
Running an
Agile Software
Development Project

Mike Holcombe
University of Sheffield, United Kingdom

Copyright # 2008 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of merchant-
ability or fitness for a particular purpose. No warranty may be created or extended by sales representatives
or written sales materials. The advice and strategies contained herein may not be suitable for your
situation. You should consult with a professional where appropriate. Neither the publisher nor author
shall be liable for any loss of profit or any other commercial damages, including but not limited to special,
incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site
at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Holcombe, W. M. L. (William Michael Lloyd), 1944-
Running an agile software development project/by Mike Holcombe.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-470-13669-0 (cloth)

1. Computer software—development. 2. Agile software development.
3. eXtreme programming. I. Title.
QA76.76.D47H647 2008
005.101--dc22 2008009444

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Contents

Preface xi

1. What Is an Agile Methodology? 1

1.1 Rapid Business Change: The Ultimate Driver 1
1.2 What Must Agile Methodologies be Able to Do? 2
1.3 Agility: What Is It and How Do We Achieve It? 2
1.4 Evolving Software: Obstacles and Possibilities 5
1.5 The Quality Agenda 6
1.6 Do We Really Need All This Mountain of Documentation? 9
1.7 The Human Factor 10
1.8 Some Agile Methodologies 11

1.8.1 Dynamic Systems Development Method 12
1.8.2 Feature-Driven Design 13
1.8.3 Crystal 14
1.8.4 Agile Modeling 14
1.8.5 SCRUM 15
1.8.6 Summary Table 15

1.9 Review 16
Exercise 17
Conundrum 17
References 18

2. Extreme Programming Outlined 19

2.1 Some Guiding Principles 19
2.2 The Five Values 20

2.2.1 Communication 20
2.2.2 Feedback 22
2.2.3 Simplicity 24
2.2.4 Courage 24
2.2.5 Respect 25

2.3 The 12 Basic Practices of XP 25
2.3.1 Test-First Programming 25
2.3.2 Pair Programming 26
2.3.3 On-Site Customer 27
2.3.4 The Planning Game 28

v

2.3.5 System Metaphor 29
2.3.6 Small, Frequent Releases 30
2.3.7 Always Use the Simplest Solution That Adds Business Value 30
2.3.8 Continuous Integration 31
2.3.9 Coding Standards 32
2.3.10 Collective Code Ownership 32
2.3.11 Refactoring 33
2.3.12 Forty-Hour Week 33

2.4 Can XP Work? 34
2.5 The Evidence for XP 35

2.5.1 Evidence for Test First 35
2.5.2 Evidence for Pair Programming 36
2.5.3 Evidence for XP 36

2.6 Preparing to XP 37
Exercise 37
Conundrum 38
References 39

3. Foundations: People and Teams Working Together 41

3.1 Software Engineering in Teams 41
3.2 Personalities and Team Success 42
3.3 Observations of Team Behavior in XP Projects 46
3.4 Setting Up a Team 50
3.5 Developing Team Skills 52
3.6 Training Together 54
3.7 Finding and Keeping a Client for a University-Based Project

or a Small Business Start-Up 54
3.8 The Organizational Framework 56
3.9 Planning 60

3.9.1 PERT (Program Evaluation and Review Technique) 61
3.9.2 Gantt Charts 62

3.10 Dealing with Problems 65
3.10.1 Basic Strategies 65
3.10.2 When Things Go Really Wrong 66

3.11 Risk Analysis 68
3.12 Review 69
Exercises 69
Conundrum 70
References 70

4. Starting an XP Project 73

4.1 Project Beginnings 73
4.1.1 Researching the Business Background 74
4.1.2 Exploring the Outline System Description 76

vi Contents

4.2 The First Meetings with the Client 79
4.3 Business Analysis and Problem Discovery 80
4.4 The Initial Stages of Building a Requirements Document 82
4.5 Techniques for Requirements Elicitation 84
4.6 Putting Your Knowledge Together 85
4.7 Getting Technical 85
4.8 Developing the Requirements Documents 88
4.9 Specifying and Measuring the Quality Attributes of the System 91

4.9.1 Identifying Attributes 92
4.9.2 Specifying the Acceptable Level of an Attribute 94
4.9.3 User Characteristics and User Interface Characteristics 95

4.10 The Formal Requirements Document and System Metaphor 96
4.10.1 Commentary 106

4.11 Contract Negotiation 108
4.12 Case Study: The Impact of Organizational Politics 114
4.13 Review 116
Conundrum 116
References 117

5. Identifying Stories and Preparing to Build 119

5.1 Looking at the User Stories 119
5.2 Collections of Stories 128

5.2.1 Pharmacovigilance 129
5.2.2 Stamps System 131
5.2.3 DELTAH (Developing European Leadership Through

Action-Learning in Healthcare) 131
5.3 User Interfaces 139
5.4 Communicating Clearly with the Customer and Building

Confidence 141
5.5 Demonstrating the Non-Functional Requirements 143

5.5.1 Non-Functional Requirements 143
5.6 Estimating Resources 144

5.6.1 Software Cost Estimation 145
5.6.2 Object Point Analysis 146
5.6.3 COSMIC FFP 147

5.7 Review 149
Exercises 149
Conundrum 150
References 151

6. Bringing the System Together as a Coherent Concept 153

6.1 What is the Problem? 153
6.2 A Simple Common Metaphor 156
6.3 Architectures and Patterns 159

Contents vii

6.4 Finite State Machines 160
6.5 Extreme Modeling (XM) 163
6.6 Multiple Stories and XXMs 166
6.7 Building the Architecture to Suit the Application: A Dynamic

System Metaphor 171
6.8 Another Look at Estimation 177
6.9 Review 179
Exercise 180
Conundrum 180
References 180

7. Designing the System Tests 181

7.1 Preparing to Build Functional Test Sets 181
7.1.1 Tests and Testing 181
7.1.2 Testing from a Model 183
7.1.3 Developing the Model 187

7.2 Testing with the Data in Mind 191
7.3 The Full Functional System Testing Strategy 192
7.4 The Thinking Behind the System Test Process 193

7.4.1 An Algorithm for Determining the Transition Cover 198
7.5 Design for Test 201

7.5.1 Design for Test Principle 1: Controllability 202
7.5.2 Design for Test Principle 2: Observability 202

7.6 Test Documentation 203
7.7 Non-Functional Testing 205

7.7.1 Reliability 206
7.7.2 Usability 206
7.7.3 Efficiency 207
7.7.4 Portability 207

7.8 Testing Internet Applications and Web Sites 207
7.9 Review 209
Exercise 210
Conundrum 213
References 213

8. Units and Their Tests 215

8.1 Basic Considerations 215
8.2 Identifying the Units 216
8.3 Unit Testing 219
8.4 More Complex Units 222

8.4.1 Case Example: The AddElement Function in JHotDraw 223
8.5 Automating Unit Tests 232

8.5.1 Writing Unit Tests in JUniti 233
8.5.2 Managing Tests 235

viii Contents

8.6 Documenting Unit Test Results 235
8.7 Review 237
Exercises 237
Conundrum 237
References 238

9. Evolving the System 239

9.1 Requirements Change 239
9.2 Changes to Basic Business Model and Functionality 240
9.3 Dealing with Change: Refining Stories 241

9.3.1 Changes to the Underlying Data Model 241
9.3.2 Changes to the Structure of the Interface, Perhaps the

Introduction of a New Screen 242
9.3.3 Adding a New Function 242
9.3.4 Changing the Functionality of a Function 242

9.4 Changing the Model 242
9.4.1 Changing a Process 242
9.4.2 Removing States 244
9.4.3 Adding States 245
9.4.4 Adding a Complete Machine 246
9.4.5 Adding Processes 246

9.5 Testing for Changed Requirements 247
9.6 Refactoring the Code 248
9.7 Estimating the Cost of Change 249
9.8 Review 249
Exercises 250
Conundrum 250
Reference 250

10. Documenting and Delivering the System 251

10.1 What is Documentation for and Who Is Going to Use It? 251
10.2 Coding Standards and Documents for Programmers 252
10.3 Coding Standards for Java 253

10.3.1 Genesys Coding Standard for Java 253
10.3.2 Blank Lines 255

10.4 Maintenance Documentation 262
10.5 User Manuals 263
10.6 Version Control 264

10.6.1 The Project Archive 265
10.6.2 Naming Conventions 265

10.7 Delivery and Finalization 266
10.8 Review 267

Contents ix

Exercises 267
Conundrum 267
Reference 267

11. Ref lecting on the Process 269

11.1 Skills and Lessons Learned 269
11.2 The XP Experience 270
11.3 Personal and Team Assessment 270
11.4 Review 271
Exercises 271
11.5 Conundrums: Discussion 271
11.6 A Final Word 277

12. Lifestyle Matters 281

12.1 Keeping Fit 282
12.1.1 Correct Sitting Position 283
12.1.2 Combating RSI 284

12.2 General Well-Being 285
12.3 Mental Preparation 285
12.4 Diet 286

12.4.1 Diet and Brain Function 286
12.4.2 Summary of Dietary Information 287

12.5 Music and Work 288
12.6 Review 289
References 290

Appendix 291

Bibliography 305

Index 309

x Contents

Preface

This book is a radical departure from the usual book on software engineering and
design methodologies. Its purpose is to put software development into a context
where professional skills are developed as well as the technical skills. At the end
of a project based around this book, students should be much more like real software
professionals than before, ready to embark on a career where professionalism, a
quality orientation, and an understanding of the business context are better developed
than ever before.

The target audience is computer science and software engineering students in
their second or third year or in a master’s program who have already covered the
basics of programming and design and who have had some experience of building
a small piece of software. Software developers who have graduated and are about
to embark on their first commercial project will also find the topics of interest.
Those interested in starting up their own software house might also find some part
of this book useful.

The contents have evolved over 15 years or so during which time I have been
teaching software engineering through practical project work involving real business
clients. In the second year of our computer science and software engineering degree
programs, students are put into small teams and spend one third of their time during a
12-week period building a business solution for their client—this is the Software Hut
module. Typically, we have 3 or 4 clients and up to 20 teams of 4 to 6 students. Teams
compete to build the best solution, and each client will then choose this from several
that are supplied. The competitive aspect is generally positive, and the clients have
always had several excellent software systems to choose from and use in their
businesses. This long practical experience has shown me that much of what is
written in academic software engineering books and taught in university courses is
largely irrelevant to practical real-world software development.

Academics tend to abstract away the messy bits and treat software development in
an idealized and essentially trivial manner. Many of the techniques and notations pro-
moted in academe just do not work in real life. There is little rigorous scientific evi-
dence for their utility in practice, and they are derived from a naı̈ve understanding of
the very real pressures that exist in business. This lack of understanding of the
business world is now proving to be a serious issue—a handicap, even—in terms
of recent computing graduates getting good jobs in the IT industry. In the United
Kingdom, only 28% of IT graduates found graduate-level jobs in the IT industry
(this includes IT posts in industry and commerce generally).1 Many traditional

1e-skills.com, the UK government board responsible for the IT sector, has identified this fact for 2006.

xi

programming jobs have been outsourced to developing countries, and the IT industry
now needs graduates with much more business understanding: Technical program-
ming skills are less critical, and many companies are happy to recruit graduates
from other disciplines and train them up in the relevant technical material.
However, computing graduates who do have these business skills are highly
sought after and currently are gaining very highly paid jobs on leaving university.

About 13 years ago, I introduced an extension to the Software Hut. This is for
fourth year master’s degree students. It is a commercial software company called
Genesys Solutions.2 This company runs all year, and the students spend one third
of their time in it. The students actually run the company. It has its own premises
and equipment. The students negotiate contracts, prices, and delivery with clients
and then work in a number of development teams to deliver. There is a marketing
department and a systems administration department to maintain the infrastructure.
Such a company has to deal with maintenance contracts as well as new developments,
and it is vital that this is borne in mind by the developers, especially as the workforce
at Genesys changes every year, and the original developers may have left the
company when maintenance is needed. This company has been a great success—it
seems to be unique in the world. Customers often return for extensions to existing
software and new developments. The University of Sheffield has recently spun the
company out. It is now a fully fledged and legally registered commercial company
called epiGenesys. (http://www.epigenesys.co.uk).

The intention of the book is to use the new ideas from the so-called agile meth-
odologies, particularly the approach known as extreme programming, or XP, as the
vehicle for teaching practical project development skills. XP is a rapidly evolving
set of ideas that can be applied in many different application areas; we focus here
on the use of XP practices in the development of some real software for a business
client, perhaps from a local company or another part of the university. The book is
based on 20 years of experience of teaching in this way and managing such projects.
In all, I have managed around 100 projects involving a couple of hundred teams, of
which most have tried to use XP in the past 7 years. I have learned a great deal from
this and have adapted XP to fit in with the demands of such fixed-period projects.
Some may argue that I am demanding too much from students, but I am convinced
that well-motivated students will be able to perform very well using these ideas; they
not only can deliver excellent software to their clients, but also they will learn much
more than from any other typical course on software development, which will con-
centrate on lots of lectures and artificial exercises. As so many people comment,
success in the software industry is much more dependent on personal and teamwork
skills than it is on technical knowledge. If you are unable to work effectively in a
team, then you will be of little use to a software development company whatever tech-
nical knowledge you have. These sorts of projects will teach you a great deal about
yourself and, the realities of teamwork and of dealing with real clients. One of the key
challenges you will face is getting yourself organized and planning and working in an
effective way. I have tried to give practical suggestions and mechanisms for doing

2See http://www.genesys.shef.ac.uk.

xii Preface

this. At the end of such a project, you will be amazed at what you will have achieved.
The appendices contain examples of systems built by my students.

The book will also address the connections between IT development and
business pragmatics through the use at the end of each chapter of Conundrums.
These are based on real scenarios that either I have faced or have been experienced
by business colleagues. In many cases, these explore the dilemmas between follow-
ing the established philosophy of academic software engineering and the realities of
businesses driven by the need to make money.

Some basic principles governing the book’s philosophy are as follows:

1. It assumes that the readers will be engaged in a real rather than an
academic software project. This means the project is for an external business
client, and this factor will expose the students to the very real problems of require-
ments capture and the need for the highest quality software if the client is to be
able to use it in their business. Most team-based projects are designed around
problems posed by the instructor and often lack credibility with students, most
of whom respond enthusiastically to the challenge of building something useful
for a client.

2. It assumes that the readers will be reading it as members of a software devel-
opment team and will be able to undertake the key activities together.

3. It aims to develop self-learning (and lifelong learning skills in the readers);
this is a problem-based learning approach, and it is expected that the students will
have the need to supplement their reading by consulting the literature, textbooks,
articles in the professional press, and so forth. This is not intended to be an exhaustive
and self-contained book on software engineering and software project management.
I am convinced that, given the responsibility, students will rise to the challenge
and develop intellectually and personally far more from this approach than from
traditional educational approaches.

4. The book is not a large tome; it emphasizes the XP philosophy on minimal
but informative and reliable documentation, and much of it is taken up with real
examples from commercial agile projects.

5. Unlike existing XP books, this one deals with some of the practical details
and provides effective methods and models for achieving high-quality software con-
struction in an “agile” manner. Life is never as simple as most writers seem to
imagine; sticking to pure XP is rarely going to work in most projects, but adapting
it to suit the context—both in terms of clients and developers—has proved extraordi-
nary effective.

6. There is an accompanying Website, http://agile.genesys.shef.ac.uk, for
instructors/coaches that provides practical advice on how to motivate students,
organize real group projects, and deal with many of the problems that arise in a
simple and effective way. This is based on more than 15 years of running real soft-
ware projects with student teams.

Preface xiii

7. No specific programming language is used because particular projects will
require particular implementation vehicles, but some reference is made to the
language Java.

Some may claim that I am asking for too much documentation, too many
models, too much systematic testing, and so forth. Everything that is discussed
here is here for a reason and is often prompted by problems we have had with pro-
jects—delivering late, poor-quality systems, maintenance problems, and so on.
Delivering high-quality software in a timely fashion is a big challenge, and these
techniques have worked well.

Many people have helped me with this book; first, all my students who have
taught me so much over the years. In particular, Francisco Macias, Sharifah Seyd-
Abdullah, Chris Thomson, Phil McMinn, Alex Bell, and all the students from
Genesys Solutions and the Software Hut over the years.

I must also thank my academic colleagues Marian Gheorghe, Andy Stratton,
Helen Parker, Kirill Bogdanov, Tony Simons, and Tony Cowling for helping me
with many aspects of the work but especially Marian, Helen, and Andy who have
played a large part in making our real student projects such an amazing success.

A number of XP industrial experts from around the world have looked at drafts of
this book, including Ivan Moore, Tim Lewis, and Graham Thomas. Fellow academics
and collaborating researchers from a number of universities who have also been a
great help include Mike Pont, Giancarlo Succi, Michelle Marchesi, Bernard
Rumpe, Leon Moonens, Andres Barravalle, and Jose Canos.

Kent Beck has taken a detailed interest in the book and in what my students have
been doing. He is a key influence and is always trying to keep me from being too
conventional!

Amanda Watkinson, Jonathan Collett, and Vernon Green, senior developers at
IBM, have been mentors for Genesys students for a number of years, and they
have contributed a lot of important advice and support that is reflected in many
aspects of this work.

I would also like to thank a number of anonymous reviewers whose comments
on drafts have helped to improve the book immeasurably.

Finally, I must thank my wife Jill whose tolerance and support were invaluable.

MIKE HOLCOMBE

Sheffield, United Kingdom
May 2008

xiv Preface

Chapter 1

What Is an Agile

Methodology?

SUMMARY

Rapid business change requires rapid software development. How can we react to
changing needs during software development? How can we ensure quality (correctness)
as well as fitness for purpose? What are the requirements that an agile process should
meet? What are the problems and limitations of agile processes?

1.1 RAPID BUSINESS CHANGE: THE ULTIMATE
DRIVER

It has often been said that the modern world is experiencing unprecedented levels
of change in technology, in business, in social structures, and in human attitudes. Of
course, this is a complex and poorly understood phenomenon, but I know of no
sources that disagree with the basic axiom that the world is changing fast and that
fact is not, itself, about to change. Some may prefer that the world not be like that,
and others may believe that this phenomenon is unsustainable in the long-term—the
world will simply run out of resources or collapse into social anarchy and destruction.

At the present time, however, rapid change is a key factor of both business and
public life. The other important truism is that computer technology, and software in
particular, is a vital component of many businesses and organizations. It is clear,
then, that the developers of this software have a problem. The pressure to develop
new software support for rapidly changing processes is causing serious problems
for the software industry. Traditional software engineering has repeatedly failed to
deliver what is needed at the cost and within the timescale that are required.

This is caused bysome structural and attitudinal problems associatedwith traditional
software engineering. Deep thinkers about this problem have come up with a number
of—what may seem to be paradoxical—insights into the problems. Key texts such as
Pressman (2001) and Sommerville (2006) present a broad survey of traditional software
engineering that documents many of the current approaches. Other thinkers such as

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

1

Gilb (1988) and more recently Beck (1999) are beginning to question the way in
which software engineering has been carried out.

Thinkers such as Beck recognize that everything about our current software
processes must change. On the other hand, their proposed solutions partly involve
a number of well-tried and trusted techniques that have been around for years. It is
not just a matter of shuffling around a few old favorite techniques into a different
order; rather, it is a new combination of activities that are grounded in a new and
very positive philosophy of agile software development.

1.2 WHAT MUST AGILE METHODOLOGIES
BE ABLE TO DO?

We note that any agile software development process has to be able to adapt to rapid
changes in scope and requirements, but it has also to satisfy the needs for the delivery
of high-quality systems in a manner that is highly cost-effective, unburdened by
massive bureaucracy, and that does not demand heroics from the developers involved.
Thus, we will try to specify the basic properties that a successful agile software devel-
opment process must satisfy.

1 The first issue is the ability to adapt the development of the software as the
client’s problem changes.

2 The second issue derives from the need to allow for the future evolution of any
delivered solution.

3 The third issue is that of software quality: How do we know that the software
always does what it is supposed to do?

4 The fourth issue is the amount of unnecessary documentation and other
bureaucracy that is required to sustain and manage the development process.

5 The fifth issue is the human one, which relates both to the experiences of the
developers in the development process and to the way in which the human
resources are managed.

Coupled with these is a need to have a clear business focus for any software
development project and application.

We will look at all of these in turn.

1.3 AGILITY: WHAT IS IT AND HOW DO WE
ACHIEVE IT?

When we embark on a software development project, the initial and some would say
the hardest phase is that of determining the requirements—finding out, with the
client, what the proposed system is supposed to do.

It might start with a brief overview of the business context and the identification
of the kind of data that is to be involved, how this data is to be manipulated, and how

2 Chapter 1 What Is an Agile Methodology?

these various activities mesh together with each other and with the other activities in
the business.

Many techniques exist to do this:Ways of collecting information, not just from the
client but also from the intended users of the system, will be needed in this initial stage.
Sifting through this information, making decisions about the relative importance of
some of the information, and trying to set it into a coherent picture follow. Again, a
number of different approaches, notations, and techniques exist to support this.

Having achieved some indication of the overall purpose of the system, the way
that it interfaces and interacts with other business processes will be the next issue.
We are trying to establish the system boundary during this phase.

From this we construct a detailed requirements document. Some examples of
actual documents will be given in a later chapter. Such a document will be structured,
typically, into functional requirements and non-functional requirements. Both are
vitally important. Each requirement will be stated in English, perhaps structured
into sections containing related requirements and described at various levels of
detail. The client may well be satisfied at this point with what is proposed.
However, it is always difficult to visualize exactly how the system will work at this
stage, and our understanding of it may not be right.

Now we would embark on some analysis, looking at these key operational
aspects, identifying the sort of computing resources needed to operate such a
system and considering many other aspects of the proposed system. After analysis
we get into the design phase, and it is here where we describe the data and processing
models and how the system could be created from the available technical options.

This stage is often lengthy and complicated. Rarely will the developers be able to
proceed independently of the client although there may be pressure on them from
managers to do so. There will be many issues that will arise during this process
requiring further consultation with the client. This is often not carried out, and the
developers start making decisions that only the client should take. We see the
system starting to drift from what it should be.

At the end of this process, we will have a large and complicated detailed design
that may or may not still be valid in terms of the client’s business needs, which may
be evolving.

If we go back to the client at this stage, we may very well find that the business
has moved on and the requirements have changed significantly. The traditional devel-
opment methods, such as the waterfall method, cannot handle this challenge
effectively. Because of the investment in the design, there may be a reluctance to
change it significantly or to start again.

The waterfall model envisions a steady and systematic sequence of stages starting
with the capture and definition of the requirements, the analysis of these require-
ments, the formalizing of a system and software design, the implementation of the
design, and the testing of the software. Finally we have delivery and after-sales,
which covers a number of different types of maintenance : perfective maintenance
where faults are removed after delivery, adaptive maintenance, which might
involve building more functionality in the system, and maintenance to upgrade the
software to a different operating environment.

1.3 Agility: What Is It and How Do We Achieve It? 3

It will always be necessary, and sometimes possible, to backtrack around some of
the stages, but the emphasis is on a trying to identify the requirements in one go. The
diagram in Fig. 1.1 tries to illustrate the approach.

The need to respond more quickly to the changing nature of the customer’s needs
does not sit easily with this type of model.

The first two key issues are, therefore, to find an approach that retains a continual
and close relationship with the client, and to find an approach to development that
does not involve the heavy overhead of a long and complex design phase.

If this is achieved, then the development process might be more able to adapt to
the changing requirements.

There are a number of other approaches to software development that have
attempted to address these issues. The spiral model (Sommerville, 2006) describes
this approach (Fig. 1.2). It involves a series of iterations around the requirements
capture or specification–implementation–testing or validation–delivery and oper-
ation loop together with periodic reviews of the overall project and the analysis of
risks that have been identified during the course of the project.

It attempts to recognize that for many projects, there is an ongoing relationship
with the customer that does not end with the delivery of the system but will continue
through many further stages involving correcting and extending or adapting the
product. In these cases, there is no such thing as a finished product.

Rapid applications development and evolutionary delivery are similar sorts of
approaches that are built around the idea of building and demonstrating, and in the
latter case delivering, parts of the system as the project goes along.

Such approaches can be successful but differ in many ways from the approaches
taken by the current agile or lightweight methodologies, one of which we are consid-
ering here. One issue is the length of an iteration cycle; in agile approaches, these are
very short.

Figure 1.1 The waterfall model of software development.

4 Chapter 1 What Is an Agile Methodology?

There have been many analyses of failed software development projects. Failures
in communication, both between developers and clients and between and among
developers, seem to be some of the most common causes of problems. In the tra-
ditional approach, the various documents (requirements documents, design docu-
ments, etc.) are supposed to facilitate this communication; however, often the
language and notation used in these documents fails to support effective communi-
cation. UML (Unified Modeling Language) diagrams, for example, can often be
interpreted differently by different people.

1.4 EVOLVING SOFTWARE: OBSTACLES
AND POSSIBILITIES

Even if we are able to deliver a solution that is still relevant, it may not remain so for long.
Things are bound to change, and there is thus a need to see how we can evolve the soft-
ware toward its new requirements. Some of the old functionality is likely to remain,
however, so it would be inefficient to throw it away and start again. How can we
develop a method whereby changes can be achieved in the software quickly, cheaply,
and reliably? Agile techniques are an attempt to answer some of these questions.

Many systems will involve a database somewhere, and this is one of the key issues
when it comes to obstacles to evolution. Traditionally we use a relational database
structure and a relational database management system to manage it. Much time is
spent building and normalizing the data model. When circumstances change,
however, the data model may not still be appropriate. What can we do about this? It
may not be a straightforward matter to reengineer this data model. It may not be poss-
ible to just insert a couple of new fields or a new table or two. It is likely that the whole
data model will have to be substantially reengineered, and this could be expensive.

What are the requirements of a software engineer when faced with the problem of
adapting an existing or proposed system to deal with some new requirements?

Figure 1.2 The spiral model.

1.4 Evolving Software: Obstacles and Possibilities 5

In the case where there is an existing system that forms the basis of the develop-
ment, the first thing to do is to gain a clear understanding of what the current system
does. This can be achieved, to a certain extent, by running the software and observing
its behavior. A complete knowledge, however, will only be achieved by looking at the
design in some detail. The design may not be reliable, and so we have to look at the
source code. If this is written in a clear and simple fashion, then it will be possible to
understand it well. If we could do this with a clear structure to the requirements docu-
ment, we may have a chance of understanding things.

If the original system was built in stages, gradually introducing new functionality
in a controlled manner, we may be able to see where features that are no longer
needed were introduced, and we can explore how we might evolve the software
gradually by introducing, in stages, any new functionality and removing some of
the old. Throughout, we need to consult the client.

For projects that require a completely new system to be built, then time needs to
be spent on identifying the business processes that will be supported by the new
system, along with information about how current manual processes operate, if
there are any. The more that is known about the users and their needs, the better.

Thus we need the system to be built in such a way that the relationship
between the requirements and the code is clear; and the code itself to be clear
and understandable.

1.5 THE QUALITY AGENDA

The quality of software is a key issue for the industry although one that it has had
great difficulty in addressing successfully.

For real quality systems, we have to address two vital issues: identifying the right
software to be built and demonstrating that this has been achieved.

In terms of the types of faults that are often made in software development, we
can identify two important types of faults: requirements faults (we tell the computer
to do the wrong thing) and operational faults (the computer wrongly does the thing
we told it to do).

Neither problem is easy to deal with. The first task is made more difficult by the
possible changing nature of the business need and the consequential requirement to
adapt to a changing target. This is one of the key objectives of an agile methodology.
However, it might be possible to find a way of adapting and altering the software
being built to reflect the developers’ changing understanding of the client’s needs,
but it is quite another to be sure that they have got the changes right. Here is
where a strong relationship between the developers and the business they are
trying to develop a system for is needed. It also requires a considerable amount of
discussion and review both between the developers and the client and among the
developers but also among the client’s staff; they really do have to know where
their company is going.

Hence an agile methodology must be able to deal with identifying and maintain-
ing a clear and correct understanding of the system being built. By correct we mean

6 Chapter 1 What Is an Agile Methodology?

something that is acceptable to the client, a system that has the correct functional and
non-functional attributes as well as being within budget and time.

To satisfy such requirements, the agile methodology must provide support, not
only for changing business needs but also for giving assurance that these are indeed
the real requirements. In order to do this, there has to be a continuous process of
discussion, question asking, and resolution based on clear and practical objectives.

The second quality issue is that of ensuring that the delivered system meets its
requirements. Here there are serious problems with almost all approaches. Despite
the best intentions of many, testing and review are aspects of software engineering
that are either done inadequately or too late to be effective.

An approach to improving quality in a model like the waterfall model is called
the V model (Fig. 1.3). Here each stage in the process provides the basis for testing
of a particular type. We will discuss more about testing later. Some of the terms
may seem unfamiliar at this stage; they are also not always distinct. However, the
idea that, for example, the requirements could be used to define some of the accep-
tance tests, and so on, is a useful indication of what might be a practical approach
to ensuring quality.

In most development projects that are not completely chaotic, some attempt is
also made to carry out reviews of the work done. This might be the review of require-
ments documents, designs, or code and should involve a number of people examining
the documentation and code provided by the developers and inspecting it for flaws of
various types. The developers then have to address any concerns raised by the review.
Human nature, being what it is, is such that developers are often reluctant to accept
other people’s opinions. In many cases where serious problems have been found, the
developers will try to adjust and work around the problems rather than carry out sig-
nificant reworking. In fact, one often sees the situation where the best solution is to
start again with a component but the resistance to doing this is often profound. This
just compounds the problems and is very hard to overcome. If a developer has spent a
week or longer on some component that is then found to be seriously flawed, they are

Figure 1.3 The V model.

1.5 The Quality Agenda 7

likely to resent having to start again. This is a potentially serious quality and
efficiency problem. In many companies, software developers spend most of their
time developing their code on their own with little discussion with others, and
when flaws in their output are found, a lot of time has been wasted.

An agile methodology, therefore, needs to address this issue of review and testing
and to provide a mechanism that will provide confidence in the quality of the product.

Another quality aspect is the correctness of the final code. This is usually
addressed by testing whereby the software is run against suitable test sets and its
behavior monitored to establish whether it is behaving in the required manner. For
this to work we need two basic things: we need to know what the software is sup-
posed to do, and we need to be able to create test sets that will give us enough con-
fidence that the code does do what it is supposed to do.

The role of testing in the design and construction of software is a misunderstood
and underdeveloped activity. An effective agile methodology must provide a clear
link between the identification of what the system is supposed to do and the creation
and maintenance of effective test sets. Furthermore the testing must be fully inte-
grated into the construction process so that we avoid the massive problems and
expense that arise when the testing is done last.

It also allows us to introduce key design for test considerations driven by the
realization that the way the system is constructed will affect the ease and effectiveness
of the testing. Some systems are almost impossible to test properly because of the way
that they have been built. This is well-known in hardware design (microprocessors,
etc.) but is not something that seems to exercise software engineering much.

There are many myths about software quality and what the position really is.
Little empirical research has been carried out analyzing the quality of software
systems. What has been done has often uncovered some uncomfortable news. In
terms of the operational faults—leaving aside the problem of capturing the wrong
requirements—the evidence is pretty gloomy.

Hatton (1998) in a series of studies discovered the following: Using static deep-
flow analysis across many different industries and application areas, he measured the
consistency of several million lines of software written in various languages: C,
Fortran 77, Cþþ, and so forth.

He also measured the level of dynamic disagreement between independent
implementations of the same algorithms acting on the same input data with the
same parameters in just one of these industrial application areas.

On average there were 8 serious faults per 1000 lines for C programs and 12 for
Fortran; 10% of the C population would be deemed untestable by any standards.

Object-oriented languages were worse, not only in the density of faults but also
in the time it took to correct them—findings also supported by the work of
Humphreys (1995).

Many of these faults relate to technical issues in the implementation; the pro-
grams compile but do not work in a predictable or correct way. Variables are used
before being properly declared, memory overflows, and so on.

The key to managing these problems is to test thoroughly all the time.

8 Chapter 1 What Is an Agile Methodology?

1.6 DO WE REALLY NEED ALL THIS MOUNTAIN
OF DOCUMENTATION?

Most nonchaotic software development methods are design led and document driven.
We need to examine the purpose of all this paperwork (it might be stored electroni-
cally, but it still amounts to masses of text, diagrams, and arcane notations).

Let’s look first at the issue of design: what is it for and where does it fit in a devel-
opment project?

Design is a mechanism for exploring and documenting possible solutions in a
way that should make the eventual translation into working software easy and
trouble free. If there is an analysis phase, then typically this will establish the
overall parameters of the project and will result in a (usually fixed) set of requirements
and constraints for the project. The design phase then takes this information and
develops a more concrete representation of the system in a form that is suitable as
a basis for programming.

The desire for agility means that the analysis phase is likely to be continuous
throughout most of the project if it is to be able to adapt to changing business
need. If an agile approach is to work, the nature and role of analysis must change.
Therefore the role of design will also be an issue. How can we deal with the rapid
changes that analysis might throw up if the design is proceeding by way of a large
and complex process that is trying to identify, at a significant level of detail, issues
that will eventually be the responsibility of programmers to solve? Large, complex
designs are almost impossible to maintain in this context. Some tool vendors will
emphasize the benefit of using computer-aided software engineering (CASE) and
other tools that might provide support for the maintenance of the design, but many
programmers dislike these systems, which are often imposed by the management,
and some programmers may feel that their creativity is compromised.

Creative programmers will also be tempted to solve problems that arise during
implementation that were not predicted by the analysis or design phases without
updating the design archive. This is a real problem in many projects that may only
come to light during maintenance when it is discovered that the design differs
from what the system actually is. In other words, the code does not work as the
design documents indicate in some, possibly crucial, areas. Thus maintenance is
carried out by reference to the code, which is the key resource, and the design may
not be used or trusted.

Thus why is it there? The design is a resource that has cost time and money to
create, and yet it may not seem to provide any reliable value. It might actually damage
projects because of the difficulties of ensuring that the design can evolve as the business
needs change. It is possible that the existence of a large and complex design may
encourage developers to resist changes to the system asked for by the client. If this
happens, and I believe that it often does, then the client is not going to get the system
they want. A standard technique is to tell the client that it would be too expensive to
change things and this often works, but it is a short-term solution. The client is going
to be less than satisfied at the end.Anagile process needs to be able to dealwith this issue.

1.6 Do We Really Need All This Mountain of Documentation? 9

Thus is design a key part of an agile process? It has to be made much more
responsive to a project’s changing needs and it should also provide a precise
description of the final code, otherwise it is merely of historical value. Design nota-
tions can help us to clarify and discuss our ideas, and from that point of view they are
useful. Bearing in mind that design documents might be misinterpreted by people
who were not involved in the development, for example those carrying out mainten-
ance in subsequent years, we should not place all our reliance on these documents.
We will also need to document the code carefully and also the test sets; these will
help a great deal in understanding what the software does when the original team
has dispersed.

Another aspect that also relates to the human dimension is that creative people—
and good programmers are creative—do not work to their best ability if they feel
dominated by bureaucratic processes and large amounts of seemingly irrelevant docu-
mentation. It’s a natural feeling and applies in all walks of life. If you feel that churn-
ing out lots of unnecessary paperwork gets in the way of your ultimate desire—
building a quality system to satisfy your client—then you may not put your best
effort into creating all this stuff. Good morale, as we shall see next, is vital for
good productivity. If nobody needs it, why generate it?

1.7 THE HUMAN FACTOR

People are individuals with their own desires, values, and capabilities. Software
engineering is a people-based business, and the morale of the team is a vital com-
ponent in the success of the project. Too often, organizations organize themselves
in hierarchical structures whereby those who are above you feed down instructions
perhaps without any serious explanation, and those below you suffer from you
doing the same. It is often difficult to feel valued and to know what is really going
on—as opposed to what the managers think is going on.

To obtain the best work from people, we have to consider them as intelligent and
responsible individuals and to show interest in their views and an awareness of their
objectives. This calls for skilled and sensitive management. This does not mean that
the management system abdicates all responsibility and we are left with a chaotic
approach where everyone just does their own thing.

What is needed is a system that focuses on the key issues, involves everyone
to the greatest possible extent, jointly identifies the constraints and parameters
applicable to the project, and provides an open mechanism for discussion, decision
making, and the taking of responsibility. Over many years of supervising and
managing projects, I am convinced that this is the most effective way. It is not
without problems, there will always be problems, and sometimes individuals are
just unreasonable and threaten the joint endeavors of the team. In my experience
the team, if given the responsibility, will deal with the issues effectively. In the
few instances where I have had to intervene, the solution has been negotiated
quickly and effectively. There are a number of management devices that can work:
yellow cards and red cards as used in football (soccer) may be useful; the use of a

10 Chapter 1 What Is an Agile Methodology?

sin bin might also be considered for unreasonable colleagues. It has to be a group
decision rather than the manager’s to be most effective, however.

Agility requires cooperation from the development teams; they need to be able to
adapt to changing circumstances without feeling threatened or pressured. A flat and
inclusive management structure seems to be able to deliver this.

We shouldn’t forget the needs of the clients. They are the other people in the
loop, and one way to ensure that they are kept happy is to keep them informed and
to have excellent lines of communication between the development team and the
clients and users. Clients also worry about progress because they may be held respon-
sible for project failure or other consequences caused by problems beyond their
control. Many clients are skeptical about the reassurances given to them by develo-
pers using traditional approaches to software engineering where the only things
to show for months of work are incomprehensible diagrams and paperwork.
Providing pieces of functioning software, albeit prototypes in some methodologies,
provides some confidence that things are progressing. It also provides a mechanism
for feedback from a real implementation rather than from vague abstractions.

The issue of end-user programming could be raised here. One of the most ambi-
tious goals of this is to provide users with no programming experience with the facili-
ties to build their own applications, the argument being that they know their business
better than the programmers and analysts and thus they should be in a better position
to know what they want. If we can give them an environment that enabled them to
build their application easily, then this would overcome some of the problems.

Things aren’t quite as simple as this, however. Some clients find it difficult to
articulate what they want or to step back sufficiently to understand their business pro-
cesses adequately to create a coherent business model and thus an application to
support it.

However, there are some possibilities. In a way, spreadsheets are an example of
the sort of application that many business people can create and use, although it is
easy to make errors in the way these are set up and the formulas in the cells
defined. It does present a possible way forward, however.

Another example is the work of Bagnall (2002) who built an experimental end-
user system called Program It Yourself (PIY). This was founded on a particular
approach to identifying the business model for an e-commerce site that was based
directly around concrete things involved in the business, products, prices, and so
forth. In trials with naı̈ve users (i.e., nonprogrammers), he found that they could
build useful and maintainable systems based on the use of an XML Hunter (2000)
database supporting a user-friendly GUI that implemented a clear business model.
Similar systems for other business domains should be possible.

1.8 SOME AGILE METHODOLOGIES

There are a number of possible contenders for the description of an agile method-
ology. We will look at some of the more popular ones, leaving extreme programming
until the next chapter where we will look at it in more detail. This account is not

1.8 Some Agile Methodologies 11

exhaustive but is meant to provide some ideas of the different directions in which
agile development is going.

1.8.1 Dynamic Systems Development Method

The dynamic systems development method (DSDM) (Stapleton, 1997) is an approach
that uses an iterative process based on prototyping that involves the users throughout
the project life cycle. In DSDM, time is fixed for the life of a project rather than start-
ing with a set of requirements and trying to keep going until everything has been
done—or we have all given up! Thus resources are fixed as far as possible at the
start, and this can provide a more realistic planning framework for a project. This
means that the requirements that will be satisfied are allowed to change to suit the
resources available.

There are nine underlying principles of DSDM, the key one being that fitness for
business purpose is the essential criterion for the acceptance of deliverables. This
philosophy should ensure a clearer focus on the purpose of the software rather than
on technology for technology’s sake.

1.8.1.1 The Underlying Principles

The following principles1 are the foundations on which DSDM is based. Each one of
the principles is applied as appropriate in the various parts of the method.

1 Active user involvement is imperative. Users are active participants in the
development process. If users are not closely involved throughout the devel-
opment life-cycle, delays will occur, and users may feel that the final solution
is imposed by the developers and/or management.

2 The team must be empowered to make decisions. DSDM teams consist of both
developers and users. They must be able to make decisions as requirements are
refined and possibly changed. They must be able to agree that certain levels of
functionality, usability, and so forth, are acceptable without frequent recourse
to higher-level management.

3 The focus is on frequent delivery of products. A product-based approach is
more flexible than is an activity-based one. The work of a DSDM team is con-
centrated on products that can be delivered in an agreed period of time. By
keeping each period of time short, the team can easily decide which activities
are necessary and sufficient to achieve the right products.

4 Fitness for business purpose is the essential criterion for acceptance of deliver-
ables. The focus of DSDM is on delivering the essential business requirements
within the required time. Allowance is made for changing business needs
within that time frame.

1These are taken from the DSDM site: http://www.dsdm.org.

12 Chapter 1 What Is an Agile Methodology?

5 Iterative and incremental development is necessary to converge on an accurate
business solution. DSDM allows systems to grow incrementally. Therefore the
developers can make full use of feedback from the users. Moreover partial sol-
utions can be delivered to satisfy immediate business needs. Rework is built
into the DSDM process; thus, the development can proceed more quickly
during iteration.

6 All changes during development are reversible. To control the evolution of all
products, everything must be in a known state at all times. Backtracking is a
feature of DSDM. However in some circumstances, it may be easier to recon-
struct than to backtrack. This depends on the nature of the change and the
environment in which it was made.

7 Requirements are baselined at a high level. Baselining high-level requirements
means “freezing” and agreeing on the purpose and scope of the system at a
level that allows for detailed investigation of what the requirements imply.
Further, more detailed baselines can be established later in the development,
although the scope should not change significantly.

8 Testing is integrated throughout the life cycle. Testing is not treated as a sep-
arate activity. As the system is developed incrementally, it is also tested and
reviewed by both developers and users incrementally to ensure that the devel-
opment not only is moving forward in the right business direction but also is
technically sound.

9 Collaboration and cooperation between all stakeholders is essential.

DSDM is independent and can sometimes be used in unison with other frame-
works and development approaches, such as extreme programming (XP).

1.8.2 Feature-Driven Design

Feature-driven design (FDD) (Coad, 1999) begins by developing a domain object
model in collaboration with domain experts that is then used to create a features
list. This is used to produce a rough plan, and informal teams are set up to build
small increments over short, say 2-week, periods.

There are five processes within FDD:

1 Develop an overall model.

2 Build a features list; these should be small but useful to the client.

3 Plan by feature.

4 Design by feature.

5 Build by feature.

A feature is a client-valued function that can be implemented in 2 weeks or less.
A feature set is a grouping of business-related features.

We illustrate the process in Fig. 1.4.

1.8 Some Agile Methodologies 13

1.8.3 Crystal

Communication is a key aspect of Crystal (Cockburn, 2001) by considering develop-
ment as “a cooperative game of invention and communication.” Crystal aims to
overcome many of the problems caused by poor communication between all the
stakeholders, particularly developers, customers, and clients.

Cockburn looks at a software development project as a bit like an ecosystem “in
which physical structures, roles, and individuals with unique personalities all exert
forces on each other.”

The approach highlights intermediate work products that exist in order to help the
team make their next move in the game. These products help team members to orient
themselves in the project and to remind members of important issues, decisions, goals,
and so forth. They also help in prompting new ideas and potential solutions to pro-
blems. These products do not have to be complete or perfect but should help to
guide and motivate team members. As the game progresses, these products help in
the management of it. “The endpoint of the game is an operating software system”

As we can see, the approach is more of a management framework rather than a
set of explicit technical practices. There exist some policy standards and guidelines on
the numbers of developers and how to assess the critical attributes of projects.

1.8.4 Agile Modeling

“Agile modeling is a collection of values, principles, and practices for modeling
software that can be applied on a software development project in an effective and
light-weight manner” [http://www.agilemodeling.com].

An agile modeling (AM) approach (Ambler, 2002) can be taken to requirements,
analysis, architecture, and design. The idea is that whatever modeling approach is
taken, whether as use case models, class models, data models, or user interface
models, the emphasis should be on a lightweight but effective approach to the
modeling. The model should not become the purpose but just the vehicle for under-
standing the customer’s needs better. Because the models are light weight, they
are easier to adapt or are even thrown away if they become obsolete through require-
ments change.

Figure 1.4 Feature-driven design.

14 Chapter 1 What Is an Agile Methodology?

AM is often combined with notations from UML and for example the rational
unified process (RUP), but the full bureaucratic treadmill often associated with
these processes is reduced. AM is not a complete software process; it doesn’t
cover programming, software delivery, or testing activities, although testability is
considered through the modeling process. There is also no emphasis on project man-
agement and many other important issues. However, AM is very sympathetic to the
principles of XP that we examine in Chapter 2 and it is possible to combine AM with
some of the more complete agile processes such as XP, DSDM, or crystal. In this
book, we will combine a type of agile modeling with XP.

1.8.5 SCRUM

SCRUM is a management process that can be applied to a number of different activi-
ties, not just software development. Introduced in 1995 (Schwaber, 2002), it has had
some success in a number of projects.

A project is divided into features with an assigned project value and estimated
effort or cost. Sprints are time-boxed plans corresponding with iterations. Daily
scrum meetings—which are short and focused—are held to monitor progress. At
the end of each sprint, a review meeting is held to consider the quality of the features
produced. Different stakeholders and actors are identified including the product
owner, the scrum master, and the team members.

There have been successful approaches that combine SCRUM with other agile
methodologies; for example, SCRUM might be used for the overall management
of a project, which could include marketing and support activities, while an agile soft-
ware development method is used for the production.

SCRUM has been applied to a distributed development project across several
countries (e.g., Sutherland, 2007).

1.8.6 Summary Table

These different approaches have different strengths and weaknesses, but all adopt
parts of the agile philosophy. There are a number of other approaches such as lean
software development (Poppendieck, 2002 http://www.Poppendieck2002.com).
We briefly summarize some of their properties in Table 1.1. In the table, “þ” indi-
cates a strong aspect featured in the approach, “2” means that this aspect is not
emphasized in the literature, and “?” indicates that this can be featured but not
always, and critical support for this is not a fundamental part of the method.

Some of these approaches are really more like philosophical perspectives on soft-
ware development rather than a complete set of techniques and methods, some are
general approaches to managing and planning software projects, and some are tied
into an existing design-based approach such as UML. All have their strengths, and
which ones will succeed in the industry over the next few years is dependent on
many things.

1.8 Some Agile Methodologies 15

There is a shortage of scientific evidence about the benefits and weaknesses of
these approaches. There are plenty of case studies, experience reports, and opinions
available—in the proceedings of conferences on agile development and on Web sites
that abound. However, no extensive comparative trials have been carried out in an
industrial context except those undertaken in the Sheffield Software Engineering
Observatory (http://observatory.group.shef.ac.uk/) where the approach described
in the next chapter has been compared with a traditional design-led approach.

In the next chapter, we will focus on extreme programming, XP (Beck, 1999)
and see that it will provide all of the desirable features that we have identified. It
also gives much clearer guidance on how to achieve them. Some of the other agile
approaches, such as DSDM and SCRUM, are proposing to adopt some of the XP
ideas in a kind of hybrid approach.

1.9 REVIEW

The issues that an agile approach to software engineering must address can be sum-
marized in the following six properties:

1 a clear business focus;

2 the ability to plan and adapt the development of the software as the client’s
problem changes and to provide feedback on progress;

3 the need to allow for the future maintenance and evolution of any delivered
solution;

4 the assurance of the quality of the delivered software;

5 the reduction of the amount of documentation and other bureaucracy that is
required to sustain and manage the development process;

6 the emphasis on the human dimension must be a key aspect both for the devel-
opers and the clients.

Table 1.1 A Summary of the Features of the Agile Methodologies in This Chapter

Feature DSDM FDD Crystal
Agile

modeling SCRUM

Clear business focus þ þ ? 2 þ
Strong quality/testing focus ? 2 2 2 ?
Handles changing requirements þ þ ? þ þ
Human-centered philosophy ? ? þ þ ?
Support for maintenance ? 2 2 2 2
User/customer-centered approach þ þ ? þ ?
Encourages good communications þ ? þ ? þ
Minimum bureaucracy ? ? þ þ 2
Support for planning þ þ þ 2 þ

16 Chapter 1 What Is an Agile Methodology?

Consult the agile modeling manifesto for another perspective on the issues
discussed above.

EXERCISE

Consider the Agile Manifesto reproduced here from the following Web page: http://www.
agilemanifesto.org/principles.html.

We follow these principles:

Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity—the art of maximizing the amount of work not done—is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

Think about these principles and reflect on your own experiences in software development,
what you have been taught about the process. How do these principles relate to these issues?
If you have been involved in a significant development project, what processes did you follow?

CONUNDRUM

The following scenario is based on a real-life business situation that arose in the late
1990s.

The Internet is opening up, and many businesses are now connected. Banks are
beginning to consider if they could provide online access to their business customers.
One bank considers two strategies.

(A) The bank’s IT director suggests that they put together a quick and dirtyWeb
site that allows customers to submit transactions through their browser, to
get this up and running, and to try to develop a connection with the
“back-office” legacy mainframe database system.

Conundrum 17

(B) The bank also gets a report from some outside consultants that suggests they
should reengineer the legacy back-end and build an integrated Web front-
end to provide a powerful user-friendly e-banking system engineered to a
high standard.

Which strategy would be best and why?
See Chapter 11 for a discussion of this dilemma.

REFERENCES

S. ANCHA, A. CIOROIANU, J. COUSINS, J. CROSBIE, J. DAVIES, K. AHMED, J. HART, K. GABHART, S. GOULD,
R. LADDAD, S. LI, B. MACMILLAN, D. RIVERS-MOORE, J. SKUBAL, K. WATSON, S. WILLIAMS.
Professional Java XML. Wrox Press, 2001.

M. BAGNALL. The Dyna Cat System. http://www.dcs.shef.ac.uk/intranet/teaching/projects/archive/
ug2002/pdf/ugmab.pdf.

S. AMBLER. Agile Modeling. John Wiley & Sons, 2002.
K. BECK. Extreme Programming Explained. Addison-Wesley, 1999.
P. COAD, J. DE LUCA, E. LEFEBRE. Java Modelling in Color. Prentice Hall, 1999.
A. COCKBURN. Agile Software Development (A. Cockburn and J. Highsmith, eds.). Addison Wesley, 2001.
T. GILB. Principles of Software Engineering Management (S. Finzi-Wokingham, ed.). Addison-Wesley,
1988.

L. HATTON. Does OO sync with the way we think? IEEE Software, 15(3):46–54, 1998.
W.S. HUMPHREYS. A Discipline for Software Engineering. Addison-Wesley, 1995.
D. HUNTER. Beginning XML. Wrox Press, 2000.
R.S. PRESSMAN. Software Engineering: A Practitioner’s Approach. McGraw Hill, 2000.
K. SCHWABER, M. BEEDLE. Agile Software Development with SCRUM. Prentice Hall, 2002.
I. SOMMERVILLE. Software Engineering, 8th ed. Addison-Wesley, 2006.
J. STAPLETON. DSDM: The Dynamic Systems Development Method. Addison-Wesley, 1997.
J. SUTHERLAND, A. VIKTOROV, J. BLOUNT, N. PUNTIKOV. Proc. HICSS. 2007.

Web Sites

http://www.Poppendieck2002.com.

18 Chapter 1 What Is an Agile Methodology?

Chapter 2

Extreme Programming

Outlined

SUMMARY

The fundamental principles and the 5 values and the 12 activities involved in extreme
programming (XP) are introduced. These are reviewed and discussed in the light of
some current experiences in applying XP in industry.

2.1 SOME GUIDING PRINCIPLES

Before we get into the details of the main approach taken in the book, an evolution of
extreme programming (XP), which incorporates many of the aspects described in the
agile methods discussed in Chapter 1, we will consider some of the issues from a
broader perspective.

Software development is a human activity, and we must ensure that the human
dimension is at the center of our thoughts when we discuss ways to make software
more effectively.

There is a social dimension in which groups of people (developers, customers,
managers) collaborate together to achieve a common aim—the development of a soft-
ware solution to a business problem. However, it is not just the achievement of this
that is important. We all develop and learn as individuals and groups, and this has to
be at the forefront of things as well.

There are a number of social principles that apply here. No project is without its
challenges, and any group of people comes with its dynamic relationships. If we are
aware of these from the start, then we will be able to both benefit from their positive
aspects and manage any possible negative ones.

We should consider how people think and feel about things—their work, their
environment, their relationships, their hopes and fears. People experience many
different emotions and have many different needs. Recognizing that people are indi-
viduals and respecting that is a key pillar upon which XP is built.

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

19

Thus people want to succeed in their work, to enjoy what they do, to feel a sense of
achievement, to learn and improve their knowledge and technical skills, to be able to
relax with colleagues, and to manage their responsibilities without the stigma of failure.

From a technical point of view, there are many issues to be considered.
Fundamentally,we are engaged in the development of something of value, a product

thatmayhave someeconomicbenefit: it pays ourwages andcontributes to the company’s
profits; it benefits our customers by providing them with enhanced capacity to achieve
their business objectives. However, it may not be business based in the narrow interpret-
ation of the term but enables clients to do their work better (many of our customers are
charities or public sector organizations, which are not necessarily profit driven).

Thus we need to think about value and its costs in time and money in a holistic
way, and these will be at the core of our work.

A key mechanism for keeping these three things together is to proceed in very
small steps. In this way, one can see how well one is doing, and if we can
combine this with a view of where we are going—accepting that this may not be
totally clear at all times—then we can make progress.

Adding value and demonstrating this should be the objective throughout. We can
see how this is achieved if we maintain a constant relationship with each other—
developers, customers, and managers—all the time. To do that we need to communi-
cate: to talk to each other, to show each other what we have done, to discuss where we
are going, to reflect on what has been achieved in an honest way, to help each other if
things go wrong, to keep relationships in a positive state. Sometimes we should think
about developing and maintaining these relationships outside of the work environ-
ment through social and leisure activities.

A dominant theme is the flow of activities. We will focus on building frequent
small releases of code that can demonstrate some value to the project; we will
reflect on what has happened frequently and regularly; we will respond to setbacks
in a positive way that enhances our understanding of the development process and
of our professional and personal capabilities; we will promote discussion and
sharing of perspectives and knowledge; and we will try to improve ourselves, our
team and our organization bit by bit.

These fundamental principles lead to a set of values that will form the basis of
XP: good communication, simplicity, feedback, courage, and respect.

2.2 THE FIVE VALUES

Before we get into the more detailed description of what XP is all about, we need to
understand the fundamental values that are its reason for existence and the reason for
its success.

These five basic values of XP are shown in Fig. 2.1.

2.2.1 Communication

Almost all the research that has been attempted into the great software engineering
disasters has concluded that breakdowns in communication between developers

20 Chapter 2 Extreme Programming Outlined

and client, among the clients, and among the developers play a major role. In a
sense, computing is all about communication from human to computer to human,
and thus the very essence of our subject requires that we address this in a funda-
mental way.

XP tries to emphasize this factor by building a rich collection of procedures and
activities that emphasize effective communication among all the stakeholders.

Stakeholders include

Customers: managers, financial directors, marketing departments, and so forth

Users: administrative staff, general public, and so forth

Developers: programmers, managers, financial directors, marketing, and so forth

Media and other organizations who may take an interest

Let us look at some of the most important areas where communication is vital.
The first one doesn’t involve the developers at all. Consider a company that wishes
to have some software developed to support its business activities. The first and
most vital requirement is that they can decide what the principal objective of the soft-
ware that they need is. This requires them to understand their business, its context, the
strategy of the business, and so on. For this to be done successfully, there has to be
good communication among the principle players in the company, the directors,
managers, operators, and possibly their clients and business backers. Many software
disasters have been caused by failures at this level. Perhaps the company has not
thought through its business objectives properly: Is the proposed software either
needed or providing the most business value? It is often the case that the reason
for the software becomes obscured, perhaps the principle project champion in the
company leaves or changes their role in the company. Someone else might take
over this responsibility and may either be unaware of the motivation for the develop-
ment or unsympathetic to it.

It is therefore vital that the company is clear about why it wants the software
developed, has analyzed its operations sufficiently well to be able to justify it on
business grounds, and that there is a knowledgeable champion for the development
who is well connected with all the stakeholders in the company. We will rely on
the existence of these parameters during our project. If something is wrong here,

Figure 2.1 The values of XP.

2.2 The Five Values 21

then there is a strong chance that we will be building the wrong system, a waste of
time for all concerned.

Naturally the phrase “business value” may have a number of interpretations—it
can affect organizations that are not commercial companies (charities, non-profit
organizations, etc.). The point about the term is that there is some benefit to the organ-
ization—it makes them more efficient; produce better-quality outcomes; improves the
experiences of their workers, customers, or some other stakeholder. It does not always
have a clear financial benefit, and it is important to take a holistic view of things.

The next issue to address is the communication among developers and the client.
This is also vital. It is no good having one meeting at the start of the project and then
to meet again when the supposed solution is delivered. This is bound to be a disaster
unless the system is fairly trivial in nature. So much can change in the business
between the start of the project and the final commissioning of the solution that
there has to be much more regular communication between these two parties.

The communication needs to provide several benefits. First it has to provide a
continuous or, at least, frequent renewal of the business requirements that are being
addressed. As has been pointed out earlier, business needs can change rapidly, and
the purpose of the software could change with them. We must be aware of what is
happening in the business and the way that things are changing. This agility
depends heavily on the communication mechanism between clients and developers
(also between developers and among the clients’ business partners).

As well as receiving this information from the clients, the developers need to
keep the client informed of how they are doing. There is nothing more frustrating
for a client than not to know how things are getting on. They are paying for all
this, and there will be many other demands on their money. Regular feedback on
progress and demonstrable signs of progress are needed.

The third aspect is the communication between the developers. This is often
sadly lacking in traditional development regimes. The communication process here
involves keeping all the team involved in the planning of the project, keeping every-
one up to date with progress, with objectives, and with the changing nature of the
target. This is very difficult and usually results in some of the team becoming disen-
gaged and de-motivated if it is not addressed. The human side of the management of
the team becomes crucial. Giving people respect and responsibility provides a good
basis for the development of rich and productive communication processes within the
team. Several XP practices contribute directly to this goal, as we shall see.

2.2.2 Feedback

Feedback is closely related to communication; they are two dimensions of the same
phenomenon.

We need to establish very rich mechanisms, as we saw above, to keep the client
informed and involved in the project. This is to ensure that we are building the right
system for the business and that we are making clear progress toward the joint objec-
tives of all concerned. Thus there needs to be a mechanism for the client to see real

22 Chapter 2 Extreme Programming Outlined

results of the developers’ efforts and to try to relate them to his or her business
activities and needs. Traditional design-led approaches rely on producing large
amounts of often incomprehensible documents to do this. This is a ponderous and
ultimately unrewarding endeavor. Regular increments of software can help this but
can cause a distraction if the quality is poor and the client is sidetracked into doing
the testing that should have been carried out by the developers and having to
report faults and bugs. It is no good delivering a prototype or an increment of the sol-
ution if it is unreliable and fails to meet the client’s quality expectations. We must
avoid this—previous approaches such as rapid applications development (RAD)
sometimes failed in this respect because it was based on the rapid development of,
possibly arbitrary, increments rather than on the rapid development of high-quality
increments that add business value to the client’s business.

Within the development team, we need to ensure that everyone knows what
is going on, where the project has got to, and how their work fits into the big
picture. They also need to know how good their work is and how good the work
of all the others is. Building on the work of others when you have doubts about its
quality is always a frustrating process. We need to avoid this. It is no good relying
on the occasional review meeting. Although these are necessary and often productive,
they can also be a source of great problems.

Imagine the following scenario, typical of most traditional development projects.
The managers have allocated you some aspect of the development to code up. You
might receive some textual descriptions or requirements of what is needed, you
might receive some design documents, and it is your task to deliver some code by
a deadline, perhaps a week or longer. Thus you go to your machine, which may
well be separate from or shielded from others working on the project. You then
spend the next few days trying to get your head around what it is that you are sup-
posed to do. After a while, the manager gets fed up with your questions and requests
for clarification—probably he or she doesn’t know the answer, maybe the client
should be asked, but everyone is too busy for that. Thus you struggle on and even-
tually manage to deliver the code by the deadline.

There is then a review or inspection meeting where your code is looked at by
others: managers, other programmers, and so on.1 At the review they start criticizing
your code. You have sweated over this and have done your best yet they complain
about many things. You misunderstood a requirement, but when you asked them
about that very thing they either didn’t know or told you to sort it out yourself. At
points where you showed initiative, they criticize you for failing to follow some, pre-
viously unknown, house convention or requirement. Criticizing your detailed code
may involve taking your algorithms apart and suggesting that they would have
used “better” ones. Perhaps some smart guy knows about a clever way to do what
you did with half the effort. I could go on. Suffice it to say that you are soon on
the defensive and getting angry or demoralized. They want big changes, and you

1This would only happen in a so-called well-organized company; in many, review is not a formal process,
and the only reviews take place during integration testing when vast amounts of time and money are spent
on the futile task of trying to find and fix bugs.

2.2 The Five Values 23

would prefer to try to fix the problems by some judicious tweaking of the code. In
many situations, the best solution is to start again having obtained a better under-
standing of what is wanted and what the “best” solution might be. However,
human nature often conspires against this, and the tweaking approach is often
adopted. Anyway, it is probably too late to do anything else with the deadline
approaching.

We have to find a better way.

2.2.3 Simplicity

How many times have you used some software where there were complicated and
confusing features that got in the way? If this is the case of computing experts,
how much more is it the case for ordinary users?

Many projects get into trouble because the developers get sidelined into doing
something that is technologically novel or “clever” when, in fact, the feature in ques-
tion is just not really needed. Clients can be seduced by such “enhancements,” too,
and could agree to some new fancy feature being added when it makes no sense to
do so; it adds nothing to their business capability. These extra features are a potential
threat to the success of the system. They introduce unwanted complexity into the
system, especially if the delivery deadline is fast approaching, as the work on the
new feature will, probably, be at the expense of more thorough testing of the software.
Some call this feature creep.

Einstein once said that “any solution should be as simple as possible but no
simpler.”

We need to adopt the same attitude. Every aspect of the system should be con-
sidered; can we really justify the time and effort in adding some supposed enhance-
ment? However, if the reason for adding a layer of complexity is a good one, for
example in order to make the software more robust by trying to trap inappropriate
data input, then we have to do this. But we must have suitable tests to demonstrate
that we have done it properly.

2.2.4 Courage

This means having the confidence to do things that might otherwise be considered
risky. Much of the philosophy of XP derives from abandoning some of the traditional
ways of software development, ways that are widely taught and widely used in indus-
try. It takes some nerve to turn one’s back on all this expertise and experience.

One aspect of courage that XP and other agile approaches promote is the enthu-
siasm for change, in particular a willingness to adapt to the clients’ changing needs as
the project develops. This does take some courage as it may involve changing some
of our previous work; there is a natural tendency to resist change in traditional
approaches under these conditions. The ability to relish new challenges is part of
the underlying philosophy of XP.

24 Chapter 2 Extreme Programming Outlined

Extreme programming, like an extreme sport, is software development without
the normal constraints. Like climbing mountains without a rope, building software
without a design seems, at first sight, to be suicidal. Why it isn’t is the subject of
much of this book. There are constraints, and the practices of XP are meant to be
followed.

Rather than being an informal and unregulated exercise it is in fact highly disci-
plined. You will have to learn how to enjoy the disciplines and to revel in the prac-
tices until they become second nature. It is only by making them automatic and
natural that you will then gain the confidence to attack any software project with
the certainty that you will succeed as well as anyone could.

We will see that there is coherence and a rationale about the key set of values and
practices of XP that will support us in our endeavors.

Confidence is one thing, but overconfidence is another. You are not always right;
others may have a valid point of view, too. As we have observed, learning how to
argue from a position of knowledge has to be moderated with the ability to compro-
mise and agree when others have the best argument. In the end, it is important that
those involved negotiate an acceptable outcome.

2.2.5 Respect

The most important issue about any joint, team-based activity is the relationships
between the participants. Many of the problems that arise in software development
projects are “people issues” rather than technical ones. People issues are generally
about relationships—between developers in the team and between team members
and clients, users, managers, and others in the immediate working environment. Of
course, relationships with those close to you and your family can have an impact
on a project as well.

In order to deal with these, you have to treat each individual with respect—allow
them to express their point of view, discuss things with them calmly, and actively
delegate responsibility for doing things in a reasonable way and to trust them to get
onwith it. The two complementary facets of responsibility and trust are very important.
XP is supposed to be a human way of doing things that is built on both these pillars.
If you respect someone, you will also trust them and then give them responsibility.

2.3 THE 12 BASIC PRACTICES OF XP

2.3.1 Test-First Programming

Before writing any code, programmers build a set of tests. These tests are run—of
course they will fail as no code has been written. Why would one do this?

To get used to testing continuously—at the end of a session, at the end of the day,
whenever a small piece of code has been built.

All the test sets are run: this means all the relevant unit tests, testing classes, and
methods as they are coded; all the functional tests, testing at the integration level and

2.3 The 12 Basic Practices of XP 25

derived from the planning game and subsequent discussions with the client; and all
the non-functional tests.

The test sets are the most important resource and are continually enhanced.
The customer can help to supply some tests, they understand the business pro-

cesses in their organization, and these, if they are to be replicated or involved in
the system being built, will provide a wealth of potential test material. Functional
tests are derived from the planning game (see later) using techniques defined in sub-
sequent chapters. The quality of these tests is crucial, and the methods described will
provide test sets of outstanding power.

In a sense, the test sets replace the specification and the design. They present us
with a rapid feedback mechanism that tells us if the code is “correct.”

If any tests fail, the code must be fixed.
This sounds very plausible as it is known that strong testing delivers quality

systems. However, is it realistic? Testing and debugging as activities are Cinderella
subjects both in universities and industry. There are few courses dedicated to
the subject, and when programming is taught, testing is generally ignored.
Programmers are often left to their own devices in terms of what techniques to
use. Here, though, testing is fundamental; the development process is centered
around testing, and this is what gives us continuous feedback on how we are
doing. But there are tests and tests. Any fool can write test cases, but only the smartest
developers can write really good ones. Furthermore, we have to design the tests
before we start to code. This presents another problem as many test techniques, for
example, the so-called White Box testing, relies on having the code structure avail-
able. These types of testing are based on finding test values that will exercise the
program graph, for example traversing every path in the code, accessing every
decision point, and so forth. Many of these techniques can be automated by using
the code as a basis for the generation of the test but the code is not written.

In terms of functional testing and acceptance testing, the tests are often created on
a fairly informal basis from whatever requirements are available. There is almost no
knowledge of how good the tests are. Many developers will stop testing when the rate
of discovery of defects slows down—this does not mean that all fundamental flaws
have been discovered.

We will address this issue of testing fundamentally in this book.

2.3.2 Pair Programming

Two people, one machine. This is a key feature. Organize the project so that when any
work is being done it is done in pairs. One person will be using the keyboard and the
other will be looking at the screen with them both discussing what they are doing.

All code must be written in this way. This is a process of continuous review and
ensures that mistakes are made less frequently and the reasons for doing something in
a particular way are open to discussion throughout. In fact, it not only applies to
coding; all aspects of an XP project should be like this, pairs of people working
together, pooling their expertise and intellect and sharing information. Planning

26 Chapter 2 Extreme Programming Outlined

and discussing the project with the client should also involve as many of the team
as possible.

The pairs swap around regularly; swapping roles within a pair and swapping
developers from one pair to another gives a much greater understanding of what is
being done in the project.

It is also an excellent mechanism for learning: Your partner may be an expert in
some aspect of the project or the techniques being used, and you will then benefit
from this. Perhaps they know the programming language better than you; you are
bound to benefit from such a pairing. Perhaps you have some skills that you could
transfer to others. Even if you think that you know all about something, the
process of trying to explain it to someone else can be very beneficial to improving
your own understanding. Everyone should benefit; part of your motivation is thus
to become multiskilled and to enhance your technical knowledge quite apart from
completing the project successfully.

Success does need to be built upon mutual respect among the team. You will get
to know all of the team because different pairs will form up regularly and so com-
munication throughout the team is enhanced. Pairings will change at suitable
points in the project: perhaps someone has some specific knowledge that someone
else needs to learn; perhaps the change will be driven by availability of personal.
Ideally, everyone should have the opportunity to work with everyone else during
the project.

One interesting observation of the difference between XP projects and traditional
ones is that the XP teams are always talking to each other. When you walk into an XP
site this is very noticeable, there is a lot of noise compared with the traditional lab
where everyone is silently staring at their screens and very little talking is going
on, and what talking there is may not be relevant to the project.

2.3.3 On-site Customer

This is recommended, if it is possible, as it will enrich the communication between
the client and the development team. The customer/client has the authority to define
the system functionality, set priorities, and to oversee the direction of the project. Of
course, it might be difficult to actually have the client in the development team at all
times and it may not even be desirable. If the key issue is to be able to respond to
sudden changes in business need, then the client needs to be well connected back
to the business in order to achieve this. I prefer a very close relationship, regular
visits and meetings both at the site of the development team but also at the business
site. Team members need to familiarize themselves with both the operating environ-
ment and a representative sample of the users of the system if they are to fully under-
stand the issues involved. This could be better than a permanent presence of the client
in the development team.

One of my projects hit problems when we delivered part of the system
only to discover that the role of the actual users did not correspond with what the
client thought; he did not understand some of his business’s processes. We had to

2.3 The 12 Basic Practices of XP 27

go back and rebuild the system. We wish, now, that we had spoken with more
people in the business, in the presence of the client, of course, and thus been
able to identify the business processes better. This project dates from before we
adopted XP.

It is an old adage that the client never knows what he or she wants, and this is
often the case. We have to question the clients and all the stakeholders in the business
carefully and rigorously if we are to move toward identifying exactly what the
business needs are and how they can be supported.

We can use many ways of trying to bridge the gap between what the client thinks
they want and what the development team thinks the client wants. It may not be based
solely on writing things down: videos of potential users working, recordings of inter-
views with stakeholders, and studies of similar systems used by other organizations
including competitors are also valuable sources of information.

Excellent communications between the development team and the business
should reduce the volume and cost of documentation as well as ensure that the
right system is being built.

As with pair programming, this aspect of XP encourages intense face-to-face
dialogue.

2.3.4 The Planning Game

The customer provides business stories, and estimates are made about the time to
build software to implement the stories. We will see later how to approach the
issue of identifying stories. The essence is to identify small pieces of meaningful
functionality and to describe these on a small card in such a way as to illustrate the
sequences of interactions that are involved in the story process.

Stories, which are about small pieces of working software, should be developed
over a short time (a week is a good target) and need to be customer focused (the cus-
tomer must understand them and their place within the overall system).

From time to time—maybe around monthly—a review of the business objectives
should be carried out with the customers and users.

From this information, which should be clear and understandable to the client as
well as the developers, we construct test sets that will be applied to any implemen-
tation that is supposed to implement that story.

Designing the test set for this purpose is a technically challenging task and one
that is crucial; if we get it wrong, then we are in trouble. Some authors suggest that the
client should determine the stories. This must be inadequate; if testing and test set
generation is a key professional activity, then the task should involve people with pro-
fessional skills in testing—the development team should develop an understanding of
systematic system testing. The client needs to be involved and to identify many of the
cases that have to be addressed, but for the really rigorous testing that we need to use,
more sophisticated input is needed. This does not mean that the development team
cannot do it. They can and the techniques described in Chapter 6 and beyond will
address this.

28 Chapter 2 Extreme Programming Outlined

For each story, we also need to identify any non-functional requirements
(see Gilb, 1988) that are stated or implied in the initial project description. This
could relate to usability, efficiency, and so forth, and accurate metrics for measuring
these and criteria for deciding when they have been achieved need to be agreed upon.
This is a system level rather than a unit level exercise although the way the units are
built will influence the results of these tests.

Thus we have tests that are determining whether the functionality is correct and
tests that will establish whether the non-functional requirements are also satisfied.
Neither should be forgotten or skimped.

For each story, we need to try to identify the cost of implementing it, how long
will it take, and how many people it will need. This is a difficult and error-prone
activity, only experience will help and it is thus really important that you record
your initial thoughts and compare them, later, with the reality. There is a tendency
to be too optimistic—there may be problems ahead with the use of the technology
chosen, the supply of data needed to build the system, as well as revisions to what
the client wants. All of these things confuse the estimation process. Only by recording
carefully what you think will be the cost of implementation at each stage and seeing
how it changes over time will you develop the experience to make more reliable judg-
ments in the future.

Once a collection of meaningful stories has been agreed upon and the cost esti-
mated, then the customer decides which stories provide the most business value. This
has to be done with a clear measure of the way these benefits can be measured and in
consultation with the other key players in the business.

The programmers then implement the chosen stories.
Of course, things won’t always go smoothly. It is important to build in some

slack to use if problems arise that could impact on the progress of the project.

2.3.5 System Metaphor

Thus, now we have some stories to build, so how do we get started? The test set gen-
eration process, which focuses on the business processes in the stories and how these
might be integrated into a solution, will provide us with some clues. As part of this we
are, maybe implicitly, building models of the behavior of parts of the system. This is
an important resource and so we will already know quite a lot about the system-level,
functional requirements needed.

We now try to organize a collection of classes and methods that will achieve the
functionality described by the stories under development. As we will see below, we
need to keep in mind that we will integrate these stories into stand-alone and deliver-
able chunks of software and so our decisions here should reflect that. There is
something of a trade-off in terms of how much effort is invested in defining a meta-
phor and the amount of flexibility needed to deal with changing requirements.
Initially, the metaphor may be rather vague as you research the problem with your
customer. Soon parts of it will become more firm, and these can then be documented
more precisely.

2.3 The 12 Basic Practices of XP 29

The programmers define, perhaps, just a handful of classes and patterns that
shape the core business problem and solution. This is like a primitive architecture.
There are many ways to try to do this, one may wish to utilize some existing patterns
or libraries in order to re-use existing resources.

If this is the case, however, it is important that (a) you fully understand what is
being re-used and (b) the reuse is natural and provides the sort of software com-
ponents that really do help with the story.

We will make no assumptions about the quality of the re-used components. If
they have been produced through an XP approach, then there will be full test sets
available that you can use, extend, and adapt for the new stories. If not, then it is
vital that they are fully tested and the test results properly analyzed.

The system metaphor will be used as a means of communication between
programmers and customer. The notation chosen to represent it, therefore, has to
be understandable and representative of what you are trying to do.

This area is still a subject for research whether you are using XP or not, and sen-
sible notations and approaches are much sought after and rarely found. We will return
to this issue later.

We have been trying to find a simple diagrammatic method that shows how the
system hangs together, which illustrates the flow of the processes, is understandable
to both developers and customers, and can adapt to changing requirements. Our
research into the cognitive processes involved in design and requirements modeling
have shown that the generalized machine model, the X-machine, works extremely
well. In our recent industrial projects, we have used it extensively and the results
have been very encouraging. We will discuss this in Chapter 5.

2.3.6 Small, Frequent Releases

Release early and release often; that is the philosophy. Once we have produced an
implementation of a story that provides some coherent business benefit, we deliver
and install it in the client’s business. This then provides the users opportunities to look
at it and to provide feedback through the client to the development team. In many
cases, there are simple interface improvements that can be made or it might lead to a
greater awareness of how the whole system might support the business. This might
cause some revisions of the project scope and requirements and is thus valuable to the
development team. The release might be reengineered to suit the new understandings.

Thus we do not regard these releases as prototypes; each release is real, each
release is functionally useful, each release implements more stories, each release is
thoroughly tested.

2.3.7 Always Use the Simplest Solution That Adds
Business Value

As we have mentioned before, it is often tempting to develop something that is more
sophisticated than is needed. We must avoid “bells and whistles,” that is, unnecessary

30 Chapter 2 Extreme Programming Outlined

features that, although they might be smart, technologically impressive, or just plain
fun to build, are not actually needed.

Always ask—does the customer really need this feature?
For the programmer, this philosophy could be embodied in the practice of

using, for example, the minimum number of classes and methods to pass the tests.
There are some dangers here, however, and they will be looked at in Section
2.3.11. Simplicity of code does not always correspond with simplicity of function,
as we have observed.

2.3.8 Continuous Integration

Code is integrated into the system at least a few times every day. All unit tests must
pass prior to integration. All relevant functional tests must pass afterwards.

This could be done every few minutes if that is possible. Some of the work can
be automated, particularly running tests. Working code is committed to a CVS
(Concurrent Versions System) or similar repository.

This is a major source of confidence that the team is getting somewhere. Rather
than trying to integrate all the software (classes, etc.) together at the end, we integrate
whenever we can. Adding trusted new stories to the current state of the system that is
also well tested requires the running of all the previous functional or system test cases.
If everything passes, then we know that we have built a system to supersede the
previous version; it works and delivers something useful to the client.

We can deliver it for further feedback and go on to the next set of stories
(Fig. 2.2).

It is sometimes recommended that only one pair should be responsible for inte-
grating all the code into an operational system. The integration process must be done
carefully if we are not to undermine much of what has been achieved previously.
Whoever does it should do it in the full knowledge and agreement of the entire

Figure 2.2 Incremental delivery.

2.3 The 12 Basic Practices of XP 31

team at a time that is appropriate to the project. Letting anyone in the team carry out
system integration whenever they feel like it will lead to chaos and many different
versions of the core system. Successful integration can be achieved by having a
project directory structure that gives authorized team members sole write access to
the directory with the latest version of the running system.

2.3.9 Coding Standards

These define rules for shared code ownership and for communication between
different team members’ codes.

They should involve clearly defined and consistent class and method naming
protocols that everyone is familiar with.

Everyone should use the same coding styles. These need to be agreed upon at the
start of the project; they will be dependent on the context of the project, the program-
ming language used, and the existing resources available.

Similar conventions should apply to the way that test sets are defined and to the
user story cards. These need to have a set format, and we discuss this later.

The benefits of clear conventions should be obvious. The source code, the
stories, the metaphor, and the test sets are the major project descriptors; they
replace the design. They therefore must not fall into the same trap that much of the
design notations suffer from. They must be well understood and relevant for the
job in hand.

It is worth exploring the use of XML and of suitable tags in these sources to
enhance understanding, to structure thinking, and to allow for the use of suitable
semantics extractions tools and query mechanisms.

2.3.10 Collective Code Ownership

All the code belongs to all the programmers. Anyone can change anything.
This is a controversial aspect of XP and seems to go against common sense and

current practice. But we are dealing with a situation here where there are much richer
communication processes, where all the team members are fully involved, through
pair programming, with all aspects of the project. The common use of code standards
will also mean that each team member should be able to understand any piece of
code, what its purpose is, and how it fits into the overall plan of things. If
someone changes some code, perhaps to make it better in some way, then this
should be apparent, and if others disagree then they can change it back.

Because the code does not belong to any one person, there is no one to get defen-
sive and possessive about it. This should lead to a more relaxed but at the same time
a more consistent awareness of what is happening in the project.

Because there are house rules for writing and documenting code and for commu-
nicating between teams, we should be able to benefit from this inclusive approach to
the project resources.

32 Chapter 2 Extreme Programming Outlined

2.3.11 Refactoring

Refactoring is defined to be the restructuring code without changing its functionality.
Its use is mainly to simplify code—make it more understandable, and thus more

maintainable. This is vital. We have no design, although we have observed that the
design may not be accurate or that useful for maintenance, something has to take
its place and be more effective. These are the stories, the test sets and the code.

Refactoring (Fowler, 2000) could involve a number of improvements:

Moving (extracting) methods used in several classes to a separate class

Extracting superclasses

Renaming classes, methods, functions

Simplifying conditional expressions

Reorganizing data

Some basic support for refactoring is supplied by a refactoring browser of which
there are a number supporting different programming languages.

You may have noticed that there is an issue here regarding the unit tests. If we
have unit tests defined for each class and the class structure changes because of
some refactoring, for example, extracting a method into a new dedicated class,
then there is a mismatch between the new set of classes and the set of unit tests.
What this means is that we should also refactor the tests to preserve the relationships
between the classes and their tests.

At the systems level, the refactored system should still pass the functional
(systems) tests because the functionality of the system should not have been affected
by the refactoring. For the sake of maintenance, however, the link between classes
and unit tests should be kept, if at all possible.

2.3.12 Forty-Hour Week

Tired programmers write poor code and make more mistakes. Because much of the
software industry is reliant on the heroics of individuals working around the clock
to meet deadlines, it is hardly surprising that mistakes are made. We need to get
away from this treadmill approach.

The way that XP is organized helps to eliminate stress caused through unrealistic
timescales, lack of knowledge and understanding about what is going on, worries
about the quality of what is being built, the timeliness and usefulness of the solution
for the client, and the concern that so much time has been spent on design that the
final coding and integration will present a mountain to climb, with testing left to
the end and neglected.

Thus, XP is supposed to minimize this stress with its emphasis on communi-
cation, feedback, quality, incremental builds, and the rest. It should minimize the
need for overtime and remove the panic. In comparative experiments I have under-
taken with real projects being carried out by competing teams, XP and traditional,

2.3 The 12 Basic Practices of XP 33

it was quite clear that the stress levels and the panic are much reduced using XP. XP
adherents claim that it offers a more sustained approach to development, one that
allows a steady pace and an improvement in quality as well as greater job satisfaction.
There is some circumstantial evidence that this might be the case.

Because it can be seen that much more progress is being made, working for fewer
hours is now a feasible strategy.

2.4 CAN XP WORK?

We have briefly described the original values and practices of XP. They seem to make
a lot of sense, but do they work in real projects? The first thing to say is that this style
of software development may not be suitable for all types of application and industry.
Very large projects involving hundreds of developers will be extremely difficult to
bring to a successful conclusion whatever method of working is employed. It may
be that some of the elements of XP will be useful in these situations—test first is
an obvious one—but only time will tell. Certainly, current methods are problematic
as a perusal of the trade literature and its articles about recent failed projects will
testify. Another important point is that the XP approach is evolving all the time as
we learn from experience. There is probably less emphasis on these 12 practices as
specific activities that have to be engaged with in a dogmatic way but rather an
emphasis on the principles underlying them and their adaptation to the specific
context of an agile development. We have adapted and strengthened some of these
ideas as we shall see shortly.

In some business contexts, it will be difficult to apply all the practices fully. For
example, not all software development is of a bespoke nature. Many software houses
build speculative or generic software for a particular market, and there is no client
who could take the role of an on-site customer. There is a community of potential
purchasers and users. However, it is possible to adapt XP successfully for this situ-
ation, and a number of companies have been very successful at doing so. A good
model is to set up a separate quality assurance (QA) department, which plays the
role of the customer as well as carrying out some of the acceptance testing including
some of the non-functional requirements testing. For this to work, the QA group
must be very well connected with potential customers and know their business
needs extremely well.

Another issue is with companies carrying out bespoke development on a fixed-
price contract basis. Here it does not make sense to have a highly dynamic require-
ment that is subject to continuing change. Accountants and lawyers on both sides will
not accept this. It is important to have the requirements capture phase ring fenced so
that after a certain period of the contract, the requirements are more or less fixed. It
may be possible to make small cosmetic changes later on but the key functionality
has to be defined and will be the subject of a formal contract. Because this is a
fixed-price contract, the amount of time and resources available to the suppliers
will also be limited, and this is vital if they are not to get into financial difficulties.
Thus the on-site customer may only be on-site during the initial requirements

34 Chapter 2 Extreme Programming Outlined

capture stage and then at prototyping and incremental delivery times. In practice, it is
this type of contract that we will be focusing on in this book. Your time is limited to a
semester or whatever, and so the fixed-price approach is the best. It will require rather
more planning and organization as you only have a limited amount of resource—time
and labor—at your disposal.

Some software houses have long-term open contracts with their customers. Their
role is continual software development, perhaps of a major system that supports a
changing list of functions, and so there is a lot of scope for a continual and close
relationship between the customer and the developers. An “on-site” customer is
then both practical and desirable. In a large software project involving several
teams, then some of these might have a purchaser/supplier relationship with each
other. Thus internal customers can be treated as on-site, and the use of XP in a
large project might be feasible.

The business context for an organization employing XP will have an effect on
the way XP is implemented. For example, following the financial scandals in some
large U.S. corporations, accountants and lawyers are likely to be much more cautious
about committing to expenditure without any contractual or documentary evidence
about a software project. Thus a clear and well-defined requirements document
may have to be produced in an XP project. A collection of scrappy story cards will
not be sufficient. Even within a software company, it will often be necessary for
managers to have evidence of clearly planned and resourced projects. The way in
which XP adapts to these pressures, which some may resent, will be critical to its
future success.

2.5 THE EVIDENCE FOR XP

There has been a lot of research into whether agile developments actually deliver
what is claimed. In particular, some of the practices discussed above have been con-
sidered to see if they work. In many cases, the detailed experiments involve students
carrying out tasks in a laboratory setting. Unfortunately, these experiments often lack
credibility in the sense that it is not possible to generalize their finding to real indus-
trial settings; in other words, the results lack external validity. Also, by taking the
individual practices and considering them in isolation from the other practices may
also fail to provide evidence for the benefits of XP and other “complete” agile
methodologies.

2.5.1 Evidence for Test First

The evidence for the benefits of a test-first approach is mixed. The first thing to say is
that it is actually quite difficult to carry out—nearly all of the approaches to teaching
introductory programming that are found in universities tend to downplay testing—if
it is considered seriously at all. Thus many programmers find the idea of writing a test
set before they start coding unnatural. This makes it difficult to carry out comparative
experiments without having to undertake some extensive training on the technique.

2.5 The Evidence for XP 35

Janzen (2005) found that the design of the software was “better” (smaller and less
complex units), whereas Siniaalto (2007) found that the quality of the design
was poorer. There are a number of other examples of inconclusive results (e.g.,
Muller, 2003).

One comment that is worth making is that the time that tests are written and used
is only one of a number of factors that might affect the benefits of doing test first;
another is the type of tests created. Testing is very dependent on the capabilities of
the test sets to detect faults and so influences the ultimate quality of the software
under test. Simple measures such as test coverage can provide some insight into
the quality and effectiveness of a test set, but things are more complicated than
that. Test design is discussed in more detail in Chapter 7.

2.5.2 Evidence for Pair Programming

Williams (2000) presented some evidence for the benefits of pair programming.
The approach has been criticized on blogs such as hacknot.info, and other
experiments by other researchers (Nawrocki, 2001) have produced different
conclusions. In practice, pair programming is not for everyone as some people’s
personalities are such that they seem to be unable to cope with the intense relation-
ships with their partners that are needed. Our experience has been that, in the right
context, that is, a real project with a real customer and combined with the other
XP practices, pair programming works for most people—many of whom become
very enthusiastic about it.

2.5.3 Evidence for XP

There is again a problem in identifying conclusive and convincing evidence about the
benefits of XP. Carrying out comparative experiments in an industrial setting is
always going to be a problem, and much of the evidence is based on simple exper-
iments involving students. Macias (2003) found a small benefit in a comparative
study involving small industrial projects. Abdullah (2003) found that the more
XP practices used, the better the quality of the software, again in small industrial
projects. Abdullah (2006) also found that there was evidence that teams using
XP experienced a higher level of well-being than did teams using a design-led
approach involved in the same projects.

There are many critics of XP, and the book Extreme Programming Refactored:
The Case Against XP (Stevens, 2003) takes a number of aspects of XP and criticizes
them. Some of the criticism is based more on the exaggerated claims of some who
were not adopting the full set of practices; other issues need a more detailed con-
sideration. Part of the rationale of this book is to consider these issues in the light
of our experiences over 7 years with hundreds of XP projects, their programmers,
and their clients.

36 Chapter 2 Extreme Programming Outlined

2.6 PREPARING TO XP

The purpose of the rest of this book is to provide you with the insight and the support
to make a real agile project, based on the XP principles, an enjoyable and successful
experience. Nothing can be guaranteed, of course, but whatever happens, many
lessons will be learned, and at the end of it you may be in a much better position
to answer the question: Does XP work?

EXERCISE

This exercise assumes that you are about to start working in a small group of four or five people
on a software development project. It is intended to provide an early experience of some of the
XP practices. It is recommended that the exercise is done in a college laboratory or terminal
room where it is possible to discuss what you are doing without disturbing other users.

Objectives

To introduce the idea of pair programming and to carry out a simple pair programming activity,
which also relates to the activity of writing unit tests. It also tests out communication within the
team and points toward the use of coding standards.

Method

Form into a pair.
Change round on the machine every 20 minutes.
Each pair will develop a simple Java program that does the following:

takes as input a list of characters representing team members and a number
representing work sessions and outputs something equivalent to a 1 � 1 table with
columns indexed by the number of sessions and lists of pairs so that both pairs are
present in each session.

Example 1

Input: {A, B, C, D, E} (a five-person team and six sessions).

Table E1

Session 1 2 3 4 5 6

Pairs {A,B},
{C,D},
{E}

{A,C},
{D,E},
{B}

{D,E},
{B,C},
{A}

{B,C},
{A,E},
{D}

{D,E},
{A,B},
{C}

{E,A},
{C,D},
{B}

Output:
Thus in the first session, A and B pair up and C and D pair up and E operates on their own.

Example 2

Input: {A, B, C, D} and five sessions.

Exercise 37

Table E2

Session 1 2 3 4 5

Pairs {A,B},
{C,D}

{A,C},
{B,D}

{D,C},
{A,B}

{B,C},
{A,D}

{B,D},
{A,C}

Output:
It is not required that the program has to display the results in such a table, just lists will do.

The first task is to write the test cases. This is not particularly easy as there is usually very little
emphasis on testing and writing tests in programming courses. Later we will see how to do
this in a more systematic way, but for the time being write down simple test sets that provide
two things: input values and the corresponding outputs.

You need to develop a test environment based on your test cases and JUnit. Log onto www.
XProgramming.com and find the JUnit software for Java. This was written by Kent Beck.

Download this into your account and read the accompanying documentation.

Change round on the machine every 20 minutes.

Prepare some brief notes—just sufficient so that you can make sense of how it is used.

Now start the coding.

Run your tests even if you have not finished coding.

Debug as needed.

Continue coding and testing.

Don’t forget to change places every 20 minutes or so.

Now read up the Java coding standards (peep ahead to Chapter 8 or look at http://www.dcs.
shef.ac.uk/�wmlh/Java.pdf).

Review the code to see if the coding standards are met. If not, refactor, that is adjust, the code to
ensure compliance. Retest the code.

Discuss how you find pair programming. Talk about its good points and those aspects that you
found difficult, annoying, or wasteful.

For the other practices, discuss how you might be able to adopt them—what are the difficulties;
how might they benefit you?

CONUNDRUM

Your client has already built a prototype system and wants you to develop it further so
that he can then market it. He needs to demonstrate something fairly soon to his
business backers in order to persuade them to put more money into the development
of the system.

The original system is very poorly written, the database is badly structured, the
code is all over the place, and it is going to be a nightmare to maintain.

Should you (a) carefully document the functionality of the system and start
reengineering it before adding new functionality? or (b) carry on building the
prototype based on what has already been done?

A discussion of this dilemma is to be found at the end of Chapter 11.

38 Chapter 2 Extreme Programming Outlined

REFERENCES

S. SYED-ABDULLAH, M. HOLCOMBE, M. GHEORGHE. Practice makes perfect. In Extreme Programming and
Agile Processes in Software Engineering. Lecture Notes in Computer Science, Vol. 2675. Springer,
2003.

S. SYED-ABDULLAH, M. HOLCOMBE, M. GHEORGE. The impact of an agile methodology on the well being of
development teams. Empirical Software Engineering, 11(1):143–167, 2006.

K. BECK. Extreme Programming Explained. Addison-Wesley, 1999.
M. FOWLER. Refactoring—Improving the Design of Existing Code. Addison Wesley, 2000.
T. GILB. Principles of Software Engineering Management (S. Finzi-Wokingham, ed.). Addison-Wesley,
1988.

D. JANZEN, H. SAIEDIAN. Test-driven development concepts, taxonomy, and future direction. Computer,
38:43–50, 2005.

F. MACÍAS, M. HOLCOMBE, M. GHEORGHE. A formal experiment comparing extreme programming with
traditional software construction. In: Proceedings of the Fourth Mexican International Conference on
Computer Science (ENC 2003), Tlaxcala, México, Sep. 8–12, 73–80, 2003.

M. MULLER, F. PUDBERG. ‘On the Economic evaluation of XP projects’. ACM SIGSOFT. Engineering
Notes. Vol. 28, Issue 5, 2003.

J. NAWROCKI, A. WOJCIECHOWSKI. European Software Control and Metrics (Escom), 2001. Available at
http://www2.umassd.edu/SWPI/xp/pairprogramming/Nawrocki.pdf.

M. SINIAALTO, P. ABRAHAMSSON. Does TDD Improve the Program Core? Alarming Results from a compara-
tive case study. CEE–NST 2007, Ponzan, Poland, October 10–12, 2007.

M. STEPHENS, D. ROSENBERG. Extreme Programming Refactored: The Case Against XP. Apress, 2006.
L. WILLIAMS, R.R. KESSLER, W. CUNNINGHAM, R. JEFFRIES. Strengthening the case for pair programming,
IEEE Software, 17:19–25, 2000.

Web Sites

http://www.xp.programming.com.
http://www.extremeprogramming.org/.
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap.
http://www.hacknot.info/hacknot/action/showEntry?eid¼50.

References 39

Chapter 3

Foundations: People and

Teams Working Together

SUMMARY

Group work and software projects

† The role of personalities in successful projects

† How to set up and maintain a successful team

† Carrying out a skills audit

† Choosing a way of working

† Speed training

† Finding and keeping a client

† Day to day activities

† Keeping an archive

† Some basics of planning

† Dealing with problems

† When things go wrong—appreciative enquiry

† Risk analysis

3.1 SOFTWARE ENGINEERING IN TEAMS

Almost all software that is produced commercially is developed with teams of people.
The teams might be structured into programmers, testers, requirements engineers, and
so forth. The teams probably have some hierarchical arrangement with managers,
team leaders, subteams, and so on. A team could be a small one, perhaps two or
three people, or it could involve hundreds. A team may all be working in the same
place or it could be scattered over different locations, even countries. What is
common to all these manifestations is that they share a general objective, the pro-
duction or development of some quality software product.

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

41

Learning how to work effectively in a team is thus a vital part of one’s education
as a software engineer. Many universities and colleges provide some place in the cur-
riculum where a team project is set up and you have to participate with colleagues in a
design project. In many of these activities, the professor or instructor will set some
problem and you try to solve it, learning along the way from the many experiences
you share, good and not so good, which relate to the way your team worked.

There are many sources of advice about how to make the most of a team but
there are no easy rules or procedures. A team comprises a group of distinctive and
independent personalities; we cannot generalize very easily about how these per-
sonalities will interact and how the team will progress. However, there are some
simple basic rules that seem to work, and the purpose of this chapter is to describe
some of these.

3.2 PERSONALITIES AND TEAM SUCCESS

The role of individuals in a software development team is an important and poorly
understood area. Software development is usually a cooperative and team-based
endeavor that may involve diverse groups of people who have to communicate effec-
tively with one another, cooperating and solving complex problems under pressure.
Some of the most vexing difficulties involved in software development projects
are of a social or political nature. By their very nature individuals are individual,
they possess complex personalities, express a variety of attitudes, and believe in a
variety of values. Different people have different personalities, and their psychologi-
cal makeup can have an impact on the success of a team. Problems such as person-
ality clashes, nonparticipation, and the phenomenon of one group member doing all
of the work can be very serious problems and are often detrimental to the team’s per-
formance. If such problems are not dealt with early on in the process, there is a real
danger that the team will become totally dysfunctional.

This section is about recent research on the matter and tries to highlight a number
of things to think about. By considering how you and your team colleagues share
different personality characteristics and how this might impact the project outcome,
you may be able to achieve a more successful experience both in terms of the projects
having successful outcomes and in terms of your own enjoyment and career progress.
Awareness of differing personality types will help to promote understanding and a
more harmonious team working throughout the profession, enabling software engin-
eers and managers to gain an insight into how opposing views have developed and
what they represent based on personality profiles.

The behavior of teams has been a subject of study for many years and has mainly
focused on factors such as task design, group composition, internal and external pro-
cesses (conflict, communication), and group psychosocial traits (i.e., group norms).
Some of the research has been based on the interactions of different personality
types in a team context, and we will refer to some of this here.

In many teams there are different roles carried out by the various team members,
and this has been studied by Belbin (1981) and Elam and Walz (1988).

42 Chapter 3 Foundations: People and Teams Working Together

Elam and Walz’s work looked at team dynamics during the requirements analy-
sis phase of a software project. The aim of their research was to gain an understanding
of the processes that occur during software development team meetings. They were
particularly interested in recording the interpersonal conflict that went on within
the team. A number of other researchers have looked at personality in a software
engineering context.

If one of the purposes of the XP approach is to make software development more
human-centered, then it would be worth investigating whether the problems observed
in other team-based activities are replicated in XP. Some educationalists have looked
at how personality type relates to how the teaching of XP appeals to different person-
ality types and whether some personalities are more suited to play specific roles
in XP teams.

One major issue in all team activities is that of disruption caused by argument
and disagreement. Karn and Cowling (2005) have considered this in the context of
both XP teams and more traditional teams. Their research is founded on a popular
and well-researched technique for characterizing individual personalities based on
the work of Jung, a leading psychologist of the twentieth century.

The Myers–Briggs Type Indicator (MBTI) classifies people in terms of four
different personality dimensions. The MBTI is used to assess an individual’s person-
ality style on four dimensions: social interaction, information gathering, decision
making, and dealing with the external world. Millions of people take the test each
year, many as part of recruitment and assessment exercises by many employers,
and it is widely recognized as a useful way to characterize some aspects of human
psychology. Other applications include team building, improving customer service,
reconciling group differences, career planning, adapting to change, analyzing trouble-
some behavior between employees, and facilitating competitive strategic thinking. It
is not the full picture, however, and we should be cautious about treating it as defini-
tive. There are alternatives to the MBTI that are used.

There are four elements of the MBTI that are based on opposites in personality
terms:

Introversion–extraversion (social interaction)

Sensing–intuition (information gathering)

Thinking–feeling (decision making)

Judging–perceiving (dealing with the external world)

Individuals are regarded as having a combination of these four broad characteristics;
however, many will have characteristics that are not exclusively of one of these types
but are a combination, thus someone may have some extrovert characteristics and
some introvert ones. Myers–Briggs argued that one process, whether it be sensing,
intuition, thinking, or feeling, must have clear sovereignty over the others and be
given opportunity to reach its full development in order for a person to maximize
their effectiveness. A balanced personality needs adequate (not equal) develop-
ment of a second process, not to rival the dominant process but to act as a
welcome auxiliary.

3.2 Personalities and Team Success 43

The MBTI identifies the clarity of preference of these four dimensions of attri-
butes and provides a measure of the relative position of each individual’s makeup
in terms of the four dimensions.

Most of the terms used in the MBTI framework are relatively easy to grasp.
The extrovert is outward-going and relates to external things and objectives.
We all know people who have strong extrovert tendencies—they are the life and

soul of the party—always getting involved with other people, not frightened of stran-
gers, and so forth.

The introvert is often shy and reticent and is primarily concerned with his or her
own thoughts and feelings.

There is a general belief that many computer scientists and programmers are of this
second type, perhaps loners in some sense—more at homewith their own world rather
than with that of other people. Of course, this is not generally true although some
people are attracted to computers as a substitute for interacting with other people.

The next category defines how people perceive (gather) information.
Sensing people rely on their senses for information.
Sensing means that a person believes mainly information he or she receives

directly from the external world. This is what they trust most—believing what they
see or hear—what is real rather than imaginary. They tend to be methodical.

The intuitive relies more on their intuitions, these are derived from their uncon-
scious rather than from the external world. Inspiration is a vital part of their makeup.

The difference between rational, logical behavior and the more emotional
relationships with people are the next dichotomy. This dichotomy is concerned
with how people come to make decisions.

The thinking person is impersonal; they are interested in the truth and prefer to
view the world in terms of things being either true or false.

This is a natural attitude among programmers as they have to exhibit these
characteristics in the design of a program; however, they also need some empathy
for the users of the program, and failure to have this can lead to problems later.

A feeling individual is more responsive to personal relationships and values,
where issues may not be entirely black and white. They are often more sympathetic
when dealing with people and seek compromise rather than conflict.

Thus, such a person may well be better placed to deal with requirements gather-
ing and usability issues.

The final dimension is concerned with how people reach and implement con-
clusions based on the foregoing processes, gathering information and analyzing it
and making decisions. It is the difference between a perceptive and a judging attitude.
Thinking–feeling is more relevant to how one comes to make a decision rather than
the processes of expressing it to the external world.

A judging person will evaluate the available information and reach a definite
conclusion.

We have all met such people—they usually have an opinion—often things are
analyzed carefully so that the answer is clear and justifiable to them.

A perceiving person will hesitate to reach a conclusion because of the concern
that further information or issues remain undiscovered.

44 Chapter 3 Foundations: People and Teams Working Together

These sorts of people are more likely to appreciate the complexity of an issue,
they may recognize the nontechnical aspects—the social or psychological dimensions
of a software solution.

Everyone will combine all of these traits in various proportions. Because build-
ing software is a complex task with many key factors—demanding skills from across
these four dimensions—it is important that any team is able to demonstrate a good
balance of these.

The MBTI test identifies where on these scales an individual is positioned—
abbreviations are used to provide a shorthand descriptor.

I ¼ introversion and E ¼ extroversion

S ¼ sensing and N ¼ intuitive

T ¼ thinking and F ¼ feeling

J ¼ judging and P ¼ perceiving

Thus, INTJ means someone with strong tendencies to introversion, intuition, think-
ing, and judging, and ESFP is an extrovert, sensing, feeling, and perceiving
individual. In theory, there are 16 basic combinations.

For each test, the relative strengths of the attributes is indicated in percentage
terms and indicates the strengths of the different attributes. This is an indicator where

40% or higher (30 for T/F): very clear preference is shown

31% to 39% (21–29 T/F): clear preference is shown

11% to 20%: moderate preference is shown

1% to 10%: slight preference is shown

An example is I, 52%; N, 33%; T, 22%; J, 62%. Such a person has a strongly intro-
verted character with a clear preference for intuition, a lower level but still a clear
preference for thinking, and a strong preference for judging.

Why don’t you find out what your index is? This can be measured through
your participation in an online test based on the MBTI developed by Human
Metrics, a consortium of psychologists: http://www.humanmetrics.com/cgi-win/
JTypes1.htm.

There is no cost and it is entirely confidential—it might help you to reflect more
on your strengths and weaknesses if your are aware of your MBTI.

My type is ENFJ: moderately extroverted, very intuitive, moderately feeling, a
clear preference for judging. The strength of these preferences is 11, 75, 12, 33,
respectively.

The general consensus seems to be that it takes a variety of skills and personal-
ities, but this is not the opinion of all of the researchers in this area. Others argue that
optimal teams will have a typical engineering profile. Engineering students are con-
centrated heavily in the IN quadrant, also featuring the two ENT types and ISTJ.
There is a strong emphasis on N and J.

3.2 Personalities and Team Success 45

3.3 OBSERVATIONS OF TEAM BEHAVIOR IN XP
PROJECTS

Karn and Cowling (2006) observed a number of meetings of XP teams involved in
commercial software development projects, both meetings just involving the team
working together and meetings of the team with their clients.

Initially, the researchers recorded everything that they observed during these
meetings and then classified the contributions that each member of the team made
according to a simple set of possibilities.

Example Team 1

Id MBTI type E-I % S-N % T-F % J-P %

1A INFP I 44 N 33 F 44 P 22
1B INTP I 44 N 22 T 11 P 33
1C ENTJ E 44 N 33 T 44 J 44
1D ENFJ E 11 N 22 F 11 J 22
1E INTJ I 33 N 67 T 56 J 1

This team had a good mix of personality types and worked well together.
There were no dominant personalities and the levels of disruption were minor.
Karn states:

As an INFP, 1A focused on feelings and human conditions and attempted to avoid rushing
to any impersonal judgments. 1C as an ENTJ with clear preferences had a natural
tendency to organize and direct the team. 1C was decisive, knowing what needed to be
done, and was confident when assigning roles to team-mates. 1E’s type is INTJ. 1E was
the person most likely to answer any technical query or deal with any problem in this
area. 1E was aided and abetted in this by a hardworking though subservient colleague in
1B. The final member of this team 1D is an ENFJ. 1D had very good people skills and
sought to bring out the best in team mates.

Example Team 2

Id MBTI type E-I % S-N % T-F % J-P %

2A INTP I 78 N 78 T 44 P 33
2B INTJ I 11 N 11 T 78 J 44
2C INTJ I 56 N 33 T 33 J 44
2D INFJ I 11 N 33 T 33 J 56
2E ENTJ E 1 N 33 T 11 J 11

This team had a rather skewed profile of personality types, and many problems
were caused by this.

From Karn’s observations:

2A was very analytical and often caused annoyance by correcting others in a sharp
manner. Another team member 2D admitted that “2A was good with ideas, and proved to

46 Chapter 3 Foundations: People and Teams Working Together

be very useful to the team.” 2C also stated that “at times the team seemed to be like a one
man band,” and said 2A’s contribution was “crucial.”. . . The over reliance on 2A
was due in part to the personality type of the other members of the team, as the three
INTJs were naturally cautious when coming forward with new ideas and leading the
discussion. . . . Misunderstandings led to over reliance on 2A which led to poor quality or
missed deadlines. . . . Lack of debate was not a problem for this team; they were often
aware of problems yet instead of acting on them preferred to leave things to 2A. . . .
The end result of all of this was that there was no working system at the end of the project,
this was made worse by the fact that important documentation was incomplete.

A possible conclusion from this sort of work is that a “balanced” team compris-
ing a mix of personality types might be best. On several occasions it has been noted
that having too many similar types of people can lead to either major disruptions or to
groupthink situations where there are not enough constructive arguments. Groupthink
refers to the situation—often found when one of the team plays a very dominant
role—where there is little discussion of alternatives and everyone “toes the
party line.”

We have seen that different individuals have different strengths and weaknesses
and a good combination of people will probably be best able to deal with all of
the key aspects of a software project—which is much more than design and
implementation but also involves client liaison, understanding user characteristics
and motivation, and the social organizational environment within which the software
is deployed.

In the following extract notes from a meeting between a client and a XP devel-
opment team, we see the range of issues discussed—technical, conceptual, and finan-
cial. The project was eventually successful but there were many problems along the
way—many caused by the client wanting to change to “cheaper” technologies at
points in the project, this causing considerable rework and delays.

From the Genesys Archive: a team meeting.

Genesys Team Meeting

Courtesy of John Karn

Not all members of the team were present at the start. A then explained that the team
has come up with some requirements and gave them to the client to take away. B had
drawn the architecture on the board and the team appeared to be very organized. B then
explained the problems associated with text messages and wanted to allow users of the
system to use the Web as well.

A then said that the team has captured all of the system so far. She also suggested
eliminating names from subscription. The only details she believed were necessary
were age, location, and sex. She couldn’t see any real use for name. The client dis-
agreed, he believed that people needed to be addressed by some sort of handle. A
argued that this will take up too much space in a text message. She said there are
two aspects to the project: register and communicate. There is also a problem with
many different types of name. A believed that people could be identified by number

3.3 Observations of Team Behavior in XP Projects 47

alone as this will be in every message. The client pointed out that some people have
more than one phone. A then had a discussion with B and they talked about people
having a unique, default number. Then B suggested identifying people by nickname
and number as numbers can change. A then argued that messages will be sent only
to the main phone to which B suggested another table for secondary numbers. A
then informed the client that there will be redundant data in the DB. The system
could be sending messages that are not delivered. B then said that after a certain
number of messages have bounced then it is time to move the phone from the main
DB into an archive.

A said the interface will be simple for a mobile phone and can then be expanded
for a Web interface. B said that the reaction to the DB was the key to the entire project.
He said simplicity is very important. B then said that the primary number will receive
more than 90% of the messages and that all people will have a main phone. The client
said that some people will use different phones for making calls and sending texts.

B suggested giving people another option for the primary phone such as add
number. This will give people the option of registering another phone. F then said
the users can change their details through the Web.

The client said the system should ask for data such as first name, last name, and
nickname. F says this will be checked and a response validated to the user. B said that
users will need their mobile phone number and their password to log onto the Website.
D then raised the issue of people messing around with other phones such as taking a
friend’s phone and subscribing to all of the groups. The client said that every text sent
by the system must give the user the option of unsubscribing. D labored this point but
according to the client it would not be a problem as the unsuspecting user would be
able to leave the system at any time.

B then said that simplicity is the key to the project. Do not make users enter more
information than is absolutely necessary. Also make sure that the correct market is
targeted.

A then asked an important question about legal aspects. There can be no illegal
content in messages. She asked if it was necessary for the system to have a disclaimer.
The client didn’t believe that this was necessary as the system will be very controlled
with regard to what companies can send users.

A then said that in order to test the system, the team will need a mobile phone
from the client. This seemed to be okay. One problem was that four members of the
team were totally silent almost throughout the meeting. A then announced that the
team will start testing Web sites in the prototyping stage.

A then said that the team has discussed using PHP but decided that ASP would be
more reliable. This was a team decision. The client agreed and laughed and said that
PHP was like something out of the ark. He assured the team that they can use any soft-
ware they want. A said this was good news. She also said that the marketing team’s
price for the project was way out. The client didn’t look too happy about this and
said he would talk to Mike about it.

B then said that the DB must be updated by the users. The DB must keep records
about who has responded to what. A said that the querying capabilities are very
important. F then said that each user will have their own data and that the project
is all about data manipulation. The campaigns cover very different areas. A then
asked if the administrator required the capability to go in and change any user
details by hand. The client said that data belongs to individual users and that removing

48 Chapter 3 Foundations: People and Teams Working Together

data is okay but modifying data is detrimental. F then asked if companies can modify
their data. He wanted to know the exact registration procedure for companies.

Then a serious problem arose. The client pointed out that one of the team
members could be fired if they were employees and not students. The client was
fuming because he received a phone call from someone asking him about work. He
was angry because someone must have told him this number. He said this was a
clear breach of confidentiality. He said that such actions could wake other people
up and give the initiative to other companies. He said there could be a job in this at
the end of the project if the students are successful. He warned the students that it is
a business now and they need to be professional. Then F stated in a loud voice that
there is no proof that any one in this team had given out the client’s number. The
client laughed and said it must be. F pointed out that it could be from anyone
within Genesys or even an external person could have passed on the clients details.
The client didn’t believe this.

B then stepped in and managed to bring the meeting back on track when he stated
that the team is still deciding which technologies need to be used. He said the team will
sort working pairs out and go from there. B then said the primary mobile phone is
crucial. He then discussed going against the client and not having three names. F
said the team should contact the server because they feel the client is not telling the
truth. He said he doubts if the team can use any technology.

F also complained about the DB getting bigger. A said this project might not be
done within the year. F accused the client of lying and said it was dangerous to allow
him to modify any information in the DB.

In this group, A is playing a major leadership role—A is technically strong and has
some vision of how the project should develop. B is also showing leadership and
some creativity and is engaged in a discussion with A. Team member F is being
more negative and at one point judgmental, with D playing a subordinate questioning
role. Two other members present were silent.

Id MBTI type E-I %
S-N
%

T-F
%

J-P
%

— ISFJ I 34 S 44 F 24 J 22
— ENFJ E 22 N 78 F 11 J 33
— INTJ I 67 N 11 T 22 J 33
— INFP I 44 N 22 F 28 P 36
— INTJ I 33 N 22 T 44 J 44
— ENTJ E 88 N 67 T 74 J 56

From this extract, we can see how some of the different characteristics of the indi-
viduals in the team are combining to explore many issues in the project. Members A
and B made a good partnership with B acting in a managerial role trying to resolve
differences in the team. A worked hard and emphasized loyalty and respect for
others within the team. A’s introversion combined with sensing and judging produced
a stable and empathetic climate in the team. B favored N which was a good comple-
ment to A’s S as intuitive types need sensing types to provide elements of reality and
sensing types need the creative influence of intuitives. The table provides some
detailes of the team’s MBTI scores, which have been made anonymous.

3.3 Observations of Team Behavior in XP Projects 49

3.4 SETTING UP A TEAM

In this section, we will look at how teams may be put together for a project. This may
not be an issue as your employer or instructor may allocate you to a team without pro-
viding any choice in the matter. This is a reasonable reflection of what happens in
industry, so one can’t really complain. It would still be useful to understand the
makeup of the team and to recognize its strengths and weaknesses. The previous
section may provide some insight on how different combinations of people can
work together or not. If we can recognize our limitations and plan accordingly, we
may be able to avoid many problems.

However, if you are asked to form yourselves into teams, here are some pointers
to doing that.

Suppose that we are trying to form a team of four, five, or six. We need to look
for a blend of personalities and skills that will knit together and produce an effective
force. The nature of the project may determine some of the parameters but let us
assume that all the potential candidates for the team are reasonably well prepared
in terms of having progressed satisfactorily through the programming, design, and
more specialized courses and training needed for the project.

The key requirement is for the team to be people who get along reasonably
well with each other, and knowing that you have a team with a good blend of
characteristics, personality, skills, and attitudes will provide a sound basis for success.

For those involved in a university project, finding somewhere that they can
meet also may be an issue. In all cases, making sure that all the team members

Fwas sometimes a little boisterous, and this was not always productive and some-
times generated negative feelings toward the client—respect was sometimes lacking in
this individual. F did work hard throughout the project, but his approach to work
strained relations with some of the others. F and C did not work well together, and
others in the team needed to intervene at times, especially B. C, by virtue of being
an INTJ, was intuitive and easily bored, needing constant stimulation to be engaged
with the project; of an introverted nature, he was often rather distant and disengaged.

Of course, our personalities cannot be changed to a large extent—we have to live
with what we are—but a knowledge of each person’s strengths and weaknesses can be
used, from a management point of view, to optimize the team’s performance to a
certain extent.

An important point to consider is that psychological types are essentially an
individual’s preferred style of approaching and dealing with the world, and there are
no right or wrong ways of accomplishing this. As such, personality research should
not be used as an excuse or justification of the superiority of one type over another
or as a way to eliminate or discourage people from working in software development
teams if they do not meet expected or prescribed personality profiles. With that said, a
better understanding of personality preferences can lead to a greater appreciation of
individual differences and will provide team members and managers with greater
opportunities to create an optimal working environment.

50 Chapter 3 Foundations: People and Teams Working Together

have a similar interest in doing well in the project—partly because of the desire to get
a good grade in the exercise or bonuses—will be important. Poorly motivated team
members are a threat to the team’s success; agile methods may help because of their
possibly more human approach, which tries to support motivation.

A software project involves a number of key activities, and it is important that
there are members of the team who can make useful contributions to these activities.
We need some good programmers but there are many other things to be done in
the project. We need people who have abilities to organize, to plan, to negotiate
and communicate—with, for example, the client—and there is always the need to
document clearly and systematically various important things.

No single person will come to the project with all these abilities to a high level,
but most people will be capable of most to some extent. Extreme programming
emphasizes the equal involvement of all team members in all the important activities,
and so the project will be a framework within which all team members will develop
significant skills across the board. You will learn both technical material and skills as
well as how to cooperate, communicate, organize, resolve problems, deliver a suc-
cessful product, and mature as a software professional in a way that is just not possible
in other types of learning.

In situations where there is an odd number of team members, it makes pair pro-
gramming awkward to organize. It doesn’t really work with three people around a
machine, so the best way to operate if you have a team of five is to have two pairs
doing programming, testing, and debugging and the other person can do a variety
of tasks such as reviewing code, documents, and models, system testing, preparing
documentation and manuals, and so forth. The important thing is to keep changing
the pairs around, involve everyone equally in contributing to the project, and to
keep talking to each other.

Doing a real project with a real business client is very different from what you
usually experience at university where the projects tend to be artificial and very differ-
ent from real industrial projects. Doing a real project will change you forever, your
perspective on life, on your colleagues, and on the process of working together.
Your understanding of the profession of a software engineer will be transformed, as
will your job prospects, as future interviewers will be really impressed by your experi-
ences in doing real software development; it will set you apart from the rest of the
applicants as someone with extra skills and experiences and value for their business.

A skills audit is another important feature of any team-building exercise. It
may only happen in an informal way, you gradually learn what your colleagues
know and can do. It is best, initially, however, to try to write down what your
strengths and weaknesses are and to share this with the rest of the potential
team. See if there are people with a good selection of the skills needed. If most
of your team is good at programming but not very good at talking to people or
organizing documentation, then that should be a cue to try to recruit someone
with these skills. The deal is then that the extreme programming approach will
help them to develop those skills that they are weak in. Extreme programming
is all about multiskilling and learning all the key skills needed in software
development to a high level.

3.4 Setting Up a Team 51

Itemize your group’s relevant skills or at least your own assessment of them in a
table such as Table 3.1.

This is only a rough guide and the definition of the skills and levels is bound to
be vague, but it does give you some basis to plan out your project and also a simple
benchmark to compare with at the end of the project. One would hope that there is a
significant improvement across the board by the end of the course.

3.5 DEVELOPING TEAM SKILLS

There are many activities that can help in developing a team spirit and, with it, an
effective way to work as a team rather than as a group of individuals.

In this exercise, we will assume that there is a team of six. It is based on a real
project undertaken by Genesys. (Genesys is the commercial software development
company run by students within the University of Sheffield.)

Scenario 1 should be given to two members, scenario 2 to two different
members, and scenario 3 to the remaining two members.

Each pair should spend 15 minutes discussing, in private, their scenario. Then all
the team should get together to discuss the following:

1 What does the client want?

2 Is it feasible, given the resources (time) available?

3 How should it be designed?

4 What technology should be used?

5 Who should do what?

Table 3.1 A Skills Log

Skill and preferences Excellent Moderate Limited Wants to learn more

Programming in Java Pete, Mary Joe, Oscar Jane Jane
Programming in PHP Jane Oscar
Communications skills Oscar, Joe Mary, Jane Pete Oscar
Organizational skills Mary Pete, Oscar Joe, Jane Joe
Documenting skills Jane, Oscar Mary Pete, Joe Pete
Solving problems Mary Joe, Oscar, Pete Jane
Presentations Joe Pete, Jane Mary Oscar

Scenario 1

The client is a retailer of mountaineering equipment and wishes to have an e-commerce site
for his business. He currently has a paper-based system and has to manually update his
wholesaler orders when items are sold. He would like to take payment through the
Internet and offer some other value-added features to his customers.

52 Chapter 3 Foundations: People and Teams Working Together

All of these descriptions have been given by the client to different people, and
the task is to try to find out what is actually needed. What you may find is that
some of the aspects—such as the video feature—will be taken up enthusiastically
by the members who read scenario 2 and they may try to push the others down
this route but others may see it as a less important feature in comparison with the
basic Web site and purchasing facility.

The discussion will need to reach agreement on what is a sensible scope for the
project—some arguments may ensue about the technology as whatever is chosen may
prevent the development of some of these peripheral features at a later stage.

In fact, nothing should be concluded until a thorough business analysis has been
carried out—this is discussed in a later chapter. Some danger signals that might need
to be heeded will be considered then.

The point about the exercise is for the team to come to some agreement about
what is really needed. A practice run in this simulated situation might help deal
with problems in a real project.

Questions to ask yourselves:

1 Did any one person try to dominate the discussion?

2 Were there arguments that were difficult to resolve amicably?

3 What did you do about conflicting or ambiguous information in the scenarios?

4 Did anyone push for a specific technology in an unreasonable way (it is far too
early to discuss technology because we have no real idea about the context, the
volume and nature of business, etc.)?

In a real project, you will probably be able to resolve some of the issues by discussion
with the client. The analysis of how the group dealt with the exercise could be a
useful pointer to issues about the team that need to be watched.

Scenario 2

The client is a retailer of mountaineering equipment and wishes to have an e-commerce site
for his business. He currently has a chaotic manual system—most of the information is kept
in his head. Payment for items would be by credit card, and customers will be able to upload
mobile phone videos of their climbing exploits for others to see.

Scenario 3

The client is a retailer of mountaineering equipment and wishes to have an e-commerce site
for his business. He currently has a database system and is thinking of using a stock control
system that would connect automatically to his suppliers. He wants the site to be visually
exciting and better than those of his rivals.

3.5 Developing Team Skills 53

3.6 TRAINING TOGETHER

Members of the teams will be assumed to have developed technical skills—
programming, testing, and so on. The purpose of the training described here is to
provide a rapid introduction to XP in a team context.

We run this exercise every year in Genesys once the initial materials about XP
and the Genesys environment and tools have been discussed. It takes 6 continuous
hours, with only short breaks, in 1 day and is meant to build team structures and prac-
tices quickly rather than provide an in-depth understanding of XP.

Genesys Speed Code Challenge 2006

October 11th. 11.00–17.00

AWeb-based management tool for
organizing playlists of music tracks.

Tracks (songs) will have a title, singer,
genre, and length (time).

Conditions: Functions:

1 Work in your teams;

2 Use you team space—in the lab and the
Intranet (if possible);

3 Languages: Java, MySQL;

4 Tools: Eclipse, svn, ADEPT, JUnit;

5 Deliverables: Story cards, Unit tests,
incremental builds, X-machines, system
tests, final build.

Target system: GenPlay

1 add a new song;

2 delete a song;

3 query for songs on artist and genre;
Advanced feature—if time permits

4 generate a random sequence of
songs to last for a given (user
specified) length of time.

All this to be done between 11.10 and 5.00
on Wednesday October 11th, 2006.

Exercises like this can demonstrate where teams might need to improve their working
methods. If a team does not complete the task in the time, then more training should
be given and further assignments like this given. We use it as a diagnostic test—teams
that do well will start on the commercial projects straightaway.

3.7 FINDING AND KEEPING A CLIENT FOR A
UNIVERSITY-BASED PROJECT OR A SMALL
BUSINESS START-UP

It may be the case that your instructor has found a suitable client with a realistic
problem for you to tackle or you are starting a real project with your first employer.
If you are still at university, ideally the client should not be in your academic depart-
ment but from outside, either from an external business or other organization or

54 Chapter 3 Foundations: People and Teams Working Together

perhaps from another department within the university. It may be more realistic for
your instructor to organize a collection of projects that involve a member of the
staff of the department acting as a client. Much can be learned from this experience,
but a real client provides that unpredictability that XP should be able to handle.

If you have to find your own client, and this is perfectly possible, then there are a
number of avenues worth exploring.

Check out your family and friends. It is likely that you know someone who has a
small business or who works for a local organization. See if they would like some
high-quality software developed exclusively for them at a nominal cost.

Contact the local chamber of commerce or similar business organization.
Approach local charities: these often have interesting and useful problems and

cannot always afford to get professional software created for them.
Talk to staff in other parts of the university: this is always a rich source of good

projects, in my experience.
Examples of systems that could be useful include: databases for business dealing

with customers, orders, and other relevant information; Web pages with some useful
functionality, perhaps allowing customers to request products, catalogues, or to
supply information such as customer details, market surveys, and so forth; planning
tools that might enable an organization to organize its resources better, time tabling
some of its activities in a more effective way:

There are many other applications that you could consider.
Once you have identified a potential client, it is important to establish the

following: Is the client prepared to give enough of their time to meet you and identify
what it is they require in detail as well as to evaluate your software over the period of
the project?

As we shall see later, extreme programming requires a very close interaction with
the client; if the client cannot afford the time required, say a couple of hours a week
for a semester, then look for another client. If the client does not operate locally, this
could also be a problem.

Having identified a client and a potential problem, see your instructor to find out
if they think it is appropriate for your capabilities. Your instructor may have originally
intended you to do a team project that he or she had made up. Argue the case that it
would be much better for you if you could do a real project instead. It would also be
much better for your client. Even if you are not totally successful in building a com-
plete solution, your client would have learned a lot about their own business or
organization simply because your questions would have made them think about
what they do in a fresh light. They might use your work as a basis for a contract
with a commercial software house. It may be possible for an incomplete system to
be completed by some of the team during the vacation. Everyone will benefit, even
your instructor. It is so much better if your efforts are directed at building something
that will be useful to someone rather than something that, once it has been marked,
will be thrown away!

You will also learn so much about dealing with a client, about delivering a
quality solution, and about planning and organizing yourself because you will be
better motivated compared with the traditional sort of projects that professors

3.7 Finding and Keeping a Client for a University-Based Project 55

dream up. You cannot learn many of these things from lectures or books, you must
learn by doing it all for real.

Once you have a client and a project, it is vital that you make efforts to keep them
both. Regular feedback to the client is essential, so regular meetings must be held.
When you attend these meetings, make sure that you approach them in a professional
way. Think smart and look smart. Give your client confidence that his or her invest-
ment will be worthwhile and they will get something out of the exercise. Never break
appointments; if some other crisis occurs, it is vital that the client is warned if it is
necessary to change a planned meeting.

Always describe what you have achieved since the last meeting. Always appear
interested in the client’s business, and express some confidence about how the project
is going but do not exaggerate progress. Honesty will ultimately pay.

My experience has been that clients really enjoy the activity, many have never
been a client for a software development project before, and they are getting some
useful insights that may be valuable in later years. They also generally like
working with bright and enthusiastic young people. Thus for them it will be both
an enjoyable and a productive experience. It should be the same for you.

3.8 THE ORGANIZATIONAL FRAMEWORK

We will now assume that you have been allocated to a team or have organized one
yourself and have a client waiting. Before rushing into the project, it is important
to get a few things organized. We now describe a few simple, and perhaps
obvious, things to do. Do not underestimate these factors; many projects fail
because of the simplest and most stupid of mistakes and omissions.

Learn as much about your team members as possible, their names, addresses,
phone numbers, e-mail addresses, and so on. It is vital that you can contact everyone
easily because you may be working on the project in a variety of locations, not just the
usual laboratories. This is something that is different than most industrial practice
where the team occupies the same premises all day and every day. See if everyone
will sign up to a working agreement that identifies the responsibilities and expec-
tations of all the team members, for example.

Agree on the location for the first meeting and make sure everyone turns up
on time. This is important if one wants to be treated professionally, as your client
will want to do; if you do not behave in a professional way, why should anyone
treat you like a professional? This is the first test, if a team member does not make
it to an important and agreed meeting and they do not have an excellent reason,
then this is a major threat to the project and to all of the team’s grades. The team
agreement should emphasize the obligation on all team members to attend all meet-
ings. If the culprit does not listen to reason, then discuss things with the instructor
or manager.

Teams can work well in a variety of ways. Sometimes it is worth agreeing on
having a team leader who takes over the responsibilities of organizing and chairing
meetings, of leading the planning and other key coordinating activities. If everyone

56 Chapter 3 Foundations: People and Teams Working Together

is happy with this solution, then this can work. My recommendation, however, is for
the role to be shared, each member of the team taking over the running of the team
for, say, 2 weeks at a time. Thus everyone gets an opportunity to develop their leader-
ship skills and to take responsibility for the team’s progress. This is more in keeping
with the democratic nature of extreme programming.

It is important to establish an effective method of working. First of all, you will
need to hold planning and progress meetings. Depending on the timescale and your
other activities, there might be several of these each week. The current project leader
should chair the session. There should be another team member to act as secretary—
this could be the person who will take over as project leader after the current one.
Formal minutes should be taken at the meeting. This requires the following infor-
mation about the meeting to be recorded: date, location, attendance, absences (with
reason); and then the record of the meeting.

See Fig. 3.1 for an example of a template that works.
Each item of discussion should be numbered and a brief description of the item

made. Any conclusions and decisions taken must be recorded together with any
further actions agreed upon. These must describe what is to be done, who is to do
it, and when it must be done by.

All this is absolutely vital if the project is not to suffer from confusion and
recriminations.

Each team should appoint an archivist. This role can also be shared around the
team. The key requirement is that someone is given the responsibility to maintain a
complete and accurate record of the plans and meetings of the project. This person
should set up a suitable filestore on some server where all the team has access so
that anyone can consult the archive to see what the status and history of the project
is. We will later discuss the archiving of other, more technical documents, require-
ments documents, test cases, code, and so forth. The regime for these documents
is different, however. Some members other than the archivist may deposit if the
team decides this.

Another important activity is the recording of the amount of time each team
member spends per week on the project activities. This should be recorded on a
weekly time sheet for the team. Examples will be found in a later chapter.

It is vital that we record accurately the time we spend on projects.
First, it enables us to track our individual performance and helps us to identify

where we are making progress and where we may still have improvements to make
as we undertake various types of activity in the software development process.
This is vital for apprentice software engineering and, in fact, should be something
that we do throughout our professional lives. The personal software process
(Humphrey, 1996) can provide a framework for this.

Second, it will help us to collect data from which we can predict how much effort
future activities might take. Estimating the resources (time, people, etc.) needed for
the development of software is notoriously difficult. Many decisions are made in
an ad hoc manner and usually lead to disaster or, at best, to a very inefficient and
expensive process. We have to learn to do better. As we will see later, planning is
an important part of extreme programming.

3.8 The Organizational Framework 57

Finally, the documentation can be used in reviews and evaluations of the team,
during assessments, and so forth.

An example is given in Fig. 3.2.
A major issue for software projects is that of ensuing that all the team members

are using the latest version of every document or program. To assist in this, many
organizations use a version control system such as CVS. We use Subversion together

Figure 3.1 A template for the minutes of a meeting.

58 Chapter 3 Foundations: People and Teams Working Together

Figure 3.2 Example minutes.

3.8 The Organizational Framework 59

with the Eclipse development environment. Eclipse is a framework for programming
that can be tailored to your needs through the use of specific plug-ins to support many
things that software developers do.

These are tools that you should check out to see how they might be used in the
project. There are other options.

Information about Subversion is available from http://svnbook.red-bean.com/.
Eclipse is available from http://www.eclipse.org/downloads/, which provides a
background and some downloads to try out. Genesys has produced some Eclipse
plug-ins to support extreme programming (ADEPT): http://www.genesys.shef.ac.
uk/eclipse/.

A useful management tool that includes easy-to-use management features
designed by Chris Thomson can be found at http://ext.dcs.shef.ac.uk/�u0017/
sheffieldmanagement/.

3.9 PLANNING

The basics of planning include decomposing the overall task into a collection of
smaller tasks; identifying the dependencies and relationships between these
tasks; estimating the amount of resource (time and manpower) required to complete
the tasks; setting delivery times for each task; and describing the plan in some
suitable notation.

Plans will inevitably require review and alteration because the estimates made of
the time needed to complete tasks is often wrong, further understanding of the project
could lead to a different structure to the previous task decomposition, and because
exceptional circumstances, such as illness, intervene. The regular meetings provide
an opportunity to review and replan the project. Do not shy away from hard decisions
in these meetings. It is very easy to pretend that everything is all right when it isn’t.
Equally one can get depressed about progress. Later in this book, we will look at plan-
ning again and examine how extreme programming can provide some answers to
some of the problems met in planning and running software projects.

We now look at some planning techniques. There is software that is widely
available for project planning; however, this is often much more complex than is
needed here.

It is necessary to split each phase down into activities at a level where these can
be assigned to individual team pairs or possibly a larger group of team members. It is
then necessary to monitor how progress is made with each of these activities, and to
do this one needs a schedule describing which activities are to be undertaken when.
Some activities will be prerequisites for others, in the sense that one activity will
depend on the output of a previous one. The techniques discussed here are widely
used in industry in traditional projects. It is not clear if they are so useful for agile
projects, but there is a big danger if we neglect this aspect. If, as in Genesys, there
are fixed deadlines—when the students finish the course—it is vital that we can
take a slightly longer look than might be popular in traditional XP projects.
Ultimately, projects have to be delivered, there is an acceptable timescale for the

60 Chapter 3 Foundations: People and Teams Working Together

client—who may have to answer to more senior managers—and we have to pace the
project within an acceptable overall timescale.

3.9.1 PERT (Program Evaluation and
Review Technique)

This is a technique that enables a schedule to be constructed that meets all the con-
straints of the prerequisites and identifies the critical path through the program. The
critical path is the part of the schedule that determines the minimum time in which the
whole project can be completed. It allows us to identify the activities that are most
important in terms of their effect on the overall timing of the program, and hence
to identify those that need to be monitored most carefully.

The basis of PERT is a graphical representation of the activities known as a
PERT chart. This diagram consists of nodes to represent activities, which is annotated
both with the name of the activity and with its duration (in whatever time units are
being used: typically days, weeks, or months). Where one activity is a direct prere-
quisite for another, there is a directed arc from the earlier to the later node. There
are also two special nodes: one for the start of the program and one for its finish.
A typical example of such a graph is given in Fig. 3.3, which follows from the
description of PERT in Boehm (1981).

In this chart (Fig. 3.3), we have taken a rather simplistic view of the XP process.
There is likely to be a lot more iterations, and the chart will be much more extensive
in most cases. The numbers refer to person-hours of work and are just crude esti-
mates; we would expect the activities to be much shorter in a full-time XP project.
This plan tries to take into account the fact that most student team members will
have to attend other classes and activities outside of the project. This needs to be
taken account of sensibly.

In constructing a PERT chart, it is often easier to start at the finish and work
backwards rather than start at the beginning and work forwards; this way, we can
try to ensure that all the prerequisites for a node are identified and added to the
chart. Even so, it is common that such a chart may need to change as the project
develops and additional nodes are identified or different activities are found to
be necessary.

Figure 3.3 A PERT chart.

3.9 Planning 61

In traditional approaches, once the chart has been constructed, it is used to deter-
mine the critical path; that is, the path for the project that will take the longest time.
Here the situation is much more dynamic and fluid, and the role of the chart is merely
to identify potential problems. In the example above, there is a potential issue in that
the team carrying out the technology research might hold the rest up at the planning
meeting. It might thus be sensible to involve more people in this aspect but not lose
site of the problem that too many people working in an uncoordinated way is not only
inefficient but is also a cause of potential team rows if some members believe that
they have been wasting their time carrying out work that is not very useful to the
project or has been duplicated by others.

A more natural way to illustrate an XP project, particularly the iterative cycle, is
given in Fig. 3.4. This deals with the weekly cycle of activity, assuming that you can
only meet the client once a week. If the client can be involved more than that is fine,
but it isn’t usually possible.

3.9.2 Gantt Charts

Whereas the PERT chart displays the relationships between the timing of the different
activities, a complicated PERT chart can be difficult to read in terms of deciding
which activities will actually be scheduled when during the periods that they can
occur. For this reason, it is sometimes useful to derive from the PERT chart an
alternative representation of the schedule known as a Gantt chart (Fig. 3.5). This
in its simplest form consists of a column for each time period and a row for each
activity, with a block drawn on the chart to indicate when that activity is scheduled
to take place. One possible Gantt chart for the project illustrated in Fig. 3.3 is
given below. It is clear from this that it is not particularly useful for an XP project.

There are a number of tools that help to create and maintain these charts. They
may be worth investigating, but many are more complex than we usually require,
and they do not fit the highly iterative nature of an XP project.

It would be better to produce a simple table of the weeks activities (Table 3.2).

Figure 3.4 The weekly XP cycle.

62 Chapter 3 Foundations: People and Teams Working Together

Figure 3.5 A Gantt chart.

Table 3.2 A Project Activity Table

Week Activity Comments

1 Meet the client, carry out some research,
identify some simple stories, write some
tests, write the code, produce some simple
architectures, and screen ideas.

Mary and Pete to do the research,
everyone else to do the other
tasks.

2 Meet the client, discuss ideas, identify and
prioritize some stories, estimate, test and
code stories, further research, refine screens,
etc. Integrate stories to date.

Swap round who does the research,
everyone involved in everything
else.

3 Meet the client, demonstrate code, discuss
ideas, identify and prioritize some stories,
estimate, test and code stories, further
research, refine screens, etc. Integrate stories
to date.

Everyone involved in everything.

4 Meet the client, demonstrate code, discuss
ideas, identify and prioritize some stories,
estimate, test and code stories, further
research, refine screens, etc. Integrate stories
to date.

Everyone involved in everything.

5 Meet the client, demonstrate code, discuss
ideas, identify and prioritize some stories,
estimate, test and code stories, further
research, refine screens, etc. Integrate stories
to date. Produce a summary requirements
document (list of stories to be built,
non-functional requirements, glossary).

Everyone involved in everything.

(Continued)

3.9 Planning 63

Now we have to make an allocation of team members, usually pairs, to the
various tasks identified. This could be done by a more detailed table. It is likely
that this table will need to be revised on a regular basis as the project progresses.
In most cases, the length of the project is fixed, and this provides a major constraint.
You may have to compromise on what you are hoping to build: better to build a
simple system that works than a fancy one that doesn’t. Your client won’t thank
you for the latter!

Table 3.2 (Continued)

Week Activity Comments

6 Meet the client, demonstrate code, discuss
ideas, identify and prioritize some stories,
estimate, test and code stories, further
research, refine screens etc. Integrate stories
to date.

Everyone involved in everything.

7 Meet the client, demonstrate code, discuss
ideas, identify and prioritize some stories,
estimate, test and code stories, further
research, refine screens, etc. Integrate stories
to date.

Everyone involved in everything.

8 Meet the client, demonstrate code, discuss
ideas, identify and prioritize some stories,
estimate, test and code stories, further
research, refine screens, etc. Integrate stories
to date.

Everyone involved in everything.

9 Meet the client, demonstrate code, discuss
ideas, identify and prioritize some stories,
estimate, test and code stories, further
research, refine screens, etc. Integrate stories
to date.

Everyone involved in everything.

10 Meet the client, demonstrate code, discuss
ideas, identify and prioritize some stories,
estimate, test and code stories, further
research, refine screens, etc. Integrate stories
to date.

Everyone involved in everything.

11 Meet the client, demonstrate code, discuss
ideas, identify and prioritize some stories,
estimate, test and code stories, further
research, refine screens, etc. Integrate stories
to date.

Everyone involved in everything.

12 Prepare for the final handover. At this stage,
we should be doing only minor changes to
the system, fixing problems, etc. Write basic
user and maintenance documentation.
Update the requirements document.

Everyone involved in everything.

64 Chapter 3 Foundations: People and Teams Working Together

These planning techniques are for a general view of where the project is going
and how it might get there. In a later chapter, we will introduce a simple technique
with a tool that helps you to track progress and plan in more detail. The plans dis-
cussed here are like software architectures—they are a top-level view of the
project—more detailed day-to-day records and plans relating to the production of
stories are the equivalent of detailed code.

3.10 DEALING WITH PROBLEMS

It is inevitable that things will gowrong from time to time. It is the teams that are able to
deal with problems effectively that turn out to be successful. It is not about how clever
people in the team are but the culture within the team. If this culture is one of
cooperation, discussion, building consensus, and treating each member as an intelli-
gent individual with a legitimate point of view, then resolutions can be found. If
people are stubborn, arrogant, dismissive, and uncooperative, then it is much harder.
Try not to lose one’s temper, be patient and considerate to others, and discuss the
issues on the basis of an informed knowledge of the matters under discussion rather
than on the basis of prejudice and guesswork. Show respect for others.

3.10.1 Basic Strategies

Seek expert advice if the argument is about a technical point or the benefits of different
strategies or approaches. Talk to the client as well. All these things can be sorted out if
everyone is positive and prepared to give and take. Extreme programming is all about
cooperation, communication, and treating people with respect and trust. All problems
are soluble somehow even if the solution is somehow not what one would have hoped
for—in some cases, the only practical way forward can be painful.

Try not to be upset if your argument is not the one that is successful in this
process. Think about what has happened and see how you might benefit from the
experience. Perhaps the way you handled your argument or yourself was counterpro-
ductive. Successful people in life reflect systematically on their experiences and learn
from them, adapting their future behavior in order to ensure future success.

Sometimes you get into an argument where nobody is prepared to give way. This
can happen if you are just working as a pair or it might occur with more people in
the team involved. A simple suggestion from Miller (2002) might be useful. He
discusses the issue in terms of pair programming, but the technique can be extended
to bigger groups.

First, every person involved has to ensure that they understand the conflicting
opinions.

Then each person is asked to rank his or her opinion on a scale of 1 to 3 with 1
meaning “I don’t really care” to 3 meaning “I’ll quit if I don’t get my way.” Thus 2
could be “I am interested in this argument and I am prepared to spend some time
looking into it, I want to hear your point of view, but I will take some convincing
that it is better than mine.”

3.10 Dealing With Problems 65

If there is a highest ranked option, then that is what is pursued until evidence
emerges that it might not be the best.

If there is a tie, then you can pick a direction at random if the scores are low. If
both views are ranked at 2, then more time is needed to research and analyze the issue.
A trick here might be for each individual to try to make the best case they can for the
opposing view. If that doesn’t lead to a preferred option, then either ask a third party
or spend a little time taking forward both ideas until a clearer position and, hopefully,
a consensus emerges.

If you really hit a crisis and there seems no way out, seek arbitration. Find
someone that everyone in the team respects, perhaps a tutor or professor, manager
or mentor, and explain the issues to them and ask them to make a judgment. This
might be a simple compromise that everyone was too uptight to see or it might be
a ruling in favor of one side or another.

Sometimes differences are not as real as they seem and are mainly due to poor
communication and a lack of understanding of what each other mean. These problems
should resolve themselves if you try to listen carefully to what the others are saying,
perhaps even writing it all down; this act often forces you to be a little more precise
than before and can be the key to clarity on both sides.

3.10.2 When Things Go Really Wrong1

3.10.2.1 Appreciative Enquiry

This method is based on looking at the positives that can be linked with the team,
avoiding negatives or apportioning blame; discussing weaknesses and an emphasis
on what’s wrong; avoiding taking the attitude that the team is failing and needs to
be fixed. Try to appreciate what is best in all of us, what is best about the team,
and what the team could achieve. Organizations have a tendency to emphasize nega-
tives, to dehumanize and to monitor in order to control when they should be moving
forward through constructive dialogue and collaboration.

David Cooperrider (1987) suggested taking “the best of the past and present . . .
ignite the collective imagination of what might be.”

How to do it.

1 Discover: identify and appreciating the best of what is. Find out all those
things that are good about the team, things they are proud to have achieved,
things that made them feel good.

2 Dream: imagining what might be. Look for all the aspirations that they share,
what would they like to do or to be able to do, where would the team like to be.

3 Design: discussing what should be. Find some positive ways forward that
would help to achieve the dreams, build upon our strengths, apply what
works and makes us feel good to other parts of our work as a team.

1I am indebted to Kent Beck for bringing this approach to my attention.

66 Chapter 3 Foundations: People and Teams Working Together

4 Deliver: changing to what will be. Move forward with practical measures that
everyone is comfortable with. Introduce change—changes in the way we feel
about ourselves and our team members, changes in the way we communicate,
changes in the way we work together—to achieve our dream.

In the context of XP this all makes a lot of sense. We have tried it in Genesys
recently and will see how things go:

Genesys group F case study notes. October
2006.
All members present together with a member
of the Systems Administration. In case of
technical issues.
Background. The team had started on their
project—there had been some delays in
meeting the customer initially but things
were moving along. Some members seemed
to think that they were not fully involved and
were frustrated and lacked motivation. A
problem that had been highlighted was that
some were unfamiliar with the programming
language—in this case PHP—and would
like to have some further training in this.
The dominant personality was doing
much of the work but some felt that their
own contribution was low and progress
was slow.

At the meeting we started by drawing out the
positives only. Then we went on to the
desires before agreeing a strategy for
progressing things. This was achieved
through gentle prompting using the 4 stages
of appreciative enquiry. The designs were
suggested by the team through discussion
taking care to avoid making suggestions
myself.

Discover. The speed code challenge was
good—the team did well in this and worked
together and enjoyed it—getting a system
built and working in a very short time gave
them a sense of achievement.
The client meetings were enjoyable and
fruitful. Visiting the client’s business was
good.
The basic design of the Web site was
implemented and everyone liked it.

Dream. It would be great to have meetings
with the customer every 2 weeks and to
show him all the progress that they had
made.
We would love to know more about Linux—
this was new to most of the team.
We would love to learn more PHP.
We would love to be able to build an
attractive Web site that looked as if
professional graphics designers had done it.

Design. We will ask the client for more
meetings, invite him to the lab.
Systems Admin will give a tutorial about
Linux.
We developed a strategy for learning about
PHP through some tutorials witrh Systems
Admin and hands-on pair programming
using a good book on the language.
We will all learn some more about MySQL.
Wewill all find examples of Web sites that we
like and discuss them and try to agree on
what are the features that appeal and that
could be incorporated in our client’s site.

Deliver. This will take place over the next few
weeks. We may have to review how things
went in a few weeks.
I felt that it was a very positive meeting, the
team seemed to be much more cheerful and
they had developed some practical ways
forward—building on the positive things
that they had experienced over the time
they had been together. We will see if
it works!

3.10 Dealing With Problems 67

Further comments: The first couple of weeks were positive with the team
working much better together. Then it emerged that there was another aspect that
had not been raised in their dream phase—getting a good assessment. This involves
applying the Genesys XP process properly, including documenting stories, test sets,
and so forth. We have to do this because maintenance of projects will often be done
by the next cohort of personnel after this team has left. This issue led to a further dis-
cussion with the team and their realization that it was not enough to work together
well, the work they did had to be of high quality, also. The team never did really
integrate that well although appreciative enquiry helped to make some improvement
to matters.

3.11 RISK ANALYSIS

Projects can always go wrong. One way to minimize the impact of this is to carry out a
risk analysis. This involves an identification of the hazards (things that can go wrong)
and their associated risks (estimates of the probability of those hazards occurring, and
the likely severity of the consequences).

There are many hazards including

technical hazards: using the wrong technology (one that cannot be used to solve
the problem) or one that the team is insufficiently experienced with;

planning hazards: the software being developed is too complex for the resources
available and the project plans are far too ambitious;

personnel hazards: some of the team members are not capable of delivering,
perhaps they are lazy and poorly motivated or perhaps their technical knowl-
edge is weak;

client hazards: the client is too busy or lacks interest in the project, the client is
trying to exploit the team by demanding too much for too little, the client’s
understanding of the operational environment is poor, and so forth.

These hazards relate to the project and its overall management. There are other
hazards in the form of delivering an unacceptable final product. XP tries to deal
with this by encouraging frequent releases and close client contact. Even this may
still fail to prevent problems. Many failures are due to the non-functional attributes
not being met (Gilb, 1988).

In order to prevent problems with the non-functional or quality attributes, it
is important that these are identified clearly and precisely and a means for
testing for compliance developed. Some people say that the functionality is the
most important aspect of a solution and this is what should be concentrated on.
The thinking is that issues such as performance, reliability, usability, and so forth,
can be fixed later and that systems are often more efficient than one might expect.
This could be a disastrous policy. It is not just about writing code that runs fast—
it is also about making it usable, not just for the individual user in ideal circumstances
but also for users in the operational environment. It is important that the team visits

68 Chapter 3 Foundations: People and Teams Working Together

the client’s business and sees the environment. Projects have failed because of
misunderstandings about the sociology of this. These issues will be a concern of a
later chapter.

We need to be able to estimate the likely range of variation in these attributes and
realize that the risks to the success of a project come essentially from the possibility of
actual attribute values finishing up outside the specified range. Thus, the risk to a
project must be controlled, and we need to find solutions that will meet at least the
minimum required levels for all the critical attributes.

Part of this risk control process therefore involves identifying which attributes
pose the greatest risk to the project, and this comes in two forms. Some attributes
will be mandatory and others merely desirable. Clearly, we need to focus on the
former for most of the time. These critical attributes have to be monitored.

3.12 REVIEW

This chapter has tried to provide some practical guidance about how to organize your
XP project team. Most of it is just common sense, but it is surprising how often these
simple practices get forgotten in the heat of the moment. By forcing yourselves to
act professionally, respect your teammates, and to document and plan your
approach, you should avoid many of the common pitfalls that so bedevil software
development projects.

Don’t assume because you have been made aware of potential pitfalls and ways
to avoid them that everything will be plain sailing. There will be problems, some of
these will be down to poor organization, not planning the project properly and not
delivering what is needed at a time and to a satisfactory level of quality. However,
some problems may be beyond your control. Perhaps the client hasn’t given you
the correct information or hasn’t reviewed your ideas quickly enough. Perhaps
team members have been ill. There is not much you can do about the latter except
try to adapt the project and reorganize the plans and team activities. Sometimes,
however, problems arise because of personal differences and lack of interest or com-
mitment among the team. There is no easy solution to this; discussion on the basis of
a friendly meeting, perhaps held away from the lab, might be useful. Building a plea-
sant social atmosphere in the group can be helpful. One senior developer, who is
often called in to rescue problem projects in his company, said “Projects must
party,” meaning that spending some time relaxing together, perhaps over a meal or
a drink or some other outing, pays large dividends in terms of morale. Many problems
in software engineering are human and social ones and should not be ignored.

EXERCISES

1. Meet with your team members and agree on a mode of working (where and when will you
meet), decide on individual responsibilities (e.g., who is responsible for archiving the docu-
mentation, chairing meetings, maintaining the project plan, etc.).

Exercises 69

2. Read one or more articles on project management—these are readily available. Research
into the question: Why do software projects fail? Identify some of the possible pitfalls
that your project might suffer from; what are you going to do to avoid these?

3. Develop PERT or Gantt charts or some other simple graphic for the project to cover at least
the first few weeks.

4. Carry out some risk analysis—how can you control and minimize these risks?

CONUNDRUM

Your project involves programming in a language that is familiar to only one member
of your team. Two others have a slight knowledge of the language but have never
written anything serious in it. You are trying to do pair programming but the
“expert” is getting frustrated because whenever she is paired with another team
member, progress is very slow (because much of the time is taken up with expla-
nations of what she thinks is obvious). She feels that it would be better if she
worked on her own on the program and the other team members did other things,
such as writing documentation and testing.

How should you deal with the situation?
For a discussion of this, see Chapter 11.

REFERENCES

R.M. BELBIN. Management Teams: Why They Succeed or Fail. Butterworth-Heinemann, 1981.
B. BOEHM. Software Engineering Economics. Prentice-Hall, 1981.
D.L. COOPERRIDER, S. SRIVASTVA. Appreciative enquiry in organisational life. Research in Organizational
Change and Development, 1:129–169, 1987.

J.J. ELAM, D. WALZ. A study of conflict in group design activities: Implications for computer supported
cooperative environments. Proceedings of the Twenty First Annual Hawaii International Conference
on Decision Support and Knowledge Based Systems Track, ACM, pp. 247–254, 1988.

T. GILB. Principles of Software Engineering Management (S. Finzi-Wokingham, ed.). Addison-Wesley,
1988.

W.S. HUMPHREY. A Discipline for Software Engineering. Addison-Wesley, 1996.
J.S. KARN and A.J. COWLING. A study of the effect of disruptions on the performance of software engineer-
ing teams. Proc. ISESE2005. Noosaheads, Australia, Nov. 17–18, 2005. IEEE, pp. 417–427.

J.S. KARN and A.J. COWLING. A follow up study of the effect of personality on the performance of software
engineering teams. Proc. ISESE2006, Rio de Janeiro, ACM, Sep. 21–22, 2006.

R. MILLER. When pairs disagree, 1-2-3. In XP/Agile Universe 2002 (D. Wells, L. Williams, eds.). Lecture
Notes in Computer Science, Vol. 2418. Springer-Verlag, 2002, pp. 231–236.

Other Papers and Resources

R.M. BELBIN. Management Teams: Why They Succeed or Fail. Butterworth-Heinemann, 1981.
R.P. BOSTROM, K.M. KAISER. Personality differences within systems project teams: Implications for design-
ing solving centers. In Proceedings of the 18th Annual Computer Personnel Research Conference,
ACM, 1981, pp. 248–285.

P. COSTA, R. MCCRAE. Four ways, five factors are basic. Personality and Individual Differences, 13:653–
665, 1992.

70 Chapter 3 Foundations: People and Teams Working Together

A.J. COWLING, J.S. KARN. An initial observational study of the effects of personality type on software engin-
eering teams. Presented at Proceedings of the 8th International Conference on Empirical Assessment in
Software Engineering (EASE 2004), 2004, pp. 155–165.

A.J. COWLING, J.S. KARN. An initial study of the effect of personality on group projects in software engin-
eering. Department of Computer Science Research Report CS-04-01, University of Sheffield, 2004.

A.J. COWLING, J.S. KARN. A study into the effect of disruptions on the performance of software engineering
teams. Department of Computer Science Research Report CS-04-17, University of Sheffield, 2004.

B. CURTIS. Techies as non-technological factors in software engineering. Proceedings of the 13th
International Conference on Software Engineering (ICSE 1991), ACM, 1991, pp. 147–148.

J.J. ELAM, W.D. WALZ. A study of conflict in group design activities: implications for computer supported
cooperative environments. In Proceedings of the 21st Annual Hawaii International Conference on
Decision Support and Knowledge Based Systems Track, ACM, 1988, pp. 247–254.

L. FERNANDO-CAPRETZ. Personality types in software engineering. International Journal of Human-
Computer Studies, 58:207–214, 2003.

A. FURNHAM. The big five versus the big four: the relationship between the Myers-Briggs Type Indicator
(MBTI) and NEO-PI five factor model of personality. Personality and Individual Differences,
21:303–307, 1996.

C.G. JUNG. Psychological Types, Vol. 6. Harcourt Press, 1923.
I.B. MYERS, P.B. MYERS. Gift’s Differing: Understanding Personality Type. Davis Black Publishing, 1987.
R.H. RUTHERFORD. Using personality inventories to help form teams for software engineering projects. In
ACM SIGCSE Bulletin, Proceedings of the 6th Annual Conference on Innovation and Technology in
Computer Science Education, 33:73–67, 2001.

K.T. STEVENS, S.M. HENRY. Using Belbin’s leadership role to improve team effectiveness: an empirical
investigation. Journal of Systems and Software, 44:241–250, 1999.

J. TEAGUE. Personality type, career preference and implications for computer science recruitment and teach-
ing. In The Proceedings of the Third Australasian Conference on Computer Science Education (ACSE
98), 1998, pp. 155–163.

http://www.humanmetrics.com/cgi-win/JTypes1.htm.

References 71

Chapter 4

Starting an XP Project

SUMMARY

Meeting the client or customer

† The first attempt at defining the scope of the project

† Some techniques for requirements elicitation

† Basic business analysis

† Functional and non-functional requirements

† Identifying dependencies and constraints

† The structure of a traditional requirements document

† An example of a real requirements document from a project

† Contracts

4.1 PROJECT BEGINNINGS

It is the first stage of the project, and you have now got a client and a brief. Initially, it
all seems very daunting, and many students and novice graduates are pessimistic
about being able to build something that looks very complicated with a technology
or method that is unfamiliar. You will almost certainly succeed if the precautions
that I have indicated in earlier chapters are taken. If there is a failure in a team, it
is because of individual failures or a breakdown in communication; it is rarely due
to the team being technically or intellectually unable to cope. It does depend, of
course, on the project scope being appropriate, neither too hard nor too easy, and
this requires some judgment and experience on the part of the tutor or manager.

We will assume that you are starting with a set of requirements that includes a
reasonably simple initial phase, and you should confirm with your client and/or
tutor whether there is a part of the system that is clearly within your capabilities
and that can be addressed first in order to gain confidence. In fact, the extreme
programming (XP) approach of building things in stages and getting them to work
properly will soon build up your confidence.

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

73

The initial project description may be nothing more than a paragraph, and it
might seem to be too vague to allow you to start. Remember, however, that this
description is just a starting point to your exploring, with the client, the client’s
business, its needs, and possible solutions and so there will be a lot of preliminary
work to do to define the scope of the project and what a potential solution might
look like.

This is not an easy stage of any project, and it is impossible to learn exactly how
to do it in books and lectures; there is no substitute for trying it out and reflecting, as
you go, on how the process proceeds.

The requirements for a system are a description of what the system must do and
how well it must do it.

If we get this wrong, then the system we build will also be wrong.
It is very difficult to get right for the following reasons:

1 The client may not really know what he or she actually wants.

2 The developers may not understand the application/domain.

3 The client’s business needs may change.

4 Even when you have produced a complete picture of the required system, this,
itself, can lead to new requirements.

Most of all, the key to requirements is

Good communication: between clients and developers, among the clients, and
among development team

Analysis: what is the client wanting to do

Inspiration: creating potential solutions to the client’s problem

Detail: is every aspect covered and clearly documented

Practical: is it realistic, cost effective, timely

Above all: Does it add value?

Agile development approaches try to address these issues in a coherent and
effective way.

4.1.1 Researching the Business Background

We will use mind maps—they can be used at many different levels to organize your
thinking. For these purposes, business means any organization—so it will apply to
the public sector and charities as well as to commercial concerns. We try to under-
stand what the business is, what it does, its markets, customers, employees, suppliers,
and so forth.

A mind map is a diagrammatic representation of a number of concepts or issues
and a relationship between them. It is a technique for structuring and organizing
information in a simple but effective way, particularly useful when identifying
requirements but also in various other management tasks, for example, in trying
to identify priorities and possible courses of action. It is one of a number of
similar techniques such as cognitive maps or semantic networks.

74 Chapter 4 Starting an XP Project

Mind maps are diagrams consisting of nodes (sometimes represented as bubbles,
with names and possibly annotated with various properties) and links between the
nodes, which are also possibly named and annotated and which move outwards
from the center toward nodes of increasing speciality.

Figure 4.1 demonstrates a sample analysis for a typical organization drawn using
mind maps.

An important aspect of mind maps is their flexibility and adaptability for the task
in hand; they do not have to meet some set of definite formal criteria, and so teams can
use them for their own purposes. They could be used as an initial stage of thinking and,
then, once things are clear and a course of action has been agreed upon, they can more
or less be forgotten. If they are used when talking to clients, it is important that both
sides understand how to use and interpret them—they are then very useful. They would
not, normally, be regarded as a project artifact, although keeping a note of them might
help in maintenance and reviews. Researchers have concluded that managers and stu-
dents find the techniques of mind mapping to be useful, being then better able to retain
information and ideas than by using traditional “linear” note-taking methods.

Mind maps can be drawn by hand, either as “rough notes,” for example, during a
meeting, or can be more sophisticated in quality. There are also a number of software
packages available for producing mind maps (e.g., http://www.freemind.org).

4.1.1.1 How to Draw a Mind Map

1 Start in the center with an image of the central topic.

2 From this central point, draw lines out to the next level of concepts.

3 Select suitable key words and print them on the nodes and the lines leading to
the nodes.

4 Each word/image must be alone and sitting on its own line.

5 The lines must be connected, starting from the central image. The central
lines are thicker, organic, and flowing, becoming thinner as they radiate
out from the center.

Figure 4.1 A simple mind map of a business.

4.1 Project Beginnings 75

6 Make the lines the same length as the word/image.

7 Use colors—your own code—throughout the mind map.

8 Develop your own personal style of mind mapping.

9 Use images, symbols, codes, and dimensions throughout your mind map.
Use emphasis and show associations in your mind map.

10 Keep the mind map clear by using hierarchy, numerical order, or outlines to
embrace your branches.

(See Buzan, Tony. The Mind Map Book, 2006.)
The idea of mind maps is to break down a general problem into a number of

key concepts over a number of stages. Sometimes we might wish to identify
a cross-link—such as some employees are also customers purchasing at trade
rates. There is no correct mind map for a given problem, it will depend on the cir-
cumstances and the ideas of the individuals involved in the process. It is not meant
to produce a definitive view but to act as a vehicle for discussion and eventual
understanding.

4.1.2 Exploring the Outline System Description

The initial project description may be nothing more than a paragraph, and it might
seem to be too vague to allow you to start. Remember, however, that this description
is just a starting point to your exploring, with the client, the client’s business, its
needs, and possible solutions. There will be a lot of preliminary work to do to
define the scope of the project and what a potential solution might look like.

This is not an easy stage of any project, and it is impossible to learn exactly how
to do it in books and lectures. There is no substitute for trying it out and reflecting, as
you go, on how the process proceeds.

Start with a brainstorm about the initial project brief and use textual analysis1 as
well as mind maps, again. To use textual analysis, we need to look closely at the
phrases in this statement

Loony Tones Corp.

Through the web, the company sells ringtones and video clips for use on the latest
generation phones and personal devices.

The company needs a regular supply of new products that are gathered from multiple
sources.

A major concern is that some products are very similar to other products—the issues of
copyright and illegal downloading are of major concern.

A system is needed that will check whether a ringtone or video submitted by a supplier,
composer, and so forth, is distinctive and not a copy of existing material.

1The analysis of the roles of each word in the grammar of the text.

76 Chapter 4 Starting an XP Project

Are the statements clear or ambiguous? What further information do we need?
All of the highlighted phrases need to be checked out.

We need to make a number of things clearer.

What are the range of products and prices—how will these be described?

How often will the product range be changed and by whom?

What sort of trend data do they want to extract and when?

What customer information is needed?

What is this accounts package?

All of these questions will need to be answered in detail. The statement also gives us
some leads into both the functionality of the system and the data it will use.

Look for verbs: These are words that describe activities—doing words—and
they will tell us about some of the functions of the system (manage, change,
identified, integrated, and so on).

Nouns are used for the names of things and might guide us toward defining data
precisely (drinks, customers, products, prices, and so on).

Adjectives are used to describe properties of nouns and might be used to classify
objects in the system (e.g., creditworthy customers, sale goods, and so on).

Adverbs describe properties of verbs so they may tell us how well the function
needs to be (efficiently, easily, seamlessly, and so on).

From these initial steps, we will drill down into the business and its processes
in order to identify what needs doing. The goal is to develop a detailed requirements
document that will act as part of a contract between the client and the developers. This
document will describe the background to the project including any current relevant
information. It will list the functional requirements (what the system has to do) and
the non-functional requirements (how well it has to do it). In the latter case, this will
address efficiency and speed, robustness, ease of use, and so forth.

Loony Tones Corp.

Through the web, the company sells ringtones and video clips for use on the latest
generation phones and personal devices.

The company needs a regular supply of new products, which are gathered from
multiple sources.

A major concern is that some products are very similar to other products—the issues
of copyright and illegal downloading are of major concern.

A system is needed that will check whether a ringtone or video submitted by a
supplier, composer, and so forth, is distinctive and not a copy of existing material.

Another example:

SmoothCorp is a company that sells smoothies. They want a system that will allow
them to manage their products and sales efficiently. They sell a wide range of smoothies
in various quantities and at prices that vary according to the type and size of the drink.
The system should allow the company to easily change the products and prices and to
permit trends and customer preferences to be identified. The system will also manage the
customer base and be seamlessly integrated into the company’s existing accounting system.

4.1 Project Beginnings 77

Figure 4.3 An initial presentation on the F-net system (also known as Fizzilink).

Figure 4.2 SmoothCorp mind map.

78 Chapter 4 Starting an XP Project

We have seen some examples of outline project descriptions, and mind maps can
also help to uncover more of the issues that need to be explored (Fig. 4.2). Don’t get
into too much detail yet.

We will look at the initial descriptions of a real project that was done by students.
This project brief was given by the clients in the form of a presentation (Fig. 4.3).

As mentioned before, these initial descriptions were for actual projects carried
out by second-year computer science and software engineering students at the
University of Sheffield during the second semester of 2003/2004.2 We will follow
the development of some of the Genesys and Software Hut projects and the appen-
dices contain more detailed information about the system that was built for this client.

Having seen the presentation, the teams were able to ask some general questions
of the client. They then had to prepare the groundwork for a more detailed private
discussion with the client later.

4.2 THE FIRST MEETINGS WITH THE CLIENT

This might be a session involving all of the teams working on that client’s problem
and generally involves the client giving more information about their business and
what they are trying to achieve—their objectives for the system. There will usually
be an opportunity to ask general questions relating to the system, but these should
not be technical computing questions (apart from general things such as the sort of
network available or to be purchased for the solution). Remember that the client
may know very little about computer science or programming, that’s why they
have come to you; you are the experts. Their expertise is in their business.

If you are not sharing your client with other teams, then the first meeting will be a
more informal one. It is important to prepare for it.

Starting with the initial project description, there are a number of things you
should do.

Research into your client’s business:

Have they got a Web page?

Can you find any other published information about their business?

What do they sell: products, services, or what?

What sort of clients do they typically have?

Who are their competitors; what can you find out about them?

2In both cases, the students involved in the projects (6 teams of about 5 for each project) competed to build
the best solution for the client. For each client, 3 teams used XP and the others used the “traditional” UML
design-led approach described in most software engineering textbooks. It was an interesting experiment to
see which approach did best; if there was a clear difference. As it happened, the best systems, as decided by
the clients, were the XP systems. Furthermore the students who used XP found that it was much less stress-
ful and enjoyable compared with the experience of those who used the traditional method. Some of the
reasons for this have been discussed before, and we will return to a reflection of the XP process in the
last chapter. Be prepared to engage with this reflection process yourself.

4.2 The First Meetings with the Client 79

Preparing carefully for the first meeting will impress the client that you are
professionals and will give them the confidence to proceed; don’t forget that they
are giving up some of their time, and this is a cost to their business.

Turn up looking smart, on time, and at the right place. Do not chew gum, turn off
your mobile phones, and avoid doing anything that distracts and interferes with the
meeting. You need to encourage the clients into treating you as a professional who
is interested in the project and eager to deliver an excellent solution. These first
impressions are important, you may think that they are trivial or superficial issues,
but it is part of the business expectation that the clients will have. In later life, you
will have to recognize these things, anyway, so it might as well be now!

It is important that we aim to produce a clearly structured list of requirements, in
language that the client can understand, so that an overall description of the complete
target system is available. This is developed in discussions with the client. The key
thing is to be aware that the requirements will change and to make sure that it is
used as a summary of what the current knowledge of the proposed system is.
Requirements change is very hard to handle—new approaches to software engineer-
ing are being developed to address this including agile development techniques such
as those discussed here, but it is a hard problem.

Clients express problems naturally in their own words, words that might be unfa-
miliar to us or used in different ways; don’t assume that your understanding of a par-
ticular word or term is the same as theirs. We need to identify what the terminology
means and to agree on it.

Write a glossary of business and technical terms as you go along, which should
be an outcome of this dialogue.

When talking to clients, realize that there may be hidden factors at stake: politi-
cal, historical, and geographical. You may need to understand these features of a
business organization in order to understand the reasons for particular requirements.

The use of Appreciative Enquiry, mentioned in the previous chapter, can also be
a valuable technique for developing an understanding with your business clients,
especially if there are problems, uncertainties, and confusing signals coming
from them.

4.3 BUSINESS ANALYSIS AND PROBLEM
DISCOVERY

The initial software requirements analysis can be divided into a number of activities:

Business analysis

Problem recognition

Evaluation and synthesis

Modeling and metaphor building

Specification of user stories and scenarios

Review and discussion

80 Chapter 4 Starting an XP Project

In the first week or two of the project, you should be evaluating and synthesizing the
problem and requirements information from the client. Always write down your
thoughts, refer to these at your formal group meetings, and put a date on them.
Later, you may need to revisit some issue when you have forgotten the details.
Although we wish to keep the paperwork to a minimum, records of this stage
should be saved, carefully.

What are the primary business objectives of the organization?

How will a proposed system support these objectives?

Is there an existing system—manual or computerized—that will be replaced?

Will the system interact with other systems—both internal and external?

What are the business processes and workflows?

How will the proposed system add value?

Systems will be involved that deal with the purchase and payment of
raw materials; recording and despatching customers’ orders; the factory
production processes; and

A web site, which may include customer-ordering capabilities.

Many systems will have an associated database—this may be implemented as
a single unified database or as separate ones depending on the business needs
(Fig. 4.4).

Associated with such an architecture will be the flows of work and the processes
that describe the dynamics of the organization. In Fig. 4.5, we can express the ways
in which a user of the system goes through a number of stages to achieve an objective,
in this case to purchase a product.

We can capture from the customer some of the main activities of their business or
organization in a little more detail than is possible with a use case.

Figure 4.4 An outline architecture of a business system.

4.3 Business Analysis and Problem Discovery 81

4.4 THE INITIAL STAGES OF BUILDING A
REQUIREMENTS DOCUMENT

Although we will be using stories as the basis for the software development, it is
important to have a clearly structured list of requirements, both functional and non-
functional, so that an overall description of the complete target system is available.
However, in an agile project, the requirements are dynamic, and the document may
not be complete for a long time. This means that development will be going ahead
when the requirements are still incomplete. In fact, the implementation of stories
will be a way of defining and refining the requirements, but this is not an excuse
not to have some record of the proposed system.

This is developed in discussions with the client. At a suitable point we will
develop a system metaphor and extract stories from these requirements and start
developing the system.

There are a number of reasons why a requirements document may be important.
Your client will often want something that can be shown to his or her superiors in
order to provide some indication of what is being developed. Naturally, this document
may change during the course of the project. It will be built around the stories
together with the non-functional requirements and other contextual information.
Some in the XP community do not like the idea of a requirements document,
seeing it as an unnecessary creation that is not in sympathy with pure XP. We
have already commented on how some businesses will require such formal statements
in order to approve things like project expenditure. The key thing is to be aware that it
will change and to make sure that it is used as a summary of what the current knowl-
edge of the proposed system is. We will also consider the issue of contracts.
Negotiating a contract and agreeing on a price and a delivery date are very important.
We will look at this issue later in this chapter.

Figure 4.5 Some possible process flows.

82 Chapter 4 Starting an XP Project

The process of carrying out a full requirements analysis in a traditional software
engineering context is often done at the start of the project and only occasionally revisited
in any fundamental way later. In agile approaches, wewill have a more continuous dialo-
guewith the client, and so the full requirements document will be a rather fluid document.
We emphasize here the construction of an initial one. Itwill contain not only the functional
requirements but also details of important quality attributes of the system.

Requirements analysis and specification is deceptively difficult as many clients
don’t know what they really want and they don’t know what it costs or how long
it will take to deliver. They often fail to recognize how hard it is to create a reliable
system and how long it takes. Some might expect it to be done by next week!

Clients express problems naturally in their own words, words that might be
unfamiliar to us or used in different ways; don’t assume that your understanding of
a particular word or term is the same as theirs. We need to identify what the
terminology means and to agree on it. The construction of a glossary of business
and technical terms should be an outcome of this dialogue.

When talking to clients, realize that theremaybe hidden factors at stake: political, his-
torical, and geographical. Youmay need to understand these features of a business organ-
isation in order to understand the reasons for particular requirements. Remember that there
are probably more personnel involved in the business, who may have different require-
ments and different priorities; it is an important but delicate task to ascertain these.

In the first week or two of the project, you should be evaluating and synthesizing the
problem and requirements information from the client. Alwayswrite down your thoughts,
refer to these at your formal groupmeetings, and put a date on them. Later, you may need
to revisit some issue when you have forgotten the details. Although we wish to keep the
paperwork to a minimum, records of this stage should be saved, carefully.

You should already be modeling aspects of the client’s business processes, in
an attempt to clarify and make more specific your understanding of these processes.
We will suggest a suitable way to help collect your thoughts together in the
next chapter.

You should also be writing code, trying to implement a few basic stories. Before
you do this, however, it is necessary to write some simple tests so that you can see
how your code works. By the next week, you should be refining some of your
ideas and developing code to give you and the client a better idea of what is needed.

Problem evaluation involves:

Defining all external observable relevant business objects;

Evaluating the flow and content of relevant information in the business;

Defining and elaborating all relevant software functions;

Understanding relevant business behavior (events);

Understanding user behavior (tasks);

Establishing systems interface characteristics;

Uncovering additional constraints.

All of these activities are difficult, and simple techniques that will always work are
a chimera.

4.4 The Initial Stages of Building a Requirements Document 83

4.5 TECHNIQUES FOR REQUIREMENTS
ELICITATION

There are a number of useful approaches that can be used to elicit user requirements
and to gain user involvement. Here are four approaches that can be useful:

Interviews

Structured questionnaires

Observation: again only successful, if you can do it unobtrusively

Concurrent protocols: where a user describes his or her tasks while performing
them

Interviews have to be prepared carefully. In the first meeting, when you know little
about the problem, then it is important to ask the client to describe all the key
aspects of the system; try to guide them away from the desire to get to intricate
detail about what they want when you simply do not understand what they are
talking about. As you get immersed in their business context, it is important to
manage the meetings carefully. Identify what you want to know beforehand and
prepare a set of questions that will help you to find out what you need. Once these
questions are answered, then you can explore further areas. It will often be the
case that a question will stimulate the client into telling you some other piece of infor-
mation—carefully record this. It is best to go to the meeting with all the team, but
make sure that there is a principal speaker and someone to record what is said.
There is nothing more off-putting for a client than to be faced with people asking
questions from all angles on all sorts of disconnected topics. Plan your meeting care-
fully and try to stick to it. The same advice applies to any other stakeholder you meet,
such as a user of the proposed system.

If you are not able to meet the client or the user then leaving a structured written
questionnaire is another technique. Try to group related questions together. Also try
to make your questions clear, unambiguous, and relevant. Leave a contact number or
e-mail in case the person filling in the form has a query. Make sure that people know
where to send the finished questionnaire and try to impress upon them, with tact, of
course, that you need it by a specific date if the project is not to be held up.

Sometimes it is possible to visit the client and observe the business in action.
Here you may be able to observe users in their current work. This is helpful in pro-
viding you with a context and a better idea of what the users are like, what they expect
or are comfortable with, and what sort of system you might be trying to emulate. Pay
particular attention to the sort of user interfaces that seem popular. Take care not to
disrupt their work too much. Some users are happy to talk their way through their
tasks while you are there.

If a user is prepared to explain what they are doing as they do it and any issues
they believe are important, this can be very valuable. Such concurrent protocols can,
however, result in a number of conflicts and issues if different users give you different
perspectives. This illustrates that there are often organizational complexities, individ-
ual preferences, and other issues to resolve.

84 Chapter 4 Starting an XP Project

There are other techniques that can be used in certain circumstances:

Card sorting: useful if you want to understand the user’s classification of his or
her knowledge domain;

Carrying out a user role yourself.

Consult a good book of requirements elicitation, for example, Hull (2002).

4.6 PUTTING YOUR KNOWLEDGE TOGETHER

Gathering all this information is one thing, but putting it all together into a coherent
model of the business is quite another. There are no simple solutions to this
problem. In general, common sense is the best approach; however, a simple
but effective way to gather a lot of disparate information into a coherent and struc-
tured whole is to use mind maps (Fig. 4.6). See http://www.freemind.org for a
useful tool.

4.7 GETTING TECHNICAL

In this phase, we need to think about the system and how it relates to its business
environment, its users, and so on. We will do this in a number of stages. Some of
these are outlined below. In traditional software development approaches, this
phase is lengthy and tends to be inflexible. For example, we could envisage the fol-
lowing sequence of events, with many iterations of this basic approach, each time
identifying more of the required system (Fig. 4.7).

1. Identify business objects: define all external observable relevant business
objects. We need to look at the sorts of things that are coherent entities in the part
of the business we are considering. These could include products, contracts,
orders, invoices, and such like. Make a proper list of them and try to distinguish
between those that are involved with the external activities of the business

Figure 4.6 Simple mind map showing the F-net users.

4.7 Getting Technical 85

(e.g., objects that are apparent to the customers, agents, and suppliers of the business)
and those involved in the monitoring of the company (such as taxation and other
government authorities) and the objects that are defined for the convenience of the
internal management of the company (these might be internal orders, memos and
planning material, records and archives of company activity, etc.).

Many of these objects will relate to aspects of the databases that will be used to
support the system activity.

2. Link the business objects to business processes: evaluate the flow and content
of relevant information in the business. Each business process will involve a number
of individual processes that take place in an organized way. What is the order in
which this information is processed, what type of information is it? Try to get a
general picture of what happens and when during typical scenarios of business
activity. You will refer to the business objects described above; if you come across
one that has not been identified previously, then it needs to be added to the list.
Equally, if you found an object that doesn’t seem to feature in any process that
you are analyzing, eliminate it. It may be that you find some difficulty in modeling
things at the right level; there is always the temptation to try to describe things
in too much detail. Try to avoid this at this stage. We are looking for a rather
“broad-brush” description of what is going on.

3. Identify all relevant software functions. Now we can start imagining what our
software is going to do. It might be replacing some existing function, either a manual
operation or in some obsolete software, or it might be a new feature that has not been
implemented with software before. We will come back to this process in Chapter 6; at
the moment, it suffices to write it down as clearly and concisely as possible.

4. Identify the business event triggers: understand the relevant business
behavior (events). Now we have to try to figure out how these things actually
relate to each other. We should try to define some common scenarios that explain
the overall operation of the business processes through the medium of identifying
the events that cause the scenario to operate. These could be the placing of an
order by a customer; here we might need to identify what sort of customer is involved,
a new or existing one, trade or retail. The business process involved for each of these
may be different, and so the system will be expected to behave differently as well.

Figure 4.7 Basic stages in business analysis and system identification.

86 Chapter 4 Starting an XP Project

This leads to us identifying the different conditions that must apply for the different
cases. Again we need to check that our business objects and processes described
above are consistent with this.

5. Identify the business actions of the functions. What is the effect of the
operation of the software function—how does it impact on the overall system?
Does it lead to the storage of any information (e.g., updating a database: does it
prepare the system for another specific function, etc.). It is at this stage that a clear
understanding of how the various software functions fit together is needed—this
can be achieved using the metaphor explained in the next chapter.

6. Analyze user tasks and interactions: try to understand possible user behavior
with task analysis. Task analysis tends to concentrate on the way users conduct
business processes now. It may include identifying user actions that do not involve
interaction with a computer. Nevertheless, a task analysis model can form a useful
representation for discussion with your users, helping to identify aspects of the
task with which users are comfortable and familiar and that could be incorporated
into the structure of interaction with the required system. Alternatively, it can help
identify aspects of the task that are currently problematic and could be improved in
the required system.

In an agile approach, it is best to be flexible rather than sticking rigidly to a detailed
mechanistic process like this. Look for some of the objects that are clearly relevant
and try to identify a coherent collection of basic ones. Many of these will relate to
the type of data concerned—see how they relate to the main business processes in
the organization, list the sort of functions that might feature in some basic stories,
what will trigger these functions, and how are the users expected to interact. Do
this with some core parts of the system, they will be extended later, when we have
started making some progress and both designers and customers understand each
other—and the problem scope—better.

As if requirements capture and analysis was not sufficiently complicated, we
must often obtain the views of different users, who are likely to have different
stakes in the outcome of the new system. Hence, you may need to identify and
resolve stakeholder views. You should ask yourselves, who are your users? They
are not necessarily a single, homogeneous group of people with the same tasks,
the same goals, or the same view of the world—who are the clients?

In Checkland’s (1990) Soft Systems Methodology in Action, a distinction is
made between clients, who usually commission the system and stand to benefit
from its outcomes, and actors.

Who are the actors? Actors are system users, who have to play a part in
the system, but who may not directly benefit from it. How are you going to gain
these stakeholders’ involvement in and commitment to the development process?
There is no simple answer—be aware that it is an issue, however. One benefit of
an agile approach is that some working software is built very early; this helps
to increase your credibility with the stakeholders and provides opportunities to
discuss options and understand the issues better through discussion.

4.7 Getting Technical 87

At the end of this process, you should have identified the dependencies that the
solution needs to relate to within the business context as well as any basic assump-
tions that pertain. You may also have started to think about the constraints that will
affect your solution, the available resources you have at your disposal, time, and tech-
nology, and so on. This needs to be clarified; it is no use trying to specify a system
that you are not able to build.

4.8 DEVELOPING THE REQUIREMENTS
DOCUMENTS

A collection of requirements notes can be produced that can help to organize one’s
thoughts into a more structured form. The aim is to produce a detailed list of require-
ments that provides a basis for early planning and approval.

The notes should lead to a clear description of the client’s background and their
objectives. Here are some examples from the F-net project.

The functional requirements should be stated, eventually, in a tabular form using
simple English statements. These will be derived from the user stories as we will see
in the next chapter. In fact, the functional requirements document is really just a
summary of the story cards as they exist at the time. Where it is necessary to break
a complex functional requirement down into a set of simpler ones, do so but try to
preserve the connection between related requirements by grouping and numbering
them together.

Looking at the F-net system, it is clear that one actor or user is the patient and
they wish to be able register and upload their details.

Two basic requirements can be briefly stated as

Patients can create an account

Patients can edit their details

These will be mandatory—the system must have them. Each will be described in
more detail using a story.

Another possible requirement is, Patients can view past appointments. This may
be less critical—it is an optional requirement.

We thus classify each requirement as being

Mandatory: it must be present in the final solution;

Desirable: it should be present if at all possible;

Optional: only implemented if all others are done and there is still time.

Naturally the client will specify these levels, and they may change during the course
of the project.

An extract from a set of requirements produced for the F-net system is

M: required function

D: desired function

O: optional function

88 Chapter 4 Starting an XP Project

Patient

ID Description Priority

1 Patients can create an account M
2 Patients can edit their details M
3 Patients can login to their account M
4 Patients can book an appointment M
5 Patients can view their booked appointments D
6 Patients can view past appointments O
7 Patients can cancel appointments (restrictions apply) M
8 Patients can delete their account permanently O

Clinics

ID Description Priority

9 Clinic staff can create an account M
10 Clinic staff can login to their account M
11 Clinic staff can edit their details D
12 Clinic staff can add physiotherapists to the clinic M
13 Clinic staff can view their physiotherapists’ appointments D
14 Clinic staff can add appointments to their physiotherapists’ diaries D
15 Clinic staff can remove a physiotherapist from the clinic M
16 Clinic staff can cancel appointments from their physiotherapists’ diaries D
17 Clinic staff can delete their account permanently O

Physiotherapists

ID Description Priority

18 Physiotherapists can create an account M
19 Physiotherapists can login to their account M
20 Physiotherapists can edit their details D
21 Physiotherapists can add themselves to a clinic M
22 Physiotherapists can view their appointments for a single clinic M
23 Physiotherapists can view their combined diary for all clinics D
24 Physiotherapists can add appointments to their diaries M
25 Physiotherapists can remove themselves from a clinic M
26 Physiotherapists can cancel appointments from their diaries M
27 Physiotherapists can delete their account permanently O

If some of the requirements are poorly defined or subject to change, identify
them and put some measure on their risk of change, even if it is just a number
1 . . . 5 (low risk . . . high risk) that you allocate on the basis of your best guess
given the knowledge you have available. We will find this useful later.

4.8 Developing the Requirements Documents 89

We will use user story cards and their implementations as the main mechanism
for determining detailed functional requirements. Once we have got a basic under-
standing of the system needed, we can then start showing the client real examples
of programs that will be the basis for further discussion at the regular (weekly, if poss-
ible) meetings. The best approach will be to build lots of little pieces of functionality
every day, if possible. Keep thinking in terms of small increments, and the momen-
tum of the project will be preserved. Large gaps between deliverables cause problems
for developers, clients, and the project as a whole.

The organization of these meetings is discussed in Chapter 5.
Before that, however, we need to think about data.
If we look at the sorts of things that belong to these outline functions, we can

pick out items that represent data—usually these are nouns. Here is an example.
The following will give more detail about some of the data stored by the system:

Patients:

Each patient is uniquely identified by a username (chosen by the user).
The other details stored will be

First name

Last name

Address

Postcode

Date of birth

Daytime, evening, and mobile telephone numbers

E-mail address

A password (chosen by the user)

GP’s name and surgery

Cardholder’s name

Card type

Card number

Card expiry date

Medical insurance provider (optional)

Medical insurance policy number (optional)

Physiotherapists:

Each physiotherapist is uniquely identified by a username (chosen by the user).
The other details stored will be

First name

Last name

Address (clinic)

Postcode

Date of birth

90 Chapter 4 Starting an XP Project

Telephone number

E-mail address (this could be provided by the system)

A password (chosen by the user)

CSP number

OCPPP number (optional)

Up to three areas of specialism

Clinics:

A clinic will be uniquely identified by a practice number.
The other details stored will be

Practice name

Address

Postcode

Telephone number

Fax number

E-mail address

Practice manager

A password

Appointments:

An appointment will be uniquely identified by an automatically generated
appointment number.
Each appointment will also have a

Date

Start time

End time

Patient username

Physiotherapist username

Location
Diary:

A diary will be uniquely identified by a combination of practice number and
physiotherapist’s username.

A diary will consist of a number of appointments and unavailable time slots.

4.9 SPECIFYING AND MEASURING THE QUALITY
ATTRIBUTES OF THE SYSTEM

We talk about two main types of requirements: functional and non-functional. Put
simply, the functional requirement describes what the system has to do and the

4.9 Specifying and Measuring the Quality Attributes of the System 91

non-functional describes how well it is supposed to do it. This is a little simplistic but
it will do for a start.

We often put most emphasis on the functional requirements and neglect the non-
functional requirements or assume that they are easily dealt with. In fact, identifying
the non-functional requirements can be difficult. We need to define them carefully
and what is more we need to set some sort of acceptability levels for them and a
means of demonstrating compliance with these levels. It is possible to refine the
notion of non-functional requirements into two categories: quality attributes, which
determine how well the system should perform; and resource attributes, which con-
strain or limit the possible solutions to your business problem. Unless these are
addressed a system may not be successful, even if all the functional requirements
are met.

For most software systems, some of these attributes will be critical; that is,
unless each of those attributes achieves some required level, then the system will
probably not be successful, no matter how well it may meet its functional require-
ments or meet the goals for its other attributes. Thus it is essential to identify all
the attributes and to identify which ones are critical, and then to ensure that they
are all met.

4.9.1 Identifying Attributes

The International Standards Organization provides a taxonomy of quality attributes in
its draft standard3 for software systems, ISO 9126 [ISO 9126]. As you read through
the following list, based on that standard, make a note of those attributes you believe
could be critical to your project. The list is not exhaustive: you may see other classi-
fications of qualities elsewhere and you may identify critical qualities for your system
that do not appear here. Some of the issues that are discussed here may not be relevant
to your own project. Think about them and focus on those that seem to be the most
critical. Discuss this with your client. The ISO 9126 standard is concerned with the
quality of the product. There is another standard, ISO 9001, which deals with the
engineering process.

There is a view, within agile circles, that non-functional issues can be left until
the end as they may only require some last-minute tweaking to be satisfied. This can
be misguided for several reasons.

The choice of architecture and implementation language may influence perform-
ance or security, and by ignoring these issues, there could be serious problems later.

If the team has built a similar system previously, then they will have significant
knowledge about how the system performed and can generalize from that earlier
experience. If this is a new type of system or the technology is new, it is risky to
leave the non-functional issues to be dealt with at the end.

3Some may worry about the bureaucracy implied by the introduction of standards. However, companies
purchasing and commissioning software are becoming increasingly aware of the standards issue, and
some will insist that these standards are addressed.

92 Chapter 4 Starting an XP Project

By defining what some of these mean at an early stage, we can think about how
wewill demonstrate compliance with them. This is important for the client—he or she
then has a clearer understanding of what they have signed up for and it will also
provide the developers with mechanisms for getting feedback—to let them know
how close they are to achieving the desired properties and outcomes.

New non-functional requirements may emerge as well. For example, the custo-
mer may be unhappy with some aspects of the releases the team are demonstrat-
ing—some aspect of the user interface may be difficult to use, the time for some
of the processing to complete may be unacceptable, and problems like these will
lead to a clearer understanding of what is needed.

4.9.1.1 Functionality

Suitability: The presence of an appropriate set of functions for specified tasks. Here
we need to link what we are specifying with the business analysis. In an agile project,
this will change as we progress through the project with new requirements and stories
being explored throughout.

Accuracy: The presence of correct and predictable results from specified input. It
goes without saying that the functions in the software should be producing the correct
outputs. Test will have to be devised to show this.

Interoperability: The ability to interact with other specified systems. This should
be identified and incremental releases delivered so that this interoperability can be
tested at the customer’s site.

Compliance: The adherence to specified standards, laws, and regulations, if
appropriate.

Security: The ability to prevent unauthorized access to programs and data. Again
the security requirements need to be identified if they are to be met. Think about the
social aspects as well—find out how passwords and other security devices are
managed and used within the organization. It’s no use building in complex security
protection if the operators write their passwords on Post-it notes on the monitors!

4.9.1.2 Reliability

Maturity: The frequency of faults/rate of software failure, ideally we want no faults.
This is a desire that is hard to meet under all circumstances. We could set limits to the
number of acceptable faults, but this is often impractical as the testing of such claims
is impractical in most cases.

Fault tolerance: The continuity of software execution in the presence of faults.
Again a desire, but unless one can specify the types of faults expected, it is impossible
to test for them in a realistic way. Fault tolerance is usually achieved through
redundancy of some aspect of the system.

Recoverability: The ease with which system performance and data can be recov-
ered in the case of system failure. This is an important issue, and systems should be
designed so that data can be recovered if there is a system breakdown before the data
has been fully committed to a datastore.

4.9 Specifying and Measuring the Quality Attributes of the System 93

Usability: The extent to which intended users of a system are able to achieve
their objectives with the minimum of effort, confusion, and time. The system
should incorporate an appropriate level of flexibility for users to achieve success,
provide a suitable level of support, and fit in well with the operational environment
in which it is to be used.

Understandability: The effort required by users to recognize application con-
cepts and their applicability to user tasks. Users will have some kind of conceptual
model of the system; this may well be of the form “if I see this screen and I am
trying to carry out this task then the next thing I have to do is such and such.” We
will use a simple metaphor diagram in the next chapter to enable the designers to
articulate different interface architectures and to analyze their suitability.

In order to test whether a system is understandable, it is necessary to define
a number of important tasks associated with the system and to see if representa-
tives of typical users can carry these out satisfactorily (i.e., efficiently and
accurately). This can be done on paper or with a mock system and should be
done early. Regular meetings with the client should focus on exploring this
issue. It is often here that major problems can be identified before it is too
late—or expensive—to fix.

Operability: The effort required by users to operate and control the application.
We need to define some typical tasks, as we did above, and ask typical users
to carry them out with the finished system. Such tests need to be defined and
discussed in the requirements document—the client needs to agree that they
are an appropriate way to demonstrate what they want the system to be capable
of. If you apply these tests to the system and the performance of the trial
users meets the level specified in the requirements document, then the client will
be generally satisfied.

Learnability: The ease with which an application’s functions can be learned.
Repeated, similar tasks can soon be learned but there will be many features that
are used rarely, and these are often a cause of delays and mistakes. User interface
design provides many practical and well-researched guidelines to enable effective
and learnable systems to be built.

From the ISO 9241 standard for usability in software and hardware design a
number of other issues are identified such as system efficiency (of time and resources),
maintainability, portability, and so forth.

This list of attributes is much larger than you will require. Select the most
appropriate and concentrate on these.

4.9.2 Specifying the Acceptable Level of an Attribute

Having identified critical quality attributes, you need to specify what level or measure
of each attribute is acceptable in your system. You should identify at least

The worst acceptable level

The planned level—be ambitious, but remain realistic!

94 Chapter 4 Starting an XP Project

The best level—just to provide a marker for what might be technically possible
but infeasible for you

It might be useful to identify the current level (if there is an existing system to
evaluate). These levels should be specified and measurable in quantitative terms
or metrics. It is not good enough to specify that your system will be “very” efficient,
“easy to use,” or “extremely” adaptable. You must attempt to define operational,
measurable criteria against which your system can be judged. This will lead
on to defining a set of tests that will establish whether the attribute has been
delivered to the required level. We will look at testing in a later chapter, but it
will often be important to identify, at least in general terms, what the testing
approach will be.

For example, if one of your usability criteria for your system is its suitability for
the task:

A measure of its effectiveness is the percentage of user goals achieved in a
given time;

A measure of its efficiency is the time for a type of user to complete a set
of tasks.

A series of experiments (tests) could be organized in which users are asked to carry
out some important tasks using the system; we would then be measuring how well
these were carried out, how long it took, how many mistakes were made, and so
forth. These experiments should be repeated with as many people as possible in
order to get a useful result. Alternatively, a measure of satisfaction, for example,
can be gained on a rating scale (e.g., a scale of 1 to 5) by using suitable questionnaires
distributed to a selection of users during a trial period of evaluation. If access to real
users is not possible in the timescale, you could use some of your friends, preferably
those with a similar knowledge of computing, as the intended users of the system.

For each numbered attribute, we will specify a quality level and eventually a test
for determining whether it is met in the final, delivered software.

4.9.3 User Characteristics and User Interface
Characteristics

It is worth writing down a description of who the intended users of the systems are
expected to be. Are any expected users handicapped? Accessibility is the issue of
making systems available to handicapped people (e.g., blind people might be poten-
tial users), and there is legislation in some countries relating to the design of Web
sites and other systems. Check these out.

Some of the basic principles behind your design of the user interface should also
be documented. This does not mean that you should design some specific interface
options, but some simple diagrams can help the client to visualize how the system
might look.

4.9 Specifying and Measuring the Quality Attributes of the System 95

4.10 THE FORMAL REQUIREMENTS DOCUMENT
AND SYSTEM METAPHOR

XP has, in the past, worked with the set of stories and the system metaphor as the key
planning documents for a project. It is worth taking a look at how these are being used
in projects. There has been much confusion about the system metaphor and its role. In
some industrial companies, it is no more than a glossary of terms. In others, it
includes some simple architectural diagrams and general statements of intent. For a
student project with a real client, it makes sense to try to use both the stories and
the metaphor as a mechanism for describing the current state of the project in ways
that the client can understand.

Thus we propose that these documents become the basis of a requirements docu-
ment that possesses some of the attributes of the traditional formal requirements
document that has been used in the industry for a long time.

The difference is that our requirements document is changing, evolving as the
project develops, and so we will produce one at regular intervals. It will be a
summary or list of the stories thus far identified, the non-functional requirements,
and a glossary.

You must include the following information on any document you produce:

Document type (e.g., requirements document)

Author(s)

Version

Date

The main body of the requirements document should have the following components:

Introduction and background

Elementary business model

User characteristics

Functional requirements

Non-functional requirements

Dependencies and assumptions

Constraints

User interface characteristics

Plan—a schedule of work with milestones, meetings, and deliverables

Glossary of terms (with an index)

The scope of the project is described in the Introduction and needs to be clarified with
the client as far as possible as soon as possible. The requirements will change as we
progress; one of the key points about XP is that it attempts to address this, but if the
scope changes significantly, we will be in trouble. We will therefore regard the

96 Chapter 4 Starting an XP Project

requirements document produced during this phase as an initial one that will change
as the project unfurls, but it is important that the client, as well as the team, have some
idea where they are going.

The document should have clearly defined sections and paragraphs, referenced
by number and listed on a contents page. This is vitally important for future cross-
referencing between other system deliverables and the requirements specification.
As Tom Gilb makes clear, thorough cross-checking is necessary for software
reliability. It is also vital when we come to testing that each requirement has a suitable
test or set of tests associated with it. This then demonstrates that we have met that
particular requirement.

In the future, you will only be able to determine whether your designs, your test
plan and test cases, and your coding are complete and correct by reference to the
sections of your requirements document.

You should discuss with the client whether they could sign-off the document as a
gesture of good faith. It should be made clear, however, that, in the spirit of XP, the
requirements are not totally fixed. Explain to the client how XP works, so that they
will expect to work with you on the stories and will help to identify the priorities
while you try to estimate the resource implications. Tell them that major changes,
without good business reasons, will threaten the project. Some changes will be feas-
ible, some not, and it is important to remember that there will be a fixed time limit to
the project. It’s better to have a good basic and useful system than an incomplete and
useless one.

Example

Software Hut Team P: Requirements Document 05/03/2004

Introduction

The system referred to in this document is a system to provide a method of linking together
physiotherapists and their customers throughout the country, via the Internet [7], automating
the process of appointment booking.

Problem Many physiotherapists work on their own and have small practices that may not
be able to afford to employ a receptionist, in which case a booking for the physiotherapist
will have to be taken, usually over the phone, by the physiotherapist. This can cause
problems, especially if the physiotherapist is currently working with another patient. If
the physiotherapist does not answer the call, there is a possibility of a loss of business,
and yet, if he were to answer the phone, then it may be deemed to be rude by the
customer the physiotherapist is currently attending to.

Brief The client wants a system that will allow a general member of the public to book an
appointment with a physiotherapist in their area over the Internet. The system must be able
to return a list of registered physiotherapist practices in the area they choose, and they must

4.10 The Formal Requirements Document and System Metaphor 97

be able to choose a practice and a physiotherapist that they want and book an appointment
in a free slot of the physiotherapist’s diary. After the customer’s choice of diary slot,
they will be led to a secure payments page, at which point they will enter their credit
card details and will have an appointment booked for them, (provided that the
transaction completes successfully). The proposed system aims to automate the process
of booking appointments with physiotherapists. This will make the entire ordeal much
more efficient for both the physiotherapist and the customer. It should also allow for
more business for the physiotherapists as they will no longer be losing as many
appointments from missed telephone bookings.

Registration The system will require that both the physiotherapist and the customer are
registered before they may use the system. The process of registration for both parties,
however, is very different. The customers will register themselves, filling out their
personal details. An account for them will be created with a password. This account will
be stored in a database to be recalled every time the customer logs in. The registration
part of the system for them will require them to register the practice, and not each
individual physiotherapist in that practice. The person who registers that practice will
have administration rights for that practice, which will mean that they will be able to edit
various parts of the details represented with the practice. It will be from here that
the administrator will be able to add the physiotherapists of the practice. For a small
practice, the administrator could be the only physiotherapist, but for a larger practice,
there may be a secretary. This administrator would be able to add a profile for all the
physiotherapists that work in that particular practice. These profiles will be stored in a
database. An individual diary will be available for each physiotherapist in that practice.
This diary may be accessed and updated by a physiotherapist when they log in.

On top of there being a profile page for individual physiotherapists, it will also be poss-
ible to have a profile page for the actual practice, giving details about it, such as address,
history of the practice, when established, and so forth. This page will be updateable by
the practice administrator at any time. It will be made from a predefined template,
keeping a certain standard to all the pages. This template would also have the advantage
of allowing people inexperienced with the Internet to create an information page easily.
It would be required that each time the customer came to book an appointment, they
would have to log in. This is simply done for security purposes.

Appointment Booking There are, in general, two types of appointments that may be
booked by a customer. These simply depend on whether a customer is attending the
practice for the first time or whether they are returning. If this booking is the first the
customer has made, then the booking will be required to last 45 minutes. If the customer
has previously visited the practice, then the duration of the appointment will be a fixed
length of 30 minutes. The booking process will require the customer to choose a practice
in a location around them, before they can proceed to the stage of actually booking the
appointment. In this system, the idea is that a customer will select their county and in
doing so will have a list returned to them with a list of cities in that county that have
physiotherapists registered in them. The customer will then be able to select a city of
their choice and from that will receive a list of all the practices registered in that city.
The customer will then be able to select a practice of their choice and from that will be
led on to the appointment booking stage. The appointment booking stage will require
that the customer selects a date and time for their appointment. If it is their first

98 Chapter 4 Starting an XP Project

consultation, then the system will assign them to a physiotherapist in the practice who, on
that particular day, has the least appointments thus far. There will also be an option for a
newcomer to select a physiotherapist of their choice should they wish to.

For a returning patient, the appointment will automatically be booked with the phy-
siotherapist that they saw at their last appointment, unless they choose otherwise. Once
the date and time has been chosen, the customer will proceed, as described above, to the
credit card page. Once an appointment has been successfully booked and added to the phy-
siotherapist’s diary, an e-mail will need to be sent to the customer, confirming the appoint-
ment date and time. It has been decided that because of the need for secure credit card
processing, it would not be wise for our team to develop such a system, and so the intent
is to redirect to a third-party credit card processing company. This company would be
responsible for carrying out the transaction. A function that the system will have to
provide for individual physiotherapists will be the ability to add appointments to their
diaries. This means that if a physiotherapist was to receive a telephone booking, there
would be no possibility of that booking being double-booked by another booking received
from this system. In order to speed the booking process for customers, a cookie may be
stored on their computer with information like their username (for logging in) and possibly
the last practice they attended.

Statistics There may be certain facts about the system that different users of the system
may want to work out. An example of such a statistic is “how many practices are there
registered for a particular area?” This kind of query could be used by the owners of the
system, but equally, individual physiotherapist practices may want to look up information
specific to their practice, for example, their sphere of influence. Such abilities for
querying the database will have to be built into the system, and the types of queries
available to different users will be different, according to their level of access in the
system. For example, the webmaster will have a lot more privileges than will a
physiotherapist administrator.

The Physiotherapist’s Individual Profile Pages are the pages where a practice admin-
istrator would be able to add the profile(s) of members of the practice.

Login is an area where any registered user of the system would be able to log in, and,
depending on their privileges, they would be directed to different areas of the system.

Physio Admin is the page where a designated administrator of a practice would be
able to add/edit and delete information regarding physiotherapists who work at that
practice.

Appointment Booking is the area of the system where a customer would be able to
book their appointments with a physiotherapist, as described in more detail above.

Registration is the area of the system that would allow a customer to enter their details
into the database or allow a physiotherapist administrator to register their practice.

Links will be an area where anyone who visits the Web page will be able to find other
Web sites that may be of use to them. These links will be stored in a database and will be
updateable by the webmaster.

In the key, “Mandatory” denotes an area of the system that will have to be implemented
for the system to function minimally. “Desirable” areas are the parts of the system that will
heavily increase the functionality of the system, and “Optional” areas are those that, if not
implemented, will not heavily affect the functionality of the system but are areas that need to
be considered if the system is to be updated at a future date. These areas are further
explained in the Functional Requirements section of this document.

4.10 The Formal Requirements Document and System Metaphor 99

Elementary Data Modeling

Thus far, the all areas of the system have been mentioned, but the descriptions of how they
handle data have been sparse. This next section of the document aims to describe in further
detail specifically those areas of the system where data will be stored. First, we will start
with users.

Customer During the registration process, the customer will have to enter details about
themselves. The unique identifier for a customer will be the username they choose. The
information to be stored about the customer is

Name

Full address

Telephone numbers (home, work, mobile)

E-mail address

Date of birth

GP details (name, surgery name)

Referral source

Physiotherapy Practice When a practice is registered with the service, there will be
certain information that will need to be stored about the practice, separate to the
information stored about the physiotherapists. The identifying key in this data will be
the username of the administrator of that practice. The information required for the
practice is

Practice name

Full address

Telephone/fax numbers

E-mail address

Username/name of administrator of practice

Physiotherapist An important thing to consider when talking about the data required for a
physiotherapist is the fact that it must be recognized that a physiotherapist must not be tied
to one single practice. They must be able to work in more than one practice. The identifier in
the table of registered physiotherapists will be a unique number that all physiotherapists are
assigned when they become physiotherapists. This number is their CSP number. On some
of the CSP numbers, they will begin with a letter, so the registration part of the Web site will
have to explicitly explain that the letter is not required. Data that needs to be stored about
physiotherapists is as follows:

Name

Contact address

Contact telephone number

E-mail address

D.O.B.

100 Chapter 4 Starting an XP Project

CSP number

Working diary

Any specialist knowledge

Webmaster This particular user will simply have to have a username and password stored,
with the username being the identifier. From the username, the system will know when they
log in what privileges they have as a user. There are many fields above for all the different
users that are very similar, and so we thought it necessary to create another table, called
“User,” in which we would be able to store all the shared information about the users of
the system. This information is listed below:

Username

Password

Full name

Full address

Usertype (defines the privileges of the user)

E-mail address

Sex

The other areas of the system that require data storage but are not directly related to any
users of the system are “Appointments” and “Availability.” These are defined further below.

Appointments The point of this part of the system is to store all the appointments for all
the physiotherapists registered with the system. Each time a user makes an appointment, a
new row will be added to the table. The identifier for this table is a system-generated
number. The information stored is as follows:

Physiotherapist identification number

Practice

Customer

Area of the body the appointment is associated with

The start date and time of the appointment

And the duration of the appointment

Availability This table is the area that allows a physiotherapist to input into the system the
times that he is working and at what practice he will be working at. The identifier for this
table is a combination of the physiotherapist’s identification number and the practice.

The data that this table stores is as follows:

Physiotherapist identification number

Practice

Date

Start time

End time

4.10 The Formal Requirements Document and System Metaphor 101

User Characteristics

There are four different types of user that have been identified for this system. These are:

Customer: The person who wants to book an appointment with a physiotherapist over
the Internet.

Practice administrator: The person responsible for registering the practice and keeping
the profiles of physiotherapists up to date. This user may also edit the diaries of the
physiotherapists registered with that practice.

Physiotherapist: This user has access to his own diary, and possibly his own profile,
but may not access other people’s profiles or be able to delete his own.

Webmaster: This user will have access to all areas of the system, including the
databases. This user will be able to find out statistical information about the
system, change some features of the system, and be able to maintain other
areas of the system.

For all the users, we will assume that they will be competent working with the
Internet, and we will assume that, particularly for the user “Customer,” they will have
had some previous experience of purchasing on line. We are not assuming that the
users of the systems will be experts, and so we are going to have to provide a system
that is straightforward to use and consistent. We will also have to make sure that there
will be suitable documentation for the system and suitable help tips on each individual
page that the user sees.

Functional Requirements

Listed below are the functional requirements of the system. The rightmost cells in the
tables denote the importance of each requirement for implementation. The following define
those measures of importance:

M: a mandatory requirement (something the system must do)

D: a desirable requirement (something the system preferably should do)

O: an optional requirement (something the system may do)

The requirements are grouped by user type.

Customer

ID Requirement Level

1 Register a new user M
2 Login to system (if user is registered) M
3 Search for practices/physios M
4 Book an appointment with a physio M
5 Access Links page D
6 Access Online Symptoms Database D
7 Access Online Shop O

102 Chapter 4 Starting an XP Project

Practice Administrator

ID Requirement Level

8 Add Physio Profile (physio must be
registered first)

M

9 Edit Physio Profile M
10 Delete Physio Profile M
11 Register Practice M
12 Edit Practice Profile M
13 Delete Practice Profile M
14 View Diaries M
15 Edit Diary M
16 View Statistics O

Physio

ID Requirement Level

17 Register (create new user) M
18 Edit Profile M
19 Delete Profile M
20 View Diary M
21 Edit Diary M

Webmaster

ID Requirement Level

22 Edit Links page D
23 Edit Users M
24 Delete Users M
25 Add News Items O
26 Edit News Items O
27 Delete News Items O
28 Edit Physio Profiles M
29 Edit Practice Profiles M
30 Delete Physio Profiles M
31 Delete Practice Profiles M
32 View Statistics D

Hardware Requirements

Dedicated Web server running Windows Server with ASP.NET

Web server with MySQL support

SQL Database

Users of system need Internet access on computer with javascript installed

4.10 The Formal Requirements Document and System Metaphor 103

Security Issues

Only registered users may book appointments.

Only registered physiotherapists who are part of a practice may take bookings.

Users need to log in using a username and a password in order to access restricted
areas of the site.

Concurrency Issues

System should allow users to access the system at the same time, independent of each
other.

Two users should not be able to edit the same information at the same time (i.e., prac-
tice administrator and physiotherapist should not be able to edit a physiotherapist
profile simultaneously).

Concurrency Issues

Online help system will be available.

“Tooltips” and “pop-up” help on forms/buttons, and so forth.

Non–functional Requirements

In this section, the non-functional requirements of the system are detailed. A non-functional
requirement either describes how well the system should perform (a quality attribute) or a
constraint or limit that the system must adhere to (a resource attribute). The non-functional
requirements have been split into the categories of reliability, usability, efficiency, maintain-
ability, and portability.

Reliability

The system should not allow invalid input from the user that would lead to it crashing.

The system should have security features installed to protect the information stored
about the users, so that they cannot be accessed by any third party (i.e., hackers).

Usability4

User registration process should not take longer than 5 minutes.

Practice registration process should not take longer than 10 minutes.

Physiotherapist registration process should not take longer than 10 minutes.

A registered user should not have to log in anew each time he visits the Web site from
the same computer, but should be requested for the password when he tries to enter
a restricted area.

A registered user should be able to look up a physiotherapist and book an appointment
within 5 minutes.

4These figures depend largely on both the speed of the user-end Internet connection and the Web host.

104 Chapter 4 Starting an XP Project

The Web site should be viewable on any computer with a screen resolution of at least
800 � 600.

Efficiency5

Any page on the Web site should load up within 30 seconds.

Maintainability The system should be easy to maintain through the use of legible and
well thought-out code and structure. Also, the webmaster has access to administration
pages for the Web site.

Portability The Web site should be viewable on any PC (running Windows or any other
OS) or Macintosh that has a screen resolution of at least 800�600 and that has a connection
to the Internet and a Web browser installed that is capable of reading HTML, displaying
pictures, and running javascript.

Dependencies and Assumptions

For our system, it is assumed from information gathered from the client that they were
thinking of hosting the Web site on their own server, which it has been assumed would be
running a Windows operating system and also be running the Internet Information Services
(IIS), which is dependent on the operating system, and also have a permanent Internet con-
nection. This is because the client said they would prefer a Windows-based system if they
were to host it themselves. If they don’t host the Web site themselves, then it has been
assumed that the Web hosting company that is going to be used will be a Windows-
based server host. Also, it has been assumed that the Web servers will be capable of
running ASP.NET Web pages and also running a “mySQL” database.

Also, any practice registering with the F-net community will need to have an Internet
connection so they are able to use all the services provided by theF-net Web site. It has also
been assumed that only patients with an Internet connection at home or that have access to
one will be able to use the system.

Another assumption is that the performance of the system will very much depend on
the Web host and the Internet connection or both the server and client.

Constraints

The first proposition that was proposed was the use of PHP CGI scripts along with
ASP.NET and JSP, all of which do a similar thing. JSP was rejected on the principle that
no one in the group had any previous knowledge of the technology. This just left the
choice of implementation between PHP and ASP.NET, which two members of the group
have experience of, but the choice came down to the fact that the client had requested
that is was to be run on a Windows-based server. Therefore, ASP.NET was chosen due
to the performance qualities of it compared with PHP scripts. To permanently store the
data, both storing it in a Microsoft Access database and a mySQL database were considered.
It was decided in the end to store the data using a mySQL database, due to its open source
and free availability. The database would then communicate with the ASP.NET pages
via ODBC.

5These figures depend largely on both the speed of the user-end Internet connection and the Web host.

4.10 The Formal Requirements Document and System Metaphor 105

4.10.1 Commentary

In general, the description is reasonably clear.
The individual functional requirements will be expanded greatly in terms of

stories that will describe the functions of the system; the current ones here are a
little too brief.

User Interface Characteristics

All the users of the system will have experience with Windows applications and will have
used similar Web pages before, so it was believed sensible for the system to look and feel
like a normal Web-based system. By this, we mean it has Web pages, icons, menus, links,
and pointers. This style reduces the time necessary to perform certain operations, and we
know that the client would value this as they like patients to be able to book appointments
as quickly as possible.

With this style, interactive objects such as buttons, list boxes, and radio buttons are
used to enable things to be done quicker. These are used in most Web-based applications
so we have no doubt that the patients and physiotherapist who will use the system will
understand how these types of objects work.

In designing the user interface for our system, we shall try to follow these principles
(Neilson, 1993):

Be consistent throughout the whole interface of the system so the user feels comforta-
ble and able to use it. Simple and natural dialogue, having no irrelevant infor-
mation, using a natural and logical order.

Provide shortcuts, so expert users can perform operations in a quicker time.

Minimize user memory load—reduce the amount of information the user has to
remember by presenting it on the screen.

Provide feedback, ask for confirmation on irreversible actions like when making the
booking for an appointment.

Good error messages, written in plain friendly English such that it doesn’t threaten the
user and so the user can understand them, and provide some options to correct the
situation.

Clearly marked exits—allow the user to exit any part of the system and go back to a
previous page at any time.

Prevent errors, stop them from occurring in the first place so then there is no need for
good error messages as their won’t be any errors.

Simple and natural dialogue; all relevant information should be written in natural good
English and should follow a clear logical order.

Speak the user’s language; everything should be written in a way such that it is easy for
the user to understand.

Help and documentation should be well written and easy to follow and understand.

106 Chapter 4 Starting an XP Project

Some further details could be given—here is an example from another team’s
requirements document for the same system:

A diagram describing some of the basic architecture of the system and the
workflows and processes involved would have been helpful. If such information is
provided, then it should be in a form that the client can understand,

The main omission is the lack of any indication of how the screens will look and
how you will navigate between them.

Many clients and users think of software systems in terms of sequences of
screens with their associated operations and links to other screens.

Figure 4.8 demonstrates an example from another Software Hut project that
involved building a document management system.

Example

Narrative Models (Functional Requirements)

Set availability Author: SR Date: 05/03/04 Version: 1

Purpose Allows the physio to “block-out” time in his diary for breaks, holidays,
etc.

Actors Physio
Objects Diary
Preconditions Physio exists, Physio is logged in.
Description The physio can view his diary and set periods of “unavailability.” The

system should check that no appointments have been booked within this
period [! Appointment Booked].

Post conditions Appointments can no longer be booked in this time period.
Exceptions [! Appointment Booked] An appointment is booked within the request

unavailability period. [? Remove Appointment]

Figure 4.8 User interface screens.

4.10 The Formal Requirements Document and System Metaphor 107

We will see some examples of useful descriptive diagrams for system
architectures in a later chapter.

4.11 CONTRACT NEGOTIATION

Any business activity involves parties exchanging products or services for some return,
usually in terms of money. For simple transactions, there is no need for a formal
contract. Software development, however, is a complex process, and a contract is vital.

The two parties to a business relationship will, at the outset, hope that trust
and mutual respect will underpin the relationship, but it is always sensible to try to
formalize the understandings relating to the business deal—we will build this soft-
ware for you, and you will pay us for it.

The contract will be a document that defines each party’s responsibilities to the
other. It will describe the terms for the exchange of the assets (software for money)
and describe the expectations of each party (for the client: what the software will
do, how well it will do it, when it will be delivered, any after-sales service, and so
on). The software developer will expect to see the agreed price and the obligations
of the client in terms of providing access to appropriate aspects of the client’s
business—access to staff for requirements capture, examples of data, processes,
and other necessary detail.

Standard formats for contracts exist and can be customized for a specific project.
The contract will need to include a copy of the requirements document—although
there will be an understanding in an agile development project that this will be a
dynamic document and these may change.

The basis of the pricing of the contract can vary. For an agile project, the best
approach is probably a payment by time (in other words, to state that each month
of work on the contract will cost so much and the length of the contract is less
defined—an overall desire to produce a system to suit the client’s business need—
might be the basis for the contract). This does bring great dangers for both sides,
and if the customer–developer relationship is not a strong and positive one, there
will be the risk of problems later on.

Nearly all the projects we have done have been negotiated on a fixed price and, in
most cases, a fixed delivery date. This is because most of our customers are small
businesses, charities, and so forth. The length of the university teaching term also
tends to impose a fixed deadline as well.

This has its advantages as it encourages clients to engage with the process
quicker—to think about their requirements more carefully and to deliver data and
other information quicker.

For such a fixed-price contract, a fairly detailed requirements document is
needed. This plays two roles. It provides a reference point for the project—although
both parties will need to accept that changes will happen and those changes come
with a risk to both the deadline and the cost. It also provides an audit trail for directors
of finance in some companies who are uncomfortable sanctioning expenditure
without some sort of statement of what will be received in return.

108 Chapter 4 Starting an XP Project

When an agile development company becomes more established with regular
customers and a good reputation, it may be able to develop a long-term association
with some customers to provide software development on a service basis—an
ongoing succession of projects and maintenance that would be negotiated on the
basis of payment for work done paid for at a “regular” rate (i.e., the contract
would specify the cost of development support per month or similar).

The stronger the relationship becomes and the more involved in strategic plan-
ning that the software company becomes, the deeper the agile development
process can become.

Note that if the project is being done as part of a university course, then the uni-
versity may have some intellectual property stake, for example some universities
claim these rights on all work carried out by students in their courses, so in this
case some negotiation needs to take place to clarify the position.

Example Contract

This SOFTWARE DEVELOPMENT AGREEMENT (“Agreement”) is made BETWEEN
************** with offices at ******************* ******** (“Client”), and
Genesys Solutions, with offices at 211 Regent Court, Sheffield (“Provider”). Client
desires to obtain the services of Provider to assist in developing certain Software described
on Annex A hereto, and Provider is willing to provide the development services (the
“Services”) subject to the terms and conditions set forth herein.
NOW, THEREFORE, in consideration of the foregoing and the mutual covenants,
representations and warranties contained in this Agreement, Client and Provider agree
as follows:

1. EFFECTIVE DATE
This Agreement shall be effective as of *************** (the “Effective Date”).

2. DEFINITIONS

(a) “Software product” shall mean the computer programs in machine readable object
code form and any subsequent error corrections or updates supplied to Client by
Provider pursuant to this Agreement and as described in Annex A.

(b) “Documentation” means the documents, manuals and written materials (including
end user manuals) referenced, indicated or described herein or otherwise developed
pursuant to this Agreement.

(c) “Deliverable” means the software code in object and/or source format as set
forth in the Annex A, provided that if not specified delivery shall be in object
code format.

4.11 Contract Negotiation 109

3. APPOINTMENT AND SERVICES

(a) Appointment and Acceptance. Client hereby retains Provider to provide the devel-
opment services set forth below, and Provider hereby accepts such appointment on
the terms and conditions contained herein. Provider will use all commercially
reasonable efforts to develop the Software product described on Annex A hereto.
Provider, at its sole cost and expense, will furnish the supplies and research, engin-
eering and other personnel reasonably necessary to perform such Services unless
otherwise offered by Client to the Provider at the expense of Client. In performing
the Services hereunder, Provider hereby warrants to Client that it will perform all
Services in a professional and timely manner and substantially in accordance with
the standards and practices of care, skill and diligence customarily observed by
similar companies under similar circumstances at the time they are rendered.
Provider, however, does not guarantee specific results, and the Software will be
developed only on commercially reasonable efforts basis.

(b) Compensation. As compensation for Provider’s performing the Services hereunder,
Client shall pay to Provider a development fee as set forth on Annex A hereto in
accordance with the time frame set forth therein.

(c) Bug and Error Fixing. Provider ensures completed testing of all products before they
are handed to the client, however there are some circumstances when it becomes
apparent that the product does not fully meet the functional requirements as set
by the client. In these circumstances Provider will advise Client and request gui-
dance with regard to cost overrun if necessary.

4. OWNERSHIP OF INTELLECTUAL PROPERTY RIGHTS
The parties acknowledge and agree that all Work Product derived from the Services
performed by Provider hereunder (the “Work Product”), including, but not limited to, the
Software Product, and other product documentation prepared byProvider, if any, shall be con-
sidered to be a “work of The University of Sheffield” and that such Work Product and the
intellectual property rights embodied therein are and shall become the sole exclusive property
of The University of Sheffield. Client shall not, and it shall cause its affiliates not to, seek any
copyright, patent, or other protection for the Work Product, and The University of Sheffield
shall have the sole right to seek copyright, patent and other protection for suchWork Product.
At Provider’s reasonable request and expense, Client shall take, and shall cause its affiliates to
take, all actions requested by Provider in order to protect and perfect its rights in and to the
Work Product in the United Kingdom and throughout the world.

5. CONFIDENTIALITY
The parties may wish, from time to time, in connection with work contemplated under this
Agreement, whether before or after the date hereof, to disclose to each other proprietary infor-
mation, data, know-how, designs, drawings, specifications, test and research results, market
studies, price or cost information, supplier or customer lists, regulatory files to the extent they
are not public information by law and other similar materials (“Confidential Information”).
This Confidential Information will be treated as trade secrets and held in confidence.
Provider and Client will use Confidential Information only in a manner consistent with this
Agreement and may not disclose any Confidential Information to any third party during the
term of this Agreement or for a period of one (1) year from the date of disclosure, whichever
is longer. Non disclosure obligation stated in this section (5) shall not apply to information that:

(a) was disclosed pursuant to written permission by Client and Provider;

(b) is already in the recipient party’s possession at the time of disclosure thereof;

110 Chapter 4 Starting an XP Project

(c) is a part of the public domain through no fault of the recipient party;

(d) is received from a third party having no obligations of confidentiality to the disclos-
ing party;

(e) is independently developed by the recipient party; or

(f) is required by law or regulation to be disclosed.

6. TERM AND TERMINATION

(a) Term. The term of this Agreement as it relates to the development of the Software
Product shall commence on the Effective Date ********* and, unless modified by
mutual written agreement by the parties or terminated pursuant to the terms of this
Section 4, will continue until completion.

(b) Termination. In the event that either party shall be in default of its materials obli-
gations under this Agreement and shall fail to remedy such default within thirty
(30) days after receipt of written notice thereof, this Agreement may be terminated
30 days from date of written notice. Termination or cancellation of this Agreement
shall not affect the rights and obligations of the parties accrued prior to termination.
As its sole liability upon termination under this section, Client shall pay Provider
for all reasonable expenses incurred or committed to be expended as of the effective
termination date, including salaries for appointees for the remainder of their
appointment. Any terms of this Agreement which by their nature extend beyond
termination shall survive such termination.

(c) Return of Materials Upon Termination. Upon termination of this Agreement for
any reason, Provider shall furnish to Client all completed deliverables, work in
process, incomplete work and other material embodying such work performed in
connection with the provision of the Services under this Agreement.

(d) Survival of Certain Rights and Obligations. On termination or expiration of this
Agreement, each party shall immediately return to the other party all
Confidential Information of the other party in its possession. In addition, notwith-
standing anything in this Agreement to the contrary, Sections 4, 5, 7 and 8 shall
survive termination of this Agreement, however caused and shall continue there-
after in full force and effect.

7. INDEMNITY
(a) Provider will defend or settle at its own expense any suit or action which may be brought
against Client for alleged infringement in the United Kingdom of the copyrights or trade
secrets of others by reason of the Provider’s design and/or development of the Software,
and Provider will identify and hold harmless Client from and against all damages and
costs which may be adjudged or decreed against Client on account of such infringement;
provided, however, that Client shall have given prompt notice, in writing, to Provider of
any claim of such alleged infringement and of the bringing, or any written threat of the
bringing of any such suit or action, and Client shall have permitted Provider by its
counsel to defend or settle the same; and provided, further, that Client shall not settle or
compromise any such suit or action without the prior written consent of Provider. If any
Software is finally adjudged to so infringe, or in Provider’s opinion is likely to become
the subject of such a claim, Provider shall at its option, either

(i) procure for Client the right to continue using the Software,

(ii) modify or replace the Software to make it non infringing, or

(iii) refund the fee paid, less reasonable depreciation, upon return of the Software.

4.11 Contract Negotiation 111

Provider shall have no liability regarding any claim arising out of:

(1) use of other than a current, unaltered release of the Software, unless the infringing
portion is also in the then current, unaltered release,

(2) use of the Software in combination with non-Provider software, data or equipment
if the infringement was caused by such use or combination,

(3) any modification or derivation of the Software not specifically authorized in writing
by Provider, or

(4) use of third party software.

THE FOREGOING STATES THE ENTIRE LIABILITY OF PROVIDER AND THE
EXCLUSIVE REMEDY FOR CLIENT RELATING TO INFRINGEMENT OR
CLAIMS OF INFRINGEMENT OF ANY COPYRIGHT OR OTHER PROPRIETARY
RIGHT BY THE SOFTWARE.

(b) Except for the foregoing infringement claims, Client shall indentify and hold harmless
Provider, its affiliated companies and the officers, agents, directors and employees of the
same from any and all claims and damages, losses or expenses, including lawyers fees,
caused by any negligent or intentional, knowing or reckless act of Client or any of
Client’s agents, employees, officers, directors, subcontractors, or suppliers.

(c) NEITHER PARTY TO THIS AGREEMENT NOR THEIR AFFILIATED
COMPANIES, OFFICERS, AGENTS, DIRECTORS AND EMPLOYEES OF ANY OF
THE FOREGOING, SHALL BE LIABLE TO ANY OTHER PARTY HERETO IN
ANY ACTION OR CLAIM FOR CONSEQUENTIAL OR SPECIAL DAMAGES,
LOSS OF PROFITS, LOSS OF OPPORTUNITY, LOSS OF PRODUCT OR LOSS OF
USE, WHETHER THE ACTION IN WHICH RECOVERY OF DAMAGES IS
SOUGHT IS BASED ON CONTRACT, TORT (INCLUDING SOLE, CONCURRENT
OR OTHER NEGLIGENCE AND STRICT LIABILITY), STATUTE OR
OTHERWISE. TO THE EXTENT PERMITTED BY LAW, ANY STATUTORY
REMEDIES WHICH ARE INCONSISTENT WITH THE PROVISIONS OF THESE
TERMS ARE WAIVED.

IN WITNESS WHEREOF, the parties have caused this Agreement to be executed as of the
day and year first above written.

CLIENT: PROVIDER: Genesys Solutions

By:_____________________________

Signature

By:

Signature

Title:____________________________ Title:____________________________

Date: Date:

112 Chapter 4 Starting an XP Project

ANNEX A

Software to be developed:

1. Ruby on Rails Web site for Cystic Fibrosis patients

Compensation for delivery and timing of payments for software product:

DELIVERY: ************** (the delivery time does not include delays due to infor-
mation not provided by Client in a timely manner).

PAYMENT: £******** GBP payable upon completion of all requirements described in
Annex B and delivery of said software.

ANNEX B

Set out below are the requirements as captured by Genesys Solutions for the E-Commerce
system.
Requirements
Functional Requirements
Key
M ¼ Mandatory: This requirement forms part of the contract and must be delivered.
D ¼ Desirable: This requirement should be implemented at the discretion of the Provider,
time permitting.
O ¼ Optional: This requirement will only be implemented at the discretion of the Provider.

General System Functions

Name Description Priority

User registration Ability to add a user to the Web site M
Secure user login A user must log in to the Web site M
Meals Ability for a user to create a meal from a

list of food items
M

User details Ability for a user to manage their
account details

M

Administration Ability for an administrator to manage
the list of food, food categories, content
items, capsules, new items, user
accounts, and Web links

M

Capsules game User can play a guessing game for the
number of capsules to be taken with a
created meal

M

Fat content game User can play a guessing game for the
gram of fat in a food item

M

Check capsules for meal Ability to check the correct number of
capsules required for a meal

M

Menus Ability to create a menu from a set of
meals

M

Printing Ability to print a menu M

4.11 Contract Negotiation 113

One comment that many make is why do we have to have all this paperwork,
detailed requirements, contracts, and so forth? Although many projects are success-
ful, the customers and the developers are in full agreement and no disputes arise, the
teams are stable and the project proceeds without a hitch, this is not always the case.
Sometimes projects are affected by problems, sometimes with an external cause, but
problems that can be difficult to deal with.

The customer may change—perhaps they have left the client organization or
have been transferred to another section. Some team members may change or
leave or the development company has another urgent problem to deal with that
may impact the project—this is very common and often caused by having to deal
with problems from previous projects.

Sometime the client can get greedy, some clients drive a very hard bargain and
start demanding far more than they are prepared to pay for; sometimes the lawyers can
get involved if things turn nasty!

All of these things have happened to us. The production of signed agreements,
whether they are outline requirements documents or contracts, has provided us with a
pretty watertight defense position. It is always worth the trouble so that everyone
involved knows what the situation is.

4.12 CASE STUDY: THE IMPACT OF
ORGANIZATIONAL POLITICS—LEARNING
FROM A FAILED PROJECT

We did a project with a police department to provide an information system for their
domestic violence caseload.6 The national police database contains information about
the villains—details of the charges, court decisions, prison sentences, and so forth—
but nothing about the victims. The role of the police domestic violence department is
to support the victims as well as to catch the villains. The system built provided an
integrated system to do this. The project was very successful and has become a
core part of the police department’s facilities—for example, in the case of a
murder, the first thing that detectives do on returning from the crime scene is to
consult DOMINIC (the system) to see if the victim might be on record. Many
murders are the result of domestic incidents with the villain known to the victim.
If there is a record of violence toward the victim, then the perpetrators might be
worth interviewing.

The system has been running for 3 years now and has never malfunctioned in
any way.

After the success of DOMINIC, we were asked to build a more ambitious system:
this time there were eight different agencies involved. It had been clear for some
time that the many different organizations involved in issues relating to domestic
violence—police, hospitals, housing services, social services, and various victim

6Built by a Software Hut team.

114 Chapter 4 Starting an XP Project

support charities—were not talking to each other enough. There had been some high-
profile tragedies where young children had been murdered by their “carers” even
though many people knew that they were at risk—but not the agency with the
power to do something about it.

The clients—a committee formed from these eight agencies—wanted an integrated
information system so that they could each record their cases and could then share
appropriate information with each other to prevent such tragedies in the future.

At the start things went well, and some basic information was collected from the
clients. Finding a time when every member of the committee could meet was proble-
matic, however. It soon became clear that the different agencies had very different
outlooks and policies and it was going to be a challenge to get agreement. Some
of the clients, particularly the charities, were anxious about the involvement of
other authorities such as the police. They did not want other agencies to have
direct access to their data.

We devised a scheme whereby there was one central, Web-based database that
was very secure—all the data being encrypted on the database—and that was
designed so that each agency had an independent secure zone on the server. To
provide a basic alerting mechanism it was implemented so that whenever an
agency (say Agency A) entered into the system details of an individual who was
already present in the database of another agency (e.g., Agency B), a window
would pop up to say that Agency B had records relating to this person—thus
giving Agency A the option of phoning Agency B to see if there was any important
information that needed sharing.

This solution—even though it offered very strong protection to the data—was
not acceptable to some of the charities. Eventually the project was abandoned by
the committee. Organizational politics, lack of trust, and serious social issues were
the main reasons for failure.

One issue was that the different agencies had different policies relating to the
privacy of data and client confidentiality. These, although significant, were not
insurmountable.

The real problem was a social one. Many of the people that the agencies dealt
with were very vulnerable and often frightened. Such people may not come to the
charities, for example, if they believed that that this action might lead to others
finding out—maybe the police or a violent family member—which could cause
them serious problems. A phenomenon that several agencies found was that some
of their clients would not tell them their correct name or address in case it got into
the wrong hands. This, of course, causes great problems for designers of databases
as the quality of the data may thus be very poor. It’s a fact of life, however, that in
the real world these issues happen. A national database for the probation service
was abandoned for the reason that many criminals have many aliases and the
system did not provide a mechanism for entering several names (including false
ones) for the same person.

We tried hard to resolve these issues but ultimately we failed—even agile
development cannot cope with everything!

4.12 Case Study: The Impact of Organizational Politics 115

The most important lesson is that the politics of organizations and unforeseen
complexities derived from human behavior can provide almost insurmountable
obstacles to a successful project. A lack of understanding of how the social environ-
ment within which the application is deployed can ruin otherwise good software.

Ethnographic studies are sometimes used to try to avoid these issues (Hughes
et al., 1995; Martin & Sommerville, 2004).

4.13 REVIEW

We have concentrated on the discussions with the client and the formulation of the
requirements for the project, both functional and non-functional. It is important
that you maintain good communications with the client so that he or she knows
what you are thinking about. Having a client on-site is a rare luxury. Later, when
we get down to more detail, we will need to regularly review progress with the
client, and establishing the right language and concepts to use is vital. We have
considered the structure of a fairly formal requirements document, one that might
form the basis of an agreement with the client about what you hope to deliver.

After the first meeting, you will have some ideas about the scope of the project.
This is important, and we will refer to the scope as being an important part of the
requirements.

CONUNDRUM

Your team is in trouble. The client has not been in touch with her feedback on the
proposed system. She doesn’t have much experience in IT and only has a rather
vague idea of what she wants. There are no similar systems known to you that you
can show her. You need to start getting some requirements identified and some
initial stories prepared.

Exercise

Read the requirements document example carefully. Criticize it, in particular:

Are all the terms clear?

Are the functional requirements consistent, unambiguous, and repetitive at the right
level of detail?

Are the non-functional requirements clearly defined; do they have suitable acceptance
levels and procedures identified?

How would you deal with any significant change in the requirements introduced by the
client?

Would it be easy to maintain?

116 Chapter 4 Starting an XP Project

Do you (a) wait until she has thought further about the system she wants? or
(b) build a simple prototype using your imagination and background research in
order to show her something that might stimulate her ideas?

REFERENCES

J. NEILSON. Usability Engineering. Academic Press, 1993.
T. BUZAN, B. BUZAN. The Mind Map Book. Pearson, 2006.
P. CHECKLAND, J. SCHOLES. Soft Systems Methodology in Action. John Wiley & Sons, 1990.
T. GILB. Principles of Software Engineering Management (S. Finzi-Wokingham, ed.). Addison-Wesley,
1988.

J. HUGHES, J. O’BRIEN, T. RODDEN, M. ROUNCEFIELD, I. SOMMERVILLE. Presenting ethnography in the require-
ments process. Presented at the Second IEEE International Symposium on Requirements Engineering
(RE’95), March 27–29, York, UK, 1995.

L. HULL, K. JACKSON, J. DICK. Requirements Engineering. Springer, 2002.
D. MARTIN, I. SOMMERVILLE. Patterns of cooperative interaction: Linking ethnomethodology and design.
ACM Transactions on Computer-Human Interaction, 11(1): 2004.

Web Sites

http://www.issco.unige.ch/projects/ewg96/node13.html.
http://www.freemind.org.

References 117

Chapter 5

Identifying Stories and

Preparing to Build

SUMMARY

Creating stories and learning how to analyze and negotiate with stories.

† Identifying functional requirements.

† Checking non-functional requirements and quality attributes.

† Managing the customer.

† Techniques for estimating resources.

5.1 LOOKING AT THE USER STORIES

The business problem has been studied quite extensively, and we are now keen to
make a real start. After all, we have spoken about progress being measured in func-
tioning software, so we need to get coding!

The details that we have relating to the proposed system may seem quite daunt-
ing, and we need to take a breath and try to find something simple and useful to do.

Looking at the list of stories that have so far been identified, it may not be
obvious where to start. The customer may be able to steer us toward what he or
she thinks is important, but they will look at things from a business perspective,
and the technical issues of building stories may not be clear to them. We,
however, have to choose something that will create confidence and a sense of
achievement early.

In the first case, the stories will probably comprise short sentences that describe
the purpose of a small element of software, thus they could be a statement such as

“Users can login to the system” or “Users can enter the customer details and
validate data on entry” or “Patients can create an account.”

The key to an agile approach is to ensure that each story can be implemented in a
short time period—2 weeks at the most. It has to be a coherent and clearly identifiable
software function that is not too complex. The problem is that the right level of

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

119

complexity in a story can sometimes be hard to define and requires a lot of experience
to be able to do it without too much trouble. For those with less experience, it is
important to approach the problem in a simple, structured way.

In order to think about these issues in a clearer way, it is useful to identify a
sequence of actions and events that are recognizable from the perspective of a user
interface. If this produces a large collection of inputs and events, then it is likely
that the story is too complex. Many users and customers think about their system
in this way, and it is important to try to identify how a system might work from
that viewpoint. However, some stories will involve internal types of processing
that has no explicit representation in the user interface.

In a large-scale industrial application, there may be many teams or departments
that collaborate in the development of a large piece of software. Here the relationship
might be one whereby a team acts as clients to another team and will develop stories
that are of a more technical and specific nature. The principle is the same: Try to write
down the story in clear language using well-defined terminology, and if your team is
providing the software development effort, engage fully with the clients or customers
in discussing the meaning, the relevance, the priorities, and the costs of the stories.

In your project, however, you are probably the only team involved, and your client
will provide youwith the key concepts for their business processes and business needs.

We’ll take some simple examples of user stories from some of the systems we
have built to illustrate the process.

Our starting point is the requirements document. In this we have identified a
number of functional requirements, and that is what we need to look at.

Each one of these has the potential to become a story. It depends on the level
at which you described the requirement. We will assume that if they are too high
level, then you have broken them down into a series or sequence of simpler activities.
For example, the decomposition of the requirement to be able to set tests in the
Quizmaster system (a system that teachers can use to create on-line tests) to the
subactivities of setting questions and forming a test from a collection of questions.

The initial analysis of a story is to identify the business process that it refers to. To
do this consider two basic things: what is being done and to what. In other words, there
is some operation described in the story that is prompted by some intervention—
normally a user action, but it could be a signal from an external component or
system, such as a sensor or something similar. This operation will affect some
aspect of the system or its data and will usually produce some observable effect.

Now we create a card for each story; this will provide some basic information
about the story and allow us to plan out our work.

The first version of a story might contain nothing more than a name and a brief
description of what it does. This might be enough if the programmers are experienced
and have built very similar stories before. They may well be able to create suitable test
sets for the story also from their recent experience of doing something similar. But
what if you have never done this before?

We will use a structured approach to describing stories that will help us to
develop unit tests, the subject of Chapter 8.

120 Chapter 5 Identifying Stories and Preparing to Build

Most units identified from a requirements elicitation process with a customer will
have a relevance to their business needs. In other words, the customer will understand
the purpose of the story. This may not always be the case, and in some projects the
stories will be less visible or apparently relevant to the customer—they may be of a
rather technical nature and thus less comprehensible to the customer. In such cases, it
is important to try to explain why it is relevant—what business value it will provide.

From a customer’s point of view, it is likely that they will interpret a story
in terms of how it relates to some business function or part of a business function.
In other words, the story will be involved in generating some useful result.

In order to explain this—and to exploit the most from it in terms of test set
generation—it is often useful to think in the following way.

The story will be triggered by some event—a mouse click, a result, or a message
from another part of the system, and so forth. This event then results in some proces-
sing, it could be a database update, a query, or the computation of a result, and so on.
In order for the story to be effective, it may need to communicate with other stories or
a database and it may result in changes to other parts of the system, such as a database
or a screen display.

Consider the login story, for example. The purpose of a login system is to
manage the different classes of users and to ensure that each user has secure
access to the part of the system that they are registered to use. Thus the typical
system will involve a user inputting their user identity (User ID) and a password.
The system then needs to check that such a user exists and that the password sub-
mitted matches the password allocated to that ID. On successfully checking this,
the system should then provide the appropriate start screen for that category of
user. Thus we have information going into the system (ID and password), a check
being made against a list of IDs and passwords, and a new screen is then presented.
This screen is either the starting screen for that user or an error report if the user is not
recognized—this may then provide further options to the user to correct their entry
information or seek further advice.

We can thus think of many stories in the following way.
The story is triggered by some input or set of inputs; the story may then need to

check some of the values of the input against some existing data—a lookup table,
database and so on. The story then computes some results and outputs these
somewhere—perhaps to a screen or to some other part of the system. Finally, the
story might update a database or some other store.

Suppose the story is a simple login function (Fig. 5.1).
Figure 5.1 demonstrates a minimal type of story card; the meaning of it is fairly

clear, and so it might not need elaborating. However, it is a good example to explain
how a more sophisticated story might be specified.

First we look at the inputs that will trigger the story. There will, probably, be
some screen that provides the login prompt that will consist of a data entry and pass-
word entry dialogue box (Fig. 5.2).

There will be a database or lookup table that contains the passwords for all the
registered users.

5.1 Looking at the User Stories 121

The user puts in his or her username and then his or her password. There may be
some data validation for the username in terms of checking for valid characters. The
story will then have to check that the submitted username data exists in the list of
registered users and that the password submitted corresponds with that user. If this
is the case, then the login is allowed, and the user is then permitted access to the
parts of the system they are qualified to use.

If the password check fails, then the error message is generated (it could be no
known user or incorrect password depending on where the checking failed) allowing
another try. The story needs to keep track of how many unsuccessful tries are made
before disabling the system for that person.

There are therefore three things to think about: the type of input data, the internal
memory (database) that is consulted, and the resultant output data. This information
will be used in testing—the first being the information to trigger the test; the second
defines the environment the test is run in; the third is the expected test output.

We need to think about simple tests in this systematic way if we are going to
achieve the quality and delivery of products that we want.

One of the hardest things about XP is coming up with tests before we start to
code. This simple approach can really help.

Not all stories will involve an internal memory check but many will, and it can
take many different forms: databases, special variables in the code, and so on. We
need to know these when we do the tests or it might be the case that the code
works when we test it in isolation but doesn’t work when part of the main system.

Figure 5.2 Login screen.

Figure 5.1 A simple login story.

122 Chapter 5 Identifying Stories and Preparing to Build

Thus we have a simple tabular description of each story. The cards define the
following aspects of the story.

1 Its name.

2 What is the event that begins the story process.

3 What is the internal knowledge that is needed for the story.

4 What is the observable result.

5 How is the internal knowledge updated as a result of the story.

6 What is the current priority of the story.

7 What is the estimated cost of the story.

8 What is the likelihood of the story being changed or dropped.

All this information is needed for testing. A story card should be created for each of
these with the information described. A possible template for a story card is given in
Figs. 5.3 and 5.4. Some of the topics will be discussed later.

The design of story cards is a topic worth discussing. Some would just contain
the most basic statement of the story and little else. Clearly we do not want to intro-
duce too much bureaucracy, and any information included must be important and add
value. We have to think about potential maintenance issues and provide just enough
information to allow the programmers to understand what each story does and how it
has been tested. Don’t forget, when maintenance is undertaken, the original program-
mers may have moved on, and any information about what they thought the story
should do and how they convinced themselves that it did it is invaluable.

It is also a good way to clarify what it is you are trying to do, if ever you get into a
position where you don’t quite understand what the issues are, write these down—
using any technique you are comfortable with (free text, bulleted lists, mind maps,
etc.). The process of writing it down should force you to clarify it—especially

Figure 5.3 Story card template.

5.1 Looking at the User Stories 123

when working in pairs or groups. The cards we use seem to fulfill this purpose
without being too complex or tiresome!

We will go through each component of the card and justify its role.
The name of the project is clearly needed if the story is to be related to a specific

application being developed by the company. It may be that a given story is used in
several applications and while this is a sensible strategy, reusing previous components
that have been successfully built, it does bring with it some dangers in that the story
might have been slightly modified for a different context. We need to avoid
confusion—especially during maintenance.

The name of the story is an essential component of the card!
The date is also important—a story might be revised during different sessions

with a customer, and thus we need to be sure that we are using the most up-to-date
version. Of course you should be using a suitable version control and management
system to try to keep things in order.

Most stories will relate to a specific requirement; these were discussed in the pre-
vious chapter. The set of requirements and of stories will change over time, and it
may be that we scrap some stories that are no longer needed and introduce new
ones as the requirements change. An important issue—and one that has no simple
resolution—is the amount of detail needed in a story. In practice, we should try to
define stories so that their implementation and testing can be done within the
natural timescale that we are working with—this may be a day or a week or whatever
the project needs and the programming team is comfortable with.

The task description is a set of short sentences that describe in terms the customer
can understand what the story does. Too much technical detail or jargon will confuse
many customers.

The quality attributes may seem an unnecessary ingredient at this stage, but there
should be some reference to these. A number of problems we have experienced in the
past have been caused by a lack of clarity about these constraints. It is often the per-
formance of the software that is unacceptable (a Web page that loads too slowly) or

Figure 5.4 The reverse of the story card template.

124 Chapter 5 Identifying Stories and Preparing to Build

the usability of the story (e.g., a login facility that looks very different to what is
expected).

On the reverse of the card are the key issues relating to the resources needed to
build and test the story.

These resources include the date that the story is to be delivered—this will be
based on the time that the programmers estimate will be needed to build and test
the story. The overall planning of the project will be a dynamic portfolio of stories
and integrations that is adjusted as the project evolves, and the stories will be situated
within this framework.

The other information on the card assists in developing the tests.
When writing tests, there are a number of important issues that have to be sorted

out. Remember, we have no code yet, just the descriptions of the story.
To run a test, we need to trigger the softwarewith suitable inputs. Thesewill be the

subject of the first component of the card. It might be that a direct user input causes
the story to start or perhaps a specific event or request from another part of the
system accomplishes this. All of the expected inputs and events need to be identified.

The next issue is the information that the story needs when triggered. Take the
login story, for example; this receives a username and password and has to consult
a lookup table or query a database to establish if the user’s details are correct. This
is the memory context that we need to set up for testing. Many stories will need
such an environment for testing—but not all.

Naturally we will need to know what the expected behavior of the story is
to tell whether it is correct. It is important that this is written down somewhere,
that way we can convince ourselves—and those that follow us—that the tests were
properly written.

The next issue could be optional (some stories are more important than others).
We have seen that the requirements can be clustered into mandatory, optional, and
desirable so the same will be true of stories that relate to the requirements.
However, there is another issue and that is the risk associated with a story. Some
stories are critical—in the sense that many others depend on them, and the system
as a whole is threatened by failure of these stories. We should recognize this and
give these stories some extra attention.

Another type of risk is associated with the likelihood of the story being super-
seded by other stories as the requirements change. This allows the programmers
and the customer to rationalize the order in which work is done—maybe do the
stories that are fairly stable first, if that makes sense. Sometimes, however, you
have to build some stories before they are stable in order to explore the overall archi-
tecture of the solutions and to allow for some interaction between different parts of
the system and for testing purposes—in the same way as you might write some
scripts and stubs to help test partially built systems.

Now we write some tests that will be expressed in terms of what is applied to the
story, in what environment it is run, and the expected output. For example the login
story (Figs. 5.5 and 5.6) will have a number of tests to explore, not only that it works
in the way it should for legitimate users but also that unauthorized users are rejected
and the number of rejections fits with the requirement. To do this, some temporary

5.1 Looking at the User Stories 125

database or list of users and passwords is constructed to check out the story if the
main database is not yet ready. In such circumstances, it will be important that the
login function is carefully tested again when the proper database is integrated into
the system later.

Finally, we describe the stories that depend on the current story and the stories
that the current story depends on. This will help with planning out priorities
among the stories and their integration into working systems.

The XP method now tells us to write some tests for a story and then to code the
story up. Writing tests, as we will see, is a sophisticated business, and one of
the weaknesses of much of the literature is that little advice is offered about how

Figure 5.5 Login story card.

Figure 5.6 The reverse of the login story card.

126 Chapter 5 Identifying Stories and Preparing to Build

the tests are found; there is a lot of information about how to run tests and automate
this process, but where the tests come from is something that seems to be left to
experience—and this is something that you may not have!

Take one of your stories and write down some test cases. Don’t forget what you
are trying to do—to confirm that the code does what it is supposed to do and doesn’t
do anything else.

Can you think of any more examples of tests? Good testers think awkward, trying
out unlikely scenarios and data in an attempt to break the code. If you are to succeed
in XP, you must adopt this attitude. In traditional software engineering, programmers
tend to be too gentle with their own code; it’s a psychological tendency that is hard to
overcome. The influence of pair programming in XP is an attempt to prevent this. It’s
better for the programmers to find the bugs rather than for the users to find them!

We will discuss a more systematic way to derive tests shortly.
Now we are supposed to write the code and apply all the tests, correcting the

code until they all pass. Naturally, we do this in pairs.
This is the basic XP process. How long did it take? Make a note of the time you

spent on writing the tests. This will give us an indication of what time it might take to
write a similar story and conduct its tests. Hopefully, you will get quicker and better
as you gain experience.

The story we have just discussed would need to communicatewith other parts of the
system and it is notworth showing this to the client yet. Therewill be a user interface and a
database, in all likelihood, and this class needs to be able to link inwith them.While some
pairs in the team arewriting these basic units, the others can be looking at the design of the
interface and the database that will power the system.Whenwe are clearer about these, we
will be able towrite some system tests, link them together, and see the results of our work;
then we can show the client something that he or she would understand.

Although writing tests for simple classes such as this one is not particularly
difficult, things change when objects start communicating with each other and
when a more complete architecture is being put together. This is where things can
go seriously wrong.

In the previous chapter, we looked at the requirements document and noted that
it is not a static artifact but a dynamic entity that will change over the course of
the project—as both developers and customers understand the problems better, as
the business needs change, and as resources, especially time, are used. However,
maintaining an accurate list of stories both those that have been implemented and
those that are believed to be required is vital in order to keep a grip on the project.
Some proponents of XP might criticize the more formal ways that we do things.
For example, just building stories without bothering with requirements document is
a popular approach. This may work in some circumstances—perhaps you have a
long-term relationship with your customer and their requirements arise in a gradual
and regular manner and the overall system architecture is stable. This is not the pos-
ition that we have ever experienced. Usually we have a fairly fixed deadline for com-
pletion and we need to stick to that as far as possible—meeting stage deadlines and
agreed installments of software—otherwise the income needed to survive may not
come through. Many customers are reluctant to pay unless they think that they are
getting something of value.

5.1 Looking at the User Stories 127

The next section details some simple techniques for thinking about system tests.
The basic idea has been used in industrial settings and has seen massive improve-
ments (up to 300%) in the effectiveness of the tests compared with the original
test method being used.

5.2 COLLECTIONS OF STORIES

The task of taking the list of functional requirements or stories and identifying and
organizing them into a coherent system can be achieved using the technique that
we will describe next.

To gain a greater understanding of how all the stories fit together into a coherent
system, we need to think about how they relate to each other. For example, it may be
that one story can only occur after another one has occurred, or it might be that at
some point in the business cycle there is a choice between several stories.

In Fig. 5.7 the initial story, story 0, is followed by either story 1 or story 2 (but
not both at the same time) and then either story 1 is followed by story 2 or story 3 is
followed by story 4. It might be, then, that stories 2 and 4 are succeeded by further
stories or the system returns back to the initial story.

In many cases, each main story is associated with a user interface screen, there
may be a whole screen to a given story, or there may be many stories that can be
driven from that screen. Although it is too early to plan out the detailed graphics
of the screen, it is still important to identify the key elements of the screen, the com-
ponents that can be used by the user to instigate the process defined by a story, the
extra information needed to be displayed for this, and the result of the operation of
the story displayed suitably.

We might break down a story into tasks that, when combined, provide a natural
way to implement the story. One task might be to paint a screen (e.g., a form), another
might be to provide a data entry function that will connect to a task that performs
some calculation with the data. This might involve communicating with a
database—to check with current data, and then to communicate the result back to
the screen. Once these tasks have been programmed and integrated together, we
have a coherent story to show the client.

It is sometimes a good idea to show the client some of your thoughts, on paper,
of how the story relates to your interface ideas before you do much coding. This can
then lead to a clearer understanding of what is required.

Figure 5.7 Collections of stories.

128 Chapter 5 Identifying Stories and Preparing to Build

The system will respond to some external stimuli: these will be, for example,
users interacting with a screen entering data; choosing options through mouse
clicks, ticking boxes, and so on; messages from some other system; perhaps the
results of a query to a database.

This data is then processed in some way; perhaps it’s just a simple calculation,
perhaps the system needs to contact another part of the system (e.g., a database) in
order to proceed. The results of the computation may then be fed back to the user
via a screen or output in some other way or to another component. It is possible
that the database needs to be updated as a result of this interaction.

Thus we have four essential actors in any system: an input actor, a processing
actor, a memory actor, and an output actor. The memory actor—this could be mana-
ging a database—will be involved in reading and writing to the notional memory and
communicating with the other actors. The input actor reads the input from the screen
or input device, the output actor deals with the output, while the processing actor does
the actual core computation.

We conclude this section with some examples of stories.

5.2.1 Pharmacovigilance

This project involved developing an online, Web-based system for medical workers
to submit details of adverse reactions to drugs by their patients. It is part of the
European Union’s process of monitoring the safety and effectiveness of medication
(Figs. 5.8–5.11).

Figure 5.8 Pharmacovigilance story 6 card.

5.2 Collections of Stories 129

Figure 5.10 Pharmacovigilance story 10 card.

Figure 5.9 Reverse of the pharmacovigilance story 6 card.

130 Chapter 5 Identifying Stories and Preparing to Build

5.2.2 Stamps System

This project was delivered to a client who ran a retail organization that sold rare and
historic postage stamps to collectors (Figs. 5.12–5.15).

Note that this story card in Fig. 5.13 is more complex than the previous ones as it
also contains information about estimation of resources for the story.

This is based on a more traditional software engineering approach to esti-
mation that relied on identifying “function points” or “object points” in the
story. This is a mechanism for trying to ascertain the complexity of a story in
terms of what it does—does it communicate with or query a database, is it
simple piece of code or something that has some real challenges involved, and
so on? There is a considerable amount of data available about industrial projects
that have been classified in this way, but this data may not provide a reliable
answer for our needs here. We no longer record this information on a story card
since it did not seem to provide sufficient value—the estimates generated using
this method were very inaccurate.

5.2.3 DELTAH (Developing European Leadership
Through Action-learning in Healthcare)

This project is concerned with supporting leadership development activities for
health service professionals (see http://www.deltah.org) (Figs. 5.16–5.18).

We will see how this way of looking at things is both useful for planning out a
program but also for testing it. It will be the basis for our system metaphor.

Figure 5.11 Reverse of the pharmacovigilance story 10 card.

5.2 Collections of Stories 131

Figure 5.12 Stamps story 2 card.

132 Chapter 5 Identifying Stories and Preparing to Build

Figure 5.13 Reverse of the stamps story 2 card.

5.2 Collections of Stories 133

Figure 5.14 Stamps story 5 card.

134 Chapter 5 Identifying Stories and Preparing to Build

Figure 5.15 Reverse of the stamps story 5 card.

5.2 Collections of Stories 135

Figure 5.16 DELTAH story 1 card.

136 Chapter 5 Identifying Stories and Preparing to Build

Figure 5.17 DELTAH story 2 card.

5.2 Collections of Stories 137

Figure 5.18 DELTAH story 3 card.

138 Chapter 5 Identifying Stories and Preparing to Build

5.3 USER INTERFACES

Thus far, the concepts that we have discussed are oriented toward the needs of the
developers; when it comes to communication with the customer, however, it is essen-
tial that we use ideas that he or she can understand. Many people look upon a software
system from the perspective of how it presents itself to them. In other words, the
system is the interface!

People are all different and differ greatly in the way they think and behave when
using a software system. The designers of a user interface would seem, therefore, to
have an almost impossible task when it comes to trying to satisfy every possible user
of the system.

There is now a considerable amount of research and experience when it comes to
this area. We will briefly review some of the commonly proposed principles that are
recommended for the design of good graphical user interfaces (GUIs). Note,
however, that if your client has some special factors, perhaps some of the users are
handicapped in some way or have other special needs, then these will have to be
investigated carefully and may result in some specialist features being incorporated
in the interface.

A useful general reference on user interface design is that of Schneiderman
(1998).

Most user interfaces consist of a collection of windows and screens. These have
two main purposes: one is to present information to the use, the other is to permit
the user to carry out some tasks. Naturally, many windows are a combination of
both types.

If we are presenting information, then there are some important principles that
should be followed:

(a) The information presented should not be confusing, contradictory, or
misleading.

(b) The words, icons, and other visual metaphors used should be clear and under-
standable; the use of obscure technical jargon should be avoided.

(c) The screens should not be cluttered, full of irrelevant and distracting images
and text, they should focus on the task in hand.

(d) The information should be up to date and presented in a consistent manner.

(e) If the user is expected to do something, it should be made clear what that is.

If the window is designed to allow the user to carry out some task, then other
important characteristics are desirable:

(a) The action required to carry out the task should be clear; help should be given
if appropriate.

(b) Similar tasks under similar conditions should require similar actions.

(c) Feedback should be given; if the operation was successful, then this should be
clear to the user.

5.3 User Interfaces 139

(d) It should be possible to recover if the action was not successful; make sure
that error message are clear and helpful.

(e) Too many alternative ways to do the same thing can be confusing.

(f) Similar actions should be broadly consistent, so don’t use radically different
techniques for actions that are very similar but taking place in slightly differ-
ent states.

How these windows are organized is crucial. Many simple interfaces can be
modeled, as we will see, by using a state machine or an X-machine (XXM)
(see Chapter 6 and Holcombe, 1998). This is well worth doing as it will relate
easily to the user stories and tasks that we have been thinking about earlier. There
is a balance between the desire to provide lots of information and the need to keep
it clear and simple.

We also have to decide how many windows to use: too many and users find
things getting tedious, too few and they may get confused. The correct level can only
be found by extensive consultation and trials with prospective users or their proxies.

Because we are using XP, we can expect to show our customer examples of
the sort of interfaces we are thinking of using; this is an opportunity for some
useful feedback. Remember that many inexperienced custmers and users often
think that the system is the interface.

XP stresses the need for simplicity, but do not interpret this to mean that the inter-
faces must be very simple; they should be good, but that may not mean the same.
Interface design is a sophisticated skill; do not underestimate how hard it is.
Test out your ideas as much as possible on potential users or on others with a
similar background. Some student friends from other departments and schools
could be helpful in this respect. The more experiments you do with people, the
better will be the result. Don’t forget that people may have very different opinions
about the same interface. Set up questionnaires to get some evaluation from
anyone who uses it, getting them to evaluate it on the basis of how easy it is to
learn, how easy it was to carry out the key tasks, how well it kept them informed
about what it had done and what needed to be done next, and whether it worked
without crashing or failing in other ways.

Ask users to rate the key features on a 1 (poor) to 5 (excellent) scale.
Check with the non-functional requirements identified earlier.
The system doesn’t stop with the interface. The system will be situated within an

overall enterprise, and workflows and interactions in the company may be involved
with it. Some of the tasks will be manual ones, and the introduction of a new
system may influence these and perhaps change them. Customers should be aware
of the implications of introducing the new system and should plan for it properly.

It is sometimes tempting, when designing an interface, to want to use whatever
the latest technical feature that you have learned how to implement. This will be a bad
idea in many cases. Only use appropriate technology, not technology for technol-
ogy’s sake. Adding complexity, whether from a programming point of view or
from the users’, will threaten rather than enhance the system.

140 Chapter 5 Identifying Stories and Preparing to Build

Ask the customer or the users which input techniques they want to use in the
different contexts. Do they prefer selecting from a drop-down menu, clicking on
radio buttons, filling in forms, using hot keys, and so forth. Study the sort of
systems that the users are currently using and are familiar with. Keep things
similar if at all possible.

There are many different types of widgets that can be used, depending on the
technology and any toolkit used: buttons of various types, sliders, drop-down lists,
combo box, and so on, can all be successfully used.

Don’t forget the help system; this might be a key feature for some users. It should
provide some basic support to enable users to get back to a point where they can then
continue. Think about the key tasks that are identified from the user stories. Perhaps
use each one as the basis for a help system.

An online manual is also a good idea. This is discussed in Chapter 10.

5.4 COMMUNICATING CLEARLY WITH THE
CUSTOMER AND BUILDING CONFIDENCE

At each meeting—in our case weekly meetings are the only practical face-to-face
opportunities—we need to provide the customer/client with a progress report.
Because some of our clients need to keep their managers informed as well, it is
best to provide them with a document that summarizes the current state of the
project and where it is going to. This can be achieved by producing a requirements
document and updating it regularly.

After a few weeks, this can become quite a detailed description of the system
being built. It is suggested that a working requirements document is kept updated
as the requirements change; in particular, as the collection of stories grows and the
system architecture develops, this should be recorded in a coherent way, and the
requirements document is the place for this. Because a student’s life is a varied
one, and many other courses and activities will be taking place concurrently with
this project, it is important to keep everything organized so that there is no confusion
about what is being done and where one is going. This is why the requirements
document is important. In many industrial companies, it will be based around a
standard template.

A suggested agenda for a regular client meeting follows:

1 Progress update—what has been achieved since the last meeting.

2 Review of system requirements.

3 Demonstration of new code and interface mock-ups.

4 Changes needed to existing stories/requirements.

5 New stories/requirements.

6 Plans for the coming week.

7 Next meeting—time and place.

5.4 Communicating Clearly with the Customer and Building Confidence 141

There will always be a number of issues that can upset the best of developer–client
relationships.

Many customers expect software to be produced rather faster than is possible.
It is important to know how and when to try to manage their expectations. The
benefit of regular increments and deliveries is that the customer becomes more
aware of progress. It is not always possible—nor even desirable in some cases—
to focus on delivering working pieces of code if they are so incomplete as to
prevent the customer/user from properly exercising it in a sensible context. The
use of screenshots and mock-ups together with lists of stories and even XXMs
will help the customer to understand where things have got to and where they
are going. Some authors have tried to use UML (Unified Modeling Language) dia-
grams to illustrate some of the system design but to limited effect. Static diagrams
such as class diagrams are unlikely to be appreciated by clients. Use-case diagrams
contain so little information that they are also of marginal value. Some of the
activity diagrams can be useful if they are carefully explained. We have found
that XXMs are readily understood by customers and popular with developers
compared with all the other approaches that we have tried (Thompson 2003,
2005). Interestingly, UML diagrams are widely disliked!

Sometimes, despite the best intentions of all concerned, relationships between
clients and developers can become strained or even break down altogether.

This has happened in Genesys. Maybe it’s because Genesys is a company
operated by students, but some—admittedly a small minority—clients do not
treat them with much respect and can act quite unprofessionally. One scenario
we have experienced is the small business client who wants something for
nothing. They often have a poor understanding of their own business and
can change their mind in erratic ways. One customer, kept coming up with
different technologies to use half-way through the project because he had found
a cheaper service. This resulted in having to restart the project because of the
incompatibility with what had been built with the new service technology. This
didn’t just happen once but at least three times! It was a major challenge to the
concept of XP.

Another customer signed off a contract that had been successfully delivered
and then decided he wanted a lot of changes later. He did not accept that this
should be the subject of a new contract, and this led to a lot of stress among the
team. Sometimes you have to be firm—the customer is not always right! Of
course, if it comes to legal arguments, then that is an indication of failure—but
there is always a point where you have to stand up for your side of the bargain
and avoid being exploited unfairly. Under these circumstances, it is vital that
you can demonstrate that you have carried out everything in a professional way,
that you can produce the evidence to support your position, and that you have
behaved in a reasonable way. This is the value of a good source of documentation:
minutes of meetings, requirements documents and contracts, e-mails, test data, and
so on. If you don’t keep this information in a systematic way, then you deserve to
be criticized by a smart lawyer.

142 Chapter 5 Identifying Stories and Preparing to Build

5.5 DEMONSTRATING THE NON-FUNCTIONAL
REQUIREMENTS

The format of the requirements document that we will be presenting to our client was
discussed in the previous chapter, and examples are given in Appendix A. The
important thing about this document is that it should be understandable to the
client. It is built from the basic information in the stories together with some
outline ideas of the how the system might look and work. Important non-functional
requirements need to be specified and clear statements about how these are to be inter-
preted and tested included. It is no good saying that the system will be fast if we don’t
say what that means; for example, in a Web-based system this might include the
maximum acceptable page download times under suitable conditions, and so forth.

Although we have presented the requirements document and the story cards
as two separate things, they are very closely related. There will be an interplay
between them. We might regard the requirements document as a summary of our
current understanding of the overall system, whereas the stories are a more detailed
description of individual aspects of its functionality with enough information to
allow us to plan, test, and implement each story. The requirements document will
have extra and vital information about the proposed system, context statements,
assumptions, as well as global quality attributes and non-functional requirements.
It is these that we turn to next.

5.5.1 Non-Functional Requirements

A non-functional requirement either describes how well the system should perform (a
quality attribute) or a constraint or limit that the systemmust adhere to (a resource attri-
bute). The non-functional requirements were defined in Chapter 4, and can be split into
categories like reliability, usability, efficiency, maintainability and portability, etc. Here
we give some example statements that might be part of the requirements document.

5.5.1.1 Reliability

For a single user, the system should crash no more than once per 10 hours.

The system should produce the correct values for any mathematical expression
100% of the time.

If the system crashes, it should behave perfectly normally when loaded up again
with minimal data loss.

5.5.1.2 Usability

A user should be able to add a new customer to the system within 1 minute.

A user should be able to add a new order to the system within 1 minute.

5.5 Demonstrating the Non-Functional Requirements 143

A user should be able to edit a customer’s details within 5 minutes (will vary
with details type).

A user should be able to produce reports and statistics within 1 minute.

5.5.1.3 Efficiency

The system should load up within 15 seconds.

The time taken for the system to retrieve data from the server should never exceed
30 seconds.

5.5.1.4 Maintainability

The system should be designed in such a way that makes it easy to be modified in
the future.

The system should be designed in such a way that makes it easy to be tested.

5.5.1.5 Portability

The client system should work on the client’s current computer network, which
is connected to the Internet and has Windows XP or better.

The system should be easy to install.

These statements need to be refined into a more precise statement in order to make
them testable. What, for example, does easy to install mean? We will look at this
in the next chapter.

From each story that we have discussed with the client, we extract the key func-
tional details. These are grouped in sections with other story lines that are clearly
related.

These requirements are categorized on the basis of which are mandatory, desir-
able, and optional. To do this, we need to have an estimate of the time we might take
to complete these, and this will help us to make these decisions. The next section
looks at the process of trying to estimate this.

Naturally, we must consult the client on which he or she thinks are mandatory
and so forth. We have to be realistic, and you must not promise to do more than
you can achieve in the time given.

5.6 ESTIMATING RESOURCES

If we have a model like the one above, we can use something like the function point
method and object point method. Here we try to estimate the amount of effort required
to build a story or a screen with its accompanying functionality.

144 Chapter 5 Identifying Stories and Preparing to Build

To do this, we look at each story and consider the functions contained in it. We
then try to categorize what sort of function this is. We can find information that
estimates the amount of effort each category of function might require; this data is
collected in industrial organizations, and some of it is published. We include some
examples here. It is a good practice to try to measure your own efforts for these
functions to see if they agree with the estimates and to inform future projects.

5.6.1 Software Cost Estimation

We need to ask some basic questions at the start of the project and also at suitable
review points during the project:

How long will it take?

What resources will it need?

How expensive will it be?

The standard approach is to use the techniques of software measurement, however,
there are overheads involved in doing this, and we need to consider to what extent
it is worth doing this.

During the course of projects, we measure the following parameters:

Lines of code (loc) produced over the timescale

Number of observed defects over the timescale

Number of person-hours worked over the timescale

Amount of time spent on debugging over the timescale

Amount of time spent on requirements over the timescale

Amount of time spent on design/specification/analysis over the timescale

Amount of time spent on writing documentation over the timescale

Amount of time spent on testing/review over the timescale

And so forth

These are all measures of production volume, product quality, and effort. If we have
some previous experience and data of this type for old and similar projects, we may
be able to estimate the effort and time needed for the new project. In many cases, the
type of project is of a new type, the technology being used may be unfamiliar, and the
programmers may also be different to previous projects. This it is a difficult issue to
decide what is best.

From the time sheets and documentation produced, we should be able to find the
following for the completed project:

Lines of code (loc) per person-month (pm)

Cost per 1000 lines of code (kloc)

Errors per kloc

Defects per kloc

5.6 Estimating Resources 145

Pages of documentation per kloc

Cost per page of documentation

Number of requirements

Average kloc per requirement

If we have this data, then we might be able to estimate what the next project will need
in terms of people and time.

But different types of project will require different amounts of effort, so we need
to collect information about the type of project:

Product functionality

product quality

product complexity

product reliability requirements

And so forth

These are not always easy to measure, unlike the first set of measures.
We need to describe the software being built on the basis of the requirements in

order to estimate the resources needed. There are several techniques, none of which
are very precise. If the new project is very similar to the previous ones, things are
much simpler. If it is a completely new type of project, perhaps involving a new tech-
nology, then it is much more difficult.

We can pick out a few simple principles from function point analysis that can
be helpful as long as they do not become too time consuming. Function point
analysis (FPA) was developed by Albrecht (1979) for business information
systems development.

1 For each requirement/story, we decide if it is one of input, output, inquiry,
reference file, database.

2 Assign a weight to each requirement: simple, average, complex.

3 Consider other influencing factors (reusability, adaptability) and weigh them
according to a suitable scale.

This is, to an extent, guesswork, but if we have an idea of which requirements are
hard to implement and which are easier, it will help us to plan.

Assigning these attributes needs some experience, but then what? Ideally there is
a database of previous similar projects that can be analyzed and conclusions on the
effort required to complete a story made.

5.6.2 Object Point Analysis

This method was introduced by Banker et al. (1992).
It is based on:

The number of separate screens: simple ¼ 1 object point, average ¼ 2,
complex ¼ 3.

146 Chapter 5 Identifying Stories and Preparing to Build

The number of reports to be produced: simple ¼ 2 object points, average ¼ 5,
complex ¼ 8.

The number of modules that must be developed: 10 object points for each
module.

A module will be any small coherent part of the system; it could be a screen or
a story.

It is easier to calculate this from the high-level requirements.
The COCOMO model (Boehm, 1995) is an estimation process that is based on

industrial data, see any software engineering text such as Pressman (2005) or
Sommerville (2006) for more details.

5.6.3 COSMIC FFP

This is an updated version of the function point analysis. It is based around a very
simple definition of a piece of software functionality: a function process is a
unique set of data movements: input, output, read and write.

Actors trigger these movements, directly or indirectly. These movements are also
identified at the lowest level in terms of the requirements, that is, we do not break
them down into smaller functions. Events will trigger these functions, and we con-
sider them to run until they complete.

Then we sum up how many of these functions there are, ignoring their type or
any other factor.

Such a simple method of estimating might be very useful for XP projects; it still
requires the collection of data about a team’s velocity in order to be useful, though.

Further details can be found at http://www.cosmiccon.com.
Whatever technique is used, there is a number generated (function points, object

points, etc.). What does this mean?
Well, it means nothing if there are no data from similar projects available. This is

the key.
For each story, carry out some resource estimate, and then record this to generate

some kind of useful data for the future.
As projects progress, the reliability of these estimates will be discovered, and

some amendments can be made to the method.
What is important is that some method and review is attempted. We do not pre-

scribe any particular approach as it is clear that there is so much variability in projects,
teams, and technologies that it is hard to come up with a magic solution to the
problem. The key point is to measure something on a regular basis and use that infor-
mation to help with developing an understanding about how future projects might
progress.

We have developed an Eclipse plug-in, PlanClipse, to support simple day-by-day
planning activities and feedback. It is available from

http://www.genesys.shef.ac.uk/eclipse/planclipse/index.html

http://www.genesys.shef.ac.uk/eclipse/planclipse/2.2/org.eclipse.adpt.
planner_2.2.1.jar

5.6 Estimating Resources 147

The basic idea is that as each story is completed—unit tests written, coding done, and
tested such that all tests are passed—it is recorded in the tool together with any
decisions about those stories that are still to be done. This is done using a story plan-
ning chart. If the project has a fixed delivery date, then there may be some scope for
adjusting the list of mandatory stories, reducing the number if things are taking too
long and increasing them if things are going well. There are usually some desirable
and optional stories that can be included if an earlier delivery is not needed.

The chart in Fig. 5.19 plots weekly progress. Initially, we estimate the number of
stories that will be implements—as well as we can—in the time available for the
project. This is point A. As the project develops, we check the number of stories com-
pleted—so initially there was good progress and after 3 weeks things were going well.
As a result, some extra stories were then planned, point B. The estimate of progress to
completion indicated by the progress or pace line was drawn. The challenge is to keep
above that line as far as possible. At C, the number of stories was increased because it
looked as though the plan was too pessimistic.

Finally, the progress made by week 8 was reviewed and another revision of the
story list at point D was made. This resulted in a reduction of the number of stories in
order to allow for the time for system testing. There may be further changes as the
project goes into the last few weeks, but these must be considered in terms of the
risks and benefits to the project—risks of over-running and threats to the quality of
the system due to inadequate systems testing versus the benefits of better alignment
with the current needs of the client.

It is absolutely vital that enough time is left for thorough systems testing before
delivery—if this is not done there will be serious problems.

Figure 5.19 A story planning chart.

148 Chapter 5 Identifying Stories and Preparing to Build

The benefit of this approach is that it is reactive, and progress can be measured
easily and tactics adapted to meet the demands of the situation.

5.7 REVIEW

This chapter has looked at how the planning game and the use of story cards can help
us to develop a detailed requirements document. Although the requirements are chan-
ging, it is important to bring all the changes into a single document at suitable stages
through the document. We considered how the different functional requirements can
be integrated into a simple (extreme) model that helps us to think through how the
system will work overall. These processes will be repeated as the requirements
emerge and change. Chapter 9 will examine some of the issues relating to this evol-
ution of the system and the ways it can be articulated and managed.

Non-functional requirements were identified as a key factor in the success of a
system. These need to be thought about very carefully and clear and measurable state-
ments made about them.

Estimating the resources needed to complete a project is notoriously hard, and
two techniques—function point analysis and object point analysis—were briefly
described. These can only be rough and ready guides until you get more experienced.
Noting down as much detail about your team’s performance and the time taken to do
things will provide an ongoing and useful archive for future projects.

EXERCISES

1. Read Appendix A. These requirements relate to a real project that were successfully
implemented using XP.

2. Prepare your own requirements document for your client for submission also to your tutor.
The contents are specified below. Use the planning game to create the individual require-
ments for the document.

Your requirements statement should contain the following sections and paragraphs:

Introduction: a statement of the required system’s purpose and objectives.

Dependencies and assumptions: things that will be required for your system to meet its
specification but which are outside your control and not your responsibility.

Constraints: things that will limit the type of solution you can deliver (e.g., particular data
formats, hardware platforms, legal standards).

Functional requirements: you are advised to prioritize your requirements into those
that are

Mandatory

Aesirable

Optional

Non-functional requirements: with accurate definitions and an indication of how they are
to be measured and the level required.

Exercises 149

User characteristics: who will the users be?

User interface characteristics: some indication of how the interface needs to be structured
and its properties.

Plan of action: defining milestones (key points in the project):

Deliverables: an indication of when increments will be ready

Times when these events will occur.

Glossary of terms.

Any other information such as important references or data sources, and so forth.

Below is a simple tabular template that could be used for some of the functional and non-
functional requirements. It includes a column for trying to set priorities for the individual
requirements and to identify the risk of change in the requirement, a difficult thing to estimate
but worthwhile for planning purposes.

Number Description
Mandatory/optional/

desirable
Priority
(1–9)

Risk
(1–9)

Function
point

1.

CONUNDRUM

The company wanted an intranet that provided support for many of their business
activities and also their personnel management. The site would contain information
about the various company activities, a diary system, and templates for administrative
tasks such as the submission of illness and absence forms. The users would be able to
log on remotely to carry out tasks as well as from within the company offices. The
customer was able to maintain a very close relationship with the development team
and had a clear idea of what the company needed. There were three teams using
XP working on this project, each competing with all the others. Initially, all the
teams thought that the project would take 10 weeks. It didn’t quite work out like
that. When the first team delivered their first increment, they discovered something
important that had not emerged from the planning game. The company had a
service agreement with a third-party network solutions company that provided the
computer system and the Internet connection for the customer. This led to a

150 Chapter 5 Identifying Stories and Preparing to Build

serious problem for some of the teams and resulted in some failing to meet the
10-week deadline despite the careful planning.

What might have been the problem?

REFERENCES

A.J. ALBRECHT. Measuring application development productivity. SHARE/GUIDE/IBM Application
Development Symposium, Monterey, CA, 1979.

R. BANKER, R. KAUFFMAN. An empirical test of object-based output measurement metrics in a computer-
aided software engineering (CASE) environment. Joural of Management Information Systems,
8:127–150, 1992.

B. BOEHM. Cost Models for Future Life Cycle Processes: COCOMO 2. Balzer Science, 1995.
M. HOLCOMBE, F. IPATE. Correct Systems: Building a Business Process Solution. Springer, 1998. Available
at: http://www.dcs.shef.ac.uk/�wmlh/.

R.S. PRESSMAN. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 2005.
B. SCHNEIDERMAN. Designing the User Interface: Strategies for Effective Human-Computer Interaction.

Addison-Wesley, 1998.
I. SOMMERVILLE. Software Engineering, 8th ed. Addison-Wesley, 2006.
C. THOMSON, M. HOLCOMBE. Applying XP ideas formally: The story card and extreme X-machines. In
Proceedings of the 1st South-East European Workshop on Formal Methods. Thessaloniki, Greece,
South-East European Research Centre, 2003, pp. 57–71.

C. THOMSON, M. HOLCOMBE. Using a formal method to model software design in XP projects. In
Proceedings of the 2nd South-East European Workshop on Formal Methods. Ohrid, FYR of
Macedonia, AMCT, Vol. 1 (3), SEERC, Thesalonilli, Greece, 2005.

References 151

Chapter 6

Bringing the System Together

as a Coherent Concept

SUMMARY

Finding the right initial architecture for the application

† Three-tier architectures

† Deriving architecture information from the model

† Extreme modeling and the system metaphor

6.1 WHAT IS THE PROBLEM?

The requirements have been expressed in the details of the stories and the non-
functional requirements, but currently the overall picture of the system may be
unclear. Some stories can be implemented more quickly than can others. In terms of
trying to deliver working pieces of software on a rapid timescale of a few days,
these stories will be relatively straightforward. Many authors recommend that
systems should be built using very small units that do not have a complex internal struc-
ture and that can be tested thoroughly. This works up to a point but it may result in the
developers being unclear about how the final system will look. There is also the risk
that the final system is not very well organized from these components, and it may
possess a very complex and poorly understood communication structure between the
classes, thus making the complete system very difficult to test at the systems level.

XP suggests that gradually building the system through gradual integration of
units will be a way of addressing this problem. This does suppose, however, that
we know how the units behave as components of a more complete subsystem. This
is a major weakness if we do not fully understand what this subsystem is supposed to
do in terms of its position within the complete system.

We need to find a way of thinking about how the overall system is meant to be
organized and how it will operate, as well as how any significant subsystems work.
Some call this a system metaphor or an architecture.

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

153

For more complex stories, thinking about them as a subsystem of interacting
units will help to prevent problems in testing later.

In this chapter, we look into the way that simple notations such as state machines
and XXMs might be used to explore the behavior of a story that was more complex
than a simple one. We will build on that here. First, however, we need to think more
about the relationship between the stories and the complete system.

Clearly, a starting point is the stories and requirements that are being developed
with the customer. One issue that dominates the process is the different levels of
abstraction that may be involved.

This conceptual gap (Fig. 6.1) has a major impact on the testing process, and it is
important that we make sure that it does not hide vital aspects of the system. An effec-
tive system metaphor is needed to make the link across this gap and ensure that the
testing process is also effective.

If the metaphor can be turned into an accurate model of the intended system that
links the overall “big picture” of the system to the lower-level “story” view, then we
will have a mechanism to maintain the integrity of the system as it evolves to suit the
emerging needs of the customer. A problem with an ever-changing set of stories and
requirements is that the understanding of the overall system may get lost. Naturally,
there will be an ongoing cost in terms of maintaining the model and its relationship
with the stories as things change.

If the system metaphor model is kept fresh, then it can be used to design system
tests. This adds value to the process of building a metaphor as it will play an import-
ant role in testing as well as conceptualizing the target system.

A number of candidates for a system metaphor have been considered by many
authors, but none seem to have considered how it might impact system testing. In
many cases, the metaphor is an analogy, such as a spreadsheet, a production line,

Figure 6.1 The conceptual gap.

154 Chapter 6 Bringing the System Together

and similar such examples drawn sometimes from familiar types of software or from
everyday experience.

Whereas these are valuable for a general understanding, they rarely seem to relate
strongly to the individual stories, and thus the conceptual gap becomes an issue. The
techniques used here, the extreme X-machine, has turned out to be very useful for
both programmers and users.

Essentially we need to provide some framework within which we can discuss
the software being developed in order to relate what we are building to what
problem we are trying to solve. This can be achieved in many ways. It depends on
what the application is.

A metaphor may consist of some of the following elements:

An exemplar system with a similar purpose: this might be a well-known package
or some existing bespoke software used in the client’s organization. We will
call this a metaphor exemplar.

A general architecture of the solution expressed in terms of components or layers
of software organized to communicate in particular ways; for example, a
client–server architecture. This will be an example of a metaphor
architecture.

A high-level model that describes in some suitable language the essential
features of some aspect of the software; it might be the structure of the user
interface, communication protocols, database structure, and so on. We will
call this a metaphor model.

It could be a class diagram or some similar organization of the software com-
ponents into a structured and hierarchical representation.

The metaphor also needs to consider the system boundary, where the software system
meets the rest of the business, the business personnel, not just the system users, the
customers, and all the stakeholders. There are dangers at these interfaces if critical
aspects are ignored. We need to think about some of the issues carefully.

What if there is no clear metaphor? Then we need to try to discover the metaphor
by creating some software and seeing how it might help in clarifying what is needed.

Suppose your customer has no real idea of what he or she wants—they know they
want something but what? From your knowledge of software systems, you may be
able to identify something simple that could be built without a lot of effort and
that could demonstrate something to the customer that might trigger some greater
understanding of what is possible and what might actually work for them.

Sometimes it pays to offer them two possible alternative ideas, and they might
then choose one they prefer (as opposed offering just one that they don’t think is
right). People can ofter choose one from two rather than identify what is not there
in a single candidate.

This effort is not wasted; it might result in your code being thrown away, but
better that than persevering with something that isn’t going to work for your
customer.

6.1 What is the Problem? 155

6.2 A SIMPLE COMMON METAPHOR

If we think about the system that we have been considering in the previous
chapters, a simple customer and orders database, then it is Possible to identify
some basic components. We can envision it in the form of a classic three-layer
structure (Fig. 6.2).

The user interface is represented by the machine state space and the business
logic by the definitions of the transition functions. The interaction with the database
is carried out through the business logic layer responding to and supplying output
to the interface. For an e-commerce system, the user interface is probably accessed
through a Web browser, and the client–server communication is made through
the Internet.

If we look back at the way that we developed the requirements, we note that
the role of the story cards was central. If we then consider these the way in which
the requirements were described in terms of the inputs, the internal memory,
and the outputs, then we can capitalize on this information in developing the
system metaphor and the class architecture.

Consider, for example, a story such as “UploadCustomer”; then we note that
there is a series of interface events that are involved at the user interface. Thus infor-
mation is communicated between the user interface and the business logic server.
This carries out a number of checks on the data supplied, for example, checking
that the rules defined for the data are satisfied, making sure that text is supplied
when text is needed, perhaps checking zip or postal codes are correctly formed,
and so on.

On confirmation of the details presented at the interface, the data is committed to
the database using a suitable object database connection technology if you are using a
relational database (Access, MySQL, etc.) or another suitable technology if you are
using XML as a database.

In a similar way, querying will involve building up a query through the
user interface; this will be validated at the server and the database queried,
the results being presented through the user interface in a format defined at
the server.

Thus how do we design the interface, the server, and the database?
The conventional principle is to separate out the different areas of concern into

layers and to ensure that the separation is clean and efficient. The Sun java J2EE
model is a typical example of this idea (Figure 6.3).

Figure 6.2 A classic three-layer architecture.

156 Chapter 6 Bringing the System Together

Patterns such as the above are created to permit a clear separation between the
different technologies needed to develop such a system, and each technology has
its own standards and construction methods.

Such systems should be easier to maintain as there is a clear separation of con-
cerns, roles, behavior and code, although there is a shortage of empirical evidence
that this is so.

In commercial systems, the lower tiers of the system will service many different
types of upper tiers. These upper tiers are also more likely to change with new appli-
cations. The lower levels are more stable, but when they do have to be reengineered, it
is expensive.

But how do we do this when we are basing our approach around small incre-
ments. This raises a nuber of questions:

Does this mean that the smallest increment has to involve all of the layers?

Should we build the database first or the GUI and regard these as increments?

What happens when there is a major requirements change and we have to make
revisions to the database structure, for example?

The idea of a separation of concerns is great if it is introduced at the appropriate time
as it allows for detailed work on a part of the system without affecting other areas.

Figure 6.3 An e-commerce architecture.

6.2 A Simple Common Metaphor 157

However, it is possible to get too obsessed with this idea too early; for example,
before we fully understand the real needs of the customer. We need to make some
judgments here, and good judgments usually need experience or some guiding
principles.

What is driving the incremental approach in XP and the desire to produce the best
solution in a changing world is the principle of the last responsible moment, which
means that we should not fix on a definite solution or rigid architecture before we
are ready.

This then poses the question of how do we interface an agile approach to an
architectural framework such as the three-layer model?

There are a number of development environments that can support some of these
standard architectures, particularly in the realms of Web-based database systems.

Ruby on Rails is one such language that can be used to generate such systems
rapidly—it is based on the Ruby language (an object-oriented language developed
from Smalltalk and Python) and provides support for the development of the under-
lying database as you go along. This may make building small increments easier.
Further details are at http://www.rubyonrails.org/.

Another similar environment is Symfony, which is PHP based and is claimed to
be very compatible with XP. In both these approaches, the development of the GUI is
the main driving force, and the database is dealt with as you go. Further details on
Symfony may be found at http://www.symfony-project.org/.

Figure 6.4 An incremental driven approach to building a three-layer architecture.

158 Chapter 6 Bringing the System Together

If you are dealing with the three-layer architecture and trying to build small incre-
ments, then the way to do this will depend on the circumstances. However, you might
find that the increments may involve just parts of the GUI or parts of the database or
some more complete slice through the architecture.

Figure 6.4 provides a hypothetical view of a small project that starts with some
GUI increments, then a partial database is built that is then connected to the GUI
through a middle layer, which then needs further increments; the GUI is developed
further, and this leads to more database work, more in the middle layer, and then
the integration. Testing will take place as we go along so that the connections
through the layer should be working when the final build is made.

6.3 ARCHITECTURES AND PATTERNS

Whatever system is finally built, it will have an architecture: it will be composed of a
number of components, and the architecture describes how these are put together.
Some standard architectures are used for standard types of problems: they all have
their strengths and weaknesses. Decisions have to be made about the architecture—
sometimes at a time when the full implications of the system being built are still
unclear. Once an architecture has been chosen, it is difficult and expensive to
change. This is needs to be considered carefully.

Essentially, an architecture is the outline of a design solution to a problem. In an
agile project there is a dilemma—how do we fix an architecture when we may not
fully understand the problem?

There is some benefit in exploring the problem through a conceptual model with
the customer before the architecture is finalized.

The XXM approach described later in this chapter can be really useful in this
situation as many people can see the way that the system might behave and how it
might relate to their business needs.

Once we understand what it is that we are trying to build—and this develops
gradually over the course of the project—we can start thinking about the architecture.

There will be many possible choices to make, and the way this decision is made
has to be a team decision with everyone committed to it. Unfortunately, this is an area
where opinions can be strong—all the more surprising as for many there is very little
evidence to support them. It is better to choose an approach that has been shown to
work than to pick something that has been the subject of hype or is “hot of the press”!
Don’t forget that simplicity is one of the key values in agile development—don’t use
an architecture that is more complex or difficult than the problem needs. Certainly
don’t take the view, “I want to use this architecture,” before you have really under-
stood the problem.

A recent Genesys project underlines some of the dangers in adopting a potential
solution before all of the issues are understood. Our customer wanted an e-commerce
retail system that was integrated with a stock control system. A popular ASP.NET
shop framework, supported by Microsoft and PayPal, was adopted fairly early on,
and the project proceeded reasonably smoothly—and rapidly.

6.3 Architectures and Pat terns 159

It became apparent, after several weeks of work, that it was not an ideal solution.
The underlying architecture was not either very well articulated or flexible, and too
much of the key data was hard coded into the framework and just did not allow
for the flexibility the team needed in order to meet the customer’s requirements. It
seemed to have been designed to impress rather than to deliver! If the customer
could have taken the framework and customized it to his needs, then it would have
been a quick and effective solution. However, it was completely unsuitable as a
basis for anything other than the standard solution that it was produced for.

The project started again with a more suitable architecture. Progress was fairly
rapid after this as many of the issues relating to the customer’s requirements had
already been considered so the team was able to deliver a good solution on time
despite the problems.

An important trend in object-oriented programming is the design pattern.
There are now many types of these, and they are intended to provide a reliable
framework for many common tasks in programming. The same advice is relevant
here—don’t decide that you must use a particular pattern before you understand
the problem well.

6.4 FINITE STATE MACHINES

We take a small diversion at this point and start to think about how stories might
appear in action. Software is dynamic; in other words, it responds to events and
inputs, and this behavior is dependent on the internal status of the program—the
state it’s in.

Extreme programming encourages all the participants to continually explore the
assumptions about the needs of the customer; to encourage everyone in learning more
about the processes involved in an attempt to provide the greatest possible value for
both customer and developers. The analysis and design effort is spread right across
the project and not just concentrated at the beginning.

However, its success is dependent on identifying really rigorous system test sets
as these are what constrains the software solution to a high-quality and suitable
solution.

Testing is a dynamic activity; you supply some test inputs and see what happens.
Thus a dynamic model of software is needed in order to predict what are the best tests
that will provide convincing evidence that the software—the story, the system, or part
of the system—works in the sense that the requirements are met.

It is impossible to define stringent test sets without knowing some details of what
the system has to do. This is the basic dilemma that we face and one that has not been
fully resolved within the XP movement.

What is needed is a notation that is simple to use and understand, adaptable to
changes in requirements, and which can add value to the project in as many ways
as possible.

Ideally, it should be possible for customers to understand what the diagram tells
them. This is quite a challenge, and few of the current notations seem to be suitable.

160 Chapter 6 Bringing the System Together

Unified Modeling Language (UML) is widely taught in universities and is used
in many design-led projects. However, it is a very complex and sprawling set of
different types of model that can cause as much confusion as enlightenment.

Let’s try to identify something that is lightweight, easy to use, flexible, under-
standable to both developers and clients, which can contribute to a clearer view of
the way that the application works, and, as an important bonus, provides the frame-
work for systems testing.

It is also based on some ideas that are taught in most computing courses,
although usually presented in a theoretical way and which may not have been
obviously useful for practical software projects.

The notion of a finite state machine is core to the understanding of how compu-
ters work, both in terms of hardware (sequential processors) and for some software
applications (simple control systems) and, in a more general form, compilers (lexical
analyzers). Many universities teach courses on finite state machines although very
little use of them is made afterwards in software engineering. A variant, statecharts,
is featured in UML but is generally restricted in its use.

A finite state machine (also called an automaton) consists of a finite set of states
together with transitions between states that are triggered by streams of inputs.

In Fig. 6.5, we have a machine with five states f1, 2, 3, 4, 5g. There are two input
symbols fa, bg and three output symbols fx, y, zg.

This machine starts in state 1 (the initial state). The machine will read whatever is
the first input symbol and move to another state while outputing an output symbol. An
input of a will move the machine to state 2 and generate an output of x; but an input of
b will move the machine to state 3 and generate an output of y.

Streams of inputs will produce streams of outputs, thus the sequence a a b a b
(read from the left) will cause the output sequence x z y y y and end with the
machine in state 5.

Other sequences will have different effects.
For a simple log-in function, we might have a little diagram something like

Fig. 6.6.

Figure 6.5 A simple finite state machine.

6.4 Finite State Machines 161

This is quite a descriptive diagram as it shows the sequences of possible
actions that the system undergoes—initially the user starts at the Start state
and logs in. This takes them to the Check name state, and if the username is
not recognized, the system returns through the fail transition to the Start state.
If the name is registered, the user is then prompted for a password, which is
then checked. Again the log-in will fail if this is not correct. Otherwise the
user is into the main part of the system.

The problem is that it is not a proper finite state machine for a number of reasons:

1 The user inputs are sequences of symbols rather than a single symbol.

2 The output is not specified in the diagram.

3 The Check name and Check password states hide a lot of invisible behavior; in
particular, the machine needs to look up information in some database or
similar memory component.

Thus finite state machines are not powerful enough for our purposes. There are
other, more powerful machines that can be used, for example, pushdown machines
are popular in theoretical computer science courses. They contain a simple stack
like memory that can be used to do more sophisticated things such as to recognize
certain types of formal languages (context-free languages).

Furthermore, finite state machines tend to be too low level for practical use, but a
generalization of these has been developed based on ideas of a famous mathematician
of the 1970s (Samuel Eilenberg).

This will be discussed in the next section.
Our approach is to apply this extremely powerful modeling paradigm that

seems to be fairly easy to use and has proven excellence in the construction of
functional test sets.

Figure 6.6 A simple state machine of a log-in process.

162 Chapter 6 Bringing the System Together

6.5 EXTREME MODELING (XM)

It makes a lot of sense to have a simple and lightweight method of describing the
system or parts of a system in terms of what it does and the order in which it does
it. If we have such a picture, we will be able to use it to define test sets that do
more than just test one simple function.

The extreme X-machine (XXM) is a suitable candidate. These were introduced
by Thomson (2003, 2005), and we have been using these for a number of years
with great success. They are popular with programmers, and customers can also
make sense of them.

The simple machine of the type in Fig. 6.6 is called an X-machine by Eilenberg
(1974) and is discussed at length in Holcombe (1998). It can be used to describe
many things, but it is not always convenient.

One problem is that each state transition (indicated by an arrow) needs to be
triggered by an external input or event. Sometimes, especially in object-oriented
programs, we would like to allow the system to call some other function or
method without an explicit external input.

Thus we might have the diagram shown in Fig. 6.7.
Here the input from a potential user is supplied in one go, by completing a simple

form, and the Validate user state then generates a result that triggers one of the three
transitions Fail, User access, or Admin access internally.

The operations that are labeling the transitions (arrows) represent functions of
various levels of complexity. The real power of these machine diagrams is that
they can be hierarchical. In other words, the functions labeling the transitions can
themselves be broken down into a series of operations at a lower level described
by a subsidiary machine.

Figure 6.7 A simple XXM.

6.5 Extreme Modeling (XM) 163

Thus the Username & password function could be defined in another diagram
(Fig. 6.8).

In this system, consider what happens in the Check password state. There are
three possible transitions from this state:

The password is okay and the user has Admin privileges.

The password is okay and the user has User privileges.

The password fails, and if this happens three times, the error state is reached, and
a message is displayed on the screen stating this.

There are no other possibilities and so the system will be fully defined at
this point.

In some cases, you may find a state where there could be cases that have not been
specified—in these cases it is important to decide what the system should do—it
might ignore an input and remain in the same state, for example, or raise an error
and transfer to an error state from which some suitable recovery is defined.

Now consider the benefits for testing. As soon as you have defined an XXM, it is
possible to define some testing sequences. An obvious strategy is to design test sets
that will trigger each transition either singly or in sequences derived from the
diagram.

For Fig. 6.8, the following operational sequences can be defined, immediately.

1 Display Login (essentially running the program from the beginning)

2 Username & password

3 Admin access

4 User access

We are using the labels of the transitions to denote these sequences. We need to
consider the Fail transitions, also. Thus a set of test sets can be constructed to do this.

Figure 6.8 A detailed XXM model of the transition Username & password in Fig. 6.7.

164 Chapter 6 Bringing the System Together

Suppose we define a set of users with passwords—some with admin access
(Table 6.1).

We need also to define some other strings to represent invalid users to
the system.

Now we can set up a simple set of tests to see whether the entire machine is
implemented correctly in the implementation of the story. Thus a test such as
,User1. ; ,Pass1. should result in getting to the Admin section initial screen.
However ,User1. ; ,Pass2. should produce a failure, which returns the system
to the Start screen. Thus the strategy is to make sure that every path through the
machine (a path is a sequence of transitions taken one after the other) is explored
and tested.

The model thus far discussed puts the main focus on the control of the soft-
ware—what can be done and when. Software, however, consists of two principle
elements: control and data. They are intimately linked together—one without the
other tends to provide an incomplete view of things. In languages such as UML,
there are diagrams and notations that can describe the control (e.g., statecharts),
and there are diagrams that describe data (often from an implementation point of
view such as class diagrams together with local methods).

In the approach taken here, we have a tighter link between the two aspects. The
XXM diagrams show the flow of control in the system; the states divide up the system
in such a way that the operations are managed in a suitable way. But what do these
operations do? They process data, and it is here that we can introduce the type of data
that is important to the application.

The example discussed above involves data in some kind of database. Thus the
operations in the system manipulate this database—uploading information, querying
information, and deleting information. Each of the operations can be defined in terms
of what it does to the database state.

In another example, consider a word processor. Here the operations will manip-
ulate text, inserting sections of text into an existing document, formatting parts of the
document, saving and opening text files, and so on. The data can be described in very
general terms as a set of sequences of characters or symbols, including spaces. In a
rather simplistic way, we could describe the state of a document as consisting of
three sequences:

,sequence1. , ,sequence2. , ,sequence3.

Table 6.1 Basic Data for Some Tests

Name Password
Administration

rights

User1 Pass1 Admin
User2 Pass2 Admin
User3 Pass3 no
User4 Pass4 no

6.5 Extreme Modeling (XM) 165

Each if these sequences could be empty.
The sequences

,A cat sat. , ,. , ,on the mat.

represent a document with the text “A cat sat on the mat” and the cursor positioned
immediately after the word sat.

The sequences

,A cat sat. , ,quietly. , ,on the mat.

represent a document “A cat sat quietly on the mat” with the word quietly highlighted
at the cursor.

The sequences

,. , ,. , ,.

represent a blank (new) document.
Thus we try to identify the operations that are important, the data that they

operate on, and the state space that provides the organization of these operations
into a system.

In many cases, these operations relate to stories, and the identification of the data
that they operate on will be an important activity.

As we gradually build up the system in increments, we will find that the data
being operated on will gradually expand or become refined (in a database application
the database structure may change), new tables added when new stories need them; in
the word processing example, the structure of a document will become more complex
(e.g., if we are inserting pictures into the text, this will need an extended vocabulary
including file references for the pictures that are inserted in the appropriate place
in the text).

6.6 MULTIPLE STORIES AND XXMs

What if we have a number of connected stories such as in Fig. 5.7? Here is an
example: F-net (see Chapter 4).

Figure 6.9 is a top-level view of the system illustrating how different sections
relate to each other. The diagram is not complete as the subsidiary pages have no
arrows leaving them—the convention here is that they will return to the main page,
but final decisions have not yet been made, and the diagram may be expanded at a
later time.

Now we are beginning to see how the system might fit together; how it might
look to the user and behave. It is worth showing the client some mock-ups of the
interface at this stage and work through the scenarios derived from the requirements
analysis that you have been doing. We can get some feedback to enable us to check if
we are going in the right direction. The client can also reexamine his or her ideas and
perhaps see new opportunities or problems with their original thoughts.

166 Chapter 6 Bringing the System Together

The next, more detailed example that we will consider is the DELTAH project
(Fig. 6.10) that involved a set of Web pages organized as follows: The user interface
contains nine main Web pages called FrontPage, Home, Deltah, About, News,
Downloads, Questionnaire, Links, and Contact Us. Each of these Web pages may

Figure 6.10 The DELTAH home page.

Figure 6.9 Main XXM for F-net system.

6.6 Multiple Stories and XXMs 167

also include one or more subpages as well. The user can open each Web page simply
by clicking on its name.

The next task is to think about the order in which these screens will be deployed
and the tasks that can be done on each screen. The sequence of Web pages are
described using the set of XXMs shown in Figs. 6.11–6.15.

Figure 6.11 XXM for Questionnaire section.

Figure 6.12 XXM for MailingList section.

168 Chapter 6 Bringing the System Together

From the diagrams, one can see how the basic functions are organized. These
machines differ from the standard finite state machine and from the statecharts
sometimes used in UML in the sense that there is a memory in the machine, and
the transitions involve functions that manipulate the memory as and when an input

Figure 6.13 XXM for News section.

Figure 6.14 XXM for Events section.

6.6 Multiple Stories and XXMs 169

is received. This provides an integrated modeling approach that combines in one
diagram both processing and data.

This is explained by referring to the requirements table and the story cards where
the memory connection is described.

For example, in the first diagram (Fig. 6.11), the memory in this case is likely to
be the database that contains the questions in the questionnaires together with the
answers, and so on, etc. of customers and orders.

The function ClickLogin simply navigates between two screens and has no
memory implications, but the function ClickEdit will involve some interaction
with the database; it will download questions to be edited—generating a message
if none are on the database. There may be some dialogue with the user to identify
the precise questions that need editing. This would be described in a subsidiary
diagram, using the hierarchical properties of XXMs.

The function ClickSave in Fig. 6.16 actually changes the database by updating
the records with the new or altered questions.

The memory structure now needs to be discussed. Essentially, we need to think
about this in terms of what basic types of memory structure are relevant at the differ-
ent levels. At the top level, for example, we could represent it as a small vector or
array of compound types of the form:

Questionaires :¼ set of questions

where

questions :¼ question number; question text; question answer

and the data is text.

Figure 6.15 XXM for Press section.

170 Chapter 6 Bringing the System Together

The diagram can be used to define when and under what conditions different
processes and stories are available. It will also help us to test the system thoroughly.

6.7 BUILDING THE ARCHITECTURE TO SUIT THE
APPLICATION: A DYNAMIC SYSTEM METAPHOR

Thinking back to the X-machine model, it now becomes clear that this structure is
entirely in keeping with what is going on in the Business Logic tier of the simpler
architecture in Sections 6.3 and 6.4 What we can do is separate out the different
parts of the Business Logic layer in terms of what communication it is expected to
carry out. The X-machine will define the overall structure of the controller, which
would represent a number of if-then-else statements; the model will reflect the
current state of the system separated out from the underlying database.

We can develop an XXMmodel of a system, such as Fig. 6.17 and the next stage
is to try and map that onto the architecture.

The Ignore transition is designed to deal with situations where the mouse is
clicked in an area outside of the buttons Customer or Order.

From this state, we have one of three mutually exclusive situations:

Mouse is clicked over the Customer button

Mouse is clicked over the Order button

Mouse is clicked over the rest of the screen or any keyboard key is pressed

This ensures that there is some defined behavior for the system under all possible
conditions that can hold in this Start state.

We should include Ignore functions like this in many other states so that there is a
full specification of what the system should do under all conditions, but the diagram
will get cluttered.

Figure 6.16 Expansion of EditQuestion state in Fig. 6.11.

6.7 Building the Architecture to Suit the Application 171

Another aspect to consider is the identification of potential error states—states
where the system can no longer continue without endangering the integrity of the
system somehow. We need to identify these error states and decide how to handle
them.

The process of adding all these Ignore or Error transitions is to produce a
complete machine.

What is important is that we should think about every state and examine what
will happen under all possible conditions. There are two questions to ask:

1 Is there always a transition that will be valid?

2 Is there only one valid transition?

If there is more than one valid transition under some conditions, the system will
be nondeterministic, which means that its behavior will not be predictable—usually a
bad idea!

Returning to the system under discussion, we need to consider some of the
operations and, in particular, the data they are processing in more detail.

The first stage is to consider the data requirements and construct the under-
lying database. To do this, we examine what the information is being stored and
what it is used for. Some of this will be described at a high level and will need
decomposing into more detail; for example, there are customers and these have
been defined in terms of their names, addresses, phone numbers, and so forth. This
is clearly a suitable structure of a database table with an appropriate customer key
(Table 6.2).

The machine can be refined to include more detail, and an example of this is
Fig. 6.18. (Note that we have indicated some of the Ignore functions to remind
ourselves of the need to complete the machine.)

Figure 6.17 An XXM diagram.

172 Chapter 6 Bringing the System Together

T
ab

le
6.
2

A
S
im

pl
e
C
us
to
m
er
s’

T
ab
le

C
us
to
m
er
_I
D

C
us
to
m
er
_n
am

e
A
dd
re
ss
_l
in
e1

A
dd
re
ss
_l
in
e2

A
dd
re
ss
_l
in
e3

Z
IP
/

po
st
co
de

P
ho
ne

E
-m

ai
l

A
B
C
12
3

W
id
ge
tC
ity

34
5
B
iz

Pa
rk

S
om

e
R
oa
d

B
ig

C
ity

B
C
1
4
A
S

56
4
58
3

W
id
g.
co
m

A
B
C
12
4

T
hi
ng
A
ra
m
a

C
or
p
H
ou
S
ta
rt

st
at
e.
se

L
itt
le

S
tr
ee
t

T
ow

ns
vi
lle

T
V
2
7B

B
53
0
98
6

T
hi
ng
A
ra
m
a.
co
.u
k

173

Another table is defined for the orders component, and so on.
One problem with databases is that they are often hard to maintain in the sense

that, if our customer comes along with some fundamental new requirements and these
involve substantial changes to the tables and their relationships, then we could be in
trouble requiring a major reengineering of the database. There is no easy solution to
this; relational tables are highly optimized for performance and integrity, and the
price that is paid for this is in their inherent inflexibility in the light of changing
requirements.

Increasingly, databases are being developed using the language XML (Bray,
2000), which is much more flexible. There is technology available to connect appli-
cation programs to these XML databases. The main APIs (Application Programming
Interfaces) for providing an interface for XML documents in Java are JAXP, the
Document Object Model (DOM), the Simple API for XML (SAX), and JDOM.
All these APIs offer advantages and disadvantage with no single API standing out
as the standard, although JDOM is becoming popular in Java-based applications
due to its efficiency and ease of use (JDOM, 2001). Other technology includes the
Extensible Stylesheet Language (XSL) (Adler, 2001).

Now we consider the way that the problem can be interpreted using the XXM
of Fig. 6.5.

Suppose that the ClickCustomer function is triggered. This then requests the
system to present the Customer Screen, which it does through the Viewer component.

Figure 6.18 Unpacking an X-machine function.

174 Chapter 6 Bringing the System Together

The User then submits data through the Customer screen, the data is then ana-
lyzed to see if it passes the integrity tests on the data—is it of the correct format
for the field involved—and if there are problems, the response is to send an error
to the screen.

If the data passes the integrity check, the system then queries the database to see if
the record already exists, and if it does it will generate another error (different screen).

If it is a genuine new customer, the system will update the database with this
information.

The GUI will comprise different screens for display to the user: some will be the
screens listed on the XXM diagram, and others will be error screens associated with
business logic clauses that fail—the type of data submitted is invalid, the data con-
flicts with that on the database, and so forth.

To explain these different actions, we can envision them in the following
sequence diagrams.

The simplest case is a direct interaction between the User Interface and the
Business Logic layer that does not require the involvement of the database. The func-
tions to control the slider bar, to resize the screen, and to migrate between screens
using mouse clicks and mouse movements are of this nature. Thus transitions in an
XXM are triggered by events such as button clicks or the results of queries, and
the results of these transitions are actions, which include changing the screen, com-
mitting data to a database, sending data to some other actor or component in the
system, and so on.

We can see how this general model works in a few examples.
A simple class will handle the sort of function shown in Fig. 6.19. It will listen

for the specified event and change the interface accordingly.
A more complex situation will arise if the interface view has to reflect some other

factor, for example to present specific information and functions that depend on
the current state of the database and system generally. Thus the system may cause
the GUI to disable or “gray out” a button or data field because it is not valid to
have access to the function beneath it under the specific circumstances pertaining
at the time.

Figure 6.19 A simple interface action.

6.7 Building the Architecture to Suit the Application 175

An example of a general process for doing this is to select the specific customer
and check whether there are any current orders and to present links to these orders on
a new screen (Fig. 6.20).

Similarly for a function that submits data, carries out a check with the database,
and then allows a commit action with reflection of success onto the screen.

Another example might be the validation of the format of the data supplied by the
user. The business logic needs to check that the input data is in a valid format, for
example a string of characters of length less than 30, a correct date format, and so
forth. If necessary, the model will query the database to see if there is already data
there in this field; depending on the outcome of this query, the logic will either
commit the data or report an error to the user interface. After successful database
update, a confirmatory message may be sent to the user.

The analysis of these events and actions will provide us with some
guidance on how the program should be structured and what classes will need to
be developed.

If there is a number of places where there has to be a check that the entry data
submitted satisfies some predefined format, for example a text string of length less
than 30, then it makes sense to write a class with a method that does just this. This
class is then available to the other parts of the program that require this check to
be made. This is better than embedding this check separately in all the methods
that need it.

The overall machine perspective is useful for the development of a simple system
metaphor. In the next chapter, we will look at the way in which we might derive the
class structure from it.

Because projects vary enormously, it is hard to provide examples of useful
metaphors that will be applicable to them all. In the next section, we look at
an area that provides an increasing number of projects, that of the e-commerce
application.

Figure 6.20 A conditional user interface action involving a database query.

176 Chapter 6 Bringing the System Together

6.8 ANOTHER LOOK AT ESTIMATION

The simple models that we have built using the X-machine approach can provide
some clues to the resources needed to carry out the project.

If you have been building these models and seeing what the stories that they
involve take to construct, then there is a way of identifying a general estimate for
the project.

Suppose that we have an overall architecture that indicates how the system might
appear when it meets most of the requirements that the customer identifies. We know
that the system architecture may change with time and these machines will need to be
updated—this is discussed in Chapter 9.

The diagram might have a top level description as in Fig. 6.21.
Each of the circles describes a state or a mode (aspect) of the system, and the

arrows describe a mechanisms for moving between these modes. These may be
defined in a variety of different ways. These operations may involve quite complex
activity that needs to be unpacked into a lower-level machine in the ways that we
saw above.

The idea is to continue unpacking the machines until we get to a level of abstrac-
tion that corresponds with a story or set of stories that can be completed in a short
iteration.

In Fig. 6.20 we see that there are seven of these high level operations. Suppose
that these are then decomposed into further lower-level operations until we get to the
level where we can start building stories.

In Fig. 6.22, we have decomposed some of the operations in the top level into
lower-level machines—and then some of these have been decomposed further. In
the top level, we have some simple transitions (operations) as well as some more
complex ones. The complex ones are then decomposed at the lower level and so on.

At the bottom level, each of the arrows represents an operation that can be coded
up as a small iteration, and we can use this as a means of making an estimate of the
effort needed.

Figure 6.21 A system architecture.

6.8 Another Look at Estimation 177

We can then collect together how many stories might be involved to give us a
rough idea of what effort is needed. These diagrams, however, provide a richer struc-
ture map of the system and can help to identify critical areas and their complexity.

In this hypothetical example, we might count up the basic stories and states
(screens) from all of these levels—so many at the top level, so many at the next
level, so many at the bottom level.

It may be that all of these are roughly equivalent in terms of how complicated
they are to implement, but we may have a more subtle view, knowing that some
will take longer than others from our previous experience. It may be possible to cat-
egorize these operations or stories and screens into different types and make estimates
on the effort needed to implement and test these from this information—recalling pre-
vious similar examples.

In some of our analysis, we have looked at the structure of the individual
operations—some involve database communication, others involve the construction
of a complex interface with a lot of data validation, and all of this information is
useful in estimating the development time.

If we return to our simple XXM (Fig. 6.23), then we can put some numbers on
the tasks involved in building this part of the system.

For the outline structure, which involves setting up a framework for the machine,
we can estimate, say, 2 days. For each screen, perhaps another 3 days each. For the
EnterCustomer function—which includes data validation—we allow 5 days. The
UploadCustomer involves database queries so that might take another 5 days—to
include the extension of the database if needed. In this way, we can put some
better estimate together for this part of the system. As always, it is based on our
prior experience, and we should look through our archives for similar activities to
see how we did with them.

We must not forget the impact of system testing in our resource model. The sizes
of the test sets can be estimated from the diagrams, and this can be an indication of

Figure 6.22 A hierarchy of machines.

178 Chapter 6 Bringing the System Together

test time—but then there is debugging time which is always a factor. Maybe we
should add a factor of 2 to cover this! Experience will tell you if this is reasonable
(Table 6.3).

6.9 REVIEW

The concept of the system metaphor is a rather inprecise one, and this is both
good and bad. It allows teams to develop their own approach relevant to their
application domain, but it then raises the issue of whether this is very helpful
for maintenance when a different team may be involved. What is important is
that the approach taken and the representations used are clearly explained and
documented.

Figure 6.23 A simple lower-level XXM.

Table 6.3 Estimates of Effort Required for the System
Described in Fig. 6.22

Activity Estimate of time (days)

Framework 2
Screen 1 3
Screen 2 3
Screen 3 3
EnterCustomer 5
UploadCustomer 5
Integration testing 10
Debugging 20
Total 51

6.9 Review 179

We have described a number of approaches to structuring the architecture of
the system that makes change more manageable. The thing to avoid is an unstructured
system where changes made in one area can have unpredictable consequences
elsewhere. Various layered approaches are common these days, and the separation
of the data, the business logic, and the presentation layers seems to make sense.

The user interface is a key component; spend as much time as you can on getting
this right. It is not just the design of any screens bit but also how they interconnect
with each other and their place in the system overall. The XXM idea seems to be
quite useful for both designers and customers—it is fairly lightweight and flexible.
It has value for a number of issues, testing being a major one.

EXERCISE

1. Look at several different Web sites and try to establish if their user interfaces meet the
criteria spelled out in Section 6.6.

CONUNDRUM

A local retailer specializing in luxury goods commissioned an e-commerce system.
This was completed and installed satisfactorily. The shop gave the job of printing
out the Internet orders and processing them through the orders system to one of
the sales assistants to do at the end of their shift. This worked well at the beginning
as the numbers of orders were small and only grew gradually.

After a few months of steady growth, the sales figures of orders placed through
the Web suddenly collapsed to nothing. Initially, it was thought to be a software fault
but no problems were found when we investigated.

What could have gone wrong?

REFERENCES

S. ADLER, A. BERGLUND, J. CARUSO, S. DEACH, T. GRAHAM, P. GROSSO, E. GUTENTAG, A. MILOWSKI,
S. PARNELL, J. RICHMAN, S. ZILLES. Extensible Stylesheet Language (XSL) Version 1.0. Available at:
http://www.w3.org/TR/xsl/.

S. EILENBERG. Automata, Languages and Machines, Vol. A. Academic Press, 1978.
M. HOLCOMBE. Correct Systems. Building a Business Process Solution. Springer.
B. SCHNEIDERMAN. Designing the User Interface. Addison-Wesley, 1998.
C. THOMSON, M. HOLCOMBE. Applying XP ideas formally: The story card and extreme X-machines. In
Proceedings of the 1st South-East European Workshop on Formal Methods. Thessaloniki, Greece,
South-East European Research Centre, 2003, pp. 57–71.

C. THOMSON, M. HOLCOMBE. Using a formal method to model software design in XP projects. In
Proceedings of the 2nd South-East European Workshop on Formal Methods. Ohrid, FYR of
Macedonia, AMCT, South-East European Research Centre, Vol. 1 (3), 2005.

180 Chapter 6 Bringing the System Together

Chapter 7

Designing the System Tests

SUMMARY

What are tests?
† Developing a model to aid test generation

† Building the functional test sets for the stories

† Documenting the tests and the test results

† Design for test

† Non-functional testing and testing the quality attributes

7.1 PREPARING TO BUILD FUNCTIONAL TEST SETS

Testing is incredibly important. If we skimp on testing, we will suffer big problems.
The problem is often that the oncoming delivery deadline does not include enough
time for testing. However, it is better to be a couple of weeks late than to deliver
poor-quality software that may come back to haunt you!

We are very aware of this at Genesys as it could be that the original development
team has left and we have to do some maintenance without as much understanding of
the system as we would like. To avoid this, we must test very thoroughly, system
testing being particularly critical.

This chapter looks at systematic ways to design system tests.

7.1.1 Tests and Testing

First, what is a test?
A test is an application of some user or system input in a particular state of the

system to establish if the system response is what is expected or is faulty in some
sense—it might produce an incorrect response or output, no output, or the system
might crash. A test must comprise both the test input and the context that the
system must satisfy together with the expected output.

Going back to our interface models (Fig. 6.17, Chapter 6), we might consider the
first screen and apply a test by clicking on the customers button. The expected result

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

181

is a new screen, the customer’s screen. That is all. We would not want the database to
be deleted also.

When in the customer’s screen, we might wish to test the data entry of the
customer name and address. We have to specify the state that the test starts from
and the data that we will insert. Now the data entry requirement will be based
around some part of the software architecture—some classes or functions that
accept user input and do things with it. The extent of the system testing that
needs to be done is related to the level and extensiveness of the testing that
has been carried out at the unit testing stage. Unit testing will be discussed in
the next chapter; this is the testing of the classes and components. These will be
put together to form coherent subsystems that will provide some functionality that
we can relate to some of our stories. The stories are integrated together to form
some useful business functions, and it is the business functions that we must
deliver correctly.

For example, if there is data being input into the system, then there may be data
integrity checks being carried out; these have to be tested to see if they work. If there
are table lookups, for example the system might check that a specific postal/zip code
exists by consulting an official list of these, or it might need to check that the format
of the input is correct (letters where letters are expected and numbers also), then all
this must be tested. If no control characters are expected, then the system must be
tested to ensure that if they are, then no harm is done, and so forth. The system
might need to check whether the customer is already registered on the database,
and this will involve a query of the current database state.

The decision as to where the testing should be done—unit level or system level—
and when is not always clear. Obviously, the more complete the testing at unit level,
the better, but it is not possible to do all the things that are needed because interclass
communication and communication with databases and tables may not be possible at
that point in the project.

We will have to include in our system testing test cases that will expose faults in the
data entry checking.Wewould do this by having test cases with draft input, for example.
This might be invalid symbols or no symbols—perhaps just return—and so on.

We should also test the system under different conditions relating to the database,
if any. For example, at the beginning the database is empty; we would test the system
under these conditions, also when the database has some data in it and when it has a
lot in it.

Where data entry has been carried out and hopefully stored in the database, we need
to establish that the data has been stored correctly. This needs either setting up queries as
part of the test or writing a suitable script to pull the data out to check that it is okay.

Thus test cases must reflect all of these things—what we put in and what we
expect to see, and what we actually see.

The tests that we are talking about here are tests that relate to coherent pieces of a
functioning system, and for them to be carried out we will need some code to test. In
an XP project, we will have implemented and tested some stories and integrated them
into such a subsystem. We can then apply the tests developed according to the
methods in this chapter. The stories will be built from units of code, and how
these units are tested will be the subject of this chapter.

182 Chapter 7 Designing the System Tests

7.1.2 Testing from a Model

One of the biggest challenges in testing is the constructions of tests themselves.
The purpose of testing is to provide confidence that the software produced meets
the requirements of the customer. For some customers, this can be met by an
extensive period of evaluation in the customer’s organization with the software
being used in its intended operational environment by its intended users. This is
rarely possible to any great extent and, anyway, it is not a good idea to leave
things that late. Agile development should embrace the ability to be able to deliver
the software with a high certainty that it will work as intended. Delivering working
increments for the customer and users to evaluate is a big part of the approach.
However, the relationship with customers and users can be damaged if these incre-
ments keep failing to meet the requirements. Furthermore, some customers just
do not get round to trying out the increments when they are delivered, and thus the
development team is getting no direct feedback from the customer about the
quality of the system as it is being developed.

Having the customer design the system tests is often proposed. Our experience is
that this rarely works well unless the customers really know what testing is about.
Customers know—or should know—the fundamental business processes involved
and can therefore describe these in such away as to provide a useful basis for construct-
ing test sets. Testing is a very difficult activity—some (e.g.,Myers, 1978) claim that it is
harder than any other aspect of the development process—anyone can write a set
of tests, but designing efficient and effective tests that can give you a very high level
of confidence about the behavior of the software is a major challenge. Why would
customers know how to do this? Very few programmers do unless they have a lot of
experience, often honed by big mistakes they have made in their past!

Where do we begin? Many test tools and methods assume the existence of some
code to form the basis of the tests. This is somethingwe do not have. Sowhat dowe have?

The machine-based model we started to develop in the past chapter will be very
useful when it comes to finding good system test sets.

If we can build a machine diagram like Fig. 7.1 and relate all the main
requirements to it, we can then create some very powerful test cases.

We developed our model for two main reasons. First, it was to try to understand,
from the point of view of the behavior of the system, how it all fit together and
mapped onto the requirements. Second, we will use it to generate test sets that will
be fundamental to how we will establish that the system works.

Our model was based on identifying a set of states and the operations (functions)
that operated between the states.

Recall the diagram from Chapter 6 (see Fig. 7.1). We will consider how to create
test sets that will systematically exercise the system.

An obvious starting point is to try to check out the paths through this system
(machine); this means looking for the conditions and activities that will force the
system through paths made up of sequences or arrows. This we will do, and then
we will consider how such path sets could be turned into test sets.

Suppose that we start with the system in the start state. Recall that our system also
contains an internal memory component that needs to be considered. Let’s assume

7.1 Preparing to Build Functional Test Sets 183

that we are starting the system with some initial memory value, perhaps the set of
records in the database is empty—we are awaiting the insertion of the details about
our first customer. We will call this the initial memory value.

The first thingwe have to do is tomake theUsername&password function operate
as onemight expect; this is achieved by inputing a username and password and clicking
a submit button in the initial menu page. If this part of the system has been built
properly, we should expect to move to a new state, either the screen for adminstrators,
for users, or receive an error message due to the failure of the details submitted.

At a minimum, we need three types of test input: one that triggers the path to the
Admin area; one that triggers a path to the User’s area; and one that is rejected by
the system.

In fact, this is really just testing the login story, but it illustrates that many stories
can be expressed using these types of diagrams.

For the next stage, we need to look at Fig. 7.2. This is another system with a
feature providing several options once the login has been achieved.

The general strategy is to design a series of tests that force the system to move
through every possible path. There are some more sophisticated strategies that will
be discussed later.

We need to exercise the functions that lead from the Questionnaire state next.
This will be achieved by either viewing results of questionnaires or designing a
new one. The state Questions is reached through the function ViewQuestions, and
then the path might be

ViewQuestions ! ClickEdit ! ClickSave ! ClickReturn

which will involve inputing the information needed for each function (not just
clicking on a button—in these GUIs the submission of information is through a

Figure 7.1 An XXM model from Chapter 6 (see Fig. 6.7).

184 Chapter 7 Designing the System Tests

form that is filled in and then the confirm button is clicked). The result should be a
return to the Questions state.

This is just one test that needs to be applied. We should go through all the
machine’s paths to see that the software behaves as required.

A simple notation to describe these sequences of operations is to use the
sequence operator “;” that well-known to those who have studied functional
programming or formal methods. Thus:

ViewQuestions ; ClickEdit ; ClickSave ; ClickReturn

using semicolons instead of arrows.
We continue in this way forming sequences of legitimate operators to represent

possible paths through the system. Each sequence will define a test that has to be
carried out in a systematic way and the results observed and compared with what
the model and requirements state.

If we find a problem, then it has to be investigated and fixed.
Another set of tests would be carried out by following the paths

ViewQuestions ; ClickDelete ; ClickCancel

ViewQuestions ; ClickDelete ; ClickSave ; ClickExit

ViewQuestions ; ClickAdd ; ClickSave ; ClickReturn

ViewQuestions ; ClickAdd ; ClickCancel

ViewQuestions ; ClickAdd ; ClickSave ; ClickExit

and so on.

Figure 7.2 A more complex system (see Fig. 6.11).

7.1 Preparing to Build Functional Test Sets 185

This approach to finding test sets, or paths through the model, is one of the
simplest and is called the transition tour.

In a transition tour, we choose a number of paths beginning at start and try to
visit as many states as we can.

Some further examples are

ViewResults ; ClickExit

ViewResults ; ClickReturn ; ViewQuestions ; ClickAdd ; ClickSave ; ClickExit

and so forth.
The second test will exercise the interrelationship between the two parts of the

system, which are likely to be the subjects of different stories. In other words, we
are testing the integration of the two stories—viewing questionnaires and making
questionnaires

To turn these sequences of transitions into a set of test inputs, we need to choose
the various inputs that cause these sequences of transitions to operate. It’s easy here,
we look at the screens and identify either suitable buttons to press or we insert data in
appropriate places to make it all happen.

It isn’t always the case, and the choice of what data to input needs careful
consideration. We will look at this later.

Such test sets will provide a good basis for testing the functionality of the overall
system but they can be improved. There are a number of faults, for example, that such
a test strategy may not reveal, including extra states, some faulty transitions, and so
on.

These tests will tell us if the system is doing the things that we know we want it
to do. However, they will not tell us if the system is doing anything else, possibly
something undesirable. The key to good testing is to know enough about what it is
you want and to test that this is what you get and you don’t get anything else
(Fig. 7.3). Thus we need to try to see if any illegal operations are possible.
We need to do this throughout. The simple strategy is to take a path through the
system to some state and then to introduce tests that test whether any functions that
are not defined at the state are actually present. Thus we send the system to the
target state and then try to apply all the functions that are not supposed to be

Figure 7.3 Testing for what we want and for what we don’t want.

186 Chapter 7 Designing the System Tests

defined there. This should cause an error and we want to see that happen. Otherwise,
there is something going on in that state when this supposedly absent function is
called. This aspect will be considered in Section 7.6.

7.1.3 Developing the Model

A good way to think about these machines is to draw the state diagram and remember
that the transitions that act between each state represent system functions that are
triggered (usually) by an external event (user actions) and that carry out processing
over some database or a global or local memory store. In many cases, the functions
can be described very simply. One could use the formal notation Z1 or VDM2 for this,
but I prefer a simple functional notation. This memory will be derived from the
requirements in a natural way, so we refer to the requirements table where the
memory connection is described.

Consider a simple Sales system typical of the sort of thing used by many
companies (Fig. 7.4). It allows the addition of new customer details and of editing
them; it also allows for the recording of orders by these customers.

In the XXM diagram of Fig. 7.4, the GUI screens are highlighted with
shadowing to distinguish them from the decision states.

In this example, the memory is likely to be the database that contains the records
of customers and orders. We need to think about the data in the system when testing
it. We will only be able to show that the functions work if we test them with both the

Figure 7.4 A simple XXM model of a sales system showing screens (see Fig. 6.17).3

1Z is a mathematical notation for specifying simple systems (Spivey, 1992).
2VDM is a similar notation (Jones, 1986).
3The ignore and error transitions have been ignored for the sake of simplicity.

7.1 Preparing to Build Functional Test Sets 187

type of data they expect and examples of the data they should not accept—checking
that the system will respond in a safe and timely manner.

The function ClickCustomer simply navigates between two screens and has no
memory implications, but the function EnterCustomer will involve some interaction
with the database—it might search to see if the supposed new customer is in fact new
before proceeding, generating a message if the customer is already on the database.
The function will involve moving between the different slots in the form filling in
the required details. It shouldn’t matter which order we do this in, so the testing of
the EnterCustomer function will involve typing in suitable data values into these
slots in various orders.

The function UploadCustomer from the decision state Confirm Customer
actually changes the database by updating the records with the information relating
to the new customer, and the UploadOrder function from the Confirm Order state
updates the order.

In planning any of these tests, we need to think about the data we will supply to
the system as each function is triggered. Selecting suitable data is just as important as
identifying the sequence of functions.

The data structure now needs to be discussed in detail. Essentially, we need to
think about this in terms of what basic types of data are relevant at the different
levels. At the top level, for example, we could represent it as a small vector or
array of compound types of the form

customer_details

order_details

filling in the actual details later. It may be, for example, that these will represent part
of a structured database with a set of special fields that relate to the design of the
screens associated with these operations. Thus customer_details would involve
name, address, and so on, which would be represented as some lower-level com-
pound data structure, perhaps, and there would be basic functions that insert values
into the database table after testing for validity, and so forth.

Now we can describe some of the functions from the diagram. First note that the
memory or database that the functions are interacting with is just a set of records with
two main fields, the first might be structured into

customer details : name, address, postcode, phone, fax, email

and the second into

order details : customer ref, order ref, order parts, delivery, invoice ref

Then the set of all current customer details is given by

Customer details

188 Chapter 7 Designing the System Tests

so Customer_details might be {customer1, customer2, customer3} after three
customers have been put in,

where customer1¼ [name1, address1, postcode1, phone1, fax1, email1] and so on.

The notation using the braces, {,}, is a way of describing all the members of a
collection of data elements that we want to refer to as a whole.

The set of all possible sets of customer details that there ever could be can be
defined as CUSTOMER_RECORDS.

Thus Customer_details [CUSTOMER_RECORDS.
For those who have not attended a discrete mathematics course, this is simply

read as

Customer_details is a typicalmember of thecollectionof allCUSTOMER_RECORDS

and the current order details is {order1} after one order has been put in (Fig. 7.5), for
example,

Order_details ¼ forder1g
where order¼[customer_ref3, order_ref5, order_parts6, delivery, invoice_ref8].

Thus Order_details [ORDER_RECORDS.
When a new customer is entered, the function UploadCustomer is triggered, the

function should take the current state of the database, Customer_details, and add a
new line to the database with the new customer’s details. Thus the set
Customer_details will change.

Recall that a typical element of the cutomer part of the database is

([name, address, postcode, phone, fax, email]

The function definition for UploadCustomer would now look like:

UploadCustomer ([name, address, postcode, phone, fax, email], (Customer_details)

¼ (Customer_details)�f([name, address, postcode, phone, fax, email])g
if [name, address, postcode, phone, fax, email] � Customer_details

else error message: ‘‘customer already present’’

Figure 7.5 A schematic of the state of the database after three customers have been entered and one
order has been placed.

7.1 Preparing to Build Functional Test Sets 189

Here� means “is not a member of” and means that we add a new line to the current
table containing what is in the newly supplied data: the six elements name, address,
postcode, phone, fax, e-mail (Fig. 7.6).

The precondition is that these details are not already in the database. The
Order_details part will not be changed by this operation. There should be an error
message displayed.

The function’s effect is thus either as shown in Fig. 7.6 or no change if the
customer is already on the database (Fig. 7.7).

This is now the state of the memory after the UploadCustomer function has been
applied with the new customer data: name, address, postcode, phone, fax, e-mail.

The symbol � simply states that we have added a new row to the database table
containing only the new information that was not already there.

All the other functions in the diagram can be defined in a similar way.
If the function has been attempted with the wrong type of data for some or all of

the fields needed for the UploadCustomer function, then the system should also keep
the current state of the database the same. This is where we build in data validation—
an essential and useful feature of most systems.

We can extend the function definition to emphesize this. First we have to define
the types of the individual fields.

Thus

NAME is the set of acceptable names of customers (probably a string of
characters)

ADDRESS is the set of acceptable addresses (it may have some more detailed
structure involving City, State, Country, etc.—it will be a set of strings)

Figure 7.6 The database after one new customer’s details have been uploaded.

Figure 7.7 The database after the attempt to upload an existing customer’s details has been made.

190 Chapter 7 Designing the System Tests

POSTCODE is the set of zip or postal codes (a string)

PHONE is the set of phone numbers (a string of digits, usually)

FAX is the set of FAX numbers with a similar format as PHONE

E-MAIL is the set of e-mail addresses (a string with @ and characters and full
stops)

Thus we need a test to check that the following are true when the UploadCustomer
is triggered:

name [NAME;

address [ADDRESS

postcode [POSTCODE

phone [PHONE

fax [FAX

e-mail [E-MAIL

If any of these fail, then an error message must be produced without changing the
database.

Now we should consider the types of test that follow a similar overall strategy but
using data of the wrong types or of values that are out of range in some way. This we
will consider in the next section.

All types of systems can be described in this way—we need to identify the
functions involved, the data and memory or database they use, and the states that
sort out which function is valid and when.

We are going to use this type of state diagram to define how we can build a set of
functional system tests that will link to the requirements and be extremely effective.

Most testing is ad hoc in the sense that the creation of the tests is left to the
tester’s common sense. This may not be a very effective way of finding faults—
and this is what testing is all about.

7.2 TESTING WITH THE DATA IN MIND

Having studied the types of data that we expect to be processing, we will need to
select examples of data to feed into the system tests.

Let’s consider the data needed to test the UploadCustomer function.
There are six fields to be completed. Each field has a type, and the test data needs

to be of two sorts—data that is of the correct type and data that is not. Within these
two general categories, there will be a number of cases to consider that will be used to
explore, as far as is possible, the set of possible inputs that could be expected. Don’t
forget, we want to see that expected data is treated correctly but also that the system
does not break if data is supplied that is unusual or inappropriate.

Under the NAME field, we will have decided some format for the names that the
system will deal with. Perhaps this will be a string of letters and numbers including
some punctuation such as “.”, “-”, “ ’ ”, and so forth. It may ignore “spaces” also.

7.2 Testing with the Data in Mind 191

We may have also decided that this string should not exceed 20 characters and
punctuation.

Then we could consider the following examples of data input:

(a) Empty string

(b) One-character string

(c) Strings of 5, 10, 15 characters

(d) String of 20 characters

(e) String of 21 characters

(f) Strings containing one character that is “illegal”

(g) Strings contining a mixture of “illegal” and legal characters of different
lengths

We do the same for the other fields ADDRESS, POSTCODE, PHONE, FAX,
E-MAIL.

The data supplied during the testing of the function should then incorporate
combinations of data that have been produced that explores all the possible mixtures
of legal and illegal values relevant to the system.

This can be a little tiresome, but it could be automated.

7.3 THE FULL FUNCTIONAL SYSTEM
TESTING STRATEGY

Each requirement in the requirements document should be traced to a test or tests.
Because our requirements have been numbered and defined on story cards, it is
important that each test should have a number that identifies which requirement it
is testing for. Many of these requirements are represented by stories and will define
unit tests. These are discussed in Chapter 8.

In order to understand the “big picture,” the stories have been integrated. The
requirements have been integrated into a dynamic machine-based model that
defines the operational relationships between them. This model will now provide
us with the system-level test sets. It is important to identify these at this stage. The
testing of the individual requirements or the units/classes that implement them is
covered in a later chapter.

We identify paths from the start state and derive a test for each path. However, we
do more than that. Notice that the paths through the machine involve driving the
system between the states by carrying out the various functions that are available at
each state.

As we have seen, we start at the state start with the initial state of the internal
memory, probably in some basic initialized state, and the aim is to visit every state
in turn. When we have reached a state, we need to confirm that it is the correct
state, and this is done by following more paths from that state until we get outputs
that tell us, unambiguously, what the state was.

192 Chapter 7 Designing the System Tests

Looking at Fig. 7.4, we develop a test set. We consider the outline path obtained
by operating the following functions these paths are based on listing the sequences of
transitions (arrows) in the diagram:

ClickCustomer ; EnterCustomer ; UploadCustomer ; ClickOrders ; EnterOrder ;

UploadOrder ; ClickCustomer ; EnterCustomer ; UploadCustomer ; Quit

At each point in this sequence, we will be submitting data values or mouse clicks and
we will have to choose these to enable the test to be carried out. We expect certain
things to happen, and these have to be recorded, and the test will be evaluated in
respect of detecting what actually happened and seeing if this matches the expected
behavior. Did the buttons work, do the correct screens get displayed, was the correct
data put into the database, were the correct error messages displayed (if appropriate)
and the correct screen displayed subsequently, and so on?

This test tests what should be there. However it often happens, particularly with
object-oriented programs, that the system can do unexpected things that were not
planned for. We need also to test that the functions that are not supposed to be
there are not there! We will look at how to do this in Section 7.5.

When preparing to choose test sets, there are thus two aspects to consider: the
operations that are being tested and the data that they are processing. Selecting
both carefully is important. We will need to test every data-processing operation
and all possible combinations, and this will be discussed in the next section.
Chapter 8 will discuss tresting at the unit level.

Another, rather draconian, general test is to reboot at an arbitrary point in the
program. This is important as some users may panic and do this; we need to
ensure that minimum data is lost in this situation.

7.4 THE THINKING BEHIND THE SYSTEM
TEST PROCESS

We assemble the full test set in stages.
First, we return to the X-machine diagram, Fig. 7.8. We will look at a part of the

diagram to explain the process.
What is our basic strategy for testing? If you look at the diagram, which

represents what we want our software to behave like, then there are a number of
ways in which we could have faults. We could find that a transition does not
operate from the desired start or source state to the desired target state, for
example, perhaps the event ClickCustomer leads us to the orders state or to some
other state. The output we were expecting was the Customers state with its screen.
Perhaps the function EnterCustomer fails to correctly accept the customer details—
maybe they are just lost when we enter them. Perhaps there is no confirm state,
and the transitions that are supposed to go there go somewhere else. Perhaps there
are states that we did not intend to exist within our software; some extra states that
cause the system to behave wrongly. In the diagram there is a False_state state that

7.4 The Thinking Behind the System Test Process 193

should not exist; it is unclear how we get into this state, but the EnterCustomer
function can only operate to this state and not to the correct state, Confirm Customer.

To summarize, the software can differ from the machine model in a number of
ways:

1 There are too few states.

2 There are too many states.

3 There are transitions going from an incorrect state.

4 There are transitions going to the wrong state.

5 There are transitions that carry out the wrong function.

Faults of type 1 (Fig. 7.9): In this example, the Orders state is missing. The
transition to the Orders state, ClickOrders, exists in two places, the first takes

Figure 7.8 Customer section.

Figure 7.9 Missing state fault.

194 Chapter 7 Designing the System Tests

the system from the Start state to the Customers state and thus the wrong screen; the
second from the Customers state back to the start.

Any test of the form ClickOrders or ClickOrders ; ClickOrders will detect the
fault by virtue of an unexpected screen display.

Faults of type 2 (Fig. 7.10): A test that uses ClickOrders from the Start state will
detect this fault, but not the same test from the Customers state.

Faults of type 3 (Fig. 7.11): In this example, the “faulty” transition is the Quit
transition from Customers to Start, which goes from Start instead. Again a single
test such as Quit will detect this.

Faults of type 4 (Fig. 7.12): A test ClickCustomer ; EnterCustomer will
detect this.

Figure 7.10 Too many states.

Figure 7.11 Transition from an incorrect state.

7.4 The Thinking Behind the System Test Process 195

Faults of type 5 (Fig. 7.13): Here we need to consider the data as well.
The UploadCustomer operation is supposed to insert the details from the

EnterCustomer operation into the database. To test this, we need to output the
result of this operation somehow. This might be done as part of the user interface,
but, more generally, we will need to run a report on the database to see if the operation
was successful. This leads to a set of tests that vary according to the data being input.
Thus, it might work for some cases but not for others.

Our systematic way of building tests will expose all these faults.
We are going to build a number of sets of function sequences as we did above but

in a more complete manner.

Figure 7.12 Transition going to the wrong state.

Figure 7.13 Transition with the wrong operation.

196 Chapter 7 Designing the System Tests

The first set is called the transition cover. What this consists of is a set of
sequences that systematically work though the state space of the machine from the
initial state. We start with the shortest sequences and extend them by trying out all
the functions from the state we get to in turn. Then we take each of these sequences,
and for those that should lead to another state, we then extend them by all the defined
functions. We will look at the outputs from the software when we apply these
sequences to see what happens; does it produce the right results?

Let’s look at part of the machine in order to understand the process (Fig. 7.14).
We start at the state Start. The first test is the ClickCustomer event, which should

take us to the Customers state. Now, how do we know that we have reached the
Customers state rather than some other state? We will have to test for this separately.
We should have already tested the function beforehand; this would be part of out unit
testing process, which will be described later. If the function on the transition is more
complicated than this, it might require a more complex use of this testing technique
[this is not discussed here; see Holcombe (1998) for further details]. Having
observed the results of this simple test, we now introduce some more. These
consist of applying all of the possible transition functions after we have reached
the Customers state; for example,

ClickCustomer

ClickCustomer : Quit

ClickCustomer ; EnterCustomer

ClickCustomer ; ClickOrders

ClickCustomer : Quit ; ClickOrders

ClickCustomer ; EnterCustomer ; UploadCustomer

Figure 7.14 The desired model.

7.4 The Thinking Behind the System Test Process 197

ClickCustomer ; ClickOrders ; EnterOrder

ClickCustomer ; ClickOrders ; Quit

and so forth.
These are the sort of tests that should succeed if the implementation is correct.
There are other sequences we should apply, also. These are expected to fail

Quit

ClickCustomer ; UploadOrder

ClickCustomer ; EnterCustomer ; Quit

and so forth.
These should generate failures during the testing. We need to check these out

because it is important that the software does not do anything unexpected; checking
that it does what it is supposed to do is only half the story. We also need to show that
it doesn’t do what it shouldn’t do!

An issue that arises is that it is not immediately clear how you can apply a
test sequence such as ClickCustomer ; UploadOrder as there is no trigger for
the second function from the Customers state. In order to do this, we need to intro-
duce some special triggers that access this function from the Customers state but
that are only used in testing. This is an example of something that is discussed in
Section 7.5.

Now we consider the position from the Customers state. We know how to get to
this state, and we have to check that only the expected transitions operate from it and
these have the right behavior. Thus we will try sequences such as

ClickCustomer ; EnterCustomer ; UploadCustomer

ClickCustomer ; EnterCustomer ; EnterOrder

ClickCustomer ; EnterCustomer ; UploadOrder

ClickCustomer ; EnterCustomer ; Quit

and so forth.
Some of these should succeed, but some should fail. We are trying to apply any

operation from any state to prove to us that there are no hidden problems. The system
may do things that we are unaware of; if the test ClickCustomer ; EnterCustomer ;
Quit does not fail, then we may have some problems with the way that the database
is being used.

We would only expect the first test to work, the others should fail.

7.4.1 An Algorithm for Determining the
Transition Cover

Much of the process for generating and applying test sets to real cases can be
automated. We consider the case of constructing the transition cover.

We first build a testing tree with states as node labels and inputs as arc labels.

198 Chapter 7 Designing the System Tests

From each node, there are arcs leaving for each possible input value. The root is
labeled with the start state. This is level 0.

We now examine the nodes at level m from left to right:

If the label at the node is a repeat of an earlier node, then terminate the branch;

If the node is labeled “undefined,” then terminate that branch.

If the label at the node is a state such that an input s is not defined, then an arc is
drawn, labeled by s, to a node labeled “undefined.”

If an input s leads to a state q0, then insert an arc, labeled by s, to a node labeled q0.
Beginning at Start, we see that there is an arrow with label ClickCustomer

leading to Customers and so we draw a branch of the tree as shown (Fig. 7.15a).
There is no arrow leaving Start with the label Quit, so this means that we draw an
arrow from Start labeled with Quit to a node labeled “undefined” (Fig. 7.15b).
There is a label ClickOrder that leads to Orders, and so this is drawn in the tree
(Fig. 7.15c). The test sequences we need can be read off as labels of the various
paths through the tree.

This process continues. It will detect many of the faults in the software, but there
are still things we need to do. We need to check that the state that we have reached at

Figure 7.15 (a) Part of a testing tree. (b) A further branch of the tree. (c) Some further development of
the testing tree.

7.4 The Thinking Behind the System Test Process 199

the end of the test sequence that we have applied is the correct state. Unfortunately,
we cannot just look to see what state we are in; the software is like a black box, we can
only see what goes into it and what comes out. We need to add some more operations
at the end of our test sequences in order to ascertain the state we have reached and
thus know whether the software is behaving correctly or not.

The next set we need to work out is called the characterization set. This will
consist of a set of sequences that will enable us to distinguish between any two
states in the intended system.

To work out this set, we need to look at the machine diagram (Fig. 7.16).
Consider the states Start and Customers’; the functions ClickCustomer,

EnterCustomer produce different observable outputs from the two states. In the
first case, the first function should lead to a customers’ screen and the same function
should have no effect on the customers’ screen. Using the second function in the two
states will result in the confirm screen in the case of the state Customers’ and nothing
in the case of Start.

We choose for our characterization set a collection of functions (transitions) that
can distinguish between the states.

Having reached a particular state, we then apply values from the characterization
set; the results will confirm what the state was that we reached.

We now need to estimate how many more states there are in the implementation
than in the specification. Let us assume that there are k more states.

The shorthand A is used for the collection of all possible transitions in the
machine model. Let W be a characterization set; it consists of a number of short
sequences of transitions.

Now choose any transition from the machine and apply that followed by one of
the transitions from the characterization set W. This will provide a sequence of two

Figure 7.16 The specification model.

200 Chapter 7 Designing the System Tests

transitions, one from A and one from W. We do this for all possible combinations of
transitions from A and transitions from W.

Thus we have moved in the machine from the start state to another state using the
first transition and followed it up with an element from the characterization set. This
will tell us what state we have reached—if the software is faulty, we may have taken
the transition but gone to the wrong state.

This is the key idea. Try all transitions from all states and then try to see where we
have got to. The assumption about the number of possible extra states in the
implementation is used in the following way. Suppose that this number of possible
extra states is k. We then apply all possible sequences of transitions of length k
each followed by transitions from the characterization set. This is part of our full
test set and can be described in the following mathematical formula:

Z ¼ AkW < Ak�1W < . . .< A1W <W :

That is, we form the set of sequences obtained by using all input sequences of
length k followed by sequences from W, then add to this collection the sequences
formed using input sequences of length k2 1 followed by sequences from W, and
continue building up a set of sequences in this way. The symbol < is just mathematics
for “together with” when applied to sets of things.

The set Z is simply built up from test sequences that are made up of trying every
test input in ones, then in sequences of twos, then in sequences of threes, and so on
until we have sequences of length k. For each of these sequences, we then apply all
the sequences in W so as to find out what state we must have ended up in.

The final test set is TZ where T is a transition cover. This set consists of any
sequence from the set of tests in T followed by any sequence from the set of tests
in Z. We do this for all possible combinations.

Clearly, this will lead to a lot of tests, and automation is required to manage
the size of the test set. There are some test tools that support this approach to test
set generation (see http://www.dcs.shef.ac.uk/�nw/statechum.html).

This particular approach to testing provides us with an extremely powerful set
of tests, tests that will find almost every fault that could exist in the software. The
exercise to this chapter takes a more detailed look at a specific example.

Computational theory can show that such a test set will find all likely faults,
subject to some conditions that we look at below.

7.5 DESIGN FOR TEST

Sometimes, it is hard to test a program because it has not been designed to make
testing easy. This will usually result in a poor-quality program because testing is
very expensive—as you will find—and many software developers will stop testing,
not when the system is suitable for release or delivery, but when they run out of
money in the test budget. Often, they take a risk that the cost of fixing the client’s
bugs later, or of supplying patches, is cheaper than continuing testing in-house.
The client ends up doing some of the testing and they may not appreciate it!

7.5 Design for Test 201

In order to make the testing easier, we introduce two strategies that will help.
These are called design for test principles.

7.5.1 Design for Test Principle 1: Controllability

This amounts to designing the X-machine of the system so that you can access any
state with any value in the memory. It can be achieved by using a special test
input to do this.

This issue mainly arises when there are functions that exist in several states of the
machine. We wish to send data (inputs) directly to them without going through
intermediate states that may change the internal memory in ways that will not
allow the functions to be fully tested, for example preventing the preconditions to
be satisfied or violated in some way (see Fig. 7.17).

We write special code to access this function under the conditions that we need,
setting, for example, internal variables to suitable values. In practice, this type of
stringent testing is only used on critical parts of the system.

7.5.2 Design for Test Principle 2: Observability

This problem arises when we have carried out a test but we are not sure which func-
tion has operated and what it has done. The outputs might have been masked by other
activity. The solution here is to define a special output value that is used to determine
if the test has run properly. We therefore write some extra code that will print out, for
example, some critical variable values, messages that will tell us what has happened,
and so on. This is a common practice in programming where you often interrogate a
variable to see what its value is, and so forth, during debugging.

In both of these cases, we have code in the implementation that is used only for
testing and is not part of the original requirements. We can either leave it there or

Figure 7.17 Illustrating how to achieve design for test compliance.

202 Chapter 7 Designing the System Tests

remove it—comment it out, for example—but whatever we do, it needs to be done
with care or else it might break the system!

Returning to our main example, we now have a mechanism for testing for the
nonexistence of unneeded behavior. For example, the sequence ClickCustomer ;
UploadOrder cannot be triggered without some test input that causes the
UploadOrder operation to be stimulated. This is done by the special test input that
has been incorporated precisely for this purpose.

Then we repeat the path to that state and check what happens if we try
to apply every basic function from that state, some will have succeeded but some
should fail. Have the correct ones passed and failed? This is then repeated for
every state.

As an example, once we have reached state Customers, it should not be possible
to use any of the order functions that are available for the Orders part of the system.
We could do this by trying to see if we can make these functions work as part of a test.
Thus we ought to test that the data we entered for the customer does not also get put
into some other part of the database dealing with orders.

Thus we can assemble a set of test cases based on paths of various lengths
through the machine diagram and tests of the nonavailability of functions in
certain states. Here are some more examples:

ClickCustomer

{should pass}

ClickCustomer ; EnterOrder

{should fail}

Clearly, this will lead to a lot of tests, and automation is required to manage the
size of the test set. In industry, sometimes very expensive test tools and environments
are available to generate tests, to apply tests, and to analyze test results. Some of these
can be found on the Internet, and we have used some test tools that support this
approach to test set generation. None, however, are perfect; all have an overhead in
terms of learning the tool, preparing the test cases, and so on. It would be nice if
the return on investment for these tools in improved testing was always there—
sadly it often isn’t.

7.6 TEST DOCUMENTATION

It is vital that all the tests are properly documented so that testing can be carried out
systematically and effectively. We also need to keep a record of the results so that the
quality assurance can be convincing. Maintenance will also require information about
the testing results.

For each requirement, which should be properly numbered in the requirements
document, we will generate a set of tests. The details should be kept in a suitably
designed spreadsheet.

Table 7.1 shows an example.

7.6 Test Documentation 203

T
ab

le
7.
1

S
ys
te
m
s/
A
cc
ep
ta
nc
e
T
es
t
D
efi
ni
tio

ns

R
eq
ui
re
m
en
t

T
es
t

re
fe
re
nc
e

T
es
t
pu
rp
os
e

T
es
t
in
pu
t

C
on
st
ra
in
ts
/

pr
er
eq
ui
si
te
s

E
xp
ec
te
d
ou
tp
ut

F
in
al

st
at
e

C
om

m
en
ts

1.
1.
1

1.
1.
1

T
es
t
fr
on
t
pa
ge

L
oa
d
pr
og
ra
m

B
ro
w
se
r
op
en

Pa
ge

lo
ad
s

S
ta
rt

1.
1.
2

1.
1.
2.
1

L
oa
d

cu
st
om

er
s

pa
ge

C
lic
k(
cu
st
om

er
s)

S
ta
rt
pa
ge

op
en

C
us
to
m
er
s
pa
ge

di
sp
la
ye
d

C
us
to
m
er
s

1.
1.
2.
2

L
oa
d

cu
st
om

er
s

pa
ge

T
yp
e
ra
nd
om

ke
yb
oa
rd

ch
ar
ac
te
rs

S
ta
rt
pa
ge

op
en

N
o
ch
an
ge

in
di
sp
la
y

S
ta
rt

In
va
lid

in
pu
t

1.
1.
2.
3

L
oa
d

cu
st
om

er
s

pa
ge

R
eb
oo
t

S
ta
rt
pa
ge

op
en

C
lo
se

do
w
n,

da
ta
ba
se

un
af
fe
ct
ed

In
va
lid

in
pu
t

1.
1.
3

1.
1.
3.
1

E
nt
er

cu
st
om

er
de
ta
ils

S
ta
nd
ar
d
da
ta

en
tr
y1

�
C
us
to
m
er
s
pa
ge

op
en

D
at
a
di
sp
la
ye
d

C
on
fi
rm

1.
1.
3.
2

E
nt
er

cu
st
om

er
de
ta
ils

S
ta
nd
ar
d
da
ta

en
tr
y2

�
C
us
to
m
er
s
pa
ge

op
en

da
ta

di
sp
la
ye
d

C
on
fi
rm

1.
1.
3.
3

E
nt
er

cu
st
om

er
de
ta
ils

S
ta
nd
ar
d
da
ta

en
tr
y3

�
C
us
to
m
er
s
pa
ge

op
en

D
at
a
di
sp
la
ye
d

C
on
fi
rm

1.
1.
3.
4

E
nt
er

cu
st
om

er
de
ta
ils

E
m
pt
y
da
ta

en
tr
y

C
us
to
m
er
s
pa
ge

op
en

E
rr
or

m
es
sa
ge

C
us
to
m
er
s

In
va
lid

in
pu
t

� T
he

de
fi
ni
tio

ns
of

st
an
da
rd

da
ta

en
tr
y1
,
st
an
da
rd

da
ta

en
tr
y2
,
an
d
st
an
da
rd

da
ta

en
tr
y3

ne
ed

to
be

m
ad
e
so
m
ew

he
re

in
an

ap
pe
nd
ix

to
th
is
pl
at
e.

204

The next stage is to try to automate the testing as far as possible. We need to
create a file of test inputs, one set of inputs for each test. These could be kept in a
spreadsheet, the test data file (Table 7.2) and a script written to extract these inputs
and put them into a standard text file, one line per test. Another script would
extract each input sequence and apply it to the code. This is sometimes easier to
do in some cases than in others. With GUI front ends, it is sometimes difficult to
access the key parameters/events from inside like this, and anyway one would
want to test the overall program as well. Test software is available, at a price, to auto-
mate a lot of the interface interactions, but for university projects it may be necessary
to rely on manual techniques.

The test results file (Table 7.3) is a vital resource that will have to kept up to date
during testing. It describes what has been done, what has been fixed, and what
remains to be done.

7.7 NON-FUNCTIONAL TESTING

Although the principal purpose of the system test is to confirm that the functional
requirements have been met, it is also necessary to consider the non-functional
requirements and quality attributes. We will establish compliance with these also
through suitable types of testing. This is done prior to final delivery of any
version. We can regard the testing of the non-functional requirements together with
the testing of the functional requirements as playing the role of the acceptance
tests for the software. This needs the active involvement and the agreement of
the customer.

Table 7.2 Test Data File

Test
ref.

Function sequence/
path

Test sequence Expected
output

Final state

.
2.3.2.1 click(customer) ;

enter(customer) ;
enter(order)

,click(customer). ;
,enter(“standard_data_entry1”). ;
,enter(“order_details”).

No change to
database

Confirm
customer

.

Table 7.3 Test Results Table (System Version 1.0)

Test ref. Date/
personnel

Result pass/
fail

Fault Action Comments

1.1.2.1 12/3/02 Pete P — — —
1.1.2.2 12/3/02 Pete F System crash Debug Jane alerted

(13/3/02)
1.1.2.3 12/3/02 Pete P — — System closes, no

losses

7.7 Non-Functional Testing 205

Let us look at some of the non-functional requirements mentioned in the
previous chapter.

7.7.1 Reliability

For a single user, the system should crash no more than once per 10 hours.
For the first requirement, there is very little alternative to just running the system

and logging any problems where functionality is lost. Other approaches would be to
examine the technology in use, age and type of workstations and servers, and type of
software technology used, in particular how stable it is and what is currently known
about its reliability. Demonstrating compliance with this requirement will be difficult
within the constraints of this type of project.

The system should produce the correct values for any mathematical expression
100% of the time.

Showing that the calculations, if any, are always correct is pretty well impossible;
one can log errors if they arise during final testing, but there is very little more that can
be done in a practical way.

If the system crashes, it should behave perfectly normally when loaded up again
with minimal data loss.

It is easy enough to crash the system, carrying out a reboot for example, and this
can be the basis for this type of test. What is meant by minimal information loss needs
to be thought about. A bare minimum would be no loss of any data that has been com-
mitted to the database. If some temporary recovery files can be developed, this would
be better but probably beyond the scope of the project.

7.7.2 Usability

A user should be able to add a new customer to the system within 1 minute.

A user should be able to add a new order to the system within 1 minute.

A user should be able to edit a customer’s details within 5 minutes (will vary
with details type).

We need to define a user. It might be best to consider the sorts of qualifications
and experience that a typical user might possess; for example, left school at 16, suc-
cessfully completed an initial secretarial and office course, 3 years experience with
MS Office, and so on. The test would then be to find a number of people, perhaps
some of your friends and relations, and to get them to try these tasks on the
systems a few times. What we are looking for is the number of mistakes in carrying
out the task, the time it takes, and any apparent confusion observed during the
session. This could indicate that there are problems with your user interface.

A user should be able to produce reports and statistics within 1 minute.

For this requirement, we need to specify what sort of reports and statistics are
meant. Then we can ask a user to see if they can do the task.

206 Chapter 7 Designing the System Tests

7.7.3 Efficiency

The system should load up within 15 seconds.

The time taken for the system to retrieve data from the server should never exceed
more than 30 seconds.

These requirements can be checked directly by measuring the time for these
activities to complete. They should be tested on a number of occasions and under
a number of conditions: database containing a few entries to one with many entries
to approximate the intended operational context of the software. To do this, it is
best if the data that is loaded into the database is similar in nature to the client’s
intended data. If this is not available, then you should write a script to generate suit-
able data.

7.7.4 Portability

The client system should work on the client’s current computer network that is
connected to the Internet and is running at least Windows 95.

This may not be so easy to test as it seems, it depends on whether you have
access to a system similar to that of your client. It is very easy to find that the software
works perfectly on one system but not on an apparently similar one. This is particu-
larly true of PCs and Windows, of MS Office–based products using for example
Visual Basic and for Java programs. It is important that all the ancillary files and
directories are available and in the right place on the client’s system.

The system should be easy to install.

The definition of this needs some elaboration. The install process must be
defined. It might mean inserting a CD and following simple on-screen instructions.
If this is the case, then it has to be carried out on a number of occasions by a
number of people to see that it does work.

A final area where we need to test is the User Manual. We will describe this in
more detail later but mention it here to emphasize that it will need careful thought,
and someone needs to review it, preferably not someone who wrote it. In the spirit
of XP, it could be the client, but any drafts should be checked by the team beforehand.

7.8 TESTING INTERNET APPLICATIONS AND
WEB SITES

There are many issues relating to testing these types of applications.
Users of the Web site could be using one of many different types of platform

(e.g., PC, Mac, Unix), as well as different browsers (e.g., Netscape, Internet
Explorer, etc.). It is best if the system interface can be tested under all these combi-
nations of platform and browser. It is surprising how different some Web pages can
look under different circumstances.

7.8 Testing Internet Applications and Web Sites 207

Where the users are can also be a factor; not just their geographic location but
also how they connect to the Internet.

The number of potential users is also an important issue. Your client may have an
internet service provider offering a service; is this sufficient for their needs when the
system is up and running?

Among the load measures that affect the operation of the site are

Static: hits per day, page views per day, unique visitors per day

Dynamic: transactions per second, megabytes per second, number of concurrent
users, number of session initiations per hour

Load profiles need to be estimated based on the profiles of the potential users as
well as dealing just with the volume of users. Some transactions occur more
frequently than others and a test script should acknowledge this. Browsing is more
frequent than buying. Thinking time is also a factor. Users arrive and leave at
random. The rates are not related, the time it takes a site to respond can affect sub-
sequent behavior with customers abandoning slow sites in favor of faster ones.
Downloading large graphics files over a slow connection can be a disaster.
Graphics files should be optimized to suit the conditions. Huge swings in
usage are often found. For e-commerce, browsing peaks in early evening; purchase
commitment and validation peaks at lunchtime. Time zones also affect things.

There are a number of client network connection options—multiple connections
open (Netscape), buffer size options, and so forth, all affect performance. The use of
HTTP v1.1 over HTTP v1 is also significant. Client preferences can affect behavior,
and the configuration of the browser comes into play here; for example, is javascript
on/off, graphics on/off, cookies on/off, cache sizes, encryption and so on.

The ISP companies are organized in tiers: tier 1 ISP (e.g., AT&T), tier 2 ISP
(e.g., AOL), tier 3 ISP (e.g., local ISPs), each further from the backbone. How
many tier 1, 2, 3 users are among the user profile? Your client may have to investigate
this with his or her business and marketing advisers.

Background noise can also affect performance: client virus detectors, intruder detec-
tors, e-mail, and so forth, all take up processing resource and may slow some sites down
on some machines. Geographic location response times vary around the world.

All of these variables leave us with a real problem of modeling the load and
testing for it.

Figure 7.18 provides a simple picture of how the response time is affected by the
load on the servers. In order to test a system, we could try to identify the worst set
of parameter values to define a user profile and the best case. These give extreme
performances values as in Fig. 7.19

We might decide where in this region we wish to establish our typical user mix
and test this for compliance with our desired performance requirements.

This is rather a specialist area and may be beyond the scope of the project.
However, it is useful to be aware of some of the issues.

Building an e-commerce site introduces a number of risks for businesses. It
allows for possible connections to internal company systems, accounting, customers,

208 Chapter 7 Designing the System Tests

orders, and other confidential and critical content. This can be attacked, stolen, and so
forth. If Web users can access part of the company network, then it is important that
suitable security checks are in place. Internal hackers/trojan horses are the single
biggest threat. All businesses should be aware of this, and you may like to bring
this to the attention of your clients if you think that it could be an issue for them.
They will need to seek professional advice.

7.9 REVIEW

There are many aspects to testing; we have only just scratched the surface. Later we
will look at unit testing and testing for non-functional requirements. For further
information about the type of testing described here, consult the book by
Holcombe and Ipate (1998).

Figure 7.18 A typical response/load graph.

Figure 7.19 Typical response load/graphs with best-case and worst-case profiles.

7.9 Review 209

A final series of tests that could be carried out on a completed system is done by
repeatedly trying out arbitrary input values and arbitrary mouse clicks at all stages of
the operation of the system. It is a type of random testing that seeks to break the
system by creating unusual combinations of events. It can be quite effective.

Testing non-functional requirements is also vital. If the system is too slow or too
hard to use, it will be a failure, and that is not what we want.

Some projects will involve the building of a Web site, perhaps with a database
back end. Whereas we can test an in-house system reasonably well, it is much
harder to test if it is to be available on the Internet. The testing of such Web sites
is a specialist activity and requires a lot of understanding of the technology and of
the key issues at both the client end and at the server. For critical e-commerce
business, there are many security threats also. You have to know what you are doing.

EXERCISE

This exercise works through a simple test generation example in the form of a learning exercise.
You may wish to refresh your knowledge of the mathematical notation by referring to a
book on discrete mathematics or formal languages and machines.

Consider a simple machine with four states. There are two functions: a and b (Fig. 7.20).
Putting in a stream of functions, say ababab, the result is a transversal of the diagram to state 1.

If there is a state where a given function fails to operate, then the machine will halt (e.g., abb
starting from start halts in state 1 after the second function is applied as function b is not
defined in this state).

Constructing a Test Set

The test generation process proceeds by examining the state diagram, minimizing it (a standard
procedure), and then constructing a set of sequences of functions. This set of sequences is
constructed from certain preliminary sets.

We require some basic definitions; these apply to any finite state machine.
Distinguishability: Let L be a set of function sequences and q, q0 two states, then L is said to

distinguish between q and q0 if there is a sequence k in the set L such that the output
obtained when k is applied to the machine in state q is different to the output obtained
when k is applied when it is in state q0.

Figure 7.20 A simple finite state machine.

210 Chapter 7 Designing the System Tests

Minimality: A machine is minimal if it doesn’t contain redundant states. There are algorithms
that produce a minimal machine from any given machine—the minimal machine has the
same behavior in terms of input–output as does the original.

Example (Fig. 7.21): In this machine, states 1 and 2 can be merged to form a machine with
fewer states and the same input–output behavior.

Let us consider, from now on, a minimal finite state machine.
A set of input sequences, W, is called a characterization set if it can distinguish between any

two pairs of states in the machine
Example: In the first machine, W ¼ {a, b} is a characterization set (the machine is minimal).
A state cover is a set of input sequences L such that we can find an element from L to get into

any desired state from the initial state start.
L ¼ {1, b, ba, bab} is a state cover for the first machine; 1 represents the null input.
A transition cover for a minimal machine is a set of input sequences, T, which is a state cover

and is closed under right composition with the set of inputs Input, so we can get to any state
from start by using a suitable sequence t from T, and for any function a in Input the
sequence ta is also in T.

Here T ¼ {1, a, b, ba, bb, baa, bab, baba, babb} is a transition cover for the example.

Generating a Test Set

We first need to estimate how many more states there are in the implementation than in the
specification. Let us assume that there are k more states. Let W be a characterization set:

We construct the set Z ¼ AkW < Ak21W< . . . < A1W <W, that is, we form the set of
sequences obtained by using all input sequences of length k followed by sequences
from W, then add to this collection the sequences formed using input sequences of
length k 2 1 followed by sequences from W, and continue building up a set of sequences
in this way.

Figure 7.21 A machine that is not minimal.

Exercise 211

The final test set is TZ, where T is a transition cover.
Example (Fig. 7.22): The diagram of Fig. 7.23 represents an implementation of Fig. 7.22 with

one extra state, a missing transition, and a faulty transition label (a0 instead of a).
The value of k is assumed to be 1 for this example, the set Z ¼ AW < W ¼ {aa, ab, ba, bb},

and the test set TZ is thus

TZ ¼ {1, a, b, ba, bb, baa, bab, baba, babb} � {aa, ab, ba, bb}
This means the following tests:

aa, ab, ba, bb

aaa, aab, aba, abb

baa, bab, bba, bbb

baaa, baab, baba, babb

babbaa, babbab, babbba, babbbb

The extra transition is exposed by the input bb, which produces a different output in the
implementation than in the specification where no effect should be observed for the
second b; the missing transition is exposed by babb and the faulty transition by baa.

The transition cover ensures that all the states and transitions of the specification are present in
the implementation, and the set Z ensures that the implementation is in the same state as the
specification after each transition is used. The parameter k ensures that all the extra states in
the implementation are visited.

Figure 7.22 A state machine.

Figure 7.23 The machine of Figure 7.22 with some faults.

212 Chapter 7 Designing the System Tests

CONUNDRUM

Two leading supermarket chains introduced their first Internet ordering system at
around the same time. Their e-commerce sites, although superficially looking
similar, fared rather differently. One saw a much greater growth in business than
did the other. Yet the technology used and the warehousing and delivery systems
were very comparable. Customers just didn’t like using one of the sites.

What could have been the differences between the two user interfaces that made
this happen? (It was nothing to do with the look and feel of the Web pages or the way
that the orders were managed or the price of the goods.)

REFERENCES

M. HOLCOMBE, F. IPATE. Correct Systems—Building a Business Process Solution. Springer-Verlag, 1988.
Available at: http://www.dcs.shef.ac.uk/~wmlh/correct.

C.B. JONES. Systematic Software Development Using VDM. Prentice Hall, 1986.
G. MYERS. The Art of Software Testing. John & Wiley Sons, 1978.
J.M. SPIVEY. The Z Notation: A Reference Manual, 2nd ed. Prentice Hall, 1992.

References 213

Chapter 8

Units and Their Tests

SUMMARY

From stories to tasks to classes and methods

† Finding the unit tests

† Running the tests

† Documenting the test results

8.1 BASIC CONSIDERATIONS

The nature of the system architecture and implementation languages are dependent on
the application, the resources available, and the knowledge of the team. Having said
that, however, such a project as this is an excellent vehicle for developing one’s pro-
gramming knowledge and understanding, even in a new language. In fact, once one
has some programming experience in any language, it is usually possible to develop
skills in another rapidly.

If there is a need to learn a new language, then it is vital to go about it in a sensible
way. One approach is to gather elementary information, introductory texts, teaching
aids from theWeb, and so on. Somemembers of the team should take the responsibility
for organizing the collection and organization of this information, and someone could
then plan some presentations, demonstrations, and discussion sessions with the rest of
the team. It is surprising howquickly progress can bemade, especially if you have a real
and specific target system to develop. You may not be able to get detailed technical
support from your tutors and professors, but that is not critical. Any computing
degree should have as one of its objectives the development of the skill to learn new
things—technologies, languages, processes—and this type of practical project based
activity is where this can be done most effectively. At the end of the project, you
will be technical experts in areas that your teachers may not know very much about!

As part of some languages, there are development environments, libraries, and
other supporting material. It is important that these are exploited where this is feas-
ible. It is also important to look around for examples of similar applications and to

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

215

examine how these are organized. It may be that you can use this information with
your own project.

8.2 IDENTIFYING THE UNITS

Each project will be different, there will be different stories, different programming
languages used, different operating environments, and so on. Furthermore, the
programming courses that have been taken may have approached the issue of break-
ing down a high-level story requirement into “bite-sized” pieces of code in different
ways. It is therefore impossible to provide a definitive method that will enable the
programmers to create a framework of units, classes within which the programming
can be set.

One approach is to take a story and to try to identify a series of chunks of
functionality or tasks that need to be defined and that could form the basis of some
suitable units.

Consider the following story (Figs. 8.1 and 8.2). It is concerned with a system,
Quizmaster, which allows the user to set up quizzes on a variety of different topics;
these quizzes can then be provided online to people taking the quizzes.

The story begins with the task of requesting an option by clicking on a screen
button.

The list of papers should be displayed and one chosen.
The next task is to display a suitable window with simple edit facilities to allow

the user to input some simple text, namely the topic name for a paper.
The information supplied needs to be validated. In this case, is the same topic

already declared on this paper? This will involve a query to the database. The
functional tests defined on the card provide guidance as to the checking required.
Be prepared, however, to identify other things that may need to be considered,

Figure 8.1 Add topic story card.

216 Chapter 8 Units and Their Tests

there is no guarantee that all the special and awkward cases have been identified at
this stage. Always try to think “What if.”

If the validation fails, then a warning message should be given and a repeat try of
the previous task enabled.

Finally, confirmation should be given to the user that the operations were
successful.

These tasks can then be the basis for a series of units that will provide the
functionality required. If an object-oriented language such as Java is being used,
then it should be possible to define a simple set of class diagrams that will contain
the main class outlines, variables, attributes, and outline methods.

We will need to build a database model that will have a class to handle data
access functions.

Recalling what we said about keeping the user interface, the business rules
and the database as separate layers, we should organize our classes to respect that
principle (Fig. 8.3).

There will be a screen class to provide the initial user interface for the start of the
story, which we will call the homescreen. The button will be provided with an
adaptor/listener method to enable the story to be started.

Figure 8.2 The reverse of the add topic story card.

Figure 8.3 A classic three-layer architecture (see Fig. 6.2).

8.2 Identifying the Units 217

Class homescreen will handle this. The button click will cause an event that calls
the addtopic, a class that provides the basic interface for this story.

Thus a new object will be created giving a screen with edit facilities. This will
include a button for data submission together with checking and recovery
methods. To capture and report data entry errors, an error class is included (Fig 8.4).

The topicscreen class will need information from the database, so a table class is
used. The row class will write to the database.

The results will be displayed in a list box using a suitable component by the
addtopic class.

Figure 8.4 Some screens and their relationships.

Figure 8.5 Some classes involved in the story.

218 Chapter 8 Units and Their Tests

Figure 8.5 illustrates a possible collection of classes for this story, displayed as
Class–Responsibility–Collaborator (CRC) cards (Cunningham,), and Fig. 8.6
shows how the three layers are organized.

8.3 UNIT TESTING

For each class we are building, thought should be given to how the class is to be
tested. As we have seen, the extreme programming (XP) approach suggests that
test sets should be created before any coding starts. This is not as simple as it
seems because at the start of the coding of a unit, it may not be entirely clear how
it will be written, and some important tests may not be easily defined.
Furthermore, many of the popular types of testing such as the white box testing
techniques are based on the structure of the code. But we have no code as yet, so
this won’t work. The lack of discussion of this point is one of the weaknesses of
some treatments of XP.

What is important here is that a basic framework for testing the unit is defined,
and this will be developed into a more detailed set of tests in tandem with the coding.
At the end of the initial exploratory coding stage, a complete set of tests should then
be available so that thorough testing of the class is possible.

Given the outline description or structure of a class, we have to identify two
important things: (a) What are the ways in which the method will be accessed and

Figure 8.6 Task sequences, classes, and their interactions.

8.3 Unit Testing 219

what, if any, are the preconditions on the data that is supplied to it? (b) What are the
ranges of values that need to be provided for the methods?

Once we have identified these, the expected outputs have to be considered and, in
particular, action taken to ensure that the output information of interest can be read or
displayed in an appropriate form.

We will be writing some test scripts that will be used in conjunction with the
class code to establish whether it is behaving in a desired manner. These scripts,
themselves forming classes or modules in the language concerned, will provide the
basis for automating many of the tests, but it is unlikely that all the tests can be
done automatically.

The test scripts will have to provide the information needed to prepare the
class for testing, and this will involve identifying the entry points to the method
and supplying suitable data to make the test work.

In any method that we want to test, there will be some data input values needed
from a defined data structure or type. It is important to ensure that the data selected for
this purpose is sufficiently varied to expose the method to all possible types of failure
as well as success. We are trying to do two things during testing: gain some confi-
dence that the method works and at the same time try to break it. Only then can
we be sure that the class is trustworthy enough to be considered for integration
into our existing working system.

Most values of data will be defined in the context of limits or boundaries that
describe their validity so that, for example, we may have taken the decision earlier
that a particular data value that is a string must be between 1 and 30 characters
long and that falling outside that range will cause an error and some suitable recov-
ery—perhaps inviting a user to try again if it is a data input through some user
interface. Numerical values might also be restricted, and it is useful to be proactive
in this respect and not rely on the system to deal with out of range values.

When choosing numeric data values for use in unit testing, it is useful to consider
the following simple categories of data values, where we are assuming that there are
upper and lower boundaries on the values:

A value below the lower boundary

A value equal to or at the lower boundary

A midrange value

A value equal to or at the higher boundary

A value above the higher boundary

A value in an incorrect format

A null value or no input

If we are dealing with the type of a string of literals that must be of length
between 1 and 30, then we could generate the following distinct tests:

,return.

a

abcdef

220 Chapter 8 Units and Their Tests

abcdefghijklmnopqrstuvwxyz1234

fkdiorufberk5486jfkjfkdlk

309475bfbldflkjslkj

abcdefghijklmnopqrstuvwxyz12346

4onkfkdpkfmlk8e3;im65687^^7E@@cmei;pd

%’:�&
null_input

Table 8.1 Test Planning Table

Test number Input name (string)
Boolean
flag Expected result Comments

1 ,return. True Error “no proper
input”

To GUI

2 ,return. False Error “no proper
input”

To GUI

3 a True Screen message
“already
present”

To GUI

4 a False “Submit to
database”
message

Needs to
connect with
database

5 abcdef True Screen message
“already
present”

To GUI

6 abcdef False “Submit to
database”
message

Needs to
connect with
database

7 abcdefghijklmnopqrstuv
wxyz1234

True Screen message
“already
present”

To GUI

8 abcdefghijklmnopqrstuv
wxyz1234

False “Submit to
database”
message

Needs to
connect with
database

9 abcdefghijklmnopqrstuv
wxyz12346

True Error “input too
long”

To GUI

N abcdefghijklmnopqrstuv
wxyz12346

False Error “input too
long”

To GUI

n þ 1 %̀:�& True Error “invalid
input type”

To GUI

n þ 2 %̀:�& False Error “invalid
input type”

To GUI

n þ 3 null_input True Error “null
input”

To GUI/system

n þ 4 null_input False Error “null
input”

To GUI/system

. . .

8.3 Unit Testing 221

If the algorithm used in the method needs to deal with some valid range data
differently, then tests with all the types of data that will exercise all the paths
through the program graph of the method should be used.

If the input data to the method consists of several different types of values for
different parameters in themethod, then all combinationsmust be considered. It is poss-
ible that some combinations should not be valid during the operation of the method in
the software overall. It is a false economy, at this stage, to ignore these. Such combi-
nations can cause problems when the code is integrated if there are undetected errors
that cannot be found easily during integration. It will help debugging if care is taken
at the unit testing stage to create tests that will report the results in a suitable way.

Suppose that a method is required to take as an input a string of literals of length
between 1 and 30 together with a Boolean flag that describes how the data is to be
treated, true being the prompt for a message to be sent to the interface that the data
is already present (perhaps a customer’s details are already in the database)
and the false flag determines that the details should be checked for valid format
and submitted to the database for insertion.

The method should then be tested using pairs of input parameters in the form of
Table 8.1.

The comments column is there to provide some reminders of the possible
interactions that the class might need to undertake or that need to be considered by
the programmers during and after the testing of this class.

The important thing about designing a test is to think awkward—try to invent
combinations of inputs and values that are unusual as well as the obvious ones.
One common adage is “if it can go wrong, it will go wrong”—there is no such
thing as a perfect system, the best we can do is to minimize the impact of any
failure or error in our code.

8.4 MORE COMPLEX UNITS

Not all the classes developed will fit into the simple pattern of a few independent
methods that can be tested independently. More complex structures are likely, and
we need to identify how these might be dealt with. Luckily, we can capitalize on
our earlier modeling and test generation ideas.

Each class has its own life cycle; its operations have specified active sequences
(during correct use) that must be obeyed by any user or client class. On the other
hand, a class cannot control the access sequences of its clients. The operations are
driven by events; it is never known when an operation will be called. In such
cases, to ensure the system’s correctness, the programmer must use suitable error
handling to deal with incorrect or unexpected use.

The active sequences of the operations could be represented in an X-machine:
the input alphabet of this X-machine includes all input parameters of construct and
operation methods, the output alphabet includes all output values of the operation
methods, the transitions represent class operation methods, the memory being the
data values, and the output of access methods.

222 Chapter 8 Units and Their Tests

Using an X-machine to represent the class activity can help to generate the test
set more easily and completely and potentially automatically.

8.4.1 Case Example: The AddElement
Function in JHotDraw

This example is taken, with permission, from a more detailed paper by Walkinshaw
and Bogdanov (2007).

HotDraw is an application written by Ward Cunningham and Kent Beck in the
Smalltalk programming language. It has also been implemented in Java by Erich
Gamma (JHotDraw, 2007) and called JHotDraw and is an open source program.

JHotDraw allows the user to construct simple graphical images using a number
of standard shapes (rectangles, circles, freehand etc.). It also allows you to add text
and arrows to the pictures being created (Fig. 8.7). A story card for JHotDraw is in
Fig. 8.8.

The top level X-machine can be described in Fig. 8.9.
As far as identifying inputs is concerned, most of the functions in the diagram are

too abstract to be activated by a single input. Functions such as add_element are trig-
gered by a combination of inputs (select a tool then click and drag mouse on canvas).
If we want to document the detailed behavior of this function, and especially if we
want to test it, it needs to be modeled at a lower level of abstraction. To illustrate
how this can be done, we refine the AddElement processing function as a separate
X-machine with the following processing functions:

The AddElement function can be described also as an X-machine (Fig. 8.10).
Ultimately, especially if we aim to use the machines as a basis for test case

generation, we need to make sure that each transition in each machine is labeled

Figure 8.7 A screenshot of JHotDraw in use.

8.4 More Complex Units 223

Figure 8.8 A possible story card for AddElement.

Figure 8.9 X-machine model of JHotDraw.1

1One Ignore function is added to the diagram to remind us to think about completeness.

224 Chapter 8 Units and Their Tests

with an input symbol. Depending on the system function, an input may either
correspond with an actual program input (e.g., the click of a button in the user inter-
face) or a method invocation at a lower level. Here we demonstrate the process of
identifying inputs for the add_element function in Fig. 8.10 (Table 8.2).

Select_mode is the default control state allowing users to select elements to be
placed on the canvas. Most of the other details are fairly self-explanatory.

The next stage is to construct a lower-level X-machine that describes the
behavior of the select_text_tool as an example.

Figure 8.10 JHotDraw AddElement model.

Table 8.2 Function Details for AddElement

Function Input trigger Memory Output

Select_text_tool Text_button — Text_mode
Select_figure_tool Figure_button — Figure_mode
Get_textbox Click(over text box) Mouse_position (x,y) textbox
Create_new_textbox Click(over canvas) Mouse_position (x,y) textbox
Edit_text Text_entry Textbox textbox
Delete_text Text_entry Textbox Select_mode
Set_figure_position Mouse_down Mouse_position(x,y) (x,y)
Set_figure_dimensions Mouse_up Origin (x,y),

Mouse_position (x,y)
(x,y)

Add_textbox_to_canvas Textbox Select_mode

8.4 More Complex Units 225

This section is not concerned with identifying individual objects as part of
the software development process. Object modeling is more a matter of software
architecture than of functional specification, so for the sake of simplicity, this
section assumes that there exists an a priori object model and is merely concerned
with (a) picking the objects that are relevant to a high-level element of functionality
(a system function) and (b) creating a machine that models the object’s contribution to
that element of functionality.

Here we illustrate how to model the individual objects for the select_text_tool
processing function from the add_element machine in Fig. 8.10.

Because JavaDraw is a Java application, its implementation is largely based on
the Java AWT (Abstract Windowing Toolkit) library interfaces. It is no longer suffi-
cient to simply break down the system into arbitrary functions because they have to
conform to an existing set of interfaces. At this level, the design becomes specific
to the underlying language and component interfaces; a similar specification for a
different language and different libraries (e.g., C# and its GUI libraries) could
differ significantly.

There are a number of traditional state machine object representations (e.g., UML
statecharts), but these make the simplistic assumption that an object reacts solely to
method calls, thus a state transition is usually labeled with the method that triggers it.
In practice, however, object interactions are more complex; behavior can also be
affected by values that are returned by method calls, exceptions can be thrown that
deviate from expected behavior, and call-backs can occur, all of which are difficult
to intuitively denote with traditional state machine notations.

To account for this fine-grained object communication behavior, we model
objects using Bogdanov’s specialized X-machine model (Bogdanov, 2005) called
the “object machine.” His model extends the range of inputs that can affect the
behavior of an object to include values returned from collaborating objects, excep-
tions, and call-backs, as well as conventional method calls. In terms of the source
code, every possible input (incoming communication) and output (outgoing
communication) corresponds with a particular type of statement, as is shown in
Table 8.3.

Table 8.3 Object Machine Inputs and Outputs with Their
Corresponding Statements

Statements

Inputs
Incoming method call First statement of a method
Return of control from called method Call site
Caught exception First statement of a catch clause

Outputs
Outgoing method call Call site
Return of control to a calling method Return statement
Thrown exception Throw statement

226 Chapter 8 Units and Their Tests

Perhaps the key benefit of adopting this specialized model is the fact that it can
be used as a basis for generating unit tests that rigorously test objects at a fine
granular level.

From the user’s perspective, the select_text_tool function executes when
they select the text tool in the control panel (i.e., click the Graphics button). This
deactivates the current tool (if there is any existing active tool) and activates the
new tool, which involves setting the cursor to the text pointer. The sequence
diagram in Fig. 8.10 details the object interactions that constitute the select_text_tool
function. Again, the reader is not expected to refer to the JHotDraw implementation
itself, but it merely serves to provide a point of reference for the rest of this
subsection.

To summarize, the most important interactions are the following:

† Call 1.1 establishes what tool has been selected by the user (i.e., the text tool).

† Call 1.3.1 finds out if there is a currently active tool (if this is the case, call
1.3.2.2 deactivates the currently active tool)

† Call 1.3.4.2 activates the text tool.

† Calls 1.4.� ensure that the text tool button is selected.

Sequence diagrams (or collaboration diagrams) such as the one shown above
are useful for constructing object machines, because they indicate which object
interactions are especially relevant to the feature that is being modeled. In the
case of JavaDraw, the implementation already exists, so the sequence diagram for
select_text_tool was simply reverse engineered from the implementation (using the
Borland Together reverse engineering capabilities; see http://www.borland.com/
together/).

Instead of testing every class with respect to all of its methods, we can focus on a
selection of classes and only test those methods that play a part in the sequence dia-
gram(s). If no definitive interaction diagrams exist, it is probably safer if the object
machine is constructed conservatively, without omitting methods.

The rest of this section illustrates the process of constructing an object machine
with respect to the DrawApplication class, the key object in the select_text_tool func-
tion. Although we focus on a single class here, the process would be repeated for the
other objects that participate in the function select_text_tool.

The process of constructing object machines consists of two steps: (1)
Identifying the inputs and outputs of each object as specified in Table 8.3 and (2)
determining the order in which these can occur.

The sequence of inputs and outputs can be largely determined from the sequence
diagram, although certain semantic ambiguities can only be resolved by inspection of
the source code or domain knowledge that isn’t encoded in the diagram (Whittle,
2000). Figure 8.11 illustrates the DrawApplication object machine, along with a
table of its inputs and outputs. For an insight into the significance of individual
method calls, the reader can refer to the sequence diagram. The DrawApplication
machine was constructed as decribed in the following text.

8.4 More Complex Units 227

Figure 8.11 Sequence diagram for the select_text_tool.

228 Chapter 8 Units and Their Tests

Figure 8.12 X-Machine for the DrawApplication object.

8.4 More Complex Units 229

The states and transitions of the machine are assembled from the sequence
diagram and bearing the following algorithmic details in mind.

The DrawApplication.paletteUserSelected method is called with the
paletteButton parameter. The first outgoing method call is to paletteButton.name(),
to determine the name of the tool that has been selected (“text tool” in our case).

Once the object representing the text tool is returned from paletteButton
(RET[TOOL]), the DrawApplication object determines whether there is a currently
active tool (fTool).

If a current tool (fTool) is active, it must be deactivated, and its toolbar button
must be reset (toggled to the “off” mode).

If there is no currently active tool (fTool is not active), the tool that is represented
by paletteButton (text tool) can be activated, and its respective toolbar button can be
toggled to the “on” mode.

Figure 8.13 Simplified version of Figure 8.12.

230 Chapter 8 Units and Their Tests

The assumption is made that any communication with a collaborator object can
raise an exception. Because the DrawApplication class doesn’t cope with exceptions,
these lead to the terminal state.

The behavior of the DrawApplication object (specifically with respect to the
select_text_tool function) depends to an extent upon whether or not there is a tool
that is already active. Thus, the memory of this machine must contain the currently
active tool. In practice, the fTool variable is stored as a data member of the
DrawApplication class. Although there are obviously a number of other data
members, this is particularly important because it determines the behavior of the
object specifically with respect to the select_text_tool function.

Now we are in a position to apply the X-machine test method. The details are not
given here, but a full set of tests for this example can be found at http://www.dcs.
shef.ac.uk/�nw/Files/testSets.html, and a tool, statechum, which allows you to
create X-machine models and generate the test sets, can be downloaded from
http://www.dcs.shef.ac.uk/�nw/statechum.html.

A small sample of tests from this are given below; these refer to functions in the
simplified version of Fig. 8.12 such as RET[Tool] being replaced by F3, and so forth,
in Fig. 8.13, and so on.

Some test sets are shown in Table 8.4.

Table 8.4 Sample Tests for the JHotDraw Function
DrawApplication

DrawApplication Object Machine

Transition Cover:
F1, F2, F3, F4, F10, F3,
F1, F2, F3, F4, F10, F5,
F1, F2, F3, F4, F10, F10,
F1, F2, F3, F4, F10, F8,
F1, F2, F3, F4, F10, F1,
F1, F2, F3, F4, F10, F6,
F1, F2, F3, F4, F10, F4,
F1, F2, F3, F4, F10, F9,
F1, F2, F3, F4, F10, F2,
F1, F2, F3, F4, F10, F7,
F1, F2, F3,
F1, F2, F5,
F1, F2, F10,
F1, F2, F8,
F1, F2, F1,
F1, F2, F6,
F1, F2, F4,
F1, F2, F9,
F1, F2, F2,
F1, F2, F7,
F1, F2, F3, F5, F10, F3,

8.4 More Complex Units 231

The test sets of Table 8.4 have to be interpreted and run within a suitable
environment. Further examples can be found in Yuan et al. (2003).

8.5 AUTOMATING UNIT TESTS

If a fundamental part of XP is to test continuously and to test everything, then it is
important that we make sure that testing is easy—or at least that the application of
well thought out test sets is easy.

There are a number of ways that this can be achieved through automating parts of
the process.

The first thing to say, however, is that there is no easy solution to the problem of
automating testing. Even when the test cases have been defined and the tests created,
there is still a lot to be done. There are many tools that are available, some commercial
and very expensive, others are public domain applications that are widely used. We
will mention some of the latter, but it will depend on the type of project being under-
taken as to how useful these are.

Many projects will have a graphical user interface, and the way in which
information, results, and so forth, are displayed on the screen will be important. It
is difficult to completely automate the testing of this type of application. There will
need to be some human intervention even if it is just to evaluate the appearance of
the screen output according to some predefined requirement.

Nevertheless, at the class level, there are sensible things that can be done.
One approach, and a popular one among the XP community, is to use a tool such

as JUnit (Beck, 1999) (see http://www.XProgramming.com). This allows you to
create a test class around the class under test and to submit tests to the code in a
simple and effective way. It is highly recommended that you look at this tool.

Similar tools are freely available for other programming languages, for example
VBUnit and PHPUnit and the Web site mentioned previously is useful for other
languages.

It is not always appropriate to use such a tool in some projects, and in this case it
is possible to write one’s own scripts to automate the testing of methods.

In any case, it is important to organize one’s test data in a sensible way; for
example, creating a number of text files with the data in some suitable predefined
format. A comma-separated value (csv) file is one sensible approach.

The test script program will then take the test file and parse it suitably, then
insert the appropriate values into the method and execute it. The results will either
be collected together in a suitable output file for analysis or the results passed onto
some other code for display through a suitable interface component.

Depending on the application context, this output file is either examined manu-
ally to see if it “looks right” or some automated checks on the output data are per-
formed using suitably written scripts, involving evaluating, for example, whether
the result is equal to a predetermined output value or not. In the latter case, all of
this can be done within the context of a single test program for the unit.

232 Chapter 8 Units and Their Tests

8.5.1 Writing Unit Tests in JUniti2

JUnit is one of a family of unit testing frameworks available (see http://www.Junit.
org). Most of the unit testing frameworks available for other languages have been
written to emulate the JUnit style, although language constraints often prohibit a
direct correspondence. They are often referred to as XUnit—where X represents
the particular programming language.

The easiest way to structure unit tests using JUnit is as follows: A unit test in
JUnit can be taken to mean a test of a class. If there is a class called Vector in the
package mypackage.util, there should be a class that tests it called TestVector in
the package mypackagetest.util. For ease of reference, the directory structure of this
test package should match that of the main package.

The template structure for a test class is as follows:

package mypackagetest;

import junit.framework.*;//the junit testing framework
import mypackage.*;

public class VectorTest extends TestCase //Must extend TestCase
{
private Vector empty, full; //Just some vectors we can test on
public VectorTest(String name) {//Standard constructor, cut & paste
super(name);
}

public static Test suite() {//This is used later in collecting tests

return new TestSuite(VectorTest.class);//standard structure
}

/**
* In here we can set up the variables we will be using in our tests.
* This method is run immediately before every individual test
method.
*/

public void setUp() {
full = new Vector(2);
full.add("element1");
full.add("element2");
empty = new Vector();
}

//--- Now some actual tests ---
public testAdd() {
assert(empty.add("1").size() != 0);
//...
}

2Notes on JUnit prepared by Dave Carrington of Genesys Solutions from material available on
www.XProgramming.com.

8.5 Automating Unit Tests 233

public testRemove() { //if Remove removes the last element
assert(full.remove().size() == 1);
assert(empty.size() == 0); //setup() is called before each test
method
assert(empty.remove().size() == 0);
//...
}
}

Each test method is essentially just a list of assert statements, which will raise an
exception if passed false as an argument. JUnit automatically collates all methods
whose name starts with “test” to add to the set of tests, so if we were to add a
method named testInsert() to the above code, JUnit would automatically detect it.
(Note: Other unit testing frameworks require you to explicitly name all individual
test methods.)

Once we’ve got some of these test classes, we’ll want to be able to run them. To
do this, we must first create a test collection class in the following format:

package mypackagetest;

import junit.framework.*;

public class AllTests {
public static Test suite() {
TestSuite suite = new TestSuite("All of the mypackage tests");

suite.addTest(VectorTest.suite());
suite.addTest(StringTest.suite());
suite.addTest(WhateverTest.suite());

return suite;
}
}]]>

The above is self-explanatory—we just collate all of our test classes in a suite,
and return it. We can now run the JUnit test-suite runner program to run all of the
tests in our suite. This is done in the following way: either

java junit.swingui.TestRunner mypackagetest.AllTests

or

java junit.textui.TestRunner mypackagetest.AllTests

The test-runner tells us of the first assert statement that fails, giving the exception
stack trace so that the assert statement can be identified.

The unit testing frameworks available for other languages work on the same
principles (i.e., a function is written for each test, which contains a list of assert

234 Chapter 8 Units and Their Tests

statements). The way they differ is in the management of these test functions—JUnit
can locate individual test methods automatically using Java’s reflection mechanism.
Other unit testing frameworks usually don’t have this luxury.

8.5.2 Managing Tests

A possible structure for recording is shown in Table 8.5.
The first digit in the Ref. column is the story number. The second digit is a test

number and is unordered (i.e., test 1.2 can be carried out before test 1.1). All sub-
sequent digits are test order numbers and indicate that a test x.y.z must be performed
after x.y. Tests at the same level are still unordered, so x.y.a is independent of x.y.b.
Thus, test 1.2.2 must be performed after 1.2, but is independent of 1.2.1, for example.

8.6 DOCUMENTING UNIT TEST RESULTS

As we saw in Chapter 6, it is vital to maintain a reliable record of what has been done
and what needs to be done. This applies as much to testing and debugging as any-
thing. A spreadsheet style record on the tests applied and the debugging done
should be a natural part of the project. These details must be available in some
shared part of the group’s filestore and needs to be kept up to date. The project
plan will also need to reflect the progress on the testing and fixing of bugs in the
unit code.

To summarize a table such as Table 8.6 is useful for planning the test cases.
As the project continues, it may be necessary to revisit some of these units and

their test details. Perhaps there has been a slight change in the requirements, for
example, the details of the data to be entered into a method might have been
changed subtly in order to achieve some other objective. This may then require the
retesting of the unit under slightly different parameter values. These test descriptions
will allow you to keep track of these changes. The tables of test cases and results must
be updated to reflect the new requirements.

Table 8.5 Test Results Table

Ref. Test Expected
outcome

1.1
1.2
1.2.1
1.2.2
1.2.2.1

8.6 Documenting Unit Test Results 235

T
ab

le
8.
6

U
ni
t:
P
ri
nt
A
ct
io
n
(E
xt
en
ds

A
bs
tr
ac
tA
ct
io
n)

M
et
ho
d
na
m
e

In
pu
t

P
re
re
qu
is
ite
s

E
xp
ec
te
d
ou
tp
ut

A
ct
ua
l
ou
tp
ut
/

ac
tio

n
S
ta
tu
s

P
ri
nt
A
ct
io
n

(c
on
st
ru
ct
or
)

N
am

e
of

ty
pe

St
ri
ng

P
ri
nt
T
itl
e
of

ty
pe

St
ri
ng

Pa
ra
m
et
er
s
gi
ve
n
ar
e

in
iti
al
iz
ed

S
et
s
up

va
ri
ab
le
s
of

th
e
ac
tio

n
C
on
st
ru
ct
or

se
ts
up

va
ri
ab
le
s
co
rr
ec
tly

.
P
ri
nt

bu
tto

n
sh
ow

s
as

re
qu
ir
ed
.

T
es
te
d
Ja
ne

(1
2/
03
/
02
)

A
ct
io
nP

er
fo
rm

ed
E
ve
nt

of
ty
pe

ev
en
t

A
ct
io
nE

ve
nt

oc
cu
rs
in
th
e

JI
nt
er
na

lF
ra
m
e

re
tu
rn
ed

by
cl
ic
ki
ng

th
e

P
ri
nt

bu
tto

n

S
ho
w
s
a
pr
in
t

di
al
og
ue

T
o
do

P
ri
nt
T
ab

le
A
ct
io
n

(c
on
st
ru
ct
or
)

N
am

e
of

ty
pe

st
ri
ng

P
ri
nt
T
itl
e
of

ty
pe

st
ri
ng

F
ra
m
eI
n
of

ty
pe

C
om

po
ne
nt

Ta
tb
le
to
P
ri
nt
In

of
ty
pe

JT
ab

le

A
ll
in
pu
t
ty
pe
s
va
lid

In
pu
t
pa
ra
m
et
er
s

st
or
ed

lo
ca
lly

T
he

JB
ut
to
n

di
sp
la
ys

O
K

an
d

al
l
va
ri
ab
le
s

st
or
ed
.

T
es
te
d
an
d

de
bu
gg
ed

B
ill

(1
2/
03
/
02
)

A
ct
io
nP

er
fo
rm

ed
E
ve
nt

of
ty
pe

A
ct
io
nE

ve
nt

A
ct
io
nE

ve
nt

oc
cu
rs
in
th
e

JI
nt
er
na

lF
ra
m
e

re
tu
rn
ed

by
cl
ic
ki
ng

th
e

P
ri
nt

bu
tto

n

T
he

pr
in
te
r
jo
b
is

cr
ea
te
d
an
d
a
pr
in
t

di
al
og
ue

sh
ow

s.
If

O
K
th
en

ta
bl
e
is

pr
in
te
d,

if
ca
nc
el

th
en

no
pr
in
t.

T
o
do

236

8.7 REVIEW

The identification of the classes and their implementation will form a major part of
the project. If we proceed in the true XP way, we will have written the unit tests
first and run these against our code on a very regular basis until we have convinced
ourselves that they work as required. This isn’t so easy as it sounds.

A principled approach to building unit test sets has been described, but this is still
an active area of research. The approach is rather different to the structural or white
box technique often used in traditional software development. We have seen that it is
not appropriate here as we have to write the tests before we write the code. One tech-
nique often used in traditional white box testing is to estimate something called test
coverage. This is a figure that describes how much of the code has been exercised by
the tests; it might be defined in terms of what percentage of decision points the test set
has exercised, the percentage of branches traversed during testing, and so forth. Sadly,
such measures do not tell us much about how well the testing has been done. It merely
measures the amount of effort that has been applied to testing. The testing techniques
described here can provide complete fault detection if the basic assumptions and
design for test conditions are satisfied.

EXERCISES

1. Set up the JUnit system and try it out for a simple program. If you are not using Java,
use an appropriate alternative to JUnit. Think up a few test values to apply to the
program.

2. Build a simple model of the program written in question 1. Now generate some tests
from the model and compare with your earlier list.

3. Apply the techniques to a more complex model with communication and
synchronization features.

CONUNDRUM

About 20 years ago, the U.K. government purchased a system to deal with air traffic
control over London. It was based on a number of similar systems that had recently
been installed in the United States. Unlike the American systems, there were serious
problems with the London system. Planes flying over London would suddenly disap-
pear from the screen. Equally alarmingly, planes would suddenly appear as if from
nowhere. Extensive testing was carried out, especially on the component of the
system that was fed the radar information and dealt with the display of the positions
of the planes on the screen. No defects were found, everything was exactly as the
requirements demanded.

Why did the system work in the United States but not in London?

Conundrum 237

REFERENCES

K. BECK. Extreme Programming Explained. Addison-Wesley, 1999.
K. BOGDANOV. Testing from object machines in practice. In Proceedings of UK-TEST005, Dept. of Comput.
Sci., Univ. Sheffield, Sheffield, UK, 2005.

W. CUNNINGHAM, K. BECK. A diagram for object-oriented programs. Presented at Proceedings OOPSLA-86,
Oregon. Sept. 29–Oct. 2.

M. FOWLER. Refactoring—Improving the Design of Existing Code. Addison Wesley, 2000.
N. WALKINSHAW, K. BOGDANOV, M. HOLCOMBE, S. SALHUDDIN. Modelling and testing software with X-
machines—a case study (submitted).

J. WHITTLE, J. SCHUMANN. Generating statechart designs from scenarios. In 22nd International Conference
on Software Engineering (ICSE ’00), Limerick, June 4–11, ACM Press, 2000, pp. 314–323.

J. YUAN, M. HOLCOMBE, M. GHEORGHE. Where do unit tests come from? In (M. Marchesi, G. Cucci, eds.).
Extreme Programming and Agile Processes in Software Engineering (XP2003), LNCS 2675. Springer,
2003, pp. 161–169.

Web Site

www.jhotdraw.org.

238 Chapter 8 Units and Their Tests

Chapter 9

Evolving the System

SUMMARY

Dealing with change

† Changing requirements

† Changing test sets

† Changing code

† Refactoring the requirements, the tests, and the code

† Working with the client

† Integrating the releases

9.1 REQUIREMENTS CHANGE

Change to the requirements is bound to occur, and the way that we deal with it will be
a vital aspect of a successful project. We must expect it and be prepared to accommo-
date it. However, it is necessary to be sensible about things. Large amounts of change
bring with them risks, and there needs to be an honest and realistic discussion
between the developers and the customers about this. Unnecessary change could
delay the project delivery, damage what has already been done, and so on. Are the
business benefits sufficiently great to risk this?

There are a number of different manifestations of requirements change, and some
are more serious than others. We have been trying to identify those areas of the system
that might be subject to change from an early stage in our requirements capture and
analysis. Hopefully, we will not be too far wrong, but you can never tell.

We will consider several types of change and how to deal with them. Some are
serious and will involve us in redoing a lot of our previous work; some are more
easily dealt with and won’t affect the project outcome too much. There is always a
price to pay if the change is significant, and the client should realize this. The XP
approach is to be agile and adaptable as well as to be honest with the client and to
talk to him or her frequently. That way we may see the changes coming and
prepare for them. We should also explain to the client the costs of the changes, the

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

239

delays that may occur, the reduction in quality if it isn’t thought through properly, and
so on. Ask the question: Do you really need this change? If the change is fundamental
to the way the client’s business or organization is evolving, then we need to embrace
it with enthusiasm.

Changes can occur during the discussions about the system or business processes
and during demonstrations of software, whether delivered or not. One benefit of an
incremental delivery—it might not actually be delivered just demonstrated to the
client depending on the context of the relationship between the customers and the
developers—is that it gives customers a chance to see what they may be getting
and to identify any changes that they may like, including new features. Also, if
their business needs have changed, they can then discuss the impact that this
may have on your project, in terms of priorities, functionality, and so forth. Not all
customers will want to install an increment of the system in their premises. This
can be a cause of problems if their computer system differs significantly from that
of the development team.

They may also comment on the look and feel, on the GUI, and how acceptable
that is to their organization and its workers. This may result in a significant change to
the user interface—to the presentation in particular. If your metaphor is one where the
business logic and the presentation layer are reasonably separate, then this may be
something that you can deal with. If the change is due to a significant alteration to
the underlying database, then this can also be managed but is likely to have
knock-on effects throughout the system because so much of it may need to relate
to the database structure.

9.2 CHANGES TO BASIC BUSINESS
MODEL AND FUNCTIONALITY

These sorts of changes can occur at almost any stage of the project. Sometimes they are
the result of the team not understanding the client’s requirements or business processes
at the time and are thus a correction of what was originally thought. These changes
need to be related to the current state of the project. If the project has developed
a requirements document, then the changes may require the introduction or substi-
tution of new requirements statements, and these should be expanded into stories.
Then the changes have to be tracked through the development of the project so that,
for example, implications for the underlying database, if one is involved, are con-
sidered. Then we revisit the integration of the stories into an X-machine model with
its accompanying user interfaces and input and output requirements.

The test sets will need to be redefined properly at the systems level. The
classes associated with these changes must be identified and the unit tests updated
to reflect the new requirements; the code needs to be reprogrammed and tested in
the usual way.

It is not always easy to achieve these changes without extra work. If the stories
have not yet been implemented, then things are much easier. As always, the later a
change is identified, the more expensive it can be. It seems that XP and other agile

240 Chapter 9 Evolving the System

methodologies are more able to cope with change than are others. If your project is
fixed scope/fixed price, then there will be times when significant change will not be
compatible with the fixed end date for project completion.

Whatever the situation, it is vital that all the new parts of the system are properly
documented, so that we have to maintain the key information about the system:

The stories

The models

The system tests

The system metaphor or architecture

The classes and methods

The unit tests

The code

The user manual and maintenance manual

This updating may be accompanied by comments to indicate what has been done.
Finally, the version numbers of the various artifacts listed above must be

updated. Version control is discussed further in Chapter 10.

9.3 DEALING WITH CHANGE: REFINING STORIES

Now the requirements may change, this is the point of using XP, so how do we deal
with this?

Suppose that the client is happy with the initial set of stories and the requirements
document. He or she selects some critical stories to implement first. The team begins
to think about how to do this (see Chapter 7).

The client then comes back to tell us that there needs to be a change. To decide
how to deal with this and what it means for the system testing, we need to consider
what sort of change it is.

9.3.1 Changes to the Underlying Data Model

Suppose that the new requirement is to have more information about the customers,
perhaps an indication of their creditworthiness or whether they qualify for some dis-
count. This involves changing the internal memory of the model; we can do this quite
easily and then introduce a new area of the interface to provide the extra functionality.

Thus we now have:

customer details:name, address, postcode, phone, fax, email, discount

where discount is either yes or no.
The screen is now changed to allow a discount yes/no button to be chosen or a

discount flag to be checked.

9.3 Dealing with Change: Refining Stories 241

This will impact on our test sets by requiring the discount data to be present in the
tests. We need to identify all these changes on story cards so that they are properly
documented and we are in a position to know what to do.

9.3.2 Changes to the Structure of the Interface,
Perhaps the Introduction of a New Screen

This will mean altering the state machine model by introducing a new state, for
example. To access this state, a new transition together with an accessing function
will have to be defined. The activities within this screen and the exiting from it
will also lead to new transitions and functions that need to be defined. Each of
these will identify a new story, which, in turn, will define a further requirement.

9.3.3 Adding a New Function

Here we are inserting a new transition with its corresponding function into a diagram.
Here a similar strategy applies, for every test sequence that gets to the state where this
new function originates, we develop a new test sequence that triggers the new function.
We then complete each of these new test sequences by creating paths through the
machine following on from this function. Again, this will lead us to new test sequences.

9.3.4 Changing the Functionality of a Function

The basic strategy will not be affected here unless there are issues with the precondi-
tions for the function. If the precondition for the operation of the new function is
different from that of the replaced function, then the test sets may have to be
changed in a more subtle way. In other words, we may need to test for the nonopera-
tion of the function by choosing previous data values and memory values so that the
function does not operate. This can only be dealt with on a case by case basis.

9.4 CHANGING THE MODEL

The changes are captured using revised story cards, and now we need to integrate
them into our model so that we can see the effect that they have on the system and
how they impact the test sets.

The X-machine model is built from the user stories in order to provide a basis
for functional system testing. The changes will involve a number of different
transformations of the model, which can be considered separately.

9.4.1 Changing a Process

Suppose that we have the model shown in Fig. 9.1. The process EnterOrder is
changed in some way, perhaps the information being input is different; thus, this

242 Chapter 9 Evolving the System

needs to be reflected in two ways. The definition of the function is different, and
so the interface that provides the user with the capability to input the information
will need to be changed. The database will also probably have to change to accom-
modate the new data being input. An example might involve we need to collect
more information about the order, for example the customer’s tax number (T-no.).
See Figure 9.3.

We should make it clear that this process has changed in the model by amending
the diagram at the top level by changing the label to EnterOrder0, as well as altering
the lower level diagram where the process is expanded into more atomic processes
(Fig. 9.2).

Figure 9.1 A model of part of a system.

Figure 9.2 An amended model.

9.4 Changing the Model 243

The order details diagram also needs to be changed, as follows:

9.4.2 Removing States

Here we consider the issues related to removing a state; perhaps the client does not
want a particular feature any longer.

If we remove a state, then we must remove all the processes that lead to that state
and all those that leave that state. This may interfere with the flow of business

Figure 9.3 A new user interface.

244 Chapter 9 Evolving the System

processes, and it is vital that we check this thoroughly before committing ourselves to
the new model of the requirements.

All those processes (or transitions) can now be removed from our architecture
and the user interfaces associated with them also. It is vital that we then revisit the
system tests to see what the implications of this are. Because much of the diagram
is unchanged, all the tests that involve sequences that visit this state can be
removed also. Take care over this.

It may be necessary to introduce a new process or two to link states before and
after the removed state in order to make the whole system work. We look at this next.

9.4.3 Adding States

When introducing a new state, it will also require the introduction of new processes
and their transitions. In fact, there is no point in introducing a new state unless there is
a process that needs to be dealt with separately. This might be because we decide that
a particular case in the business process needs to be dealt with in a separate way, and
this might mean designing a new user screen specially for this event. This is often
better than trying to cover all the possibilities in one screen. The client will have a
view on this. Thus we might then break a process down into several processes
with their own states.

The original function is split into two separate functions that target two states
instead of one (Fig. 9.4).

As before, we must update the story cards with the new functions and generate
new tests to cover the changing model structure.

The interfaces will also have to be changed, and this is important to do at the
same time, lest we forget.

The methods implementing the functions will now need different tests, and this
is another thing that must be attended to.

Figure 9.4 Splitting a function from a state into two function to two states.

9.4 Changing the Model 245

9.4.4 Adding a Complete Machine

Suppose that the customer wants a major new aspect for the system. This might be of
a signiicant size—perhaps a whole new system—and we will have to consider care-
fully not only how to build the new component but also how to integrate it with the
work already done.

Consider the situation with our Customers/Orders system where a new facility is
needed that deals with customer returns. Thus we need to develop a system that
allows the user to put up a customer’s recent orders and then allows them to select
those that have been returned and then to give a refund or credit the customer’s
account. The refunds section will be accessed, probably through the initial screen,
by a refunds button, and so this will have to be revised. An XXM diagram can be
produced easily (Fig. 9.5).

The rest of the Refunds section needs to be defined in detail—it will contain a
number of stories that will be built and integrated together and then built into the
existing system—and tested at each stage!

9.4.5 Adding Processes

The final type of change is where we introduce a new process that will operate
between two existing states. Here we need to consider, carefully, the way that
this process will be triggered from the state; we could easily get into a problematic
situation if there is any mistake here. The input to the new process together with

Figure 9.5 An extended diagram with the start of the Refunds section.

246 Chapter 9 Evolving the System

the expected memory/database connection at that moment must not interfere with
any other process that might already be there.

9.5 TESTING FOR CHANGED REQUIREMENTS

The system testing will now have to take these changes into account. We will either
redo the complete system test set—not a good idea because of the work involved—or
test the new part of the machine separately and then run a smaller number of
integrating tests. These could be developed as shows in Fig. 9.6.

In every test of the form:

. . . g1; old function; g2 . . .

we create a new test where the function old_ function1 is replaced by a test from the
new machine such as:

. . . ; g1; new function1; func2; func3; g2; . . .

This will lead to a number of new tests. We do all the old tests as well.
The system tests also need updating. Because we have extended the state

diagram with a new transition, we need to write tests that will trigger this transition
at all possible occasions. This means both legitimate paths through the updated
machine, but also we need to try to trigger process from every other state to
ensure that we have not inadvertently introduced additional, unintended functionality
into the system.

In practice, we look at the two models, the original one and the new, revised one
and focus on those test sequences that involve the changed parts of the machines. In
this way, we can preserve many of our original tests and know that we will not have to
retest them. However, if there is any doubt as to whether you should retest, then you
should retest!

Figure 9.6 Adding new states.

9.5 Testing for Changed Requirements 247

9.6 REFACTORING THE CODE

As the system changes and evolves, the version of the code that represents the current
state of the system will undergo a number of changes. Some of the changes will simply
be a result of building increments into the existing code, and some will be a result of
fixing problems and bugs. Refactoring is the activity of rewriting the code without
changing its functionality in order to achieve some specific aim, such as to make the
code more understandable for maintenance, to make it compliant with some standards,
or to reorganize it in line with changes to the platform or system architecture.

In this section, we will briefly describe some common refactoring techniques;
the principle source book for this topic is Fowler (2000), and this should be consulted
for the details.

Suppose that you have developed some classes during the early stages of the
project, and as you increase the functionality of the system, you develop a new
class that uses a method that is already in an existing class. The temptation is to
copy and paste this method into the new class. This now means that the same
method appears in at least two places. It might happen during the course of the
system evolution or during maintenance that the method needs changing. The
problem now is that you have to remember to change it at all of its locations, and
you may forget to do this. The maintenance engineering may not even be aware of
all the places where this method belongs. The better way is to create a separate
class embodying this method and to refer to this class within the body of the
classes that previously used it. This process is called the extract class refactoring.

Some methods are very large and thus likely to have behavior that is hard to
understand. Rather than spend a lot of time trying to write comments to explain
what is going on, it might be better to refactor the method by splitting it up into a
collection of simpler methods that are organized in a clearer way. Here the extract
method refactoring can be used. Take care with variables, however.

Some classes seem to grow out of control, and this might also need dealing with
using something like an extract class refactoring, which tries to group related
variables in a sensible way and perhaps introduce components and subclasses to
deal with the complexity of the original class.

Data can be reorganized in more natural ways. We have already seen the archi-
tectures that separate data from business logic, and this is another principle that can
be applied in the code. Data values can also be replaced by specific objects, which
provides a neater structure. Awkward arrays can also be turned into objects.

Conditional expressions can be simplified by extracting the conditional into a
method and then dealing with the then and else parts separately.

Remove confusing flags by using break or continue statements.
Because refactoring should not alter the functionality of the code, it is possible to

use the test sets to check this. Getting into the habit of continually testing everything
as you do it will give greater confidence that you have not broken anything during the
refactoring process. This does assume, of course, that your tests are good ones.

There are many more things that can be done, and Fowler’s book is an important
source of ideas and inspiration.

248 Chapter 9 Evolving the System

An issue was raised in Chapter 2 concerning the unit tests and what happens to
them when the code is refactored. Ideally, there should be a unit test associated with
each class. For some types of refactoring, the overall class structure will not change,
and so the tests will still be associated with the right classes. The test sets may need
some maintenance, however, especially if there have been changes to variable names,
and so forth.

9.7 ESTIMATING THE COST OF CHANGE

Each extra aspect of the system that is identified as we progress with the project will
have an impact on the length of time that the project will take. We can estimate this
with a quick analysis of the type of change being considered (Fig. 9.7).

In Chapters 5 and 6, we looked at how we might make estimates of simple stories
and also use the XXM models to refine these and provide some ideas of time and
effort for more substantial parts of the system. This should be done regularly and
the overall project plan updated to take account of the changes.

9.8 REVIEW

Coping with changes is something that you will certainly have to do. It makes a big
difference if you approach the problem in a systematic and practical way. Panicking is
bound to lead to further problems. Stay cool and think through the changes carefully
and logically, what they are, how they impact the rest of the system, and how they can

Figure 9.7 A story planning chart with some new stories and an extended delivery deadline.

9.8 Review 249

be managed. The evolution of the test sets is a vital part of the process. XP is totally
dependent on the tests for ensuring the quality of the solution; neglecting these will
lead to a poor-quality system. Refactoring the code, making it more understandable
and more consistent is an activity that will be ongoing as the system evolves and
changes. It is important that some effort is made to do this—remember the people
coming along behind you who may have to maintain your system. Most university
programming exercises do not have this dimension because, in most cases, no one
is going to use the software in earnest.

EXERCISES

1. Review the way that you dealt with change. Were you able to revise your test sets to account
for the changes in an efficient manner.

2. Did you refactor? What refactoring methods did you use? Could you all agree on what
needed to be refactored and why?

CONUNDRUM

The customer was the IT director of a company that produced and sold biological
specimens to research laboratories and pharmaceutical companies. The software
was to support the entire company activities, which involved the production
process (which had to be fully documented to meet government regulatory
procedures), the stock contol process, the ordering process, and the invoicing and
accounting process.

After working extensively with the customer and delivering a number of
incremental versions, the customer was satisfied. A final delivery was made, and at
this point the customer invited several personnel from the company to attend the
demonstrations. These potential users of the system pointed out many problems
with the business concepts upon which the system was based. It became clear that
the customer did not understand his company’s business process. It was also clear
that we would have to reengineer the system. The new requirements were significantly
different, there were few areas where the detail was the same, although the overall
architecture would be very similar.

Should we start again from scratch or try to adapt what we had already done,
reusing and preserving what we could?

REFERENCE

M. FOWLER. Refactoring—Improving the Design of Existing Code. Addison-Wesley, 2000.

250 Chapter 9 Evolving the System

Chapter 10

Documenting and Delivering

the System

SUMMARY

The purpose of documentation

† Providing maintenance information in the code

† Coding standards

† User manuals

† Online help

† What to deliver

† How to finalize the contract

10.1 WHAT IS DOCUMENTATION FOR AND WHO
IS GOING TO USE IT?

One thing that good software engineers and programmers are good at is creating lots
of documentation. Poor programmers produce relatively little. However, we should
not judge people or organizations by the amount of documents generated; quality
and relevance are much more important.

Quality can be defined in many ways, but for our purposes it must mean that the
document is fit for its purpose. Thus we need to identify what it is to be used for, who
is to use it, what they are trying to do, and to judge the quality of the document on the
basis of how it helps them achieve their objectives in the best possible way.

This brings us to our first difficult problem: People are individuals, and whereas a
particular document is ideal for one person to use to achieve their task, it may be
unsuitable for someone else with a different background and experience carrying
out the same task under different circumstances.

Some people like to have the documentation available online and others prefer a
book form. This is something that should be confirmed with the client particularly in
regard to the user manual for the system.

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

251

We will consider some of the issues relating to the preparation of documentation
and its implementation, either paper based or electronic.

We will look at different types of documents for different uses—documents for
programmers and system maintenance, documents for users, and documents for
managers.

10.2 CODING STANDARDS AND DOCUMENTS
FOR PROGRAMMERS

A vital aspect of XP is that the code is understandable and that those reading it can
be in a position to change it, update it, or develop it further as easily as possible.
In this section, we will look at coding standards and how the source code should
be presented.

The purpose of coding standards is to ensure that all the programmers in a
company produce source code to the same standard in terms of how it is structured
and presented. Not all software houses will share the same style and standards, but
the key point is to get used to working within the constraint of a formalized standards
regime. This will be good experience for future careers.

In this chapter, we will present and discuss the standards used in the Genesys
Solutions company, a software house run by fourth year students at the University of
Sheffield. It is an example of a set of standards that works but is not too burdensome.

XP relies on the clarity and understandability of the code, and this means that we
need to take a lot of care over how we write and document this. Remember one day
someone may need to maintain your system, and what is obvious to you now may not
be obvious to them—or to you in a few months’ time!

Maintenance is a vitally important aspect of software engineering. Maintenance
can take on many forms from bug fixing (perfective maintenance) to extending or
changing the functionality of the system in some way. It is vital, therefore, that the
programmers doing the maintenance understand fully what the system does and
how it is built. They will not have access to a lot of design information—we have
agreed that this is often unreliable and out of date, especially if there have been
requirements changes that have not been properly reflected in the designs.

As we mentioned earlier, it is vital that the code is presented in a readable and
understandable form. We have emphasized the need to keep things simple and to
organize the code in a maintainable fashion. Some of these issues will be discussed
in the following chapter. Here, we concentrate on the basics of code documentation
and on coding standards.

The language Java has a major facility that will help here, namely the Javadoc
system. If Java is being used for the project, then Javadoc should be a mandatory
part of the development method. It provides detailed information about the structure
and coupling of the program—at the end of the project, a Javadoc print-out (file)
should be made available.

We focus here on the issue of coding standards as it is important to address these
from the start.

252 Chapter 10 Documenting and Delivering the System

The purpose of coding standards is to establish a common structure and content of
object-oriented (or any type of code) that is being developed by a team of programmers.
In an extreme programming context, it is vital that everyone abides by the same coding
conventions as the task of coding is distributed among the team. Although pair program-
ming can provide some consistency in coding style, it is not enough by itself.

One problem that can occur is that the standards are perceived to be very time
consuming and bureaucratic to adhere to. This attitude should be resisted, especially if
the grading of the project provides an element related to how well the team adhered to
the standards.

We will look at some standards developed for Java within the context of student
projects for external clients and comment on why they are the way they are. Standards
for other languages can be found, several groups have Web sites with proposals for
standards, and these should be consulted where necessary.

10.3 CODING STANDARDS FOR JAVA1

10.3.1 Genesys Coding Standard for Java

This coding standard has been adapted from the Web page Code Conventions for the
JavaTM Programming Language, which can be found at http://java.sun.com/docs/
codeconv/.

10.3.1.1 README

Any directory containing Java Source Files (.java) should also contain a file
entitled README. This file should summarize the contents of the directory in
which it resides. The summary should be a brief description of what the overall
purpose of the file is and not technical details of individual methods, variables, or
other implementation-dependent factors.

10.3.1.2 Java Source Files (.java)

Each Java source file should contain a single public class or interface. If private
classes or interfaces are associated with a public class, they may be located in the
same file. In this situation, the public class must be the first class in the file.

1These standards were developed by the fourth year students in the student software house, Genesys
Solutions, and are used by the second year students in their real projects.

10.3 Coding Standards for Java 253

A Java source file has the following ordering (Sections 10.3.1.2.1 and
10.3.1.2.2):

10.3.1.2.1 Beginning Comments After package and import state-
ments, and before the main class definition, there must be a block comment of the
following format:

/*
* Name: The name of the Class
* Author(s): All who contributed to this Class
* Date: Date the Class was last altered
* Version Number: The version number of this update.
* Using the standard major/minor revision system
* Starting from 1.0
* Description: What the Class does. If it becomes too

long
* consider breaking it down into smaller
* components.
* Changes History: List of changes, referenced by

version number
* outlining changes from previous version
* i.e.
* 1.1 fixed bug that caused program to
* crash.
* 1.2 added the blah functionality.
*/

10.3.1.2.2 Class and Interface Declarations The following order
should be maintained within Class and Interface declarations:

Class (static) variables: These should also be sorted into the order public,
protected, package (no access modifier) and finally private.

Instance variables: These should be sorted in the same order as for class variables.

Constructors and Methods: These should be grouped by functionality and not by
the access modifier that they possess. Each method must have a block
comment of the following format:

/*
* Name: The method name.
* Author(s): The name of all authors who have

contributed to
* this method. Only include if there is more than
* one author for this Class.
* Description: Brief description of what the Method

does. If it
* is too long, consider decomposition.
* Parameters: List of input parameters.
* Output: The relevance of the returned value. Only
* include if the return type is not void.
*/

254 Chapter 10 Documenting and Delivering the System

Four spaces should be used as the unit of indentation. This avoids excessive
horizontal spread across the screen in deep sections of source code.

Comments should not be enclosed in large boxes drawn with asterisks or any
other characters. Also, consider that many people believe that frequency of comments
sometimes reflects poor quality of code. If you are about to add a comment, take a
moment to see if you can rewrite the code to make it clearer.

10.3.2 Blank Lines

Blank lines should be used in the following circumstances:

Between methods.

Between the local variables in a method and its first statement.

Before a block or single line comment.

Between logical sections within a method that will increase readability.

Table 10.1 Naming Conventions for Identifiers

Identifier type Conventions Examples

Class Should be nouns in mixed case with the
first letter of each internal word being
a capital. Do not use all capitals for
acronyms.

class Person;

class PageCreator;

class HtmlReader;

Interfaces Follow the conventions for Class interface Storing;

interface PersonDelegate;

Method Should be verbs in mixed case with the
first letter being lowercase, and the
first letter of each internal word being
a capital.

run();

getBackground();

findPerson();

Variable Should be mixed case with the first
letter being lowercase, and the first
letter of each internal word being a
capital.
Names should be designed to indicate
their intended use to a casual observer.
One-character variable names are
allowed for one-time-use
throw-away variables.
For integers use i to n;
For characters use c to e.

int i;

char c;

String personName;

Constant Should be all uppercase and words
separated by an underscore.

static final

int MIN_WIDTH=4;

static final

int MAX_WIDTH=99;

10.3 Coding Standards for Java 255

Table 10.1 outlines the conventions that should be used when naming an identifier.
These are essential for readability and quickly determining what the function of an
identifier is.

10.3.2.1 Block Comments

These should be indented to the same level as the code it is referring to and preceded
by a single blank line. To aid setting it apart from the actual code, each new line in a
block comment should start with an asterisk as shown in the example below:

/*
* This is a block comment.
* Each new line, like this one, starts with an asterisk.
*/

10.3.2.2 Single Line Comments

These should also be indented to the same level as the code it is referring to and be
preceded by a single blank line. If the comment cannot be written on a single line,
then the block comment style should be used.

if (condition)
{
// This is a single line comment.

10.3.2.3 Trailing Comments

These can be located on the same line as the code they are describing. However,
they must be short and should be shifted to the far right. If there are multiple
trailing comments in a given method, they should be aligned with one another.
The use of the comment delimiter // to comment out chunks of code is preferred
over a block comment style because of the ease of un-commenting individual lines
at a later date:

if (foo>1)
{
// int i = 0;
// i++;
// foo = i;
return TRUE; // explain why here
}

10.3.2.4 Comment Format

To allow for easy determination of who has altered pieces of code and to ascertain
when the changes were made, the following format should be adopted for all
comments:

256 Chapter 10 Documenting and Delivering the System

// XYZ - The following will do something new - DD/MM/YY
...
/*
* XYZ - DD/MM/YY
* This needed some extra explanation...
*/

where XYZ are the initials of the programmer who has added the comment and DD/
MM/YY is the current date/month/year.

10.3.2.5 Number Per Line

There should be no more than one declaration per line as this encourages the use of
trailing comments to describe the purpose of the variable. It is also recommended to
indent the names of variables in a block of declarations to the same level to enhance
the readability of the code:

int percentageComplete; // how much the project is
complete

int daysRunning; // how many days the project has run
int i, j; // AVOID!
Object currentProject; // the current project

10.3.2.6 Initialization

Where possible, all variables should be initialized upon declaration. The only time
that this cannot be done is when some computation is required before the initial
value of the variable is known.

10.3.2.7 Placement

Declarations should only appear at the start of a block (or clause) of code (this
meaning a group of statements surrounded by f and g). You should not wait until
their first use to declare a variable. However, for one-time “throw-away” variables
in a for loop, they may be declared as part of the statement:

public void aMethod()
{
int int1 = 0;
...
if (condition)
{
int int2 = 0;
...
}
for (int i = 0; i < int1; i++)
{
...
}
}

If variable foo is still in scope, new variables should not be named using this same
name, which would hide the declaration of foo at the higher level.

10.3 Coding Standards for Java 257

10.3.2.8 Class and Interface Declarations

When coding Java classes and interfaces, the following formatting rules should be
adhered to:

No space should be left between a method name and its opening parenthesis
(which starts its parameter list).

The open brace f should be located on the next line down at the same level of
indent as the method or class name.

The closing brace g should start a new line on its own and be indented to the
same level as the open brace g. This ensures that paired braces are at the
same indent level and are easy to spot.

Methods should be separated by a single blank line.

10.3.2.9 Simple Statements

Each line should contain at most one statement:

argc++; // OK
argc++; argv++ // AVOID!

10.3.2.10 return Statements

A return statement that includes a value should only use parentheses if this aids the
clarity of the statement:

return;
return anObject.aMethod();
return (size? size: defaultSize); // adds clarity!

10.3.2.11 if, if-else, if else-if else Statements

The following format should be adopted for these statements:

if (condition)
{
statements;
}
if (condition)
{
statements;
}
else
{
statements;
}
if (condition)
{
statements;
}

258 Chapter 10 Documenting and Delivering the System

else if (condition)
{
statements;
}
else
{
statements;
}

Note that in the situation where statements is in fact a single statement,
the following is permitted:

if (condition)
statement;

10.3.2.12 for Statements

The for statement should be formatted like this:

for (init; condition; update)
{
statements;
}

10.3.2.13 while and do-while Statements

The while statement should have the following form:

while (condition)
{
statements;
}

Similarly, the do-while statement should look like this:

do
{
statements;
} while (condition);

10.3.2.14 switch Statements

A switch statement should have the form shown below. Notice that each time a case
falls through (i.e., there is no break command), there should be a single line comment
to warn of this. This helps prevent simple errors upon later revisiting the code. Every
switch statement must have a default case.

switch (condition)
{
case ABC:
statements;
// falls through!
case DEF:

10.3 Coding Standards for Java 259

statements;
break;
case XYZ:
statements;
break;
default:
statements;
}

10.3.2.15 try-catch Statements

A try-catch statement is shown below. Notice that it is not essential to provide a
finally clause.

try
{
statements;
}
catch (ExceptionCase e)
{
statements;
}

10.3.2.16 Blank Spaces

Blank spaces should be used in the following circumstances:

A blank space should appear after commas in argument lists.

A binary operator should be separated from its operands with a blank space.
A unary operator should not be separated from its operand.

A blank space should appear after the semicolons in the for loops expressions.

Casts should be followed by a blank space.

10.3.2.17 Referring to Class Variables and Methods

Avoid using objects to access a class (static) variable or method. Instead, use a
class name:

classMethod(); // OK
AClass.classMethod(); // OK
anObject.classMethod(); // AVOID

10.3.2.18 Constants

Numerical constants should not be coded directly except for –1, 0, and 1, which can
appear in, for example, for loops as countervalues.

260 Chapter 10 Documenting and Delivering the System

10.3.2.19 Variable Assignments

Avoid assigning multiple variables to the same value on a single line or using
embedded assignments:

foo1 = foo2 = 2; // AVOID!
/*
* The following should be:
* a = b+c;
* d = a+r;
*/
d =(a = b + c) + r;

Do not use the assignment operator where it can be easily misinterpreted as the
equality operator:

if (c++ = d++)
{
...
}

10.3.2.20 Parentheses

Ensure that the use of parentheses is very liberal. Always prefer to include parenth-
eses as opposed to allowing possible operator precedence problems. This is still
the case even if you think the operator precedence appears clear to you—it may
not be so clear to another person!

if ((a == b) && (c == d)) // We prefer this...
if (a == b && c == d) // ...to this

10.3.2.21 Returning Values

Think twice about returning values dependent on certain criteria.

if (booleanExpression)
return false;
else
return true;
// The above is equivalent to the following!!!
return !booleanExpression;
// Here is another example!
if (condition)
return x;
else
return y;
// Again, the above is equivalent to the following!!!
return (condition ? x: y);

10.3 Coding Standards for Java 261

10.3.2.22 ?: Operator

If there is a binary operator in the condition before the ? in the ternary operator ?:,
use parentheses:

return ((x >= 0) ? x: -x);

Other languages have standards recommendations and should be consulted
where appropriate. Among the useful Web sites available are those for PHP
(http://www.phpcodingstandards.com/) and C# (http://weblogs.asp.net/lhunt/
pages/CSharp-Coding-Standards-document.aspx).

10.4 MAINTENANCE DOCUMENTATION

Your system will be the subject of maintenance, assuming that it gets used at all.
Someone will have to deal with the support of the system and possibly the further
development of it. In your professional career, maintenance will often play a large
and important role, and it is usually regarded as an unpopular activity. We should
aim to make it as easy and as painless as possible. Much maintenance carried out
in industrial and commercial contexts is seriously hindered by a lack of documen-
tation that prevents the engineer from fully understanding the system and what it is
supposed to do. In the past, the popular belief was that large amounts of design docu-
ments would be the resource that was the most effective basis on which to carry out
different types of maintenance. In reality, this is rarely the case as we discussed in an
earlier chapter. The design documents may not fully reflect the source code; these
designs may not have been updated as the requirements changed or as implementation
problems drove the design away from the theoretical position adopted at the begin-
ning. We have to provide some basic information relevant to the maintenance team
that is reliable, understandable, and complete, as far as is possible.

It is assumed that the requirements documents and user stories will be available.
These are numbered and organized in a systematic way. The system metaphor and
overall software architecture should also be present and should match the actual
system. This is easier to achieve than trying to relate everything to a large design
that may not have been updated during the development of the system because of
the need to solve unforeseen problems in implementation, the changes to the require-
ments, and so forth.

The code should be consistent with the coding standards and the comments
useful and complete. They should refer to the other parts of the document so that
we can trace how different parts of the code relate to the user stories.

The test sets that were used to demonstrate compliance with the requirements
should also be available so that they could be rerun for retesting or parts of them
used for regression testing (testing that checks that the overall system works properly
when parts of the system have been changed).

Testing documents should be available from the project. We discussed how these
should be designed, using tables and spreadsheets to describe the tests and the test

262 Chapter 10 Documenting and Delivering the System

results. All this information should be preserved and included in the system documen-
tation for future maintenance.

10.5 USER MANUALS

User manuals are vital parts of the system, at least as important as the code in the
sense that a poor manual will compromise the success of the system: people can’t
or won’t use it properly, it fails to assist users in carrying out their tasks, and so on.

What makes a good user manual, and how can we write one?
We need to go back to think about the purpose of the system. This has already

been encapsulated in the user stories, the user characteristics of the system, and in
some of the functional and non-functional requirements documents.

The document should start with a brief review of the purpose of the system and
then provide a structured basis for carrying out all the tasks commonly expected. This
should be written in simple, jargon-free language with plenty of screen shots and
other simple diagrams to explain the processes described. A good index is vital as
well as a glossary of the terms used.

Look at a few examples of user manuals for systems that you have used and ask
yourself how good they were for you. Generally, user manuals are written by techni-
cal people, often programmers in the project team; they are often written at the end of
the project, and they are often written poorly. In an XP context, it is likely that some
of the manual cannot be written until the end but quite a lot can be done beforehand,
especially if the system is being delivered incrementally. In this case, the manual will
have an incremental structure.

Some may take the view that the system is so intuitive to use that no manual
is necessary. This may be the case with some Web-based systems, perhaps an
e-commerce development or an information system based around a Web browser.
Do not make any assumptions about this. If you think that your system is intuitive
and it is obvious how to use it, then you should prove this. Choose some typical
users and ask them to use it and observe them. You will probably be surprised at
the difficulties some people have even with the simplest system. Many of the unpop-
ular and unusable software systems of the past (and present) have been built under
the assumptions that the use of them is obvious to all.

The requirement stories had estimates of the change likelihood, and this will give
you an indication of when parts of the manual can be written. Some authors, notably
Weiss (1991), suggest that the manual should be written first, before the code, so that
it provides clear information to the programmers and could be used as a basis for
testing. We have essentially adopted this position here with the use of X-machines
as the basis for the specification of the test sets. The user manual could be a simplified
version of the paths through the X-machine written in everyday language. As the
requirements change and mature, they will be reflected in the X-machine structure
and thus the structure of the user manual.

The user manual, like everything else in the project, needs to be reviewed and
tested with users or representatives of the type of people likely to be users. Creating

10.5 User Manuals 263

a simple questionnaire for users to fill in as they use the manual to operate the
finished system will provide helpful feedback; this can be used to show your client
that you have tested the system thoroughly and that it is ready for acceptance.

One question that needs to be answered by the client is what type of user manual
is needed. Should it be a paper booklet or an online system? There are advantages and
disadvantages for both. One advantage with a small paper manual is that it can be
easily flicked through and read prior to using the system. The online manual is
easier to use when searching for information.

Some examples of a user manual produced by student teams using XP is in the
Appendix.

10.6 VERSION CONTROL

One important practical issue that arises in the course of developing any software
system is that there will be a number of versions of different documents created.
These documents will include requirements documents, source code, test sets, and
user manuals at the very least. All will be available in different versions as they
will have been developed and revised over a period of time. Many of these will
refer to aspects of the system that change as the development proceeds. Members
of the development team will have to refer to these documents and will need some
way of ensuring that at any given stage they are consulting the correct version.
This may not be the most up-to-date version. We have therefore a version control
problem. We need to keep track of what version each document has reached and
which version we need to consult or change. In an XP development, where all
team members are interchanging their roles and sharing the responsibilities for the
entire project, it is vital that we avoid the situation where an individual is working
on a version of a document that the others do not know about.

It is natural that some members will need to work away from the laboratory,
perhaps on their own machine, and it is vital that they regularly update their col-
leagues with what they have done. At any rate, there should always be two people
involved in any part of the development whether it is on the university machines
or on an individual’s machine.

This problem is made worse by the fact that for some systems, there may be a
number of different configurations of the software that need to be produced, for
instance to contain different special features for particular clients, or to run with
different hardware or operating systems. Thus, along with versions created at different
times in the history of a system, there may also be different versions in parallel for
different configurations of the software, and these need to be managed properly.
This involves the task of configuration management. Furthermore, as a system devel-
ops, there are likely to be different versions of each configuration of it that are released
to the clients at different times: these different versions are often referred to as differ-
ent releases of the system. Thus, in principle, there are three aspects to be
managed: the different versions of components, the different configurations, and
the different releases.

264 Chapter 10 Documenting and Delivering the System

10.6.1 The Project Archive

We need to set up a proper archive for the project in a systematic way and develop
some conventions and protocols for its use. There are tools available that can help
with this. One, CVS, is widely and freely available. It is worth investigating and
asking for it or something similar to be installed on your machines.

The simplest approach is a shared directory on a network where the team has
privileged access to this directory.

In this archive, we will be putting documents of various types: requirements
documents, story cards, test plans, source code, ancillary material, manuals, as
well as management information such as minutes of meetings, plans, and other
material. One way to structure this is shown in Fig. 10.1.

Within each basic component, the archive will be organized in terms of versions
and date of creation. It is sometimes useful to have a spreadsheet that describes what
state each document is, for example whether it has been reviewed and confirmed as an
acceptable product or whether it is still under development. The authors of the
documents and the time of its creation and review are also useful to help everyone
know what is going on.

Although XP stresses minimal bureaucracy, we cannot use this as an excuse for
an unprofessional approach; remember there are people, your clients, who are
depending on the outcome of your work, and being sensible about how you organize
things is vital.

10.6.2 Naming Conventions

A scheme for naming documents and components of the system should use sensible
and descriptive names for the document, explaining, if possible, its nature as well as
the relationships that will exist between it and other documents. There will be

Figure 10.1 Project archive structure.

10.6 Version Control 265

different versions of each document, and these might also involve different releases
and configurations of the whole system.

In terms of the version control, the usual basis is that the different releases will
usually be numbered in a linear sequence involving a two-level scheme with major
and minor releases. Each XP release should be given a new initial number. Then
each release number will change when there are major changes to the functionality
of the system such as new stories implemented and then integrated into a working
system. Internal, minor release numbers will be used during the development
of new stories to describe the various versions that are being developed prior to
integration.

In traditional software development, it is common that for each release there will
be an alpha version (built for internal testing only), a beta version (built for release to
a small number of selected clients for them to test), and then the final version, which
is released generally to all clients, so that the minor release numbers also need to
identify whether this is an alpha, beta, or full release of the system. In XP we hope
to avoid the subsequent issue of patched or corrected versions by delivering in
well-tested increments and getting feedback from the client.

The scheme for naming documents (and other components of the system) is then
based on this numbering scheme for releases, so that versions of these are given new
numbers whenever they need to change in order to match the new release of the
system. In practice, though, the naming scheme for documents will also need at
least a third level of numbering, as it is likely that the updating of a document
to match the development of a new release may happen in several stages, as new
versions are inspected and corrected before finally being accepted.

10.7 DELIVERY AND FINALIZATION

These are the procedures for handing over a project to the customer in Genesys.

Please note that as part of your handover procedure, you
will be required to produce a copy of the following for the
management.

1) Readme.txt - giving the version of the application,
file listings etc.

2) A document giving a brief technical spec. & user
guide - describing what the application does and how (for
support and maintainability) - max of 2 pages.

3) A document describing the Installation Procedure &
System Requirements (eg hardware, operating system, version
of browser etc).

4) A CD containing a copy of the application.

5) A Genesys delivery note (a Genesys template

266 Chapter 10 Documenting and Delivering the System

available from marketing) acknowledging the delivery/
installation of your working solution, which must be signed
by your client.

You will also be required to give a brief presentation
to the Genesys management demonstrating all the major
features of your working solution.

The reason for this information is the need to be prepared for any after-sales
service or maintenance requirements; the team who did the project may not be avail-
able, and others will have to sort out any further issues.

10.8 REVIEW

We have discussed the different types of documents associated with a software
system, who reads them, and what they are for. We have discussed the two main
forms of documentation: paper based and on line. The project archive is considered
as a key resource and a mechanism for preventing the project from descending into
chaos. The issues of version control and configuration were also covered.

EXERCISES

1. Read through the user manual in the Appendix. Is it clear? Could you use the system by
following it? How could it be improved?

2. Each team pair should review another pair’s code to see if it meets the coding standards. They
should report back their findings to thewhole group. If necessary, the code should be refactored.

3. The group should review all of the software being developed and identify what stage it is at,
the connection between the stories and the classes, the status of the code in terms of whether
it passes all of the unit tests, what has been integrated and delivered, and where any new
requirements may be needed. All of this should be documented carefully.

CONUNDRUM

When should the usermanual bewritten: at the endwhen all is completed ormuch earlier?

REFERENCE

E.H. WEISS, How to Write Usable User Documentation, 2nd ed. The Oryx Press, 1991.

Reference 267

Chapter 11

Reflecting on the Process

SUMMARY

† What has been learned

† What will be useful for projects in the future

† How has XP been used

† How can XP be improved and adapted to different circumstances

† Assessment and self-assessment

11.1 SKILLS AND LESSONS LEARNED

The satisfaction gained from delivering a high-quality product to a grateful client is
hard to beat. It makes much of the struggle and the hard times worthwhile. It is one of
the attractive aspects of being a programmer and software engineer—solving people’s
problems using sophisticated and powerful technology.

In the course of doing this, however, you will find out a lot about software
development, about programming, about writing good documentation, and about
quality assurance. You will also learn about working and communicating with a
business client—an invaluable experience—and how a team operates. There will
have been problems; problems of working with people, of trusting them, and of
being trusted. All of these experiences will be important in your development as a
professional in the field.

You will also improve your programming skills and your knowledge of different
languages and systems greatly. It is much better to do a real project with a team
like this than to do any number of small programming exercises in traditional
programming courses.

At the beginning, a skills audit was suggested as a way of identifying what your
abilities were before starting on this program. It is a good idea to revisit this and see
how you may have developed. Bear in mind, however, that as your skills become
more sophisticated, so do your expectations. Where once you believed, say, that
you were an average programmer, you may still believe that is still the case, but
what you can do now will be vastly improved compared with what you could do

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

269

then. Try to estimate the improvement in terms of what aspects of the language you
can now deal with easily and which were once hard or unknown.

Look at the way you manage things and each other and how you plan your
time. It might not have been plain sailing but there are many things that you
would do differently in a future project. Note these down.

11.2 THE XP EXPERIENCE

Here is an opportunity to reflect on the XP process. You will have found that it is
quite hard to stick to all of the 12 practices. The four general principles of XP
(communication, simplicity, feedback, and courage) should have directed our
efforts. How did it turn out? What was good and what was less useful about XP?

Did you find that writing tests first was hard? Was pair programming something
that you enjoyed or hated? Was the relationship with the client good, did you com-
municate well, obtain feedback that was timely and helpful? Are you satisfied
with the documentation that was produced? Did you get the balance right between
recording useful and necessary information rather than producing material for the
sake of it?

How did you get on with your teammates? Did everyone put in the same amount
of effort? How could team working skills be improved?

How would you adapt XP to the sort of projects that you might be involved with
in the future?

Does XP work or is it another case of theory being out of step with reality? Can
only highly motivated and skilled programmers make XP a successful approach to
software engineering?

These questions will be answered in the fullness of time. Your experiences
may help to guide the process of finding better ways of building software in a fast-
changing world.

11.3 PERSONAL AND TEAM ASSESSMENT

In many organizations, there is a regular process of staff evaluation. Often this is tied
to promotion and performance evaluation and can thus lead to salary raises and
advancement within the organization.

In the book by Jenkins and Coens (2000) there is a well-argued critique of the
usual approach to personal assessment that takes place in most companies. In
many organizations, this involves managers assessing their staff through a defined
process involving one-on-one review sessions and the production of reports based
on structured forms and performance measures. In many organizations, the assump-
tion is that a standard process can be applied to many different personnel working in
widely different roles. The assumption is that a standard process is fair and transpar-
ent and is also important in the cases where some legal action occurs. There is sig-
nificant doubt about the effectiveness of the process in terms of its effect on work
performance and morale and its value in subsequent court cases.

270 Chapter 11 Ref lecting on the Process

In the context of an XP or agile development, the issue of personal and team
appraisal becomes an important one. If the philosophy of agile development is
based on individual responsibility and trust, then this should extend also to appraisal.

One approach to this issue is to combine a number of techniques that are based
on self-appraisal with a broader approach. This might invole what is termed 3608
appraisal.

11.4 REVIEW

Reflecting on your experiences with the XP approach (Even though you might not
have been able to follow all the practices completely) will enable you to understand
an alternative approach to software engineering to the traditional design-led approach.
Dealing with a real client with a real business need should have also transformed your
understanding of the business of software creation.

The references at the end are just a sample of the rapidly growing number of
books on extreme programming; they are often fairly accessible and provide a
useful insight into many aspects of XP, both theoretical issues and experiences of
XP in industry.

EXERCISES

1. Write down your experiences of the project and of XP. What have you learned? How
enjoyable was it? Did XP deliver? How can XP be improved?

2. Look at some of the other books on extreme programming and see how they suggest an XP
project should work and compare these accounts with your own experiences.

11.5 CONUNDRUMS: DISCUSSION

Chapter 1: The Internet is opening up, and many businesses are now connected.
Banks are beginning to consider if they could provide online access to their business
customers. One bank considers two strategies.

(A) The bank’s IT director suggests that they put together a quick and dirtyWeb
site that allows customers to submit transactions through their browser, to
get this up and running, and to try to develop a connection with the
“back-office” legacy mainframe database system.

(B) The bank also gets a report from some outside consultants that suggests they
should reengineer the legacy back-end and build an integrated Web front-
end to provide a powerful, user-friendly e-banking system engineered to a
high standard.

Which strategy would be best and why?
Answer: The IT director is right but probably for the wrong reasons. His priority

is to protect his department, he wants to be involved in the software development, he

11.5 Conundrums: Discussion 271

hasn’t the resources for a big new development, but he could do something that
would work up to a point. He doesn’t want external consultants taking over and
saddening him. He doesn’t yet know how to connect the Web front-end to the
transaction system but is confident that they can fix something.

In this case, the right reasoning is based around business pragmatics. What the
bank actually did was to get the Internet site and front-end working quickly and to
commission it. At the time there was no connection with the legacy transaction
system, so a large number of typists were employed who printed off the Internet
transactions and typed the details into the mainframe system. This was initially
expensive but effective. This bank grabbed 70% market share of this new business.
This then generated the income to allow them to build an integrated system involving
a newly engineered back office produced by their consultants.

Meanwhile, the rival banks were building integrated solutions before going live;
they never ever captured market share from the first bank.

Our bank demonstrated agility in both its business planning and in IT deploy-
ment. Using people for the data entry instead of a software alternative also demon-
strated a low-risk approach as the alternative was, at the time, an untried
technology. This illustrates that business considerations as well as technical ones
are vital; neither should dominate the other. In an ideal world, the business leaders
should have a deep and realistic knowledge of IT, and the IT specialists should
have an informed and pragmatic understanding of business realities and the funda-
mental need to be able to make money, to maximize market share, and to deliver
quality products and services. Agile methodologies need to be compatible with
these objectives.

Chapter 2: Your client has already built a prototype system and wants you to
develop it further so that he can then market it. He needs to demonstrate something
fairly soon to his business backers in order to persuade them to put more money into
the development of the system.

The original system is very poorly written, the database is badly structured, the
code is all over the place, and it is going to be a nightmare to maintain.

Should you:

(A) Carefully document the functionality of the system and start reengineering it
before adding new functionality?

(B) Carry on building the prototype based on what has already been done?

Answer: Your client may have a very good reason for wanting something
quick; there may be more business benefit in doing so. Our scenario relates to
the business person’s need to be able to demonstrate a piece of working software
to the business backers who will decide on putting further money into the
project. Showing something working, even if it did not have all the functionality
required or was a little unreliable, to these backers was much more important
than doing a good software engineering job. If the extra funding becomes avail-
able, then the proper engineering of a reliable and maintainable system would
probably become a priority. This also illustrates that the link between the business

272 Chapter 11 Ref lecting on the Process

context and the software development process is fundamental. Traditional software
engineering textbooks discuss approaches that are dominated by technical issues
and the pursuit of quality without looking at how the real business pressures can
force the way things have to be done. Although XP provides a number of practices
that can guide us toward building high-quality and relevant software solutions,
they shouldn’t prevent us to respond to real business needs in favor of some abstract
notion of how things should be done properly.

Chapter 3: Your project involves programming in a language that is familiar to
only one member of your team. Two others have a slight knowledge of the language
but have never written anything serious in it. You are trying to do pair programming,
but the “expert” is getting frustrated because whenever she is paired with another
team member, progress is very slow (because much of the time is taken up with
explanations of what she thinks is obvious). She believes that it would be better if
she worked on her own on the program and the other team members did other
things, such as writing documentation and testing.

Answer: First we need to review the objectives of the project. Sure, we all want to
deliver a great system for the client. Butwe alsowant to learnmore about programming,
particularly in this new language, we want to learn how to work in an XP team, and we
want to learn how to manage a real project and work with our client. The team needs to
discuss all of these things in a rational and calm manner.

Let’s look at a possible way forward. We need to look at the project plan. It will
contain a number of ongoing tasks, liaising with the client, writing code, working on
stories, and so on. We need to include among these the need to learn the new
language. Schedule some sessions where the expert gives a tutorial to the others.
Of course, this may seem like wasted time because no productive code is being gen-
erated, but the benefits will come later. The expert should identify with the others
small pieces of code that they can produce in pairs. Meanwhile the expert looks at
some other issues such as story analysis and the definition of both functional tests
and unit tests. While this is being done, the others are getting up to speed a little.
After 2 or 3 weeks, if everyone works hard and with a positive attitude, we might
get to a position whereby any pair can program together in a reasonably effective
way and they will get better all the time.

Chapter 4: Your team is in trouble. The client has not been in touch with her
feedback on the proposed system. She doesn’t have much IT experience and only
has a rather vague idea of what she wants. There are no similar systems known to
you that you can show her. You need to start getting some requirements identified
and some initial stories prepared.

Do you:

(A) Wait until she has thought further about the system she wants?

(B) Build a simple prototype using your imagination and background research in
order to show her something that might stimulate her ideas?

Answer: Choose option (B). The delay may be caused by the client not knowing
how to proceed and lacking in confidence; it may be their first experience as a client,

11.5 Conundrums: Discussion 273

and their knowledge of IT is minimal. Some good suggestions from you could be a
lifesaver for them. Even if they don’t like your ideas, these may stimulate them into
suggesting things that are suitable. It also gives you an opportunity to be creative
instead of just sitting around waiting.

Chapter 5: The company wanted an intranet that provided support for many of
their business activities and also their personnel management. The site would contain
information about the various company activities, a diary system, and templates for
administrative tasks such as the submission of illness and absence forms. The
users would be able to log on remotely to carry out tasks as well as from within
the company offices. The customer was able to maintain a very close relationship
with the development team and had a clear idea of what the company needed.
There were three teams using XP working on this project, each competing with all
the others. Initially, all the teams thought that the project would take 10 weeks. It
didn’t quite work out like that. When the first team delivered their first increment,
they discovered something important that had not emerged from the planning
game. The company had a service agreement with a third-party network solutions
company that provided the computer system and the Internet connection for the cus-
tomer. This led to a serious problem for some of the teams and resulted in some
failing to meet the 10-week deadline despite the careful planning.

What might have been the problem?
Answer: The network service provider had an important policy on the type of

technology that they supported. Not all the teams were using a compatible approach.
The customer did not know about the technicalities of this side of the project. The
early delivery of a functioning piece of software brought the issues to light when
the team tried to install it. The customer was then asked to negotiate with the
network supplier to introduce the required support. This was eventually achieved
but some teams still, unfortunately, used an unsupported technology, and so,
though their solutions were good, they did not work for this customer.

It is important to investigate all aspects of the customer’s situation, including the
services used and the constraints that may apply. Getting an early release installed at
the customer’s site can help to identify problems like this.

Chapter 6: Two leading supermarket chains introduced their first Internet order-
ing system at around the same time. Their e-commerce sites, although superficially
looking similar, fared rather differently. One saw a much greater growth in business
than did the other. Yet the technology used and the warehousing and delivery systems
were comparable. Customers just didn’t like using one of the sites.

What could have been the differences between the two user interfaces that made
this happen? (It was nothing to do with the look and feel of the Web pages or the way
that the orders were managed or the price of the goods.)

Answer: One company relied on graphic arts specialists to design the Web pages;
the other used a combination of graphic artists and computer scientists. In the unsuc-
cessful Web site, there were lots of attractive graphic images featuring a popular TV
chef in the home pages. The other site had attractive graphics, too, but these had been
optimized in terms of their memory size without any obvious loss of image quality.
This meant that the pages downloaded much faster, especially over slow modems.

274 Chapter 11 Ref lecting on the Process

The other site took much longer, and many prospective customers gave up waiting
and switched to the other site. (Note that in the United Kingdom, local telephone
charges can be significant.) Thorough testing under all likely conditions should
have identified this problem—it shows that some non-functional requirements can
be critical.

Chapter 7: A local retailer specializing in luxury goods commissioned an
e-commerce system. This was completed and installed satisfactorily. The shop
gave the job of printing out the Internet orders and processing them through the
orders system to one of the sales assistants to do at the end of their shift. This
worked well at the beginning as the numbers of orders gradually grew.

After a few months of steady growth, the sales figures of orders placed through
the Web suddenly collapsed to nothing. Initially, it was thought to be a software fault,
but no problems were found when we investigated.

What could have gone wrong?
Answer: Initially, it was thought that the volume of orders was too great for the

database system chosen for the application. This hypothesis was soon rejected. Other
thoughts focused on the architecture of the system and on the connection between the
interface, business, and database layers. Again, no problems were uncovered here. We
then looked more carefully at how the system was operating in the business. The
reason for the problem was found to be because the increase in the number of
orders was not accompanied by a corresponding increase in the people dealing
with the orders. The assistant became increasingly frustrated at the volume of work
that had to be done at the end of their shift. The desperate solution taken was to
delete all the Internet orders instead of dealing with them.

This indicates that the system must be designed to include the human dimension
as well as the computer. A management strategy should have been designed alongside
the introduction of the computer system so that it could adapt to the needs of the
business as these changed.

Chapter 8: About 20 years ago, the UK government purchased a system to deal
with air traffic control over London. It was based on a number of similar systems that
had recently been installed in the United States. Unlike the American systems, there
were serious problems with the London system. Planes flying over London would
suddenly disappear from the screen. Equally alarmingly, planes would suddenly
appear as if from nowhere. Extensive testing was carried out, especially on the com-
ponent of the system that was fed the radar information and dealt with the display of
the positions of the planes on the screen. No defects were found; everything was
exactly as the requirements demanded.

Why did the system work in the United States but not in London?
Answer: The system used latitude and longitude positions to track the planes.

These were treated as real positive numbers. Now the problem is that London lies
on the Greenwich Meridian, which is longitude 08, and so planes would be
moving across this line. Planes moving from West to East would have their longitude
value reduce from a positive number through 0 to negative values. The system had not
been designed to deal with negative numbers so they were ignored. Similarly, planes
coming from the East had negative longitude and were also invisible. Of course, there

11.5 Conundrums: Discussion 275

is no situation like this in America and so the problem was not considered during the
development of the system.

The problem ultimately showed up during unit testing after the initial system test
failed. The moral is to think the unthinkable, question all the assumptions, and to do
this make sure that they are all documented. Then, in problems like this, someone
may realize that what might have been true under certain conditions may not be
true under others.

Chapter 9: The customer was the IT director of a company that produced and
sold biological specimens to research laboratories and pharmaceutical companies.
The software was to support the entire company activities, which involved the pro-
duction process (which had to be fully documented to meet government regulatory
procedures), the stock control process, the ordering process, and the invoicing and
accounting processes.

After working extensively with the customer and delivering a number of incre-
mental versions, the customer was satisfied. A final delivery was made, and at this
point the customer invited several personnel from the company to attend the demon-
strations. These potential users of the system pointed out many problems with the
business concepts upon which the system was based. It became clear that the
customer did not understand his company’s business process. It was also clear that
we would have to reengineer the system. The new requirements were significantly
different; there were few areas where the detail was the same although the overall
architecture would be very similar.

Should we start again from scratch or try to adapt what we had already done,
reusing and preserving what we could?

Answer: Genesys started out trying to adapt the system to the new requirement.
Initially, this seemed to involve redesigning some of the screens, altering the database,
and retesting the system. This took a number of months, but progress was held up by
problems with system quality. Whenever we thought that we had tested and debugged
a section, we discovered more problems with it afterwards. After a while, the decision
was taken to start again. Because of the previous work on the system, the new build was
very rapid, and a complete working system was delivered within a relatively short time
to a quality that the customer and his colleagues were happy with.

Should we have started on a complete rebuild immediately after we found out
that the requirements were wrong? It is difficult to answer this. Trying to adapt the
original system did help us to capture and understand the new requirements, and
this enabled us to build the final system quickly. Perhaps this was the best strategy.

Chapter 10: When should the user manual be written, at the end when all is
completed or much earlier?

Answer: Traditionally, it is done at the end. It is often done by a junior member of
the development team and is rarely tested with potential users.

Why not start thinking about it when we are creating the stories? A simple page
or two giving the outline script for a user can be developed in tandem. As the stories
get changed, then the draft manual will also be changed. The development of the
system metaphor’s interface will create the framework for the user manual, and the
final screen shots can be inserted into the document when they are ready.

276 Chapter 11 Ref lecting on the Process

11.6 A FINAL WORD

We hear a lot about failed software projects, failure to deliver, failure to deliver
something usable, failure to deliver something of value. Extreme programming and
other agile development approaches are an attempt to try to improve matters.
Whether they do provide a better way will be determined over the next few years.
What is clear; however, are two basic points:

1 Software development methods, including XP, will continue to evolve to try to
meet the challenges of tomorrow.

2 We cannot afford to ignore the complete environment of any software
solution: the clients and customers, the users, the business process, and the
marketplace all will impact on the success of whatever we build.

The stories that were discussed in the conundrums are all real examples of situations
that you might face in the future. Adopting XP and ignoring any of the stakeholders in
item (2) above may still result in failure.

There is still much research to be done on XP and the agile approach. What is
certain is that many of the principles articulated by these ideas will stay with us.
Your experiences trying to apply them in a real project in a professional way will
provide you with a firm foundation for a future career in software development. It
is not easy applying all these ideas; it needs discipline and perseverance, as you
have probably discovered. Doing it well will, I am sure, leave you with a great
sense of achievement.

Being agile might be hard, but it’s worth it!

Appendix to Chapter 11

Genesys Solutions’ Students 2007/8: Initial Self-Assessment Form.

Name:

Team:

Consider the following statements about the sort of things that you have been doing. If
you can answer YES to all of them then that would indicate a high mark for some of
the criteria below.

Note that people doing different roles should make their return based on what their
role entails.

Group A: Leadership and Company Processes

“The suggestion and implementation of company processes and resources to enhance
and improve company operation”

(1) Making suggestions for improving the efficiency and quality of what the company
does.

(2) Taking a lead in your project and getting the best out of your colleagues

(3) Promoting the company and providing a professional image to customers and
others

11.6 A Final Word 277

Group B: Development

“The production of software to meet a customers needs”

(1) Test First – evidence that the member has produced and run extensive unit tests,
and ntegration tests

(2) Documentation, to describe the software on the Wiki. Video presentations to
describe the key technology used

(3) Adherence to XP practices, with evidence

(4) The delivery of a working system on time and within budget

Group C: Specification

“The production of a specification to describe a customer’s needs”

(1) Documentation present on Wiki: continuously updated documentation to reflect
the current and actual requirements agreed with the customer

(2) Meeting minutes present in the management tool

(3) A formal contract produced and signed off

(4) A project plan, which plans in detail for the next fortnight (tasks via management
tool), and less detail for the remainder of the project (milestones via management
tool)

Group D: Marketing

“The capture of business, and the promotion of Genesys”

(1) Accurate client profiles on the Wiki

(2) Meeting minutes via Sheffield Management

(3) Maintain the company diary via Sheffield Management

(4) Update the website with client profiles

Group E: Management

“The company board meeting and the Wiki are where we all learn about what the
company is doing”

(1) To present to the board some aspect of another teams work

(2) To update your Wiki every week

(3) To be aware of other projects details from their Wiki

(4) To provide sensible and accurate estimates of the time for the tasks and the project
to be completed

Group F: Admin

“To ensure the network is maintained”

(1) All PCs should be kept in a working state

(2) The services (website/email etc) should be running

(3) Installation of new software carried out promptly

(4) Installation and maintenance of servers, backup processes etc. done seamlessly

278 Chapter 11 Ref lecting on the Process

1 Individual Qualities and Achievements

(Your personal self-assessment on a scale 1(low)-5(high))

Evidence of leadership skills:

1 2 3 4 5

Why?

Evidence of working towards team and company goals:

1 2 3 4 5

Why?

Evidence of planning and organisational ability:

1 2 3 4 5

Why?

Evidence of involvement in quality control activities:

1 2 3 4 5

Why?

Evidence of technical achievement:

1 2 3 4 5

(relative to abilities at start of course)

Why?

Evidence of skills in customer liaison:

1 2 3 4 5

Why?

Evidence of skills in document production and management:

1 2 3 4 5

Why?

2 Assessment of team members: estimate their overall contribution to the team
on a 1. . .5 scale.

Name: Grade

1 2 3 4 5

Why?

Name: Grade

1 2 3 4 5

Why?

Name: Grade

1 2 3 4 5

Why?

Name: Grade

1 2 3 4 5

Why?

11.6 A Final Word 279

3 Comment on the following:

3.1 Objectives of your team (refer to each project you had)

3.2 Achievements

3.3 Failures

3.4 Your role in the team (what your part was)

3.5 What deliverables the team produced

3.6 Your view on communication/cooperation in the team (& ways of
improving it)

3.7 Assess your contribution to the project(s) in the 1st semester (compared
with the other team-mates)

3.8 Ways of improving Genesys:

280 Chapter 11 Ref lecting on the Process

Chapter 12

Lifestyle Matters

SUMMARY

The impact of lifestyle on software development performance

† Exercise and relaxation

† Holistic approaches to well-being

† Diet, music, and problem solving

This chapter is a slightly unusual contribution to an important issue that is rarely
addressed in textbooks like this. Although not a specialist in the field, I think it is still
possible to appreciate some of the most recent research and draw some useful con-
clusions about how we should bring into the world of software development
aspects pertaining to how we live our lives at work. If in doubt about any aspect
of this subject, it is best to consult a specialist.

There is more to being a productive and effective software developer than just
technical knowledge, intellectual ability, and the use of appropriate processes. We
have looked into issues such as personality and psychology generally and have
seen how these can impact the social activity of agile software development.

But what about the whole person, the physical aspects of life? Many lifestyle
choices can affect one’s ability to carry out one’s duties, and this is rarely appreciated.

The food you eat, the exercise you take, and the ways you relax can make an
enormous difference to your overall performance.

This chapter will take a look at how lifestyle choices can be made that will
enhance your life as an agile software engineer.

Professional sportsmen and sportswomen have a carefully designed diet and
exercise regimen. This is based on the latest research into physiology and sports
science. Such athletes need to be at their peak when performing, and a great deal
of effort and planning is devoted to this aspect of life.

In team sports such as soccer, football, baseball, rugby, and so forth, the players
need to be agile, fast, strong, creative, aware, and trained up in tactics, roles, and many
different planned routines of play. All of these issues are relevant to agile develop-
ment. Although the athletes do not always have a managed program of intellectual

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

281

training, there is no reason why agile software developers should ignore the physical
aspects of their work.

These could range from suitable working environments (the position of screens,
height of chairs, etc.) to diet and types of exercise undertaken.

Our brains are complex and highly evolved machines that have developed over
thousands of years in circumstances very different from today where we enjoy a
rich variety of food, many types of entertainment and leisure activities, and where
physical exercise can be avoided. The proper functioning of our brains is based on
a complex interaction of many types of chemicals, much of which is not fully under-
stood. The overindulgence of some types of food and drink, the lack of exercise, and
the inability to relax all have an impact on the way our bodies, including our brains,
function. By taking a more holistic approach to our lifestyles, we will be able to train
ourselves to perform better as well as to live longer and happier lives.

Too many software developers pay little attention to these issues. They often
slump at their desks, take little physical exercise—playing computer games may be
as far as they go—survive on large quantities of coffee and junk food, high levels
of alcohol, tobacco, and, possibly, recreational drugs. Lack of a balance in these
activities may lead to long-term health troubles but they may also affect software
development projects. You may not be very effective as a team player or be able
to be as creative and productive as you could be if you are in poor shape.

12.1 KEEPING FIT

In the main, programming is a sedentary activity, sitting for long hours at a keyboard
and peering at a screen. Many people who have a career that involves the use a com-
puter suffer from a variety of physical ailments. The most serious and painful are back
pain and repetitive strain injury (RSI). For young, healthy people, the prospect of suf-
fering from these problems may seem a long way off. However, it can strike people at
a relatively young age—several of my students in their early twenties have had quite
serious cases of both back pain and RSI.

It makes sense to think about how these might be avoided—be smart about your
working practices and help yourself to avoid problems in the future.

One thing that needs to be made clear throughout this chapter is that everyone is
different. Two individuals working in the same way may experience very different
outcomes: one may suffer from RSI, whereas the person alongside them may not.

Scientific and medical research tries to understand the root causes of medical pro-
blems and to produce recommendations that will apply to as wide a sample as poss-
ible; however, they are generalizations and have to be subject to that realization.

There are many Web sites and other publications that provide advice about ergo-
nomic issues relating to the extensive use of computers.

Here is a list of useful sources:

Correct sitting position: http://www.clevelandclinic.org/health/health-info/
docs/0300/0359.asp?index¼4485

282 Chapter 12 Lifestyle Matters

Correct sitting position: http://www.bbc.co.uk/health/conditions/

back_pain/preventionback_posture.shtml#sitting_properly

RSI: http://www.local-10.com/RSIEXERCISES.html

General well-being and ergonomics: http://ergo.human.cornell.edu/ergoguide.
html

Let’s think about posture first.
You will spend many hours sitting at a terminal and how you do this will deter-

mine whether you could suffer from posture-related problems such as back pain of
various types.

12.1.1 Correct Sitting Position

Consult suitable sources such as http://www.clevelandclinic.org/health/health-
info/docs/0300/0359.asp?index¼4485, from which this advice is summarised.

1 Sit up with your back straight and your shoulders back. Your buttocks should
touch the back of your chair.

2 All three normal back curves should be present while sitting. A small, rolled-
up towel or a lumbar roll can be used to help you maintain the normal curves
in your back. Here’s how to find a good sitting position when you’re not using
a back support or lumbar roll: Sit at the end of your chair and slouch comple-
tely; draw yourself up and accentuate the curve of your back as far as possible.
Hold for a few seconds; release the position slightly (about 10 degrees). This is
a good sitting posture.

3 Distribute your body weight evenly on both hips.

4 Bend your knees at a right angle. Keep your knees even with or slightly higher
than your hips (use a foot rest or stool if necessary). Your legs should not be
crossed.

5 Keep your feet flat on the floor.

6 Try to avoid sitting in the same position for more than 30 minutes.

7 At work, adjust your chair height and work station so you can sit up close to
your work and tilt it up at you. Rest your elbows and arms on your chair or
desk, keeping your shoulders relaxed.

8 When sitting in a chair that rolls and pivots, don’t twist at the waist while
sitting. Instead, turn your whole body.

9 When standing up from the sitting position, move to the front of the seat
of your chair. Stand up by straightening your legs. Avoid bending
forward at your waist. Immediately stretch your back by doing 10 standing
backbends.

12.1 Keeping Fit 283

And from http://www.bbc.co.uk/health/conditions/back_pain/preventionback_
posture.shtml#sitting_properly, this advice on sitting properly:

† Use an upright chair that supports your lower back.

† Try supporting the small of your back (the bit that curves in above your hips)
with a small cushion or rolled-up towel.

† Get up and stretch every 20 to 30 minutes.

When pair programming, don’t forget these simple rules.
The type of chair that you use can be a problem—it is important to use one that

encourages healthy sitting. Make sure that it is at the right height for you and that the
desk or table that you are using is also suitable.

For pair programming, you both need to have convenient access to the keyboard
and mouse. It is easy to stretch across a partner and strain your back. Using a wireless
keyboard and mouse can be a useful way to address this.

Periodically stand up and stretch your body and arms upwards with your arms
raised over your head.

With your arms held behind your back, stretch your neck forward and to the right
and hold for a few seconds, and then to the left. Repeat three times.

Gently pull your elbow across your chest toward your opposite shoulder and hold
for 5 seconds. Repeat with the other arm.

12.1.2 Combating RSI

Regular exercises of your hands, wrists, and arms are essential if you are going to
counteract the repetitive actions that programming can involve.

It is a good idea to get into regular habits and to do some exercises frequently, so
before you start and at periods during the day, do the following:

Stretch your hands out wide and stretch your fingers in and out for 5 to 10
seconds.

Rotate your hands with your fingers outstretched to exercise your wrists; repeat
with your hands half closed and finally closed.

Drop your hands to your sides and shake them for 5 to 10 seconds.

Press you hands (palms) together.

Stand up, put your hands behind you, and interlace your fingers; keeping your
chin tucked and your body straight lift your hands away from your body
and hold this positions for 15 seconds.

The above information was taken from http://www.local-10.com/RSIEXERCISES.
html, where more exercises can be found. See also http://www.ucsf.edu/sorehand/.

Juggling can also help; this not only keeps your wrists supple but also develops
your hand–eye coordination and helps you to relax and at the same time to concen-
trate more—it could be a good start to the day.

284 Chapter 12 Lifestyle Matters

12.2 GENERAL WELL-BEING

During the day, it is important to take regular breaks; every 30 minutes is a good idea.
Get up from your desk and walk around, look at something in the distance to give
your eyes a break from focusing on something close such as a computer screen.

Have a drink of water or some fruit.
When it comes to a meal break such as lunch, then avoid taking it at your desk.

Find somewhere where you can relax and take some light exercise—walk around but
avoid strenuous exercise. Concentrating on your work during mealtimes can be coun-
terproductive and may not lead to the best solutions.

Guidelines such as these are widely promoted by employers and universities, see
for example http://ergo.human.cornell.edu/ergoguide.html.

After work, it is important to manage your leisure—this does not mean that you
should avoid any work-related activity. There are benefits to engaging in social activi-
ties with colleagues working on your project. In more relaxed surroundings, there
could be opportunities to discuss things about the project that will help it. There
are many cases where key information is shared or important insights obtained
when out for a meal or other activity with project colleagues.

Organizing a social event with your colleagues can also help to build team cohe-
sion and spirit—many management training companies develop elaborate activities
with this in mind. Of course, it could lead to arguments and have a negative effect
as well so be aware of the risks.

A “friendly” game of ping-pong (table tennis) or something similar can often
help to relieve tension arising from unresolved feelings of tension or aggression.

Some highly energetic sports such as squash can be dangerous if you don’t train
properly because they expose the body to sudden stresses that can cause long-term
damage. Jogging, if done sensibly, may be beneficial but it has to be a regular activity
if it is to be beneficial.

My particular enthusiasm is for gardening. This involves many different physical
activities and promotes general physical well-being. Most of your muscles are
involved, and the body will be more supple as a result although back pain caused
by a poor stance when digging or lifting heavy objects is a danger to be looked
out for. Not everyone has a garden, but there are often public amenity gardens in
many neighborhoods that are usually pleased to recruit volunteers. However,
extreme weather conditions can interfere with regular gardening activity. Another
activity that might be considered is conservation volunteering.

If you are suffering from pain and discomfort caused by work or leisure, then see
a healthcare professional—don’t try to be a hero and put up with it. Your advisers,
tutors, and other colleagues could help with advice on who to see.

12.3 MENTAL PREPARATION

Sometimes you need to do some mental exercises to really tune up for an intensive
burst of mental activity in a project. Athletes would never consider starting a race

12.3 Mental Preparation 285

without warming up; neither should you. For most people, the warm-up involves
checking one’s e-mails. This can be okay but it really depends on what you get—
some may be project related or of a more social nature, some may make you angry
or frustrated, some may make you feel good. With such a mixed bag of possibilities,
it is probably worth thinking about how you may be able to prepare better for work.

Here is some advice from Kent Beck (personal communication, 2007):

Timed writing. I find it soothing to just write a stream of consciousness for a set
amount of time or set number of pages. The goal of the exercise is to never stop moving
your pen (I do this with pen and paper, which works better than typing for me). At first
my thoughts are around random topics, then whatever is bothering me about my life,
and then eventually I start thinking about work. When that happens I’m ready to program.

12.4 DIET

What you eat affects both your physical and mental states. There is a lot of research
about this, and we will review some of it.

First, we will review some of what is known about the impact of diet on brain
function, cognition, and problem solving.

Bear in mind that there are two types of experimental work: there is psychologi-
cal research, which involves humans, and there is the more detailed biological work
that tends to focus on experiments involving rats, mice, and other animals. The val-
idity of generalizing from the latter to humans is something that needs to be con-
sidered, and for the former types of experiments there may be doubts about the
actual effects observed in the absence of a clear molecular mechanism to explain
the phenomena.

12.4.1 Diet and Brain Function

Diet is known to affect brain function in a number of ways. Although some research
in this area is based on studies of rodents, recent work with human patients and
modern brain scanning technologies are confirming much of this work. It is worth
considering how this research applies to everyday life, but it shouldn’t be used as
a basis for some obsessive dietary regime.

Bourre (2006a) discusses the role of nutrients and brain function. Vitamins B9,
B6, and B12 all have roles in cognitive performance and memory, synthesizing neu-
rotransmitters and preventing memory loss. Vitamin D has a role in the prevention of
neuroimmune diseases. Cobalamin improves cerebal and language function.
Elements like iron, lithium, magnesium, zinc, and iodine all contribute to healthy
brain function as people with deficiencies in these trace chemicals suffer a variety
of problems. Essential micronutrients such as polyphenols are involved in protection
against free radicals.

Macronutrients are potentially more important. The polyunsaturated omega-3 fatty
acids andALA (alpha-linolenic acid), are involved inmanyaspects of brain structure and
function along with polyunsaturated omega-3 and omega-6 carbon chains.

286 Chapter 12 Lifestyle Matters

Diets with a low glycemic index (GI) improve intellectual performance (Bourre,
2006b). GI diets focus on the use of foods that break down into glucose slowly and
they thus reduce the desire for more food—hence they seem successful for many
people who are overweight as well.

Chalon (2006) also looks at the role of omega-3 fatty acids in monoamine neuro-
transmission. Subjects with a history of diets low in these suffer from a number of
neurotransmission system problems. The biochemical basis of this is being uncov-
ered. Rectifying the diet to include these fatty acids improved the general biochemical
activity but not the neurochemical factors.

Puri (2006) has developed noninvasive scanning techniques and demonstrated
major improvements in brain function and structure, mental performance, and beha-
vior in patients with a history of poor diet through the incorporation of omega-3 and
omega-6 fatty acids into the diet.

Essential fatty acids (EFAs) are a key set of nutrients found in nuts and oily fish
and have a measurable effect when incorporated in a balanced diet.

Omega-6 is found in nuts, sunflower seeds, and sesame seeds; omega-3 is con-
tained in soya beans, flax seeds, and oily fish (sardines, salmon, pilchards, herrings,
mackerel, etc.). But life is not quite as simple as this. Some people lack the ability to
process EFAs efficiently and derivatives such as EPA (eicosapentaenoic acid) provide
the benefits more effectively.

12.4.2 Summary of Dietary Information

Knowing what foods are high in the beneficial components is important.
Table 12.1 describes the GI of common foods. This is not to say that only low-GI

foods should be eaten but rather that high GI foods should be eaten less often than
the others.

Meat: Choose lean meats and poultry in preference for those high in unhealthy
fats. Fast foods such as burgers and French fries (chips) are thought to affect brain
function—certainly in children—and to encourage obesity. Research indicates that
such foods have a very high energy density, which has the effect of fooling people
into consuming more than their body needs (Prentice, 2004). The biochemical
basis (chemicals such as leptin and galanin) is now becoming clear and provides
evidence for the addictive properties of such foods.

Alcohol: The message, again, is moderation, and the occasional glass of
wine—especially red wine—is thought to be beneficial. However, large
quantities of alcohol can have a serious effect on both brain function and the
body generally.

Tobacco: Medical researchers analyzing the brains of smokers and drug users
have detected significant changes that have taken place in the brain structure
(Naqvi, 2007). Some of these regions seem to be implicated in the addictive behavior
of smokers. Thus it looks as though the addictive properties of some drug abuse are
derived from structural changes the abuse triggers in the brain. Tobacco also has
many other serious side effects that are well-known. Tobacco is often used as an

12.4 Diet 287

antidote to stress and other pressures, but it is not the best way to handle these pro-
blems. Medical guidance should be taken if they become serious.

Stimulants: Again the consumption of coffee, tea, and other stimulants should
not be excessive—“moderation in all things”! Coffee can enhances alertness, concen-
tration, and mental and physical performance in some, but not all, people. There are
known antioxidant substances in coffee (e.g., chlorogenic acid) and tea (catechins),
and these might have a health benefit.

12.5 MUSIC AND WORK

This section deals with an issue that is not fully understood and can be seen as being
somewhat controversial.

Many people find that music can help them relax and to be more productive
in work.

A study by Rauscher, Shawn, and Ky (1995) found that playing music by Mozart
to university students helped them to perform a number of mental and dexterous
tasks better.

This was followed up by an investigation into the effect of music training (key-
board lessons) on school children and the benefits this gave them in spatiol-temporal
reasoning (Rauscher et al., 1997). The belief is that long-term modifications occur in
neural circuitry in regions not specifically concerned with music appreciation. Some
experiments have shown that does up-tempo music has a more marked effect than
does slow music

This research is controversial, and some have expressed doubts about the exist-
ence of this effect [see Waterhouse’s (2006) critical review]; however, recent work

Table 12.1 GI of Common Foods

Low GI High GI

Fresh fruit Apples, pears, oranges, grapefruit, plums,
strawberries, peaches, grapes

Dates, watermelon

Vegetables Broccoli, cabbage, lettuce, onions,
mushrooms, peppers, pulses generally
(lentils, beans)

Parsnips, potatoes, cooked
carrots, broad beans,
pumpkin

Fish Oily fish (sardines, salmon, pilchards,
herrings, and mackerel)

Breaded fish and battered fish

Nuts and
seeds

Some nuts and seeds (if not allergic)

Bread and
pasta

Rye bread, pasta, noodles, brown basmati
rice

White bread, baguette, bagel

Cereal All bran, muesli Cornflakes, Rice Krispies,
Shredded Wheat

Drinks Low-fat Yogurt, milk, custard Soft and fizzy drinks, sugary
foods, cakes

288 Chapter 12 Lifestyle Matters

has tended to confirm it. For example, Jausovec and colleagues (2006) came to the
conclusion that Mozart’s music, by activating task-relevant brain areas, enhances
the learning of spatio-temporal rotation tasks. Similar results have been found
concerning Bach’s music (Schellenberg, 2007).

Another investigation (Furnham, 1999) studied the effects of vocal and instru-
mental music upon the performance of introverts and extraverts on three cognitive
tasks. “There was a trend for the introverts to be impaired by the introduction of
music to the environment and extraverts to be enhanced by it, particularly on the
reading and coding tasks. There was a condition effect on the logic task with subjects
doing best in the presence of instrumental music.”

Whatever the current state of science, many people like to listen to music while
they work. In the context of an XP team, it can cause problems if there is a disagree-
ment about what sort of music should be available. When two people are pair pro-
gramming, then the presence of music can be a distraction—how can you discuss
the issues easily if you are wearing headphones. If the music is broadcast throughout
the room, then it has to be agreed among all the programmers as to what will
be chosen.

My personal preference is for some music (my particular favorites are Bach
and Purcell), and I think that it helps me to concentrate and to solve problems
better. Some believe that instrumental music is best for writing text and songs for
programming.

Why not carry out some experiments with different types of music and see which
works best?

12.6 REVIEW

There is clear evidence that a balanced diet rich in fatty acids, fruit, and with a low GI
is both generally healthy and promotes significantly enhanced brain function.

Naturally, if you suffer from allergies, such as nut allergies, then you cannot
adopt all of these recommendations, and you should see your doctor to discuss
ways to deal with this.

Keeping fit with regular exercise is also thought to be beneficial for all walks
of life.

Extensive use of a computer brings with it new risks that can be a precursor for a
number of painful ailments. Taking some precautions about posture, undertaking
some simple regular exercises, avoiding long periods of concentrated working, and
being sensible about one’s work–life balance will all be beneficial.

It should be stressed, however, that the opinions of experts for specific problems
is something that we should seek before these problems get out of hand.

This chapter provides some suggestions on how to avoid problems, some infor-
mation about recent scientific research into some relevant issues, but our knowledge
is growing all the time, so it is best to keep alert and take appropriate precautions to
avoid trouble in the future and to maximize one’s ability to contribute to projects and
to enjoy one’s professional life.

12.6 Review 289

REFERENCES

J.M. BOURRE. Effects of nutrients (in food) on the structure and function of the nervous system: Update on
dietary requirements for brain. Part 1: Micronutrients. Journal of Nutrition Health and Aging,
10(5):377–385, 2006.

J.M. BOURRE. Effects of nutrients (in food) on the structure and function of the nervous system: Update on
dietary requirements for brain. Part 2: Macronutrients. Journal of Nutrition Health and Aging
10(5):386–399, 2006.

S. CHALON. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins, Leukotrienes and
Essential Fatty Acids, 75(4–5):259–269, 2006.

A. FURNHAM, S. TREW, S. SNEADE. The distracting effects of vocal and instrumental music on the cognitive
test performance of introverts and extraverts. Personality and Individual Differences, 27(2):381–392,
1999.

N. JAUSOVEC, K. JAUSOVEC, I. GERLIC. The influence of Mozart’s music on brain activity in the process of
learning. Clinical Neurophysiology, 117(12):2703–2714, 2006.

N. H. NAQVI, D. RUDRAUF, H. DAMASIO, A. BECHARA. Damage to the insula disrupts addiction to cigarette
smoking. Science, 315(5811):531–534, 2007.

A. PRENTICE. Storing up problems: The medical case for a slimmer nation. Clinical Medicine, 4(2):99–101,
2004.

B.K. PURI. Proton and 31-phosphorus neurospectroscopy in the study of membrane phospholipids and fatty
acid intervention in schizophrenia, depression, chronic fatigue syndrome (myalgic encephalomyelitis)
and dyslexia. International Reviews of Psychiatry, 18(2):145–147, 2006.

F.H. RAUSCHER, G.L. SHAW, K.N. KY. Listening to Mozart enhances spatial-temporal reasoning: Towards a
neurophysiological basis. Neuroscience Letters, 185:44–47, 1995.

F.H. RAUSCHER, G.L. SHAW, L.J. LEVINE, E.L. WRIGHT, W.R. DENNIS, R. NEWCOINB. Music training causes
long-term enhancement of preschool children’s spatial-temporal reasoning abilities. Neurological
Research, 19:1–8, 1997.

G.E. SCHELLENBERG, T. NAKAT, P.G. HUNTER, T. TAMOTO. Exposure to music and cognitive performance:
tests of children and adults. Psychology of Music, 35(1):5–19, 2007.

L. WATERHOUSE. Multiple intelligences, the Mozart effect, and emotional intelligence: A critical review.
Educational Psychologist, 41(4):207–225, 2006.

290 Chapter 12 Lifestyle Matters

Appendix

Some examples from second-year student projects, Software Hut 2008.

Requirements document

Storycard

Tests and test results

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

291

Requirements document 07/03/08

From hut01’s Wiki

Contents

B 1 Background Information

B 2 Stories

B 2.1 Mandatory

B 2.2 Desirable

B 2.3 Optional

B 3 Non-Functional Requirements

B 4 Glossary

Background Information

The client is The School of Health and Related Research (ScHARR), a multidisci-
plinary school within the faculty of Medicine at the University of Sheffield. They
require an automated system to replace the current manual Excel spreadsheets used
to plan and record data relating to the scheduling of teaching, and the calculation
of each staff member’s weighted teaching hours (see glossary).

ScHARR have somewhere between 80 and 100 modules, spread over approxi-
mately 10 degree programmes. Planning for this number of modules each year
requires a lot of work, and due to the manual nature of the current system this can
take a long time. The client has requested a database application with an internet
browser based front end that will allow them to perform the task more easily.

The client has identified the key features that they would like implemented, as
well as several additional optional features, that are shown in the stories section of
this document.

Stories

Mandatory

1. Users should be able to log in to the system at one of two levels (admini-
strator/basic user) by supplying a username and correct password to the
login screen.

2. Produce user interface for page that will allow a module coordinator to enter
the details for a particular module.

3. Designing and implementing an underlying database for the system. This
will contain login details and schedule information, as input through the
system interface.

292 Appendix

4. Administrator users should be able to create staff/administrator users.

5. Administrator users should be able to edit existing staff/administrator users
in the system, including password, user type and disabled status.

6. Administrator users should be able to amendweightings for teaching sessions.

7. Administrator users, or specified course directors, should be able to add/edit
courses.

8. Staff users should be able to enter module details for any modules they
co-ordinate.

9. Users should be able to view submitted module details for their own
modules (or administrators can view all), including learning sessions etc.

10. Users should be able to view module timetables.

11. Administrators should be able to edit any modules’ details.

12. Administrator users should be able to add/edit modules.

13. Administrators should be able to view and print reports for modules that
show all of the associated sessions for a particular semester.

Desirable

14. Users should be able to retrieve forgotten passwords.

15. Users should be able to view Staff Detail reports, which include their hours,
weighted hours, timetables, and any associated modules. Administrators can
view all staff reports, whereas a staff can only view their own.

16. It should be possible to roll forward module run details to the next year to
avoid unnecessary work re-entering data.

Optional

17. Users should be able to query the database for timetables at a particular
period. Administrators should see all details, whereas staff can only see
details for modules they are associated with.

18. Administrators should be able to find out what staff members are available
(not lecturing) in a specific time period (week, day, time, length) to identify
staff that could fill in gaps.

Non-Functional Requirements

B Consistent interface.

B Interface that displays correctly across different operating systems.

B Interface that displays correctly across different internet browsers.

B It should be clear where to enter data, and how to save it.

B It should take less than 3 steps to get to the page to perform any given function.

Appendix 293

B Clear and concise error messages.

B Pages should load within a maximum of 10 seconds.

B System should be available for multiple users simultaneously.

Glossary

B Administrator - A user who has full access rights and control to change any
option in the system.

B Course - A degree course which will consist of many modules controlled by
(usually) one Course Director.

B Course Director - A staff member responsible for an entire course.

B Distance Learning - A session of teaching for “distance learning” – in other
words, learning where students do not attend classes. Might not have sche-
duled times.

B Guest - A user who cannot log into the system. Used for staff members who are
either barred from accessing, or not allowed to access.

B Lecture - A formal lecture session on a module. Can be new or repeat (which
will only change how the session is reflected in the weights).

B Module - A learning unit provided on a course.

B Module Co-ordinator - The staff member responsible for entering their module
details.

B Module Run - An instance of a module related to a semester in a year. Each
module will likely have multiple module runs.

B Online Tutorial - A session for a tutorial performed online. Might not have
scheduled times.

B Seminar - A session, scheduled with a day and time in a week.

B Session - Modules will be made up of many sessions – these include lectures,
seminars, tutorials and distance learning. �There could be more than one
session in a week.

B Session Staff - A staff member who is associated with a session.

B Staff - A user who only has limited access rights, and should only be able to
edit any data first associated with them.

B Tutorial - A session, scheduled with a day and time in a week.

B User - A staff member on the system. Can be an Administrator. Staff or Guest.

B Weightings - Different types of learning sessions will have different weights,
which contribute to a weighted total of hours for a module.

Retrieved from “http://vt.shef.ac.uk/sm/wiki/2007/hut01/index.php/Requirements_
document_07/03/08”

B This page was last modified 14:38, 7 March 2008.

294 Appendix

Storycard 346

From hut01’s Wiki

Process Followed

The story card has been written and checked, no errors were found. The XXM was
written, and no errors were found. Once correct a unit test was written. The unit
test was checked, and found to be OK, then the code was written to satisfy that
test. The test ran successfully and another test was written. In all fourteen tests
were written to implement the storycard in turn, adding the code at each point
before the acceptance tests passed. The story was then signed off.

Sheffield Management 2007: hut01 - Storycard

ID 2059(1) Priority 0

Description

Users should be able to log in to the system at one of two levels (administrator/basic
user) by supplying a username and correct password to the login screen.

Tests

Entering no username and/or no password results in error.
Entering a username that doesn’t exist (regardless of the entered password) results
in error.
Entering an invalid password with an existing username results in error.
Entering an existing username and valid password results in success, with the
user being taken to the main screen with the correct privileges.
User can only login if their user account has not been disabled.

Nonfunctional Tests

Acceptance or rejection is within 10 seconds.
Text boxes are clearly labeled.
An appropriate message is shown in case of error.

Appendix 295

Tasks for this story

():

Entry:

Comments:

():

Entry:

Comments:

Date Type Time Description Problems Users

19/02/2008
13:50

Writing a
test

0.16666667 Producing
test cases

aca06se@sheffield.ac.uk,
aca06lm@sheffield.ac.uk

19/02/2008
14:50

Checking a
test

0.66692525 aca06se@sheffield.ac.uk,
aca06lm@sheffield.ac.uk

12/03/2008
16:20

Testing
some code

2.6641731 System
testing login
functions

aca06se@sheffield.ac.uk

Testing

B Testing

Retrieved from “http://vt.shef.ac.uk/sm/wiki/2007/hut01/index.php/Storycard_346”

B This page was last modified 11:31, 2 May 2008.

296 Appendix

Tests SC 346

From hut01’s Wiki

Test results for Storycard 346
(Users should be able to log in to the system at one of two levels (administrator/

basic user) by supplying a username and correct password to the login screen.)

Contents

B 1 Unit Tests

B 1.1 Test results (22/02/2008 15:15)

B 2 System Testing

B 2.1 Test 1

B 2.1.1 Results

B 2.2 Test 2

B 2.2.1 Results

B 2.3 Test 3

B 2.3.1 Results

B 2.4 Test 4

B 2.4.1 Results

B 2.5 Test 5

B 2.5.1 Results

B 2.6 Test 6

B 2.6.1 Results

B 2.7 Test 7

B 2.7.1 Results

B 2.8 Test 8

B 2.8.1 Results

B 2.9 Test 9

B 2.9.1 Results

B 2.10 Test 10

B 2.10.1 Results

B 2.11 Test 11

B 2.11.1 Results

Appendix 297

Unit Tests

Test results (22/02/2008 15:15)

1..14

TestSuite "UserManagerTest" started.

Ok 1 - testUserEmptyFields (UserManagerTest)

Ok 2 - testUserEmptyPassword (UserManagerTest)

Ok 3 - testUserEmptyUsername (UserManagerTest)

Ok 4 - testUserInvalidPassword (UserManagerTest)

Ok 5 - testUserValidPassword (UserManagerTest)

Ok 6 - testSessionEmptyUsername (UserManagerTest)

Ok 7 - testSessionEmptyPassword (UserManagerTest)

Ok 8 - testSessionValid (UserManagerTest)

Ok 9 - testLoginNoInputNoSession (UserManagerTest)

Ok 10 - testLoginUsernameNoPasswordNoSession (UserManagerTest)

Ok 11 - testLoginUsernamePasswordNoSession (UserManagerTest)

Ok 12 - testLoginInvalidUserNoSession(UserManagerTest)

Ok 13 - testLoginNoInputSessionsValid (UserManagerTest)

Ok 14 - testLoginNoInputSessionsInvalid (UserManagerTest)

TestSuite "UserManagerTest" ended.

System Testing

Test 1

ID Action Performed Expected Result

1 enterUsername Usernamed entered, system waiting
for password

2 enterPassword Password entered, system waiting
for submit

3 clickLogin (okay username/password) System takes user to main screen

298 Appendix

Results

Test No Date Pass/Fail Comments

1 14:20 11 March 2008 Pass Attempted to access page when
logged out

Test 2

ID Action Performed Expected Result

1 enterUsername Username entered, System waiting for
password

2 enterPassword Password entered, System waiting for submit

3 clickLogin (wrong username/
password)

System presents “Cannot login” error

4 retry System shows login form again

5 enterUsername Username entered, System waiting for
password

Results

Test No Date Pass/Fail Comments

2 14:22 11 March 2008 Pass

Test 3

ID Action Performed Expected Result

1 enterUsername Username entered, System waiting for
password

2 enterPassword Password entered, System waiting for submit

3 clickLogin (wrong username/
password)

System presents “Cannot login” error

4 retry System shows login form again

5 clickLogin System takes user to the Forgotten Password
screen

Appendix 299

Results

Test No Date Pass/Fail Comments

3 13:25 11 March 2008 Fail at Step 4 System works, doesn’t login, but
XXM should just take user to
login form again, not show the
error. The XXM has been
updated to reflect this.

3 13:31 11 March 2008 Pass Works as expected, and exactly
to XXM spec

Test 4

ID Action Performed Expected Result

1 enterUsername Username entered, System waiting for
password

2 enterPassword Password entered, System waiting for submit

3 clickLogin (wrong username/
password)

System presents “Cannot login” error

4 retry System shows login form again

5 clickLogin System shows login form again

6 enterUsername Username entered, System waiting for
Password

Results

Test No Date Pass/Fail Comments

4 13:33 11 March 2008 Pass

300 Appendix

Test 5

ID Action Performed Expected Result

1 enterUsername Username entered, System waiting for
password

2 enterPassword Password entered, System waiting for submit

3 clickLogin (wrong username/
password)

System presents “Cannot login” error

4 retry System shows login form again

5 clickLogin System shows login form again

6 enterUsername Username entered, System waiting for
Password

Results

Test No Date Pass/Fail Comments

5 13:37 11 March 2008 Pass

Test 6

ID Action Performed Expected Result

1 enterUsername Username entered, System waiting for
password

2 enterPassword Password entered, System waiting for submit

3 clickLogin (wrong username/
password)

System presents “Cannot login” error

4 retry System shows login form again

5 clickLogin System shows login form again

6 clickLogin System shows login form again

Results

Test No Date Pass/Fail Comments

6 13:38 11 March 2008 Pass

Appendix 301

Test 7

ID Action Performed Expected Result

1 enterUsername Username entered, System waiting for
Password

2 clickLogin (wrong username/
password)

System presents “Cannot login” error

3 clickForgotPassword System takes user to the Forgotten Password
screen

Results

Test No Date Pass/Fail Comments

7 14:42 11 March 2008 Fail at Step 2 Error message not shown

7 14:52 11 March 2008 Fail at Step 3 Forgot Password not yet
implemented

7 13:41 12 March 2008 Pass Forgot Password link added

Test 8

ID Action Performed Expected Result

1 enterUsername Username entered, System waiting for Password

2 clickLogin System presents “Cannot login” error

3 retry System shows login form again

Results

Test No Date Pass/Fail Comments

8 14:44 11 March 2008 Fail at Step 2 Error message not shown

8 14:53 11 March 2008 Pass

302 Appendix

Test 9

ID Action Performed Expected Result

1 enterUsername Username entered, System waiting for Password

2 clickLogin System presents “Cannot login” error

3 clickForgotPassword System takes user to the Forgotten Password screen

Results

Test No Date Pass/Fail Comments

9 14:44 11 March 2008 Fail at Step 2 Error message not shown

9 14:44 11 March 2008 Fail at Step 3 Forgot Password not yet
implemented

9 13:44 12 March 2008 Pass Forgot Password link added

Test 10

ID Action Performed Expected Result

1 clickForgotPassword System takes user to the Forgotten Password screen

Results

Test No Date Pass/Fail Comments

10 14:46 11 March 2008 Fail at Step 1 Forgot Password not yet
implemented

10 13:45 12 March 2008 Pass Forgot Password link added

Test 11

ID Action Performed Expected Result

1 clickLogin System presents “Cannot login” error

Appendix 303

Results

Test No Date Pass/Fail Comments

11 14:46 11 March 2008 Pass

Retrieved from “http://vt.shef.ac.uk/sm/wiki/2007/hut01/index.php/Tests_SC_346”

B This page was last modified 13:29, 29 April 2008.

304 Appendix

Bibliography

S. SYED-ABDULLAH, M. HOLCOMBE, M. GHEORGHE. Practice makes perfect. Extreme Programming and Agile
Processes in Software Engineering. Lecture Notes in Computer Science, Vol. 2675. Springer, 2003.

S. SYED-ABDULLAH, M. HOLCOMBE, M. GHEORGE. The impact of an agile methodology on the well being of
development teams. Empirical Software Engineering, 11(1):143–167, 2006.

S. ADLER, A. BERGLUND, J. CARUSO, S. DEACH, T. GRAHAM, P. GROSSO, E. GUTENTAG, A. MILOWSKI,
S. PARNELL, J. RICHMAN, S. ZILLES. Extensible Stylesheet Language (XSL), Version 1.0, 2001
Available at http://www.w3.org/TR/xsl/.

A.J. ALBRECHT. Measuring application development productivity. Presented at SHARE/GUIDE/IBM
Application Development Symposium, Monterey, CA, 1979.

S. ANCHA, A. CIOROIANU, J. COUSINS, J. CROSBIE, J. DAVIES, K. AHMED, J. HART, K. GABHART, S. GOULD,
R. LADDAD, S. LI, B. MACMILLAN, D. RIVERS-MOORE, J. SKUBAL, K. WATSON, S. WILLIAMS.
Professional Java XML. Wrox Press, 2001.

S. AMBLER. Agile Modeling. John Wiley & Sons, 2002.
R. BANKER, R. KAUFFMAN, C. WRIGHT, D. ZWEIG. An empirical test of object-based output measurement
metrics in a computer-aided software engineering (CASE) environment. J. Management Information
Systems, 8:127–150, 1992.

K. BECK. Extreme Programming Explained. Addison-Wesley, 1999.
K. BECK, C. ANDRES. Extreme Programming Explained. Addison-Wesley, 2005.
R.M. BELBIN. Management Teams: Why They Succeed or Fail. Butterworth-Heinemann, 1981.
B. BOEHM. Software Engineering Economics. Prentice-Hall, 1981.
B. BOEHM, et al. Cost Models for Future Life Cycle Processes: COCOMO 2. Balzer Science, 1995.
K. BOGDANOV. Testing from object machines in practice. In Proceedings of UK-TEST005, Sheffeld,
University of Sheffield, 2005.

R.P. BOSTROM, K.M. KAISER. Personality differences within systems project teams: Implications for
designing solving centers. In Proceedings of the 18th Annual Computer Personnel Research
Conference, ACM Press, 1981, pp. 248–285.

J.M. BOURRE. Effects of nutrients (in food) on the structure and function of the nervous system: Update
on dietary requirements for brain. Part 1: Micronutrients. Journal of Nutrition Health and Aging,
10(5):377–385, 2006.

J.M. BOURRE. Effects of nutrients (in food) on the structure and function of the nervous system: Update
on dietary requirements for brain. Part 2: Macronutrients. Journal of Nutrition Health and Aging,
10(5):386–399, 2006.

T. BRAY, J. PAOLI, C. SPERBERG-MCQUEEN, E. MALER. Extensible Markup Language (XML) 1.0, 2nd
ed. 2001. Available at http://www.w3.org/TR/REC-xml.

S. BROWN, R. BURDICK, J. FALKNER, B. GALBRAITH, et al. Professional JSP, 2nd ed., Wrox Press, 2001.
T. BUZAN, B. BUZAN. The Mind Map Book. Pearson, 2006.
S. CHALON. Omega-3 fatty acids and monoamine neurotransmission. Prostaglandins, Leukotrienes and
Essential Fatty Acids, 75(4–5):259–269, 2006.

P. COAD, J. DE LUCA, E. LEFEBRE. Java Modelling in Color. Prentice Hall, 1999.
A. COCKBURN. Agile Software Development (A. Cockburn, J. Highsmith, eds.). Addison-Wesley, 2001.
D.L. COOPERRIDER, S. SRIVASTVA. Appreciative enquiry in organisational life. Research in Organizational
Change and Development, 1:129–169, 1987.

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

305

P. COSTA, R. MCCRAE. Four ways, five factors are basic. Personality and Individual Differences,
13:653–665, 1992.

A.J. COWLING, J.S. KARN. An initial observational study of the effects of personality type on software engin-
eering teams. In Proceedings of the 8th International Conference on Empirical Assessment in Software
Engineering (EASE 2004), University of Keele, UK, 2004, pp. 155–165.

A.J. COWLING, J.S. KARN. An initial study of the effect of personality on group projects in software engin-
eering. Department of Computer Science Research Report CS-04-01, University of Sheffield, 2004.

W. CUNNINGHAM, K. BECK. A diagram for object-oriented programs. Presented at Proceedings OOPSLA-86,
Portland, OR, Nov. 1986.

B. CURTIS. Techies as non-technological factors in software engineering. In Proceedings of the 13th
International Conference on Software Engineering (ICSE 1991), Austin, TX, ACM Press, 1991,
pp. 147–148.

S. EILENBERG. Automata, Machines and Languages, Vol. A. Academic Press, 1974.
J.J. ELAM, D. WALZ. A study of conflict in group design activities: Implications for computer supported
cooperative environments. In Proceedings of the Twenty First Annual Hawaii International
Conference on Decision Support and Knowledge Based Systems Track, ACM Press, 1988, pp. 247–254.

M. FOWLER. Refactoring—Improving the Design of Existing Code. Addison-Wesley, 2000.
L. FERNANDO-CAPRETZ. Personality types in software engineering. International Journal of Human-
Computer Studies, 58:207–214, 2003.

A. FURNHAM. The big five versus the big four: the relationship between the Myers-Briggs Type Indicator
(MBTI) and NEO-PI five factor model of personality. Personality and Individual Differences,
21:303–307, 1996.

A. FURNHAM, S. TREW, S. SNEADE. The distracting effects of vocal and instrumental music on the cognitive
test performance of introverts and extraverts. Personality and Individual Differences, 27(2):381–392,
1999.

T. GILB. Principles of Software Engineering Management (S. Finzi-Wokingham, ed.). Addison-Wesley,
1988.

L. HATTON, A. ROBERTS. How accurate is scientific software? IEEE Transactions on Software Engineering,
20(10):785–797, October 1994.

L. HATTON. Does OO sync with the way we think? IEEE Software, 15(3):46–54, 1998.
L. HULL, K. JACKSON, J. DICK. Requirements Engineering. Springer, 2002.
M. HOLCOMBE, F. IPATE. Correct Systems–Building a Business Process Solution. Springer-Verlag, 1988.
Available at http://www.dcs.shef.ac.uk/~wmlh/correct.

J. HUGHES, J. O’BRIEN, T. RODDEN, M. ROUNCEFIELD, I. SOMMERVILLE. Presenting ethnography in the require-
ments process. Presented at the Second IEEE International Symposium on Requirements Engineering
(RE095), Delhi, India, 1995.

W.S. HUMPHREYS. A Discipline for Software Engineering. Addison-Wesley 1995.
D. HUNTER. Beginning XML. Wrox Press, 2000.
D. JANZEN, H. SAIEDIAN. Test-driven development concepts, taxonomy, and future direction. Computer,
38:43–50, 2005.

N. JAUSOVEC, K. JAUSOVEC, I. GERLIC. The influence of Mozart’s music on brain activity in the process of
learning. Clinical Neurophysiology 117(12):2703–2714, 2006.

R. JEFFRIES. XP Installed. Available at www.xprogramming.com.
C.B. JONES. Systematic Software Development Using VDM. Prentice Hall, 1986.
C.G. JUNG. Psychological Types, Vol. 6. Harcourt Press, 1923.
J.S. KARN, A.J. COWLING. A study of the effect of disruptions on the performance of software engineering
teams. In Proc. ISESE2005, IEEE, 2005, pp. 417–427.

J.S. KARN, A.J. COWLING. A follow up study of the effect of personality on the performance of software
engineering teams. Presented at Proc. ISESE2006, Rio de Janeiro, Sep. 21–22, 2006.

F. MACÍAS, M. HOLCOMBE, M. GHEORGHE. A formal experiment comparing extreme programming with
traditional software construction. In Proceedings of the Fourth Mexican International Conference on
Computer Science (ENC 2003), IEEE, 2003, pp. 73–80.

306 Bibliography

D. MARTIN, I. SOMMERVILLE. Patterns of cooperative interaction: Linking ethnomethodology and design.
ACM Transactions on Computer-Human Interaction 11(1):59–89, 2004.

R. MILLER. When pairs disagree, 1-2-3. In XP/Agile Universe 2002 (D. Wells, L. Williams, eds.). Lecture
Notes in Computer Science, vol. 2418. Springer-Verlag, 2002, pp. 231–236.

G. MYERS. The Art of Software Testing. John Wiley & Sons, 1978.
I.B. MYERS, P.B. MYERS. Gifts Differing: Understanding Personality Type. Mountain View, CA: Daves
Black Publishing, 1987.

N.H. NAQVI, D. RUDRAUF, H. DAMASIO, A. BECHARA. Damage to the insula disrupts addiction to cigarette
smoking. Science 315(5811):531–534, 2007.

J. NAWROCKI, A. WOJCIECHOWSKI. Experimental evaluation of pair programming. Presented at European
Software Control and Metrics (Escom), 2001. Available at http://www2.umassd.edu/SWPI/xp/
pairprogramming/Nawrocki.pdf.

J. NIELSEN. Usability Engineering. Academic Press, 1993.
A. PRENTICE. Storing up problems: The medical case for a slimmer nation. Clinical Medicine 4(2):99–101,
2004.

R.S. PRESSMAN. Software Engineering: A Practitioner’s Approach. McGraw-Hill, 2005.
B.K. PURI. Proton and 31-phosphorus neurospectroscopy in the study of membrane phospholipids and fatty
acid intervention in schizophrenia, depression, chronic fatigue syndrome (myalgic encephalomyelitis)
and dyslexia. International Reviews of Psychiatry, 18(2):145–7, 2006.

F.H. RAUSCHER, G.L. SHAW, K.N. KY. Listening to Mozart enhances spatial-temporal reasoning: Towards
a neurophysiological basis. Neuroscience Letters, 185:44–47, 1995.

F.H. RAUSCHER, G.L. SHAW, L.J. LEVINE, E.L. WRIGHT, W.R. DENNIS, R. NEWCOINB. Music training causes
long-term enhancement of preschool children’s spatial-temporal reasoning abilities. Neurological
Research, 19:1–8, 1997.

R.H. RUTHERFORD. Using personality inventories to help form teams for software engineering projects. In
ACM SIGCSE Bulletin, Proceedings of the 6th Annual Conference on Innovation and Technology in
Computer Science Education, ACM Press, vol. 33, 2001, pp. 9–13.

G.E. SCHELLENBERG, T. NAKAT, P.G. HUNTER, T. TAMOTO. Exposure to music and cognitive performance:
tests of children and adults. Psychology of Music 35(1):5–19, 2007.

B. SCHNEIDERMAN. Designing the User Interface. Addison-Wesley, 1998.
K. SCHWABER, M. BEEDLE. Agile Software Development with SCRUM. Prentice Hall, 2002.
I. SOMMERVILLE. Software Engineering, 8th ed. Addison-Wesley, 2006.
J.M. SPIVEY. The Z notation: A Reference Manual, 2nd ed. Prentice Hall, 1992.
S. ST. LAURENT, E. CERAMIE. Building XML Applications, McGraw-Hill, 1999.
J. STAPLETON. DSDM: The Dynamic Systems Development Method. Addison-Wesley, 1997.
K.T. STEVENS, S.M. HENRY. Using Belbin’s leadership role to improve team effectiveness: An empirical

investigation. Journal of Systems and Software, 44:241–250, 1999.
M. STEPHENS, D. ROSENBERG. Extreme Programming Refactored: The Case Against XP. Apress, 2006.
J. TEAGUE. Personality type, career preference and implications for computer science recruitment and teach-
ing. In Proceedings of the Third Australasian Conference on Computer Science Education (ACSE 98),
ACM Press, 1998, pp. 155–163.

C. THOMSON, M. HOLCOMBE. Applying XP ideas formally: The story card and extreme X-machines. In
Proceedings of the 1st South-East European Workshop on Formal Methods, South-East European
Research Centre, 2003, pp. 57–71.

C. THOMSON, M. HOLCOMBE. Using a formal method to model software design in XP projects. In
Proceedings of the 2nd South-East European Workshop on Formal Methods, Ohrid, FYR of
Macedonia, AMCT, SEERC, Thessaloniki, Greece, 1(3), 2005.

C. THOMSON, M. HOLCOMBE. A design change metric derived from extreme X-machines. Presented at
Proceedings of the 3rd South-East European Workshop on Formal Methods, 2007. Available at
http://www.seefm.info/seefm07/PDFs/15_212-226.pdf.

N. WALKINSHAW, K. BOGDANOV, M. HOLCOMBE, S. SALHUDDIN. Modelling and testing software with
X-machines—a case study (submitted).

Bibliography 307

L. WATERHOUSE. Multiple intelligences, the Mozart effect, and emotional intelligence: A critical review.
Educational Psychologist 41(4):207–225, 2006.

E.H. WEISS. How to Write Usable User Documentation, 2nd ed. The Oryx Press, 1991.
J. WHITTLE, J. SCHUMANN. Generating statechart designs from scenarios. In 22nd International Conference
on Software Engineering (ICSE 000), ACM Press, 2000, pp. 314–323.

L. WILLIAMS, R.R. KESSLER, W. CUNNINGHAM, R. JEFFRIES. Strengthening the case for pair programming.
IEEE Software, 17:19–25, 2000.

J. YUAN, M. HOLCOMBE, M. GHEORGHE. Where do unit tests come from? In Extreme Programming and Agile
Processes in Software Engineering (XP2003) (M. Marchesi, G. Cucci, eds.). LNCS Vol. 2675. Springer,
2003, pp. 161–169.

Web Sites

http://www.XProgramming.com
http://www.junit.org
http://www.dcs.shef.ac.uk/~nw/Files/testSets.html
http://www.dcs.shef.ac.uk/~nw/statechum.html
http://www.borland.com/together/
http://www.hacknot.info/
http://www.issco.unige.ch/projects/ewg96/node13.html
http://www.jhotdraw.org
http://www.useit.com/papers/heuristic/heuristic_list.html
http://www.poppendieck.com
http://jeffsutherland.com/scrum/SutherlandDistributedScrumHICSS2007_v6_7_Jun_2006.pdf
http://www.clevelandclinic.org/health/health-info/docs/0300/0359.asp?index=4485
http://java.sun.com/docs/codeconv/
http://ergo.human.cornell.edu/ergoguide.html
http://www.phpcodingstandards.com/
http://weblogs.asp.net/lhunt/pages/CSharp-Coding-Standards-document.aspx
http://www.humanmetrics.com/cgi-win/JTypes1.htm
http://www.rubyonrails.org/
http://www.symfony-project.org/

308 Bibliography

Index

acceptable level of an attribute, 94
accuracy, 93
actors, 87
adding processes, 246
adding states, 245
adjectives, 77
adverbs, 77
Agile Manifesto, 17
agile methodology, 1
Agile modeling, 14
agile software development, 2
appreciative enquiry, 66
architecture, 81
archivist, 57
automating unit tests, 232
automaton, 161
average requirement, 146

back pain, 283
basic business logic, 240
best level, 95
boundary values, 220
brain function, 286
business actions, 87
business analysis, 80
business background, 74
business behaviour, 86
business objects, 85

card sorting, 85
changing a processes, 242
characterisation set, 200, 201, 211
class diagram, 155
client, 79
client hazards, 68
client-server architecture, 155
COCOMO, 147
code, 262
coding standards, 32, 252,253
collective code ownership, 32

communication, 20
complex requirement, 146
computer Aided Software Engineering, 9
conceptual model, 94
concurrent protocols, 84
confidentiality, 110
configuration, 264
configuration management, 264
continuous integration, 31
contract negotiation, 108
controllability, 202
courage, 24
Crystal, 14

data integrity checks, 182
database, 5, 146
dealing with problems, 65
debugging, 145
delivery, 266
dependencies, 88
design, 9
design for test, 8, 201
desirable requirement, 88
developing team skills, 52
diet, 286
dietary information, 287
distinguishability, 210
documentation, 251
documenting test results, 235
Dynamic Systems Development Method, 12

effectiveness, 95
efficiency, 95, 207
end-user programming, 11
error states, 172
essential fatty acids, 287
estimating resources, 144
estimating the cost of change, 249
estimation, 177
evolutionary delivery, 4

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

309

exemplar system, 155
extreme modelling, 163
Extreme Programming, 19
extreme X-machine, 155, 163
extrovert, 44

fault tolerance, 93
feature Driven Design, 13
feedback, 22
feeling individual, 44
final test set, 201
finding a client, 54
finite state machines, 160
fixed scope/fixed price, 241
formal methods, 185
formal requirements document, 96
forty hour week, 33
function point, 144
function point analysis, 146
functional programming, 185
functional requirements, 3, 77, 88
functional test sets, 181
functionality, 93

Gantt Charts, 62
Genesys Solutions, 252
glossary, 80, 263
glossary of terms, 96
glycaemic index, 287

hazards, 68
high level model, 155

identifying attributes, 92
ignore functions, 171
indemnity, 111
index, 263
information flow, 86
initial memory value, 184
initial state, 161
input, 146
input actor, 129
intelectual property rights, 110
interface characteristics, 95
internal memory, 122
interoperability, 93
interviews, 84
introvert, 44
intuitive, 44

J2EE, 156
Javadoc, 252
JHotDraw, 223
judging person, 44
JUnit, 232

Lean Software Development, 15
learnability, 94
lines of code, 145

machine diagram, 183
maintainability, 94
maintenance documentation, 262
managing Tests, 235
mandatory requirement, 88
maturity, 93
meetings, 57
memory actor, 129
memory structure, 170, 188
method, 220
Mind maps, 74
minimal machine, 211
minimality, 211
minutes, 58
missing state fault, 194
model evolution, 242
music, 288
Myers-Briggs Type Indicator, 43

naming conventions, 265
non-deterministic, 172
non-functional requirements, 3, 77, 91
non-functional testing, 205
nouns, 77

object machine, 226
object point, 144
object point analysis, 146
observability, 202
observation, 84
observed defects, 145
omega-3 fatty acids, 287
on-line system, 264
on-site customer, 27
operability, 94
optional requirement, 88
organizational framework, 56
organizational politics, 114

310 Index

outline system description, 76
output, 146
output actor, 129

pair programming, 26, 270
paths, 183, 192
person hours, 145
personalities and team success, 42
personnel hazards, 68
PERT chart, 61
phpUnit, 232
planned level, 94
planning, 60
planning game, 28
planning hazards, 68
portability, 94, 207
precondition, 190
problem discovery, 80
problem evaluation, 83
problem recognition, 80
processing actor, 129
product complexity, 146
product functionality, 146
product quality, 146
product reliability, 146
Programme Evaluation and Review

Technique, 61
project archive, 265
project beginnings, 73

quality agenda, 6
quality attributes, 83
questionnaire, 264
Quizmaster system, 120

Rapid Applications Development, 4
rapid business change, 1
rating scale, 95
recoverability, 93
refactoring, 33, 248
reference file, 146
refining stories, 241
regression testing, 262
reliability, 93, 206
removing state, 244
requirements analysis, 83
requirements change, 239
requirements documents, 3, 82, 143, 262
requirements elicitation, 84

requirements for a system, 74
requirements notes, 88
respect, 25
response/load graph, 209
review, 145
risk analysis, 68

satisfaction, 95
scope, 96
SCRUM, 15
sensing people, 44
sequences of operations, 185
setting up a team, 50
Sheffield Software Engineering

Observatory, 16
simple, 146
simple requirement, 146
simplicity, 24
sitting position, 283
skills audit, 51, 269
small, frequent release, 30
Soft Systems Methodology, 87
software cost estimation, 145
software functions, 86
specifying and measuring the quality

attributes, 91
Spiral model, 4
start state, 183
state cover, 211
story card, 123
story cards, 90
story planning chart, 148
structured questionnaires, 84
suitability, 93
system documentation, 263
system efficiency, 94
system evolution, 239
system metaphor, 29, 96, 262

task analysis, 87
teams, 41
technical hazards, 68
term and termination, 111
test cases, 182
test coverage, 237
test documentation, 203
test first programming, 25
test scripts, 220
test sets, 19, 39, 211, 262

Index 311

testing, 8, 268
testing documents, 262
testing for changed requirements, 247
testing from a model, 183
testing internet applications, 207
testing strategy, 192
testing tree, 198
tests, 181
the first meetings with the client, 79
thinking person, 44
three layer structure, 156
time sheet, 57
too many states, 195
training together, 54
transition cover, 197, 198, 211
transition tour, 186
transitions, 163

UML diagrams, 5
understandability, 94
unit testing, 219
unit Tests, 233
usability, 94, 206

user behaviour, 87
user characteristics, 95
user interfaces, 139
user manual, 263
user manuals, 263
user stories, 119, 262

V model, 7
validation, 176
VBUnit, 232
verbs, 77
version control, 264

waterfall method, 3
web-based systems, 263
well-being, 285
worst acceptable level, 94
writing tests, 270

XM, 163
X-machine, 140, 163
X-machines, 263
XML databases, 174

312 Index

