates. Scrum can work quite
well on fi xed - budget projects because it enables you to move features in and out of sprints and move
sprints in and out of releases.

 Burndown velocity refers to the rate at which you complete product features
during each sprint. This is covered in Chapters 8 and 9.

 APPROACHES TO PROJECT MANAGEMENT

 This section looks at the three most common approaches to project management:

 Scrum — Scrum is the newest approach. Scrum came on the scene around 2000 and is
rooted in Agile programming.

 MSF — Microsoft Solutions Framework (MSF) was created in the early 1990s. Like Scrum,
it is an iterative development method.

 Waterfall — The Waterfall method is the most mature process and is fi rmly established in
software and other engineering disciplines.

 Scrum

 This book is all about using Visual Studio TFS to run a Scrum project. It assumes that you ’ re
somewhat familiar with Scrum and are looking for advice and guidance on using the tool to
facilitate the process. If you ’ re not familiar with Scrum but know how to use Visual Studio TFS,
don ’ t worry. By the time you fi nish this book, you will know more than enough to begin.

 This section presents a very brief summary of Scrum in order to help you compare it with the other
software project management methodologies. The subsequent chapters cover specifi c techniques
for using Visual Studio TFS to implement the concepts introduced here. If you ’ re new to Scrum,
you might want to check out the many great books, websites, and other resources that we list in
Appendix B.

 The Theory of Scrum: The Agile Manifesto

 The Agile Manifesto is a great starting point for understanding the principles on which Scrum is
based. You can fi nd it online at http://agilemanifesto.org .

 Four high - level values frame the methodology:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

➤

➤

➤

➤

➤

c01.indd 12c01.indd 12 3/24/11 3:31:53 PM3/24/11 3:31:53 PM

Approaches to Project Management ❘ 13

 Customer collaboration over contract negotiation

 Responding to change over following a plan

 These are not values in any moralistic way but preferences for working with products, individuals,
teams, and customers on Agile projects. In addition, 12 principles guide Agile software development:

 Our highest priority is to satisfy the customer through early and continuous delivery of
valuable software.

 It ’ s important to welcome changing requirements, even late in development. Agile processes
harness change for the customer ’ s competitive advantage.

 It ’ s important to deliver working software frequently, from a couple weeks to a couple
months, with a preference to the shorter time scale.

 Businesspeople and developers must work together daily throughout the project.

 An organization should build projects around motivated individuals. Give them the
environment and support they need and trust them to get the job done.

 The most effi cient and effective method of conveying information to and within a
development team is face - to - face conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefi nitely.

 Continuous attention to technical excellence and good design enhances agility.

 Simplicity — the art of maximizing the amount of work not done — is essential.

 The best architectures, requirements, and designs emerge from self - organizing teams.

 At regular intervals, a team should refl ect on how to become more effective and then tune
and adjust its behavior accordingly.

 The following section describes the high - level process that Scrum follows, from planning through
execution.

 The Practice of Scrum

 Scrum is an iterative software development process. In an iterative process, a product undergoes
many releases, some major and some minor, with each release adding more value to the product.
This type of process enables a team to deliver value to the customer early and to get feedback that
can be quickly incorporated into future product development.

 In the Scrum method, the product feature set is defi ned by user stories , which are brief narrative
descriptions of how the product will be used, by whom, and why. As features are scheduled for
development, user stories are decomposed and augmented with increasing levels of detail.

 The product release cycle in Scrum is divided into sprints. These are fi xed durations, typically two to
eight weeks, in which all development activities take place. Each sprint produces a potentially shippable

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

c01.indd 13c01.indd 13 3/24/11 3:31:58 PM3/24/11 3:31:58 PM

14 ❘ CHAPTER 1 SHIPPING SOFTWARE

product that contains features which meet customer expectations. After a number of sprints, typically
3 to 10, the product contains enough value to warrant deployment. Figure 1 - 5 shows the release and
sprint cycle. (Chapters 8 and 9 cover using Visual Studio TFS for release and sprint management.)

Sprint 2

Sprint 3

Sprint 1
Sprint 5

Sprint 4

Sprint 6
Release

1.0
Release

2.0

 FIGURE 1 - 5: The Scrum release and sprint cycle.

 You can observe the high - level activity of a Scrum project by reviewing three characteristics:

 Project artifacts — The artifacts are the lists, charts, and documents that the team uses to
run the project.

 Roles — The product roles are simply the job descriptions that show who is responsible for
what on the team.

 Ceremonies — The ceremonies are the rituals that mark the beginning and end of a
particular activity.

 The following sections look at each of these characteristics in more detail.

 Project Artifacts

 The product backlog is the list of all features waiting to be built. A team prioritizes the product
backlog by business value and ranks it according to which features should be delivered to the
customer. Scrum assumes that the list will grow and shrink throughout a release, as the team learns
more about the features and the customer learns more about the product. Initially, there is just
enough detail associated with each backlog item to begin the discussion between the product owner
and the development team. The primary communication mechanism between groups is face - to - face
interaction rather than documentation.

 The product backlog is the sole input directing work streams of the Scrum team. If a feature isn ’ t
on the backlog, it won ’ t be scheduled or built. At the beginning of each sprint, the team moves items
from the product backlog to the sprint backlog to indicate the features that will be built in the current
sprint. At the end of each sprint, the team produces a potentially shippable product. Bugs that exist at
the end of each sprint are added to the product backlog, so work can be scheduled to complete those
items in future sprints. (Chapter 6 covers using TFS to manage and track the product backlog.)

 Roles

 Scrum has a very simple team structure that involves just three roles. This structure generally
doesn ’ t translate to an organization or a reporting structure within a company, but it clearly defi nes
who does what on the Scrum team. These are the three roles:

➤

➤

➤

c01.indd 14c01.indd 14 3/24/11 3:31:58 PM3/24/11 3:31:58 PM

Approaches to Project Management ❘ 15

 Product owner — The product owner is responsible for all aspects of product defi nition.
This person is the voice of the customer and is always available to meet directly with the
development team to discuss and review features. There must be at least one product owner
on a project at all times.

 Team members — Team members are responsible for building the product. They may
follow Agile engineering methods (such as test - driven development or paired programming),
although this isn ’ t a requirement. Team members are the architects, developers, and testers.
There is no outside group performing these tasks.

 ScrumMaster — The ScrumMaster is responsible for the cadence and productivity of the
project team. The ScrumMaster defi nes the sprint duration (generally two to four weeks),
runs the daily stand up meeting, and helps to keep all team members working productively.

 Chapter 2 covers team organization in detail.

 Ceremonies

 At the beginning of each sprint, the team holds a sprint planning meeting to review the backlog and
estimate how much it can accomplish. The team identifi es the items it will build in the sprint, and it
commits to completing those items. Because each sprint has a fi xed set of resources, the number of
features must vary (refer to Figure 1 - 4).

 Each day of the sprint, the ScrumMaster leads the daily Scrum, or stand up meeting. This is a
short (15 - to 30 - minute) meeting to ensure that everyone on the team is productive and to identify
dependences that are impeding progress.

 At the beginning of each sprint, the team holds a retrospective in which it looks back and discusses
what went well and what didn ’ t, in an attempt to improve productivity. Chapter 10 covers using TFS
to conduct effective retrospective meetings.

 Microsoft Solutions Framework

 MSF is a framework for building and shipping software in an iterative series of releases. Microsoft
Consulting Services developed MSF, based on best practices from Microsoft product teams. Its goal
is to help a team build and ship software for enterprise customers in a rapidly changing world while
reducing risk at each stage. It assumes that there will be changes in scope, technology, and people
throughout the project.

 Iterative software development focuses on delivering small pieces of functionality frequently in order
to solicit and react to feedback, thereby reducing risk. Rather than shipping one release over a two -
 year project, MSF breaks a release into four smaller projects, each of which delivers a subset of the
features. With this method, the end user can see the product in an earlier stage of development and
provide feedback before additional features are built.

 The MSF Process Model

 MSF uses a well - published process model, shown in Figure 1 - 6. MSF contains fi ve distinct
milestones in each iteration, represented in the fi gure by black diamonds and labeled outside the

➤

➤

➤

c01.indd 15c01.indd 15 3/24/11 3:31:59 PM3/24/11 3:31:59 PM

16 ❘ CHAPTER 1 SHIPPING SOFTWARE

circle. There are fi ve corresponding project phases in each iteration. These are labeled on the inside
of the circle. The project moves from one phase to the next as each milestone is achieved:

Developing

Planning

Deploying Envisioning

Stabilizing

5. Deployment

complete

1. Vision/scope

approved

4. Release

readiness

approved

2. Project plan

approved

3. Scope

complete

 FIGURE 1 - 6: The MSF process model.

 1. Vision/scope approved — This milestone is reached at the end of the envisioning phase,
after the vision/scope document is reviewed and approved by the project sponsor and user
community. In contrast to the Waterfall method, the vision/scope document is typically not
an exhaustive list of requirements. Instead, it captures the high - level vision for the release
and the specifi c scope that will be implemented. It may have screen shots of competing
systems or of prototypes. It may defi ne high - level use cases, business workfl ows, or personas
to indicate how the system will be used and by whom.

 2. Project plan approved — This milestone is reached at the end of the planning phase,
after the functional spec is written and a concrete project plan is approved by the project
sponsor. This is typically a relatively long phase. It involves prototypes and detailed design
activities. The more technical work that is completed in this phase, the more accurate
project plans will be.

 3. Scope complete — This milestone is reached after the components are built and unit
tested during the developing phase. All major software development is complete at this
point.

 4. Release readiness approved — This milestone occurs after the stabilizing phase, when
the system is tested for end - to - end correctness and workfl ows. This phase also typically
includes stress and performance testing. In addition, production - readiness activities, such as
run books for operations and confi guration tools, are built.

 5. Deployment complete — This milestone is reached after the deploying phase, when the
software is deployed to the target operating environment.

c01.indd 16c01.indd 16 3/24/11 3:32:00 PM3/24/11 3:32:00 PM

Approaches to Project Management ❘ 17

 The MSF Team Model

 MSF uses a well - published team model, shown in Figure 1 - 7. MSF defi nes six roles, all of whom
are peers on the project team. Each of these roles should be fi lled at the beginning of the project,
although full - time involvement will vary during each cycle:

Program
Management

Release
Management

Product
Management

Development

User
Experience

Quality
Assurance

 FIGURE 1 - 7: The MSF team model.

 Program management — Program management is responsible for the project plan. Their
central job is to balance the project constraints of time and money against the feature set
to deliver the product on time and on budget. What makes this diffi cult is that the program
manager does not control the resources or the feature set; the other roles control the
resources and feature set. Effective communication and negotiation are hallmarks of this role.

 Product management — Product management is responsible for specifying a product that
meets customer expectations. Product managers deeply understand customer needs and
usage patterns. They instinctively know what is good, what is great, and what is awful.
They contribute heavily early in the project, a bit less in the middle, and then signifi cantly
again toward the end.

 Development — The development team is responsible for the architecture, design, and
software construction activities. This team works closely with all the other teams to build a
top - quality product. It is organized along functional or technical lines so it can scale well.

 QA — The quality assurance team works very closely with the development team and is
responsible for tracking and reporting quality to program management. This team develops
and executes test plans to ensure that the product meets functional specifi cations and user

➤

➤

➤

➤

c01.indd 17c01.indd 17 3/24/11 3:32:00 PM3/24/11 3:32:00 PM

18 ❘ CHAPTER 1 SHIPPING SOFTWARE

expectations. It works closely with the development team to test the product throughout the
developing and stabilizing phases.

 Release management — Release management is responsible for the logistics of deploying
the product in a target environment. This often includes writing and testing the installation
instructions to ensure smooth rollout. It also includes working with operations teams to
ensure compliance with local procedures and policies in the target environment. Release
management contributes heavily near the end of a release, but earlier involvement greatly
increases the likelihood of successful deployment.

 User experience — The user experience team is responsible for the overall experience
users have with the product. At the software level, it includes visual design, information
architecture, feature usability and discoverability, and the overall look and feel of the
system. In addition to software, the user experience team delivers documentation, help
text, and training. Making this function a peer with other team roles enables these critical
functions to be planned for and budgeted throughout the project.

 The Waterfall Method

 The Waterfall method is a proven technique for engineering and construction management. It breaks
a project into a series of phases, each one conducted by a specialized team with specifi c outcomes and
deliverables. The term Waterfall refers to the visual structure of a Gantt chart, which is commonly
used for planning. Figure 1 - 2, earlier in this chapter, depicts the waterfall shape of the Gantt chart.

 The Waterfall method is very effective under certain circumstances, although it has had limited
success in producing modern software. It ’ s used in situations in which there are well - understood
requirements and the solution uses proven, mature technology. The Waterfall method favors
stability over agility, planning over experimentation, and documentation over discussion. The
following sections discuss these three concepts.

 Stability

 If system requirements are stable, you can predictably engineer a solution that meets those
requirements. For example, if you ’ re hired to build a bridge across a river, you will be given some
very concrete requirements. You will be told where the bridge should begin and end. You ’ ll be told
the volume and makeup of traffi c it must carry. There are dozens of other requirements, but for the
sake of this example, let ’ s ignore them and assume that they are relatively predictable. With stable
requirements and stable technology, an experienced engineering fi rm should be able to prepare a
reliable estimate for completing the work.

 If the requirements are more dynamic, then it becomes increasingly diffi cult to estimate the time and
cost of the project, and the Waterfall method fails. For instance, if you are hired to “ move people
between Boston and Cambridge as effi ciently as possible, ” you cannot predict when you will be
fi nished because you don ’ t yet know if you ’ ll be carrying foot traffi c, cars, or trains and whether one
bridge is more desirable than two. In this case, an experienced engineering fi rm would propose a
discovery phase, possibly for a fi xed price, but could not accurately plan the project further.

 With software, customers typically describe the solution they want (“ move people ”) rather than the
product they want (“ a bridge ”). This makes using the Waterfall method diffi cult because there are
simply too many unknowns at the start of a project.

➤

➤

c01.indd 18c01.indd 18 3/24/11 3:32:01 PM3/24/11 3:32:01 PM

Approaches to Project Management ❘ 19

 Planning

 Each phase in the Waterfall method is predicated on successfully completing the prior phase. Each
phase builds on the work and decisions made in the prior phase, and the team can adjust its plans
accordingly. This implies that decisions made in early phases have an increasingly large impact in
later phases. That being the case, earlier phases focus on solidifying the requirements and design of
the system, with little code or engineering work taking place until later.

 A central concept in this method is that problems uncovered earlier in the process are much easier to
correct than those found later. For instance, in the bridge example, it would be very expensive
to move the bridge once constructed, so the engineering team has to be 100% sure of the location
before the fi rst stone is moved. The same concept can also be applied in some software projects. If the
requirements are very stable and clearly understood, then a lengthy design phase, including prototyping
and feedback, followed by a shorter development phase, can deliver a product for a predictable cost.

 Documentation

 Documentation is the primary communication vehicle between phases of the Waterfall method.
Heavy reliance on documentation allows project phases to start, be staffed by experts, produce a
result (a document), and then wind down in a predictable manner. It also enables a large team to
switch players throughout a project in order to maximize people ’ s time. Finally, it provides a written
record of progress so there is transparency into why, when, and by whom decisions are made.

 Requirements gathered from stakeholders are cataloged and assembled into a document that
becomes the defi nition of success. This primary document is called the requirements defi nition,
business requirements document, or something similar. The document essentially becomes the
contract between the business users and the technical implementation team. If, when the system
is deployed, it meets the requirements listed in this document, the system is deemed successful.
Therefore, both teams must fully understand this document.

 After the requirements defi nition is reviewed and approved by the business users, a more technical
team translates it into a functional specifi cation (or spec). The functional spec describes what the
system will do. It depicts screens, database tables, fi eld - level validation, and workfl ow. It translates
the business requirements into something that the team can build. The business user must also
review and approve this document, since it precisely describes the system that will be built. The
functional spec also typically includes a traceability matrix that references the requirements
document. This matrix ensures that the functional specifi cation addresses all business requirements.

 Following the functional spec is a detailed design document, the fi rst document that addresses the
technology. Its purpose is to map the functional spec into a blueprint of a system. After system
architects approve the detailed design, construction begins.

 Don ’ t underestimate the language barrier between customers and engineers.
Customers may have diffi culty articulating what they want, and engineers may not
fully understand what they need to build. If these people are speaking different
languages, each will be misunderstood.

c01.indd 19c01.indd 19 3/24/11 3:32:01 PM3/24/11 3:32:01 PM

20 ❘ CHAPTER 1 SHIPPING SOFTWARE

 While heavy documentation has advantages in terms of oversight and traceability, there are
major problems with it. First, it assumes that people will read the documents. This is rarely the
case, as documents frequently exceed hundreds of pages. Second, it assumes that the reader can
understand the documents. This is also rarely the case. Business users don ’ t speak or write in terms
of “ requirements, ” yet they are expected to approve a document written in that language. They
generally approve a document based on their trust of the people writing it, but this allows errors and
omission to easily slip past review. Finally, the more the team focuses on documentation, the less it
focuses on the actual task at hand — building great software.

 COMPARING METHODOLOGIES

 The following sections compare the three project management techniques according to primary
characteristics. The intent is to help you understand the similarities and differences, so you can use
your experience with Waterfall or MSF to gain insight into Scrum.

 Product Defi nition

 How, when, and by whom is a product defi ned? How are the user needs and expectations
captured? How are requirements communicated to the technical team? How does the technical team
communicate with users? The three project management methodologies address product defi nition
as follows:

 Waterfall — Product requirements are extensively documented during the fi rst phase
of a project. They are generally expressed in a technical grammar rather than natural
language, although they are describing business goals rather than technology. At the end
of the requirements defi nition phase, the capabilities of the system are fully specifi ed. The
requirements document can be used for tendering proposals from competing vendors to do
the implementation.

 MSF — The product defi nition begins with a vision/scope document, which is a narrative
description of the high - level goals and motivations of the project. This document is used to
build a functional specifi cation that fully describes the product. The functional specifi cation
can be used for tendering proposals from competing vendors to do the implementation.

 Scrum — The product defi nition is captured as user stories and expressed in natural
language, in the form < someone > wants to do < something > because < reason > . User
stories are decomposed and expanded closer to implementation. The feature set for the
system is dynamic and changes throughout the project life cycle.

 Adaptability

 How does each methodology work with changing requirements? Does the methodology favor a stable
or changing landscape? The three project management methodologies address adaptability as follows:

 Waterfall — Requirements are locked down early in the project life cycle. Changes
introduced later in the project can have a large ripple effect on time and cost. Change orders
are used to track and schedule cost and features. A big design phase up front can produce a
predictable cost and schedule.

➤

➤

➤

➤

c01.indd 20c01.indd 20 3/24/11 3:32:06 PM3/24/11 3:32:06 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 MSF — MSF features iterative development that reacts well to change. Requirements are
locked at the beginning of a release but can be added in subsequent releases. Major and
minor releases can be scheduled based on new requirements.

 Scrum — Scrum assumes that features will be added to the product backlog after work
begins. Because change is expected, it has less of a ripple effect throughout the system.
Instead of change orders, additional sprints or releases are added to the schedule to
implement new features.

 Scheduling

 What is the basis for scheduling features or people? When will you know if the project is slipping?
The three project management methodologies address scheduling as follows:

 Waterfall — Scheduling is predictive. Using a known team and known technology, an
experienced team can predict the duration of each phase and task. This method doesn ’ t
respond well to slippage, as dependencies among tasks and phases are often very complex.

 MSF — Scheduling is predictive, as in the Waterfall method. However, because MSF is
iterative, with more frequent releases, schedule slippage is more manageable. Subsequent
releases can add or remove features to react to prior impact.

 Scrum — Scheduling is empirical. Work is scheduled based on the Scrum team ’ s velocity.
Estimation becomes more accurate with each successive sprint, based on actual work
completed. Scheduling is very reliable because of the fi xed - duration sprints. The scope is
less reliable because features will move in and out of sprints and releases to accommodate
the fi xed schedule.

 People

 How are teams organized? When are people added to and removed from projects? The three project
management methodologies address people as follows:

 Waterfall — Specialized teams work on different phases of the project. Business analysts
perform the requirements defi nition work early, often before technical experts have been
assigned to the project. Once development begins, business analysts have a reduced role.
Testing begins after development completes. Project management is a specialized role, often
staffed by a project management offi ce.

 MSF — Specialized teams work on different aspects of the project but all at the same time.
Roles are clearly defi ned and cover the full spectrum of what ’ s necessary to build and ship
products in a predicable manner. The project is run by a team of peers, with each discipline
contributing to each phase.

 Scrum — A single team is involved throughout the project life cycle. Within the team, just
three roles are defi ned. The work is very collaborative within and across roles. The team is
self - organizing, and team members have full visibility into the product backlog and commit
to completing scope. The team is involved in planning, estimating, developing, and testing.
The team remains customer focused throughout the project.

➤

➤

➤

➤

➤

➤

➤

➤

Comparing Methodologies ❘ 21

c01.indd 21c01.indd 21 3/24/11 3:32:06 PM3/24/11 3:32:06 PM

22 ❘ CHAPTER 1 SHIPPING SOFTWARE

 Documentation

 What form of documentation is needed and produced? The three project management
methodologies address documentation as follows:

 Waterfall — Documentation is the rule of law. Documents describe what ’ s needed and
how the system will work. Documents enable team members to come and go because they
provide a permanent record of decisions. Microsoft Project and Gantt charts are tools
commonly used for documenting the project schedule.

 MSF — A prescribed set of documents guide an MSF project. Beginning with a vision/scope
and concluding with release documentation and the Microsoft Operations Framework,
these documents provide a common language for teams familiar with MSF. Because
MSF is primarily used on Microsoft - focused projects, documents are frequently stored in
SharePoint or Visual Studio. Microsoft Project and Gantt charts are tools commonly used
for documenting the project schedule.

 Scrum — Discussion and informal communication are favored over formal documentation.
User stories are decomposed into a scope that is scheduled for development. Before work
can begin, the product owner and team members discuss the features in detail. Visual
Studio TFS is a very effective tool for communicating user stories, features, and tasks.
When using Visual Studio TFS for Scrum artifacts and activities, documents are frequently
stored in SharePoint.

 Project Duration

 What is the typical duration of a project? The three project management methodologies address
project duration as follows:

 Waterfall — Waterfall typically involves longer development projects, often measured in
years. It ’ s not uncommon to spend 3 – 4 months defi ning business requirements, followed
by 3 – 4 months defi ning the functional requirements and then 3 – 4 months defi ning the
technical design, all before the software development phase.

 MSF — MSF uses an iterative framework, with releases shorter than those in Waterfall
projects. Typical durations are 6 – 12 months for a major release and 3 – 6 months for a
minor release. This pace balances design with delivery and user feedback with product
improvement.

 Scrum — Scrum excels with projects of variable lengths and scopes, especially those that
deliver value to the customer early, with rapid iteration and product improvement. Releases
typically last 6 – 12 months, and sprints last 2 – 4 weeks.

 SUMMARY

 Shipping great software requires a lot more than writing great code. It requires all of the following:

 Vision — A great product starts with a compelling, concise description about what you ’ re
building, for whom, and why. This is written or heavily shaped by the project sponsor.

➤

➤

➤

➤

➤

➤

➤

c01.indd 22c01.indd 22 3/24/11 3:32:07 PM3/24/11 3:32:07 PM

 Insight — Shipping great software requires a deep understanding of the desires, needs, and
tastes of the customers. It is the product owner ’ s job to have this understanding.

 Resources — It takes a surprising amount of resources — including time, money, people,
and technology — to build and ship software. You need to allocate and spend resources
carefully.

 Planning — For planning, you need a process, and you need tools. Scrum is a planning
process, and TFS is a planning tool.

 Features — Ultimately, the success of your software is measured by the usefulness and
quality of what you produce. It can be considered useful in terms of productivity, education,
entertainment, or any other attribute your customers value. Scrum is a product - focused
method for producing products with the right features for your customers.

 With all this in place, you have the raw ingredients to ship great software.

 Several project management methodologies are commonly used in shipping software. This chapter
discusses three of them: Scrum, MSF, and Waterfall. It presents highlights of the three methodologies
and compares their signifi cant project attributes.

 You ’ re now ready to begin learning more about running Scrum projects. In Chapter 2, you ’ ll learn
about the organization of a Scrum team.

➤

➤

➤

➤

Summary ❘ 23

c01.indd 23c01.indd 23 3/24/11 3:32:08 PM3/24/11 3:32:08 PM

c01.indd 24c01.indd 24 3/24/11 3:32:08 PM3/24/11 3:32:08 PM

Organizing a Scrum Team

 WHAT ’ S IN THIS CHAPTER?

 Organizing a Scrum team and understanding the roles of the team

members.

 How to scale a Scrum team.

 Comparing Scrum team organization with the Microsoft Solutions

Framework organization.

 How other IT roles work with a Scrum team.

 Transitioning to Scrum.

 Team organization in Scrum is quite different from team organization in traditional software
development projects. Rather than analysts, developers, testers, release engineers, and project
managers, Scrum involves a core team of peers who are responsible for building, testing, and
shipping a great product. The roles are clearly defi ned, but each person is responsible for a
wide variety of tasks. When moving from traditional software development to Scrum, a team ’ s
composition shifts from having many roles, each with narrow responsibilities, to having
fewer roles, each with broader responsibilities. This shift leads to a more collaborative,
empowered team.

 This chapter defi nes the project roles in Scrum, both in terms of their responsibilities on a
project and in the context of traditional software project management strategies.

 SCRUM ROLES

 There are just three roles defi ned in Scrum:

 Product owner — The product owner determines what features go into the product.

➤

➤

➤

➤

➤

➤

 2

c02.indd 25c02.indd 25 3/24/11 3:40:41 PM3/24/11 3:40:41 PM

26 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 ScrumMaster — The ScrumMaster is responsible for project status and coordination, team
productivity, and removal of impediments to progress.

 Team members — The team members are responsible for building and testing high - quality
software.

 Of course, many more people have a signifi cant impact on a project. People outside a Scrum team
are responsible for funding, acceptance, delivery, and support. But although these people are
important to the success of a project, they ’ re not part of the Scrum team. This is one reason Scrum
can be so effective: It limits the crossfi re that a larger constituency generates.

 Figure 2 - 1 depicts a typical Scrum team. This example shows one product owner, one ScrumMaster,
and six team members doing development and testing.

➤

➤

Team
member

Team
member

Team
member

Team
member

Team
member

Team
member

Scrum
Master

Project sponsors
and others

Users

Product
owner

 FIGURE 2 - 1: Scrum team organization.

 The ScrumMaster

 The ScrumMaster has two primary responsibilities: ensuring team productivity and tracking project
status through release. These are not easy tasks, but when treated as top - line job responsibilities,
they are quite achievable.

 ScrumMasters can facilitate team productivity in a number of ways, as shown in Table 2 - 1.

c02.indd 26c02.indd 26 3/24/11 3:40:43 PM3/24/11 3:40:43 PM

 Before looking at techniques and attributes of productive teams, it helps to think about the negative.
Unproductive software teams have a number of common attributes, as described in Table 2 - 2.

 TABLE 2 - 1: Ways a ScrumMaster Increases Team Productivity

 GOAL SCRUM ACTIVITY

 Maximize productivity

in meetings

 The daily Scrum is a 15 - minute meeting to discuss coordination,

dependencies, and roadblocks. Keeping it short keeps the team moving

and prevents the team from wasting time.

 Promote eff ective inter -

 team communication

 The simple organization structure of a Scrum team keeps

communication lines open. The ScrumMaster ensures that people are

talking.

 Eliminate impediments

to progress

 The ScrumMaster tracks and attacks any impediments. This includes

simple tasks such as keeping the team caff einated and working with

good equipment, as well as complex coordination and reporting.

 TABLE 2 - 2: Ways a ScrumMaster Decreases Unproductive Behavior

 COMMON UNPRODUCTIVE BEHAVIOR HOW A SCRUMMASTER AVOIDS IT

 Ineff ective meetings — that is,

meetings that occur too often, are too

long, and are inconclusive

 The ScrumMaster sets the pace for the team and runs the

daily Scrum. The ScrumMaster and the product owner

empower the team to build the product. The Scrum team

is empowered to make virtually all decisions about the

product, which streamlines decision making.

 Individuals making decisions without

all available information

 Because the team structure is relatively simple,

information fl ows freely. The daily Scrum enables a very

rapid exchange of ideas, concerns, and dependencies.

 Large teams that prohibit progress A Scrum team is small — typically fewer than 10 people. You

can build more complex products by scaling with Scrums of

Scrums, but the basic unit remains small and agile.

 The ScrumMaster ’ s job is to provide the structure and communication channels to avoid these
unproductive activities. The ScrumMaster can do this by using formal and informal techniques,
but whatever techniques are involved, the ScrumMaster is responsible for creating a productive
environment.

 The following sections describe the activities of the ScrumMaster:

 Running the daily Scrum

 Involving others

➤

➤

Scrum Roles ❘ 27

c02.indd 27c02.indd 27 3/24/11 3:40:43 PM3/24/11 3:40:43 PM

28 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 Fostering effective communication

 Determining team size

 Running the Daily Scrum

 The daily Scrum, sometimes referred to as the daily standup, creates a hyper - productive
environment for communication within the Scrum team. The entire team attends this 15 - to
30 - minute daily meeting, which is typically held in the morning. The purpose of the daily Scrum
is to discover issues that are blocking progress and to request assistance or adjustment to overcome
these issues. Easy solutions are resolved at this meeting, and more diffi cult topics are scheduled for
later follow-up.

➤

➤

 At the daily Scrum, a quick inexpensive snack helps the mood of the meeting.

 With everyone in the room, it ’ s easy to identify dependencies that could impede progress throughout
the day. For instance, if Bill is waiting on Hannah to check in some code, but Hannah isn ’ t planning
to fi nish testing until the end of the day, Bill can work on something else for the day rather than
wait and pressure Hannah. Simple planning and discussion make the daily Scrum a very effective
use of everyone ’ s time.

 For topics that require follow - up, the ScrumMaster may or may not stay involved. For topics
that the team can resolve — such as technical discussions, refactoring, common components,
or performance — the ScrumMaster is not needed. Team members can hold these discussions
following the daily Scrum or schedule meetings for later in the day.

 The ScrumMaster sets the pace of the sprint during the daily Scrum. If necessary, the ScrumMaster
should get commitments from people to ensure that everyone is focused on the most important
backlog items. The point of the meeting is to remove roadblocks and impediments and to ensure
that the team is working toward the common goal of the sprint. It is a great opportunity to keep a
sprint productive and collaborative.

 Demonstrating progress is an easy way to motivate people. If someone just
fi nished a backlog item that makes a good demo, have that person spend a few
minutes showing it off during the daily Scrum.

 Involving Others

 The daily Scrum occasionally raises issues that people outside the team must help resolve. These
issues might involve clarifi cation of product features, the budget, or the deployment environment.
For issues that require resolution by people outside the team, it ’ s the ScrumMaster ’ s job to
understand the impediment facing the team and to bring in outside expertise to resolve the issue.
The team members can quickly return to the features they ’ re currently working on from the product

c02.indd 28c02.indd 28 3/24/11 3:40:44 PM3/24/11 3:40:44 PM

backlog while the ScrumMaster researches the issue and tracks down the necessary constituents.
The research may take days, but the team productivity is not impacted.

 When a team faces technical unknowns or issues that require outside help, it ’ s
important to address them head-on, by bringing in additional expertise and
resolving any questions. Often, this is done in a spike , a short sprint focused on
a single issue. See Chapter 11 for information on running spikes.

 This division of labor keeps the team productive. Team members focus on building software,
while the ScrumMaster tracks down the right people for a decision. The ScrumMaster identifi es
and briefs the appropriate people on the issues and the decision that must be made. Then the
ScrumMaster brings those people together with the team to reach or review the decision.

 Fostering Eff ective Communication

 The ScrumMaster must ensure team productivity, and this requires effective communication. There
are numerous impediments to effective communication, including cultural differences, interpersonal
skills, time/distance differences among the team members, and job expectations.

 The ScrumMaster must keep a constant watch for communication enablers and inhibitors. Who
are the connectors on the team, the individuals who work well with everyone and are quick to
convey information or provide insight? Are the technical leaders adequately coaching the junior
team members? Is everyone contributing to his or her best ability? Is everyone actively participating
at the daily Scrum? Is anyone spending days or weeks on a problem without communicating or
demonstrating progress?

 The ScrumMaster must ensure that communication lines are open among team members and
between product owners and the team. Failure in this area may not be recoverable. If the team
doesn ’ t understand the way in which the product will be used, it is extraordinarily diffi cult to build
the product optimized for that usage.

 Determining Team Size

 Large projects that have increased scope and complexity generally require larger teams. Larger
teams involve more people, more diverse skills, and often more locations.

 Scrum projects tend to be smaller. They tend to focus on product features and on shipping quality
software. If Scrum is done right, it involves less process and more result. The ScrumMaster is
responsible for scaling a Scrum project, and he or she must do this carefully.

 The Product Owner

 The product owner is responsible for ensuring that product features meet customer expectations. The
product owner can be a leader in the user community, someone from marketing, a business analyst
within the IT arena, or any other individual who can effectively communicate business needs.
Regardless of this person ’ s training or the organizational hierarchy, the product owner must have the
ability to provide deep insight and understanding of product usage and benefi ts to the Scrum team.

Scrum Roles ❘ 29

c02.indd 29c02.indd 29 3/24/11 3:42:04 PM3/24/11 3:42:04 PM

30 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 Table 2 - 3 describes the characteristics of a good product owner.

 TABLE 2 - 3: Characteristics of a Good Product Owner

 CHARACTERISTIC DESCRIPTION

 Deep domain knowledge The product owner ’ s primary role is to translate business needs

into technical requirements. Having a deep understanding of the

business is crucial to success.

 Strong verbal and written

communication skills

 The product owner will spend time with users, business decision

makers, clients, and the Scrum team. The various constituents

speak diff erent languages, and the product owner must be able to

communicate with them (talk, present, write, e - mail, IM) at all levels.

 Presence The product owner must be physically or virtually present on the

team. He or she must be available to answer questions quickly and

decisively. The product owner may not have all the answers but should

be able to get them on short notice in order to prevent impediments.

 Empowerment The product owner defi nes the feature set, so not only must this

person understand the need, he or she must be empowered to

determine how that need is met in the product.

 At a high level, the product owner has the vision for the product. He or she describes the end state
for the system and how it will benefi t the users. More tactically, the product owner has details about
what specifi c features must do. The product owner will not be the expert on all features, but when this
person does not know something, he or she needs to be able to fi nd answers from someone who does.

 A product owner is involved in three primary activities:

 Specifying and prioritizing features

 Planning sprints and releases

 Testing features

 The following sections discuss these activities.

 Specifying and Prioritizing Features

 The product owner, or project sponsor, writes the product vision to describe the overall goals of the
product. The product vision should convey who uses the product, what benefi ts the users derive,
and what competing options exist. (The competition may be another software product, or it may
be another way of doing something that doesn ’ t require software at all.) In total, the product vision
describes the context in which the product exists.

➤

➤

➤

c02.indd 30c02.indd 30 3/24/11 3:42:09 PM3/24/11 3:42:09 PM

 The product vision is then bound by a project scope. The scope defi nes the level of effort, emphasis,
and constraints that guide the early sprints and releases.

 With the vision and scope in hand, the product owner creates the product backlog. The product
backlog is the master list of all potential features for the product. The items in the product backlog,
also known as product backlog items (PBIs) , must be specifi ed with enough detail so that the team
can understand and discuss them.

 It is common for PBIs to be expressed in user stories. PBIs can be very high level or can provide
more detail. In either case, they should contain just enough information for everyone to understand
the feature. As Albert Einstein might have said, PBIs should be made as simple as possible, but not
simpler.

 USER STORIES

 A user story is a short description of a product feature. It starts as a simple
sentence or two, often on a note card, and is used as a reminder that more detail is
needed. It culminates in a rich understanding between the product owner and the
team, with just enough documentation of what is needed and how it will be tested.

 Prior to the fi rst sprint of a release, the product owner populates and prioritizes the product backlog
so the team can gain insight into the overall scope of the release. Prioritizing the backlog is crucial
because it enables the team to commit to the items of the sprint.

 The backlog priority indicates the order in which PBIs should be scheduled into a sprint. The
priority is a relative value, where lower numbers have great priority. For example, an item with a
priority setting of 50 will be scheduled before an item with a priority of 1,000.

 BACKLOG PRIORITY VERSUS BUSINESS VALUE VERSUS EFFORT

 Backlog priority is different from business value. Business value is a measure of
importance for a feature. A feature may be very important to the business, but
it may not be needed or even feasible until a later sprint. The priority directs
the order in which features will be built — not their intrinsic importance to the
product.

 Similarly, the backlog priority is also different from effort. Effort is a rough
estimate of how diffi cult it is to build a feature. The team may not have enough
information to make a good guess, but it can at least make a guess. The estimate
is typically not in terms of time or money; it ’ s just a relative estimate used to scope
sprints and releases. We cover estimation in Chapters 3–6.

Scrum Roles ❘ 31

c02.indd 31c02.indd 31 3/24/11 3:42:09 PM3/24/11 3:42:09 PM

32 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 Planning Sprints and Releases

 At a high level, a release is composed of a series of sprints. A sprint is a unit of work, typically
lasting two to four weeks, that delivers a set of features in a potentially shippable product. The
product owner delineates what features will be in each release and works with the team members to
schedule those features into sprints. Chapters 8 and 9 describe this process in more detail.

 Whereas a sprint is a potentially shippable product, a release is a product actually ready to be
shipped. There are big differences between the two. “ Potentially shippable ” refers to the fact that
the features have been tested. Most products cannot ship until a set of related features are complete,
hardened for production, reviewed for security, and packaged for deployment. The product owner
defi nes the release by determining the set of features that he or she would like to ship as a unit. The
team then iteratively builds those features in sprints.

 At the sprint planning meeting, the team selects PBIs and commits to completing them within the
sprint. One by one, the team removes items from the product backlog and places them on the sprint
backlog. The sprint backlog is an outcome of the sprint planning meeting.

 The sprint planning meeting is a group exercise, with the product owner, ScrumMaster, and team
all participating. The product owner prioritizes the product backlog. The team commits to specifi c
items it will complete within the sprint.

 Testing Features

 In the customer ’ s eyes, the product owner is responsible for delivering a high - quality product.
The product owner will have enormous pride in what the team produces, and just as he or she is the
customer ’ s advocate inside the team, the product owner is the team ’ s external face to the customer.

 The product owner starts thinking about testing while initially writing the user stories. Going from
note cards on a board to redundant PBIs in TFS, user stories incrementally defi ne the quality level
that meets the customer ’ s expectations.

 First, the product owner defi nes a test plan, indicating the success criteria for each PBI. Then the
product owner defi nes test cases. There may be just a few test cases, or there may be dozens. The
goal of the testing is to ensure that the product performs as expected.

 As described in Chapter 1, Scrum minimizes documentation. Therefore, the test cases are often the
most concrete defi nition of a product feature ’ s function. The product owner has huge incentive to be
explicit and thorough in defi ning test cases because the team will build features that pass the tests.

 The team will create many automated tests, and the product owner may create hundreds of manual
tests. It is the product owner ’ s responsibility to see that the tests are run as the product emerges.
Chapter 7 covers quality assurance in detail.

 Scaling Product Owners

 A traditional software project may involve months writing specifi cations (or specs) before anyone begins
to write any code. With Scrum, you try to minimize specs in order to write code earlier. The high - level
information that used to be in the spec is now headlined in the product backlog. The additional details
that used to be in the spec are available on demand from the product owner. Therefore, the product
owner can quickly become a bottleneck in a project.

c02.indd 32c02.indd 32 3/24/11 3:42:10 PM3/24/11 3:42:10 PM

 Larger Scrum projects often need more than one product owner. In fact, the product owner is often
the fi rst person to be overwhelmed, since all team members tend to require this person ’ s input. If
you need one additional product owner, you can simply add one to the Scrum team. You may need
an extra product owner for just one or two sprints, or maybe for an entire release. In either case, as
long as the overall Scrum team isn ’ t too big, you can add product owners to the team.

 Figure 2 - 2 shows a Scrum team with two product owners. In this scenario, each product owner
would be responsible for a set of sprint backlog items.

Team
member

Team
member

Team
member

Team
member

Team
member

Team
member

Scrum
Master

Product
owner

Product
owner

Project sponsors
and others

Users

Users

 FIGURE 2 - 2: A Scrum team with two product owners.

 For a large project that requires more than two product owners, the team may want to add a
hierarchy of product owners. For instance, if the project is to build a retail website, one product
owner may be in charge of inventory, one may handle marketing, and one may be responsible for
customer management. You may also have a product owner for performance. In the case of multiple
product owners, one of them should represent the others at the daily Scrum meeting.

 Figure 2 - 3 shows a Scrum team with four product owners. In this case, each product owner would
be responsible for a set of sprint backlog items, but only one would need to attend the daily Scrum.
Issues raised during the daily Scrum would be resolved directly between the team members and the
attending product owner.

Scrum Roles ❘ 33

c02.indd 33c02.indd 33 3/24/11 3:42:11 PM3/24/11 3:42:11 PM

34 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 Team Members

 As stated at the beginning of this chapter, Scrum teams have a simple organization. Each team is
composed of a ScrumMaster, a product owner, and a number of team members. The team members
typically have skills in software engineering, software architecture, business analysis, software
testing, database tuning, IT operations, user experience, and user interface design.

 The primary responsibility of the team members is to build the product. They determine the
architecture, component design, and user experience. They work within boundaries of time and
cost and are empowered to make trade - offs to build the best possible product within those limits.
Both development and testing occur within the team. Because there is no separate QA group, the
team members are both empowered and responsible for their own testing.

 The team members participate in sprint planning activities. Since they are the ones building the product,
one sprint at a time, the team members are the only ones who can truly commit to completing PBIs
within the sprint. This is a radical departure from traditional software development, where managers
commit to time schedules and allocate tasks to developers and testers.

 A Scrum team typically contains a mix of senior, more - experienced members and junior members
who are earlier in their careers. In a more traditional management structure, senior members may
be on an architecture board that defi nes the architecture, with product development team members
following that architecture. In contrast, a Scrum team brings together different skill sets and levels.

Team
member

Team
member

Team
member

Team
member

Team
member

(Org structure of
product owners)

Group product
owner

Product
owner

Product
owner

Product
owner

Team
member

Scrum
Master

Users

Product
owner

Product
owner

Product
owner

Product
owner

Users

Users

Users

Project sponsors
and others

 FIGURE 2 - 3: A Scrum team with four product owners.

c02.indd 34c02.indd 34 3/24/11 3:42:11 PM3/24/11 3:42:11 PM

 As described in the following sections, the team focuses on the following activities within a sprint:

 Committing to delivery

 Focusing on the features

 Improving as a team

 Committing to Delivery

 At the beginning of a sprint, the team collectively determines which PBIs it will complete. This list
becomes the sprint backlog that the team commits to completing. From this point until the end of
the sprint, the team is responsible for delivering the items on the spring backlog.

 The team members must drive toward sprint completion as a group, and they will succeed or fail as a
team. There will be top performers within any team, but it ’ s the team result that makes Scrum work.
If the team commits to completing 10 items but completes only 5, the failure to meet the commitment
has cost the project something — in terms of time, money, or trust. Because of the group focus and
collaboration of the sprint, it is in everyone ’ s interest to complete items and to help teammates do
the same

 Focusing on the Features

 A Scrum team should be focused on a cohesive set of PBIs within a sprint. All team members must
actively engage in discussion. Their discussions, both across the desk and at the lunch table, will
wander from technical details to user expectations. Someone will be working on a user interface
element, someone else on a business rule, and maybe a third person on a caching technique. Along
the way, collaboration is natural. The alternative, which is to make progress in many disparate areas
of the backlog, tends to be isolating and may lead to fragmented results.

➤

➤

➤

 TEAMWORK AND RELATED FEATURES

 When team members focus on related items, they can easily fi nd opportunities to
improve each other ’ s work and deliver a more cohesive and comprehensive product.
Consider a team building a retail website. If one person is working on the
product catalog, another on user registration, and a third on coupons, there ’ s
very little need for these three people to discuss their work. A fourth person
working on performance optimizations may just have his or her head down in
profi ling and monitoring tools.

 Now imagine that the four team members are working on just the inventory
system. One may focus on bulk updates, another on cross - sell catalog links, a third
on image attributes in the catalog, and a fourth on query optimization in popular
categories. At the end of this sprint, the four team members will know a lot about
tracking inventory. They ’ ll also know more about each other.

Scrum Roles ❘ 35

c02.indd 35c02.indd 35 3/24/11 3:42:11 PM3/24/11 3:42:11 PM

36 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 Improving as a Team

 A product is only as good as the people who build it. A top - performing technical team has the
capability to build a great product. A team lacking important skills can rarely build anything great.
Therefore, the fi nal product is directly related to the technical wherewithal of the team.

 Team members have an opportunity to improve their skills with each sprint. Close collaboration
encourages cross - learning, so the team should take every opportunity to foster this. The following
are some simple techniques:

 Include both senior and junior engineers on the Scrum team

 Encourage team members to be responsible for small PBIs outside their core competency

 Encourage one - on - one follow - up meetings to discuss topics raised at the daily Scrum

 Hold informal design reviews and code walkthroughs

 SCALING A SCRUM TEAM

 In projects that require teams larger than 8 or 10 team members, it is necessary to scale the team.
Earlier, this chapter discussed ways to scale the product owner role. Scaling an entire Scrum team
requires a different approach: You need to defi ne multiple Scrum teams.

 Having multiple Scrum teams can greatly accelerate progress. If done right, you can scale from 8 to
80 team members and burn down the product backlog at a corresponding pace. If done wrong, it
will grind progress to halt.

 When defi ning multiple Scrum teams, the goal is to have teams that can work independently. At the
same time, the teams must coordinate on technology and integrate as early as possible. If the teams
do not coordinate on technology, the resulting product may have architectural differences that are
diffi cult to resolve. The longer the teams go without integration, the greater the risk that integration
will be diffi cult.

 As discussed in the following sections, to ship a great product that is produced by multiple Scrum
teams, you need to address the following topics:

 Team specialization

 The Scrum of Scrums meeting

 The product backlog

 Sprint synchronization

 A common architecture

 Team Specialization

 To scale a Scrum team, you need to establish multiple Scrum teams that will work independently
yet come together to produce a single product. How should the team be split? Should it be split by
feature, by cross - cutting concern, or by technology? The preference should be by feature, and then
by cross - cutting concern, and then by technology. Table 2 - 4 summarizes the decision process.

➤

➤

➤

➤

➤

➤

➤

➤

➤

c02.indd 36c02.indd 36 3/24/11 3:42:12 PM3/24/11 3:42:12 PM

 The specialized Scrum teams will work largely independently of each other. Coordination between
them is important, but the daily work and communication will primarily be focused within the team.
The way you choose to specialize will impact the degree of coordination, as outlined in Table 2 - 4.
Consider the following:

 If you specialize by feature, then you will coordinate on cross - cutting concerns and
technology, discussing how to use common components and how to use technology.

 If you specialize by cross - cutting concern, then you will coordinate on features and on technology .

 If you specialize by technology, then you will coordinate on features and on cross - cutting
concerns.

➤

➤

➤

 TABLE 2 - 4: Specialization Across Scrum Teams

 SPECIALIZATION EXAMPLE ADVANTAGES DISADVANTAGES

 By feature (best

choice)

 In a retail website, one

team may deliver cart

and checkout features,

while another team

may deliver inventory

and merchandising

features.

 Reduces

dependencies on

other teams.

 Focuses on product

features.

 Improves acceptance

testing.

 Architecture and technical

design could bifurcate

across features, increasing

support costs.

 Each team may need to

reinvent the wheel.

 By cross - cutting

concern (second -

 best choice)

 In a retail website,

one team may deliver

the caching objects,

and another might

deliver the security

infrastructure.

Artifacts from these

teams are delivered to

other teams, not to the

customer.

 Reduces cost and

maximizes quality for

complex technical

capabilities.

 Ensures architecture

consistency across

features.

 This division is not

customer driven.

 Scrum teams are less

empowered because they

don ’ t see the full scope of

the product.

 Need to defi ne and lock

down the interface early;

changes are expensive.

 By technology

(last choice)

 In a retail website, one

team may focus on

the web tier, another

on the mid - tier, and a

third on the database.

 Maximizes skills of

specialists.

 Improves unit testing

because team

members are experts

in their technology

focus.

 This organization

maximizes inter - team

dependencies.

 Nobody is responsible for

feature delivery.

 Each team will produce

solutions that maximize

reliance on their

technology, while nobody

is paying attention to the

complexity of technical

cohesion of the product.

Scaling a Scrum Team ❘ 37

c02.indd 37c02.indd 37 3/24/11 3:42:13 PM3/24/11 3:42:13 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

38 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 Regardless of how you specialize the teams, each Scrum team operates as its own unit, with a
product owner, a ScrumMaster, and team members. Each Scrum team has a daily Scrum, PBIs,
bugs, tasks, burndown charts, and sprints.

 The Scrum of Scrums Meeting

 With multiple teams specialized to implement different aspects of the product, the teams must
coordinate and integrate in order to produce a cohesive result. The Scrum of Scrum meeting is
where this coordination takes place.

 Representatives from each Scrum team attend the Scrum of Scrum meeting. Each team sends an
emissary to the meeting. Each team can send more than one person, but one is usually suffi cient.
The representative could be the lead developer or architect, the product owner, or the ScrumMaster.
You should choose carefully because this person will spend signifi cant time coordinating.

 The Scrum of Scrums is a meeting — not a team. It does not have a ScrumMaster, a product
owner, or team members. It ’ s a meeting that occurs regularly, either daily or a few times per week.
It is longer than the 15 - minute daily Scrum, but not much longer. The purpose of the meeting is to
identify and mange dependencies, coordinate work where necessary, and resolve impediments.

 Figure 2 - 4 depicts a Scrum of Scrums meeting, with an individual from each Scrum team participating.
This example shows three team members attending the Scrum of Scrums, but the ScrumMaster or
product owner could just as easily be the participants.

Scrum of Scrums

Team
member

Team
member

Team
member

Team
member

Team
member

Team
member

Scrum
Master

Product
owner

Team
member

Team
member

Team
member

Team
member

Team
member

Team
member

Scrum
Master

Product
owner

Team
member

Team
member

Team
member

Team
member

Team
member

Team
member

Team
member

Team
member

Team
member

Scrum
Master

Product
owner

 FIGURE 2 - 4: A Scrum of Scrums meeting.

c02.indd 38c02.indd 38 3/24/11 3:42:14 PM3/24/11 3:42:14 PM

 The Product Backlog

 Each product has one product backlog. This is an essential concept in Scrum: The product backlog
is the single input queue to the team. This remains true when the product is being built by multiple
Scrum teams and is even more important as the aggregate team grows.

 The product backlog scales quite well with multiple Scrum teams, especially if they ’ re each focused on a
different set of features. It may grow large, but with each team owning certain PBIs, it is very manageable.
Each team manages its own PBIs. As if other teams didn ’ t exist, each team assigns business value,
estimates effort, and prioritizes the list to determine the order in which features should be implemented.

 Using the Area Path fi eld in TFS becomes very important with multiple Scrum teams, as it ’ s often
used to group PBIs. If there are dozens of PBIs within each functional area of the product, in a
product backlog that contains hundreds of items, using the Area Path fi eld becomes the simplest
and most consistent way to delineate work across teams.

 In TFS, the Area Path fi eld in a PBI identifi es a component or functional area of
a product. The PBI fi elds are discussed in more detail Chapters 3 and 6.

 Sprint Synchronization

 Each Scrum team executes sprints independently. Each team has a sprint planning meeting at which
it commits to PBIs. Each team also has tasks that implement the PBIs, test cases that verify their
correctness, and bugs that need to be tracked and resolved. Each team also has a retrospective
meetings to identify ways to improve productivity, quality, and velocity.

 It is not necessary to synchronize sprints across teams all the time, but it is crucial to do it some of the time.
One team may prefer two - week sprints, with a one - week integration sprint after each two - week sprint.
Another team may prefer two - week sprints, with a two - week stabilization sprint after three successive
two - week sprits. Variation is okay, as long as it’s tuned to the needs of the team and product features.

 However, there must be times when all teams are stable and can integrate each other ’ s work. Sprints
should be synchronized to facilitate this integration. Every few months, there should be sync points
at which each Scrum team is fi nished with its sprint and can integrate its work with the work of the
other Scrum teams.

 Common Architecture

 As Table 2 - 4 shows, one risk of having specialized Scrum teams that are organized by product
feature is that each could develop its own technical architecture and solution to common problems.
This risk can be addressed through organizational alignment and a common process.

 Organizationally, in addition to defi ning Scrum teams by feature, you can also defi ne core teams by
component. For instance, you may have three features teams building a commercial website: one
working on the catalog, one on the commerce functions, and one on personalization and merchandising.
You may add a fourth team to focus on cross - cutting concerns such as database tuning and caching.
You may add a fi fth team for user experience. This way, each feature team still estimates and commits to
its PBIs, but each team also works with a common team for core technology infrastructure.

Scaling a Scrum Team ❘ 39

c02.indd 39c02.indd 39 3/24/11 3:42:14 PM3/24/11 3:42:14 PM

40 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 For process, the product owner on a core team gets input from the feature teams ’ ScrumMasters,
product owners, and team members. He or she creates PBIs for the core team, and then that team
estimates, prioritizes, and commits to those items.

Project sponsors
and others

QA manager

Product
manager

Development
manager

User
education

Program
manager

Testers

Users

Developers

Logistics

 FIGURE 2 - 5: MSF team organization.

 Having core teams with a larger Scrum project is critical for ensuring architectural
integrity of the product.

 So far this chapter has covered how to organize a Scrum team in isolation of other project
management techniques and enterprise IT. The remainder to the chapter highlights how Scrum
compares with MSF and how it fi ts in with IT.

 COMPARING MSF AND SCRUM

 If you ’ re reading this section, you have probably built software following the Microsoft Solutions
Framework (MSF) methodology. Maybe you have been rewarded for using MSF in the past and now
you are considering doing things differently. Or maybe it didn ’ t work out too well for you, and you
are looking for a better way.

 This section serves as a map from using MSF to using Scrum. When transitioning to Scrum, lines
of responsibility change. Your interaction with colleagues changes. Your title changes. The way you
plan the project changes. The way you measure progress changes.

 Figure 2 - 5 shows the six roles in a typical MSF team organization.

c02.indd 40c02.indd 40 3/24/11 3:42:20 PM3/24/11 3:42:20 PM

 Like Scrum, MSF also favors peer relationships. However, unlike Scrum, with MSF the peers can be
managers. Using a more traditional organizational structure, managers direct individuals to work
on different parts of the system. The individuals interact closely with people on their team but not
necessarily with people outside their team.

 MSF has a natural ability to scale, leveraging organizational hierarchies for major responsibilities.
It relies more on specifi cations than on face - to - face communication. Specs facilitate communication
across time and distance.

 There are six roles in MSF:

 Product manager

 Program manager

 Development manager

 QA manager

 Training manager

 Release manager

 Each is a peer on the team and has distinct responsibilities. The following sections describe each of
the roles and compare them to their counterparts in Scrum.

 The Product Manager

 The product manager role in MSF maps to the product owner role in Scrum. Individuals in each role
draw from their experience and insights in the domain. They often come from the user community
or have very deep roots there. The practices and tasks differ signifi cantly between the MSF and
Scrum roles, but the individuals fi lling these roles are generally the same.

 The MSF product manager writes the vision/scope, writes the requirements, and manages all aspects
of customer relationships (including marketing, communication, and advocacy). This person is
responsible for marketing and product planning.

 One difference between the product manager role in MSF and the product owner role in Scrum is that
the MSF product manager does not generally have much exposure to the development team. Rather,
this person provides input to the program manager, who writes specs for the developers. In other
words, there ’ s someone between the product manager and the development team.

 Scrum optimizes communication by facilitating face - to - face collaboration between product
owners and team members. It eliminates the need for an in - depth specifi cation and the possible
misinterpretations of such a spec. This is not to say that specs are bad. They are critical in certain
situations. However, they do not need to be the primary communication vehicle between the
product owner or manager and developers in creating a product.

 Table 2 - 5 compares the activities of an MSF product manager with those of a Scrum
product owner.

➤

➤

➤

➤

➤

➤

Comparing MSF and Scrum ❘ 41

c02.indd 41c02.indd 41 3/24/11 3:42:25 PM3/24/11 3:42:25 PM

42 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 The Program Manager

 The program manager role in MSF is responsible for driving the development process. This person
is the heartbeat of the team, whether with daily Scrums or with weekly meetings. The program
manager maintains the high - level schedule for the overall release.

 The program manager role maps most closely to the ScrumMaster role in Scrum. If you ’ re
a program manager today, you should look at the attributes and responsibilities of being a
ScrumMaster. In both MSF and Scrum, this role is responsible for communication outside the team.
This is the “ go to ” person that project sponsors rely on for status and signifi cant changes to project
scope, budget, or delivery.

 However, there are signifi cant differences between the program manager role and the
ScrumMaster role. Because of the extreme collaboration and distributed responsibility in Scrum,
there may even be more differences than commonalities between these roles. For instance, in MSF,
the program manager owns the schedule, with input from the development team and product
manager. In Scrum, the team is committed to the schedule, and the ScrumMaster just facilitates
the process. As another example, in MSF, the program manager writes the functional spec,
taking input from requirements and writing in terms that developers can follow. In Scrum, the
ScrumMaster does no such task because communication is direct — between the product owner
and the team.

 Another difference between the roles is their position within the team. In MSF, the program
manager is responsible for negotiating differences among competing interests. These often occur
between product management and the development team and focus on features (for example,
functional, operational, quality) and cost (for example, time, people, money). In Scrum, the
ScrumMaster does not have this position of power. He or she may facilitate the communication
but does not have any overriding power to decide what goes into each sprint or release.

 Table 2 - 6 compares the activities of an MSF program manager with those of a ScrumMaster.

 TABLE 2 - 5: Comparing the MSF Product Manager with the Scrum Product Owner

 RESPONSIBILITY MSF PRODUCT MANAGER SCRUM PRODUCT OWNER

 Customer advocacy Yes Yes

 Writing the vision/scope Yes Yes

 Capturing product needs Writes requirements Writes user stories

 Working with developers No Yes

c02.indd 42c02.indd 42 3/24/11 3:42:26 PM3/24/11 3:42:26 PM

 TABLE 2 - 6: Comparing the MSF Program Manager with the ScrumMaster

 RESPONSIBILITY MSF PROGRAM MANAGER SCRUMMASTER

 Driving product

development

 Yes, using status meetings,

war rooms, and other

techniques .

 Yes, using the daily Scrum.

 Functional

specifi cations

 Yes. The program manager

writes or manages the spec.

 No. In Scrum, the product owner is

responsible for writing user stories and

communicating them to the team.

 Communication Yes Yes

 Negotiating

features/cost

 Yes. The program manger is

responsible for shipping the

product on time.

 No. This occurs within the team, often

between the product owner and team

members.

 Maintaining the

schedule

 Yes. The program manager

defi nes the iterations and

work breakdown structure

within iterations and

release.

 Yes, but in a limited capacity. The

ScrumMaster defi nes the duration of sprints

and release cycles, but the team owns the

feature set of the work breakdown structure

within each sprint. There is no master work

breakdown structure.

 Acting as solution

architect

 Yes No. The solution architect is often a team

member, with skills and interests divergent

from those of the ScrumMaster.

 Risk management Yes No. The team handles this, although the

ScrumMaster communicates issues with project

sponsors. In practice, however, the messenger

is held accountable for the message, so

the ScrumMaster is more involved with risk

management than are other team members.

 Delivery No Yes. The ScrumMaster is often responsible

for PBIs during sprints.

 The Development Manager

 There is no development manager role in Scrum as there is in MSF. The responsibilities of the MSF
development manger role are largely distributed among the team members in Scrum.

 The technical work done by developers in MSF is similar to the technical work done by team members
in Scrum. In both methodologies, developers are empowered and expected to build a product that
meets customer expectations. They specify the product architecture and design, they estimate the time
and cost required to complete each feature, and they prepare the product for deployment.

Comparing MSF and Scrum ❘ 43

c02.indd 43c02.indd 43 3/24/11 3:42:27 PM3/24/11 3:42:27 PM

44 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 However, there are some signifi cant differences between MSF and Scrum when it comes to development.
In MSF, a development team works from technical specs written by the program manager. In Scrum, the
team members work from the product backlog and must closely communicate with the product owner.
In MSF, the development manager may supervise or outsource development of a feature, but he or she
is still responsible for delivering that feature to the team. In Scrum, there is no such delegation: Instead,
team members build the product. Outsourced feature teams are managed as self - contained Scrum
teams, with integration happening in a Scrum of Scrums or through a designated integration team.

 WHO ’ S YOUR BOSS?

 Everyone has a boss. Developers work for managers, who work for directors, who
work for vice presidents, and so on. Your boss is the only one who can promote
you or fi re you, so even when you ’ re working on a Scrum team, you still must meet
your boss ’ s objectives. But within the context of Scrum activities, no one person
manages the work for the developers.

 Table 2 - 7 compares the development manager role with the role of the Scrum team member.

 TABLE 2 - 7: Comparing the MSF Development Manager Role with the Scrum Team Member Role

 RESPONSIBILITY MSF DEVELOPMENT MANAGER SCRUM TEAM MEMBER

 Building the product Yes Yes

 Following product

specifi cations

 Yes. The primary source of

information is the functional

spec written by the program

manager.

 Yes. The primary sources of information

are the PBIs written by the product

owner and direct communication

between the team members and the

product owner during the daily Scrum.

 Primary

communication

 Works primarily with the

program manager and testers.

 Works primarily with the product owner

and other team members.

 Quality Assurance Manager

 As President Ronald Reagan famously said regarding nuclear disarmament, it ’ s best to “ trust but verify ”
an adversary turned partner. The same can be said about system testing within Scrum. Scrum does not
have an explicit QA role; instead, the product owner trusts that the team will deliver tested code and will
then verify the product, using documented test cases.

 As with the MSF development manager role, the responsibilities of the MSF QA manager role are
largely distributed among the team members in Scrum. There is no explicit QA manager role in
Scrum. Some team members do software development and some do software testing, but everyone is
responsible for quality.

 Testers on a Scrum team are essential for delivering quality. A general rule of thumb in software
project management is to have one tester for every one to three developers. On a Scrum team,

c02.indd 44c02.indd 44 3/24/11 3:42:27 PM3/24/11 3:42:27 PM

testers and developers are peers, working together early and often. Organizationally, they may be
in different groups within a company, with developers reporting to a development group and testers
reporting to a QA group. This poses no problem for a Scrum team, which can be assembled within a
matrix-managed organization. Outside the Scrum team, individuals may have different career goals
and job responsibilities, but inside the team, everyone has a common goal.

 MATRIX MANAGEMENT

 Matrix management refers to an organizational structure in which individuals with
similar skills are grouped into functional departments but are assigned to projects
outside their departments. For instance, developers may work in the “ development
group, ” and designers may work in the “ creative group, ” and individuals from each
group may work together each day on a Scrum team that reports to a business unit.

 The product owner is ultimately responsible for delivering a great product to the user community.
That community trusts that the product owner will advocate for their needs and help the Scrum
team deliver a top - quality product. As much as anyone else, the product owner has a vested interest
in testing. The product owner spends an increasing amount of time testing the product, fi ling bugs,
and retesting after the bugs are fi xed during each sprint.

 While the product owner is responsible for delivering quality to the user community, the team
members writing the code are delivering quality technology. The team members are the primary
testers and fi rst line of defense against bugs. They use automated and manual test methods, favoring
automation wherever possible.

 Table 2 - 8 compares how quality assurance is carried out in MSF and in Scrum.

 TABLE 2 - 8: Comparing the MSF QA Manager Role with the Scrum Team Member Role

 RESPONSIBILITY MSF QA MANAGER SCRUM TEAM MEMBER

 Test planning Yes. This is done separately

from development

activities. Test planning is

usually competed before

development begins.

 Yes. This is done within each sprint. All team

members working on a PBI conduct test planning,

so they allocate time to build automated or

manual tests. The product owner tests to ensure

that each PBI meets the appropriate needs.

 Test engineering Yes. The test team does

this.

 Yes. Developers and testers on the team do this.

Automated testing has far greater importance in

Scrum than in MSF because of the short sprint

times. Test - driven development is a hallmark of

Scrum projects.

 Primary

communication

 The test manger reports

status to the program

manager, who reports

status to stakeholders.

 The team reports automated test results to

the product owner. The product owner verifi es

quality early and often with manual tests

throughout a sprint.

Comparing MSF and Scrum ❘ 45

c02.indd 45c02.indd 45 3/24/11 3:42:28 PM3/24/11 3:42:28 PM

46 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 The Training Manager

 The training manager in MSF is responsible for all the activities necessary to train the user
community to successfully use the product. This includes end - user training, such as online video
and help text. It could also include installation if the product is installed and managed by an IT
organization. The responsibilities of the MSF training manger are subsumed by the product owner.
There is no training manager role in Scrum.

 In Scrum, the product owner is responsible for inbound and outbound communication with the
Scrum team. Inbound communication is all about the PBIs: capturing the essence of the need in a
form that can be tracked, scheduled, and delivered by the team. Outbound communication takes
many forms — from holding demo days, when team members demonstrate progress with each sprint,
to more formal prerelease notes to get the user community excited about the product.

 Training is another form of outbound communication that the product owner must manage. This
person must produce suffi cient material, but not too much, so that users can take full advantage
of the features they rely on the team to build. If people don ’ t know how to use the product, the
product has failed in its mission. Therefore, training content is as important as any other aspect of
a product.

 Release Management

 There is no specifi c release management role in Scrum. Instead of having a person focus on release
responsibilities in Scrum, it ’ s common to have a sprint focused on release activities. This is a
consistent way to bring the Scrum philosophy and benefi ts to the release management discipline.

 The Scrum team should add production deployment items to the product backlog and address them
during sprints. This will ensure that the team is thinking of the issues and building the technology
needed to make the product deployable. As with all PBIs, the product owner should write user
stories and work with the team members to ensure that they know how to meet the need.

 After a Scrum team has completed the PBIs that make up a release, the team may go through a fi nal
sprint to focus on release - specifi c activities. This typically includes preparing training materials,
writing and testing installation documentation, and conducting fi nal regression testing on the PBIs.
This is a time of close coordination with the deployment team, whether that team is internal to the
organization or at a hosting provider.

 Allocating a sprint to release management brings the best of Scrum to the release
management process. Rather than having an operations team fi guring out how
to package and deploy a product, individuals from the operations team work
closely with the Scrum team during the fi nal sprint. They have ready access to
developers, testers, and the product owner to get fast access to the information
they need.

c02.indd 46c02.indd 46 3/24/11 3:42:29 PM3/24/11 3:42:29 PM

 IT ROLES IN SCRUM

 Scrum defi nes only three roles: ScrumMaster, product owner, and team member. However, there are
many more critical roles in IT. These roles don ’ t go away with Scrum, but they ’ re outside the Scrum
team. The following sections look at how the following IT roles interact with a Scrum team:

 Project manager

 Architect

 Release management

 QA manager

 The Project Manager

 The project manager role in IT is a tough job. It is the central control point for a number of competing
interests — features, time, money, and people. Project managers rely on controls and metrics, written
and oral communication skills, and technical depth and breadth to complete projects successfully.
Seasoned project managers are extremely valuable in large organizations. Senior executives rely on
them to deliver projects on time and on budget, which are two characteristics that are relatively easy
to measure.

 At a higher level, senior executives measure the return on investment (ROI) of a software project.
The investment is primarily the cost of building and delivering the system, plus the cost of the
intended users operating the system. A productive development team lowers the cost, thereby
increasing the ROI, which is good. A product that reduces labor from another part of the
organization also reduces the overall cost and increases ROI, which is also good.

 But there ’ s a problem: A project manager is typically rewarded for lowering the cost of software
development but not for ensuring the effectiveness of the product. For instance, say that an
organization sets out to build a new order management system to reduce the time it takes to place
an order from fi ve minutes down to three minutes. The benefi t (return) of the system is to reduce the
number of entry representatives and to increase the revenue per rep. The cost (investment) is
the cost required to build and deploy the system. However, the project manager will probably not
be measured by the benefi t — just by the cost. So, if he or she produces a system on time, within
budget, and with no bugs, yet the system doesn ’ t do what is needed, the project manager is still
considered successful. In this scenario, the team that provided the requirements or the one who
footed the bill is the one who has failed.

 Scrum addresses this problem by placing the product owner on the team, which eliminates
two or three levels of indirection between the user and developer. This reduces the likelihood
of the development team producing a system that doesn ’ t meet the true needs of the sponsor
and user.

 Scrum does not have a project manager role on the team, but most organizations still maintain this
role outside the team. The project manager role may be held by a stakeholder within IT to ensure
proper governance in the team and results from the team.

➤

➤

➤

➤

IT Roles in Scrum ❘ 47

c02.indd 47c02.indd 47 3/24/11 3:42:35 PM3/24/11 3:42:35 PM

48 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 The Architect

 Four resources are required to ship great software: time, money, people, and technology. From a
technical perspective, the architecture of a product has the greatest impact on a product ’ s usability,
fl exibility, effectiveness, and cost of ownership. Therefore, every project that involves building
software requires someone to fi ll the role of architect. The architect is typically one of the senior
members on the team — someone who has “ been there and done that ” before. This person
understands the full scope of technical implementation, from design through deployment. He or she
is a mentor to more junior technical staff and acts as the go - to person for the product owner when
determining what ’ s feasible. This role is crucial whether you ’ re using Scrum or not.

 The architect ’ s role, regardless of project management methodology, is to
manage the complexity of component parts of the system. Developers write the
code, but the architect must be able to see the forest for the trees.

 In Scrum, the architect is critical during release and sprint planning. This person often has the
insight and depth needed to make the most reasonable effort estimates for PBIs. He or she also
has input into PBI priority and understands the technical subtleties and dependencies among
features.

 The architect should not be the ScrumMaster. The architect must focus on technical solutions,
while the ScrumMaster focuses on removing impediments and communicating with stakeholders.
In general, a good software architect makes a good ScrumMaster, but in the ScrumMaster role, the
person cannot be an effective architect.

 While an external architect may be involved in sprint planning, he or she should
not participate in estimation. Only team members who are actually building the
features should be estimating their complexity.

 Release Management

 Release management has an important role in Scrum. It changes somewhat from how it looks in
other methodologies, but the core functions remain the same. A Scrum team needs to work with
the production teams that will distribute, host, and support the product. The earlier this discussion
begins, the easier it will go. However, there is no release manager on the Scrum team; this is an
external role.

 Early during a release cycle, a Scrum product owner should defi ne the PBIs to meet the needs of the
deployment team and the operations team. The more the product owner considers the needs of these

c02.indd 48c02.indd 48 3/24/11 3:42:36 PM3/24/11 3:42:36 PM

IT Roles in Scrum ❘ 49

constituents, the smoother the deployment will be. Failure to understand these needs will result in
diffi culties as the product moves to production, so this is an important step.

 An important goal in Scrum is to have a potentially releasable product at the end of each sprint.
There is a difference between “ potentially releasable ” and “ production quality ” ; at the end of each
sprint, the product is probably not ready for production deployment.

 Table 2 - 9 summarizes the release management activities on a Scrum team.

 TABLE 2 - 9: Release Management Activities in Scrum

 ACTIVITY WHO IS RESPONSIBLE DESCRIPTION

 Advocate for

deployment teams

 Product owner Treats the deployment team as a user,

creating user stories and adding items to the

product backlog. This includes operational

requirements such as “ must use SSL ”

and “ credit cards cannot be stored in the

database. ”

 Security review ScrumMaster Works with the operations team to schedule a

security review after key sprints. Depending on

the product, a team may choose to do it earlier.

 Release documentation ScrumMaster Many IT organizations require checklists and

supporting documentation before a product

is released into a production data center.

This responsibility generally falls to the

ScrumMaster.

 Verifi cation and

validation

 Product owner The Scrum team must build and unit test

features. Ultimately, however, the product

owner accepts each PBI, so this production

requirement is generally met within the sprints.

 The QA Manager

 The discrete role of QA manager goes away with Scrum. Likewise, there is no “ QA group. ” These
functions are subsumed by the Scrum team members and product owner. These roles are no less
important, but they become more effi cient and empowered when they are part of the Scrum team.
Effi ciency comes from being just one “ seat ” away from the developer and one seat away from the
product owner.

When testers have direct access to both sides of the testing (producer and consumer), they are more
productive. Empowerment comes from running tests early in the development cycle. When software
is late (which it often is), the testing window shrinks quickly. By being part of the Scrum team,
testers can begin testing earlier and have a greater impact with the bugs they fi nd.

c02.indd 49c02.indd 49 3/24/11 3:42:50 PM3/24/11 3:42:50 PM

50 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

 The product owner also ensures that each PBI meets its exit criteria, as defi ned in the user story.
This adds a layer of verifi cation and validation on top of the testing that the team carries out. The
product owner may involve users in testing after each sprint. The team tracks and adds bugs that
surface during that testing as items to complete in the next sprint.

 TRANSITIONING TO SCRUM

 This section summarizes some of the changes that occur within an organization as it transitions
to Scrum. It is not intended to be a road map as to how to transition but instead as a set of
observations that help you know that you ’ re heading in the right direction.

 Increasing User Involvement

 Scrum is very user - centric. The product owner tends to be in frequent contact with users throughout
the sprints. After each sprint, when the product is in a potentially releasable state, the product
owner should show off product features and get very fast feedback.

 But with Scrum, the product owner is not the only one who works with the user community. The
entire team is much more involved with users. Rather than discussing whether a feature meets the spec,
a team discusses whether the feature meets the user ’ s expectations. Nothing beats going to the source
to get clarifi cation on exactly what those expectations are.

 INVOLVING USERS IN THE DAILY SCRUM

 You may fi nd that users want to attend the daily Scrum. This is okay, as long as
they attend as observers and not active participants. From a scheduling perspective,
you know that the team will be in the same place at the same time each morning,
so it can be convenient for team members to meet with users right before or after
the daily Scrum.

 Decreasing Documentation

 Scrum is very collaborative. It relies on clear communication among team members and between
the Scrum team and the user community. Therefore, there ’ s less use for formal documentation in
Scrum than in other methodologies.

 However, Scrum is not without documentation. Documentation is good. It ’ s a record of what
was needed, what was decided, and why. If a Scrum team fails to capture and record this basic
information, the organization will have to retrace the team ’ s steps the next time the question comes
up. However, a 100 - page business requirements document will not be helpful to a Scrum team.
Scrum documentation is much shorter and to the point than this.

 Scrum requires a minimum body of documentation to defi ne the product vision and an increasing
body of documentation to capture user stories for how the product will be used. Once user

c02.indd 50c02.indd 50 3/24/11 3:42:51 PM3/24/11 3:42:51 PM

stories are captured and the technical features are defi ned, the Scrum team favors other forms of
communication media, such as the following:

 Face - to - face meetings at the daily Scrum to remove impediments

 Whiteboards and sticky notes to refi ne user stories

 Whiteboards for architecture design sessions within the team

 Tracking tools (such as Team Foundation Server and Excel)

 E-mail and PowerPoint status given to project constituents

 At the conclusion of each release, additional documentation may be required to deploy the product
into production. This often occurs in the form of checklists and forms required by an external
operations team.

 Simplifying the Schedule

 Sprints and releases are hallmarks of Scrum. There are specifi c ceremonies at the beginning of a
release and after the release occurs, and there are specifi c ceremonies at the beginning and end
of a sprint. These are described later in the book, in Chapters 8 and 9. A Scrum schedule is quite
predictable and can be safely planned and budgeted with accuracy within a week or two.

 A sprint is typically fi xed at two to four weeks. In the case of a four - week sprint, there are generally
three weeks of coding and testing, followed by one week of integration, the retrospective, and
planning for the next sprint. Each day, the team meets for 15 minutes to discuss and remove
impediments to progress. A Scrum team rarely extends the duration of a sprint because the cadence
of the project depends on the sprint length remaining constant and predictable.

 Uncertainty doesn ’ t go away with Scrum; it just moves. Rather than being uncertain about when
a release will ship, a project sponsor is uncertain about what will be in the release when the team
says the release is ready. Uncertainty is generally reduced with each successive sprint, as more and
more of the product emerges in a potentially shippable form. But from the standpoint of managing a
schedule, things get easier with Scrum.

 Finding Problems Earlier

 With iterative development and a potentially shippable product with each sprint, the user community
and project sponsors get to see the product much earlier than with traditional methodologies. This is
good for everyone, as it enables the extended team to catch problems as they occur.

 Consider a traditional Waterfall methodology. Analysts collect requirements from users and write
a business requirements document that is often a lengthy document that becomes the contract
between the user community and the project management team. If a requirement didn ’ t make it into
this document, then it becomes a change request. From there, the project team writes a functional
specifi cation, describing the design and data validation of a system that meets the requirements. The
business requirements document is a deliverable from the project team to the user community, but
rarely do any users read it, so the possibility for errors is quite high. The team builds a system to
meet the functional requirements and then turns the system over to a QA group to ensure that the

➤

➤

➤

➤

➤

Transitioning to Scrum ❘ 51

c02.indd 51c02.indd 51 3/24/11 3:42:52 PM3/24/11 3:42:52 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

52 ❘ CHAPTER 2 ORGANIZING A SCRUM TEAM

system meets the requirements in the functional specifi cation. Again, nobody is checking whether
the system is even close to what the users want.

 Scrum improves on this process in a number of ways:

 Users get to see the system after just a few weeks (a sprint) and can identify problems or
question assumptions.

 Integration among technical components happens during each sprint, so problems that
would have been uncovered very late using a traditional methodology are visible early with
Scrum.

 The team focuses on QA within each sprint, both with automated testing and with
verifi cation from the product owner, so problems surface early. This differs from traditional
methods where QA happens after development is complete.

 There is no change order process, so the team can be more fl exible in building a system
that meets user needs. Scrum assumes that the product backlog is dynamic (within budget
constraints), so the team is more aligned to the users for a positive outcome of the project.

 SUMMARY

 Scrum defi nes just three roles: product owner, ScrumMaster, and team members. Collectively,
the team fulfi lling these roles builds a potentially shippable product during each sprint. The users
are at the center of everything the team does and are involved early and often in decisions and
demonstrations.

 It is possible to scale a Scrum team in two ways. The fi rst way is to scale the product owner, since
one product owner can quickly be overwhelmed when eight team members need clarifi cation.
Because the product owner is also responsible for signing off on PBIs, his or her time is quite
limited, so it ’ s common to add labor in later sprints. The next way to scale is by creating additional
Scrum teams. It ’ s typically best to create Scrum teams by feature, although sometimes it is more
appropriate to partition teams by component or technology.

 In understanding the three roles within Scrum, it ’ s helpful to compare the responsibilities of
these roles to roles in other software methodologies, such as MSF and IT in general. This chapter
discusses how those MSF and IT roles relate to the functions of Scrum roles.

 When transitioning from another methodology to Scrum, you see signifi cant changes. Some (such
as minimal documentation) can be unsettling at fi rst, but the result of using Scrum is a product that
better meets user expectations.

➤

➤

➤

➤

c02.indd 52c02.indd 52 3/24/11 3:42:52 PM3/24/11 3:42:52 PM

Tracking What ’ s Important in
Team Foundation Server

 WHAT ’ S IN THIS CHAPTER?

 ➤ Understanding how project data is stored in Team Foundation

Server.

 ➤ Looking at the artifacts that make up a Scrum project.

 ➤ Understanding the key activities of a Scrum project.

 In Chapter 2, you read about different approaches to software development and how you can
organize your team. This chapter focuses on the specifi cs of the Scrum framework, including
the main activities and artifacts in Scrum. This chapter begins by looking at how your project
data is stored in Team Foundation Server (TFS) and how team members can use this data.
Then the chapter dives into the Scrum process and examines the key activities and artifacts that
a Scrum team uses.

 UNDERSTANDING YOUR DATA IN TFS

 TFS is a Microsoft product that helps you manage and organize source code, project work items,
project artifacts, and builds. This book focuses on project work items and how you enter them
into TFS for tracking and reporting purposes. Work items are the main means for storing data in
TFS. You can think of a work item as a single row in a database table, where the table name and
table columns are defi ned by the process. A work item can by any type, but most work items fall
into the common software project management categories requirements, bugs, tasks, and issues.

 Within TFS, the team records its work in a team project. Each team project in TFS is created
from a process template. A process template is a set of XML fi les that defi ne the different
components of the team project. For example, the fi elds displayed for a work item are defi ned
in the process template.

 3

c03.indd 53c03.indd 53 24/03/11 6:27 PM24/03/11 6:27 PM

54 ❘ CHAPTER 3 TRACKING WHAT ’ S IMPORTANT IN TEAM FOUNDATION SERVER

 TFS 2010 ships with two process templates:

 ➤ MSF for Agile Software Development v5.0 — You can use this generic Agile best - practices
template to implement different Agile methodologies (for example, Scrum, Extreme
Programming [XP]).

 ➤ MSF for CMMI Process Improvement v5.0 — This formal process template with deep
traceability and auditability helps teams satisfy the requirements of the Capability Maturity
Model Integration (CMMI) approach to process improvement.

 Microsoft Solutions Framework (MSF) is a framework for building and shipping
software in an iterative series of releases. For more information on MSF, see
Chapter 1.

 Off the shelf, TFS doesn ’ t come with the Microsoft Visual Studio Scrum 1.0 process
template. See Chapter 4 for details on how to download and install this template.

 Microsoft released a third process template during the summer of 2010, shortly after the release of
TFS 2010:

 ➤ Microsoft Visual Studio Scrum 1.0 — This prescriptive template was built for teams
practicing Scrum.

 Microsoft Visual Studio Scrum 1.0 was the fi rst template from Microsoft that departed from the
MSF brand. The template shows Microsoft ’ s commitment to the Scrum framework and Scrum teams,
and it shows the continued trend toward Agile methodologies (specifi cally Scrum) in the software
industry. This book examines Microsoft ’ s Scrum process template and discusses details of how your
team can set up, track, and execute a Scrum project in TFS 2010.

 Reporting Capabilities in TFS

 Every software project needs to be tracked. Without clear project metrics, it is impossible to measure
a project ’ s health or likelihood of success. TFS provides a SQL Server data warehouse that can be used
for analytics and reporting. From this warehouse, a SQL Server Analysis cube is built that allows you
to slice and dice your project data in a variety of ways. A cube is a data structure that allows for fast
analysis of large amounts of data. This book takes an in - depth look at the reports provided with the
Microsoft Visual Studio Scrum 1.0 process template. You ’ ll discover how to use common tools such
as Microsoft Excel to dig into the trends and metrics of your software project.

 SQL Server Reporting Services

 Each process template included with TFS comes with a set of SQL Server Reporting Services
reports. These reports provide key metrics to support the process defi ned in the process template.
Figure 3 - 1 shows the velocity report in the Microsoft Visual Studio Scrum 1.0 process template.

c03.indd 54c03.indd 54 24/03/11 6:27 PM24/03/11 6:27 PM

 The Microsoft Visual Studio Scrum 1.0 process template includes the following reports:

 ➤ Sprint burndown

 ➤ Release burndown

 ➤ Velocity

 ➤ Test case readiness

 ➤ Test plan progress

 ➤ Build success over time

 ➤ Build summary

 In the chapters that follow, you will examine the sprint burndown, release burndown, and velocity
reports and dig into how they provide valuable information to a Scrum team. You ’ ll also examine
the test case readiness, test plan progress, build success over time, and build summary reports and
learn how they can help your team track progress and quality.

 Excel Reporting

 Excel is a powerful reporting tool that a team can leverage to track project progress and project
health. Whereas SQL Server Reporting Services provides a platform for building professional and
detailed reports, Excel is a great low - barrier - to - entry tool for browsing the data in the SQL Server

 FIGURE 3 - 1: The velocity report.

Understanding Your Data in TFS ❘ 55

c03.indd 55c03.indd 55 24/03/11 6:27 PM24/03/11 6:27 PM

56 ❘ CHAPTER 3 TRACKING WHAT ’ S IMPORTANT IN TEAM FOUNDATION SERVER

Analysis Services cube to examine project trends and metrics. Reports in Excel are built from
PivotTables connected to the SQL Server Analysis Services cube. Figure 3 - 2 shows an example of a
report built using Microsoft Excel. Chapter 5 discusses the details of creating reports in Excel.

 FIGURE 3 - 2: An example of a report built in Excel.

 To use Excel to build a report like the one shown in Figure 3 - 2, you right - click
any work item query in Team Explorer and select Create Report in Excel.

 CHOOSING SCRUM

 Teams choose Scrum for many reasons. The most common reasons are controlling risk, improving
predictability, and maximizing return on investment (ROI):

 ➤ Controlling risk — Scrum controls risk by time - boxing activities. Instead of making a few large
commitments (high risk), a Scrum team makes a series of smaller commitments (low risk). The
smaller the commitment, the smaller the risk. Scrum helps teams control and minimize risk by
breaking large, complex problems into smaller, manageable pieces.

 ➤ Improving predictability — Scrum involves a repeatable process called a sprint. A sprint
is an iteration of work that is time - boxed to one month or less. By continually working in
sprints, teams improve their ability to plan, estimate, and make decisions.

c03.indd 56c03.indd 56 24/03/11 6:27 PM24/03/11 6:27 PM

 ➤ Maximizing ROI — A Scrum team trades value gained from traditional planning for the
value gained by doing and learning.

 FROM WATERFALL TO SCRUM

 The most traditional software - creating process is the Waterfall method. The
Waterfall method is a sequential process in which progress fl ows from top to bottom
through a series of phases:

 ➤ Requirements

 ➤ Design

 ➤ Implementation

 ➤ Integration

 ➤ Verifi cation

 ➤ Maintenance

 In each phase of the process, the team completes a specifi c set of steps before moving
on to the next phase. At the end of the entire process, the team delivers a piece of
working software. Figure 3 - 3 shows these steps simplifi ed: plan, review, execute, and
manage change.

 Scrum assumes that despite achieving the end goal (working software), the traditional
steps create a signifi cant amount of waste. Requirements are rarely perfect when
handed off for design — and this equates to waste. In addition, implementations
are often reworked after they start because initial designs were fl awed — and this
represents more waste. Scrum aims to eliminate waste by completing all these phases
within the time box of a single iteration (that is, sprint). Figure 3 - 4 outlines how
Scrum embraces change throughout the life cycle of a project.

Manage ChangeExecuteReviewPlan

 FIGURE 3 - 3: Traditional planning steps.

Expect & Embrace Change

L
e

a
rn

P
la

n

E
x
e

c
u

te

L
e

a
rn

P
la

n

E
x
e

c
u

te

L
e

a
rn

P
la

n

E
x
e

c
u

te

L
e

a
rn

P
la

n

E
x
e

c
u

te

 FIGURE 3 - 4: Scrum planning steps.

Choosing Scrum ❘ 57

c03.indd 57c03.indd 57 24/03/11 6:27 PM24/03/11 6:27 PM

58 ❘ CHAPTER 3 TRACKING WHAT ’ S IMPORTANT IN TEAM FOUNDATION SERVER

 Scrum is a framework under the umbrella of Agile software development. Agile software development
is a group of software development methodologies based on iterative and incremental development.
As mentioned in Chapter 1, in 2001, a group of industry leaders gathered and published the Agile
Manifesto: 12 principles and 4 value statements about how to approach software development. These
are the 4 statements from the manifesto:

 ➤ Individuals and interactions over processes and tools

 ➤ Working software over comprehensive documentation

 ➤ Customer collaboration over contract negotiation

 ➤ Responding to change over following a plan

 Scrum does not address these statements directly, but it is easy to see how the Scrum framework
supports the Agile Manifesto:

 ➤ Individuals and interactions over processes and tools — The team is ultimately responsible
for the success of the project. Traditional software projects put great stock in planning,
process, and tools. Such projects invest heavily in studying, researching, planning, testing,
documenting, and analyzing before a single line of code is written. Scrum places its bet on the
team and trusts that the team will learn more from building software than it will learn from
extensive planning.

 ➤ Working software over comprehensive documentation — Scrum prescribes that the team is
ready to ship working software at the end of each sprint. With each sprint, the team produces
an increment of the product that could deliver value to customers. Working software at the
end of every sprint demonstrates that a team is capable of delivering software end - to - end.

 ➤ Customer collaboration over contract negotiation — The product owner in Scrum, the
individual responsible for the requirements, typically spends 50% of his or her time
with customers. The product owner is the customer advocate and looks for ways to
involve customers at every stage of the process.

 ➤ Responding to change over following a plan — Learning happens throughout the process.
After each sprint, the team learns more about what it will take to deliver the product.
The learning provides valuable information that can be used in the next sprint. Waterfall
attempts to manage change with formal processes and long - range planning. On the other
hand, Scrum embraces change and expects that it will lead to a better product in the end.
Each new sprint gives the team a chance to respond and adapt to changing business needs
and requirements.

 The following sections of this chapter look more closely at the artifacts and activities of a Scrum
project. Then it digs into how to enact Scrum on a team by using the Microsoft Visual Studio Scrum
1.0 process template for TFS 2010.

 SCRUM ARTIFACTS

 An artifact is an object created for a practical purpose. Scrum has four artifacts: the product
backlog, sprint backlog, sprint burndown, and release burndown. A team uses these artifacts
during the Scrum process to manage the production of working software. They are certainly

c03.indd 58c03.indd 58 24/03/11 6:27 PM24/03/11 6:27 PM

not the only ones that a Scrum team can or should use, but they represent the main artifacts
in Scrum:

 ➤ Product backlog — A prioritized list of requirements for the product being developed

 ➤ Sprint backlog — A list of tasks created by the team to turn a set of items from the product
backlog into an increment of potentially shippable product

 ➤ Sprint burndown — A graph that measures the remaining sprint backlog items over the
duration of a sprint

 ➤ Release burndown — A graph that measures the remaining product backlog over time

 The following sections look more closely at these artifacts.

 The Product Backlog

 Every software project has requirements. A requirement describes something a stakeholder expects
from a product. For example, if your project requires security, you might have a requirement which
states that every user must log in with a username and password. Another requirement might state
that a valid password must be six of more characters and must contain at least one letter and one
number. A team needs to defi ne requirements to ensure that the project achieves the business goals.

 Scrum prescribes that requirements be captured and prioritized on the product backlog. The
product backlog, in simple terms, is the list of things that the team needs to complete to deliver the
product. Each item on the product backlog is called a product backlog item (PBI) and represents a
single requirement for the product.

 In the sections that follow, you will examine how to ensure that value is delivered from the product
backlog using acceptance criteria, how to manage dependencies between items on the product backlog,
and how to minimize the impact of changing requirements.

 Delivering Customer Value

 You describe each item on the product backlog in words that refl ect the value the item will bring
to a customer. Delivering value, early and often, is the fi rst key concept of Scrum. Without
understanding the value to the customer that implementing an item on the product backlog can
bring, the team cannot properly prioritize. Every item on the backlog must clearly articulate the
value it brings to the customer. If an item does not bring value to the customer, it does not belong
on the product backlog.

 What do you do with things that need to be done but do not relate to the customer? These types
of tasks belong on the product backlog. However, you must justify each task in terms of customer
value. For each task, ask yourself questions such as “ Why are we doing this particular task? ” “ Do
we really need to refactor the entire login class? ” and “ What value does the customer get if we do? ”

 Thinking about each task in terms of business value is extremely important. Teams often fi nd
themselves spending lots of time working on tasks that don ’ t ultimately deliver any value to the
customer. Scrum aims to minimize these distractions by insisting that items on the backlog are
described in terms of customer value.

Scrum Artifacts ❘ 59

c03.indd 59c03.indd 59 24/03/11 6:27 PM24/03/11 6:27 PM

60 ❘ CHAPTER 3 TRACKING WHAT ’ S IMPORTANT IN TEAM FOUNDATION SERVER

 Defi ning Acceptance Criteria

 Acceptance criteria are conditions that must be met in order for a PBI to be considered done. A product
owner has no greater tool for communicating with the team than well - thought - out and detailed
acceptance criteria. Ask 10 mature Agile teams “ How do you know when you ’ re ‘ done ’ with an item
from your backlog? ” and you will get the same answer from each one: by defi ning and using well - written
acceptance criteria.

 Acceptance criteria are the handshake between the product owner and the team on what done
means. Until the acceptance criteria are met, the team is not fi nished. However, the value of
acceptance criteria only starts here. Acceptance criteria set the stage for some of most meaningful
conversations and interactions on the team.

 Some of the best interactions on a team can occur as members dig into the acceptance criteria for
each item on the backlog. As they begin to discuss the acceptance criteria, team members are likely
to have a number of “ a - ha! ” moments and develop a shared understanding of the story.

 Regardless of who is being enlightened, the power of acceptance criteria lies in the fact that the
product owner and the team are building a shared understanding of what done means. And this is
happening before the team has written a single line of code, before any work has been done, before
commitments have been made, and before the sprint has started. By collaborating on acceptance
criteria, the team minimizes risk and greatly increases the chance of delivering successfully.

 Dependencies

 A team manages dependencies between items on the product backlog by priority. If item A depends
on item B, the team should move item B up on the product backlog. And if item C depends on item B,
it should move item C up on the backlog. Instead of creating a complex dependency management
system that requires a Ph.D. and full - time job to understand and manage, Scrum keeps things
simple. The priority of the items on the backlog should closely refl ect their execution order and
account for dependencies between backlog items.

 Changing Requirements

 It is a basic unpleasant fact that requirements change. Scrum assumes that the list of requirements
for a product is always incomplete; this is a big difference between Scrum and traditional software
development processes. Don ’ t mistake this for meaning that Scrum doesn ’ t prescribe planning or
that Scrum projects aren ’ t well thought out ahead of time. In fact, in many ways, Scrum prescribes
more planning than traditional processes. The difference is when the planning takes place.

 Bringing Requirements to the Team

 A team adds to the product backlog each item needed to both develop and deliver the product.
Imagine that the team is a house; in this case, the product backlog is the front door. All work the
team takes on and commits to must come through the front door (the product backlog). If a team
is assigned work from too many sources — through side doors or even the garage — the team is
bound to become confused, confl icted, and distracted from achieving its goal. This simple concept
is fundamental to the success of a Scrum team.

c03.indd 60c03.indd 60 24/03/11 6:27 PM24/03/11 6:27 PM

 For team members new to Scrum, it ’ s natural to want to say “ yes ” to requests from superiors.
Most people want to please others and be viewed as helpful. If your team is new to Scrum, pay
close attention to any work not entering through the front door. Such work can quickly lead to a
situation where your team is not meeting its commitments, despite the fact that team members are
trying to do the right thing. The following are some suggestions to help your team create a healthy
environment for building its product backlog:

 ➤ Establish a culture where everyone understands that new work is brought to the team
through the product backlog.

 ➤ Establish an agreement with management and other stakeholders that they will neither
bypass the process nor engage team members directly with new work.

 ➤ Ensure that the team ’ s ScrumMaster understands that he or she is responsible for protecting
the team from distractions.

 The Sprint Backlog

 The sprint backlog consists of the items selected from the product backlog for a sprint plus the tasks
the team will perform to turn those items into working functionality. During a sprint, the team ’ s
focus turns to the sprint backlog.

 LEARNING TO USE THE FRONT DOOR

 On a recent project, a team was halfway through the third sprint when one of its
team members, Phil, reported at the daily standup that he would not be able to work
on tasks in the sprint for the next few days. Phil ’ s manager had given him a new task
that needed to be completed right away. This new task was unrelated to the sprint
and would require a minimum of three days of Phil ’ s time. Phil, along with most of
the rest of the team, was fairly new to Scrum. This new work didn ’ t alarm any of
them; in fact, most seemed just fi ne with it. Distractions and randomizations like
this one had become commonplace for the team. This was nothing new.

 The ScrumMaster felt differently, however. The team had not made a commitment
to this new work, and the work was being thrust upon a single member of the
team through a side door. There was no way the team would be able to meet the
commitment to the sprint without Phil ’ s involvement.

 The ScrumMaster asked Phil ’ s manager if there was any way to postpone this work
until the next sprint. In the end, the ScrumMaster negotiated most of Phil ’ s time
back and got the remaining work added to the product backlog and prioritized
against other work on the backlog. Despite the small distraction, the team was able
to successfully complete the sprint and deliver the items it had committed to.

 The team also eventually delivered the new work that Phil ’ s manager had asked him
to do — after two more sprints. It turned out that the work wasn ’ t quite as important
as initially thought.

Scrum Artifacts ❘ 61

c03.indd 61c03.indd 61 24/03/11 6:27 PM24/03/11 6:27 PM

62 ❘ CHAPTER 3 TRACKING WHAT ’ S IMPORTANT IN TEAM FOUNDATION SERVER

 The team and product owner create the sprint backlog during the sprint planning meeting. In sprint
planning, the team breaks down PBIs into a series of tasks for the team to complete. The team
estimates the number of hours each task will take. Each day, team members select and work on
tasks from the sprint backlog; they report on their progress during the daily standup.

 The ScrumMaster owns the sprint backlog. His or her job is to ensure that the backlog is updated
daily and that the sprint backlog always represents the remaining work the team has committed to.
The sprint backlog should be kept simple and should be readily available to everyone on the team.

 Remaining Eff ort

 In Scrum, the remaining effort for all tasks must be tracked on the sprint backlog. Project managers
often have a diffi cult time understanding this concept. It is common to hear traditional project
managers ask, “ If the team is only tracking remaining effort, how do I know how much work was
completed? ” With Scrum, completed work does not matter. Most teams have an initial problem
with letting go of completed work. They have tracked it closely for years. However, there are a
number of compelling reasons for not caring about completed work:

 ➤ Estimates of completed work are rarely accurate — Team members can always tell how
much work remains. But work completed is a bit of a gray area.

 ➤ Focusing on completed work distracts the team from what is important — It makes no
difference that a team completed 100 hours of work if 150 hours are needed to meet its
commitment. The remaining 50 hours are what is important.

 ➤ Focusing on completed work quickly pollutes a team atmosphere — It puts team members
into a competitive situation where everyone wants to have completed the most work.

 New Work

 A team should quickly deal with new work found during a sprint. After starting implementation, it
is not uncommon for a team to uncover additional work that was not known or visible during sprint
planning. There are two choices for new work:

 ➤ The team may decide to add the new work to the existing sprint. This decision must be
made by the entire team and not by a single team member or the ScrumMaster.

 ➤ The team may decide, with the product owner, to add the new work to the product backlog.

 When making any decisions about new work, it is important that a team understand whether the
new work is necessary to complete the items from the product backlog that it has already committed
to. If the work is absolutely necessary for a PBI to be considered done, the new work should be
included in the sprint.

 It ’ s never okay to partially implement a PBI with the idea that the team will complete the work
in the next sprint. Becoming comfortable with partially implemented PBIs can quickly lead to the
team being comfortable not meeting its commitment. As soon as this pattern develops, the team
loses its ability to accurately estimate future work. The entire process starts to unravel.

c03.indd 62c03.indd 62 24/03/11 6:27 PM24/03/11 6:27 PM

 The most important rule regarding new work is that only the team can change the sprint backlog.
It ’ s not okay for the product owner to change the requirements of a PBI after the team has started
work. The ScrumMaster is responsible for protecting the team from any changing requirements
during a sprint and ensuring that the team is in control of its commitment.

 The Sprint Burndown

 The sprint burndown is a graph that shows the daily amount of work remaining (hours) in the
sprint. The data for the graph is pulled directly from the sprint backlog. Work remaining for the sprint
is a simple sum of all the hours remaining on all tasks in the sprint. The team reports its progress daily,
in hours, so it can accurately understand exactly how much work remains in the sprint.

 The sprint burndown chart shows the team how much work remains in the sprint as well as how
much work is currently in progress. By tracking both of these pieces of data, the team can answer
the following questions:

 ➤ Is the team on track to complete the remaining work before the end of the sprint?

 ➤ Does the team have too much work in progress relative to the amount of work remaining?

 Figure 3 - 5 shows the sprint burndown chart for a Scrum team nearing the end of a sprint.

 FIGURE 3 - 5: The sprint burndown report included in the Microsoft Visual Studio

Scrum 1.0 process template.

Scrum Artifacts ❘ 63

c03.indd 63c03.indd 63 24/03/11 6:27 PM24/03/11 6:27 PM

64 ❘ CHAPTER 3 TRACKING WHAT ’ S IMPORTANT IN TEAM FOUNDATION SERVER

 Ken Schwaber, one of the founders of Scrum, has an interesting thought on sprint burndown charts
becoming signatures of the team:

 As a team works together, it develops its own style of creating and maintaining
the sprint backlog. It also demonstrates unique work patterns, some working
consistently, some in bursts, some at the end of a sprint. Some seek pressure,
while others seek regularity. Across time, the backlog charts of each team
develop predictable patterns. They stabilize as the team learns the technology,
the business or product domain, and each other. These chart patterns are called
sprint signatures.

 The Release Burndown

 As you can see in Figure 3 - 6, the release burndown report shows the sum of the remaining effort
on the product backlog over time (that is, across sprints). The effort is summed in whatever unit the
team has decided to use.

 FIGURE 3 - 6: The release burndown report included in the Microsoft Visual Studio

Scrum 1.0 process template.

 The product owner and team use the release burndown report to gauge how much effort remains in
the release before and after each sprint.

c03.indd 64c03.indd 64 24/03/11 6:27 PM24/03/11 6:27 PM

 SCRUM ACTIVITIES

 A Scrum team performs key activities during the life cycle of a Scrum project. Each activity is
time - boxed to create certainty and regularity. By time - boxing its activities, a team learns to expect
what is next and develop a rhythm. The following are some of the key activities of a Scrum team:

 ➤ Release planning meeting — This is an optional meeting where the team establishes the
goal for the release.

 ➤ Backlog grooming — This is an ongoing activity of the product owner to keep the backlog
prioritized and suffi ciently detailed.

 ➤ Sprint — This is a 30 - day (or less) time - boxed iteration during which the team turns items
from the product backlog into working software.

 ➤ Sprint planning meeting — This is a time - boxed meeting in which the team selects and
plans the work for the next sprint. In general, a sprint planning meeting should not be
longer than eight hours. It ’ s important that the meeting be confi ned to a single day to
minimize the interruption to the team.

 ➤ Daily Scrum — This is a 15 - minute meeting where the team gathers to report on progress.

 ➤ Sprint review — This is a time - boxed meeting during which the team and stakeholders
review the work completed in the sprint. In general, the sprint review is no longer than
four hours. Keeping this meeting under four hours helps ensure that the team ’ s time is
used effi ciently.

 ➤ Sprint retrospective — This is a three - hour time - boxed meeting where the team examines
its sprint to determine how it can improve.

 The following sections look at these activities in more detail.

 The Release Planning Meeting

 The release planning meeting is an optional meeting that aims to establish a plan and goal for the
team and organization. In release planning, the organization answers several questions:

 ➤ What are we going to build?

 ➤ Why are we building it?

 ➤ When do we hope to deliver it?

 Release planning is not prescribed by Scrum, but most organizations do some level of release planning.
Because release planning is not prescribed by Scrum, this book doesn ’ t cover release planning in detail.

 Backlog Grooming

 Before the team gathers for the sprint planning meeting, the product owner must groom and prioritize
the product backlog. Grooming the backlog simply means ensuring that items on the product backlog
are in priority order and that items in the top portion of the product backlog are suffi ciently detailed.

Scrum Activities ❘ 65

c03.indd 65c03.indd 65 24/03/11 6:27 PM24/03/11 6:27 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

66 ❘ CHAPTER 3 TRACKING WHAT ’ S IMPORTANT IN TEAM FOUNDATION SERVER

One of the fi rst and often most diffi cult lessons that new Scrum teams learn is that it ’ s impossible
to have a successful sprint planning meeting (or a successful sprint for that matter) without a well -
 groomed backlog.

 Your Scrum team may decide to hold regular product backlog grooming meetings. The team and
the product owner attend each backlog grooming meeting. During the meeting, the product owner
seeks input from everyone on the team to help prepare the backlog for the next sprint planning
meeting. This might include adding new items to the backlog or splitting items that the team thinks
are too large. It might also include doing some very rough estimating for items already on the
backlog to help prevent the offi cial sprint planning meeting from lasting an unnecessarily long time.
In most cases, the estimates will change when they are offi cially estimated, but the product backlog
grooming meeting plants seeds for the team about what is coming.

 It is always diffi cult for a team to pull away from its work mid - sprint so that it
can attend a backlog grooming meeting. However, the value gained from doing
so will lead to more effective sprint planning meetings and eventually more
effective sprints. Although backlog grooming meetings are not a formal part of
the Scrum process, Ken Schwaber advises that teams dedicate 5% of their time,
per sprint, to this activity.

 The Sprint

 A team ’ s real work occurs during a sprint itself. During a sprint, the team turns its plan into
working software. The outcome of each sprint is something that is potentially shippable, no matter
how simple or complex the end result. Delivering working software at the end of each sprint is
fundamental to Scrum. It motivates the product owner to prioritize value to the customer fi rst, it
encourages the team to have short - term goals that have tangible results, and it puts the team in a
position to ship at any time.

 The following are some keys to the success of a sprint:

 ➤ Keep team composition constant — If the team composition is constantly changing in size
or in terms of membership, the team can ’ t understand what it is capable of accomplishing.
Make sure the members of your team are committed to just the one team.

 ➤ Choose a consistent duration for sprints — Scrum recommends a 30 - day sprint but doesn ’ t
mandate the duration. Find the duration that works for your teams and stick with it.
Changing the sprint length for any reason will lead to inconsistencies in understanding
the team ’ s velocity, and it hinders the team from fi nding a rhythm to its work. The one
exception to this rule is new teams. New teams should start with 1 - week sprints so they
have a chance to exercise their Scrum muscles. A new Scrum team operating in 30 - day
sprints will need a few months before it truly understands the fl ow of Scrum. By initially
using week - long sprints, the team has an opportunity to quickly go through the process and
develop a stronger set of Scrum muscles.

c03.indd 66c03.indd 66 24/03/11 6:27 PM24/03/11 6:27 PM

 ➤ Don ’ t end sprints on Fridays — People don ’ t tend to like Friday deadlines. Most people
have plans for Friday nights that involve friends, family, and some level of up - front
planning. People need weekends to recharge and re - energize. When sprints end on Fridays,
team members are caught between their weekends and the team. Ending sprints midweek
(Tuesday or Wednesday) gives team members more freedom with their weekends. This can
do a lot for team morale.

 Every sprint starts with a sprint planning meeting and ends with a sprint review meeting. These two
meetings, described in the following sections, are the bookends of every sprint.

 The Sprint Planning Meeting

 At the sprint planning meeting, the product owner and the team negotiate which items from the
product backlog the team will complete during the upcoming sprint. The entire meeting should be
completed within one calendar day to ensure that that team ’ s time is used effi ciently. The product
owner is ultimately responsible for determining which items are of the highest priority, but the team
has a voice in the process and should be listened to as it gives input.

 The sprint planning meeting has two distinct parts:

 ➤ Part 1 — Part 1 is devoted to selecting work from the product backlog. This is done with
the product owner and the team present.

 ➤ Part 2 — During part 2 of the meeting, the team builds a sprint backlog from the work
selected during part 1. The product owner often attends part 2 of the meeting but isn ’ t
required to be present.

 A successful sprint planning meeting realizes a number of results, including the following:

 ➤ Sprint goal — The sprint goal is a clear agreement between the product owner and the team
on what the team will complete by the end of the sprint.

 ➤ Acceptance criteria — The product owner and the team must have a clear understanding of
the defi nition of done for each item. This is known as the acceptance criteria for each item.

 ➤ Sprint backlog — The team needs to create a clear set of tasks that detail the work needed
to implement each item selected from the product backlog. The set of tasks together form
the sprint backlog.

 The sprint planning meeting is a critical component of a successful sprint. It requires involvement
and a commitment from each member of the team.

 Sprint Planning, Part 1

 The goal of part 1 of the sprint planning meeting is for the team and the product owner to agree on
which items will be completed in the sprint. The team and the product owner do this by describing,
discussing, and estimating items from the product backlog.

 Part 1 of the sprint planning meeting sets the tone for the entire sprint. If the product owner shows
up and takes an hour or more to describe, discuss, and estimate the fi rst few items on the backlog, the
team members will feel that their time isn ’ t valued. In this case, the sprint is unlikely to be successful.

Scrum Activities ❘ 67

c03.indd 67c03.indd 67 24/03/11 6:27 PM24/03/11 6:27 PM

68 ❘ CHAPTER 3 TRACKING WHAT ’ S IMPORTANT IN TEAM FOUNDATION SERVER

 Running a Sprint Planning Meeting

 While there is no specifi c format for a sprint planning meeting, a typical meeting might look
something like this:

 1. The product owner and the team arrive at the meeting on time. Getting started on time sets
the tone for the entire meeting.

 2. The ScrumMaster writes on a whiteboard the amount of effort the team completed in
the last sprint. This is known as yesterday ’ s weather and represents the team ’ s velocity.
Yesterday ’ s weather is usually a good predictor of upcoming weather. For example, if the
team completed 20 units of effort in the last sprint, given that the conditions are the same
for this sprint (time/team), the team can expect to complete 20 units of effort in this sprint.

 3. Each member of the team announces any planned interruptions (vacations, appointments,
holidays, and so on) that will impact how much work the team can commit to.

 4. The ScrumMaster reviews the agreed - upon defi nition of done so that everyone is aware of
what activities are included when the team declares an item done. Reviewing the done
criteria during each retrospective is also a good practice.

 5. The product owner presents the product backlog to the team by reading the title for each
item on the top of the backlog. These are the items that that are likely to be completed
in this sprint. This fi rst pass of the product backlog gives the team context around what
they ’ re likely to commit to.

 6. After any high - level clarifying questions are answered, the product owner returns to the top
of the backlog and describes the backlog items in detail, including the acceptance criteria
for the items.

 7. New acceptance criteria are added to each item, based on new details uncovered during
discussion.

 8. The team estimates the time it will take to complete each item discussed.

 Estimating PBIs

 The team determines how much work it can complete in the sprint based on the estimates created
for each PBI. There are many different acceptable methods for arriving at an estimate, but many
teams today use a simple technique known as Planning Poker. Mike Cohn, who originated the idea
of Planning Poker, is a founding member of the Scrum Alliance and an experienced Agile practitioner
and coach. Planning Poker is an easy and fun tool for estimating work. In this process, each team
member provides an estimate before deciding as a team on a value.

 In Planning Poker, each team member has a deck of cards with a set of values. The values represent
an estimate of the amount of effort needed to complete each backlog item. Most Planning Poker
cards use the Fibonacci sequence (1, 2, 3, 5, 8, 13, and so on), as it refl ects the fact that the team
doesn ’ t expect perfect estimates, particularly as PBI sizes grow. For example, what is the difference
between estimates of 11 and 12 when discussing something on the backlog? In truth, there isn ’ t
much difference. Estimating at this level is nothing more than guessing, and the relative difference
between the numbers is so small, it ’ s not worth discussing. By using the Fibonacci sequence, teams
are forced to choose between a set of known values.

c03.indd 68c03.indd 68 24/03/11 6:27 PM24/03/11 6:27 PM

 The team members simultaneously reveal their estimates. Those who presented high or low
estimates then explain their position. The goal of the exercise is not to arrive at a precise estimate.
Rather, it ’ s to spark conversations that lead to a shared understanding of what done means for each
item being discussed. After discussion, the team plays another round of Planning Poker, until it
arrives at a value that everyone agrees with.

 After estimating the fi rst item, the product owner presents the next item on the backlog, and the team
repeats this process until it has accumulated enough effort to match its velocity. At this point, part
1 of the sprint planning meeting concludes. Together, the product owner and the team have selected
items from the backlog that the team will complete in the upcoming sprint. Now, the team is ready to
dig into the details of each of the items selected during part 1 before it makes a commitment.

 Sprint Planning, Part 2

 During part 2 of the sprint planning meeting, the team makes a plan for how it will implement the
items selected and decides which of those items it can commit to.

 It is not necessary for the product owner to participate in this part of the sprint planning meeting.
However, it ’ s good practice for the product owner to be present to help answer questions that arise.
The likelihood of success increases greatly when the product owner has time and energy to commit
to the team.

 Determining Tasks

 In part 2 of the sprint planning meeting, the team decomposes each of the items selected in part 1,
in priority order, into a set of tasks that represent all the work necessary to implement the PBI. The
team estimates the time it will take to complete each task and adds it to the sprint backlog.

 It is critical that everyone on the team be involved in task breakdown and estimation. A common trap
that new and inexperienced teams fall into is to have one or two people on the team (leads, senior
developers, and so on) do the task breakdown without input from the rest of the team. Falling into this
trap kills morale on the team and often leads to very inaccurate estimates. It also prevents all the shared
learning that occurs when the team estimates together. It isn ’ t realistic to assume that one or two team
members have the power to accurately discover, describe, and estimate all the work for a Scrum team.

 The tasks that the team creates will include the traditional steps in a software development life
cycle and should include all the work necessary to call an item from the backlog done. This often
includes designing, developing, unit testing, exploratory testing, user acceptance testing (UAT), and
documenting tasks. A common misconception about Scrum is that it does not include traditional
software development activities. This could not be further from the truth. Where Scrum differs from

 It is not a coincidence that the fi rst bullet in the Agile Manifesto states “ We
have come to value individual and interactions over processes and tools. ” Agile
teams work together. By working together, they create better software. Start
learning to love acceptance criteria and see if your team isn ’ t more successful at
delivering software.

Scrum Activities ❘ 69

c03.indd 69c03.indd 69 24/03/11 6:27 PM24/03/11 6:27 PM

70 ❘ CHAPTER 3 TRACKING WHAT ’ S IMPORTANT IN TEAM FOUNDATION SERVER

the Waterfall method is that a Scrum team tackles these activities just - in - time rather than in long
periods of time.

 In a traditional software development project, the development and testing teams might be on
very different schedules. The development team could be coding for weeks on end, without ever
delivering anything for testing. Meanwhile, the test team is often far behind the development team,
fi nding bugs in code that was checked weeks, or even months, earlier. This creates a vicious cycle
that can be very diffi cult for a team to get out of.

 On a Scrum team, coding and testing happen together and with minimal transition time. For
example, when a developer on the team completes a task, he or she immediately hands it off to a
tester on the team for testing. Bugs found during testing are dealt with immediately instead of being
placed on the shelf to be tackled later. Bug debt is unacceptable to a Scrum team, and the team takes
steps to ensure that debt is not accrued. A team should include all tasks necessary so that a PBI can
be declared done at the end of the sprint.

 After the team breaks an item down into tasks, it should review the estimate determined for the item
during part 1 of the sprint planning meeting. Was new work found as the team discussed the details
of implementation? Is the PBI bigger than initially suspected? Having the product owner present
during part 2 of the meeting can be extremely benefi cial, as additional negotiation may be necessary
after the team has dug into the details of the item.

 Making a Commitment

 When all PBIs are decomposed into tasks, the team is ready to make a commitment to the work for
the sprint. Before making a commitment, the team should review any planned interruptions to the
sprint and be sure that everyone feels good about what the team is taking on.

 The team should never commit to work that it does not think it can complete during a sprint. It is
common for team members to want to overcommit. However, it is critical that the team learn to
commit only to work that it collectively feels it can complete.

 If your team is new to Scrum, do not panic if the fi rst few sprints result in
drastic overcommitments by the team. This happens to most teams. As the team
matures, it learns to understand how much work is involved to complete work
from the backlog and begins to develop a better understanding of its capabilities.

 The Daily Scrum

 The team gathers daily for a 15 - minute meeting known as the daily Scrum (or daily standup). At the
daily Scrum, each team member answers the following questions:

 ➤ What did I accomplish yesterday?

 ➤ What am I planning to accomplish today?

 ➤ What obstacles are impeding progress?

c03.indd 70c03.indd 70 24/03/11 6:27 PM24/03/11 6:27 PM

 The daily Scrum is the heartbeat of a Scrum team. Without it, the entire process falls apart. The daily
Scrum is important because it provides a stage for communication across the entire team. It also helps
the team identify and remove impediments that stand in the way of team members. In addition, it
promotes a culture of information sharing from everyone involved. During sprint planning, the entire
team made a commitment to the work in the sprint. It wasn ’ t an individual commitment, and it wasn ’ t
a vote; it was a commitment that the team made together. By committing together, the team makes a
statement that it will also achieve success together.

 As team members are sharing what they accomplished and plan to accomplish during the daily
Scrum, other team members become aware of how that work might affect what they were planning
to tackle. The ScrumMaster records any obstacles (that is, impediments) identifi ed during the
meeting. The ScrumMaster must help the team remove impediments so that it can continue to make
progress toward its goal.

 The daily standup should be self - managed: Team members should want to be there, there should
be an energy in the room, and the team should quickly and succinctly share information. One of
the biggest drains on a Scrum team is unproductive daily Scrums. The following tips can help make
your standup meetings as effective as possible:

 ➤ Be timely — Late - starting meetings waste everyone ’ s time. When someone on the team is
chronically late, that person is subtly telling everyone else in the meeting that their time
is not a priority. To make it clear that everyone ’ s time is important, ensure that standup
meetings start on time.

 ➤ Stand up — Many teams hold daily standups in conference rooms with everyone sitting in
chairs around a table. These meetings feel like meetings. When you ’ re standing up, you ’ re
engaged and are part of what ’ s happening. Standing up for the daily Scrum might feel
strange at fi rst, but it will quickly become very natural and lead to crisper, more effective
standups. There ’ s a reason many teams call this gathering the daily standup instead of the
daily Scrum.

 ➤ Be concise — The standup should take 15 minutes, but it will take 45 minutes if team
members aren ’ t in the habit of sharing the right amount of data. This isn ’ t a meeting where
you recount everything you did in the past 24 hours. Rather, it ’ s a meeting where you share
what you did and how what you did impacts the team ’ s commitment.

 ➤ Don ’ t allow laptops or cell phones — Face it, we live in a culture where we want to be
connected at all times. We ’ re all tempted to check something on our devices, whether
our favorite stock, our voice mail, or our e - mail. We ’ re slowly becoming a very distracted
culture. Next time you ’ re out to eat, look at the tables around you. How many people are
talking to each other? And how many are staring at handheld devices? Remember that the
daily standup is about communicating, and it ’ s next to impossible to communicate with
someone who has his or her head buried in a laptop or cell phone.

 ➤ Make standups fun — Teams can come up with creative ways to make their standups fun.
When people are having fun, they ’ re producing better work. Look for ways to make your
standup fun. The following sidebar provides some suggestions.

Scrum Activities ❘ 71

c03.indd 71c03.indd 71 24/03/11 6:27 PM24/03/11 6:27 PM

72 ❘ CHAPTER 3 TRACKING WHAT ’ S IMPORTANT IN TEAM FOUNDATION SERVER

 The ScrumMaster is responsible for ensuring that the team has a daily standup, but the team is
responsible for conducting the meeting. Remember that the daily standup is not a status meeting
for anyone to attend. The daily standup is a gathering of the team that made a commitment to the
sprint, and the purpose is to communicate and inspect progress toward achieving the sprint goal.

 The Sprint Review

 At the end of the sprint — the last day of the sprint or the fi rst day after the sprint has ended — the
team holds a review meeting to discuss and demonstrate to stakeholders what was accomplished
during the sprint. Even though this meeting should be informal, it ’ s important that the team prepare
so that it can effectively demonstrate what it achieved.

 During the sprint review, the team reads each of the PBIs that it committed to and accomplished
during the sprint. The team then demonstrates the functionality built for each.

 During the sprint review meeting, the product owner accepts each PBI demonstrated. While the team
may have completed the work, the product owner needs to accept the PBI as meeting the requirements
outlined. In many cases, the product owner will identify additional requirements after seeing the PBIs

 DAILY SCRUM SUGGESTIONS FROM THE REAL WORLD

 The following are a few ideas from successful Scrum teams about how to make the
daily standup more fun and effective:

 ➤ Brainstorm team rules — Team rules should enforce the culture your team
is trying to create. Anyone can suggest a rule. Take a simple yes/no vote to
determine whether to accept a new rule. Then follow your rules strictly. For
example, your team might decide that for every minute someone is late to a
standup, he or she has to put $1 into the team fund. At the end of the sprint,
the money is used to buy food/drink for the sprint retrospective.

 ➤ Gong people — If someone is rambling on and on about the minutia of their
tasks, and it ’ s wasting the team ’ s time, ring a bell to get the person to stop.
People report on their daily progress much more effi ciently after being gonged
a few times.

 ➤ Choose a good location — Hold your standups in a common area in your
offi ce that doesn ’ t feel formal. Standing around a conference room is awkward.
Standing together in a common area feels natural and is generally a lot more fun.

 ➤ Encourage collaboration — Standups become tedious if the team isn ’ t working
together. Team members often drift into their own work space and do their
 own work. When this happens, they lose interest in what other team members
are doing. Finding ways to get your team to collaborate and work together
in as many ways as possible will make standups more meaningful and not just
verbal status reports.

c03.indd 72c03.indd 72 24/03/11 6:27 PM24/03/11 6:27 PM

demonstrated. This is natural and should be encouraged. A team should add new requirements to the
product backlog as they arise and prioritize them appropriately.

 The following are suggested rules for the sprint review meeting:

 ➤ Only team members, the product owner, and stakeholders attend the meeting — The sprint
review is not a presentation. Do not let it turn into one. Inviting people who are unfamiliar
with the sprint itself can be a distraction and a waste of time for the team. If work for
the sprint needs to be demonstrated more broadly, ask your product owner to schedule a
separate meeting and make it optional for the team to attend.

 ➤ The team presents only items that are done — If an item from the backlog was committed
to during sprint planning but not completed during the sprint, it is left out of the sprint
review. Make sure the defi nition of done is presented before the meeting starts to ensure
that everyone is on the same page.

 The Sprint Retrospective

 The Scrum method is all about fi nding new and better ways to execute and operate as a team. The
sprint retrospective is the team ’ s opportunity to refl ect on ways it can improve to work more effectively
together. The sprint retrospective happens immediately after the sprint ends to ensure that the activities
from the sprint are fresh in everyone ’ s mind.

 Everyone on the team should participate in the retrospective, including the product owner. However,
the retrospective should not include people outside the team who might intimidate team members
or discourage a team member from sharing openly and honestly about his or her experiences during
the sprint.

 The goal of the retrospective is to identify what the team is going to do differently during the next
sprint. This is achieved by letting everyone on the team have a chance to share what worked, what
didn ’ t work, and what the team should do differently in the next sprint. No topic should be off - limits
during the retrospective, and it ’ s critical that everyone on the team have a chance to participate.

 The following are some basic rules for the sprint retrospective:

 ➤ Allow only affi rming comments — Abrupt and aggressive disagreement causes problems
among team members. It is important for all team members to feel that they can participate.
The retrospective must be a safe place for everyone to voice opinions.

 ➤ Ask people to think about what they want to say before they start saying it — Some people
think and then speak, and others speak to think. The think - and - then - speak types usually
have insightful observations to share but are often crowded out by those who speak to
think. Ask everyone on the team to spend time before the meeting thinking about what to
share. This doesn ’ t mean that spontaneous ideas or observations are discouraged, just that
everyone on the team will get more out of the meeting if the participants show up prepared.

 ➤ Make sure that items identifi ed to be done differently in the next sprint are actionable — You
don ’ t want to end up with a list of items such as “ We should make sure nobody gets sick
during the next sprint. ” Instead, turn this into something actionable, such as “ Let ’ s plan
for unplanned interruptions to the sprint before we commit. ” The latter is actionable — it ’ s
something that the team can actually change in the next sprint.

Scrum Activities ❘ 73

c03.indd 73c03.indd 73 24/03/11 6:27 PM24/03/11 6:27 PM

74 ❘ CHAPTER 3 TRACKING WHAT ’ S IMPORTANT IN TEAM FOUNDATION SERVER

 ➤ Ensure that the team follows through on changes to its process — Team members are likely
to get discouraged if they sit through an energized retrospective meeting and emerge with
a list of changes that is never acted upon. Such retrospectives kill morale. Don ’ t let this
happen on your team. If the team comes up with ideas to improve its process, act on them.

 The sprint retrospective is one of the most energizing and fun parts of the Scrum process. The team
is empowered to control its own destiny during this meeting, and each member has a chance to
affect the team ’ s process. By the end of the sprint retrospective, the team should have a reasonable
list of actionable items that it wants to implement in the next sprint. Chapter 10 describes in more
detail how you can run an effective sprint retrospective meeting.

 SUMMARY

 TFS and Scrum can help teams minimize risk, improve predictability, and maximize their ROI. TFS
is a platform for storing and tracking your team ’ s data, and Scrum is a framework for implementing
and executing a project successfully. In this chapter, you learned how TFS stores project data,
examined the various artifacts that make up the Scrum process, and explored the key activities
involved in running a successful Scrum team. In Chapter 4, you will learn how to install and get
started with the Microsoft Visual Studio Scrum 1.0 process template.

c03.indd 74c03.indd 74 24/03/11 6:27 PM24/03/11 6:27 PM

Getting Started with the
TFS Scrum Template

 WHAT ’ S IN THIS CHAPTER?

 How to get started with the Microsoft Visual Studio Scrum 1.0

template.

 How to create a release.

 Understanding the importance of shipping.

 Understanding the importance of quality.

 Understanding the importance of repeatability.

 Understanding sprints.

 In Chapter 3, you learned how your project data is stored in Team Foundation Server (TFS)
and how the members of your team can use that data. You also learned about the Scrum
process and the key activities and artifacts that a Scrum team uses.

 This chapter is a gentle introduction to getting a Scrum project started with TFS. In this
chapter, you will learn how to install the Microsoft Visual Studio Scrum 1.0 template. You
will also learn how to launch a new Scrum project, using this Scrum template.

 This chapter also discusses the importance of three aspects of producing software: building
in quality, shipping the product, and ensuring repeatability. The chapter also introduces the
concept of sprints. In the rest of this book, we cover the material explored in this chapter in
much greater detail.

➤

➤

➤

➤

➤

➤

 4

c04.indd 75c04.indd 75 3/24/11 4:09:45 PM3/24/11 4:09:45 PM

76 ❘ CHAPTER 4 GETTING STARTED WITH THE TFS SCRUM TEMPLATE

 GETTING STARTED WITH THE SCRUM TEMPLATE

 Installing the Microsoft Visual Studio Scrum 1.0 template involves downloading and installing
the template and then importing the template into TFS. The following sections walk through
these processes, as well as how to begin using the template by creating a new product backlog
item (PBI).

 Downloading and Installing the Scrum Template

 To download the Microsoft Visual Studio Scrum 1.0 template, follow these steps:

 1. Go to http://msdn.microsoft.com/en-us/vstudio/aa718795.aspx (see Figure 4 - 1)
and click the Microsoft Visual Studio Scrum 1.0 link. The template downloads to
your machine.

 FIGURE 4 - 1: The download page for the Microsoft Visual Studio Scrum 1.0 template.

 2. Install the template by double - clicking the .msi fi le and following the instructions that
appear. Take note of where you install it. The Microsoft Visual Studio Scrum 1.0 Setup
Wizard appears, ready to guide you through the setup process (see Figure 4-2).

 After you ’ ve installed the template, you ’ re ready to import it into TFS.

c04.indd 76c04.indd 76 3/24/11 4:09:49 PM3/24/11 4:09:49 PM

 FIGURE 4 - 2: The opening screen of the Microsoft Visual Studio

Scrum 1.0 Setup Wizard.

 Importing the Scrum Template into TFS

 To import the Microsoft Visual Studio Scrum 1.0 template into TFS, follow these steps:

 1. In Visual Studio, open the Process Template Manager by selecting Team ➪ Team
Project Collection Settings ➪ Process Template Manager, as shown in Figure 4 - 3.
The Process Template Manager appears.

 FIGURE 4 - 3: Opening the Process Template Manager to import the

Scrum 1.0 template into TFS.

Getting Started with the Scrum Template ❘ 77

c04.indd 77c04.indd 77 3/24/11 4:09:50 PM3/24/11 4:09:50 PM

78 ❘ CHAPTER 4 GETTING STARTED WITH THE TFS SCRUM TEMPLATE

 2. In the Process Template Manager, click the Upload button and select the directory where
you installed the template, as shown in Figure 4 - 4. Visual Studio installs the Scrum 1.0
template, as shown in Figure 4 - 5.

 FIGURE 4 - 4: Selecting the main Scrum 1.0 template directory in the Process

Template Manager.

 FIGURE 4 - 5: TFS installing the Scrum 1.0 template from the Process

Template Manager.

c04.indd 78c04.indd 78 3/24/11 4:09:51 PM3/24/11 4:09:51 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 3. To test that the template has been installed correctly, create a new team project, based
on the Scrum 1.0 template. To do this, select File ➪ New Team Project, as shown
in Figure 4 - 6.

Keep in mind that a team project is not the same as a Visual Studio project.

 FIGURE 4 - 6: Creating a new team project.

 4. When the New Project Wizard asks for the name of the project and its description, enter
this information and then click Next.

 5. When the wizard asks you to select the process template, click the down arrow and
verify that the Microsoft Visual Studio Scrum 1.0 template has been installed, as shown
in Figure 4 - 7.

 Congratulations! You have successfully installed the Scrum 1.0 template. This template gives you
access to a wealth of Scrum - related features. Next, you ’ ll learn how to move ahead in Visual Studio
and create a new PBI.

Getting Started with the Scrum Template ❘ 79

c04.indd 79c04.indd 79 3/24/11 4:09:52 PM3/24/11 4:09:52 PM

80 ❘ CHAPTER 4 GETTING STARTED WITH THE TFS SCRUM TEMPLATE

 Creating a New PBI

 You start a new Scrum project by creating PBIs. A TFS PBI is a rich structure that can store many
details. Exactly which fi elds you need to complete is typically determined by your Scrum team ’ s
charter. The following steps show how to create a PBI:

 1. In Visual Studio, select Team ➪ New Work Item ➪ Product Backlog Item, as shown in
Figure 4 - 8.

 FIGURE 4 - 7: Verifying that the Scrum 1.0 template has been installed.

 FIGURE 4 - 8: Creating a new PBI.

c04.indd 80c04.indd 80 3/24/11 4:10:00 PM3/24/11 4:10:00 PM

 2. Complete the Title, Iteration, Assigned To, and Description fi elds as shown in Figure 4 - 9.
This information will be saved for future reference.

Note that the menu entries at the top of the Team menu vary, depending on how
frequently you select each menu item. As a result, the top items on your menu
may be different than the items in this fi gure.

TFS uses the term iteration to refer to sprints. These two words are often used
interchangeably in the Agile community.

 FIGURE 4 - 9: Creating a minimal PBI.

 This short example illustrates just one of the many features of the Scrum template. PBIs are the
building blocks of sprint and product backlogs. You link tasks to PBIs and track the completion of
those tasks by using a burndown chart.

 You will now learn about releases.

Getting Started with the Scrum Template ❘ 81

c04.indd 81c04.indd 81 3/24/11 4:10:01 PM3/24/11 4:10:01 PM

82 ❘ CHAPTER 4 GETTING STARTED WITH THE TFS SCRUM TEMPLATE

 UNDERSTANDING RELEASES

 Once you have installed the Scrum template and started to create PBIs, you need to group the
PBIs into releases. Releases are a core part of Scrum. Several meetings and artifacts are associated
with releases:

 The release planning meeting

 The release backlog burndown chart

 The release goal

➤

➤

➤

For more information on releases, see the Scrum Guide, at www.scrum.org/
scrumguideenglish/ .

 Many companies already have release processes in place. Scrum replaces or modifi es those
processes with a framework that encourages frequent inspection and adaptation. Scrum also defi nes
simple - to - understand metrics to chart the progress of a team during the release. A release typically
consists of multiple sprints, as illustrated in Figure 4 - 10.

 FIGURE 4 - 10: A release consists of several sprints.

Sprint Sprint Sprint Sprint

Release

Sprint Sprint

Release

 Each sprint provides an opportunity to groom
the backlog, which may include adding, deleting,
modifying, and reprioritizing items on the
backlog.

 When you create a new team project in Visual
Studio, it automatically contains four releases
with six sprints each, as shown in Figure 4 - 11.

 To see all the releases and sprints, you select All
Sprints in the Team Explorer window, as shown
in Figure 4 - 12. Visual Studio displays a list of all
the sprints.

 FIGURE 4 - 11: A new team project by default

contains four releases with six sprints per release.

c04.indd 82c04.indd 82 3/24/11 4:10:17 PM3/24/11 4:10:17 PM

Understanding Releases ❘ 83

 The Release Planning Meeting

 The release planning meeting is an optional meeting in which a Scrum team sets goals and
expectations for the next release and also identifi es risks for the release. All the artifacts produced
during the release planning meeting are subject to refi nement during the sprints that occur during
the release period.

 If the product owner has not already entered all PBIs into TFS, you should do this during the release
planning meeting. To do so, follow these steps:

 1. Select Team ➪ New Work Item ➪ Product Backlog Item, as shown earlier in this chapter, in
Figure 4 - 8.

 FIGURE 4 - 12: Selecting All Sprints.

You can also load PBIs by using Excel. This is discussed in Chapter 8.

 2. Complete the Title, Iteration, and Description fi elds for the PBI as shown in Figure 4 - 13.

c04.indd 83c04.indd 83 3/24/11 4:10:23 PM3/24/11 4:10:23 PM

84 ❘ CHAPTER 4 GETTING STARTED WITH THE TFS SCRUM TEMPLATE

 3. Ensure that the Backlog Priority fi eld is set.

 FIGURE 4 - 13: Completing the Title, Iteration, and Description fi elds for the PBI.

The team will set the Effort fi eld after it has gone through Planning Poker.
Planning Poker is discussed in Chapter 3 and later in this section.

 4. To assign an individual to a PBI, select one from the Assigned To pull - down menu. Most
teams do not assign a PBI to an individual on the technical team. Typically, the entire
Scrum team takes responsibility for completing a user story, and only tasks are assigned to
individuals. The PBI can be assigned to the product owner.

 5. Select an item from the Area pull - down menu.

The term area is not defi ned within Scrum, so the team should feel free to
use this fi eld as it desires. For a website, area might refer to sets of web pages.
See Chapter 5 for more information on areas.

 6. To create a new task, click the Tasks tab in the PBI and then click New. The Add New
Linked Work Item dialog appears, as shown in Figure 4 - 14.

Before you create a new task, the PBI must fi rst be saved. If it is not, the New
button will be disabled.

c04.indd 84c04.indd 84 3/24/11 4:10:29 PM3/24/11 4:10:29 PM

Understanding Releases ❘ 85

 7. In the Add New Linked Work Item dialog, type in the title for the task and, if you choose, a
comment. Then click OK. You now see the new task screen, as shown in Figure 4 - 15.

 FIGURE 4 - 14: The Add New Linked Work Item dialog.

 FIGURE 4 - 15: The new task screen.

 At the end of the release planning meeting, the technical team has a high - level understanding of
what end user – visible features it will be delivering over the next few sprints. In addition, the product
owner has a sense of when these features will be ready.

c04.indd 85c04.indd 85 3/24/11 4:10:43 PM3/24/11 4:10:43 PM

86 ❘ CHAPTER 4 GETTING STARTED WITH THE TFS SCRUM TEMPLATE

 Acceptance Criteria

 Each user story typically has acceptance criteria, often written using the Gherkin language. Here is
a simple example of an acceptance test written in the Gherkin language:

 Scenario: Withdraw money

 Given a bank account with a negative balance

 When the customer withdraws funds

 Then the customer is told that funds are not available

 In this example, Scenario , Given , When , and Then are all keywords in the Gherkin language, and
the rest is free text.

You can learn more about Gherkin at http://specfl ow.org .

 The product owner typically provides acceptance tests when entering the PBI into TFS. Figure 4 - 16
illustrates acceptance criteria with Gherkin - style acceptance tests.

 FIGURE 4 - 16: Gherkin - style acceptance tests.

 Other PBI - Related Information

 A number of other tabs in TFS hold further information on PBIs. The History tab, for example, keeps
track of all changes to the PBI. The information provided in this tab is very detailed (see Figure 4 - 17).

c04.indd 86c04.indd 86 3/24/11 4:10:44 PM3/24/11 4:10:44 PM

Understanding Releases ❘ 87

 FIGURE 4 - 17: The History tab.

 The Links tab lets you connect a PBI to other work items. The two items that are most commonly
linked to a PBI are tasks and tests. These are typically linked to the PBI through other means, but
you can use the Links tab to link them manually. As shown in Figure 4 - 18, you can also link a
number of other types of items to the PBI.

 FIGURE 4 - 18: The Add Link to Product Backlog Item dialog.

c04.indd 87c04.indd 87 3/24/11 4:10:50 PM3/24/11 4:10:50 PM

88 ❘ CHAPTER 4 GETTING STARTED WITH THE TFS SCRUM TEMPLATE

 The Attachments tab allows you to attach any document to a PBI. Its use is illustrated in
Figure 4 - 19. For teams that have not automated user interface development by using Microsoft
Expression, one common use for the Attachments tab is to attach a sketch of the user interface.
Another common use is to attach a photograph of the whiteboard diagramming what the team did
to understand the technical requirements behind the user story.

 FIGURE 4 - 19: A dialog that lets you select the attachment.

 Planning Poker

 The release planning meeting involves estimating the amount of effort that PBIs will require and
subsequently prioritizing them. A common way to estimate effort is to use Planning Poker, as
discussed in Chapter 3. The team enters the fi nal estimate produced by Planning Poker in the
Effort fi eld of the PBI, as shown in Figure 4 - 20. In this example, 13 has been entered in that fi eld.

c04.indd 88c04.indd 88 3/24/11 4:10:51 PM3/24/11 4:10:51 PM

Understanding Releases ❘ 89

 The Release Burndown Chart

 The release burndown chart measures the amount of work remaining to be done on the release backlog.
It is identical in concept to the sprint burndown chart except for the important difference that it burns
down over the course of the entire release instead of burning down during the course of a single sprint.

 Because the release backlog might be modifi ed during sprint planning meetings, there is a possibility
that it will take on an appearance quite different from that of a sprint backlog. For example,
suppose that the product backlog begins with the effort estimates shown in Table 4 - 1.

 FIGURE 4 - 20: Entering the eff ort for a PBI.

 TABLE 4 - 1: Story Point Estimates

 USER STORY EFFORT ESTIMATE

 1 8

 2 13

 3 5

 4 20

 5 8

 The total amount of work to be burned down is 8 � 13 � 5 � 20 � 8 � 54 story points. Suppose that
the team completes user story 1 and user story 2 during the fi rst sprint. This leaves 5 � 20 � 8 � 33
story points at the end of sprint 1. The release burndown chart now looks like the one in Figure 4 - 21.

c04.indd 89c04.indd 89 3/24/11 4:10:52 PM3/24/11 4:10:52 PM

90 ❘ CHAPTER 4 GETTING STARTED WITH THE TFS SCRUM TEMPLATE

 The problem with this chart is that it does not account for any new stories that the product owner
has added during the sprint. This is a serious shortcoming. Suppose that the product owner added
three more user stories to the release during this sprint, as shown in Table 4 - 2.

 FIGURE 4 - 21: A simple implementation of a

release burndown chart.

 TABLE 4 - 2: Revised Story Point Estimates

 USER STORY EFFORT ESTIMATE

 6 40

 7 20

 8 3

 At the start of the second sprint, there are 33 � 40 � 20 � 3 � 96 story points remaining in the
release. There are at least three useful ways to display this information:

 A chart that distinguishes between the end of
the sprint and the start of the sprint — One
type of release burndown chart looks like
the one shown in Figure 4 - 22. This release
burndown chart contains information about
both the user stories that the team has
burned down (the difference between Sprint
1 Start and Sprint 1 End) and information
about how many story points the product
owner added during the sprint (the difference
between Sprint 1 End and Sprint 2 Start).

 A burnup/burndown chart — Another way
to visualize the number of story points the
team has completed and the number of story
points that the product owner has added is
to plot two separate lines — one for each
of these data series — and a third line that
shows how many story points are remaining.
This is sometimes called a burnup/burndown
chart because the remaining story points
burn down while the story points added and
completed burn up. Figure 4 - 23 shows an
example of this type of chart.

➤

➤

 FIGURE 4 - 22: A release burndown chart that

distinguishes between the end of the sprint

and the start of the sprint.

 FIGURE 4 - 23: An example of a burnup/burndown

chart.

c04.indd 90c04.indd 90 3/24/11 4:10:52 PM3/24/11 4:10:52 PM

Understanding Releases ❘ 91

 A chart that shows how much work is remaining at the beginning of each sprint — Yet
another way to create a release burndown chart is to show how much work is remaining at
the beginning of each sprint. This is analogous to the sprint burndown chart and is how the
standard release burndown report in TFS works. This type of burndown chart looks like
the one shown in Figure 4 - 24.

 To see the release burndown chart in TFS, you navigate to the Team Explorer window and select
Release Burndown, as shown in Figure 4 - 25.

➤

 FIGURE 4 - 24: A release burndown chart that

shows the amount of work remaining at the

beginning of each sprint in the release.

 FIGURE 4 - 25: Selecting the release

burndown report from the Team

Explorer window.

c04.indd 91c04.indd 91 3/24/11 4:10:53 PM3/24/11 4:10:53 PM

92 ❘ CHAPTER 4 GETTING STARTED WITH THE TFS SCRUM TEMPLATE

 Figure 4 - 26 shows an example of a release burndown chart in TFS. This release burndown chart
shows the amount of work remaining at the beginning of each sprint.

 FIGURE 4 - 26: A release burndown chart in TFS.

 In the release burndown chart, the Y axis can measure any type of effort that
the team chooses. Most teams choose to track their progress in terms of story
points or hours.

 In order for TFS to create the burndown chart, the team must assign PBIs to releases and sprints and
update the Effort fi eld in each task. In addition, the team must regularly update the State fi eld of the
PBI. Chapters 8 and 9 discuss this in more detail.

 The Release Goal

 A Scrum team needs to develop a release goal — a high - level statement that provides a simple,
succinct statement of what the team plans to do. The purpose of the release goal is to promote
shared understanding across the team and the larger business. An example of a release goal might
be “ Implement an online payment system. ”

 TFS does not have a special fi eld for a release goal. To create a place for the release goal, you
can create a special sprint that contains information such as the release goal that pertains to the
release.

c04.indd 92c04.indd 92 3/24/11 4:10:54 PM3/24/11 4:10:54 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Understanding Releases ❘ 93

 To create a sprint specifi cally to store the release goal, follow these steps:

 1. Create a new sprint in Visual Studio by selecting Team ➪ New Work Item ➪ Sprint, as
shown in Figure 4 - 27. Visual Studio creates the sprint.

 If you create a sprint to contain a release goal, take care not to misuse this
special sprint by, for example, assigning PBIs to it. Doing so would cause all
related reports to be incorrect.

 FIGURE 4 - 27: Creating a new sprint.

 2. Set Iteration to < Project Name > \ < Release # > , as shown in Figure 4 - 28. Normally the iteration
name is < Project Name > \ < Release # > \ < Sprint # > . The fact that there is no sprint number in
the Iteration fi eld indicates that this sprint will hold information about the release.

 3. Change both the Start Date and Finish Date fi elds to the date immediately before the sprint
start date. This causes the release to be listed in the correct order, before all the sprints in
the release. In the example in Figure 4 - 28, the sprint starts on November 1, 2010, so the
Start Date and the Finish Date are set to October 31, 2010.

c04.indd 93c04.indd 93 3/24/11 4:11:05 PM3/24/11 4:11:05 PM

94 ❘ CHAPTER 4 GETTING STARTED WITH THE TFS SCRUM TEMPLATE

 4. Enter the release goal in the Details tab, as shown in Figure 4 - 29. Note that the special
release sprint that you have just created is listed before the sprints in the release.

 FIGURE 4 - 28: Changing the Iteration, Start Date, and Finish Date fi elds for the sprint.

 FIGURE 4 - 29: Entering the release goal in the Details tab.

c04.indd 94c04.indd 94 3/24/11 4:11:09 PM3/24/11 4:11:09 PM

 Some teams also have a prerelease hardening sprint to perform regression, integration, and
performance tests. To support a prerelease sprint, you can create a new sprint and include the term
 Prerelease in the name of this sprint, as shown in Figure 4 - 30.

 FIGURE 4 - 30: Creating a prerelease sprint.

 To create this sprint, you right - click the project in the Team Explorer window and navigate to Areas
and Settings. From there, you add a new sprint to the release.

 THE IMPORTANCE OF SHIPPING SOFTWARE

 A pretty good solution that ships is better than a great solution that does not ship. An overemphasis
on technical beauty or on getting the product right before shipping violates the key Scrum principles
of empiricism and feedback.

 One of the key practices of Scrum is to create potentially shippable software by the end of every
sprint. On the best Scrum teams, the product owner is able to press a single button and release the
software that the team shows during the demonstration meeting at the end of the sprint.

 To that end, a Scrum team needs to defi ne what done means and make sure that every PBI can be
completed in one sprint. At a minimum, done means that the coding and testing are complete and
that the product owner has indicated that the software meets the acceptance criteria for the user
story. Code being complete might mean all of the following:

 The code has been reviewed by at least one other team member.

 The code has been documented.

 The code has been refactored.

➤

➤

➤

The Importance of Shipping Software ❘ 95

c04.indd 95c04.indd 95 3/24/11 4:11:10 PM3/24/11 4:11:10 PM

96 ❘ CHAPTER 4 GETTING STARTED WITH THE TFS SCRUM TEMPLATE

 A test being complete might mean all of the following:

 Unit tests have been written and executed for every method.

 The unit test coverage is at least 90%.

 The software has been integration tested.

 The software has been performance tested.

 Exactly what code being complete and tests being complete mean will differ from team to team. The
defi nition of done will often be encapsulated in the team ’ s charter, which is typically revised and
updated during the retrospective.

➤

➤

➤

➤

 DEFINING DONE

 Here is an example of one team ’ s defi nition of done :

 All public methods have been unit tested.

 Coded user interface tests have been created for every user story.

 Code has been reviewed with Bill or Sandra.

➤

➤

➤

 THE IMPORTANCE OF QUALITY

 As discussed in Chapter 1, there are three commonly discussed constraints in software development:
cost, time, and features. Quality is not explicitly mentioned but, presumably, when customers ask for
a feature, what they mean is that they want a bug - free feature. And yet teams regularly adjust their
feature set by adjusting the amount of effort — as measured by time and cost — they invest in quality.

 It is commonly thought that the cost of fi xing a bug increases by a factor of 10 between the
requirements stage and coding and then increases by more than a factor of 10 from coding to
production. That is to say, fi xing a bug in production costs over 100 times as much as fi xing the
bug in the requirements stage. Hence, most teams adopt a “ no bugs ” rule during a sprint. Killing
bugs takes precedence over developing or extending features.

 For bugs in stories the team is working on for the sprint, the team should simply not consider the
user story done until all known bugs are resolved. For bugs discovered during the sprint for user
stories that were completed during previous sprints, the product owner should create bug items and
prioritize them higher than any of the PBIs.

 ENSURING REPEATABILITY

 Because each sprint is a microcosm of the entire development process, everything that a Scrum team
does becomes highly polished and repeatable in a very short period of time. This is one of the great
advantages of Scrum.

c04.indd 96c04.indd 96 3/24/11 4:11:11 PM3/24/11 4:11:11 PM

 Consider the experience that a Scrum team with 2 - week sprints has over the course of a year. It has the
opportunity to go through its entire software development cycle 26 times. In contrast, a team that has
a 6 - month software development cycle will go through its entire cycle only twice in a year. As a result,
the Scrum team will have 13 times as much experience as the team with the longer cycle. The team
with the 6 - month cycle will have diffi culty claiming that anything that it has done is repeatable, while
the Scrum team will have demonstrated the repeatability of almost everything that it does.

 At the end of the year, a Scrum team will have developed a great sense of confi dence in its ability to
frequently ship high - quality software. After all, it has already been successful 26 times, and so the
likelihood that it will be successful the 27th time is very high.

 UNDERSTANDING SPRINTS

 Sprints , sometimes called iterations , are a critical concept in Scrum. A sprint begins with a planning
meeting and ends with a demo meeting and retrospective meeting. The length of a sprint typically
ranges from one to four weeks. This length is fi xed by the team and does not depend on scope.

 This section covers prioritizing the backlog for the sprint planning meeting, determining release
schedules, and understanding spikes. Chapter 9 discusses the details of running a sprint.

 Prioritizing PBIs

 As discussed previously, teams prioritize PBIs across sprints and within sprints. The product owner
is responsible for prioritizing PBIs.

 PBIs are prioritized to maximize business value. The product owner is also responsible for defi ning
 business value . The meaning of business value will change from product to product and company
to company. Sometimes it will change from release to release. What might business value mean?
It might be measured by revenue, profi ts, visits to a website, or new customer registrations. Often,
business value is a combination of several of these factors.

 A team should make the defi nition of business value clearly visible and enter it into each PBI, in the
Business Value fi eld.

 Determining Release Schedules

 Should Scrum teams agree to fi xed release time lines? If they agree to release on a certain date, does
this mean that no change can occur over that period of time? And if no change can occur, is the
team still agile? These are some of the questions that an organization must ask when it requires its
Scrum teams to create release schedules. In practice, there is no such thing as a date that cannot slip.
But if an organization believes that it must ship software on a certain date, then it must allow the
scope to fl oat unless it is able to predict the future with perfect accuracy.

 Creating a release schedule must begin with an understanding of the team ’ s velocity and estimation of
the PBIs. When those two items are combined, they naturally lead to the best possible estimate of the
release schedule. Say that a team ’ s velocity is 100 story points per sprint and that its release backlog
contains a total of 450 story points. The team can estimate that completing the release backlog will
take four or fi ve sprints (that is, 450 / 100 � 4.5).

Understanding Sprints ❘ 97

c04.indd 97c04.indd 97 3/24/11 4:11:12 PM3/24/11 4:11:12 PM

98 ❘ CHAPTER 4 GETTING STARTED WITH THE TFS SCRUM TEMPLATE

 Understanding Spikes

 A spike is a technical exploration designed to inform a team about how to best make a technical
decision. For example, say that a team is thinking about whether to use Silverlight out - of - the - browser
or to instead use Windows Presentation Foundation. It might want to implement functionality in both
and then decide which technical solution is best. Spikes are entered into the product backlog as new
PBIs. It is a good idea to add the word Spike to the PBI, as shown in the Title fi eld in Figure 4 - 31.

 Release dates are often driven by the business, not by a Scrum team. If a team
fi nds that it cannot meet a release date, it has several options, including reducing
the feature set or increasing the amount of effort.

 FIGURE 4 - 31: An example of a spike PBI.

 Spikes are different from typical user stories because they do not deliver end user functionality.
They do not result in potentially shippable software. Hence, they are often called out in the product
backlog.

 Note that spikes do not refer to explorations in which the technical approach is not in question.
For example, say that a team is exploring various user interfaces. It does this by fi rst developing the
user interfaces and then presenting them to end users. While the team is experimenting with user

c04.indd 98c04.indd 98 3/24/11 4:11:13 PM3/24/11 4:11:13 PM

interfaces and does not know which one is the best, this activity does not constitute a spike because
the team understands the technical approach — the method of determining which user interface is
best. (Chapter 11 covers spikes in more detail.)

 SUMMARY

 In this chapter, you have learned the basics of the Scrum template. You know how to install the Scrum
template and how to enter PBIs. This chapter also introduces a simple way to manage the release and
product backlogs.

 The key concepts of shipping, quality, and repeatability are introduced in this chapter. The chapter
provides descriptions of the role that these concepts play in Scrum and how the TFS Scrum template
supports these activities. Finally, this chapter discusses the key role that sprints play in Scrum.

 In Chapter 5, you will learn about tracking items in TFS.

Summary ❘ 99

c04.indd 99c04.indd 99 3/24/11 4:11:18 PM3/24/11 4:11:18 PM

c04.indd 100c04.indd 100 3/24/11 4:11:18 PM3/24/11 4:11:18 PM

Work Items, Queries, and Reports

 WHAT ’ S IN THIS CHAPTER?

 Understanding how to use work items in the Scrum template.

 Using the queries in the Scrum template.

 How to use the reports in the Scrum template.

 In Chapter 3, you saw how to store project data in Team Foundation Server (TFS) and how the
Scrum framework works in the context of a team project. In this chapter, you will examine
the specifi cs of each artifact in the Microsoft Visual Studio Scrum 1.0 process template and see
how each one contributes to tracking a project. This chapter focuses on three aspects of the
Scrum process template:

 Work items

 Work item queries

 Reports

 Together, these artifacts provide the tools needed to successfully manage and track a Scrum
project. The following sections discuss them in detail.

 WORK ITEMS

 Project data in TFS is stored in artifacts known as work items . As noted in Chapter 3, work items
are database records that track the defi nition, assignment, priority, and state of work for your
team. The Microsoft Visual Studio Scrum 1.0 process template includes seven work item types:

 Product backlog items

 Tasks

➤

➤

➤

➤

➤

➤

➤

➤

 5

c05.indd 101c05.indd 101 3/24/11 4:22:23 PM3/24/11 4:22:23 PM

102 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 Sprints

 Impediments

 Bugs

 Test cases

 Shared steps

 To create a new work item, you right - click the Work Items node in your team project and select a
work item type from the New Work Item menu. A blank work item form appears. After you enter
all the necessary data, you click the Save Work Item button on the form. Then you can query the
work item and its data by using a work item query, as described later in this chapter.

 Each work item type includes a set of fi elds to store and track information about the work item.
Some fi elds are consistent across all work item types, while others are defi ned only on a specifi c type.
All changes made to fi elds during the life cycle of a work item are stored in the work item ’ s History
fi eld. When any change is made, the old and new values, the individual making the change, and
the date/time stamp are stored. The following sections examine how to use the Scrum process
template work item types.

 Before digging into each work item type, you will see how you can use two system fi elds in TFS,
Area Path and Iteration Path, to group and categorize the work items in the Scrum template.

 The Area Path and Iteration Path Fields

 The Area Path and Iteration Path fi elds support the grouping of work items into categories. These
two fi elds are system fi elds in TFS. System fi elds are shared across all work item types and cannot
be modifi ed or customized in your process
template. The Area Path fi eld delineates either
product components or teams. The Iteration
Path fi eld delineates iterations of work. Both
fi elds are hierarchical, meaning they support
parent and child nodes.

 Areas

 The Microsoft Visual Studio Scrum 1.0
process template does not prescribe a
specifi c use for the Area Path fi eld. Most
teams, however, use area paths to separate
work into product components or to
separate work by teams. The Area Path fi eld
exists on all work item types and all reports
included in the template. You can add areas
to a team project from the Areas and
Iterations dialog. Figure 5 - 1 shows the
Area tab of this dialog, populated with
sample areas.

➤

➤

➤

➤

➤

FIGURE 5 - 1: The Area tab of the Areas and Iterations

dialog, populated with sample areas.

c05.indd 102c05.indd 102 3/24/11 4:22:24 PM3/24/11 4:22:24 PM

 Iterations

 The Iteration Path fi eld stores the iteration schedule for a project. In Scrum, a sprint is an iteration
of work. Many sprints together make up a release . You assign work items to iterations to identify
the sprint in which a team will complete the work. All reports included in the Scrum template
display the Iteration Path fi eld, making it easy to track work across sprints.

 By default, a team project started from the Microsoft Visual Studio Scrum 1.0 process template
has 24 predefi ned sprints across four releases. One of the fi rst activities after project creation is to
create iterations to match the team ’ s release schedule, as described in Chapter 4.

 Why are we talking about iterations for what Scrum refers to as sprints ? TFS
defi nes the Iteration Path fi eld as a system fi eld, which means it is always
present, and its defi nition is constant across all team projects. Although the
fi eld is named Iteration Path, the actual iteration nodes are sprints.

 You use the Areas and Iterations dialog box to confi gure the iterations for a team project. From
within Team Explorer, right - click your team project and select Team Project Settings ➪ Areas and
Iterations. Switch to the Iteration tab and use the buttons on the toolbar to add new iterations,
delete existing iterations, and adjust the iteration hierarchy. To rename an existing iteration,
right - click the iteration and select Rename. Figure 5 - 2 shows the default iterations created for a
new team project.

FIGURE 5 - 2: The Iteration tab of the Areas and Iterations

dialog, populated with 24 default iterations.

Work Items ❘ 103

c05.indd 103c05.indd 103 3/24/11 4:22:25 PM3/24/11 4:22:25 PM

104 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 Product Backlog Items

 A product backlog item (PBI) is the central work item in a Scrum project. A PBI describes
a requirement for the product and the value that implementing the requirement produces. A
team works with the product owner to defi ne, estimate, and implement each PBI. When the
product owner defi nes a PBI, he or she should focus on customer value and avoid details about
the implementation. A team should prioritize PBIs based on business value, effort, and relative
dependency on other backlog items. To minimize duplicating work, a team should focus only on
the highest - priority PBIs. Spending too much time on PBIs with lower priorities often results in
waste. Figure 5 - 3 shows a PBI form.

FIGURE 5 - 3: A PBI form.

 PBI Form Fields

 Table 5 - 1 lists the fi elds on a PBI form. You use the fi elds described here to track a PBI throughout
its life cycle.

c05.indd 104c05.indd 104 3/24/11 4:22:35 PM3/24/11 4:22:35 PM

 TABLE 5 - 1: PBI Form Fields

 FIELD DESCRIPTION

 Title A brief description of the PBI.

 Iteration The sprint in which the PBI is implemented.

 Assigned To The owner of the PBI (typically the product owner).

 State The current state of the PBI.

 Reason The reason a product backlog is in its current state. The Reason fi eld

contains predefi ned values that guide the team through appropriate state

transitions during the life cycle of the PBI.

 Backlog Priority The position of a PBI on the product backlog. New PBIs default to a backlog

priority of 1,000.

 Eff ort The amount of eff ort required to implement a PBI. The Scrum template does

not prescribe a unit of eff ort. Common units include story points, ideal days,

and hours.

 Business Value The amount of customer value delivered by a PBI. You should choose a

number between 1 and 100 to represent the amount of business value that

implementing the PBI will deliver to your customers.

 Area The team implementing a PBI or the product component the PBI belongs to.

 Description A detailed description of a PBI.

 Acceptance

Criteria

 A bulleted list of criteria a PBI must meet before the team will accept it as done.

 THE DEFAULT BACKLOG PRIORITY VALUE

 Why does a new PBI default to a backlog priority value of 1,000? Why not a
value of 1? Or why not a blank value? In TFS, query results always sort by a fi eld
included in the query defi nition. By default, the product backlog sorts by backlog
priority, in ascending order (that is, smaller numbers on top, larger numbers on the
bottom). This works quite well. But it gets tricky when blank values are present.
TFS sorts items that don ’ t have backlog priority values to the top of the result list.
Therefore, new PBIs that don’t have backlog priority values automatically fl oat to
the top of the product backlog. This is not the ideal behavior, as items not assigned
backlog priority values are likely lower in priority. To prevent this from happening,
the PBI form defaults the priority to a value of 1,000. This default ensures that an
item without an explicitly assigned priority does not fl oat to the top of the backlog.

Work Items ❘ 105

c05.indd 105c05.indd 105 3/24/11 4:22:36 PM3/24/11 4:22:36 PM

106 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 PBI States

 Like all other work items, PBIs move through a series of state transitions. The current state is
always stored and displayed in the State fi eld. All state transitions appear as records in the
History fi eld. Figure 5 - 4 shows a state transition from approved to committed.

FIGURE 5 - 4: A PBI whose state has transitioned from approved to committed.

 A PBI moves through the following states:

 New — The PBI exists on the product backlog but lacks detail the team would need to
implement it. Low - priority PBIs often remain in the new state for an extended period,
while high - priority items move quickly to the next state.

 Approved — The PBI is suffi ciently detailed and ready to present to the team for
implementation. All PBIs discussed during sprint planning are in the approved state.

 Committed — The team has committed to implement the PBI in the next sprint. PBIs in the
committed state have been estimated and decomposed into task work items.

 Done — The PBI has been implemented, tested, and demonstrated. Ideally, this state
transition happens immediately after the sprint review meeting.

 Removed — The PBI is no longer needed or is out of scope. A PBI can move to the
removed state from the new or approved state. Only the product owner can mark a
PBI as removed.

 Tasks

 A team uses task work items to track all the work needed to implement a PBI. The team
creates tasks during sprint planning for each PBI. Each day, the team updates tasks for the
sprint, indicating the current state of the task and the amount of remaining work. Together,
the set of tasks for a sprint is known as the sprint backlog . See the section “ The Sprint
Backlog Query, ” later in this chapter, for more details. Figure 5 - 5 shows a task work
item form.

 Task Form Fields

 Table 5 - 2 lists the fi elds on the task form. You use the fi elds described here to track a task
throughout its life cycle.

➤

➤

➤

➤

➤

c05.indd 106c05.indd 106 3/24/11 4:22:37 PM3/24/11 4:22:37 PM

 TABLE 5 - 2: Task Form Fields

 FIELD DESCRIPTION

 Title A concise description of the work tracked by the task.

 Iteration The sprint in which the task is implemented.

 Assigned To The team member responsible for completing the task.

 State The current state of the task.

 Reason The reason the task is in its current state.

 Blocked Whether the team is blocked from making progress on the task.

 Remaining Work The amount of remaining work (in hours) to complete the task.

 Backlog Priority The priority of the task on the sprint backlog.

 Activity The type of activity of the task. Activity is an optional fi eld.

 Area The team implementing the task or the product component the task belongs to.

 Description Implementation details of the task.

FIGURE 5 - 5: A task work item form.

Work Items ❘ 107

c05.indd 107c05.indd 107 3/24/11 4:22:38 PM3/24/11 4:22:38 PM

108 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 Task States

 A task work item moves though a life cycle that involves the following states:

 To do — The task is awaiting implementation. A new task starts in the to do state.

 In progress — A team member has started work on the task.

 Done — All work on the task is completed. When a task transitions to this state, the
remaining work fi eld is automatically set to zero.

 Removed — The removed state is not a normal part of the task life cycle. It exists to mark
a task as unwanted or out of scope. Removed tasks are fi ltered out of the sprint backlog. A
task can move to the removed state from either the to do or in progress states.

 The current state is stored in the State fi eld. All state transitions and changes to state are recorded
in the History fi eld. Figure 5 - 6 shows a state transition from in progress to done.

➤

➤

➤

➤

 It is interesting to note that the Blocked fi eld has a Yes value but not a corresponding
No value. This is intentional, to draw attention to blocked tasks in query results and
on the work item form. To mark a task as blocked, you set the Blocked fi eld to Yes.
To clear the Blocked fi eld, you ensure that this fi eld is blank.

FIGURE 5 - 6: Task state transition from in progress to done.

 Sprints

 You use a sprint work item to record information about each sprint on your team ’ s schedule. This
information includes the following:

 Sprint goal

 Sprint start date

 Sprint end date

 Sprint retrospective

 The sprint work item form is unique in that it does not include the Title fi eld or the State fi eld found
on other work item forms. Sprints do not have titles that differ from the iteration path. Because of
this, a sprint work item does not display a Title fi eld. The State fi eld is absent because sprints do not

➤

➤

➤

➤

c05.indd 108c05.indd 108 3/24/11 4:22:39 PM3/24/11 4:22:39 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

have an explicit state model, as do traditional work items. For example, the task work item moves
through three distinct states: to do, in progress, and done. The sprint work item instead has start
and end dates that defi ne the state of the sprint. Unlike a task, a sprint is in the to do state when
today ’ s date precedes the start date. A sprint is considered in progress when today ’ s date is within
the sprint start and end dates. And a sprint is considered done when today ’ s date succeeds the end
date. Figure 5 - 7 shows a sprint work item form.

 TABLE 5 - 3: Sprint Form Fields

 FIELD DESCRIPTION

 Iteration The iteration path associated with the sprint.

 Start Date The fi rst day of the sprint.

 Finish Date The last day of the sprint.

 Sprint Goal The goal of the sprint, as described by the team and the product owner.

A sprint goal describes what the team will achieve during the sprint.

 Retrospective Notes from the team ’ s retrospective meeting.

FIGURE 5 - 7: A sprint work item form.

 Sprint Form Fields

 Table 5 - 3 lists the fi elds on a sprint form. You use the fi elds described here to track a sprint
throughout its life cycle.

Work Items ❘ 109

c05.indd 109c05.indd 109 3/24/11 4:22:44 PM3/24/11 4:22:44 PM

110 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 Sprint States

 As noted earlier, the sprint work item lacks a traditional state model. All sprints start and end in the
created state, which indicates the creation of a new sprint. Because only one state and no transitions
exist, the State fi eld is not present on the sprint work item form.

 Sprint Best Practices

 The following is a list of best practices you should follow when working with a sprint work item:

 Create only one sprint work item for each iteration path — TFS does not have restrictions
on how many sprint work items you can create and associate with a single iteration.
However, the Microsoft Visual Studio Scrum 1.0 process template is designed to have only
one sprint work item associated with each iteration.

 Set simple and achievable sprint goals — A common mistake of many new Scrum
practitioners is setting complex and unrealistic goals for a sprint. Ensure that your sprint
goals are simple and that the team can achieve them during the sprint.

 Impediments

 An impediment work item tracks anything blocking a team from making progress. Figure 5 - 8 shows
an impediment work item form.

➤

➤

 Retrospectives are critical to the success of a Scrum team. For more information on
how your team can execute successful retrospectives, jump ahead to Chapter 10.

FIGURE 5 - 8: An impediment work item form.

c05.indd 110c05.indd 110 3/24/11 4:22:45 PM3/24/11 4:22:45 PM

 Impediment Form Fields

 Table 5 - 4 lists the fi elds on an impediment work item form. You use the fi elds described here to
track an impediment throughout its life cycle.

 TABLE 5 - 4: Impediment Form Fields

 FIELD DESCRIPTION

 Title A short description of the impediment.

 Iteration The sprint the impediment is blocking.

 Assigned To The team member responsible for removing the impediment, typically the ScrumMaster.

 State The current state of the impediment.

 Reason The reason the impediment is in its current state.

 Area The team dealing with the impediment or the product component the impediment

belongs to.

 Description The details of the impediment.

 Resolution The steps taken to remove the impediment.

 Impediment States

 An impediment work item moves though a life cycle that involves two states:

 Open — A new impediment always starts in the open state. This state indicates that the
impediment is blocking the team from making progress.

 Closed — An impediment moves from the open state to the closed state when the
impediment has been removed and is no longer blocking the team.

 Figure 5 - 9 shows a state transition from open to closed.

➤

➤

FIGURE 5 - 9: An impediment state transition from open to closed.

Work Items ❘ 111

c05.indd 111c05.indd 111 3/24/11 4:22:50 PM3/24/11 4:22:50 PM

112 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 Bugs

 A bug work item tracks defects found in the product. Bugs surface on the product backlog and
are prioritized against other bugs and PBIs. Bugs appearing directly on the product backlog is a
major difference between Scrum and traditional software processes. Figure 5 - 10 shows a bug work
item form.

FIGURE 5 - 10: A bug work item form.

 Bug Form Fields

 Table 5 - 5 lists the fi elds on a bug work item form. You use the fi elds described here to track a bug
throughout its life cycle.

 FIELD DESCRIPTION

 Title A short description of the bug.

 Iteration The sprint in which the bug will be fi xed.

 TABLE 5 - 5: Bug Form Fields

c05.indd 112c05.indd 112 3/24/11 4:22:51 PM3/24/11 4:22:51 PM

 Bug States

 A bug moves through the same set of states as a PBI:

 New — The bug has been discovered, reproduced, and entered on the product backlog for
the product owner to prioritize.

 Approved — After a decision has been made about the priority of the bug, the product
owner works with team members to understand the steps needed to fi x the bug. The bug
is moved to the approved state when it is suffi ciently detailed and ready to bring to the
team for implementation.

 Committed — The team has committed to implement the bug in the next sprint. Bugs in
the committed state have been estimated and decomposed into task work items.

 Done — The bug has been fi xed, tested, and regressed. This transition happens immediately
after the bug is fi xed and verifi ed.

 Removed — The bug will not be fi xed by the team, or the bug is out of scope or no
longer needed.

 Figure 5 - 11 shows a state transition from approved to committed.

➤

➤

➤

➤

➤

 FIELD DESCRIPTION

 Assigned To The team member responsible for prioritizing the bug against other

items on the product backlog—typically the product owner.

 State The current state of the bug.

 Reason The reason the bug is in its current state.

 Area The team dealing with the bug or the product component the bug

belongs to.

 Steps to Reproduce A detailed account of the steps taken when the bug was found. It ’ s

important to write these steps clearly so others can easily

reproduce the behavior.

 Acceptance Criteria The set of criteria used to verify whether the team has fi xed the bug.

 Test Cases A list of test case work items linked to the bug.

 Tasks A list of task work items created by the team tracking the necessary

work to fi x the bug.

Work Items ❘ 113

c05.indd 113c05.indd 113 3/24/11 4:22:51 PM3/24/11 4:22:51 PM

114 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 Test Cases

 A test case work item tracks testing efforts on PBIs and bugs. The majority of the data of a test case is
the test steps. These steps represent the actions a team member will take to execute a test. See Chapter 7
for more on linking test cases to PBIs and bugs. Figure 5 - 12 shows a test case work item form.

FIGURE 5 - 11: A bug state transition from approved to committed.

FIGURE 5 - 12: A test case work item form.

c05.indd 114c05.indd 114 3/24/11 4:22:52 PM3/24/11 4:22:52 PM

 Test Case Form Fields

 Table 5 - 6 shows the fi elds present on a test case work item form. You use the fi elds described here to
track a test case throughout its life cycle.

 TABLE 5 - 6: Test Case Form Fields

 FIELD DESCRIPTION

 Title A short description of the goal of the test.

 Iteration The sprint tracking the test case.

 Assigned To The team member responsible for executing the test case.

 State The current state of the test case.

 Priority The relative priority of the test case.

 Automation Status Whether the test case is automated.

 Area The team involved in the test case or the product component the test

case belongs to.

 Steps A list of steps defi ning the action, validation steps, and parameters that

are a part of the test.

 Tested Backlog Items A list of PBIs and/or bugs tested by the test case.

 Test Case States

 A test case has three states associated with its life cycle:

 Design — The test case is being authored but is not ready to be executed.

 Ready — The test case is ready to be executed. A test case in this state has a complete
set of steps associated with it and is ready for a team member to execute.

 Closed — The test case moves to the closed state when its life cycle is complete.
This transition typically occurs after the PBI or bug the test case is testing is verifi ed
as done.

 Figure 5 - 13 shows a state transition from design to ready.

➤

➤

➤

Work Items ❘ 115

c05.indd 115c05.indd 115 3/24/11 4:22:53 PM3/24/11 4:22:53 PM

116 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 Shared Steps

 Shared steps allow you to streamline the defi nition and management of manual test cases. You can
create shared step work items when you encounter a set of steps that are the same across multiple
test cases. Figure 5 - 14 shows a shared steps work item form.

FIGURE 5 - 13: A test case transition from design to ready.

FIGURE 5 - 14: A shared steps work item form.

 Shared Steps Form Fields

 Table 5 - 7 shows a list of fi elds present on a shared steps work item form. You use the fi elds described
here to track a shared steps work item throughout its life cycle.

c05.indd 116c05.indd 116 3/24/11 4:22:53 PM3/24/11 4:22:53 PM

 Shared Steps States

 A shared steps work item has two states associated with its life cycle:

 Active — The shared steps work item is ready to be used across test cases.

 Closed — The shared steps work item is no longer used in any test cases.

 Figure 5 - 15 shows a state transition from active to closed on a shared steps work item.

➤

➤

 TABLE 5 - 7: Shared Steps Form Fields

 FIELD DESCRIPTION

 Title A short description of reusable steps.

 Iteration The sprint tracking the shared steps.

 Assigned To The team member authoring the set of shared steps.

 State The current state of the set of shared steps.

 Priority The relative priority of the shared steps.

 Area The team involved in the shared steps or the product component the shared

steps belong to.

 Steps A list of steps defi ning the action, validation steps, and parameters that will be

shared across multiple test cases.

FIGURE 5 - 15: A shared steps transition from active to closed.

 WORK ITEM QUERIES

 By default, the Microsoft Visual Studio Scrum 1.0 process template provisions eight work item
queries. These queries help you track and manage a Scrum project. The following sections examine
the three query types you can record in TFS as well as the eight work item queries.

Work Item Queries ❘ 117

c05.indd 117c05.indd 117 3/24/11 4:22:54 PM3/24/11 4:22:54 PM

118 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 Query Types

 TFS provides three query types for you to use when querying project data:

 Flat list

 Work items and direct links

 Tree of work items

 The following sections examine these three query types.

 Flat List Queries

 The fl at list query type is the most basic and most widely used of the three work item query types.
A fl at list query works as you might expect: It returns query results in a list, sorted by the fi eld
specifi ed in the query options. Flat list query results do not refl ect relationships between work items.
Figure 5 - 16 shows an example. By default, all new work item queries are fl at list queries.

➤

➤

➤

 Work Items and Direct Links Queries

 Work items and direct links queries display work items and associated linked work items based
on the criteria specifi ed in the query defi nition. The Microsoft Visual Studio Scrum 1.0 process
template does not include a work items and directed links query, but this query type is still a
valuable tool for a team, a ScrumMaster, and a product owner to use to track a team project.
As shown in Figure 5 - 17, a work items and directed links query has three sets of fi lter criteria.

FIGURE 5 - 16: Query options of a fl at list work item query.

c05.indd 118c05.indd 118 3/24/11 4:22:54 PM3/24/11 4:22:54 PM

 Each set of criteria plays an important role in the selection of the work items returned in the
result. The top portion limits the fi rst tier of work items returned in the result. This portion works
identically to a fl at list work item query.

FIGURE 5 - 17: A work items and direct links query defi nition.

 The middle portion, labeled Linking Filters, identifi es the type of linked work items to return and
additional criteria that will fi lter both the fi rst - tier and second - tier work items results. These are
the choices:

 Return All Top Level Work Items — All fi rst - tier work items matching the criteria specifi ed
in the top portion of the query defi nition are included in the result.

 Only Return Items That Have the Specifi ed Links — This option limits the items in the
fi rst - tier result set to work items with the specifi ed link type. If no link type is specifi ed,
all work items matching the criteria in the top portion are returned.

 Only Return Work Items That Do Not Have the Specifi ed Links — This option limits the
fi rst - tier result set to work items that do not have the specifi ed link type.

 The bottom portion of the query defi nes additional criteria used to fi lter the work item results.

 Because work item and direct links queries can be diffi cult to understand, Figure 5 - 18 shows an
example of how to use this query type. In this example, the query defi nition is showing all PBIs
and bugs in a sprint that do not have associated test cases.

➤

➤

➤

Work Item Queries ❘ 119

c05.indd 119c05.indd 119 3/24/11 4:22:55 PM3/24/11 4:22:55 PM

120 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

FIGURE 5 - 18: A query showing PBIs and bugs without test cases.

 Tree of Work Items Queries

 A tree of work items query displays work item results in a hierarchy. All nodes returned in the
hierarchy link to a parent work item with a parent/child link type. As with the work items and
direct links query type, you can add fi lter criteria for multiple areas of a tree of work items query.
Figure 5 - 19 shows the query defi nition of a tree of work items query.

FIGURE 5 - 19: A tree of work items query defi nition.

c05.indd 120c05.indd 120 3/24/11 4:22:56 PM3/24/11 4:22:56 PM

 The top portion of the defi nition limits the fi rst tier of work items returned in the query result. The
bottom portion limits work items returned in the hierarchy.

 As you will see later in this chapter, the tree of work items query type plays an important role in the
Microsoft Visual Studio Scrum 1.0 process template.

 Work Item Queries

 The Microsoft Visual Studio Scrum 1.0 process template includes eight work item queries:

 All sprints

 Product backlog

 Sprint backlog

 Unfi nished work

 Work in progress

 Open impediments

 Blocked tasks

 Test cases

 The following sections examine the defi nition, results, and uses for each of these queries.

 The All Sprints Query

 The all sprints query tracks all sprint work items created in a team project. The default sort order is
by start date, in descending order (that is, future dates on top). Figure 5 - 20 shows an example.

➤

➤

➤

➤

➤

➤

➤

➤

FIGURE 5 - 20: An all sprints query result.

Work Item Queries ❘ 121

c05.indd 121c05.indd 121 3/24/11 4:22:57 PM3/24/11 4:22:57 PM

122 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 You use an all sprints query to keep track of upcoming sprints as well as to see past sprint
dates. You can double - click any of the results to view details such as the sprint goal and
retrospective notes.

 The Product Backlog Query

 A product owner and Scrum team can use a product backlog query to manage and track
requirements for a project. The query results contain both PBIs and bug work items. The results
of the product backlog query sort by the Backlog Priority fi eld, in ascending order. Figure 5 - 21
shows the results from a product backlog query.

FIGURE 5 - 21: Product backlog query results.

 The Sprint Backlog Query

 A sprint backlog query lists all PBIs, bugs, and linked tasks for a single sprint. It is based on the
sprint backlog a team creates during sprint planning. The sprint backlog query is a tree query:
Work item results display as a hierarchy, with PBIs and bugs at the root and linked tasks beneath.
Figure 5 - 22 shows an example.

c05.indd 122c05.indd 122 3/24/11 4:22:57 PM3/24/11 4:22:57 PM

 Work item results are sorted on the Backlog Priority fi eld, in ascending order. Parents are sorted
before children. Because the query results display as a hierarchy, you can expand and collapse
different nodes of the tree to fi nd the data you want. Figure 5 - 23 shows sprint backlog query
results with some collapsed nodes.

FIGURE 5 - 22: Sprint backlog query results.

FIGURE 5 - 23: Two collapsed nodes for sprint backlog query results.

Work Item Queries ❘ 123

c05.indd 123c05.indd 123 3/24/11 4:22:58 PM3/24/11 4:22:58 PM

124 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 The query results include the Remaining Work fi eld from the task work item, which makes it
easy to track how much work remains for the team. All queries in the Current Sprint folder are
scoped to a single sprint.

 Figure 5 - 24 shows the query defi nition for a sprint backlog query.

FIGURE 5 - 24: Sprint backlog query defi nition.

 At the end of your fi rst sprint, you copy the Current Sprint folder to a new folder named Sprint 1.
Then you modify the query defi nition of each query in the Current Sprint folder to point to your
team ’ s next sprint, sprint 2. Figure 5 - 25 shows the query folders for a team project at the
beginning of sprint 3. Notice the new folders for sprints 1 and 2.

c05.indd 124c05.indd 124 3/24/11 4:22:59 PM3/24/11 4:22:59 PM

 The Unfi nished Work Query

 A team uses an unfi nished work query to track all work that is not marked as done in the sprint.
The unfi nished work query is almost identical to the sprint backlog query, except that the results of
this query exclude completed work. This behavior makes the query a valuable tool for tracking the
remaining work in the current sprint. As work is completed, it is removed from the query results.

 Figure 5 - 26 shows the query defi nition for an unfi nished work query.

FIGURE 5 - 25: Query folders at the start of sprint 3.

FIGURE 5 - 26: An unfi nished work query defi nition.

Work Item Queries ❘ 125

c05.indd 125c05.indd 125 3/24/11 4:22:59 PM3/24/11 4:22:59 PM

126 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 The Work in Progress Query

 A work in progress query tracks all the in - progress tasks for the current sprint. This query helps you
ensure that your team does not have too much work in progress. One of the principles of Scrum is
starting and fi nishing work at a regular cadence. Scrum asks team members to start and fi nish tasks
before starting new tasks. By limiting work in progress, a team minimizes the risk of ending the
sprint with unfi nished work.

 Figure 5 - 27 shows the query defi nition for a work in progress query.

 The Open Impediments Query

 Impediments in Scrum are items that are blocking the team from making progress. An
open impediments query lists all impediments in the open state for the current sprint.

 Figure 5 - 28 shows the query defi nition for an open impediments query.

FIGURE 5 - 27: A work in progress query defi nition.

c05.indd 126c05.indd 126 3/24/11 4:23:00 PM3/24/11 4:23:00 PM

 The Blocked Tasks Query

 A blocked tasks query returns a list of all tasks in the current sprint marked as blocked. Blocked
tasks often result in impediment work items opened and surfaced in the open impediments query.

 Figure 5 - 29 shows the query defi nition for a blocked tasks query.

FIGURE 5 - 28: An open impediments query defi nition.

FIGURE 5 - 29: A blocked tasks query defi nition.

Work Item Queries ❘ 127

c05.indd 127c05.indd 127 3/24/11 4:23:01 PM3/24/11 4:23:01 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

128 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 The Test Cases Query

 A test cases query returns a list of all test case work items assigned to the current iteration. A team
can use this query to track the testing efforts in its current sprint.

 Figure 5 - 30 shows a test cases query defi nition and results.

 REPORTS

 The Microsoft Visual Studio Scrum 1.0 process template includes seven reports to track project
progress. These reports can be grouped into categories:

 Scrum reports:

 Sprint burndown

 Velocity

 Release burndown

 Engineering reports:

 Test case readiness

 Test plan progress

➤

➤

➤

➤

➤

➤

➤

FIGURE 5 - 30: A test cases query defi nition.

c05.indd 128c05.indd 128 3/24/11 4:23:01 PM3/24/11 4:23:01 PM

 Build success over time

 Build summary

 Each of these reports answers key questions about the team ’ s progress during different stages of the
product cycle.

 The following sections examine each report in detail and show how to use the reports to track your
team ’ s work. You ’ ll also learn how to build custom reports with the help of Excel.

 Scrum Reports

 While teams use many different metrics to track the progress of a software development project,
Scrum prescribes three project management reports: sprint burndown, release burndown, and velocity.

 Sprint Burndown Reports

 A team uses a sprint burndown report to track daily progress toward completing a sprint. The sprint
burndown report provides four important pieces of information about a sprint:

 How much work remains in the sprint

 How much work for the sprint is in progress

 The ideal trend toward completing all work in the sprint

 Whether the team is on track to complete all work in the sprint

 The remaining work for the sprint is represented as a series on the report. The value for each day in
the series is determined by summing the Remaining Work fi eld for each task assigned to the sprint
in the to do state. As team members report completed work, the series changes to refl ect the team ’ s
progress. This is known as burning down work , hence the name sprint burndown report . See Figure 5 - 31.

➤

➤

➤

➤

➤

➤

FIGURE 5 - 31: A sprint burndown report.

Reports ❘ 129

c05.indd 129c05.indd 129 3/24/11 4:23:02 PM3/24/11 4:23:02 PM

130 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 Work in progress is the second series on a sprint burndown report. This series is calculated daily by
summing the Remaining Work fi eld for each task assigned to the sprint whose State fi eld is set to In
Progress. Work in progress is a critical measurement throughout a sprint to ensure that the team is
not starting work without fi nishing it. The work in progress series should remain relatively constant
during the life of the sprint. If the work in progress series begins to grow over time, the team should
stop all new work and fi gure out why work is not being completed.

 A sprint burndown report displays an ideal trend line from the fi rst day of the sprint to the last
day of the sprint. This trend line represents the team ’ s burndown if the same amount of effort were
burned down each day across the entire life cycle of the sprint. If the team ’ s trend is above the ideal
trend, the team is not on track to meet its goal for the sprint. Likewise, if the team ’ s trend is below
the ideal trend, the team is on track to meet its goal for the sprint. A team should inspect the sprint
burndown report daily to ensure that it is on track to meet its commitments.

 Velocity Reports

 A velocity report tells the team the amount of effort it can complete in a sprint. The report displays a
column for each sprint that shows the amount of effort completed by the team. Effort is calculated by
summing the value of the Effort fi eld for each PBI or bug marked as done and assigned to the sprint.

 A velocity report provides a team with three critical pieces of information:

 How much effort the team is completing during each sprint

 The average amount of effort the team is completing across all selected sprints

 The velocity trend across all selected sprints — whether the velocity is going up or down
over time

 Figure 5 - 32 shows a velocity report for a team averaging 20 units of effort per sprint.

➤

➤

➤

FIGURE 5 - 32: A velocity report.

c05.indd 130c05.indd 130 3/24/11 4:23:03 PM3/24/11 4:23:03 PM

 Release Burndown Reports

 A release burndown report provides understanding about how much work remains in the release
and how much work is being burned during each sprint. The report is calculated by summing the
total amount of effort remaining on the product backlog on the fi rst day of each sprint. The height
of each column on the report indicates how much effort was on the product backlog (across all
bugs and PBIs) at the start of each sprint.

 During the life cycle of a release, items are continually added to the product backlog. Bugs are found
after work is completed. New requirements emerge as the team gains a deeper understanding of
the implemented functionality. Priorities change as the product owner learns from the customer. As
discussed in Chapter 4, Scrum expects and embraces change. Because of this, it is not possible to
draw an exact correlation between the velocity report and the release burndown report.

 Figure 5 - 33 shows a release burndown report for a team that has completed four sprints.

 WHERE IS THE FINISH LINE?

 If you started with 100 units of effort, and the team is burning through 20 units
of effort per sprint, the release burndown is not telling you anything you don ’ t
already know, right? You will be done in fi ve sprints, right? This calculation is
correct, but this line of thinking assumes that the 100 units of effort the team
started with remains constant. It also assumes that the team ’ s velocity will remain
constant over the fi ve sprints. If you were estimating the number of miles between
two cities, you could assume with high certainty that the estimate would be correct.
The start and fi nish lines would remain constant during the trip. However, in
software production, the fi nish line often looks much different after starting than it
looked in the planning stages.

FIGURE 5 - 33: A release burndown report.

Reports ❘ 131

c05.indd 131c05.indd 131 3/24/11 4:23:03 PM3/24/11 4:23:03 PM

132 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 Engineering Reports

 The reports described in this section are not core to the Scrum framework but instead represent
common reports that software engineering teams rely on.

 Test Case Readiness Reports

 A test case readiness report provides a team with a view of progress toward designing test cases
and making them ready for testing. Because test cases can be reused across sprints, a test case
readiness report is not limited to sprint boundaries. Parameters on the report let you set custom
start and end dates for the report. Figure 5 - 34 shows a test case readiness report.

FIGURE 5 - 34: A test case readiness report.

 Test Plan Progress Reports

 A test plan progress report tracks a team ’ s overall progress in testing a product. Like a test case
readiness report, a test plan progress report is not limited to the sprint boundaries. A test plan
progress report shows, over time, the results of executing tests for the project. Each result falls
into one of the following categories:

 Passed — The number of test cases that passed

 Failed — The number of test cases that failed

 Blocked — The number of test cases marked as blocked

➤

➤

➤

c05.indd 132c05.indd 132 3/24/11 4:23:04 PM3/24/11 4:23:04 PM

 Never Run — The number of test cases that have never been run

 Other — The number of test cases that were run and assigned a result different from passed
or failed

 By monitoring the test plan progress report during a sprint and over the life cycle of a release, a
team can gain a better understanding of the quality of the product and how the team is progressing
toward ensuring that the product is thoroughly tested.

 Figure 5 - 35 shows a test plan progress report.

➤

➤

FIGURE 5 - 35: A test plan progress report.

 Build Success over Time Reports

 A build success over time report displays the status of the last build for each build category run for
each day. You can use this report to help track the quality of the code that the team is checking in.
Figure 5 - 36 shows a build success over time report.

Reports ❘ 133

c05.indd 133c05.indd 133 3/24/11 4:23:05 PM3/24/11 4:23:05 PM

134 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 Build Summary Reports

 A build summary report lists information about the test results, test coverage, code churn, and
quality for each build run. Figure 5 - 37 shows a build summary report.

FIGURE 5 - 36: A build success over time report.

FIGURE 5 - 37: A build summary report.

 Building Custom Reports

 In the previous sections, you learned about the reports included in the Scrum process template for TFS.
These reports help you track and manage your team ’ s work throughout the Scrum process. However,
they do not refl ect everything that your team may want or need to track. In the following sections, you
will learn how to use Excel to generate rich custom charts to track and manage your team ’ s work.

 Getting Starting with Excel Reporting

 As mentioned in Chapter 3, TFS provides a SQL Server Analysis cube for tracking and reporting on
your project data. The cube is a data structure that allows for fast analysis of large amounts of data.
At regular intervals, the cube is updated with your current project data. By default, the cube is set

c05.indd 134c05.indd 134 3/24/11 4:23:05 PM3/24/11 4:23:05 PM

to update every two hours. There are many different ways of accessing the data in the cube, but the
easiest way, as described in this section, is to use Excel.

 TFS 2010 includes a new feature that allows you to create reports in Excel directly from a work
item query. To access this feature, you simply right - click a work item query and select Create Report
in Microsoft Excel, as shown in Figure 5 - 38. You can also click Create Report in Excel from the
Query Results menu on all fl at list queries, as shown in Figure 5 - 39. This convenient feature allows
members to start a report from a familiar artifact — a work item query.

FIGURE 5 - 38: Using Excel to create a report from a query.

FIGURE 5 - 39: Creating a report in Excel, based on a query result.

Reports ❘ 135

c05.indd 135c05.indd 135 3/24/11 4:23:06 PM3/24/11 4:23:06 PM

136 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 In the following example, you will create a series of reports from the product backlog query:

 1. In TFS, select the Team Queries node. Double - click Product Backlog. TFS generates results
for the product backlog query.

 2. From the menu above the query results, click the Open in Microsoft Offi ce button
and select Create Report in Microsoft Excel, as shown in Figure 5 - 39. Excel opens
a dialog similar to the one shown in Figure 5 - 40.

FIGURE 5 - 40: The New Work Item Report dialog.

 3. In the New Work Item Report dialog, select
the reports you want Excel to generate. For
this example, select all 24 available reports,
as shown in Figure 5 - 41. Click Finish. Excel
begins to generate the reports selected, as
shown in Figure 5 - 42. This step may take a
few minutes to complete.

 After all the reports are generated, a
table of contents page is displayed on
the fi rst worksheet in Excel, with
hyperlinks to each report generated
(see Figure 5 - 43). Each report is created
on a separate worksheet.

Figure 5 - 40 displays an error that the Backlog Priority fi eld is not reportable. This
is expected. Excel builds a report for each column in your query result. In this
example, the product backlog query is sorted by the Backlog Priority fi eld. However,
the Backlog Priority fi eld is not marked as a reportable fi eld in the process template.

FIGURE 5 - 41: Selecting reports in the New Work

Item Report dialog.

c05.indd 136c05.indd 136 3/24/11 4:23:07 PM3/24/11 4:23:07 PM

 Notice that the reports available for you to create coincide with the columns
displayed in the product backlog query from which you started.

FIGURE 5 - 42: Excel generating your reports.

FIGURE 5 - 43: An Excel report table of contents page.

Reports ❘ 137

c05.indd 137c05.indd 137 3/24/11 4:23:12 PM3/24/11 4:23:12 PM

138 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 4. Browse through the worksheets to examine each report and click hyperlinks from the
landing page to jump directly to specifi c reports. Click the fi rst worksheet, titled Work Item
Type under the Current Reports heading or click the fi rst hyperlinked report from the table
of contents. Figure 5 - 44 shows the report that Excel generates; it shows the amount of effort
from the product backlog, broken down by work item type. In this example, you can see
that 18 units of effort on the product backlog are categorized as bugs, and 34 units of effort
on the product backlog are categorized as PBIs.

FIGURE 5 - 44: An eff ort by work item type Excel report.

 5. Return to the table of contents worksheet and select the fi rst trend report by clicking
Work Item Type under the Trend Reports heading. Excel generates this report, as shown
in Figure 5 - 45; it is a report of the amount of effort on the product backlog over
time. In this example, you can see that in the past week, 18 new units of effort were
added to the backlog as bugs, and 15 new units of effort were added as PBIs.

 Each report generated is built from a PivotTable connected to the TFS cube.

c05.indd 138c05.indd 138 3/24/11 4:23:17 PM3/24/11 4:23:17 PM

 In this example, you saw the power of using Excel to build reports directly from work item
queries in a team project. Because the reports are built in Excel, you can customize and modify
them to include data that is important to your team and to your software project. In the next
section, you will learn another way to modify the reports you create in Excel.

 Saving Reports Built in Excel

 After you build an Excel report, it ’ s likely you ’ ll want to save the report so that it is accessible
to everyone on your team. The Microsoft Visual Studio Scrum 1.0 process template includes a
SharePoint portal for each new project, and you can save reports generated in Excel directly to the
portal. (Chapter 8 discusses the SharePoint portal in more detail.)

 To save a report generated in Excel to the SharePoint portal, follow these steps:

 1. From the Excel report, select File ➪ Save As, as shown in Figure 5 - 46. Excel opens the Save
As dialog.

FIGURE 5 - 45: An Excel eff ort by work item type over time report.

Reports ❘ 139

c05.indd 139c05.indd 139 3/24/11 4:23:23 PM3/24/11 4:23:23 PM

140 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 2. In the Save As dialog, enter the URL of your SharePoint portal into the address bar, as
shown in Figure 5 - 47. Double - click the Shared Documents folder, enter a name for your
report, and click Save. Close Excel and go back to Visual Studio.

FIGURE 5 - 46: Saving an Excel report to the SharePoint portal.

FIGURE 5 - 47: Selecting your SharePoint portal.

c05.indd 140c05.indd 140 3/24/11 4:23:23 PM3/24/11 4:23:23 PM

 3. Open Visual Studio, and in the Team Explorer, expand the Shared Documents folder for your
team project. As shown in Figure 5 - 48, the Team Explorer displays the report you just created.

FIGURE 5 - 48: An Excel report displayed in Team Explorer.

 Modifying Reports Built in Excel

 When you create Excel reports from work item queries, Excel
generates them using PivotTables and PivotCharts. A PivotTable is a
data summarization tool that provides automatic sorting, counting,
and totaling based on specifi c parameters. PivotTables are powerful
tools for analyzing project data. In this section, you will learn how to
manipulate a PivotTable and PivotChart to create charts that help you
track your team ’ s progress.

 After you create an initial set of reports from a work item query, you
can use PivotTable features in Excel to further analyze and study
your data. The structure of the fi elds in the PivotTable fi eld list
comes directly from the TFS cube. For example, in the PivotTable
Field List box shown in Figure 5 - 49, each fi eld represents a reportable
fi eld in TFS.

You can store reports like this locally as well as on other network resources to
which your team has permissions.

FIGURE 5 - 49: A PivotTable

fi eld list.

Reports ❘ 141

c05.indd 141c05.indd 141 3/24/11 4:23:24 PM3/24/11 4:23:24 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

142 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 You can toggle these fi elds on and off in each PivotTable. In the following steps, you ’ ll manipulate
a report you created earlier (refer to Figure 5 - 44). In this example, you will change a pie chart
showing effort by work item type to a column chart that shows effort by work item type broken
down based on the Assigned To fi eld:

 1. Open the effort by work item type Excel report you created in the previous section.
Then open the report ’ s fi rst worksheet, titled 1.1 Work Item Type. Select the pie chart
in the report. Excel displays the PivotTable Field List box on the right side of the screen.

 2. Scroll through the PivotTable Field List box until you fi nd the Assigned To fi eld under
Work Item, as shown in Figure 5 - 50.

FIGURE 5 - 50: The PivotTable Field List box for a report.

 3. Select the Assigned To fi eld under Work Item. The chart changes, and the Assigned To fi eld
is added to the Axis Fields list, as shown in Figure 5 - 51.

c05.indd 142c05.indd 142 3/24/11 4:23:29 PM3/24/11 4:23:29 PM

 4. Click the Assigned To fi eld in the Axis Fields area and drag it to the Legend Fields area.
Notice again the changes to the PivotChart, as shown in Figure 5 - 52.

FIGURE 5 - 51: Adding the Assigned To fi eld to the Axis Fields area.

FIGURE 5 - 52: Adding the Assigned To fi eld to the Legend Fields area.

Reports ❘ 143

c05.indd 143c05.indd 143 3/24/11 4:23:30 PM3/24/11 4:23:30 PM

144 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 5. On the Excel Ribbon, switch to the PivotChart Tools tab and click the Change Chart
Type button in the top left of the tab. The Change Chart Type dialog appears, as shown
in Figure 5 - 53.

 6. In the Change Chart Type dialog, select the Column chart type and click OK. As shown
in Figure 5 - 54, the PivotChart is updated as a column chart, showing the amount of effort
across work item types, pivoted by who the work items are assigned to.

FIGURE 5 - 53: The Change Chart Type dialog.

c05.indd 144c05.indd 144 3/24/11 4:23:30 PM3/24/11 4:23:30 PM

 This is just one example of using PivotCharts and PivotTables to build data - rich reports. You can
use the steps listed here to create additional reports to assist in tracking your team ’ s work. The
following are some examples:

 Task assignments during a sprint

 Blocking tasks over time

 Impediment trends across sprints

 Business value on the product backlog

 Remaining work by team member

 Remaining work by team activity

➤

➤

➤

➤

➤

➤

FIGURE 5 - 54: The PivotChart updated as a column chart.

Reports ❘ 145

c05.indd 145c05.indd 145 3/24/11 4:23:31 PM3/24/11 4:23:31 PM

146 ❘ CHAPTER 5 WORK ITEMS, QUERIES, AND REPORTS

 SUMMARY

 In this chapter, you have seen the work item types, queries, and reports defi ned by the Microsoft
Visual Studio Scrum 1.0 process template. You have also seen how to use Excel and work item
queries to create custom reports to track your project. Your team manages and tracks a project with
all these artifacts.

 In summary, requirements surface on the product backlog as PBIs. Defects result in bug work items
and surface on the product backlog, alongside the product requirements. Your team tracks all
its work to implement PBIs and bugs as task work items. Impediment work items track anything
blocking your team from making progress. Test case work items and shared steps track the quality
of the progress made by a team. Finally, by using the reports and queries defi ned in the template, a
team can stay aware of its progress toward achieving its goals.

c05.indd 146c05.indd 146 3/24/11 4:23:31 PM3/24/11 4:23:31 PM

The Product Backlog

 WHAT ’ S IN THIS CHAPTER?

 Managing the product backlog.

 Creating and prioritizing PBIs.

 Linking artifacts: PBIs, tasks, and bugs.

 Understanding impediments.

 In Chapter 5, you examined the specifi cs of the artifacts in the Microsoft Visual Studio Scrum
1.0 process template: work items, queries, and reports. You saw how each one contributes
to tracking a project. This chapter focuses on the product backlog, which is the list of
requirements for a system. The product backlog is a dynamic list that grows and shrinks over
the course of a project.

This chapter discusses a number of topics related to the product backlog: managing the product
backlog; creating and prioritizing product backlog items (PBIs); linking PBIs, tasks, and bugs;
and understanding impediments. Understanding these concepts will help your team control its
product backlog.

 MANAGING THE PRODUCT BACKLOG

 Before learning how to create PBIs in TFS, it ’ s important to consider the goal of the product
backlog as a whole. The product backlog is the list of features that the product owner believes
will make a great product.

➤

➤

➤

➤

 6

c06.indd 147c06.indd 147 3/24/11 4:25:07 PM3/24/11 4:25:07 PM

148 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 While the product backlog defi nes the full product, the PBIs defi ne the individual features. A larger
product has more features than a smaller product, so it has more PBIs. How many PBIs should
defi ne a product? How many is too many? How many is too few? How do you write good PBIs?
The product owner must answer all these questions before writing the PBIs.

 Chapter 8 has a section titled “ Considering the INVEST Characteristics ” that
describes the essential characteristics of PBIs.

 Before the project begins, and before the team is assembled, the product owner meets with
customers to develop a deep understanding of their needs. Once the product is in a demonstrable
form and is shown to customers, the product owner will learn more about their likes, dislikes, and
tolerances. The product backlog, just like the product itself, is built iteratively.

 The product backlog is never static and is never complete. It has one set of items before the fi rst
sprint, and it has a very different set with every sprint afterward. It grows as customers see the
product and have more suggestions. It grows as project sponsors see the product as well. It shrinks
as the team builds features — taking PBIs off the product backlog, putting them on the sprint
backlog, and marking them as complete.

 The product backlog is the sole input queue for the team. If a feature isn ’ t on the product backlog,
it won ’ t be scheduled and committed for a sprint, and it won ’ t be built. Therefore, bugs that exist
at the end of one sprint are put onto the product backlog for attention in subsequent sprints. The
product owner, who sets the priority for all items on the product backlog, determines whether
the bugs should be sorted above other PBIs or below. In most cases, some bugs sort higher than
features while others sort lower.

 Figure 6 - 1 shows the fl ow of new features into a product. It begins with the product manager
translating customer needs and desires into a list of product features that can be built by the team.
This list is called the product backlog. A Scrum team is organized to effi ciently build a product in
small sprints of activity. The product owner prioritizes the product backlog and identifi es a subset
of related features that can be implemented in a sprint. Each sprint has its own list, called a sprint
backlog.

 Each sprint begins with a list of features to build. Each sprint ends with most, but not all, of the
features complete. The incomplete items are added back to the product backlog for inclusion in
another sprint. After a few sprints — typically between 3 and 10 — the team is ready to release a
version of the product. It releases the bits, distributes the product to customers, gets feedback, and
begins building the next version.

c06.indd 148c06.indd 148 3/24/11 4:25:09 PM3/24/11 4:25:09 PM

 The product backlog is an effective tool for managing feature creep in the iterative sprints and release
of Scrum. A team can add features to the product without limits; it ’ s just a matter of prioritization and
resources. If a customer or sponsor tells the product owner “ we must have feature X, ” the response
can be accurate and very supportive, such as “ That sounds great; let ’ s put it on the product backlog
and schedule it into a future sprint. ” With the new PBI, the product owner can then evaluate the return
on investment (ROI) of the feature and compare it to other competing PBIs for subsequent sprints.

Release Release

Sprint

backlog

Product

backlog

Product owner

populates backlog

Sprint

backlog

Sprint

backlog

Sprint

backlog

Sprint

backlog

Sprint

backlog

 FIGURE 6 - 1: The product backlog cycle.

 FEATURE CREEP

 Everyone has good ideas. When someone sees a partially built product, he or she
invariably has ideas about how to make it better. As new ideas are added to the
current release, the number of features creeps up, requiring additional resources
(time, people, and money) that may not be available. Managing (read: eliminating)
feature creep is essential to shipping a product.

 With each sprint, PBIs are removed from the backlog and bugs are added. With every customer demo,
PBIs are added, and the list is prioritized. The product backlog is most manageable if it is pruned
regularly. The product owner should periodically review the backlog to fi nd PBIs that continually get
overlooked for selection in a sprint. At some point, those PBIs should be removed from the list.

Managing the Product Backlog ❘ 149

c06.indd 149c06.indd 149 3/24/11 4:25:20 PM3/24/11 4:25:20 PM

150 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 With each sprint planning meeting — or at least with each release planning meeting — the team
should review its estimates of PBIs. This is important because an estimate may change signifi cantly
as the team gains skill or as different parts of the product are built. This process may make feasible
some PBIs that were previously written off.

 By pruning the product backlog at regular intervals, the product owner can keep
it effi cient. Remember that the backlog is the sole input queue for the team.

 CREATING AND PRIORITIZING PBIS

 The product backlog starts with high - level user requirements and grows as a team identifi es more subtle
user needs and system dependencies. It shrinks as the team builds features into a potentially shippable
product with each sprint. The list grows again as the team encounters bugs that must be fi xed in
successive sprints. It also grows as the team demonstrates the system to users who suggest more features.

 The product backlog consists of product backlog items (PBIs). Each PBI is an individual
requirement that is small enough to build and test within a sprint. PBIs are generally user - centric
requirements, such as “ manage the online shopping basket, ” but they can also be IT - centric, as in
 “ verify that credit card data is not persisted in the database. ”

 The product owner is responsible for the PBIs, from defi ning them in enough detail that the team
can build them to including acceptance criteria so the team knows when the PBIs are done.

 The product owner needs to prioritize the PBIs on the product backlog so that the team works on the
items that are most import to the business. The items are sorted by priority number, with lower priority
numbers showing up higher on the list and higher priority numbers fl oating down to the bottom.

 The product owner needs to determine the scope of each release and verify that the PBIs are
prioritized properly. At the beginning of each sprint, the team should inspect the highest - priority
PBIs to determine which ones it can commit to fi nishing within that sprint. This list becomes the
sprint backlog. Sprint by sprint, the team fi nishes the PBIs for each release of the product.

 The following sections discuss how to choose a tool for creating PBIs, the PBI workfl ow, and how to
prioritize PBIs.

 Choosing a Tool for Creating PBIs

 You can create PBIs by using Visual Studio, Excel, or SharePoint. Regardless of which tool you
choose, Team Foundation Server (TFS) manages the PBIs and stores them in SQL Server. The
central nature of TFS and SQL Server means that different people can use different tools, or one
person can use many tools, without loss of fi delity from tool to tool. Visual Studio is generally the
best tool for everyone on a Scrum team to use, as it ’ s tuned for development teams and most people
probably already have it installed. Visual Studio enables you to access more features than Excel or
SharePoint, so for this reason, all team members should install Visual Studio.

c06.indd 150c06.indd 150 3/24/11 4:25:20 PM3/24/11 4:25:20 PM

 VISUAL STUDIO VERSIONS

 You can use any version of Visual Studio 2010: Professional, Premium, Ultimate, or
Test. However, Visual Studio 2010 Professional has a limitation: If you purchase it
without a full MSDN subscription, then you ’ ll need to purchase TFS licenses from
Microsoft.

 If a team member doesn ’ t need or want the full development tool, he or she can just
install Visual Studio Team Explorer. Team Explorer loads into the Visual Studio
shell as a stand - alone tool that provides full access to Team Foundation Server. The
 Visual Studio shell is the container in which Visual Studio features, such as the code
editor and debugger, reside, so Team Explorer will look natural in the Visual Studio
shell. The Team Explorer install bits are located on the Team Foundation Server
2010 installation kit, which ships with each version of Visual Studio. In other words,
if you have Visual Studio, you have TFS. And if you have TFS, you have Team
Explorer. The stand - alone Team Explorer is a viable option for the product owner or
someone who needs fl exible access to the PBIs and other TFS artifacts but who won ’ t
be doing any actual development.

 People outside the Scrum team who need access to the PBIs, tasks, and other items can use an
Internet browser and the SharePoint site that ’ s associated with the team project, or they can use
Excel. Using an Internet browser enables access to the product backlog without requiring any
special tools to be installed on the desktop. Security is controlled via TFS and Active Directory
groups, so someone either on the Scrum team or in IT needs to set that up.

 If someone outside the team needs quick access to the backlog but won ’ t be
updating any information, you can easily create a snapshot of the backlog in
Excel. Once in Excel, you can e-mail this snapshot to someone or copy it and
then paste it into PowerPoint for status meetings.

 The PBI Workfl ow

 The product owner creates PBIs. Initially, the product owner creates each item with just enough
information and context to describe the feature or user requirement. It ’ s common for the product
owner to enter dozens of PBIs early in the project defi nition phase, in order to capture the full scope
of a release or product. When entering PBIs en masse, it ’ s easier to use Excel than Visual Studio, as
you ’ ll see later in this chapter.

 With the initial set of PBIs defi ned, the product owner goes back through the list to revise it, paying
special attention to the following:

 Refi ning the list — The product owner refi nes the PBIs by adding crucial details such as
business value, acceptance criteria, and priority.

 Pruning the list — The product owner removes duplicates or poorly defi ned PBIs.

➤

➤

Creating and Prioritizing PBIs ❘ 151

c06.indd 151c06.indd 151 3/24/11 4:25:31 PM3/24/11 4:25:31 PM

152 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 Changing the status — For each item that is complete, the product owner sets the status to
approved, meaning that it ’ s approved to be scheduled for a later sprint in the release.

 At the sprint planning meeting, the team reviews the PBIs at the top of the backlog priority list. For
each item, the team determines whether it can complete the PBI within the current sprint. It then
sets the state of any such PBIs to committed, meaning that the team is committed to completing
those items in the sprint.

➤

 PBIs are sorted in ascending order, where items with lower backlog priority sort
higher in the list than items with higher backlog priority. TFS defaults backlog priority
to 1,000, forcing new PBIs to the bottom of the list when they are initially entered.

 During the sprint — when the actual work gets done — the team works on building and testing the
PBIs. The team codes and unit tests each PBI, ensuring that it meets the acceptance criteria defi ned
for that PBI. When the team feels that a PBI is fully functional and in shippable condition, it sets the
state to done.

 Figure 6 - 2 shows the overall PBI workfl ow.

New PBI

Committed

Finished

Approved

Approved

Committed

Removed

Work stopped

More work

found

Reconsidered

Removed

New

Removed

Done

 FIGURE 6 - 2: PBI workfl ow.

c06.indd 152c06.indd 152 3/24/11 4:25:36 PM3/24/11 4:25:36 PM

 Prioritizing PBIs

 A product grows and shrinks throughout the duration of a project. You may have dozens of PBIs,
or you may have hundreds. With thousands of PBIs or more, though, it becomes very diffi cult for
the product owner to organize the PBIs in a coherent way. And with a small number of PBIs, such
as a dozen or so, any one PBI is probably too large to complete in a single sprint. Therefore, most
projects have hundreds of PBIs.

 Not all PBIs have the same benefi t to the business. Some may be very important, and others may be
just nice to have. On one end of the spectrum are PBIs that are critical; the team won ’ t even think of
shipping a release without those features. At the other end are features that are somewhat frivolous;
someone could be fi red for holding up a release for any of these features.

 Similarly, not all PBIs have the same cost. Some are quite easy to build and are largely independent
of the rest of the system. Other PBIs require signifi cant engineering and testing, and they have
dependencies on other components or teams.

 By looking at the benefi t and the cost of a PBI, a team can determine its ROI. The ROI is simply the
benefi t of a PBI divided by its cost. With fi nancial assets (stock, bonds, and so on), ROI is measured
in dollars or other currency. You divide the return (selling price – purchase price) by the investment
(purchase price) to get the ROI. A greater ROI is a better investment, and a lower ROI is a worse
investment. If you control the variables, you can increase ROI by increasing the return or decreasing
the investment. If you don ’ t control the variables, you ’ re seeking opportunities with greater return in
proportion to the investment.

 As part of the planning process, the product owner defi nes the benefi t and the team defi nes the cost
of each PBI. The business value is generally not defi ned in dollars, and the effort is generally not
estimated in hours, so the ROI is not measured in dollars; it ’ s simply benefi t divided by effort (or cost).

 ROI PRECISION

 ROI is often used as a measure with good precision. If you invest in a machine that
costs X, and it reduces your labor cost by Y, and Y > X, then the ROI > 1, and it ’ s
a potentially good investment. Once you factor in the cost of money and the risk of
realizing the benefi t, you make a decision.

 In Scrum, ROI is only a relative term. You can compare the ROI of one PBI with
that of another to inform your decision about which PBI to implement fi rst.

 Chances are that the product owner doesn ’ t have solid metrics to defi ne the real return of
implementing each PBI. In addition, the team probably doesn ’ t have a real cost estimate. As a
result, the ROI of a PBI isn ’ t precise. But ROI is useful as a relative measure and is one factor to
consider when prioritizing the backlog. As the team scans the backlog for items to include in a
sprint, it can choose to include or exclude some PBIs based on their ROI. Figure 6 - 3 shows some
obvious choices.

Creating and Prioritizing PBIs ❘ 153

c06.indd 153c06.indd 153 3/24/11 4:25:41 PM3/24/11 4:25:41 PM

154 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 For example, say that you ’ re working on a retail website, and the current sprint focuses on the
checkout process. The backlog has an item titled “ save the cart ” that enables a shopper to save his
cart and come back later to fi nish the purchase. The product owner assigns it a business value of 70
on a scale from 1 to 100. When the team considers how diffi cult this system is to build, assuming
that it already has basic security and login features in place, it decides that the effort required is
worth 5 points. So the ROI of the “ save the cart ” PBI is 70 / 5, or 14.

 Continuing on with this example, say that there ’ s another item on the backlog titled “ e-mail the
cart ” that enables a shopper to e-mail her cart to a friend as a recommendation. The product owner
assigns it a business value of 45 because fewer people will use this feature than the “ save the cart ”
feature. The team feels that this feature is somewhat more diffi cult to implement because it involves
capturing and providing security around e-mail addresses. The team therefore assigns this PBI an
effort of 21 points. The ROI of the “ e-mail the cart ” feature is 45 / 21, or about 2.

 In this example, clearly the “ save the cart ” PBI — with an ROI of 14 — is a better use of time than
the “ e-mail the cart ” PBI — with an ROI of 2. The ROI method enables the team to make smarter
decisions about which features to include in the sprint during the sprint planning meeting.

 Documenting PBIs

 You can enter a PBI in Visual Studio, Excel, or SharePoint. Whichever tool you chose, the
information is stored in TFS so it is accessible to other tools and reports.

 To document a PBI in Visual Studio, you select Team ➪ New Item ➪ Backlog Item. Then you fi ll in
the following fi elds:

 Title

 Iteration

 Assigned To

➤

➤

➤

Great ROI

Poor ROI

Cost

B
e

n
e

fi
t

 FIGURE 6 - 3: Plotting PBIs to determine ROI.

c06.indd 154c06.indd 154 3/24/11 4:25:42 PM3/24/11 4:25:42 PM

 State

 Reason

 Backlog Priority

 Effort

 Business Value

 Area

 Description

 Acceptance Criteria

 These fi elds are not all required in Visual Studio, but throughout the fl ow and life cycle of a PBI,
they are all used. The following sections describe them in more detail, and Figure 6 - 4 shows the
Visual Studio screen where you enter PBIs.

➤

➤

➤

➤

➤

➤

➤

➤

 FIGURE 6 - 4: The screen for entering PBIs in Visual Studio.

 Title

 In the Title fi eld you provide a brief description of the PBI. Remember that PBIs often start as user
stories, and the genesis of a user story is a note card with one sentence on it. The title of a PBI
should represent the intent of the PBI. After a sprint planning meeting, or anytime during a sprint,
the team should be able to articulate what the PBI represents by just hearing its title.

 Iteration

 In the Iteration fi eld you indicate the sprint in which a PBI is implemented. When you fi rst enter
a PBI into TFS, Iteration defaults to the current project, meaning that it ’ s not yet scheduled for a

Creating and Prioritizing PBIs ❘ 155

c06.indd 155c06.indd 155 3/24/11 4:25:42 PM3/24/11 4:25:42 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

156 ❘ CHAPTER 6 THE PRODUCT BACKLOG

sprint. During the sprint planning meeting, when the team commits to implementing a PBI, you set
this fi eld to the iteration representing the sprint.

 PRE - ASSIGNING SPRINTS TO ITERATIONS

 You can pre - assign PBIs to specifi c sprints ahead of time. To do so, you populate
the Iteration fi eld early in the project. This is helpful for planning which features
will be implemented when. You don ’ t want to go so far as to plan the whole release
ahead of time, with features in one sprint being dependent on features in prior
sprints. However, pre - assigning a few PBIs sporadically is okay.

 When the Iteration fi eld is set to the current sprint, the PBI goes from the product backlog to
the sprint backlog. Two predefi ned queries in the Scrum 1.0 template use this fi eld. The sprint
backlog query selects all PBIs where the Iteration fi eld is set to the current sprint. The
product backlog query selects all PBIs where the Iteration fi eld is set to the project.

 Assigned To

 In the Assigned To fi eld you indicate the owner of a PBI. On a team with multiple product owners,
you select the owner with the most knowledge about this PBI. The product owner who ’ s assigned to
the PBI is responsible for answering questions and providing detail about the PBI. This person is also
responsible for verifying that the PBI meets acceptance criteria before the team fi nishes the sprint.

 When a PBI is fi rst created, the Assigned To fi eld defaults to the user entering the PBI, so it ’ s best
to set it to the product owner at that point. You may change it, though, if or when another product
owner is added to the project and PBIs are being split among the owners.

 State

 You use the State fi eld to track the current state of a PBI. As shown earlier in this chapter, in
Figure 6 - 2, a PBI can be in one of fi ve states, starting with new and ending with either removed
or done:

 New — The PBI is entered into TFS. It may be just be the initial text of a user story, or it
may be fully defi ned with test cases and acceptance criteria.

 Approved — The PBI has been approved by the product owner and is a candidate to be
assigned to a sprint at the sprint planning meeting.

 Committed — The PBI has been assigned to a sprint, and the team has committed to
completing it.

 Removed — The PBI is no longer needed. This is useful when you ’ re pruning the backlog to
remove duplicates, to consolidate similar PBIs, or to simply remove the PBIs that are such
low priority that they will never be built.

 Done — The PBI is complete, and the product owner has tested and verifi ed it.

➤

➤

➤

➤

➤

c06.indd 156c06.indd 156 3/24/11 4:25:43 PM3/24/11 4:25:43 PM

 Reason

 Reason is a read - only fi eld that is predefi ned based on the state and transition of the PBI. It has the
following defi nitions in the Scrum 1.0 template:

 New

 New Backlog Item — The PBI was just entered but not yet prioritized or
estimated.

 Reconsidering Backlog Item — The item had been removed but was reconsidered
and is now back in the backlog.

 Approved

 Approved by the Product Owner — The PBI was approved by the product owner
and is now ready to be included in a sprint.

 Work Stopped — The PBI had been committed to a sprint, but the team decided to
stop work on it and put it back in the backlog for a future sprint.

 Committed

 Commitment Made by the Team — The team has committed to implement the PBI
in a sprint.

 Additional Work Found — The PBI was previously considered done, but more work
was found, so it ’ s back in the backlog.

 Removed — The PBI was removed from the backlog.

 Done — The work on the PBI is fi nished.

 Backlog Priority

 You use the Backlog Priority fi eld to determine the position of the PBI on the product backlog. New
PBIs default to a backlog priority of 1,000. This fi eld represents an item ’ s location in the backlog,
not its business value. It indicates when the PBI should be scheduled, relative to other items on the
list. The product owner adjusts this value when pruning the backlog throughout the release, moving
items up and down on the list to refl ect their relative importance to the product.

 Eff ort

 You use the Effort fi eld to track the estimated effort required to implement a PBI, relative to other
PBIs in the release. Relative is the operative word here, as the effort is not in terms of hours or days.
Rather, it ’ s a just a number used to compare the relative effort required for PBIs.

 You can estimate effort in terms of story points, where 1 point can be an ideal day (no interruptions,
coding in the zone, and so on) or an ideal week. Or you can estimate it in terms of complexity,
where 1 point is 1 dependency. Regardless of the measure you choose, it ’ s important to be
consistent.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

Creating and Prioritizing PBIs ❘ 157

c06.indd 157c06.indd 157 3/24/11 4:25:44 PM3/24/11 4:25:44 PM

158 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 In addition to choosing a measure, you should pick an upper bound and a lower bound for the
range. The upper and lower bounds represent the minimum effort and maximum effort worth
tracking. Any item outside those numbers should be combined or split into multiple items.

 Finally, in addition to the range, you should choose valid steps in the range. The most obvious
choice is inclusive integers. For example, you might estimate effort between 1 and 10 as 1, 2, 3, 4, 5,
6, 7, 8, 9, and 10. In such as system, one PBI may be 4 story points, while another PBI might be 7.

 A less obvious but fairly common approach is to use the Fibonacci sequence for effort estimates.
This works for two reasons. First, it forces you to use a known set of numbers and prevents you
from squabbling over whether the effort is 19 or 15, since neither of those are valid choices in the
series. Second, it forces more fi ne - grained estimates for smaller items and more coarse - grained
estimates for larger items. This just is a function of the series (1, 2, 3, 5, 8, 13, 21, 34, 55, 89, and so
on) because you can probably estimate the difference between 2, 3, and 5 more easily than you can
between 21 and 34.

 ESTIMATING IN CALORIES

 On one project, where the early sprints were being planned during the holiday
season, the team labeled the estimates as “ calories, ” since good holiday food was on
everyone ’ s mind. This label stuck and was useful for two reasons. First, sentences
such as “ How many calories will that feature consume? ” or “ How many calories
can the team expend in 1 week? ” intuitively make sense and capture the real
meaning of the estimation.

 Second, when communicating with management, using calories as the estimate made it
clear that the team was not speaking about days. Having 300 calories on the backlog
didn ’ t mean that the release would cost 300 times someone ’ s daily wage. Nor did it
mean that it would take 300 person - days to complete. It meant that the team could
divide the calories by its velocity, add some time for stabilization and release sprints,
and get a fairly accurate estimate of how much time was needed to complete the release.

 Planning Poker is another technique for converging on an estimate. For more
information, see the section “ Estimating Product Backlog Items ” in Chapter 3.

 A team also uses the effort estimate retrospectively, to determine its velocity for future sprint
planning. If, after three sprints, you know that the team can complete 500 effort points in a two -
 week sprint, you can confi dently commit to PBIs that add up to that amount of effort in the fourth
sprint. This makes sprints more predictable.

 Business Value

 You use the Business Value fi eld to track the amount of business value delivered by a PBI. You
should choose a number between 1 and 100 to represent the amount of business value that

c06.indd 158c06.indd 158 3/24/11 4:25:45 PM3/24/11 4:25:45 PM

implementing the PBI will deliver to your customers. Higher numbers imply greater business value.
A PBI with a low business value and a high effort estimate probably won ’ t get scheduled into a
sprint and will remain on the product backlog.

 The product owner defi nes the business value when creating the PBI, and it
generally doesn ’ t change.

 Area

 You use the Area fi eld to track the area or component of the product. This fi eld is very helpful in
managing a project because it naturally identifi es compartmentalized sections of the product. For
example, a retail website might have areas such as \Checkout , \HomePage , \Catalog , \Catalog\
Search , and \Catalog\Import .

 The product owner defi nes the area when creating a PBI. The team may update
it over time, as components and subsystems are decomposed or refactored.

 TFS uses the Area fi eld across all work items, so the area of a PBI should be carried across other
items. For instance, a PBI in the \Catalog area would be linked to tasks, bugs, and test cases also
defi ned in the \Catalog area.

 TFS does not automatically copy the area of one work item to the next. For
instance, if you create a bug or a task from a PBI, the bug or task will not inherit
the PBI ’ s area, so you should pay attention to classifying each bug or task properly.

 Description

 You use the Description fi eld to provide a detailed description of a PBI. This is where the product
owner describes what the feature does and who needs it. If you ’ re defi ning PBIs via user stories, then
this is the written record of the feature. It needs to convey enough information so that the product
owner and team can speak intelligently about what ’ s being requested and how it will be used.

 Don ’ t be tempted to put a full requirement spec here; it ’ s just a proxy for a deeper
dialogue among constituents who fully understand and will build the feature. The
real spec is the discussions and shared understanding between the product owner
and the team as well as formal documentation that exists elsewhere.

Creating and Prioritizing PBIs ❘ 159

c06.indd 159c06.indd 159 3/24/11 4:25:50 PM3/24/11 4:25:50 PM

160 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 The product owner fi lls in the Description fi eld when creating the PBI. He or she adds more content
after the PBI is committed to a sprint because that ’ s when the information is really needed.

 Acceptance Criteria

 You use the Acceptance Criteria fi eld to provide a bulleted list of criteria a PBI must meet before it
will be accepted as done. The product owner defi nes the acceptance criteria either when initially
creating the PBI or when the PBI is added to a sprint.

 It ’ s critical to have suffi cient information in this fi eld for a PBI because these are the criteria against
which the team will build the feature during the sprint.

 LINKING ARTIFACTS: PBIS, TASKS, AND BUGS

 The product backlog is the central list on which a team focuses its attention. This makes sense
because it is defi ned by the product owner on behalf of the user. The product backlog therefore
helps the team focus its attention on the user ’ s top priorities. Using the items on the backlog as
the hub, the team can create other work items that organize the release and sprints.

 From a PBI, the team defi nes test cases and tasks. When a test case fails, the team creates bugs.
When a task is blocked, the team creates an impediment. The team can either create secondary work
items (bugs and impediments) against the items that they impact (the test case and task), or it can
link the items back to the PBI, which is the real focus of the team. Figure 6 - 5 shows the high - level
relationship among work items.

Product

backlog

item

Test case Task

Bug Impediment

 FIGURE 6 - 5: The relationship among PBIs, tasks, and bugs.

 Linking PBIs to Test Cases

 When creating PBIs, it ’ s important to be very specifi c with the acceptance criteria. If the criteria are
not specifi c enough, the team and product owner may have different views about when the PBI is
really done. Even worse, they may have different views about how the feature will be used.

c06.indd 160c06.indd 160 3/24/11 4:26:08 PM3/24/11 4:26:08 PM

Linking Artifacts: PBIs, Tasks, and Bugs ❘ 161

 Test cases are more specifi c than acceptance criteria, and they are also much more repeatable. You
can create extensive unit tests in Visual Studio and have test tests run automatically. You can do
this as part of the build process, or you can do it within Test Manager. Alternatively, you can defi ne
manual test cases in Test Manager and have the team run those test cases and verify results.

 Test cases are linked to PBIs. Within TFS, a test case is different from
acceptance criteria in that test cases are separate work items. They
can be created, assigned, and tracked over time. Acceptance criteria,
in contrast, are just stored in one fi eld within the PBI. In terms of
data relationships, a PBI “ is tested by ” a test case, and a test case
 “ tests ” a PBI. Figure 6 - 6 shows this relationship.

 You can create a test case in Visual Studio. To do so, you select the
Team menu and create a new work item. Then you need to link
the new item to the PBI by using a tests relationship. The dialog in
Figure 6 - 7 shows linking from a new test case to an existing PBI.
Notice that the Link Type setting is Tests.

 You can also create a test case from a PBI. When you do this, the Link Type setting defaults to
Tested By, rather than Tests, as shown in Figure 6 - 8.

 Verbal communication and follow - up e-mail between the product owner and
team about product features will generally have the greatest detail about the
PBI. This information should be captured and included in the acceptance
criteria of the PBI.

Product

backlog

itemIs tested by

Tests

Test case

 FIGURE 6 - 6: PBI and test

case links.

 FIGURE 6 - 7: Linking from a test case to an

existing PBI.

 FIGURE 6 - 8: Linking from an existing PBI to

a test case.

c06.indd 161c06.indd 161 3/24/11 4:26:08 PM3/24/11 4:26:08 PM

162 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 You can use Visual Studio to see all the test cases for all PBIs within a sprint or release. This is
helpful in determining test coverage of the PBIs. This is different from the reports and queries that
ship with the Scrum template, which are as follows:

 Team Queries/Current Sprint/Test Cases — This shows the test cases defi ned in the current
sprint, but not their associated PBIs.

 Reports/Tests/Test Case Readiness — This shows a chart that indicates how many test
cases are still being designed and how many are ready to be run.

 Reports/Tests/Test Plan Progress — This shows a chart that indicates how many test cases
are passing and failing their tests.

 Figure 6 - 9 shows the creation of a query that lists which PBIs have test cases defi ned and which
don ’ t. Creating this custom query takes only a minute or two. You can use this query to ensure that
you have adequate test cases defi ned for the PBIs in a sprint or release.

➤

➤

➤

 FIGURE 6 - 9: A PBI and test case query.

 In Figure 6 - 9, notice that the Type of Query setting is Work Items and Direct Links. New queries
default to Flat, but this fi gure shows the query type changed in this drop - down. A fl at query
executes a nested loop over the data, returning all PBIs and their related items. Also notice that in
the Linking Filters section, you ’ re returning all test cases that are top - level work items. This helps
you see what ’ s going well (that is, where a PBI has at least one test case) and what ’ s not (that is,

c06.indd 162c06.indd 162 3/24/11 4:26:13 PM3/24/11 4:26:13 PM

Linking Artifacts: PBIs, Tasks, and Bugs ❘ 163

where a PBI doesn ’ t have any test cases defi ned). Next, notice that Types of Links is set to Tested By.
Because this query looks for all PBIs, you want the Tested By setting. Finally, notice that the results
are sorted by PBI and then show all the associate test cases.

 You could also query in the reverse direction. Rather than check which PBIs have associated
tests, you could check which tests are not associated with a PBI. This is helpful because a test case
that ’ s not associated with a PBI may never get run as part of a sprint.

 Figure 6 - 10 shows a query that presents the same information (PBIs and test cases) as Figure 6 - 9
but is oriented by test case rather than PBI. It returns all test cases and their related PBIs. In the
Linking Filters section, you ’ re still returning all top - level work items. This time, notice that Types
of Links is set to Tests. Because this query looks for all PBIs, you want Tested By instead.

 FIGURE 6 - 10: A test cases and PBIs query.

 Linking PBIs to Bugs

 As you develop software, you create bugs. It ’ s just a fact of life. Using solid engineering practices
can help you avoid common mistakes, and you can use tools to help track them. But if you ’ re writing
software, you ’ re creating bugs.

 Bugs are work items in TFS. You can therefore link them to any other work items by using the various
link types. You can link bugs to PBIs, test cases, or other work items. Whether you link bugs to PBIs
or test cases depends on how rigorous you are with respect to test - driven development (TDD).

c06.indd 163c06.indd 163 3/24/11 4:26:14 PM3/24/11 4:26:14 PM

164 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 If you ’ re committed to TDD at both the unit and acceptance test levels, you will use test cases as
your measure of quality. You will defi ne test cases for each PBI and populate those test cases with
automated and manual tests. You will use the test case readiness report to monitor how many of
your test cases are fully defi ned and then use the test plan progress report to monitor the test case
results to ensure that they ’ re passing their tests. In this case, you can link bugs to test cases to easily
see the bugs associated with each test case.

 If you ’ re using TDD but not necessarily defi ning all the artifacts for tracking and running tests
within TFS, then linking bugs to PBIs is more appropriate. With this scheme, you can track the bugs
and associated tasks for each PBI in one place. For each bug that you enter in TFS, you should link
the bug to the PBI — not necessarily to a test case.

 Linking bugs to PBIs and linking bugs to test cases both have pros and cons (see Table 6 - 1). In
either case, you can use Visual Studio and Excel to enter and track bugs. These two options are
not mutually exclusive. You can track bugs to both PBIs and test cases. Doing so will give you the
benefi ts of both methods.

 TABLE 6-1: Linking Bugs to PBIs and to Test Cases

 WHERE TO LINK BUGS WHEN TO DO THIS WHY

 PBIs If you don ’ t defi ne test cases for

all PBIs

 If you want to track bugs (status)

and tasks (eff ort) together with

a PBI

 The PBI is the central focus area for

the team. Linking bugs to a PBI is an

easy way to track it all in one place.

 Test cases If you are rigorous about testing and

defi ne at least one (but probably

many) test case for each PBI

 If you use the built - in reports for

tracking test plan readiness and

test plan progress

 By associating bugs with test cases,

your team will focus its eff ort on

fi xing bugs so the test cases pass.

 If you defi ne test cases to properly

cover the validation of the PBI, then

reporting in this manner will be easier.

 Linking Bugs to PBIs

 Linking bugs to PBIs is straightforward. By associating a
bug directly with a PBI, you can easily count and track quality
at the PBI level. This way, you can bypass the test case and keep
the team focused on the PBI itself. As shown in Figure 6 - 11, in
terms of the data relationship between a bug and a PBI, a bug is
a child of a PBI.

Product
backlog

itemParent

Child

Bug

 FIGURE 6 - 11: Data relationship

between a PBI and a bug.

c06.indd 164c06.indd 164 3/24/11 4:26:15 PM3/24/11 4:26:15 PM

Linking Artifacts: PBIs, Tasks, and Bugs ❘ 165

 You can create a new bug from Visual Studio
as a new work item from the Team menu.
After you create the bug, you need to link it
to the PBI by using a child relationship. The
dialog in Figure 6 - 12 shows how to link a
new bug to a PBI. Notice that Link Type is
set to Child.

 Alternatively, you can create a new bug
and then link it to the PBI that it relates
to. In this case, the Link Type setting is
Parent, from the bug to the PBI, as shown
in Figure 6 - 13.

 You can use Visual Studio to see all the bugs
for all the PBIs within a sprint or release. This
is helpful for tracking bugs against PBIs. The
query in Figure 6 - 14 shows all PBIs that have
open bugs.

 First, notice that the Type of Query setting
is Work Items and Direct Links. Remember
that new queries default to Flat, but you can
change the query type in this drop - down.
Also notice that you ’ re only picking up related
items of type Bug. Next, notice that in the
Linking Filters section, you ’ re returning only
linked items of type Child. Finally, notice that
the results are sorted by PBI and show all the
associated bugs — and that every PBI has
at least one bug. There may be many PBIs that
have no bugs, but the intent of this query is to
show only the problematic PBIs.

 LINKING WORK ITEMS

 You ’ ll notice that the descriptions and fi gures shown in Figures 6 - 5, 6 - 6, 6 - 7, and 6 - 8
are very similar to those shown in Figures 6 - 10, 6 - 11, 6 - 12, 6 - 13 and 6 - 15, 6 - 16,
6 - 17, and 6 - 18. That is because they are all examples of linking work items in TFS.
This common data structure, and the common tools and queries for manipulating it,
makes TFS a powerful tracking tool.

 FIGURE 6 - 12: Linking from a PBI to a new bug.

 FIGURE 6 - 13: Linking from a new bug to a PBI.

c06.indd 165c06.indd 165 3/24/11 4:26:15 PM3/24/11 4:26:15 PM

166 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 During your daily Scrum meeting, it ’ s helpful to review the bugs associated with PBIs in the sprint
backlog. This keeps the team focused on the most critical work affecting the sprint. You can use
Visual Studio to review the list, and you can even use Excel. The advantage of using Excel is that
you can quickly update the state of bugs, from new to approved, to committed, to done. Figure 6 - 15
shows the preceding PBI and bugs query exported to Excel.

 FIGURE 6 - 14: A PBI and bugs query.

 FIGURE 6 - 15: The PBI and bugs query in Excel.

c06.indd 166c06.indd 166 3/24/11 4:26:16 PM3/24/11 4:26:16 PM

Linking Artifacts: PBIs, Tasks, and Bugs ❘ 167

 Linking Bugs to Test Cases

 You may discover bugs when manually running test
cases or when running unit tests. The product owner
may also discover them in his or her daily or weekly
testing of product features. By linking bugs to test
cases, you can ensure that your test cases are heavily
exercised for validating the PBIs and that the team
is fully involved in the test cases. This keeps testing
focused on ensuring that PBIs pass their test cases
and ensuring that bugs found during testing are
resolved and retested.

 As shown in Figure 6 - 16, PBIs are tested by test cases,
which in turn may have associated bugs.

 You can create a new bug from Visual Studio as a
new work item from the Team menu. After you create
it, you need to link it to the test case by using a child
relationship. The dialog in Figure 6 - 17 shows linking
from a new bug to an existing test case. Notice that the
Link Type setting is Child.

 Alternatively, you can create a new bug and then link it to the test case in which it was found. In
that case, as shown in Figure 6 - 18, the Link Type setting is Parent, from the bug to the test case.

Parent

Child

Bug

Product

backlog

itemIs tested by

Tests

Test case

 FIGURE 6 - 16: Data relationship of a PBI, a test

case, and a bug.

 FIGURE 6 - 17: Linking from the test case to the

new bug. FIGURE 6 - 18: Linking from the new bug to

the test case.

 You can use Visual Studio to see all the bugs for all the test cases within a sprint or release. This is
helpful for tracking bugs against test cases. The query being created in Figure 6 - 19 shows all test
cases that have open bugs.

c06.indd 167c06.indd 167 3/24/11 4:26:17 PM3/24/11 4:26:17 PM

168 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 Notice that the Type of Query setting is Work Items and Direct Links. Remember that new queries
default to Flat, but you can change the query type in this drop - down. Also, notice that you ’ re only
picking up related items of type Bug. Third, notice that in the Linking Filters section, you ’ re
only returning linked items of type Child. Finally, notice that the results are sorted by test case
and show all the associated bugs — and every test case has at least one bug. There may be many
test cases that have no bugs, but the intent of this query is to show only the problematic test cases.

 Linking PBIs to Tasks

 In software development, a task is the smallest unit of work. Each person on a software
development team has a task list that he or she uses to organize and prioritize his or her work. This
isn ’ t unique to Scrum; it ’ s the basis for most methodologies and is baked into most software project
management tools.

 In Scrum, you use tasks in two ways: to assign and track work associated with a PBI and to assign
and track work associated with bugs. Tasks associated with PBIs represent things you have to build,
while tasks associated with bugs represent things you have to fi x. From a scheduling perspective,
there ’ s really not much difference between PBIs and bugs. The team is completing a potentially
shippable product with each sprint, so the items need to be built and tested, and they need to have
no critical bugs.

 FIGURE 6 - 19: A test case and bugs query.

c06.indd 168c06.indd 168 3/24/11 4:26:18 PM3/24/11 4:26:18 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Linking Artifacts: PBIs, Tasks, and Bugs ❘ 169

 Figure 6 - 20 shows the relationships among a PBI, a
task, and a bug. The PBI is the parent of both tasks
and bugs, which are, by defi nition, children of
PBIs. By defi ning a task from a PBI, you ’ re defi ning
the work to implement the PBI. By defi ning a task
from a bug, you ’ re defi ning the work to fi x a bug.

 The relationships among PBIs, bugs, and tasks
are transitive. When you defi ne the work related
to a bug that ’ s related to a PBI, you ’ re indirectly
assigning work to the PBI. That work, combined
with work that ’ s directly related to the PBI, is the
total work defi ned for the PBI. The tree of work
items query type in TFS models this relationship
so that you can see direct and indirect items
related to a PBI.

 Linking Tasks to PBIs

 Soon after creating PBIs and committing them
to a sprint, you create new tasks in Visual
Studio from each PBI. You can do this from
the PBI itself or from the results of a query that
lists a set of PBIs. The dialog in Figure 6 - 21
shows how to create a new task from an
existing PBI and establish the relationship.
Notice that the Link Type setting is Child.

 Alternatively, you can create a task on its
own and then link it to the PBI later. This is
a very useful technique for capturing items as
they come up. For instance, say you ’ re in the
daily Scrum or you ’ re just thinking about the
project and remember “ oh, let ’ s not forget to do X. ” If you must search through TFS and fi gure out
which PBI should track that task and then gain agreement from that product owner, you may not
have time to enter the task. If, however, you can just enter the task in Excel without linking it to a
PBI, TFS will have a more complete and accurate record of all the work that needs to be done.

 You can use Visual Studio to see all the tasks for all the PBIs within a sprint or release. This is helpful
for tracking work against PBIs. The query in Figure 6 - 22 shows all committed PBIs and their associated
tasks. In Figure 6 - 22, notice that the type of query is Work Items and Direct Links. Remember that
new queries default to Flat, but you can change the query type in this drop - down. Also, notice
that you ’ re only picking up related items of type Task. Next, notice that in the Linking Filters section,
you ’ re returning all top - level work items. Notice that the results are sorted by PBI and show all the
associated tasks; this list shows both PBIs that have tasks and those that don ’ t. Any PBI that doesn ’ t
have tasks assigned is problematic because nobody is working on implementing that feature. Finally,
notice that the Remaining Work fi eld from the task item is displayed. This is critical information for the
daily Scrum because it shows how much work remains to be done for a task and its PBI.

Product

backlog

item

Bug

Task

Parent

Parent

Parent

Child

Child

Child

 FIGURE 6 - 20: The data relationships among a PBI,

a task, and a bug.

 FIGURE 6 - 21: Linking from a PBI to a new task.

c06.indd 169c06.indd 169 3/24/11 4:26:19 PM3/24/11 4:26:19 PM

170 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 FIGURE 6 - 22: A PBI and tasks query.

 By exporting the results of the Figure 6 - 22 query to Excel and focusing on the resulting Excel spreadsheet
during the daily Scrum, you can quickly update the status and remaining work to keep a running total of
effort needed to complete the PBI. Figure 6 - 23 shows data exported to Excel. You should be sure to use
the Publish and Refresh buttons on the Team tab of the Ribbon in Excel to save changes back to TFS.

 FIGURE 6 - 23: PBIs and tasks in Excel.

c06.indd 170c06.indd 170 3/24/11 4:26:19 PM3/24/11 4:26:19 PM

Linking Artifacts: PBIs, Tasks, and Bugs ❘ 171

 Linking Tasks to Bugs

 During each sprint, you create, fi nd, and fi x bugs in the software. In order to track the nature,
severity, and impact of each software bug, you create bug items in TFS. Each bug item in TFS stores
the essential criteria about the bug. This includes the steps to reproduce the bug and environmental
data such as builds and server and desktop confi gurations. It also contains the acceptance criteria
for fi xing the bug.

 Each bug item contains an Effort fi eld. You should treat this fi eld similarly to the Effort fi eld
for a PBI. Specifi cally, effort is not the actual time you estimate to fi x the bug; it ’ s a rough estimate
of its complexity so you can make decisions about when to schedule it in a sprint. This is different
from the Remaining Work fi eld on a task, which is the team ’ s estimate for completing a unit
of work.

 At a minimum, you should create one task
for each bug. For simple bugs, the task will
be assigned to the person who ’ s responsible
for fi xing it, which is normally the same
person assigned to the task. In order to track
the work associated with the bug, you
create a new task in Visual Studio from
the bug. In the task item, you fi ll in the
Remaining Work information. The dialog
in Figure 6 - 24 shows how to create a
new task from an existing bug and establish
the relationship. Notice that the Link Type
setting is Child.

 You can use Visual Studio to see all the tasks for all the bugs within a sprint or release. This is
helpful for tracking work against bugs. The query being created in Figure 6 - 25 shows all bugs and
their tasks. Notice that the type of query is Work Items and Direct Links. Remember that new
queries default to Flat, but you can change the query type in this drop - down. Also, notice that
you ’ re only picking up related items of type Task. Next, notice that in the Linking Filters section,
you ’ re returning all top - level work items. Finally, notice that the results are sorted by bug and show
all the associated tasks; this list shows both bugs that have tasks and those that don ’ t.

 By exporting the results of the Figure 6 - 25 query to Excel and using the resulting Excel fi le during
the daily Scrum, you can quickly update the status and remaining work to keep a running total
of effort needed to complete the bug. You can also indicate whether an item is blocked. During
the daily Scrum, blocked items will take high importance. Figure 6 - 26 shows the data exported to
Excel. Remember to use the Publish and Refresh buttons on the Team tab of the Ribbon in Excel
to save changes back to TFS.

 FIGURE 6 - 24: Linking from a bug to a new task.

c06.indd 171c06.indd 171 3/24/11 4:26:20 PM3/24/11 4:26:20 PM

172 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 FIGURE 6 - 25: A bugs and tasks query.

 FIGURE 6 - 26: Bugs and tasks in Excel.

c06.indd 172c06.indd 172 3/24/11 4:26:20 PM3/24/11 4:26:20 PM

Linking Artifacts: PBIs, Tasks, and Bugs ❘ 173

 Using the Unfi nished Work Query

 The unfi nished work query that is built into the Scrum template brings together the three work
items types PBI, bug, and task. It fi rst queries TFS for these three work items types by using the
tree of work items list type. It links these items to their children of type Task but fi lters the tasks
so it doesn ’ t pick up those whose state is done or removed. The resulting list shows all tasks under
each PBI. It also shows all bugs under each PBI and the tasks under them. Figure 6 - 27 shows the
unfi nished work query in Visual Studio.

 FIGURE 6 - 27: The unfi nished work query.

 When you export the results of the query in Figure 6 - 27 to Excel, you get the results shown in
Figure 6 - 28, where you can see all tasks associated with a sprint. One particularly useful feature
of Excel when working with this view — or any other tree of work items list — is the ability to
add child items directly into the spreadsheet. Say, for instance, that during the daily Scrum, you ’ re
discussing a new bug that was encountered, named “ home page is too slow. ” One of the testers
already entered a bug into the system, tied to a PBI. A team member yells out, “ Oh, I know how to
fi x that! We just need to edit the confi g fi le. ” Right then and there, you can add a new task in Excel
and link it to the bug, which is linked to the PBI.

 Figure 6 - 28 shows how you can select a row (in this example, the bug row; row 29 in the fi gure) and
click Add Child to create an item under that row. This opens a row in Excel (row 30 in the fi gure),
where you can fi ll in a task work item, allocate one hour of remaining work, and assign the task to
the team member.

c06.indd 173c06.indd 173 3/24/11 4:26:21 PM3/24/11 4:26:21 PM

174 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 UNDERSTANDING IMPEDIMENTS

 PBIs defi ne the features to be built into a product. Tasks defi ne the work necessary to implement
them. Test cases are used to verify quality, and bugs track problems as they ’ re found in the product.
These tracking elements come alive in Scrum. Rather than being just cells in a spreadsheet or rows
in a database, this information helps the Scrum team determine what to worry about, what to do
next, and when something is done.

 But of course things don ’ t always go according to plan. Sometimes progress slows down. Sometimes it
stops. Sometimes it seems to go in reverse. Impediments are obstacles to progress. Software development
is rich with impediments. Dependencies among technical components, dependencies among team
members, and unclear requirements are three of the most common impediments. Scrum recognizes
impediments as signifi cant elements to track in order to improve the overall quality of a product. The
ScrumMaster ’ s primary job is to remove impediments that are blocking or slowing down the team.

 Any work item type can be affected by an impediment. For instance, a PBI may be blocked because
the product owner needs to get information from someone external to the team and the team
cannot complete that PBI until it has answers. Or, a task may be blocked by a bug in an underlining
component or third - party control. Without that fi xed, the bug cannot be resolved. Or, a bug may
be blocked, maybe pending hardware resources required to adequately reproduce the bug in a lab.
In each case, the ScrumMaster should own resolution of these impediments, often working with the
product owner or team member.

 Figure 6 - 29 shows the data relationship among impediments and other work items. Notice that an
impediment is never a parent; rather, it ’ s blocking some other parent item, whether a PBI, a bug, or a task.

 FIGURE 6 - 28: Results of the unfi nished work query in Excel.

c06.indd 174c06.indd 174 3/24/11 4:26:22 PM3/24/11 4:26:22 PM

 You track impediment work items as you do other work items in TFS. You can enter them in Visual
Studio, Excel, or SharePoint. Generally, the Scrum team uses Visual Studio. Figure 6 - 30 shows how
to create a new impediment from an existing PBI.

Bug

Product

backlog

item

Task

Impediment

Parent Parent

Parent
Child

Child Child

 FIGURE 6 - 29: Data relationship of an

impediment, a PBI, a bug, and a task.

 FIGURE 6 - 30: Linking from a PBI to a new impediment.

 By creating an impediment item in TFS, you can track basic information, including a description and
ultimately its resolution. Figure 6 - 31 shows a new impediment.

 FIGURE 6 - 31: A new impediment.

Understanding Impediments ❘ 175

c06.indd 175c06.indd 175 3/24/11 4:26:23 PM3/24/11 4:26:23 PM

176 ❘ CHAPTER 6 THE PRODUCT BACKLOG

 Tracking impediments is an important aspect of Scrum that you should not overlook. The history of
impediments can be helpful during the sprint retrospective and can offer clues about how to improve
the team’s velocity.

 SUMMARY

 The product backlog is the list of requirements for the system. It is the central focus of a Scrum
team, representing the features that the team will build into the product. The product owner defi nes
and prioritizes the PBIs. Each PBI stores the details of one product feature. It describes its business
benefi t, test cases, and acceptance criteria.

 Bugs, like PBIs, are work items that the team must expend effort to fi x. Like PBIs, bugs also have
tasks associated with them. The remaining work of a sprint is defi ned by the tasks (not PBIs or
bugs), so tasks become the central tracking element within the sprint. You can track bugs in one of
two ways in TFS: You can link them to PBIs directly or to test cases.

 The ScrumMaster ’ s primary job is to remove impediments, so tracking them in TFS is an effective
way to measure progress. Impediments serve as an early warning sign that progress is slowing
down. You can link impediments to PBIs, bugs, or tasks.

 In Chapter 7, you ’ ll learn about tracking quality in a Scrum project.

c06.indd 176c06.indd 176 3/24/11 4:26:23 PM3/24/11 4:26:23 PM

Tracking Quality

 WHAT ’ S IN THIS CHAPTER?

 Understanding what to measure.

 Tracking and resolving bugs and tasks.

 Creating and running test cases.

 Using Microsoft Test Manager.

 Quality is generally easy to understand and observe. It ’ s extremely subjective, but people can
discern good quality from poor quality. A car that reliably starts and drives quietly down the
road is good quality; one that requires a screw driver to start and sputters as you drive is clearly
bad. Clean, fresh air is good quality; smog is bad.

 Just as it ’ s easy to understand quality, it ’ s often easy to measure it. Measuring the loudness
of engine noise is straightforward, using decibels as the metric. Measuring air pollution is
also pretty simple, using parts per million as the metric. Both of these measurements involve
sampling the system as its running, whether it ’ s a combustion engine or the wind, and then
counting the results. Samples can be taken under varying conditions, such as sampling engine
noise at varying speeds and sampling air quality at different locations.

 Once samples are measured, they can then be classifi ed into something people care about. In
the case of engine noise, quiet, average, and loud are simple categories. With air quality, good,
average, and bad are well understood.

 Finally, after quality is understood, measured, and classifi ed, you can take action. You can
choose to buy a quiet car or ignore the noise and go with a fast car. Knowing that the air
quality is poor, you can choose to exercise indoors rather than go for a run outside.

➤

➤

➤

➤

 7

c07.indd 177c07.indd 177 3/24/11 4:26:54 PM3/24/11 4:26:54 PM

178 ❘ CHAPTER 7 TRACKING QUALITY

 In this chapter, you will learn how to measure and track quality, which is an important part of Scrum.
You ’ ll learn how to do this with test cases, bugs, and tasks in Visual Studio, Excel, and Team Foundation
Server (TFS).

 KNOWING WHAT TO MEASURE

 Great software always has two common attributes: It ’ s useful and predictable. Defi ning and running
test cases for software ensures that the product is useful for its intended purpose; tracking and
eliminating bugs during the construction phase ensures that it ’ s predictable.

 There are a variety of ways to measure software quality. You can measure data accuracy, system
performance, reliability, or usability. Regardless of the measure, you will have a specifi c expectation
of the result. Most software will have hundreds of such expectations that are ultimately codifi ed into
test cases. In aggregate, if the software meets the expectation, then it passes that quality metric.
If not, it fails.

 If software does not meet an expectation, you have a quality problem. It may be a very small problem,
or it may be quite large — but either way, the problem exists. One way to measure software quality is to
quantify the expectations that are not met. You can do this by counting the failed test cases. Another
way is to quantify the technical items that must be fi xed in order to meet expectations. You can do this
by counting the number of open items, or bugs . If you’re counting bugs, it’s helpful to also count the
estimated effort necessary to fi x them. This is an indirect measure of quality, but it’s crucial for planning.

 It ’ s important for a team to estimate the effort required to fi x a bug, just as it does
with product backlog items (PBIs). Bugs ultimately get scheduled like PBIs in later
sprints. During sprint planning, the team builds the sprint backlog by picking PBIs
and bugs from the product backlog that add up to its velocity. If a team doesn ’ t
estimate bug effort, it cannot accurately commit to fi xing the bugs in a sprint.

 The combination of usefulness (passing test cases) and predictability (no bugs) is what defi nes quality.
In other words, if the system does what the customer expects it to do and it does so predictably, then
quality is high.

 TRACKING AND RESOLVING BUGS AND TASKS

 Fewer bugs equates to greater quality. Having 0 open bugs is ideal, but the bug count alone is an
insuffi cient measure for managing quality. How do 10 open low - severity bugs compare to 3 open
high - severity bugs? How do bugs in non - essential components compare with bugs in critical parts of
the system?

 The bug count has a subjective component and an objective component. Labeling a bug as low
severity versus high severity is a subjective decision. On the other hand, counting the number of open
bugs in each category is objective.

c07.indd 178c07.indd 178 3/24/11 4:26:56 PM3/24/11 4:26:56 PM

 Of course, bugs don ’ t fi x themselves; people fi x them. The fundamental way to assign work in TFS
is to use tasks. For the bugs that will be fi xed within the current sprint, you need to track tasks so
people can allocate their time.

 The Workfl ow for Resolving Bugs

 Whether a bug is addressed during the sprint in which it is found or placed on the backlog for a
future sprint, the team should have a workfl ow for tracking and resolving each bug. The Scrum 1.0
template for TFS implements a workfl ow for this.

 When to Track and Resolve a Bug

 You should track each bug from the moment you discover it until it is ultimately fi xed. Certain
bugs can be resolved within the current sprint, while others can be pushed to the product backlog
and addressed in a later sprint. The product owner needs to make this determination, based on the
product features that the bug affects.

 If a bug relates to a PBI being addressed in the current sprint, then the bug should be fi xed in the
current sprint. You track a bug in three steps:

 1. Enter a new bug as a new work item in the current sprint.

 2. Create a new task or set of tasks to track the work required to fi x the bug.

 3. Link the task to the bug.

 On the other hand, if a discovered bug relates to a feature that is not being worked on in the current
sprint, you should add the new bug to the product backlog, but you should not assign any tasks to it.
This way, the bug will not affect the current sprint, and it will not get lost.

 For instance, assume that the goal of your current sprint is to implement an order entry screen in a
web application. When testing the screen, you discover that date validation is not working. After
30 minutes of analysis, you determine that some business
logic needs to change. You estimate that it will take four
hours to fi x and test the change. For this example, you
would create a bug in the current sprint and create a task,
linked to the bug, with an effort of 4.

 If, however, your 30 - minute analysis reveals that the date
validation error is due to the user ’ s time zone crossing the
International Date Line from the server, and the system
design doesn ’ t address that scenario, you have a larger
problem that may ripple through the system. In this case, it
would be better to treat the bug as a new PBI. You would
create the bug item but not assign it to a sprint
and not create tasks.

 Figure 7 - 1 shows the decision process for entering new
bugs and their associated tasks into TFS and determining
whether to track them on the product backlog or in the
current sprint.

Defect

discovered

Create bug

in product

backlog

No Yes

Impacts

PBIs in

current sprint?

Create bug

current sprint

Create tasks in

current sprint

 FIGURE 7 - 1: Determining when to track

new bugs.

Tracking and Resolving Bugs and Tasks ❘ 179

c07.indd 179c07.indd 179 3/24/11 4:27:12 PM3/24/11 4:27:12 PM

180 ❘ CHAPTER 7 TRACKING QUALITY

 How to Track Bug State from New to Done

 It is important to track progress from when a bug is fi rst detected to when it is ultimately resolved.
You capture this information in the State fi eld of a bug item. Figure 7 - 2 shows the transitions built
into the Scrum template.

New

Approved Removed

Committed Work stopped

Approved

New bug

Removed

Removed

Reconsidered

Done

Committed

Finished More work
found

 FIGURE 7 - 2: Bug state diagram.

 When a bug is fi rst detected, a new bug work item is created and assigned to a product owner. When the
product owner reviews the bug, he or she changes its state to approved or removed. If the product owner
approves the bug, he or she should set the Backlog Priority, Severity, and Area fi elds and should ensure
that the Steps to Reproduce fi eld is adequately detailed. The product owner can set the iteration to the
project, putting it on the product backlog, or to the current sprint, placing it on the sprint backlog. If
the product owner sets the state to removed, the bug will not be considered on any future sprint.

 Before the product owner can put a new bug into the sprint backlog, the team must estimate the effort
and then commit to fi xing that bug. The team ’ s commitment is necessary in order to mark the PBI as
done before the end of the sprint. To put the bug on the sprint backlog, the product owner does the
following:

 Sets the State fi eld to Committed

 Updates the Iteration fi eld to the current sprint

 If the product owner wants to put the new bug in the product backlog rather than in the sprint
backlog, the bug remains assigned to the product owner. It remains in the approved state but is not

➤

➤

c07.indd 180c07.indd 180 3/24/11 4:27:12 PM3/24/11 4:27:12 PM

committed, and the iteration is the project. The bug will be considered in future sprints, but it will not
be fi xed within the current sprint.

 Once a bug is committed, the team creates a task or tasks to fi x the bug and assigns the task(s) to
the team member(s) who will be fi xing it. Each of these new tasks is linked to the bug. Each task
can be assigned to a different team member, and each team member is responsible for updating the
Remaining Work fi eld.

 Entering Bugs

 You can enter a bug in Visual Studio, Excel, or SharePoint. Whichever tool you chose, the information
is stored in TFS so it is accessible to other tools and reports.

 To enter a bug in Visual Studio, you select Team ➪ New Bug. Then you fi ll in the following fi elds:

 Title

 Iteration

 Assigned To

 State

 Backlog Priority

 Effort

 Severity

 Area

 These fi elds are not all required in Visual Studio, but throughout the fl ow and life cycle of a bug, they
are all used. The following sections describe them in more detail, and Figure 7 - 3 shows the Visual
Studio screen where you enter bugs. You reach this screen by selecting Team ➪ New Bug.

➤

➤

➤

➤

➤

➤

➤

➤

 FIGURE 7 - 3: Bug entry in Visual Studio.

Tracking and Resolving Bugs and Tasks ❘ 181

c07.indd 181c07.indd 181 3/24/11 4:27:12 PM3/24/11 4:27:12 PM

182 ❘ CHAPTER 7 TRACKING QUALITY

 Title

 In the Title fi eld you enter a short description of the bug. The title you enter here will appear
on lists and reports in Excel, Visual Studio, and SharePoint. Shorter titles are better, as they are
more manageable in Excel, where you often print or view many columns. The title should convey
distinguishing features of the bug, such as “ crashes on low memory systems ” or “ can enter %
over 100 in discount fi eld. ”

 Iteration

 In the Iteration fi eld you enter the sprint in which the team committed to fi xing the bug. Bugs are
very similar to PBIs in that they go onto the product backlog when they are waiting to be scheduled.
TFS defaults to the project, indicating that it ’ s on the product backlog. A bug is moved to the sprint
backlog during sprint planning when the team sets this fi eld to the current sprint.

 It ’ s common for a team to fi x bugs as soon as it fi nds them, within the current sprint. In that case,
you set this fi eld to the current sprint and immediately create a task for someone to fi x the big.

 Assigned To

 In the Assigned To fi eld you select the name of the person responsible for prioritizing the bug within
the backlog — typically the product owner. It ’ s important to note that bugs are not assigned to team
members; tasks are. Each bug should spawn a task, and the task is then assigned to a team member.

 State

 In the State fi eld you track the current state of the bug. A bug can be in one of fi ve states, starting
with new and ending with either removed or done:

 New — The bug is entered into TFS. As a new bug, it hasn ’ t yet been reviewed by the team
or product owner, nor is it scheduled to be fi xed.

 Approved — The bug has been approved by the product owner and team. Collectively, the
team has estimated the effort (for example, in story points), classifi ed it into an area path, and
assigned a severity.

 Removed — The bug is no longer tracked. This is useful when you ’ re pruning the bug list
to remove duplicates, to consolidate similar bugs, or to simply remove the bugs that were
reported erroneously and will not be fi xed.

 Committed — The bug has been assigned to a sprint, and the team has committed to
fi xing it.

 Done — The bug is fi xed, and the product owner has tested and verifi ed it.

➤

➤

➤

➤

➤

 BUG AND PBI STATES

 You will notice that the state diagram and transitions defi ned for a bug are
identical to those defi ned for a PBI. This is because both PBIs and bugs are work
items in TFS, and they are treated the same way in Scrum for tracking purposes.

c07.indd 182c07.indd 182 3/24/11 4:27:13 PM3/24/11 4:27:13 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Backlog Priority

 In the Backlog Priority fi eld you enter the relative priority of fi xing the bug, compared to items in the
backlog. Because the backlog is typically sorted by priority in ascending order, a bug or PBI with a
lower priority value appears earlier in the list. Bugs default to priority1,000, which places them at
the bottom of the list.

 Eff ort

 In the Effort fi eld you enter the relative effort to fi x the bug. As with a PBI, this is not expressed
in hours or days, but it is a relative value of effort. Sometimes this is estimated as in story points
(complexity) or ideal days (which don ’ t exist in nature). It ’ s a best practice to use numbers in the
Fibonacci sequence to estimate PBIs, where you have greater resolution with small estimates than
you do with large estimates. This works for estimating PBIs because their complexity varies greatly.

 Severity

 In the Severity fi eld you enter the severity of the bug to the product, from critical to low priority.
The team uses this setting to prioritize work and schedule the bug for a sprint.

 Area

 In the Area fi eld you enter the component of the product in which the bug exists. This fi eld is
present on all work items in TFS, but it is especially important for bugs. It ’ s common for the product
owner to view the current bug list by area, since the area indicates the readiness or quality of a
specifi c component. It ’ s common for the team to view the current bug list this way as well, since
different people typically work on different areas of the product so they can quickly assess how their
components are doing.

 Viewing the Bug List

 Once you have begun capturing bugs using the basic attributes just described, you can easily
classify the bugs. By using a simple query in TFS, you can pull all the bugs into Excel to sort, fi lter, or
pivot them for useful aggregations. The following classifi cations are common:

 Open bugs by Area setting

 Open bugs by Severity setting

 Open bugs by Assigned To setting

➤

➤

➤

 Unlike with PBIs, the effort associated with a bug is generally small. It may be
estimated at 1 or 0.5.

Tracking and Resolving Bugs and Tasks ❘ 183

c07.indd 183c07.indd 183 3/24/11 4:27:14 PM3/24/11 4:27:14 PM

184 ❘ CHAPTER 7 TRACKING QUALITY

 You can create a list and chart in Excel of the open bugs by area, indicating how many are approved
and how many are committed. To do so, you open Visual Studio and follow these steps:

 1. Create a query for listing only the bugs in the current release. To do so, open the sprint backlog
query under the Current Sprint folder in the Team Explorer. (You ’ re starting with the sprint
backlog query because it has the fi lter defi ned almost the way you want it for this list.)

 2. Click Edit Query so you can change the query options.

 3. Change the Type of Query setting from Tree of Items to Flat List (Default).

 4. Next to Work Item Type, set Operator to � and set Value to Bug.

 5. Click the Add Columns button and add Area Path and Severity.

 6. Select File ➪ Save Sprint Backlog [editor] As to save the query you modifi ed. Name the query
Bugs in Current Sprint either in the My Queries folder or the Team Queries folder.

 7. Click Run to see the bugs in the current sprint. If you don ’ t have enough bugs entered, you
can change the Iteration fi eld to the project rather than the sprint. The resulting list should
look similar to the one shown in Figure 7 - 4.

 FIGURE 7 - 4: Bugs in the current sprint in Visual Studio.

c07.indd 184c07.indd 184 3/24/11 4:27:18 PM3/24/11 4:27:18 PM

 9. In Excel, select all the data, including column headers. For example, because there are 13
bugs listed in Figure 7 - 5, in this example, you would select cells A2 through H14.

 10. On the Insert tab in Excel, click PivotChart under the PivotTable button. Excel prompts you
for where to place the PivotChart.

 11. Choose to place the PivotChart in a new worksheet.

 12. From the Design tab in Excel, click Change Chart Type and choose Stacked Column.

 13. Drag Area Path from the Choose Fields to Add to Report section to the Axis Fields
(Categories) section.

 14. Drag State from the Choose Fields to Add to Report section to the � Values section. It will
default to Count of State.

 15. Drag State, for a second time, from the Choose Fields to Add to Report section to the Legend
Fields (Series) section.

 Excel should now look as shown in Figure 7 - 6, showing a chart with the number of approved and
committed bugs in the current sprint.

 FIGURE 7 - 5: The Bugs in Current Sprint query in Excel.

Tracking and Resolving Bugs and Tasks ❘ 185

 8. Select Open in Microsoft Offi ce ➪ Open the Query in Microsoft Excel 2007 or Later. Excel
opens, as shown in Figure 7 - 5.

c07.indd 185c07.indd 185 3/24/11 4:27:19 PM3/24/11 4:27:19 PM

186 ❘ CHAPTER 7 TRACKING QUALITY

 Now that you ’ ve seen the workfl ow for bugs and how to enter and query them, you ’ re ready to learn
to do the same for tasks.

 The Workfl ow for Tasks

 Tasks are work items that capture the work necessary to fi x a bug or to implement a PBI.
Individually, they represent the work associated with one component; collectively, they represent the
total amount of work in a sprint.

 As shown in Figure 7-7, tasks go through
a simple workfl ow. They begin in the new
state, move through in progress state, and
conclude in the done state.

 Entering Tasks

 You can enter a task in Visual Studio,
Excel, or SharePoint. Whichever tool you
chose, the information is stored in TFS and
is accessible to other tools and reports. To
enter a task in Visual Studio, you select
Team ➪ New Task. Figure 7 - 8 shows the task
entry screen that appears.

 FIGURE 7 - 6: An Excel PivotChart showing the bugs in the current sprint.

New

Work

started

Work

stopped

New task

Removed

Removed

Done

In progress

Finished More work

found

Removed

 FIGURE 7 - 7: Task workfl ow.

c07.indd 186c07.indd 186 3/24/11 4:27:20 PM3/24/11 4:27:20 PM

 Tasks store similar elements to bugs and PBIs for categorization and prioritization, and they also have
a few fi elds specifi c to tracking work:

 Remaining Work

 Activity

 Blocked

 Remaining Work

 In the Remaining Work fi eld you enter the amount of work remaining to complete the task. When
estimating remaining work, you should think in terms of time — that is, hours. This is different from
PBIs and bugs, where you estimate in story points or some other arbitrary measure.

➤

➤

➤

 FIGURE 7 - 8: The task entry screen.

 The minimum amount of time you should allocate for a task is 2 hours. Nothing ever takes less than
that. The maximum amount of time for a task should be 40 hours, or 1 week. Greater than that, and
you probably don ’ t know how long it will take, so it ’ s better to break the task into subtasks.

 Activity

 In the Activity fi eld you enter the type of work required for the task. The Scrum template allows the
following fi eld values:

 Design

 Development

➤

➤

 Tasks are hours. Hours are time. Time is money.

Tracking and Resolving Bugs and Tasks ❘ 187

c07.indd 187c07.indd 187 3/24/11 4:27:21 PM3/24/11 4:27:21 PM

188 ❘ CHAPTER 7 TRACKING QUALITY

 Deployment

 Documentation

 Requirements

 Testing

➤

➤

➤

➤

 Blocked

 You can leave the Blocked fi eld blank or enter Yes to indicate whether something is blocking the task
from being complete.

 The Unfi nished Work Query

 The unfi nished work query, shown in Figure 7 - 9, lists the PBIs, bugs, and tasks in the current sprint.
Together, these work items comprise the work remaining in the sprint. The unfi nished work query is
very useful when you are assessing how much work is remaining and how much of that work deals
with quality issues.

 You run this query by selecting Unfi nished Work under Team Queries in the Team Explorer.

 The Activity fi eld is helpful when you ’ re planning who will be working on what
and want to sort the list by activity. It ’ s also helpful for planning. For instance, if
you have 180 hours of tasks for deployment activities but only one person who
does deployment working for the remaining week of the sprint, you know you
need to adjust something.

 FIGURE 7 - 9: The unfi nished work query.

c07.indd 188c07.indd 188 3/24/11 4:27:26 PM3/24/11 4:27:26 PM

 TEST CASES

 Setting quality expectations is crucial for ensuring product acceptance. Expectations can be defi ned in
terms of performance, security, usability, or other attributes. Regardless of how quality expectations
are defi ned, they need to be measured. And for anything that is going to be measured, the team needs
to defi ne how, when, and by whom the testing will occur.

 Quality is associated with PBIs. For each PBI, you should defi ne its acceptance criteria and create one
or more test cases to verify that the PBI meets those criteria. Typically, a product manager defi nes the
acceptance criteria as he or she creates the PBI. Then, when a PBI is allocated to a sprint, the product
manager or team member creates test cases.

 Acceptance Criteria in a PBI

 Acceptance criteria should be at a similar level to the PBI description. More detail is helpful, but
with Scrum, the subtle communication of acceptance criteria occurs between the product owner and
the team member implementing the feature. Greater detail should be provided in the specifi c test cases
that are used to verify the PBI.

 You should enter acceptance criteria in each PBI. These criteria should be specifi c about how the
feature will be tested. If you have performance metrics that must be met or specifi c data validation
requirements, it is helpful to include that information here.

 Figure 7 - 10 shows an example of acceptance criteria in a PBI.

 FIGURE 7 - 10: Acceptance criteria in a PBI.

Test Cases ❘ 189

c07.indd 189c07.indd 189 3/24/11 4:27:31 PM3/24/11 4:27:31 PM

190 ❘ CHAPTER 7 TRACKING QUALITY

 Defi ning Test Cases

 Each PBI needs test cases to ensure that the software is exercised suffi ciently to ensure that it meets
its quality expectations. The more complex the feature, the more test cases you need to adequately
test it. You should use negative testing, where you test for failure conditions, in addition to positive
testing, where you test for success conditions.

 Each item in the product backlog needs to be tested after it is scheduled in a sprint and implemented.
A project with hundreds of PBIs will have hundreds of test cases. Some of them will be simple, and
some will be complex; some will contain automated steps, and others will be automated.

 There are a number of ways to create test cases, both from Visual Studio and from Microsoft Test
Manager. With either tool, it ’ s important to link the test case back to the PBI. The following are the
two methods for creating test cases:

 Visual Studio — With a PBI open in Visual Studio, go to the Test Cases tab and click the New
button. A dialog box appears, as shown in Figure 7 - 11, asking for very basic information. After
you provide this information and click OK, Visual Studio opens the New Test Case window
with the PBI linkage already populated.

➤

 FIGURE 7 - 11: Creating a test case from a PBI in Visual Studio.

 Microsoft Test Manager — Right - click Work Items in the Team Explorer and select
New Work Item ➪ Test Case. If you use this method rather than creating the test case from
the PBI, you have to manually link the two work items (the PBI and the test case).

 You can link an existing PBI to an existing test case in Visual Studio from either item by using one of
two methods:

 From an existing PBI — Select the Test Cases tab in Visual Studio and click the Link To button.
A dialog appears, and in it you can create or browse queries that will search for test case items.

 From an existing test case — Select the Tested Backlog Items tab in Visual Studio and click
the Link To button. A dialog appears, and in it you can create or browse queries that will
search for PBIs.

➤

➤

➤

c07.indd 190c07.indd 190 3/24/11 4:27:32 PM3/24/11 4:27:32 PM

 Regardless of how you create a test case and link it to the PBI, you need to record some basic information
about it, as shown in Table 7 - 1. Figure 7 - 12 shows the Visual Studio screen for entering a test case.

 ATTRIBUTE DESCRIPTION

 Title The name of the test case that appears on reports and queries.

 Iteration The name of the project, release, or sprint to which this test case applies.

 Area The component of the system to which this test case applies.

 Assigned To The person responsible for defi ning the test case.

 State The current state of the test case. It defaults to Design, meaning that the test

case must be designed. The next State setting in the workfl ow is Ready, which

means that the test is ready to be run. Finally, if the test is no longer valid, it can

be set to Closed.

 Priority The relative priority of the test case, ranging from 1 to 4 and defaulting to 2.

A lower number indicates a higher priority.

 Automation Status An indication of whether this is a manual or automated test. The default is

Not Automated. Another initial value is Planned, meaning that there will be

an automated test associated with this test case. Once you associate an

automation class with the test case, the status is Automated.

 Description (on the

Summary tab)

 A textual description of the test case.

TABLE 7-1: Essential Test Case Attributes

 FIGURE 7 - 12: Entering a test case in Visual Studio.

Test Cases ❘ 191

c07.indd 191c07.indd 191 3/24/11 4:27:32 PM3/24/11 4:27:32 PM

192 ❘ CHAPTER 7 TRACKING QUALITY

 The Workfl ow for Test Cases

 Figure 7 - 13 shows the workfl ow associated
with a test case. When a test case is
fi rst identifi ed, it is in the design state,
meaning that the test must be designed and
implemented. After a product owner or team
member designs the test, the test case enters
the ready state, meaning that the test is ready
to be run. It remains in the ready state for the
duration of the project, until the test is no
longer needed, at which point it is placed in
the closed state.

 Test cases in the design state represent potential risk to the project. They represent PBIs that need
to be tested but for which nobody has completely defi ned test cases. It may not be a very large risk,
because the PBIs may not be built yet, but when they are built and ready for testing, additional work
must be done before testing can begin.

 To fi nd the list of test cases that are still in the design state, you simply run the predefi ned test cases
query in the Current Sprint folder of Team Queries and then sort on the State fi eld. Figure 7 - 14
shows this query.

Design

Closed Ready

UpdatedDuplicate

Reactivated Completed

Duplicate

Reactivated

New test case

 FIGURE 7 - 13: Test case workfl ow.

 FIGURE 7 - 14: The test cases query.

 It ’ s okay to have many test cases in the design state early in a release. But as the iterations progress,
more test cases should be in the ready state. Figure 7 - 15 illustrates a theoretical project in which test

c07.indd 192c07.indd 192 3/24/11 4:27:33 PM3/24/11 4:27:33 PM

 Defi ning Manual Steps for a Test Case

 In Visual Studio Ultimate Edition and Visual Studio Test Professional Edition, you can defi ne
manual steps for a test. In other editions of Visual Studio, you must specify the test steps in the
description of the test case. This section applies to Visual Studio Ultimate and Visual Studio
Test Professional.

 You enter manual steps for a test case into Test Manager. You can access the screen to enter manual
steps in one of two ways:

 From the test case in Visual Studio — Go to the Steps tab and click the Open for Edit button.

 From Test Manager — Launch Test Manager from the Start menu in Windows. Open a test
plan and click the Add button in the right side of the window. Test Manager brings up a
query for all test cases not associated with the test plan. Choose the test case you want to add
and click OK. Then open the test case.

 Regardless of the method you use here, the result is the screen shown in Figure 7 - 16.

 In addition to defi ning the manual steps, you can reference shared steps by clicking the Insert Shared
Steps button. TFS launches a window and displays the shared steps, which you can include in this
test case.

➤

➤

 FIGURE 7 - 15: A test case readiness report.

cases are created early and initialized in the design state and then marked as ready when they are fully
defi ned with manual and automated steps.

Test Cases ❘ 193

c07.indd 193c07.indd 193 3/24/11 4:27:34 PM3/24/11 4:27:34 PM

194 ❘ CHAPTER 7 TRACKING QUALITY

 Defi ning Shared Steps for Test Cases

 If you have a sequence of steps that is used in many test cases, you can save yourself some time by
defi ning the sequence once and then referencing it from test cases. You store this sequence of steps
in TFS as a shared steps work item. Doing this is a convenient way to ensure consistency across
test cases.

 FIGURE 7 - 16: Adding manual steps to a test case.

 For example, in a public - facing web application, portions of the site might require authentication. In
those parts of the site, the user must answer a challenge, such as providing the correct username and
password, and then is granted access. This process might have the following three steps:

 1. Click the Sign In link in the upper right of the screen.

 2. Enter the username Shopper and the password RichGuy .

 3. Click the Sign In button.

 In a shared steps work item, you specify the sequence of steps that a team member will follow as
part of validating a test case. For each step, you specify instructions for carrying out the step and the
expected result. When the test is run later, the team member will be prompted to run each step and
verify that the result is as expected.

 Like manual steps, shared steps are available only in Visual Studio Ultimate and
Visual Studio Test Professional, so this section applies only to those versions.

c07.indd 194c07.indd 194 3/24/11 4:27:34 PM3/24/11 4:27:34 PM

 You can create a shared steps defi nition in either Test Manager or Visual Studio, but you can only
edit the steps within Test Manager. When using Visual Studio, you follow these steps:

 1. Right - click Work Items in the Team Explorer and select New Work Item ➪ Shared Steps.

 2. Fill in the fi elds. Only Title is required.

 3. Click Save Work Item to save the shared step defi nition. If you don ’ t save the shared step
defi nition, you won ’ t be able to edit it in Test Manager. Figure 7 - 17 shows the shared step
created in Visual Studio before it is edited in Test Manager.

 4. From the shared steps work item in Visual Studio (see Figure 7 - 17), click the Open for Edit
button. The Test Manager screen appears, and you can edit the shared steps.

 To create shared steps from Test Manager, follow these steps:

 1. From a test case, select a set of steps by Shift+clicking the steps.

 2. Right - click these steps and select Create Shared Step. The Test Manager Shared Steps edit
screen appears, as shown in Figure 7 - 18.

 FIGURE 7 - 17: A shared steps work item in Visual Studio.

 In Figure 7 - 17, note that there are very few data elements captured. Shared steps
are more of a productivity tool than a tracking element for Scrum, so they are not
associated with iterations, PBIs, and so on.

Test Cases ❘ 195

c07.indd 195c07.indd 195 3/24/11 4:27:39 PM3/24/11 4:27:39 PM

196 ❘ CHAPTER 7 TRACKING QUALITY

 Using Automated Steps for Test Cases

 Most components you build in Visual Studio will have automated tests. Some will have just a
few automated tests, and others will have hundreds or thousands of them. Visual Studio has very
sophisticated tools for creating automated tests — from simple unit tests that validate individual
components or assemblies to coded user interface tests that verify onscreen data and actions to
performance tests.

 Component tests in Visual Studio are generally defi ned in code. They are code artifacts that exercise
specifi c technical features of a system and validate those features against expected results. Visual
Studio ships with templates where you replace the stubbed code with your own testing logic. The
tests are attributed with [TestMethod] so they can be run as part of the Visual Studio testing
infrastructure. The results of the tests are stored in the fi le system, either on the client if tests are
executed there or on the build server if tests are queued and built centrally.

 Manual tests, on the other hand, are generally stored in SQL and managed by TFS, not in code. They are
accessible from the Team Explorer, from Visual Studio, and from Test Manager. The Test Manager tool
that ships with Visual Studio Ultimate and Visual Studio Test Professional deals mostly with manual tests.

 FIGURE 7 - 18: A shared steps work item in Test Manager.

 You can also create a shared steps defi nition from Visual Studio or Test
Manager. Regardless of how you create it, you must edit the actions and results in
Test Manager.

c07.indd 196c07.indd 196 3/24/11 4:27:44 PM3/24/11 4:27:44 PM

 Automated steps are the intersection between the component - level testing infrastructure of Visual
Studio and the system - level testing infrastructure of TFS. You defi ne component - level tests in
Visual Studio and then reference those tests in TFS. When you run test scripts in Test Manager, Lab
Manager communicates with System Center Virtual Machine Manager (VMM) to start a virtual
machine to run the component - level tests.

 Automated testing and Agile testing methodologies are beyond the scope of this book.

 USING MICROSOFT TEST MANAGER TO DEFINE TEST PLANS

 Now that you ’ ve looked at defi ning test cases in Visual Studio and shared steps across Visual Studio and
Test Manager, you can examine Test Manager in more detail. Test Manager has four major sections:

 Plan — In this section, you defi ne your test plans, test suites, and test cases. It has tools for
linking test cases to PBIs and assigning them to testers. This is the main section that you ’ ll
use for managing and tracking items for sprints.

 Test — In this section, you run the tests. It works with Lab Manager to start virtual machines
in which the tests are run. It is optimized for running test and verifying bugs.

 Track — This is an alternate user interface to Visual Studio ’ s query screens and some build -
 management functions. In this section you can access all the personal and team queries and
defi ne new ones.

 Organize — This section provides an overview of the testing environment and has some
reporting for showing the status of tests.

 Figure 7 - 19 shows the startup screen of Microsoft Test Manager, showing a test plan titled Sprint 1.
From the top menu, you can navigate to the four primary sections just described.

➤

➤

➤

➤

 FIGURE 7 - 19: Microsoft Test Manager.

Using Microsoft Test Manager to Defi ne Test Plans ❘ 197

c07.indd 197c07.indd 197 3/24/11 4:27:49 PM3/24/11 4:27:49 PM

198 ❘ CHAPTER 7 TRACKING QUALITY

 Test Manager provides tools for defi ning, organizing, and reporting on test plans. The goal of test
planning is to group specifi c test cases into larger sets that can then be applied and measured at
certain milestones within a project. Rather than track individual test cases, you can track the status
of your test plan. Test Manager enables a team to organize test plans based on PBIs.

 A test plan in Test Manager is a collection of test suites. A test suite is a collection of test cases.
 Test cases are used to verify the correctness of PBIs.

 For a Scrum project, you can align test plans to sprints. At the beginning of a sprint, after the team
has committed to PBIs in the sprint planning meeting, you should verify that you have test cases
defi ned for each PBI. Then you can use Test Manager to defi ne a test plan for the sprint.

 Figure 7 - 20 shows the hierarchy of test plans, test suites, and test cases. The following sections
discuss test plans and test suites in more detail. For information on creating test cases, see the
 “ Defi ning Test Cases ” section earlier in this chapter.

 You can defi ne test cases in Test Manager or in Visual Studio.

Test plan
1

1

�

�

1 �
Test suite Test case

 FIGURE 7 - 20: Test plans, test suites, and test cases.

 From a data tracking perspective, Test Manager is a superset of Visual Studio. While Visual Studio
enables tracking and reporting at the test case level, Test Manager enables grouping individual test
cases or PBIs for sprint - level planning. Another distinction is that whereas Test Manager is more
about tracking and running tests, Visual Studio is more focused on the engineering.

 A test case lists the specifi c steps that the product owner or team members will follow to verify that a
PBI meets expectations. Your team can defi ne test cases in either Test Manager or Visual Studio. You
can link test cases to PBIs so that their status can be tracked together.

 Test cases are not unique to Scrum, and most teams are familiar with test cases. Each PBI should have
at least one test case, but most PBIs have dozens of them.

 In Test Manager, you can group PBIs or test cases into test suites, which are selected via queries. The
purpose of a test suite is to group test cases together so they can be tracked as a unit. A test suite is
really nothing more than a collection of test cases.

 By including test cases in test suites through queries, you can bring the test cases in from TFS
automatically. A good starting point for this technique is to query by area path or sprint to create test
suites that cover the entire area path or sprint, respectively.

c07.indd 198c07.indd 198 3/24/11 4:27:50 PM3/24/11 4:27:50 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Organizing Test Plans

 Test plans provide structure for organizing test cases based on PBIs. Each test plan typically
corresponds to a sprint and encompasses all PBIs for the sprint. Alternatively, a test plan can organize
test cases based on system function, such as security or performance, rather than correspond to a
sprint. In that case, the test plan will span sprints because the PBIs are addressed in different sprints.

 At the start of each sprint, a team should create a test plan that will be executed at the end of the
sprint. Defi ning the test plan up front makes it clear exactly what will be tested. The test plan should
include all of the tests associated with all the PBIs that are included in the sprint.

 You create a test plan in Test Manager from the testing
center. When Test Manager is launched, the dialog box
shown in Figure 7 - 21 appears. You can use this dialog
to add and delete test plans.

 When a team creates a test plan, it defi nes the
properties of the plan. The test plan properties
include basic information about the test plan, such as
when it starts and ends and its state. These attributes
can be helpful in tracking progress with the test plan
progress report. For instance, if a test plan is active,
then its results in the test plan progress report are
important. If the test plan is not active, you can fi lter
out its results in the test plan progress report.

 Figure 7 - 22 shows the properties of a test plan, which you access by clicking the Properties link at
the top left of Test Manager. You can also access test plans from the Test Plan Manager link on the
Organize tab.

 FIGURE 7 - 21: Creating a test plan in Test Manager.

 FIGURE 7 - 22: Test plan properties.

Using Microsoft Test Manager to Defi ne Test Plans ❘ 199

c07.indd 199c07.indd 199 3/24/11 4:27:55 PM3/24/11 4:27:55 PM

200 ❘ CHAPTER 7 TRACKING QUALITY

 More important than the properties, however, are the actual contents of the test plan. You access the
test plan contents by clicking the Contents link in the Plan screen, which is available from the Plan
tab in Test Manager. Figure 7 - 23 shows the Plan screen, which displays the test suites and test cases.
Test suites are just a further grouping construct to organize PBIs or test cases.

 FIGURE 7 - 23: The test plan Contents screen.

 Organizing Test Suites

 Using test suites is a convenient way to group test cases and the PBIs that they validate. For instance,
using the area path to identify all PBIs that perform a common function is a natural grouping because
the PBIs are related in the product. Filtering it down further, a test suite may encompass just those
PBIs that are being implemented within a sprint.

 You can add test suites in Test Manager by clicking the Add Requirements button on the test plan
Contents screen (Figure 7 - 23). When you click the Add Requirements button, Test Manager opens
a screen for selecting PBIs (see Figure 7 - 24). You can use this screen to specify a query for searching
PBIs to include in the test suite. In this example, all PBIs under the Orders area path are being
selected for inclusion in the test case. With the PBIs selected, you can click the Add Requirements to
Plan button to add these PBIs to the test suite and to reference the test cases linked to those PBIs.

c07.indd 200c07.indd 200 3/24/11 4:27:56 PM3/24/11 4:27:56 PM

 Figure 7 - 25 shows a test plan named Sprint 1 with two test suites: Home Page Functions and
Orders. To defi ne these test suites, you include each PBI within either the Home Page Functions or
Orders area path. In this example, the fi rst PBI in Orders is named Order History Search, and it has
four test cases.

 FIGURE 7 - 24: Selecting items for a test suite.

 The word requirements in Test Manager may not be the proper term for Scrum.
Although its terminology isn ’ t Scrum specifi c, Test Manager is useful with any
methodology, including Scrum.

 In Agile development, requirements are captured as user stories. And in Scrum, user
stories are tracked as PBIs. So, to organize a test plan around PBIs, you use the
Add Requirements to Plan button. This way, you can add PBIs to the test suite and
then add test cases to the test suite.

Using Microsoft Test Manager to Defi ne Test Plans ❘ 201

c07.indd 201c07.indd 201 3/24/11 4:27:57 PM3/24/11 4:27:57 PM

202 ❘ CHAPTER 7 TRACKING QUALITY

 SUMMARY

 Great software has two common elements: usefulness and predictability. Test cases measure
usefulness, verifying that the product performs the intended function and meets expectations. Bugs
are items that must be fi xed within the product so it functions correctly and reliably. By fi nding and
tracking bugs, you can measure predictability.

 You count and track bugs in TFS. Your team can fi x bugs within the current sprint or defer
them to a later sprint. In either case, the bugs are added to the backlog, where they’re estimated
and classifi ed like other PBIs. After you commit to fi xing a bug, you create the task. Tasks track
remaining work (in hours or days), as opposed to PBIs, which track relative effort (for example, in
story points).

 You count and track test cases in TFS by using a combination of Visual Studio and Test Manager. In
Visual Studio, there are two built-in reports for tracking test cases: test plan readiness and test case
progress. Test Manager enables you to organize test cases into test suites and test plans for greater
control when handling thousands of individual tests. Test Manager also includes a sophisticated
manual testing tool you can use to script and later automate manual tests. Team members can use
this tool to execute manual tests and record whether the system passed or failed each test.

 In Chapter 8, you’ll see how it all comes together in a release.

 FIGURE 7 - 25: Test Manager test plan contents.

 In a production environment, there may be hundreds of PBIs and thousands of test
cases, so organization is quite important. This is where test suites come in handy.

c07.indd 202c07.indd 202 3/24/11 4:28:02 PM3/24/11 4:28:02 PM

Running a Release

 WHAT ’ S IN THIS CHAPTER?

 Creating releases.

 Developing the product backlog: user stories and tasks.

 Entering the product backlog.

 Ensuring product backlog and user story success.

 Linking PBIs and tasks.

 Understanding user story reports.

 In Chapter 7, you learned about tracking quality in Team Foundation Server (TFS). In this
chapter, you will learn how to create a release in TFS. One of the main activities involved in
creating a release is entering product backlog items (PBIs) in the product backlog. The chapter
provides detailed examples, with screenshots of how to enter PBIs using TFS, the web portal,
and Excel. In addition, this chapter contains a list of success and failure patterns for your
product backlog and user stories as well as a description of how to link PBIs and tasks, and a
discussion of the PBI reports that are available in TFS.

 CREATING A RELEASE

 Simply creating a team project creates several releases. However, you sometimes need to create
additional releases or modify existing releases; in such cases, you can use the process described
here. To create a new release in TFS, follow these steps:

 1. Right - click the project in Visual Studio ’ s Team Explorer and select Team Project
Settings ➪ Areas and Iterations, as shown in Figure 8 - 1. The Areas and Iterations
dialog appears.

➤

➤

➤

➤

➤

➤

 8

c08.indd 203c08.indd 203 3/24/11 4:28:29 PM3/24/11 4:28:29 PM

204 ❘ CHAPTER 8 RUNNING A RELEASE

 2. Click the Iteration tab in the Areas
and Iterations dialog. This tab should
look similar to the one shown in
Figure 8 - 2.

 3. Click the green plus sign icon (+) in
the upper - left corner of the Iteration
tab. Visual Studio adds a new release
entry at the end of the list of releases.

 4. Type Release 5 or something similar
as the name of the new entry. Your
screen should now look as shown in
Figure 8 - 3.

 5. Select the new release that you just
created and click the green � icon
again to create a sprint for this
release. Each time you do this, TFS
adds another new sprint entry for
which you should provide a name
(see Figure 8 - 4).

 FIGURE 8 - 1: Creating a new release in Visual Studio.

 FIGURE 8 - 2: The Areas and Iterations dialog.

c08.indd 204c08.indd 204 3/24/11 4:28:32 PM3/24/11 4:28:32 PM

 You have now created a new release. This release will be available in all the reports and items
in TFS.

 DEVELOPING THE PRODUCT BACKLOG

 As discussed throughout this book, one of the key artifacts in Scrum is the product backlog. A high -
 quality, well - groomed backlog is absolutely critical to the success of a Scrum team. A great team
with a bad backlog is a team that will quickly develop the wrong software.

 The product backlog usually consists of user stories; it may also include non-functional requirements.
Each PBI can have tasks. The product owner develops user stories and prioritizes them based on their
business value. The team estimates the effort (typically in story points, as discussed in Chapter 4)
required to complete user stories and determines the technical tasks required to fi nish the PBI. The
team estimates how much time each task will take, typically in hours. The following sections discuss
user stories and tasks in more detail. There is also a section on verifying that you have created a
SharePoint portal that is associated with your team project.

 FIGURE 8 - 3: Adding a new release in TFS. FIGURE 8 - 4: Creating a new sprint in TFS.

 THE IMPORTANCE OF USER STORIES

 Using user stories is not the only way to create PBIs, but using them is a recom-
mended practice and a common way to form PBIs. Because most Scrum teams use
user stories to organize the backlog, learning what constitutes a good user story
and knowing how to create a backlog from user stories is of great importance.

Developing the Product Backlog ❘ 205

c08.indd 205c08.indd 205 3/24/11 4:28:33 PM3/24/11 4:28:33 PM

206 ❘ CHAPTER 8 RUNNING A RELEASE

 Creating User Stories

 User stories typically have a three - part structure that involves a role, a feature, and a benefi t. The
form of a user story is “ As a < role > , I want to < feature > so that < benefi t > . ” For example, “ As a
salesperson, I want to enter my leads so that I remember to contact them. ”

 Some teams use just the role and the feature in a user story, not the benefi t.

 Despite the similarity of their names, user stories are very different from use cases. A use case specifi es the
interactions among the actors in a human – machine system. The following is an example of a use case:

 1. The user types in a credit card number.

 2. The system verifi es the credit card number.

 3. The system charges the cost of the product to the credit card.

 A user story is also quite different from the requirements documents and from specifi cations created
by non - Scrum teams. The Nokia Test, a test a team can use to determine whether it is doing Scrum,
makes this clear. One of the statements in the Nokia Test is “ The iteration must start before the
specifi cation is complete. ” The Nokia Test originally had eight statements and now has nine:

 Iterations must be time - boxed to less than four weeks.

 Software features must be tested and working at the end of each iteration.

 An iteration must start before specifi cation is complete.

 The team must have a product owner.

 The product backlog should be prioritized based on business value.

 The team should create estimates for the product backlog.

 The team should generate burndown charts and know its velocity.

 No one (not even project managers) should disrupt the work of the team.

 The team should achieve a hyperproductive state.

➤

➤

➤

➤

➤

➤

➤

➤

➤

 The March 25, 2009, version of the Nokia Test is available from Jeff Sutherland
at http://jeffsutherland.com/nokiatest.pdf .

 The Nokia Test has at least four statements that are relevant to user stories and tasks:

 The team must have a product owner — The product owner must know Scrum and have a list
of stories, prioritized based on business value, at the start of the sprint planning meeting. The
product owner should have a road map or release backlog based on the team ’ s velocity.

➤

c08.indd 206c08.indd 206 3/24/11 4:28:34 PM3/24/11 4:28:34 PM

Developing the Product Backlog ❘ 207

 The product backlog should be prioritized based on business value — Ideally, the product
owner should check whether the business value is actually achieved when the team delivers a
PBI. For example, imagine that the product owner prioritizes the following user story: “ As a
customer, I want to have an excellent help system so that I can learn how to use the product
quickly and easily. ” The product owner believes that implementing this user story will cause
a 10% decline in calls to the customer service center. Once this user story is delivered, the
product owner should have a metric that tracks calls to the customer service center, and this
person should analyze the impact that this user story has on the number of calls. Based on this
data, the product owner should have a better understanding of what creates business value.

 The team should create estimates for the product backlog — Only the team should
create estimates. After all, only the team understands how long a technical task will take.
Management should not impose deadlines on the team. Doing so radically increases the
amount of dysfunction on the team. The fudge phenomenon is an example of such a
dysfunction, and it is illustrated in Figure 8 - 5.

➤

➤

VP of
Engineering

Dev
Manager

Dev
Manager

Developer

Fudge

Fudge2

Tester Developer Tester

 FIGURE 8 - 5: An example of the fudge phenomenon.

 In this example, the development manager on the second level of the organization chart
demands that his developer and testers meet a deadline. Because the developer and testers
understand that they will be punished if they overshoot the deadline, they “ fudge, ” or pad,
the estimate. The development manager in turn fudges the already fudged estimate when
presenting a fi nal schedule to the vice president of engineering. Over time, the vice president
of engineering learns that he is constantly getting fudged estimates, so he begins to ignore
the estimates provided by his own development managers. Consequently, as he generates
new deadlines, he reduces the proposed deadlines by what he considers a suitable amount.
This leads to a battle in the organization over planning and reduces the transparency and
visibility of all actions in the organization.

 The team should generate burndown charts and know its velocity — The team indicates
how many hours are remaining for each task in the sprint backlog. The burndown chart is
a daily plot of the total number of hours of work remaining in the sprint.

 In Scrum, at no point does the team identify how many hours of work it has done. This is critically
important: Keeping track of hours provides a way of controlling and punishing the team, which is

➤

c08.indd 207c08.indd 207 3/24/11 4:28:48 PM3/24/11 4:28:48 PM

208 ❘ CHAPTER 8 RUNNING A RELEASE

inconsistent with the values of Scrum. Note that there is no way to tell how many hours of work
a team has done by looking at the burndown chart. For example, suppose the burndown chart
shows that the team has 100 hours of work remaining in the sprint on Monday and 80 hours of
work remaining in the sprint on Tuesday. Concluding that the team worked 20 hours on Monday is
incorrect. The team may have worked 50 hours or 10 hours. For example, if the team discovers that
the tasks were more diffi cult than it originally estimated, it will need to do more than 20 hours of
work to reduce the number of hours remaining from 100 hours to 80 hours.

 Tasks

 Tasks do not conform to any particular structure. The following are some examples of technical tasks:

 Investigate bug #XY - 1234.

 Develop user tests.

 Write class foobar .

 Upgrade the database.

 Install a continuous integration server.

 The team estimates how much work is remaining on each of these technical tasks.

 The team updates the amount of work remaining every day. For example, say that a developer
starts to work on the task shown in Figure 8 - 6. This task shows that there are fi ve hours of work
remaining on the task. At the end of his work on that task, the developer believes that he has three
hours of work remaining on the task. He updates the hours to refl ect this, as shown in Figure 8 - 7.

➤

➤

➤

➤

➤

 FIGURE 8 - 6: A task with fi ve hours of work remaining.

c08.indd 208c08.indd 208 3/24/11 4:28:49 PM3/24/11 4:28:49 PM

Developing the Product Backlog ❘ 209

 Note that the State fi eld of the task in Figures 8 - 6 and 8 - 7 is set to To Do. TFS does not require
tasks to be set to In Progress in order for time to be updated.

 FIGURE 8 - 7: A task with three hours of work remaining.

 If a team does not update the State fi eld of every task, all reporting that depends
on the state will be incorrect.

 Verifying That You Have a SharePoint Portal

 As part of the release setup process, you should ensure that you have a SharePoint portal associated
with a team project. To ensure that you have a SharePoint portal associated with a team project,
follow these steps:

 1. In Visual Studio, select Team Project Settings ➪ Portal Settings, as shown in Figure 8 - 8. The
Project Portal Settings dialog appears.

c08.indd 209c08.indd 209 3/24/11 4:28:50 PM3/24/11 4:28:50 PM

210 ❘ CHAPTER 8 RUNNING A RELEASE

 2. On the Project Portal tab of the Project Portal Settings dialog, ensure that Enable Team
Project Portal is checked, as shown in Figure 8 - 9.

 3. Click the URL link to visit the project portal.

 FIGURE 8 - 8: Checking whether you have a SharePoint portal associated with a project.

 FIGURE 8 - 9: Enabling the team project portal.

c08.indd 210c08.indd 210 3/24/11 4:28:55 PM3/24/11 4:28:55 PM

 ENTERING PBIS

 There are three main ways to enter PBIs: entering PBIs in Excel, entering PBIs using the SharePoint
portal, and entering items directly into TFS.

 Entering PBIs in Excel

 This section explores various ways to use Excel in conjunction with Visual Studio. First, you ’ ll
see how to export the backlog from TFS to Excel, edit the backlog in Excel, and then import
the edited backlog into TFS. Next, you ’ ll learn how to send the results of a query in Visual Studio
to Excel. Then, you ’ ll see how to create items in Excel and export them to TFS. Finally, you ’ ll learn
how to use PivotTables to analyze the backlog.

 Exporting Items from Excel and Importing Items to Excel

 The simplest way to use Excel to add items to TFS is to export the relevant list of items to Excel,
modify the items in Excel, and then publish the modifi cations back to TFS. To illustrate this
workfl ow, follow these steps to work with the sprint backlog shown in Figure 8 - 10:

 FIGURE 8 - 10: A sprint backlog with Run Example Queries as the last task on the list.

 1. Export the backlog to Excel. To do so, right - click Sprint Backlog in the Team Explorer and
then click Open in Microsoft Excel (Tree), as shown in Figure 8 - 11. TFS opens Excel and
creates a table similar to the one shown in Figure 8 - 12.

Entering PBIs ❘ 211

c08.indd 211c08.indd 211 3/24/11 4:28:56 PM3/24/11 4:28:56 PM

212 ❘ CHAPTER 8 RUNNING A RELEASE

 FIGURE 8 - 11: Exporting a sprint backlog to Excel.

 FIGURE 8 - 12: The sprint backlog in Excel.

c08.indd 212c08.indd 212 3/24/11 4:28:56 PM3/24/11 4:28:56 PM

 2. Click the line below the last item of the Excel table and enter a new task.

 4. To publish this new list back to TFS, click the Publish button in the upper - left corner of
the Team tab in Excel. TFS automatically refreshes after Excel publishes to it, and you
now see an ID for your new task. In Figure 8 - 14, the ID on line 28 is now 403; it was
blank previously.

 You cannot enter an ID in the Excel table. This is a read - only fi eld that Excel
creates.

 3. As in the example shown in Figure 8 - 13, add the following fi elds on row 28:

 Title 2 (column C): Verify page load speed

 Backlog Priority (column D): 10

 Assigned To (column E): Michael de la Maza (chosen from a pull - down menu)

 State (column F): To Do (chosen from a pull - down menu)

 Remaining Work (column G): 20

 Work Item Type (column I): Task (chosen from a pull - down menu)

➤

➤

➤

➤

➤

➤

 FIGURE 8 - 13: Adding a new task to line 28.

Entering PBIs ❘ 213

c08.indd 213c08.indd 213 3/24/11 4:28:57 PM3/24/11 4:28:57 PM

214 ❘ CHAPTER 8 RUNNING A RELEASE

 5. To verify that Excel has published successfully to TFS, rerun the sprint backlog query in
TFS. You see that the new task (“ 403 Verify page load speed ”) now appears at the bottom
of the sprint backlog, as shown in Figure 8 - 15.

 FIGURE 8 - 14: Excel performs an automatic refresh and causes the ID fi eld on

line 28 to update.

 FIGURE 8 - 15: TFS shows the new task at the bottom of the sprint backlog

after you rerun the sprint backlog query.

c08.indd 214c08.indd 214 3/24/11 4:29:02 PM3/24/11 4:29:02 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

 Sending Query Results to Excel

 In addition to working with the product backlog in Excel, you can also send many TFS queries
to Excel. For example, to send a work in progress query to Excel, right - click Work in Progress in
the Team Explorer and select Open in Microsoft Excel (Flat) from the context menu, as shown
in Figure 8 - 16. Excel opens a table similar to the one in Figure 8 - 17.

 FIGURE 8 - 16: Exporting a query into Excel.

 FIGURE 8 - 17: A table of items in Excel that have been exported from TFS.

Entering PBIs ❘ 215

c08.indd 215c08.indd 215 3/24/11 4:29:03 PM3/24/11 4:29:03 PM

216 ❘ CHAPTER 8 RUNNING A RELEASE

 Creating Items in Excel

 You have just seen how to enter items in TFS by fi rst exporting an existing set of items, such as the sprint
backlog or a query, to Excel, editing the list in Excel, and then publishing the list back to TFS. You can
also start within Excel and either pull data from TFS and publish the modifi ed data to TFS or, without
pulling in data from TFS, you can enter a new item. To enter a new item, follow these steps:

 1. Launch Excel and click the Team tab. Figure 8 - 18 shows the result.

 FIGURE 8 - 18: The Team tab in Excel, when no items have been exported from TFS.

 2. To enter a new item, click the New List button in the upper - left corner of the Team tab.
Excel asks which server you want to connect to, as shown in Figure 8 - 19.

 3. Choose a server to connect to and click Connect. You then see the New List dialog, as
shown in Figure 8 - 20.

 FIGURE 8 - 19: Connecting to a TFS server

from Excel.

 FIGURE 8 - 20: Inputting a new list of items

from Excel.

c08.indd 216c08.indd 216 3/24/11 4:29:04 PM3/24/11 4:29:04 PM

 5. To check that this new PBI has been entered properly, click the Publish button in the Team
tab and then run the PBI query in TFS. As you can see in Figure 8 - 22, the new PBI appears
in TFS, with ID number 343.

 FIGURE 8 - 21: Entering a new item from Excel without fi rst importing items from TFS.

 4. To create a new item, click Input List in the New List dialog. Click OK, and the screen
shown in Figure 8 - 21 appears.

 If you select Query List in the New List dialog, Excel will import a list of items
from Excel.

Entering PBIs ❘ 217

c08.indd 217c08.indd 217 3/24/11 4:29:05 PM3/24/11 4:29:05 PM

218 ❘ CHAPTER 8 RUNNING A RELEASE

 Using PivotTables to Analyze the Backlog

 One of the advantages of exporting items to Excel is that you can use all of Excel’s functionality to
explore the data in TFS. One of the most useful functions is the PivotTable. You can, for example,
export the sprint backlog into Excel and use a PivotTable to further analyze the data. To do this,
follow these steps:

 1. Run the sprint backlog query and then click Open in Microsoft Offi ce ➪ Open Query in
Microsoft Excel, as shown in Figure 8 - 23. TFS exports the data to Excel.

 2. Click Table Tools in Excel and then select Summarize with PivotTable from the left end of
the Tools tab (see Figure 8 - 24). Excel prompts you with the Create PivotTable dialog, as
shown in Figure 8 - 25.

 FIGURE 8 - 22: A new PBI entered in Excel.

 When you enter an item, the State and Reason fi elds are populated automatically.
TFS prevents you from, for example, entering a bug and indicating that work has
been completed. All new items must start in the new or to do state, and this Excel
functionality enforces this restriction.

c08.indd 218c08.indd 218 3/24/11 4:29:10 PM3/24/11 4:29:10 PM

 FIGURE 8 - 23: Exporting a sprint backlog to Excel.

 FIGURE 8 - 24: Converting a table in Excel to a PivotTable.

 FIGURE 8 - 25: The Create PivotTable dialog.

Entering PBIs ❘ 219

c08.indd 219c08.indd 219 3/24/11 4:29:15 PM3/24/11 4:29:15 PM

220 ❘ CHAPTER 8 RUNNING A RELEASE

 3. In the Create PivotTable dialog, accept the defaults by clicking OK. Excel creates a new
worksheet with the standard PivotTable options. The worksheet in Figure 8 - 26 shows the
amount of remaining work and the number of items blocked for three people who have been
assigned tasks.

 FIGURE 8 - 26: An Excel PivotTable constructed from TFS data.

 Entering PBIs Using the SharePoint Portal

 A second way to enter PBIs into TFS is through the SharePoint portal. Your SharePoint portal
should look similar to the one shown in Figure 8 - 27.

c08.indd 220c08.indd 220 3/24/11 4:29:16 PM3/24/11 4:29:16 PM

 To enter a new PBI using the SharePoint portal, u nder My Tasks, click the Work Item icon at the
upper left and select Product Backlog Item, as shown in Figure 8 - 28. The New Product Backlog Item
screen appears, as shown in Figure 8 - 29.

 FIGURE 8 - 27: A team project SharePoint portal.

Before you work through the steps in this section, verify that your project has a
SharePoint portal by following the steps listed earlier in this chapter, in the section
 “ Verifying That You Have a SharePoint Portal. ”

Entering PBIs ❘ 221

c08.indd 221c08.indd 221 3/24/11 4:29:17 PM3/24/11 4:29:17 PM

222 ❘ CHAPTER 8 RUNNING A RELEASE

 FIGURE 8 - 28: Beginning to enter a PBI using the SharePoint portal.

 FIGURE 8 - 29: The PBI screen in the SharePoint portal.

c08.indd 222c08.indd 222 3/24/11 4:29:21 PM3/24/11 4:29:21 PM

 Entering PBIs Using Visual Studio

 A third way to enter PBIs is to use Visual Studio. This is discussed extensively in Chapter 4. Figure 8 - 30
shows the largely self - explanatory PBI screen.

The functionality of the New Product Backlog Item screen is nearly identical
to that of the same screen in TFS. Refer to the section “ Understanding
Releases ” in Chapter 4 for information about how to complete the fi elds
in the PBI.

The easiest way to enter large numbers of PBIs is to use Excel, and the easiest
way to enter a few PBIs is to use Visual Studio. Using the SharePoint portal is
the best method for people who do not have Visual Studio installed.

 FIGURE 8 - 30: The PBI screen in TFS.

Entering PBIs ❘ 223

c08.indd 223c08.indd 223 3/24/11 4:29:22 PM3/24/11 4:29:22 PM

224 ❘ CHAPTER 8 RUNNING A RELEASE

 PRODUCT BACKLOG AND USER STORY SUCCESS

AND FAILURE PATTERNS

 Scrum provides a framework for developing software. Even though the product backlog can take
many forms, years of experience across many Scrum teams have led to the development of success
patterns for the product backlog and for user stories. Just as there are success patterns for the
product backlog and for user stories, there are also failure patterns. The following sections discuss
some of the most important success and failure patterns.

 Product Backlog and User Story Success Patterns

 Over the past decade, the Scrum community has learned what good and bad product backlogs and
user stories look like. The following sections describe some of the most important success patterns.

 Keeping User Stories a Consistent Size

 Keeping user stories roughly the same size provides several benefi ts to a team:

 It reduces the time needed in the estimation process.

 The team will never have the problem of completing small stories successfully but failing to
deliver large user stories.

 Progress throughout the sprint can be more even and steady.

 In fact, when all the user stories are the same size, the number of user stories completed in a sprint is
an excellent measure of the team ’ s velocity. As discussed in Chapter 1, velocity is the speed at which
a team can implement items on the product backlog.

 Knowing the Defi nition of Business Value

 The product owner should prioritize user stories based on business value. Every team member needs
to understand how the team is defi ning business value . Therefore, Scrum teams often post their
defi nition of business value in their team rooms.

 Understanding User Story Personas

 Consider the following user story: “ As a bank customer, I want an easy - to - use ATM so I do not
waste my time. ” What kind of person is the bank customer? How often does he use the ATMs?
How comfortable is he with computers? How valuable is he to the company?

 A Scrum team could capture all the questions about the bank customer in the form of a profi le , or
 persona . Here is an example of the persona the team might come up with for the bank customer:

 Name — Barry the Bank Customer

 Income — $40K – $60K

 Location — Midwest

 Use of ATMs — Once per week

 Familiarity with computers — Minimal. Knows how to use e - mail, a browser, and a word
processor.

➤

➤

➤

➤

➤

➤

➤

➤

c08.indd 224c08.indd 224 3/24/11 4:29:32 PM3/24/11 4:29:32 PM

 Number of customers who fi t this profi le — 100,000

 Value — Signifi cant. Barry is 80% of the bank ’ s customer base in the Midwest.

➤

➤

A persona helps the team make critical decisions about how much time and
effort to invest in various technical options.

 Personas have names, such as “ Barry the Bank Customer ” or “ Susan the Salesperson, ” and they are
chock - full of demographic and product - related behavior information. A Scrum team might want
to create a collage with pictures that illustrate a customer ’ s lifestyle and product choices for each
persona and hang these collages in the team room.

 Considering the INVEST Characteristics

 INVEST principles are a guide that can help a product owner create a good backlog. INVEST is an
acronym that stands for the following:

 Independent — User stories should not have dependencies. If user story A cannot be started
until user story B is fi nished, this reduces the fl exibility the product owner has in prioritizing
user stories. It also prevents the team from working on both user stories in parallel, which
may reduce the team ’ s velocity.

 Negotiable — User stories can be changed and modifi ed. More importantly, the product
owner elaborates them as needed during the sprint.

 Valuable — A user story is always written from the perspective of the end user, so when a
team completes a user story and the product owner releases it into production, the end user
experiences an increase in value. This means that a user story should never be solely about
technical tasks. For example, “ As a software team, we need to set up continuous integration to
improve our velocity ” is not a good user story because the end user does not receive any value
when this user story is completed. Note, however, that some teams do allow such user stories
on their backlog. In addition, some teams may be developing software, such as APIs, that are
used by other parts of the company, and so they may have internal users who are not paying
customers. User stories that deliver features to these internal users are consistent with INVEST.

 Estimable — The team needs to understand the user story well enough to create an estimate
for it, typically using story points. If the team does not understand the user story enough to
create an estimate for it, the team should refuse to accept that story into the sprint. Starting
development when a lot of ambiguity remains makes little sense.

 Small — User stories should be small enough that the team can complete them in one
sprint. The usual rule of thumb is that no user story should take more than half a sprint
to complete. When user stories take longer than a sprint, the team no longer has a good
measure of its progress.

 Testable — The team should know when it is done with a user story. The product owner
often provides clarity on this issue by developing acceptance criteria for a user story. Teams
that have advanced to the stage of using behavior - driven tests might work with the product
owner to develop behavior - driven tests for each user story.

➤

➤

➤

➤

➤

➤

Product Backlog and User Story Success and Failure Patterns ❘ 225

c08.indd 225c08.indd 225 3/24/11 4:29:32 PM3/24/11 4:29:32 PM

226 ❘ CHAPTER 8 RUNNING A RELEASE

INVEST is a goal, not a requirement. Often teams and product owners fi nd
themselves working with backlogs that do not meet the INVEST criteria.

 Product Backlog and User Story Failure Patterns

 Just as there are success patterns for the product backlog and for user stories, there are also failure
patterns. Many Scrum teams and Scrum coaches have observed these failure patterns over time. The
following sections discuss some of the most important failure patterns.

 Unavailability of the Product Owner for Discussing User Stories

 The product owner should be available to answer questions during a sprint. The team might want
to ask the product owner about user stories. The product owner might also need to examine mini
demos and provide feedback on the team ’ s progress.

 To see the critical importance of a highly available product owner, consider the case of a Scrum
team that has fallen behind its sprint goal and needs to stop development on one or more user
stories. If the product owner is not available, the team will need to decide which user stories should
be dropped from the sprint. This is a less - than - desirable situation.

 AN EXAMPLE OF PRODUCT OWNER AVAILABILITY

 On one Scrum team, the product owner spent one hour every day in the team ’ s
room. During that time, he would be working on grooming the backlog but would
accept any interruptions. As a result, he was able to add user stories to the product
backlog during the sprint, and he had an excellent understanding of the team ’ s
progress throughout the sprint.

 If a team fi nds itself working with a product owner who is not highly available, this issue should be
brought to the organization as an impediment.

 Team Members Specializing in Certain Types of User Stories

 Sometimes team members specialize in certain types of user stories, such as those having to do
with one technology layer or persona. This type of specialization creates a bottleneck and reduces
collective code ownership.

 The number of people who can effectively work with a part of the system is sometimes jokingly
called the truck factor in Scrum. The truck factor refers to the number of people who have to be hit
by a truck before the project will come to a halt. A truck factor of one means that if one person goes
on vacation or decides to take a new position, the team ’ s velocity will be severely reduced. When one
team member specializes in a certain type of user story to the point that only he can work on those
user stories effectively, this creates a truck factor of one for the team. Avoid this situation!

 When team members specialize in a type of user story or on a single technical tasks, this also
violates the principle of collective code ownership. On a typical non - Scrum software development

c08.indd 226c08.indd 226 3/24/11 4:29:37 PM3/24/11 4:29:37 PM

team, each person specializes in one technology, as illustrated in Table 8 - 1. This creates a truck
factor of one and causes the team to be brittle in the face of change.

 Collective code ownership means that any piece of code can be extended and
modifi ed by at least two people.

 TABLE 8 - 1: A Truck Factor of One

 PERSON DATABASE USER INTERFACE BUSINESS LOGIC

 Tim X

 Sally X

 Mark X

 TABLE 8 - 2: Collective Code Ownership

 PERSON DATABASE USER INTERFACE BUSINESS LOGIC

 Tim XXX X X

 Sally X XXX X

 Mark X X XXX

 In contrast, on a Scrum team that practices collective code ownership, the team members are
 “ generalizing specialists. ” While each may specialize in a single area, all have some competence in
other areas, as illustrated in Table 8 - 2. As a result, all team members are able to work continuously
on multiple areas of the product.

 Failure to Groom the Backlog

 The product owner should be working on the backlog throughout a sprint. However, product
owners sometimes create all the sprint backlogs for a release and then do only minor tuning
throughout the release. Given that agility means being able to respond to change effectively,
working with the backlog in this way is the antithesis of being agile.

 A related problem is created by a product owner who copies a similar backlog or inherits a backlog
from the previous owner and does not seek to understand it. In both cases, the product owner is
acting in a way that causes the product backlog to deteriorate. This is deadly to a Scrum team and
will lead it to develop irrelevant, low - priority, and low - business - value user stories.

 Changing the Sprint Backlog After the Sprint Has Started

 The product owner should typically not change the sprint backlog after a sprint has started except
under exceptional circumstances. The product owner has the authority to stop and restart the
sprint, but this should happen infrequently.

Product Backlog and User Story Success and Failure Patterns ❘ 227

c08.indd 227c08.indd 227 3/24/11 4:29:42 PM3/24/11 4:29:42 PM

228 ❘ CHAPTER 8 RUNNING A RELEASE

 Both the product owner and the team should guard against adding work to the sprint backlog after
the sprint planning meeting. This work should be viewed as an interruption.

 Not Having Acceptance Criteria or a Clear Defi nition of Done for User Stories

 At sprint demos, sometimes the team presents what it believes to be a fi nished user story to the
product owner, but the product owner rejects the team ’ s work because it fails to meet the acceptance
criteria and places the user story back on the backlog. The product owner and the team should have
a common understanding of what the team must do for a user story to be accepted by the product
owner. Chapter 4 discusses acceptance criteria.

 Multiple Product Backlogs

 A team should not be working from multiple product backlogs. If it is, the team members will be
perpetually confused about what item has the highest priority.

 AN EXAMPLE OF MULTIPLE PRODUCT OWNERS

 In one company, the following people were allowed to enter items into the product
backlog:

 Two product owners

 The QA manager

 The development manager

 The VP of engineering

 A customer service manager

 A program manager

 Not surprisingly, the product backlog was in chaos, and no one understood all the
items on the backlog.

➤

➤

➤

➤

➤

➤

The rule in Scrum is that each person belongs to one and only one team, and
each team has one and only one product backlog.

 Multiple Product Owners

 In many organizations, stakeholders throughout the company are allowed to enter items into the
team ’ s work queue. This is a signifi cant boundary violation and is considered unacceptable in most
Scrum implementations.

c08.indd 228c08.indd 228 3/24/11 4:29:48 PM3/24/11 4:29:48 PM

 LINKING USER STORIES AND TASKS

 Linking user stories and tasks is critical to maintaining a useful product backlog. Many product
backlogs, particularly those managed using bug - tracking tools, contain stand - alone tasks. The
top - level items on a backlog should always be user stories. The team should always be working for
the customer. The focus on user stories helps to maintain this emphasis.

 A team should link stories and tasks by starting with the sprint backlog in Visual Studio.
Figure 8 - 31 shows a backlog as it might appear during the sprint planning meeting. The team then
needs to follow these steps:

 1. Double - click the fi rst PBI (“ Find orders ”). The PBI display shown in Figure 8 - 32
appears.

 FIGURE 8 - 31: A sprint backlog.

Linking User Stories and Tasks ❘ 229

c08.indd 229c08.indd 229 3/24/11 4:29:53 PM3/24/11 4:29:53 PM

230 ❘ CHAPTER 8 RUNNING A RELEASE

 2. Click the Tasks tab shown in Figure 8 - 32. You can see that this particular PBI has
six linked tasks.

 3. To create a new task, click the New button in the upper - left corner of the Tasks tab. The
Add New Linked Work Item dialog appears, as shown in Figure 8 - 33. This dialog allows
you to enter a new task that will automatically be linked to the PBI.

 4. To link an existing task to a PBI, click the Link To button in the Tasks pane. The Add Link
to Product Backlog Item dialog appears, as shown in Figure 8 - 34.

 FIGURE 8 - 32: A PBI.

 FIGURE 8 - 33: The Add New Linked Work Item

dialog. FIGURE 8 - 34: A dialog that lets you link an

existing task to a PBI.

c08.indd 230c08.indd 230 3/24/11 4:29:53 PM3/24/11 4:29:53 PM

 5. To search for a task to link to this PBI, click the Browse button in the Add Link to
Product Backlog Item dialog. The Choose Linked Work Items dialog appears, as
shown in Figure 8 - 35. This dialog lets you search for new tasks in a variety of ways.

 6. In the Choose Linked Work Items dialog, enter Build in the Title Contains text box to
search for tasks that contain the word “ Build ” in the title. TFS fi nds a total of six tasks.

 7. Select the last task, Build the Search Algorithm. Visual Studio automatically populates the
Add Link to Product Backlog Item dialog, as shown in Figure 8 - 36.

 FIGURE 8 - 36: A dialog that is automatically

populated with the task information. FIGURE 8 - 35: A dialog that lets you search

for an existing task to link to a PBI.

 8. Click OK in the Add Link to Product Backlog Item dialog to return to the PBI.

 As you can see in Figure 8 - 37, the PBI now shows the new task.

 FIGURE 8 - 37: The PBI after the new task is added.

Linking User Stories and Tasks ❘ 231

c08.indd 231c08.indd 231 3/24/11 4:29:54 PM3/24/11 4:29:54 PM

232 ❘ CHAPTER 8 RUNNING A RELEASE

 PBI REPORTS

 Three reports in TFS are related to PBIs:

 Velocity

 Sprint burndown

 Release burndown

 You can fi nd these reports under Reports in the Team Explorer
(see Figure 8 - 38). You can run each of these reports by simply
double - clicking it.

 To keep the release burndown and sprint burndown reports up to date,
you must do the following:

 Create PBIs and associate them with iterations.

 Indicate how much time is remaining for each task every day.

 Change the state of the task from to do to done.

 In addition, completing the Area fi eld for the task gives you the ability
to fi lter the report based on this fi eld.

 To keep a velocity report relevant, you must do the following:

 Create PBIs and associate them with iterations.

 Indicate how much effort is required to complete each PBI.
Effort is typically expressed in story points.

 Change the state of the PBI from new to done.

 If you complete the Area fi eld for the PBI, you can also fi lter the velocity report based on this fi eld.

 SUMMARY

 This chapter focuses on creating releases. It covers how to enter PBIs using Excel, the SharePoint
portal, and TFS. The chapter also summarizes product backlog, user story success and failure
patterns, and user story reports. Chapter 9 describes how to create and manage sprints.

➤

➤

➤

➤

➤

➤

➤

➤

➤

 FIGURE 8 - 38: The PBI - related

reports are shown under

Reports.

c08.indd 232c08.indd 232 3/24/11 4:29:55 PM3/24/11 4:29:55 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Running a Sprint

 WHAT ’ S IN THIS CHAPTER?

 How to create sprints.

 Working with PBIs.

 Measuring the velocity of a Scrum team.

 How to track burndown.

 Working with bugs.

 This chapter examines how to run a sprint. You’ll fi rst explore how to create sprints in
TFS and how to prioritize product backlog items. Then you’ll learn how to measure the
velocity of your Scrum team and how to use burndown charts. Finally, you’ll learn about
managing bugs on a Scrum project.

 CREATING SPRINTS

 When a new project is created, Team Foundation Server (TFS) automatically creates releases
and sprints. You may need more sprints in a release than TFS creates. Eventually, you will also
need more releases.

 To add a new sprint, you open TFS and follow these steps:

 1. Right - click the project in the Team Explorer window and select Team Project Settings ➪
Areas and Iterations. The Areas and Iterations dialog appears, as shown in Figure 9 - 1.

 2. Click the Iteration tab and click the green plus sign (�) icon in the upper-left corner
of the tab.

➤

➤

➤

➤

➤

 9

c09.indd 233c09.indd 233 3/24/11 4:30:21 PM3/24/11 4:30:21 PM

234 ❘ CHAPTER 9 RUNNING A SPRINT

 In Figure 9 - 1, you see a sprint named Sprint 7; this is a new sprint that the user added.

 WORKING WITH PBIS

 This section describes a process for working with PBIs. First, you ’ ll learn about the sprint planning
meeting, where the product owner presents the prioritized backlog to the team. Then you ’ ll see how
the product owner and the team work with PBIs.

 The Sprint Planning Meeting

 The spring planning meeting has the following essential functions:

 Preparing the sprint backlog — Prior to the planning meeting, the product owner prepares
the proposed sprint backlog. The proposed sprint backlog typically consists of several more
PBIs than the team usually accepts into a sprint. The next section describes how Scrum
teams use velocity to decide how many stories to accept into a sprint.

 Discussing user stories — During a sprint, the product owner discusses user stories with the
team. A team should spend approximately 10% of its time working with the product owner
to elaborate PBIs.

 Estimating PBIs — At the beginning of the sprint planning meeting, the product owner
presents the proposed sprint backlog. The team asks questions about each user story and
then estimates PBIs by using Planning Poker. (Planning Poker is discussed in detail in
Chapter 3.)

➤

➤

➤

 FIGURE 9 - 1: The Areas and Iterations dialog.

c09.indd 234c09.indd 234 3/24/11 4:30:23 PM3/24/11 4:30:23 PM

 Creating tasks for the user stories — During the second part of the meeting, the team
creates tasks for each PBI. Examples of tasks include “ Create database table, ” “ Modify user
interface, ” and “ Write unit tests. ”

 At the end of a sprint planning meeting, the team should be committed to a sprint backlog, and each
user story should have a set of tasks associated with it.

 How the Product Owner Works with PBIs

 The product owner must create the product backlog, the release backlog, and the sprint backlog.
This is typically a full - time job.

 As the product owner develops PBIs, he or she enters them into TFS, using the procedure described
in the section “ Entering PBIs ” in Chapter 8. The team then uses the sprint planning meeting to
prioritize the user stories for the next sprint.

 The product owner may use and create many artifacts while preparing and grooming the backlog.
For example, if the product owner is engaged in usability studies with end users, the results of these
studies might be posted on the SharePoint site associated with the project (see “ Verifying That You
Have a SharePoint Portal ” in Chapter 8).

 How a Scrum Team Works with PBIs

 A Scrum team develops tasks for each PBI and associates them with the PBI in TFS. On a daily
basis, team members update the hours remaining on each task and the status of each task. When
every task associated with a PBI is done, the PBI is done. See “ Developing the Product Backlog ”
in Chapter 8 for information about how to create the backlog.

 During the sprint demo meeting at the end of the sprint, the team demonstrates all completed PBIs
to the product owner. It does this by showing the completed software to the product owner.

➤

 If at any point the team believes that it will not complete a PBI that it has
accepted for the sprint, the team should notify the product owner.

 Remember: Velocity � Output / Input

 MEASURING THE VELOCITY OF A SCRUM TEAM

 Velocity is a poorly understood concept. Fundamentally, velocity is a measure of output divided
by input. It is the same concept that economists refer to as productivity . Therefore, velocity is a
measure of productivity.

Measuring the Velocity of a Scrum Team ❘ 235

c09.indd 235c09.indd 235 3/24/11 4:30:23 PM3/24/11 4:30:23 PM

236 ❘ CHAPTER 9 RUNNING A SPRINT

 To understand this concept, consider a hot dog vendor who runs a hot dog factory. To run the
factory, he needs to complete the following tasks:

 1. Clean the factory fl oor.

 2. Maintain the machines.

 3. Pay the workers.

 The vendor assigns hours to each of these tasks and, throughout the week, he updates the number of
remaining hours so that he can create a burndown chart. At the end of the week, he has fi nished his
tasks and is happy that he was able to meet his sprint commitment.

 How many hot dogs did the factory produce during the week? This information is not available
from the data the hot dog vendor has gathered so far. To answer this question, the hot dog vendor
must count the number of hot dogs his factory produces.

 Similarly, a Scrum team wants to know how much software it produces. After all, the goal of a
Scrum team is to increase business value by producing working software. Understanding how much
working software a team is producing is a critical measure.

 Like the hot dog vendor, the Scrum team needs to measure its output. Unfortunately, there is no simple
way to measure the output of a software team. A hot dog vendor counts the number of hot dogs he
produces. What does a software team count? One possibility is that the software team could count
the number of lines of code it produces. While counting lines of code is easy, this measure suffers from
a great number of shortcomings. In particular, lines of code vary widely. Some lines of code are very
diffi cult to write, while others are trivial. Unlike hot dogs, they are not uniform. So giving equal weight
to each line of code is a poor measure of productivity. One good method a software team can use to
measure its productivity is to use story points, as described in the next section.

 Using Story Points to Determine Velocity

 In the Agile community, the best - known way to measure the productivity of a software team is
to use story points. We discuss story points in detail in the “ Understanding Releases ” section in
Chapter 4.

 While using story points is the best - known way to calculate velocity, this method is not without
controversy. A post on the Scrum Alliance website asked the question “ What exactly is a story point? ”
(see http://is.gd/IAp3bN). This post points out that there are many different interpretations
of story points and that these interpretations are diffi cult to reconcile with one another. This
post generated more than 20 responses, which contained a wide variety of opinions about the
interpretation of story points.

 Estimating velocity using story points is extremely diffi cult. Despite the diffi culty of estimating a
team ’ s velocity, however, there is widespread agreement in the Agile community that the best way
for a team to estimate its velocity is by using story points.

 If a team uses story points to measure its velocity, it needs to be careful not to artifi cially infl ate the
number of story points it assigns to a PBI. One simple way to increase a team ’ s velocity estimate
is to simply infl ate the story points over time. A user story with a story point value of 8 in sprint 1
may become a user story with a story point value of 13 in sprint 10. In practice, however, if a team
achieves an increase in velocity of over 60% (13 / 8 � 1.625), this will be apparent to everyone

c09.indd 236c09.indd 236 3/24/11 4:30:37 PM3/24/11 4:30:37 PM

involved, whether or not story points are used. Likewise, if a team artifi cially infl ates its velocity
and achieves an increase of 60%, this will also be apparent.

 One reasonable way to measure velocity is to make all the stories approximately the same size.
Velocity then becomes the number of user stories completed per sprint. Making all the stories of
equal size, however, requires an experienced product owner who is willing to work closely with the
team throughout the sprint to develop the backlog.

 How to Calculate Velocity Based on Story Points

 A team can easily calculate velocity by hand. At the sprint planning meeting, the team assigns story
points to each user story by using Planning Poker. (For more information on Planning Poker, see
the section “ Estimating Product Backlog Items ” in Chapter 3.) At the end of the sprint, the team
demonstrates the user stories that it completed. The velocity is simply the sum of the points for the
completed user stories.

 For example, consider the story points in Table 9 - 1. The team accepts four stories into the sprint. By
using Planning Poker, the team determines that the four stories ’ point estimates add up to 47 (= 8 �
13 � 21 � 5). During the sprint, the team completes only three of the four user stories, so its actual
velocity is 34 (= 8 � 21 � 5).

 TABLE 9 - 1: User Stories with Story Points and Completion Information

 USER STORY STORY POINTS COMPLETED?

 1 8 Yes

 2 13 No

 3 21 Yes

 4 5 Yes

 TABLE 9 - 2: Information About Estimated and Actual Velocity

 SPRINT ESTIMATED VELOCITY ACTUAL VELOCITY

 1 110 120

 2 114 108

 3 108 116

 4 148 127

 The team then keeps track of its velocity over time, using a table similar to the one in Table 9 - 2. TFS
does not keep track of estimated and actual velocity, so we recommend tracking this information
in Excel.

Measuring the Velocity of a Scrum Team ❘ 237

c09.indd 237c09.indd 237 3/24/11 4:30:38 PM3/24/11 4:30:38 PM

238 ❘ CHAPTER 9 RUNNING A SPRINT

 Typically, a team will get better at
estimating its velocity over time, so its
estimated velocity will be closer and closer
to its actual velocity. In addition, a team ’ s
actual velocity will increase over time as
the team becomes more effective at developing
software. This effect can be seen by plotting
the estimated velocity and actual velocity
fi gures, as shown in the Excel - created chart
in Figure 9 - 2.

 Testing Your Understanding of Velocity

 To test your understanding of velocity, consider the following situations:

 Situation 1 — In sprint 1, the team completes user stories with a total story point value of
100. In sprint 2, the team completes user stories with a total story point value of 100 and
spends $10,000. Is the velocity of the team the same in sprint 1 and in sprint 2?

 Situation 2 — In sprint 1, the team completes user stories with a total story point value of
100. In sprint 2, the team completes user stories with a total story point value of 100. Sprint
1 lasts two weeks, and sprint 2 lasted one week. Is the velocity of the team the same in
sprint 1 and sprint 2?

 Situation 3 — In sprint 1, the team completes user stories with a total story point value
of 100. In sprint 2, the team completes user stories with a total story point value of 100.
Between sprint 1 and sprint 2, the team adds two team members. Is the velocity of the team
the same in sprint 1 and sprint 2?

 Situation 4 — In sprint 1, the team completes user stories with a total story point value of
100. In sprint 2, the team completes user stories with a total story point value of 100 and,
in addition, implements a new continuous integration system. Is the velocity of the team the
same in sprint 1 and sprint 2?

 Situation 5 — In sprint 1, the team completes user stories with a total story point value of
100. In sprint 2, half the team takes paid vacation time, and the team fi nishes user stories
with a total point value of 50. Is the velocity of the team the same in sprint 1 and sprint 2?

 To answer these questions, remember that velocity is output divided by input. In situation 1, the
output is the same 100 story points, but the input differs. In sprint 2, the team spends an additional
$10,000. As a result, the team ’ s velocity in sprint 2 is less than its velocity in sprint 1.

 In situation 2, the input dropped in half between sprint 1 and sprint 2 because the team worked
only half as long. So the team ’ s velocity is greater in the second sprint.

 In situation 3, the input increased by two team members. So the team ’ s velocity dropped between
sprint 1 and sprint 2.

➤

➤

➤

➤

➤

 FIGURE 9 - 2: Estimated and actual velocity.

c09.indd 238c09.indd 238 3/24/11 4:30:38 PM3/24/11 4:30:38 PM

 In situation 4, the development of the new continuous integration
system is not an output. It is equivalent to installing a new machine
at a hot dog factory. The new machine increases the output only if
it causes the factory to increase the number of hot dogs it creates. In
this situation, the team ’ s velocity in sprint 1 is identical to the team ’ s
velocity in sprint 2.

 In situation 5, the team spends less time working on the sprint backlog
because half the team members are on vacation. Most teams consider
time to be the input when calculating velocity because salaries are the
most signifi cant cost of running a software development team. Under
this defi nition, the team ’ s velocity is story points per sprint. However,
if the goal is to include all inputs, including money spent on rent and
software, then all the inputs are typically converted into dollars.
Under this defi nition, the team ’ s velocity is story points divided by
dollars. Converting the input into dollars makes it clear that the input
has not changed between sprint 1 and sprint 2 because the vacations
are paid. As a result, the team ’ s velocity in sprint 2 is less than the
velocity in sprint 1.

 The Velocity Report

 The velocity report is available in the Team Explorer under Reports, as
shown in Figure 9 - 3. Figure 9 - 4 shows the velocity report. FIGURE 9 - 3: Selecting the

velocity report.

 FIGURE 9 - 4: An example of a velocity report.

Measuring the Velocity of a Scrum Team ❘ 239

c09.indd 239c09.indd 239 3/24/11 4:30:38 PM3/24/11 4:30:38 PM

240 ❘ CHAPTER 9 RUNNING A SPRINT

 TRACKING BURNDOWN

 Sprint burndown is typically defi ned as the number of hours remaining to complete all the tasks in
a sprint. However, a team can choose to burn down story points instead of hours.

 TABLE 9 - 3: Work Estimates for the Tasks in a Sprint

 TASK HOURS REMAINING

 1 3

 2 5

 3 5

 4 20

 The burndown chart does not show how many hours a team has worked on a task. It shows only
the amount of work remaining. This is a critical distinction between standard project management
techniques and Scrum. Remember that punishing the team for failing to meet deadlines or needing
more time than initially expected is verboten in Scrum.

 Calculating Burndown by Hand

 To generate a burndown chart, each day, team members update the number of hours remaining on
every task in the sprint. The sum of the hours remaining on each task appears in the burndown chart.

 For example, suppose that there are four tasks, with the remaining work estimates shown in
Table 9 - 3. As described in the next section, the burndown chart will show that a total of
33 hours (= 3 � 5 � 5 � 20) remain to be burned down in the sprint.

 While TFS does not directly support story point burndown, a team can implement
this type of burndown chart by simply entering story points instead of hours in the
Remaining Work fi eld.

 The Sprint Burndown Chart Report

 The sprint burndown chart is one of the three charts in the TFS Scrum template. Figure 9 - 5 (which
is not related to the example in Table 9 - 3) shows an example of a sprint burndown chart. This
example shows that the team did not complete all the tasks in the sprint. It still has 20 hours of
work remaining.

c09.indd 240c09.indd 240 3/24/11 4:30:39 PM3/24/11 4:30:39 PM

Working with Bugs ❘ 241

 To generate the burndown chart, a team follows these steps:

 1. Assign tasks to a sprint.

 2. Assign remaining work to tasks.

 3. Update the remaining work daily.

 4. Update the status of each task.

 5. Create the burndown chart by clicking Sprint Burndown in
the Team Explorer, as shown in Figure 9 - 6.

 WORKING WITH BUGS

 During a sprint, the team will encounter bugs as it develops
software. Bugs are different from PBIs because they are not
generated by the product owner. As a result, they often cause
problems for Scrum teams that have not carefully considered how
they are going to manage bugs.

 This section describes how to work with bugs in TFS. First,
you ’ ll see the high - level bug workfl ow. This is not the only such
workfl ow, but it is one that many Scrum teams use. Next,
you ’ ll see how to create work items from bugs and then how to
track bugs.

 FIGURE 9 - 5: A sprint burndown chart.

 FIGURE 9 - 6: Generating a

burndown chart.

c09.indd 241c09.indd 241 3/24/11 4:30:44 PM3/24/11 4:30:44 PM

242 ❘ CHAPTER 9 RUNNING A SPRINT

 Creating a Bug Workfl ow

 How do Scrum teams handle bugs? The standard workfl ow involves fi xing bugs at different stages,
depending on where they occur:

 Bug that pertains to a user story in the sprint — If a bug pertains to a user story in the sprint,
the team fi xes it. If a user story has bugs associated with it, the team cannot deliver the user
story unless the bugs are removed. This is sometimes called the “ bugs fi rst ” philosophy.

 Low - priority bug that pertains to a user story outside the sprint — If a low - priority bug
pertains to a user story that is not in the sprint, the product owner prioritizes the bug. This
prevents the team from getting interrupted by bug-fi xing activities.

 High - priority bug that pertains to a user story outside the sprint — If a high - priority
bug pertains to a user story that is not in the sprint, the team fi xes it. This case occurs
infrequently. High - priority, out - of - sprint bugs are almost always in production.

➤

➤

➤

 If the team fi nds itself addressing critical production bugs every sprint, the
team ’ s approach to quality is probably fl awed.

 The bug workfl ow is illustrated in Figure 9 - 7.

Bug report

User
story in

the
sprint?

Yes

Yes

No

Fix the
bug

Critical?

Product
owner

prioritizes

 FIGURE 9 - 7: The typical workfl ow for bugs

on a Scrum team.

c09.indd 242c09.indd 242 3/24/11 4:30:44 PM3/24/11 4:30:44 PM

Working with Bugs ❘ 243

 Creating Backlog Items from Bugs

 To track a bug that will be addressed during the sprint, you follow these steps:

 1. In TFS, select Team ➪ New Work Item ➪ Bug, as shown in Figure 9 - 8.

 FIGURE 9 - 8: Creating a new bug work item.

 FIGURE 9 - 9: Setting the fi elds for a bug.

 2. Give the bug a title and place the bug into a sprint in the Iteration fi eld, as shown in Figure 9 - 9.

c09.indd 243c09.indd 243 3/24/11 4:30:50 PM3/24/11 4:30:50 PM

244 ❘ CHAPTER 9 RUNNING A SPRINT

 3. Assign the bug to a team member by using the Assigned To drop - down, as shown in Figure 9 - 9.

 A bug is a task, so each one needs to be assigned to a team member.

 4. Fill in the steps to reproduce the bug in the Steps to Reproduce tab for the bug task, as
shown in Figure 9 - 9.

 5. Complete the Acceptance Criteria tab for the bug, as shown in Figure 9 - 9.

 6. If your team ’ s workfl ow for bugs depends on the severity of the bugs, fi ll in the Severity
fi eld, as shown in Figure 9 - 9.

 7. Because it is a good idea to link all bugs to user stories, click the Links tab, as shown in
Figure 9 - 10.

 8. Click on the Link To button. The Add Link to New Bug dialog appears, as shown in Figure 9 - 11.

 FIGURE 9 - 10: Linking the bug to a

parent user story.

 FIGURE 9 - 11: The Add Link to New Bug dialog.

 9. Set a user story to be the parent of the bug by selecting Parent from the Link Type pull -
 down menu, as shown in Figure 9 - 11. Click the Browse button. The Choose Linked Work
Items dialog appears.

 By always linking a bug to a user story, you can ensure that the top - level items
on the backlog are always user stories.

c09.indd 244c09.indd 244 3/24/11 4:30:51 PM3/24/11 4:30:51 PM

Working with Bugs ❘ 245

 10. In the Choose Linked Work Items dialog, select Sprint Backlog from the Saved Query drop -
 down, as shown in Figure 9 - 12. The sprint backlog query runs, returning all work items
associated with that sprint, as shown in Figure 9 - 13.

 FIGURE 9 - 12: Running the sprint backlog query. FIGURE 9 - 13: The sprint backlog query returns

all items associated with the sprint backlog.

 11. Select the appropriate user story in Figure
9 - 14. TFS automatically populates the
Work Item IDs and Description fi elds,
and it shows a diagram that describes the
relationship between the user story and
the new bug. Click OK.

 12. Finish the bug by completing the
Acceptance Criteria tab. TFS saves this
information for future reference.

 The bug report contains several other
components, including a System tab that you
use to store information about the build on
which the error was found, and an Attachments
tab that allows you to attach documents (such as
screenshots) to the bug report.

 Tracking Bugs

 In this section, you will learn how to create a query that allows you to track bugs in TFS. Follow
these steps:

 1. In Visual Studio, select Team ➪ New Query, as shown in Figure 9 - 15. A query defi nition
screen appears.

 FIGURE 9 - 14: TFS populating the Work Item IDs

and Description fi elds.

c09.indd 245c09.indd 245 3/24/11 4:31:00 PM3/24/11 4:31:00 PM

246 ❘ CHAPTER 9 RUNNING A SPRINT

 2. Choose Bug from the Work Item Type pull - down, as shown in Figure 9 - 16, and delete the
State clause by selecting the Delete Clauses menu item, as shown in Figure 9 - 17.

 FIGURE 9 - 15: Creating a new query.

 FIGURE 9 - 16: Choosing Bug under Work Item Type.

c09.indd 246c09.indd 246 3/24/11 4:31:01 PM3/24/11 4:31:01 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Working with Bugs ❘ 247

 3. Run the query by clicking the Run button in the New Query tab. You see all the bugs, as
shown in Figure 9 - 18. You can save this query and rerun it periodically to see how many
bugs have been reported.

 FIGURE 9 - 17: Deleting the State clause.

 FIGURE 9 - 18: The results of running the bug query.

 4. Click Save Query. When the Save Query As dialog appears, name the query Bugs, as shown
in Figure 9 - 19. Click Save. This query appears under My Queries in the Team Explorer, as
shown in Figure 9 - 20.

 You will use the Bugs query in the next section to create a custom bug report in Excel.

c09.indd 247c09.indd 247 3/24/11 4:31:01 PM3/24/11 4:31:01 PM

248 ❘ CHAPTER 9 RUNNING A SPRINT

 FIGURE 9 - 19: Saving a custom query.

 FIGURE 9 - 20: The new query

in the Team Explorer.

 Bug Reports

 The Scrum template does not ship with any bug - specifi c reports. However, creating one in Excel
takes just a few steps:

 1. Connect to the TFS instance by clicking Team ➪ New List. The Connect to Team Project
dialog appears, as shown in Figure 9 - 21.

 2. Click the New List button on the upper left of the Team tab. The New List dialog appears.

 FIGURE 9 - 21: Connecting to TFS from Excel.

c09.indd 248c09.indd 248 3/24/11 4:31:02 PM3/24/11 4:31:02 PM

Working with Bugs ❘ 249

 3. Select the Bugs query that you created in the previous section, as shown in Figure 9 - 22.
Excel runs the query and displays a table similar to the one shown in Figure 9 - 23.

 FIGURE 9 - 22: Selecting the Bugs custom query that you created in the

previous section.

 FIGURE 9 - 23: The result of running the Bugs custom query in Excel.

c09.indd 249c09.indd 249 3/24/11 4:31:03 PM3/24/11 4:31:03 PM

250 ❘ CHAPTER 9 RUNNING A SPRINT

 4. Click on Summarize with PivotTable in Excel ’ s Design tab to create a custom report, as
shown in Figure 9 - 24. Excel now creates and displays the PivotTable.

 SUMMARY

 In this chapter, you have learned how to create sprints, prioritize PBIs, calculate velocity, create
a burndown chart, and track bugs. You have learned how to load a product backlog into TFS
using a variety of techniques. You have also learned about the importance of velocity and how it is
calculated and tracked in TFS.

 This chapter describes the burndown chart in detail, and you learned that both story points and
hours can be burned down. You learned about the standard bug workfl ow that Scrum teams use
and how TFS supports this workfl ow. The Scrum template provides support for all these key aspects
of Scrum. If you want to extend the capabilities of TFS, you can export to Excel.

 Chapter 10 delves into the retrospective, one of the most important and valuable activities in Scrum.

 FIGURE 9 - 24: Creating a custom report.

c09.indd 250c09.indd 250 3/24/11 4:31:04 PM3/24/11 4:31:04 PM

The Retrospective

 WHAT ’ S IN THIS CHAPTER?

 Understanding practices related to retrospectives.

 How to use TFS to answer the three retrospective questions.

 A retrospective takes place at the end of a sprint. It provides an opportunity for the team
to refl ect on what has gone well, what has gone poorly, and what the team wants to change.
The retrospective is a key component of the inspect - and - adapt Agile framework.

 Retrospectives give Scrum teams an opportunity to learn from their mistakes and successes.
During a retrospective meeting, which generally lasts three hours, the team asks meta -
 questions about how effectively it is producing business value, with the intention of
implementing changes that increase velocity and team health. A retrospective takes place
at the end of a sprint. All members of the team, with the possible exception of the product
owner, attend the retrospective.

 A team will often generate a prioritized list of impediments and action items during a
retrospective. This list typically contains two types of impediments: impediments that can
be addressed entirely within the team, such as creating an automated build process, and
impediments that must be addressed by the wider company, such as reducing the number of times
the team is interrupted. The ScrumMaster takes any changes that require company involvement
to the company.

 This chapter describes common practices related to retrospectives and how the Team Foundation
Server (TFS) Scrum template supports them.

➤

➤

 10

c10.indd 251c10.indd 251 3/24/11 4:31:29 PM3/24/11 4:31:29 PM

252 ❘ CHAPTER 10 THE RETROSPECTIVE

 COMMON PRACTICES RELATED TO RETROSPECTIVES

 Most retrospectives are structured to answer three questions:

 What worked?

 What didn ’ t work?

 What will we do differently?

 This chapter addresses each of these questions separately and discusses some of the practices Scrum
teams use to answer them.

 Answering “ What Worked? ”

 Teams typically begin a retrospective by focusing on what worked. The purpose of asking “ What
worked? ” is to reinforce good practices and values. After all, if the team spends more of its time
doing what works, it will spend less time doing what does not work.

 One way for a team to identify what worked is to examine all the user stories that were completed
by the team during the sprint and explicitly identify what drove their success. A simple brainstorming
technique — such as having each team member write the reasons for success on index cards and then
grouping the index cards — is often enough to start a good conversation about the reasons for success.

➤

➤

➤

 PRACTICES FOR DETERMINING WHAT WORKED

 Here are some other practices a team can use to determine what worked:

 Each team member can identify what moment of the sprint was particularly
energizing or joyful for him or her.

 Each team member can describe the team ’ s greatest success during the sprint.

 The team can create a poster that captures the best experiences that the team
had during the sprint.

➤

➤

➤

 Answering “ What Didn ’ t Work? ”

 To determine what did not go well during a sprint, teams often examine unfi nished user stories and
the burndown chart. Why were the user stories not completed? Were the estimates for each user
story and task accurate?

 The shape of the burndown chart often gives clues about what may have gone wrong with a sprint.
A burndown chart that is fl at or increases during the start of the sprint is often an indication that
the user stories were poorly defi ned. A burndown chart spiking up several times during the sprint
suggests that the team was surprised by the technical diffi culty of some of the tasks.

 Another technique is to have each team member list as many problems as possible on index cards,
using one index card per problem. The team members then briefl y consolidate the cards and

c10.indd 252c10.indd 252 3/24/11 4:31:31 PM3/24/11 4:31:31 PM

eliminate duplicates. Finally, the team sorts the problems and thinks about how to eliminate the
most harmful problems.

 Answering “ What Will We Do Diff erently? ”

 After the team has explored what went well and what did not, it creates a list of action items or changes
that it plans to implement. One way to identify the most fruitful changes is to use the 5 Whys technique,
which Toyota Corporation developed to uncover the root cause of a problem.

 The goal of the 5 Whys technique is to identify the root cause of a problem. To use it, a team states
the problem and then asks why fi ve times. For example, say that a team ’ s server is slow. The team
might come up with the following answers in the 5 Whys process:

 Why? — Because it is running out of memory.

 Why? — Because there is a memory leak.

 Why? — Because there is a bug in the code.

 Why? — Because we did not test it properly.

 Why? — Because we have yet to implement automated testing.

 The team can then decide at what level of abstraction to address
the problem. The changes that the team chooses to implement to
address problems in the sprint become part of the product backlog.
The product owner prioritizes these changes. For the slow server
example, the team might choose to begin using some of the testing
features in Visual Studio to automate testing. If a team wants to
simply record the existence of an impediment, without committing
to taking any action to remove it, the team should create a new
impediment in Visual Studio so that it will appear in the open
impediments list.

 In determining what to do differently next time, teams often
consider improvements in engineering practices, changes in how
they interact with the product owner during the sprint, and
changes in the team ’ s charter.

 SCRUM TEMPLATE SUPPORT FOR THE

THREE RETROSPECTIVE QUESTIONS

 A sprint work item directly supports the three key retrospective
questions with prompts in the Retrospective tab in Visual Studio.
To locate the Retrospective tab, follow these steps:

 1. Find the project in Visual Studio ’ s Team Explorer.

 2. Expand Team Queries. The Team Explorer window
should look similar to Figure 10 - 1.

➤

➤

➤

➤

➤

 FIGURE 10 - 1: The Team Explorer

window.

Scrum Template Support for the Three Retrospective Questions ❘ 253

c10.indd 253c10.indd 253 3/24/11 4:31:32 PM3/24/11 4:31:32 PM

254 ❘ CHAPTER 10 THE RETROSPECTIVE

 3. Click All Sprints. You should see a window similar to that shown in Figure 10 - 2.

 FIGURE 10 - 2: Query results.

 FIGURE 10 - 3: A sprint work item.

 4. Click on one of the sprint work items. The screen should look similar to Figure 10 - 3.

c10.indd 254c10.indd 254 3/24/11 4:31:32 PM3/24/11 4:31:32 PM

 5. Click the Retrospective tab. The screen should look similar to Figure 10 - 4. As you can see,
the Scrum template prompts the team to answer the three key retrospective questions.

 FIGURE 10 - 4: The Retrospective tab.

 When the team has answered these three questions (by using the 5 Whys technique, for example)
and the retrospective is complete, the results of the team ’ s fi ndings are permanently stored in the
Retrospective tab.

 The following sections describe how the team should go about answering the three questions.

 How to Answer the “ What Worked? ” Question

 The “ What worked? ” question is, surprisingly, often the most diffi cult to answer. Teams tend to
focus on failures instead of successes, but the Scrum method focuses on successes.

 To answer the “ What worked? ” question, a team should look at fi nished backlog and bug items
as well as the burndown chart. You can easily access this information by using TFS. During the
retrospective, consider projecting TFS on the screen so that everyone can see these items.

 To record the results of a retrospective, try projecting Visual Studio on the wall
in the room in which you ’ re holding the retrospective. This way, everyone on the
team can see the work within Visual Studio.

Scrum Template Support for the Three Retrospective Questions ❘ 255

c10.indd 255c10.indd 255 3/24/11 4:31:33 PM3/24/11 4:31:33 PM

256 ❘ CHAPTER 10 THE RETROSPECTIVE

 For each product backlog item (PBI) successfully completed, identify what engineering practices and
team practices contributed to the success. The engineering practices and artifacts might include the
following:

 An automated build

 Unit testing

 User interface testing

 Scripts to automatically create test environments

 Automated deployment

 Continuous integration

 Source control

 Dependency management

 Pair programming

 Code reviews

 Refactoring

 This list contains only a small sample of engineering practices that a team might implement.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

 Consider creating a standard list that you can work through for each successfully
completed PBI.

 The team might choose to reinforce practices such as the following:

 Agreeing on the defi nition of done

 Clearly identifying the product owner and ensuring that this person is highly available

 Ensuring excellent team communication

 Holding effective daily standup meetings

 Using big, visible charts

 Once the team has worked through all the completed PBIs, it should refl ect on which engineering
and team practices have contributed most. It should list these practices in the “ What worked? ”
section of the Retrospective tab. For example, the team might enter the following:

 Helpful acceptance tests developed by the product owner and presented at the sprint
planning meeting

 One - touch deployment

 Automated suite of end - user functionality tests

➤

➤

➤

➤

➤

➤

➤

➤

c10.indd 256c10.indd 256 3/24/11 4:31:43 PM3/24/11 4:31:43 PM

 When the team has looked at the completed PBIs and bug items, it might turn to the burndown
chart. The burndown chart is likely to move up and down at varying rates. The team should
examine the times when a lot of work is being burned down and use that data to spur discussion
about what went well during those periods.

 Many factors can contribute to a favorable burndown chart. Here are some of them:

 Effective team collaboration

 A build process that ensures that no one can break the build

 An excellent discussion during the sprint planning meeting

 Constant refactoring

 It is important to use the burndown chart to prompt discussion but be careful not to rely too heavily
on it. There is a lot of variance in software development. The team should take care not to assign
too much meaning to short - term successes. In addition, an over - emphasis on any particular metric
will lead to incorrect conclusions. For example, if the team believes that its goal is to create good -
 looking burndown charts, this could lead to dysfunctional behavior such as overestimating the
effort required to complete a story.

 Finally, the team should examine the sprint goal in the Details tab for a sprint work item (see
Figure 10 - 5).

➤

➤

➤

➤

 FIGURE 10 - 5: A sprint work item.

Scrum Template Support for the Three Retrospective Questions ❘ 257

c10.indd 257c10.indd 257 3/24/11 4:31:48 PM3/24/11 4:31:48 PM

258 ❘ CHAPTER 10 THE RETROSPECTIVE

 How to Answer the “ What Didn ’ t Work? ” Question

 Three queries are particularly helpful in answering the “ What didn ’ t work? ” question:

 The blocked tasks query

 The unfi nished work query

 The work in progress query

 For each of these queries, the team should ask “ Why? ” : “ Why are there blocked tasks? ” “ Why
is there unfi nished work? ” and “ Why is there work in progress? ” If the answer to any of these
questions is not immediately apparent, you might promote discussion by using a facilitation
technique such as the 5 Whys process described earlier.

 For blocked tasks, the team should ask why the tasks have been blocked and what can be done to
unblock them. Sometimes the team is able to unblock tasks, but for some tasks the ScrumMaster may
need to ask other people in the company for support. Figure 10 - 6 shows an example of a blocked task.

➤

➤

➤

 If, during the review meeting with the product owner, the team reported that the
sprint goal had been met, this should be noted in the “ What worked? ” section of
the Retrospective tab. The team might also want to address any reasons for suc-
cess that have not already been covered by examining the backlog and bug items,
as well as the burndown chart.

 FIGURE 10 - 6: A blocked task.

c10.indd 258c10.indd 258 3/24/11 4:31:48 PM3/24/11 4:31:48 PM

 The team may want to consider why it was unable to complete unfi nished work and work in
progress. Here are some possibilities:

 The team underestimated the effort needed to complete the task.

 The team was interrupted.

 The team underestimated the effort required for another task, which prevented the team
from completing this task.

 The team did not reorganize itself effectively during the sprint.

 The team did not know that there was unfi nished work.

 Figure 10 - 7 shows an example of an unfi nished work query.

➤

➤

➤

➤

➤

 FIGURE 10 - 7: An unfi nished work query.

 The goal in examining unfi nished work and work in progress is to spark a wide - ranging discussion
about the effectiveness of the team. The goal is not to blame or judge any particular team member;
rather, it is to improve the business value generated by the team.

 As when it answered the “ What worked? ” question, the team may also want to examine the
burndown chart when answering the “ What didn ’ t work? ” question. Regions of the chart which
show that work is not being burned will focus the team ’ s attention on periods of reduced velocity
and will prompt discussion about what caused this reduction.

 If the team reported to the product owner that the sprint goal was not met, this should be noted in
the “ What didn ’ t work? ” section of the Retrospective tab. This will spur further discussion if the
team has not already fully explored why it failed to meet the sprint goal.

Scrum Template Support for the Three Retrospective Questions ❘ 259

c10.indd 259c10.indd 259 3/24/11 4:31:59 PM3/24/11 4:31:59 PM

260 ❘ CHAPTER 10 THE RETROSPECTIVE

 The team should use the impediments list to capture all the impediments it identifi es during the
retrospective. Figure 10 - 8 shows an example of an impediments list.

 FIGURE 10 - 8: An impediments list.

 How to Answer the “ What Will We Do Diff erently? ” Question

 Once the team has fully explored what went well and what did not go well during the sprint, it
works together to determine what it will do differently during the next sprint. Agile teams “ inspect
and adapt. ” In answering the fi rst two key retrospective questions, the team inspects its work
system. In answering this third question, the team addresses how to best adapt its work system.

 As the team considers how to adapt, many of the changes it chooses to make will fall into the
following categories:

 Improvements in engineering practices — The team might choose to adopt an engineering
practice such as test - driven development.

 Adjustments to the team ’ s charter — Enhancing the defi nition of done is an example of such
a change.

 Changes to the organization — Changing the number of people in a software development
group is an example of an organizational change.

 Adoption of new cultural norms — An example of a new cultural norm might be choosing
not to make cutting remarks, even in jest.

➤

➤

➤

➤

c10.indd 260c10.indd 260 3/24/11 4:32:00 PM3/24/11 4:32:00 PM

 Changes in engineering practices often involve learning about new features in TFS and Visual
Studio. If the team chooses to improve its testing procedures, it may choose to explore the
functionality of Visual Studio ’ s Test Manager and Lab Manager. A team using TFS and Visual
Studio should stay within the tool to take advantage of the tightly integrated development, build,
test, and source control environment.

 Adjustments to the team ’ s charter and changes to the organization may change the way the team
works with TFS. For example, if the team is geographically distributed across time zones, managing
the build may be especially complicated, and this organization may force changes in engineering
practices. In order to maintain shared understanding across space and time, a team might also choose
to create new queries or reports.

 SUMMARY

 The retrospective is a key component of a team ’ s practice. During this meeting, the team learns from
its successes and failures and fi gures out how to adapt.

 Through its preconfi gured queries, charts, and reports, the Scrum template supports the
retrospective in a variety of ways. In particular, a team should consider using the following features
in the Scrum template during a retrospective:

 The Details tab for a sprint work item

 The Retrospective tab for a sprint work item

 The blocked tasks, open impediments, unfi nished work, and work in progress queries under
Team Queries

 The burndown chart

 The team might also want to access other features, such as the product backlog and the sprint
backlog.

➤

➤

➤

➤

 New cultural norms are typically beyond the scope of the Scrum template.
However, if you fi nd a creative way to support a cultural change using the Scrum
template, Visual Studio, or TFS, please write a short note about it to us, at
 michael@hearthealthyscrum.com .

Summary ❘ 261

c10.indd 261c10.indd 261 3/24/11 4:32:00 PM3/24/11 4:32:00 PM

c10.indd 262c10.indd 262 3/24/11 4:32:05 PM3/24/11 4:32:05 PM

Improving Scrum by
Using Spikes

 WHAT ’ S IN THIS CHAPTER?

 Understanding spikes.

 Understanding the two types of spikes.

 How to execute a spike on your team.

 Estimating new work from your product backlog is often a diffi cult and daunting task. At
any stage of the project, your team may fi nd itself unclear about how to design or implement
a piece of functionality. The new functionality might be a particularly complex problem, or it
might have multiple dependencies that make the design more complicated than other parts of
the product.

 When your team fi nds itself facing signifi cant unknowns, continuing with traditional sprints
as described in the previous chapters of this book can lead to bigger problems. Sprints are
successful when a team has clear goals and clear requirements. When one or both of these two
things are not clear, the team needs to fi nd a new way to work until both are back in focus.
Scrum deals with this lack of clarity with a time - boxed exercise known as a spike . In this
chapter, you will learn how to use and run spikes with Team Foundation Server (TFS) and
the Microsoft Visual Studio Scrum 1.0 process template.

 WHAT IS A SPIKE?

 A spike is a time - boxed technical investigation that is meant to produce the answer to a
problem that is blocking a team. As with any other iteration of work in Scrum, the goal of a
spike is to produce value. However, a spike is different from a sprint in that the goal is not to

➤

➤

➤

 11

c11.indd 263c11.indd 263 3/24/11 4:32:31 PM3/24/11 4:32:31 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

264 ❘ CHAPTER 11 IMPROVING SCRUM BY USING SPIKES

produce value for customers. Instead, a spike produces value for the team. A spike provides the team
with information needed to help make good decisions.

 THE ORIGINS OF SPIKES

 Ward Cunningham is a pioneer in design patterns and Extreme Programming (XP),
and Kent Beck is creator of XP and one of the original signatories of the Agile
Manifesto. Together, Cunningham and Beck coined the term spike on the C2.com
wiki (see http://c2.com/cgi/wiki?SpikeSolution). The term emerged from their
efforts to fi nd a simple indicator of whether they were on the right track to solving
a problem.

 Spikes are useful when a team does not have enough information to move forward in a predictable
manner. Scrum is about predictability and cadence. As you saw in Chapter 3, the Scrum framework
aims to reduce and minimize risk by time - boxing events and breaking down work into smaller,
manageable pieces.

 It is common for items further down the product
backlog to have higher risk and less detail than items
at the top of the backlog. Your team learns new
information as it progresses through sprints. New
requirements emerge, and existing requirements
evolve. Figure 11 - 1 illustrates this situation. Product
backlog items (PBIs) lower on the backlog have a
higher degree of uncertainty than PBIs at the top of
the backlog

 By using a spike, your team can avoid spending weeks
studying, documenting, and researching areas of
high risk or high uncertainty on the product backlog.
A spike allows your team to dig into the details of
the problem and learn quickly so it can return to
producing value for its customers.

 When a PBI contains unknown elements that prevent
the team from producing a usable estimate, the team
should delay the PBI until it has time to execute a spike to investigate the unknown elements. This
approach enables the product owner to prioritize the research of the product backlog separately
from the implementation.

 A team should prioritize spikes ahead of related PBIs because spikes allow the team to create a more
reliable estimate for the implementation of the item. That is, a team ’ s chances of success increase
greatly when the team has time to execute a spike.

Priority Product Backlog

1 HighPBI

2 HighPBI

3 HighPBI

4 HighPBI

5 MediumMediumPBI

6 MediumPBI

7 LowPBI

8 MediumPBI

9 LowPBI

10 LowPBI

Level of Certainty

 FIGURE 11 - 1: Requirements from a product

backlog.

c11.indd 264c11.indd 264 3/24/11 4:32:33 PM3/24/11 4:32:33 PM

Types of Spikes ❘ 265

 TYPES OF SPIKES

 Two types of spikes are common in Scrum: spikes between sprints and spikes during a sprint.
Figure 11 - 2 illustrates a spike between sprints. Figure 11 - 3 illustrates a spike during a sprint. The
following sections discuss these two types of spikes in more detail.

 SPIKE GOALS

 What your team produces at the end of a spike can take many different forms.
If a spike is about researching performance issues in the product, the result of the
spike may be a set of performance benchmarks collected from different layers of
the product. If the spike is about gaining clarity on vague requirements or customer
scenarios, the result of the spike might be a storyboard of the scenario coupled
with customer feedback. Whatever form the result takes, the goal of the spike is to
unblock the team so it can continue to make progress against the product backlog.
Common spike goals include the following:

 An architectural document

 A detailed design document

 A prototype for a specifi c piece of functionality

 Customer feedback on a prototype or storyboard

 Make sure your team sets clear and achievable goals before starting a spike. Just as
acceptance criteria defi ne the fi nish line for each PBI, a spike goal defi nes what a
team will set out to achieve. Without a clearly defi ned goal, a team can easily lose
focus and lose track of the problem and solution. Remember, the reason for having
a spike in the fi rst place is to unblock the team. You want to get your team back to
delivering tangible customer value from the product backlog as soon as possible.

➤

➤

➤

➤

Sprint Sprint Sprint Sprint SprintSpike Spike

 FIGURE 11 - 2: A spike between sprints.

Sprint Sprint Sprint Sprint Sprint Sprint

Spike Spike

 FIGURE 11 - 3: A spike during a sprint.

 Spikes Between Sprints

 A spike planned between sprints is time - boxed just like a sprint. However, spikes are usually shorter
than sprints. You want your team to return to producing value for customers through sprints as soon
as possible. Long spikes can distract the team and take focus away from producing value.

c11.indd 265c11.indd 265 3/24/11 4:32:34 PM3/24/11 4:32:34 PM

266 ❘ CHAPTER 11 IMPROVING SCRUM BY USING SPIKES

 A good rule of thumb when deciding on the length of a spike is that a spike should be half the
length of a sprint — or less. If your team operates on four - week sprints, a one - to two - week spike is
probably appropriate. If your team operates on two - week sprints, a spike length of one week or less
makes more sense. The one exception to this rule is if your team is operating on one - week sprints. In
this case, a one - week spike is appropriate. Anything shorter than one week likely does not give your
team the time it needs to dig into the problem it is trying to solve. Ultimately, your team must decide
what is best in each situation.

 A spike planned between sprints should involve all members of your team. You want the entire team
to learn from the spike, and the best way for team members to learn is to be involved. Depending on
the size of your team, this can often be diffi cult to achieve, but it is a good principle to keep in mind.

If you do not have work for the entire team during the spike, it might be
appropriate to switch to using a spike during a sprint rather than running a
spike between sprints.

 It is good practice to continue with the standard sprint meetings and cadence during a spike. Each
meeting should be condensed and shortened to accommodate the length of the spike, but the intent
of each meeting is the same as in a sprint. Your team holds an abbreviated sprint planning meeting
(now called a spike planning meeting) to establish the goal of the spike. Daily standups continue
throughout the spike so your team can share progress and achievements. You use the regular
standup format, with each team member contributing what he or she has accomplished, what he or
she has planned next, and anything that might be impeding progress. Finally, your team holds an
abbreviated sprint review meeting (now called a spike review meeting) in which the team reviews
what it accomplished and learned.

 Guidelines for Spikes Between Sprints

 Keep in mind the following guidelines when running a spike between sprints:

 Establish clear start and end dates.

 Ensure that the spike is no longer than half the length of your sprints (except in the case of
one-week sprints).

 Establish a clear goal and set of deliverables.

 Involve all members of your team.

 Hold daily standups during the spike.

 Creating a Spike Between Sprints

 To create a spike between sprints, follow these steps:

 1. From within the Team Explorer, right - click your team project and select Team Project
Settings ➪ Areas and Iterations. The Areas and Iterations dialog appears, as shown
in Figure 11 - 4.

➤

➤

➤

➤

➤

c11.indd 266c11.indd 266 3/24/11 4:32:35 PM3/24/11 4:32:35 PM

Types of Spikes ❘ 267

 2. In the Iteration tab of the Areas and Iterations dialog, select the Release 1 node to add a
spike within this release. Then click the Add a Child Node button in the toolbar at the top
of the dialog. TFS adds a new node for your spike under Release 1.

 3. Add a name for the spike, prefi xing the iteration name with the word Spike . Figure 11 - 5
shows a new spike named Spike - Drag and Drop.

 FIGURE 11 - 4: Adding a spike between sprints.

 FIGURE 11 - 5: A new spike.

c11.indd 267c11.indd 267 3/24/11 4:32:44 PM3/24/11 4:32:44 PM

268 ❘ CHAPTER 11 IMPROVING SCRUM BY USING SPIKES

 4. Use the arrow buttons at the top of
the dialog to move the spike to the
correct location. Figure 11 - 6 shows
the new spike occurring between
sprint 4 and sprint 5.

 5. Click Close to close the Areas and
Iterations dialog.

 6. Right - click the Work Items node in
the Team Explorer and select New
Work Item ➪ Sprint, as shown in
Figure 11 - 7. TFS opens a new work
item form, as shown in Figure 11 - 8.

 7. In the Iteration text box on the new
work item form, select the spike
iteration you just created.

 FIGURE 11 - 6: A spike between sprints 4 and 5.

 FIGURE 11 - 7: Creating a new sprint work item.

c11.indd 268c11.indd 268 3/24/11 4:32:45 PM3/24/11 4:32:45 PM

Types of Spikes ❘ 269

 8. Enter start and end dates for the spike in the Start Date and Finish Date drop - downs.

 9. Enter a goal for the spike into the Sprint Goal fi eld.

 10. Save the sprint work item.

 11. Adjust any existing sprint work item dates to ensure that none of them overlap the
boundaries of the new spike. You do this by running the all sprints work item query and
editing sprint work items that overlap.

 STARTING A PROJECT WITH SPIKES

 A team decided to start a project with a series of one - week spikes rather than a
traditional sprint. This project had a level of uncertainty, and the team wanted
clarity before starting. The fi rst three weeks of the project were dedicated to one -
 week spikes. The team built prototypes, wrote design documents, and uncovered key
details on high - risk PBIs. At the end of the spikes, the team was ready to begin work
on the fi rst sprint, and it had a higher level of confi dence about the implementation
and strategy. Some teams refer to a spike before the fi rst sprint as sprint 0 .

 FIGURE 11 - 8: Spike details.

c11.indd 269c11.indd 269 3/24/11 4:32:45 PM3/24/11 4:32:45 PM

270 ❘ CHAPTER 11 IMPROVING SCRUM BY USING SPIKES

 Spikes During a Sprint

 Spikes during a sprint are appropriate when a team needs to learn something specifi c
about a PBI that prevents the team from estimating that PBI during sprint planning. For
example, your team might recognize a PBI nearing the top of the backlog for which it has
uncertainty about implementation. In this situation, the team can plan to perform a spike on the
PBI during the next sprint so that it has enough information to complete the PBI in the sprint
that follows.

 A team estimates spikes during a sprint during sprint planning, just as it does other PBIs. The
difference is that a team does not estimate a spike in effort or hours; instead, it time - boxes a
spike to a specifi c period during the sprint. For example, you might choose two members of your
team to perform a spike during the fi rst week of a three - week sprint. Those team members should
have no other work contributing to the sprint during that fi rst week. Instead, they perform a spike.
When they ’ re done, they share what they learned from the spike with the team during the sprint
review meeting and then use that information when estimating and committing to work in the
next sprint.

When executing a spike during a sprint, be sure other sprint work is not
dependent on the results of the spike. You need to commit to work in the sprint
during sprint planning. Any learning from the spike is applied to the team ’ s
next sprint.

 Guidelines for Spikes During a Sprint

 Keep in mind the following guidelines for spikes during a sprint:

 Time - box a spike for a period of time during the sprint.

 Ensure that your team is clear on who is participating in the spike.

 Ensure that the spike has a clear goal and a clear set of deliverables.

 Ensure that team members participating in the spike continue to attend and participate in
daily standups.

 Creating a Spike During a Sprint

 To create a spike for completion during a sprint, follow these steps:

 1. In the Team Explorer, right - click the Work Items node and select New Work Item ➪
Product Backlog Item, as shown in Figure 11 - 9. TFS opens a new PBI form, as shown
in Figure 11 - 10.

➤

➤

➤

➤

c11.indd 270c11.indd 270 3/24/11 4:32:46 PM3/24/11 4:32:46 PM

Types of Spikes ❘ 271

 FIGURE 11 - 9: Creating a new PBI.

 FIGURE 11 - 10: A spike during a sprint.

c11.indd 271c11.indd 271 3/24/11 4:32:51 PM3/24/11 4:32:51 PM

272 ❘ CHAPTER 11 IMPROVING SCRUM BY USING SPIKES

 2. In the Title fi eld of the new PBI form, enter a title for the spike, prefi xed with the word
 Spike . Figure 11 - 10 shows a new spike named Spike - Drag & Drop that the team has
committed to complete in sprint 4.

 3. Enter a goal for the spike in the Description fi eld.

 4. During sprint planning, decide the duration of the spike and who from your team will work
on it. Set the Assigned To fi eld to the team member leading the spike and note the length of
the spike in the Description fi eld.

 5. Link the spike to any related PBIs by selecting the Links tab and clicking the Link To button
on the links toolbar. The Add Link to Product Backlog Item dialog appears, as shown in
Figure 11 - 11.

 FIGURE 11 - 11: Linking a spike to a PBI.

 6. Select Related from the Link Type drop - down and enter the ID of the PBI being linked, as
shown in Figure 11 - 11. Click OK. Figure 11 - 12 shows the result: a spike linked to a PBI
during a sprint.

c11.indd 272c11.indd 272 3/24/11 4:32:52 PM3/24/11 4:32:52 PM

 EXECUTING A SPIKE

 The most common way to execute a spike is to create a small prototype, or program that
demonstrates the functionality in question. You can read and study different approaches, but most
people fi nd that nothing helps them understand a problem more than writing working code.

 FIGURE 11 - 12: A spike linked to a PBI.

 BUILDING PROTOTYPES AS PART OF A SPRINT

 On a recent project, a team came across a PBI that it was unsure how to implement.
The scenario involved customers dragging and dropping items in order on a list.
Solving this problem seemed simple at fi rst. However, the team was confl icted
about the correct approach to implement. It wanted to ensure that it did not affect
performance in other areas of the product.

 To gain clarity, the team added to its next sprint a spike that aimed to build three
different prototypes of the drag - and - drop functionality. After the prototypes were
completed, the team presented them to customers for feedback on the design and
user experience of each. The learning gained from building the prototypes and the
feedback provided by customers made the correct implementation obvious. In
the next sprint, the team implemented the drag - and - drop PBI and delivered the
functionality desired.

Executing a Spike ❘ 273

c11.indd 273c11.indd 273 3/24/11 4:32:53 PM3/24/11 4:32:53 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

274 ❘ CHAPTER 11 IMPROVING SCRUM BY USING SPIKES

 Code Quality

 When writing code for a spike, you obviously want the code to work so you can evaluate its
effectiveness and learn from it. However, there is a big difference between throwaway code
produced during a spike and production code produced during a sprint. Production code includes
rich comments, is well documented, adheres to proper naming conventions, and includes proper
unit tests.

 Code produced during a spike is different. There is no need for everything mentioned previously
because code developed during a spike is written to be thrown away. With spike code, you focus
your efforts on getting something working — a solution that quickly answers the question at hand.
You can ignore proper conventions, you can hard - code values, and you do not need to worry about
validating user input. With spike code, you can do the bare minimum needed to achieve the goal.

 The spike is an experiment, designed to answer specifi c questions about a specifi c problem.
Remember that the goal of a spike is to give your team information and experience to know how to
solve the problem. The goal is not to produce the actual code that solves the problem, or to produce
an ivory - tower prototype. If the code produced during a spike is particularly valuable, you can share
it with the team, check it in as documentation, or save it to a research folder. Just remember not to
treat the code as anything more than an experiment.

Be careful not to use spikes as an excuse to avoid disciplined development
practices common to all high - performing software teams.

 Architectural Slices

 Layers are a common architectural design pattern for structuring applications. Each layer in
the architecture has a different responsibility. For example, a common layer in all software is the
presentation layer. This layer is responsible for presenting the user interface to the user of the software.
When possible, you want your spikes to slice through all the architectural layers in your product.
The more layers your spikes slice through, the more your team will learn.

 It is easy to design or prototype a solution in a single architectural layer; success is usually very
high. However, when that solution begins to interact with a new layer in the product, fl aws often
appear in what before appeared to be a sound design or implementation.

 A spike is meant to provide as much information
to the team as possible. By crossing architectural
layers, you can be assured that the solution
your team chooses will not crumble when it is
integrated into the full product. For this reason,
spikes are designed to be thin end - to - end slices
that run through the entire product. Conducting
a spike in Scrum is akin to driving an actual spike
through a set of boards. Figure 11 - 13 illustrates
this concept.

Presentation Layer

Services Layer

Business Layer

Data Layer

S
p

ik
e

 FIGURE 11 - 13: A spike cutting across architectural

layers.

c11.indd 274c11.indd 274 3/24/11 4:32:54 PM3/24/11 4:32:54 PM

 SUMMARY

 There are times in every software project when the team needs to step back from the product and
think deeply about a problem it is facing. The team needs time to experiment and test various
approaches. It needs time to try, fail, and try again. Sprints are not appropriate for this type of
activity because a sprint is based on a commitment to a set of known activities. A team cannot
commit to something it does not understand.

 In this chapter, you have seen how you can use spikes to gain clarity and understanding when faced
with uncertainty about items on your product backlog. Throughout this book, you have learned
how to implement Scrum using TFS and the Microsoft Visual Studio Scrum 1.0 process template.

 As stated in Chapter 1, the Agile Manifesto is the starting point for understanding the principles on
which Scrum is based. The four high - level values from the manifesto frame the methodology:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

 The fi rst value statement of the manifesto states clearly that people are more valuable than tools.
The tools described in this book will not bring success to a software project unless they are used by
a committed team of people who value each other and customers. Tools do not build great software;
teams do. We hope you enjoy and have fun implementing Scrum on your team and are able to
delight your customers along the way.

➤

➤

➤

➤

Summary ❘ 275

c11.indd 275c11.indd 275 3/24/11 4:32:59 PM3/24/11 4:32:59 PM

c11.indd 276c11.indd 276 3/24/11 4:32:59 PM3/24/11 4:32:59 PM

Working with Scrum
Assessments

 WHAT ’ S IN THIS CHAPTER?

 Using assessment templates.

 Looking at a sample assessment.

 Using checklists for the product owner and ScrumMaster.

 Continuous assessment is a key part of doing Scrum successfully. Creating checklists of
desired behavior is an excellent way to achieve shared understanding about what is working
and what is not working. This appendix provides assessment worksheets for the daily Scrum,
the demo meeting, the retrospective meeting, and the planning meeting. The appendix also
includes a sample assessment that is based on an actual assessment provided to a client who
was just starting to implement Scrum.

 USING ASSESSMENT TEMPLATES

 This section provides assessments for the daily Scrum, the demo, the retrospective, and the
planning meeting. You should print out these assessments and fi ll in each one during the
appropriate meeting. At the end of the meeting, you can post the assessment on the SharePoint
portal. The ScrumMaster, product owner, and technical team can all learn from these
assessments.

 Assessing the Daily Scrum

 Table A - 1 shows a template for assessing the daily Scrum. The fi rst column consists of a
list of questions. Any member of the team can answer these questions, but, in practice, the
ScrumMaster is often the one who completes the checklist.

➤

➤

➤

 A

BAPP01.indd 277BAPP01.indd 277 3/23/11 5:59:33 PM3/23/11 5:59:33 PM

278 ❘ APPENDIX A WORKING WITH SCRUM ASSESSMENTS

 The second column indicates the ideal answer. All questions are either Yes/No (Y/N) questions or
rating questions (A – F). The third column indicates how many points each answer should be given.
For rating questions, the scores of the intermediate letters decline by equal increments. For example,
if the third column indicates “ A � 20; F � 0, ” then B � 16, C � 12, D � 8, and E � 4.

 The fourth column contains coaching notes. The fi fth column stores the answers to the questions.
You should add new date columns as needed.

 You should post this template on the SharePoint site and complete it every day.
Your team can discuss the results during the retrospective meeting.

 IDEAL

ANSWER SCORE COACHING NOTES 2/7/2011

 Is the meeting held? (Y/N) Y Y � 20; N � 0

 Does the meeting start

on time? (Y/N)

 Y Y � 10; N � 0

 Does the meeting end

on time? (Y/N)

 Y Y � 10; N � 0

 Does the team follow its

charter? (A – F)

 A A � 20; F � 0 F � The team does not

have a charter

 Do the team members

stand up? (Y/N)

 Y Y � 10; N � 0

 Do all team members

speak? (Y/N)

 Y Y � 20; N � 0

 Do all team members show

up on time? (Y/N)

 Y Y � 20; N � 0

 Do the team members

self - organize? (A – F)

 A A � 20; F � 0 F � The ScrumMaster has

to prompt people to speak

 Do the team members

answer the three

questions? (A – F)

 A A � 20; F � 0 A � Every team member

answers the three

questions and does

nothing else

 Are all team members

prepared to answer the

three questions? (A – F)

 A A � 20; F � 0

 Do the team members

problem solve? (A – F)

 A A � 20; F � 0 A � Team does not

problem solve

 TABLE A - 1: The Daily Scrum Assessment Template

BAPP01.indd 278BAPP01.indd 278 3/23/11 5:59:35 PM3/23/11 5:59:35 PM

 Assessing the Demo

 Table A - 2 shows a template for assessing demos. The fi rst column consists of a list of questions. Any
member of the team can answer these questions, but, in practice, the ScrumMaster is often the one
who completes the checklist.

 The second column indicates the ideal answer. All questions are either Yes/No (Y/N) questions or
rating questions (A – F). The third column indicates how many points each answer should be given.
For rating questions, the scores of the intermediate letters decline by equal increments. For example,
if the third column indicates “ A � 20; F � 0, ” then B � 16, C � 12, D � 8, and E � 4. The fourth
column contains coaching notes.

 TABLE A - 2: The Demo Meeting Assessment Template

 IDEAL

ANSWER SCORE COACHING NOTES

 Is the meeting held? (Y/N) Y Y � 20; N � 0

 Does the meeting start on time? (Y/N) Y Y � 10; N � 0

 Does the meeting end on time? (Y/N) Y Y � 10; N � 0

 Does the team follow its charter? (A – F) A A � 30; F � 0

 Does the team demo only completed

user stories? (A – F)

 A A � 50; F � 0

 Does everyone agree on the defi nition

of done ? (Y/N)

 Y A � 30; F � 0

 Are fi nished user stories shippable?

(Y/N)

 Y Y � 50; N � 0 In special cases, a story

may not be shippable.

 Do people who are not on the

team speak? (Y/N)

 N Y � 0; N � 20

 IDEAL

ANSWER SCORE COACHING NOTES 2/7/2011

 Does the team use the

task board? (Y/N)

 Y Y � 20; N � 0

 Are all communication

methods (Skype,

videoconference, etc.)

working? (A – F)

 A A � 20; F � 0

 Do people who are not on

the team participate? (Y/N)

 N Y � 0; N � 10

Using Assessment Templates ❘ 279

BAPP01.indd 279BAPP01.indd 279 3/23/11 5:59:46 PM3/23/11 5:59:46 PM

280 ❘ APPENDIX A WORKING WITH SCRUM ASSESSMENTS

 Assessing the Retrospective

 Table A - 3 shows a template for assessing the retrospective. The fi rst column consists of a list of
questions. Any member of the team can answer these questions, but, in practice, the ScrumMaster
is often the one who completes the checklist.

 The second column indicates the ideal answer. All questions are either Yes/No (Y/N) questions or
rating questions (A – F). The third column indicates how many points each answer should be given.
For rating questions, the scores of the intermediate letters decline by equal increments. For example,
if the third column indicates “ A � 20; F � 0, ” then B � 16, C � 12, D � 8, and E � 4. The fourth
column contains coaching notes.

 TABLE A - 3: The Retrospective Meeting Assessment Template

 IDEAL

ANSWER SCORE COACHING NOTES

 Is the meeting held? (Y/N) Y Y � 20; N � 0

 Does the meeting start on time? (Y/N) Y Y � 10; N � 0

 Does the meeting end on time? (Y/N) Y Y � 10; N � 0

 Does the team follow its charter? (A – F) A A � 30; F � 0

 Do all team members attend the

meeting? (Y/N)

 Y Y � 20; N � 0

 Does the team create action plans to

remove impediments? (Y/N)

 Y Y � 50; N � 0

 Does the team only answer the what

went well/what went poorly/what do

we want to improve questions? (Y/N)

 N Y � 0; N � 30 An elite team will dig deep to

understand the root causes

of specifi c problems.

 Do people who are not on the team

attend the meeting? (Y/N)

 N Y � 0; N � 30

 Assessing the Planning Meeting

 Table A - 4 shows a template for assessing the planning meeting. The fi rst column consists of a list of
questions. Any member of the team can answer these questions but, in practice, the ScrumMaster is
often the one who completes the checklist.

 The second column indicates the ideal answer. All questions are either Yes/No (Y/N) questions or
rating questions (A – F). The third column indicates how many points each answer should be given.
For rating questions, the scores of the intermediate letters decline by equal increments. For example,
if the third column indicates “ A � 20; F � 0, ” then B � 16, C � 12, D � 8, and E � 4.

BAPP01.indd 280BAPP01.indd 280 3/23/11 5:59:46 PM3/23/11 5:59:46 PM

 A SAMPLE ASSESSMENT

 This section contains a sample assessment that is based on an actual assessment provided to
a client. Note that client assessments are not just copies of the assessments provided in the
previous section. They contain analysis and suggestions.

 Planning Meeting Assessment

 The planning meeting took place on February 1, 2011, from 10 a.m. to 1 p.m., in the Sodium
conference room. The meeting was attended by:

 Product owner — Ben Bitdiddle

 ScrumMaster — Alex Agile

 Technical team — Chris Code, Bill Bug, Sally Subversion, and Mary Map

 Attendees who are not on the team — Rick Rooster, Ed Executive

 Problems:

 The meeting started seven minutes late.

 Breaks were not clearly identifi ed.

 The team did not create a sprint goal.

➤

➤

➤

➤

➤

➤

➤

 TABLE A - 4: The Planning Meeting Assessment Template

 IDEAL

ANSWER SCORE

 Is the meeting held? (Y/N) Y Y � 50; N � 0

 Does the meeting start on time? (Y/N) Y Y � 10; N � 0

 Does the meeting end on time? (Y/N) Y Y � 10; N � 0

 Does the team follow its charter? (A – F) A A � 20; F � 0

 Does the product owner attend the meeting? (Y/N) Y Y � 50; N � 0

 Does every team member attend the meeting? (Y/N) Y Y � 50; N � 0

 Are the user stories prioritized? (Y/N) Y Y � 30; N � 0

 Does each user story have acceptance tests? (Y/N) Y Y � 30; N � 0

 Does everyone involved understand the defi nition of done ? (Y/N) Y Y � 30; N � 0

 Does everyone know the start date of the sprint? (Y/N) Y Y � 30; N � 0

 Does everyone know the end date of the sprint? (Y/N) Y Y � 30; N � 0

A Sample Assessment ❘ 281

BAPP01.indd 281BAPP01.indd 281 3/23/11 5:59:47 PM3/23/11 5:59:47 PM

282 ❘ APPENDIX A WORKING WITH SCRUM ASSESSMENTS

 The ScrumMaster failed to effectively facilitate the meeting.

 Team members repeatedly entered into side conversations.

 All the team members did not participate in estimating every story.

 The team members in India were not included in the discussion.

 Leftover user stories from the previous sprint were not prioritized.

 The team did not use its velocity to determine how many stories to accept into the sprint.

 The team didn’t use the Team Foundation Server Scrum template effectively.

 Suggestions:

 The ScrumMaster should prepare a planning meeting checklist and follow that checklist.

 The product owner must attend the planning meeting, with an appropriately groomed
backlog.

 All leftover stories from the previous sprint must be prioritized before the planning meeting.

 The team should agree to a sprint goal and publish it.

 The team should videotape the meeting.

 Every team member should estimate every user story.

 The team should use its velocity to cap the amount of work it takes into the sprint.

 Every member of the team should buy this book and study it.

 Daily Scrum Assessment

 The daily Scrum took place on February 2, 2011, from 10:00 a.m. to 10:15 a.m. in the Potassium
conference room. The meeting was attended by:

 Product owner — Ben Bitdiddle

 ScrumMaster — Alex Agile

 Technical team — Chris Code, Bill Bug, Sally Subversion, and Mary Map

 Attendees who are not on the team — Rick Rooster, Ed Executive

 Problems:

 Attendees who are not on the team spoke repeatedly.

 Impediments were not recorded.

 Team members tried to solve problems.

 The meeting started eight minutes late.

 The meeting ended four minutes late.

 The team did not use the task board.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

BAPP01.indd 282BAPP01.indd 282 3/23/11 5:59:47 PM3/23/11 5:59:47 PM

 Suggestions:

 The daily Scrum should begin and end on time.

 The team members should answer the three questions and only the three questions.

 The team should clearly identify that the meeting is over.

 Demo Meeting Assessment

 The demo meeting took place on January 31, 2011, from 10 a.m. to 11 a.m. in the Mercury
conference room. The meeting was attended by:

 Product owner — Ben Bitdiddle

 ScrumMaster — Alex Agile

 Technical team — Chris Code, Bill Bug, Sally Subversion, and Mary Map

 Attendees who are not on the team — Rick Rooster, Ed Executive

 Problems:

 The team was not prepared to demo.

 The projector was not set up before the meeting.

 The product owner arrived late.

 The team demonstrated partially completed work.

 Suggestions:

 The ScrumMaster should set up the room 15 minutes before the meeting.

 The ScrumMaster should provide the team with a template for the demo. Here is a
suggested template:

 Slide 1: Start and end times of meeting

 Slide 2: Meeting participants: Identify team members

 Slide 3: The team ’ s demo charter

 Slide 4: User story 1: Include the story points assigned to this story
and the business value, if available

 Slide 5: User story 2

 Slide 6: User story 3

 The ScrumMaster should coach the team through the demo.

 The product owner will be required to wear a pink hat at the next planning meeting

as a reminder not to be late.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

A Sample Assessment ❘ 283

BAPP01.indd 283BAPP01.indd 283 3/23/11 5:59:47 PM3/23/11 5:59:47 PM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

284 ❘ APPENDIX A WORKING WITH SCRUM ASSESSMENTS

 Retrospective Meeting Assessment

 The retrospective meeting took place on January 31, 2011, from 11 a.m. to 2 p.m. in the Mercury
conference room. The meeting was attended by:

 Product owner — Ben Bitdiddle

 ScrumMaster — Alex Agile

 Technical team — Chris Code, Bill Bug, Sally Subversion, and Mary Map

 Attendees who are not on the team — Rick Rooster, Ed Executive

 Problems:

 The comments were superfi cial.

 The team did not create action plans.

 The meeting started late.

 Lunch was not provided.

 Suggestions:

 The team should consider using the 5 Whys technique to uncover the root cause of a problem.

 The ScrumMaster should prepare a list of detailed questions prior to the meeting and
step the team through the questions. Here are some examples:

 What user stories were not estimated well? Why were the estimates too high or too low?

 Why did the release not go as planned? Should we assign a release master?

 Who is on the team? Why do we have people who participate in our meetings but
do not work on our backlog?

 Lunch should be provided. If that is not possible, have a 12 - pack of Jolt cola in all meeting
rooms.

 Because the meeting started late, everyone should wear pink hats during all of the next sprint.

 WORKING WITH CHECKLISTS

 For beginning product owners and ScrumMasters, knowing what to prioritize is critical. A checklist
can help focus attention on the highest - value objectives. The following sections provide checklists
for product owners and ScrumMasters. You can use these checklists as a basis for creating your
own checklists.

 A Checklist for the Product Owner

 The product owner is critical to a team ’ s success. The team might be able to create software quickly,
but if it is the wrong software, the organization will fail.

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

➤

BAPP01.indd 284BAPP01.indd 284 3/23/11 5:59:47 PM3/23/11 5:59:47 PM

 Table A - 5 provides a checklist for a product owner to use throughout a sprint. The questions in
the Question column help a product owner determine whether he or she is focusing on the correct
objectives. The suggestions listed in the Techniques column can help drive the answers to the
questions in the right direction.

 A Checklist for the ScrumMaster

A ScrumMaster is a coach and leader servant. The ScrumMaster assists a team in becoming better
and better at Scrum. Table A - 6 provides a checklist for a ScrumMaster to use throughout a sprint.
The questions in the Question column help a ScrumMaster determine whether he or she is focusing
on the correct objectives. The suggestions listed in the Techniques column can help drive the
ScrumMaster and the team in the right direction.

Working with Checklists ❘ 285

 Some of the questions and techniques in Table A-5 and Table A-6 may not apply
in your situation. Simply delete any such items from the checklist and create
your own.

BAPP01.indd 285BAPP01.indd 285 3/23/11 5:59:48 PM3/23/11 5:59:48 PM

286 ❘ APPENDIX A WORKING WITH SCRUM ASSESSMENTS

 QUESTION ANSWER TECHNIQUES

 Does the team understand each story

in the sprint backlog?

 Visit each team member once a week, ask

what he or she is working on, and ask for a

quick demo.

 Do you hold offi ce hours every day?

 Do you get the team ’ s input on the

backlog?

 Pair with an architect or a senior developer

on critical backlog items.

 Does each backlog item meet the

Independent, Negotiable, Valuable,

Estimable, Small, and Testable

(INVEST) standards?

 Track how many user stories the team rejects

or modifi es during the planning meeting.

 How does the team think you

performed during the last sprint?

 Do you exchange information with

other product owners in the

company?

 Work with another product owner on creating

a backlog at least once per release.

 Do you examine the burndown chart? Suggest to the team members that they look

at the burndown chart during the daily Scrum.

 Do you introduce new user stories

during the sprint?

 Track how many user stories you add during

a sprint and see how this infl uences velocity.

 Are you adjusting the release backlog

based on the team ’ s velocity?

 Create a well - oiled technique for calculating

how many story points the release backlog

should have.

 Is the team excited about building the

product?

 Ask the team members if they would be

willing to recommend the product to their

friends.

 Are you relentlessly focused on

creating a backlog that defi nes the

minimum viable, usable, and feasible

product?

 Constantly ask yourself what you would cut

if the team ’ s velocity dropped by 10%. If you

can live with what you cut, then cut it and

ship earlier.

 Do you validate the business value

when the product ships?

 For every user story, calculate the actual

business value received when the product

ships and compare it to your estimated

business value.

 TABLE A - 5: The Product Owner ’ s Checklist

BAPP01.indd 286BAPP01.indd 286 3/23/11 5:59:53 PM3/23/11 5:59:53 PM

 QUESTION ANSWER TECHNIQUES

 Have all team members agreed

wholeheartedly to do Scrum?

 Have the team sign a large poster that reads

 “ I want to do Scrum. ” Hang this poster in a

highly visible location.

 Does the team have a charter for

the daily Scrum, the demo, the

retrospective, and the planning

meeting?

 List the key points in the charter, using short

phrases (e.g., “ No side conversations ”) and

place this list in the meeting room.

 Does the team have a great

programming environment?

 If the team is having a problem performing any

basic task (e.g., building the system or running

automated tests), realize that you must remove

this impediment.

 Do you have an impediments list? At each daily Scrum, require each team

member to share at least one impediment.

Keep a prioritized list of all impediments.

 Are you always removing

impediments?

 Make a commitment to the team to remove at

least one impediment per sprint.

 Does the team stay on the sprint

backlog?

 Calculate a “ focus ” metric that shows what

percentage of a team ’ s eff ort is on backlog

items.

 Are team members constantly

improving their skills?

 Keep track of how many technical

breakthroughs the team experiences per

sprint.

 Is the team ’ s truck factor greater

than one?

 Create a chart that shows how many team

members can work in each area.

TABLE A-6: The ScrumMaster’s Checklist

Working with Checklists ❘ 287

BAPP01.indd 287BAPP01.indd 287 3/23/11 5:59:53 PM3/23/11 5:59:53 PM

BAPP01.indd 288BAPP01.indd 288 3/23/11 5:59:53 PM3/23/11 5:59:53 PM

References

 There are many good books and helpful websites on Agile development and Scrum. These texts
and sites transcend the tools, covering what to do, when to do it, how to do it, and with whom.
In writing Professional Scrum with Team Foundation Server 2010 , we used a number of sources
to compare our ideas with those of others. You can fi nd many good approaches and solutions
in the following sources:

 Berkun, Scott. Making Things Happen: Mastering Project Management . O ’ Reilly, 2008.

 Cohn, Mike. Agile Estimating and Planning . Prentice Hall, 2006.

 Cohn, Mike. Succeeding with Agile: Software Development Using Scrum . Addison-
Wesley, 2010.

 Cohn, Mike. User Stories Applied for Agile Software Development . Addison-Wesley, 2004.

 Gousset, Mickey, Brian Keller, Ajoy Krishnamoorthy, and Martin Woodward.
 Professional Application Lifecycle Management with Visual Studio 2010 . Wiley, 2010.

 Krishnamoorthy, Ajoy. Agile Planning Tools in Visual Studio Team System 2010 .
 http://msdn.microsoft.com/en-us/magazine/dd347827.aspx .

 McCarthy, Jim. Dynamics of Software Development . Microsoft Press, 1995.

 McCarthy, Jim, and Michele McCarthy. Software for Your Head: Core Protocols
for Creating and Maintaining Shared Vision . Addison-Wesley, 2002.

 Pichler, Roman. Agile Product Management with Scrum: Creating Products That
Customers Love . Addison-Wesley, 2010.

 Schwaber, Ken. Agile Project Management with Scrum . Microsoft Press, 2004.

 Schwaber, Ken. The Enterprise and Scrum . Microsoft Press, 2007.

 Smith, Greg, and Ahmed Sidky. Becoming Agile in an Imperfect World . Manning
Publications Co., 2009.

 Sutherland, Jeff. Agile Principles and Values . http://msdn.microsoft.com/library/
dd997578.aspx .

 B

BAPP02.indd 289BAPP02.indd 289 3/23/11 6:01:10 PM3/23/11 6:01:10 PM

291

INDEX

A

acceptance criteria
PBIs, 60, 189
user stories, 86

Acceptance Criteria fi eld
bugs, 113
PBIs, 105, 160

Activity fi eld, tasks, 107, 187–188
adaptability

inspect-and-adapt Agile framework, 251, 260
MSF method, 21
retrospective meetings, 260, 261
Scrum method, 21
Waterfall method, 20

Add Link to Product Backlog Item dialog, 87, 230,
231, 272

Add New Linked Work Item dialog, 84, 85, 230
Agile Manifesto, 12–13

Beck and, 264
online, 12
principles, 13
Scrum and, 12–13, 275
value statements, 12–13, 58

customer collaboration over contract
negotiation, 13, 58, 275

individuals and interactions over processes
and tools, 12, 58, 69, 275

responding to change over following a plan,
13, 58, 275

working software over comprehensive
documentation, 12, 58, 275

Agile software development
acceptance criteria and, 60
Cohn and, 68
defi ned, 58
inspect-and-adapt Agile framework, 251, 260
iterations, 81
Microsoft Visual Studio Scrum 1.0 process

template, 54
MSF for Agile Software Development v5.0, 54

paired programming, 15
principles for, 13
reference sources, 289
Scrum and, 4, 21, 54, 58
story points. See user story points
test-driven development, 15
testing methodologies, 197
user stories and, 201
XP and, 54, 264

All Sprints, 82, 83, 254
all sprints query, 121–122
architects, IT, 48
architecture

architectural slices, 274
common, 39–40

Area fi eld
bugs, 113, 183
impediments, 111
PBIs, 105, 159
shared steps, 117
tasks, 107
test cases, 115, 191

Area Path fi eld, 39, 102–103
areas, 84, 102
Areas and Iterations dialog, 102, 103, 203, 204, 233,

234, 236, 266, 267, 268
artifacts (project artifacts). See also product backlog;

release burndown reports; sprint backlog; sprint
burndown reports; work items
defi ned, 9, 14, 58
examples of, 9
linking. See linking work items
types, 58–59

assessments
checklists

product owner, 284–285, 286
ScrumMaster, 285, 287

samples
daily Scrum, 282–283
demo meeting, 283
retrospective meeting, 284

bindex.indd 291bindex.indd 291 3/24/11 10:12:34 AM3/24/11 10:12:34 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

292

assessments (continued)
sprint planning meeting, 281–282

templates, 277–281
daily Scrum, 277–279
demo meeting, 279
retrospective meeting, 280
sprint planning meeting, 280–281

Assigned To fi eld
bugs, 113, 182
impediments, 111
PBIs, 105, 156
shared steps, 117
tasks, 107
test cases, 115, 191

Attachments tab, 88, 245
automated steps, for test cases, 196–197
Automation Status fi eld, test cases, 115, 191
availability, product owner, 226

B

backlog. See product backlog; release backlog;
sprint backlog

Backlog Priority fi eld. See also product backlog items
bugs, 183
PBIs, 84, 105, 157
tasks, 107

Beck, Kent, 264
benefi t, as user story component, 206
best practices

PBI estimation, 183
sprints, 110
vision/scope, 3

Blocked fi eld, tasks, 107, 188
blocked tasks query, 127, 258
bridge example, 18, 19
budget planning, 9–10
bugs

addressing during sprints, 241–250
defi ned, 178
entered into TFS, 181–183
form, 112
form fi elds, 112–113

Acceptance Criteria fi eld, 113
Area fi eld, 113, 183
Assigned To fi eld, 113, 182
Backlog Priority fi eld, 183
Effort fi eld, 183
Iteration fi eld, 112, 182
Reason fi eld, 113
Severity fi eld, 183
State fi eld, 113, 182
Steps to Reproduce fi eld, 113

Tasks fi eld, 113
Test Cases fi eld, 113
Title fi eld, 112, 182

linking
bugs to PBIs, 164–166
bugs to test cases, 164, 167–168
PBIs to bugs, 163–164
tasks to bugs, 171–172

list, 183–186
relations

bugs–test cases–PBIs–tasks–impediments, 160
impediment–PBI–bug–task, 175
PBI–bug, 164
PBI–task–bug, 169
PBI–test case–bug, 167

reports, 248–250
states, 113–114

diagram, 180
tracking from new to done, 180–181

tracking and resolving, 178–186
work items, 112–114
workfl ow for resolving bugs, 179–181, 242

bugs and tasks query, 172
build success over time reports, 133–134
burndown. See release burndown reports; sprint

burndown reports
business value, 31

defi ned, 31
defi ning, 97, 224
effort vs., 31
PBI prioritization and, 14, 31, 59, 97

Business Value fi eld, PBIs, 105, 158–159

C

C2.com wiki, 264
calories estimation example, 158
Capability Maturity Model Integration (CMMI), 54
ceremonies, 14, 15, 51. See also daily Scrum; releases;

retrospective meetings; sprints; sprint planning
meetings

changes
culture, Scrum template and, 261
requirements and, 60
responding to change over following a plan, 13,

58, 275
sprint backlog, after sprint has started, 227–228

checklists
product owner, 284–285, 286
ScrumMaster, 285, 287

CMMI (Capability Maturity Model Integration), 54
code

collective ownership of, 226, 227

assessments – code

bindex.indd 292bindex.indd 292 3/24/11 10:12:37 AM3/24/11 10:12:37 AM

293

completed, 95
for spikes, 273–274

Cohn, Mike, 68
collective code ownership, 226, 227
common architecture, 39–40
communication

customers/engineers language barrier, 19
documentation vs., 22
face-to-face interactions, 13, 14, 41, 51
individuals and interactions over processes and

tools, 12, 58, 69, 275
product owner and, 30
ScrumMaster’s role in, 29

completed. See done
contract negotiation, customer collaboration over, 13, 58,

275. See also Agile Manifesto
cost, project management triangle and, 9. See also money
Create PivotTable dialog, 218, 219, 220
Create Report in Excel, 56, 135
cross-cutting concern, Scrum team specialization by,

37, 52
cube

defi ned, 54, 134
SQL Server Analysis/TFS, 54, 56, 134, 135,

138, 141
culture change, Scrum template and, 261
Cunningham, Ward, 264
custom reports. See Excel
customers

customer collaboration over contract negotiation,
13, 58, 275

customers/engineers language barrier, 19
value to, 1, 59, 104, 105, 265

D

daily Scrum (standup meeting), 70–72
assessment

sample, 282–283
template, 277–279

defi ned, 15, 65, 70–71
involving users in, 50
ScrumMaster’s role in, 28–29
tips for, 28, 71–72

data storage in TFS, 53–56
demo meetings

assessment
sample, 283
template, 279

sprints and, 97
deployment complete, MSF milestone, 16
Description fi eld

impediments, 111

PBIs, 84, 105, 159–160
tasks, 107
test cases, 191

development. See also Agile software development
iterative software development process, 13
test-driven, 15

development managers, MSF, 17, 43–44
direct links and work items queries, 118–120
documentation

communication vs., 22
MSF, 22
of PBIs, 154–160
Scrum, 22, 32, 50–51
Waterfall method, 19–20, 22
working software over comprehensive

documentation, 12, 58, 275
done

bugs tracked from new to done, 180–181
completed code, 95
completed tests, 96
completed user stories, 228
defi ning, 96, 228, 281

duration (project duration), 22
MSF method, 22
releases, 22
Scrum method, 22
sprints, 7, 13, 22, 51, 66
Waterfall method, 22

E

effort, 157–158. See also business value; estimation
defi ned, 31
Planning Poker, 68–69, 84, 88–89, 158, 234, 237
remaining, 62, 64
user story points and, 105, 157, 182

Effort fi eld
bugs, 183
PBIs, 105, 157–158

Einstein, Albert, 31
engineering reports, 132–134
engineers/customers language barrier, 19
Estimable, INVEST principle, 225
estimation, 31

in calories, 158
effort, 31
of PBIs, 68–69, 183, 234
Planning Poker, 68–69, 84, 88–89, 158, 234, 237

Excel. See also PivotCharts; PivotTables
Create Report in Excel, 56, 135
custom reports, 55–56, 134–145
items entered into TFS with Excel

bugs, 181

Cohn, Mike – Excel

bindex.indd 293bindex.indd 293 3/24/11 10:12:37 AM3/24/11 10:12:37 AM

294

Excel (continued)
impediments, 175
PBIs, 83, 154, 211–220
tasks, 186

PBI creation, 150
as tracking tool, 51

Extreme Programming (XP), 54, 264. See also Agile
software development

F

face-to-face interactions, 13, 14, 41, 51
failure patterns, 224, 226–228
fantasy football example, 2–3
feature creep, 149
features. See product features
Fibonacci sequence, 68, 158, 183
Finish Date fi eld, sprints, 109
5 Whys technique, 253
fl at list queries, 118
Fridays, 67
front door, 60–61. See also product backlog
fudge phenomenon, 207

G

Gantt charts, 8, 18, 22
generalists, 6
“generalizing specialists,” 227
Gherkin language, 86
grooming, product backlog, 65–66, 82

failure, 227
meetings, 66

H

History tab, 86, 87
hot dog vendor example, 236

I

impediments, 174–176
defi ned, 126
entered into TFS, 175
form, 110
form fi elds

Area fi eld, 111
Assigned To fi eld, 111
Description fi eld, 111
Iteration fi eld, 111

Reason fi eld, 111
Resolution fi eld, 111
State fi eld, 111
Title fi eld, 111

open impediments query, 126–127
relations

bugs–test cases–PBIs–tasks–impediments, 160
impediment–PBI–bug–task, 175

states, 111
work items, 110–111

improving, as team, 36
Independent, INVEST principle, 225
individuals and interactions over processes and tools,

12, 58, 69, 275. See also Agile Manifesto
insight, product owner, 3–4, 23, 29
inspect-and-adapt Agile framework, 251, 260
interactions. See also communication

face-to-face, 13, 14, 41, 51
individuals and interactions over processes and

tools, 12, 58, 69, 275
INVEST principles, 225–226
involving others, ScrumMaster’s role in, 28–29
involving users, in daily Scrum, 50
iron triangle, 9. See also project management triangle
IT roles, 47–52. See also Scrum roles

architects, 48
project manager, 47
QA managers, 49–50
release management, 48–49

Iteration fi eld
bugs, 112, 182
impediments, 111
PBIs, 155–156
shared steps, 117
sprints, 109
tasks, 107
test cases, 115, 191

Iteration Path fi eld, 102–103
iterations, 81, 97, 103. See also sprints
iterative software development process, 13

L

Lab Manager, 197, 261. See also Test Manager
language barrier, customers/engineers, 19
layers, architectural, 274
linking work items, 160–174

bugs to PBIs, 164–166
bugs to test cases, 164, 167–168
PBIs to bugs, 163–164
PBIs to tasks, 168–169
PBIs to test cases, 160–163
tasks to bugs, 171–172

Excel – linking work items

bindex.indd 294bindex.indd 294 3/24/11 10:12:38 AM3/24/11 10:12:38 AM

295

tasks to PBIs, 169–170
user stories to tasks, 229–231

Links tab, 87, 244, 272

M

manual steps, for test cases, 193–194
measuring. See tracking
meetings. See daily Scrum; demo meetings; product

backlog grooming meetings; release planning
meeting; retrospective meetings; spikes; sprint
planning meetings; sprint review

Microsoft Project, 22
Microsoft Solutions Framework. See MSF
Microsoft Test Manager. See Test Manager, Microsoft
Microsoft Visual Studio Scrum 1.0 process template.

See Scrum template
milestones

MSF process model, 15–16
product vision and, 2
test plans and, 198

money
people and, 6
project management triangle and, 9, 10–11
as resource, 5–6, 10, 48
technology and, 6
time and, 5

MSF (Microsoft Solutions Framework), 15–18. See also
Scrum; Waterfall method
adaptability, 21
defi ned, 54
documentation, 22
people, 21
process model, 15–16
product defi nition, 20
project duration, 22
project management approaches comparison,

20–22
risk management, 15, 43
roles, 17–18, 40–46, 52

development managers, 17, 43–44
product managers, 17, 41–42
program managers, 17, 42–43
QA managers, 17–18, 44–45
release management, 18, 46
training managers, 46

scheduling, 21
team model, 17–18
vision/scope, 16, 20, 22, 41, 42

MSF for Agile Software Development v5.0, 54
MSF for CMMI for Process Improvement v5.0, 54
multiple product backlogs, 228
multiple product owners, 32–34, 52, 228

N

Negotiable, INVEST principle, 225
new work

product backlog, 61, 263
sprint backlog, 62–63

New Work Item Report dialog, 136
Nokia Test, 206–208

online version, 206
statements, 206
tasks and, 206–207
user stories and, 206–207

O

open impediments query, 126–127
Organize section, Test Manager, 197

P

paired programming, 15
PBIs. See product backlog items
PBI and bugs query, 166
PBI and tasks query, 170
PBI and test case query, 162
people

individuals and interactions over processes and
tools, 12, 58, 69, 275

money and, 6
MSF method, 21
planning, 10
project management approaches, 21
as resource, 6, 11, 48
Scrum method, 21
Waterfall method, 21

personas, user story, 224–225
PivotCharts, 141–145

bug list and, 185, 186
defi ned, 141

PivotTables, 141–145
Create PivotTable dialog, 218, 219, 220
PBIs and, 218–220
Summarize with PivotTable, 218, 250
TFS cube and, 56, 138, 141

Plan section, Test Manager, 197
planning

budget, 9–10
people, 10
responding to change over following a plan, 13,

58, 275
Scrum method, 7, 57, 60
shipping software and, 6–10
Waterfall method, 6–8, 19, 57

Links tab – planning

bindex.indd 295bindex.indd 295 3/24/11 10:12:38 AM3/24/11 10:12:38 AM

296

planning meetings. See release planning meeting; sprint
planning meetings

Planning Poker, 68–69, 84, 88–89, 158, 234, 237
potentially releasable product, 49, 50
predictability

Scrum, 7, 56
software, 178, 202
Waterfall method, 7

principles. See also Agile Manifesto
Agile Manifesto, 13
INVEST, 225–226

prioritization
of PBIs, 14, 31, 59, 97, 104, 150, 153–154
prioritizing and specifying features (product owner

activity), 30–31
Priority fi eld

shared steps, 117
test cases, 115, 191

problems discovery
Scrum method, 52
Waterfall method, 51–52

process model, MSF, 15–16
Process Template Manager, 77, 78
process templates. See also Scrum template

defi ned, 53
Microsoft Visual Studio Scrum 1.0 process

template, 54
MSF for Agile Software Development v5.0, 54
MSF for CMMI for Process Improvement v5.0, 54

processes and tools, individuals and interactions over,
12, 58, 69, 275. See also Agile Manifesto

product backlog, 59–61, 147–176
customer value and, 59
cycle, 149
defi ned, 14, 31, 59, 147
developing, 205–210

creating user stories, 206–208
tasks and, 208–209
verifi cation of SharePoint portal, 209–210

failure patterns, 224, 226–228
front door, 60–61
grooming, 65–66, 82, 227

failure, 227
meetings, 66

managing, 147–150
multiple, 228
new work, 61, 263
priority, 31
project management triangle and, 10
scaling Scrum teams and, 39
success patterns, 224–226

product backlog grooming meetings, 66
product backlog items (PBIs), 150–174.

See also test cases

acceptance criteria, 60, 189
Add Link to Product Backlog Item dialog, 87, 230,

231, 272
backlog priority value, 105
creating, 80–81, 150–151
defi ned, 59, 104, 150
documenting, 154–160
entered into TFS

with Excel, 83, 154, 211–220
with SharePoint portal, 220–222
with Visual Studio, 83, 154, 223

estimating, 68–69, 183, 234
form, 104
form fi elds, 104–105

Acceptance Criteria fi eld, 105, 160
Area fi eld, 105, 159
Assigned To fi eld, 105, 156
Backlog Priority fi eld, 84, 105, 157
Business Value fi eld, 105, 158–159
Description fi eld, 84, 105, 159–160
Effort fi eld, 105, 157–158
Iteration fi eld, 155–156
Reason fi eld, 105, 157
State fi eld, 105, 156
Title fi eld, 84, 105, 155

INVEST principles and, 225–226
linking

bugs to PBIs, 164–166
PBIs to bugs, 163–164
PBIs to tasks, 168–169
PBIs to test cases, 160–163
tasks to PBIs, 169–170

PivotTables and, 218–220
prioritizing, 14, 31, 59, 97, 104, 150, 153–154
product owner’s role with, 235
relations

bugs–test cases–PBIs–tasks–impediments,
160

impediment–PBI–bug–task, 175
PBI–bug, 164
PBI–task–bug, 169
PBI–test case–bug, 167

reports, 232. See also release burndown reports;
sprint burndown reports; velocity reports

Scrum team’s role with, 235
simplicity and, 31
states, 106
user stories and, 31, 205
work item, 104–106
workfl ow, 151–152

product backlog query, 122
product defi nition

product owner and, 15
project management approaches, 20

planning meetings – product defi nition

bindex.indd 296bindex.indd 296 3/24/11 10:12:39 AM3/24/11 10:12:39 AM

297

product features
feature creep, 149
product owner activities

specifying and prioritizing features, 30–31
testing features, 32

in project management triangle, 9–10
scope vs., 11
Scrum team specialization by, 37, 39, 52
shipping software and, 10–12, 23
as user story component, 206

product manager, MSF, 17, 41–42
product owners, 29–34. See also Scrum roles; Scrum

teams; ScrumMasters; team members; vision
activities, 30–32

customer collaboration over contract
negotiation, 13, 58, 275

planning sprints and releases, 32
release management, 49
specifying and prioritizing features, 30–31
testing features, 32
working with PBIs, 235

availability of, 226
characteristics, 30
checklist, 284–285, 286
insight, 3–4, 23, 29
IT project managers and, 47
MSF product managers vs., 42
MSF training managers vs., 46
multiple, 32–34, 52, 228
QA managers vs., 49–50
responsibilities, 15, 25, 29–30
scaling, 32–34, 52
unavailability of, 226

product release cycle (sprint and release cycle), 13–14
product vision. See vision
production quality, 49
productivity, 235. See also velocity
products, potentially releasable, 49, 50
program managers, MSF, 17, 42–43
project artifacts. See artifacts
project duration. See duration
project management approaches, 12–23. See also MSF;

Scrum; Waterfall method
comparison, 20–22

adaptability, 20–21
documentation, 22
people, 21
project defi nition, 20
project duration, 22
scheduling, 21

MSF, 15–18
Scrum, 12–15
Waterfall method, 18–20

project management triangle, 9–12

project managers, IT, 47
project plan approved, MSF milestone, 16
projects. See Scrum team projects
prototypes, 273–274

Q

QA (quality assurance) managers
IT, 49–50
MSF, 17–18, 44–45
product owners vs., 49–50
team members vs., 17–18, 44–45, 49–50

quality. See also tracking
defi ned, 177
importance of, 96
tracking, 177–202

quality assurance. See QA managers
queries. See work item queries; specifi c queries
questions, retrospective. See retrospective meetings

R

Reagan, Ronald, 44
Reason fi eld

bugs, 113
impediments, 111
PBIs, 105, 157
tasks, 107

reference sources, Agile development/Scrum, 289
releases, 82–83, 203–232

ceremonies, 14, 15, 51
creating, 203–205
defi ned, 32, 82
durations, 22
linking tasks and user stories, 229–231
online information, 82
PBI reports, 232
PBIs entered into TFS

with Excel, 211–220
with SharePoint portal, 220–222
with Visual Studio, 223

product backlog development, 205–210
creating user stories, 206–208
tasks and, 208–209
verifi cation of SharePoint portal, 209–210

product backlog/user story
failure patterns, 224, 226–228
success patterns, 224–226

product owner and, 32
product release cycle (sprint and release cycle),

13–14
release readiness approved (MSF milestone), 16

product features – releases

bindex.indd 297bindex.indd 297 3/24/11 10:12:39 AM3/24/11 10:12:39 AM

298

releases (continued)
sprints vs., 32
understanding, 82–83

release backlog, 89, 97, 206, 235, 286
release burndown reports, 64, 89–92, 131

defi ned, 59, 64, 131
PBIs and, 232
sprint burndown reports vs., 89
in TFS, 91–92
velocity reports vs., 131

release goal, 92–95
release management

IT, 48–49
MSF, 18, 46
product owner and, 49
ScrumMaster and, 49
sprints and, 18, 46

release planning meeting, 65, 83–85
release schedules, 97–98, 103
remaining effort, 62, 64
Remaining Work fi eld, tasks, 107, 187
repeatability, 96–97
reports, 128–145. See also release burndown reports;

sprint burndown reports; specifi c reports
engineering, 132–134
Excel, 55–56, 134–145
PBI, 232
Scrum, 129–131
Scrum template, 55
SQL Server Reporting Services, 54–55

requirements. See also product backlog; shipping software
bringing requirements to Scrum team, 60–61
changing, 60
defi ned, 59
product backlog and, 59
as user stories, 201

Resolution fi eld, impediments, 111
resolving. See tracking
resources. See also money; people; technology; time

defi ned, 11
money, 5–6, 10, 48
people, 6, 11, 48
shipping software and, 4–6, 23, 48
technology, 48
time, 5–6, 10, 48

responding to change over following a plan, 13, 58, 275.
See also Agile Manifesto

Retrospective fi eld, sprints, 109
retrospective meetings (sprint retrospectives), 73–74,

251–261
assessment

example, 284

template, 280
daily Scrum assessment and, 278
defi ned, 15, 65, 73, 251
importance of, 110
questions

answering, 252–253, 255–261
Scrum template support, 253–255
“what didn’t work?” 252–253, 258–260
“what will we do differently?” 253, 260–261
“what worked?” 252, 255–258

rules for, 73–74
return on investment. See ROI
risk management

MSF, 15, 43
Scrum, 43, 56, 60, 74, 264

ROI (return on investment)
IT project managers and, 47
PBI prioritization and, 153–154
Scrum, 57, 74

roles. See Scrum roles

S

scaling product owners, 32–34, 52
scaling Scrum teams, 36–40, 52

common architecture, 39–40
product backlog, 39
scaling product owners, 32–34, 52
Scrum of Scrums meeting, 38
sprint synchronization, 39
team specialization, 36–38, 39, 52

scheduling
daily Scrum and, 50
MSF method, 21
release schedules, 97–98, 103
Scrum method, 21
simplifying, 51
Waterfall method, 21

Schwaber, Ken, 64, 66
scope

defi ned, 2
product features vs., 11
scope complete (MSF milestone), 16
vision/scope, 2–3, 16, 20, 22, 41, 42

Scrum, 56–74. See also MSF; Waterfall
method
adaptability. See adaptability
Agile programming. See Agile Manifesto; Agile

software development
assessments. See assessments
documentation. See documentation

releases – Scrum

bindex.indd 298bindex.indd 298 3/24/11 10:12:39 AM3/24/11 10:12:39 AM

299

framework, 56–74
people. See people
planning. See planning
practice of, 13–15
predictability, 7, 56
problems discovery, 52
product defi nition, 20
project duration, 22
project management approaches comparison,

20–22
reasons for using, 56–58
reference sources, 289
reports. See reports
risk management, 43, 56, 60, 74, 264
roles. See Scrum roles
scheduling, 21
Schwaber and, 64, 66
successes and, 255
TFS and, 1
theory of, 12–13
transitioning to, 50–52
Waterfall method vs., 51–52, 57, 69–70

Scrum Alliance, 68, 236
Scrum Guide, 82
Scrum of Scrums meeting, 38, 44
Scrum roles, 14–15, 25–26, 52. See also product owners;

ScrumMasters; team members
IT roles vs., 47–52

architects, 48
project manager, 47
QA managers, 49–50
release management, 48–49

MSF roles vs., 17–18, 40–46, 52
development managers, 17, 43–44
product managers, 17, 41–42
program managers, 17, 42–43
QA managers, 17–18, 44–45
release management, 18, 46
training managers, 46

as user story component, 206
Scrum team projects

creating, 79–83
Scrum teams. See also product owners; ScrumMasters;

team members
activities, 65–74
organization, 25–52
PBIs and, 235
productivity facilitation, 26–27
requirements brought to, 60–61
scaling, 36–40, 52

common architecture, 39–40
product backlog, 39
scaling product owners, 32–34, 52

Scrum of Scrums meeting, 38
sprint synchronization, 39
team specialization, 36–38, 39, 52

size, 10, 29
specialization, 36–38, 52

by component, 39, 52
by cross-cutting concern, 37, 52
by feature, 37, 39, 52
by technology, 37, 52

typical, 26
velocity of, 235–239

Scrum template (Microsoft Visual Studio Scrum 1.0
process template), 75–99. See also specifi c reports
culture change and, 261
defi ned, 54
downloading, 76
importing into TFS, 77–80
installing, 76–77
reports, 55, 128–145
retrospective meeting questions and, 253–255

ScrumMasters. See also product owners; Scrum roles;
Scrum teams; team members
activities, 27–28

determining team size, 29
fostering communication, 29
involving others, 28–29
release management, 49
running daily Scrum, 28–29
sprint backlog, 62

checklist, 285, 287
IT architects vs., 48
MSF program managers vs., 17, 42–43
responsibilities, 15, 26–27

decreasing unproductive behavior, 27
team productivity facilitation, 26–27

Severity fi eld, bugs, 183
shared steps

defi ned, 116
form, 116
form fi elds, 116–117

Area fi eld, 117
Assigned To fi eld, 117
Iteration fi eld, 117
Priority fi eld, 117
State fi eld, 117
Steps fi eld, 117
Title fi eld, 117

states, 117
for test cases, 194–196
work item, 116–117

SharePoint
items entered into TFS with SharePoint

bugs, 181

Scrum Alliance – SharePoint

bindex.indd 299bindex.indd 299 3/24/11 10:12:40 AM3/24/11 10:12:40 AM

300

SharePoint (continued)
impediments, 175
PBIs, 154
tasks, 186

MSF documentation, 22
PBI creation, 150

SharePoint portal
daily Scrum assessment template on, 278
Excel reports on, 139–141
PBIs entered into TFS with SharePoint portal,

220–222
product backlog development and, 209–210
verifi cation of, 209–210

shipping software, 1–12
importance of, 95–96
requirements

insight, 3–4, 23, 29
planning, 6–10, 23
product features, 10–11, 23
product vision, 2–3, 22
resources, 4–6, 23, 48

simplicity
PBIs, 31
schedules, 51

size
Scrum teams, 10, 29
user stories, 224

slices, architectural, 274
Small, INVEST principle, 225
software. See also shipping software; tracking

predictability, 178, 202
quality

defi ned, 177
importance of, 96
tracking, 177–202

usefulness, 178, 202
working software over comprehensive

documentation, 12, 58, 275
specialization

“generalizing specialists,” 227
Scrum team, 36–38, 52

by component, 39, 52
by cross-cutting concern, 37, 52
by feature, 37, 39, 52
by technology, 37, 52

specialists vs. generalists, 6
user story, by team members, 226–227

specifying and prioritizing features, 30–31
spikes, 263–275

architectural slices, 274
code for, 273–274
defi ned, 29, 98–99, 263–265
executing, 273–274
goals, 265

origins of, 264
prototype and, 273–274
review meeting, 266
sprints

spikes between sprints, 265–269
spikes during sprints, 270–273
spikes vs. sprints, 263–264, 275

types of, 265
understanding, 98–99
user stories vs., 98

sprints, 233–250
Areas and Iterations dialog, 102, 103, 203, 204,

233, 234, 236, 266–268
best practice, 110
bugs during, 241–250
ceremonies, 14, 15, 51
creating, 233–234
defi ned, 7, 32, 56, 65, 66–67, 108
demo meetings and, 97. See also demo meetings
durations, 7, 13, 22, 51, 66
form, 108–109
form fi elds, 109–110. See also Iteration fi eld

Finish Date fi eld, 109
Iteration fi eld, 109
Iteration Path fi eld, 102–103
Retrospective fi eld, 109
Start Date fi eld, 109

as iterations, 81, 97, 103
key points, 66–67
MSF release management and, 18, 46
PBI prioritization and, 14, 31, 59, 97
release schedules and, 97–98
releases vs., 32
spikes

spikes between sprints, 265–269
spikes during sprints, 270–273
sprints vs. spikes, 263–264, 275

states, 108, 109, 110
synchronization, 39
team members’ activities in sprints, 35–36

committing to delivery, 35
focusing on features, 35
improving as team, 36

understanding, 97–99
work item, 108–110

sprint and release cycle (product release cycle),
13–14

sprint backlog, 61–63, 106, 122
changing, after sprint has started, 227–228
defi ned, 59, 61, 106
new work, 62–63
remaining effort, 62
ScrumMaster’s role, 62
sprint planning meeting and, 234

SharePoint – sprint backlog

bindex.indd 300bindex.indd 300 3/24/11 10:12:40 AM3/24/11 10:12:40 AM

301

sprint backlog query, 122–125
defi ned, 122
query defi nition, 124
query folders, 124–125
results, with collapsed nodes, 123
unfi nished work query vs., 125

sprint burndown
calculation of, 240
defi ned, 240
velocity, 12

sprint burndown reports, 63–64, 129–130,
240–241
defi ned, 59, 63, 129
PBIs and, 232
release burndown reports vs., 89
Schwaber on, 64

Sprint Goal fi eld, 109
sprint planning meetings, 67–70, 234–235

assessment
sample, 281–282
template, 280–281

defi ned, 15, 32, 65, 67
functions of, 234–235
part 1, 67–69
part 2, 69–70
product owner and, 32
results of, 67
sprints and, 97
typical, 68

sprint retrospectives. See retrospective meetings
sprint review, 72–73. See also spikes

defi ned, 65, 72
rules for, 73
spikes and, 266, 270

SQL Server Analysis cube, 54, 56, 134, 135,
138, 141

SQL Server Reporting Services, 54–55
standup meeting. See daily Scrum
Start Date fi eld, sprints, 109
State fi eld

bugs, 113, 182
impediments, 111
PBIs, 105, 156
shared steps, 117
tasks, 107, 209
test cases, 115, 191

states
bugs, 113–114
impediments, 111
PBIs, 106
shared steps, 117
sprints, 108, 109, 110
tasks, 108
test cases, 115–116

Steps fi eld
shared steps, 117
test cases, 115

Steps to Reproduce fi eld, bugs, 113
story points. See user story points
successes

build success over time reports, 133–134
Scrum method and, 255
success patterns, 224–226

Summarize with PivotTable, 218, 250
Sutherland, Jeff, 206
synchronization, sprint, 39
system fi elds, 102. See also Area Path fi eld; Iteration

Path fi eld

T

tasks
blocked tasks query, 127
creating, 84
defi ned, 106, 186
entered into TFS, 186–188
examples of, 208
form, 107
form fi elds, 107–108

Activity fi eld, 107, 187–188
Area fi eld, 107
Assigned To fi eld, 107
Backlog Priority fi eld, 107
Blocked fi eld, 107, 188
Description fi eld, 107
Iteration fi eld, 107
Reason fi eld, 107
Remaining Work fi eld, 107, 187
State fi eld, 107, 209
Title fi eld, 107

linking
PBIs to tasks, 168–169
tasks to bugs, 171–172
tasks to PBIs, 169–170
user stories and tasks, 229–231

Nokia Test and, 206–207
product backlog development and, 208–209
relations

bugs–test cases–PBIs–tasks–impediments, 160
impediment–PBI–bug–task, 175
PBI–task–bug, 169

states, 108
tracking and resolving, 186–188
for user stories, 235
work item, 106–108
workfl ow for, 186–188

Tasks fi eld, bugs, 113
Team Foundation Server. See TFS

sprint backlog query – Team Foundation Server

bindex.indd 301bindex.indd 301 3/24/11 10:12:40 AM3/24/11 10:12:40 AM

302

team members, Scrum, 34–36. See also product owners;
Scrum roles; Scrum teams; ScrumMasters
activities within sprints, 35–36

committing to delivery, 35
focusing on features, 35
improving as team, 36

MSF development managers vs., 17, 43–44
QA managers vs.

IT, 49–50
MSF, 17–18, 44–45

responsibilities, 15, 26, 34
truck factor, 226, 227, 287
user story specialization, 226–227

team portal. See SharePoint portal
team projects. See Scrum team projects
technology

money and, 6
as resource, 6, 48
Scrum team specialization by, 37, 52

templates. See assessments; process templates;
Scrum template

test case and bugs query, 168
test case readiness reports, 132
test cases, 114–116, 189–197

attributes, 191
automated steps for, 196–197
and bugs query, 168
creating, 190–191
defi ning, 190–197
entered into TFS, 191
form, 114
form fi elds, 115

Area fi eld, 115, 191
Assigned To fi eld, 115, 191
Automation Status fi eld, 115, 191
Description fi eld, 191
Iteration fi eld, 115, 191
Priority fi eld, 115, 191
State fi eld, 115, 191
Steps fi eld, 115
Tested Backlog Items fi eld, 115
Title fi eld, 115, 191

linking
bugs to test cases, 164, 167–168
PBIs to test cases, 160–163

manual steps for, 193–194
progress report, 202
purpose of, 198, 202
and readiness reports, 132
relations

bugs–test cases–PBIs–tasks–impediments,
160

PBI–test case–bug, 167

shared steps for, 194–196
states, 115–116
work item, 114–116
workfl ow for, 192–193

test cases and PBIs query, 163
Test Cases fi eld, bugs, 113
test cases query, 128
Test Manager, Microsoft, 197–202

sections of, 197
startup screen, 197
test cases creation, 190
Visual Studio vs., 198

test plan progress reports, 132–133
test plan readiness reports, 164, 202
test plans

creating, 199
defi ned, 198
organizing, 199–200
progress reports, 132–133
properties, 199
readiness reports, 164, 202

Test section, Test Manager, 197
test suites

defi ned, 198
organizing, 200–202

Testable, INVEST principle, 225
test-driven development, 15
Tested Backlog Items fi eld, test cases, 115
testing

Agile, 197
completed, 96

TFS (Visual Studio Team Foundation Server)
bugs, 241–250

bug workfl ow, 242
entering, 181–183
PBIs from bugs, 243–245
tracking, 245–248

cube, 54, 56, 134, 135, 138, 141
data in, 53–56
defi ned, 53
impediments entered in, 175
PBIs entered in

with Excel, 83, 154, 211–220
with SharePoint portal, 220–222
with Visual Studio, 83, 154, 223

release burndown report in, 91–92
releases created with, 203–205
reporting capabilities, 54–56
Scrum and, 1
Scrum template imported into,

77–80
sprints created with, 233–234
tasks entered in, 186–188

team members – TFS (Visual Studio Team Foundation Server)

bindex.indd 302bindex.indd 302 3/24/11 10:12:40 AM3/24/11 10:12:40 AM

303

test cases entered in, 191
as tracking tool, 51

time
project management triangle and, 9
as resource, 5–6, 10, 48

time-boxing, 56, 65, 206, 263, 264, 265, 270
timing, 5
Title fi eld

bugs, 112, 182
impediments, 111
PBIs, 84, 105, 155
shared steps, 117
tasks, 107
test cases, 115, 191

tools and processes, individuals and interactions
over, 12, 58, 69, 275. See also Agile Manifesto

Toyota Corporation, 253
Track section, Test Manager, 197
tracking

bugs, 178–186, 245–248
quality, 177–202
tasks, 186–188
tools, 51. See also Excel; TFS

training manager, MSF, 46
transitioning to Scrum, 50–52
tree of work items queries, 120–121
truck factor, 226, 227, 287

U

unavailability, of product owner, 226
unfi nished work query, 173–174

defi ned, 125, 188
query defi nition, 125
sprint backlog query vs., 125
“what didn’t work?” question and, 258

unproductive behavior, ScrumMaster and, 27
use cases

example, 206
MSF vision/scope approved and, 16
user stories vs., 206

usefulness, software, 178, 202
user experience team, MSF, 18
user involvement, 50
user stories

acceptance criteria, 86
Agile software development and, 201
completed, 228
creating, 206–208
defi ned, 13, 31
discussion, sprint planning meeting and,

234

failure patterns, 224, 226–228
linking tasks/user stories, 229–231
Nokia Test and, 206–207
PBIs and, 31, 205
personas, 224–225
product backlog development and, 206–208
requirements as, 201
size, 224
specialization, by team members, 226–227
spikes vs., 98
structure of, 206
success patterns, 224–226
tasks for, 235
use cases vs., 206

user story points, 236–238
effort and, 105, 157, 182
interpretations of, 236
release burndown report and, 89, 90, 92
velocity calculation with, 236–238

V

Valuable, INVEST principle, 225
value. See also business value

backlog priority, 105
to customers, 1, 59, 104, 105, 265

value statements. See Agile Manifesto
velocity

calculating, with user story points, 236–238
defi ned, 10, 235
productivity as, 235
of Scrum team, 235–239
sprint burndown, 12
understanding, test for, 238–239

velocity reports, 239
defi ned, 130
diagram, 55
PBIs and, 232
release burndown reports vs., 131

vision (product vision), 2–3, 30–31
documentation and, 50
shipping software and, 2–3

vision/scope
approved (MSF milestone), 16
MSF, 16, 20, 22, 41, 42
Scrum, 2–3, 42

Visual Studio
items entered into TFS with Visual Studio

bugs, 181
impediments, 175
PBIs, 83, 154, 223
tasks, 186

time – Visual Studio

bindex.indd 303bindex.indd 303 3/24/11 10:12:41 AM3/24/11 10:12:41 AM

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

304

Visual Studio (continued)
test case, 191

PBI creation, 150
test case progress report, 202
test cases creation, 190–191
Test Manager vs., 198
test plan readiness report, 164, 202
versions, 151

Visual Studio Team Foundation Server. See TFS

W

Waterfall method, 18–20. See also MSF; Scrum
adaptability, 20
documentation, 19–20, 22
Gantt charts, 8, 18, 22
people, 21
planning, 6–8, 19, 57
predictability, 7
problems discovery, 51–52
product defi nition, 20
project duration, 22
project management approaches comparison,

20–22
scheduling, 21
Scrum vs., 51–52, 57, 69–70
stability, 18

weather, yesterday’s, 68
“what didn’t work?” 252–253, 258–260
“what will we do differently?” 253, 260–261
“what worked?” 252, 255–258
Windows 95, 5
work in progress queries

defi ned, 126
query defi nition, 126
“what didn’t work?” question and, 258

work item queries, 117–128. See also unfi nished work
query; specifi c queries
all sprints, 121–122
open impediments, 126–127

product backlog, 122
sprint backlog, 122–125
test cases, 128
types

fl at list queries, 118
tree of work items queries, 120–121
work items and direct links queries, 118–120

work items, 101–117. See also artifacts; bugs;
impediments; product backlog items; shared steps;
sprints; tasks; test cases
defi ned, 53, 101
high-level relationship, 160
linking, 160–174

bugs to PBIs, 164–166
bugs to test cases, 164, 167–168
PBIs to bugs, 163–164
PBIs to tasks, 168–169
PBIs to test cases, 160–163
tasks to bugs, 171–172
tasks to PBIs, 169–170
user stories to tasks, 229–231

types, 101–102
work items and direct link queries, 118–120
workfl ows

PBI, 151–152
for resolving bugs, 179–181, 242
for tasks, 186–188
for test cases, 192–193

working software over comprehensive documentation,
12, 58, 275. See also Agile Manifesto

X

XP (Extreme Programming), 54, 264. See also Agile
software development

Y

yesterday’s weather, 68

Visual Studio – yesterday’s weather

bindex.indd 304bindex.indd 304 3/24/11 10:12:41 AM3/24/11 10:12:41 AM

	Team rebOOk

