

Making Sense of
Agile Project Management

Making Sense of
Agile Project Management:
Balancing Control and Agility

Charles G. Cobb, PMP

JOHN WILEY & SONS, INC.

This book is printed on acid-free paper.

Copyright 2011 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise,
except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests
to the Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or
online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their
best efforts in preparing this book, they make no representations or warranties with respect to the
accuracy or completeness of the contents of this book and specifically disclaim any implied
warranties of merchantability or fitness for a particular purpose. No warranty may be created or
extended by sales representatives or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should consult with a professional where
appropriate. Neither the publisher nor the author shall be liable for any loss of profit or any other
commercial damages, including but not limited to special, incidental, consequential, or other
damages.

For general information about our other products and services, please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in
print may not be available in electronic books. For more information about Wiley products, visit
our web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:
Cobb, Charles G., 1945-

Making sense of agile project management : balancing control and agility / Charles G. Cobb.
p. cm.

Includes index.
ISBN 978-0-470-94336-6 (pbk.); ISBN 978-1-118-01568-1 (ebk); ISBN 978-1-118-01569-8

(ebk); ISBN 978-1-118-01570-4 (ebk)
1. Software engineering. 2. Computer software–Development–Management. 3. Agile software

development. I. Title.
QA76.758.C57 2011
005.1–dc22

2010054176

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Contents

Preface ix
Who Should Read This Book? ix
Brief Overview of the Book x
Why I Wrote This Book xii
How to Use This Book xiv

Part I xiv
Part II xv
Part III xvi

Acknowledgments xvii

Part I Overview

1 Introduction 3
Meaning of the Word “Agile” 3
Meaning of the Word “Waterfall” 5
Polarization of Agile and Traditional Waterfall Approaches 7
The Program du Jour Effect 9
Impact on Project Management 10
Common Agile Misconceptions 14

The Pizza Box Methodology 14
All-or-Nothing Thinking 15
Traditional Development Approaches Are Dead 15
Just Do It Faster 16
Becoming Agile Only Impacts the Development Organization 16
Agile Is Just a Development Methodology 17

What Agile Doesn’t Tell You 18

2 Agile Values, Principles, and Practices 21
Lean Software Development Principles 21

Lean Principles 22
Interrelationship of Lean and Agile 36

Agile History and Overview 38
Agile Perceptions and Reality 44
General Agile Practices 47

v

vi Contents

Organizational Practices 48
Planning Practices 49
Requirements Definition Practices 51

Summary of Agile Techniques and Practices 54

3 Becoming More Agile 57
Agile Benefits and Tradeoffs 57

Focus on Successful Business Outcomes 57
Customer Satisfaction and Competitive Advantage 60
Organizational Effectiveness, Cross-Functional Synergy,
and Employee Morale 60
Higher Productivity and Lower Costs 60
Potential for Higher Quality 62

Obstacles to Becoming Agile 62
Corporate Culture 63
Organizational Commitment 66
Risk and Regulatory Environment 66

Developing a More Agile Approach 67
Developing an Agile or Lean Mindset 67
Hybrid Approaches 68

4 Case Studies 71
Sapient 73

Unique Challenges 73
Process Methodology Selection and Design 74
Methodology Summary 77
Methodology Description 78

5 Part I Summary and Action Plan 85
Overall Summary 85
Developing an Action Plan for Your Business 88

Planning Questions 88
Alternative Approaches 91
How Do You Get There? 93

Part II Overview

6 Agile Project Management 101
Agile Project Management Roles 101

Comparison of Traditional and Agile Project Management Roles 103
Agile Business Analyst Role 106

Agile Project Management Approach 107
Project Management Mindset 107
Project Management Skills 111

Contents vii

Agile Project Management Practices 112
Agile Project Management Principles 113
Agile Project Management Techniques 117
Agile Project Management Models 119

Agile and A Guide to Project Management Body of Knowledge

(PMBOK

Guide) 124

Merging PMBOK Thinking and Agile Thinking 130

7 Fundamental Principles behind SDLC Models 131
General Software Development Life Cycle (SDLC) Considerations 132

Flexibility versus Rigidity 133
Relationship of Training and Process Design 135
Reliable versus Repeatable Processes 136

Interrelationship of Life-Cycle Model Selection Factors 138
Requirements Definition and Management Approach 138

Business Process Considerations 141
Requirements Complexity Considerations 142
Testing Considerations 142
Supportability Considerations 144
Prioritization of Requirements 145

Risk Management, Uncertainty, and Planning Approach 148
Risk Management Considerations 148
Management of Uncertainty Considerations 151
The Role of Planning 154

The Role of Leadership and Training 156
Leadership 156
Training 158

The Role of Documentation 160

8 Software Development Life Cycles 163
Types of Software Development Life Cycles 164

Traditional Plan-Driven Life-Cycle Model 168
Incremental Life-Cycle Model 173
Iterative Plan-Driven Life-Cycle Model 174
Iterative Emergent Life-Cycle Model 176
Adaptive Life-Cycle Model 178

Summary of SDLC Guidelines 180
General Considerations 180
Requirements Management Considerations 181
Risk Management Considerations 181

viii Contents

Project Scope and Complexity Considerations 182
Other Considerations 182

Selecting a Software Development Life Cycle 182
Comparison of Approaches 182
Life-Cycle Model Selection Examples 184

9 Part II Summary and Action Plan 191
Summary of Impact on Project Managers and PMI

191

Developing an Action Plan for Project Managers 193
Incremental Improvements 193
Designing and Implementing Hybrid Approaches 194
Implementing Pure Agile Project Management Approaches 194
Helping Companies Move in the Right Direction 195

Part III Appendices

Appendix A Overview of Agile Development Practices 199
Extreme Programming 199
Feature-Driven Development 202
Test-Driven Development 205
Pair Programming 207
Code Refactoring 208
Continuous Integration 209

Appendix B Overview of Agile Project Delivery Frameworks 211
Scrum 211
Dynamic Systems Development Model (DSDM) 215
Agile Modeling 219
Agile Unified Process 221

Lean Software Development 224
Additional Reading 228
Glossary of Terms 228

Index 235

Preface

WHO SHOULD READ THIS BOOK?

The goal of this book is to help companies see both agile and non-agile method-
ologies in a whole new light and understand how they can use these approaches
effectively in an overall strategy to gain the right balance of both control and
agility. The book is intended for a fairly broad audience—some of the examples
in the book are from a software development perspective; however, most of the
book is applicable to improving any product development process for software,
hardware, and services.

Audience Primary Benefits

All Readers • Unravel and demystify a lot of confusing and competing approaches for agile
and traditional product development

• Avoid the “program du jour” mentality that all traditional development
methodologies and practices are obsolete and that newer agile methodologies
and practices replace them all

• Better understand how these approaches are complementary to each other rather
than competitive and how they might be used more effectively in an overall
strategy

Business Leaders, CIOs
and IT Managers,
Product Development
Managers

• Learn how to develop a balance of agility and control to maximize business
results without unnecessarily sacrificing other management goals such as risk
management and control of project costs and schedules

• Develop an understanding of the alternative approaches, benefits, and tradeoffs
associated with implementing a more agile product development approach

• Develop a strategy, an action plan, and an approach for improving your
company’s product development processes that is well aligned with your
business objectives

PMO Leaders, Project
Managers and
Business Analysts

• Develop a deeper understanding of the principles behind agile and non-agile
methodologies in order to design and tailor a project methodology that is well
aligned with the business environment it supports and the risks and complexities
of individual projects

• Understand the impact of agile methodologies on the future of project
management and business systems analysis and develop a very proactive
approach to meet these new challenges

ix

x Preface

BRIEF OVERVIEW OF THE BOOK

Many businesses have cumbersome and bureaucratic product development pro-
cesses that can seriously hamper their competitive ability. Typically, these pro-
cesses have been developed to satisfy a need to provide control and predictability
for costs and schedules; however, an overemphasis on control can lead to rigid
and inflexible processes that may not be well designed to adapt to business
needs. In many businesses today, flexibility and responsiveness to change are as
important as control of costs and schedules:

• A project that successfully meets its cost and schedule goals but misses an
important market window because the schedule wasn’t aggressive enough
might not be considered very successful overall.

• A project that fails to achieve the desired business outcome because the
development process didn’t provide a sufficient level of flexibility to
rapidly adapt to new and changing business requirements might also not
be considered very successful even if it met its cost and schedule goals.

If we accept a broader definition of how to determine the success or failure
of projects, it forces us to take a close look at the level of emphasis that has
traditionally been put on establishing a level of control designed to meet cost
and schedule goals. Achieving a more balanced approach might mean rethinking
the way projects are managed, but if it is done correctly, it is not necessary to
completely sacrifice control over costs and schedules in order to achieve agility.
It does require some skill to achieve the right balance of control and agility, and
the right approach may be somewhat different from one business to the next.

Implementing a balanced approach successfully in a business environment
poses some significant new challenges for project managers:

• There’s a much greater range of methodologies, principles, and practices
(both agile and traditional) that a project manager needs to consider.

• There’s a need to fit the methodology (or combination of methodologies—
either agile or non-agile) to the business environment as well as the risks
and complexities of typical projects rather than trying to force-fit projects
to any standard methodology (agile or non-agile).

That requires a broad-based understanding of different methodologies and
practices as well as a deeper understanding of the principles behind them to
tailor and customize an approach to fit with the business environment and the
risks and complexities of individual projects.

In the past, some project managers may have acted as “cooks”—they knew
how to prepare a limited number of recipes (methodologies) and sometimes did so
“by the book”. In the future, being a good “cook” may not be good enough, and
more project managers may need to become “chefs”—they will need to know
how to prepare a much broader range of dishes and go beyond preparing standard
recipes by the book to create highly customized and innovative “recipes” tailored

Preface xi

to fit a particular business and project environment. The agile movement forces
project managers to consider a much broader range of “recipes” and “ingredients”
to “cook” with and requires a much more customized and tailored approach.

This book has two major objectives:

1. For all readers (and, in particular, business leaders); this book is intended
to provide an understanding of how to fit agile methodologies into an
overall business strategy that provides the right balance of control and
agility for their business. Doing that effectively requires analysis and plan-
ning. In many cases, agile methodologies have been implemented from
a development perspective—they need to be understood from a much
broader business strategy, project management, and project governance
perspective in addition to a development perspective.

2. For project managers, this book is intended to provide a much deeper
understanding of agile principles, methodologies, and practices to enable
project managers to develop a more agile project management approach
and understand how to blend and tailor both agile and traditional prin-
ciples, methodologies, and practices to create an appropriate balance of
control and agility to fit a business environment, as well as the risks and
complexities of any individual project. Key topics include:

• How the project management role is changed in agile projects and what
new skills and career directions may be needed to grow into agile project
management roles.

• How to develop a project management approach that can be adapted to
agile as well as non-agile project environments.

• How to integrate existing project management knowledge such as the
A Guide to the Project Management Body of Knowledge (PMBOK

Guide)—Fourth Edition with new and rapidly evolving agile principles,
practices, and methodologies

• How to design and tailor the right combination of principles, practices,
and methodologies (agile as well as non-agile) to provide a balance
of control and agility to fit the needs of a business and the risks and
complexity of projects rather than attempting to use a standard “off-the-
shelf” methodology (either agile or non-agile) for projects.

This book has intentionally been designed to avoid an in-depth discussion
of the mechanics of implementing any particular methodology (either agile or
non-agile) for two primary reasons:

• There are already numerous other books on the market that are readily
available to provide that kind of information.

• Digressing too far into the details of the mechanics of how any particular
methodology is implemented would distract the reader from the high-level
view that this book is intended to focus on.

xii Preface

WHY I WROTE THIS BOOK

I recently attended a local agile group meeting to hear the presentation “Essen-
tial Deprogramming for Traditional Project Managers.” The person who gave
the presentation had over 15 years of project management experience, and the
tone of her presentation was that she has now “seen the light,” forsaken all the
things she used to do as a project manager, and transformed herself into an agile
coach.

She made a number of very negative comments about project management that
were based on a lot of popular stereotypes, myths, misconceptions, and clichés
about what project management is, and she made a particular statement that
“‘Agile Project Management’ is an oxymoron.” I don’t agree with that point of
view at all, but it indicates how large a “chasm” there is between the traditional
project management perspectives and newer, more agile approaches to project
management. One of the major obstacles to crossing this “chasm” is that there
are people on both sides of the “chasm” who are somewhat opinionated and
narrow-minded:

• There are some project managers who are deeply entrenched in thinking
that traditional, plan-driven, control-oriented approaches are the only way
to do project management.

• There are many agilists who are equally entrenched in their perspective
that the only way to be “agile” is the pure agile way and that there is
no need for project management at all—they see project management as
a role rather than a set of skills that can be adapted to a broad range of
different environments, just as the agile principles can also be applied to
a broad range of different environments.

I’ve been doing project management in product development and other project
environments for a long time. That has given me a very broad view of what
works and what doesn’t work in different situations, and I’ve learned that there
is no single methodology (agile or non-agile) that works for all projects. One
of the risks in project management is that if you are schooled in one particular
methodology (either agile or non-agile), it’s easy to get lost in the mechanics
associated with implementing that methodology and not step back and consider
that an entirely different methodology or approach might make much more sense
for a given project.

A major goal of this book is to help build a bridge across this “chasm”
between traditional and agile project management approaches and help people
see these methodologies in a very different light. This “chasm” really isn’t as
large as people think it is, and the “chasm” is as much perceived as it is real.
This is an extremely strategic and important topic for the project management
profession. For many project managers who have been schooled in traditional
project management approaches, agile methodologies will require developing a
new perspective:

Preface xiii

• Project managers need to expand the tools in their toolkit to embrace newer,
more agile forms of project management in addition to traditional project
management approaches.

• In the past, project managers may have attempted to force-fit a project to a
given methodology (either agile or non-agile) because that’s what they’re
most familiar with. Agile methodologies will require tailoring the method-
ology (or combination of methodologies) to fit the business environment
and the risks and complexity of the project.

These factors will require project managers to develop a broad-based under-
standing of agile and non-agile methodologies at a deeper level to apply them
successfully in the right combinations for a given project. CIOs, CTOs, develop-
ment managers, and business leaders also need to understand the potential role
that agile methodologies can play in improving the effectiveness of their organi-
zation in meeting increasing demands for timely and flexible software solutions
that satisfy very demanding business requirements.

I’ve had some unique experiences in my career that ultimately led me to write
this book:

1. In the mid-1990s I was the director of corporate quality for a company
that developed hardware and software products for telecommunications
applications. It was quite a challenge:
• The quality of the products was weak, and the company had ongoing

customer service issues to try to keep up with problems generated by
software quality issues.

• The software development organization had a number of very bright
developers who didn’t want anything to do with any defined methodol-
ogy or process.

• The company had grown by acquisition and had acquired other com-
panies in four different worldwide locations (Manchester, UK; Canton,
Massachusetts; Dallas, Texas; and Wichita, Kansas) and each of those
organizations had its own way of doing things.

• My primary job at the time was to get the entire company to agree on a
single development methodology, and get everyone to adopt and consis-
tently implement that methodology and then pass an external audit on
the process implementation. I had moved into the quality management
arena from a project management background, so my natural orienta-
tion was toward the control and predictability provided by the Waterfall
model; however, I was working with a number of software developers
and managers who knew a lot more about software development than I
did at the time, and I learned a lot from that.

• To make a long story short, I came to realize that forcing people to
adopt one methodology like the Waterfall wasn’t going to work—it
was overkill, it had way too much overhead for many of the company’s

xiv Preface

projects, and the software developers would never follow it if we imple-
mented it as a standard methodology for the whole company. On the
other hand, there were some projects for which it did make sense. The
end result was that we wound up with several different life-cycle mod-
els and the project manager could pick one of those models that he/she
felt was most appropriate for the project, and he/she could also tailor it
as needed to fit that particular project.

• Another lesson I learned is that no methodology (agile or non-agile)
should ever be taken as absolute dogma. Project managers must have
some ability to apply it intelligently and make changes as needed to fit
the scope, risks, and complexity of the project.

• That implies that those project managers have a sufficient level of train-
ing and understand the concept and principles behind the methodology
to make those decisions intelligently.

• The impact of those decisions is understood, reviewed, and approved if
necessary by the project’s stakeholders.

2. Since that time, I’ve worked with many companies in many different
application environments, using numerous project management method-
ologies (both agile and not-so-agile) to help them improve their product
development processes. I also have a very strong background doing
hands-on development work, so I understand first-hand what it takes to
develop good software.

3. In 2003, I published a book called From Quality to Business Excellence—
A Systems Approach to Management . A key objective of that book was to
try to demystify and unravel a lot of confusing and competing approaches
to process improvement and quality management that were in use at that
time (Six Sigma, TQM, BPR, etc.). At that time, Six Sigma was very
hot, as agile is today, and people were just jumping into it, treating it
as a “panacea” for solving almost any kind of problem, and doing it
superficially without fully understanding what it took to do it successfully.
I hope that this book will play a similar role in understanding the potential
business impact of agile product development methodologies.

HOW TO USE THIS BOOK

The following is a summary of how the book is organized to meet these
objectives.

Part I

Part I of the book is designed to satisfy the first objective of the book:

Understanding how to fit agile methodologies into an overall business strategy that
provides the right balance of control and agility for a business.

Preface xv

This part of the book is appropriate for all readers. It consists of the following
chapters:

Chapter # Chapter Title Description/Comments

1 Introduction This chapter sets the stage for the rest of the book. It introduces the main
points and provides an executive summary of the book.

2 Agile Values,
Principles, and
Practices

This chapter is intended to provide an overview of the principles behind
agile and clear up some of the confusion that exists about agile and
traditional methodologies by separating some of the perceptions from
the reality. Users who are familiar with agile may want to skim
through some of this material; however, this is an important chapter for
all readers to clear up any misconceptions that exist before proceeding
on into the rest of the book.

The chapter also provides an understanding of the principles behind Lean
Software Development, which is the foundation of most agile
methodologies and can be used to streamline traditional plan-driven
methodologies.

3 Becoming More
Agile

This chapter is designed to provide a management-level perspective for
anyone faced with making business decisions related to developing a
more agile development strategy for their business.

It provides an understanding of the benefits of agile approaches as well as
the obstacles that must be overcome and the commitments needed to
implement an agile strategy. It also discusses alternatives that can help
provide a balance of control and agility for those businesses that are
unable to completely implement a pure agile strategy.

4 Case Studies This chapter discusses some case studies of companies that have crafted
successful methodologies that blend a combination of methodologies,
practices, and principles to fit the needs of their business.

5 Part I Summary and
Action Plan

This chapter provides a summary of some of the key points to consider
when developing a strategy and plan for your business and discusses
some recommended next steps for companies to put the information
learned in this book into operational use to improve your business.

Part II

Part II of the book is designed to satisfy the second objective of the book:

Understanding how to develop a more agile project management approach, includ-
ing how to customize and select and tailor methodologies, practices, and principles
to provide a balance of control and agility.

This part of the book is primarily designed for project managers to enable
them to more effectively help their companies implement an agile strategy. It is

xvi Preface

also appropriate for business leaders who want to get a deeper understanding of
agile methodologies and how to apply them in an overall business strategy in
more detail. Part II consists of the following chapters:

Chapter # Chapter Title Description/Comments

6 Agile Project
Management

This chapter discusses:
How the project management role is changed in agile projects and

what new skills and career directions may be needed to grow
into agile project management roles.

How to develop a project management approach that can be
adapted to agile as well as non-agile project environments,
including how to integrate existing project management
knowledge such as the A Guide to Project Management Body of
Knowledge (PMBOK Guide) with new and rapidly evolving
agile principles, practices, and methodologies

7 Fundamental
Principles Behind
SDLC Models

This chapter is designed to provide a deeper level of understanding
of the fundamental factors that should be considered in the
selection and tailoring of life-cycle models to provide the right
balance of control and agility to align with the company’s
business strategy and the scope and complexity of typical
projects.

It is designed to enable the user to go beyond the constraint of
simply implementing standard off-the-shelf life-cycle models
(either agile or non-agile) and more effectively use life-cycle
models as a tool for meeting business requirements.

8 Software
Development Life
Cycles

This chapter provides a high-level overview of some major types of
software development life cycles to help understand how these
different software development life cycles might be used in an
overall development strategy.

9 Part II Summary and
Action Plan

This chapter summarizes the contents of Part II of the book and
what it means to project managers.

Part III

Appendix # Appendix Title Description/Comments

Appendix A
(Optional)

Overview of Agile
Development Practices

These two appendices are intended as background reading for
anyone who is not familiar with agile development practices
and project delivery frameworks. It is a high-level overview
only and does not go into great deal of detail on any of these
development practices or project delivery frameworks.

Appendix B
(Optional)

Overview of Agile Project
Delivery Frameworks

Acknowledgments

Writing this book has been a lot like writing software in many respects—the
methodology I used for the writing of this book has had a number of attributes
of an agile project in itself:

• It started out with a few core ideas that were the seed of this book, and it
developed iteratively and incrementally from there. Originally, it was just
going to be a paper or a magazine article, and it grew from there into a
book. I didn’t have a completely firm idea of where it was going when I
started—it just evolved.

• It was a team approach—a number of very experienced project managers
collaborated with me and made helpful comments and suggestions on the
direction of the book as it evolved.

• I also kept users well connected into this effort by publishing draft copies
of the book for review on several web sites for feedback and comments
from potential readers as it was being written.

• Another agile idea that I’ve used is the principle of keeping this book
as simple as possible, yet getting across the key ideas that I believe are
important. There is an enormous amount of information from a number of
different sources on agile product development, and it would have been
very easy to stray too far into going into a lot of detail in a number of dif-
ferent areas. Loading the book down with all that information would have
been similar to what software products go through when they get loaded
down with features no one uses that only make them more complicated
and difficult to use.

If I had used a traditional approach to try to write this book, and if I hadn’t
received a lot of help from a very good team of people who made numerous
contributions and suggestions throughout the development process, this book
probably would have never even gotten off the ground. There are two people, in
particular, who made very significant contributions to this book:

• Martin Burns, PMP, project manager at IBM Global Business Services—
Martin has some very deep insight into the this area, spent a lot of time
reviewing a number of early drafts of this book, and provided numerous
comments and suggestions that were very helpful.

xvii

xviii Acknowledgments

• Erik Gottesman of Sapient has provided an enormous amount of thought
leadership in this area and has very generously shared a lot of information
about the Sapient|Approach development process that has been used in this
book. Erik has been a very energetic supporter of the effort to publish this
book and has provided many very insightful comments and suggestions on
its development.

I would also like to thank the following individuals who took the time to review
an early draft of this book and provided helpful comments and suggestions:

Dr. David F. Rico Adjunct Instructor at George Washington University
Gina Abudi Partner and VP, Peak Performance Group, Inc.
David Peterson, PMP Technical Project Manager/Lead Business Analyst
John Balog, PMP Sr. Project Manager, Software, Hardware
Cornelis (Kees) Vonk, PMP Consultant/Instructor Project Management
Glenn Deles, PMP IT Project Manager
Michael Hoffman, PMP Senior Development Analyst at Time Warner Cable

PART I
OVERVIEW

The primary objective of Part I of the book is to help companies understand
how to fit agile methodologies into an overall business strategy that provides
the right balance of control and agility for their business. Doing that effectively
requires analysis and planning. In many cases, agile methodologies have been
implemented from a development perspective; they need to be understood from
a much broader business strategy, project management, and project governance
perspective in addition to a development perspective.

In order to accomplish that, it is essential to overcome some popular miscon-
ceptions associated with “agile” such as:

• “Agile” is an undisciplined process of simply writing code with no plan-
ning, no documentation, and no disciplined methodology for how it is
done.

• The only way to be “agile” is to implement pure agile methodologies such
as Scrum.

• At one end of the spectrum is the most extreme forms of traditional plan-
driven, control-oriented methodologies like the Waterfall process; at the
other end are pure agile approaches like Scrum, with nothing in between.

The truth is that:

• Implementing an “agile” process requires just as much or more discipline
as traditional approaches such as the Waterfall model, but it’s a different
kind of discipline. Rather than relying on rigidly defined and prescriptive
methodologies, agile approaches rely much more heavily on the training
and skill of collaborative, cross-functional teams to adapt the methodology
to the problem that they are attempting to solve.

• Pure forms of agile like Scrum have many advantages, but they can be very
difficult to implement and aren’t necessarily appropriate for all business
environments and projects. Many businesses require a balance of control
and agility, which may be more suited to a hybrid approach.

• There are many ways companies can become “more agile” without nec-
essarily going to the extreme of a pure agile approach, but it may take
a more sophisticated approach to blend together the right combination
of agile and non-agile methodologies and practices to craft a customized

2 Overview

approach. The best approach is always to fit the methodology and practices
to the business environment and problem you’re trying to solve rather than
force-fitting a project to a particular methodology, but doing that requires
a much higher level of skill and it requires developing an understanding
of the methodologies and practices at a deeper level.

There are many companies that are locked into very cumbersome and bureau-
cratic traditional methodologies that don’t see how to improve that situation,
because it can be so difficult to move to a pure agile approach and there is also
a fear of losing control in the process. Part I of the book is designed to help
companies understand some of principles behind agile approaches in order to see
how to develop an appropriate strategy for how to integrate more agile practices
into the way they do business.

CHAPTER 1
INTRODUCTION

“Agile” is definitely the latest and coolest buzzword in the software development
world—everyone wants to be “agile,” but there are many misconceptions of what
“agile” means, and many people don’t fully understand the implications of what
it takes to develop an effective agile development process.

MEANING OF THE WORD “AGILE”

First, it is essential to define what we mean by the word “agile”. In the software
development arena, the word “agile” has become synonymous with specific forms
of agile such as Scrum and Extreme Programming (XP):

Scrum is an agile software development model based on multiple small
teams working in an intensive and interdependent manner. The term is
named for the scrum (or scrummage) formation in rugby, which is used
to restart the game after an event that causes play to stop, such as an
infringement.

Scrum employs real-time decision-making processes based on actual
events and information. This requires well-trained and specialized teams
capable of self-management, communication and decision making. The
teams in the organization work together while constantly focusing on
their common interests.1 (See Appendix B for more detail.)

Extreme Programming is a discipline of software development based on
values of simplicity, communication, feedback, and courage. It works by
bringing the whole team together in the presence of simple practices,
with enough feedback to enable the team to see where they are and to
tune the practices to their unique situation.

In Extreme Programming, every contributor to the project is an integral
part of the “Whole Team.” The team forms around a business representa-
tive called “the Customer,” who sits with the team and works with them
daily.

1 What is Scrum?, http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci1230820,00.
html

3

4 Introduction

Extreme Programming teams use a simple form of planning and track-
ing to decide what should be done next and to predict when the project
will be done. Focused on business value, the team produces the software
in a series of small fully integrated releases that pass all the tests the
Customer has defined.2 (See Appendix A for more detail.)

This connotation of the word “agile” has become widely accepted in common
usage in software development and creates the impression that the only way to
be “agile” is to practice those specific methodologies. In other words, if you’re
not doing Scrum and/or Extreme Programming, you’re not agile at all.

The meaning of the word “agile” has become confusing because of these
widely-used specific connotations that have become associated with it. These
connotations are also in the context of a development perspective and a much
broader context is needed. A more general connotation of the word “agility” is
defined by Dr. David Rico3 as follows:

• “The ability to create and respond to change in order to profit in a
turbulent global business environment

• The ability to quickly reprioritize use of resources when requirements,
technology, and knowledge shift

• A very fast response to sudden market changes and emerging threats,
by intensive customer interaction

• Use of evolutionary, incremental, and iterative delivery to converge on
an optimal customer solution

• Maximizing the business value with right-sized, just enough, and just-
in-time processes and documentation”4

The word “agility” as defined above has a much broader meaning than the
meaning that has typically been associated with the word “agile”—it implies
that there are many different levels of “agility” and not just a limited number
of specific ways to being “agile”. A key idea that this book will develop is that
there is a spectrum of different approaches to “agility”:

• At one end of the spectrum, there are approaches such as the traditional
Waterfall methodology that heavily emphasize upfront planning and con-
trol and have a very limited amount of agility. These approaches might
be classified as “plan-driven” or “predictive” because they use upfront

2 What is Extreme Programming?, http://xprogramming.com/book/whatisxp
3 Rico, David F., Lean and Agile Systems Engineering, http://davidfrico.com
4 Rico, David F., “Lean and Agile Systems Engineering, http://davidfrico.com

Meaning of the Word “Waterfall” 5

planning heavily to attempt to predict the cost and schedule for a project.
They also typically place an emphasis on controlling changes once the
project is in progress to manage the scope of the effort to ensure that the
original predictions of costs and schedules remain valid.

• At the other extreme, there are approaches such as Scrum and Extreme
Programming (XP) that have a much higher level of agility and would
be considered much more “adaptive” because they place a much higher
level of emphasis on being flexible to user needs and requirements as
the project progresses and they have a much lower level of emphasis on
upfront planning and control of costs and schedules.

In the middle of these two extremes, there are many ways to blend together
different levels of agility and control to fit a given business environment.

This definition of the word “agility” also acknowledges that “agility” includes
a higher-level business perspective as well as a development practice perspective
and that the two must be integrated. Scrum and Extreme Programming (XP)
are excellent methodologies that can have an enormous impact on improving a
company’s software development process, but too often, a migration to agile is
led from a development strategy perspective driven primarily by implementing
a new development methodology such as Scrum and XP, and there are much
broader implications that need to be considered such as:

• What role does the product development process play in the company’s
business? What are the advantages to be gained by becoming more agile?

• What is the most appropriate balance of agility and control for the com-
pany’s business environment and competitive strategy?

• What are the benefits and tradeoffs associated with different levels of agility
that might be used to provide that balance?

In this book, to avoid confusion about terminology, the phrase “pure agile”
or “extreme agile” will be used to refer to the most adaptive forms of agile
methodology such as Scrum and Extreme Programming (XP).

MEANING OF THE WORD “WATERFALL”

The agile movement started out as a revolution against traditional development
practices, such as the Waterfall, process that have been perceived as heavily
laden with documentation and were perceived as cumbersome, ineffective, and
extremely bureaucratic. Figure 1.1 shows a typical Waterfall model.

The Waterfall process is called that because it is a series of sequential phases
that have to happen in sequence, and each phase cascades into the next. For
example, one of the early phases is a requirements definition phase, where
the user requirements are defined and documented and then handed off to the

6 Introduction

Requirements

Design

Develop

Integrate
& Test

Implementation/
Development

Figure 1.1 Typical Waterfall model

development team in the next phase to develop a solution. There are several
significant problems that are inherent in that kind of process—it assumes that:

• The users are capable of defining explicitly detailed requirements for every-
thing that they need without seeing it at all.

• The business environment is also very stable and the requirements aren’t
going to change much throughout the rest of the project.

• The requirements can be accurately documented in a way that developers
are going to easily understand what needs to be done to satisfy those needs
and nothing will be lost in translation.

Those may not be very realistic assumptions in many situations today, but
the Waterfall approach has appealed to companies who have seen it as a way to
get control and predictability over project costs and schedules. The truth is that
control over costs and schedules is an illusion if the requirements are uncertain
and are likely to change significantly. It may appear that there is a well-defined
plan with accurate and predictable estimates of costs and schedules, but one of
two things is likely to happen:

1. The rigidity of the requirements and the change control process make
it difficult to adapt to user needs as the project progresses. The project
may meet its cost and schedule goals but miss the mark in satisfying the
business need if changes in user needs are overly controlled.

2. On the other hand, if users are allowed to make changes freely, attempting
to impose a rigorous change control process in an environment with very
uncertain user requirements can create enormous amounts of unnecessary
bureaucracy processing change requests on top of change requests and
can make the earlier estimates of costs and schedules meaningless.

Attempting to apply a Waterfall model in that kind of environment is unre-
alistic, yet many project managers attempt to do it anyway because it provides

Polarization of Agile and Traditional Waterfall Approaches 7

an “illusion” of control. It’s much better to just accept the fact that the user
requirements are uncertain and choose a model that is designed to be more flexi-
ble and adaptive to uncertain user requirements. The cost and schedule estimates
may not be as exact and precise as you might like, but it’s unrealistic to believe
that the cost and schedule estimates can be any more exact and precise than the
requirements are.

POLARIZATION OF AGILE AND TRADITIONAL
WATERFALL APPROACHES

There has been a considerable amount of polarization associated with traditional
Waterfall and agile approaches:

• The agile movement was essentially a revolution against bureaucratic,
Waterfall-style processes, and people in the agile community wanted to
distance themselves as far as possible from those practices. For that rea-
son, when the agile movement started out, it moved the pendulum to an
extreme point in the other direction away from the traditional Waterfall
approach (little or no documentation, process, or methodology, etc.).

• At the other extreme, some companies and practitioners of the traditional
Waterfall approach have developed a strong and deeply rooted control
orientation with an emphasis on accurately estimating and managing costs
and schedules that can be difficult to change. If your goal is to accurately
manage costs and schedules, any good project manager knows that it is
essential to control and manage changes in requirements and scope. For that
reason, it’s very understandable why agile methodologies that emphasize
unrestricted flexibility to adapt to change would feel very uncomfortable
to those people.

In 2003, Barry Boehm and Richard Turner observed:

“Unfortunately, rather than find ways to support each other, these two
approaches to software development have considered each other oppo-
sites in a zero-sum game. The agilists rail against the traditionalists
and lament the dehumanization of software development by ‘Taylorian’
reductionists who worship process. The establishment has responded with
accusations of hacking, poor quality, and having way too much fun in a
serious business. True believers on both sides have emerged to proclaim
their convictions with near messianic stridency, raising the perplexity
level of software developers and managers trying to evolve their success
strategies.”5

5 Boehm, Barry and Turner, Richard, Balancing Agility and Discipline—A Guide for the Perplexed ,
New York: Addison-Wesley, 2003, p. 4

8 Introduction

Since that time, the reality is that both sides of this conflict have evolved
considerably, yet there is still a perception in some cases that they are far apart:

• The agile movement has matured rapidly and considerably. Methodologies
like Scrum have evolved that are more than just a development process and
have a strong base of knowledge and experience behind them, yet many
people still retain an image of the agile movement as just an undisciplined
development process from its early anarchist, revolutionary days.

• Many people have found innovative ways to make traditional develop-
ment approaches more agile by making the documentation and process
requirements much more sensible and adopting more iterative develop-
ment approaches that balance control with agility, yet many people still
have an image of traditional development approaches as highly dogmatic
and bureaucratic.

It’s time to find the middle ground and start to build a bridge across this
chasm—much of these differences are more rooted in perceptions and mis-
conceptions rather than in reality and, in many cases, the judgment and skills
associated with how the methodology is applied has as big an impact as the
methodology itself.

There is much to be learned from both of these areas and a broad base of
knowledge and a continuum of different methodologies, practices, and principles
from both the agile and traditional project management approaches need to be
considered in many cases to develop an effective overall strategy. The selection of
a project methodology (or methodologies) is a very important strategic decision
for all organizations that depend on effective project management. The approach
needs to be well aligned with the company’s business strategy, culture, and
business environment, as well as the risks and complexity of individual projects.
For example:

• In very high-risk industries and application areas, depending on the nature
of the risk, a considerable amount of upfront planning may be needed to
ensure that the risks have been defined and mitigated.

• In highly regulated environments, project requirements, test plans, and test
results may have to be well documented to satisfy regulatory requirements.

In these situations and many others, a balance of control and agility is needed
to satisfy these requirements, and there are many ways to provide some level of
agility without completely sacrificing control. Selecting an overall approach that
provides the right balance of control and agility should be done jointly by the
business and development sides of the organization based on an objective under-
standing of the alternatives and all the issues and tradeoffs involved. Attempting
to use any standard methodology (either agile or non-agile) by the book that
doesn’t fit the risks and complexity of the business and project environment is
not likely to be very successful. And, in many cases, the optimum solution may

The Program du Jour Effect 9

not be a single, standard methodology at all, but a combination of methodologies
that can be customized and tailored to the requirements of each project.

THE PROGRAM DU JOUR EFFECT

Any new methodology, when it is really the hot thing to do, has a tendency to
become the “program du jour.” (Or program of the day) Agile methodologies
have the potential to have an enormous impact; however, like many other new
and hot methodologies:

• Consultants tend to swarm all over them and sell them as a cure for almost
anything that ails you.

• Many companies and managers want to jump on this bandwagon, and that
further builds the hysteria in the market.

The result of this can be:

• Jumping into agile looking for a “quick fix” without fully realizing that it
takes a significant commitment to make it successful, resulting in superfi-
cial implementations that are likely to fail

• Attempting to implement agile methodologies in a business environment
or organizational culture that is inconsistent with an agile approach

• Attempting to use agile methodologies for projects that they are inappro-
priate for or failing to blend a sufficient level of agility with the level of
control that is needed

I’ve seen this phenomenon before. When I did the research for my book on
business excellence,6 I looked at a number of companies that were implementing
Six Sigma, which was a very hot methodology at that time:

• There were some companies where the implementation followed the pro-
gram du jour pattern—there was a lot of hoopla about the implementation,
there were green belts and black belts and many of the other rituals that
go along with Six Sigma, but if you looked under the surface, you quickly
discovered that it didn’t go very deep.

• On the other hand, there were other companies where it wasn’t even
obvious that they were doing Six Sigma because it was so well engrained
into their business, and they took the time to understand the principles
behind Six Sigma at a deeper level. They didn’t even necessarily call
it Six Sigma. These companies had their own process improvement
methodology that was really fully integrated into how their business
operated, and the methodology behind Six Sigma was only one tool in their
toolbox.

6 Cobb, Charles G., From Quality to Business Excellence, ASQ Quality Press, Milwaukee, WI,
2003

10 Introduction

Another phenomenon I’ve seen before is the tendency to “throw the baby out
with the bath water” whenever a hot new methodology comes along. In many of
these situations, there is a lot to be learned from the previous methodology, but
the previous methodology is considered obsolete and passé, and lessons learned
from the past are forgotten when people move on to a hot new methodology like
Six Sigma or agile. There is a tendency to think that traditional development
methodologies and everything we’ve learned from them are now completely
obsolete and have been replaced by agile, and that’s not the case at all. There’s
a huge body of knowledge that has been developed over many years that should
not be lost or ignored. Many of those principles, such as those in A Guide to
the Project Management Body of Knowledge (PMBOK Guide)—Fourth Edition
are still valid; they just need to be applied intelligently in a different context.

A key objective of this book is to try to avoid the “program du jour” effect
and present an objective and unbiased view of agile—where pure agile method-
ologies work and where a more traditional or hybrid approach may be a better
solution, how agile methodologies fit with other methodologies, and what it
takes to understand all of these methodologies at a deeper level and apply them
successfully.

IMPACT ON PROJECT MANAGEMENT

The Standish Group recently released a report called “CHAOS Summary 2009”
that has some disturbing statistics that show a very low percentage of projects
met their desired objectives:

“This year’s results show a marked decrease in project success rates, with
32% of all projects succeeding which are delivered on time, on budget,
with required features and functions” says Jim Johnson, chairman of
The Standish Group, “44% were challenged which are late, over budget,
and/or with less than the required features and functions and 24% failed
which are cancelled prior to completion or delivered and never used.” 7

Jamie Capella of the Corporate Executive Board8 presented data that showed
a similar result. They did a study that indicated that a large number of projects
(greater than 50 percent) that had successfully met their cost and schedule goals
failed to deliver the business value that was intended. Both of these reports
indicate a need to take a hard look at how project management is being done to
determine what could be wrong.

The fundamental problem, in many cases, is one of two things:

• An overemphasis on control of costs and schedules can cause losing focus
on the successful achievement of business results.

7 Standish Group, http://standishgroup.com/newsroom/chaos_2009.php
8 Capella, Jamie, Presentation to PMI MassBay Chapter, March 18, 2010

Impact on Project Management 11

Scope

Quality

Time Cost

Figure 1.2 Traditional Project Management Triangle

• In a situation where the requirements are very uncertain and difficult to
define upfront, attempting to force-fit that kind of project to a rigidly con-
trolled, traditional Waterfall model is probably not the best model.

The traditional Project Management triangle in Figure 1.2 shows a project
management approach that has been used for years.

If the project was managed within the constraints of time, cost, and resource
availability, and it delivered the items that were within the scope of the project
with an acceptable level of quality, it was considered a success. That’s the pre-
dominant way that projects have been managed for a long time. There is nothing
explicit in that triangle about providing business value unless you make the
assumption that delivering what is in the scope is going to provide that value,
and that’s a very big assumption.

“Too often project managers (and those above them) focus on the usual
constraints of time and cost. There are times when value doesn’t seem
to matter at all—its schedule, schedule, schedule, as if value will take
care of itself. Then there are those that focus on scope and detailed
requirements but not the end goal of value . . . The assumption gets made
that delivering on scope, schedule, and cost means delivering value.” 9

In the same PMI Meeting10 where Jamie Capella spoke, there was a panel
discussion with seven Boston-area CIOs that followed. The message they gave
was very loud and clear—in today’s world, successful project managers need to
go well beyond managing costs and schedules and focus on achieving successful
business outcomes. This will require rethinking and rebalancing priorities in some
cases. For example, the emphasis on management of project costs and schedules
can have a negative impact:

9 Highsmith, Jim, Agile Project Management: Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 18
10 PMI MassBay Chapter Meeting, March 18, 2010

12 Introduction

• In order to control costs and schedules, users are expected to sign off on
requirements at the start of a project, and any changes from that point on
are well controlled and minimized.

• The level of user involvement in the development effort after the project has
entered the design stage may be very limited in order to control changes.

When projects fail to provide the business value that they were intended to
provide, there’s a usual list of suspects to blame such as:

• The users didn’t adequately specify the requirements or the requirements
weren’t sufficiently defined.

• The project team didn’t understand the requirements or the business need
changed.

The root cause of the problem may be in the way that projects have been typi-
cally managed. Attempting to use an inappropriate methodology on a project may
not satisfy either the objectives of managing costs and schedules or providing
the desired business value:

• Too much emphasis on managing costs and schedules can lead to a some-
what rigid management of project scope that makes it difficult for the users
to provide sufficient input and to react to change.

• In an unclear, uncertain, or rapidly changing environment, a very differ-
ent kind of approach may be needed that has much more emphasis on
satisfying business needs as a primary goal and has a lot more flexibility
to adapt to change. Attempting to use a methodology that is optimized
around managing costs and schedules in that environment is not likely to
be successful.

A very different approach is needed to provide the right balance of flexibility
and responsiveness to adapt to user needs in an uncertain environment:

“Traditional Project Managers tend to focus on requirements as the def-
inition of scope, and then concentrate on delivering those requirements.
Agile Project Leaders focus on delivering value and are constantly ask-
ing questions about whether different renditions of scope are worth the
value they deliver.”11

Naturally, in this environment, the estimates of costs and schedules cannot
be much more accurate than the user requirements are, but that doesn’t prevent
establishing a ballpark estimate for the project based on high-level requirements
that are defined upfront and are further elaborated as the project progresses.

11 Highsmith, Jim, Agile Project Management-Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 27

Impact on Project Management 13

Value
(Releasable Product)

Quality
(Reliable, Adaptable Product)

Constraints
(Cost, Schedule, Scope)

Figure 1.3 Agile Project Management Triangle

Jim Highsmith in his book Agile Project Management12 proposes an agile
triangle shown in Figure 1.3.

In an agile project, there is a much stronger focus on producing value for
the customer. The customer is directly involved in the development effort, and
it is understood and expected that the customer is going to introduce changes
throughout the project to try to optimize the business value the project produces.
In today’s world:

• It may be unrealistic to expect that users can totally predict all the business
requirements for a project far in advance of when the project will be
delivered.

• In many cases, business results and software application solutions are
so intimately intertwined, that achieving successful business outcomes
requires a much more collaborative and integrated approach.

The trend towards more agile project management raises some important ques-
tions for project managers and any organization that depends on effective project
management discipline for successful implementation of product development
projects. For example:

• How does “agile” impact existing project methodologies? Is there still a
need for traditional plan-driven development approaches?

• How do I reconcile all the traditional project management practices, such
as those in the Project Management Institute’s A Guide to the Project
Management Body of Knowledge—Fourth Edition (PMI PMBOK

Guide—Fourth Edition), which has been the foundation of project

12 Highsmith, Jim, Agile Project Management-Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 21

14 Introduction

management for so long, with many of the new ideas and principles that
are the foundation of the agile movement?

• What is the impact of the agile movement on the future of project man-
agement? How does it change the project management role? What skills
are needed for a project manager to be effective in an agile environment?

The answers to these questions are not immediately obvious, and these are
very important and strategic questions for businesses, as well as the project
management profession.

COMMON AGILE MISCONCEPTIONS

Our understanding of agile methodologies is rapidly evolving; however, there
are a number of misconceptions that seem to persist about agile development.
It is essential to clear up some of these misconceptions in order to objectively
understand the benefits, limitations, and requirements of implementing an agile
strategy.

The Pizza Box Methodology

There are people who think that being agile is nothing more than some business-
people sitting down with some developers over a box of pizza and starting to write
code with no structure, process, tools, or methodology for how it is done. The
truth is that being agile does require a planned approach and a very disciplined
process for doing the work, and in a very fast-paced development environment,
having appropriate tools to manage the effort can become imperative.

“Agility without discipline is the unencumbered enthusiasm of a startup
company before it has to turn a profit. Great companies have both
(discipline and agility) in measures appropriate to their goals and
environment.”13

An effective implementation of an agile approach can require a much higher
level of skill and self-discipline from everyone on the project team:

“Although it may seem counter intuitive [sic], agile is an extremely
disciplined approach to working. Agile does not equal sloppiness. Most
people will have a difficult time adjusting to this.”14

13 Boehm, Barry and Turner, Richard, Balancing Agility and Discipline—A Guide for the Perplexed ,
New York: Addison-Wesley, 2003, p. 2
14 “ ‘Gotchas’: Common Pitfalls when Moving to Agile,” Sapient Corporate White Paper,
www.sapient.com

Common Agile Misconceptions 15

All-or-Nothing Thinking

There are people in the agile community who are very zealous and aggressive
about promoting the benefits of Scrum and Extreme Programming (XP) to the
extent that it seems to be a black-and-white proposition—either you fully adopt
those specific agile approaches or you’re not agile at all. The truth is that:

• The principles behind agile methodologies, including Scrum, can be cus-
tomized and tailored to fit different kinds of projects and can be used in
combination with other project management approaches as necessary to
provide a balance of control and agility.

• There are many alternative approaches between pure forms of agile at one
end of the spectrum and traditional Waterfall development approaches at
the other end, and there are many ways an organization can become more
agile through incrementally adopting new development practices and
approaches without necessarily going to pure forms of agile, as shown in
Figure 1.4.

Traditional Development Approaches Are Dead

There is also a misconception that traditional methods of doing development and
all the practices and tools that have been commonly associated with them are
either obsolete or irrelevant and are completely replaced by agile methodologies,
practices, and tools. The truth is that:

• There are many good reasons why traditional plan-driven development
approaches still can make sense for a given project, depending on the risk
and complexity of the project and other factors.

• There are a number of ways to apply agile principles to traditional method-
ologies in order to make them more agile.

Extreme
Waterfall

Pure
Agile

Increasing Agility

Plan-Driven
Approaches

Iterative
Approaches

Adaptive
Approaches

Gap

Reality:

Perception:

Figure 1.4 All-or-nothing thinking

16 Introduction

• There are lots of ways to apply more traditional practices and tools to agile
projects to achieve higher levels of control and predictability if necessary.

Just Do It Faster

Software development projects are notorious for becoming “death march”
projects. Edward Yourdon defines a “death march” project as:

“Quite simply, a ‘death march’ project is one whose “project parameters”
exceed the norm by at least 50 percent. In most projects, this means one
or more of the following constraints have been imposed upon the project:

• The schedule has been compressed to less than half the amount esti-
mated by a rational estimating process; thus, the project that would
normally be expected to take 12 calendar months is now required to
deliver its results in six months or less . . .

• The staff has been reduced to less than half the number that would
normally be assigned to a project of this size and scope . . .

• The budget and associated resources have been cut in half . . .

• The functionality, features, performance requirements, or other techni-
cal aspects of the project are twice what they would be under normal
circumstances . . . ”15

Basically a “death march” project amounts to pressuring project teams to just
do the same work faster without necessarily changing anything about the process
and methodology of how the work is done. It’s a brute force approach to compress
the project schedule, which is fraught with many potential problems.

John Wooden is a famous American basketball coach at the University of
California at Los Angeles (UCLA). “In Coach Wooden’s last twelve years as
coach, UCLA won ten National Collegiate Athletic Association (NCAA) cham-
pionships. In the 27 years he led the Bruins, they never had a losing season. Their
record of 88 consecutive winning games will probably never be surpassed.”16 He
is noted for saying “Be quick, but don’t hurry”.17 Being quick requires discipline
and training, hurrying can be just a brute force way to try to get it done faster
and is likely to have a much lower success rate.

Becoming Agile Only Impacts the Development Organization

Many people think that becoming agile only impacts the product development
organization. This is a quite common misconception on the business side—if we

15 Yourdon, Ed, “What is a Death March Project and Why Do They Happen?”, www.informit.com
/articles/article.aspx?p=169512
16 John Wooden, Academy of Achievement, www.achievement.org/autodoc/page/woo0pro-1
17 “The Wizard’s Wisdom: Woodenisms,” http://sports.espn.go.com/ncb/news/story?id=5249709

Common Agile Misconceptions 17

can just get our development organization to be more agile and speed up the way
they do things, it will solve all our problems. The truth is that becoming more
agile impacts much more than just the development side of the organization—it
requires a broad-based commitment from the business side of the organization
to work in a close, collaborative partnership with the development side of the
organization, and it may also require some major shifts in organizational culture
and thinking to make that work.

Migration toward an agile approach without substantial sponsorship and long-
term commitment from the business is probably doomed to failure. In many
cases, the business side of the organization should take a major leadership role
in driving the change that is needed.

“The business stakeholders involved must learn the process as it is very
different for them . . . if this group is not brought into the fold, there
will be major disconnects (in terminology, approaches to situations, etc.)
Once educated, they will be able to see the benefits of being able to direct
the development as it progresses. The business also needs to clearly
understand the expectation that it will also be frustrating for them to
see the “dirty laundry” being aired each iteration: unfinished work, team
mistakes, and other issues that are often hidden in a methodology with
long breaks between business reviews.”18

Agile Is Just a Development Methodology

A similar misconception is that agile is just a development methodology and not
a project management methodology or framework. That perception is probably a
carryover from the early days when agile was primarily a development method-
ology with little or no structure or process. Since that time; however, “agile” has
matured significantly and Scrum is a relatively well-defined methodology and
process with a significant knowledge base associated with it.

However, there are probably several key reasons why that perception still
persists:

1. In an agile project, the line between what is a development methodology
and what is a project management methodology is often blurred:
• The development process may not be a discrete function separate

from requirements and other project management aspects of the
project—they are typically very well integrated.

• The project management methodology may not be as formally defined
as a separate process from the development process, and in many cases,
agile methodologies don’t use the term “project manager” at all.

18 “ ‘Gotchas’: Common Pitfalls when Moving to Agile” Sapient Corporate White Paper,
www.sapient.com

18 Introduction

2. Agile methodologies are meant to be building blocks and combined
and extended as necessary to create a complete project methodology.
Agile does not specifically define all of the higher-level planning and
project management that might be necessary for larger, more complex
projects, but it would be inaccurate to characterize it as just a develop-
ment methodology.

WHAT AGILE DOESN’T TELL YOU

There are a couple of key reasons why there are misconceptions about agile:

1. Agile methodologies, by design, are not prescriptive—they don’t tell you
exactly what needs to be done to implement the methodology or how to do
it in many cases. In general, agile methodologies define some principles
that intentionally require interpretation for a given situation. For example,
the Agile Manifesto defines four values and twelve principles. The four
values are as follows:

“We are uncovering better ways of developing software by doing it
and helping others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan
That is, while there is value in the items on the right, we value

the items on the left more.”19

It’s up to the person implementing agile to interpret what those values
mean in a given situation and determine how to apply them in the context
of his/her business and project environment. In some cases, they’ve been
misinterpreted. For example, some have taken an extreme view to interpret
them to mean that:
• There is no documentation, and no processes and tools.
• Agile is not consistent with environments based on customer contracts.
• Change control is not consistent with agile.
It certainly wasn’t the intent of the people writing the Agile Manifesto that
the contents would be interpreted as absolutes20 — they were intended to
be relative statements. The key point is that you have to interpret those
principles in the context of your business and project environment and

19 Agile Manifesto, http://agilemanifesto.org
20 Highsmith, Jim, Agile Project Management-Creating Innovative Products , Addison-Wesley, New
York, NY 2010, p. 16

What Agile Doesn’t Tell You 19

apply them intelligently. Unfortunately, that has not always been the case
and agile methodologies have been misapplied or poorly implemented in
some situations.

2. Agile methodologies are still maturing, and there’s a lot to be learned
about what works and what doesn’t work. In fact, agile is heavily based
on continuous improvement, the whole methodology is meant to evolve,
and there is an evolution taking place as the body of knowledge associated
with agile grows. Jim Highsmith21 breaks down the most important agile
tools and techniques fall into the following levels:
• Technical Practices
• Iteration Management
• Project Management
• Portfolio Governance
Agile has its roots in technical practices and that area is the most mature
and most established in terms of having a widely accepted body of knowl-
edge associated with it, but as you move up the ladder, the levels of
knowledge associated with the other areas are progressively less defined.
For example, a few books have touched on the portfolio governance area,
but there is much to be learned in that area.

Traditional Project Management Office (PMO) organizations need to
change radically in some cases to adapt to agile. In many cases, instead of
being only an enforcer of rigidly defined corporate processes and policies
about how to manage projects, PMO organizations need to shift their focus
to a value-added consulting orientation to help their companies learn to
successfully implement more flexible and adaptive processes.

The important thing about agile is that implementing it mechanically “by the
book” is not the right approach, you really need to understand the principles
underneath it at a deeper level to know how to apply it in the context of your
business and project environment. That’s why you won’t find a prescriptive
approach defined for how to implement every aspect of agile.

Understanding any methodology at a deeper level (understanding the principles
behind it) is essential for selecting a methodology (agile or non-agile) that is
consistent with your business environment and tailoring it as necessary to fit
specific projects. That is the approach behind this book.

21 Highsmith, Jim, Agile Project Management-Creating Innovative Products , Addison-Wesley,
New York, NY 2010, p. 78

CHAPTER 2
AGILE VALUES, PRINCIPLES,
AND PRACTICES

It is outside the scope of this book to provide in-depth background on agile
methodologies; however, it is important to at least provide a general understand-
ing of agile values, principles, and practices and how they have evolved. That
is the purpose of this chapter: it is intended to provide background reading for
anyone who does not already have a background in these areas. I highly recom-
mend the books listed in the Additional Reading section at the end of this book
as resources for additional in-depth reading in this area.

LEAN SOFTWARE DEVELOPMENT PRINCIPLES

Before getting into agile, it’s worthwhile to understand the principles behind
Lean Software Development for several reasons:

1. Lean Principles Are the Foundation for Agile:
First and foremost, agile has adopted the fundamental value system of
lean: delivering and maximizing net customer value. Understanding the
lean principles provides a deeper understanding of why agile makes sense
from a broader business and operational management perspective rather
than just a development perspective.

2. Operational Management Perspective:
The principles behind lean manufacturing have been well-proven
and widely used to provide significantly improved business results
in many industries and application areas. An understanding of Lean
Software Development principles will provide a deeper understanding
of why agile methodologies have the potential to significantly improve
product development processes and business results from an operational
management perspective.

In many cases, agile methodologies have been sold primarily on the
basis of improving software development processes from a development
perspective; however, successfully developing a more agile product devel-
opment approach can have much broader implications that impact many
portions of the business and might require a significant organizational
transformation to be successful. The Lean Software Development princi-
ples provide a way to better understand the impact from an operational

21

22 Agile Values, Principles, and Practices

management perspective so that it can be well-aligned with an overall
business strategy.

3. Improving Traditional Development Processes:
In many situations, the best solution for companies will not be to com-
pletely discard traditional development processes and replace them with
agile development processes. There are a lot of reasons why traditional
development processes may still make sense in many business and project
environments. In those environments, the right solution may be to improve
and streamline those traditional development processes rather than replace
them The principles behind Lean Software Development can be applied
to improve almost any development process (either agile or non-agile).

Lean Principles

The roots of the agile methodology are in “lean” thinking, which originated in
lean manufacturing concepts. Lean manufacturing or lean production, which is
often simply known as “Lean” is defined as:

“A systematic approach to identifying and eliminating waste through
continuous improvement by flowing the product at the demand of the
customer.”1

“Lean” considers the expenditure of resources for any goal other than the
creation of value for the end customer to be wasteful and a target for elimination.
“Value” is defined as any action or process that a customer would be willing to
pay for.

Agile is based on taking that same thinking from lean manufacturing and
applying it to a software development process. It involves looking at a software
development process and making some critical decisions about whether each
activity in the process adds value. There are three kinds of work in any process:

• Value-Added—Process steps that produce value the customer is willing
to pay for or are essential to directly meeting customer requirements

• Non-Value-Added—Process steps that are not directly required to pro-
duce customer value but are required for other reasons such as meeting
regulatory requirements, company mandates, legal requirements, and so
forth

• Waste—Process steps that consume resources but produce no value in the
eyes of the customer

Applying these concepts to a software development life cycle model requires
evaluating the various steps in the process and making a judgment as to whether

1 Lean Manufacturing Guide, www.leanmanufacturingguide.com/

Lean Software Development Principles 23

they really produce value in the eyes of the customer or not. Dr. David Rico
provides a definition of “Lean Systems Engineering” as follows:

“Lean (len): Thin, slim, slender, narrow, adequate, or just-enough; With-
out waste

• A customer-driven systems engineering process that delivers the max-
imum amount of business value

• An economical systems engineering way of planning and managing
the development of complex systems

• A systems engineering process that is free of excess waste, capacity,
and non–value adding activities

• Just-enough, just-in-time, and right-sized systems engineering
processes, documentation, and tools

• A systems engineering approach that is adaptable to change in customer
needs and market conditions”2

INCOSE3 has developed a list of systems engineering enablers to support the
six key principles of lean:

Lean Principle Enablers

Value Focus on delivering customer value:

• Use a defined process for capturing requirements focused on customer value.
• Establish the value of the end product or system to the customer (what are the business

objectives?).
• Frequently involve the customer.

Map the Value
Stream

Use a well-defined methodology for executing projects:

• Poor planning is the most notorious reason for wasteful projects.
• Plan to develop only what needs developing.
• Plan leading indicators and metrics to manage the project.

Pull Tailor the process to the risks and complexity of the project to achieve maximum
efficiency:

• The Pull Principle promotes the culture of tailoring tasks and pulling them and their
outputs based only on legitimate need and rejecting others as waste.

• Pull tasks and outputs based on need, and reject others as waste.

2 Rico, David F., Lean and Agile Systems Engineering, http://davidfrico.com
3 International Council on Systems Engineering—Lean Systems Engineering Working Group,
http://cse.lmu.edu/about/graduateeducation/systemsengineering/INCOSE.htm

24 Agile Values, Principles, and Practices

Lean Principle Enablers

Flow Eliminate bottlenecks that are likely to obstruct or delay progress:

• In complex programs, opportunities for the progress to stop are overwhelming, and it
takes careful preparation, planning, and coordination effort to overcome them.

• Clarify, derive, and prioritize requirements early and often during execution.
• Front-load the architectural design and implementation.
• Make progress visible to all.
• Use the most effective communications and coordination practices and effective tools.

Respect for
People

Build an organization based on respect for people:

• Nurture a learning environment.
• Treat people as most valued assets.

Perfection Strive for excellence and continuous improvement in the software development
processes:

• Use lessons learned from past projects for future projects.
• Develop perfect communication, coordination and collaboration policy across people and

processes.
• Use effective leadership to lead the development effort from start to finish.
• Drive out waste through design standardization, process standardization, and skill-set

standardization.
• Use continuous improvement methods to draw best energy and creativity from project

teams.

Each of these topics is discussed in more detail in the following sections.

Customer Value
Many businesses focus on financial results rather than customer value as a
primary goal—one problem is that without understanding the cause-and-effect
relationships that drive those financial results, you’re always in reactive mode.
When the financial results for the current quarter go down, there’s a lot of scram-
bling around to figure out what went wrong and what caused that to happen and
to try to fix the problem.

A more proactive approach is to develop an understanding of the factors that
drive financial results for your business and focus on those factors—if you focus
on customer value and you do that successfully, the financial results should follow
and it provides a much more reliable and consistent approach for managing a
business successfully. Figure 2.1 is a model I used several times in my Business
Excellence book.4

4 Cobb, Charles G., From Quality to Business Excellence, ASQ Quality Press, 2003

Lean Software Development Principles 25

Business
Results

Maximizing Customer Value
Relative to Competitors

Leads to Improving
Business Results

Effective Business Processes
Lead to Maximizing

Customer Value

Employee Knowledge & Skills
Plus Effective Supporting

Systems Leads to Effective
Business Processes

Customer
ValueCompetitors

Operational
Process

Performance

Employee
Knowledge &

Skills

Supporting
Systems

Other Enablers &
Constraints

Figure 2.1 Business Excellence model

This is a relatively simple model, but it’s useful to understand some of the gen-
eral cause-and-effect relationships that drive business results in a typical business.
Here’s a summary of some key points in this model:

1. Customer value is the primary focus of this model—if you improve cus-
tomer value relative to your competition, it should have a direct impact
on driving business results.

26 Agile Values, Principles, and Practices

2. Customer value is a function of effective business processes that are
designed to maximize value to the customer—if you continuously
improve those processes to consistently deliver high levels of customer
value, it should have a direct impact on driving both customer value and
business results.

3. Operational process performance is a function of a number of things
including:
• Employee knowledge and skills
• Supporting systems
• Other enablers and constraints, which include:

• Cultural and behavioral factors
• Organizational structure
• Technology

The idea of this model is that businesses need to have an integrated, cross-
functional view of how their business works to develop a proactive, systems
approach to management that is focused on customer value. It’s fairly obvious
that a focus on customer value should be a strong driving force in any business,
but “customer value” can mean different things:

• In a company that produces products or applications for sale to external
customers, customer value is what the buyer of the product is willing to
pay for and what makes the product unique relative to the competition.

• In a company where the products are primarily for internal use, (for
example, an IT organization that produces applications for internal use), it
may be more difficult to define customer value because:
• The relationship to the value that the application provides to the ultimate

external customer may be indirect.
• The internal customer may not have a very clear or well-defined idea of

what he/she would value in the application.
• If it is a unique application, there may not be something to compare it

to as a reference.

Naturally, the more uncertain the customer requirements and value are, the
more of an iterative and adaptive discovery approach may be needed to define a
product or application to satisfy those values.

Map the Value Stream
Lean Software Development is a software development approach developed by
Mary Poppendiek based on the lean principles. A more detailed description of
Lean Software Development can be found in Appendix B. An important principle
of both lean manufacturing and Lean Software Development is to “map the value
stream.” This process basically involves starting from the point that the product

Lean Software Development Principles 27

or service is delivered to the customer (either an internal customer or external
customer) and working backward from that point to map all the process steps that
lead to fulfilling that customer value. The next step is to identify and differentiate
steps in that process that produce value to the customer from steps in the process
that produce no value to the customer and may constitute waste.

An important factor is to identify “waste.” Mary Poppendiek has translated the
seven wastes found in a manufacturing process to the equivalent seven wastes
found in Software development:5

The Seven Wastes
of Manufacturing

The Seven Wastes
of Software Development

Inventory Partially Done Work
Extra Processing Extra Processes
Overproduction Extra Features
Transportation Task Switching
Waiting Waiting
Motion Motion
Defects Defects

Pull
One of the key differences associated with lean is the difference between a
“push” approach and a “pull” approach—this difference is also found in most
agile approaches. In a traditional manufacturing process approach, production
output is forecast, inventory is stocked at various points, and raw materials are
then “pushed” through the process to fulfill that forecast. This type of process
has been predominantly used in manufacturing for many years to maximize the
efficiency of the production equipment used in the process. By stockpiling all
the raw material required, the process is designed to maximize the efficiency
of the equipment used in the process; however, it has some serious potential
deficiencies such as:

• The forecasting process requires attempting to make an intelligent guess
at what the customer demand is well in advance of when it is actually
expected to be delivered from production, which is very difficult to do
accurately and is fraught with lots of potential problems.

• The process is very difficult to adjust to changes in customer demand—if
there is a change in customer demand, it can take a considerable amount
of time and effort to replan the entire process to adjust to that change, and
there also may be a considerable lag associated with restocking material

5 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, p. 4

28 Agile Values, Principles, and Practices

to support the revised plan. If the forecast is wrong, there are significant
potential risks including:
• Winding up with a significant amount of unusable inventory that might

have to be scrapped (In a software project “unusable inventory” translates
to extra features that no one needs or is likely to use that complicate the
product and cause unnecessary maintenance if they are not removed).

• Not having sufficient inventory to fill customer demand if the forecast
is wrong, (In a software project this translates to not having the right
features to satisfy customer needs).

• Having to stockpile or store inventory beyond the originally planned
duration (In a software project this translates into undesirable prod-
uct management overhead.) “I’ve often seen this administrative burden
lumped onto the project manager who must now wade through bloated
scope matrices, backlogs of change requests, and unwieldy specifica-
tions.”6

Most traditional product development processes, such as the Waterfall process,
are based on a similar “push” process. All the requirements are gathered upfront
and are “pushed” through the rest of the development process in a sequential
fashion just like a manufacturing assembly line. In a traditional product devel-
opment process, the “push” approach may have the advantage of optimizing the
utilization of the resources in a development process if the requirements are
relatively certain and known in advance, but that is often not the case. It can
result in serious potential problems and inefficiencies if there is uncertainty in
the requirements. Those potential problems and inefficiencies are similar to those
associated with a “push” manufacturing process:

• The product requirements for a new product development effort are essen-
tially a “forecast” of the requirements for a product or application that a
customer will need in the future that may be very uncertain and not very
well defined. Attempting to forecast (or guess at) product requirements well
in advance of when the product will actually be deployed and used has
even more risk than forecasting production output in a manufacturing pro-
cess. In addition to the normal risks of forecasting customer demand, the
customer may not really know what he/she wants without seeing the prod-
uct and seeing first-hand how it works. For that reason, the requirements
might easily change over that time.

• The process also can be difficult to adjust to changes in customer require-
ments. Typically, many assumptions are made about what the customer
requirements are, and elaborate plans, resource assignments and documen-
tation will be created to support those assumptions.

6 Gottesman, Erik, E-mail comments on book review

Lean Software Development Principles 29

• There is also a significant risk that the assumptions in the requirements are
wrong, don’t really reflect the real needs of the customer, and that may not
be discovered until the final product is ready for final acceptance testing.

The result of inaccurate or changing customer requirements may require a
significant amount of lost time and effort to replan around a different set of
requirements and assumptions and might also require substantial amount of
rework. If a typical change control system is used, the process for doing that
may also be very cumbersome and difficult. Lean and agile approaches avoid
these problems by:

• Deferring the resolution of uncertain requirements until a decision is
required (when that particular requirement is “pulled” into development
for further processing). Avoiding guessing at the requirements upfront
and waiting till more information is known will typically result in better
decisions and avoid many of the problems associated with inaccurate and
changing requirements.

• Lean and agile systems openly acknowledge and are built around the
assumption that requirements are uncertain and are likely to change as
the project progresses. Many traditional processes do not recognize or
acknowledge the uncertainty in the requirements and attempt to superim-
pose a rigid control model on top of a very uncertain environment.

A “pull” system works by only producing the required amount to meet demand
at each stage. In a manufacturing system, this would be characterized by a just-
in-time production scheduling system. Many of the ideas for lean manufacturing
came from the Toyota Production System and kanban . If the word kanban is
translated literally; “kan” means visual and “ban” means card or board. The idea
is based on inventory demand cards that are sometimes used in a manufacturing
system:

“Picture yourself on a Toyota production line. You put doors on Priuses.
You have a stack of 10 or so doors. As you keep bolting them on, your
stack of doors gets shorter. When you get down to 5 doors, sitting on
top of the 5th door in the stack is a card—a Kanban card—that says
“build 10 doors.” Well it may not say exactly that—but it is a request
to build exactly 10 more Prius doors.”

You pick the Kanban card up, and run it over to the guy who builds
doors. He’s been waiting for you. He’s been doing other things to keep
busy while waiting. The important thing here is that he’s NOT been
building Prius doors. He takes your Kanban card and begins to build
doors.

You go back to your workstation, and just a bit before your stack of
doors is gone, the door guy comes back with a stack of 10 doors. You

30 Agile Values, Principles, and Practices

know that Kanban card is slid in between doors 5 & 6. You got the doors
just in time.”7

The process flow works in a similar way for the rest of the plant—when the
guy who makes the doors for the Prius runs out of parts that he needs to build
the doors, he has a similar Kanban card to request more parts from the process
that provides those parts to him. The whole process flow is “pulled” by actual
customer demand rather being pushed by a forecast of someone guessing at what
they think the customer demand is. Of course, in many situations, this process
is computerized and actual cards are not physically used to signal demand.

In a software development process, there is a direct analogy between Kanban
cards and “User Story Cards” that are used in an agile process. “User stories”
are a high-level description of a capability that the system needs to provide—the
following is an example of a user story:

“As a banking customer, I need to be able to withdraw funds from my
account through an ATM machine”

User stories are typically defined early in the project to identify the capabilities
the system must provide to a sufficient level of detail to do a rough estimate of
the level of effort associated with each and the details of how the user story will
be implemented will be deferred until it is time to do the design:

• Instead of attempting to define all of the requirements in detail, only the
high-level requirements are defined upfront without a lot of detail typically
to the level of user stories.

• Instead of treating all requirements equally, the requirements are prioritized
based on their value to the customer. After they are prioritized and broken
up into releases and/or iterations, the most important requirements that are
at the top of the list and ready for development get developed first.

• Once the developer has picked up a “User Story” to begin working on,
he/she will then work directly with the user to “pull” more detail as needed
to fill that requirement.

A “story card” is equivalent to a “Kanban” card in a manufacturing system
and describes one particular feature that a user needs. As in the manufacturing
system, physical cards may or may not be used—there are computerized tools
that will automate this task and eliminate the use of physical story cards if
desired. However, in many cases, physical cards may actually be used and put
on a board and each developer picks up a card to start working on it similar to
the way a Kanban card works in a factory.

7 “Kanban Development Oversimplified,” www.agileproductdesign.com/blog/2009/kanban_over_
simplified.html

Lean Software Development Principles 31

Flow
“Flow” is an important principle to understand to maximize the efficiency of any
process.

Importance of Small Batch Sizes: In a manufacturing process, it is well known
that small batch sizes are much better for optimizing the “flow” of the process
than large batch sizes. If large batch sizes are used, bottlenecks develop at various
points in the process and material winds up waiting at those bottleneck points
to be processed creating waste. There are at least a couple of types of “waste”
associated with that:

1. Excess material inventory is used in the process, which creates unnec-
essary inventory cost, space for storage, and additional handling costs.
Mary Poppendiek uses an example of the construction of the Empire
State Building in New York. The entire Empire State Building, which
was the tallest building in the world at that time, was built in a total of
20 months, including demolition of existing buildings and planning and
design of the new building.8

One of the most serious constraints that needed to be dealt with in that
project is that there was only a limited amount of vacant real estate in
the area where the building was built to store the materials needed for
the building and the flow of the project had to be carefully planned. The
building was built in iterations of a few floors at a time, and the arrival of
material had to be scheduled meticulously to have just the right materials
available at the right time to maximize the flow.

2. If the material is perishable, it can go stale and become unusable. By
“perishable,” I’m not necessarily referring to fruits and vegetables. Dell
Computer is a good example—Dell builds systems for customers out
of a variety of different components (disk drives, graphic cards, etc.),
and those components become obsolete quickly and are constantly being
replaced by newer versions. Using small batch sizes and building systems
on demand as customers need them reduces the risk of winding up with
too much obsolete inventory of components in the pipeline.9

The other major advantages of using small batch sizes are10:
• It reduces the end-to-end cycle time (via Little’s Law of Queuing11)
• It makes waste very hard to ignore, as any waste in a small batch size

system will cause much larger problems than when you’ve got inventory
at hand to smooth it over. You then have to confront and fix the waste.

8 Poppendiek, Tom and Mary, Leading Lean Software Development—Results Are Not the Answer,
New York: Addison-Wesley, 2010, p. 102
9 Poppendiek, Tom and Mary, Implementing Lean Software Development—From Concept to Cash ,
New York: Addison-Wesley, 2007, p. 12
10 Burns, Martin, E-mail comments on book review
11 “Principle: Little’s Law,” htwww.factoryphysics.com/Principle/LittlesLaw.htm

32 Agile Values, Principles, and Practices

The visual metaphor often employed is that a stream running low uncovers
the rocks on its bed.

Attempting to define all the requirements for a product or application upfront
in a traditional development process like the Waterfall process is equivalent to
attempting to process large batch sizes in a manufacturing process. It’s impossible
to work on all the requirements at once, so bottlenecks develop at various points
in the process and requirements wind up waiting to be processed. The impact
of that is similar to a manufacturing process—having an excess of requirements
sitting around waiting to be processed is similar to having excess inventory in a
manufacturing process:

• There are “handling costs” associated with managing those requirements
waiting to be processed—they have to be well documented and tracked or
they may be forgotten and left out of the design.

• The requirements are also “perishable”—if they wait for a long time to
be processed, they could easily become obsolete and if that is the case,
either someone winds up designing and building a product or application
on obsolete requirements or unnecessary labor is consumed in redefining
and rewriting the requirements.

An iterative development process is analogous to small production batch sizes
in a manufacturing operation—by breaking up the requirements into iterations,
the overall development process is likely to flow much more smoothly and avoid
the bottlenecks associated with traditional development processes.

Of course, in actual practice, there are limits to how far it is practical to break
down the requirements to optimize flow. For example:

1. Requirements Management Considerations—From a requirements
management perspective, it may be necessary to group requirements into
related feature sets that are interrelated to each other and those feature
sets might be bigger than the effort that can be realized in a single
iteration. That requires some compromises between:
• An idealized approach where individual sets of requirements are com-

pletely processed immediately in each iteration, and
• A more realistic hybrid approach where there some of the requirements

might be “pipelined” for processing and spread across more than one
iteration

The idea of buffering some of the requirements that cannot be fulfilled
immediately is called “story pipelining.”

“Story pipelining is often seen by purist agile practitioners as “strictly
un-agile” as it violates the oft-held view that working software is
the only thing that represents value and anything less is a cop out.
In practice, however, pipelining is often the best way to balance

Lean Software Development Principles 33

agility with the realities of real-world delivery constraints. You gain
a measure of project progress that’s still closer to real doneness in the
eyes of the customer, you retain a lifecycle that encourages regular
and frequent feedback, but you also recognize that complex software
systems have a gestation period.”12

2. Testing/Release and Configuration Management Considerations—
There are also some testing and release management considerations that
might require compromises from the ideal flow model:

• Testing may want a functionality set to test (particularly regression test)
against that’s a relatively complete subset of functionality and is stable
for the duration of the test cycle.

• Release and configuration management might have similar needs.

Both of these issues can be overcome but may require a major rethinking of
how the process works and very strong coordination of test planning, as well as
release and configuration management with the rest of the development effort.

Concurrent Processing (or Engineering): Concurrent processing is another
well-known way to improve “flow” in any process. In a manufacturing process,
it is much more likely for bottlenecks to develop if there is only one path
through the system and everything is sequential than if there are parallel paths
available and some work can be done concurrently.

In a product development process, there are typically large opportunities for
concurrent engineering to improve the flow through the process. Here are a few
examples:

• Requirements development can be overlapped with design instead of being
sequential and quality testing can also overlap with design instead of
being sequential. This requires a much more collaborative, cross-functional
approach to development, which can be difficult to achieve, but the poten-
tial payoff is significant.

• Within a given iteration some of the testing and development tasks can be
overlapped. For example, a tester can begin testing one user story in an
iteration while the developers are working on the next user story rather
than the tester waiting for all user stories to be complete.

• Design teams can work on multiple iterations concurrently. This requires
breaking up the design effort into iterations and requires some coordination
among design teams.

12 Gottesman, Erik, E-mail comments on book review

34 Agile Values, Principles, and Practices

Respect for People
In the early days of manufacturing, processes were designed so that the people
performing those processes did not require a high level of skill. An individual
working on an assembly line could be assigned a small repetitive task such as
putting a tire on a car which required only a minimum amount of skill and
training. The primary requirement for higher levels of skill and training could
be limited to a relatively few people who were responsible for designing and
managing the overall process and training the workers to perform each task.
There are several problems with that approach:

• No one really takes overall responsibility for the overall quality of the
complete vehicle.

• It might rely heavily on quality control inspectors at the end of the line to
try to find defects and send the vehicles back for rework if necessary.

• It can be a dehumanizing experience for anyone to perform that kind of
limited, repetitive task.

• It doesn’t take advantage of the complete range of skills and judgment of
the people performing the tasks.

For a long time, those designing manufacturing processes have recognized the
need to respect and empower the people performing the processes as much as
possible. In a manufacturing process, having people take pride in workmanship
is extremely important to achieving high levels of quality and productivity. The
need for fully utilizing the capabilities of people and motivating them is even
more critical in a product development process, where the overall effectiveness of
the process is so critically dependent on the performance of the people performing
the process. Both lean and agile methodologies seek to eliminate those problems
by empowering individuals and the team as a whole to take responsibility for the
overall quality of their work.

Many traditional development processes have been modeled on the early man-
ufacturing processes, where the process defines in detail the work to be done and
how it should be done, and the process requires a lower level of skill to perform
those tasks that are relatively well defined. Agile methodologies are generally
much less well defined and rely heavily on the skill and training of the people
performing the process to tailor it to a particular project, task, and business envi-
ronment. That is a very key reason why respect for people is so important in an
agile environment.

Perfection
In the early days of manufacturing, there was a high level of reliance on qual-
ity control and inspectors to find defects at the end of the assembly line. The
problems with that approach are apparent:

• It takes a lot of resources to do inspection that wouldn’t be necessary if
the defects were eliminated at the source.

Lean Software Development Principles 35

• This method for finding defects is not totally reliable because it typically
relies on sampling, and since it’s impossible or impractical to do a 100
percent sample, at least some small percentage of defects is not going to
be detected before they get to the customer.

• A lot of rework and scrap can result from defective products that are found
at the end of the assembly line.

Total Quality Management (TQM), which came about in the early 1990s taught
us to go upstream in the process and build quality into the process so that the
process itself is inherently reliable. This approach is based on finding the sources
of defects in the process, putting controls in place at the source to prevent those
defects from happening at all rather than relying on inspection at the end of the
process to find the defects just before the product is shipped to the customer,
and using continuous improvement to continually improve the reliability of the
process on an ongoing basis.

Continuous improvement is built into most lean and agile methodologies. For
example, Scrum has a “Retrospective” at the end of each iteration to look back at
the work that was done and assess how the process worked. Since the iterations
are very short, learning what works and what doesn’t work happens quickly,
and the processes are also very flexible and adaptable, which makes it relatively
easy to improve the process. Lean Software Development puts an even stronger
emphasis on having defined processes and a very aggressive focus on continuous
improvement of the process. Scrum and agile methodologies have continuous
improvement within a given project (for example, retrospectives are used within
a project to learn and redefine the process as necessary as the as the project
progresses), but they may have no defined mechanism to capture those lessons
learned and incorporate them into a more global process that spans multiple
projects.

Many times, traditional development methodologies attempt to force-fit a
project to a particular methodology and don’t allow sufficient flexibility to the
people implementing that process to tailor it to fit a particular project or to
easily make improvements to the process based on lessons learned on previous
projects.

There is also a direct relationship with the principle of respect for people—in
many cases, the people performing the process are the first ones to see
opportunities for improvements in the process to prevent defects and/or to
do the process more efficiently, but many times they are not empowered to
suggest or make those changes. Lean and agile methodologies recognize that
and are not rigidly defined or prescriptive—they provide some fundamental
principles and practices that are common to most projects and are expected
to be tailored to a given situation. Naturally, it requires more skill to make
good judgments about how to tailor a process to fit a business and project
environment.

36 Agile Values, Principles, and Practices

Interrelationship of Lean and Agile

The interrelationship of lean and agile is shown in Figure 2.2.
The following is a summary of how the lean and agile disciplines are related

to each other:

1. Process Orientation
Lean Software Development has a bit stronger process orientation than
most agile methodologies.
• Lean Software Development has its origins in lean manufacturing; Mary

and Tom Poppendiek have done a lot of work to translate the princi-
ples of lean manufacturing to a software development environment.
Lean manufacturing has a strong process orientation—Lean Software
Development still has a process orientation, but it is primarily a set of
principles that can be applied to almost any other development process
(agile, iterative, or traditional). It does not explicitly define processes,
but it does recognize the iterative and adaptive nature of processes that
are needed in a software development environment.

• The original Agile Manifesto and Principles were somewhat of a revo-
lution against rigidly defined processes, such as the Waterfall approach,
that were perceived to be very mechanistic rather than humanistic. One
of the statements in the Agile Manifesto is “We value individuals and
interactions over processes and tools” to reflect a bias for a more human-
istic orientation and less of a mechanistic, process orientation. Current
agile methodologies, such as Scrum, have recognized the need for pro-
cess discipline, but it’s a different kind of process discipline that relies
much more on highly trained people with skill and judgment rather than
rigidly defined, mechanistic processes.

2. Developer-Centric versus Operational Management Orientation

Lean
Manufacturing

Original
Agile Manifesto
and Principles

Operational Management
Orientation

Increased Process Orientation

Lean
Software

Development

Current Agile
Methodologies
(e.g., Scrum)

Developer-Centric
Orientation

Figure 2.2 Interrelationship of Lean and agile

Lean Software Development Principles 37

Many agile methodologies have a very strong developer-centric orienta-
tion while Lean Software Development has a little more of an operational
management orientation; however, they have begun to merge:
• Scrum has gone beyond a developer-centric orientation and provides

somewhat of a framework for project management and has a disciplined
process designed to eliminate waste similar to Lean.

• The work of Mary and Tom Poppendiek has adapted the original lean
manufacturing principles to a software development environment that
is very congruent with the original agile principles.

The principles in Lean Software Development provide a way to go beyond
a developer-centric orientation and view agile methodologies in a broader
operational management perspective.

3. Common Principles
Current agile methodologies and Lean Software Development have many
principles in common such as:
• Focus on Customer Value
• Respect for People and Empowerment
• Emphasis on Learning and Continuous Improvement
• Iterative Development Approach
• Designing Quality and Integrity into the Product
• Deciding as Late as Possible
• Eliminating Waste

4. Differences
The differences between current agile methodologies and Lean Software
Development are more in the implementation than in the principles behind
them. Both are not prescriptive and allow a lot of flexibility in how they’re
implemented, so there may be significant differences in implementation,
but there is very little difference in the underlying principles. The follow-
ing are a few examples of how they might differ:
• An agile methodology like Scrum might do continuous improvement

within a project through retrospectives, but might not have a strong
enough process orientation to transfer those lessons learned into a broad-
based process definition that is carried forward to other projects. Lean
Software Development would tend to put more emphasis on having a
defined process (or set of processes) that is used across projects and
constantly improved.

• A Lean Software Development approach could be applied to itera-
tive and even traditional methodologies that might not be considered
to be “agile.” In some situations, there might be a need for a more
controlled, process-driven approach, and the principles behind Lean
Software Development can be used to streamline that approach.

38 Agile Values, Principles, and Practices

Martin Burns and Erik Gottesman have also pointed out some additional
differences that can arise between lean and agile methodologies:
• Lean practitioners will tend towards automated methods because they

enable the standardization that is the enabler for a lean approach, while
some agilists tend to minimize the use of tools and not attempt to
standardize processes across projects13

• An agile approach typically has a stronger emphasis on human
factors—for example, most agile practices are based on a “sustainable
pace”. The idea of a “sustainable pace” is “ . . . predicated on the
concept that software developers should not work more than 40-hour
weeks, and if there is overtime one week, then the next week should not
include more overtime. This also carries with it the implied suggestion
that people perform best and most creatively if they are rested. I
do not believe that a Lean adherent would take exception to this
suggestion or argue that overworked developers are more productive,
but Lean does not incorporate an implicit or explicit prohibition on
overtime”14

• Lean approaches tend to put a stronger emphasis on “just barely good
enough” thinking:

“In many areas of life, there are strengths that—if overplayed—
can become weaknesses. In agile development, it’s craftsmanship:
the urge to create something ever more worthy and beautiful.
Where Agile and Lean often part company is the point at which
doing so no longer creates value, relative to the cost incurred:
it becomes waste even if the result is truly of higher quality . If
there were a path to enlightenment for developers, then the 6th
step would require recognizing the point of “Just Barely Good
Enough” and knowing to stop there.”15

Again, the preceding differences are not really differences in principle—the
principles are probably much more consistent than the typical implementation.
Both Lean and agile allow considerable latitude in how they are implemented,
and there may be significant differences in practice, while the principles behind
the methodology are not that different at all.

AGILE HISTORY AND OVERVIEW

Agile methodologies are not new—people have been doing various kinds of
agile projects for a long time; however, in today’s world, the movement to adopt

13 Burns, Martin, E-mail comments on book review
14 Gottesman, Erik, E-mail comments on book review
15 Burns, Martin, E-mail comments on book review

Agile History and Overview 39

more agile methodologies seems to be gaining a lot more momentum for several
reasons:

• Some of the methodologies and tools for implementing agile projects such
as Scrum, are becoming much more widely understood and accepted.

• Many companies have demonstrated success in implementing agile projects
in actual practice and have added to the knowledge base of what works
and what doesn’t work in different projects and environments.

• The tradeoffs associated with balancing a need for sufficient project control
and achieving greater agility are also better understood, and there are many
ways to achieve a balance of those objectives with the appropriate blend
of agile and traditional methodologies.

The origins of much of today’s agile movement can be traced to the Agile
Manifesto, which was originally developed in February 2001, at The Lodge at
Snowbird ski resort in the Wasatch mountains of Utah16 The Agile Manifesto
itself is fairly simple and consists of four value statements:

“We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

That is, while there is value in the items on the right, we value the
items on the left more.”17

It’s important not to misinterpret the intent of these statements—the intent
behind them was a shift in emphasis. That doesn’t mean that the items on the
right are unimportant:

“Over the years, the manifesto statements have been misinterpreted, pri-
marily in confusing less important with unimportant: This should not
be construed as indicating that tools, process, documents, contracts, or
plans are unimportant. Tools are critical to speeding development and
reducing costs. Contracts are vital to initiating developer-customer rela-
tionships. Documentation aids communication. However, the items on the
left are the most critical. Without skilled individuals, working products,
close interaction with customers, and responsiveness to change, product
delivery will be nearly impossible.”18

16 “History: The Agile Manifesto,” http://agilemanifesto.org/history.html
17 Agile Manifesto, http://agilemanifesto.org/
18 Highsmith, Jim, Agile, Project Management—Creating Innovative Products, New York: Addison-
Wesley, 2009, p. 16

40 Agile Values, Principles, and Practices

The Agile Manifesto Principles elaborate on this overall value statement. The
following is a summary of the Agile Manifesto Principles19 and their relationship
to traditional project management practices.

Agile Manifesto Principle Relationship to Traditional Project Management Practice

Our highest priority is to
satisfy the customer
through early and
continuous delivery of
valuable software.

There is no real contradiction in principle; however, traditional practice in
many cases has emphasized control, predictability, and thoroughness of
testing over early delivery because the tradeoffs required to deliver early in
many cases have been perceived to be severe. However, with the right
approach and methodology, those tradeoffs may not be that severe and may
be very manageable.

Of course, the priority given to early delivery of software needs to be weighed
against other factors in any project or business environment. For example,
the process needs to be matched to the customer’s ability to actively engage
in the project and provide feedback and inputs. It is difficult to make a
statement that early and continuous delivery of software is always the
highest priority in all projects.

Welcome changing
requirements, even late
in development. Agile
processes harness change
for the customer’s
competitive advantage.

Change control has always been viewed as a very essential element of
stabilizing a project, but a change control process does not necessarily have
to be extremely rigid. If it is done properly, it does not equate to stifling or
preventing change—it means ensuring that unnecessary change (as defined
by the sponsor, ultimately) is rejected, but that necessary change is brought
into the project with the full awareness of all concerned and that necessary
adjustments to designs, plans, timescales, tests, contracts (etc.) are made,
and with the minimum of wider disruption.

Change control also can be valuable for configuration management and
validating that any new changes are not inconsistent with other previously
developed requirements and assumptions. For that reason, developing a
more relaxed approach toward managing changes might not be acceptable
in all projects. (See the discussion that follows.)

Deliver working software
frequently, from a couple
of weeks to a couple of
months, with a
preference to the shorter
timescale.

Achieving these times with most traditional development methodologies may
be difficult, and this is the area that agile really pays off; of course, the gains
in this area need to be weighed against potential impact in other areas.

It is certainly possible with traditional development approaches to break the
project up into individual releases or iterations in order to deliver
functionality early and that can be a very realistic approach in many cases;
however, there is also typically some overhead involved in developing truly
releasable software that should be considered.

Business people and
developers must work
together daily throughout
the project.

This is a significantly increased role for the business people to play in the
project that goes well beyond the typical requirements definition and testing
phases of most traditional development methodologies. It also implies a
very close and collaborative working relationship between the business and
development staff and a strong commitment of the business side to fully
participate in the project throughout the development process.

19 “Principles behind the Agile Manifesto,” http://agilemanifesto.org/principles.html

Agile History and Overview 41

Agile Manifesto Principle Relationship to Traditional Project Management Practice

Many business people are not prepared to make the kind of commitment that
is needed and, in some cases, that level of participation may not be
necessary. As a result, the project methodology needs to be tailored to the
need for participation and the availability of business people to provide that
participation.

Build projects around
motivated individuals.
Give them the
environment and support
they need, and trust them
to get the job done.

There is no question that building a project around motivated individuals is a
good thing for any project methodology; however, this particular principle
might imply a higher level of delegation and trust than might normally be
found in many traditional development projects. A higher level of delegation
might involve some loss of control, but that could be a very acceptable
tradeoff in the right environment with the right people on the project team.

It does, of course, also imply that the people are well trained and capable of
taking an increased level of responsibility. Some people have used this
statement to justify having complete anarchy and chaos without any
leadership at all and that clearly wasn’t the intent behind it.

Trust in motivated individuals is always a balance—you can move a long way
back from micro-management without entirely sacrificing an appropriate
level of leadership and management. Knowing what’s on track, what’s not
on track, and deliberately deciding whether, when, and where to undertake
corrective action (and what that should be) is essential to any project.
Without that, you’re “managing by hope” which is never a wise approach.

The most efficient and
effective method of
conveying information to
and within a
development team is
face-to-face
conversation.

There is no question that maximizing the use of face-to-face communications
is a good thing in any project. However, the ability to do that is dependent
to some extent on the ability to co-locate members of the team to allow
face-to-face communications and also might be limited by the size of the
team. In many situations, tools such as desktop sharing (with or without
video) and collaboration portals can alleviate some of the need for direct
face-to-face communications for distributed teams especially when used
with web-based development tools.

This principle has often been interpreted to imply relaxing the emphasis on
project documentation in favor of direct face-to-face communications. That
can also be an acceptable tradeoff under the right circumstances based on
project size, complexity, and other factors; however, some level of
documentation may still be valuable and isn’t inconsistent with an emphasis
on face-to-face communications.

Oral communication is great, and very quick, but places an overreliance on
memory for information that may have a shelf life of no longer than a few
days. Careful reading of the agile principle helps: it’s about conveying
information, not originating it, or keeping it available for future use.

Not everyone who comes into contact with the product (or its components) is
a member of the current development team. Think of the member of the
support team in 5 years’ time or other occasions when more formal and/or
documented communication may be necessary to convey or preserve
information outside of the development team or for future use after the
development effort is finished.

42 Agile Values, Principles, and Practices

Agile Manifesto Principle Relationship to Traditional Project Management Practice

Working software is the
primary measure of
progress.

There is no real contradiction with traditional development processes in this as
long as the entire team (business and development) agrees on what “working
software” means, what it consists of (including whatever documentation may
be needed to support it), and what “done” means. What artifacts are deemed
valuable by the customer apart from software? What makes up a working
solution?

Many traditional development processes fall short because the software is tested
against documented requirements, and the requirements are either incomplete
or inaccurate in reflecting the real needs of the users. What is implied here is
“working software” in the eyes of the user, since the user is more directly
involved throughout the development process.

Working software is only the primary measure of progress when that’s the
project’s only deliverable, which is probably true for a software coding team
but not at all so for many projects. The primary measure of progress should
be whatever the sponsor defines as value. Think about user training for
example or process change, for example.

Agile processes promote
sustainable
development. The
sponsors, developers,
and users should be able
to maintain a constant
pace indefinitely.

There is no real contradiction with traditional development processes, but this
does imply that all the members of the team (both business and develop-
ment) keep pace with each other throughout the whole duration of the
project.

• In many traditional projects, the participants come in and out of the project as
needed at different phases and, in some cases, that may be the best way to
manage resources.

• In many projects, the business users may not have a sufficient capability to
provide dedicated resources to participate in the project team on an ongoing
basis and if the requirements are more certain and can be defined upfront,
that level of participation may not be necessary.

A key factor here is the motivation of the team—the theory behind this is that
by empowering the team, they will be more highly motivated and energized
and capable of more sustained development work. The need for leadership
and skill to develop that kind of motivation is not limited to agile. It can also
be done in a traditional environment if the development team understands the
business need for additional control and is involved in the decision making
behind the project.

Continuous attention to
technical excellence and
good design enhances
agility.

There is no real contradiction with traditional development processes; however,
it should be well understood that technical excellence and good design are
not the only factors to determine a successful project development approach.

This statement can be interpreted to be very developer-centric and needs to be
understood in the context of the overall project goals.

Simplicity—the art of
maximizing the amount
of work not done—is
essential.

There is no real contradiction with traditional development processes. This is
basically the “keep it simple” principle. Projects should not be overburdened
with overly complex features that may be unnecessary. The main advantages
of simplification are speed and reduced complexity and reduced complexity
can lead to better maintainability.

Agile History and Overview 43

Agile Manifesto Principle Relationship to Traditional Project Management Practice

The best architectures,
requirements, and
designs emerge from
self-organizing teams.

This is certainly a very arguable principle behind agile that will not always be
true. For example, it is hard to make a categorical statement that the best
architectures always emerge from self-organizing teams. The approach for
determining the best architecture probably depends on the scope and
complexity of the project.

A similar argument could be made about requirements—this principle makes
an implication that using self-organizing teams is the strongest factor in
determining the quality of the requirements. It is certainly a factor, but not
necessarily the only factor. Developing well-defined requirements that are
testable and traceable to the design is a skill that is extremely important
especially on large, complex projects.

At regular intervals, the
team reflects on how to
become more effective,
then tunes and adjusts its
behavior accordingly.

There is no real contradiction with traditional development processes. This is
probably a very strong point in favor of agile methodologies. Most
methodologies emphasize the idea of a postmortem to stop and reflect on
what went right and what went wrong and to use that learning as a basis for
ongoing continuous improvement of the process. A big advantage of the
agile approach is that the sprints are much shorter so that learning and
correction can take place much more frequently as the project progresses.

Adopting many of these agile principles might involve some tradeoffs with
accepted project management practices that have traditionally received so much
attention such as:

• Control and predictability
• Management of project risk
• Delivering an acceptable level of software quality

In many cases, that has been perceived as an all-or-nothing proposition, and
the choice has been between:

• Very rigid and tightly controlled methodologies like the waterfall approach
with lots of documentation, and

• Using no methodology and documentation at all

I’ve seen organizations where that pendulum has swung back and forth
between total overcontrol to almost no control. The key lessons I’ve learned
over the years are:

• It takes a well-planned and sophisticated approach to achieve the right
balance of agility and control—if it is done right, it doesn’t require com-
pletely sacrificing control to achieve agility, but it takes skill to achieve
both agility and control without sacrificing one to achieve the other.

• Making the right decisions about what is the right balance of agility and
control is something that should be done jointly by the business side
of the organization and the development side of the organization based
on a mutual understanding of the tradeoffs and their potential impact. It

44 Agile Values, Principles, and Practices

takes a certain amount of organizational maturity to make those decisions
effectively.

Many organizations are not at the level of maturity that it takes to create the
collaborative, cross-functional environment to make this successful, and that can
be a very difficult thing to achieve. I’ve seen many situations where either:

• There is an adversarial relationship between the business and the devel-
opment organization, and the business organization might feel that the
development organization does not understand their needs or is not suffi-
ciently responsive to their needs.

• The business organization doesn’t want to understand or be actively
involved in the product development process and has chosen to
abdicate the responsibility for developing solutions to the development
organization.

That happens particularly often in business organizations whose primary focus
is not on product development—for example, where an internal IT organization
develops applications only intended for internal business use. In many of those
situations, the company doesn’t recognize the strategic impact of these internal
applications on the business and developing a much more collaborative partner-
ship approach that is well aligned with achieving the company’s business goals
may require very strong senior management leadership.

AGILE PERCEPTIONS AND REALITY

There is somewhat of a perception that agile and traditional plan-driven method-
ologies are at odds with each other. Certainly, the agile movement started out as a
rebellion against what it perceived as rigid bureaucratic management styles with
excessive documentation and overhead and a heavily mechanistic process-driven
style as opposed to a much more fluid, humanistic, and dynamic orientation. In
describing their original meeting in February 2001, Jim Highsmith characterizes
the creators of the Agile Manifesto by saying “a bigger gathering of organiza-
tional anarchists would be hard to find”20. It was, in a sense, an uprising of the
developer community to “define a developer community freed from the baggage
of Dilbertesque corporations . . . In order to succeed in the new economy, to
move aggressively into the era of e-business, e-commerce, and the web, com-
panies have to rid themselves of their Dilbert manifestations of make-work and
arcane policies.”21 He goes on to say:

“The agile movement is not anti-methodology; in fact, many of us want to
restore credibility to the word methodology. We want to restore a balance.

20 “History: The Agile Manifesto,” Jim Highsmith, http://agilemanifesto.org/history.html
21 “History: The Agile Manifesto,” Jim Highsmith, http://agilemanifesto.org/history.html

Agile Perceptions and Reality 45

We embrace modeling, but not in order to file some diagram in a dusty
corporate repository. We embrace documentation, but not hundreds of
pages of never-maintained and rarely-used tomes. We plan, but recognize
the limits of planning in a turbulent environment.”22

There are a number of commonly held perceptions about agile and traditional
plan-driven software methodologies—some of these perceptions do have some
basis in reality; however, in many cases, the perceived difference is much greater
than the real difference.

Perception Reality

• Agile is based on highly
empowered teams.

• Teams associated with
traditional plan-driven
methodologies are not
empowered.

There is nothing that prevents using an appropriate level of empowerment
with traditional plan-driven methodologies. Of course, the degree of
team empowerment should be appropriate to the level of control
desired.

“Although self-organizing is a good term, it has unfortunately become
confused with anarchy.”23 It is also not understood across all cultures.24

• Agile teams are highly
motivated.

• Traditional plan-driven teams
are not.

• With the right management and leadership style it is certainly possible to
have highly motivated teams using traditional plan-driven methodologies
as well as agile methodologies.

• The key thing is the perception that traditional plan-driven
methodologies are always based on out-of-date management
philosophies, and that is not necessarily the case.

• Agile projects value working
software over documentation.

• Traditional plan-driven projects
focus too heavily on creating
documentation.

No project (either agile or non-agile) should focus on creating
documentation for the sake of documentation. Any document should
serve a useful purpose in the project. The perceived gap in this area is
probably much greater than the reality:

• Agile methodologies have embraced the need for documentation where it
serves a useful purpose, and

• Traditional plan-driven methodologies provide the capability to limit and
tailor the level of documentation to the project.

• Agile emphasizes customer
collaboration over contract
negotiation.

• Traditional plan-driven
methodologies are based on
formal contracts with
customers without a significant
amount of collaboration.

In some cases, it may be essential to use a contracting approach with only
a limited amount of collaboration—an example is a contracting firm
performing fixed-price software development work. However, in most
traditional plan-driven development approaches, there is nothing that
prevents the project from becoming more collaborative.

It is simply a matter of encouraging rather than limiting customer inputs
throughout the design and development process, recognizing the
importance of customer collaboration in the development process, and
dedicating and training the resources to provide that collaborative input.

22 “History: The Agile Manifesto,” Jim Highsmith, http://agilemanifesto.org/history.html
23 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 60
24 Gottesman, Erik, Comments on book review

46 Agile Values, Principles, and Practices

Perception Reality

• Agile is focused on responding
to change rather than following
a plan.

• Traditional plan-driven
methodologies are heavily
focused on following a plan.

Both agile and traditional plan-driven methodologies incorporate some
level of planning; the primary difference is in how much planning is
done upfront versus planning that happens as the project progresses.

• Agile projects typically use a “rolling wave” approach, which is based
on a developing a high-level plan upfront and further refining the plan
as the project progresses. This approach avoids wasted effort that might
be needed to replan efforts that were based on too much “speculative”
planning.

• In the pure Waterfall model, a completely detailed plan is typically
developed upfront; however, many variations on that are possible. As
an example, in an iterative development approach, the high-level
requirements are defined upfront and the detailed requirements for each
iteration are developed prior to each iteration.

• Agile projects rely heavily on
face-to-face communications.

• Traditional plan-driven projects
rely heavily on documentation
as a means of communication.

In most cases, there is nothing to prevent a traditional plan-driven project
from incorporating a significant amount of face-to-face communication.

It seems that a number of the differences between agile approaches and tra-
ditional plan-driven methodologies are at least as much perception as they are
reality. There is no reason why this perceived gap can’t be easily narrowed—a
number of practices that have been associated with agile can also be applied
to traditional plan-driven methodologies to increase the emphasis on people and
output rather than the traditional emphasis on project control. An example is
respect for people—there is no reason why traditional plan-driven methodolo-
gies can’t incorporate respect for people as a value and it is probably just largely
perception that they don’t. Another example is customer collaboration—there is
nothing to prevent an increased level of customer collaboration in conjunction
with a traditional plan-driven methodology.

Closing this gap has proven elusive because it takes a higher level of sophis-
tication to mix and match these attributes of agile approaches with traditional
approaches as opposed to simply adopting some kind of canned, predefined, off-
the-shelf methodology, but it is mostly a matter of changing our mindset about
how we think of agile and traditional plan-driven methodologies:

• Instead of thinking in black-and-white terms that there is agile at one
extreme and Waterfall at the other extreme and nothing in between, we
need to see these methodologies as more of a continuum with lots of shades
of gray in between that can provide an appropriate balance of agility and
control for a given situation.

• Instead of thinking of rigidly defined methodologies with fixed charac-
teristics, we need to recognize that any methodology can and should be

General Agile Practices 47

customized and tailored to fit the situation at hand, and there are numer-
ous characteristics of any methodology (agile or non-agile) that can be
adjusted.

GENERAL AGILE PRACTICES

Most project managers are used to seeing methodologies that are very well
defined, complete, and well-integrated with the tools and practices that are needed
to support them. That isn’t necessarily the case with agile—it is more like a
restaurant menu where there may not be a full-course entrée, and you order indi-
vidual menu items a-la-carte to make up a full meal. That is a result of several
factors:

1. Many agile methodologies are not highly prescriptive and expect the
person implementing the methodology to use his/her judgment to
adapt the methodology to a specific situation. Agile methodologies
are also meant to be much more fluid and dynamic than traditional
methodologies. That may be unsettling for some people, but that is
probably the way of the future—instead of force-fitting projects to fit
any predefined methodology (either agile or non-agile), we should be
adapting the methodology (or combination of methodologies) to fit the
project.

With traditional, plan-driven methodologies, there were fewer variables
to worry about—in theory, you could freeze the requirements early on in
the project and optimize the project methodology around controlling costs
and schedules. In that environment, relatively well-defined and repeatable
project methodologies might work, but if you accept the notion that the
model must now be optimized around a much more uncertain environ-
ment, where it may be impossible to define all requirements upfront, it is
an entirely different ballgame.

2. Agile methodologies are based on using continuous improvement to fur-
ther optimize the methodology to best fit the project as the project pro-
gresses. It would be difficult to achieve that goal with a very rigidly
predefined methodology.

3. Many agile methodologies are still in an early stage of evolution, and
there are gaps and inconsistencies in some of the tools and practices for
that reason.

If you go into agile methodologies expecting to be handed a canned and
well-defined approach that works in all situations right out of the box, you may
be disappointed, because that’s not likely to happen. It requires a considerable
amount of skill and sophistication to successfully apply the right combination of
these tools and practices in a given situation.

48 Agile Values, Principles, and Practices

Jim Highsmith25 breaks down the most important agile tools and techniques
into the following levels:

1. Technical Practices
2. Iteration Management
3. Project Management
4. Portfolio Governance

The order in which they are listed is also the order from most to least mature
and well defined. Technical practices are naturally where the roots of agile have
evolved from and are most well-defined and mature. Portfolio governance and
the other higher-level practices are least defined at this point in time.

The following sections provide a brief overview of some of these areas of
practice. Appendix A provides more detail on agile technical practices and the
Additional Reading list at the back of this book provides a much more detailed
and complete coverage of these areas.

Organizational Practices

The following are some of the organizational practices that are critical to most
agile projects.

Teamwork
I can’t imagine a company that doesn’t practice “teamwork” to some extent, but
there are different levels of “teamwork.” In many companies, good teamwork
means that people from various functional organizations can go to meetings,
collaboratively discuss issues, and come up with a solution that is for the common
good of the whole organization. Agile projects go well beyond that level of
teamwork—in an agile project, people from functional organizations are assigned
to the project and from that point on, the agile project team works as a highly
integrated individual entity to take collective ownership for the success of the
project from both an engineering design and a business results perspective.

Respect for People, Self-Organization, and Empowerment
All agile methodologies are based on a high level of respect for people, as well as
self-organization of teams and empowerment. Instead of people on a team being
told individually and explicitly what to do, the team, as a whole, establishes the
direction and divides up the tasks to be done among the members of the team.
Each member on the team is fully empowered to do the tasks that he or she is
assigned, and the team as a whole feels joint responsibility for the results—if
one member on the team fails to deliver his or her expected results, the team as
a whole has failed.

25 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 78

General Agile Practices 49

Transparency and Trust
Most agile methodologies are based on a close and collaborative relationship
between the business user and the development team. In a traditional project
environment, there may have been a tendency to not air the “dirty laundry”
with the business user. In an agile environment, problems, risks, and issues are
normally shared openly and transparently with the business user, and the business
user normally plays an active role in helping to set the direction to resolve
those issues. It is more of a true partnership than an arm’s-length, vendor-style
contractual relationship, and it requires a level of maturity and sophistication
that isn’t present in many organizations to evolve to that level of partnership and
trust. For example, in some organizations:

• Business users, who are used to getting some kind of firm upfront com-
mitment from a development organization on the costs and schedules for
a project against detailed requirements will need to understand and trust a
very different kind of commitment process, where the business users and
the development organization will jointly own responsibility for delivering
the functionality that is needed over a period of time in increments. In
these circumstances, it may not be possible to completely and accurately
estimate the costs and schedule of the overall project upfront. That involves
some level of trust that the project team will be able to deliver the expected
results with a reasonable cost and schedule.

• Internal organizations such as QA will need to also develop more of a part-
nership relationship with the development team based on transparency and
trust. For example, if the QA organization is testing unreleased software
they need to trust the development team that the software has reached a
sufficient level of stability and completeness to not waste their time doing
unnecessary testing. They also have to trust that the continuous integration
process is going to detect and resolve any regression problems that might
be introduced by changing software to fix defects.

Planning Practices

The following are some of the key principles involved in planning an agile
project.

Just-in-Time Planning
Many people think of an agile project as completely unplanned—people just
start writing code with little or no planning. The planning in an agile project
may be just as deep as a traditional plan-driven project—it’s just done very
differently, which may be a more effective way of doing planning in some cases.
Most agile methodologies are based on the idea of “just-in-time” planning. Rather
than attempting to plan the entire project upfront, the upfront planning is limited

50 Agile Values, Principles, and Practices

to only the amount of planning that is needed to get the project started, and other
planning is generally deferred until further into the project when it becomes
essential. That approach:

• Allows the project to get started quickly and
• Also avoids unnecessary effort that might be needed with traditional

approaches if things further out in time are planned upfront but only need
to be replanned later as the project progresses and more information about
them becomes known.

Of course, the tradeoff associated with this is that, without doing a complete
detailed plan upfront, it is more difficult to accurately predict the overall costs
and schedules of the entire project.

Levels of Agile Planning
Agile project methodologies such as Scrum typically include five levels of plan-
ning:

1. Vision
The purpose of the vision planning effort is to define the business goals
and objectives that the project is intended to accomplish. A suggested
format for an agile vision statement follows (this is commonly called an
“elevator statement” in agile terminology:

• For (target customer)
• Who (statement of the need or opportunity)
• The (product name) is a (product category)
• That (key benefit, compelling reason to buy)
• Unlike (primary competitive alternative)
• Our product (statement of primary differentiation)26

An example is:

“For a mid-sized company’s marketing and sales departments who
need basic CRM functionality, the CRM-Innovator is a Web-based
service that provides sales tracking, lead generation, and sales repre-
sentative support features that improve customer relationships at crit-
ical touch points. Unlike other services or package software products,
our product provides very capable services at a moderate cost.”27

26 Moore, Geoffrey A., Crossing the Chasm: Marketing and Selling High-Tech Products to Main-
stream Customers , New York: Harper Business Books, 1999
27 Moore, Geoffrey A., Crossing the Chasm: Marketing and Selling High-Tech Products to Main-
stream Customers , Harper Business Books, 1999

General Agile Practices 51

2. Roadmap
The purpose of the roadmap planning portion of the effort is to break
the vision down into releases to describe how the overall functionality
required by the vision will be delivered over a period of time. Each release
is a working subset of the overall functionality that will be incrementally
delivered to the user. The roadmap plan describes which features of the
overall functionality will be included in each release and approximately
when each release is likely to be delivered.

3. Release
The purpose of the release planning portion of the effort is to break each
release down into iterations to describe how the functionality required for
each release will be incrementally developed. The results of each iteration
should be working software, which may not be releasable. The plan for
each release would normally require breaking the features required in
the product backlog into user stories, estimating the time required for
each user story, and grouping the user stories into iterations to satisfy the
overall plan for delivering the functionality required for that release.

4. Iteration
The purpose of the iteration planning portion of the effort is to define
the tasks to be performed during that iteration to develop the user stories
required for that iteration. The tasks are also assigned to members of the
team for completion.

5. Daily
The daily planning sessions are primarily to review progress against the
planned effort for that iteration and to identify and resolve any obstacles
that might be inhibiting progress.

Each of the preceding levels of planning represents different levels of preci-
sion, with the highest level of precision and detail being at the daily level and
the lowest level of precision and detail being at the vision level.

Requirements Definition Practices

The process for defining requirements is one of the most critical parts of any
development process. The following are some commonly used agile practices
for requirements definition. These practices are not necessarily the only way to
define requirements for agile projects.

User Stories
User stories provide an easy-to-understand and simplified way of stating require-
ments that is commonly used with many agile methodologies such as Scrum and
Extreme Programming. A user story is a very high-level definition of a require-
ment, containing just enough information so that the developers can produce a

52 Agile Values, Principles, and Practices

reasonable estimate of the effort to implement it without a lot of detail. It is
generally of the following form:

“As a <type of user>, I want to <goal>, so that <reason>.”

The user story should describe the user need from the perspective of the user.
An example is something like the following:

“As a banking customer, I want to be able to easily make an online deposit of
a check into my bank account through my iPhone so that I can save the time
required to send a check for deposit through the mail and I can have the money
immediately credited to my checking account as soon as the deposit is completed
electronically.”

In many agile methodologies, a user story is a sufficient level of definition of a
requirement to estimate the level of effort needed to implement it at the beginning
of an iteration. The details of a user story are normally further elaborated as
necessary as the iteration progresses. The use of user stories does not necessarily
preclude or replace other forms of requirements, such as use cases, that might be
useful in an agile project. It also doesn’t necessarily mean that the requirements
definition effort is limited to user stories:

• Many user stories will have business rules associated with them and may
also have more detailed functional requirements.

• Most of those details can be elaborated as the iteration progresses. The cre-
ation of further detailed documentation to capture this information should
be done based on the needs of the project.

Acceptance criteria for user stories are normally defined prior to the beginning
of an iteration so that they can be tested as “done” at the end of the iteration.

Story Points
“Story points” are a method of estimating the relative size of a user story. The
typical form of story points is a Fibonacci series, such as 1, 2, 3, 5, 8, 13, with
1 being a minimal level of effort and 13 being a maximum level of effort for a
user story in an iteration. A user story with story points greater than 13 indicates
that it is too big to be accomplished in one iteration and probably needs to be
broken down.

The team is asked to vote on the number of story points to assign to each
user story as a way of estimating the magnitude of effort required. Sometimes
a method called “Planning Poker”28, which uses playing cards, is used to reach
consensus on an estimate of story points to assign to each user story. An expe-
rienced agile team has a known velocity of how many story points it is able to
produce in each iteration, and that becomes a metric for sizing the work that can
be done in future iterations.

28 “Planning Poker,” www.planningpoker.com

General Agile Practices 53

Epics: An “epic” is just a large user story that needs to be broken down into
smaller user stories prior to the start of an iteration. The previous example of
depositing a check through an iPhone might be considered an “epic” that needs
to be broken down into smaller user stories such as:

• As an Electronic Banking Customer, I want to be able to scan an image of
the front and back of a check into the iPhone so that it can be deposited
electronically.

• As an Electronic Banking Customer, I want to be able to enter the deposit
information associated with an electronic deposit so that the correct amount
will be deposited into the correct bank account when the electronic deposit
is processed.

• As an Electronic Banking Customer, I want to be able to electronically
submit a scanned check and deposit information to the bank for deposit so
that I can save the time associated with sending deposits by mail.

• As an Electronic Banking Customer, I want to be able to receive confirma-
tion of a completed electronic deposit so that I will know that the deposit
was successfully processed

User Persona: A “User Persona” is a description of a specific type of user that
impacts the requirements. For example, a “Banking Customer” is an example
of a User Persona. User Personas are useful ways of characterizing the users of
the system and keeping the development effort focused on satisfying their needs.
A “User Persona” can be as detailed as necessary to differentiate and capture
the characteristics of individual users who might have a different impact on the
system. For example, there could be different User Personas to differentiate an
Online Banking Customer from a Non-Online-Banking Customer.

Product Backlog: The product backlog is a high-level document list of all
required features, wish-list items, and the like, prioritized by business value.
It is the “what” that will be built. It is owned by the product owner and contin-
uously prioritized and reprioritized as the project progresses, work is completed,
and detailed requirements are better understood.

Spikes: Iterations in an agile methodology typically result in delivering working
software to implement user stories and the detailed requirements associated with
that user story are normally defined during the iteration. In some cases; however:

• Significant uncertainties may be associated with a particular user story or
a broader area of functionality, or

• An investigation of alternative design approaches may be needed to better
define the architecture and design approach before an iteration can take
place.

54 Agile Values, Principles, and Practices

In those situations, a special kind of iteration called a “spike” may be appro-
priate. “A spike is an experiment that allows developers to learn just enough
about the unknown elements in a user story, e.g. a new technology, to be able
to estimate that user story. Often, a spike is a quick and dirty implementation
or a prototype which will be thrown away. When a user story on the product
backlog contains unknown elements that seriously hamper a usable estimation,
the item should be split into a spike to investigate these elements plus a user
story to develop the functionality.”29

Requirements Prioritization: All agile methodologies rely on the user to prior-
itize requirements. The exact approach for prioritizing requirements might vary,
but it is generally done on the basis of importance. Other factors that might be
considered include risk and difficulty. Breaking up the requirements into indi-
vidual requirements (typically user stories), prioritizing them, and incrementally
developing them using an iterative approach provides a way of delivering the
most important functionality to the user as quickly as possible.

A commonly used prioritization technique in agile projects is called
“MoSCoW.” It consists of breaking up requirements into four categories:30

• Must have—Requirements labeled as MUST have to be included in the
current delivery timebox in order for it to be a success. If even one MUST
requirement is not included, the project delivery should be considered a
failure.

• Should have—SHOULD requirements are also critical to the success of
the project but are not necessary for delivery in the current delivery time-
box.

• Could have—Requirements labeled as COULD are less critical and often
seen as nice to have.

• Won’t have—WON’T requirements are either the least critical, lowest-
payback items, or not appropriate at that time.

SUMMARY OF AGILE TECHNIQUES AND PRACTICES

As previously mentioned, it may be necessary to pick the right combination of
techniques and practices in an à la carte manner and customize them as needed
to build a complete enterprise-level development process rather than attempting
to force-fit a project to any particular standard, predefined methodology. The best
approach for a particular business may not be a pure agile approach at all—there
is still a need for traditional plan-driven approaches in many situations, and there
may be a need for a hybrid approach that offers a balance of control and agility.

29 Phillipus, Erik, “Architecture Spikes,” www.agile-architecting.com/Architecture%20Spikes.pdf
30 “MoSCoW Method,” http://en.wikipedia.org/wiki/MoSCoW_Method

Summary of Agile Techniques and Practices 55

The table that follows is a comparison of some of the characteristics of pure
agile and hybrid methodologies.

Note
If you are new to agile and need to understand agile technical practices
in more detail, each of these practices is defined and discussed in more
detail in Appendix A and Appendix B of this book.

Agile Hybrid

Characteristic XP Scrum FDD AUP DSDM

Core Agile Characteristics:
• Direct Customer

Engagement

√ √ √ √ √

• Frequent Incremental
Releases

√ √ √ √ √

• Adaptability to
Change

√ √ √ √ √

• Self-Organization/
Empowerment

√ √ √ √ √

• Emphasis on
Simplicity

√ √ √ √ √

• Continuous
Improvement

√ √ √ √ √

General Lean Systems Engineering Principles
• Focus on Customer

Value (Eliminate
Waste)

√ √
Limited Limited

√

• Map the Value Stream
(Eliminate Waste)

Very Limited Limited Optional Optional Optional

• Use the “Pull”
Principle

√ √
Optional Optional Optional

• Optimize the Flow to
Eliminate Bottlenecks

√ √
Limited Limited Limited

• Respect for People
(Empower the Team)

√ √
Not Defined Not Defined

√

• Perfection
(Continuous
Improvement
Emphasis)

√ √
Optional Optional

√

Lean Software Development Principles
• Amplify Learning

√ √
Optional Limited

√
• Decide as Late as

Possible

√ √
Optional Limited Limited

• Deliver as Fast as
Possible

√ √
Optional Limited Limited

56 Agile Values, Principles, and Practices

Agile Hybrid

Characteristic XP Scrum FDD AUP DSDM

• Build Integrity In
√ √

Limited Limited
√

• See the Whole Limited Limited
√ √ √

Technical Practices:
• Continuous

Integration

√ √
Optional Optional Optional

• Timeboxing
√ √

Optional Optional Optional

• Architectural Design
Approach

Not Specified Not
Specified

UML UML UML

• Test-Driven
Development

√
Optional Optional Optional Optional

• Code Refactoring
√

Optional Optional Optional Optional

• Pair Programming
√

Optional Optional Optional Optional

Project Management:
• Planning &

Estimation Approach
Rolling Wave

with Very
Limited
Upfront
Planning

Product
Backlog
Release
Plans

More
Emphasis
on
Upfront
Planning

More
Emphasis on
Upfront
Planning
(Inception
Phase)

High-level
Scope &
Require-
ments
Base-lined
Upfront

• Requirements
Management

User Stories User Stories Hierarchical
Product
Features
& Use
Cases

Agile Model-
Driven
Develop-
ment

Prioritized
Require-
ments
List

• Risk Management Not Specified Not
Specified

Not
Specified

Not Specified Upfront
Feasibility &
Business
Analysis
Ongoing
Risk Mgt.

• Extensibility to
Distributed Teams
(Multiple Sites, Time
Zones)

Difficult Very
Limited

√ √ √

• Configurable to
Accommodate a Wide
Range of Project
Types

Very Limited Limited
√ √ √

Project Governance:
• Methodology Change

Mgt & Organizational
Consistency

Difficult Difficult Not Defined Not Defined
√

CHAPTER 3
BECOMING MORE AGILE

AGILE BENEFITS AND TRADEOFFS

There are a number of very significant benefits of successfully implementing a
more agile approach. Jim Highsmith cites the following business objectives that
potentially result from a successful agile methodology implementation:

1. Continuous Innovation—to deliver on current customer requirements
2. Product Adaptability—to deliver on future customer requirements
3. Improved Time-to-market—to meet market windows and improve

return on investment (ROI)
4. People and Process Adaptability—to respond rapidly to product and

business change
5. Reliable Results—to support business growth and profitability1

In many cases, if it is done correctly, an agile transformation can change
the culture and chemistry of the whole company to dramatically improve its
competitive advantage. However, there is no “free lunch”—there is a lot of work
that needs to be done to achieve these objectives, and there are some significant
tradeoffs associated with achieving these benefits, which are discussed in the
sections that follow.

Focus on Successful Business Outcomes

One of the biggest impacts of implementing a more agile approach is likely to
be more successfully achieving business outcomes. Agile projects are probably
more likely to accomplish the business outcomes that they were intended to
achieve if the business users actively participate in the development effort and a
more flexible and adaptive development approach is used. The impact of this is

1 Highsmith, Jim, Agile Project Management—Creating Innovative Products, pg 10, Addison-
Wesley, New York, 2009

57

58 Becoming More Agile

likely to be most significant in companies that have a very uncertain environment
that requires high levels of flexibility and adaptability. That’s a very significant
benefit; however, there are tradeoffs associated with it:

• Adopting a more flexible development approach will probably reduce the
ability to accurately predict upfront development costs and schedules for
the overall project. It requires some trust between the business organiza-
tion and the development organization to create a working relationship
where the uncertainty in the product requirements, as well as the costs
and schedule, is understood and acknowledged, and both sides partner in a
collaborative approach. This is very different from a “contractual relation-
ship, where both sides agree to work together based on some well-defined
upfront requirements and a well-defined cost and schedule estimate for
fulfilling those requirements.

• In some cases, a more agile approach may also increase the total cost
and schedule for the project because it may require more trial-and-error
attempts to find an optimal solution. The cost and schedule increase will
be determined primarily by the amount of experimentation that is needed
to find an optimal solution.

• A much more significant commitment of resources from the business side is
required. Business resources need to take a much more active role through-
out the entire development process and should feel some primary ownership
for making it successful.

Jim Highsmith summarizes the advantage agile methodologies provide for
developing better products:

“ . . . When we reduce the cost of experimentation enough, the entire
economies of how we develop products changes—it switches from a
process based on anticipation (define, design, and build) to one based on
adaptation (envision, explore, and refine). When the cost of generating
alternatives plunges and the cost of integrating them into a product is low,
then great products aren’t built, they evolve—just like biological evolu-
tion, only much faster than in nature. Biological evolution begins with
experimentation (mutation and recombination), exploration (survival of
the fittest), and refinement (producing more of the survivors). Increas-
ingly, product development processes are being built using this biological
metaphor.”2

With traditional plan-driven methodologies, you typically have one shot at
getting it right—you attempt to define and document the requirements as best

2 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2009, p. 7

Agile Benefits and Tradeoffs 59

you can at the start of the development effort and hope that those require-
ments are going to produce the business outcome that they were intended to
produce. Typically, companies focus very heavily on the risks of not meeting
cost and schedule goals, and that tends to favor more traditional plan-driven
approaches; however, there’s a much bigger risk in that the project won’t suc-
cessfully achieve the business outcome it was intended to achieve. Manage-
ment of this kind of risk may call for a very different approach to product
development:

“The key point is that opportunity, uncertainty, and risk reside in the
proposed product—not in the approach to project management. Our
approach to project management needs to fit with the characteristics of
the product to improve our chances of capitalizing on the opportunity by
systematically reducing the uncertainty and mitigating the risks over the
life of the product

Linear thinking, prescriptive processes, and standardized, unvarying
practices are no match for today’s volatile product development envi-
ronment. So as product development processes swing from anticipatory
to adaptive, project management must change also. It must be geared to
mobility, experimentation, and speed. But first of all, it must be geared
to business objectives.”3

Both of these types of risks need to be considered to develop a balanced
approach that blends the right level of control to provide a reasonable level of
predictability over costs and schedules with sufficient agility to ensure that the
product successfully achieves the business outcome it was intended to achieve.
The level of volatility and uncertainty in each business will be different, and
each business needs to find the balance that is most appropriate for its business
environment:

• In some businesses that have a highly volatile and uncertain product
development environment, it probably makes sense to adopt a pure agile
approach.

• In other businesses that do not have that level of volatility or that operate in
a high-risk and/or regulated environment, a pure agile approach may need
to be tailored to the business environment or a more plan-driven approach
or hybrid approach may me more appropriate.

The key point is to open up our thinking to new ways of doing things and
not restrict the selection of approaches to standard, off-the-shelf methodologies
(either agile or non-agile) that may not be optimum for the business environment.

3 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2009, pp. 8–9

60 Becoming More Agile

Customer Satisfaction and Competitive Advantage

A transformation to a more agile product development approach should not be
considered simply from a development perspective—it has the potential to have
a much broader impact on customer satisfaction and competitive advantage
if it is done properly. However, achieving those advantages may require a
significant, broad-based initiative that is not limited to development—it could be
an expensive and time-consuming effort that requires a significant organizational
commitment.

For companies that depend heavily on the effectiveness of their product and
application development processes to gain competitive advantage, that effort
could have huge potential to leverage a major change to make the whole company
more competitive in its marketplace. It could result in faster times to market for
new products and mission-critical applications and products that are also much
more successful because they better fit user needs.

Organizational Effectiveness, Cross-Functional Synergy,
and Employee Morale

In addition to the benefits of improved customer satisfaction and competitive
advantage, an agile initiative could be the catalyst that is used to bring about
higher levels of cross-functional synergy by breaking down barriers between
various functional organizations that are typically engaged in the product develop-
ment effort, and that is likely to result in higher levels of organizational effective-
ness. Higher levels of engagement and empowerment of employees who partici-
pate in the process is also likely to result in improved levels of employee morale.

Higher Productivity and Lower Costs

A number of books have published data showing productivity gains as well
as reductions in development cost from implementing agile methodologies; how-
ever, it is somewhat difficult to make a very universal and meaningful quantitative
comparison. It’s difficult to make an apples-to-apples comparison between two
identical projects and the productivity gain depends on a number of factors that
might not be the same for each project such as:

• What was the starting-point methodology and what was the ending-point
methodology that the comparison was based on (for example, extreme
Waterfall to pure agile or something in between?)

• How unaligned was the previous methodology with the company’s business
environment and projects and how well aligned is the new methodology?

• What were the characteristics of each project really similar (e.g., uncer-
tainty of requirements)?

From a business perspective, as previously discussed, the payback of going to
a more agile methodology is likely to be much greater for companies that have

Agile Benefits and Tradeoffs 61

an uncertain business environment that requires flexibility and adaptability to
succeed in spite of those conditions. For companies that do not have a business
environment with a high level of uncertainty and don’t require the level of flexi-
bility and adaptability that a pure agile methodology provides, the gains are likely
to be much less and a less agile approach may still be more efficient overall.

One of the things that make it difficult to really quantify the productivity gains
is that, in many cases, each potential gain has an offsetting potential loss and the
net gain that might be realized depends a lot of on how skillfully the methodology
is implemented. The following is a summary of some of the potential gains and
losses that can result from moving to a more agile approach:

Potential Productivity Gain Offsetting Potential Productivity Loss

• Simplified and prioritized requirements combined
with a more iterative development process
reduces unnecessary functionality and delivers
high-priority functionality more quickly.

• More business user involvement is needed
throughout the development process.

• More direct engagement of the users in the
development process is likely to better satisfy
business needs and could significantly reduce
rework that might be needed when problems
associated with meeting user needs are not
discovered until late in the project with a
traditional development process.

• More business user involvement is needed
throughout the development process.

• More direct involvement of the business user in the
development process might introduce delays if timely
participation isn’t available and might introduce
unnecessary churning of requirements if the business
users are not skilled in performing that role.

• Reduced number of defects and higher-quality
products are more likely because quality and
testing are a much more integral part of the
development process.

• Implementing this successfully requires a much more
rigorous and continuous integration and testing
approach that might require the purchase of test tools
to automate the process.

• Higher employee morale and levels of
participation can result in significant productivity
gains.

• It may take a considerable amount of training,
coaching, and mentoring to get employees to a level
to effectively perform this role.

• Timeboxing of development efforts is likely to
improve productivity and development schedules.

• Effective use of timeboxing requires some skill and
might require training, coaching, and mentoring to
get a team to the point where they can use that
technique effectively.

• Emphasis on continuous improvement is likely to
result in ongoing improvement of the process,
which will further improve productivity over a
more statically defined traditional process.

• The teams may need to be trained and skilled in how
to do process improvement in order to do it
effectively.

• Deferring decisions using rolling wave planning
is likely to result in better decisions, based on
facts rather than speculation.

• A higher level of skill and training is probably
needed to perform this role effectively as opposed to
traditional upfront planning methods.

• The organizational culture must also support this
approach.

62 Becoming More Agile

Potential for Higher Quality

If it is done successfully, an agile approach has the potential to significantly
improve the quality of products because:

1. It creates an environment that is much more heavily focused on producing
a high-quality product as seen directly from the perspective of the primary
user.

2. The focus on making testing an integral part of the development process,
doing testing as the development progresses, using pair programming,
and emphasizing collective ownership of responsibility for the quality of
the product by the team are all practices that can have a big impact on
improving the level of quality of the final products and applications.

OBSTACLES TO BECOMING AGILE

Developing a pure agile approach is not for everyone, and the obstacles that must
be overcome to successfully implement a full implementation of agile are sig-
nificant. Mike Cohn’s book Succeeding with Agile: Software Development Using
Scrum is an excellent resource to better understand some of the obstacles that
must be overcome in the typical organization to become more agile. He has
defined a number of attributes of Scrum that make it a difficult transition:4

1. Successful change is not entirely top down or bottom up. An effec-
tive agile implementation requires real buy-in from everyone involved.
A superficial implementation may have limited success and a significant
change management initiative may be needed to change the culture and
operating style of the organization to be consistent with Scrum. This type
of change cannot be dictated from the top down nor can it be done entirely
from the bottom up without a sufficient level of top-down support.

2. The end state is unpredictable. Since Scrum and other agile method-
ologies are heavily based on continuous improvement, it is difficult to
say when the transition is really complete. There are some assessments
that can be used to assess the level of agility, but it is a very subjective
measurement. There is no such thing as saying something like “we’re an
“agile level 2 organization” or an “agile level 3 organization.”

3. Scrum is pervasive. Scrum impacts many areas of the organization—the
impact is not limited to simply the development side of the organization.
A successful Scrum initiative will require a broad-based commitment of
many areas of the organization to be successful. For example:
• Business owners who have been used to providing a basic level of

overall direction at the front end of a project will now find that a much

4 Cohn, Mike Succeeding with Agile: Software Development Using Scrum, New York: Addison-
Wesley, 2009

Obstacles to Becoming Agile 63

higher level of commitment is required for the entire duration of the
project.

• Organizations that have built a focus on project governance, such as
Project Management Offices (PMOs), will have to change, and met-
rics for measuring and tracking project progress may also have to
change.

4. Scrum is dramatically different. Scrum will cause many people in the
organization to do things differently, for example:
• Developers who are used to coming in to the office, going to their

cube, and immediately putting on their headphones and writing code
will now have to work much more as part of a team, where they
will have to interact and collaborate with others much more than ever
before.

• Testers who are used to being given a completed application to test
against a defined requirements document or specification will have to
learn entirely new ways of testing code that may only be partially
developed collaboratively with the development team as the design
progresses.

• Users who are used to only a limited involvement in the development
process will be required to have a much higher level of direct participa-
tion in the process, they will have to share ownership of the success of
the project, and they will be much more directly exposed to risks and
partially complete products as the project progresses.

The impact in these changes in the way people work is significant and
should not be underestimated. Because it is such a big change, a significant
amount of training, mentoring, and coaching may be needed; some people
are likely to resist this transition, and some changes in personnel may also
be necessary.

5. Change is coming more quickly than ever before. If it is successful,
a transition to Scrum is likely to bring about a significant amount of
change to the organization very rapidly. It may be a challenge for many
organizations to absorb that kind of change so quickly.

The following sections discuss some of the most important obstacles to over-
come.

Corporate Culture

Corporate culture can be one of the biggest obstacles to overcome in developing
a more agile product development approach.

1. Management and Leadership Style
Many companies have a management and leadership style that is not well
aligned with adopting agile methodologies and shifting to a more flexible

64 Becoming More Agile

and distributed form of management might be a significant cultural change
for some companies:

“For decades now, corporations have been changing from a hierar-
chical approach to being more collaborative as knowledge work has
grown in importance. A September 2005 article in the Project Man-
agement Journal expresses similar sentiments for the management
of projects as the authors question the ‘veracity of tight centralized
management,’ ‘rationalist’ discourse, and a ‘command and control’
approach to project management. Instead, the authors recommend
allowing for flexibility of local response in order to be able to con-
stantly adjust to emerging problems in the project system. This need
to distribute responsibility and initiative in support of adaptation to
change is familiar territory to ‘agile’approaches to projects.”5

Some companies have built a significant culture and infrastructure
around a “command-and-control” approach to managing projects. They
may have a very well-established methodology for how projects are man-
aged, which is in some cases enforced by a PMO. The emphasis in many
of these organizations is on well-controlled, plan-driven projects that pro-
vide high levels of cost and schedule predictability. Shifting to a different
orientation that balances control of costs and schedules with a sufficient
level of flexibility to adapt to customer needs in an uncertain environment
can be a challenge:
• Very different methodologies may be needed with higher levels of flex-

ibility and adaptability.
• Significant amounts of training might be needed to develop project

managers and project teams to take on more responsibility to implement
a more distributed style of leadership and management.

• The role of the PMO organization might shift significantly from the role
of a “process enforcer” to a value-added process consultant to support
project teams.

• It may be necessary to break down traditional organizational barriers to
create a more collaborative, cross-functional approach

• Business models and measurement systems might also need to be
changed to be more consistent with this new environment.

2. Cross-Functional Collaborative Approach
Adopting a pure agile methodology like Scrum requires a collaborative
approach at a number of different levels, and this may also require a major
shift in organizational culture in some companies:

5 Fernandez, Daniel J. and Fenandez, John D., “Agile Project Management—Agilism versus Tra-
ditional Approaches,” Journal of Computer Information Systems , Winter 2008–2009

Obstacles to Becoming Agile 65

a. Business sponsors and development teams need to work collaboratively
to choose an appropriate methodology for a project, customize it as
needed to fit the risks and complexity of the project, and work jointly to
implement the process, including taking joint ownership for the success
of the process and quickly making decisions to resolve any issues that
may arise during the course of the project. In some organizations, the
product development process is seen as totally the responsibility of
development to just “make it happen” and to do it faster, better, and
cheaper without a significant amount of direct intervention from the
business side in the development process. Many organizations are not at
a level of maturity to develop the kind of collaborative, cross-functional
approach that’s needed, and it may take strong senior management
leadership to bring about that kind of change.

b. Within the development organization, all the functions (development,
QA/test, etc.) need to work closely and collaboratively to become more
agile. By design, many development organizations have some natural
barriers that make it difficult to achieve full collaboration. In some
cases, there may be good reason for maintaining some level of sep-
aration. For example, many organizations preserve some separation
between the development function and the QA/test function as a way
of providing objectivity in the testing effort and maintaining checks and
balances in the development process. There may be situations where
that kind of separation is justified, but in many situations, it is also a
sign of limited organizational maturity.

Breaking down these barriers and achieving effective cross-functional
collaboration both between the business and development organizations
and within the development organization requires creating an environ-
ment based on trust, and that may require a strong level of leadership to
achieve:
• The business organization has to learn to trust that, if they work col-

laboratively with the development organization, they’re going to get
what they want and even get a better-quality product than they would
have gotten with a well-defined contractual commitment based on firmly
defined requirements.

• The internal organizations within development, such as QA, need to
learn to trust that they can still achieve the same or higher levels of
quality by relaxing some of the boundaries and controls that may have
been developed between organizations.

3. Learning Environment
Agile heavily emphasizes continuous improvement, and that requires a
culture that is consistent with that approach. Some companies do not
learn from their mistakes and, in some cases, they don’t even acknowledge

66 Becoming More Agile

them. A culture of covering up mistakes and not being transparent about
them is not consistent with an agile approach. Agile is based on the
philosophy “fail early and fail often”—in the right culture, mistakes are
synonymous with learning.

If the culture of the organization is not consistent with openly and transparently
finding and acknowledging defects in products and processes and aggressively
learning from those mistakes to implement more effective processes to prevent
those problems from happening again, a successful agile transformation will be
difficult to achieve.

Organizational Commitment

Adopting a pure agile methodology such as Scrum also requires a broad-based
organizational commitment from both the business and development sides of the
organization. If the software development organization tries to implement a more
agile development process and there isn’t a sufficient level of commitment from
the business side to fully participate in the process; chances are that it will have
very limited success. In many companies, it is very difficult to expect a customer
or sponsor to stay attached on a regular basis to the development team throughout
the entire project.

Agile methodologies also require a high level of skill and training of the project
teams. Implementing an agile approach might require a significant amount of
retraining of personnel and, in some cases; it might even require replacement of
personnel who are unable to make the transition to an agile approach.

Risk and Regulatory Environment

Many companies operate in a high-risk industry and/or a regulated environment,
which requires a high level of control over the software development process.
There are certainly situations where more of a traditional plan-driven develop-
ment approach may be more appropriate based on the risks and complexity of the
project. In these organizations, it may not be a simple matter of implementing an
agile methodology out of the box; a significant effort might be required to design
a customized process that blends an appropriate level of control with more agility.

For example:

• In a high-risk environment, depending on the nature of the risks; more
upfront planning might be needed to analyze and plan for the risks prior to
implementing the project—that doesn’t preclude using an agile method-
ology for the majority of the development effort, but it might require
wrapping an additional layer of planning and management around it.

• In a highly regulated environment, more rigorous documentation might
be needed for such things as specifications and test results. That also

Developing a More Agile Approach 67

doesn’t preclude the use of an agile methodology for some portion of the
development effort, but it might also require wrapping more documentation
and management around it.

In both of these situations, some kind of a hybrid approach may be appropriate,
which might be either:

• Starting with a pure agile approach like Scrum and adding additional layers
onto it to satisfy the risk and regulatory requirements, or

• Starting with a plan-driven approach and making it more agile

The best alternative of those two would probably depend on the magnitude of
the effort that is needed to satisfy the risk and regulatory requirements.

DEVELOPING A MORE AGILE APPROACH

In some organizations, a pure agile approach may not be appropriate or the
obstacles associated with adopting a pure agile approach can be formidable to
overcome, and it may require a significant change management effort to make a
complete jump to agile. In these situations, there are many ways for an organiza-
tion to become more agile without going all the way to the most pure forms of
agile such as Scrum or Extreme Programming. There are many ways to integrate
a sufficient level of control with some of the principles of agile development
in a customized development process. It requires a more sophisticated project
management approach to:

• Design an effective development process that blends a level of control and
agility that is appropriate for the business environment that the company
operates in.

• Tailor the overall development process as needed to fit each project.

Of course, a good process is one that people really use, is well aligned with
the business environment and projects it is used for, and adds value without
unnecessary overhead. There is a level of organizational maturity implied in
developing a process (or processes) that really works and is used to add value to
the business. That is a key strategic decision for any business—a project manager
might recommend these decisions, but they should be reviewed and approved by
an appropriate level of management who can assess the impact of these decisions
from an overall business management perspective.

Developing an Agile or Lean Mindset

To some extent, agile is a way of thinking. Many of the statements in the
Agile Manifesto are values that can be practiced to some extent with many

68 Becoming More Agile

different methodologies. (See the “Agile Perceptions and Reality” section) For
example, the following statement is an excellent goal that can be applied to any
methodology:

“Our highest priority is to satisfy the customer through early and contin-
uous delivery of valuable software”6

Of course, it requires some good judgment to figure out how this goal can
actually be achieved with different life-cycle models other than a pure agile
(e.g., Scrum) approach—applying this value to a traditional plan-driven devel-
opment model requires some creative thinking (See “Software Development Life
Cycles”).

“An overemphasis on linearity leads to stagnation, just as an overempha-
sis on evolution leads to endless and eventually mindless change. With
either model, development team members, product team members, and
executives need to exercise judgment in its application.”7

What’s required is to understand the principles behind Lean and agile and
apply those principles to the way the organization thinks and its culture. An
organization that has built these principles into the way the organization works
and has developed a mindset among all its people that supports this way of
thinking has gone a long way toward creating the right framework to support a
more agile development approach.

The important thing is to focus on the principles rather than getting lost in the
mechanics of any methodology (either agile or non-agile). Rather than attempt-
ing to force-fit your business and projects to fit into the mechanics of any given
methodology, the right approach is to focus on the business objectives you want
to achieve, including customer satisfaction goals; create a business environment
and culture for achieving those goals; and then select or design supporting devel-
opment processes that are consistent with that environment.

Hybrid Approaches

In many cases, it may not make sense for a company to go all the way to a pure
agile approach like Scrum or Extreme Programming right away for a variety of
different reasons, such as:

• The organizational culture and other factors may not support it and too
much of a change management effort may be needed for success.

6 “Principles Behind the Agile Manifesto,” http://agilemanifesto.org/principles.html
7 Highsmith, Jim, Agile Project Management-Creating Innovative Products, pg 87, Addison-Wesley,
New York, NY 2010

Developing a More Agile Approach 69

• The risk and regulatory environment the company operates in may require
a balance of control and agility.

• A more gradual and incremental migration to agile may be appropriate
because of the level of change and training needed to go to a full agile
approach.

• The level of uncertainty in the company’s business environment or in
individual projects may not justify a pure agile approach.

In these situations, a hybrid approach that provides a compromise between a
traditional plan-driven environment and a pure agile environment may be a good
solution. Steve Pieczko has written a nice article indicating that “The journey to
full agile development often begins with a hybrid approach”8

“So why do so many organizations aspire to become Agile yet are still
only implementing a few aspects of it? Most likely, they’re not given
enough time to plan the process of becoming Agile. Or, it may be because
Agile is usually introduced by the development community in a bottom-
up style that isn’t understood or appreciated from the top-down [sic].
Regardless, many teams end up implementing a hybrid methodology.”

The following are some possible alternatives for developing a hybrid approach:

1. Use an iterative approach to break up large projects into smaller chunks,
develop the high-level requirements and plan upfront, and continue to
refine the requirements and plan with each iteration.

2. Prioritize requirements to ensure that the most essential requirements are
done first to accelerate the delivery of the most important capabilities.

3. Develop a higher level of engagement of business users in the oversight of
the development effort, and develop a more flexible and adaptive approach
to requirements definition if necessary.

4. Integrate QA testing into the development effort using a Test-Driven
Development approach and adopt the agile principle that software is not
“done” until it is tested and provides the business value it is intended to
provide.

5. Streamline the documents and artifacts required for traditional develop-
ment process by eliminating documents and artifacts that do not provide
value.

6. Use agile technical practices such as pair programming, continuous
integration, code refactoring, and timeboxing to improve development
productivity.

8 Pieczko, Steve, “Agile?, Waterfall? How about WetAgile?” www.agilejournal.com/articles/
columns/column-articles/3080--agile-waterfall-how-about-wetagile

70 Becoming More Agile

7. Begin to create an organizational culture that is more agile including:
• Train people in the organization in adopting agile thinking and practices.
• Implement a facilitative management and leadership approach with

empowered teams.
• Develop a spirit of partnership between the business users and devel-

opers to jointly own the success of development efforts.
• Within the development organization, create a spirit of joint ownership

of project results among the members of the development team.
• Build closer, cross-functional teamwork among the development team

by co-locating members of the team and developing a sense of shared
ownership of work. Use daily standups to build and reinforce a shared
commitment to goals

• Develop and implement a more sophisticated project management
approach, where project managers are trained and skilled in selecting
from a broader range of methodologies, principles, and practices
and tailor them to fit projects rather than force-fitting a project to a
well-defined methodology.

CHAPTER 4
CASE STUDIES

When I published my first book, From Quality to Business Excellence in 2003.1

I saw an interesting pattern. I was looking at how companies used a variety of
process improvement techniques that were in use at the time and, in particular,
Six Sigma was very hot at that time. I researched a lot of companies for my
book, and I found that there were many companies I looked at that just did Six
Sigma like the “program du jour” because it was the latest and coolest thing to
do at that time. Other companies that I looked at, had implemented Six Sigma;
but, in many cases, it was just one of several tools that they used for process
improvement.

The difference in these two kinds of companies was striking:
• In the first type of company, Six Sigma was highly visible with all the

hoopla associated with it (black belts, green belts, and so on), but many of
these implementations turned out to be superficial and not very effective.
In many cases, they were also not very long-lasting—as soon as Six Sigma
went out of vogue, the companies moved on to something else.

• In the second kind of company, there was an entirely different pattern; the
companies really took the time to understand Six Sigma at a much deeper
level and really integrate it into the way they did business. In many cases,
it wasn’t even obvious that they were dong Six Sigma because it was so
well integrated into the way they did business and tailored, if necessary,
to fit with their business and other complementary tools.

I’ve seen a similar pattern with the adoption of agile methodologies. Many
companies want to jump on the agile bandwagon and attempt to implement
standard agile methodologies out of the box without necessarily taking the time to
fully understand them and/or customize and tailor them to fit their business. That
may work in some situations, but it’s not surprising that it has mixed results in
others. The companies that really impressed me are the ones that took the time to
understand agile methodologies at a deeper level and really put a lot of effort into
making them a part of the way they do business. In many cases, that has meant
picking and choosing the right combination of agile practices and methodologies

1 Cobb, Charles G., From Quality to Business Excellence, Milwaukee, WI, ASQ Quality Press,
2003

71

72 Case Studies

and, if necessary, crafting unique methodologies that are customized to fit their
business.

Here are a few common characteristics I saw in many of these companies:

• They were “learning organizations” and demonstrated “thought leader-
ship.” They were driven by ongoing process improvement and learning
and openly shared their knowledge with others.

• They had a broad, cross-functional view of how their business worked as
a complete system (not just from a product development perspective) and
aligned their product development strategy into that broader perspective.

• They were innovators—they didn’t just accept the status quo of implement-
ing standard agile methodologies; they developed innovative approaches
that went beyond just doing things by the book and adapted the method-
ologies to fit their business rather than force-fitting their business to fit any
specific methodology.

The following is a summary of general characteristics I would associate with
“learning organizations”:

Characteristic “Traditional” Organization “Learning” Organization

Control vs.
Empowerment
Orientation

• Emphasis on control.
• Processes are more rigidly defined and

do not allow for significant deviation.

• Emphasis on individual
empowerment.

• Processes are typically not as rigidly
defined and rely much more heavily
on the skill and judgment of the
people performing the process.

Process
Standardization

• Standardized, “textbook” processes
(agile or non-agile) out of the box.

• Processes are highly tailored and
customized to fit the business.

Key Differences • The process manages the organization.
• The organization attempts to force-fit

their business environment and projects
to a predefined methodology (agile or
non-agile)

• Processes are implemented somewhat
mechanically.

• The organization manages the
process.

• The organization selects the
principles, methodologies, and
practices from a variety of sources
(agile or non-agile) that are best
suited to their business environment
and customizes them as needed to fit
individual projects.

• The people in the organization
understand the principles behind the
process and are able to implement
them much more intelligently.

Sapient 73

Characteristic “Traditional” Organization “Learning” Organization

Emphasis on
Continuous
Improvement

• Processes are relatively static and
don’t change often.

• The organization does not actively
seek out new ideas and practices to
improve process effectiveness.

• Processes are regularly updated to reflect
lessons learned and opportunities for
improvement.

• The organization takes a leadership role
in exploring and developing process
improvements and best practices.

Change • May be resistant to change. • Change is welcomed and embraced.

Approach to Failures • Failures are seen as things that
should be punished or covered up if
they happen and are too be avoided
at all costs.

• Failures are expected to occur as a
natural outcome of trying new ideas and
are seen as opportunities for learning
and continuous improvement.

Management and
Employee
Engagement

• Management may be more focused
on driving results (process outputs)
than on understanding the process
factors that contribute to achieving
the results.

• Employees might follow the process
mechanically without a significant
level of commitment or may not
follow the process at all.

• Management is focused on making the
processes more effective to drive results
and leads and champions ongoing
process improvement.

• Employees are fully engaged in the
process and fully believe in what they’re
doing.

SAPIENT

Sapient is headquartered in Massachusetts and operates in other international
locations throughout the world. The company helps clients achieve extraordinary
results from their customer relationships, business operations, and technology.
Leveraging a unique approach, breakthrough thinking, and disciplined execution,
Sapient leads its industry in delivering the right business results on time and on
budget.2

Unique Challenges

Sapient has developed a unique and innovative agile methodology called
Sapient|Approach (S|A), they have fully integrated agile into their own business,
and they have also helped many clients become more agile. Some of the unique
challenges that Sapient faced were:

1. A large portion of Sapient’s business is focused on providing services to
clients. In many cases, these services have been provided on a fixed-price

2 Sapient Company Profile, www.fullinterview.com/phpkb/article/sapient-company-profile-5135
.html

74 Case Studies

basis because their clients value the ability to budget and control costs
accurately. Adopting an agile business model required some rethinking of
the fixed-price business model and also required developing partnerships
with their clients to achieve a balance of cost control and the flexibility
that was needed to be adaptive to very dynamic client needs that evolved
as the project progressed.

2. Sapient focuses on helping their clients achieve business outcomes as a
primary goal, and their services are holistic in their nature and typically
include all of the following:
• Working with the client to define top-level strategies and objectives
• Designing and implementing business processes to support those strate-

gies and objectives
• Implementing IT systems and applications that are well-integrated with

those business processes
• Providing change management to help clients achieve the organizational

transformation that might be needed to successfully implement a more
agile approach

These factors have required a highly integrated approach that puts the
agile practices and principles into the context of how it enables their
clients to achieve those business outcomes.

3. Many of Sapient’s customers are in a government environment, which
adds another layer of challenges and complexity including:
• Overcoming bureaucracy within and among government agencies to

help them become more agile and to help them develop collaborative,
cross-functional relationships within the government environment

• Developing close collaborative partnerships with their government cus-
tomers to develop more agile working relationships in spite of typical
government contractual requirements

Process Methodology Selection and Design

Sapient had to craft a unique methodology to fit their business called Sapient|
Appproach because existing “out-of-the-box” agile and non-agile methodologies
were not adequate to provide an effective, overall business solution for their
business:

“When we began to consider the role that agile methods would play in
our delivery methodology, we were met with a daunting proliferation
of choices: Crystal, Extreme Programming (XP), Scrum, and Dynamic
Systems Development Method (DSDM), just to name a few. Each of
these, while rightfully attesting to being agile, approaches agility in a
unique and nuanced fashion.

Sapient 75

For instance, XP takes a heavily developer-centric view, focusing
on engineering practices such as continuous integration and test-driven
development (TDD) and collaboration techniques like the planning game
and pairing. It does not; however, provide the robustness of project
management processes offered by Scrum. Similarly, DSDM provides
risk management practices which are more conspicuously missing from
Scrum. Furthermore, Agile Unified Process (AUP) and Agile Modeling
offer tools and techniques for requirements development not found in
any of the other aforementioned methodologies.

Thus, many of the discrete methodologies beneath the agile umbrella,
when taken in isolation, leave something to be desired from an enter-
prise delivery perspective. Luckily; however, most of the “offenders” are
complementary to one another and can be creatively combined to provide
the breadth of process necessary to deliver complex projects. You simply
need to be selective and understand how elements of each method satisfy
specific needs within your organization.”3

Developing the Sapient|Approach methodology required mixing and matching
a number of methodologies and practices as well as customizing and scaling them
to fit their business environment and large, complex projects:

“For us, being selective meant considering our needs across a number of
process areas. In the end, we based the core of our development process
on XP and Lean Development, but found a great deal of augmentation
was required from an analysis and design perspective in order to deal
with the complexity of the systems we often encounter. So, we dropped
XP’s ‘system metaphor’ concept in favor of some of the more robust
modeling techniques provided by Agile Modeling. To this, we added
Scrum-based project management techniques, but deviated from both
Scrum’s guidance on sprint length as well as XP’s approach. We have
opted to allow teams to select an iteration length ranging from one to four
weeks in duration. The iteration length is chosen based on a decision-
making framework that respects such influencing factors as team size and
structure, degree of geographic collocation or distribution, the number of
integration partners and the nature of their delivery methods, and the
customer’s level of experience and comfort with working with a highly
iterative model.”4

3 Gottesman, Erik, “Growing Agility in a Large and Distributed Enterprise,” Agile Project Lead-
ership Network, Agile Business Conference, London, UK, 2006, p. 2
4 Gottesman, Erik, “Growing Agility in a Large and Distributed Enterprise,” Agile Project Lead-
ership Network, Agile Business Conference, London, UK, 2006, p. 3

76 Case Studies

Sapient recognized that many times, off-the-shelf implementations of stan-
dard agile methodologies don’t work, but standard agile methodologies provide
“building blocks” for building a complete methodology:

“The myriad agile methods existing today offer the basic mechanics
required to deliver valuable software solutions early and continuously
with a high standard of quality. However, what happens when you seek
to institutionalize these methods in organizations consisting of hundreds
of teams (large and small) working across multiple industries and using
sometimes markedly dissimilar technologies? Simply put, today’s agile
methods fall short of providing what is needed to cope with such com-
plexity and variation in a consciously reasoned fashion which promotes
organizational knowledge.”5

Sapient also recognized the value of traditional standards and principles such
as CMMI that might not normally be considered a part of an agile implementation
and blended and integrated those into their approach:

“More often than not, agile teams shun such models as Capability Matu-
rity Model Integrated (CMMI), ISO, ITIL, and Six Sigma as being
bureaucratic and representative of the ‘old guard’—i.e., favoring pro-
cesses and tools over individuals and interactions. We, on the other hand,
felt this to be a short-sighted view. Is it not possible to combine the best
of agile with the best these models have to offer? For example, ITIL ser-
vice delivery practices provided us a means to more seamlessly integrate
agile methods into an application support context.

Similarly, we drew practices from CMMI for configuration manage-
ment, product distribution, defining and provisioning training, and iden-
tifying and deploying process improvements. CMMI also prompted us
to invoke one very specific change in how we do development. As men-
tioned earlier, the core of the S|A development process is based on
practices established in XP. However, we did away with XP’s insistence
on pairing. As a services firm we must often work side-by-side with
many partners. Effectively integrating such a team often means bringing
together many different working styles and organizational cultures. Thus
pairing is not always preferable or possible. In cases where pairing is
not practiced, other techniques must be employed to ensure the quality
of work products. To this end, CMMI provides a wealth of guidance on
verification.”6

5 Gottesman, Erik, “Growing Agility in a Large and Distributed Enterprise,” Agile Project Lead-
ership Network, Agile Business Conference, London, UK, 2006, p. 3
6 Gottesman, Erik, “Growing Agility in a Large and Distributed Enterprise,” Agile Project Lead-
ership Network, Agile Business Conference, London, UK, 2006, p. 4

Sapient 77

Mixing and matching these various agile and non-agile methodologies, prin-
ciples, and practices requires a very high level of skill. On the surface, they may
not appear to be congruent with each other at all; however, understanding the
principles behind them at a deeper level has enabled Sapient to leverage a very
broad range of knowledge from a variety of sources such as:

• Lean and Theory of Constraints
• Function Points
• User-Centered Design

Sapient also recognized that they didn’t need to throw away a lot of their
existing traditional processes in order to move to agile.

“Lastly, when transitioning to agile methods, one should not believe that
every practice in place before the transition is unnecessary or wrong.
Your organization must have been doing some things right to begin with;
otherwise you wouldn’t be in business, would you? We point this out
because we have seen a disturbing tendency among organizations to think
that in order to be agile; you must unlearn and divorce yourself from all
of your old behaviors. This simply isn’t true. You must let go of some
things. For us, this included evolving our attitude toward fixed pricing.
We also had to get very disciplined about managing WIP and deferring
decisions until the last responsible moment in order to avoid speculation
and waste.

Conversely, over the course of Sapient’s history, we had developed
some highly effective processes of our own design for such things
as aligning stakeholders around a common vision, eliciting customer
requirements, and running Project Management Offices (PMOs). All of
this was good and required neither disposal nor significant overhaul in
order to integrate with the new techniques introduced.”7

Methodology Summary

The following is a high-level summary of the major elements of the Sapient|
Approach methodology:

Factor Description

Unique Features: • Highly customized and well-integrated methodology
• High-level focus on business outcomes in addition to development process
• Excellent blend of control and adaptability
• Innovative use of “non-agile” practices integrated with agile approach

7 Gottesman, Erik, “Growing Agility in a Large and Distributed Enterprise,” Agile ProjectLeader-
ship Network, Agile Business Conference, London, UK, 2006, p. 5

78 Case Studies

Factor Description

Scalability Approach: Modified Scrum-of-Scrums approach plus some PMO processes

Overall Life-Cycle Model
Approach:

Agile Unified Process

Iteration Management
Approach:

Scrum with modifications:

• Modified role definitions
• Variable iteration lengths within a project

Development Approach: Extreme Programming (XP) with modifications:

• Dropped XP’s ‘system metaphor’ in favor of Agile Modeling
• Eliminated pair programming

Agile Practices Included: • Scrum (modified)
• Extreme Programming (modified)
• Product Backlog
• Timeboxing
• User Stories
• Daily Standup Meetings
• Heavy emphasis on customer engagement and continuous improvement
• Transparency and Visibility

Tools Used: Sapient uses its own tool called ResultSpace but not to the exclusion of
other tools

Other Methodologies Used: • CMMI
• Lean and Theory of Constraints8

• Function Points from COCOMO II for software estimation
• User-centered Design (UCD) for user interfaces
• Process Auditing
• Agile Modeling and Model-Driven Development
• Existing Sapient processes for:

• Aligning stakeholders around a common vision
• Eliciting Customer Requirements
• Running Project Management Offices (PMOs)

Methodology Description

Sapient has recognized that the overall methodology needed to be easily tailored
to fit a variety of projects and a layered approach is used to provide that level
of flexibility as shown in Figure 4.1.

8 Goldratt, Eliyahu, Theory of Constraints , Great Barrington, MA, North River Press, 1999

Sapient 79

SAPIENT I APPROACH PRINCIPLES

ACCOUNT
MANAGEMENT

TOOLKIT

PROJECT
MANAGEMENT

TOOLKIT

TECHNOLOGY
DEVELOPMENT

TOOLKIT

INTERACTIVE/
CREATIVE
TOOLKIT

BUSINESS
CONSULTING/

STRATEGY
TOOLKIT

DIGITAL
COMMERCE

MARKETING
SERVICES

SOCIAL
MEDIA

MOBILE
APPLICATIONS TRM CMS BPO

Figure 4.1 Sapient|Approach layered approach

The layered approach consists of:

1. Universal principles that apply to any type of work at Sapient
2. Domain-specific “Toolkits” describe general processes typical in most

Sapient engagements.
3. Engagement or offering “Playbooks,” including detailed, more prescrip-

tive guidance and custom assets for executing specific engagement types
or projects

The core principles which are common to all Sapient projects are:

• Partner with Clients
• Communicate and Collaborate
• Provide Value Early
• Define and Manage Scope
• Front Load Risk
• Timebox Work
• Measure Success

Sapient|Approach is a very complete methodology that embraces the areas
shown in Figure 4.2.

Tools

T
ra

in
in

g

A
do

pt
io

n
an

d
C

om
pl

ia
nc

e

Metrices

O
rg

an
iz

at
io

na
l I

m
pr

ov
em

en
t

Processes

Life Cycles

Role Definitions
and Team Structures

Figure 4.2 Sapient overall methodology (Source: Gottesman, Erik, “Growing Agility in a
Large and Distributed Enterprise,” Agile Project Leadership Network, Agile Business Con-
ference, London, UK, 2006, p. 6)

80 Case Studies

Fusion Executable Arch. Release Release Release Manage

Program Management

Figure 4.3 Sapient|Approach life-cycle model (Source: “The Right IT Results Faster with Sapient|Approach,”
Sapient Corporation White Paper, 2005, p.13)

Figure 4.3 is a high-level view of the Sapient|Approach life-cycle model.
The following is a description of each of the phases in the life-cycle model:

• “In FusionSM, key members of the development team and core client
stakeholders chart the vision; high-level features; and technological
context, constraints and requirements—producing a plan for solution
delivery. FusionSM uses facilitative workshop techniques that can be
used at any time during the project.

• In the Executable Architecture Release, which is typically made up of
two or more iterations, the development team delivers the core 10–20
percent of the completed application, fully implemented and tested, on
the target technical architecture

• Subsequent Releases fall on significant client milestones, and deliver
production-ready software, which the client can choose to internally
test or deploy.

• Manage Iterations follow a more typical application management
paradigm with established Service Level Agreements, and a pattern of
regular releases together with smaller development work as needed.”9

The Sapient|Approach life-cycle model expects that different activities will
happen in parallel, as shown in Figure 4.4, which is based on the ideas behind
unified processes such as the Rational Unified Process (RUP).

Another significant feature of the Sapient methodology is that it is not just
a development methodology. It is heavily focused on business outcomes and
also includes provisions for redefining and reengineering business processes and
business process improvement that is integrated into the overall project with the
systems development work that may be needed to support those initiatives.

Sapient also uses a modified “Scrum-of-Scrum” approach to scale the method-
ology for multiple development teams on larger, more complex projects as shown
in Figure 4.5.

9 “The Right IT Results Faster with Sapient|Approach,” Sapient Corporation White Paper, 2005,
p. 12

D
is

ci
pl

in
es

B
us

in
es

s
M

od
el

lin
g

R
eq

ui
re

m
en

ts

A
na

ly
si

s
&

 D
es

ig
n

D
ev

el
op

m
en

t

D
ep

lo
ym

en
t

R
ev

ie
w

s

C
on

fig
ur

at
io

n
an

d
C

ha
ng

e
M

an
ag

em
en

t

P
ro

je
ct

 M
an

ag
em

en
t

P
ro

ce
ss

 M
an

ag
em

en
t

S
up

po
rt

in
g

P
ro

ce
ss

es

F
us

io
n

E
xe

cu
ta

bl
e

A
rc

hi
te

ct
ur

e
R

el
ea

se
R

el
ea

se
 2S
ap

ie
nt

 I
A

pp
ro

ac
h

Ite
ra

tio
ns

 (
nu

m
be

r
m

ay
 v

ar
y

de
pe

nd
in

g
on

 p
ro

je
ct

)

It.
 1

It.
 2

It.
 3

It.
 4

It.
 5

It.
 6

It.
 7

F
ig

ur
e

4.
4

Sa
pi

en
t|A

pp
ro

ac
h

lif
e-

cy
cl

e
sh

ow
in

g
in

te
rd

ep
en

de
nc

e
of

di
sc

ip
lin

es
(S

ou
rc

e:
“T

he
R

ig
ht

IT
R

es
ul

ts
Fa

st
er

w
ith

Sa
pi

en
t|A

pp
ro

ac
h,

”
Sa

pi
en

t
C

or
po

ra
tio

n
W

hi
te

Pa
pe

r,
20

05
,

p.
13

)

81

82 Case Studies

Test Lead

Client SMEs

Product Owner

Track Lead

TesterDevelopers

TesterDevelopers

Track Lead

TesterDevelopers

Track Lead

PM Architect

Client Proxies

A “virtual team” consisting of
tracks leads, project leadership,
and clients ensures broad
communication of important
project announcements.

Figure 4.5 Sapient team structure

Another very interesting feature of the Sapient|Approach methodology is the
way that it has incorporated Model-Driven Development (MDD), which is not
normally considered an agile process, into the methodology.

“We have formalized our approach to MDD as an integral element of
our overall delivery model, known as Sapient|Approach (S|A). MDD as
described in S|A centers on a triadic PIM (Platform-Independent Model)
consisting of:

• An entity model depicting the business entities and their relationships.
Each entity is represented as a UML class with attributes for data fields.

Sapient 83

Process Model

Key Elements of the Business Model

Use cases and
business processes

Business entities
and their
relationships

Application
behaviour

Object Model Service Model

Figure 4.6 Sapient Platform-Independent Model

• A service model depicting the behavior of the application. Each ser-
vice is represented as a UML class with methods that take entities as
inputs and outputs. Service classes depend on the entities to get the job
done.

• A process model depicting the use cases and business processes of the
application. Each process is represented as an activity diagram with a
start state, intermediate states, and one or more end states.”10

The Triadic Platform-Independent Process Model (PIM) used by Sapient is
shown in Figure 4.611

Automated tools are then used to generate the structure of the working appli-
cation from the Platform-Independent Model (PIM), as shown in Figure 4.7.

10 Gottesman, Erik, “Model-driven Development Through the Agile Looking Glass,” Agile India,
2006
11 Gottesman, Erik, “Model-driven Development Through the Agile Looking Glass,” Agile India,
2006

U
I C

om
po

ne
nt

s

U
I P

ro
ce

ss
 C

om
po

ne
nt

s

B
us

in
es

s
C

om
po

ne
nt

s
B

us
in

es
s

W
or

kf
lo

w
s

S
er

vi
ce

 In
te

rf
ac

es

D
at

a
A

cc
es

s
Lo

gi
c

C
om

po
ne

nt
s

B
us

in
es

s
M

od
el

W
or

ki
ng

 A
pp

lic
at

io
n

F
or

m
s

D
D

L

V
al

ue
O

bj
ec

ts

W
or

kf
lo

w
s

S
er

vi
ce

La
ye

r

D
at

a
A

cc
es

s
La

ye
r/

E
nt

iti
es

F
ig

ur
e

4.
7

Sa
pi

en
t

co
de

tr
an

sf
or

m
at

io
n

pr
oc

es
s

84

CHAPTER 5
PART I SUMMARY AND ACTION PLAN

OVERALL SUMMARY

The following is a summary of some key points that I believe are important from
Part I of this book:

1. Avoid All-or-Nothing Thinking
The word “agile” has come to be associated with specific agile methodolo-
gies such as Scrum and Extreme programming (XP). The implication that
creates is that if you’re not using those methodologies, you’re not agile
at all. There are a number of ways companies can become more agile
without necessarily practicing Scrum and Extreme Programming (XP).

There is a whole spectrum of different methodologies and variations on
methodologies between the most pure forms of agile, such as Scrum and
XP, at one end and the most traditional plan-driven forms of Waterfall at
the other end. Choosing either end might result in severe tradeoffs for most
companies, and it doesn’t need to be an all-or-nothing decision. There
are plenty of alternatives in the middle between those two extremes that
offer a balance of control and agility that can be tailored to a company’s
business environment.

Existing traditional plan-driven methodologies like the Waterfall are
not dead, and there will still be a need for traditional plan-driven devel-
opment projects as well as some that blend traditional plan-driven and
agile methodologies. (See Figure 5.1 for a comparison of alternative
approaches)

2. Avoid Jumping on the “Program du Jour” Bandwagon
Agile is a hot area right now and, as in many other similar situations,
everyone wants to jump on the bandwagon because it’s a popular thing
to do, and they may do it without an overall business strategy behind it
and without fully understand the tradeoffs and issues associated with what
they’re jumping into.

Agile has a lot of potential in suitable environments, but:
• It needs to be consistent with the business and project environment it

is applied to, and

85

86 Part I Summary and Action Plan

• There is no free lunch—it takes a lot of work to fully implement agile
methodologies; there are a number of risks and issues associated with
it, and it definitely is not suitable for all business environments and all
projects.

Developing a strategy on what level of agile product development is most
appropriate for your business should be a major strategic decision for any
company that does product development and relies on successful project
management to effectively execute those projects.

3. Fit Methodologies to Your Business and Projects (Not vice-versa)
Many companies attempt to force-fit their business and projects to a stan-
dard methodology (either agile or non-agile). That almost always results
in less than optimum results—the best approach is to define a strategy of
what balance of control and agility is best-suited for your business envi-
ronment and projects and then select and customize a broader range of
methodologies, principles, and practices to implement that strategy. Force-
fitting a project to Scrum or Extreme Programming (if it isn’t appropriate
for the project) can be just as bad as force-fitting a project to a traditional
methodology.

4. Focus on Business Outcomes as Well as Costs and Schedules
The focus of any project methodology should provide a balance of flex-
ibility and adaptability to achieve successful business outcomes as well
as a sufficient level of control over costs and schedules and risks. Each
project is unique and:
• The risks and complexity of the project, as well as
• The business goals, capabilities, and culture of the organization
All of these factors should determine the methodology that is best suited
for a given project.

5. Implement Methodologies Intelligently
Once a methodology is chosen, it should be implemented intelligently
with an appropriate degree of tailoring and flexibility to adapt to change.
No methodology should ever be considered to be absolute dogma. This,
of course, implies that project managers and project teams are sufficiently
trained to make responsible decisions that may be needed to customize
and tailor methodologies to fit each project.

6. Major Organizational Change May be Needed Implementing a more agile
product development strategy may have broad-based implications and may
require a major organizational transformation in some cases to be success-
ful. The magnitude of that effort will depend on the size of the gap between
the company’s current processes, culture, and capabilities and the desired
end state. That transformation needs to be understood and planned, and
an incremental transformation may be appropriate in some cases.

“E
xt

re
m

e”
 W

at
er

fa
ll

“H
yb

rid
”

A
gi

le
“E

xt
re

m
e”

 A
gi

le

E
vo

lu
tio

na
ry

D
et

er
m

in
is

tic

B
ig

 u
p

fr
on

t d
es

ig
n

Ju
st

 in
 ti

m
e,

 q
ua

lit
y

fo
cu

s

Lo
w

H
ig

h

P
ro

je
ct

M
an

ag
em

en
t

D
ev

el
op

m
en

t
P

ro
ce

ss

C
ol

la
bo

ra
tio

n

D
et

ai
le

d
 p

la
n

 f
o

r
en

ti
re

p
ro

je
ct

S
co

pe
-b

ox
ed

 p
ha

se
s

T
ra

ck
 p

ro
gr

es
s

by
 ta

sk
s

an
d

m
ile

st
on

es
 c

om
pl

et
ed

D
et

ai
le

d
do

cu
m

en
ta

tio
n

fo
r

al
l

re
qu

ire
m

en
ts

S
ho

rt
 to

 m
ed

iu
m

 le
ng

th
 ti

m
e-

bo
xe

d
ite

ra
tio

ns
V

ar
yi

ng
 g

ra
nu

la
rit

y
pl

an
s

T
ra

ck
 p

ro
gr

es
s

by
 v

al
ue

de
liv

er
ed

R
is

k-
d

ri
ve

n
 r

eq
u

ir
em

en
ts

d
o

cu
m

en
ta

ti
o

n

1-
w

ee
k

tim
eb

ox
ed

 it
er

at
io

ns
P

la
n

 o
n

ly
 c

u
rr

en
t

it
er

at
io

n
T

ra
ck

 p
ro

gr
es

s
by

 w
or

ki
ng

co
de

T
es

ts
 a

re
 o

nl
y

lo
ng

-t
er

m
re

qu
ire

m
en

ts
 d

oc
um

en
ta

tio
n

D
es

ig
n

al
l b

ef
or

e
co

di
ng

 in
co

m
pl

et
e

de
ta

il
P

er
io

di
c

bu
ild

s
In

te
g

ra
te

 o
n

ly
 o

n
ce

 a
ll

co
d

e
co

m
p

le
te

P
ar

tia
l u

ni
t t

es
t c

ov
er

ag
e

R
is

k-
an

d
 v

al
u

e-
d

ri
ve

n
d

es
ig

n
 c

h
o

ic
es

D
ai

ly
 b

ui
ld

s
C

on
tin

uo
us

 fu
nc

tio
na

l t
es

tin
g,

la
rg

el
y

au
to

m
at

ed
80

%
 u

ni
t t

es
t c

ov
er

ag
e

D
es

ig
n

al
l j

us
t i

n
tim

e-
no

th
in

g
up

 fr
on

t
M

in
im

al
 d

es
ig

n
d

o
cu

m
en

ta
ti

o
n

C
on

tin
uo

us
 in

te
gr

at
io

n
bu

ild
s

T
es

t-
dr

iv
en

 d
ev

el
op

m
en

t;
10

0%
 u

ni
t t

es
t c

ov
er

ag
e

B
us

in
es

s
in

vo
lv

em
en

t o
nl

y
at

pr
oj

ec
t s

ta
rt

 a
nd

 c
om

pl
et

io
n

“T
h

ro
w

 it
 o

ve
r

th
e

w
al

l”
re

q
u

ir
em

en
ts

co
m

m
u

n
ic

at
io

n
 m

o
d

el
C

om
m

un
ic

at
io

n
vi

a
pe

rio
di

c
st

at
us

 m
ee

tin
gs

 (
m

on
th

ly
 o

r
gr

ea
te

r)

F
re

q
u

en
t,

 r
eg

u
la

r
b

u
si

n
es

s
in

vo
lv

em
en

t
C

ro
ss

-g
ro

up
 c

ol
la

bo
ra

tio
n

vi
a

fr
eq

ue
nt

 c
he

ck
po

in
ts

C
ro

ss
-f

un
ct

io
na

l t
ea

m
s

S
el

f-
or

ga
ni

zi
ng

 te
am

s
D

ai
ly

 “
st

an
du

p”
 m

ee
tin

gs

C
o

n
ti

n
u

o
u

s
fa

ce
-t

o
-f

ac
e

b
u

si
n

es
s

in
vo

lv
em

en
t

C
ro

ss
-f

un
ct

io
na

l t
ea

m
s

P
ai

rin
g

D
ai

ly
 s

ta
nd

up
 m

ee
tin

gs

F
ig

ur
e

5.
1

C
om

pa
ri

so
n

of
ag

ile
an

d
no

n-
ag

ile
ap

pr
oa

ch
es

(S
ou

rc
e:

“E
nt

er
pr

is
e

A
pp

lic
at

io
n

of
C

M
M

I
an

d
A

gi
le

,“
Sa

pi
en

tW
hi

te
Pa

pe
r,

M
ar

ch
20

10
)

87

88 Part I Summary and Action Plan

DEVELOPING AN ACTION PLAN FOR YOUR BUSINESS

Moving to a more agile development strategy for your business can be either a
major radical shift in the organization and its culture or only a minor shift in
direction, depending on where you are today and where you want to get to. In
any case, it is worth some level of planning, and that planning should include
the following questions:

• What is the impact of agile on your business? What value will be gained
from becoming more agile?

• Are you satisfied with your current product development process?
• What does the future look like?
• How ready is the company to make a transition to a more agile approach?
• How agile do you want to be and when do you want to get there?

Planning Questions

Each of these questions will be discussed in the following sections.

1. What Is the Impact of Agile on Your Business?
• What is the relative impact of alternative agile approaches on providing

business value?
• How does a more agile approach align with the company’s business

strategy?
• What are the tradeoffs associated with these approaches?
• What approach seems to provide the most appropriate balance of control

and agility for the business?
2. Are You Satisfied with Your Current Product Development Process?

• What works well?
• What doesn’t work well? What are the “pain points” in the current

process?
• What do stakeholders and users think? What would they like to see?
• Are projects meeting their business goals and objectives?
• Where are the opportunities for improvement?
• What are the highest priority issues to be addressed?
• Are there any significant risk and regulatory factors that need to be

considered?
3. What Does the Future Look Like?

Are there any changes coming in the future that might require doing things
differently?
• Business changes?
• Technology changes?

Developing an Action Plan for Your Business 89

• Risk environment changes?
• Regulatory changes?
• Etc.

4. How ready is the company to make a transition to a more agile approach?
The biggest factors in making a transition to an agile approach are not
technical issues but cultural and organizational issues.
Sapient has developed a checklist of factors that organizations can use to
assess their readiness for agile:

Overall Business Environment:1

• “Trust pervades the culture of the organization, the interactions
between its people, and its clients.

• Individuals demonstrate a high level of enthusiasm for or open-
ness toward change.

• Management empowers individuals to take risks without fear
of repercussions.

• Disciplined execution is representative of the organization’s de-
livery practices or broadly viewed as a goal worth striving for.

• Teams and management alike evidence the commitment and
patience necessary to seeing through changes despite chal-
lenges and disappointments along the way.

• A willingness exists to make reasonable investments in tools,
training, coaching, and mentoring to facilitate successful adop-
tion and sustained change.”

Project Environment:2

• “Project Stakeholders are known and aligned around a unifying
vision of the solution.

• Product owners (customers) are able to commit the time
required to collaborate frequently with teams providing
feedback and direction.

• Product owners are empowered by the business to make key
decisions relating to scope and priorities.

• Product owners are comfortable being exposed to work in
progress and a heightened level of transparency with respect
to quality and progress.

• Team and organizational structures support cross-functional,
multi-disciplinary collaboration.

1 “Executive Brief | Are You Ready for Agile?” Sapient Corporate White Paper, www.sapient.com
2 “Executive Brief | Are You Ready for Agile?” Sapient Corporate White Paper

90 Part I Summary and Action Plan

• The full team participates in daily status meetings, shared
progress and resolving blocking issues through collaboration

• Individual team members are self-directed and take initiative
and ownership to help move the project forward.

• People accept that speculation is wasteful and are thus tolerant
of ambiguity.

• People are comfortable giving and receiving feedback to one
another.

• Project management embraces change in a disciplined fashion,
keeping the teams focused on tangible, short-term goals and
shielding them from disruptive ad-hoc changes.

• Project management makes decisions based on objective data.
• Tools used to facilitate delivery processes are capable yet sim-

ple enough that they pose minimal overhead.
• Simplicity is accepted as a fundamental design principle.”

5. How Agile Do You Want to Be and When Do You Want to Get There?
Many agile books will tell you to just start right away to develop a pilot
project with Scrum and let it evolve from there. That approach may work
in some companies, but going to a Scrum methodology is definitely not the
right solution for everyone, and even if it is the right solution, it may take
a long-term commitment and plan to achieve the kind of transformation
that could be necessary to get there.

A hybrid approach might make sense in some companies for a couple
of key reasons:
• It may not make sense for some companies to move to a pure agile

approach because the nature of their products and services is fairly
certain and predictable or they operate in a high risk or regulated envi-
ronment that may require a more plan-driven approach.

• Some companies may have some significant cultural obstacles to over-
come to move to a pure agile approach, and a change management
approach is probably needed. It is well recognized that there are three
factors that are essential to the success of any change management
initiative:
• “Burning Platform”—There has to be a sufficient level of “pain”

with the current situation to motivate a significant change—if there
isn’t a sufficient level of pain to provide that motivation, the effort
may not get very far.

• Vision and Strong Leadership—Senior management needs to define
a vision of where the company wants to go, explain why it’s important
to get there, and provide the overall leadership

Developing an Action Plan for Your Business 91

• Progress in That Direction—The third element of a successful
change management initiative is to show progress toward moving in
that direction.

If there is no “burning platform” (i.e., no strong compelling reason why
an agile transformation is important), it may be difficult to achieve the
level of change that may be needed to make it successful. In some of
these situations, a hybrid approach may make sense, at least as an interim
solution, because of the difficulty of implementing a broad-based change
management initiative.

For large companies that have a well-established approach built around
traditional plan-driven development processes, this may not be an easy
decision. Although the benefits of migrating to a more agile approach
may be very significant:
• The level of effort to implement it may be also be very significant, many

people in the organization may need retraining to migrate to agile, and
some personnel changes may also be needed.

• It may bring about a fairly significant amount of change that might be
disruptive to the company’s business.

• The impact of the agile implementation on existing methods for project
governance and managing project costs and schedules also needs to be
considered and planned for.

Alternative Approaches

There are several approaches that might be considered:

1. Incremental Improvements—For companies that have very cumber-
some traditional development processes but are not ready to make a
significant change, there are a number of things that can be done to stream-
line and improve their development processes and incorporate some more
agile practices. These changes can have a significant impact on improv-
ing the current process without requiring extensive organizational changes
and will move the company further along towards an agile approach. The
following are some examples:
• Develop an organizational culture and leadership approach that is more

agile based on:
• Respect for people and empowerment of people
• Cross-functional, collaborative teamwork across functional organiza-

tions
• Collective ownership of project quality and business outcomes

• Begin developing a more cross-functional team approach

92 Part I Summary and Action Plan

• Provide training to everyone in the organization so that they are better
prepared to accept the responsibility associated with implementing a
more empowered approach.

• Streamline current development processes and build more flexibility
into the processes. Many companies rigidly attempt to follow a single
project methodology for all projects in order to maintain project control.
• Use lean principles and perform a “value stream” analysis of the

current process to eliminate waste
• Review and streamline the documents and artifacts required for

projects based on an assessment of the value they provide
• Train and empower project teams to make good risk management

decisions to tailor the life-cycle model as needed to develop an appro-
priate balance of control and flexibility for each project.

• Create an increased level of focus on continuous improvement of
processes and provide a mechanism to evolve the processes based on
lessons learned.

• If a Project Management Office (PMO) organization is in place, shift
the role of the PMO from a process enforcement role to a value-added
consulting role.

• Adjust the management and leadership style as well as metrics if neces-
sary to provide an appropriate balance between control and agility and
to be consistent with the preceding approach.

2. Implement a More Iterative Approach—If it is not feasible to migrate
to a pure agile approach, a hybrid approach that is more iterative might
be a good compromise:
• Simply providing a choice between traditional plan-driven approaches

and iterative approaches could be a major step forward, if it is com-
bined with some of the organizational culture changes discussed under
incremental improvements.

• Developing a more iterative approach should also consist of increas-
ing the level of engagement of business sponsors in the design and
development effort.

Implementing a more iterative approach would consist of:
• Designing the life-cycle model(s) to support the approach—this might

be either an iterative plan-driven approach or an iterative emergent
approach, or some combination of both.

• Selecting any tools that might be needed to support the approach.
• Training personnel on the new process—project managers involved in

the process need to understand how to tailor and use the process to fit
their projects.

Developing an Action Plan for Your Business 93

• Committing resources to project teams to begin implementing the
process.

3. Implement a Pure Agile Approach—Many companies may choose to
go directly to a pure agile approach for all or part of their develop-
ment projects. There is no question that a pure agile approach has major
benefits for projects and business environments that have high levels of
uncertainty. For those companies that elect to make the transition to a
pure agile approach, I recommend Mike Cohn’s book Succeeding with
Agile—Software Development Using Scrum3 as a good resource to help
develop a plan. He goes into detail on some of the factors that might need
to be addressed in this plan such as:
• Common activities in any successful Scrum adoption:

• Building awareness and consensus that the current. process is not
delivering acceptable results.

• Creating desire to adopt Scrum as a way to address current problems.
• Developing the ability to succeed with Scrum.
• Promotion of Scrum throughout the company.
• Transferring an understanding of the implications of Scrum to all the

organizations that might be impacted.
• Implementing an Enterprise Transition Community (ETC) to plan, ini-

tiate, and steer the implementation of Scrum in the company.
• Setting up an Improvement Community to collaboratively improve the

organization’s use of Scrum.
• Selecting and implementing pilot projects to begin actual implementa-

tion.
Many times, a pure agile (e.g., Scrum) implementation will need to be
combined with a broader project management layer and perhaps also a
portfolio and/or program governance layer. Jim Highsmith’s book Agile
Project Management—Creating Innovative Products4 is a good resource
for designing and implementing a project management and portfolio man-
agement approach to wrap around a pure agile approach.

How Do You Get There?

After you’ve chosen an approach that makes sense for your business, the final
question is “How do you get from where you are to there?” The answer to
that is it depends on how big the transformation is that is needed and whether

3 Cohn, Mike Succeeding with Agile—Software Development Using Scrum, New York: Addison-
Wesley, 2009
4 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010

94 Part I Summary and Action Plan

a more incremental approach for getting there is appropriate or a more radical
transformation approach will work better:

• One school of thought is that organizations are at different levels of matu-
rity, there is a progression of levels that you need to go through to get to
the level of maturity needed to implement a pure agile approach similar
to other maturity models such as CMMI,5 and you just can’t jump from
level 1 to level 5 instantly. The level of maturity required to implement a
pure agile approach should not be underestimated, and it can take time to
move a large organization to a higher level.

• Another way of thinking is that if you really want to make a radical change,
a more aggressive approach may be needed. This is similar to the difference
between an incremental process improvement approach like TQM or Six
Sigma and a more radical approach like business process reengineering
(BPR). BPR taught us that sometimes it makes sense to toss out the current
process and start over with a clean slate to really rethink the way thing are
done to come through with breakthrough improvements.

There’s some merit in both of these ways of thinking. There is a progression of
maturity levels that companies need to go through to get to a pure agile approach
and that can take time, but rather than attempting to bring the entire organization
up to a higher level of maturity all at once, a pilot project that is limited to a
smaller portion of the organization would be a way of demonstrating success
quickly on a smaller scale. That approach would also avoid the disruption that
a more widespread radical transformation might cause. The method for getting
there will generally follow along the following lines:

• Improvements in organizational maturity may require planning of change
management and training activities to bring about that kind of change.

• Incremental Improvements in existing development processes will gener-
ally use existing process improvement techniques, such as lean thinking
and value stream mapping, to improve current processes.

• Moving to a more iterative development process will require more rethink-
ing of current design processes and design of new iterative processes. In
most cases, it is not just a matter of adopting standard, off-the-shelf itera-
tive development processes like RUP. A considerable amount of thinking
and work may be needed to adapt and customize these processes to fit the
company’s business environment.

• A move to a pure agile development methodology like Scrum is likely
to require the greatest transformation and is more likely to resemble a
business process reengineering type of transformation.

5 “Capability Maturity Model Integration (CMMI),” www.sei.cmu.edu/cmmi

Developing an Action Plan for Your Business 95

If you choose to go directly to a pure agile approach like Scrum, Ken
Schwaber’s book The Enterprise and Scrum6 is a good resource to use. Ken
Schwaber recommends three levels of transition teams:

• The Enterprise Transition Team is responsible for planning and manag-
ing the implementation of Scrum at an enterprise level. This would include
defining and planning the scope of the Scrum implementation across the
enterprise and defining and managing the enterprise-level activities that
need to take place to successfully implement a Scrum that strategy. This
effort would normally be driven by a cross-functional team of the com-
pany’s senior management and should include any senior managers who
are impacted by the implementation.

• Scrum Rollout Teams are responsible for doing the actual adoption work
at a more tactical level to roll out the implementation. These teams would
be responsible for planning and managing efforts that support multiple
development teams such as customizing the methodology as needed to fit
with the company’s business environment, defining and, implementing any
training that may be needed, and monitoring the progress of adoption by
development teams.

• Development Teams would be responsible for applying the methodology
to selected projects.

Treating the implementation of the overall enterprise transition as an agile
project in itself has the advantage of engraining agile thinking at a number of
different levels, including the most senior managers.

“Adopting Scrum in an enterprise is like looking into the abyss, girding
oneself for an epic journey, and then making the plunge. What will be
discovered and have to be conquered is different in each enterprise; what
is common is the courage to start and then persist.” 7

6 Schwaber, Ken, The Enterprise and Scrum, Redmond, WA: Microsoft Press, 2007
7 Schwaber, Ken, The Enterprise and Scrum, Redmond, WA: Microsoft Press, 2007

PART II
OVERVIEW

The following are the objectives of Part II of the book.
For project managers, the book is intended to provide a much deeper under-

standing of lean and agile principles, methodologies, and practices to enable
project managers to develop a more agile project management approach. It
also provides an understanding of how to blend and tailor both agile and tradi-
tional principles, methodologies, and practices to create an appropriate balance
of control and agility to fit a business environment, as well as to the risks and
complexities of any individual project. Key points include:

• How the project management role is changed in agile projects and what
new skills and career directions may be needed to grow into agile project
management roles

• How to develop a project management approach that is adaptive to agile as
well as non-agile project environments, including how to integrate existing
project management knowledge such as A Guide to the Project Management
Body of Knowledge (PMBOK Guide) with new and rapidly evolving agile
principles, practices, and methodologies

• How to design and tailor the right combination of principles, practices, and
methodologies (agile as well as non-agile) to provide a balance of control
and agility to fit the needs of the business and the risks and complexity of
projects rather than attempting to use a standard off-the-shelf methodology
(either agile or non-agile) for all projects

The future direction of project management is changing rapidly as a result of
agile methodologies. For many project managers, it will call for:

• New ways of thinking about the project management role
• New approaches and methodologies for implementing projects
• New skills for working in a very different environment

Bob Wysocki has created an analogy that I really like—he talks about the
difference between a project manager acting as a “cook” or as a “chef”:1

• A good “cook” may have the ability to create some very good meals,
but those dishes may be limited to a repertoire of standard dishes, and

1 Wysocki, Bob, e-mail comments, 6/4/2010

98 Overview

his/her knowledge of how to prepare those meals may be primarily based
on following some predefined recipes out of a cookbook.

• A “chef,” on the other hand, typically has a far greater ability to pre-
pare a much broader range of more sophisticated dishes using much more
exotic ingredients in some cases. His/her knowledge of how to prepare
those meals is not limited to predefined recipes and, in many cases, a chef
will create entirely new and innovative recipes for a given situation. The
best chefs are also not limited to one kind of cuisine and are capable of
combining dishes from entirely different kinds of cuisine.

That sums up what I believe is the key challenge for project managers fairly
well. In the future:

• More project managers will need to be “chefs” rather than “cooks.”
• Project managers will need to be able to select from a broader range of

methodologies, practices, and principles (both agile and non-agile) that are
much less well defined to create a project management approach that is
well aligned with the needs of a business environment and then customize
and tailor them to fit the risks and complexities of individual projects.

It requires a much higher level of skill to do that. It requires:

• Knowledge of a much broader range of methodologies and practices (both
agile and non-agile)

• An understanding of the fundamental principles behind those methodolo-
gies and practices to know how to mix and match them and customize
them as needed to maximize the success of a given project

Just as companies need to make decisions about how agile they want to be and
when they want to get there, the project management approach needs to change
to support that direction and project managers need to develop their own skills
to support that approach, as shown in Figure P.1

In some cases, new roles may be needed for project managers to perform such
as designing customized software development life cycle (SDLC) processes that
provide a balance of control and agility. Part II of the book is designed to help
project managers understand how the project management role may evolve in
helping their companies become more agile.

Overview 99

AgilityControl

Extreme
Waterfall

Extreme Forms
of Agile

(e.g., Scrum)

TRADITIONAL APPROACH

EMPHASIS ON PLANNING AND CONTROL

EMPHASIS ON TEAM FACILITATION

VERY DYNAMIC ADAPTIVE APPROACH

HYBRID APPROACHES

FOCUS ON BUSINESS OUTCOMES

ABILITY TO MIX AND MATCH AND TAILOR

METHODOLOGIES TO FIT THE BUSINESS

PURE AGILE APPROACH (E.G., SCRUM)

HEAVY FOCUS ON CUSTOMER VALUE & PARTICIPATION

Figure P.1 Comparison of project management roles

CHAPTER 6
AGILE PROJECT MANAGEMENT

AGILE PROJECT MANAGEMENT ROLES

Agile methodologies are intentionally lean, they focus on fundamental principles,
and they are also not prescriptive—that is by design. Agile methodologies do not
specifically define a project management role or a business analyst role. The lack
of definition of these roles has led to the perception that the project management
and business analyst functions are no longer needed in agile projects.

The reality is that even though there may be no one with the formal title of
“project manager” or “business analyst” on an agile project, some of the functions
performed by project managers and business analysts are still required and need
to be performed by someone on the agile team, even if there is no one with that
formal title. That means that someone on the team needs to have the skills and
knowledge required to perform those tasks.

Some traditional project management functions may not be needed or may be
performed in other ways in a pure agile approach. Several factors create a very
different environment on agile projects that dramatically impacts the need for
project management and how it is performed:

• Many of the decisions are made collectively by the team, and the Scrum-
Master plays a facilitative rather than a directive role.

• The team also uses a consensus-driven approach to come up with schedule
estimates for the project and release plans.

• There is typically a much more limited amount of upfront planning and
documentation on each project.

• There is also a much greater emphasis on taking a more flexible and adap-
tive approach to optimize business outcomes rather than a control-oriented
approach that is focused on managing costs and schedules.

• The primary members of the team are usually assigned full time to the
project, so there is less of a need for resource planning and securing com-
mitments for resources to support the project from functional departments;
however, there is much more of a need for the team to be self-managing
without as much direct intervention by functional managers.

101

102 Agile Project Management

• The methods for reporting and tracking progress of the project are also
built into the way the team operates and are typically less formal.

On small-scale projects, the ScrumMaster may perform the tasks that a project
manager might normally perform; however, the ScrumMaster role is very dif-
ferent from most typical project management roles. A number of books have
compared the role of the ScrumMaster to a “sheep dog” that guards and shep-
herds a flock of sheep. He/she keeps the sheep from straying too far out of the
group and protects the flock from unwanted interference and obstacles. It is much
more of a facilitative role than it is a directive role.

There are basically two levels of project management in a pure agile (e.g.,
Scrum) project:

• Within a Scrum team, the ScrumMaster typically performs many of the
tasks that would normally be performed by a project manager such as
leading and facilitating the team and tracking and managing progress of the
project. It is done in an entirely different context, and it is a very different
role from a traditional project management role, but some of the functions
that the ScrumMaster performs involve some project management skills.

• In larger, more complex agile projects, an extra layer of management may
be needed to coordinate and manage the work of multiple teams in addition
to the role performed by the ScrumMaster within individual teams. That
layer of project management can be implemented in a number of different
ways (See discussion on project management practices), but it will also
require an additional level of project management responsibility.

The pure agile approach (e.g., Scrum) relies heavily on self-organizing teams
facilitated by the ScrumMaster to collectively perform most of the project man-
agement functions. Putting a lot of faith in self-organizing teams is a good idea,
but it clearly has its limits:

• The success or failure of it is highly dependent on the skills of all the
individuals on the team in following the Scrum process, and it only works
if the individuals on the team are experienced enough and knowledge-
able enough to take on that responsibility. Making a self-organizing team
work effectively is also very dependent on developing a very collaborative
approach both among all of the direct participants in the team and between
the team and any external stakeholders.

• The self-organized team model isn’t very scalable to larger projects, and it
doesn’t adequately address many of the typical higher-level project man-
agement planning and management roles that are essential to the success
of projects, especially those requiring multiple teams.

• In situations that require a balance of agility and control, a hybrid project
management approach might be needed that blends an additional level of
planning and management with self-organizing teams as a foundation.

Agile Project Management Roles 103

Comparison of Traditional and Agile Project Management Roles

The diagrams below show a comparison of the way roles that are typically
implemented on traditional development projects and agile development projects.
Figure 6.1 shows the typical role definitions found in traditional projects and
Figure 6.2 shows the typical role definitions found in agile projects. Note that
these diagrams only show the roles and responsibilities within single teams for
agile projects—an additional layer of project management would normally be
needed to coordinate the efforts of projects that require multiple teams.

The following is a summary of some key differences in an agile project:

• A Project Management Office (PMO) might not typically be involved in
an agile project at all in many cases. If a PMO were involved at all, it
might play much more of a value-added process consulting role rather than
a process control function in an agile environment.

• The ScrumMaster replaces some of the functions of the project manager
and plays much more of a “servant leader” role performing team facilitation
and the team, as a whole, makes project decisions that might normally
be made individually by the project manager. The idea of engaging the
team in the decision-making process is a good technique that many project
managers practice to some extent anyway on traditional projects.

• The Product Owner may replace many of the functions that might have
been performed by a Business Analyst to provide the overall requirements

Project
Documents

Project Planning & Mgt.
Risk Management

Project
Manager

Development
Manager

Development
Resources

QA
Manager

QA
Resources

Coordination of Resources

Functional Direction

Other
Resources

Other Functional
Managers

Business
Users

Business
Requirements

Business
Analyst

PMO

Process Direction
Status Reporting &
Tracking

Figure 6.1 Typical role definition in traditional development projects

104 Agile Project Management

Other Functional
Managers

QA
Manager

QA
Resources

Product
Owner

Business
Users

Business
Requirements

Scrum Master PMO
Progress Monitoring

Project Team
Process Guidance &

Support

Other
Resources

Development
Resources

Development
Manager

Figure 6.2 Typical role definitions in an agile project

definition for the project; however, that role is also considerably different
from a Business Analyst role. The Product Owner is expected to be a sub-
ject matter expert, represent the interests of all the business stakeholders,
and provide overall business direction to the project. It is very conceiv-
able that a Business Analyst may also be needed on the team to assist the
Product Owner in performing that role.

• The functional department managers such as the Development Manager
and the QA Manager play a significantly reduced role and provide only
very limited functional direction to the team—the functional members of
the team are expected to provide most of their own functional direction.
Naturally, that requires fairly highly skilled people to fill those roles.

The table below shows a comparison of the typical project management and
governance roles in traditional, plan-driven projects and agile projects.

Responsibility Traditional Agile

Process Direction
and Control

• The PMO provides process
direction and control (standardize
the utilization of processes).

• The Project Team (led and facilitated by the
ScrumMaster) is responsible for defining,
implementing, and continuously improving the
process.

• The PMO may play a value-added consulting
or supporting role if necessary.

Agile Project Management Roles 105

Responsibility Traditional Agile

Progress Tracking • The Project Manager is
responsible for tracking and
reporting of project progress and
control and management of
overall costs and schedules.

• The PMO may provide overall
oversight and control for all
projects.

• The Project Team (led and facilitated by the
ScrumMaster) is responsible for tracking and
monitoring of their own progress.

• Progress reporting metrics such as the “burn
down chart” are built into the process.

• The PMO may play a consolidation role.

Functional
Management
Responsibility
for Resources

• Functional managers (QA, Dev,
etc.) provide direct management
for all functional resources
involved in projects.

• The Project Manager is
responsible for defining and
assigning tasks to functional
resources and obtaining
commitments for task performance
from functional managers as
necessary.

• The Project Team (led and facilitated by the
ScrumMaster) is responsible for functional
management of team resources, including
assigning tasks, obtaining commitments, and
making any functional decisions that may be
needed.

• Functional managers may play a supporting
role if necessary.

Coordination of
Resources

• The Project Manager is
responsible for coordinating the
availability of resources from
supporting departments.

• Most resources are assigned full time to the
project; therefore, less resource coordination is
needed.

• The ScrumMaster will coordinate availability
of shared resources from other departments.

Business Analysis
and Require-
ments
Elicitation

• Requirements are documented and
controlled.

• Business Analysts work directly
with the users to analyze, define,
and document requirements.

• Documentation of requirements may be less
formal and may be less controlled.

• The Product Owner is dedicated to the team
and is the representative of user requirements
to the team.

• The Product Owner might be trained as a
Business Analyst or use Business Analysts to
help if required

Change
Management

• The Project Manager is
responsible for controlling and
managing changes to the project
requirements as the project
progresses.

• The Product Owner is responsible for
continuously managing the Product Backlog in
response to changes as the project progresses.
The Product Owner may be assisted by the
ScrumMaster in performing that role.

• The Project Team (led and facilitated by the
ScrumMaster) and the Product Owner are
responsible for continuously updating release
plans as necessary as the project progresses in
response to changes in the Product Backlog.

106 Agile Project Management

Responsibility Traditional Agile

Risk Management • The Project Manager is
responsible for risk management
on behalf of the business
stakeholders.

• The Project Team (led and facilitated by the
ScrumMaster) is responsible for risk
management.

• The Product Owner is expected to play a
major role in risk management decisions on
behalf of the Business Stakeholders.

Agile Business Analyst Role

The role of the Business Analyst is also not formally defined in agile projects. It is
expected that the development team will work directly with the representative of
the business users (Product Owner) to define many of the detailed requirements
as the design progresses. Having developers work directly with the users has
a lot of advantages, and it solves a number of problems that might occur in a
typical project management approach such as:

• Documented requirements might not be understood by the development
team and might be misinterpreted.

• The documented requirements might not really capture the true needs of
the business users because the business users may not be able to articulate
all the details of what is needed in writing (Sometimes prototyping of some
functionality is the best way to further define detailed requirements).

• The business needs and requirements might change between the time the
requirements are documented and the design is implemented, and tradi-
tional project management models are somewhat resistant to change.

On the other hand, the model of relying totally on the development team to
elicit requirements directly from the users has some limitations:

• Developers are not necessarily trained to see things from a business pro-
cess perspective, and an analysis of the business processes that the system
supports often needs to be done prior to or concurrently with the design
of the system.

• In more complex situations, a significant amount of business analysis skill
may be needed to perform further analysis of the requirements to ensure
that they are complete, accurately defined, and consistent with the business
objectives that they are intended to achieve (traceability analysis).

• The typical agile project relies heavily on informal, face-to-face discussions
between the development team and the business users to develop detailed
requirements, and the details of these requirements discussions may not
be well documented. From a supportability perspective, many times it is
essential to have well-documented requirements to serve as a baseline for
managing the system throughout its operational life cycle.

Agile Project Management Approach 107

• As the complexity of the business requirements grows, the need for the
Business Analyst role becomes even more significant. For example, there
might be significant business rules associated with some of the require-
ments that need to be well documented so that they are consistently imple-
mented and enforced by the system.

It has become fairly widely recognized that, as the complexity of business
systems evolve and as business systems and the business processes that they
are associated with become increasingly intertwined, it can take a lot of skill to
elicit, analyze, and manage the requirements for these systems. There’s a lot of
similarity to the Project Management role—just as the typical Project Manager
role may need to go through some significant rethinking to work effectively
in an agile environment, the Business Analyst role must also go through some
rethinking to become more agile, but the need for both of those skills certainly
doesn’t go away.

AGILE PROJECT MANAGEMENT APPROACH

Project Management Mindset

To succeed in an agile environment, some Project Managers may need to adopt
new ways of thinking. There are several important shifts in thinking that may be
needed.

Systems-Thinking Approach
Here’s an excellent quote from Erik Gottesman of Sapient on the difference
between a traditional and agile project management approach:

“When I think about the distinctions between traditional and agile project
management, the shift from one to the other and the “deprogramming”
involved, I always feel that the change is minimally technical. While
there are differences in process that need to be learned and practiced, the
change is more substantially attitudinal—a shift from command-and-
control thinking to systems thinking, characterized by a greater focus on
measuring process output versus person output. I can still employ many
of the traditional project and program management skills I’ve developed,
but I look at them through a different lens.”1

What is “systems-thinking”? “Systems-thinking” means being able to see the
“whole” rather than just the components of a system or process and being able to
understand how the components function and interact with each other to make the
overall system function. From a project management perspective, it means not
getting lost in the mechanics of how a particular methodology (agile or non-agile)

1 Gottesman, Erik, E-mail comments on book review

108 Agile Project Management

works, being able to see the “big picture,” and being able to understand the princi-
ples and practices that are behind methodologies at a deeper level. It also means
seeing the dynamics of how those principles and practices work together and
interact with each other in a methodology to produce an overall result as a system
rather than seeing the methodology as a more mechanical, step-by-step process.

When you take a “systems-thinking” approach, you see things in an entirely
different perspective and begin to see beyond the mechanics of each of these
methodologies. Here’s an example: “Respect for people” is a principle that is very
important in many agile methodologies like Scrum. If you believe the stereotypes
about traditional project management, the principle of “respect for people” may
not seem to be very compatible with the typical perception that is associated with
a “command-and-control,” traditional project management approach. However,
if you understand the methodologies at a deeper level and see beyond many of
these stereotypes, you begin to realize that all methodologies incorporate “respect
for people” to some degree—the thing that may be different is the amount
of empowerment and delegation of responsibility that is incorporated into the
methodology, and there may be good reasons why the level of empowerment
may need to be different, including:

• Risk and regulatory requirements require a higher level of control.
• The people performing the process are not well trained enough to take on

more responsibility.
• The organizational culture and management style of the company isn’t

consistent with high levels of employee empowerment.

Of course, there are many situations where project managers do fit the tra-
ditional stereotype and don’t incorporate respect for people into a “command-
and-control” project management approach for no good reason, but that’s not
necessarily a fault or limitation of the methodology; it’s just poor or ineffective
implementation.

Focus on Customer Value
Agile methodologies require a more flexible approach designed to maximize
customer value in addition to maximizing control and predictability.

“ . . . in too many organizations project management has become focused
on administrative excellence rather than technical excellence Project
leaders must champion technical excellence because therein lies the key
to adaptability and low-cost integration that drive long-term product
success.”2

2 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, pp. 38–39

Agile Project Management Approach 109

There are two key changes that may be needed:
• Balance of Control and Agility—In addition to the traditional project

management emphasis on controlling costs and schedules, Project Man-
agers need to focus on developing a balanced approach that blends the
right level of control with a sufficient level of agility to also success-
fully deliver business outcomes. Of course, the right balance of control
and agility for a particular project will depend on a number of factors,
including the culture of the company and the need for control, the level of
uncertainty in the requirements for the project and the need for direct user
involvement, and the risks and complexity of the project.

• Flexibility and Adaptability—Instead of rigidly implementing a given
standard project management methodology (either agile or non-agile) “by
the book,” Project Managers need to be able to craft a project management
approach that is tailored to an individual project and to the business envi-
ronment that project is associated with. Robert Wysocki sums this up well
in his book Effective Project Management—Traditional, Agile, Extreme:

“The PMBOK definition of Project Management is crisp, clean,
and clearly stated. It has provided a solid foundation on which to
define the process groups and processes that underlie all project
management. But I think there is another definition that transcends
the PMBOK definition and is far more comprehensive of what
Project Management entails. I offer that definition as nothing
more than organized common sense. Projects are unique, and
each one is different than all others that have preceded it. That
uniqueness requires a unique approach that continually adapts as
new characteristics of the project emerge. These characteristics can
and do emerge anywhere along the project life cycle. Being ready
for them and adjusting as needed means that we must be always
attentive to doing what makes good sense given the circumstances.
Hence, Project Management is nothing more than organized common
sense

We are not in Kansas anymore! The discipline of project manage-
ment has morphed to a new state what does all of this mean to
the struggling Project Manager?

To me the answer is obvious. You must open your minds to the
basic principles on which project management is based so as to
accommodate change and avoid wasting dollars and wasting time.
For as long as I can remember, I and my colleagues have been
preaching that one size does not fit all.”3

3 Wysocki, Robert, Effective Project Management—Traditional, Agile, Extreme, pg xlvii, Hoboken,
NJ: Wiley, 2009

110 Agile Project Management

Adapting Methodologies to Fit the Project and the Problem
Many project managers are heavily trained in a particular methodology and tend
to use that approach for all projects because that’s what they’re most comfort-
able with. Using the same approach over and over again with a high level of
repeatability is a good way to provide process predictability. It’s similar to man-
ufacturing standard parts on an assembly line, and it maximizes the efficiency of
the process to standardize it and make it repeatable, but that approach doesn’t
lend itself to more agile environments that require customizing the process and
the results to fit different customer needs.

The shift in thinking that is needed is, instead of force-fitting the project to any
particular methodology (agile or non-agile), fit the methodology (or combination
of methodologies) to the project. It takes much more skill and a broader and
deeper understanding of a number of different methodologies, principles, and
practices to do that:

1. Agile methodologies are, by design, loosely defined and meant to be
tailored and customized to fit the situation. They are also meant to be
building blocks that need to be assembled in the right combinations to fit
the business and project environment that they are used in. For example:
• Scrum doesn’t specify what development methodology to use with it.

Extreme Programming (XP) is commonly used with Scrum as a devel-
opment methodology, but that is not always the case, and even if XP
is used, it is often modified or tailored as needed to fit the capabilities
and style of the organization as well as other factors.

• Scrum doesn’t say anything explicitly about project management—
within a Scrum team at the iteration level, there is no project man-
agement role and the project management functions are performed by a
combination of the ScrumMaster and Product Owner roles. That doesn’t
necessarily mean that project management is not required for larger
more complex projects that require multiple teams, but Scrum doesn’t
specify how that should be done. Some people have used a “Scrum of
Scrums” approach to extend the Scrum methodology to multiple teams,
but that isn’t necessarily the only way to provide that level of project
management.

2. Agile methodologies also don’t specify how everything should be done
and don’t necessarily replace all existing methodologies and practices.
A good example of that is requirements elicitation: Scrum doesn’t pro-
vide much explicit guidance on how to elicit requirements, and some
existing practices for requirements elicitation and analysis still may be
appropriate.

The key point is that agile methodologies intentionally leave a lot to be defined
about exactly how the methodology is implemented. In some cases, the absence
of definition has been interpreted to mean that the missing practices are not

Agile Project Management Approach 111

required and that is not the case at all. Good judgment and common sense are
needed to define and tailor the process for each project.

Project Management Skills

Some people have the narrow view that project management is primarily an
administrative function associated with estimating and managing project costs and
schedules. That is a function that many Project Managers are required to perform,
and it is an important area that they are measured on, but in most cases, project
managers have a fairly broad range of skills that go well beyond those basic
project management functions. Agile methodologies will probably accelerate that
trend for project managers to develop more emphasis on broader and deeper skills
that go beyond basic project management. A broader and deeper range of skills
beyond basic project management skills may be required in an agile environment:

• Technical Skills—In a traditional plan-driven Waterfall environment, the
development effort may have been managed as a separate activity within
the overall project with functional direction from a Development Man-
ager. In an agile environment, it becomes much more difficult to separate
the development effort from the rest of the project, and the team (led and
facilitated by the ScrumMaster) is expected to provide its own direction for
most functional decisions rather than relying heavily on functional direction
provided by functional managers. The ScrumMaster and/or Project Man-
ager needs to be at least technically knowledgeable to participate in the
decision-making process and gain credibility in facilitating and managing
technical teams.

• Business Analyst Skills—In the past, the requirements definition process
may have been performed separately by a Business Analyst who might have
been responsible for completing the definition of requirements documents
prior to starting the actual development effort. In an agile development
environment, it is also difficult to separate the requirements definition
function as a separate effort. There may be some Business Analyst work
performed upfront prior to the beginning of the project, but the majority
of the detailed requirements development effort is probably going to be
performed collaboratively as the development progresses. In many cases,
there may not be a formal Business Analyst role and the Product Owner
is expected to represent the user stakeholders’ interests on any require-
ments. The ScrumMaster has to be at least knowledgeable enough about
the Business Systems Analysis process to ensure that the requirements def-
inition effort is complete and sufficient and someone on the team performs
whatever functions might be required.

• People Management and Leadership Skills—In the past, a Project
Manager may or may not have played an actual people management
role: In many traditional plan-driven development projects, the projects

112 Agile Project Management

use resources from different organizations that are loosely knit to form
a project team and Project Managers lead by influence. The primary
functional direction to those people on the team may come from the
functional department that they report into (e.g., development or QA).
In an agile environment, the team is cross-functional and dedicated to
the project—that requires much stronger leadership skills to build highly
cohesive and collaborative teams. It also requires a very facilitative
management and leadership style. The most effective Project Managers,
in many cases, are excellent leaders with the wisdom/maturity to provide
leadership appropriate to the situation.

• Process Design Capabilities—In the past, a Project Manager may have
been able to simply take an established, off-the-shelf SDLC process and
execute it. In an agile environment, a much deeper understanding of the
principles behind a number of different SDLC processes may be needed
in order to choose the right process for a given project and tailor it as
necessary to fit the needs of the project.

“Agile development and project management are built on the under-
lying premise that individual capability is the cornerstone of success
and furthermore, that individuals are unique contributors. It follows
from these premises that rather than molding people to a set of
common processes and practices, processes and practices should be
molded to the team itself. Although an organization might insist that
project teams follow a guiding framework, there should be flexibil-
ity in what individual practices are used to meet the needs of each
phase. The team should discuss what practices will be used and not
used. Just because a practice is a good one doesn’t mean it needs to
be used on every project. With individual practices, each team will
tailor them in different ways according to the capabilities of the team
members, the size of the project, the number of customers, and many
other factors.”4

AGILE PROJECT MANAGEMENT PRACTICES

A basic project management approach is built into Scrum at the iteration level
and at the release planning level. The approach for providing project management
above that level is not defined as part of the methodology. It is up to the orga-
nization implementing the project to define how (and if) any additional project
management role will be performed:

• In the simplest case, whatever project management tasks that might be
required will be performed by the ScrumMaster and the Product Owner.

4 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 125

Agile Project Management Practices 113

• On larger more complex projects requiring multiple teams, there may be
a need for more of a higher-level methodology that includes a project
management approach that is not defined by Scrum.

You won’t find much prescriptive direction to define how agile project
management should be performed. It would be inconsistent with agile to define
a project management approach that was overly prescriptive. The approach
that is typically taken with agile methodologies is to focus on understanding
the principles and leave it somewhat up to the individual implementing the
principles to interpret how those principles should be implemented in a given
situation.

Agile Project Management Principles

There are a number of principles of an agile project that dramatically change the
project management role. Many of these principles can also be used in a hybrid
agile approach to enhance project agility.

Rolling Wave Planning
Most agile methodologies emphasize the concept of taking a “just-in-time”
approach to planning and don’t attempt to do most of the planning at the front
end of the project. The front-end planning that is normally done is somewhat
minimized and a lot of the planning that might normally be done in the front
end of the project is deferred until later in the project and done collaboratively
by the team. The level of detail in agile planning may also be at different levels
of detail based on the time horizon and level of risk associated with the effort
being planned.

General Rules

The following practices can be applied to any project (either agile or traditional):

1. Instead of doing a completely detailed plan upfront in the project, limit
the upfront planning to the minimum effort required to define and plan
the project.
• Use a risk-and-value-based approach to determine what level of upfront

planning is appropriate. Ask the question “What’s the risk in deferring
some planning until later in the project and what’s the value to be
gained by doing it upfront versus deferring that planning and decision
making?”

• The decision to choose an appropriate level of planning for the project
should be made jointly with the project sponsors and stakeholders.
Project sponsors and stakeholders should agree that the planning
approach is acceptable.

114 Agile Project Management

2. Break up the functionality in the project as much as possible into iter-
ations and prioritize the requirements to ensure that the most important
functionality is addressed as early as possible. Defer detailed planning
for each iteration as much as possible and use a just-in-time planning
approach for each iteration as the project progresses.

Customer Collaboration
Agile methodologies are heavily based on customer collaboration and expect
the customer to play a very active role in defining and managing the project
requirements as the project progresses, and the customer should feel just as
responsible for producing a successful result as the development team. In a
Scrum project, for example, the role of the Product Owner represents the voice
of the customer and is expected to provide overall direction to guide the project
toward producing the value to satisfy customer needs.

General Rules

The following practices can be applied to any project (either agile or traditional):

1. Design the project methodology to include as much customer collaboration
as possible. The actual amount of customer collaboration will depend on
several factors:
• The need for ongoing customer collaboration as the project progresses,

which will generally be a function of the uncertainty in the requirements
• The willingness and ability of the customer to provide ongoing collab-

orative input and to share responsibility for project direction
2. Define the approach for planning, requirements definition, and change

management to be consistent with the level of customer collaboration.

Collective Ownership
Agile methodologies emphasize empowered, self-organizing teams and “collec-
tive ownership”:

• In traditional development models, responsibility is typically split among
multiple functional organizations (development, QA, etc.) with a project
manager who is responsible for coordinating and integrating the overall
effort.

• In an agile model, people are assigned to the team for the duration of the
project, and the team as a whole is expected to take collective ownership
of delivering the solution.

The role of the project manager shifts to more of a facilitation role than an
authoritative, ownership role, with a much higher level of delegation of respon-
sibility to the team.

Agile Project Management Practices 115

General Rules

The following practices can be applied to any project (either agile or traditional):

1. Use as much empowerment as possible to develop a sense of collective
ownership by the project team based on a number of factors:
• The need for project control
• The organizational culture of the company
• The capability of the team to take an active role in decision making

2. Create strong teamwork among everyone on the development team and
try to preserve the continuity of the individuals assigned to the team as
much as possible.

Emphasis on Validation over Verification
For many years, the project management and quality management professions
have differentiated “verification” and “validation” of customer requirements:

• Verification means that the product has been determined to meet all doc-
umented requirements and specifications—“Is the product right?”

• Validation means that the product meets the customer need that it was
intended to fill—“Is it the right product?”

Traditional project management approaches have put a heavier emphasis on
“verification” as opposed to “validation.” In many traditional projects, there is
extensive verification testing against documented requirements, but validation
testing is normally limited to beta testing and/or acceptance testing, which is
typically done just before the product is ready for final release. Finding out that
the product doesn’t really meet user needs at that point can be disastrous. Agile
methodologies avoid this problem by putting a much higher level of emphasis
on validating that the product meets user needs much earlier in the development
cycle by engaging the user much more directly in the design and development
effort as it progresses. A limited acceptance test of each feature is normally
performed by the Product Owner at the end of each iteration.

This shift in emphasis significantly changes the approach to project manage-
ment to put more emphasis on satisfying customer needs early in the project
rather than relying heavily on traditional forms of beta testing and acceptance
testing at the very end of the project to validate that the product meets customer
needs.

General Rules

The following practices can be applied to any project (either agile or traditional):

1. Use an iterative approach for developing functionality incrementally to get
user feedback and input as early as possible and develop an emphasis on

116 Agile Project Management

early validation of product functionality based on active user collaboration
and engagement as much as possible.

2. Plan for and gain support from the user community for active participation
in the project as it progresses to provide validation of functionality as it
is produced if possible.

Fail Early, Fail Often, and Continuous Improvement
Agile approaches are based on the philosophy of “fail early and fail often”
from the Toyota Production System. Breaking up the project into short itera-
tions, developing and implementing highly automated tests as the project pro-
gresses, and using continuous integration to ensure that all software is compatible
makes it possible to detect problems and take corrective action as early as
possible. The iterative approach also makes it possible to experiment with dif-
ferent approaches to satisfy customer needs in environments with high levels of
uncertainty.

All agile methodologies also put a strong emphasis on continuous improve-
ment, and that is one of the real benefits of agile methodologies:

• Because the development cycles are short, learning and adjustments to the
process can happen rapidly as the project progresses rather than waiting
till the end of the project for a postmortem.

• Also, because the processes are more flexible and adaptive, changes to
the development and project management processes in response to lessons
learned can also happen quickly.

General Rules

The following practices can be applied to any project (either agile or traditional):

1. Avoid the use of rigidly defined processes that do not provide a capability
for customizing and improving the process.

2. Use short iterative processes as much as possible to recognize problems
early and take corrective action.

3. Create a “learning environment” with an emphasis on continuous improve-
ment. Emphasize transparency to openly recognize problems and oppor-
tunities for improvement as they occur, and use root cause analysis as
needed to develop systemic solutions to prevent problems from recurring.

4. Encourage project teams to customize processes as needed to fit their
projects and to continuously improve the processes. (Fit the process to
the project rather than forcing the project to fit the process)

5. Train project teams as needed to provide them with a sufficient level of
skill to continuously improve processes and provide coaching and men-
toring as needed to help successfully implement this approach.

Agile Project Management Practices 117

Agile Project Management Techniques

This section discusses some commonly used agile project management techniques
that can also be applied to a hybrid project management approach.

Daily Standup Meetings
A technique commonly used in many agile methodologies is daily standup meet-
ings. These are typically very quick and focused status meetings for everyone on
the team to check in with each other. They are typically limited to the direct
project team only, and each member of the team answers several questions
such as:

• What did I accomplish yesterday?
• What will I do today?
• What obstacles are impeding my progress?

The daily standup meetings are typically done standing up so that they will
be short in duration. Limiting the focus of these meetings to only a few key
questions also keeps the meetings very focused and short. These meetings also
serve to build and sustain the unity of the team.

Daily standup meetings are a good practice that can be applied to any project
(agile or traditional):

• They are a good way of developing a very fast-paced approach for making
progress quickly.

• They provide a good way of keeping everyone in the project engaged and
focused on results.

• They are also excellent for team building.

Consensus Building
Agile methodologies are based heavily on facilitation and consensus building
among the team on a particular topic. Getting real consensus is important and
requires some skill. Many times, a project manager will ask for agreement and
not really get a sense of real commitment. How often have you seen people
nod or say nothing in a meeting and everyone assumes that implies complete
consensus? Agile approaches put an emphasis on developing solid, unequivocal
consensus among everyone on the team.

A commonly used technique that I like is called the “fist of five” approach.
A facilitator leads the discussion and asks for consensus among the members of
the team. Each person on the team holds up some number of fingers to indicate
consensus. The following is one variation of the meaning of hand signals used.
(There are many other variations):

1. “One finger = serious concerns that have not been heard or addressed
2. Two fingers = still have unaddressed concerns

118 Agile Project Management

3. Three fingers = consent with major reservation
4. Four fingers = consent with slight reservation
5. Five fingers = full consent

Holding up zero fingers constitutes a Fist Block which is the strongest
form of dissent”5

If the group is not entirely in consensus (everyone holding up five fingers), the
facilitator then leads further discussion to attempt to reach full consensus. This
is also a good approach that can be used for consensus building on any project
(either agile or traditional).

Timeboxing
Many agile methodologies advocate “timeboxing.” Timeboxing is the practice
of fixing the end date of an iteration and not allowing it to change. The lengths
of timeboxes are set based on the velocity of the team and are not necessarily
equal, although fixed iteration lengths are generally promoted.

Rather than setting the length of an iteration based on implementing a certain
amount of functionality in the iteration (scopeboxing), the timeboxing technique
fixes the length of the iteration and the team determines how much functionality
can be delivered in that fixed length of time. Once the functionality to be included
in a given iteration is determined, it will not normally be changed; however, the
detailed requirements associated with the functionality will be defined as the
iteration progresses.

“There are many advantages to timeboxing. These include:

• Focus—So many of us struggle with focus. We lose focus, we get
interrupted, and we make lists and plan out our weekends instead of
work. All this lost focus when we should be working. The great advan-
tage of timeboxing is you learn how to focus your attention on the job
at hand for the specified period of time. If this is a challenge, you
can start small (say, 10 minutes of focused work) and work up to 30
minutes blocks of time or whatever will work for you. Once you gain
the focus, you find that your productivity increases ten-fold.

• Increased productivity—When you are working on an open-ended job,
using the timeboxing concept will increase your productivity in ways
you never imagined. When you set a timer and work diligently and
in a focused manner on only the task you have identified, you work
smarter and harder, and you get more done.

• Realization of time spent—When you use time blocking to get a job
done, you realize how much time you might normally waste when

5 “Fist of Five,” http://cgi.stanford.edu/∼group-synergy/pmwiki/index.php?n=Main.FistOfFive

Agile Project Management Practices 119

working. If you set a timer for 5 minutes, and work hard for only
those 5 minutes, you might get the same amount of work done that
you might previously have done in 20 minutes.

• Time available—Timeboxing makes you consciously aware of some-
thing you previously weren’t consciously aware of—how much time
you can give to a particular project. Once you get comfortable with
the concept, you realize you have more time than you thought. You get
more done. And that brings us back to the point—your productivity
increases.

Using timeboxing can help workers focus more on the job at hand,
get more done and ultimately feel more accomplished at what they are
doing”6

Timeboxing addresses two common productivity issues:

• Parkinson’s Law says that “Work expands so as to fill the time available
for its completion”7. Fixing the time allowed eliminates wasted slack time
that might be built into a scope-boxing approach

• The Student Syndrome “refers to the phenomenon that many people will
start to fully apply themselves to a task just at the last possible moment
after a deadline. This leads to wasting any buffers built into individual task
duration estimates.”8

Timeboxing can be applied to traditional projects as well as agile projects—it’s
a good development practice to keep a sustained pace of effort, but it is highly
dependent on the culture and style of the organization.

Agile Project Management Models

A project management model for agile methodologies is needed in many cases to
wrap around the lower-level technical practices and iteration management layers
to provide a more robust way of delivering large, complex solutions particularly
those involving multiple agile teams. There are a variety of ways of providing
this functionality.

Scrum-of-Scrums Approach
One approach for managing projects requiring multiple teams is a “Scrum-of-
Scrums” approach. A “Scrum-of-Scrums” is a master overall Scrum team that
coordinates the work of a number of other teams. It is made up of representatives

6 “Timeboxing,” www.agilehardware.com/pages/Timeboxing.html
7 “Parkinson’s Law,” http://en.wikipedia.org/wiki/Parkinson’s_Law
8 “Student Syndrome,” http://en.wikipedia.org/wiki/Student_syndrome

120 Agile Project Management

from each of the other teams. There are different approaches for determining who
should represent each individual scrum team in the Scrum-of-Scrums meeting:

“Since the Scrum team is facilitated by the ScrumMaster, you would
expect the ScrumMaster to attend the Scrum of Scrums meeting or, in
his absence, the Product Owner. Well, the advice is different—a member
of the team should attend the Scrum on behalf of the team, and this can
be any team member. It follows from the above that since any team
member can attend, the member who is attending the Scrum of Scrums
can keep on changing after every few meetings. However, it is not a
total free for all, sending the person who will be best able to project
the current position of the team; such as a tester when the team is in
the testing phase; or a designer when the project is in the initial design
phase. This also means that the Scrum of Scrums can be attended by the
ScrumMaster as well.”9

An overall ScrumMaster acts as the facilitator for the Scrum-of-Scrums meet-
ing. The frequency of the Scrum-of-Scrums meetings is also a variable. The
individual scrum teams meet daily; however, it may not be necessary for the
scrum-of-scrum meetings to also happen daily. The Scrum-of-Scrums approach
provides a basic coordination mechanism for overall project planning and man-
agement and resolving any cross-team issues and dependencies that need to be
resolved; however, it may need to be extended to include other project manage-
ment practices on large complex projects.

Agile Project Management (APM) Model
Jim Highsmith10 has proposed an Agile Project Management (APM) model as
shown in Figure 6.3.

Each of the phases in the APM model is described in the following sections:

1. Envision
The objective of the Envision Phase is to determine the product vision
and product objectives and constraints, the project community, and how
the team will work together. In many cases, it is useful to document the
results of this effort in a “Project Vision” document:

• “What is the customer’s product vision?
• What are the key capabilities required in the product?
• What are the project’s business objectives?

9 “Scrum of Scrums—A Brief Explanation and Some Details”, http://learnsoftwareprocesses.com
/2010/03/02/scrum-of-scrums-a-brief-definition-and-some-details/
10 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 82

Agile Project Management Practices 121

Envision

Vision

Story
Backing

Speculate

Adapt

CloseFinal
Product

Completed
Stories

ExploreRelease
Plan

Figure 6.3 Agile Project Management (APM) model

• What are the product’s quality objectives?
• What are the project constraints (scope, schedule, cost)
• Who are the right participants to include in the project community?
• How will the team deliver the product (approach)?”11

2. Speculate
The objective of the Speculate Phase is to develop a plan for how the
vision will be delivered. The plan might be based on releases, features, or
capabilities. The features and capabilities might be expressed in a variety
of different forms such as user stories but will typically be limited only to
high-level descriptions sufficient to identify what is required and develop
a rough estimate of the level of effort associated with it. These features
and capabilities will normally become the “Product Backlog” and will
be elaborated into further detail later. This phase is equivalent to release
planning in Scrum, and it will be revisited after the completion of each
iteration (Explore/Adapt Phase) to redefine and reprioritize the Product
Backlog and Release Plan based on the results of the previous iteration:

“The Speculate Phase consists of:
• Gathering the initial broad requirements for the product
• Defining the workload as a backlog of product features
• Creating a iterative, feature-based release plan

11 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 83

122 Agile Project Management

• Incorporating risk mitigation strategies into the plan
• Estimating project costs and generating other required adminis-

trative and financial information”12

3. Explore
The objective of the Explore Phase is to plan and deliver running, tested
features (stories) in a short iteration. That effort consists of further defining
the detailed requirements associated with each feature or story as well as
designing developing, and testing, the functionality required.

4. Adapt
The objective of the Adapt Phase is to review the delivered results, the
current situation, and the team’s performance and adapt as necessary. The
key questions to be asked in the Adapt Phase are:

• “Is value, in the form of a releasable product being delivered?
• Is the quality goal of building a reliable, adaptable product being

met?
• Is the project progressing satisfactorily within acceptable con-

straints?
• Is the team adapting effectively to changes imposed by manage-

ment, customers, or technology?”13

5. Close
Conclude the project, pass along key learnings, and celebrate.

The APM model has some elements of a traditional plan-driven model wrapped
around an agile approach:

1. The level of upfront planning is very limited similar to Scrum but goes
beyond what would normally be found in some other agile approaches
like Extreme Programming (XP). For example:
• The first phase is called “Envision,” which is similar to a concept phase

or charter definition phase of a traditional project. It goes beyond the
level of planning that might be found in many agile projects; how-
ever, the approach for performing this effort may not be as formal and
complete as a traditional development methodology.

• The goal of this phase is limited to providing a vision for the product
and the project to a sufficient extent for the project to move forward.
It addresses only the important elements that are essential to define
upfront and defers further detailed planning until later in the project. In
a traditional project methodology, the goal of this phase might be to gain

12 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 84
13 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 84

Agile Project Management Practices 123

formal approval for starting the project; in a more agile environment,
the goal might be more of doing a sufficient level of due diligence to
define the product vision and product approach to get everyone on the
team on board and engaged in the effort.

• The second phase is called “Speculate,” and that word was intentionally
chosen to indicate that a lot of what is done at that point is “speculation”
and is subject to further refinement and change as the project progresses.
This phase might be compared to a requirements definition phase of a
traditional project with a couple of very important differences:
• Requirements definition is limited to high-level requirements only,

and more detailed requirements are deferred till a later stage in the
project.

• It is understood that the requirements are subject to change as the
project progresses.

A traditional development process might attempt to define rock-solid,
detailed requirements upfront that are not subject to change, but that
approach is just not realistic in many cases. Agile methodologies accept
the futility of attempting to do that and openly acknowledge that the
requirements are volatile and subject to change. Of course, that might
mean that it is more difficult to accurately define the costs and schedule
for the project upfront, but that might be an acceptable tradeoff.

• The third phase is called “Explore,” which is also aptly named to provide
the sense that detailed requirements will be based on an “exploration”
process, and might involve some trial-and-error experimentation. This
phase is very similar to an iterative development approach that would be
found in an agile project, and it also accepts the notion that it might be
difficult to define the exact detailed requirements for the development
effort prior to starting the design.

2. The phases in the life-cycle model are not as crisply defined as a traditional
life-cycle model, the level of formality associated with phase transitions
may not be as formal, and it is understood that phases might be repeated
if necessary.

3. There is more adaptivity built into the process than in a traditional devel-
opment process. It accepts the notion that the process will be somewhat
fluid and will be adapted as it progresses and that the product design will
also be adapted as the project progresses to ensure that it meets the user
needs.

Further details on this life-cycle model can be found in the Jim Highsmith’s
book14.

14 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, NY 2010

124 Agile Project Management

AGILE AND A GUIDE TO PROJECT MANAGEMENT BODY
OF KNOWLEDGE (PMBOK GUIDE)

Many project managers may be wondering “Where does A Guide to Project
Management Body of Knowledge (PMBOK Guide) fit into all of this?” The
PMBOK Guide is a well-recognized source of knowledge regarding Project
Management practices and processes. The latest edition of the PMBOK Guide
carefully states how it is intended to be used:

“The PMBOK Guide provides guidelines for managing individual
projects. It defines project management and related concepts and
describes the project management life cycle and related processes
As a foundational reference; this standard is neither complete nor all-
inclusive. This standard is a guide rather than a methodology. One can
use different methodologies and tools to implement this framework.”15

Most of the practices described in the PMBOK Guide are general enough
to be applied to any project (agile or traditional) but the PMBOK Guide has
its roots in traditional plan-driven development processes and typically has been
interpreted in that context. It probably needs much more interpretation to apply
to an agile project.

Brian Bozzuto gave an interesting presentation at the PMI Global Confer-
ence in Orlando in 2009 on how agile principles relate to the practices and
processes defined in the PMBOK Guide. Brian characterizes a perceived dis-
connect between the two as “dwelling on stereotypes.” He presents a com-
monly held stereotype perception of the PMBOK Guide project management
style as:

• “Too much paperwork
• Lots of checklists
• Cumbersome processes
• The process manages you instead of you managing the process”16

He presents a commonly held stereotype perception of agile as the exact
opposite:

• “Throw process out
• Chaotic, no control

15 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010
16 A Guide to the Project Management Body of Knowledge, Fourth Edition, Newtown Square, PA,
PMI, 2008, pp. 3–4,

Agile and A Guide to Project Management Body of Knowledge (PMBOK Guide) 125

• Won’t work for complex projects
• Unprofessional”17

Brian is right, these are mostly stereotypical perceptions; however, in each
of these stereotypical perceptions, there is some reality. There are a number of
factors that have probably contributed to these stereotypical perceptions:

1. Implementation versus Intent
To understand these differences in perception, we need to separate the
principles and practices behind PMBOK from how they are actually
implemented in practice. Methodologies and practices sometimes get a
bad reputation because of faulty implementation and, in many cases;
it’s the implementation that’s at fault and not necessarily the intent of
the methodology or practice itself. Both traditional plan-driven and agile
methodologies have gotten a bad reputation in some situations because of
poor implementation:
• Traditional plan-driven methodologies have gotten a bad reputation in

some cases because people have gone overboard with documentation
and bureaucratic controls instead of taking an intelligent approach to tai-
lor the level of documentation and control to the project and business
environment. There’s nothing about traditional plan-driven methodolo-
gies that prevents doing sensible things to limit the amount of control
and documentation to reasonable levels.

• At the other extreme, agile methodologies have gotten a bad reputation
in some cases because people have tried to jump too quickly into exe-
cution of the project with little or no upfront planning. Again, there is
nothing in most agile methodologies that prevents using good judgment
to determine what amount of upfront planning is reasonable.

In both of these cases, the fault may be more in the implementation
than it is with the methodology, principles, or practices, but sometimes
people blame the methodology, principles, or practices nonetheless. The
PMBOK Guide principles and practices have taken on a strong associ-
ation with traditional methodologies and in some cases those principles
and practices have been poorly implemented.

2. Difference in Generative versus Prescriptive Approaches
Agile principles and practices and PMBOK are based on two very differ-
ent philosophies. Agile typically provides some very simple value-oriented
principles without being prescriptive and leaves a lot up to the person
implementing the methodology to determine how it should be applied in

17 Bozzuto, Brian, “Aligning PMBOK Agile,” PMI Global Conference, Orlando 2009, http://agile.
vc.pmi.org/Community/Spotlight/tabid/876/vw/1/ItemID/122/Default.aspx

126 Agile Project Management

a given situation. It expects the person implementing the methodology to
“tailor it up” by adding additional layers that may be needed in a given
situation. The whole methodology is designed to be very flexible and
adaptive.

“One of the key concepts of agile project management is that the
practices, when driven by guiding principles, are generative, not
prescriptive. Prescriptive methodologies attempt to describe every
activity a team should do. The problem with prescriptive methodolo-
gies is that people get lost. They have much to choose from and so
little guidance as to applicability that they have trouble eliminating
extraneous practices from their projects.

A set of generative practices is a minimal set that works well as
a system. It doesn’t prescribe everything a team needs to do, but it
identifies those practices that are of high value and should be used
on nearly every project.

Starting with a minimal set of practices and judiciously adding
others as needed has proven to be more effective than starting with
comprehensive prescriptive practices and attempting to streamline
them down to something usable (Boehm and Turner 2003). Agile
methods don’t attempt to prescribe everything that any development
effort might need in thousands of pages of documentation . . . ”18

In contrast, many traditional plan-driven methodologies and practices use
a “tailor down” approach. The PMBOK Guide is an example—you’re
expected to “tailor it down” by only taking the parts of it you need for
a particular project and adapting those parts to the project as necessary.
It errs on the side of overspecifying what to do where agile approaches
typically err on the side of underspecifying what to do—version 4.0 of
the PMBOK Guide is almost 500 pages long. It is clearly intended only
as just a set of tools, and you’re free to use those tools as just guidelines
and apply your own interpretations to them as necessary; however, the
way the PMBOK Guide is written, it is very easy to interpret it as a very
authoritative and prescriptive reference source, which it was not intended
to be.

“When agile methods employ documentation, they emphasize doing
the minimum essential amount. Unfortunately, most plan-driven
methods suffer from a “tailoring-down” syndrome, which is sadly
reinforced by most government procurement regulations. These
plan-driven methods are developed by experts, who want them to

18 Bozzuto, Brian, “Aligning PMBOK Agile,” PMI Global Conference, Orlando 2009, http://agile.
vc.pmi.org/Community/Spotlight/tabid/876/vw/1/ItemID/122/Default.aspx

Agile and A Guide to Project Management Body of Knowledge (PMBOK Guide) 127

provide users with guidance for most all foreseeable situations. The
experts make them comprehensive, but “tailorable-down” for less
critical or complex situations. The experts understand tailoring the
methods and often provide guidelines and examples for others to use.

Unfortunately, less expert and less self-confident developers, cus-
tomers, and managers tend to see the full-up set of plans, specifi-
cations, and standards as a security blanket . . . and the least-expert
participant generally drives the project to use the full-up set of docu-
ments rather than an appropriate subset. While the non-experts rarely
read the ever-growing stack of documents, they will maintain a false
sense of security in the knowledge that they have followed best prac-
tice to ensure project predictability and control. Needless to say, the
expert methodologists are then frustrated with how their tailorable
methods are used—and usually verbally abused—by developers and
acquirers alike.”19

Agile methodologies such as Scrum have been criticized for being “flac-
cid” and lacking substance in a number of important areas, particularly
relating to higher-level project management practices.20 On the other
hand, the PMBOK Guide and many traditional plan-driven practices and
methodologies have been criticized as being too prescriptive. The ideal
approach is generally always in the middle of these two extremes.

3. Humanistic Value Orientation versus Process Orientation
Another key difference is in the orientation toward humanistic values ver-
sus a process orientation. the PMBOK Guide does not dwell heavily on
the softer side of project management while agile principles are much
more direct about addressing the softer, human side of people manage-
ment. For example:
• Chapter 9 in the PMBOK Guide talks about “Project Human Resource

Management.” This is a subject that should legitimately rely heavily on
principles and training and is very difficult to get across with a detailed,
step-by-step process view of how to do “human resource management.”

• The PMBOK Guide version 4.0 has added Appendix G, “Interpersonal
Skills,” to address some of topics in this area; however, it is a much
more integral part of the agile approach as opposed to being added on
as an appendix.

Of course, a good project manager knows enough to implement a people-
oriented style of management even if the PMBOK Guide doesn’t say

19 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2009, p. 7
20 Boehm, Barry and Turner, Richard, Balancing Agility and Discipline—A Guide for the Per-
plexed ,” New York: Addison-Wesley, 2003, pp. 36–37

128 Agile Project Management

anything specifically about it, but agile principles have gone much further
in specifying that as a key value behind the Agile Manifesto:

“Build projects around motivated individuals. Give them the envi-
ronment and support they need, and trust them to get the job done”21

The difference behind these two approaches is:
• The PMBOK Guide started out with a strong process orientation and

has begun grafting and integrating a more humanistic, people orienta-
tion with the process orientation, but the emphasis is still primarily on
process with a secondary emphasis on people.

• The agile principles have started out with a strong humanistic people
orientation as the central foundation of the agile movement—one of the
key elements of the original Agile Manifesto was valuing “individuals
and interactions over processes and tools.”

These two approaches are beginning to converge, but it will take time to
fully merge these ideologies:
• Agile approaches have matured significantly over the past 5–10 years

and have increasingly recognized the need to adopt a strong process
discipline on top of a strong people orientation

• The PMBOK Guide has progressively begun to build more of a recog-
nition of the softer side of project management and a people orientation
into the PMBOK principles and practices (Appendix G, which has
recently been added to the latest version of the PMBOK Guide is an
example).

4. Emphasis on Upfront Planning and Control versus Responsiveness to
Change
Another major difference between the PMBOK Guide practices and agile
methodologies is that the PMBOK Guide has historically been heavily
associated with a plan-driven orientation with an emphasis on control and
naturally puts a lot of emphasis on controlling and managing the scope
of a project. This emphasis on planning and control is not necessarily
inherent in the PMBOK Guide, but it is a common interpretation of
how it is applied in practice. Controlling the scope of a project is not a
critical part of an agile project—agile approaches are based on openly
encouraging and welcoming change from stakeholders during the course
of the project. That is a fundamental difference in philosophy.
• When business requirements are very uncertain and very subject to

change as the project progresses, control is probably a “mirage”—even
the best planned projects may appear to be under control but might

21 Schwaber, Ken, Presentation to Open Space 2010, Boston, MA, April 2010

Agile and A Guide to Project Management Body of Knowledge (PMBOK Guide) 129
change so frequently that any semblance of real control is illusory. In
these situations, it may be futile to attempt to achieve a high level of
control and a balanced approach may be needed that mixes the right
amount of control to manage against a plan with the right amount of
agility to adapt to new and changing business requirements as the project
progresses.

Achieving that kind of balance may require some rethinking, and there
are clearly some tradeoffs that need to be considered. For example, suc-
cessfully achieving business outcomes might mean developing a more
collaborative approach throughout the development effort and allowing
more business input to the development effort as it progresses—that
may impact predictability and control of cost and schedule goals, but
that may be a very acceptable tradeoff. There is nothing in the PMBOK

Guide that prevents you from making those tradeoffs but, on the other
hand, there is not much that specifically encourages doing it either.

• At the other extreme, agile methodologies may encourage project teams
to jump very quickly into executing projects with only a very limited
amount of upfront planning and that can lead to an entirely different set
of problems:
• Because of the limited upfront planning, the initial cost and schedule

estimates for completing the project may not be very reliable until
the project is relatively far along, and that can lead to very major and
unexpected surprises.

• Because an incremental and iterative approach is typically used with
agile methodologies to define the solution, the architectural approach
sometimes isn’t completely defined upfront and evolves throughout
the duration of the project. As a result, extensive rework might be
required.

In many of these situations, the failure wasn’t so much the fault of the
methodology or practices as it was just poor implementation. There’s
absolutely nothing about agile or non-agile methodologies that prevents
using good judgment to tailor the methodology to the business environ-
ment as well as the risks and complexity of the project. For example,
there is nothing that says a Scrum project can’t include:

• A reasonable level of upfront planning to estimate costs and schedules to
whatever level of accuracy that is desired as well as ongoing revisions of
those estimates as the project progresses; however, many extreme pro-
ponents of agile methodologies have made the assumption that planning
and management of costs and schedules is no longer relevant.

• A reasonable level of architectural planning where that makes sense
and also revising and refining that architectural plan as the project pro-
gresses.

130 Agile Project Management

Merging PMBOK Thinking and Agile Thinking

On the surface, the processes and practices in the PMBOK Guide and agile
principles and practices may seem like “oil and vinegar”—it’s not obvious how
you mix them together, but they actually can be complementary to each other.
It will take time to figure out how to really blend these different approaches
together. In the meantime, it will be up to individual project managers to be
aware of these two different ideologies and use their own judgment to blend
them together in the right proportions to fit the needs of the projects they are
managing. Michelle Sliger’s book The Software Project Manager’s Bridge to
Agility22 provides a much more detailed analysis of comparing the sections of
PMBOK against agile methodologies.

22 “Principles Behind the Agile Manifesto,” http://agilemanifesto.org/principles.html

CHAPTER 7
FUNDAMENTAL PRINCIPLES
BEHIND SDLC MODELS

Some project managers make the mistake of taking a particular methodology and
applying it mechanically “by the book.” They might get lost in the mechanics of
implementing a particular methodology (e.g., Scrum, Waterfall) and lose sight of
the basic principles that underlie most software development methodologies.

“Principles are guiding ideas and insights about a discipline, while prac-
tices are what you actually do to carry out principles.1

Principles are universal, but it is not always easy to see how they apply
to particular environments. Practices, on the other hand, give specific
guidance on what to do, but they need to be adapted to the domain. We
believe that there is no such thing as a “best” practice; practices must take
the context into account. In fact, the problems that arise when applying
metaphors from other disciplines to software development are often the
result of trying to transfer the practices rather than the principles of the
other discipline

Practices for one domain will not necessarily apply to other domains.
Principles; however, are broadly applicable across domains as long as
the guiding principles are translated into appropriate practices for each
domain.”2

Understanding the principles behind the methodology at a deeper level allows
a project manager to:

• Select the right methodology for the project and business environment
• Apply the methodology more intelligently and customize it as needed to

fit the risks and complexity of the project

There is a concept called “Shu Ha Ri” that originated in aikido martial arts
that has been used very widely to illustrate this learning progression:

“Shu - Imitation. You do something by copying someone else. You don’t
question it. The teacher gives you a prescriptive solution to a problem

1 Senge, Peter, The Fifth Discipline, New York, NY, p. 373
2 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, pg xxiv

131

132 Fundamental Principles behind SDLC Models

that covers most of your needs. It may not be the most efficient or best
solution, but it is simple to learn and covers most of the situations you
encounter.”

“Ha - Understanding. You start to see the reason behind what the
teacher taught you. You modify it to still fit the core philosophy, but
streamline it for you. You also start to see that the solution doesn’t
solve every problem and therefore seek your teacher for new ideas and
solutions, or you might even seek other teachers for solutions.”

“Ri - Mastery. You take everything you learn and apply it at will.
You solve problems by blending solutions without even thinking. When
someone asks what you just did is called, there is no name because you
adapted a new solution on the fly. It just worked in that situation. Your
own experiences outweigh your formal teachings.”3

This chapter discusses some of those fundamental principles behind selecting
and optimizing a methodology for a project. These principles apply to both agile
and traditional methodologies.

This is not meant to be a complete and comprehensive coverage of all of the
principles and factors that impact the design, selection, and customization of a
software development life cycle (SDLC). The important thing is to adopt a “sys-
tems thinking” approach to begin to see the principles and factors that influence
those decisions. It is also important to recognize that many of the principles
and factors discussed in this section are not independent and interact with each
other. For example, if you only considered an optimum method for developing
requirements, you might choose to use a more adaptive model that delays the
definition of detailed requirements until later in the development effort; however,
from a risk management perspective, that may or may not be the best decision.

The use and selection of these principles and factors is fairly subjective and
requires a lot of judgment, and the material in this chapter is highly simplified
to make it easier to use. There are also different levels of principles. For anyone
interested in a deeper study of these factors and principles, Don Reinertsen’s
book The Principles of Product Flow has a very detailed and quantitative model
of principles to be considered in optimizing a product development process.4

GENERAL SOFTWARE DEVELOPMENT LIFE CYCLE (SDLC)
CONSIDERATIONS

Some people have a misconception of what a software development life cycle
(SDLC) is. When you say the word “SDLC” to some people, the first thing that

3 “What is Shu Ha Ri?”, http://agile-commentary.blogspot.com/2008/10/what-is-shu-ha-ri.html
4 Reinertsen, Don, The Principles of Product Development Flow , Redondo Beach, CA: Celeritas
Publishing, 2009

General Software Development Life Cycle (SDLC) Considerations 133

comes to their mind is a rigidly defined model for executing a project, such as
the Waterfall model. For that reason, there is a tendency to do one of two things:

• Attempt to implement a standard “textbook” life-cycle model by the book
and follow it rigidly, or

• Reject the life-cycle model as being too rigid and complex and use no
life-cycle model at all

Those two approaches can be equally problematic. It takes a lot more experi-
ence to understand the principles behind an SDLC, pick the right SDLC for a par-
ticular project, and then tailor it, if necessary, to fit the risks and complexity of the
project. This section discusses some of the most important principles to consider.

Flexibility versus Rigidity

Here are a couple of important principles:

1. An SDLC process does not have to be rigidly defined—An SDLC can
be as flexible as you want it to be, but even a flexible SDLC is a lot better
than no SDLC at all . Some companies make the mistake of defining an
SDLC that is too rigid or unrealistic for people to really implement. It
exists on paper, but no one really follows it. That situation isn’t much
better than having no SDLC at all.

2. Even the milestones and deliverables inside of an SDLC process don’t
have to be rigidly followed—Any SDLC should be implemented intel-
ligently. For example, the project team might decide to skip completing a
required artifact that might not be needed in a particular situation. There’s
nothing wrong with making that kind of decision if it is done based on
an assessment of the risks and impact to the project and the appropriate
stakeholders agree to that decision.

Naturally, it takes some sophistication on the part of the project team
to make good decisions like that—it requires an understanding of the
principles behind the methodology and the purpose served by artifacts
and other methodology requirements. There’s a big difference between:
• Pausing to make those decisions consciously and intelligently based on

a good assessment of the risks and the impact of the decision with an
appropriate level of review and approval and

• Just “winging it” and skipping process requirements without giving it
the appropriate level of thought

In general, there is a relationship between the rigidity of a process and the
level of training required to perform the process. For example, you can create
either:

• A very well-defined process that is intended to be followed by the book
and doesn’t require too much judgment and training, or

134 Fundamental Principles behind SDLC Models

• A more loosely defined and/or flexible process that requires much more
judgment and training to make the right decisions about how to implement
the process

Training and process design should be consistent—for example, it would be a
mistake to implement a very flexible and loosely defined process and not provide
an appropriate level of training with it.

Repeatability is important and valuable; however, it has a direct relationship
to the level of flexibility in a process:

• Having a defined process that is repeatable is valuable—an SDLC pro-
cess that it is used effectively becomes a repository for preserving lessons
learned on previous projects. If an SDLC process has proven successful
on similar projects in the past, there is a higher probability that similar
projects using the same process will also be successful

• However, the uniqueness of each project should always be considered.
Here’s an excellent quote from Robert Wysocki on this subject:

“For years I have advocated that the approach to the project must be
driven by the characteristics of the project. To reverse the order is to
court disaster. I find it puzzling that we define a project as a unique
experience that has never happened before and will never happen
again under the same set of circumstances, but we make no assertion
that the appropriate project management approach for these unique
projects will also be unique. I would say that the project management
approach is unique up to a point. Its uniqueness is constrained to
using a set of validated and certified tools, templates and processes.
To not establish such a boundary on how you can manage a project
would be chaotic. Plus the organization could never be a learning
organization when it comes to project management processes and
practices.”5

The key point is that the business culture and environment as well as the char-
acteristics of the project should drive the methodology—it is a good thing to use a
repeatable process, but you don’t want to use a standard methodology without tai-
loring it or customizing it to fit with the project as needed. The level of customiza-
tion and tailoring of projects will be dependent on several factors including:

• The organization’s culture and need for control
• The level of training and sophistication of the project teams to make process

customizations
• The need for customization based on differences in business environment

and other unique factors associated with each project

5 Wysocki, Robert, Effective Project Management—Traditional, Agile, Extreme, Hoboken, NJ:
Wiley, New York, 2009, p. 304

General Software Development Life Cycle (SDLC) Considerations 135

It requires a balance—different organizations have different tolerance levels
for “order versus chaos,” and finding the right balance requires some skill:

• Too much order and lack of flexibility (forcing projects to fit repeatable
methodologies when they don’t really fit) can create an environment that
stifles creativity and is too resistant to change.

• On the other extreme, a pure agile approach might tend more toward work-
ing on the “edge of chaos”:

“Agile project leaders help their team balance at the edge of chaos—
some structure, but not too much; adequate documentation, but not
too much; some upfront architectural work, but not too much. Finding
these balance points is the ‘art’ of agile leadership. Although books
like this can help leaders understand the issues and identify practices
that help, only experience can refine a leader’s art.”6

Agile methodologies are also typically much less structured:

“The idea of enough structure, but not too much, drives agile managers to
continually ask the question, ‘How little structure can I get away with?’ Too
much structure stifles creativity. Too little structure breeds inefficiency.”7

Some organizations will have difficulty with the idea of working on the “edge
of chaos” with a bare minimum of structure and control. Finding the right balance
point is an important strategic decision for a company and, within an individual
company, there may be some areas of the business that warrant a more agile
approach and some areas that require a more controlled approach. Trying to use
a standard methodology for all companies or even different business areas within
the same company may overlook those needs for developing a more customized
approach to better fit with the business environment.

Relationship of Training and Process Design

As previously mentioned, SDLC processes should be consistent with the skill
level of the people who execute the process. In any SDLC process, there is a
tradeoff between designing:

• A fairly well-defined process that doesn’t require a high level of skill to
execute, and

• A less-defined process that relies heavily on the person following the pro-
cess to use good judgment to adapt it to a particular situation

6 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 50
7 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010

136 Fundamental Principles behind SDLC Models

The first alternative requires less training and sophistication from the people
who execute the process, while the second alternative relies very heavily on
training and skills of the people performing the process to do the right thing
without necessarily having explicit and well-defined direction.

Agile product development processes are much more adaptive and loosely
defined, but naturally, that means that they rely heavily on a very highly skilled
project team to use good judgment to execute the process effectively. That’s a
big dependency that needs to be understood—most agile methodologies are not
likely to be successful if an attempt is made to apply the methodology with project
teams that don’t have the knowledge or skill to execute the project methodology
effectively. It can take a significant amount of training, coaching, and mentoring
to get an agile project team to a full level of proficiency.

The tradeoff is between:

• Making a significant investment in training, and, in return, developing very-
high-performance teams that are highly adaptive and effective in a broad
range of situations without requiring very explicitly defined processes and
documentation

• Using less skilled teams and relying more heavily on detailed process
requirements to ensure that the process is executed effectively

For example, a less-skilled team might require more detailed documentation
as well as project reviews to validate the work that is being done while a higher-
skilled team might be expected to take much more responsibility for more broadly
defined tasks with less documentation and a more limited level of oversight and
review. Another important consideration in agile projects is that agile project
teams rely heavily on “collective ownership,” where the team as a whole takes
responsibility for its performance. That reduces the dependence somewhat on
the skill of any one individual but also introduces some new skill requirements
related to teamwork and collaboration.

Reliable versus Repeatable Processes

Very closely related to the role of training is the distinction between a reliable
and a repeatable process. A repeatable process is typically not very adaptive and
might have a very well-defined process associated with it. Success of the process
is more dependent on the design of the process than it is on the skill of the
individuals performing the process.

“A repeatable process is one in which doing the same thing in the same
way produces the same results. One that is reliable delivers regardless of
impediments thrown in the way—reliability means constantly adapting
to meet a goal.”8

8 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 12

General Software Development Life Cycle (SDLC) Considerations 137

A repeatable process can be reliable provided that the impediments and
adaptations that are required are limited, but when a significant number of
impediments and adaptations are required, a repeatable process starts to break
down and becomes unreliable, because it doesn’t have the flexibility and
adaptability designed into the process to handle that is needed for that kind of
environment.

“Confusion about reliable and repeatable has caused many organizations
to pursue repeatable processes—very structured and precise—when
exactly the opposite approach—mildly structured and flexible—works
astonishingly better for new product and service development. If your
goal is to deliver a product that meets a known and unchanging
specification, then try a repeatable process. However, if your goal
is to deliver a valuable product to a customer within some targeted
boundaries, when change and deadlines are significant factors, then
reliable agile processes work better.”9

Traditional plan-driven methodologies are more repeatable and have a place
where the level of uncertainty in the project is low and when the requirements
can be defined with a high level of certainty early on in the project, but a much
more adaptive approach is needed when the level of uncertainty is high and it’s
more difficult to define the requirements upfront:

• Using a repeatable process (where it is appropriate) has advantages—if
the level of uncertainty is low, it can significantly reduce a number of
risks in the project to follow a repeatable process that is well defined. It
also can provide higher levels of efficiency where process adaptability and
flexibility are not required.

• On the other hand, the level of uncertainty associated with projects can
vary widely, and if the level of uncertainty in a project is high, a process
that is more flexible and adaptive is typically a much better solution.

Reliability in an agile process comes primarily from the fact that the process
is designed to be much more self-correcting. Because of the adaptive and iter-
ative nature of agile methodologies, there is no assumption in an agile project
that requirements are correct until they are actually validated with the user and
that validation happens much earlier in the project at the end of each iteration.
Traditional plan-driven methodologies make the assumption that requirements
correctly and completely represent user needs as soon as they’re signed off and
that assumption may not be validated until the very end of the project when user
acceptance testing is performed.

9 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 12

138 Fundamental Principles behind SDLC Models

INTERRELATIONSHIP OF LIFE-CYCLE MODEL SELECTION
FACTORS

The choice of a given type of SDLC is influenced by a number of interrelated fac-
tors as shown in Figure 7.1. Here are a few examples of these interrelationships:

• Project criticality and project risk impact the selection of a risk management
approach (project risk is also impacted by the organizational culture and
capabilities).

• The risk management approach, in turn, impacts the planning approach of
whether the planning is done upfront or deferred.

• The planning approach is one of the factors that impact the selection of a
life-cycle type.

The interaction of these various factors can be complex, and the interrelation-
ships might change depending on the nature of the project and other factors.
Each of these factors is discussed in more detail in the sections that follow.

REQUIREMENTS DEFINITION AND MANAGEMENT
APPROACH

The method for capturing requirements probably has one of the biggest impacts
on the choice of a particular SDLC. A key decision has to do with the level of
uncertainty in the requirements and the tradeoffs associated with capturing some
or all of the requirements upfront versus deferring some level of requirements
definition until later in the project. For example, the Waterfall process attempts
to define a significant portion of the requirements upfront prior to the start of
any development effort and, in some cases, that may not be realistic.

“Customers have a very difficult time visualizing from documents how a
product will function, which is why in industry after industry companies
have embraced modeling, simulations, and prototyping to improve the
feedback loop from customers to the development teams.”10

Even if it is realistic to do that,

• It may take a long time to do define all the requirements, and the sequential
nature of the process will delay the start of any development until all
requirements are defined. A more iterative process would allow breaking up
the project into chunks and starting the development of some requirements
much more quickly.

10 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 36

P
ro

je
ct

 S
co

pe
 &

C
om

pl
ex

ity

P
la

nn
in

g
A

pp
ro

ac
h

(U
pf

ro
nt

 o
r

D
ef

er
re

d)

S
el

ec
t

Li
fe

cy
cl

e
T

yp
e

T
ra

di
tio

na
l

P
la

n-
D

riv
en

P
ur

e
A

gi
le

Ite
ra

tiv
e

P
la

n-
D

riv
en

Ite
ra

tiv
e

A
da

pt
iv

e

O
rg

an
iz

at
io

na
l C

ul
tu

re
 &

C
ap

ab
ili

tie
s

M
an

ag
em

en
t &

Le
ad

er
sh

ip
A

pp
ro

ac
h

E
m

pl
oy

ee
K

no
w

le
dg

e
&

T
ra

in
in

g

R
is

k
M

an
ag

em
en

t
A

pp
ro

ac
h

P
ro

je
ct

C
rit

ic
al

ity
P

ro
je

ct
R

is
k

Le
ve

l o
f

U
nc

er
ta

in
ty

 &
C

ha
ng

e

R
eq

ui
re

m
en

ts
M

an
ag

em
en

t

B
us

in
es

s
P

ro
ce

ss
C

on
si

de
ra

tio
ns

T
es

tin
g

&
S

up
po

rt
ab

ili
ty

A
va

ila
bi

lit
y

of
 T

oo
ls

Le
ve

l o
f

C
us

to
m

er
C

ol
la

bo
ra

tio
n

F
ig

ur
e

7.
1

In
te

rr
el

at
io

ns
hi

p
of

lif
e-

cy
cl

e
m

od
el

se
le

ct
io

n
fa

ct
or

139

140 Fundamental Principles behind SDLC Models

• Limited interaction with the development staff during the requirements
definition process might lead to misunderstandings of the requirements
and/or requirements that are not realistic to implement. More direct dis-
cussion with between the developers and the users as the product is being
developed might eliminate some of these miscommunications.

• Speculation associated with attempting to define requirements that might
be very uncertain might lead to unnecessary rework because sometimes
that speculation will be wrong or inaccurate. Taking more of a just-in-time
approach of defining the requirements closer to the point they are needed is
likely to improve the reliability and accuracy of the requirements definition
effort considerably.

• Changes in requirements while the project is in progress may cause a lot
of unnecessary rework and replanning of the project to try to adjust to
changes.

The big advantage of defining the requirements upfront (if it can be done) is
that:

• It more clearly defines the scope of the effort, which may lead to more
accurate plans and cost and schedule estimates, and it provides a better
framework for defining what the architecture should be to fulfill those
requirements.

• It also provides a much better capability to analyze the requirements for
completeness and consistency prior to starting the design and that can be a
very important factor in high-risk projects, where requirements traceability
is an important consideration.

A compromise would be to define some (or most) of the high-level and more
critical requirements upfront and defer completion of some of the more detailed
requirements to the development effort.

• Agile approaches typically define only very high-level requirements upfront
(vision and product backlog), define user stories for the product backlog
prior to each release or iteration, and rely heavily on elaboration of the
details of the user stories as they’re developed in each iteration.

• Iterative approaches define more high-level requirements upfront and defer
the definition of more detailed requirements for each iteration until they
are required for that iteration.

Requirements elicitation and management is an art that can require a significant
amount of skill to plan an approach that will be effective for capturing, analyzing,
and managing the business requirements for a project. A good approach is to
identify the best method for defining the requirements based on the uncertainty
and complexity of the requirements and that will then become a major factor
in determining the planning and overall project management approach for the
overall project.

Requirements Definition and Management Approach 141

Business Process Considerations

An important factor to consider in requirements management is the interrelation-
ship of the requirements to the business processes that the requirements support.
In many cases, development of a new software application is an opportunity to
redefine the business processes that are associated with the application. Some-
times companies fail to take the time to analyze requirements and processes to
see if there’s a better way of doing things from a business process perspective
before starting the design of a new solution. Michael Hammer used to talk about
“paving over the cow paths”—taking inefficient processes and simply automat-
ing them rather than using information technology to completely redefine and/or
enable new ways of doing things.

One danger in agile methodologies is in jumping too quickly into the micro-
level requirements and design without doing a sufficient level of upfront analysis
of the business process and also identifying organizational changes that might be
required to effectively implement a new system.

“In looking at the focus of many agile methodologies, we may forget
important history lessons from the dreaded traditional development and
blithely aid our clients and customers by paving more cow paths. While
the agile principle of early delivery of working software has created enor-
mous benefits for many companies, there is an underlying assumption in
many agile methods that customers and users have done their homework;
that they:

• Understand their business process,
• Have done the necessary business process analysis and rationalization,

and
• Understand how automation might change their process.

. . . I am in no way advocating a return to the huge up-front require-
ments definition disasters of prior years, but I do believe that many
development efforts could benefit from better business process (or prod-
uct) understanding by the development team. Some degree of business
process understanding, rationalization, and automation potential needs to
be anticipated in early planning so that the later details, like features and
use cases, can be put into context. Furthermore, business process design
should be evolutionary, just like the software design: develop an initial
business process framework or skeleton, implement both the software
and the improved business processes incrementally, and then adapt both
the process and the software.”11

11 Highsmith, Jim, “Paving Cowpaths,” www.stickyminds.com/sitewide.asp?ObjectId=9226&
Function=edetail&ObjectType=COL

142 Fundamental Principles behind SDLC Models

It is always worthwhile to stop and question how much change in business
processes might be associated with the development of a new application before
getting too far into the development effort. If a substantial amount of business
process reengineering is associated with the design and implementation of an
application, it probably would be best to get that defined upfront for a couple of
reasons:

• Attempting to do business process reengineering during the design and
development process might lead to unnecessary churning, confusion, and
rework for the development team.

• If the business leaders and the development team jump too quickly into
the details of how the application is designed, they might overlook the big
picture and miss opportunities for doing things completely differently from
a business process perspective.

Requirements Complexity Considerations

In many cases, the importance, scope, and complexity of requirements may dic-
tate that a more rigorous approach to requirements management is needed. Here
are a couple of examples:

• It may be important to implement requirements traceability to ensure that
the requirements are complete, sufficient, and consistent with the business
objectives that they are intended to fulfill. It would be difficult to per-
form that kind of traceability analysis if the requirements were not at least
well documented, and a requirements management tool may be needed to
support that effort.

• Business rules are a type of requirement that may be overlooked if a
sufficient level of requirements analysis is not performed. In many cases,
there are business rules associated with requirements that must be enforced
and the interrelationship of those business rules to the requirements also
needs to be understood. That may also require a more rigorous requirements
management approach to ensure that all business rules are captured and
integrated into the design of the application.

Another value of requirements traceability is that it can help locate unnecessary
requirements—requirements that have no relationship to fulfilling the business
objectives of the system—“orphan” requirements that have become disconnected
from a user need.

Testing Considerations

The strategy for testing of the application is also an important consideration
in determining the requirements management approach. Without detailed

Requirements Definition and Management Approach 143

requirements, it may be difficult to plan and implement test cases to validate
that the requirements are met. This can be a very important factor in regulated
environments that might require rigorous testing and documentation.

Agile methods and traditional plan-driven methods both have their strengths
and weaknesses from a testing perspective:

1. Multilevel Testing Considerations
Agile methodologies put a strong emphasis on testing the code as it is
developed, but the emphasis is heavily on the testing of individual require-
ments at a unit test level and the documentation of requirements may be
limited to the test cases in some situations:

“Agile methods address this problem by organizing the development
into short increments, and by applying pair programming or other
review techniques to remove more code defects as they are being gen-
erated. They also develop executable tests to serve in place of require-
ments and to enable earlier and continuous regression testing. Auto-
mated testing support is recommended by most agile methods.”12

Integrating the requirements into the testing effort has some clear advan-
tages, but it’s dangerous to assume that writing test cases for each require-
ment completely obviates the need for having requirements documented
in some form for other purposes. For example, in most projects, multiple
levels of testing are required that go beyond the unit test level that is
performed within each iteration.

That higher-level complete system testing goes beyond the level of test-
ing in each individual iteration and may require a different kind of test
planning that might be very difficult, if not impossible, to do without hav-
ing well-defined and documented requirements. Traditional plan-driven
methodologies put a higher level of emphasis on tracking and manag-
ing well-defined and documented requirements as well as multilevel test
planning.

2. Test Management Considerations
Agile methodologies integrate the testing resources into the team, while
traditional plan-driven methodologies typically rely on a separate organi-
zation (QA) to manage those resources and the testing is many times done
somewhat independently of the development team. There are advantages
and disadvantages to both approaches:
• Centralizing the management of the test resources provides functional

direction to the testing effort to ensure that it is complete and consis-
tently implemented across all projects. It also ensures some level of

12 Boehm, Barry and Turner, Richard, “Balancing Agility and Discipline—A Guide for the Per-
plexed,” New York: Addison-Wesley, New York, 2003, pp. 43–44

144 Fundamental Principles behind SDLC Models

objectivity in the testing process by having the testing performed by a
separate organization.

• On the other hand, separating the testing resources from the develop-
ment team has some significant disadvantages:
• The sequential nature of the design and testing efforts probably delays

the completion of the overall development effort.
• Separation of the testing effort from the design team and the business

user can lead to misunderstandings and potentially incomplete testing
if the customer needs and requirements are not very well defined and
clearly understood.

• Plan-driven methods may create a testing bureaucracy that can be
entirely divorced from developer and customers, have a somewhat
adversarial relationship with the project team, and may focus heavily
on determining if the product matches the letter of the specifications
rather than the operational intent and customer need.

In many situations, these two approaches (agile and traditional plan-driven) are
not mutually exclusive and some combination of both of these approaches may
be the best choice. There is certainly a lot of value in having testing resources
directly involved in the requirements definition effort and integrating a large
part of the testing with the design effort, but there is also value in the plan-
driven approach of having well-defined and documented requirements and a well-
thought-out multilevel test planning effort. A compromise approach would be to
create “communities of practice” to retain a focus on functional areas such as
QA, while embedding the specialized resources associated with that function into
project teams.

Supportability Considerations

The strategy for requirements management should not be limited to just the design
and development effort—it should consider the full life cycle of the product.
Supportability requirements frequently get overlooked in the design effort, and
I’ve seen a number of applications that became extremely difficult or impossible
to support once they were introduced into production because:

• The requirements of how the application was originally designed were not
well documented.

• There was an inadequate capability for providing ongoing regression testing
and configuration management once the application was introduced into
production.

If the requirements and rules of how the application must operate are not well
documented and are just embedded in the code, it can become a nightmare to sup-
port the application and/or replace and upgrade it whenever it needs replacement
or upgrades.

Requirements Definition and Management Approach 145

Prioritization of Requirements

A requirements management approach should include a way of prioritizing
requirements. Agile approaches, in particular, typically put a lot of emphasis on
prioritizing requirements and using an iterative approach to develop the most
important requirements first to deliver the most important value to the customer
as early as possible.

“Just Barely Good Enough” Thinking
An important idea in any development effort (agile or non-agile) is the principle
of “Just Barely Good Enough” (JBGE) requirements. Scott Ambler has done a
nice job of capturing this idea in his work on agile modeling13. Many software
applications become bloated with too many features that no one ever uses, which
just makes the application complex, confusing, and difficult to use. Scott makes
the point that:

“For some reason people think that JBGE implies that the artifact isn’t
very good, when in fact nothing could be further from the truth. When
you stop and think about it, if an artifact is JBGE then by definition it
is at the most effective point that it could possibly be at.”14

His point is that, beyond a certain optimum point, adding additional features
has diminishing value and just adds complexity to the application and, of course,
significantly extends the development effort. This is an important consideration
in any software development effort, and it often requires close collaboration with
the users to determine where this optimum point is.

Differentiate Wants from Needs
Another principle that is similar to “Just Barely Good Enough” thinking is being
able to differentiate customer wants from needs. Robert Wysocki defines this as
follows:

“Wants and needs are closely linked to one another but are fundamentally
different. Wants tend to be associated with a solution that the client
envisions. Needs tend to be associated with the problem. If wants are
derived from a clear understanding of needs, then it is safe to proceed
based on what the client wants, but you cannot always know that this is
the case. To be safe, I always ask the client why they want what they
want. By continuing this practice of asking why, you will eventually get
to the root of the problem and the needs become clear.”15

13 Ambler, Scott, Agile Modeling Effective Practices for eXtreme Programming and the Unified
Process , Hoboken, NJ: John Wiley and Sons, 2002
14 Ambler, Scott, “Agile Modeling,” www.agilemodeling.com/essays/barelyGoodEnough.html
15 Wysocki, Robert, Effective Project Management—Traditional, Agile, Extreme, Hoboken, NJ:
Wiley, 2009, p. 52

146 Fundamental Principles behind SDLC Models

The key idea here is that it is always a good idea to be sure that the problem
is well understood before jumping too quickly into a solution. Charles Kettering,
a famous inventor, once said “A problem well stated is a problem half solved.”16

Agile methodologies do provide a mechanism for capturing a “vision state-
ment” upfront, which would normally capture the business objectives and a
succinct definition of the business problem to be solved prior to jumping too
quickly into the design and development effort. However, there is a danger that,
without a sufficient level of analysis, the effort will not get to the root problem
the system needs to address.

Very often, it is necessary to drill down into the problem to find the root
cause rather than simply react to what may be the symptoms of the problem.
A very effective technique for doing that is called “the 5 why’s method.” It
consists of starting with what appears to be the problem and repeatedly asking
the question of “why” that problem occurred to get to the root cause. In many
cases, the answer to the first “why” will prompt another “why,” and the answer
to the second “why” will prompt another and so on; hence the name the “5
Whys strategy.” The following is an example of the 5 Whys analysis technique
of analyzing a problem to get to the root cause:

1. “Why is our client, Hinson Corp., unhappy? Because we did not
deliver our services when we said we would.

2. Why were we unable to meet the agreed-upon timeline or schedule
for delivery? The job took much longer than we thought it would.

3. Why did it take so much longer? Because we underestimated the
complexity of the job.

4. Why did we underestimate the complexity of the job? Because we
made a quick estimate of the time needed to complete it, and did not
list the individual stages needed to complete the project.

5. Why didn’t we do this? Because we were running behind on other
projects. We clearly need to review our time estimation and specifi-
cation procedures.”17

Another commonly used prioritization technique in agile projects is called
“MoSCoW.” It consists of breaking up requirements into four categories:18

• Must have—Requirements labeled as MUST have to be included in the
current delivery timebox in order for it to be a success. If even one MUST
requirement is not included, the project delivery should be considered a
failure.

16 Kettering, Charles, Quote, www.quotationspage.com/quote/34282.html
17 “5 Why’s Problem Solving from MindTools.com,” www.mindtools.com/pages/article/newTMC_
5W.htm
18 “MoSCoW Method,” http://en.wikipedia.org/wiki/MoSCoW_Method

Requirements Definition and Management Approach 147

• Should have—SHOULD requirements are also critical to the success of
the project but are not necessary for delivery in the current delivery time-
box.

• Could have—Requirements labeled as COULD are less critical and often
seen as nice to have.

• Won’t have—WON’T requirements are either the least-critical, lowest-
payback items, or not appropriate at that time.

The Role of Iterative Development
An iterative development approach can play an important role in prioritizing
requirements. With traditional plan-drive projects, prioritization of requirements
may have less impact because it’s an all or nothing approach—either the require-
ments get included in the project or they don’t, and there’s a tendency for users
to not want to give up anything, so everything gets rated as a high priority. With
an iterative approach, users are not necessarily forced to make the choice to give
up functionality; it’s more of delaying the functionality to a later iteration or
release, which is typically an easier decision to make. As a result, an iterative
approach lends itself much more to prioritization of requirements.

Summary of Requirements Management Guidelines

001. The method for eliciting requirements is probably one of the most signif-
icant determinants of selecting a life-cycle model. The best method for
eliciting requirements will depend on a number of factors including:
• The nature and complexity of the product
• The level of uncertainty and stability in the requirements and difficulty

of accurately specifying requirements upfront
• The importance of getting user input on some of the features and details
• The availability and willingness of users to actively participate in the

design
2. The interrelationship of the application and the business processes it is

associated with should be considered before jumping too quickly into the
design of the application.

3. The complexity of the requirements and the importance of validating
the completeness, sufficiency, and consistency of the requirements is an
important determinant of a requirements management strategy.

4. The testing strategy and product life-cycle support plan are also important
considerations in determining a requirements management strategy.

5. Prioritization of requirements is very important to limit the complex-
ity of the requirements to a reasonable level to avoid “gold-plating” an
application.

148 Fundamental Principles behind SDLC Models

RISK MANAGEMENT, UNCERTAINTY, AND PLANNING
APPROACH

Risk Management Considerations

Risk management is also one of the fundamental principles of any project man-
agement methodology:

“Risks and benefits always go hand in hand. The reason that a project
is full of risk is that it leads you into uncharted waters. Projects with no
real risks are losers. They are almost devoid of benefit; that’s why they
weren’t done years ago.”19

Planning can substantially reduce some of the risks in a project to a manageable
level. Some people (particularly those that have never been burned by something
going bad) tend to be naı̈ve about risks and assume that “that will never happen
to me” and don’t even plan for risks. Effective risk management is a mark of
maturity:

“Taking explicit note of bad things that can happen (risks) and planning
for them accordingly is a mark of maturity. But that’s not the way we
tend to use the word maturity in the IT industry. We software people tend
to equate maturity with technical proficiency It is, rather, a quality
of grown-up-ness, an indication that a person or organism has reached
its adult state.”20

The diagram below shows the general relationship of the level of risk to the
level of planning in any project. In general, as the overall risk increases, more
planning is needed to identify and mitigate the risks to reduce the overall level
of risk in the project to an acceptable level as shown in Figure 7.2.

The level of risk is generally inversely proportional to the level of plan-
ning. Planning reduces the uncertainties in a project, and in general, the less the
uncertainty, the less the risk. There are two stages of risk management:

1. Risk identification
• There are two kinds of risks in a project: the ones you know about and

the ones you don’t know about. Planning reduces the uncertainty in a
project and helps to identify risks that you might otherwise not have
known about (risk identification).

• Uncertainty is also related to complexity. In general, the higher the
complexity, the higher the uncertainty because there are more things
that could go wrong that are more difficult to predict and there is a

19 DeMarco, Tom and Lister, Timothy, Waltzing with Bears , New York, NY: Dorset House, 2003
20 DeMarco, Tom and Lister, Timothy, Waltzing with Bears , New York: Dorset House, 2003

Risk Management, Uncertainty, and Planning Approach 149

Level of
Risk

Level of
Planning

Very High
Risk

Moderate
Risk

Low
Risk

Figure 7.2 Risk versus Level of Planning curve

greater the need for planning to reduce the level of uncertainty and risk
to an acceptable level.

• It’s important to recognize that no project is without risk and that risk
never goes to zero—you can only hope to reduce risk to a reasonable
and manageable level.

2. Risk Mitigation
• Risk mitigation is the process of systematically reducing the impact of

a risk and/or the likelihood of a risk occurring after a risk has been
identified.

• Risk identification does not actually reduce the level of risk; it simply
better defines what the actual level of risk is by removing some of the
uncertainty. Planning only reduces the level of risk if it also includes
contingency planning and risk mitigation.

It is important to note that planning does not all necessarily have to be done
upfront as in the Waterfall approach; the planning can be spread throughout the
project as in the “rolling wave” planning that is typically done in more agile
methodologies. It would be naı̈ve, in some cases, to believe that all risks can
be detected and planned for at the beginning of a project. Risk planning and
management should be continuous throughout the project; however, deferring
the planning might mean that the risks are not identified until the project is

150 Fundamental Principles behind SDLC Models

in progress. In many cases, a more iterative approach may provide a better
framework for managing risks, because it encourages a more continuous approach
to risk management, and risks will generally be detected and resolved earlier in
the project.

“Planning doesn’t eliminate project risks; constant gathering of informa-
tion systematically reduces them over the life of the project. Gathering
information costs money, so we want to constantly ask what information
has the highest value. The strategies we employ to gather information
should be guided in part by our risk analysis—It’s an integral part of
the product development process and a critical component of release
planning.”21

The company’s tolerance for risk should be based on the potential business
impact of the project.

• Some projects may have very low potential business impact, and it may
be very acceptable to take a high-risk approach with a minimum level of
planning. If a project has a very low level of complexity, as well as a low
level of uncertainty and risk, it may not require very much planning at all.
In that instance, doing excessive amounts of planning would probably be
unwarranted and overkill.

• On the other hand, if a project is to redesign and replace a very mission-
critical system that the company depends on for its operation, the business
impact of something going wrong is much higher and the level of com-
plexity and uncertainty is also probably much higher. For that reason, a
much higher level of planning is probably needed to keep the risk at an
acceptable level.

Summary of Risk Management Guidelines

1. The overall risk environment of the business that the project is associated
with is a very important determinant in selecting an appropriate level of
planning to mitigate the risks. It is also important to consider how planning
is done in the life-cycle model (upfront or rolling wave) to determine if
the level and nature of planning is appropriate and sufficient to mitigate
the risks.

2. Even if most of the planning is done upfront, planning and risk manage-
ment should always be ongoing activities throughout the project.

3. A project management methodology should be chosen that provides a
level of planning and risk management that is appropriate for managing

21 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New Year: Addison-
Wesley, 2010, p. 182

Risk Management, Uncertainty, and Planning Approach 151

the risks, and that decision should be based on an assessment of the
business impact, risks, and complexity associated with the project. Ideally,
the business stakeholders should understand and buy into that decision.

Management of Uncertainty Considerations

Management of uncertainty is also a critical element in a project because uncer-
tainty is directly related to risk—the higher the uncertainty, the higher the risk.
Every project has something which is called “the fuzzy front end,” as shown in
Figure 7.3.

The “fuzzy front end” is the portion of the project where there is a very
high level of uncertainty about many aspects of the project (requirements, design
approach, risks, etc.). The goal of the upfront planning phase of the project
should be to reduce that level of uncertainty to an acceptable level. (The level
of uncertainty never goes to zero.)

The level of uncertainty is a combination of uncertainty associated with a
number of project factors:

• Project requirements
• Scope, costs, and schedule associated with the project
• Design and architectural approach
• Risks and mitigation strategy
• Other factors

Level of
Uncertainty

Project
Planning

Project
Execution

Time

Figure 7.3 “Fuzzy front end” (conservative approach)

152 Fundamental Principles behind SDLC Models

The Waterfall approach assumes that uncertainty can be reduced to a very low
level of uncertainty prior to beginning the execution of the project, as shown
in the preceding diagram. In some cases, however, it might take a long time to
reduce the uncertainty to that level, and it may not even be practical to get it to
that level early on in the project. A good example of that might be designing the
user interface for a software application, sometimes it is much more efficient to
start the project and work out the details as the project goes along.

Agile and iterative approaches encourage more of a just-in-time approach to
planning and defer decision making based on planning until the “last responsible
moment”. The “last responsible moment” is the latest point that a decision must
be made without impacting the project. The advantage of deferring planning
decisions is that, in general, planning and decision making is easier when more
information is known. Trying to do a lot of planning and decision making upfront
in the project when less information is known generally requires a higher level of
speculation, and there are two key problems associated with that. The first is that,
because the planning and decision making are based on speculation, sometimes
those decisions will be wrong. Second:

• A change of direction and potential rework of whatever portion of the
project that was built around those assumptions will be needed later in the
project, or

• Worse yet, those assumptions will be taken for granted and not revisited
later in the project and the project will go off in the wrong direction

An example of that kind of approach is shown in the “More Aggressive
Approach” in Figure 7.4. It acknowledges the fact that it is okay to start the exe-
cution of the project before all of the uncertainty is resolved through planning,
and the remainder of the uncertainty will be resolved as the project progresses.
There are naturally tradeoffs involved in doing that. The primary tradeoff is
between the following pros and cons.

Pros:

• Getting started quicker with a higher level of uncertainty potentially has
the benefit of reducing the overall development time.

• It may be more effective to defer planning till later in the project when
more information is known. Attempting to do all the planning upfront many
times results in unnecessary replanning and rework later.

Cons:

• The ability to accurately predict the costs and schedule of the project
before starting the project execution is probably reduced because of the
higher level of uncertainty.

• There may also may be more risk in starting the project with incomplete
planning.

Risk Management, Uncertainty, and Planning Approach 153

Level of
Uncertainty

Project
Planning

Project
Execution

Time

Figure 7.4 “Fuzzy front-end” (more aggressive approach)

Another approach would be to start the project with a very limited amount
of upfront planning as shown in Figure 7.5. Naturally, the risks in this
situation would probably be much higher, but it involves the same general
tradeoffs.

It is perfectly acceptable for a project to begin with any of these levels of uncer-
tainty, but it should be done knowingly with a full understanding of the risks
involved and based on some analysis of the tradeoffs associated with alternative
approaches. If a decision is made to start a project at a point of high uncer-
tainty, it introduces more potential risk into the project and may call for some
method of continuing to assess the level of uncertainty and risk as the project
progresses.

Summary of Management of Uncertainty Guidelines

The following are a few good guidelines associated with management of
uncertainty:

1. It is impossible to completely remove all uncertainty prior to the start
of the project. In most situations, a project would never get started if it
were necessary to completely resolve all uncertainties prior to the start
of the project. An intelligent judgment should be made as to what is an
acceptable level of uncertainty prior to starting a project.

154 Fundamental Principles behind SDLC Models

Level of
Uncertainty

Project
Planning

Project
Execution

Time

Figure 7.5 “Fuzzy front end” (very aggressive approach)

2. In most cases, a best practice is to resolve the major uncertainties associ-
ated with a project to a reasonable level and postpone many of the details
if possible.

3. If an uncertainty cannot be completely resolved, a good practice is to make
an assumption about how the uncertainty is most likely to be resolved,
proceed on the basis of the assumption, and track the resolution of the
assumption as a risk or issue until it is resolved. This is commonly known
as a risk log.

The Role of Planning

Adopting the appropriate mindset about the role of planning is very important.
Here are several quotations on the subject of planning22:

Quote Source

“A plan is nothing; planning is everything.” Dwight D. Eisenhower
“Plans are of little importance, but planning is essential.” Winston S. Churchill
“No battle plan survives contact with the enemy.” Helmuth von Moltke the Elder
“A good plan, violently executed now, is better than a perfect plan next

week.”
George S. Patton

22 “Plan” from Wikipedia the Free Encyclopedia, http://en.wikipedia.org/wiki/Plan

Risk Management, Uncertainty, and Planning Approach 155

It’s interesting that all of the above quotes come from the military environment,
where the level of uncertainty is typically very high. In a military environment,
you never know what the enemy or the terrorists are going to do next, and you
have to react quickly and change plans rapidly as the situation evolves. This
mode of thinking is very relevant to many product development initiatives.

The most common problems associated with project planning are:

1. Writing a plan and putting it on the shelf, where it gathers dust, and
never revisiting it again. Planning should take place on an ongoing basis
throughout any project—even if a very high level of planning was done
prior to executing the project in a Waterfall model. No plan should be
considered sacred; it is always wise to revisit some of the planning and
assumptions behind that plan to see if they are still valid as the project
progresses.

2. Taking planning to an extreme and never getting started on the project.
A good project manager knows how to make an intelligent judgment about
how much planning is essential to do before starting the project to manage
the risk and how much planning can be deferred and done as the project
progresses.

Agile projects take a different approach to planning and work well in environ-
ments that have a very high level of uncertainty that cannot easily be resolved
prior to the start of the project:

“The models are built on the assumption that the solution has to be
discovered. Planning becomes less of a one-time task done at the outset
and more of a just-in-time task done as late as possible. There is less and
less reliance on a plan and more reliance on the tacit knowledge of the
team. That doesn’t reduce the complexity, but it does accommodate it.”23

Developing an appropriate balance between planning and execution can be a
challenge:

“Every project has known’s and unknown’s, certainties and uncertain-
ties, and therefore every project has to balance planning and adapting.
Balancing is required because projects run the gamut from production-
style ones in which uncertainty is low, to exploration-style ones in which
uncertainty is high. Exploration-style projects . . . require a process that
emphasizes envisioning and then exploring into that vision rather than
detailed planning and relatively strict execution of tasks. It’s not that
one is right and the other is wrong, but that each style is more or less
applicable to a particular project type.

23 Wysocki, Robert, Effective Project Management—Traditional, Agile, Extreme, Hoboken, NJ:
Wiley, 2009, p. 311

156 Fundamental Principles behind SDLC Models

Another factor that impacts project management style is the cost of
an iteration; that is, the cost of experimenting. Even if the need for inno-
vation is great, high iteration costs may dictate a process with greater
anticipatory work. Low-cost iterations . . . enable an adaptive style of
development in which plans, architectures, and designs evolve concur-
rently with the actual product.”24

Summary of Planning Guidelines

The following are a few good guidelines associated with planning:

1. The overall nature and level of planning should be appropriate to the risk
and should provide an effective overall framework for risk management
(see the risk management section).

2. A key purpose of planning is to reduce the uncertainty in the project to a
manageable level (see the management of uncertainty section).

3. The best approach to planning may be to do some reasonable amount of
high-level, upfront planning and defer some of the more detailed plan-
ning until later in the project as it progresses. It may not make sense
to try to resolve 100 percent of the uncertainties before the start of the
project. In many cases, it is best to postpone a planning decision until more
information is available to make that decision effectively if possible.

4. A plan should never be rigid, and planning should never stop:
• Any plan should always leave open the possibility that the selected

approach is not going to work as planned or that unforeseen events will
occur that will invalidate or change the plan.

• Lessons learned during the course of the project and new information
gained should be fed back into the plan as the project progresses.

THE ROLE OF LEADERSHIP AND TRAINING

Leadership

Any project methodology requires leadership to execute it effectively. Too often,
there’s an assumption that a given methodology can be just executed by the book
and people will just follow along. That kind of approach creates an environment
where the process manages you instead of you managing the process and is one
of the factors that sparked the agile movement to revolt and develop a more
humanistic kind of approach.

Movement to an agile approach typically involves a softer form of leadership
with more delegation of responsibility to empowered teams, but leadership does
not necessarily mean abdicating the management role altogether.

24 Highsmith, Jim, Agile Project Management —Creating Innovative Products , New York:
Addison-Wesley, 2010, pp. 70–71

The Role of Leadership and Training 157

“Leaders as opposed to managers, encourage change—by creating a
vision of future possibilities (which may be short on details), by inter-
acting with a large network of people to discover new information that
will help turn the product vision into reality, and by creating a sense of
purpose in the endeavor that will motivate people to work on something
outside the norm.

Leaders who steer rather than command are not abdicating decision
making.”25

People need to feel respected and have the freedom to use good judgment,
creativity, and intelligence, but that doesn’t require having an environment filled
with chaos and anarchy. In fact, in many cases, if it is done properly, an agile
environment has an even higher level of discipline, but it is a different kind of
discipline. Instead of a traditional, hierarchical command-and-control environ-
ment, it is typically a flatter organizational environment with much higher levels
of self-discipline.

The following are a few good quotes on the role of effective leadership:

Quote Source

“Management is doing things right; leadership is doing the right things.” Peter F. Drucker
“Don’t tell people how to do things, tell them what to do and let them surprise you

with their results.”
George S. Patton

“Leadership is the art of getting someone else to do something you want done
because he wants to do it.”

Dwight D. Eisenhower

“The best executive is the one who has sense enough to pick good men to do what
he wants done, and self-restraint to keep from meddling with them while they
do it.”

Theodore Roosevelt

A key element of defining a project approach is finding the middle ground
that has the right balance of control and agility, is consistent with the culture and
business environment of the organization, and builds highly motivated, cohesive,
collaborative, and cross-functional teams, and this requires strong and intelligent
leadership.

Summary of Leadership Guidelines

The following are a few guidelines associated with leadership:

1. Any project methodology requires effective leadership and management
to make it work, and the leadership and management style should be

25 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, pp. 48–49

158 Fundamental Principles behind SDLC Models

appropriate to the project and consistent with the culture and business
environment of the organization.

2. Teamwork and respect for people is important whatever methodology you
use.

3. Sapient has provided some excellent bullet points on leadership guidelines,
which I think are very appropriate to consider in a more agile development
approach:

• Inspire a Shared Vision—Help people see, buy in, and commit
to a compelling future state

• Think Strategically—Keep people focused on the big picture, the
real value, and the critical elements to success

• Drive Accountability—Hold ourselves and others accountable
for achieving clearly articulated business outcomes

• Model the Way—Act the way you expect others to act; teach our
values by example

• Enable Others to Act—Set context and clear objectives, give
ownership and support that empowers people to perform

• Make the Hard Decisions—Face reality, communicate it clearly,
and make the hard decisions you know are right

• Challenge Assumptions—Understand the “why” behind things
and drive change when the “why” no longer makes sense26

Training

Similarly, it is very difficult to get any project methodology to work without
well-trained people. This becomes even more important when everyone on the
project team is expected to play a very active role in participating in the team.
Agile methodologies are particularly sensitive to the importance of having knowl-
edgeable and well-trained people:

“All of the agile methods put a premium on having premium people . . .

both (plan-driven and agile) operate best with a mix of developer skills
and understanding, but agile methods tend to need a richer mix of higher-
skilled people The plan-driven methods, of course, do better with
great people, but are generally more able to plan the project and architect
the software so that less-capable people can contribute with low risk.”27

26 Gottesman, Erik, Sapient White Paper on Leadership
27 Boehm, Barry and Turner, Richard, Balancing Agility and Discipline—A Guide for the Perplexed ,
New York: Addison-Wesley, 2003, pp. 46–47

The Role of Leadership and Training 159

With traditional methodologies, the primary emphasis is on training people on
the project team in their functional discipline (development, testing, etc.), and
they are not expected to need to know much about the project methodology,
since that is the domain of the project manager. In an agile project:

• Everyone on the team is expected to much more actively engage in working
as a team to jointly manage the project. As a result, they are expected to
understand the methodology, as well as their own functional discipline.

• Since there is a heavy emphasis on cross-functional collaboration, there is
also a need for each person on the team to be somewhat knowledgeable
about other functional disciplines. For example, on an agile project, a
developer should have a good understanding of QA and testing.

Training of an agile project team is typically more difficult than in a tradi-
tional environment, because the agile approach is less prescriptive and needs to
be somewhat adaptive to the situation. For that reason, agile projects typically
rely heavily on coaching and mentoring in addition to normal training. Natu-
rally, all organizations may not have the level of people required to make an
agile methodology work, and there is typically some turnover in people when
companies move to an agile approach because some people will have difficulty
in making the transition to an agile approach.

The role of training is many times overlooked:

“When an organization has software development challenges, there is
a tendency to impose a more disciplined process on the organization.
The prevailing concept of a more disciplined software process is one
with more rigorous sequential processing: requirements are documented
more completely, all agreements with the customer are written, changes
are controlled more carefully, and each requirement must be traced to
code. This amounts to imposing additional deterministic controls on a
dynamic environment, lengthening the feedback loop. Just as control
theory predicts, this generally makes a bad situation worse.”28

Imposing a more rigorous development process may be the wrong solution in
many cases. In a more dynamic environment, training may be a more appropriate
solution.

Summary of Training Guidelines

The following are a few good guidelines associated with training:

1. A project methodology cannot entirely substitute for highly qualified and
well-trained people on the team; however, traditional plan-driven method-
ologies are probably less sensitive to the level of training of the team.

28 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, p. 26

160 Fundamental Principles behind SDLC Models

2. The availability of trained and qualified people should be an important
consideration in selecting a project methodology.

THE ROLE OF DOCUMENTATION

Some people become overly consumed with writing project documentation for the
sake of documentation, and the people creating the documentation lose sight of
what purpose the documentation was intended to serve. What is important is that:

• The information that will be contained in the document serves a useful
purpose for better planning and/or managing the project.

• The approach taken to gather and analyze the information required was
well-chosen based on the overall risks and complexity associated with the
project.

• The analysis that went into developing that information was sufficiently
complete for the purpose it was intended for.

• The consensus building that was used to reach agreement on the results
of the analysis involved the appropriate people, and the level of consen-
sus building was consistent with the importance of the information to the
project.

A document is the result of the analysis used to develop the information that
went into it. It is the analysis that went into the information that’s contained in the
document that’s generally what is important, not the document itself ; however, the
document can serve a useful purpose of recording that event and communicating
the information to others if necessary.

There is a tendency among some people in the agile community to think that
documentation is a bad thing and should be avoided at all costs. It is always
worthwhile to ensure that documentation provides value, but it shouldn’t be
assumed that all documentation is bad. Documentation can potentially serve sev-
eral valuable purposes:

1. It is a record of decisions made and that can become important as the
project progresses. Sometimes after months have passed on a project,
people forget decisions that have been made early on in the project. In
contractual situations where work is being performed under contract for
a customer, that can be very critical.

2. It can be an effective tool for better planning and management of
projects. For example, in large projects with distributed teams, it is
essential to have some kind of documentation to keep everyone on the
team informed of what’s going on, but, of course, that doesn’t mean
that the project should rely exclusively on conventional paper-based

The Role of Documentation 161

documentation. There are many web-based tools for documenting and
sharing information that accomplish this task very effectively.

3. It can be an essential tool for understanding the interrelationship of com-
plex requirements. For example, requirements management tools are often
useful to analyze requirements and to perform traceability analysis of the
requirements. Traceability provides a way of validating that:
• The requirements are complete and consistent with the business objec-

tives that they support
• The different types of requirements are complete and consistent inter-

nally. For example business rules are defined as needed for all require-
ments.

• The requirements are consistent with the business processes they’re
associated with.

• Test cases that are associated with the requirements are complete, and
there is a sufficient level of test coverage to adequately test the require-
ments at multiple levels of testing.

It’s impossible to do that kind of traceability analysis if the requirements
are not documented and very well defined.

4. Documentation is also essential for configuration management of systems.
Configuration management can be essential to effectively manage complex
systems so that any changes in requirements that impact other related
requirements, test cases, design objects, interfaces to other systems, and
so forth are understood so that a change in one area of a system doesn’t
break another related area.

Summary of Documentation Guidelines

The following are a few good guidelines associated with documentation:

1. Documentation is only a tool, not an end in itself. Any document should
fulfill some objective related to planning and management of the project
and the level of documentation should be appropriate to the risks and
complexities of the project.

2. It is always useful to question documentation to ensure that it provides
value and serves a useful purpose; many times organizations either:
• Go overboard in creating documentation that serves no useful purpose

or outlives its useful purpose, or
• Dismiss all documentation as unnecessary bureaucracy without consid-

ering downstream impact and unintended consequences that might result
of eliminating documentation that serves a useful purpose

162 Fundamental Principles behind SDLC Models

3. Documentation can be a good tool for developing an effective project
management approach if it is used correctly to provide value. Potential
areas of value include:
• Recording and communicating information to everyone on the team;

however, the strategy should always consider other means of commu-
nication such as shared portals that may accomplish that task more
effectively

• Consensus building among members of a team, but it is the consensus
building that is important; the documentation is only a tool for achieving
that consensus and should only be used to the extent needed to build
consensus

4. The level and nature of documentation in a project should be determined
by organizational culture as well as the scope and complexity of the
project. Some large, complex projects might require a more documented
approach because the people involved in the project are separated by
time, organization, and process. An agile process typically relies heav-
ily on more complex interactions and individual discipline rather than
documentation—that approach works well for smaller projects; however,
it is difficult to extend the heavy reliance on direct face-to-face commu-
nications to large distributed teams.

CHAPTER 8
SOFTWARE DEVELOPMENT LIFE CYCLES

Chapter 7 discussed some general principles that apply to all life-cycle models,
which make sense to consider in selecting a life-cycle model for a project or
tailoring it to fit a particular project. This chapter will discuss some general
categories of life-cycle models that can provide a framework for those decisions.

The table that follows shows a summary of the major tradeoffs to be consid-
ered between two extreme life-cycle models (pure agile and extreme plan-driven
Waterfall).

Pure Agile Extreme Plan-Driven Waterfall

Potential Benefits

• Faster development times with higher levels of
productivity and employee morale

• Flexibility to adapt to uncertain and changing
requirements

• Faster learning curves to incorporate process
improvements

Potential Benefits

• Higher levels of control and predictability over
costs and schedules

• Less dependent on highly skilled resources
• Consistent with many typical company

environments—doesn’t require significant change
• Higher levels of efficiency for products with low

levels of uncertainty

Tradeoffs

• Can be difficult to implement and might require a
large amount of retraining of the company’s staff
as well as a significantly increased level of
participation from business resources.

• Might require a significant change management
initiative if the company’s culture is not
consistent with an agile strategy

• May not be appropriate for all of the company’s
projects particularly if they are large and complex

• Might not provide a sufficient level of risk
management and control for high risk projects or
regulated environments.

• Might result in a lower level of control and
predictability over product development costs and
schedules.

Tradeoffs

• May have overly bureaucratic control and
documentation requirements that:

• Add unnecessary overhead, and
• Raise product development costs and result in

excessively long product development times
• Emphasis on control may seriously impact the

ability to react to emergent and changing business
requirements if the environment the company
operates in has a significant level of uncertainty
in it

• Inadequate emphasis on learning and continuous
improvement

163

164 Software Development Life Cycles

Because these tradeoffs can be so severe, the temptation may be to use no
methodology at all, or some companies might just adopt the process on paper
but not really follow it in practice. Developing a process that really fits the
company’s business environment, that is realistic to implement, and that people
really believe in takes some skill. In many cases, the best solution is a hybrid
approach in between these two extremes that provides a balance of control and
agility to fit with the company’s business and organizational environment.

TYPES OF SOFTWARE DEVELOPMENT LIFE CYCLES

There are many different variations on software development life cycles that are
commonly used today. The purpose of this section is to break these life cycles up
into logical high-level categories. These categories are intentionally somewhat
general and conceptual to avoid getting too far down into the specific mechanics
of any particular methodology. This is intended to provide an understanding of
how these various life-cycle models provide a continuum of alternatives between
an extreme traditional Waterfall model at one end and pure agile life-cycle models
at the other end.

Bob Wysocki1 has developed a model for characterizing life-cycle models by
clarity of the goal and clarity of the solution. Projects where the goal is not clear
are outside the scope of this book and are generally found only in a research and
development environment. The following model expands the model originally
developed by Bob Wysocki and provides more granular differentiation of the
life-cycle models by clarity of the solution and the level of iteration needed to
further define the solution, as shown in Figure 8.1.

The categories in the diagram are somewhat fuzzy, and they may have some
level of overlap; however, the general framework is useful. To use a cooking
analogy, these categories are like different kinds of sauces—chefs have five
basic kinds of sauces that they generally work with for preparing a gourmet
meal:

“In the 19th century, the chef Antonin Carême classified sauces into
four families, each of which was based on a mother sauce. Carême’s
four mother sauces were:

• Allemande is based on stock with egg yolk & lemon juice
• Béchamel is based on flour and milk
• Espagnole is based on brown stock, beef etc.
• Velouté is based on a light broth, fish, chicken or veal

1 Wysocki, Robert, Effective Project Management—Traditional, Agile, Extreme, Hoboken, NJ:
Wiley, 2009, p. 299

Types of Software Development Life Cycles 165

Clear Not Clear

Pur
e

Agil
e

Clarity of Solution

Incremental

Iterative
Emergement

Iterative
Plan-Driven

N
on

-I
te

ra
tiv

e

D
ev

el
op

m
en

t P
ro

ce
ss M

or
e

Ite
ra

tiv
e

Ite
ra

tiv
e

Traditional
Plan-Driven

Adaptive

In
cr

ea
sin

g
Unc

er
ta

int
y a

nd
 A

gil
ity

Figure 8.1 Categories of life-cycle models

In the early 20th century, the chef Auguste Escoffier updated the
classification, replacing sauce Allemande with egg-based emulsions
(Hollandaise and mayonnaise), and adding tomato. Escoffier’s schema
is still taught to chefs today:

• Béchamel
• Espagnole
• Hollandaise
• Mayonnaise
• Tomato sauce
• Velouté

Those sauces are called “mother sauces” because most other sauces
can be derived from them. For example, Mornay sauce is a cheese sauce
based on bechamel.”2

The analogy to cooking sauces is a good one—these categories of lifecycle
models can be thought of as different “sauces” or styles of cooking that can be

2 “What are the 5 mother sauces and why are they called that?,” http://answers.yahoo.com/question/
index?qid=20061204192031AAuuq0x

166 Software Development Life Cycles

used as a base for developing a number of different gourmet recipes (project
methodologies) that are tuned to a particular “taste” for either a more agile or a
more traditional approach.

The way life-cycle models deal with defining requirements is probably the
most significant differentiator of these life-cycle models. Life-cycle models
attempt to expand the breadth and depth of the definition of requirements in
three ways:

1. By starting with a base of completely defined core requirements, defin-
ing those requirements in depth, and then incrementally expanding the
definition of new features and capabilities (see Figure 8.2)

2. By starting with a high-level definition of all requirements and progres-
sively adding more detail (see Figure 8.3)

3. By using a combination of both of these approaches (see Figure 8.4)

Etc.

Define & Develop
Core Requirements

Define & Develop
Additional Features

(Added Incrementally)

Figure 8.2 Incremental requirements definition approach

Define & Define
High-level

Requirements

Define & Define
More Detailed
Requirements

Completed
Requirements

Iteration #1 Iteration #2 Iteration #3

Figure 8.3 Progressive elaboration requirements definition approach

Types of Software Development Life Cycles 167

Define & Develop
Core Requirements

Define & Develop
Additional Features

(Added Incrementally)

High-level
RequirementsEtc.

More Detailed
Requirements

Elaboration

Figure 8.4 Combination requirements definition approach

The general characteristics of these categories are:

• Traditional plan-driven (Waterfall) approaches attempt to define both the
breadth and depth of all the requirements upfront at the beginning of the
project.

• Incremental approaches develop the product incrementally through a series
of releases, and the life-cycle model for each release is essentially a mini-
waterfall. Each release is intended to produce a releasable product, and
it is assumed that the requirements for that release can be completely
defined prior to the design of that release. The project planning can be
truly incremental and does not require any planning beyond the current
release. (See Figure 8.2.)

• Iterative plan-driven approaches are similar to the incremental approach
in that requirements are completely defined prior to beginning the design
effort for each iteration, and there should be little or no need for the user to
further elaborate the requirements once the design has begun. The approach
differs from the incremental model as follows:
• There is typically a high-level plan that outlines the general high-level

content of all iterations prior to the start of the project.
• Iterations will typically be smaller units of functionality; they may not

be completely independent of each other, and the result of each iteration
may or may not be a releasable product.

• The iterative emergent approach is similar to the Iterative Plan-Driven
approach with the following differences:
• Only high-level requirements for each iteration are developed prior to

the start of each iteration.
• Detailed requirements for each iteration will be elaborated further as the

design of the iteration progresses.

168 Software Development Life Cycles

• Adaptive approaches are similar to the Iterative Emergent approach with
the exception that the overall approach is expected to be much more adap-
tive and responsive to change and the solution is likely to evolve as each
iteration is implemented.

There are a number of fundamental characteristics of these life-cycle models
that are different. At one end of this spectrum, the life-cycle models are generally
called “optimizing.” The term “optimizing” is used to denote that the life cycle is
designed to optimize the efficiency of the process for getting to the solution when
the requirements for the solution are fairly certain and not likely to change. It
does not necessarily optimize the solution, particularly if further adaptation is
needed to define an optimum solution.

At the other end of the extreme, the life-cycle models are considered more
“adaptive”—the solutions are less known and more likely to change and the
life-cycle model is designed to adapt to those conditions.

“An adaptive development process has a different character from an
optimizing (Traditional) one. Optimizing reflects a basic prescriptive
Plan-Design-Build lifecycle. Adapting reflects an organic, evolutionary
Envision-Explore-Adapt lifecycle. An adaptive approach begins not with
a single solution, but with multiple potential solutions (experiments). It
explores and selects the best by applying a series of fitness tests (actual
product features or simulations subjected to acceptance tests) and then
adapting to feedback. When uncertainty is low, adaptive approaches run
the risks of higher costs. When uncertainty is high, optimizing (tradi-
tional) approaches run the risk of settling too early on a particular solution
and stifling innovation. The salient point is that these two fundamental
approaches to development are very different, and they require different
processes, different management approaches, and different measurements
of success.”3

An adaptive development process really is evolutionary, in that earlier work
guides later work. It is particularly useful for subjective, highly user-focused
development—user interfaces (UIs) are a prime example. It is also very good
for ongoing enhancement of a product where real user/customer response drives
where you go next. An adaptive approach is designed to optimize the solution
when the requirements for the solution are not completely known in advance.

Traditional Plan-Driven Life-Cycle Model

Traditional plan-driven life-cycle models include the Waterfall and variations
on the Waterfall model. These life-cycle models are appropriate when both

3 Highsmith, Jim, Agile Project Management—Creating Innovative Products , New York: Addison-
Wesley, 2010, p. 67

Types of Software Development Life Cycles 169

the goal of the project and the requirements for the project can be defined
largely upfront prior to starting the project, and there is a low appetite for
risk.

“Traditional project management assumes that events affecting the project
are predictable and that tools and activities are well understood. In
addition, with traditional project management, once a phase is com-
plete, it is assumed that it will not be revisited. The strengths of this
approach are that it lays out the steps for development and stresses the
importance of requirements. The limitations are that projects rarely fol-
low the sequential flow, and clients usually find it difficult to completely
state all requirements early in the project. This model is often viewed as
a waterfall.”4

A general conceptual model of a traditional plan-driven life-cycle model con-
sists of some number of phases that happen sequentially (or mostly sequentially),
as shown in Figure 8.5.

Traditional-plan driven models are used frequently when cost and schedules
are important to manage, such as customer contractual commitments. In those
environments, it may be essential to have a well-defined plan upfront with a
clearly defined scope and change control to manage changes in scope in order to
accurately predict and manage costs and schedules. In some of those instances, a
traditional plan-driven model might be combined with a different kind of model
for the startup phase of the project. For example, there might be an exploratory
startup phase to define the requirements and scope of the project prior to com-
mitting to a fixed-price, plan-driven project.

Requirements

Design

Develop

Integration &
Test

Implementation/
Deployment

Figure 8.5 Traditional plan-driven conceptual life-cycle model

4 Hass, Kathleen, “The Blending of Traditional and Agile Project Management,” PM World Today ,
May 2007

170 Software Development Life Cycles

Distinguishing Characteristics:

From the preceding, it should be clear that the stereotype of a very rigid and
bureaucratic approach associated with a traditional plan-driven approach is not
necessarily accurate. There are certainly some instances where that is the case,
but it doesn’t have to be that way. That kind of image results from companies
that often attempt to implement a model without understanding the principles
behind it and without tailoring the model to fit their business environment and
the risks and complexity of their projects. The key things that are different
about traditional plan-driven models are:

1. Most of the planning is done upfront—however, it is expected that some
level of planning will continue throughout the project. Naturally, that
tends to work best in environments with a low level of uncertainty and
where only limited amounts of change are expected. It doesn’t work well
in environments with high levels of uncertainty and change. Many of the
other aspects of the model can be tailored to provide higher levels of
agility—there is no reason that it has to be rigidly implemented by the
book.

2. Most of the requirements are defined prior to starting the design rather
than concurrently with the design—however, it is also possible to allow
some overlap to and allow the design to begin before the requirements
definition is 100 percent complete.

Potential Variations:

There are a number of variations of the traditional plan-driven model including:

1. Number and Types of Phases
There are many variations on the traditional plan-driven model have more
or less phases and different definitions for the phases. The general charac-
teristic that distinguishes a traditional plan-driven model is that the phases
happen sequentially and most of the planning is done upfront. However,
it should also be realized that there are many shades of gray in these dis-
tinctions, and planning should always continue to some extent throughout
the whole project even in traditional plan-driven models.

2. Deliverables and Artifacts Required for Each Phase
There is a common stereotype associated with traditional plan-driven mod-
els that they are loaded down with lots of unnecessary documentation.
That is not necessarily the case—if a plan-driven model is done intelli-
gently, there is no reason why the documentation and artifacts cannot be
tailored as needed to fit the needs of the project.

3. Level of Formality to the Review Process between Phases
Another stereotype is that traditional plan-driven approaches are loaded
down with excessive bureaucratic controls that make it very cumbersome

Types of Software Development Life Cycles 171

to make progress. That is also not necessarily the case—there is no reason
why the team cannot be empowered to make whatever decisions regarding
approving phase transitions or whatever other approvals need to be made
in the project. The level of control can and should be tailored to fit the risk,
scope, and complexity of the project and the sponsoring organization’s risk
tolerance.

Phase “gates” in a traditional model fulfill a fundamental purpose to
test that any prerequisites required for moving on to the next phase have
been met and resources required for the next phase are committed. Agile
methods involve similar decisions with less formality and on a shorter
time scale.

4. Amount of Overlap Allowed between Phases
A pure Waterfall approach does not allow overlap between phases—but
that also does not necessarily have to be the case. Instead of making
the transition between phases highly controlled and rigid, it is perfectly
acceptable to design a model that allows some overlap between the phases.
The amount of overlap allowed should be based on evaluating the tradeoffs
between increasing risks by allowing more overlap against the schedule,
efficiency, and cost gains by accelerating progress on the project.

Strengths and Benefits:

• The costs, schedule, and resources required for the project are known from
the start of the project and are more predictable provided that the require-
ments can be accurately defined upfront .

• It can be a more efficient process where there is little uncertainty about the
project requirements, but that may not be realistic in many environments.

• The model is easily scalable to large complex projects and doesn’t require
the team to be co-located.

• The model isn’t highly dependent on the culture of the organization and
doesn’t require much of a shift in thinking from established ways of doing
things.

• The model is also adaptable to high-risk and regulated environments, where
a higher level of project control may be required.

Risks and Limitations:

• Probably has more overhead for control purposes; however, that level of
control may be needed in certain situations such as high risk or regulated
environments

• The contractual style of relationship with the customer that this model is
based on limits the ability to develop a true partnership with the customer
to meet customer needs

172 Software Development Life Cycles

• Typically requires documentation for the upfront portion of the effort; how-
ever, that investment may pay off in increased efficiency for types of
projects where the solution can be easily defined up front with a very low
level of uncertainty

• More resistant to change and limited adaptability and flexibility to adapt
to uncertain and changing requirements

• Overall development schedule is probably longer because of the sequential
nature of the process

• Can’t take full advantage of lean and agile thinking
• Defers integration and acceptance testing till the end of the project, which

can create significant risks because problems may not be discovered until
the very end of the project

The use of traditional plan-driven life-cycle models for software projects has
diminished significantly as companies migrate to more agile approaches that
focus on increased levels of flexibility and adaptability to maximize business
outcomes as opposed to focusing heavily on conformance to a plan with cost and
schedule goals. Bob Wysocki describes traditional plan-driven life-cycle models
as follows:

“The limiting factor in these plan-driven approaches is that they are
change-intolerant. They are focused on delivering according to time and
budget constraints, and rely more on compliance to plan than on deliv-
ering business value. The plan is sacred, and conformance to it is the
hallmark of the successful project team.”5

Bob Wysocki is absolutely right—that is typically how many traditional plan-
driven life-cycle models have been implemented; however:

• The focus on schedule and cost control is not necessarily a bad thing—in
some environments, such as those involving customer contractual commit-
ments, it is essential.

• On the other hand, it is important to recognize that the perception of high
levels of predictability and control that plan-driven models provide is an
illusion if requirements are uncertain.

In environments where the focus on schedules and costs is not as important,
there is nothing that prevents allowing more flexibility and openness to change
in a traditional plan-driven model, and the change management process does
not have to be unnecessarily cumbersome. It is mostly a matter of changing the
mindset of how it’s implemented and relaxing some of the rigidity of the change
control process associated with the model. However, this model clearly becomes

5 Wysocki, Robert, Effective Project Management—Traditional, Agile, Extreme, Hoboken, NJ:
Wiley, New York, 2009, p. 301

Types of Software Development Life Cycles 173

cumbersome and impractical when the level of changes becomes numerous and
significant.

Incremental Life-Cycle Model

The incremental life-cycle model is a variation on the traditional plan-driven life-
cycle model. An incremental life-cycle model is based on delivering the overall
solution in releases that are spread out over a period of time. In this type of
life-cycle model, there would be some overall level of planning at the solution
level to break it up into releases, but that level of planning need not go too
far beyond what’s in release 1. Each release would then have an abbreviated
life-cycle model associated with planning, designing, testing, and implementing
the details of that release (see Figure 8.6). The detailed requirements for each
release would be defined prior to starting development of that release.

Distinguishing Characteristics:

The key things that differentiate an incremental life-cycle model are similar to
a traditional plan-driven life-cycle model with the exception that the overall
life-cycle model is broken into individual releases and a release planning
phase can be added on the front end to define what will be included in each
release.

.Potential Variations:

This model is a series of “mini” traditional plan-driven life-cycle models—the
possible variations include:

1. Same variations as the traditional plan-driven model for each release life
cycle:
• Number and types of phases
• Deliverables and artifacts required for each phase
• Level of formality to the review process between phases
• Amount of overlap allowed between phases

Release 1Release
Planning Release 2

Figure 8.6 Incremental conceptual life-cycle model

174 Software Development Life Cycles

2. The effort required for the incremental releases might be overlapped—for
example, the requirements definition for release 2 might begin while
release 1 is still being completed.

Strengths and Benefits:

Similar to the traditional plan-driven model, except that this model:

• Allows for earlier release of incremental functionality
• Defers detailed planning for future releases rather than trying to do it all

upfront
• Provides some flexibility to adjust the contents of each release based on

the previous release

Risks and Limitations:

Similar to traditional plan-driven life-cycle models. Except that this model
allows a little more flexibility to adapt to changes between releases and defers
the detailed planning for future releases:

• May have more overhead for control purposes; however, that level of
control may be needed in certain situations such as high- risk or regulated
environments

• The contractual style of relationship with the customer that this model is
based on limits the ability to develop a true partnership with the customer
to meet customer needs

• May require documentation for the upfront portion of the effort; however,
that investment may pay off in increased efficiency for types of projects
where the solution can be easily defined upfront with a very low level of
uncertainty

• More resistant to change and limited adaptability and flexibility to adapt
to uncertain and changing requirements

• Overall development schedule is probably longer because of the sequential
nature of the process

• Can’t take full advantage of lean and agile thinking
• Defers integration and acceptance testing till the end of the project, which

can create significant risks

Iterative Plan-Driven Life-Cycle Model

An iterative plan-driven approach is similar to an incremental approach, except
that the functionality in each increment (iteration) may not be releasable software,
each iteration might be smaller increments of functionality. There would also
typically be a higher-level of upfront planning at the solution level to define

Types of Software Development Life Cycles 175

• Define high-level
 requirements

• Design overall architecture
 and break up the project
 into logical iterations

Develop detailed
requirements for
Iteration #1

Develop detailed
requirements for
Iteration #2

Develop detailed
requirements for
Iteration #3

Design and Test
Iteration #1

Design and Test
Iteration #2

Etc.

Figure 8.7 Iterative plan-driven conceptual life-cycle model

what is in each iteration. The detailed requirements for each iteration would be
defined prior to starting development of that iteration; however, in many cases, the
requirements for the next iteration can be developed in parallel with completing
the development of the current iteration. After all iterations are complete, there
would typically be a final system integration and test iteration for the completed
system. An example of an iterative plan-driven life-cycle model is shown in
Figure 8.7.

Distinguishing Characteristics:

The distinguishing characteristics associated with an iterative plan-driven
life-cycle model are similar to those of an incremental life-cycle model with
the exception that each iteration may not produce a releasable product and
the process is more adaptive—each iteration is used to progressively build
some level of functionality that gradually builds towards a releasable product.

.Potential Variations:

1. Many of the basic variations in this model are similar to those of the
incremental life-cycle model:
• Number and types of phases for each iteration and for the overall solu-

tion
• Deliverables and artifacts required for each iteration and for the overall

solution

176 Software Development Life Cycles

• Level of formality to the review process between iterations
• Amount of overlap allowed between iterations and between phases

within an iteration
2. Another variation on this model is a “prototyping” approach, whereby the

requirements for the functionality in a given iteration are not completely
certain and a prototyping approach is used to progressively define the
functionality required for each iteration. The iteration process is repeated
as needed until the requirements for that iteration are well-defined.

Strengths and Benefits:

• It is similar to the incremental life-cycle model, except that this model
is more iterative and more flexible for adapting to change because the
solution is broken up into smaller increments of functionality.

• Detailed requirements for each iteration are deferred until required for that
iteration, which should accelerate the startup of the project

• Iterations provide a mechanism for getting user feedback early and making
“midcourse” corrections in the middle of the project if necessary.

• It provides a balance of control and agility for companies and projects that
require a stronger emphasis on control.

Risks and Limitations:

• Doesn’t provide the level of adaptability and flexibility provided by more
adaptive agile methodologies—requirements are defined prior to the start
of each iteration and do not generally change once the iteration has started.

Iterative Emergent Life-Cycle Model

An iterative emergent approach typically breaks up the solution into iterations;
however, instead of defining all of the requirements prior to the beginning of each
iteration, only the high-level requirements are defined prior to the start of the
iteration and detailed requirements for each iteration are further defined during
the iterations. The following is a list of some of the life-cycle models that would
be included in this category:

Life-cycle Model Reference

Rational Unified Process
(RUP)

www.ambysoft.com/unifiedprocess/rupIntroduction.html

Enterprise Unified Process www.enterpriseunifiedprocess.com/
Agile Unified Process www.ambysoft.com/unifiedprocess/agileUP.html

Types of Software Development Life Cycles 177

• Define high-level requirements

• Design overall architecture and
 break up the project into logical
 iterations

Develop detailed
requirements for Iteration
#1

Develop detailed
requirements for Iteration
#2

Design and Test
Iteration #1

Design and Test
Iteration #2

Etc.

Figure 8.8 Iterative emergent conceptual life-cycle model

Figure 8.8 shows a general conceptual diagram of an iterative emergent
approach that uses iterations for each increment of functionality. Instead of
developing detailed requirements prior to the start of the iteration, a portion of
the detailed requirements would be developed concurrently with the iteration.
After all iterations are complete, there would typically be a final system
integration and test iteration for the completed system.

Distinguishing Characteristics:

The distinguishing characteristics associated with an iterative emergent life-
cycle model are similar to an iterative plan-driven life-cycle model with
the exception that a portion of the detailed requirements for each iteration
are developed concurrently with the design and development effort for that
iteration rather than prior to the start of the iteration. Examples of life-cycle
models that would be included in this category include the Unified Process,
including the Rational Unified Process (RUP) and other variations of the
Unified Process.

.
Potential Variations:

1. The level of documentation and artifacts required for the process can
vary significantly—for example, RUP is noted for being fairly heavy on

178 Software Development Life Cycles

documentation and artifacts, but those requirements can be customized and
streamlined easily

2. The requirements process can be tailored to be more or less emergent:
• Some of the requirements that might normally be defined upfront prior

to the beginning of an iteration might be deferred to be completed
during the design and development portion of the iteration.

• Some of the detailed requirements that might normally be defined during
the design and development portion of an iteration might be defined
upfront prior to the iteration.

3. The length of iterations and the process for performing iterations can also
vary widely.

4. Most of these processes do not rely on timeboxing of iterations; however,
that is another option.

Strengths and Benefits:

• Deferring detailed requirements for each iteration allows the project to get
started much more quickly.

• The user is more involved in the development, which should provide a
higher level of assurance that the solution meets user requirements.

• The process is more flexible and adaptive for meeting user needs but still
provides a good overall framework for control and planning.

• Iterations provide a mechanism for getting user feedback early and making
“midcourse” corrections in the middle of the project if necessary.

Risks and Limitations:

• More difficult to predict and control overall project costs and schedules
than a more traditional, plan-driven model

• Requires regression testing to ensure that changes introduced do not have
an unintended impact on other functionality that has been implemented
previously

Adaptive Life-Cycle Model

An adaptive life-cycle model is designed and optimized for environments with
high levels of uncertainty. The amount of upfront planning is limited and a
“rolling wave” planning approach is generally used concurrently with the devel-
opment effort. The architecture and detailed requirements are also generally
defined concurrently with the development effort. The following is a list of some
of the life-cycle models that would be included in this category.

Types of Software Development Life Cycles 179

Approach Reference

Extreme Programming (XP) www.extremeprogramming.org
Scrum www.scrumalliance.org

Figure 8.9 shows a general conceptual diagram of an adaptive approach that
uses sprints for each increment of functionality. Instead of developing detailed
requirements prior to the start of the sprint, the detailed requirements would be
developed collaboratively with the development team during each sprint. After
all sprints are complete, there would typically be a final system integration and
test sprint for the completed system.

Distinguishing Characteristics:

The distinguishing characteristics associated with an adaptive life-cycle model
are similar to those of an iterative emergent life-cycle model with the exception
that because the solution is more uncertain:

• Upfront planning and definition of the solution is much more limited,
• The approach relies on a much higher level of collaborative engagement

of the user in the design and development process.
• A higher level of change is anticipated and accommodated by the model.

Define high-level requirements
(This effort may be limited to a
vision statement for the solution)

Develop detailed
requirements for
Sprint #1

Develop detailed
requirements for
Sprint #2

Design and Test
Sprint #1

Design and Test
Sprint #2

Etc.

Figure 8.9 Adaptive conceptual life-cycle model

180 Software Development Life Cycles

Potential Variations:

• The level of upfront planning and architecture development can vary sig-
nificantly.

• The length of iterations and the process for performing iterations can also
vary; however, iterations are generally timeboxed and constrained to fixed
durations.

Strengths and Benefits:

Similar to the iterative emergent approach, except that:

• The user is much more closely coupled into the development, which should
provide a higher-level of assurance that the solution meets user require-
ments.

• The process is more flexible and adaptive, and changes are expected.
• Sprints are very short, which should result in developing increments of

functionality more rapidly and provide more immediate feedback.

Risks and Limitations:

• Requires a higher level of sophistication and training to implement this
model.

• Requires a greater commitment of user resources to participate directly in
the design and development process.

• Much more difficult to predict and control overall project costs and sched-
ules.

• May need to be extended to scale to larger more complex projects.
• Because the solution evolves progressively, there is a risk that the overall

architecture will not have a sound overall design and may require rework
and cleanup.

SUMMARY OF SDLC GUIDELINES

In selecting a standard SDLC and/or customizing an SDLC to fit the needs of a
project, it’s important to keep in mind the potential purposes an SDLC can serve
to make sure that the SDLC is providing the intended value without creating
unnecessary overhead.

General Considerations
• An SDLC provides a “road map.” This way all the members of the team

understand their role and how it fits into accomplishing the goals of the

Summary of SDLC Guidelines 181

project. It’s like a play book for an athletic team—if all the players on an
athletic team just ran around without a play book hoping to make a play,
the team might not be very successful.

• An SDLC helps use resources more efficiently. Each resource on the
team knows when and how he or she needs to engage in the project.

• An SDLC that has been proven to work in the past on similar projects
has a lot of value. The chances of success in a project are much higher if
there is a defined and reliable methodology that has been used successfully
on similar projects in the past. Of course, for a methodology to be reusable,
it has to be at least somewhat defined and documented.

• An SDLC provides a basis for ongoing continuous improvement. If
an organization uses a defined methodology for executing projects, that
methodology becomes a basis for incorporating lessons learned and it gets
better over time. A key part of any SDLC should be a postmortem at
the end of the project and at various points during the project to look
back at what went right, what went wrong, and how the process could be
done differently next time. Of course, if an SDLC isn’t defined, there’s no
baseline process to incorporate those lessons learned into and no basis for
ongoing improvement.

Requirements Management Considerations

Choose an SDLC based on the most appropriate requirements definition process
(See “Requirements Management Principles”):

• If the requirements are relatively well-known or can be easily determined
upfront, choose a more traditional plan-driven model.

• If the requirements are very uncertain and difficult to determine upfront,
choose a more iterative or adaptive model to defer the requirements defi-
nition process.

• If the requirements are uncertain and the customer is not willing or able to
provide the level of dedicated involvement required by an adaptive model,
an adaptive model probably won’t work and an iterative model may be best.

• If a commitment to date/cost is required upfront, a more plan-driven
approach or a hybrid approach may be required to provide that level of
control and predictability.

Risk Management Considerations

The overall level of risk management should be proportionate to the criticality
of the project. On high-risk projects, it’s essential to have some kind of process
for managing the risks, and that should be built into the design of the SDLC. In

182 Software Development Life Cycles

general, a risk that is caught early in the project will have a lot less impact than if
it is allowed to propagate further into the project and isn’t discovered until later;
however, it may not be possible to completely plan and identify all risks upfront.
Detecting and mitigating risks may be much more difficult to do upfront in
projects with a high level of uncertainty. (See the “Risk Management Section”).

Project Scope and Complexity Considerations

Larger, more complex projects may either require a more plan-driven methodol-
ogy or at least layering an additional level of planning and management on top
of an agile foundation.

Other Considerations

There are a number of other considerations that might impact the choice of an
SDLC:

1. The SDLC chosen must be consistent with the culture and capabilities of
the organization. Factors include:
• Need and desire for control—leadership and management style
• Proficiency and level of training of employees
• Tolerance for risk and project uncertainty
• Customer commitment to participate in the process
• Ability to collocate the team members and the separation of the team

members across time zones and linguistic barriers
2. Contractual and business requirements may dictate the use of certain types

of life-cycle models; for example:
• Regulatory requirements may require a controlled process.
• Contractual requirements may require a formalized change control

approach and may require formal and documented approvals at
different stages of progress.

• Configuration management requirements may require a disciplined
method for ensuring that all of the components of the entire system
are consistent with each other.

SELECTING A SOFTWARE DEVELOPMENT LIFE CYCLE

Comparison of Approaches

The hybrid approaches can provide a compromise to balance the need for con-
trol and predictability against agility. The following is a summary of some
of the general considerations that might play a role in selecting one of these
approaches.

Selecting a Software Development Life Cycle 183

Factors Favoring Iterativeor Plan-Driven Approaches

Traditional
Plan-Driven

Iterative
Plan-Driven

Iterative
Emergent

Adaptive
(PureAgile)

Limited capabilities for agile project
teams

Well-dened requirements with low
levels of uncertainty

Need to plan and estimate cost and
schedule upfront

Need to use geographically
distributed teams

Scalability for large projects

Consistency with high risk and/or
regulatory environments

Minimize the impact on business
sponsors

Factors Favoring Iterativeor Plan-Driven Approaches

Traditional
Plan-Driven

Iterative
Plan-Driven

Iterative
Adaptive

Adaptive
(PureAgile)

Uncertain requirements with
signicant potential for change

Aggressive timeframes to deliver
functionality

User involvement in development
process

Team empowerment and motivation

Flexibility to adapt to changes

Adaptability (ability to learn quickly
as the project progresses)

Minimum documentation
requirements

184 Software Development Life Cycles

Life-Cycle Model Selection Examples

This section contains some examples of different actual scenarios where these
life-cycle models have been used and provides some discussion on the rationale
for choosing a particular life-cycle model in each situation.

Pure Waterfall Approach

Company Background:

A large insurance company planned to roll out a major new application to
support a new insurance product.

.
Application Background:

• The company had recently rolled out another application that had not met
user expectations.

• The company was also interested in better defining and reengineering some
of their business processes concurrently with the introduction of the new
insurance product.

• Accurate definition and implementation of the business rules associated
with the implementation of the new insurance product were extremely
critical to protect the company’s business interests.

• Because this was such a critical effort and the previous insurance project
had not met expectations, there was a very strong senior management
commitment of user resources to define the requirements to make this
effort successful.

Methodology:

A modified version of a traditional plan-driven life-cycle model was used:
• A team consisting of key business management stakeholders was assigned

to define the business processes, business rules, and requirements for
the system. The primary focus of that effort was defining the business
processes, business rules, and use cases that the system had to support
(not detailed design requirements). A very aggressive schedule was
established for completing this portion of the effort—the team met in
daily work sessions for approximately four hours a day, five days a week
for almost three months to define and document the business processes,
use cases, business rules, and requirements for the new system.

• A requirements management tool was used to track requirements and to
perform requirements traceability to ensure that requirements were com-
plete and consistent with the business objectives of the project.

• Further definition of detailed requirements, such as UI screen designs was
deferred to a later phase of the project.

Selecting a Software Development Life Cycle 185

Rationale for This Methodology:

• A considerable amount of work was required to define the business pro-
cesses and the business rules for how the application should work. Attempt-
ing to do that in parallel with the design effort would have made no sense.
It would have tied up development resources unnecessarily and possibly
resulted in a significant amount of rework as the definition of the business
process and rules evolved.

• Ensuring the completeness, consistency, and accuracy of the business
requirements and rules associated with the application was very critical
for managing the risks associated with this application, and the use of
requirements management tools was essential to performing that analysis.

Iterative Plan-Driven Approach—Example #1

Company Background:

A midsized IT consulting company that is in the business of recruiting
and placing specialized contract consultants with clients used a home-grown
CRM system to track and manage relationships with both consultants and
clients. The same system is used to manage the placement process associated
with placing consultants in client assignments.

.
Application Background:

• The CRM system needed to be replaced by a more modern architecture that
would allow future expandability and improved maintainability; however,
the company president wanted the ability to easily tailor the system to the
company’s own unique business processes. As a result, purchasing an off-
the-shelf CRM system as a replacement was not considered to be a viable
option.

• Selection of a design architecture for the new system that would allow for
ease of maintainability and expandability in the future was considered very
important.

• As part of the implementation of the replacement system, the company
wanted to do some reengineering of their business processes at the same
time, and those reengineered processes would be incorporated into the
design of the new system.

• The company wanted to automate as much of their business processes as
possible to maximize employee productivity. The business rules associated
with those business processes were very critical to define and automate as
much as possible in the new system.

• User involvement in the design process was critical because the usability
of the system was an extremely important feature. The company hires

186 Software Development Life Cycles

new employees with little or no prior experience as recruiters and account
managers, and it is very important that they be able to learn their job
functions easily with a minimum of training. The screen design and layout
of the new system had to be designed to facilitate that.

• The company president wanted to see and approve a reasonably accurate
cost and schedule for the project before the design team was hired to
actually begin the project. A limited-scale prototyping effort to validate
some of the design concepts with users prior to beginning the actual design
was acceptable.

Methodology:

An iterative plan-driven life-cycle model approach was used for this project:

• A steering group was formed of the company’s senior-level executives to
reengineer the business processes and to establish the high-level business
process, business rules, and system requirements at the same time.

• The high-level requirements were used to finalize the design approach
for the overall system architecture, and because the architectural design
approach was so important, it was also considered essential to define the
architectural approach prior to the start of the detailed design phase.

• Because the user interface was so critical to the design of the system and
had a big impact on the requirements as well as the cost and schedule, some
limited prototyping of the UI was done to better define the requirements
in that area as part of the requirements definition effort.

Rationale for This Methodology:

• Because the definition of the business processes and the business rules was
considered so important, the requirements were completed to a sufficient
level to include detailed business rules for how the system should work
as part of the initial planning for the system. Attempting to reengineer the
business processes and define the new business rules while the design of
the new system was in process was not considered a viable option because
it would have slowed down the design effort significantly and possibly
resulted in significant rework.

• Because the company president wanted to approve a relatively accurate
cost and schedule prior to committing to the start of the project, an itera-
tive plan-driven life-cycle model was used to define the requirements to a
sufficient level of detail to estimate the project schedule and cost as accu-
rately as possible. However, detailed requirements were deferred till the
design phase.

• Prototyping of the user interface (UI) upfront was done because that portion
of the system was so important. That worked well in this case because

Selecting a Software Development Life Cycle 187

resources to do a completely detailed design weren’t available until the
project budget was approved. The simulated UI screens provided a low-
cost way to get user feedback into the design requirements.

Iterative Plan-Driven Approach—Example #2

Company Background:

Rapidly growing financial services company with about 700 employees,
needed to replace an aging legacy system that was used for performance
analytics.

.
Application Background:

One particular software application used for performance analytics required
a major redesign to improve maintainability and to build a more robust plat-
form that was capable of adding new features required for new business
requirements. This particular application performed many very complex and
mission-critical tasks related to performance analytics that had to be very
precise and accurate. The formulas and process that defined how those cal-
culations were performed were buried in the code, and the code was a tangled
mess that was almost impossible to maintain and also to unravel to discover
the requirements and rules that were embedded in it.

.
Methodology:

The methodology chosen was to use an iterative plan-driven life-cycle model,
where the goal of Iteration #1 was to simply replace the existing system func-
tionality with a new architecture. Further iterations beyond Iteration #1 would
build on that initial foundation and begin adding additional new functionality
incrementally.

.
Rationale for This Methodology:

• An analysis of the existing system was performed to determine if the
architecture could be broken up into components that could be replaced
incrementally and that was determined not to be feasible. The existing
software was so poorly designed that the effort required to refactor it in
order to facilitate an incremental approach would be much too great.

• Since this system performed a very mission-critical application, the risks
associated with replacing it were very high. Any replacement system had
to duplicate the calculations that were performed by the existing system
exactly and none of the existing system functionality could be left out of
the replacement system when it was cutover to operational use. Therefore,
the minimum goals for Iteration #1 had to be to replace the functionality
in the existing system as accurately as possible.

188 Software Development Life Cycles

• Keeping any new functionality out of Iteration #1 was essential for two
key reasons: (1) to get Iteration #1 done as quickly as possible and (2) to
minimize the risk

Adaptive Approach—Example

Company Background:

AOL Inc. has been in business for over 25 years (AOL was founded in
1983), and during that time their business has changed from primarily being
a provider of e-mail services to dial-up subscribers to being a provider of
news and information to their subscribers who also use e-mail services. The
business of publishing news and information is a much more fast-paced busi-
ness than the traditional dial-up e-mail services business, and AOL decided
that a major change in their business processes and software development
practices was essential to make it fast moving enough to keep pace with
their new business direction. (The information in this example is based on a
presentation by Jochen (Joe) Krebs to the Boston Agile Group)6

.

Application Background:

This case study was not limited to a particular application and was a total
transformation of all of AOL’s software development practices.

.
Methodology:

AOL implemented a major transformation of their entire business and soft-
ware development processes across the whole company to a pure agile
(Scrum) approach. The effort consisted of:

. • 8,000 employees worldwide
• 1,000 AOL employees involved in software development:

• Product
• Technology
• Editorial
• Photo
• User Experience

• Approximately:
• 550 ScrumMasters within AOL
• 25 Product Owners
• 100 Acting ScrumMasters

6 Krebs, Jochen (Joe), Presentation to the Agile Boston Group, February 2010

Selecting a Software Development Life Cycle 189

The effort affected the daily life of approximately 3,000 employees
because it was a complete business process transformation (not just a
development effort) and involved about 40–60 projects in parallel.

Rationale for This Methodology:

This change was considered an essential part of a strategic transformation
of the AOL business that was led and driven from the top-down by their
CEO. The CEO felt that a major transformation in AOL was needed from
what used to be a provider of e-mail services to subscribers to focus on
being a very aggressive online publisher of information. The implementation
of agile methodologies in the development organization was a great catalyst
to initiate that transformation, but the overall transformation impacted the
whole company.

.
Summary of Results

.
Before: A project was delivered after 2 years with fewer features, behind schedule

(after competitor) with frustrated employees.

After: Similar project was launched in 6 months with more features, ahead of schedule
with high morale employees.

Before: One product manager worked on one product.

After: One product manager served as product owner for three products.

CHAPTER 9
PART II SUMMARY AND ACTION PLAN

SUMMARY OF IMPACT ON PROJECT MANAGERS AND PMI

Moving to a more agile approach has some significant implications for project
managers and also for the Project Management Institute (PMI):

1. Balancing Flexibility and Adaptability with Control
In many situations, there is a need for a shift in thinking in project man-
agement to put more focus on successfully achieving business results.
Traditionally, project managers may have focused very heavily on man-
aging costs and schedules and on controlling the scope of a project. That
focus is still very appropriate in some situations; however, it typically
results in a very planned and controlled management style that may be
successful in meeting costs and schedules but doesn’t have sufficient flex-
ibility and adaptability in environments where there is a high level of
uncertainty to successfully provide successful business results.

For both project managers and PMI, there is a general need to rethink
how we apply many of the traditional project management practices and
principles. In an agile environment, many of the practices and principles
are still very sound, but they need to be applied in an entirely differ-
ent context with the right balance between control and agility. A major
effort is probably needed to merge the process-oriented thinking behind
the A Guide to the Product Management Body of Knowledge —Fourth Edi-
tion (PMBOK Guide —Fourth Edition) with the value-oriented thinking
behind agile.

2. Becoming a Project Management “Chef”
As I mentioned, we need to develop more high-level project managers
into “chefs” rather than “cooks.” To help their companies become more
agile might mean that the role of the project manager needs to shift from
just implementing a standard methodology to playing a broader role of
helping to design and/or choose an appropriate customized methodology
as well as making recommendations to tailor it as needed to fit a given
project. That requires a higher level of skill—it requires understanding a
broader range of methodologies (agile as well as non-agile) at a deeper

191

192 Part II Summary and Action Plan

level to know how to create the right set of “recipes” that have the right
blend of “ingredients” to provide a balance of control and agility for a
given business environment.

3. Going All the Way to Agile
In many cases in the past, a lot of the actual project work may have
been done primarily in functional departments and the primary role of the
project manager may have been a planner, coordinator, and administrator.
The movement to more agile methodologies may require project managers
to take a much more active role in leading cross-functional teams engaged
in agile projects. That probably requires a much broader range of skills
to take a major leadership role in leading that kind of effort; for example:
• More technical skills may be needed because the boundary between

management of the development team and overall project management
will begin to blur.

• More business analysis skills may be needed because the requirements
definition effort may also become much more of an integral part of the
development effort.

• More people management and leadership skills may be needed because
the functional managers in different departments may play less of a role
in management of cross-functional teams

• More quality management and process knowledge may be needed
because much of the QA function may also become more of an integral
part of the development effort.

In the extreme case, the role of a project manager within a project might
change to becoming a ScrumMaster, which is a very different role than
a traditional project management role. Becoming a ScrumMaster would
probably require developing some new skills for many project managers.
• The ScrumMaster is much more of a facilitator of the process than a

controller of the process.
• The ScrumMaster will be very directly involved in the actual develop-

ment effort and needs to have an understanding of the technical details
of the product design as well as the process for managing it.

4. Developing and Leading Organizational Transformations
Moving to a more agile approach may require a major organizational
transformation. In that situation, there is probably also a need and an
opportunity for project managers to play a higher-level role in helping to
lead and implement that organizational transformation to move to a more
agile environment. This role might include:
• Working with senior-level managers to help them understand the trade-

offs involved in adopting a business processes and development pro-
cesses with an appropriate level of agility and control.

Developing an Action Plan for Project Managers 193

• Helping to facilitate organizational change management initiatives that
might be needed to move towards a more agile approach.

• Facilitating the cross-functional teamwork that is needed among senior
managers to implement the approach.

DEVELOPING AN ACTION PLAN FOR PROJECT MANAGERS

For project managers who work inside companies making a transition to agile,
their own personal direction will need to become consistent with their company’s
direction. For all project managers, there are some general career-planning ques-
tions that are similar to the questions posed for businesses:

• What is the impact of agile on project management, and are you satisfied
that your current approach to project management will be consistent with
more agile project management in the future?

• How agile do you want to be and when do you want to get there? It is
not necessary for all project managers to move to the most extreme forms
of agile project manager, but even implementing hybrid approaches may
require some shifts in thinking about project management.

• How do you get from where you are to where you want to be?

The level of change required for project managers is also similar to companies
and organizations, but it’s more of a personal change than an organizational
change. It may either be a major and radical shift in your project management
approach and the way you think about project management or only be a minor
shift in direction, depending on where you are today and where you want to get to.

There still will be a need for traditional project managers who are used to
doing traditional plan-driven project methodologies, but over time, the need for
the plan-driven approach is likely to decline, and it is clear that there is a growing
need for more agile forms of project management.

The approach for developing new project management skills might also follow
three similar paths:

Incremental Improvements

Even project managers who operate in traditional environments can benefit from
a shift in thinking towards a more agile approach if it is consistent with their
company’s business environment and direction:

• Tailor the life-cycle methodology for projects to better fit the business
environment and project goals based on an understanding of the principles
behind it.

• Recognize the importance of successfully meeting business outcomes in
addition to managing cost and schedule goals, and develop an approach

194 Part II Summary and Action Plan

that provides the right balance of control and agility to do achieve both of
those objectives.

• Shift to a management and leadership style that is based on teamwork,
collective ownership, and empowerment and respect for people.

• Develop a flexible and value-based approach to streamline process docu-
mentation and artifacts associated with projects.

All of these things can be done, to some extent, even in a traditional plan-
driven project environment. In most cases, the key thing that is needed is just a
shift in thinking—that will be easy for some and not so easy for others. Project
managers who have been deeply engrained in the kind of “command and control”
thinking that has been prevalent in project management for so long may have
the most difficulty in making that shift.

Designing and Implementing Hybrid Approaches

There is a huge need for project managers who can operate successfully in
the “middle ground” between extreme Waterfall approaches and pure agile
approaches. Many companies will choose to operate in this space either because
a pure agile approach isn’t feasible for them or as part of an incremental
migration to get to a pure agile approach over time.

Operating in this space also requires some new skills—it isn’t just a matter of
taking a standard iterative approach like RUP and implementing it by the book.
In many cases, it will mean designing and implementing customized approaches
that blend the right levels of control and agility and have the right level of lean
thinking built into them to streamline documents and artifacts as needed.

There is also a significant need for project managers who have knowledge of
a number of different methodologies and can help companies pick and choose an
appropriate methodology for a project or blend elements of multiple methodolo-
gies together if necessary. In many environments, one methodology doesn’t fit
all projects. Many project managers are schooled primarily in one methodology
(whatever it might be, agile or non-agile) and might try to force-fit projects to that
methodology because that’s what they’re most familiar with. The right approach
is to tailor the methodology (or combination of methodologies) to fit the project
rather than attempting to force-fit a project to any given methodology (agile or
non-agile). It takes much more skill and a broader and deeper understanding of
a number of different methodologies to do that.

Implementing Pure Agile Project Management Approaches

Some project managers may choose to move to a pure agile form of project
management. That might mean becoming a ScrumMaster (and developing those
skills is certainly worthwhile); but in an agile approach, a ScrumMaster oper-
ates primarily at the iteration management level. Depending on the scope and

Developing an Action Plan for Project Managers 195

complexity of the project, there is still a need for a project management role
above the iteration management level in many agile projects. That role might be
performed by the ScrumMaster, or the project might be large enough to justify
a separate project manager to fill that role.

In either case, the project manager certainly needs to deeply understand agile
principles and methodologies to operate in that environment and needs to develop
a project management approach that is consistent with operating in that environ-
ment.

Helping Companies Move in the Right Direction

There is also a need for project managers who can operate at a very high level and
help companies define and implement a migration strategy that is well aligned
with their business goals and direction. This kind of effort might include devel-
oping the initial business strategy and plan, defining and implementing a change
management initiative if required, and coaching and mentoring others in the
organization to help implement that plan.

PART III
APPENDICES

APPENDIX A
Overview of Agile Development Practices

A number of technical practices are commonly used at the development level in
agile projects. This appendix provides an overview of some of the most com-
monly used technical practices.

EXTREME PROGRAMMING

Extreme programming (XP) is a development approach that advocates frequent
releases of software in short development cycles (timeboxing).

“Extreme Programming improves a software project in five essential
ways; communication, simplicity, feedback, respect, and courage.
Extreme Programmers constantly communicate with their customers and
fellow programmers. They keep their design simple and clean. They get
feedback by testing their software starting on day one. They deliver the
system to the customers as early as possible and implement changes
as suggested. Every small success deepens their respect for the unique
contributions of each and every team member. With this foundation
Extreme Programmers are able to courageously respond to changing
requirements and technology.”1

XP does not attempt to define all of the requirements upfront as is com-
monly done in the Waterfall approach. Instead, it relies on close collaboration
between the business users and developers to define and refine the requirements
as the design progresses. XP advocates frequent releases of software in short
development cycles (timeboxing).

The following is a brief description of the XP planning process.

1. User Stories
The XP process begins with the development of “user stories.” The pur-
pose of a user story is not to provide all the details of any particular
scenario, but rather to be able to describe the requirement at a high level
sufficient to estimate how complex a part of the system will be, and how
long it may take to implement it. The details of the story will be clarified

1 “Extreme Programming,” www.extremeprogramming.org

199

200 Overview of Agile Development Practices

with the customer just prior to and during the implementation of the user
story. The following is an example of a user story:
“As a customer representative, I can search for my customers by their
first and last name.”

2. Release Planning
The Release Planning Process consists of estimating the difficulty of each
user story and assigning them to releases for the life of the project. The
release plan is based on rough estimates that will be further refined as
the project progresses. The prioritization of assigning user stories to each
release is based generally on developing the features that have highest
value to the customer as early as possible, but that prioritization may
include other factors and needs to be balanced with developing other
architectural needs that the customer may not be aware of at all. For
example, if you’re building a house, the roof, bedrooms, and kitchen
probably provide the most value to the home buyer; however, you really
need to start with the foundation and some basic services like plumbing
and electricity before adding some of those features.

3. Iteration Planning
Each release is broken up into iterations, and the iterations are designed
to produce working code as quickly as possible. At the beginning of each
iteration, an iteration planning meeting is held to produce that iteration’s
plan of programming tasks. Each iteration is 1 to 3 weeks long—the
duration of an iteration is called a “timebox.” The length of the timebox
is based on the velocity of the team (the rate of implementing user
stories). User stories are chosen for this iteration by the customer from
the release plan in order of the most valuable to the customer first.

4. Test-Driven Development
XP uses a Test-Driven Development approach, whereby a unit test is
developed for each user story prior to coding that user test. (See the
“Test-Driven Development” section.)

5. Collective Ownership of Code
Any developer can change any line of code to add functionality, fix bugs,
improve the design or refactor. No one person becomes a bottleneck for
changes.

6. Pair Programming
All code to be sent into production is created by two people working
together at a single computer. Pair programming increases software quality
without impacting time to deliver. (See the “Pair Programming” section.)

7. Continuous Integration
Developers should be integrating and committing code into the code repos-
itory whenever possible. Continuous integration often avoids diverging or

Extreme Programming 201

fragmented development efforts, in which developers are not communi-
cating with each other about what can be reused or what could be shared.
(See the “Continuous Integration” section.)

8. Process Improvement
XP is designed to making improving the development process a normal
part of the development. At the end of each iteration, there is a retro-
spective to critique the process (what went well, what didn’t go well)
and to make adjustments in the process if necessary for the next iter-
ation. Because each iteration is short, learning happens quickly as the
development progresses.

The following are some of the key principles associated with Extreme
Programming:
1. Rapid Software Development

The software is broken up into small iterations to deliver working
functionality as quickly as possible.

2. Communications
XP emphasizes very close communications among everyone on the
team:

• The development team is normally co-located in close proximity to
each other.

• The customer is expected to work closely with the development team
throughout the development effort to define detailed requirements as
the development progresses, provide regular feedback, and approve
acceptance test results as development items are completed.

3. Simplicity
XP emphasizes keeping the solution as simple as possible, which
includes:

• Limiting the design to known current requirements only (future
requirements are not included in the development effort)

• Using refactoring to simplify the design whenever possible so that
the code is easily understood by everyone on the development team

Strengths and Benefits:

• Close collaboration between developers and users throughout the develop-
ment process will likely result in code that is more consistent with user
requirements and maximizing business value.

• The flexibility to adapt to changes makes it easier to adapt to changing
business requirements.

• XP efforts typically keep developers and business users focused on cur-
rent design requirements and do not generally attempt to anticipate future

202 Overview of Agile Development Practices

requirements. That implies an iterative approach that can make incremental
business value available to the user much faster.

Risks and Limitations:

• Without detailed requirements to begin with, it is very difficult to accurately
estimate the costs and schedule for the overall project upfront.

• Without a clear overall understanding of the requirements before starting
the design, it may be difficult to define an optimum architecture for meeting
those requirements until a substantial part of the code is already developed.

• It is difficult to use an XP approach for deep and complex functional-
ity (and even more so for nonfunctional requirements such as regulatory
compliance). For example, it may be difficult to express all the details of
complex business rules on an index card.

• Changing requirements, an architecture that evolves as the design pro-
gresses, and failure to anticipate future requirements may require a sub-
stantial amount of rework to the code.

• Team distribution is also a challenge due to XP’s emphasis on close
collaboration, just-in-time story design, pair programming, continuous inte-
gration, and limited documentation. This limitation can be addressed, but
not entirely overcome, through collaborative, enabling technologies such
as portals for sharing information.

FEATURE-DRIVEN DEVELOPMENT

Feature-Driven Development (FDD) is a model-driven approach that puts more
emphasis on defining an overall model of the system and a list of features to be
included in the system prior to starting the design effort.

“As the name implies, features are an important aspect of FDD.
A feature is a small, client-valued function expressed in the form
<action><result><object>. For example,

• Calculate the total of a sale
• Validate the password of a user, and
• Authorize the sales transaction of a customer”.

Features are to FDD as use cases are to the Rational Unified Pro-
cess (RUP) and user stories are to XP—they’re a primary source of
requirements and the primary input into your planning efforts.”2

2 “Feature Driven Development (FDD) and Agile Modeling,” www.agilemodeling.com/essays/
fdd.htm

Feature-Driven Development 203

The key difference between XP and FDD is the amount of upfront design activ-
ity prior to beginning the design effort. Typically, agile and Scrum projects have
what is called an “Iteration 0,” which is used to resolve any significant uncertain-
ties that need to be resolved prior to starting the design effort; however, that effort
is always optional and it’s completely up to the development team to decide:

• If it is needed
• What should be included
• How the analysis should be performed

FDD defines a more specific modeling approach, which is equivalent to what
might be done in “Iteration 0” of an XP project. The level of depth of the FDD
analysis can be scaled based on the scope and complexity of the project; however,
doing the analysis is not optional. Feature-Driven Development may be a more
appropriate design approach than Extreme Programming for large and complex
agile projects.

The FDD development process comprises five basic activities:

1. Develop Overall Model
The first step in FDD is to develop an overall object model. This is an
important step to get both the domain (subject matter) experts and the
development team to come to a shared understanding of the problem
domain. The object model at this point is a high-level model and further
depth and detail will be added as the project progresses.

“ . . . In FDD . . . the building of an object model is not a long, drawn-
out, activity performed by an elite few using expensive CASE tools.
The modelers do not format the resulting model into a large document
and throw it over the wall for developers to implement.

Instead, building an initial object model in FDD is an intense,
highly iterative, collaborative and generally enjoyable activity involv-
ing domain and development members under the guidance of an
experienced object modeler in the role of Chief Architect.”3

2. Build Feature List
The next step in the FDD process is to define the feature list hierarchy
that will define the set of features that will be included in the solution.
The feature list is typically hierarchical: it starts with high-level features,
and then each high-level feature is further broken down into activities that
are associated with that high-level feature.

“Unlike Scrum and Xtreme Programming that use a flat list of back-
log items or user stories, FDD organizes its features into a three level

3 “An Introduction to Feature-Driven Development,” http://agile.dzone.com/articles/introduction-
feature-driven

204 Overview of Agile Development Practices

hierarchy that it unimaginatively calls the feature list. Larger
projects/teams need this extra organization. It helps them manage
the larger numbers of items that are typically found on an FDD
features list than on a Scrum-style backlog.”4

3. Plan by Feature
The “Plan by Feature” portion of FDD involves developing an initial
development schedule and assigning initial development responsibilities.
FDD differs from other agile methodologies in that it chooses not to
adopt collective ownership of software source code. Instead, individual
developers are assigned to be responsible for particular classes.

“The planning team initially sequence the feature sets representing
activities by relative business value. Feature sets are also assigned to
a Chief Programmer who will be responsible for their development.
At the end of this process, each Chief Programmer effectively has a
subset of the features list assigned to them. For a Chief Programmer
this is their backlog or ‘virtual inbox’ of features to implement.”5

4. Design by Feature
At that point in the FDD process, the design is developed for each feature.

“A chief programmer selects a small group of features that are to
be developed within two weeks. Together with the corresponding
class owners, the chief programmer works out detailed sequence dia-
grams for each feature and refines the overall model. Next, the class
and method prologues are written and finally a design inspection is
held.”6

5. Build by Feature
Once the design is completed, the class owners develop the actual code
for the classes that they are responsible for.

“After a successful design inspection a per feature activity to produce
a completed client-valued function (feature) is being produced. The
class owners develop the actual code for their classes. After a unit test
and a successful code inspection, the completed feature is promoted
to the main build.”7

4 “An Introduction to Feature-Driven Development,” http://agile.dzone.com/articles/introduction-
feature-driven
5 “An Introduction to Feature-Driven Development,” http://agile.dzone.com/articles/introduction-
feature-driven
6 “Feature-Driven Development,” http://en.wikipedia.org/wiki/Feature_Driven_Development
7 “Feature-Driven Development,” http://en.wikipedia.org/wiki/Feature_Driven_Development

Test-Driven Development 205

Strengths and Benefits:

• FDD is a much more planned approach, which can significantly reduce the
risk in large complex projects. Finding the true problem (and taking the
time to do so) is an upfront investment that can produce better results and
also reduce the time required for the remainder of the project.

• Breaking up the design into discrete features encourages an iterative devel-
opment approach and modularity of functionality so that individual features
can be tested and validated as the design progresses.

• FDD generally involves developing a more complete understanding of the
problem domain and breaking it up into features before beginning the
actual design of each feature. This approach should provide a much better
understanding of the scope and complexity of the overall problem and can
provide a better foundation for developing a sound object-oriented architec-
tural design approach with more accurate cost and schedule estimates than
Extreme Programming. It also will probably result in less major rework of
the code as the design progresses.

• The FDD approach is much more scalable and extensible to large, complex
problems than the Extreme Programming approach.

Risks and Limitations:

• Because FDD requires developing an understanding of all the features that
make up the problem domain prior to starting the design, it is likely to
take longer to get started than an Extreme Programming approach, but that
is certainly an acceptable tradeoff in many cases.

• The FDD approach is less agile than an Extreme Programming approach
and is more difficult to adapt to changing requirements.

• The FDD approach generally requires more documentation than Extreme
Programming to define the features that will be included in the design.

TEST-DRIVEN DEVELOPMENT

Test-Driven Development (TDD) is commonly used in agile methodologies to
integrate testing directly into the software development effort:

“Instead of writing functional code first and then your testing code as an
afterthought, if you write it at all, you instead write your test code before
your functional code. Furthermore, you do so in very small steps—one
test and a small bit of corresponding functional code at a time. A pro-
grammer taking a TDD approach refuses to write a new function until
there is first a test that fails because that function isn’t present. In fact,
they refuse to add even a single line of code until a test exists for it.

206 Overview of Agile Development Practices

Once the test is in place they then do the work required to ensure that
the test suite now passes.”8

However, Test-Driven Development is not unique to agile development
methodologies and is more of a best practice for code development that can be
used with any development methodology, but in practice it is highly reliant on
continuous integration.

“Agile teams almost always develop test plans at the same time they
define requirements; if a requirement isn’t testable, then the requirement
is not yet fully developed. This is a best practice that can be used in
traditional development to ensure requirements are complete, accurate
and testable.”9

Test-Driven Development may include different levels of testing. At a min-
imum, it normally includes unit testing that is built into the software so that
each module of the code can be tested as it is developed, but it is good practice
to include functional testing and acceptance testing as well so that a functional
regression test can also be performed as the code is developed a limited accep-
tance test can be performed on the results of each iteration as the work in each
iteration is completed.

Strengths and Benefits:

Test-Driven Development works particularly well with agile methodologies
because:

• It encourages the development of small incremental modules of code that
can be easily tested and integrated with a Continuous Integration process.

• It is well suited to testing of the design as it progresses and provides
immediate feedback to the developers on how well the design meets the
requirements. If it is extended to include functional testing and some lim-
ited user acceptance testing, it is also a way to validate that the software
meets user needs early on in the project.

• It also encourages developers to write only the minimal amount of code
necessary to pass a given test.

Risks and Limitations:

• Some implementations of Test-Driven Development primarily address only
unit testing of code modules, and much more testing may be needed at

8 “Introduction to Test-Driven Design,” www.agiledata.org/essays/tdd.html
9 Hass, Kathleen, “The Blending of Traditional and Agile Project Management,” PM World Today ,
May 2007

Pair Programming 207

different levels of the application. For example, functional testing may
be needed to test the complete system at a higher level to include user
interface testing and other aspects of system testing that are not tested at
the unit test level. User acceptance testing will probably also be needed of
the complete system.

• Test-Driven Development puts the emphasis on rapidly implementing soft-
ware to provide a minimum level of required functionality and relies on
later refactoring the code to clean it up to meet acceptable design stan-
dards. There is a risk that the refactoring won’t be done and the code might
provide the desired functionality but may not be reliable and supportable.

PAIR PROGRAMMING

Pair programming is an agile software development technique in which two
programmers work together at one work station. This kind of approach has been
used successfully for many years in aviation—in commercial airliners; there
are always two people in the cockpit—the captain and a copilot—to provide a
higher level of safety. In an aircraft, the two people alternate roles—one might
be flying the aircraft while the other observes. The observer is stepping back
and looking at the big picture while the pilot who is flying the aircraft might be
immersed in watching the instruments. This system has become essential for air
safety in commercial aviation.

A similar approach is used for agile methodologies—one developer plays the
role of an observer while the other developer in the pair writes the code. “While
reviewing, the observer also considers the strategic direction of the work, coming
up with ideas for improvements and likely future problems to address. This frees
the driver to focus all of his or her attention on the ‘tactical’ aspects of completing
the current task, using the observer as a safety net and guide.”10

Pair programming is most commonly used with Extreme Programming and
is less commonly used with Feature-Driven Development. Feature-Driven devel-
opment encourages the idea that there should be one primary owner for a given
feature.

Strengths and Benefits:

1. Design Quality
One developer observing the other person’s work should result in
better quality software with better designs and fewer bugs. Any defects
should also be caught much earlier in the development process as the
code is being developed. The cost of the second developer who is
required may or may not be at least partially offset by productivity
gains.

10 “Pair Programming,” http://en.wikipedia.org/wiki/Pair_programming

208 Overview of Agile Development Practices

2. Learning and Training
Sharing knowledge about the system as the development progresses
increases learning.

3. Overcoming Difficult Problems
Pairs are able to more easily resolve difficult problems.

Risks and Limitations:

1. Work Preference
Some developers prefer to work alone and a less experienced or less confi-
dent developer may feel intimidated when pairing with a more experienced
developer and participate less as a result.

2. Costs
Experienced developers may find it tedious to tutor a less experienced
developer, and the productivity gains may not offset the additional costs
of adding a second developer.

CODE REFACTORING

Code refactoring involves removing redundancy, eliminating unused function-
ality, and rejuvenating obsolete designs and improving the design of existing
software in order to improve reliability and maintainability of the software.
Refactoring throughout the entire project life cycle saves time and increases
quality of the software. Code Refactoring is more commonly used with Extreme
Programming—it is less commonly used with Feature-Driven Development.

Traditional plan-driven software development methods in the past have empha-
sized a very well-planned and structured design approach to create code that is
well designed to begin with to avoid unnecessary and expensive rework of code.
A potential problem with that approach is that it can put a higher level of empha-
sis on the structure and design of the code over the functionality of the code.
Developers might produce very well-architected and well-structured code but
lose sight of the functionality the code is intended to provide.

Agile approaches tend to emphasize quickly creating code to meet functional
requirements first , for example, by using a Test-Driven Development approach,
and then refactoring the code as necessary later to clean it up to reduce the
complexity of the code and improve the maintainability. Modern design tools
have made it easier to do refactoring of code and have enabled this to be a much
more viable practice.

Strengths and Benefits:

• Encourages developers to put the primary focus on the functionality pro-
vided by the code first and clean it up later to make the code more structured
and maintainable.

Continuous Integration 209

• Reduces the time required to produce functional code that can be available
for prototyping and user validation

Risks and Limitations:

• In a project that relies heavily on refactoring, the amount of rework of the
code required might be significant and, in most cases, it’s much better to
do it right the first time if possible and avoid the need to do refactoring
altogether.

• If the architecture of the software is allowed to evolve through code refac-
toring rather than from a planned development approach, the structure of
the code may not be optimized around the most desirable architectural
approach.

• Time pressures to complete the iteration may short-circuit the code-
refactoring effort and allow poorly organized code to be released.

CONTINUOUS INTEGRATION

Continuous integration is the practice of frequently integrating new or changed
software with the code repository. It provides for early detection of problems that
may occur when individual software developers are working on code changes that
may potentially conflict with each other. In many typical software development
environments, integration may not be performed until the application is ready for
final release.

In one extreme case, I was involved in a very large hardware/software devel-
opment effort in the early 1990s where a major electronics company spent over
$150 million on the development of a complex communications switching sys-
tem. We had already signed up beta test customers to test the product, and I
was a program manager responsible for managing one of the beta test customers.
During final system integration testing of the product, the development team was
unable to resolve some very complex integration issues that had developed, and
the product had to be withdrawn from the market. These problems arose as a
result of different groups working on different components of the design without
clearly defined interface specifications, and they were not discovered until the
very last minute before the product was scheduled to be released. The results
were significant:

• The company had to withdraw the product from the market and approxi-
mately $150 million in investment was lost.

• The beta test customers who had waited for the arrival of the product had
to be told it was no longer going to be available and they would have to
find an alternative solution from a competitor.

Discovering and resolving this kind of integration problem is not an easy thing
to do sometimes if it is delayed until the last minute and if the potential integration

210 Overview of Agile Development Practices

issues are allowed to compound themselves. It’s like unraveling a giant ball of
twine that is full of tangles and knots: if you can catch the tangles and knots early
enough and do it incrementally, it’s relatively easy to untangle, but if they become
too numerous, it becomes much more difficult. In a fast-paced agile development
environment, these problems can compound themselves rapidly if they are not
discovered early and that is the major purpose of Continuous Integration.

Continuous Integration is very consistent with the principle of “fail fast, fail
early, and fail often.” It brings problems to the surface early in the project rather
than allowing them to be discovered later.11

Strengths and Benefits:

Other benefits of Continuous Integration include:12

• Developers detect and fix integration problems continuously, avoiding last-
minute chaos at release dates, (when everyone tries to check in their slightly
incompatible versions).

• Early warning of broken/incompatible code and of conflicting changes
• Constant availability of a “current” build for testing, demo, or release

purposes
• There is immediate feedback to developers on the quality, functionality, or

systemwide impact of code they are writing.
• Frequent code check-in pushes developers to create modular, less complex

code.
• Metrics generated from automated testing and Continuous Integration (such

as metrics for code coverage, code complexity, and features complete)
focus developers on developing functional, high-quality code, and help
develop momentum in a team.

Risks and Limitations:

• The primary limitation of Continuous Integration is that it may be difficult
to implement on larger code development projects, where the integration
effort may be too complex to do as frequently. It also requires a level of
sophistication and close teamwork on the part of the team to make it work
especially on large, complex projects.

• Resources and tools to automate the continuous integration, building, and
testing process are also essential in many cases.

11 Gottesman, Erik, comments on book review
12 “Continuous Integration,” http://en.wikipedia.org/wiki/Continuous_integration

APPENDIX B
Overview of Agile Project
Delivery Frameworks

This section discusses several agile “project delivery frameworks” that have been
commonly used. The word “framework” is important—it should be understood
that these “delivery frameworks” are not as explicitly defined as some traditional
development processes. That is by design—as a “framework,” they are intended
to provide a basic foundational approach, and they may need to be customized,
tailored, and expanded for a given project, depending on the risks and complexity
of the project.

SCRUM

Scrum is heavily focused on the iteration management level of agile and has
become the most dominant model for agile software development management.
It does address some basic project management considerations, such as how
the overall product backlog is established and release planning, but the roots
of Scrum are heavily in the iteration management level and that’s the level
that is most mature at this time. Scrum doesn’t specifically address some of
the higher-level project management considerations that may be important such
as risk management and planning and management of large, complex efforts
that may require multiple teams. For that reason, in some cases, there is a need
to wrap an additional layer of project management around Scrum. (See the
discussion on agile project management.)

Scrum has become the most widely accepted agile methodology, to the extent
that the word “agile” has almost become synonymous with Scrum. Scrum is typ-
ically based on an Extreme Programming development model and defines a “pro-
cess framework” which contains sets of practices and predefined roles to extend
the development model to more of a project model. The main roles in Scrum are:1

1. The “ScrumMaster” maintains the processes (typically in lieu of a project
manager). The ScrumMaster’s responsibilities include:2

• Facilitating the work of the team, developing teamwork among everyone
on the project team, and creating an environment based on empower-
ment and respect for people

1 “Scrum (Development),” http://en.wikipedia.org/wiki/Scrum_ (development)
2 “Scrum Alliance—Scrum Roles,” www.scrumalliance.org/pages/scrum_roles

211

212 Overview of Agile Project Delivery Frameworks

• Shielding the team from external interference and removing any imped-
iments that hinder progress by the team

• Building consensus among all team members and acting as a facilitator
to resolve any conflicts

• Serving as a focal point for communication for the team to ensure
everyone on the team and any external stakeholders are kept informed

• Supporting the Product Owner as required
• Ensuring that the process is followed and tracking progress against

assigned tasks
• Raising awareness of dependencies among tasks to ensure that they are

prioritized and tracked
• Managing the process and tools used by the team to maximize the

efficiency of the team and facilitating Scrum Reviews and Scrum Ret-
rospectives for ongoing process improvement

2. The “Product Owner” represents the stakeholders and the business. The
responsibilities of the Product Owner include:3

• Defining the features of the product
• Deciding on the product release date and content (based on discussion

with the team)
• Being responsible for the profitability of the product (ROI)
• Prioritizing features according to market value, risk, and other factors
• Adjusting features and priority at the end of each iteration, as needed
• Accepting or rejecting work results

3. The “Team” is a cross-functional group of about seven people who do the
actual analysis, design, implementation, testing, and so on. The responsi-
bilities of the team include:4

• Selecting the sprint goals and specifying work results and task require-
ments

• Completing all required work within the boundaries of the project guide-
lines to reach the sprint goal, including testing of the work to confirm
that it is complete and meets all required tests

• Organizing itself and its work
• Demoing work results to the product owner and any other interested

parties

Although Scrum heavily emphasizes the development approach, Scrum is
more than just a development methodology and provides a framework for a

3 “Scrum Alliance—Product Owner Roles and Responsibilities,” www.scrumalliance.org/resources
/617
4 “Scrum Alliance—Scrum Roles,” www.scrumalliance.org/pages/scrum_roles

Scrum 213

project-level methodology based on an iterative approach to breaking up a devel-
opment effort into releases and iterations called sprints. Scrum borrows its name
from Rugby, where a sprint is the process of stopping play, then vigorously
playing until the sprint ends and a new one begins.

A “sprint” in Scrum is typically a two to four week period and during each
“sprint,” the team creates a potentially shippable product increment (for example,
working and tested software). The set of features that go into a sprint come from
the product backlog, which is a prioritized set of high-level requirements of work
to be done. The backlog items that go into the sprint are determined during the
sprint planning meeting prior to the beginning of the sprint.

During the Sprint Planning meeting, the Product Owner informs the team of
the items in the product backlog that he or she wants completed. The team then
determines how much of this they can commit to complete during the next sprint.
During a sprint, no one is allowed to change the sprint backlog, which means
that the requirements are frozen for that sprint. After a sprint is completed, the
team demonstrates the use of the software. Figure B.1 shows the organization of
a typical Scrum project.

1. The process starts with the Product Owner defining the Product Backlog.
The Product Backlog is a list of backlog items which are broad descrip-
tions of all required features, wish-list items, and so forth prioritized by
business value that describe what will be built.
• Each item in the Product Backlog is typically described by a brief

user story. The Product Backlog also typically contains a rough work
estimate for each item in the backlog. These estimates will be refined
as the detailed requirements for each item are further defined during the
course of the development effort.

• The Product Backlog is typically broken down further into releases and
each release is typically broken down further into iterations (sprints).

• The Product Backlog is updated frequently over each iteration of the
Scrum project. During each sprint, items in the Product Backlog are
refined and elaborated as they are being implemented by the team.
Scrum does not specify a development approach but typically uses an
Extreme Programming approach for development and relies heavily on
direct customer interaction with the development team to further define
detailed requirements as the development progresses.

• New features/functionality that is identified during a sprint will be cap-
tured in the Product Backlog. “These may be portions of features that
were not completed in the Sprint, or new ideas surfaced by reaction to
the work produced. It may include team process improvements revealed
by the Sprint Retrospective. All this is crucial feedback that needs to
be incorporated into the planning process, and so must be captured in

214 Overview of Agile Project Delivery Frameworks

the Product Backlog and prioritized before the next Sprint Planning
Meeting.”5

2. Prior to the start of each release, a Release Planning Meeting is typically
held, where the team defines a high-level plan for the iterations and sprints
that will be included in that release.

3. Prior to the start of each sprint, there is a Sprint Kickoff Meeting, where
the team defines the “sprint backlog” for that sprint. The Sprint Backlog
is extracted from the Product Backlog and is the set of features from the
product backlog that will be addressed in that sprint.
• During each sprint, the detailed requirements for each feature are devel-

oped collaboratively between the Product Owner and the Development
Team as the design progresses.

• A “burn down” chart is typically used to track the progress of com-
pleting the Sprint Backlog items required to be completed during that
sprint.

4. During each sprint, the team has daily meetings called Daily Scrum Meet-
ings. The Daily Scrum Meetings are typically limited to 15 minutes and
are usually standup meetings so that the time and discussion will be

Inputs from
Customers, Team,
Managers, Execs

Product Owner

Product
Backlog

The Team

Sprint
Planning
Meeting

Daily Standup
Meeting

Sprint
Backlog

Task
Breakout

Scrum
Master

1-4 Week
Sprint

Sprint
Retrospective

Potentially
Shippable Product

List of
requirements
prioritized by

business value
(highest value
at top of list)

1
2
3
4
5
6
7
8

Team selects
starting at top
as much as it
can commit
to deliver by
end of Sprint

No Changes
(in Duration or Deliverable)

Sprint Review

Figure B.1 Detailed Scrum process flow6

5 “Scrum Alliance—How Scrum Works,” www.scrumalliance.org/articles/47-how-scrum-works
6 Copyright 2002–2010, Rally Software Development Corp. All Rights Reserved

Dynamic Systems Development Model (DSDM) 215

limited. During the Daily Scrum Meeting each member of the team is
asked three questions:
• What have you accomplished since the last Daily Scrum Meeting?
• What will you do before the next Daily Scrum Meeting?
• Is there anything that is impeding your progress (and remedies are

discussed)?
5. Scrum enables the creation of self-organizing teams by encouraging co-

location of all team members, and relies primarily on direct verbal com-
munication across all team members and disciplines that are involved in
the project.

6. The goal of each sprint is to produce working software, although it may
not be releasable software, and the software should be tested against unit
tests by the development team and acceptance tests by the product owner
to determine if it is done.

7. At the end of each sprint, there is a Sprint Review, where the team demos
what they’ve built during the sprint. There is also a Sprint Retrospective,
where the team gets together to discuss what’s working and not working
in the process and makes adjustments as necessary to the process for the
next sprint.

Figures B.1 and B.2 show two different views of the Scrum process flow.

DYNAMIC SYSTEMS DEVELOPMENT MODEL (DSDM)

Dynamic Systems Development Method (DSDM) is a framework based originally
around Rapid Application Development (RAD), supported by continuous user
involvement in an iterative development and incremental approach, which is
responsive to changing requirements, in order to develop a system that meets
the business needs on time and on budget. DSDM was developed in the United
Kingdom in the 1990s by a consortium of vendors and experts in the field of
information system (IS) development, the DSDM Consortium, combining their
best-practice experiences.7 It is most frequently used outside of the United States.
The word “dynamic” in DSDM is a keyword:

“ . . . It is the relationship between the development activity and the
business goals that is ‘dynamic.’ The critical challenge for teams that
develop products and systems is that business goals present a relentlessly
moving target, and the technology is also constantly evolving.

DSDM is a business-driven and multi-disciplinary approach to
developing products and systems that delivers more and better feedback
earlier. Prototypes and user contact ensure that, instead of working

7 “What is DSDM?,” www.selectbs.com/adt/process-maturity/what-is-dsdm

216 Overview of Agile Project Delivery Frameworks

Develop detailed
requirements for
Sprint #1

Design and Test
Sprint #1

Define and Prioritize Product Backlog
(Product Owner)

Define Release Plan
(What Features are included in the release and how they’re broken into iterations (sprints)

Typical Scrum Development Process
(High-Level Conceptual View)

Sprint Planning
Meeting
for Sprint #1

Sprint Review
Meeting
for Sprint #1

Define Sprint Backlog
for Sprint #1

Repeat Process
for Additional
Sprints

Figure B.2 Conceptual life-cycle model of a Scrum project

towards a frozen and detailed specification, the team is continuously
focusing on delivering the most important objectives that add real value
to the business.”8

Many of the major characteristics of DSDM are similar to other agile
approaches:

• “DSDM concentrates on managing output and results, rather than
inputs and activities. It facilitates a partnering spirit, thanks to which
the parties genuinely cooperate to continuously prioritize and to
deliver what matters to the business.

• DSDM offers a high degree of adherence to business goals, because
it concentrates on high-level shared and integrated objectives, instead

8 “What is DSDM?, The Business Case for integrating DSDM practices into a Design and Product
Development Processes,” www.cis.gsu.edu

Dynamic Systems Development Model (DSDM) 217

of getting stuck in the technical details that concern each individual
discipline.

• DSDM is value-driven, rather than cost-driven. It is a design-to-cost
and design-to-time approach that builds in customer contact via mod-
eling and prototyping so that all parties gain a better understanding
both of the possibilities and the practicalities.

• DSDM encourages agility, because it recognizes that change is a real-
ity and that, in order to reduce costs and to increase value, change
tolerance must be built into the architecture and managed into the
organization.

• DSDM is realistic by accepting that clients and suppliers must both
understand the problem together and work on the solution together,
instead of strictly and artificially dividing the responsibility for
understanding the problem from the responsibility for developing
solutions.”9

DSDM is a framework similar to Scrum—the principles underlying DSDM
are very similar to other agile methodologies such as Scrum; however, it is a
much more structured approach than Scrum. There are nine underlying principles
of DSDM consisting of four foundations and five starting points for the structure
of the method. These nine principles form the cornerstones of development using
DSDM:10

DSDM Principles

1. Active user involvement is imperative
2. DSDM teams must be empowered to make decisions
3. The focus is on frequent delivery of products
4. Fitness for business purpose is the essential criterion for acceptance of deliverables
5. Iterative and incremental development is necessary to converge on an accurate business

solution
6. All changes during development are reversible
7. Requirements are baselined at a high level
8. Testing is integrated throughout the life cycle
9. A collaborative and cooperative approach among all stakeholders is essential

There are two major prerequisites for using DSDM that are also similar to
other agile frameworks:11

• DSDM relies on interactivity between the project team, future end users
and higher management.

9 What is DSDM?, The Business Case for integrating DSDM practices into a Design and Product
Development Processes,” www.cis.gsu.edu
10 DSDM Public Version 4.2, www.dsdm.org/version4/2/public/Principles.asp
11 “What is DSDM?,” www.selectbs.com/adt/process-maturity/what-is-dsdm

218 Overview of Agile Project Delivery Frameworks

• It also relies on the ability to decompose a project into smaller parts to
enable an iterative approach.

DSDM is based on the 80/20 rule: 80 percent of the benefits can be delivered in
20 percent of the time. Through prioritizing and timeboxing, the most important
goals are satisfied on time and measurable results are delivered in short time-
scales, typically of 3 to 6 months.12

The DSDM framework consists of three sequential phases:13

• Pre-Project Phase—“In the pre-project phase, candidate projects are iden-
tified, project funding is realized and project commitment is ensured. Han-
dling these issues at an early stage avoids problems at later stages of the
project.”

• Project Life-Cycle Phase—The project life-cycle phase of DSDM con-
sists of the five stages a project will have to go through to fulfill the project
requirements. (Each of the phases is repeated iteratively as many times as
necessary to refine the approach and solution before proceeding to the next
phase):
• Feasibility Study
• Business Study
• Functional Model Iteration
• Design and Build Iteration
• Implementation

• Post-Project Phase—The post-project phase ensures that the system is
operating effectively and efficiently and includes maintenance, enhance-
ments, and any necessary fixes.

Figure B.3 shows a high-level view of the DSDM project life-cycle phase.
DSDM includes some commonly used agile practices, such as:

• Timeboxing
• Emphasis on testing as the design progresses
• Iterative approach and prototyping

However, the DSDM process is considerably more rigorous than other agile
frameworks in a number of respects and considers factors that are not explicitly
included in other agile frameworks, such as:

• Stronger emphasis on upfront planning to include a feasibility study and
business study

• Decomposition of a functional model similar to FDD

12 “What is DSDM?, The Business Case for integrating DSDM practices into a Design and Product
Development Processes,” www.cis.gsu.edu
13 “What is DSDM?,” www.selectbs.com/adt/process-maturity/what-is-dsdm

Agile Modeling 219

Feasibility

Implementation

Design and Build
Iteration

Functional
Model Iteration

Figure B.3 DSDM life-cycle phases—high-level conceptual view

• Use of UML modeling tools to define the system architecture
• Configuration management

DSDM is sometimes layered on top of an Extreme Programming (XP) devel-
opment approach.

AGILE MODELING

Agile Modeling (AM) is a methodology developed by Scott Ambler that is a
collection of values, principles, and practices for modeling software that can
be applied on a software development project in an effective and lightweight
manner.14 The core principles of Agile Modeling are very similar to those of
other agile methodologies, with a greater emphasis on modeling of the solution:

“The values of AM, adopting and extending those of Extreme Pro-
gramming, are communication, simplicity, feedback, courage, and humil-
ity. The keys to modeling success are to have effective communication
between all project stakeholders, to strive to develop the simplest solu-
tion possible that meets all of your needs, to obtain feedback regarding
your efforts often and early, to have the courage to make and stick to
your decisions, and to have the humility to admit that you may not know
everything, that others have value to add to your project efforts.”15

14 “Agile Modeling,” www.agilemodeling.com
15 “An Introduction to Agile Modeling,” www.agilemodeling.com/essays/introductionToAM.htm

220 Overview of Agile Project Delivery Frameworks

Agile Modeling advocates:

• Architecture Envisioning at the beginning of the project to define the high-
level architecture

• Model-Storming during the development effort to work out further details
of the architecture

• The principle of “Modeling with a Purpose,” which is based on using mod-
els of the system effectively to serve a particular purpose for a particular
audience:

“ . . . With respect to modeling, perhaps you need to understand an
aspect of your software better, perhaps you need to communicate
your approach to senior management to justify your project, or per-
haps you need to create documentation that describes your system
to the people who will be operating and/or maintaining/evolving it
over time.

If you cannot identify why and for whom you are creating a
model then why are you bothering to work on it all? Your first step
is to identify a valid purpose for creating a model and the audience
for that model, then based on that purpose and audience develop
it to the point where it is both sufficiently accurate and sufficiently
detailed

An important implication of this principle is that you need to know
your audience, even when that audience is yourself.”16

The Agile Modeling Methodology includes the following agile practices:

• Test-Driven Development
• Prioritized requirements
• Active stakeholder participation

It is many times used with an Extreme Programming (XP) development
approach.

The principles and practices of Agile Modeling can be combined with other
software processes, as shown in Figure B.4.17 Figure B.5 shows the general
structure of an Agile Modeling project.

Principles and Practices of
Agile Modeling (AM)

Other Techniques
(e.g., Scrum)

A Base Software Process
(e.g. XP, RUP, AUP)

Figure B.4 Combining Agile Modeling with other methodologies

16 “Agile Modeling,” www.agilemodeling.com/principles.htm#ModelWithAPurpose
17 “An Introduction to Agile Modeling,” www.agilemodeling.com/essays/introductionToAM.htm

Agile Unified Process 221

• Identity the high-level scope
• Identity initial “requirements stack”
• Identity an architectural vision

• Modeling is part of the iteration planning effort
• Need to model enough to give good estimates
• Need to plan the work for the iteration

• Work through specific issues on a JIT manner
• Stakeholders actively participate
• Requirements evolve throughout the project
• Model just enough for now, you can always
 come back later

• Develop working software via a test-first approach
• Details captured in the form of executable
 specifications

Initial Requirements
Envisioning

(days)

Initial Architecture
Envisioning

(days)

Iteration 0: Envisioning

Iteration 1:

Iteration 2:

Iteration 3:

Iteration Modeling
(hours)

Model Storming
(minutes)

Test-Driven
Development

(hours)

Figure B.5 General structure of an Agile Modeling project

Figure B.5 shows the general structure of an Agile Modeling project:18

AGILE UNIFIED PROCESS

The Agile Unified Process (Agile UP) is a simplified version of the Rational
Unified Process (RUP) developed by Scott Ambler. It describes a simple,
easy-to-understand approach to developing business application software using
agile techniques and concepts yet still remaining true to the Rational Unified
Process (RUP).19

The Agile Unified Process is based on the following principles20:

1. Your staff knows what they’re doing. People aren’t going to read
detailed process documentation, but they will want some high-level

18 “An Introduction to Agile Modeling,” www.agilemodeling.com/essays/introductionToAM.htm
19 “Agile Unified Process,” www.ambysoft.com/unifiedprocess/agileUP.html
20 The Agile Unified Process (AUP) Home Page, www.ambysoft.com/unifiedprocess/agileUP.html#
Serial

222 Overview of Agile Project Delivery Frameworks

guidance and/or training from time to time. The AUP product provides
links to many of the details, if you’re interested, but doesn’t force them
upon you.

2. Simplicity. Everything is described concisely using a handful of pages,
not thousands of them.

3. Agility. The Agile UP conforms to the values and principles of the
Agile Alliance.

4. Focus on high-value activities. The focus is on the activities which
actually count, not every possible thing that could happen to you on
a project.

5. Tool independence. You can use any toolset that you want with the
Agile UP. My suggestion is that you use the tools which are best
suited for the job, which are often simple tools or even open source
tools.

6. You’ll want to tailor this product to meet your own needs. The AUP
product is easily tailor-able via any common HTML editing tool. You
don’t need to purchase a special tool, or take a course, to tailor the
AUP.

It follows the same general phases as RUP and other variations of the unified
process:21

1. Inception Phase –
“During the inception phase, you establish the business case for
the system and delimit the project scope. To accomplish this you
must identify all external entities with which the system will interact
(actors) and define the nature of this interaction at a high level. This
involves identifying all use cases and describing a few significant
ones. The business case includes success criteria, risk assessment,
and estimate of the resources needed, and a phase plan showing
dates of major milestones.”

2. Elaboration Phase –
“The purpose of the elaboration phase is to analyze the problem
domain, establish a sound architectural foundation, develop the project
plan, and eliminate the highest risk elements of the project. To accom-
plish these objectives, you must have the “mile wide and inch deep”
view of the system. Architectural decisions have to be made with an

21 “Rational Unified Process—Best Practices for Software Development Teams,” www.ibm.com
/developerworks/rational/library/content/03July/1000/1251/1251_bestpractices_TP026B.pdf

Agile Unified Process 223

understanding of the whole system: its scope, major functionality and
nonfunctional requirements such as performance requirements.”

3. Construction Phase –
“During the construction phase, all remaining components and appli-
cation features are developed and integrated into the product, and
all features are thoroughly tested. The construction phase is, in one
sense, a manufacturing process where emphasis is placed on manag-
ing resources and controlling operations to optimize costs, schedules,
and quality. In this sense, the management mindset undergoes a tran-
sition from the development of intellectual property during inception
and elaboration, to the development of deployable products during
construction and transition.”

4. Transition Phase –
“The purpose of the transition phase is to transition the software product
to the user community. Once the product has been given to the end user,
issues usually arise that require you to develop new releases, correct
some problems, or finish the features that were postponed.”

The phases of the Agile Unified Process are shown in Figure B.6.22

Instead of the “big bang” approach, where you deliver software all at once,
you instead release it into production in portions (e.g., version 1, then version
2, and so on). AUP teams typically deliver development releases at the end of
each iteration into pre-production staging area(s). A development release of an
application is something that could potentially be released into production if it
were to be put through your pre-production quality assurance (QA), testing, and
deployment processes.

Phases

Iterations

Model

Implementation
Test

Deployment

Configuration Management

Project Management

Environment

Inception TransitionElaboration Construction

I1 E1 C1 C2 Cn T1 T2

Figure B.6 Agile Unified Process phases (Source: Copyright 2005 Scott W. Ambler.)

22 “Agile Unified Process,” www.ambysoft.com/unifiedprocess/agileUP.html

224 Overview of Agile Project Delivery Frameworks

V1 V2 V3

Development Release

Production Release

Figure B.7 AUP incremental release approach

Figure B.7 shows how this process would work over a period of time.
The Rational Unified Process (RUP) has often been criticized for being very

heavy on tools and artifacts, but the underlying iterative methodology is very
sound. The Agile Unified Process demonstrates how to apply the underlying
iterative methodology behind RUP in a more agile context without the heavy
emphasis on tools and artifacts that is normally found in RUP.

Lean Software Development

Lean Software Development is an iterative methodology originally developed by
Mary and Tom Poppendiek. It is much more of a set of principles that can be
applied to other methodologies than it is a well-defined methodology in itself:

“Lean Software Development owes much of its principles and practices to
the Lean Enterprise movement, and the practices of companies like Toy-
ota. Lean Software Development focuses the team on delivering Value
to the customer, and on the efficiency of the “Value Stream,” the mech-
anisms that deliver that Value. The main principles of Lean include:

1. Eliminating Waste
2. Amplifying Learning
3. Deciding as Late as Possible
4. Delivering as Fast as Possible
5. Empowering the Team
6. Building Integrity In
7. Seeing the Whole

Lean eliminates waste through such practices as:

• Selecting only the truly valuable features for a system,
• Prioritizing those selected, and
• Delivering them in small batches”23

23 “Agile Methodologies,” www.versionone.com/Agile101/Methodologies.asp?c-aws=i&gr-is
dsdm&gclid=CMCdk9zUkKICFR_E3Aod_SrBcg

Agile Unified Process 225

Each of these principles is discussed in more detail in the material that follows:

1. Eliminate Waste
“Waste is anything that does not add value to a product, value as
perceived by the customer. In lean thinking, the concept of waste is
a high hurdle. If a component is sitting on a shelf gathering dust,
that is waste. If a development cycle has collected requirements in
a book gathering dust that is waste. If a manufacturing plant makes
more stuff than is immediately needed, that is waste. If developers
code more features than are immediately needed, that is waste.”24

2. Amplify Learning
“Development is an exercise in discovery, while production is an
exercise in reducing variation, and for this reason, a lean approach
to development results in practices that are quite different than lean
production practices. Development is like creating a recipe, while pro-
duction is like making the dish. Recipes are designed by experienced
chefs who have developed an instinct for what works and the capa-
bility to adapt available ingredients to suit the occasion. Yet even
great chefs produce several variations of a new dish as they iterate
toward a recipe that will taste great and be easy to reproduce. Chefs
are not expected to get a recipe perfect on the first attempt; they
are expected to produce several variations on a theme as part of the
learning process.”25

3. Decide as Late as Possible
“Development processes that provide for late decision-making [sic]
are effective in domains that involve uncertainty, because they can
provide an options-based approach. In the face of uncertainty, most
economic markets develop options to provide a way for the investor
to avoid locking in decisions until the future is closer and easier to
predict. Delaying decisions is valuable because better decisions can
be made when they are based on fact.”26

4. Deliver as Fast as Possible
“Until recently, rapid software development has not been valued; tak-
ing a careful, don’t-make-any-mistakes approach has seemed to be
more important Rapid development has many advantages. With-
out speed, you cannot delay decisions. Without speed, you do not

24 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, p. xxv
25 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, p. xxvi
26 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, p. xxvi

226 Overview of Agile Project Delivery Frameworks

have reliable feedback. In development, the discovery cycle is critical
for learning: design, implement, feedback, improve. The shorter these
cycles are, the more can be learned.”27

5. Empower the Team
“Top-notch execution lies in getting the details right, and no one
understands the details better than the people who actually do the
work. Involving developers in the details of technical decisions is
fundamental to achieving excellence. The people on the front lines
combine the knowledge of the minute details with the power of many
minds. When equipped with necessary expertise and guided by a
leader, they will make better technical decisions and better process
decisions than anyone can make for them. Because decisions are made
late and execution is fast, it is not possible for a central authority to
orchestrate activities of workers.”28

6. Build Integrity In
“A system is perceived to have integrity when a user thinks, “Yes!
That is exactly what I want. Somebody got inside my mind!” Market
share is a rough measure of perceived integrity for products, because it
measures customer perception over time. Conceptual integrity means
that the system’s central concepts work together as a smooth, cohesive
whole and it is a critical factor in creating perceived integrity.”29

Mary Poppendiek defines conceptual integrity and perceived
integrity as follows:

“Perceived integrity means that the totality of the product achieves
a balance of function, usability, reliability, and economy that delights
customers.”30

“Software with integrity has a coherent architecture, scores high
on usability and fitness for purpose, and is maintainable, adaptable,
and extensible. Research has shown that integrity comes from wise
leadership, relevant expertise, effective communication, and healthy
discipline; processes, procedures and measurements are not adequate
substitutes.”31

27 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, p. xxvi
28 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, p. xxvii
29 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, p. xxvii
30 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, p. 125
31 Poppendiek, Tom and Mary, “Lean Software Development—An Agile Toolkit ,” New York:
Addison-Wesley, 2003, p. xxvii

Agile Unified Process 227

7. See the Whole
“Integrity in complex systems requires a deep expertise in many
diverse areas. One of the most intractable problems with product
development is that experts in any area (e.g., database or GUI) have a
tendency to maximize the performance of the part of the product rep-
resenting their own specialty rather than focusing on overall system
performance. Quite often, the common good suffers if people attend
first to their own specialized interests.”32

Lean Software Development is similar to other agile methodologies
in that it emphasizes the speed and efficiency of development work-
flow and relies on rapid and reliable feedback between developers and
customers.

“Lean uses the idea of work product being “pulled” via customer
request. It focuses decision-making authority and ability on individu-
als and small teams, since research shows this to be faster and more
efficient than hierarchical flow of control. Lean also concentrates
on the efficiency of the use of team resources, trying to ensure that
everyone is productive as much of the time as possible. It concentrates
on concurrent work and the fewest possible intra-team workflow
dependencies. Lean also strongly recommends that automated unit
tests be written at the same time the code is written.”33

Lean Software Development also uses an agile practice of deferring
planning and detailed requirements decisions as long as possible until
better information is available to support those decisions:

“Programming is a lot like die-cutting. The stakes are often high,
and mistakes can be costly, so sequential development, that is, estab-
lishing requirements before development begins, is commonly thought
of as a way to protect against serious errors. The problem with sequen-
tial development is that it forces designers to take a depth-first rather
than a breadth-first approach to design. Depth-first forces making low-
level dependent decisions before experiencing the consequences of the
high-level decisions. The most costly mistakes are made by forgetting
to consider something important at the beginning. The easiest way to
make such a big mistake is to drill down to detail to fast. Once you set
down the detailed path, you can’t back up and are unlikely to realize
that you should. When big mistakes may be made, it is best to survey
the landscape and delay the detailed decisions.”34

32 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, p. xxvii
33 “Agile Methodologies,” www.versionone.com/Agile101/Methodologies.asp?c-aws=i&gr-is
dsdm&gclid=CMCdk9zUkKICFR_E3Aod_SrBcg
34 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, p. 48–49

228 Overview of Agile Project Delivery Frameworks

Delaying irreversible decisions until uncertainty is reduced has eco-
nomic value. It leads to better decisions, it limits risk, it helps manage
complexity, it reduces waste, and it makes customers happy.”35

ADDITIONAL READING

There are a number of good books on the subject of agile and agile project
management that I highly recommend for additional reading on agile development
and agile project management.

Title Author Publisher, Date

Agile Project Management Jim Highsmith Addison-Wesley, 2010
Effective Project Management Traditional,

Agile, Extreme
Robert Wysocki Wiley, 2009

Succeeding with Agile Software
Development Using Scrum

Mike Cohn Addison-Wesley, 2010

The Software Manager’s Bridge to Agility Michele Sliger and Stacia
Broderick

Addison-Wesley, 2008

Balancing Agility and Discipline—A Guide
for the Perplexed

Barry Boehm and Richard
Turner

Addison-Wesley, 2003

Agile & Iterative Development—A
Manager’s Guide

Craig Larman Addison-Wesley, 2003

Agile Project Management with Scrum Ken Schwaber Microsoft Press, 2003
The Enterprise and Scrum Ken Schwaber Microsoft Press, 2003
Agile Estimating and Planning Mike Cohn Prentice Hall, 2006
Lean Software Development—An Agile

Toolkit
Mary and Tom Poppendiek Addison-Wesley, 2003

Implementing Lean Software
Development—From Concept to Cash

Mary and Tom Poppendiek Addison-Wesley, 2007

Leading Lean Software Development Mary and Tom Poppendiek Addison-Wesley, 2010

GLOSSARY OF TERMS

Term Definition

Agile Modeling Agile Modeling is a methodology developed by Scott Ambler that is a collection
of values, principles, and practices for modeling software that can be applied
on a software development project in an effective and lightweight manner.36

35 Poppendiek, Tom and Mary, Lean Software Development—An Agile Toolkit , New York: Addison-
Wesley, 2003, p. 54
36 “Agile Modeling,” www.agilemodeling.com

Glossary of Terms 229

Term Definition

Agile Unified Process The Agile Unified Process is a simplified version of the Rational Unified Process
(RUP) developed by Scott Ambler. It describes a simple, easy to understand
approach to developing business application software using agile techniques
and concepts yet still remaining true to the RUP.37

AUP See Agile Unified Process

Code Refactoring Code refactoring involves removing redundancy, eliminating unused functionality,
and rejuvenating obsolete designs and improving the design of existing
software in order to improve reliability and maintainability of the software.
Refactoring throughout the entire project life cycle saves time and increases
quality of the software. Code refactoring is more commonly used with Extreme
Programming; it is less commonly used with Feature-Driven Development.

Continuous Integration Continuous integration is the practice of frequently integrating new or changed
software with the code repository. It is a way of early detection of problems
that may occur when individual software developers are working on code
changes that may potentially conflict with each other. In many typical software
development environments, integration may not be performed until the
application is ready for final release.

DSDM See Dynamic Systems Development Model

Dynamic Systems
Development Model
(DSDM)

Dynamic Systems Development Method (DSDM) is a framework based
originally around Rapid Application Development (RAD), supported by
continuous user involvement in an iterative development and incremental
approach that is responsive to changing requirements, in order to develop a
system that meets the business needs on time and on budget. DSDM was
developed in the United Kingdom in the 1990s by a consortium of vendors and
experts in the field of Information System (IS) development, the DSDM
Consortium, combining their best-practice experiences.38 It is most frequently
used outside of the United States.

Epic An “epic” is a large user story that needs to be broken down into smaller user
stories prior to the start of an agile iteration.

Extreme Programming
(XP)

“Extreme Programming is a discipline of software development based on values
of simplicity, communication, feedback, and courage. It works by bringing the
whole team together in the presence of simple practices, with enough feedback
to enable the team to see where they are and to tune the practices to their
unique situation.

In Extreme Programming, every contributor to the project is an integral part of
the “Whole Team.” The team forms around a business representative called
“the Customer,” who sits with the team and works with them daily.

37 “Agile Unified Process,” www.ambysoft.com/unifiedprocess/agileUP.html
38 “What is DSDM?,” www.selectbs.com/adt/process-maturity/what-is-dsdm

230 Overview of Agile Project Delivery Frameworks

Term Definition

Extreme Programming teams use a simple form of planning and tracking to
decide what should be done next and to predict when the project will be done.
Focused on business value, the team produces the software in a series of small
fully-integrated releases that pass all the tests the Customer has defined.”39

(See the “Extreme Programming section in Appendix A for more detail.)

Feature-Driven
Development

Feature-Driven Development (FDD) is a model-driven approach that puts more
emphasis on defining an overall model of the system and a list of features to
be included in the system prior to starting the design effort.

Lean Manufacturing “Lean manufacturing is a comprehensive term referring to manufacturing
methodologies based on maximizing value and minimizing waste in the
manufacturing process. Lean manufacturing has evolved in North America
from its beginnings in the Toyota Production System (TPS) in Japan. Many of
the most recognizable phrases, including kaizen and kanban , are Japanese
terms that have become standard terms in lean manufacturing.

At the heart of lean is the determination of value. Value is defined as an item or
feature for which a customer is willing to pay. All other aspects of the
manufacturing process are deemed waste. Lean manufacturing is used as a tool
to focus resources and energies on producing the value-added features while
identifying and eliminating non value added [sic] activities.”40

Lean Software
Development

Lean Software Development is a translation of lean manufacturing and Lean IT
principles and practices to the software development domain. It is heavily
based on the work of Tom and Mary Poppendiek.

Pair Programming Pair programming is an agile software development technique in which two
programmers work together at one work station—one developer plays the role
of an observer while the other developer in the pair writes the code.

Product Backlog The product backlog is a high-level document list of all required features,
wish-list items, etc. prioritized by business value in an agile project. It is the
“What” that will be built. It is owned by the product owner and continuously
prioritized and reprioritized as the project progresses, work is completed, and
detailed requirements are better understood.

Prototype Model A prototype model is a type of software development life cycle model that is
used to progressively define the requirements for a product or application. It
involves developing the requirements as much as possible from user input,
then a prototype model is built based on the known requirements. User
feedback is then used to progressively refine the model as necessary until it
satisfies the user. Prototyping can also be an effective method to demonstrate
the feasibility of a certain approach.

39 “What is Extreme Programming?”, http://xprogramming.com/book/whatisxp/
40 “Lean Manufacturing Learning Center,” www.vorne.com/learning-center/lean-manufacturing
.htm

Glossary of Terms 231

Term Definition

The basic reason for limited use of prototyping is the cost involved in this
build-it-twice approach. However, with modern software development tools,
prototyping need not be very costly and can actually reduce the overall
development cost.41

Rational Unified Process The Rational Unified Process (RUP) is a software development process from
Rational, a division of IBM. It divides the development process into four
distinct phases that each involve business modeling, analysis and design,
implementation, testing, and deployment. The four phases are:

Inception—The idea for the project is stated. The development team determines
if the project is worth pursuing and what resources will be needed.

Elaboration—The project’s architecture and required resources are further
evaluated. Developers consider possible applications of the software and costs
associated with the development.

Construction—The project is developed and completed. The software is
designed, written, and tested.

Transition—The software is released to the public. Final adjustments or updates
are made based on feedback from end users.42

RUP See Rational Unified Process

Scrum Scrum is an agile software development model based on multiple small teams
working in an intensive and interdependent manner. The term is named for the
scrum (or scrummage) formation in rugby, which is used to restart the game
after an event that causes play to stop, such as an infringement.

Scrum employs real-time decision-making processes based on actual events and
information. This requires well-trained and specialized teams capable of
self-management, communication, and decision making. The teams in the
organization work together while constantly focusing on their common
interests.43 (See the Scrum section in Appendix B for more detail)

SDLC See Software Development Life Cycle

Software Development
Life Cycle

A software development life cycle (SDLC) is a process or framework that
describes the activities performed at each stage of the software development
process and provides an overall roadmap for the project. It provides a template
for executing a project that can be tailored to fit a particular project. An
example of an SDLC is the Waterfall model; however, as used in this book, an
SDLC would include any project framework such as Scrum.

41 “Prototyping Software Lifecycle Model,” www.freetutes.com/systemanalysis/sa2-prototyping-
model.html
42 “RUP (Rational Unified Process Definition),” www.techterms.com/definition/rup
43 “What is Scrum?,” http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci1230820
,00.html

232 Overview of Agile Project Delivery Frameworks

Term Definition

Spike “A spike is an experiment that allows developers to learn just enough about the
unknown elements in a user story, e.g., a new technology, to be able to
estimate that user story. Often, a spike is a quick and dirty implementation or a
prototype which will be thrown away. When a user story on the product
backlog contains unknown elements that seriously hamper a usable estimation,
the item should be split into a spike to investigate these elements plus a user
story to develop the functionality.” 44

Story Points “Story Points” are a method of estimating the level of effort associated with
implementing a user story. The typical form of story points is a Fibonacci
series such as 1, 2, 3, 5, 8, 13, with 1 being a minimal level of effort and 13
being a maximum level of effort for a user story in an iteration.

TDD See Test Driven Development

Test-Driven Development Test-Driven Development (TDD) is commonly used in agile methodologies to
integrate testing directly into the software development effort:

“Instead of writing functional code first and then your testing code as an
afterthought, if you write it at all, you instead write your test code before your
functional code. Furthermore, you do so in very small steps—one test and a
small bit of corresponding functional code at a time. A programmer taking a
TDD approach refuses to write a new function until there is first a test that
fails because that function isn’t present. In fact, they refuse to add even a
single line of code until a test exists for it. Once the test is in place they then
do the work required to ensure that the test suite now passes.”45 (See the
Test-Driven Development section in Appendix A)

User Persona A “User Persona” is a description of a specific type of user that impacts the
requirements. For instance, a “Banking Customer” would be an example of a
User Persona. User Personas are useful ways of characterizing the users of the
system and keeping the development effort focused on satisfying their needs.

User Stories “User stories are one of the primary development artifacts for Scrum and
Extreme Programming (XP) project teams. A user story is a very high-level
definition of a requirement, containing just enough information so that the
developers can produce a reasonable estimate of the effort to implement it.”

“User stories are small, much smaller than other usage requirement artifacts such
as use cases or usage scenarios. Each of the following statements represents a
single user story:

Students can purchase monthly parking passes online.

Parking passes can be paid via credit cards.

Parking passes can be paid via PayPalTM.

Professors can input student marks.

44 “Phillipus, Erik, Architecture Spikes,” www.agile-architecting.com/Architecture%20Spikes.pdf
45 “Introduction to Test-Driven Design,” www.agiledata.org/essays/tdd.html

Glossary of Terms 233

Term Definition

Students can obtain their current seminar schedule.

Students can order official transcripts.

Students can only enroll in seminars for which they have prerequisites.

Transcripts will be available online via a standard browser.” 46

User stories provide a way of breaking up the project into individual work items
that can provide a way of estimating and tracking work to be done. Each user
story may be further refined as necessary as the design progresses.

Waterfall Model The waterfall model is a software development life cycle model that describes a
linear and sequential development method. Waterfall development has distinct
goals for each phase of development and once a phase of development is
completed, the development typically proceeds to the next phase and there is
no turning back.

The advantage of waterfall development is that it allows for departmentalization
and managerial control. A schedule can be set with deadlines for each stage of
development and a product can proceed through the development process
sequentially. Development moves through the phases of the model such as
concept, design, implementation, and testing, and ends up at deployment and
operation and maintenance. Each phase of development normally proceeds in a
prescribed order, without any overlapping or iterative steps; however, tailoring
is often done to make the process more efficient.

The disadvantages of waterfall development are that:
It does not allow for much reflection or revision—once an application is in the

testing stage, it is very difficult to go back and change something that was not
well thought out in the concept stage.

It assumes that all requirements can be defined upfront prior to any design work,
and that is not a realistic assumption in many situations, and it doesn’t provide
an approach that is flexible and adaptive to customer needs.

It may require an excessive amount of documentation artifacts.47

XP See Extreme Programming

46 “Introduction to User Stories,” www.agilemodeling.com/artifacts/userStory.htm
47 “What is Waterfall Model,” http://searchsoftwarequality.techtarget.com/sDefinition/0,,sid92_gci
519580,00.html

Index

A
Action plan, 88–95

alternative approaches in, 91–93
implementation issues in, 93–95
and overall business environment, 89
and project environment, 89–91
for project managers, 193–194
questions for developing, 88–89

Adaptability:
to achieve business outcomes, 58
balancing control and, 191
to fit projects and problems, 110–111
as key change needed, 109
in SDLC models, 191

Adaptive approaches, 5, 188–189
Adaptive life-cycle models, 168,

178–180
Adapt Phase (APM model), 122
Agile, 4

agility vs., 4–5
benefits and tradeoffs with, 57–61
continuous improvement in, 35
defining, 3–5
general practices of, 47–56
history and overview of, 38–44
and Lean Software Development,

36–38
levels of planning in, 50–51
misconceptions about, 14–19
movement toward, 67–70, 192, 195
obstacles to becoming, 62–67
patterns in adoption of, 71–73
perceptions of, 44–47, 124–125
as “program du jour,” 9
and project management, 10–14. See

also Agile project management
quality improvement with, 62

Sapient|Approach, 73–84
traditional Waterfall vs., 7–9
uncertainty reduction in, 152

Agile Manifesto, 18, 36, 39, 55, 67–68
Agile Manifesto Principles, 39–43
Agile Modeling (AM), 219–221, 228
Agile project management, 17–18,

101–130
mindset for, 107–111
models for, 119–123
and PMBOK R© Guide, 124–130
practices in, 112–113
principles of, 113–116
roles in, 101–107
skills for, 98, 111–112
techniques used in, 117–119
trend toward, 13–14

“Agile Project Management” (Daniel J.
and John D. Fernandez), 64

Agile Project Management (Jim
Highsmith), 93

agile tools and techniques, 48
APM model, 120–123
balancing planning and execution,

155–156
better product development, 58
capabilities, 112
chaos and structure, 135
focus on customer value, 108
leadership, 157
linearity vs. evolution, 68
PMBOK R© Guide, 124
product development, 59
repeatable and reliable processes,

136, 137
risk management, 150
“tailoring-down” syndrome, 126–127

235

236 Index

Agile Project Management (APM)
model, 120–123

Agile Project Management triangle, 13
Agile Unified Process (Agile UP),

221–224
defined, 229
as iterative emergent model, 176
other methods vs., 55–56

“Agile Unified Process”
(ambysoft.com), 222–223

“Agile? Waterfall? How about
WetAgile?” (Steve Pieczko), 69

Agility:
agile vs., 4–5
and control, 5, 8, 109

“Aligning PMBOK Agile” (Brian
Bozzuto), 126

All-or-nothing thinking, 15, 85, 87
AM (Agile Modeling), 219–221, 228
Ambler, Scott, 145, 219, 221
AOL, 188–189
APM (Agile Project Management)

model, 120–123
Architecture Envisioning (AM), 220

B
Balancing Agility and Discipline—A

Guide for the Perplexed (Barry
Boehm and Richard Turner), 14,
143, 158

Batch sizes, 31–33
“The Blending of Traditional and Agile

Project Management” (Kathleen
Hass), 169, 206

Boehm, Barry, 7, 14, 143, 158
Bozzuto, Brian, 124–126
BPR (business process reengineering),

94
Build by Feature (FDD), 204
“Burn down” chart (Scrum), 214
“Burning platform,” 90
Burns, Martin, 38
Business analysis:

as skill for agile project managers,
111

for traditional vs. agile projects,
105

Business Analysts, 103, 104, 106–107
Business environment, and readiness for

agile, 89
Business Excellence model, 24–26
Business outcomes, 57–59, 86
Business processes, 141–142
Business process reengineering (BPR),

94
Business rules, 142
Business value:

failure to provide, 12
and traditional Project Management

triangle, 11

C
Capability Maturity Model Integrated

(CMMI), 76, 94
Capella, Jamie, 10
Change:

responsiveness to, 128–129
in traditional vs. learning

organizations, 73
Change management:

with Scrum adoption, 62
success factors for, 90–91
for traditional vs. agile projects, 105

Chaos, 135
“CHAOS Summary 2009” (Standish

Group), 10
Churchill, Winston S., 154
Close Phase (APM model), 122
CMMI (Capability Maturity Model

Integrated), 76, 94
Code refactoring, 208–209, 229
Cohn, Mike, 62, 94
Collaboration:

customer, 114
in XP, 201

Collective ownership, 114–115, 136,
200

Commitment, organizational, 66
Communities of practice, 144
Competitive advantage, 60

Index 237

Complexity:
in requirements management, 142
with SDLC models, 181

Conceptual integrity, 226
Concurrent processing (concurrent

engineering), 33
Configuration management:

documentation for, 161
and flow, 33

Consensus building, 117–118
Construction Phase (AM), 223
Continuous improvement, 19, 35

in agile methodologies, 116
with SDLC, 181
in traditional vs. learning

organizations, 73
in XP, 201

Continuous integration, 209–210,
229

Control:
balancing agility and, 5, 8, 109
balancing flexibility and adaptability

with, 191
in PMBOK R© vs. in practice,

128–129
for traditional vs. agile projects,

104
in traditional vs. learning

organizations, 72
with Waterfall model, 6–7

Coordination of resources, 105
Corporate culture, 63–66
Corporate Executive Board, 10
Cost estimates, 12
Cost reductions, 60–61
COULD requirements, 54, 147
Cross-functional collaborative approach,

64–65
Cross-functional synergy, 60
Crossing the Chasm (Geoffrey

A. Moore), 50
Customer (XP), 3
Customer collaboration, 114
Customer satisfaction, 60
Customer value:

agile focus on, 108–109
as lean principle, 24–26

Customization of projects, 134–135

D
Daily planning, 51
Daily Scrum Meetings, 214–215
Daily standup meetings, 117, 214
“Death march” projects, 16
Decision making, delaying, 225
Dell Computer, 31
DeMarco, Tom, 148
Design by Feature (FDD), 204
Developer-centric orientation, 36–37
Development teams, 95
Documentation:

in SDLC models, 160–162
in traditional plan-driven life cycle

models, 170
Drucker, Peter F., 157
DSDM Consortium, 215
Dynamic Systems Development Method

(DSDM), 215–219
comparison of other methods and,

55–56
defined, 229
principles of, 217

E
“Edge of chaos,” 135
Effective Project Management—

Traditional, Agile, Extreme (Robert
Wysocki), 109, 134, 145, 155, 164,
165, 172

80/20 rule, 218
Eisenhower, Dwight D., 154, 157
Elaboration Phase (AM), 222–223
Empire State Building, 31
Employees:

morale of, 60
respect for, 34, 35, 48

Empowerment, 48
in Lean Software Development, 226
in traditional vs. learning

organizations, 72

238 Index

Engagement, in traditional vs. learning
organizations, 73

The Enterprise and Scrum (Ken
Schwaber), 95

Enterprise transition team, 95
Enterprise Unified Process, 176
Envision Phase (APM model), 120–123
Epics, 53, 229
Executable Architecture Release phase

(Sapient|Approach), 80
“Executive Brief | Are You Ready for

Agile?” (Sapient Corporate White
Paper), 89–90

Explore Phase (APM model), 122, 123
Extreme plan-drive Waterfall, 163–164
Extreme Programming (XP), 3–4

as adaptive approach, 5, 179
code refactoring with, 208
defined, 229–230
as development approach, 199–202
FDD vs., 203–205
other methods vs., 55–56
pair programming with, 207
in Sapient|Approach, 75, 76
with Scrum, 110

F
Failure, 73, 116, 210
Feature-Driven Development (FDD),

202–205
comparison of other methods and,

55–56
defined, 230
pair programming with, 207
XP vs., 203–205

“Feature-Driven Development”
(wikipedia.org), 204

“Feature Driven Development (FDD)
and Agile Modeling”
(agilemodeling.com), 202

Feature list (FDD), 203–204
Feature sets, 32
Fernandez, Daniel J., 64
Fernandez, John D., 64
Fist Block, 118

“Fist of five” approach, 117–118
“The 5 Why’s Method,” 146
Flexibility:

to achieve business outcomes, 58
balancing control and, 191
as key change needed, 109
in SDLC models, 133–135, 191

Flow:
and batch size, 31–33
and concurrent processing, 33
as lean principle, 30–33

Focus, with timeboxing, 118
Force-fitting methodologies, 35, 86, 110
Functional department managers

(Scrum), 104
Functional management, 105
Fusionsm phase (Sapient|Approach), 80
“Fuzzy front end,” 151, 153, 154

G
Generative approach, in PMBOK R© vs.

in practice, 125–126
“‘Gotchas”’ (Sapient Corporate White

Paper), 14, 17
Gottesman, Erik, 32–33, 38, 74–77, 83,

107
“Growing Agility in a Large and

Distributed Enterprise” (Erik
Gottesman), 74–77

A Guide to Project Management Body of
Knowledge (PMBOK R© Guide),
see PMBOK R© Guide

H
Hammer, Michael, 141
Hass, Kathleen, 169, 206
Highsmith, Jim:

on adaptive vs. optimizing
approaches, 168

on agile, 55–56
on Agile Manifesto statements, 39
on Agile Project Management model,

120–123
on agile tools and techniques, 19, 58
on agile triangle, 13

Index 239

on balancing planning and execution,
155–156

on better product development, 58
on business objectives, 57
on capabilities, 112
on chaos and structure, 135
on creators of Agile Manifesto, 55
on focus of agile methodologies, 141
on focus of project managers, 11, 12
on focus on customer value, 108
on leading, 157
on linearity vs. evolution, 68
on PMBOK R© Guide, 124
on product development, 59
on repeatable and reliable processes,

136, 137
on risk management, 150
on “tailoring-down” syndrome,

126–127
“History: The Agile Manifesto” (Jim

Highsmith), 55–56
Humanistic value orientation, 127–128
Hybrid approaches, 68–70

comparisons of, 55–56
designing and implementing, 194
reasons for adopting, 90–91

I
Implementation, 86. See also specific

methodologies
as action plan issue, 93–95
agile vs. lean, 37
in PMBOK R© vs. in practice, 125
of pure agile project management,

194–195
Inception Phase (AM), 222
INCOSE (International Council on

Systems Engineering), 23–24
Incremental improvements, 91–92,

193–194
Incremental life-cycle model, 167,

173–174
Integrity, 226–227
Intent, in PMBOK R© vs. in practice,

125

International Council on Systems
Engineering (INCOSE), 23–24

“An Introduction to Agile Modeling”
(agilemodeling.com), 219

“An Introduction to Feature-Driven
Development” (agile.dzone.com),
203–204

“Introduction to Test-Driven Design”
(agiledata.org), 205–206

Iteration 0, 203
Iteration planning, 51, 200
Iterative approaches:

factors favoring, 183
implementing, 92–93
in prioritizing requirements, 147
uncertainty reduction in, 152

Iterative development processes, 32
Iterative emergent life-cycle model,

167–168, 176–178
Iterative plan-driven life-cycle model,

167, 174–176, 185–188

J
“Just Barely Good Enough” (JBGE),

145
Just-in-time planning, 49–50, 152

K
Kanban, 29–30
“Kanban Development Oversimplified,”

29–30
Kettering, Charles, 146
Krebs, Jochen (Joe), 188

L
“Last responsible moment,” 152
Leadership:

agile project manager skills in,
111–112

by business side of organization, 17
and hybrid approach adoption, 90
in moving toward agile, 192
for organizational transformation,

192–193
in SDLC models, 156–158

240 Index

Leadership: (continued)
style of, 63–64
thought, 72

Lean (lean manufacturing, lean
production), 21, 22

customer value in, 24–26
defined, 22, 230
flow in, 30–33
main principles of, 224–228
mapping the value stream in, 26–27
perfection in, 34–35
pull in, 27–30
respect for people in, 34

Lean Software Development, 21–38,
224–228

and agile, 36–38
defined, 230
principles behind, 21–35

Lean Software Development (Tom and
Mary Poppendiek), 159, 225–228

Lean Systems Engineering, 23
Learning, amplifying, 225
Learning environment, 65–66
Learning organizations, 72–73
Lister, Timothy, 148
Little’s Law of Queuing, 31

M
Manage Iterations phase

(Sapient|Approach), 80
Management of uncertainty, 151–154
Management style, 63–64
Mapping the value stream, 26–27
MDD (Model-Driven Development),

82–83
Mindset, for agile project management,

67–68, 107–111
Models, agile project management,

119–123
Model-Driven Development (MDD),

82–83
“Model-driven Development Through

the Agile Looking Glass” (Erik
Gottesman), 83

Modeling with a Purpose (AM), 220

Model-Storming (AM), 220
Moltke the Elder, Helmuth von, 154
Moore, Geoffrey A., 50
MoSCoW technique, 54, 146–147
Multilevel testing, 143
Multiple-team projects, 119–120
MUST requirements, 54, 146

N
Needs, differentiating wants from,

145–147
Non-value-added work, 22

O
Operational management orientation,

36–37
Operational process performance, 26
Optimizing models, 168
Organizational change:

developing and leading, 192–193
need for, 86

Organizational commitment, 66
Organizational effectiveness, 60
Organizational maturity, 44, 94
Organizational practices, 48–49
Overall object model (FDD), 203
Ownership, collective, 114–115, 136,

200

P
Pair programming, 207–208

defined, 230
in XP, 200

Parkinson’s Law, 119
Patton, George S., 154, 157
“Paving Cowpaths” (Jim Highsmith),

141
People, respect for, 34, 35, 48
People management skills, 111–112
Perceived integrity, 226
Perception gap, 46
Perceptions of agile methodologies,

44–47
Perfection principle, 34–35
Phase “gates,” 171

Index 241

Pieczko, Steve, 69
PIM (Platform-Independent Model),

82–84
Pizza box methodology, 14
Plan by Feature (FDD), 204
Plan-driven approaches, 4–5. See also

Traditional plan-driven life-cycle
models

factors favoring, 183
“tailoring-down” syndrome in,

126–127
Planning:

documentation for, 160–161
most common problems in, 155
in PMBOK R© vs. in practice,

128–129
for risk reduction, 148–150
rolling wave, 113–114, 178
in SDLC models, 154–156
in traditional plan-driven life-cycle

models, 70
Planning Poker, 52
Planning practices, 49–51
Platform-Independent Model (PIM),

82–84
PMBOK R© Guide:

and agile project management,
124–130

applying principles from, 10
merging thinking of agile and, 130
stereotypical perceptions of,

124–129
PMI R© (Project Management Institute),

191
PMO (Project Management Office),

19, 103
Poppendiek, Mary, 26, 27, 31, 36, 37,

159, 224
Poppendiek, Tom, 36, 37, 159, 224
Portfolio governance, 48
Post-Project Phase (DSDM), 218
Practices, agile, 47–54

organizational, 48–49
planning, 49–51
project management, 112–113

requirements definition, 51–54
technical, 48, 199–210

Predictive approaches, 4–5
Pre-Project Phase (DSDM), 218
Prescriptive approach, 125–126
Principles:

of Agile Manifesto, 68
of agile project management,

113–116
common to agile and lean, 37
of DSDM, 217
of Lean Software Development,

21–35
phases of, 218
in PMBOK R© vs. in practice, 125
of SDLC models, 131–132

“Principles Behind the Agile
Manifesto,” 68

The Principles of Product Flow (Don
Reinertsen), 132

Prioritization, of requirements, 54, 220
Problems, adapting methodologies to,

110
Process design:

agile project managers’ capabilities
in, 112

in SDLC models, 135–136
and training, 134–136

Process direction, for traditional vs.
agile projects, 104

Process improvement, in XP, 201–202
Process orientation:

in lean and agile, 36
in PMBOK R© vs. in practice,

127–128
Process standardization, in traditional

vs. learning organizations, 72
Product backlog, 53, 213–214, 230
Productivity improvement, 60–61, 118
Product Owner (Scrum), 103, 104, 106,

212
Program du jour, 9–10, 85–86
Progress tracking, for traditional vs.

agile projects, 105
Project, adapting methodologies to, 110

242 Index

Project delivery frameworks, 211–233
Agile Modeling, 219–221
Agile Unified Process, 221–224
Dynamic Systems Development

Method, 215–219
Lean Software Development,

224–228
Scrum, 211–215

Project environment, and readiness for
agile, 89–91

Project Life-Cycle Phase (DSDM), 218
Project management:

agile, see Agile project management
documentation for, 160–161
effectiveness of, 10
fundamental problem with, 10–11
future direction of, 97
impact of agile on, 10–14

Project Management Institute (PMI R©),
191

Project Management Office (PMO), 19,
103

Project Management triangle:
agile, 13
traditional, 11

Project managers:
action plan for, 193–195
as “chefs” vs. “cooks,” 97–98,

191–192
key challenge for, 98
skills for, 111–112

Project methodologies. See also specific
methodologies

“programs du jour,” 9–10
selecting, 8–9

Project scope, in SDLC models, 181
Prototype models, 176, 230–231
Pull approach, 27–30
Pure agile, 163. See also Scrum

comparisons of, 55–56
defined, 5
implementing, 93, 194–195
levels of project management in,

102
tradeoffs with, 163–164

Pure Waterfall approach, 184–185
Push approach, 27–29

Q
Quality control, 34–35
Quality improvement, 62

R
Rapid Application Development (RAD),

215
Rapid development, 225–226
Rational Unified Process (RUP R©):

AM as simplified version of, 221
criticisms of, 224
defined, 231
as iterative emergent model, 176–178
and Sapient|Approach, 80

Realization of time spent, with
timeboxing, 118–119

Regulatory environment, 66–67
Reinertsen, Don, 132
Release management, flow and, 33
Release planning, 51
Release Planning Meeting (Scrum), 214
Release Planning Process (XP), 200
Reliable processes, repeatable processes

vs., 136–137
Repeatable processes:

and flexibility, 134
reliable processes vs., 136–137

Requirements definition, 51–54
with story points, 62–54
in traditional plan-driven life-cycle

models, 70
with user stories, 51–52

Requirements elicitation:
in Scrum approach, 110
in SDLC models, 138, 140
for traditional vs. agile projects, 105

Requirements management:
business process considerations in,

141–142
complexity considerations in, 142
defining requirements, 138, 140
feature sets in, 32

Index 243

guidelines for, 147
in lean and agile approaches, 29
prioritization of requirements in,

145–147
push approach to, 27–29
in SDLC models, 140–147, 181
story pipelining in, 32–33
supportability considerations in, 144
testing considerations in, 142–144

Requirements traceability, 142, 161
Resources management, 105
Respect for people, 48

and continuous improvement, 35
as lean principle, 34

Responsiveness to change, 128–129
Rico, David, 4, 23
Rigidity, flexibility vs., 133–135
Risk, 59
Risk environment, 66–67
Risk identification stage, 148–149
Risk management:

in SDLC models, 148–151, 181–182
for traditional vs. agile projects, 106

Risk mitigation stage, 149
Risk tolerance, 150
Roadmap planning, 51, 180–181
Roles, project management, 101–107

Business Analyst, 106–107
traditional vs. agile, 103–106

Rolling wave planning, 113–114, 178
Roosevelt, Theodore, 157
RUP R©, see Rational Unified Process

S
Sapient|Approach (S|A), 73–84

methodology description, 78–84
process methodology selection and

design, 74–78
for Sapient’s unique challenges,

73–74
Sapient Corporation, 73–84
Sapient Corporation White Papers:

on business stakeholders, 17
on discipline, 14
on readiness for agile, 89–90

Schedule estimates, 12
Schwaber, Ken, 95, 128
Scrum, 3, 17

as adaptive approach, 5, 179
continuous improvement in, 35
defined, 231
levels of project management in, 102,

112–113
obstacles in transition to, 62–63
other methods vs., 55–56
as project delivery framework,

211–215
and project management, 110
and requirements elicitation, 110
in Sapient|Approach, 75
self-organizing teams in, 102
use of XP with, 110

ScrumMaster, 102, 103, 120, 192,
211–212

“Scrum of Scrums”
(learnsoftwareprocesses.com), 120

Scrum-of-Scrums approach, 80, 110,
119–120

Scrum rollout teams, 95
SDLC models, see Software

development life cycle models
Self-organization, 48, 102
SHOULD requirements, 54, 147
Shu Ha Ri, 131–132
Six Sigma, 9, 71
Sliger, Michelle, 130
Software development life cycle

(SDLC) models, 131–189
adaptive model, 178–180
applying lean concepts to, 22–23
categories of, 164–168
defined, 132–133, 231
documentation in, 160–162
extreme plan-drive Waterfall, 163
flexibility vs. rigidity in, 133–135
guidelines for using, 180–182
incremental model, 173–174
iterative emergent model, 176–178
iterative plan-driven model, 174–176
leadership in, 156–158

244 Index

Software development life cycle
(SDLC) models, (continued)

management of uncertainty in,
151–154

planning in, 154–156
principles underlying, 131–132
process design in, 135–136
pure agile, 163
reliable vs. repeatable processes in,

136–137
requirements management in, 138,

140–147
risk management in, 148–151
selecting, 138, 139, 182–189
traditional plan-driven models,

168–173
training in, 135–136, 158–160
variations on, 164

The Software Project Manager’s Bridge
to Agility (Michelle Sliger), 130

Speculate Phase (APM model),
121–123

Spikes, 53–54, 232
“Sprints” (Scrum), 213
Sprint Backlog (Scrum), 214
Sprint Kickoff Meeting (Scrum), 214
Sprint Retrospective (Scrum), 215
Sprint Review (Scrum), 215
Stakeholder participation, in AM, 220
Standish Group, 10
Story pipelining, 32–33
Story points, 52, 232
Student Syndrome, 119
Subsequent Releases phase

(Sapient|Approach), 80
Succeeding with Agile (Mike Cohn), 62,

94
Supportability, in requirements

management, 144
Systems thinking, 107–108, 132

T
Tailoring, of projects, 134–135
“Tailoring-down” syndrome, 126–127
TDD, see Test-Driven Development

Team:
empowering, 226
Scrum, 212

Teamwork, 48
Technical practices, 48, 199–210

code refactoring, 208–209
continuous integration, 209–210
Extreme Programming, 199–202
Feature-Driven Development,

202–205
pair programming, 207–208
Test-Driven Development, 205–207

Technical skills, for agile project
managers, 111

Test-Driven Development (TDD),
205–207

in AM, 220
defined, 232
in XP, 200

Testing:
and flow, 33
in requirements management,

142–144
Test management, 143–144
Thought leadership, 72
Timeboxing, 118–119, 199, 200
“Timeboxing” (agilehardware.com),

118–119
Time management, 119
Total Quality Management (TQM), 35
Toyota Production System, 29–30
Tradeoffs:

in adopting agile principles, 43–44,
57–61

with pure agile and extreme
plan-drive Waterfall, 163–164

with unresolved uncertainties,
152–153

Traditional development approaches:
batch-size analogy in, 32
force-fitting methods in, 35
improving vs. discarding, 22
perceptions of, 8, 10, 45–46
truth about, 15–16

Index 245

Traditional plan-driven life-cycle
models, 168–173. See also
Waterfall model

distinguishing characteristics of, 170
potential variations of, 170–171
risks and limitations with, 171–173
strengths and benefits of, 171

Traditional project management:
Agile Manifesto Principles vs.

practices of, 39–43
reliability vs. repeatability of

processes in, 137
roles in, 103–106

Traditional Project Management Office
(PMO) organizations, 19

Traditional Project Management
triangle, 11

Training:
and flexibility of processes, 133–134
and process design, 134–136
in SDLC models, 135–136,

158–160
Transition Phase (AM), 223
Transparency, 49, 66
Trust, 49
Turner, Richard, 7, 14, 143, 158

U
UCLA (University of California at Los

Angeles), 16
Uncertainty, management of, 151–154
Unified Process, 177
University of California at Los Angeles

(UCLA), 16
Upfront planning and control, in

PMBOK R© vs. in practice,
128–129

User Personas, 53, 232
User stories, 30, 199–200

defined, 232–233
form for, 52
in requirements definition, 51–54
story points in, 52

User Story Cards, 30

V
Validation, emphasis on, 116–117
Value-added work, 22
Value stream, mapping, 26–27
Verification, validation vs., 116–117
Vision, 90
Vision planning, 50
Vision statement, 146

W
Waltzing with Bears (Tom DeMarco and

Timothy Lister), 148
Wants, differentiating needs from,

145–147
Waste(s), 22, 27

eliminating, 224–225
with large batch sizes, 31

Waterfall model, 168–173
agile vs., 7–9
control with, 6–7
defined, 5, 233
extreme plan-driven, 163–164
phases in, 5–6
pure, 184–185
uncertainty reduction in, 152

“What is DSDM?” (selectbs.com),
215–217

Whole Team (XP), 3
WON’T requirements, 54, 147
Wooden, John, 16
Wysocki, Robert (Bob):

on cooks vs. chefs, 97–98
on life-cycle models, 164, 165
on plan-driven approaches, 172
on planning, 155
on tailoring project management

approaches, 109, 134
on wants vs. needs, 145

X
XP, see Extreme Programming

Y
Yourdon, Edward, 16

	Making Sense of Agile Project Management
	Contents
	Preface
	Who Should Read This Book?
	Brief Overview of the Book
	Why I Wrote This Book
	How to Use This Book
	Part I
	Part II
	Part III

	Acknowledgments
	Part I Overview
	1 Introduction
	Meaning of the Word “Agile”
	Meaning of the Word “Waterfall”
	Polarization of Agile and Traditional Waterfall Approaches
	The Program du Jour Effect
	Impact on Project Management
	Common Agile Misconceptions
	The Pizza Box Methodology
	All-or-Nothing Thinking
	Traditional Development Approaches Are Dead
	Just Do It Faster
	Becoming Agile Only Impacts the Development Organization
	Agile Is Just a Development Methodology

	What Agile Doesn’t Tell You

	2 Agile Values, Principles, and Practices
	Lean Software Development Principles
	Lean Principles
	Interrelationship of Lean and Agile

	Agile History and Overview
	Agile Perceptions and Reality
	General Agile Practices
	Organizational Practices
	Planning Practices
	Requirements Definition Practices

	Summary of Agile Techniques and Practices

	3 Becoming More Agile
	Agile Benefits and Tradeoffs
	Focus on Successful Business Outcomes
	Customer Satisfaction and Competitive Advantage
	Organizational Effectiveness, Cross-Functional Synergy, and Employee Morale
	Higher Productivity and Lower Costs
	Potential for Higher Quality

	Obstacles to Becoming Agile
	Corporate Culture
	Organizational Commitment
	Risk and Regulatory Environment

	Developing a More Agile Approach
	Developing an Agile or Lean Mindset
	Hybrid Approaches

	4 Case Studies
	Sapient
	Unique Challenges
	Process Methodology Selection and Design
	Methodology Summary
	Methodology Description

	5 Part I Summary and Action Plan
	Overall Summary
	Developing an Action Plan for Your Business
	Planning Questions
	Alternative Approaches
	How Do You Get There?

	Part II Overview
	6 Agile Project Management
	Agile Project Management Roles
	Comparison of Traditional and Agile Project Management Roles
	Agile Business Analyst Role

	Agile Project Management Approach
	Project Management Mindset
	Project Management Skills

	Agile Project Management Practices
	Agile Project Management Principles
	Agile Project Management Techniques
	Agile Project Management Models

	Agile and A Guide to Project Management Body of Knowledge
(PMBOK Guide)
	Merging PMBOK Thinking and Agile Thinking

	7 Fundamental Principles behind SDLC Models
	General Software Development Life Cycle (SDLC) Considerations
	Flexibility versus Rigidity
	Relationship of Training and Process Design
	Reliable versus Repeatable Processes

	Interrelationship of Life-Cycle Model Selection Factors
	Requirements Definition and Management Approach
	Business Process Considerations
	Requirements Complexity Considerations
	Testing Considerations
	Supportability Considerations
	Prioritization of Requirements

	Risk Management, Uncertainty, and Planning Approach
	Risk Management Considerations
	Management of Uncertainty Considerations
	The Role of Planning

	The Role of Leadership and Training
	Leadership
	Training

	The Role of Documentation

	8 Software Development Life Cycles
	Types of Software Development Life Cycles
	Traditional Plan-Driven Life-Cycle Model
	Incremental Life-Cycle Model
	Iterative Plan-Driven Life-Cycle Model
	Iterative Emergent Life-Cycle Model
	Adaptive Life-Cycle Model

	Summary of SDLC Guidelines
	General Considerations
	Requirements Management Considerations
	Risk Management Considerations
	Project Scope and Complexity Considerations
	Other Considerations

	Selecting a Software Development Life Cycle
	Comparison of Approaches
	Life-Cycle Model Selection Examples

	9 Part II Summary and Action Plan
	Summary of Impact on Project Managers and PMI
	Developing an Action Plan for Project Managers
	Incremental Improvements
	Designing and Implementing Hybrid Approaches
	Implementing Pure Agile Project Management Approaches
	Helping Companies Move in the Right Direction

	Part III Appendices
	Appendix A Overview of Agile Development Practices
	Extreme Programming
	Feature-Driven Development
	Test-Driven Development
	Pair Programming
	Code Refactoring
	Continuous Integration

	Appendix B Overview of Agile Project Delivery Frameworks
	Scrum
	Dynamic Systems Development Model (DSDM)
	Agile Modeling
	Agile Unified Process
	Lean Software Development

	Additional Reading
	Glossary of Terms

	Index

