
Agile Modeling:
Effective Practices

for eXtreme
Programming and

the Unified Process

John Wiley & Sons, Inc.

Wiley Computer Publishing

Scott Ambler

72244_FMI 2/27/02 11:34 AM Page iv

Agile Modeling:
Effective Practices

for eXtreme
Programming and

the Unified Process

John Wiley & Sons, Inc.

Wiley Computer Publishing

Scott Ambler

72244_FMI 2/27/02 11:34 AM Page i

Publisher: Robert Ipsen
Editor: Theresa Hudson
Development Editor: Kathryn A. Malm
Managing Editor: Angela Smith
New Media Editor: Brian Snapp
Text Design & Composition: D&G Limited, LLC

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product
names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact
the appropriate companies for more complete information regarding trademarks and
registration.

This book is printed on acid-free paper.

Copyright © 2002 by Scott Ambler. All rights reserved.

Published by John Wiley & Sons, Inc., New York

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-
6008, E-Mail: PERMREQ @ WILEY.COM.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:

ISBN: 0-471-20282-7

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

72244_FMI 2/27/02 11:34 AM Page ii

To my fellow black-belt candidates,

Ed Maloney, Marc Desroches, and Tyler Colisimo

We made it.

72244_FMI 2/27/02 11:34 AM Page iii

72244_FMI 2/27/02 11:34 AM Page iv

Foreword xi

Preface xiii

Part One Introduction to Agile Modeling 1

Chapter 1 Introduction 3

Enter Agile Software Development 6

Agile Modeling 8

The SWA Online Case Study 17

A Brief Overview of this Book 18

Chapter 2 Agile Modeling Values 19

Communication 20

Simplicity 21

Feedback 22

Courage 23

Humility 25

Beyond Motherhood and Apple Pie 26

Contents

v

Chapter 3 Core Principles 27

Software Is Your Primary Goal 28

Enabling the Next Effort Is Your Secondary Goal 28

Travel Light 29

Assume Simplicity 29

Embrace Change 30

Incremental Change 31

Model with a Purpose 31

Multiple Models 32

Quality Work 34

Rapid Feedback 35

Maximize Stakeholder Investment 37

Why Core Principles? 37

Chapter 4 Supplementary Principles 38

Content Is More Important Than Representation 38

Everyone Can Learn from Everyone Else 41

Know Your Models 41

Local Adaptation 42

Open and Honest Communication 42

Work with People’s Instincts 42

Benefiting from These Principles 43

Chapter 5 Core Practices 44

Practices for Iterative and Incremental Modeling 45

Practices for Effective Teamwork 52

Practices That Enable Simplicity 56

Practices for Validating Your Work 58

Chapter 6 Supplementary Practices 60

Practices to Improve Your Productivity 61

Practices for Agile Documentation 64

Practices Concerning Your Motivation 68

Really Good Ideas 71

How to Schedule AM Practices on Your Project 72

Chapter 7 Order from Chaos: How the AM Practices Fit Together 73

The Core Practices 73

The Supplementary Practices 76

How the Categories Relate to One Another 77

vi Contents

Chaos and Order: Chaordic 79

Looking Ahead 80

Part Two Agile Modeling in Practice 81

Chapter 8 Communication 83

How Do We Communicate? 84

Factors That Affect Communication 85

Communication and Agile Modeling 86

Effective Communication 87

Chapter 9 Nurturing an Agile Culture 89

Overcome the Misconceptions That Surround Modeling 89

Think Small 95

Loosen Up a Bit 96

Rigidly Support Rights and Responsibilities 97

Rethink Presentations to Project Stakeholders 98

Chapter 10 Using the Simplest Tools Possible? 101

Agile Modeling with Simple Tools? 102

The Evolution of a Model 107

Agile Modeling with CASE Tools 111

Use the Media 115

The Effect of Tools on Models 116

Using the Simplest Tools In Practice 117

Chapter 11 Agile Work Areas 118

Agile Modeling Room 118

Effective Work Areas 122

Making This Work in the Real World 122

Chapter 12 Agile Modeling Teams 124

Recruit a Few Good Developers 124

Recognize That There Is No “I” in Agile 128

Require that Everyone Actively Participates 130

Model in Teams 130

Making This Work in the Real World 132

Chapter 13 Agile Modeling Sessions 134

Modeling Session Duration 134

Types of Modeling Sessions 136

Contents vii

Participants in Modeling Sessions 138

The Formality of Modeling Sessions 140

How to Make This Work in the Real World 142

Chapter 14 Agile Documentation 143

Why Do People Document? 144

When Does a Model Become Permanent? 147

Chapter 15 The UML and Beyond 168

The UML Is Not Sufficient 169

The UML Is Too Complex 171

The UML Is Not a Methodology or Process 171

Forget about Executable UML (for Now) 172

Making the UML Work in Practice 173

Part Three Agile Modeling and eXtreme Programming (XP) 175

Chapter 16 Setting the Record Straight 177

Modeling Is a Part of XP 178

Documentation Happens 179

XP and the UML? 181

And the Verdict Is? 183

Chapter 17 Agile Modeling and eXtreme Programming 184

The Potential Fit between AM and XP 185

Refactoring and AM 185

Test-First Development and AM 188

Which AM Practices Should You Adopt? 189

Chapter 18 Agile Modeling Throughout the XP Lifecycle 190

Exploration Phase 191

Planning Phase 192

Iterations to Release Phase 194

Productionizing 196

Maintenance 197

How Do You Make This Work? 198

Chapter 19 Modeling During the XP Exploration Phase 199

Initial Requirements Up Front (IRUF) 199

Metaphors, Architectures, and Spikes 203

Setting the Foundation for Your Project 206

viii Contents

Chapter 20 Modeling During an XP Iteration: Searching for Items 207

The Task 208

Modeling the Physical Database Schema 209

Observations 212

Chapter 21 Modeling During an XP Iteration: Totaling an Order 214

The Task 214

Requirements Modeling to the Rescue 215

Help from an Outside Expert 217

A Quick Design Session 218

Formalizing a Contract Model 220

What about Changes in the Future? 220

Observations 222

How to Make This Work in the Real World 222

Part Four Agile Modeling and the Unified Process 223

Chapter 22 Agile Modeling and the Unified Process 225

How Modeling Works in the Unified Process 226

How Good Is the Fit? 227

Choose To Be Agile 231

Chapter 23 Agile Modeling throughout the Unified Process Lifecycle 232

The Modeling Disciplines 232

Non-Modeling Disciplines 242

How Do You Make This Work? 245

Chapter 24 Agile Business Modeling 246

A Business/Essential Use Case Model 247

A Simple Business Object Model 248

An Agile Supplementary Business Specification 249

A Business Vision 252

How to Make This Work in Practice 253

Chapter 25 Agile Requirements 254

The Context Model 255

Use Case Model 258

Use Case Story Board 262

Supplementary Specification 265

How to Make This Work in Practice 267

Contents ix

Chapter 26 Agile Analysis and Design 269

Rethinking Analysis and Design Models in the UP 270

Architectural Modeling 272

Creating Use Case Realizations 277

Time to Update Our Use Case? 281

Time to Use a CASE Tool? 284

Design Class Modeling 284

Data Modeling 287

Embracing Change 290

How Does This Work in Practice? 291

Chapter 27 Agile Infrastructure Management 292

Infrastructure Models 293

Infrastructure Modeling 294

Setting Modeling Standards and Guidelines 297

Core Infrastructure Teams 299

Scaling AM with Core Architecture Teams 301

How to Make This Work in the Real World 302

Chapter 28 Adopting AM on an UP Project 304

How Does This Work? 308

Part Five Looking Ahead 309

Chapter 29 Adopting Agile Modeling or Overcoming Adversity 311

Evaluate the Fit 312

Keep It Simple 315

Overcome Organizational and Cultural Challenges 316

Consider Alternatives to Full Adoption of AM 324

How to Make This Work in Practice 324

Chapter 30 Conclusion: Choose to Succeed 325

Common Misconceptions Regarding Agile Modeling 325

When Is(n’t) it Agile Modeling? 326

Agile Modeling Resources 328

A Few Parting Thoughts . . . 329

Appendix A Modeling Techniques 330

Glossary of Definitions and Abbreviations 358

References and Suggested Reading 369

Index 375

x Contents

When Scott asked me to write the Foreword for this book, I was both pleased and sur-
prised. I was pleased for several reasons: it’s always nice to be thought of, it’s great to
be associated with a book as well-written as this one, and agile methods (specifically
eXtreme Programming) are my own focus these days. I was surprised because I was
one of the first and most vocal in “suggesting” that Scott not address his attention to
this topic. “I will explain. No, it is too much. I will sum up.”

Software development, to me, is best done with as little specialization as possible. I
teach and believe that the best results are obtained with a team of individuals who
contribute wherever and however they can, without regard to who is the architect, the
modeler, the designer, the programmer, or the tester. Not that we all have to be some
kind of godlike software Renaissance man or woman, but that we should all come
together and contribute as much of everything as we can.

Furthermore, software development (again, to me) is best done with as little model-
ing as possible. The point of software development is to develop software. Too much
time is taken up in getting ready, leaving too little time for the important part—actually
producing solid, well-designed, high-quality software. The quality of the software isn’t
always correlated with the quality of the models that are drawn with the latest model-
ing tools before building the system.

So when Scott proposed and started his Agile Modeling forum and Web site, I was
opposed to the idea. Too much concentration on modeling, I feared, would take away
from the focus on bringing together the team and the skills necessary to build good
software. I said so, in no uncertain terms, on Scott’s forum and in private e-mails.

Foreword

xi

Well, it turns out that Scott recognized something that I did not. If people are going
to come together in cooperation to build software in the agile fashion, it is not enough
that they only bring love, understanding, and passion. They must have skill. The team
must have skill in analysis, modeling, design, programming, testing—all of the things
that are the basis of good software. And they must apply those skills consistently with
the values of agile development, one of which is to focus on “individuals and interac-
tions over processes and tools,” as we wrote in the Agile Manifesto.

That’s what Scott set out to do in his forum, with his Web site, and in this book. He
shows us how to perform effective, light-weight modeling in the context of an agile
project. He shows us how to do modeling in non-agile projects, with an eye to helping
them become more agile. Most importantly, he does this based on a set of values, prin-
ciples, and practices that can inform an individual’s, and a team’s, approach to model-
ing. He keeps his eye on the game of software development at all times, while focusing
on the particular modeling skills and practices you’ll need.

Scott addresses the use of simple tools, the kind of workspace required, the way the
team needs to be constituted, and how it should work together. I particularly like the
quote from Sergeant Rasczak of Starship Troopers, “I only have one rule, everyone
fights and nobody quits or I’ll shoot you myself.” Scott relates modeling to everything
from eXtreme Programming to the Unified Process, and does a good job of it.

One of one’s duties in writing a foreword is to indicate who should read this book.
Here’s my take: read this book if you are a software developer who needs modeling
skills as part of your development—that is, if you are a software developer. Read this
book if you are a modeler who needs your work to be applicable to software develop-
ment in these days of rapid change—that is, if you are a modeler. And read this book if
you are a software development manager who needs to figure out what agile develop-
ment means to your projects—that is, if you are a software development manager. If
you’re engaged in any way in software development today, this book can help you
out.

Scott’s book, Agile Modeling, describes the skills necessary to do effective modeling
as part of software projects that need to move quickly to deliver quality software to
their stakeholders. Well done, Scott!

Ron Jeffries

xii Foreword

If you’re reading this Preface, then you are very likely trying to determine whether or
not you should buy this book. I like your attitude! To help you make this decision I’ll
quickly answer a few very important questions that you most likely have.

What Is Agile Modeling?

Agile Modeling (AM) is a practices-based process that describes how to be an effective
modeler. Current modeling approaches can often prove dysfunctional. In the one
extreme, modeling is non-existent, often resulting in significant rework when the soft-
ware proves to be poorly thought through. The other extreme is when excessive mod-
els and documents are produced, which slows your development efforts down to a
snail’s pace. AM helps you find the modeling sweet spot, where you have modeled
enough to explore and document your system effectively, but not so much that it
becomes a burden that slows the project down.

The techniques of AM can and should be applied by project teams that wish to take
an agile approach to software development, in particular those that are following an
agile process such as eXtreme Programming (XP), DSDM, SCRUM, or FDD. AM can
also be used to improve and often simplify your modeling efforts on projects where
you don’t take a purely agile approach.

Preface

xiii

xiv Preface

What Does This Book Cover?

The book starts by exploring the values, principles, and practices of AM and describ-
ing techniques to improve your productivity as a modeler. You are likely to discover
that you are already following several of these practices, although may have been
afraid to admit it to others, and are likely to discover new ways to model effectively.
The book also rethinks several important issues that pertain to software development,
such as how to write documentation, how to organize modeling sessions and model-
ing teams, and where UML fits in. As the title of the book suggests, it explores in detail
how to model effectively on an XP project. Contrary to what you may have heard,
modeling is an important part of XP. This book shows how to simplify your modeling
efforts on projects taking a Rational Unified Process (RUP) or Enterprise Unified
Process (EUP) approach.

What Doesn’t This Book Cover?

This book does not tell you how to create models. For example, it does not describe
procedures for writing user stories, use cases, or business rules. This book is not meant
to be an introduction to the UML, data modeling, or usage-centered design. This book
looks at the bigger picture, at the process of modeling, not the minute details. This is
very similar to XP that describes the process for developing software but not how to
actually program.

Furthermore, this book is different than any other that you’ve read about software
modeling before. Previous modeling methodology books described several modeling
artifacts such as use cases, sequence diagrams, and class diagrams—and described a
methodology for using these artifacts to model your software. AM takes a different
approach; it describes techniques for modeling but doesn’t insist on the types of mod-
els that you create. Instead it suggests that you learn how to apply a wide variety of
modeling artifacts and that you strive to add more to your intellectual toolbox over
time. Where other modeling methods disappear as the underlying technology changes,
I believe that you will discover that the principles and practices of AM will stand the
test of time because they are truly fundamental.

Who Am I?

Even though I live just north of Toronto, I’m a Senior Consultant and President of
Denver-based Ronin International, Inc. I’ve been developing software since the mid-
1980s and building object-oriented software since the early 1990s. I actively work with
clients to create mission-critical software and in my spare time write about my experi-
ences in books, magazines, and online white papers. For several years now I have
focused on software process issues, including prescriptive processes such as the Uni-
fied Process (UP) as well as agile processes such as eXtreme Programming (XP), help-
ing organizations to become more effective in their approach to software development. I

Preface xv

also like to take an active role on software projects, getting my hands dirty whenever I
can in the role of senior developer or team lead.

Who Are You?

You are very likely a developer or modeler that wants to improve their effectiveness as a
software professional. You’re curious about how to model on an XP project or how to
simplify your modeling efforts on a RUP project. You might even be a project manager or
process expert who’s trying to figure out what this “agile development stuff” is all about.

Who Helped Me?

I would like to thank the following people for their insights that have gone into this book:

Glen B. Alleman

James Ames

Dave Astels

Bruce Bacheller

Kent Beck

John Bennett

Larry Bernstein

Howard Bolling

Terry Bollinger

Grady Booch

Larry Brunelle

Scott Clemmons

Alistair Cockburn

Anthony DaSilva

Rachel Davies

Craig Dewalt

Bryan Dollery

Sara Edwards

Dale Emery

Michael C. Feathers

Rick Fisher

Peter Foreman

Martin Fowler

Martin Gainty

Adam Geras

John Goodsen

Leonard Greski

Lionell Griffith

David Hecksel

Mats Helander

Jim Highsmith

Luke Hohmann

Gerry Hummell

Ron Jeffries

Peter Lappo

Mark Levison

Dave Lubinsky

Robert C. Martin

Lynn H. Maxson

Bill Meakin

Drew Mills

John Nalbone

Miroslav Novak

Larry O’Brien

xvi Preface

Tom Pardee

Erich Pawlik

Neil Pitman

Charlie Poole

Mary Poppendieck

Gareth Reeves

David M. Rubin

Marcelo Lopez Ruiz

Jeff Ruley

Alan Shalloway

Doug Smith

Mike Smith

Roger Smith

Jim Standley

Dr. Gernot Starke

Dan Sterling

Brian Tarbox

Dave Thomas

Neil Thorne

John Welch

Geri Winters

Klaus Wuestefeld

Ed Yourdon

PA R T

One

Introduction to Agile
Modeling

72244_CH01I 2/27/02 11:06 AM Page 1

2 Part One

This part sets the foundation for the book through a detailed discussion of the values,
principles, and practices of Agile Modeling (AM). This section includes the following
chapters:

■■ Chapter 1: Introduction. This chapter outlines the challenges faced by software
developers today and how Agile Software Development and Agile Modeling
address those challenges.

■■ Chapter 2: Agile Modeling Values. This chapter discusses the five values of AM.

■■ Chapter 3: Core Principles. This chapter describes in detail the core principles
of AM, those of primary importance to agile modelers.

■■ Chapter 4: Supplementary Principles. In this chapter we discuss the
supplementary principles of AM that support and enhance AM’s core
principles.

■■ Chapter 5: Core Practices. This chapter presents the critical practices of AM, all
of which you must adopt to claim that you are truly doing Agile Modeling.
These practices describe how to take an incremental and iterative approach to
modeling, how to support and enhance teamwork, how to keep things as
simple as possible, and how to validate your efforts in an agile manner.

■■ Chapter 6: Supplementary Practices. These practices describe the motivations
for creating an agile model, how to keep your documentation efforts agile, and
how to improve your productivity as an agile modeler.

■■ Chapter 7: Order from Chaos: How the AM Practices Fit Together. This
chapter presents an overview on how the practices fit together in a synergistic
whole.

72244_CH01I 2/27/02 11:06 AM Page 2

To change your fate, you must first change your attitude.

3

C H A P T E R

Introduction

1

The current software development situation is less than ideal. Systems are regularly
delivered late or over budget if they are delivered at all. Systems often don’t meet the
needs of our customers and we must develop them again and again and again. Our
customers are angry because of these problems and are neither willing to trust us nor
work with us because they’ve been burned too many times in the past. To make mat-
ters worse, our customers don’t have a very good understanding of what we do, how
we do it, or why we do it—the end result is that they put unrealistic demands on us
and don’t give us the support that we need to accomplish their goals.

It isn’t much fun for software developers, either. We work long hours, typically 50,
60, or 70 hours a week and quickly become burned out. When projects run into trou-
ble, often before they’ve even started, we point fingers at others. Convenient targets
include our “pointy-haired bosses” whom we believe are barely competent enough to
tie their own shoes, the “paper-pushing fools” in the department down the hall from
us that demand excessive amounts of documentation, and our “stupid users” who
often don’t know what they want, and when they do tell us what they want, it never
makes sense anyway. Naturally, we never blame ourselves; we’re perfect after all. So
what do we do when we realize that a project is in trouble? Sometimes we give it our
all, working excessive hours in a futile attempt to meet the unrealistic demands placed
on us, embarking on a death march (Yourdon 1997). Sometimes we disconnect from
the project entirely. Knowing that it’s doomed, we decide that we should at least learn

72244_CH01I 2/27/02 11:06 AM Page 3

4 Chapter 1

something useful to pad our resumes, so we download some new development tools
from the Internet and start playing with them.

Why have we gotten ourselves in such a sad state of affairs? First, I believe that
many people have lost sight of the fact that the primary goal of software development
is to build systems, in the most effective and efficient manner possible, that meet the
needs of their users. For the sake of our discussion, a system includes the software,
documentation, hardware, middleware, installation procedures, and operational pro-
cedures. Similarly, organizations have lost sight of the end-to-end process of deliver-
ing software to customers and have unfortunately organized IT departments into
teams with specialist roles that often don’t see the overall picture. I suspect that this
has happened because one, if not two, generations of IT professionals believe that they
must follow a predefined set of activities in order to develop software. We can describe
these activities by what is known as prescriptive processes, also referred to as heavy-
weight software processes. Prescriptive software processes such as the Unified Process
(Kruchten 2000; Ambler 2001b), the OPEN Process (Graham, Henderson-Sellers, and
Younessi 1997), and the Object-Oriented Software Process (Ambler 1998; Ambler 1999)
all have their place. It is just that they may not be as appropriate as their supporters
consider them to be. The problem with these approaches is that they typically focus on
prescriptive procedures and the artifacts that should be created, approaches that are
often implemented by organizations who consider people to be “plug and play com-
patible.” In other words, their belief is that, with the right process in place and with the
necessary number of artifacts, you can swap people in and out of a project with rela-
tive ease. My experience is that this is only true when the person you are replacing
isn’t very productive, something that is often the case in organizations following a
heavy-weight process. The reality is that replacing a productive person is difficult
regardless of the process you follow, so the “plug and play compatibility” goal is ques-
tionable at best.

The interesting thing about prescriptive processes is that they are attractive to man-
agement but not to most developers. Prescriptive processes are typically based on a
command-and-control paradigm that puts management in control of things, well, at
least makes them perceive that they’re in control of things. It also has a tendency to
make management think they can minimize the role of project stakeholders in soft-
ware development, bringing them in for a few quick requirements sessions and then
ignoring them until they’re needed for user acceptance testing. Another problem is
that when the going gets tough, developers quickly abandon the process, unfortu-
nately throwing out the good with the bad when they do so, and then they often find
themselves in an even bigger mess than before. My experience is that short cuts often
lead to quagmires, not salvation, making your death march even worse.

I also believe that the way that developers learn their trade has a few unique dys-
functions. For the most part our colleges and universities are doing a reasonable job of
educating developers for entry-level jobs. However, even if the schools were doing a
perfect job and everyone was getting a degree or diploma, I suspect that we’d still
have a problem due to the inherent nature of software developers. When software
developers are young, in their teens or early twenties, they typically focus on learning
and working with technology. They describe themselves as PERL programmers, Linux
experts, Enterprise JavaBeans (EJB) developers, or .NET developers. To them the tech-

72244_CH01I 2/27/02 11:06 AM Page 4

Introduction 5

nology is the important thing. Because the technology is constantly changing, younger
developers have a tendency to just barely learn a technology, apply it on one or two
projects, and then start over again learning a new technology or the latest incarnation
of what they worked with previously. The problem is that they keep learning the same
different flavors of the same low-level, fundamental skills over and over again.

Luckily, many developers become aware of this after several rounds of technolo-
gies—once you’ve written code for transaction control in COBOL, Java, and C#, you
start to realize that the fundamentals don’t change. The same is true of database
access in various environments, user interface design, and so on. Before long, devel-
opers begin to realize that many of the fundamentals, which they may or may not
have been taught in school, remain the same regardless of the technology. This real-
ization often comes when developers reach their late twenties or early thirties, typi-
cally the time when people start to settle down, get married, and buy a house. This is
fortuitous because these new demands mean that developers can no longer afford to
invest vast amounts of time learning new technologies; instead, they want to spend
that time with their families. Suddenly higher-level roles such as project lead, project
manager, and (non-agile) modeler become attractive to them because these roles
don’t require the constant and intensive effort needed to learn new technologies. So,
by the time that developers begin to truly learn their craft they’re in the process of
transitioning out of their roles as developers. Luckily, new “young punks” come
along and the cycle repeats itself. The end result is that the majority of people actively
developing software are typically not the ones best qualified to do it, and they don’t
even know it.

Things aren’t much better on the business side of things. Our customers don’t under-
stand how software is developed, which is actually quite reasonable when you stop and
think about it. My experience is that few software developers could tell you how soft-
ware is developed from end-to-end as well as show a reasonable understanding of the
implications of various options along the way simply because software development is
spectacularly difficult. Furthermore, our customers generally aren’t really interested in
participating in complex processes that they don’t understand well, and in these situa-
tions, they’d rather leave the details to us so that they can get back to doing their jobs.
They accept that their involvement is limited to being involved in a requirements work-
shop or two at the beginning of the project, reviewing key documents throughout the
project, receiving glowing (albeit sometimes falsified) status reports throughout, get-
ting involved with acceptance testing just before delivery, and finally receiving the sys-
tem, often late and over budget. This is the way that it’s always been, this is the way the
IT professionals tell them it has to be, and they often don’t think to question what’s hap-
pening. What’s strange is that they tolerate this situation. What they’re asking for is
software that meets their needs in an effective manner, but what the developers are giv-
ing them is a bunch of documents to review, some status reports, some tests, and then
finally some software if things go well. In other words, current practice is to deliver
what we want to deliver, not to deliver what customers are asking of us. As you’ll see in
this book, it is possible (and required) for our project stakeholders to be actively
involved; we just have to ensure that the development process is acceptable to them.

Whew! I’m glad that I’ve gotten all that negativity out of me. Now let’s take a posi-
tive approach and investigate what we can do to address these problems.

72244_CH01I 2/27/02 11:06 AM Page 5

6 Chapter 1

Enter Agile Software Development

To address the challenges faced by software developers, an initial group of 17 method-
ologists formed the Agile Software Development Alliance (www.agilealliance.org),
often referred to simply as the Agile Alliance, in February 2001. An interesting thing
about this group is that they all came from different backgrounds, yet were able to
agree on issues that methodologists typically don’t agree upon (Fowler 2001a). This
group of people defined a manifesto for encouraging better ways of developing soft-
ware, and then, based on that manifesto, formulated a collection of principles that
defines the criteria for agile software development processes such as Agile Modeling.

The Manifesto for Agile Software
Development
The manifesto (Agile Alliance 2001a) is defined by four simple value statements—the
important thing to understand is that while you should value the concepts on the right
side, you should value the things on the left side (presented in bold) even more. A
good way to think about the manifesto is that it defines preferences, not alternatives,
encouraging a focus on certain areas but not eliminating others. The Agile Alliance
values are:

Individuals and interactions over processes and tools. Teams of people build
software systems, and to do that they need to work together effectively with
programmers, testers, project managers, modelers, and customers. Who do you
think would develop a better system: five software developers with their own
tools working together in a single room or five low-skilled “hamburger flippers”
with a well-defined process, the most sophisticated tools available, and the best
offices money could buy? If the project was reasonably complex, my money
would be on the software developers, wouldn’t yours? The point is that the
most important factors to consider are the people and how they work together,
because if you don’t get that right, the best tools and processes won’t be of any
use. Tools and processes are important, don’t get me wrong, it’s just that they’re
not as important as working together effectively. Remember the old adage, a
fool with a tool is still a fool. This can be difficult for management to accept
because they often want to believe that people and time, or men and months,
are interchangeable (Brooks 1995).

Working software over comprehensive documentation. When you ask a user
whether they want a 50-page document describing what you intend to build or
the actual software itself, what do you think they’ll pick? My guess is that 99
times out of 100 they’ll choose working software. If that is the case, doesn’t it
make more sense to work in such a manner that you produce software quickly
and often, giving your users what they prefer? Furthermore, I suspect that
users will understand any software that you produce much more easily than
they will understand complex technical diagrams describing its internal
workings or describing an abstraction of its usage, don’t you? Documentation
has its place; written properly, it is a valuable guide for people’s understanding

72244_CH01I 2/27/02 11:06 AM Page 6

Introduction 7

of how and why a system is built and how to work with the system. However,
never forget that the primary goal of software development is to create
software, not documents—otherwise we would call it documentation
development, wouldn’t we?

Customer collaboration over contract negotiation. Only your customers can tell
you what they want. Yes, they likely do not have the skills to exactly specify the
system. Yes, they likely won’t get it right the first time. Yes, they’ll likely change
their minds. Working together with your customers is hard, but that’s the reality
of the job. Having a contract with your customers is important, and having
an understanding of everyone’s rights and responsibilities may form the
foundation of that contract, but a contract isn’t a substitute for communication.
Successful developers work closely with their customers; they invest the effort
to discover what their customers need, and they educate their customers along
the way.

Responding to change over following a plan. People change their priorities for
a variety of reasons. As work progresses on your system, your project
stakeholder’s understanding of the problem domain and of what you are
building changes. The business environment changes. Technology changes
over time, although not always for the better. Change is a reality of software
development, a reality that your software process must reflect. There is nothing
wrong with having a project plan. In fact, I would be worried about any project
that didn’t have one. However, a project plan must be malleable, there must be
room to change it as your situation changes; otherwise, your plan quickly
becomes irrelevant.

The interesting thing about these value statements is they are something that
almost everyone will instantly agree to, yet will rarely adhere to in practice. Senior
management will always claim that its employees are the most important aspect of
your organization, yet insist they follow ISO-9000 compliant processes and treat
them as replaceable assets. Even worse, management often refuses to provide suffi-
cient resources to comply with the processes that they insist project teams follow.
Everyone will readily agree that the creation of software is the fundamental goal of
software development, yet insist on spending months producing documentation
describing what the software is and how it is going to be built, instead of simply
rolling up their sleeves and building it. You get the idea—people say one thing and
do another. This has to stop now. Agile modelers do what they say and say what
they do.

The Principles for Agile Software
Development
To help people gain a better understanding of what agile software development is all
about, the members of the Agile Alliance refined the philosophies captured in their
manifesto into a collection of twelve principles (Agile Alliance 2001b) that Agile soft-
ware development methodologies, such as Agile Modeling (AM), should conform to.
These principles are:

72244_CH01I 2/27/02 11:06 AM Page 7

8 Chapter 1

1. Our highest priority is to satisfy the customer through early and continuous
delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile processes
harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of
months, with a preference to the shorter time scale.

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within
a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers,
and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity—the art of maximizing the amount of work not done—is essential.

11. The best architectures, requirements, and designs emerge from self-organizing
teams.

12. At regular intervals, the team reflects on how to become more effective, and
then tunes and adjusts its behavior accordingly.

Stop for a moment and think about these principles. Is this the way that your soft-
ware projects actually work? Is this the way that you think projects should work? Read
the principles again. Are they radical and impossible goals as some people would
claim, are they meaningless motherhood and apple pie statements, or are they simply
common sense? My belief is that these principles form a foundation of common sense
upon which you can base successful software development efforts. Furthermore, I
believe that they define high-level requirements for an effective software methodol-
ogy, requirements used to formulate the values (Chapter 2, “Agile Modeling Values”),
principles (Chapters 3, “Core Principles,” and 4, “Supplementary Principles”), and prac-
tices (Chapters 5, “Core Practices,” and 6, “Supplementary Practices”) of Agile Modeling.

Agile Modeling

Agile Modeling (AM) is a chaordic, practice-based methodology for effective model-
ing and documentation of software-based systems. The AM methodology is a collec-
tion of practices, guided by principles and values, for software professionals to apply
on a day-to-day basis. AM is not a prescriptive process. In other words, it does not
define detailed procedures for how to create a given type of model, instead it provides
advice for how to be effective as a modeler. AM is chaordic (Hock 1999), in that it
blends the “chaos” of simple modeling practices and blends it with the order inherent

72244_CH01I 2/27/02 11:06 AM Page 8

Introduction 9

in software modeling artifacts. AM is not about less modeling; in fact, many develop-
ers will find that they are doing more modeling following AM than they did in the
past. AM is “touchy-feely,” it’s not hard and fast—think of AM as an art, not a science.

Why do we want to be effective at modeling? Because modeling is an important
part of any software process. Agile software processes such as Extreme Program-
ming (XP) (Beck 2000), SCRUM (Beedle and Schwaber 2001), and Dynamic System
Development Method (DSDM) (Stapleton 1997) include modeling activities. Yes,
even XP includes modeling techniques such as user stories, Class Responsibility Col-
laborator (CRC) models, and sketches. Contrary to what XP’s detractors will tell you,
XP does not abandon modeling. Instead, it minimizes modeling efforts by taking a
test-first approach to design in which you develop your tests before you develop
your code. This forces you to think through how you will build your software before
you actually build it, exactly as traditional design modeling does. XP fulfills some of
the goals of modeling, understanding what it is you’re building, in different ways
and therefore requires less modeling. There is absolutely nothing wrong with that.
Prescriptive software processes also include modeling activities. In the case of the
Unified Process (UP), three of the six core process disciplines (formerly called work-
flows) focus on modeling, and my own OOSP has a project stage simply called
“Model.”

There are two primary reasons why you model: to understand what it is you are
building or to aid your communication efforts within your team or with your project
stakeholders. You may choose to model the requirements of your system, perhaps
with a use case diagram (common modeling artifacts are described in Appendix A of
this book) or a collection of business rule definitions. Similarly, you may choose to
develop models to analyze those requirements, or to formulate a high-level architec-
ture or a detailed design for your system. In each of these cases your goal is to gain a
better understanding of one or more aspects of your system. In other words, you use
models to help you to explore what it is you are working on. Furthermore, you may
use models to communicate within your team or with individuals or groups external
to your team. A data model helps to communicate the structure of your database to
people writing Java source code that interacts with that database. A user interface flow
diagram communicates the overall structure of your system’s user interface to the peo-
ple working on individual screens, web pages, or reports. An activity diagram com-
municates the business processes that your system proposes to support to the project
stakeholders providing funding to your project team. In short, modeling is critical to
your project team’s success. But how do you model in an effective and agile manner?
That is the fundamental question that AM addresses.

AM has three goals:

1. To define and show how to put into practice a collection of values, principles,
and practices pertaining to effective, light-weight modeling. What makes AM a
catalyst for improvement aren’t the modeling techniques themselves—such as
use case models, class models, data models, or user interface models—but how
to apply them.

2. To address the issue of how to apply modeling techniques on software projects
taking an agile approach. Sometimes it is significantly more productive for a
developer to draw some bubbles and lines to think through an idea, or to

72244_CH01I 2/27/02 11:06 AM Page 9

10 Chapter 1

Figure 1.1 AM enhances other software processes.

compare several different approaches to solving a problem, than it is to simply
start writing code. There is a danger in being too code-centric—sometimes a
quick sketch can avoid significant churn when you are coding.

3. To address how you can improve your modeling activities following a “near-
agile” approach to software development, and in particular, project teams that
have adopted an instantiation of the Unified Process such as the Rational
Unified Process (RUP) (Kruchten 2000) or the Enterprise Unified Process (EUP)
(Ambler 2001b). Both of these processes are flexible enough to be tailored so
that on the one extreme they are very prescriptive or on the other extreme agile
enough so that AM will work with them. Although you must be following an
agile software process to truly be agile modeling—more on this in a moment—
you may still adopt and benefit from many of AM’s practices on non-agile
projects. This is similar to non-XP teams benefiting from adoption of some of its
practices such as pair programming or refactoring—they aren’t truly doing XP
but have still improved their productivity by adopting a portion of it.

An important concept to understand about AM is that it is not a complete software
process. AM’s focus is on effective modeling and documentation. That’s it. It doesn’t
include programming activities, although it will tell you to prove your models with
code. It doesn’t include testing activities, although it will tell you to consider testabil-
ity as you model. It doesn’t cover project management, system deployment, system
operations, system support, or a myriad of other issues. Because AM’s focus is on a
portion of the overall software process, you need to use it with another, full-fledged
process such as XP, DSDM, SCRUM, or UP as indicated above. Figure 1.1 depicts this
concept. You start with a base process, such as XP or UP or perhaps even your own
existing process, and then tailor it with AM (hopefully adopting all of AM) as well as
other techniques as appropriate to form your own process that reflects your unique
needs. Alternatively, you may decide to pick the best features from a collection of exist-
ing software processes to form your own process. To simplify the discussion through-
out this book, I will assume that you have taken the first approach and started with a
base process.

Although AM is independent of other processes, such as XP and the UP, it is used to
enhance those processes. In Part Three of this book I will show how to tailor AM into
XP, and in Part Four I will discuss how to tailor it into the UP.

72244_CH01I 2/27/02 11:06 AM Page 10

Introduction 11

Who Are Agile Modelers?
An agile modeler is anyone who follows the AM methodology, applying AM’s prac-
tices in accordance with its principles and values. An agile developer is someone who
follows an agile approach to software development. An agile modeler is an agile
developer. Not all agile developers are agile modelers.

Now I’m going to confuse you a bit, something for which I am sorry. Throughout
this book I will use the term “agile modeler” whenever I want to indicate an activity
pertinent to someone taking an agile modeling approach. I’ll use the more generic term
“agile developer” to discuss an activity that is not only pertinent to AM but to agile
software development in general. In other words, when I say that an agile developer
does something, you should assume that it is something that agile modelers do, too.

A Brief Overview of Agile Modeling
In Chapter 2 you will see that AM adopts the values XP (Beck 2000), which are commu-
nication, simplicity, feedback, and courage and adds a fifth value, humility. It is critical to
have effective communication within your development team as well as with and
between all project stakeholders. You should strive to develop the simplest solution
possible that meets all of your needs and to obtain feedback regarding your efforts
often and early. Furthermore, you should have the courage to make and stick to your
decisions, and to have the humility to admit that you may not know everything, that
others have value to add to your project efforts.

AM is based on a collection of principles (Chapters 3 and 4), derived from the prin-
ciples of the Agile Alliance, such as the importance of assuming simplicity when you are
modeling and embracing change as you are working, because requirements do in fact
change over time. You should recognize that incremental change of your system over
time enables agility and that you should strive to obtain rapid feedback on your work to
ensure that it accurately reflects the needs of your project stakeholders. Agile modelers
realize that software is your primary goal, although they balance this with the recognition
that enabling the next effort is your secondary goal. You should model with a purpose. If you
don’t know why you’re working on something, then you shouldn’t be doing so. You
also need to recognize that you need multiple models in your development toolkit to be
effective. A critical concept is that models are not necessarily documents, a realization
that enables you to travel light by discarding most of your models once they have ful-
filled their purpose. Agile modelers believe that content is more important than represen-
tation, that there are many ways you can model the same concept yet still get it right.
To be an effective modeler you need to know your models. To be an effective teammate
you should realize that everyone can learn from everyone else, that you should work with
people’s instincts, and that open and honest communication is often the best policy to fol-
low to ensure effective teamwork. Finally, a focus on quality work is important because
nobody likes to produce sloppy work, and local adaptation of AM to meet the exact
needs of your environment is important.

To model in an agile manner you will apply AM’s practices (Chapters 5 and 6) as
appropriate. Fundamental practices include creating several models in parallel, applying the
right artifact(s) for the situation, and iterating to another artifact to continue moving forward

72244_CH01I 2/27/02 11:06 AM Page 11

12 Chapter 1

at a steady pace. Modeling in small increments and not attempting to create a magical “all
encompassing model” is also fundamental to your success as an agile modeler. Because
models are only abstract representations of software, abstractions may not be accurate.
You should strive to prove it with code to show that your ideas actually work in practice and
not just in theory. Active stakeholder participation is critical to the success of your modeling
efforts because your project stakeholders know what they want and can provide you with
the feedback that you require. There are two fundamental reasons why you create models,
either you model to understand an issue (such as how to design part of your system) or you
model to communicate what your team is doing (or has done). The principle of assume sim-
plicity is supported by the practices of creating simple content by focusing on only the
aspects that you need to model and not attempting to create a highly detailed modeling,
depicting models simply via use of simple notations, and using the simplest tools to create your
models. You travel light by discarding temporary models and updating models only when it
hurts. You enable communication by turning models into information radiators (Cockburn
2002), by displaying models publicly, either on a wall or on an internal web site, through col-
lective ownership of your project artifacts, through applying modeling standards, and by model-
ing with others. You greatly enhance your development efforts when you consider testability,
apply patterns gently, and reuse existing artifacts. Because you often need to integrate with
other systems, including legacy databases and web-based services, you will find that you
need to formalize contract models with the owners of those systems.

At its core, AM is simply a collection of techniques that reflect the principles and
values shared by many experienced software developers. If there is such a thing as
agile modeling, then are there also agile models? Yes.

What Are Agile Models?
To understand AM you need to understand the difference between a model and an
agile model. A model is an abstraction that describes one or more aspects of a problem
or a potential solution addressing a problem. Traditionally, models are thought of as
zero or more diagrams plus any corresponding documentation. However, non-visual
artifacts such as collections of CRC cards, a textual description of one or more business
rules, or the structured English description of a business process are also considered
models. An agile model is a model that is just barely good enough. But how do you
know when a model is good enough? Agile models are good enough when they
exhibit the following traits:

Agile models fulfill their purpose. Sometimes you model to communicate;
perhaps you need to communicate the scope of your effort to senior
management; and sometimes you model to understand; perhaps you need to
determine a design strategy to implement a collection of Java classes. For an
agile model to suffice, it clearly must fulfill the purpose for which it is created.

Agile models are understandable. Agile models are understandable by their
intended audience. A requirements model will be written in the language of the
business that your users comprehend, whereas a technical architecture model
will likely use technical terms that developers are familiar with. The modeling
notation that you use affects understandability—UML use case diagrams are of

72244_CH01I 2/27/02 11:06 AM Page 12

Introduction 13

no value to your users if they don’t understand what the notation represents. In
this case you would either use another approach or educate them in the
modeling technique. Style issues, such as avoiding crossing lines, will also affect
understandability—messy diagrams are harder to read than clean ones. The
level of detail in your models, see below, can also affect understandability,
because a highly detailed model is harder to comprehend than a less detailed
one. Simplicity (see later in this chapter) is similarly a factor that affects
understandability.

Agile models are sufficiently accurate. Models often do not need to be 100 percent
accurate; they just need to be accurate enough. For example: If a street map is
missing a street, or it shows that a street is open but you discover it’s closed for
repairs, do you throw away your map and start driving mayhem through the
city? Likely not. You might decide to update your map. You could pull out a pen
and do it yourself or go to the local store and purchase the latest version (which
still might be out of date). Or you could simply accept that the map isn’t perfect
but still use it because it is good enough for your purposes—you can use it to
get around because it does accurately model most of the other streets in your
town. The reason you don’t discard your street map the minute you find an
inaccuracy is that you don’t expect the map to be perfect, nor do you need it to
be. Similarly, when you find a problem in your requirements model, or in your
data model, you can choose to either update the model at that point or accept
it as it is—good enough but not perfect. Some project teams can tolerate
inaccuracies, whereas others can’t. The nature of the project, the nature of the
individual team members, and the nature of the organization will decide this.
Sufficient accuracy depends on both the audience of the model and the issues
that it’s trying to address.

I was working on a project using Enterprise JavaBeans (EJB) (Roman et. al. 2002)
technology and needed to explain how EJB’s invocation of entity beans worked.
In the process of doing this I drew a sketch explaining how EJB’s concepts of
home and remote interfaces worked and a couple of sketches walking people
through the lifecycle of an entity. As I did this I forgot the exact details of bean
activation and passivation, I even mislabeled the name of one of the operations,
but I still got the general idea across to the audience. The audience was
composed of people, not computers; therefore, they didn’t require a perfect
specification, they just needed a description that was good enough to provide a
basic explanation from which they could fill in the blanks and correct any
mistakes.

Agile models are sufficiently consistent. An agile model does not need to be
perfectly consistent with itself or with other artifacts to be useful. If a use case
clearly invokes another in one of its steps, then the corresponding use case
diagram should indicate that with an association between the two use cases that
is tagged with the UML stereotype of <<include>>. However, you look at the
diagram and it doesn’t! Oh no, the use case and the diagram are inconsistent!
Danger, Will Robinson, Danger! Red alert! Run for your lives! Wait a minute;
your use case model is clearly inconsistent, yet the world hasn’t come to an end.

72244_CH01I 2/27/02 11:06 AM Page 13

14 Chapter 1

Yes, in an ideal world all of your artifacts would be perfectly consistent, but no,
it often doesn’t work out that way. When you’re building a simple business
application, you can tolerate some inconsistencies. For example: On a use case
model you could have an actor called “Customer,” yet in your class model a
class called “Client.” Is it customer, client, or both? If it’s important, you can
look into it and address the problem appropriately, but if isn’t important, you
can simply move on and live with the inconsistency. Granted, sometimes you
can’t tolerate inconsistencies—witness NASA’s recent learning experience
regarding the metric and imperial measuring systems when they accidentally
slammed a space probe into Mars in 1999. The point is that an agile model is
consistent enough and no more; you very often do not need a perfect model for
it to be useful.

Regarding accuracy and consistency, clearly there is an entropy issue to consider
here as well. If you have an artifact that you wish to maintain, what I call a
“keeper,” then you will need to invest the resources to update it as time goes on.
Otherwise it will quickly become out of date and effectively useless to you. For
example: I can tolerate a map that is missing one or two streets, but I can’t
tolerate one that is missing three quarters of the streets in my town. A data
model that is missing a few recently added columns still provides very good
insight into your database schema, and a deployment diagram that still
indicates you’re using an old version of an EJB application server is likely good
enough for now. There is a fine line between investing too much and not enough
effort to keep your artifacts sufficiently accurate to be effective.

Agile models are sufficiently detailed. A road map doesn’t indicate each
individual house on each street. That would be too much detail and thus would
make the map difficult to work with. However, when a street is being built, I
would imagine the builder has a detailed map of the street that shows each
building, the sewers, electrical boxes, and so on in enough detail to make the
map useful to him. This map doesn’t depict the individual patio stones that
make up the walkway to each building; once again, that would be too much
detail. Sufficient detail depends on the audience and the purpose for which they
are using a model—drivers need maps that show streets, builders need maps
that show civil engineering details.

Consider an architecture model. Depending on the nature of your environment,
a couple of diagrams drawn on a whiteboard and updated as the project goes
along may be sufficient. Or perhaps several diagrams drawn using a CASE tool
is what you need. Or perhaps the same diagrams supported with detailed
documentation are what is required. Different projects have different needs. In
each of these three examples you are in fact developing and maintaining a
sufficiently detailed architecture model. It’s just that “sufficiently detailed”
depends on the situation.

Agile models provide positive value. A fundamental aspect of any project artifact
is that it should add positive value. Does the benefit that an architecture model
brings to your project outweigh the costs of developing and (optionally)
maintaining it? An architecture model helps to solidify the vision to which your

72244_CH01I 2/27/02 11:06 AM Page 14

Introduction 15

project team is working, which clearly has value. But, if the costs of that model
outweigh the benefits, then it no longer provides positive value. Perhaps it was
unwise to invest $100,000 developing a detailed and heavily documented
architecture model when a $5,000 investment resulting in whiteboard diagrams
that you took digital snapshots of would have done the job.

Agile models are as simple as possible. You should strive to keep your models as
simple as possible while still getting the job done. Simplicity is clearly affected
by the level of detail in your models, but it also can be affected by the extent of
the notation that you apply. For example: Unified Modeling Language (UML)
class diagrams can include a myriad of symbols, including Object Constraint
Language (OCL), yet most diagrams can get by with just a portion of the
notation. You often don’t need to apply all the symbols available to you, so limit
yourself to a subset of the notation that still allows you to get the job done.

Therefore, the definition for an agile model is that it is a model that fulfills its pur-
pose and no more; is understandable to its intended audience; is simple, sufficiently
accurate, consistent, and detailed; and investment in its creation and maintenance pro-
vides positive value to your project.

A common philosophical question is whether source code is a model, and more
important, whether it is an agile model. If you were to ask me outside the scope of this
book, my answer would be yes, source code is a model, albeit a highly detailed one,
because it clearly is an abstraction of your software. I would also claim that well writ-
ten code is an agile model. Nevertheless, in this book I will distinguish between source
code and agile models for the simple reason that I need to treat the two differently—
agile models help to get you to source code.

What Is(n’t) Agile Modeling?
I am a firm believer that when you are describing the scope of something, be it a sys-
tem or in the case of AM a methodology, you should describe both what it is and what
it isn’t. The following points describe the scope of AM:

AM is an attitude, not a prescriptive process. AM comprises a collection of values
that agile modelers adhere to, principles that agile modelers believe in, and
practices that agile modelers apply. AM describes a style of modeling, when
used properly in agile environments, that results in better quality software and
faster development while avoiding over-simplification and unrealistic
expectations. AM is not a cookbook approach to development—if you’re looking
for detailed instructions for creating UML sequence diagrams or drawing user
interface flow diagrams, then you need to pick up one of the many books listed
in the references section at the back of the book.

AM is a supplement to existing methods; it is not a complete methodology.
The primary focus of AM is on modeling, and its secondary focus is on
documentation. That’s it. AM techniques should be used to enhance modeling
efforts of project teams following agile methodologies such as XP, SCRUM,
and Crystal Clear (Cockburn 2001b). AM can also be used with prescriptive

72244_CH01I 2/27/02 11:06 AM Page 15

16 Chapter 1

processes such as the Unified Process, although its success will be determined
by the agility of the process.

AM is complementary to other modeling processes. Modeling methodologies
such as ICONIX (Rosenberg and Scott 1999) and Catalysis (D’Souza and Wills
1999) focus on the details of how to create certain types of artifacts, explaining in
detail how to go about applying artifacts such as use cases, robustness
diagrams, or component models. What they don’t focus on are the high-level
practices for effective modeling that AM does. My experience is that AM and
other modeling methodologies work very well together, and I have no doubt
that we will one day see books such as “Agile Modeling with ICONIX” and
“Agile Modeling with Catalysis” on the market.

AM is a way to work together effectively to meet the needs of project
stakeholders. Agile developers work as a team with their project stakeholders,
who in turn take a direct and active role in the development of the system. To
paraphrase a well-known saying about teamwork, there is no “I” in “agile.”

AM is effective and is about being effective. As you read more about AM, one of
the things that should become poignant to you is AM’s ruthless focus on being
effective. AM tells you to maximize the investment of your project stakeholders,
to create a model or document when you have a clear purpose and understand
the needs of its audience, to apply the right artifacts to address the situation at
hand, and to create simple models whenever you can. Do no more than the
absolute minimum to suffice.

AM is something that works in practice; it isn’t an academic theory. The goal of
AM is to describe techniques for modeling systems in an effective manner, one
that is both efficient and sufficient for the task. My co-workers and I at Ronin
International, Inc. (www.ronin-intl.com) have applied many of AM’s techniques
for several years, techniques that we have honed at a wide range of clients in
various industries. Furthermore, since February 2001 several hundred modeling
practitioners on the Agile Modeling mailing list (www.agilemodeling.com/
feedback.htm) have examined and discussed these techniques and found them
to be effective.

AM is not a silver bullet. Agile modeling is an effective technique for improving
the software development efforts of many professionals. That’s it, nothing more.
It isn’t magic snake oil that will solve all of your development problems. If you
work hard, if you stay focused, if you take AM’s values, principles, and
practices to heart, then you will likely improve your effectiveness as a
developer.

AM is for the average developer, but is not a replacement for competent people.
AM’s values, principles, and practices are straightforward, many of which you have
likely been following or wish you had been following for years. You don’t have to
walk on water to be able to apply AM’s techniques, but you do need to have basic
software development skills. The hardest thing about AM is that it prods you to
learn a wide range of modeling techniques, a long and continuing activity. Learning
to model can seem difficult at first, and it is, but you can do it if you choose to learn
a technique at a time.

72244_CH01I 2/27/02 11:06 AM Page 16

Introduction 17

AM is not an attack on documentation. Agile modelers create documentation that
maximizes their investment in its creation and maintenance. Agile
documentation is as simple as possible, as minimal as possible, has a distinct
purpose that is directly related to the system being developed, and has a
defined audience whose needs are understood. Agile documentation is
described in detail in Chapter 14, “Agile Documentation.”

AM is not an attack on CASE tools. Agile modelers use tools that provide positive
value by helping to make them more effective as developers. Furthermore, they
always strive to use the simplest tool that gets the job done.

The SWA Online Case Study

Throughout this book I will present models for a common case study called SWA
Online. This section provides a brief management vision for the system, the type of
high-level vision statement that you might receive at the start of a project.

SWA Enterprises is a distributor of high-margin goods throughout the United
States, supplying specialty retail stores with unique goods that are difficult to find
elsewhere. SWA Enterprises prides itself on identifying an eclectic and ever changing
mix of products. Although the company has been successful to date, it wants to
expand its presence to the Internet. The following is the initial vision that senior man-
agement has for the new system, called SWA Online, which it wants developed.

SWA Online will offer the entire range of physical products sold by SWA Enter-
prises for now, and we may want to sell virtual products such as online music and
videos at some point in the future. Our target market will remain the United States for
now. At one point we considered all of North America, but we consider that too
aggressive for our first release—far better to focus on our existing market and get it
right before venturing into new territory. Eventually, selling products internationally
is our true goal.

We’ll use our current distributor, Fly-By-Night Shipping, but we’re concerned that
they may not be able to handle our business in the future. They have proven very
effective shipping to retail stores within the United States; overnight shipping is no
problem as are lower cost options such as multi-day ground shipping. We’re not sure
how effective they are shipping internationally, and we eventually want to not rely on
a single vendor for key services such as shipping.

We believe that our system, a commercial off-the-shelf (COTS) package that we pur-
chased several years ago, which calculates taxes and handles inventory-related func-
tionality, should be sufficient for the first release of SWA Online, although that is
something that the development must confirm.

SWA Enterprises currently employs 87 people. Major focuses of the organization
include sales to retail stores, buyers focused on identifying new products to carry
within our catalog, and shipping and returns. We have just hired a Vice President of
Online Sales, Sally Jones, who will be responsible for building the organization
required to support and operate SWA Online. Sally will be actively involved with your
project team and will help you to obtain access to other business staff within SWA

72244_CH01I 2/27/02 11:06 AM Page 17

18 Chapter 1

Enterprises as you need them. The primary responsibility of these people is naturally
their full-time, day-to-day jobs, but we have instructed them to find a way to partici-
pate with your development team as much as required.

The software process that SWA Enterprises has adopted is a stripped-down version
of the EUP that has several of the practices of XP tailored into it and also includes the
full collection of the practices of AM.

A Brief Overview of this Book

This book is organized into five parts:

Part 1: Introduction to Agile Modeling. The foundation for the book is set in this
part through a detailed discussion of the values, principles, and practices of AM.

Part 2: Agile Modeling in Practice. This part explores critical issues such as
effective communication and documentation practices, using simple tools to
model, and the organizational and cultural aspects that support AM. Advice for
organizing modeling work areas, modeling teams, and modeling sessions is
provided and an examination of the UML is presented in light of agile
development.

Part 3: Agile Modeling and eXtreme Programing (XP). This part presents a
detailed discussion of how to enhance XP with the principles and practices of
AM. It begins by setting the record straight regarding modeling and
documentation within XP. It then focuses on modeling portions of the SWA
Online case study with an XP/AM approach.

Part 4: Agile Modeling and the Unified Process (UP). This part presents a
detailed examination of how to simplify modeling within the UP by following
the principles and practices of AM. Once again, modeling portions of the SWA
Online case study are provided.

Part 5: Conclusion. This part describes important organizational and management
issues that pertain to Agile Modeling.

72244_CH01I 2/27/02 11:06 AM Page 18

Modeling is similar to planning—most of the value is in the act of modeling,
not the model itself.

19

C H A P T E R

2

Agile Modeling Values

When I first read Extreme Programming Explained (Beck 2000), one of the most poignant
things about XP for me was how Kent first defined a foundation for his methodology.
He did this by describing four values: communication, simplicity, feedback, and
courage. This fascinated me because he had found a way to describe some of the fun-
damental factors that lead to success at the software development game, and he man-
aged to do it in such a way as to personalize it for individual developers. Bravo!
Therefore, when I began putting Agile Modeling (AM) together, I decided to take an
approach similar to that which Kent took with XP. I would start with a set of high-level
values, define a collection of concrete principles (Chapter 3, “Core Principles”) based
on those values, and then formulate practices (Chapter 4, “Supplementary Principles”)
from those values and principles that agile modelers should apply on the job.

Because I fully agree with XP’s values, I have adopted all four of them—why reinvent
the value wheel when you can reuse it? However, I felt that there was something missing,
something that I just couldn’t put my finger on. Then one day I was working at a client site
and found myself in a discussion with another developer about requirements. Our users
had described how they performed their jobs, and this developer disagreed with what
they outlined. He insisted that they couldn’t work that way even though our users had
explained to him several times that yes, indeed, they could and did. He had another way
to do things, which he claimed was better, and technically it probably was, but the users
simply weren’t interested and wanted to do things their way (users can be strange like
that). Fair enough I thought, but not for this developer. He was right, the users were
wrong, even though they were arguing about user requirements. Yikes. I eventually had to

72244_CH02I 2/27/02 11:06 AM Page 19

20 Chapter 2

insist that we go with what the users told us, and then later spent some time mentoring
him in the concept that project stakeholders, not developers, are the source of require-
ments. Although this had been a growing pain for our team, it revealed to me a value that
agile modelers need: humility. Therefore, the values of AM are:

■■ Communication

■■ Simplicity

■■ Feedback

■■ Courage

■■ Humility

Communication

What is communication? Merriam Webster’s Collegiate Dictionary 10th Edition defines
communication as “a process by which information is exchanged between individu-
als through a common system of symbols, signs, or behavior.” Communication is a
two-way street: You both provide and gain information as the result of communica-
tion. My experience is that effective communication—between everyone involved on
your project, including both developers and project stakeholders—is a requisite for
software development success. Problems occur when communication breaks down
on a software project. For example, a developer doesn’t tell her co-workers that her
code doesn’t work properly, resulting in extra work on the part of another developer
to track down the problem. A user doesn’t explain the relative importance of their
requirements, and the developers focus on low-impact features while ignoring sev-
eral that are critical to your organization. Your project manager downplays the
importance of having new workstations for your development team and as a result
doesn’t get funding for needed upgrades. Developers show project stakeholders a
user interface prototype that simulates the working system, but the stakeholders mis-
takenly believe they are seeing the real system and insist that you deliver six months
earlier than initially agreed upon. Many problems experienced by software develop-
ment teams can trace their causes back to miscommunication.

When you stop and think about it, one of the primary reasons you model is to help
improve communication. When your users describe a complex business process, you
can help to improve your understanding of the process by sketching a data flow dia-
gram that depicts its logic. You can often learn more in five minutes drawing a dia-
gram with your users than you can in five hours discussing it or reading about it in
corporate manuals. When you try to explore the design of a portion of your system
with another developer, you may choose to model portions of it together, perhaps
drawing a UML class diagram to understand the structure of your classes. Together
you will work through the design, talking about the implications of various
approaches and negotiating how you intend to build it. Modeling helps you to com-
municate your ideas, to understand the ideas of others, to mutually explore those
ideas to eventually reach a common understanding. In Chapter 8, “Communication,” I
explore the importance of communication within the software development process
and how it is enhanced by AM’s practices.

72244_CH02I 2/27/02 11:06 AM Page 20

Agile Modeling Values 21

Simplicity

I believe you would be hard pressed to find a software engineering book that didn’t men-
tion the KISS rule (Keep It Simple Stupid!) at least once. The IT industry has preached sim-
plicity for years, but for some reason the choir hasn’t been listening. These same software
engineering books then advise you to take actions that invariably complicate your soft-
ware, making it harder to develop, test, and maintain. Common complications include:

Applying complex patterns too soon. If you need to implement telephone
numbers for your customers, applying the Contact Point analysis pattern
(Ambler 2001a) is very likely overkill. Yes, implementing this pattern is
interesting, but its class hierarchy is much harder to build, test, and maintain
than a simple telephone number class. You’re better off waiting until you also
need to implement email addresses and surface addresses to justify application
of the Contact Point pattern. Don’t get me wrong, I’m a firm believer in patterns,
and I am often the first to admit that sometimes applying a pattern is in fact the
simplest approach available to you. The point is that this isn’t always the case.

Over-architecting your system to support potential future requirements. Maybe
the bank information system you are currently working on may one day need to
support the selling of insurance policies, so wouldn’t it be better to architect a
generic way to deal with financial instruments? Yes, modeling that would be
very interesting, but you would be making your software more complicated than
it needs to be today. Developers who are insecure about their ability to handle
future change, or whose egos motivate them to produce the “ultimate” system,
will often architect their software. Agile developers do not overbuild their
software. They bet that they can build it as simply as they possibly can today and
then add new functionality, once again as simply as possible, when they actually
need it. How does this work? Martin Fowler (2001b) describes it best with his
discussion of the YAGNI (You Ain’t Gonna Need It) principle. He points out that
you can’t always predict what you’ll need in the future and you’re just as likely
to be wrong about it as you are to be right. Therefore, why develop, test, and
maintain that extra functionality, functionality that you definitely do not need
right now and may never need? Wouldn’t it be better to focus on fulfilling the
current needs of your project stakeholders today, thereby keeping them happy
(always a good thing), and instead have the courage to assume that you can
solve tomorrow’s problems tomorrow? If you focus on building the simplest
thing possible today, then when you go to add new functionality tomorrow, you
know that you’ll be working with a simple system. Wouldn’t this system be as
simple to modify tomorrow when you actually need the new functionality as it is
to modify today when you don’t know yet if you need it?

To develop a complex infrastructure. A common mistake that project teams make
is to invest the first portion of their project developing their infrastructure—
typically components, frameworks, and class libraries—that they intend to use
as the building blocks for their system. The idea is that their initial investment
will pay off sometime down the road. However, this approach has several
serious drawbacks. First, you’re investing your project stakeholders’ resources

72244_CH02I 2/27/02 11:06 AM Page 21

22 Chapter 2

without giving them something in return that they can actually use. Your
stakeholders have likely asked you for specific features to help them do their
jobs, and the first thing that you deliver is an error-handling subsystem. The
result is that you’re putting your project at risk by not delivering useful
functionality quickly. Second, you’re very likely ignoring the YAGNI principle
and developing features in your infrastructure that you very likely won’t need.
A better approach is to simply develop your infrastructure as you need it
throughout the project. For example: Build the error-handling subsystem over
time when you discover that you actually need a subsystem to do so.

So what does all this have to do with agile modeling? The fundamental point is to keep
your models as simple as possible, model today to meet today’s needs, and worry about
tomorrow’s modeling needs tomorrow. In other words, don’t over model—follow the
KISS rule and not the KICK (Keep It Complex Kamikaze) rule.

Don’t “What if” Yourself to Death
I often see software developers divert themselves from their true task, to build
software that meets the needs of their users in an effective manner, with wacky
“what if scenarios.” They start to over-model their software to meet all
imaginable problems, problems that their project stakeholders very likely aren’t
concerned with or believe are so unlikely to happen that they are willing to go
at risk on them. Then because they over-model, they also overbuild it. Yes, you
don’t want to be completely naïve in your efforts. It’s reasonable to expect that
some problems such as database problems or network glitches do occur, but
you need to be realistic when you’re modeling.

Models are critical for simplifying both software and the software process—it’s much
easier to explore an idea, and to improve upon it as your understanding increases, by
drawing a diagram or two instead of writing tens or even hundreds of lines of code.

Feedback

The only way that you can determine whether your work is correct is to obtain feed-
back, and that includes feedback regarding your models. Models are abstractions. For
example: A collection of use cases is an abstraction of how people will work with your
system, whereas a component model is an abstraction of the internal structure of your
software. How can you know if your abstractions are correct? There are many ways
that you can obtain feedback regarding a model:

Develop the model as a team. Software development is a lot like swimming; it’s
dangerous to do it alone. When you work with other people, you quickly obtain
feedback about your ideas.

Review the model with your target audience. Ideally, members of your target
audience should be involved with the development of the model. Requirements

TI P

72244_CH02I 2/27/02 11:06 AM Page 22

Agile Modeling Values 23

models should be developed in conjunction with your users; detailed design
models should be developed with the people who will be doing the
programming. If this isn’t possible, then the next best alternative is to sit down
with them and walk them through your models, perhaps working through
usage scenarios. Informal reviews can occur on an informal basis; perhaps you
hold a quick meeting with someone to get their feedback regarding your work,
whereas formal reviews (Gilb and Graham 1993) take more effort to organize.

Implement the model. The surest way to obtain feedback is to implement your
model in software and have your project stakeholders work with the software.
The proof is in the pudding.

Acceptance testing. Fundamentally your models should reflect your project
stakeholders’ requirements for your system. Your stakeholders validate those
requirements during acceptance testing, so by implication you are also
validating your models.

It is interesting to note the timescale for each feedback technique. When you work
together as a team, feedback is relatively immediate, on the scale of seconds or min-
utes. With informal reviews, feedback can occur within minutes or hours, although if
someone is available for an informal review then, why aren’t they available to work on
the model to begin with? On the other hand, formal reviews may not occur for days,
weeks, or even months depending on the availability of the reviewers. With imple-
mentation, feedback ideally occurs within several hours or at least days (remember,
you’re taking an agile approach to development). Acceptance testing typically pro-
vides feedback weeks or months later.

Why is timescale important? Because the more immediate the feedback is, the less
likely your models are to deviate from what you actually need. Although all forms of
feedback have their place, given the opportunity you should prefer the feedback pro-
vided through teamwork because it is immediate. Having said that, there is something
to be said about proving your models with code because everything looks good on
paper until you actually try it out.

Courage

Courageous people walk through the door;
they don’t stand there and wonder what’s on the other side.

-Sempai Rick Micucci

Agile Modeling, and agile software development in general, is new to most people as
well as to the organizations in which they work. As you saw in Chapter 1, “Introduc-
tion,”, agile software development principles challenge the status quo, and that’s threat-
ening for many people. It is a lot easier to sit back and accept the current situation, to not
try to improve things, or to wait until someone else comes along and fixes things. This
paralysis by fear is a primary contributor to the current sad state of the IT industry.

72244_CH02I 2/27/02 11:06 AM Page 23

24 Chapter 2

I once worked for an organization whose data administration group had a death
grip on the software development group. Developers couldn’t do work with corporate
data without first going through the data group, they couldn’t set up their own devel-
opment database without going through the data group, and they certainly couldn’t
release software into production without the blessing of the data group. This wouldn’t
have been bad if the data group worked effectively, but unfortunately that wasn’t the
case. My team was working on an Enterprise JavaBeans (EJB) project, the first one for
this company, using an Oracle database on the backend. When we heard that it would
take several weeks to have someone from the data group set up our development
database, we decided to do it on our own, initially spending a couple of hours doing
so and then spending time over the next few days to tweak things as we needed. The
reason the data group would have taken several weeks is they insisted on following
their own procedures to size the database (work we had already done), ensure that our
machines had sufficient disk storage (we had already maxxed out the box), and of
course, fill out a myriad of forms that nobody but them wanted. They were incensed,
and the manager of the group chewed out my manager, who then chewed us out. We
held our ground, saying that we didn’t have the time to cater to the bureaucratic
whims of the data group. Nobody had successfully stood up to this group. People on
my team were worried, but our priority was to build our system on time, so we fought
it out. This took courage. To smooth things over, we said that we would be more than
happy to work with them to administer our database and to evolve our data schema
over time, which was completely true. This was where we ran into our second prob-
lem. Instead of providing us with a single database administrator (DBA), they instead
wanted to put several people on our team: one to administer the database, one to work
on a logical data model (which has absolutely no value when developing object-
oriented software), and one to work on a physical data model (we wanted this). Fur-
thermore, they wanted to do this in parallel with our development activities, instead
of as an active part of the team. In other words, most of what they proposed was make-
work. It would have been more of an effort for us to work with this separate group of
people than it would have been to do the physical data modeling ourselves. We had
several people more than qualified to do this, and to generate and apply the schema to
the database (something several of us had done for years). Once again we fought it out
with them, another courageous act considering nobody had ever done so in the past
and they were already gunning for us. Everything eventually came to a head in a big
meeting involving our managers and their managers. We actually had a good relation-
ship with several of the DBAs within the data group who agreed with us privately and
were hoping that we could break the deadlock within the organization. At the meet-
ing, the head of the data group claimed that our concerns regarding our productivity
slowing down were unrealistic, that his people could quickly get us moving forward
in several weeks and continue helping us for the next few months. It was at that point
that I said we had our database up and running and offered to show the working data-
base to anyone in the room. We had the courage to do the right thing, to stand up to a
clearly dysfunctional group, and to show everyone involved that there was a different
way to do things. It was hard but in the long run, not only did our project benefit but
the whole organization did, because it gave other teams the courage to stand up to the
data group as well, eventually motivating them to streamline (albeit not enough in my
opinion) their processes.

72244_CH02I 2/27/02 11:06 AM Page 24

Agile Modeling Values 25

*This is a modification of a North American advertising campaign from the mid-1990s—Eggs aren’t just for
breakfast anymore.

Agile methodologies ask you to closely work with other people, to trust them, and to
trust yourself. This takes courage. Methods such as XP and AM ask you to do the sim-
plest thing that you can, to trust that you can solve tomorrow’s problems tomorrow. This
takes courage. AM asks that you create documentation only when you absolutely need
it, not just when it feels comfortable to do so. This takes courage. XP and AM ask that
you let business people make business decisions, such as requirements’ prioritization,
and let technical people make technical decisions, such as how the software will fulfill
individual requirements. This takes courage. AM asks that you use the simplest tools
possible, such as whiteboards and paper, and that you use complex modeling tools only
when they provide the best value possible. This takes courage. AM asks that you not
dally making your diagrams pretty in order to put off difficult tasks such as proving
your models with code. This takes courage. AM asks that you trust your co-workers,
trust that programmers can make design decisions, and therefore you do not need to
provide them with as much detail. This takes courage. AM asks you to choose to suc-
ceed, to end the cycle of near-disasters and outright failures within the IT industry. This
takes courage.

I believe that courage is a fundamental requisite of agile software development. First,
courage is important because you need to choose to take an agile approach, and then
stick with that approach when the going gets tough (and it always does). There will be
people in your organization with other visions—you need to adopt the XYZ tool, you
need to adopt a heavy-weight process, management needs to exert greater control, you
need to outsource all of IT, you need to follow the dictates of this other department—
and they will fight your efforts every step of the way. That’s what politics are all about.
Second, during development you need courage to make important decisions, such as
choosing one architectural approach over another or deciding which development lan-
guage to work in. During development you also need courage to change direction
when some of your decisions prove inadequate, by either discarding or refactoring
your work.

Third, you need courage to recognize that you’re fallible and will make mistakes.
Fourth, you need courage to trust that you can overcome tomorrow’s problems

tomorrow. Courage, it’s not just for breakfast anymore.*

Humility

The best developers have the humility to recognize that they don’t know everything.
Frankly, it isn’t possible. You could be the best Java coder there is and still not know
every single detail about every single Java API. Furthermore, just because you’re a
great Java coder, it doesn’t mean that you’re a great user interface designer, or a great
database designer, or a great musician—it just means that you’re a great Java coder.
Just because you’re a great Java coder, it doesn’t mean that you can’t learn something
new from other Java coders, including the junior person on your team. In fact, I often
learn more from junior people than I do from senior people, because the junior will ask

72244_CH02I 2/27/02 11:06 AM Page 25

26 Chapter 2

me why things work and will likely challenge my own beliefs with new ways of doing
things.

Agile modelers understand that their fellow developers and their project stakehold-
ers have their own areas of expertise and have value to add to a project. Some develop-
ers will be better at coding than you are, or better at testing, or better at requirements
modeling, or better at architectural modeling. Your users likely understand various
aspects of the business better than you do: Senior managers have a better grasp of
where their industry is headed, and operations staff know what may or may not work
in production. Agile modelers have the humility to admit that they need help to do
their jobs successfully, to work together with others.

Humility also comes into play in the way that you interact with people. Agile mod-
elers have the humility to respect the people that they work with, realizing that others
likely have different priorities and experiences than they do and therefore will have dif-
ferent viewpoints. They don’t denigrate their managers by calling them “pointy-haired
bosses,” people in other departments “paper pushers,” or their users/customers “stu-
pid” or “totally screwed up.” Denigrating people isn’t an act of humility; it’s an act of
arrogance. Arrogance leads to communication problems that in turn lead your project
into trouble, because it motivates people to stop collaborating with you. Agile modelers
are humble and more effective as a result.

Beyond Motherhood and Apple Pie

Agile modelers are courageous: They seek out simplicity, they seek feedback, they
communicate well, and most of all, they’re humble. It almost seems that if you become
an agile modeler, you’ll be nominated for sainthood. The reality is that agile modelers
are people. They’re fallible, they have other concerns in their lives beyond effective
modeling practices, and they think and act of their own accord. The reason I defined
these values is not to get overly sappy, I may not have achieved this goal, but instead,
to build a foundation from which individuals may build an agile mindset, and teams
and organizations may build a culture that supports agile and effective development
efforts. These values are also used, along with the values and principles of the Agile
Alliance (2001a, 2001b) presented in Chapter 1, as a base from which to define the prin-
ciples of AM in Chapters 3 and 4.

72244_CH02I 2/27/02 11:06 AM Page 26

Principles only mean something when you stick to them when the going gets tough.

27

C H A P T E R

3

Core Principles

Agile Modeling’s values (Chapter 2, “Agile Modeling Values”)—communication, sim-
plicity, feedback, courage, and humility—in combination with the values and princi-
ples of the Agile Alliance (2001a, 2001b), are used to define AM’s principles. When
applied on a software development project, these principles set the stage for a collec-
tion of modeling practices (Chapters 5, “Core Practices,” and 6, “Supplementary Prac-
tices”). AM’s values, while important, are somewhat abstract and too high-level to
provide much guidance to your software development efforts; hence the need for
AM’s principles—concepts that are far more concrete. Some of the principles have
been adopted from eXtreme Programming (XP) (Beck 2000), which in turn adopted
them from common software engineering techniques. Reuse! For the most part, the
principles are presented with a focus on their implications to modeling efforts and as a
result, material adopted from XP may be presented in a new light.

This chapter overviews AM core principles; principles that you must adopt in full to
be truly able to claim that you are agile modeling (more on this later). Chapter 4, “Sup-
plementary Principles,” overviews AM’s supplementary principles that define impor-
tant concepts that help to enhance your modeling efforts. AM’s core principles are:

■■ Software is your primary goal

■■ Enabling the next effort is your secondary goal

■■ Travel light

■■ Assume simplicity

72244_CH03I 2/27/02 11:04 AM Page 27

28 Chapter 3

■■ Embrace change

■■ Incremental change

■■ Model with a purpose

■■ Multiple models

■■ Quality work

■■ Maximize stakeholder investment

Software Is Your Primary Goal

The primary goal of software development is to produce high-quality software that
meets the needs of your project stakeholders in an effective manner. This principle is
effectively a re-wording of the Agile Alliance’s (2001b) principle that “working soft-
ware is the primary measure of progress.” Like it or not, the primary goal is not to pro-
duce extraneous documentation, extraneous management artifacts, or even to produce
models. Creating extraneous documentation can be comforting because you can fool
yourself into believing that you are making progress when in fact you’re not. Instead,
you’re actually avoiding a difficult task, likely writing and testing code that may show
that your chosen approach isn’t working as well as you thought it would. Writing sta-
tus reports, trumpeting your successes to everyone, or even worse, covering up your
failures, may make you feel good, but it isn’t getting you any closer to your end goal.
Have the courage to focus on what is important, the creation of a system for your users.
We’re not documentation developers, or even model developers; we’re software devel-
opers. Think about it. Any activity that does not directly contribute to the goal of pro-
ducing quality should be questioned and avoided if it cannot be adequately justified.

Enabling the Next Effort Is Your
Secondary Goal

Your project can still be considered a failure even when your team delivers a working sys-
tem to your users—part of fulfilling the needs of your project stakeholders is to ensure that
your system is robust enough so that it can be extended over time. As Alistair Cockburn
(2001b) likes to say, when you are playing the software development game, your sec-
ondary goal is to set up to play the next game. Your next effort may be to develop the next
major release of your system or it may simply be to operate and support the current ver-
sion that you are building. To enable it, you will not only want to develop quality software
but also create just enough documentation so that the people playing the next game can be
effective, transfer skills from your developers to others, motivate existing staff to stay and
develop the next release of your system, or simply motivate team members to stay with
your organization. Factors that you need to consider include the nature of your develop-
ers, the nature of the next effort itself, and the importance of the next effort to your organi-
zation. In short, when you work on your system, you need to keep an eye on the future.
This principle supports the AM value of Communication.

72244_CH03I 2/27/02 11:04 AM Page 28

Core Principles 29

Travel Light

Traveling light means that you create just enough models and documentation to get
by. Every artifact that you create, and then decide to keep, will need to be maintained
over time. This includes models, documents, and project management artifacts such as
schedules, test suites, and source code. For example: You decide to keep seven models.
Whenever a change occurs—such as a new or updated requirement, your team takes a
new approach, or adopts a new technology—you will need to consider the impact of
that change on all seven models and then act accordingly. If you decide to keep only
three models, then you clearly have less work to perform to support the same change,
making you more agile because you are traveling lighter.

Similarly, the more complex/detailed your models are, the more likely it is that any
given change will be harder to accomplish (the individual model is “heavier” and is
therefore more of a burden to maintain). Every time you decide to keep a model, you
trade off agility for the convenience of having that information available to your team in
an abstract manner (hence potentially enhancing communication within your team as
well as with project stakeholders). Never underestimate the seriousness of this trade-off.
Jim Highsmith (2000) points out that someone trekking across the desert will benefit from
a map, a hat, good boots, and a canteen of water. They likely won’t make it if they burden
themselves with hundreds of gallons of water, a pack full of every piece of survival gear
imaginable, and a collection of books about the desert. However, it is possible to travel too
light—clearly, it would be foolish to try to cross a desert without a minimum of supplies.
Similarly, a development team that decides to develop and maintain a detailed require-
ments document, a detailed collection of analysis models, a detailed collection of archi-
tectural models, and a detailed collection of design models will quickly discover they are
spending the majority of their time updating documents instead of writing source code.
A good rule of thumb is to not maintain a model until it is very clear that you need it.

You need good communication among your team to be able to effectively travel
lightly; if developers don’t understand your requirements or your architectural approach,
or at least if there is no one that they can work with to get their questions answered read-
ily, then you are in serious trouble. Clearly, good communication is a requisite to support
traveling light. To travel light requires courage, to trust that you’re not going to need a
certain artifact but are prepared to create it if you are proved wrong in your assumption.
Traveling light enables simplicity in your approach to development because your artifact
maintenance efforts during development are dramatically decreased.

Assume Simplicity

As you develop, you should assume that the simplest solution is the best solution, and
as the title suggests, this principle is clearly derived from AM’s value of Simplicity as
well as the Agile Alliance’s principle of simplicity (2001b). As Kent Beck (2000) points
out, the vast majority of the time the simplest solution works well, and because it is
simple, it is easy to implement. The advantage is that you aren’t investing extra time
implementing difficult solutions, approaches that take more time and effort to put in
place. The advantage is that in the few times where the simplest solution proves not to

72244_CH03I 2/27/02 11:04 AM Page 29

30 Chapter 3

work, you have time to implement a more difficult solution because you haven’t
wasted resources elsewhere. Furthermore, the simplest solution is also the easiest to
maintain and to enhance.

An implication of this principle is that you don’t want to overbuild your software,
or in the case of modeling, don’t depict additional features in your models that you
don’t need today. Don’t over-model your system today; model based on today’s exist-
ing requirements and then refactor your system in the future when your requirements
evolve. The implication is that you should keep your models as simple as you possibly
can. This principle is the Occam’s Razor of modeling—when in doubt take the sim-
plest approach possible.

Will taking the simplest approach work every time? Likely not, but it will work the
vast majority of the time. When it doesn’t work you will have learned something and
will very likely have failed very early in your efforts. Contrast that to taking a compli-
cated approach—complicated approaches fail as well—where you’ve invested signifi-
cant resources to discover that your ideas didn’t work.

Embrace Change

Accept the fact that change happens. Revel in it. Change is one of the things that make
software development exciting. Requirements evolve over time. Your project stakehold-
ers’ understanding of their requirements changes over time. Project stakeholders can
change as your project moves forward, new people are added, and existing ones leave.
Project stakeholders can change their viewpoints as well, potentially changing the goals
and success criteria for your effort. Furthermore, your business and technological envi-
ronments change as your project evolves; things occur that are often beyond the scope
of your control. The implication is that your project’s environment changes over time.

Agile modelers embrace change. They understand that change is a common occur-
rence on software projects. The Agile Alliance (2001b) advises that you welcome chang-
ing requirements even late in the project lifecycle. Agile modelers know that their work
will be affected by changes; they actively strive to communicate with their project stake-
holders, to seek their feedback, so they can identify changes and then act accordingly.
They do not blame their project stakeholders for change; instead they actively work
with them to understand and communicate the implications of the changes to enable
their stakeholders to make effective decisions as to if, how, and when the change will be
supported by their development efforts. Furthermore, agile modelers understand that
their models are only models, that developers will tear them apart and reassemble them
into something better; they accept that their work will be improved upon by others.

Agile modelers also recognize an inherent danger in embracing change—the ten-
dency to get sloppy when doing up-front work such as requirements modeling. Why
invest a lot of time understanding requirements if they’re only going to change? Far
better to simply bang some code out and wait for your project stakeholders to tell you
to change it? Right? Wrong! You’d be much better off investing the time to understand
the requirements to the best of your ability now and implement software based on
those requirements. Some requirements will change, and you need to embrace this
fact, but many requirements won’t change (at least not soon). Note that AM’s princi-

72244_CH03I 2/27/02 11:04 AM Page 30

Core Principles 31

ples of Quality Work and Maximize Stakeholder Investment counteract the tendency to get
sloppy.

Incremental Change

To embrace change you need to take an incremental approach to your own develop-
ment efforts, to change your system a small portion at a time instead of trying to get
everything accomplished in one big release. You can make a big change as a series of
small, incremental changes. In fact, the Agile Alliance’s (2001b) third principle states
that you should deliver working software frequently, from a couple of weeks to a cou-
ple of months, with a preference to the shorter time scale. An important concept to
understand when agile modeling is that you don’t need to get everything right the
first time. In fact, it is very unlikely that you could do so even if you tried. Further-
more, you do not need to capture every single detail in your models; you just need to
get it good enough at the time. It is futile to try to develop an all-encompassing model
at the start of your project. Instead, put a stake in the ground and develop a small,
detailed model, or perhaps a high-level model, and evolve it over time (or simply dis-
card it when you no longer need it) in an incremental manner. It takes humility to
accept that you can’t get it right the first time, or even the nth time, and courage to
admit it. Kent Beck (2000) said it well, “Make it run, make it right, then make it fast.”

Model with a Purpose

If you cannot identify why and for whom you are creating a model, then why are you
bothering to work on it at all? Many developers worry about whether their artifacts—
such as models, source code, or documents—are detailed enough or if they are too
detailed, or similarly if they are sufficiently accurate. What they’re not doing is stepping
back and asking why they’re creating the artifact in the first place and whom are they cre-
ating it for. This requires humility; you aren’t modeling solely for the personal satisfaction
of modeling; instead you are modeling to fulfill the needs of your project stakeholders.

What are valid reasons to create a model? Often you need to understand an aspect
of your software better, perhaps you need to communicate your approach to senior
management to justify your project, or perhaps you need to create documentation that
describes your system to the people who will be operating, maintaining or evolving it
over time. You model to understand, or you model to communicate.

The following aren’t valid reasons:

■■ Your prescriptive process tells you to, so you dutifully do so without
considering whether it makes sense to.

■■ Someone else has requested the model but is unable to explain why they need
it, other than because they told you to create it.

■■ Instead of having a face-to-face conversation with someone, and have the
option to do so, you instead want to create a model to give to them.

72244_CH03I 2/27/02 11:04 AM Page 31

32 Chapter 3

Your first step when modeling is to identify a valid purpose for creating a model
and the audience for that model. Once you identify the purpose and audience, develop
the model to the point where it is both sufficiently accurate and sufficiently detailed.
Once a model has fulfilled its goals you should stop working on it—you are finished!
Move on to something else, such as writing some code to show that your model works.
This has the advantage that your models will remain simple because you won’t clutter
them with needless detail. This principle also applies to a change to an existing model:
If you make a change such as applying a known pattern, then you need to have a valid
reason to make that change, such as to support a new requirement or to refactor your
work to something cleaner. An important implication of this principle is that you need
to know your audience, even when that audience is yourself. For example: If you cre-
ate a model for maintenance developers, what do they really need? Do they need a
500-page comprehensive document or would a 10-page overview of how everything
works be sufficient? Don’t know? Go talk with them and find out.

Another way to look at it is this: The point at which a model just barely fulfills its
purpose is also the point of diminishing returns for that model. When you first work
on a model you most likely have a sense of accomplishment because you’re thinking
something through, gaining a better understanding of what you need to do, or gaining
improved insight into how you should build it. As you continue to work, you get
closer and closer to your goal for developing that model, whatever that goal is, until
you finally get to the point where you’ve reached your target. It’s at this point that fur-
ther work on the model is providing less and less benefit. Yes, you may be filling in
some details. Yes, you may be improving its consistency and accuracy, but you could
have moved on; you could have found something else to work on, ideally, source code
that provides greater benefit to your project.

Multiple Models

You have a wide range of modeling artifacts, many of which are summarized in
Appendix A, “Modeling Techniques,” available to you. These artifacts include the dia-
grams of the Unified Modeling Language (UML) (Object Management Group 2001),
structured development artifacts such as data models, and low-tech artifacts such as
essential user interface models. Each artifact has its strengths and weaknesses; each
one is appropriate for some situations and not others. Because modern software is
complex, no single artifact, even in the case of the UML family of artifacts, is applica-
ble for all situations. The implication is that to be effective, you need to use multiple
models to describe software systems, because each model describes a single aspect of
your software. For example: Figure 3.1 shows the logic for placing an order online,
whereas the user interface (UI) flow diagram of Figure 3.2 describes how users navi-
gate around the UI of SWA Online. It is interesting to note that the sequence diagram is
an artifact prescribed by the UML, whereas the UI flow diagram is not (yet), and that
both diagrams depict different but important aspects of the SWA Online system.

By using each model for what it is good for, and not trying to use them when it isn’t
appropriate, you can describe the complexities of what you are building using several

72244_CH03I 2/27/02 11:04 AM Page 32

Core Principles 33

Figure 3.1 A UML sequence diagram for placing an order.

simple models instead of one or two very complex ones. This is easier for you as a
developer, when you’re working on the database for your system use data models,
when you’re working on the UI use UI-oriented models such as user interface flow
diagrams. It’s also easier for anyone that you need to communicate with because they
can focus on one model at a time instead of trying to understand everything at once.
This principle clearly supports AM values of Simplicity and Communication.

Note that although you have a wide range of models available to you, you don’t need
to develop all of them for any given system. Depending on the exact nature of the soft-
ware you are developing, and the software process that you are applying AM with, you
will require at least a subset of the models. For example: An XP project team will apply
user stories as its major requirements modeling artifact, whereas a Unified Process proj-
ect team will likely apply a combination of use cases, business rules, constraints, and
technical requirements. An EJB application will need object-oriented design artifacts such
as those described by the UML, whereas a data warehouse project will need data models.
Different types of projects require different subsets of artifacts. To be effective as an agile
modeler you will need to learn a wide range of models to be able to apply the right type
of model based on your situation. To continue to be effective you need the Humility
(another AM value) to admit that you can always learn new techniques, often from junior
developers fresh out of school or from project stakeholders who understand the business.

You Need an Intellectual Toolbox of
Techniques
An analogy that I use throughout this book is that developers should have an intellec-
tual toolbox (McConnell 1993) of techniques that they can apply when needed, just as

72244_CH03I 2/27/02 11:04 AM Page 33

34 Chapter 3

Figure 3.2 A user interface flow diagram for SWA Online.

a carpenter has a toolbox of tools. The more tools you have, and know how to apply,
the more effective you will be as a developer, because you are more likely to have the
right tool for the job when the need arises. Just as every fix-it job at home doesn’t
require you to use every tool available to you in your toolbox, every development task
won’t require you to apply each technique that you know. The variety of fix-it jobs you
perform at home will require you to use each of your tools at some point, and simi-
larly, the development projects you are involved with will, over time, require you to
apply all of the various modeling techniques that you know. Finally, just as you use
some tools more than others, you will apply some types of models more than others.

Quality Work

Nobody likes sloppy work. The people doing the work don’t like it because it’s some-
thing they can’t be proud of. The people coming along later to refactor the work, per-
haps yourself a few weeks later when your requirements change or perhaps a
maintenance developer who has been assigned to evolve your system, don’t like it
because sloppy work is harder to understand and therefore harder to update. In other

72244_CH03I 2/27/02 11:04 AM Page 34

Core Principles 35

words, quality work improves communication on your project. Your end users won’t
like your sloppy work because it’s typically fragile and/or doesn’t meet their expecta-
tions. Senior management won’t like your sloppy work because they will feel they
aren’t getting good value for their investment in your efforts.

Agile developers understand that they should invest the effort to make permanent
artifacts, such as source code, user documentation, and technical system documenta-
tion (documentation is described in detail in Chapter 14, “Agile Documentation”) of
sufficient quality. It takes guts to stand up and say that you need the time to do a good
job. Similarly, agile developers don’t invest much effort in artifacts that they intend to
discard, particularly sketches or low-fidelity artifacts such as essential user interface
prototypes. In other words, they have the humility to spend their time wisely because
they realize they would be wasting their project stakeholder’s resources otherwise. Is
this advice contradictory? I don’t think so. If something is worth keeping, then it’s
worth building properly; otherwise, invest minimal effort in creating it.

Rapid Feedback

Feedback is one of the five values of AM, and because the time between an action and
the feedback on that action is critical, agile modelers prefer rapid feedback over
delayed feedback whenever possible. By working with other people on a model, par-
ticularly when you are working with a shared-modeling technology such as a white-
board, CRC cards, or essential modeling materials such as Post-It notes, you are
obtaining near-instant feedback on your ideas. This gives you an indication of
whether or not your approaches are likely to solve the situation at hand, as well as
provides opportunities to evolve and improve your model(s). Working closely with
your customer to understand their requirements, to analyze those requirements, or to
develop a user interface that meets their needs provides opportunities for rapid feed-
back. Writing code based on your models is another opportunity for feedback because
it shows whether your model is feasible and very often reveals flaws in your approach
because you simply can’t think all of the issues through. Obtaining feedback on your
work is a humbling but informative experience, one that you want sooner rather than
later so you can act on any issues before they become serious problems.

There are two reasons why rapid feedback is important: We make most of our mis-
takes in the “early” aspects of development and the cost of fixing defects increases
exponentially the later they are found. Technical people are very good at technical
things such as design and coding—that is why they are technical people. Unfortu-
nately, technical people are often not as good at non-technical tasks such as gathering
requirements and performing analysis—probably another reason why they are techni-
cal people. The result, as shown in Figure 3.3, is that developers have a tendency to
make more errors during requirements definition and analysis than during design and
coding. Furthermore, on a non-agile project the cost of fixing these defects rises the
later they are found as shown in Figure 3.4. This happens because of the nature of soft-
ware development—work is performed based on work performed previously. For
example: Design modeling is performed based on your requirements. Programming is
done based on the design models, and testing is performed on the written source code.

72244_CH03I 2/27/02 11:04 AM Page 35

36 Chapter 3

Figure 3.3 The decreasing probability of introducing defects.

Figure 3.4 The rising costs of finding and fixing defects.

If a requirement was misunderstood, all modeling decisions based on that require-
ment are potentially invalid, all code written based on the models is also in question,
and the testing efforts are now verifying the application against the wrong conditions.
If the only feedback you receive is the errors detected late in the lifecycle of your proj-
ect, during testing in the large, or after the application has been released, they are
likely to be very expensive to fix. However, if you receive feedback quickly, just after

72244_CH03I 2/27/02 11:04 AM Page 36

Core Principles 37

misunderstanding what you were originally told, it will be much less expensive to
address the misunderstanding.

Maximize Stakeholder Investment

Your project stakeholders are investing resources—time, money, facilities, and so on—
to have software developed that meets their needs. Stakeholders deserve to invest
their resources the best way possible and to not have them frittered away by your
team. Furthermore, stakeholders deserve to have the final say in how those resources
are invested or not invested. If it was your money, would you want it any other way?

System Documentation is a Business Decision, Not a Technical One
It is important to recognize that every time you decide to keep a model or
document, you are making a serious trade-off—you are forgoing new
functionality in order to write documentation. When you stop and think about
it, this is a trade-off that is a business decision, not a technical one. You are
trading business functionality for the potential risk-reduction benefits of having
permanent artifacts that describe your system. Therefore, you should go to your
project stakeholders and ask their permission to invest their resources in this
manner, presenting the advantages and disadvantages of doing so. Sometimes
they will choose to keep the artifact(s) that you suggest, and other times they
will choose to accept the risks of not having them and instead travel light.
That’s their decision, not yours.

Why Core Principles?

Why do I stress the need to adopt all of AM’s core principles to truly claim that you’re
doing AM? I want to avoid the problem that XP has faced—people who claim to do XP
but who really aren’t, then blame XP for their failure. Like XP, the principles and prac-
tices of AM are synergistic, and if you remove some, the synergy is lost. By failing to
adopt one of the core principles or practices of AM, you reduce the method’s effective-
ness. Yes, you can benefit by only adopting a portion of AM, but you likely won’t
obtain dramatic improvements in your effectiveness because of the drop in synergy. In
short, feel free to adopt whatever aspects of AM that you see fit, just please don’t claim
that you’re doing AM when you’ve only partially adopted it.

TI P

72244_CH03I 2/27/02 11:04 AM Page 37

It is easier to fight for one’s principles than to live up to them.

—Alfred Adler

38

C H A P T E R

4

Supplementary Principles

Agile Modeling’s supplementary principles define concepts that increase your effective-
ness as an agile modeler. Although these principles support AM’s core principles,
described in Chapter 3, “Core Principles,” their adoption is not required for you to be
truly agile modeling. These principles are all very good ideas and you should adopt
them if they fit well into your organizational culture. AM’s supplementary principles are:

■■ Content is more important than representation

■■ Everyone can learn from everyone else

■■ Know your models

■■ Local adaptation

■■ Open and honest communication

■■ Work with people’s instincts

Content Is More Important Than
Representation

Any given model can be represented in several ways. For example: AUI specification
could be created using Post-It notes on a large sheet of paper (an essential or low-

72244_CH04I 2/27/02 11:04 AM Page 38

Supplementary Principles 39

fidelity prototype); as a sketch on paper or a whiteboard; as a “traditional” prototype
built using a prototyping tool or programming language; or as a formal document
including both a visual representation as well as a textual description of the UI.
Depending on the reason you’re creating the model, the various representations may
be equivalent. If your goal is to explore the layout of an HTML page, then all three rep-
resentations are sufficient. In fact, making the specification prettier using a drawing
tool and documenting it comprehensively does not add anything to further this goal.
The content is more important than its representation in this case.

An important implication of this principle is that you don’t need to jump into using
a complicated CASE tool right away. Yes, CASE tools can be very useful if they gener-
ate code for you or if they can reverse engineer an understandable model from existing
code, but at first it is better to work with simple, flexible tools. I discuss this in detail in
Chapter 10, “Using the Simplest Tools Possible?”

Consider another example. A UML class diagram could be drawn as a sketch as
shown in Figure 4.1, using a drawing tool such as Microsoft Visio as shown in Figure
4.2, or created using a sophisticated CASE tool. It’s still the same class diagram, just
depicted differently. The sketch may be sufficient for its purpose—it helped the people
that drew it to understand an initial approach to designing the software they were
working on. Could you use the sketch of Figure 4.1 in your official documentation
(assuming that it captures critical information that you want to persist)? Why not? It’s

Figure 4.1 A UML class diagram sketch.

72244_CH04I 2/27/02 11:04 AM Page 39

40 Chapter 4

Figure 4.2 A UML class diagram using Microsoft Visio.

not as pretty as the tool-drawn diagram in Figure 4.2, but the sketch took one-third the
time to draw. Remember, agile modelers Maximize Stakeholder Investment, so it’s a seri-
ous decision to invest time simply to make something look nice. I suspect that the
world isn’t going to end if you use a hand-drawn sketch as part of your official docu-
mentation. I often use scans or digital pictures of sketches in official documents or pre-
sentations—the sketch captures the idea that I want to communicate and I don’t want
to waste time transcribing the sketch into a more sophisticated tool simply to make it
look pretty. It’s OK to show people imperfect work and to defend your decision to do
only the minimal work required and then move on. This model clearly isn’t complete,
and frankly, my handwriting is a disaster, but remember, an agile modeler models
with a purpose and stops as soon as that purpose is fulfilled.

Meet the Expectations of Your Audience
Whether it is a viable strategy to include hand-drawn diagrams in your
documentation depends on the audience: if your readers are “prim and
proper,” then you’ll likely be required to invest the time to transcribe your
models using an electronic tool. There’s nothing wrong with this; after all it’s
their money you’re spending, but recognize that you do have an option to be
more agile and that you should make them aware of this option.

Similarly, the same structure of classes presented in Figures 4.1 and 4.2 could be
depicted using a different type of artifact, such as a Class Responsibility Collaborator
(CRC) model or using a different notation, perhaps the OMT notation (Rumbaugh et.
al. 1991). Having said that, I would not choose the OMT notation over the UML nota-
tion for the simple reason that the UML is an industry standard, whereas the OMT
notation is not. Yes, there may be technical reasons why OMT is superior to UML, but

TI P

72244_CH04I 2/27/02 11:04 AM Page 40

Supplementary Principles 41

chances are good that the communication loss from not using a common standard is
more significant.

An interesting implication is that a model does not always need to be a document. I
could have drawn the sketch in Figure 4.1 simply to understand the structure of the
classes that I was working on, proceeded to code and test the classes, and then dis-
carded the model once I was finished with it. Even a complex set of diagrams created
using a CASE tool may not become part of a document; instead they are used as inputs
into other artifacts, very likely source code, but never formalized as official documen-
tation. The point is that you take advantage of the benefits of modeling without incur-
ring the costs of creating and maintaining documentation. This principle is motivated
by AM’s values of Simplicity and Communication and the Agile Alliance’s (2001a) pref-
erence for working software over comprehensive documentation.

Everyone Can Learn from Everyone Else

Agile modelers recognize that they can never truly master something; there is
always an opportunity to learn more and to extend your knowledge. They take the
opportunity to work with and learn from others, to try new ways of doing things, to
reflect on what seems to work and what doesn’t. Technologies change rapidly; exist-
ing technologies such as Java evolve at a blinding pace, and new technologies such
as C# and .NET are introduced regularly. Existing development techniques evolve at
a slower pace, but they still evolve. As an industry we’ve understood the fundamen-
tals of testing for quite some time, although we are constantly improving our under-
standing through research and practice. The point is that we work in an industry
where change is the norm, where you must take every opportunity to learn new
ways of doing things through training, education, mentoring, reading, and working
with each other.

An implication of this practice is that everyone should expect to work with others to
help them learn new skills. In fact, I believe that you are responsible to help others
increase their intellectual toolkit. This principle is motivated by the values of
Communication and Humility.

Know Your Models

Because you have multiple models that you can apply as an agile modeler, you need to
know their strengths and weaknesses to be effective in their use. Furthermore, model-
ing techniques evolve all the time to reflect the changes in technology. As aspect-
oriented programming (Xerox 2001) becomes more mainstream, if it ever does, I fully
expect to have to learn one or more aspect-oriented models and/or aspect-oriented
extensions to existing types of models. This enables you to keep your models as simple
as possible as well as improve the quality of communication on the project that you’re
applying the modeling techniques to.

72244_CH04I 2/27/02 11:04 AM Page 41

42 Chapter 4

Local Adaptation

It is doubtful that you will be able to “apply AM out of the box.” Instead, you will need
to modify it to reflect your environment, including the nature of your organization,
your co-workers, your project stakeholders, and your project itself. When you adapt
AM to meet your unique needs, you will definitely need to consider the modeling
techniques that you plan to apply. For example: Your users may insist on concrete user
interfaces instead of initial sketches or essential UI prototypes. The tools that you use
will have an effect on your approach. Perhaps there isn’t a budget for a digital camera
but you already have licenses for an existing CASE tool. AM can be modified to reflect
the software process where it is applied. Part Three discusses applying AM on an XP
project, and Part Four describes applying AM on a Unified Process project.

You will adapt your approach at the individual level as well as at the project level. For
example: Some developers prefer one set of tools over another. For instance, when I’m
Java coding, I prefer a sophisticated code editor and the JDK, whereas my co-workers
may prefer a Java IDE. Some people focus on coding and do very little modeling,
whereas others are more visually oriented and prefer to invest time sketching before
they write code—different people, different applications of AM. It’s important to note
that the values, principles, and practices remain the same, but their application varies.

Also, remember that AM isn’t going to work in all situations, as I indicated in Chapter
1, “Introduction.” It may not be realistic to try to adopt AM in full, at least not right away,
so you may find that you can tailor a portion of AM’s principles and practices into your
existing software process. As long as you improve your effectiveness as a developer,
that’s perfectly fine.

Open and Honest Communication

People need to be free, and know that they are free, to offer suggestions. This includes
ideas that pertain to one or more models. Perhaps someone has a new way to
approach a portion of the design or has new insight regarding a requirement, or sim-
ply a new method to present the current status of their work. Open and honest com-
munication enables people to make better decisions because those decisions are based
on more accurate information.

Open and honest communication requires commitment on everyone’s part and an
understanding that effective communication is a critical success factor for software devel-
opment projects. People who dare to speak their mind must also be open to hearing
something they may not like. It requires humility on everyone’s part to be willing to aban-
don their pet ideas upon hearing that they may not be as good as they originally thought.

Work with People’s Instincts

When someone feels that something isn’t going to work, that a few things are incon-
sistent with one another, or that something doesn’t “smell right,” then there is a good

72244_CH04I 2/27/02 11:04 AM Page 42

Supplementary Principles 43

chance that that is actually the case. As you gain experience at developing software,
your instincts become sharper, and what your instincts are telling you subconsciously
can often be an important input into your modeling efforts. If your instincts tell you
that a requirement doesn’t make sense or it isn’t complete, investigate it with your
users. If your instincts tell you that a portion of your architecture isn’t going to meet
your needs, build a quick technical end-to-end prototype to test out your theory. If
your instincts tell you that design alternative A is better than design alternative B, and
there is no compelling reason to choose either one of them, then go with alternative A
for now. It’s important to understand that AM’s Courage value indicates that you can
remedy the situation at some point in the future if you discover your instincts were
wrong.

Benefiting from These Principles

The principles described in this chapter and Chapter 3 are little better than well-
intentioned exhortations unless you internalize them. Agile modelers adopt and act in
accordance with these principles, something that is easy to say and hard to do. I don’t
know how to ensure that you actually internalize these principles; all I can do is ask that
you think about them and try to follow them whenever you can. I’ve put together a pam-
phlet summarizing Agile Modeling—it includes a list of AM’s values, principles, and
practices—that you can download from the AM web site at www.agilemodeling.com.
Perhaps printing this document, the three lists appearing on a single page, and tacking it
on the wall in your work area will help your efforts. It’s worth a try at least.

72244_CH04I 2/27/02 11:04 AM Page 43

Perfect practice makes perfect.

—Sensei Rick Willemsen

44

C H A P T E R

5

Core Practices

The heart of Agile Modeling is its practices. It is AM’s practices that you will actually
apply on your projects, practices that are guided by AM’s values and principles. As
with AM’s principles, its practices are also organized into ones that are core and those
that are supplementary. As I indicated in Chapter 3, “Core Principles,” you must adopt
all of AM’s core practices to be able to claim that you are “doing AM.” Of course, you
can benefit from adopting only some of the practices, but it is better to adopt all of
them if they fit well into your organization’s culture. Adopting AM into your organi-
zation is discussed in detail in Chapter 28, “Adopting AM on an UP Project.”

AM’s core practices are organized into four categories that are described in detail in
Chapter 7, “Order from Chaos: How The AM Practices Fit Together.” These categories,
and the core practices within them, are:

1. Iterative and Incremental Modeling

■■ Apply the Right Artifact(s)

■■ Create Several Models in Parallel

■■ Iterate to Another Artifact

■■ Model in Small Increments

2. Teamwork

■■ Model with Others

■■ Active Stakeholder Participation

72244_CH05I 2/27/02 11:00 AM Page 44

Core Practices 45

■■ Collective Ownership

■■ Display Models Publicly

3. Simplicity

■■ Create Simple Content

■■ Depict Models Simply

■■ Use the Simplest Tools

4. Validation

■■ Consider Testability

■■ Prove it With Code

None of These Practices Are New
As you read this chapter and Chapter 6, “Supplementary Practices,” you will
very likely recognize many if not all of the practices that make up AM. That’s
because the individual practices of AM aren’t new, they are techniques that
effective modelers have been following for years. What is new is that I have
packaged them together for the first time and described them in a single place.
Furthermore, they are the distillation of hundreds of “best practices” that
modelers follow, and as you’ll see in Chapter 7, they fit together into a
synergistic whole, something that I call Agile Modeling.

Practices for Iterative and Incremental
Modeling

AM defines four practices that support an iterative and incremental approach to
modeling:

1. Apply the Right Artifact(s)

2. Create Several Models in Parallel

3. Iterate to Another Artifact

4. Model in Small Increments

Apply the Right Artifact(s)
This practice is AM’s equivalent of the adage “use the right tool for the job.” In this
case, you want to create the right model(s) to get the job done. Each artifact—such as a
UML state chart, an essential use case, source code, or data flow diagram (DFD)—has
its own specific strengths and weaknesses, and therefore is appropriate for some situ-
ations but not others. For example: The UML activity diagram (Rumbaugh, Jacobson,

TI P

72244_CH05I 2/27/02 11:00 AM Page 45

46 Chapter 5

Figure 5.1 A UML Activity diagram for order processing.

and Booch 1999) in Figure 5.1 is useful for describing a business process, whereas the
static structure of your database is better represented by a physical data model
(Reingruber and Gregory 1994) such as the one presented in Figure 5.2. Similarly, a
diagram is a better choice than source code. If a picture is worth a thousand words,
then a model is often worth 1024 lines of code when applied in the right circumstances,
an idea borrowed from Karl Wiegers (1999). This is because you can often explore
design alternatives more effectively by drawing a couple of diagrams on whiteboards
with your peers than you can by sitting down and developing code samples.

An important implication to agile modelers is that they need to gain an understand-
ing of when and when not to apply each type of artifact, information that is presented
in Appendix A, “Modeling Techniques,” for a wide range of modeling techniques.
Learning the nuances of each type of artifact can be difficult, a problem that is com-
pounded by the numerous artifacts available to you.

Start By Learning a Subset of Artifacts
Overwhelmed by the number of modeling artifacts described in Appendix A?
Don’t worry, that’s normal. A serious downside about AM is that it explicitly
asks you to learn how to apply a wide range of modeling artifacts, and that’s

TI P

72244_CH05I 2/27/02 11:00 AM Page 46

Core Practices 47

Figure 5.2 A start at a physical data model for SWA Online.

something that takes time and effort. A good way to start is to focus on a core
subset of them at first, and then learn new techniques one at a time as needed.
Methodologies such as ICONIX (Rosenberg and Scott 1999) and Catalysis
(D’Souza and Wills 1999) will often recommend several artifacts and describe
how to apply them in practice, and then as you discover missing aspects of the
methodology you can supplement it with the appropriate modeling artifacts.

Create Several Models in Parallel
Because each type of model has its strengths and weaknesses, no single model is suffi-
cient for your modeling needs. For example: When you are exploring requirements,
you may need to decide to develop a use case (Jacobson et. al. 1992; Cockburn 2001a) as
you see in Figure 5.3; an essential UI prototype as you see in Figure 5.4 (Constantine
and Lockwood 1999); and Class Responsibility Collaborator (CRC) cards (Cunningham
and Beck 1989) as you see in Figure 5.5. The use case describes how someone places an
order, the UI prototype specifies the requirements for a screen or page to support order
entry, and the CRC cards capture conceptual information about the business domain.

72244_CH05I 2/27/02 11:00 AM Page 47

48 Chapter 5

• The use case begins when a customer chooses to place an order.

• The customer searches for items via the use case "Search for

Item(s)."

• The customer adds an order item to their order.

• The customer indicates the number of a given item they wish to

order.

• The system calculates the subtotal for the item by multiplying

the unit price by the number ordered.

• The customer repeats steps 2 through 5 as necessary to build

their order.

• The customer finishes adding items to their order.

• The customer provides their ship to and bill to information,

including their name, phone number, and surface address.

• The system calculates the subtotal for the entire order by adding

the subtotals of the individual line items.

• The system calculates the taxes applicable for the order

according to the business rule Calculate Taxes for an Order.

• The system calculates applicable discounts for the order

according to the business rule Calculate Discounts for an Order.

• The system displays the applicable taxes and discounts.

• The system calculates the grand total for the order by adding the

applicable taxes to the order subtotal and subtracting the

discounts.

• The system displays a summary of the order.

• The customer verifies that the order is what they want.

• The system schedules the order for fulfillment (see the use case

Fulfill Order).

• The system produces a receipt for the customer summarizing the

order.

Figure 5.3 The basic course of action for placing an order.

As you work with your project stakeholders to explore their requirements, you would
update each of these models appropriately, capturing information in the artifact in
which it makes the most sense. Similarly, when you are designing Java software, you
may discover that you need to develop a UML class diagram to formulate its structure,
a UML state chart diagram to explore the inner workings of a complex class, a UML
sequence diagram to determine how to implement the logic of a flow within a use case
(as you see in Figure 5.1) or a business rule, and a physical data model to understand
the structure of your relational database as you see in Figure 5.2. In combination with
the practice of Iterate to Another Artifact (see next section), agile modelers will often dis-
cover that they are far more productive working on several models simultaneously
than if they are focusing on only one at any given time.

An interesting implication of this practice is that it brings into question two com-
mon antipatterns in the IT industry. The first one is something that I call Single
Artifact Developers, someone who specializes in the development of one kind of

72244_CH05I 2/27/02 11:00 AM Page 48

Core Practices 49

Figure 5.4 An essential UI prototype depicting the requirements for a screen/page.

deliverable. Examples of this are people who want only to write code, low-end
coders who believe that everything of importance is in the source code and nothing
else matters, and data modelers who believe that the most important thing is data
and everything else pales in comparison. The reality is that modern software is far
too complex for anyone with such a narrow focus to be effective. My advice is to
become very adept at creating several types of artifacts, source code and data models
are actually good candidates, but to have at least a passing understanding of a wide
range of techniques. In other words, fill your intellectual toolbox as best you can. The
second antipattern is Single Artifact Modeling Sessions. Use case modeling sessions
are the most common example, where you work on one type of model. A require-
ments modeling session makes sense to me, a use case modeling session just doesn’t
make any sense in an agile environment.

Creating several models in parallel will be difficult at first for some people, particu-
larly those who prefer to focus on a single task at a time and those who currently
exhibit the Single Artifact Developer antipattern. If AM is new to your organization,

72244_CH05I 2/27/02 11:00 AM Page 49

50 Chapter 5

Figure 5.5 Two CRC cards for SWA Online.

then you need to be prepared to help people get used to practices such as this one. I
have found that the first step to overcome these difficulties is to work on two models
at once, following the practice Model with Others discussed later in this chapter and
having someone involved who is comfortable with this approach work with the per-
son who is uncomfortable. I will usually focus on an artifact they are familiar with and
one that they would usually consider “downstream” that they are also familiar with.
Perhaps I would choose a use case and a UML sequence diagram in combination, or a
UML class diagram and a physical data model. The goal is to help them build up their
confidence in the practice, to prove to them that it does in fact work well.

72244_CH05I 2/27/02 11:00 AM Page 50

Core Practices 51

Iterate to Another Artifact
Perhaps you are working a use case, CRC card, sequence diagram, or even source code
and discover you are struggling with it. This is an indication that you should consider
working on another artifact for the time being. Each artifact has its strengths and
weaknesses; each artifact is good for a certain type of job. Whenever you find you are
having difficulties working on one artifact—perhaps you are working on a use case
and find that you are struggling to describe the business logic—then that’s a sign that
you should iterate to another artifact. By iterating to another artifact, you immediately
become “unstuck” because you are making progress working on that other artifact.
Furthermore, by changing your point of view you often discover that you address
whatever it was that caused you to be stuck in the first place. Besides regaining
momentum, you get the added bonus of getting meaningful work accomplished, a key
concept for agile software development.

The hardest thing when applying this practice, after recognizing that you are in fact
stuck, is to identify a likely candidate to iterate to. Experience will guide your choice,
but if you are short on experience, then in Appendix A I provide an indication of likely
candidates to iterate to when you are working on a modeling artifact. For example, if
you work on an essential use case, then you may want to consider changing focus to
start working on an essential UI prototype, a CRC model, a business rule, a system use
case, or a change case.

Model in Small Increments
The principle Incremental Change indicates that an incremental approach to develop-
ment is a fundamental of AM. In fact, you saw in Chapter 1, “Introduction,” that it is a
fundamental aspect of agile software development in general (Agile Alliance 2001b).
The basic idea is that you organize a larger effort into smaller portions that you release
over time, ideally in increments of several weeks or a month or two. This increases
your agility by enabling you to deliver software into the hands of your users faster,
and thus obtain concrete and rapid feedback from them throughout your project.
Because you are taking an incremental approach to development, you will also be tak-
ing an incremental approach to modeling.

With incremental development you model a little, code a little, test a little, then
deliver a little. No more big design up front (BDUF), where you invest weeks or even
months creating models and documents. Instead, the majority of modeling sessions,
impromptu gatherings of people to explore one or more issues, last on the order of 10
or 20 minutes. Agile modelers model in small increments, just long enough so they can
return to working on software as outlined in the principle Software is Your Primary Goal.
Longer modeling sessions, sometimes lasting several days (particularly at the begin-
ning of a project), can occur but they are the exception, not the norm. The longer you
go without concrete feedback, the greater the chance that what you are modeling
won’t be what is actually needed and therefore will be wasted effort. Furthermore, you
run the risk of violating the practices of Depict Models Simply and Create Simple Content,
described later in this chapter, when you focus for a long time on your model(s).

72244_CH05I 2/27/02 11:00 AM Page 51

52 Chapter 5

The hardest part of following this practice is to stop modeling once you’ve fulfilled
your goal. You often want to model the things that you’ll need to work on tomorrow,
next week, or next month. Your subconscious goal is to think things through as best
you can. Stop doing this. Have the courage to solve today’s problem today, and trust
that you can solve tomorrow’s problem tomorrow (Beck 2000).

Practices for Effective Teamwork

AM defines four practices that enable effective teamwork and communication within
your team and with your project stakeholders:

1. Model with Others

2. Active Stakeholder Participation

3. Collective Ownership

4. Display Models Publicly

Model with Others
Software development is a lot like swimming, it’s very dangerous to do it alone. When
you model with a purpose, you often find that you are modeling to understand some-
thing or that you are modeling to communicate your ideas to others to develop a com-
mon vision regarding your project. These are best suited as group activities because
you want the input of several people working together effectively. You will often find
that your development team needs to work together to create the core set of models
that are critical to your project. For example: To develop the metaphor or architecture
for your system, you will often need to model with a group of people to develop a
solution everyone agrees on, as well as one that is as simple as possible. Most of the
time the best way to do this is to talk the issue through with one or more people.
There’s nothing wrong with drawing a simple sketch to think something through on
your own, but once you are finished, talk about your ideas with someone to see if
you’re going in the right direction. Two or more heads are better than one. This prac-
tice helps to improve communication on your project, helps to build a common vocab-
ulary among the people you are working with, increases the chance that you’ll do
quality work, and provides opportunities for people to learn from their co-workers.

This practice can be difficult to adopt at first within organizations that have a “divide
and conquer” culture where the focus is on assigning work to individuals, or that have
highly competitive cultures that pit individuals against each other. To counteract the prob-
lem you will need to communicate the benefit of working together, perhaps taking the
approach that “new methodologies imply new ways of working so let’s just try it for now
and see what happens.” You also need a work area, see Chapter 11, “Agile Work Areas,”
that supports people working together as a team. This may be something as simple as a
whiteboard on the wall of someone’s cubicle or a dedicated workspace for your team.

72244_CH05I 2/27/02 11:00 AM Page 52

Core Practices 53

Active Stakeholder Participation
A project stakeholder is anyone who is a direct user, indirect user, manager of users,
senior manager, operations staff member, support (help desk) staff member, tester,
developer working on other systems that integrate or interact with the one under
development, or maintenance professional potentially affected by the development
and/or deployment of a software project. For the sake of AM, in this definition I
exclude developers who are working on the project—even though developers clearly
have an important stake in the projects that they work on for AM, the term “project
stakeholder” will be used to refer to everyone with a stake in a project except for the
developers working on it. Hence I refer to developers and project stakeholders as sep-
arate groups of people. The alternative is to have terms such as developer project
stakeholders and non-developer project stakeholders (yuck).

AM’s practice of Active Stakeholder Participation is closely related to its practice
Model with Others. Furthermore, it is an expansion of eXtreme Programming (XP)’s
On-Site Customer (Beck 2000) practice that describes the need to have on-site access
to people, typically users or their representatives, who have the authority and ability
to provide information pertaining to the system being built and to make pertinent
and timely decisions regarding the requirements and prioritization thereof. While
this level of participation is required to make your software development efforts
effective, it often isn’t sufficient in many organizations, particularly those where pol-
itics and not a true commitment to building working systems are the order of the
day. Project success often requires a greater level of involvement by project stake-
holders: Senior management needs to publicly and privately support your project,
operations and support staff must actively work with your project team towards
making your production environment ready to accept your system, other system
teams must work with yours to support integration efforts, and maintenance devel-
opers must work to become adept at the technologies and techniques used by your
system. This practice is motivated by the principles of Rapid Feedback and Open and
Honest Communication.

It is clear that in order to be successful, all project stakeholders must actively work
with your team to achieve these goals. There are several implications of this practice:

■■ Users must be prepared to share business knowledge with the team and to
make both pertinent and timely decisions regarding project scope and
requirement priorities.

■■ For senior managers to effectively support your project, they must first
understand the benefits and added value of the technologies and techniques
that your team is using, understand why your team is using them, and
understand the implications of using them. With this knowledge, their efforts
within your organization’s political arena are far more likely to be effective at
the right times in the right ways. Senior managers won’t be able to gain this
requisite knowledge by reading a weekly project status report or by attending a
monthly project steering meeting. Instead, they need to invest the necessary
time to learn about the things that they manage; they need to actively
participate in the development of your system.

72244_CH05I 2/27/02 11:00 AM Page 53

54 Chapter 5

■■ Your operations and support organization must invest the resources required
to understand both your system and the technologies that it uses. Your support
staff must take the time to learn the nuances of your system; the implication is
that they need to work with your system as it is developed and/or your team
will need to provide them with training. Furthermore, your operations staff
must become proficient with both the installation and operation of your
system. You may choose to include one or two operations engineers on your
development team or once again to invest project resources to train operations
staff as required. Regardless of your approach, both your operations and
support organizations will need to be actively involved with your project team.

■■ Other project teams need to work with you if your system needs to integrate
with other systems. For example: Perhaps your system needs to access a legacy
database, interact with an online system, work with a data file produced by an
external system, or provide an XML data extract for other systems. Integration
often proves difficult if not impossible without the active participation of these
developers. Imagine how difficult it would be to access the information
contained in a large legacy database if the owners of that database refuse to
provide any information about it. Remember that communication is a two-way
street; you’ll also be sharing information about your system with other teams.

■■ Maintenance developers need to work with you to learn your system. When
the intention is to either partially or completely hand off the maintenance of
your system to other developers, it is common to bring in software
professionals skilled in maintaining and enhancing existing systems to free up
members of the original development team; then your team must work with
these people so they can take over the system from you. Even when some
original team members are still involved, you must make an effort to transfer
the knowledge to the new members of the team. A good example of this is
having original team members mentor new members or simply pair up with
them when working on new aspects of the system.

Collective Ownership
Everyone can work on any model, and ideally any artifact on the project, if they need
to. For example: If I draw a data flow diagram (DFD) on a whiteboard, there are sev-
eral advantages to this approach. First, the more people who get involved with the
development of an artifact, the greater the opportunity to identify potential issues
with it, supporting the principle of Rapid Feedback. Second, it provides people with
opportunities to gain experience developing various types of models, expanding their
intellectual toolbox, and thus making them more effective as agile modelers—support-
ing the principle that Everyone Can Learn From Everyone Else because they can see each
other’s work and even improve upon it. Third, it reduces the temptation for team
members to say things like “Your model is wrong,” because if they discover that some-
thing is wrong, they should fix it, not complain about it. Fourth, it reduces the chance
that people will personalize certain artifacts, such as: “This class model is my baby and

72244_CH05I 2/27/02 11:00 AM Page 54

Core Practices 55

nothing could possibly be wrong with it,” because no single artifact is only theirs.
Fifth, it promotes understanding of the system among team members, improving com-
munication within your team and reducing both your need to maintain extensive doc-
umentation and your reliance on a single person or subset of people. There is a project
management concept called truck number. The idea is that it is an estimate of the min-
imum number of people you would need to lose from your team before you find your-
self in trouble (for example, the number of people that would need to be hit by a
truck). A truck number of one is a serious problem; a truck number greater than or
equal to the number of people on your team is ideal. Collective ownership increases
your project’s truck number.

This practice can be challenging to adopt within organizations where the individ-
ual is more important than the team, and/or that have a focus on narrowly defined
roles on a project team. People need to accept that the artifacts that they work on are
the property of the team. They also need to work on a wide variety of things—not
work just on the user interface, or just on a single subsystem, or just on system inte-
gration code.

Display Models Publicly
You should display your models publicly, often on something called a “modeling
wall” or a “wall of wonder” (Gottesdiener 2001). This supports the principle of Open
and Honest Communication on your team because all of the current models are quickly
accessible to them, as well as with your project stakeholders because you aren’t hiding
anything from them. Your modeling wall is where you post your models for everyone
to see; the modeling wall should be accessible to your development team and other
project stakeholders. Your modeling wall may be physical, perhaps a designated
whiteboard for your architecture diagram(s) or a place where you tape a printout of
your physical data model. Modeling walls can be virtual, such as an internal Web page
that is updated with scanned images.

A further benefit of this practice is that it shows to your project stakeholders that
you are doing valuable work—it’s right there in front of their eyes. This is particularly
good when you are developing simple models for the first time and are afraid that you
might not be adding the same value (due to lack of quantity) that you did in the past.
Having several simple models displayed on the wall that are publicly being used goes
a long way to showing the worth of your contributions.

This practice can be difficult to implement in firms where wall space is at a pre-
mium, where the project team is working in a relatively public area that has your
firm’s customers or even competitors walking through it and you don’t wish them to
see your work in progress, or in an environment where significant investment has
been made in wall decorations (such as a law firm with oak-covered walls) that you
don’t wish to harm. If any of these problems are the case, you may wish to consider
moving your team to another location. Furthermore, cultural issues such as the
unwillingness to share information with people outside your group can also hamper
this practice. If this is the case, then my advice is to find the courage to adopt this
practice.

72244_CH05I 2/27/02 11:00 AM Page 55

56 Chapter 5

Figure 5.6 A UML class diagram.

Practices That Enable Simplicity

AM defines three practices that enable simplicity within your modeling efforts:

1. Create simple content

2. Depict models simply

3. Use the simplest tools

Create Simple Content
You should keep the actual content of your models—your requirements, your analysis,
your architecture, or your design—as simple as you possibly can while still fulfilling
the needs of your project stakeholders. The implication is that you should not add
additional aspects to your models unless they are justifiable. For example: The UML
class diagram (Rumbaugh, Jacobson, and Booch 1999) in Figure 5.6 does not indicate
the visibility of the attributes and operations of the classes, presumably something that
whoever will be programming these classes (hopefully the people who drew the dia-
gram) will determine when they get to it. This is along the lines of XP’s practice of

72244_CH05I 2/27/02 11:00 AM Page 56

Core Practices 57

Simple Design (Beck 2000). This practice is also applicable to non-model artifacts such
as source code, project plans, and user documentation.

So how do you know when the content of your models is simple? I believe the fol-
lowing factors, modified from Kent Beck’s (2000) simplest design advice, for deter-
mining when a model is simple:

■■ The model communicates everything that you want to communicate. In other
words, it fulfills its purpose.

■■ The model must contain no duplicate information.

■■ The model should have the fewest possible elements.

The most common stumbling blocks to adopting this practice are your tendency to
want to over-model, something that you can overcome by recognizing the problem
and stopping yourself when your model has fulfilled its immediate purpose, and the
tendency of others within your organization to equate progress to detailed models and
documentation. You’ll often find significant organizational peer pressure to conform
to existing standards of documentation and modeling detail, particularly in firms with
prescriptive processes that are new to agile approaches. If this is the case, you will
need to communicate your approach to others within your organization, explaining
the reasons behind what you are doing. You should even consider lending them your
copy of this book or, better yet, suggest that they buy their own copy!

Depict Models Simply
When you consider the potential diagramming notations that you could apply (UML
diagrams, user interface diagrams, data models, and so on), you quickly realize that
most of the time you require only a subset of the diagramming notation available to
you. For example: A simple model that shows the key features that you are trying to
understand, perhaps a class model depicting the primary responsibilities of classes
and the relationships between them, often proves to be sufficient. Yes, you could
model all the scaffolding code that you will need to write, all the getter and setter oper-
ations that your coding standards tell you to use, but what value would that add? Very
little for an agile modeler.

Although this practice complements Create Simple Content, the two concepts are
orthogonal. Create Simple Content focuses on the subject matter of the model, whereas
Depict Models Simply focuses on how you present your models. Common techniques
(Ambler 2002) to simplify your diagrams include:

■■ Avoid crossing lines

■■ Avoid curved lines

■■ Avoid diagonal lines

■■ Avoid different size bubbles

■■ Avoid too many bubbles (no more than 7 +/- 2)

■■ Avoid unnecessary detail

72244_CH05I 2/27/02 11:00 AM Page 57

58 Chapter 5

Use the Simplest Tools
The vast majority of models can be drawn on a whiteboard, on paper, or even on the
back of a napkin. Whenever you want to save one of these diagrams, you can take a
picture of it with a digital camera or even transcribe it onto paper. In fact, you’ve seen
several models created with simple tools. Figure 5.1 was created using flipchart paper,
sticky notes, and markers; Figure 5.2 was drawn on a whiteboard; and the CRC cards
of Figure 5.3 were created with index cards and a pen. Using the simplest tools works
because most diagrams are throwaways. Their true value comes from drawing them to
think through an issue, and once the issue is resolved, the diagram doesn’t offer much
value. As a result, a whiteboard and markers are often your best modeling tool alter-
native. Use a drawing tool to create diagrams to present to important project stake-
holders and occasionally use a modeling tool if and only if they provide value to
programming efforts such as the generation of code. Think of it like this: If you’re cre-
ating simple models, often models are throwaways because if you are modeling to
understand, you likely don’t need to keep them once you do understand the issue;
therefore, you don’t need to apply a complex modeling tool.

Chapter 10, “Using the Simplest Tools Possible?” explores this practice in detail.
Although I explicitly pointed this out in Chapter 1, I’m going to do so again: AM has
nothing against CASE tools. If investing in a CASE tool is the most effective use of
your resources, then by all means do so, and then use it to the best of its ability. My
experience is that there are many CASE tools on the market but that few of them are
worth the bother. If a simple tool is sufficient for your needs, then use it.

This can be a hard practice to adopt within organizations that are accustomed to
models created using sophisticated tools. Many developers equate modeling with
using an expensive CASE tool, and it’s very difficult for them to accept that a stack of
index cards can be effective. The best way to address this situation is to get them
actively involved with using the simple tools, giving them experience in techniques
such as CRC modeling and essential UI prototyping.

Practices for Validating Your Work

AM defines two practices that pertain to the testing and validation of your work:

1. Consider testability

2. Prove it with code

Consider Testability
When you model, you should constantly ask yourself, “How are we going to test
this?” If you can’t test the software that you build, you shouldn’t build it. Modern soft-
ware processes include testing and quality assurance activities throughout the entire
project lifecycle, and some even promote the concept of writing tests before writing
software, an XP practice called Test-First Design (Beck 2000). Agile developers test
early and test often, ensuring that they are producing quality work. The hardest aspect

72244_CH05I 2/27/02 11:00 AM Page 58

Core Practices 59

of adopting this practice is to learn the habit of constantly thinking “in the back-
ground” about how you’re going to test your work.

Prove It with Code
A model is an abstraction, one that should accurately reflect an aspect of whatever
you build. To determine if it will actually work, you should validate it by writing the
corresponding code. You’ve developed a sketch of an HTML page for accepting
billing address information? Code it and show the resulting user interface to your
users for feedback. You’ve developed a UML sequence diagram that represents the
logic to implement a complex business rule? Write the testing code, the business
code, and then run the tests to ensure that you’ve gotten it right. Never forget that
with an iterative and incremental approach to software development, the norm for
the vast majority of projects, modeling is only one of many tasks that you will per-
form. Do some modeling, do some coding, and do some testing (among other
things). Although the focus of AM is on modeling, never forget that there is far more
to development.

There are several common impediments to this practice.

■■ It works best when the people doing the modeling are also the ones writing the
code, implying that an agile developer needs a wide range of skills. In Chapter
12, “Agile Modeling Teams,” I argue that agile developers need to be generalists
with one or more specialties. Remember, there is far more to software
development than modeling.

■■ Second, many developers have a “big modeling up front” (BMUF) mindset that
leads them to model for greater periods of time than they need to, putting off
coding for a while.

■■ Third, many developers are accustomed to a process where you create a model,
review and rework it, then code it. With AM you are much more likely to do a
little modeling and then do a little coding. The need to review your model goes
away because you’re proving your model with code and because you are
usually your model(s)’ customer and therefore are the one directly affected by
any problems with it (motivating you to do quality work to begin with).

72244_CH05I 2/27/02 11:00 AM Page 59

The practices are not the knowing. They are a path to the knowing.

—Ron Jeffries

60

C H A P T E R

6

Supplementary Practices

Agile Modeling includes supplementary practices that support its core practices,
described in Chapter 5, “Core Practices,” practices that your team may optionally
decide to adopt. Similarly, AM’s supplementary practices are organized into categories
that are described in detail in Chapter 7, “Order from Chaos: How the AM Practices Fit
Together.” These categories, and the practices within them, are:

1. Productivity

■■ Apply Modeling Standards

■■ Apply Patterns Gently

■■ Reuse Existing Resources

2. Documentation

■■ Discard Temporary Models

■■ Formalize Contract Models

■■ Update Only when It Hurts

3. Motivation

■■ Model to Communicate

■■ Model to Understand

72244_CH06I 2/27/02 10:58 AM Page 60

Supplementary Practices 61

Practices to Improve Your Productivity

AM defines three supplementary practices that focus on productivity enhancements for
modeling:

1. Apply Modeling Standards

2. Apply Patterns Gently

3. Reuse Existing Resources

Apply Modeling Standards
This practice is the modeling version of XP’s Coding Standards practice (Beck 2001), the
basic idea is that developers should agree to and follow a common set of modeling
standards on a software project. Just like there is value in following common coding
conventions, clean code that follows your chosen coding guidelines is easier to under-
stand and evolve than code that doesn’t, there is similar value in following common
modeling conventions. The most common standard is the UML (Object Management
Group 2001) that defines the notation and semantics for common object-oriented
models.

The UML Is Not Complete
The Unified Modeling Language (UML) (Object Management Group 2001a)
provides a good start for standard modeling notation but it isn’t sufficient. As
you can see in Appendix A, “Modeling Techniques” there are many non-UML
artifacts described there. At the time of this writing, the UML does not include
any sort of model for user interface design nor does it include any sort of
data/persistence model. When was the last time you built a system without a
user interface or data storage? Don’t listen to the marketing rhetoric of the
vendors trying to sell you their CASE tools or the self-appointed gurus (oops,
guess that includes me) trying to sell you their books, training courses, and
consulting services. The next time someone claims the UML is sufficient for
real-world development, challenge their claim. I doubt they’ve actually thought
it through. I explore this issue in detail in Chapter 15, “The UML and Beyond.”

Your standards should include descriptions of notation for any non-UML models
you intend to create; simple hand-drawn sketches are often sufficient. For example,
the notation summary for robustness diagrams (Jacobson et. al. 1992; Rosenberg and
Scott 1999) presented in Figure 6.1 gives modelers enough information about the
accepted notation for robustness diagrams to create the diagram shown in Figure 6.2.
Figure 6.1 also provides basic information so that others can quickly grasp the notation
being applied. Furthermore, you may want to adopt modeling style guidelines to help
you to create consistent and clean-looking diagrams. What is the difference between a

TI P

72244_CH06I 2/27/02 10:58 AM Page 61

62 Chapter 6

Figure 6.1 A summary of the notation for a robustness diagram.

style guideline and standards? For source code, a standard would be to name attrib-
utes in the format attributeName, whereas a style guideline is to indent the code within
a control structure (an if statement, a loop, ...) by three spaces. For models, a standard
would be to use a square rectangle to model a class on a class diagram and a style
guideline would be to have subclasses placed on diagrams below their superclass(es).

Understandability Is More Important than Following Standards
Don’t let the desire to conform to a standard or guideline blind you to the
practical reasons why you model—to explore an issue further or to help you to
communicate with other people. I’ve seen people get upset because I’ve used a
filled-in arrowhead on an association between use cases instead of the
“official” UML notation, which is an open-headed arrow. Yes, it would have
been nice if I were to memorize the 500 plus page specification for the UML
(Object Management Group 2001a), but unfortunately I haven’t gotten around
to it. Loosen up a bit; you’ll be far more effective that way.

The greatest impediment to adopting this practice is lack of existing standards and
guidelines within your organization. I prefer to start by introducing notation sum-
maries, such as the one shown in Figure 6.1, because they are immediately useful. I’ll
then introduce modeling guidelines as needed, evolving the guidelines over time. You
should also search the web for existing standards and style guidelines, www.uml-
style.org is a good start, and adopt what you think is appropriate.

Apply Patterns Gently
Effective modelers learn and then appropriately apply common architectural, design,
and analysis patterns in their models. However, both Martin Fowler (2001b) and
Joshua Kerievsky (2001) believe that developers should consider easing into the appli-
cation of a pattern, to apply it gently. This reflects AM’s value of Simplicity. In other
words, if you SUSPECT that a pattern is applicable, you should model it in such a way
as to implement the minimal functionality that you need today but that makes it easy
to refactor/rework later if required. When it becomes clear that applying the full-

TI P

72244_CH06I 2/27/02 10:58 AM Page 62

Supplementary Practices 63

Figure 6.2 An example of a robustness diagram used in practice.

fledged pattern is the simplest approach possible, refactor your work. In other words,
don’t over-model.

For example: You may recognize a good spot in your design to apply the GoF’s
Strategy pattern (Gamma, Helm, Johnson, and Vlissides 1995), but at the moment you
only have two algorithms to implement. The simplest approach might be to encapsu-
late each strategy in its own class and build an operation that chooses them appropri-
ately and passes them the appropriate input. This is a partial implementation of

72244_CH06I 2/27/02 10:58 AM Page 63

64 Chapter 6

Strategy that leaves you in a position to refactor your design if more algorithms need to
be implemented, yet does not require you to build all the scaffolding that Strategy
requires—an approach that enables you to ease into applying the pattern when it
makes sense to.

There are two common challenges you are likely to run into adopting this practice.
First, many modelers who are experienced with patterns will often jump right into
their application—it’s what they’ve been doing for years, so they’ll need to learn to
rein themselves in. Second, there are hundreds of very good patterns available to you.
Clearly, there is a significant learning curve.

Reuse Existing Resources
There is a wealth of information that agile modelers can take advantage of by reusing
them. Perhaps some analysis or design patterns are appropriate for you to apply gen-
tly to your system. Or perhaps you can take advantage of an existing enterprise
requirements model, business process models, physical data models, or even models
of how systems are currently deployed within your user community. It’s true that
these models either don’t exist or are out of date in many organizations, but you’re
often likely to uncover reasonably accurate models with a bit of research. Remember
the principle, Maximize Stakeholder Investment, and reuse the wheel; don’t reinvent it.

The biggest impediment to adopting this practice is the perception that there are
few high-quality items applicable to your project which are available for reuse.
However, when you realize that there is a wide variety of things that you can reuse on
a project, including code, models, components, frameworks, patterns, documentation
templates, and large-scale domain components (Ambler 1999), then your list of candi-
date resources dramatically increases. The “not invented here” (NIH) syndrome is
often blamed for low levels of reuse, but my experience is that agile developers will
readily reuse something if it addresses a problem relevant to the project they are work-
ing on and is of sufficient quality.

Practices for Agile Documentation

AM defines three supplementary practices that pertain to the creation of permanent
models and/or documentation:

1. Discard Temporary Models

2. Formalize Contract Models

3. Update Only When It Hurts

Discard Temporary Models
The vast majority of the models that you create are temporary/working models—
design sketches, low fidelity prototypes, index cards, potential architecture/design

72244_CH06I 2/27/02 10:58 AM Page 64

Supplementary Practices 65

alternatives, and so on—models that have fulfilled their purpose but no longer add
value. Models quickly become out of sync with the code and with each other, and
there is nothing wrong with that. You must then make the decision to synchronize the
models, if doing so adds value to your project, or to simply discard them because the
investment to update the models won’t be recouped by the value of having done so
(there’s negative payback).

A complementary practice is Update Only When It Hurts (see that section later in this
chapter) because if you found that you haven’t needed to update a model for a long
time, then it was likely a temporary model but you didn’t realize it at the time.

Not Discarding Temporary Models Puts You at Risk
If a model is temporary, then discard it the instant you are finished with it. This
has several benefits. First, it reduces the clutter within your workspace. Second,
it reduces the chance that someone will make a decision based on the (likely)
out-of-date information that it contains. Third, it reduces the temptation to
invest time updating the model.

This practice is often hampered by fear. Developers are afraid to discard a model
because they believe they might need to go back to it at some point to determine
what they were thinking at the time. So they’ll put their models into a file, or into a
pile on their desk, or take digital pictures of everything and store them in a directory.
The interesting thing is that they rarely go back to review their models: Either they
can’t find them or they simply don’t run into a situation where their older models
help. If saving your temporary models is easy to do and it somehow makes you feel
safe, then by all means do it, but at some point I strongly advise that you take the
time to reflect on the value of doing this. I suspect you’ll realize that saving your tem-
porary models isn’t worth the effort, so you might as well discard them at the first
opportunity.

Formalize Contract Models
Contract models are often required when an external group controls an information
resource that your system requires, such as a database, legacy application, or informa-
tion service. A contract model is formalized with both parties mutually agreeing to it
and ready to mutually change it over time if required. Examples of contract models
include the detailed documentation of an application programming interface (API), a
file layout description, an XML DTD, or a physical data model describing a shared
database. As with a legal contract, a contract model often requires you to invest signifi-
cant resources to develop and maintain the contract to ensure that it’s accurate and suf-
ficiently detailed. Your goal is to minimize the number of contract models for your
system to conform to the XP principle of traveling light. Note that you will usually use
an electronic tool to develop a contract model because you must maintain the model
over time.

WARN I NG

72244_CH06I 2/27/02 10:58 AM Page 65

66 Chapter 6

The Internet is a perfect example of the success of formalized contract models. The
basis of the Internet is a collection of well-defined protocols, such as File Transfer
Protocol (FTP) and Hypertext Transfer Protocol (HTTP), and file formats such as
Extensible Markup Language (XML) and Hypertext Markup Language (HTML).
These protocols are file formats that are defined by standards bodies, in particular the
World Wide Web Consortium (W3C), and documented at publicly available web sites.
Each definition is effectively a contract model between tool vendors. The HTTP proto-
col defines how web browser software will interact with web server software—a
multi-billion dollar effort whose basis is formalized contract models.

The biggest challenge when adopting this practice is the people issues involved
with the effort—getting people from different groups to work together to create the
model(s). Over-documentation can also be a problem, although one you can deal with
by following the advice presented in Chapter 14, “Agile Documentation.”

Update Only When It Hurts
You should update an artifact such as a model or document only when you
absolutely need to, when not having the model updated is more painful than the
effort of updating it. With this approach, you discover that you update a smaller
number of models than you would have in the past, because the reality is that your
models don’t have to be perfect to provide value. Too much time and money is
wasted trying to keep artifacts in sync with one another—in particular, models with
each other and with source code—time and money that could be better spent devel-
oping new software. Software evolves too quickly, making synchronization of arti-
facts a nearly an impossible task to begin with. Remember the principle, Maximize
Stakeholder Investment and the Agile Alliance’s (2001a) preference for working soft-
ware over comprehensive documentation.

For example: Compare the UML class diagram (Rumbaugh, Jacobson, and Booch
1999) in Figure 6.3 with the data model shown in Figure 6.4 (Reingruber and Gregory
1994). They’re not perfectly consistent with one another; the class diagram indicates
that a customer has an address, yet the data model indicates that customers have one
or more addresses. The data model also indicates that two relationships exist between
orders and addresses, orders have a ship to address and potentially a different bill to
address, yet we don’t see any indication of that sort of relationship in the class dia-
gram at all. Should we update the diagrams so they are consistent with one another?
The class diagram is simple, so it’s likely that it has already been superceded by
another artifact (likely source code), and it’s hand-drawn, so it may have already been
discarded. If the model has been superceded by code, it’s likely that the program-
mer(s) have already figured out that the class diagram wasn’t perfect, if for the simple
fact that it was inconsistent with both the user interface requirements captured by the
essential UI prototype (Constantine and Lockwood 1999) in Figure 6.5 and the data
model—which appear to be in sync with each other. It’s likely that developers quickly
sketched the class diagram as they were exploring a potential implementation strategy
for the business classes to support placing an order. They very likely never intended to
update the diagram, or keep it once they had written code from it, so they only made

72244_CH06I 2/27/02 10:58 AM Page 66

Supplementary Practices 67

Figure 6.3 A UML class diagram.

it accurate enough for their needs and didn’t bother to update it when they got into the
details of the source code and database schema. Therefore, it doesn’t hurt enough to
justify updating this class diagram, so I wouldn’t recommend investing any time in
doing so.

Figure 6.5 shows an essential UI prototype that depicts the requirements for a
screen/page. If, however, developers who were unfamiliar with the existing code and
database schema were making decisions based on the class diagram, perhaps they are
working on order fulfillment functionality; then you might want to update the class
diagrams. Having consistent models and documentation is the best way to ensure that
the two groups of developers are developing to the same vision, right? Wrong! If you
want various groups to work to the same vision, they need to communicate effectively
with one another, to collaborate with each other to define and work to their shared
vision. Yes, documentation is one way for people to communicate, but as you’ll see in
Chapter 8, “Communication,” it is one of the least effective ways to do so. You’d be
much better advised to get the two groups of developers talking with one another than
you would be to synchronize your artifacts—not only will you come to a common
understanding faster, you’ll likely invest fewer resources doing so. As you saw in
Chapter 1, “Introduction,” one of the principles of the agile development methodolo-
gies such as AM is that the most efficient and effective method of conveying informa-
tion to and within a development team is face-to-face conversation (Agile Alliance

72244_CH06I 2/27/02 10:58 AM Page 67

68 Chapter 6

Figure 6.4 A start at a physical data model for SWA Online.

2001a).
When you first adopt this practice, the most difficult part of it is to become comfort-

able with artifacts getting out of sync with one another, to wait until it really does start
to become inconvenient for you. Many organizations, particularly ones with strong
review cultures or ones with sophisticated prescriptive processes, have difficulty
adopting this practice at first as it goes against their current tendency to keep artifacts
up-to-date with one another. The good news is that this practice is enhanced by the
principle of traveling light—the less permanent models and documentation that you
choose to maintain, the less painful it is to update them when changes are required.

Practices Concerning Your Motivation

AM defines two practices that explore your potential motivations for modeling:

72244_CH06I 2/27/02 10:58 AM Page 68

Supplementary Practices 69

Figure 6.5 An essential UI prototype depicting the requirements for a screen/page.

1. Model to Understand

2. Model to Communicate

Model to Understand
The most important application of modeling is to explore the problem space, to iden-
tify and analyze the requirements for the system, or to compare and contrast potential

72244_CH06I 2/27/02 10:58 AM Page 69

70 Chapter 6

Figure 6.6 A flow chart that depicts the Place-An-Order use case.

design alternatives to identify the potentially simplest solution that meets the require-
ments. Following this practice you often develop small, simple diagrams that focus on
one aspect of your software, such as the life cycle of a class or the flow between
screens, diagrams that you often throw away once you are finished with them. You
will do this with others, following the practice Model with Others, often in quick
impromptu modeling sessions.

Model to Communicate
One reason you model is to communicate with people external to your team or to cre-
ate a contract model (see the practice Formalize Contract Models). For example, you may
need to communicate the intended scope of your project to senior management, using
a UML use case diagram or a workflow diagram. You may also need to describe the
architecture of your system as part of the system documentation you provide to your
system maintenance developers (a topic discussed in detail in Chapter 14). Or you
may want to develop a flow chart, an example of which is shown in Figure 6.6, to
explain the logic of a use case to a co-worker.

Because the customers for some models are outside your team, you may need to
invest the time to make your model(s) look “pretty” by using electronic tools such as
word processors, drawing packages, or even sophisticated CASE tools. However,

72244_CH06I 2/27/02 10:58 AM Page 70

Supplementary Practices 71

remember the principle Model with a Purpose and first identify why you are creating
this model and for whom. By knowing your audience and through working closely
with them, you will be able to determine the most appropriate format for your model
(remember the principle Content is More Important Than Representation).

An interesting side effect of this practice is that it helps to build a common vocabu-
lary within your team and with your project stakeholders. It also helps to set expecta-
tions with your project stakeholders and provide an opportunity for you to build
support for your project efforts.

Really Good Ideas

There are several practices that are not officially part of Agile Modeling, but when
applied to a project can improve your efforts immensely. In particular, in Part 3 of this
book you will see that refactoring (Fowler 1999) and test-first design (Beck 2000) are
important aspects of eXtreme Programming that can be used to enhance AM’s prac-
tices. These additional practices are:

■■ Know Your Tools

■■ Refactoring

■■ Test-First Design

Know Your Tools
Software development products, such as diagramming tools or modeling tools, have a
wide variety of features. If you are going to use a modeling tool, then you should
understand its features, knowing when to and when not to use them. The implication
is that we should give developers adequate training in a tool and the opportunity to
learn how to use their tools effectively on the job.

Refactoring
Refactoring (Fowler 1999) is a coding practice in which you make small changes,
called refactorings, to your code to support new requirements or to keep your design
as simple as possible. An important thing to understand about a refactoring is that it
preserves the semantics of your code—in other words, you make a change and your
code still works. For example: If you change the name of an operation of a class, all the
other code within your system that invokes that operation will now refer to the new
name, not the old one. The best way to think of refactoring is that it is a disciplined way
to improve both the quality of your code and your detailed design. Refactoring is an
enabler of AM practices such as Create Simple Content and Model in Small Increments and
is discussed in detail in Chapter 18, “Agile Modeling Throughout the XP Lifecycle.”

72244_CH06I 2/27/02 10:58 AM Page 71

72 Chapter 6

Test-First Design
Test-first design is an XP practice (Beck 2000) where you write your testing code before
you write your business code. Always. From the point of view of AM, the primary
advantage of this approach is that it forces developers to think through their code
before they write it, to consider the detailed design of the code. When developers fol-
low this practice, they can spend significantly less time working on detailed design
models because their test-first design efforts effectively replace this style of modeling.
Following this approach, agile developers quickly discover whether or not their ideas
actually work—the tests will either validate their models or not—providing rapid
feedback regarding the ideas captured within the models. Test-first design and its rela-
tionship with AM are discussed in detail in Chapter 18.

How to Schedule AM Practices on
Your Project

Gotcha! Developers apply AM practices minute-by-minute; you wouldn’t see tasks
such as “Create Simple Content” or “Model to Understand” on your project schedule.
Yes, you may include the occasional modeling session, described in Chapter 13, “Agile
Modeling Sessions,” on your schedule but these are activities, not AM practices.

Read Adaptive Software Development (ASD)
In the book Adaptive Software Development (Dorset House Publishing 2000),
Jim Highsmith rethinks the process by which software should be developed. If
you had hoped to include AM practices as tasks in your project schedule, then I
strongly suggest reading this book because he has some very interesting and
relevant things to say about the current state of project planning practices,
many of which are spectacularly dysfunctional.

TI P

72244_CH06I 2/27/02 10:58 AM Page 72

So much of what we call management consists in
making it difficult for people to work.

—Peter Drucker

73

C H A P T E R

7
Order from Chaos: How the AM

Practices Fit Together

The practices of AM are synergistic in the fact that they support and often enable one
another. They are chaordic (Hock 1999) in that they define behavior that harmoniously
blends order and chaos—more on this at the end of the chapter. To make AM work
effectively you need to have an understanding of how its practices fit together. Figure
7.1 depicts the relationships between AM’s practices, organizing them into seven cate-
gories. The first four categories—Validation, Iterative and Incremental, Teamwork,
and Simplicity—consolidate AM’s core practices described in Chapter 5, “Core Prac-
tices,” the ones that you must adopt in full to be truly able to claim that you are agile
modeling. The supplementary practices, described in Chapter 6, “Supplementary
Practices,” in turn are consolidated by the Documentation, Motivation, and Productiv-
ity categories. Let’s start by considering how the core practices relate to one another
within each category, then we’ll examine the supplementary practices within each cat-
egory, then we’ll discuss how the categories enable one another.

The Core Practices

AM’s core practices are organized into four categories:

1. Teamwork

2. Iterative and Incremental

72244_CH07I 2/27/02 10:57 AM Page 73

74 Chapter 7

Figure 7.1 How AM’s practices relate to one another.

3. Simplicity

4. Validation

Practices for Effective Teamwork
There are four practices in the Teamwork category—Active Stakeholder Participation,
Model with Others, Display Models Publicly, and Collective Ownership. The practice Active
Stakeholder Participation is critical to your success because it is your project stakehold-
ers for whom you are building your system. They are the people whose requirements
you need to understand and fulfill. In other words, you need to work closely with
your stakeholders—something that is supported by the practice Model with Others.
Your stakeholders are included in this “others” category. When there are several peo-
ple involved in a modeling effort, at least one of which should be a project stakeholder
and another a developer, you are in a position where you can work together synergis-
tically by benefiting from each others’ strengths and counteracting each others’ weak-
nesses. An agile modeler whose expertise is in business process modeling and
business rule definitions may miss information that someone with a focus on struc-
tural modeling techniques such as UML class diagrams or data models would pick up
on. Similarly, a direct user of your system would provide different information to your
team than would senior management. The point is that not only do you want to
actively work with your project stakeholders, you also want to do so in a team envi-
ronment so that multiple points of view and expertise are taken into account.

72244_CH07I 2/27/02 10:57 AM Page 74

Order from Chaos: How the AM Practices Fit Together 75

The practice Collective Ownership enhances teamwork because when a single person
“owns” a model, that person quickly becomes a bottleneck for your modeling efforts;
however, when anyone is allowed to work on a model, people can easily work on it
together as a team. The practice Display Models Publicly makes it easy for people to look
back and forth between the models, considering the information that the models con-
vey all at once, enhancing collaborative efforts between them. This of course assumes
that the models are within sight of each other, or at least the ones that you are currently
working on are close to one another, a topic that I cover in detail in Chapter 11.

Practices for Iterative and Increment
Development
The Iterative and Incremental category of AM practices includes Apply The Right Arti-
fact(s), Create Several Models in Parallel, Iterate to Another Artifact, and Model in Small Incre-
ments. Each artifact, no matter what it is, has its own strengths and weaknesses and no
single model is sufficient to describe major aspects of your project such as its require-
ments or its architecture. For example: You often need a combination of use cases, busi-
ness rule definitions, and technical requirement definitions to explore the requirements
for your system. It is very unlikely that your project stakeholders will tell all of their
usage requirements at once for your use cases, then switch gears to tell you about all of
their business policies to be captured as business rules, then switch gears again to tell
you about all of their nonfunctional needs that should be captured as technical require-
ments. Instead, they’ll tell you their requirements as they think of them and will often
go back to what they said earlier to provide details or even to change their minds. Your
requirements identification efforts can often be very dynamic, and similarly so can your
analysis, architecture, and design efforts. I believe the dynamism is the result of the way
that people think; our brains seem to connect information in an apparently chaotic man-
ner. The result is that ideas seem to “pop out of thin air” or we have an “a-ha! experi-
ence.” Agile modelers recognize that people think in this dynamic manner, particularly
collaborative groups of people, and act accordingly. They Create Several Models in Paral-
lel to collect the wide range of information they are gathering. This practice is clearly
supported by the practice Apply The Right Artifact(s) as well as Iterate to Another Artifact.
You may be capturing information about a usage requirement in a use case when your
project stakeholder(s) begin discussing their needs for an editing screen, something bet-
ter specified by an essential user interface (UI) prototype or traditional UI prototype.
Iterating back and forth between artifacts, one of which may very well be program
source code, is enabled by the practice Model in Small Increments. You will typically
work on a little bit of one artifact, then another, then another, and so on.

Practices That Promote Simplicity
The Simplicity category contains the core practices of Create Simple Content, Depict Mod-
els Simply, and Use the Simplest Tools. The two practices Create Simple Content and Depict
Models Simply focus on model simplicity, and often go hand-in-hand during modeling.
By focusing on how to depict something simply, modelers often discover how to make

72244_CH07I 2/27/02 10:57 AM Page 75

76 Chapter 7

whatever it is that they are modeling simpler. For example: I have been involved in the
development of several persistence layers (Ambler 2001d), software conceptually sim-
ilar to an Enterprise JavaBeans (EJB) persistence container that encapsulates persistent
storage from your domain objects, and as a result have been involved in some very
complex architecture and design efforts. During one of them we were trying to figure
out how to create a simple diagram that we could provide to application developers to
help explain how to work with the persistence layer. In the process we discovered a
refactoring to make our design easier to understand. Simplicity of process is enhanced
by the practice Use the Simplest Tools. The simpler a tool is, the easier it is to work with.
This decreases the barriers to entry for working on your models and thereby increases
the chance that other people will in fact do so, including your project stakeholders. By
using simple tools, you increase the chance that you will depict those models simply.
Furthermore, when you use simple/low-fidelity tools such as index cards, Post-It
notes, and whiteboards, you actively experience the effectiveness of simple tools—
subconsciously reinforcing the concept that the simplest solution can work very well, a
mindset that will reveal itself in a simpler design for the system that you are building.

Practices To Validate Your Work
The Validation category consists of two core practices: Consider Testability and Prove It
with Code. A philosophy that I have always benefited from is if you can’t test it then
you shouldn’t build it, and that “anything you can build you can test.” This philoso-
phy leads me to not only consider testing when I am modeling systems, but also to
actively seek feedback about my models. I actually generalize this to consider testabil-
ity of all the artifacts that I create and to actively validate all types of artifacts, but
that’s beyond the scope of AM. By considering testability when I am modeling, I am
far more likely to model something that is testable, and by actively seeking to prove a
model with code as soon as possible, I quickly show that my system is testable.

The Supplementary Practices

AM’s supplementary practices are organized into three categories:

1. Documentation

2. Motivation

3. Productivity

Practices Relevant to Documentation
The Documentation category consists of three supplementary practices: Discard Tempo-
rary Models, Formalize Contract Models, and Update Only When It Hurts. Your requirements,
your understanding of those requirements, and potentially even your understanding of
your solution change throughout your project (remember the principle Embrace
Change). Many of your project artifacts, including models and documents, will need to
evolve to reflect these changes. As you’ll see with the discussion of agile documenta-

72244_CH07I 2/27/02 10:57 AM Page 76

Order from Chaos: How the AM Practices Fit Together 77

tion in Chapter 7, one of the best ways to ensure that you are taking an agile approach
to your models and documents is to update them only when it hurts. When following
this practice, if you find that a model isn’t being updated, it is an indication that the
model may not provide your team with much value. If the model doesn’t provide
value, then it should be considered temporary and discarded. However, remember
that contract models, models that define an interface between your system and
another, are not likely to change much over time, but because of their importance they
are not candidates for disposal. In short, if a noncontract model isn’t being updated
over time, it is a good indication that you don’t need that model.

Practices of Motivation
The two practices Model to Communicate and Model to Understand fall into the Motiva-
tion category. These two practices are not closely related. Sometimes you create a
model to explore or understand an issue, sometimes you create one to communicate
your ideas to someone else, and sometimes you create a model for both purposes.
However, as you saw in Figure 7.1, these two practices together enable two other cate-
gories of practices, a topic discussed later in this chapter.

Practices That Increase Productivity
Finally, the Productivity category is composed of the practices Apply Modeling Standards,
Apply Patterns Gently, and Reuse Existing Resources. The Reuse Existing Resources practice is
in many ways a mindset, one that says I want to take the good work of others and benefit
from it as best I can. This mindset promotes a willingness to apply patterns, which in my
experience is one of the most productive forms of reuse available to developers because
you are reusing the proven solutions of other developers (Ambler 1999). This mindset also
promotes a willingness to follow modeling standards and guidelines; in fact standards and
guidelines in general, promote consistency within your work. Yes, you write your own set
of guidelines, and sometimes you do need to because of some unusual factor within your
environment, but with a little bit of searching on the Internet, you can quickly turn up
development guidelines such as those described at www.modelingstyle.info and www
.codingstyle.info.

How the Categories Relate to One Another

Consider the practices of the Teamwork category. Active Stakeholder Participation is sup-
ported by the practices of the Simplicity category because simplicity lowers any barriers to
participation. Participation is also enabled by the Iterative and Incremental practices, par-
ticularly Create Several Models in Parallel because it opens up more opportunities for stake-
holders to get involved. The practices Collective Ownership and Model with Others are
supported by the Motivation practices—your need to understand or communicate an
issue often motivates people to work together—as well as the Simplicity practices, once
again because they lower barriers to participation. Display Models Publicly is enhanced by
the Productivity practices, following standards and applying patterns increases consis-

72244_CH07I 2/27/02 10:57 AM Page 77

78 Chapter 7

tency and readability, and reuse of existing resources such as common architectural mod-
els provides a familiar base from which people can start with your models. Collective Own-
ership is supported by the Iterative and Incremental practices; in particular, Create Several
Models in Parallel and Iterate to Another Artifact seem to promote several people working
together on whatever models are appropriate at the time.

The practices of several other categories support the practices of the Simplicity cat-
egory. The practice, Depict Models Simply, is enhanced by Apply Modeling Standards and
Apply Patterns Gently, because both of these practices support modeling in a common
language (your chosen standards and well-understood patterns). Simplicity practices
are enhanced by the Documentation practices—when you Update Only When It Hurts,
you are more likely to Depict Models Simply and Create Simple Content because you
aren’t needlessly adding information to your models.

Now consider the Iterative and Incremental practices. The Teamwork practices clearly
support these practices. With several people involved, there is a greater chance that some-
one will know what the right artifact is to apply to your situation, enabling you to iterate
it as needed. The Validation practices give you the courage to take an incremental
approach, particularly when you Prove It with Code. And by keeping testability in the back
of your mind, you are more likely to want to work on several models at once, and iterate
between them, because testing issues will likely need to be captured in a variety of views.
The Documentation practices also promote an incremental approach, particularly Update
Only When It Hurts, although Formalize Contract Models often goes against the incremental
grain because you want to baseline interfaces with other systems as early as possible. Iter-
ate to Another Artifact and Discard Temporary Models are complimentary because you often
want to work on a model and then move one once it has served its purpose. The Simplic-
ity practices are also important to this category. When you Use the Simplest Tools, it makes
it easier to iterate back and forth between artifacts. You use minimal time starting the tool,
and a focus on simple content and simple depiction ensures that you have a minimal
learning curve remembering what the model communicates. Finally, the Motivation
practices lead you to work on several models at once because you typically require sev-
eral views to communicate or understand the complexities of a system, and you will need
to iterate back and forth between appropriate artifacts to do so effectively.

The Validation practices are supported by the Simplicity practices—when you Cre-
ate Simple Content and Depict Models Simply, you make it much easier to Consider Testa-
bility. The Iterative and Incremental practices also promote the Validation practices.
For example: When you Iterate to Another Artifact, a likely candidate to iterate to is
source code, so that you can show that your model actually works.

The Productivity practices are enhanced by the Simplicity practices: It is easier to
Apply Patterns Gently when you are working with simple models; it is easier to Apply
Modeling Standards when you Depict Models Simply; and it is easier to Reuse Existing
Resources such as enterprise requirements models or common architectural models
when those models are simple and easy to understand.

The Documentation practices are supported by both the Simplicity and the Iterative
and Incremental practices. The simpler your documentation is, the easier it is to work
with. If your documentation is easy to understand, it gives you the courage to Update
Only When It Hurts because you know that you will be able to do so easily. Documen-
tation that is harder to understand is a greater risk to your project because you can’t be

72244_CH07I 2/27/02 10:57 AM Page 78

Order from Chaos: How the AM Practices Fit Together 79

sure that you can update it as required. The practices Update Only When It Hurts and
Discard Temporary Models clearly work only in environments promoted by practices
such as Iterate to Another Artifact and Model in Small Increments.

Chaos and Order: Chaordic

Here we are at the end of the seventh chapter, and the process of Agile Modeling (AM)
has been fully described to you, yet there isn’t a defined process for you to follow.
There has been no advice along the lines of “Create diagram A, then write this docu-
mentation, and fill out form B. Your next step is to create models C, D, and E ensuring
that they are consistent with one another and that you maintain full traceability
between them. Finally, use these models to create diagram F which is what your pro-
grammers need to do their jobs.” That’s a prescriptive process fit for someone with a
cookbook mindset, not someone who aspires to be an agile developer. In Chapter 1, I
specifically stated that AM is not a prescriptive process, instead I defined it in the fol-
lowing manner AM is a chaordic, practice-based methodology for effective modeling
and documentation of software-based systems. The AM methodology is a collection of
practices, guided by principles and values, that is applied by software professionals on
a daily basis. Chaordic? Practice based? Let’s examine these two concepts in detail,
because they are clearly different than the vast majority of other modeling methodolo-
gies that you are accustomed to.

Dee Hock (1999), founder of VISA, provides the following definition for the term
chaordic:

chaordic [kay’-ordic], adj. fr. E. chaos and order.
1. the behavior of any self-governing organism, organization, or system that

harmoniously blends characteristics of order and chaos. 2. patterned in a way
dominated by neither chaos nor order. 3. characteristic of the fundamental orga-
nizing principles of evolution and nature.

In his book, Birth of the Chaordic Age, Hock provides advice for designing chaordic
organizations. His experience is that forming a chaordic organization begins with an
intensive search for purpose, then proceeds to principles, people, and concept, and
only then to structure and practice. I’ve taken a modified approach to Hock’s; after all,
I am defining a methodology and not an organization, starting with the goals
described in Chapter 1, “Introduction,” and the values of Chapter 2, “Agile Modeling
Values.” These were used as a foundation for the principles of Chapters 3, “Core Prin-
ciples,” and 4, “Supplementary Principles,” which drove the practices of Chapters 5
and 6. The concepts of organizational concept and structure are clearly outside the
scope of the AM effort, although I will touch on the types of people that are well suited
to become agile modelers and even agile developers in Chapter 12, “Agile Modeling
Teams,” when I discuss agile modeling teams.

Why is the concept of chaordic important? Because it provides a conceptual frame-
work for a practice-based framework such as AM. On the surface AM appears chaotic,
unable to produce anything of substance. Frankly, if you were to apply AM’s practices

72244_CH07I 2/27/02 10:57 AM Page 79

80 Chapter 7

at random this would very likely be the case. But you wouldn’t do that, would you?
AM’s principles provide insight as to when and how to apply its practices effectively,
and the material presented in this chapter described how the practices fit together in a
synergistic whole. Yes, you still have to apply each practice when it is appropriate and
in a manner that makes sense, and my discussion in the previous two chapters should
provide sufficient background for you to get started. Over time, as you gain experi-
ence agile modeling you will gain greater insight into AM’s practices, discovering
nuances that aren’t readily apparent at first.

A practice-based methodology such as AM can appear chaotic at times, particularly
to people unfamiliar with it or who are not actively involved with the project. But
chaotic isn’t the right word because, when followed properly, AM produces significant
results. AM supports a good form of chaos, one that is steered, rather than directed, by
people working together guided by common values and principles—one that pro-
motes a focus on effective and efficient work habits. Thus AM supports order within
your project. Chaos and order: Chaordic.

Looking Ahead

In Part Two I cover issues relevant to successful application of AM within your organi-
zation. I start by exploring communication, an important success factor in software
development, and follow with a discussion of how to build an effective cultural envi-
ronment to support AM. Issues such as the use of simple tools and how to be effective
at writing documentation are also covered. Other factors important to the success of
AM that I discuss include how to create an agile work area, how to build an agile
development team, and how to hold agile modeling sessions. I also examine the UML
to dispel some very harmful misconceptions that fester within the IT industry and
finally, examine modeling with a generic agile software development process.

72244_CH07I 2/27/02 10:57 AM Page 80

PA R T

Two

Agile Modeling
in Practice

72244_CH08I 2/27/02 10:57 AM Page 81

This part explores critical issues that pertain to the practical application of Agile Mod-
eling within your organization. This section includes the following chapters:

■■ Chapter 8: Communication. Because modeling is an activity that depends on,
and supports, communication, this chapter explores the nature of
communication and how to become an effective communicator.

■■ Chapter 9: Nurturing An Agile Culture. This chapter examines cultural and
organizational issues that pertain to the successful application of AM.

■■ Chapter 10: Using the Simplest Tools Possible? AM implores you to use the
simplest tool(s) to get the job done. However, the simplest tool may not always
be a simple one. This chapter discusses the potential modeling tools that are at
your disposal.

■■ Chapter 11: Agile Work Areas. Your work environment can greatly affect your
productivity as an agile modeler, and this chapter discusses how to organize a
workspace conducive to AM.

■■ Chapter 12: Agile Modeling Teams. This chapter explores critical personnel
issues pertaining to AM.

■■ Chapter 13: Agile Modeling Sessions. As an agile modeler you still need to
hold modeling sessions, and this chapter presents strategies for doing so in an
effective manner.

■■ Chapter 14: Agile Documentation. Documentation is an important part of
software development, and this chapter describes how to take an agile
approach to writing documentation.

■■ Chapter 15: The UML and Beyond. This chapter examines several of the
misconceptions and misunderstandings that surround the UML and presents a
realistic and practical viewpoint regarding this important industry standard.

82 Part Two

72244_CH08I 2/27/02 10:57 AM Page 82

Don’t spec the heck out of it.

83

C H A P T E R

8

Communication

Communication is one of the fundamental values of AM, although it would be more
accurate to say that effective communication is what AM deems critical to your success.
What is communication? With respect to AM, communication is the act of transmitting
information between individuals. Why is communication an issue worth discussing?
Because the need to communicate effectively pervades software development, opera-
tions, and support. Developers and users must communicate. Developers and opera-
tions staff must communicate. Developers and management must communicate.
Developers and . . . well, you get the idea.

In this chapter, I explore the issues that surround communication and, in particular,
focus on how to become more agile in your documentation efforts. For many people,
modeling and documentation go hand in hand, a concept that I argue is questionable
at best. This practice is a topic that needs to be addressed. This chapter is organized
into the following sections:

■■ How do we communicate?

■■ Factors that affect communication

■■ Communication and Agile Modeling

■■ Effective communication

72244_CH08I 2/27/02 10:57 AM Page 83

84 Chapter 8

Figure 8.1 Modes of communication.

How Do We Communicate?

In Agile Software Development, Alistair Cockburn (2002) describes various modes of
communication that people may choose to apply when working together. Figure 8.1,
modified from that book, shows a graph that compares the effectiveness of these
modes of communication with the richness of the communication channel employed.
The two arcs are interesting; the left-most one lists communications options for docu-
menting (paper includes electronic media such as HTML that could be rendered to
paper) and the other communication options for modeling. The relative value of these
options is of course dependent on the situation—perhaps video conversation (video
conferencing) is more effective between you and John than a face-to-face conversation,
whereas the exact opposite is true between you and Sally.

Cockburn contends that the most effective communication is person-to-person,
face-to-face, particularly when enhanced by a shared modeling medium such as a
whiteboard, flip chart, paper, or index cards. As you move away from this situation,
perhaps by removing the shared medium or by no longer being face-to-face, you expe-
rience a drop in communication effectiveness. As the richness of your communication
channel cools, you lose physical proximity and the conscious and subconscious clues
that such proximity provides. You also lose the benefit of multiple modalities, the abil-
ity to communicate through techniques other than words, such as gestures and facial
expressions. The ability to change vocal inflection and timing is also lost; people not

72244_CH08I 2/27/02 10:57 AM Page 84

Communication 85

only communicate via the words they say, but how they say those words. Cockburn
points out that a speaker can emphasize what they say, thus changing the way they
communicate, by speeding up, slowing down, pausing, or changing tones. Finally, the
ability to answer questions in real time, the point that distinguishes the modeling-
options curve from the documentation-options curve, is important because questions
provide insight into how well the information is understood by the listener.

Factors That Affect Communication

There are several factors that affect communication, including:

Physical proximity. The closer people are to one another, the greater the
opportunities for communication. At one end of the spectrum, two people can
work side-by-side, pair programming at the same workstation, and at the other
end of the spectrum, two people can be in different buildings.

Temporal proximity. Whether or not two people are working at the same time
affects communication. You may be separated from some of your co-workers by
several time zones; it is quite common for North American firms to outsource
development work to Asian or European companies or even simply by different
personal schedules. I once commuted from Toronto to San Francisco to work on
a development contract, spending four days a week in San Francisco, although
keeping my internal clock on Toronto time. As a morning person, I woke up at
3:00 in the morning San Francisco time; however, many of my co-workers were
night people and would typically work until 3:00 or 4:00 in the morning. We
found this quite effective. I would work during the day and stay at the office
until they started to arrive, talking face-to-face with them as needed. I then left
for my hotel, slept, and started dealing with email immediately upon waking.
This allowed me to find out what they had worked on during the night and
then input via email where needed. It wasn’t ideal, but we made it work.

Amicability. Cockburn (2002) believes that amicability, someone’s willingness to
hear the thoughts of another person with good will and to speak without
malice, is an important success factor. The greater the amicability, the more
high-quality information can be shared and less information is concealed.
Amicability is closely linked to the trust that people have for one another and
the sense of community they share. Cockburn reports that sometimes
amicability can run too high; people can be so worried about offending their
colleagues that they are afraid to disagree with them or afraid to take the
initiative for fear of being perceived as glory seekers.

Tools. Simple tools—including whiteboards, sticky notes, flip charts, and index
cards—are easy to work with and are both flexible and non-threatening. As a
result, they are likely to be used in team situations, because there is little
opportunity to embarrass yourself by revealing you are not adept with the tool.
More complicated tools often prove to be barriers to communication,
particularly those CASE tools that are single-user because one person is
separated from the conversation when using the tool. (There are some

72244_CH08I 2/27/02 10:57 AM Page 85

86 Chapter 8

collaborative CASE tools, as shown in Table 8.1.) Furthermore, tools that require
significant training reduce the opportunities to work together with others
because they may not know how to work with the tool.

Anxiety. Individuals may experience anxiety about certain types of
communication. Some people love to speak on the phone; others avoid it. Some
people prefer email; others avoid it because their writing skills are not very
good. When people collaborate, they need to find techniques that they are
comfortable with or, at a minimum, can learn to tolerate for the duration.

When people work closely together, both physically and temporally, they have an
opportunity for what Cockburn calls osmotic communication—indirect information
transfer through overhearing conversations or simply noticing things that happen
around them. Osmotic communication can often be beneficial. I’ve lost track of the
number of times I have been working away and subconsciously picked up valuable
information. For example, I’ve discovered that someone had finished their current
task, that something wasn’t working as expected, or even that management was think-
ing about canceling the project. Osmotic communication can often be harmful, partic-
ularly if another group of people is being rowdy nearby or if you’re picking up false
rumors, like the one about management canceling the project.

Can’t Get a Dedicated Space? Rent a House
Many organizations are short on working space, particularly those that are
growing quickly or those that are established in expensive areas. I once worked
at an Internet startup that was doubling in size every two months. They were so
tight for space that my desk, along with those of several others, ended up in
the kitchen area for two months. I worked for a company in the business
district of London that was so short of space that we often traveled for several
miles to find an available meeting room (it often took hours for us to hold a
one-hour meeting which was often unnecessary). Although both of these
organizations made do, they weren’t effective doing so. Another organization,
run by a friend of mine, needed dedicated space for a software development
effort. Realizing that he didn’t have sufficient space at his current office, he
started searching for a temporary location for his team. He needed space for
nine months for this effort and discovered that he could lease a house for one
year for a fraction of the cost of real office space. He installed whiteboards and
better lighting in the unfinished basement. Throughout the house, desks were
set up that had fully networked workstations and phones. The lesson to be
learned is that if you think outside the box, you can get the workspace that you
need. Choose to succeed.

Communication and Agile Modeling

Effective communication is a fundamental requirement for agile modeling. You need to
recognize that you have several communication options available to you, as Figure 8.1

TI P

72244_CH08I 2/27/02 10:57 AM Page 86

Table 8.1 Communication Technologies

TECHNOLOGY DESCRIPTION EXAMPLE(S)

Collaborative CASE tools that enable several • Cittera by Canyon Blue
modeling tools developers to simultaneously (www.canyonblue.com)

work on one or more models • Describe by Embarcadero
with real-time updates of those Technologies (www.
models. embarcadero.com)

Collaborative Word processing tools that enable • NetPerfect by Corel
writing tools several people to simultaneously Corporation

write a document with real-time (www.corel.com)
updates of that document.

Discussion tools Tools such as email, newsgroups, • The Agile Modeling
mailing lists, instant messaging, mailing list (www.
and chat rooms that enable agilemodeling.com/
transmission of text messages, feedback.htm)
and other attachments. • IRCPlus (www.ircplus.

com)

Personal video A camera and software is installed • LogiTech QuickCam
on your workstation to enable (www.logitech.com)
video conversation between you
and someone with a similar video
setup.

Version control Software tools used to check • Microsoft SourceSafe
tools in/out, define, and manage (www.microsoft.com)

versions of project artifacts. • Concurrent Versions
System (CVS) (www.
cvshome.org)

Virtual meeting Tools that enable communication • eRoom
tools between several people in (www.eroom.com)

different physical locations. • Click to Meet
(www.cuseeme.com)

Communication 87

shows. You must choose the best communication option for your current situation. Some-
times that will be email, sometimes it will be face-to-face communication, and sometimes
it will be writing a document. Furthermore, you want to use technology effectively; as
always, the principle to Use the Simplest Tools applies. Table 8.1 describes several communi-
cation technologies available to you. Web sites such as www.collaboration-tools.com are
an excellent resource if you’re looking for new collaboration tools and techniques.

Effective Communication

When is communication most effective? When people are willing to work together and
do what it takes to get the job done. AM’s principle of Open and Honest Communication

72244_CH08I 2/27/02 10:57 AM Page 87

88 Chapter 8

is important. If you don’t trust the information that you receive or, for that matter, the
people who provide it to you, then your goal of effective communication is lost. The
principle that Everyone Can Learn from Everyone Else is critical to your success, because
it defines a mindset that enables communication. Those who believe they can learn
something from the person(s) they are communicating with are much more receptive
than those who believe otherwise. This principle has its roots in AM’s value of Humil-
ity, a value that time and again proves to be a significant success factor for developers.

Effective communicators realize that the goal is to share information, and that this
information sharing is typically a two-way street. For example, I recently attended a
meeting where members of my development team met with members of a team that
operated another system that we needed to integrate with. Our goal was to define a
contract model that described the interface to this system, something that ended up
being a simple file transfer. For the most part, we talked and drew diagrams on the
whiteboard. My team had brought a deployment diagram with us that depicted how
we currently believed the two systems would work together, and as a group, we nego-
tiated changes to the overall approach. Both teams came to the meeting with the desire
to work together. We knew that we needed the other team, and the other team knew
that their job was to support groups like mine. Everyone was focused on working
together. That meant that we needed to communicate well. Attitude counts.

Another important success factor is your ability to pick the right mode of communi-
cation. In the preceding example we chose to get the right people in a room to discuss
the issue face-to-face and work things out together. When necessary, we drew on the
whiteboard, even drawing our deployment diagram. Most importantly, we talked and
we listened. Yes, we could have taken a different approach. I have no doubt that we
could have emailed back and forth to one another. We could also have written docu-
ments and sent them back and forth. The point is that we chose not to. We had the
opportunity to use a superior form of communication—face-to-face communication at
a whiteboard—and we used that technique. It was fast, it was effective, and it was agile.

Finally, you need a positive view of documentation. Documentation can either be
good or bad. You should stick with the good and avoid the bad. Documentation can
come in many forms, including both paper and video recordings, as you saw in Figure
8.1. The point is that you shouldn’t forget that documentation can be versatile and not
painful to create. As you’ll see in Chapter 14, “Agile Documentation,” Agile Model-
ing’s fundamental message on documentation is that you should write it only when
it’s your best choice and only when it adds the best possible value to your project.

72244_CH08I 2/27/02 10:57 AM Page 88

You can be agile or you can be fragile.

89

C H A P T E R

9

Nurturing an Agile Culture

Your organization’s culture, and in particular your department’s culture, must be
conducive to Agile Modeling for your team to be effective. If your culture doesn’t
support agile development methods like AM and, even worse, if it is hostile toward
them, then your chances of success at applying AM on your project are greatly dimin-
ished. What can you do to nurture an “AM-positive culture” within your organiza-
tion? My advice is to:

■■ Overcome the misconceptions that surround modeling

■■ Think small

■■ Loosen up a bit

■■ Rigidly support project stakeholder rights and responsibilities

■■ Rethink presentations to stakeholders

Overcome the Misconceptions That
Surround Modeling

Many software professionals, developers and managers alike, have serious miscon-
ceptions about modeling that reduce their effectiveness. Let’s discuss these issues and
explore how they are addressed by the values, principles, and practices of AM.

72244_CH09I 2/27/02 10:52 AM Page 89

90 Chapter 9

Misconception #1: Model =
Documentation
This is very likely the most devastating misconception about modeling. It provides
developers with an excuse not to model under the guise that they don’t want to
waste time writing useless documentation. This decision has the unfortunate conse-
quence that many otherwise excellent software developers become little more than
programming hacks, producing low quality, brittle systems. Furthermore, this issue
has resulted in modeling being perceived as uninteresting. As a result, many devel-
opers avoid learning the modeling skills required to be successful. The reality is that
the concepts of “model” and “document” are orthogonal—you can have models that
aren’t documents and documents that aren’t models. A sketch on the back of a paper
napkin is a model, as is a drawing on a whiteboard, a collection of Class Responsibil-
ity Collaboration (CRC) cards, or a low-fidelity user interface prototype built from
flip chart paper and sticky notes. These are all valuable models, yet questionable as
official documents. My experience is that modeling is a lot like planning: Just as the
value is in the planning effort and not the actual plan itself, most of the value is in the
modeling and not the model itself. The implication is that you can create a model
that isn’t part of your system’s official documentation; instead you discard it once it
has fulfilled its purpose. In reality you will discover that there are few models that
you actually need to keep. You can safely follow the practice to Discard Temporary
Models. Agile documentation practices are covered in detail in Chapter 14, “Agile
Documentation.”

Misconception #2: You Can Think
Everything through from the Start
This misunderstanding is a holdover from the serial mindset prevalent in the 1970s to
the mid-1980s, very often the period during which today’s managers learned how to
develop software. The impact is that projects often invest significant time trying to
model everything up front in an effort to get it right, an effort often referred to as big
design up front (BDUF). There is often a motivation to “freeze” requirements before
coding starts, (see misconception #4) and “analysis paralysis” often sets in—the fear of
moving forward until your models are perfect. Project teams that suffer from this myth
often produce significant amounts of documentation instead of what their users actu-
ally want—working software that meets their needs in accordance to AM’s principle—
Software is Your Primary Goal. How do you overcome this problem? First, recognize that
you can’t think all the minutiae through. Second, recognize that in these environ-
ments, your coders likely have little respect for the efforts of your modelers anyway. A
reasonable position considering that your modelers are often doing little of actual
value. Your coders will likely take their own approach, claiming that the models don’t
reflect the realities of your environment. Third, recognize that no matter how good
your initial specification is, it is destined to quickly become out of synch with your
code and out of synch with itself even if you do evolve your models over time. The
fundamental reality is that only your code is ever truly in sync with your code. Fourth,

72244_CH09I 2/27/02 10:52 AM Page 90

Nurturing an Agile Culture 91

recognize that an iterative approach to software development—one in which you do a
little modeling, some coding, some testing, and perhaps even deploy a small working
version of your system—is the norm for software development. It’s a fundamental
principle of modern, heavy-weight software processes such as the Enterprise Unified
Process (EUP) (Ambler 2001b) as well as agile processes such as eXtreme Program-
ming (XP) (Beck 2000).

Misconception #3: Modeling Implies
a Heavy-Weight (HW) Software
Process
This misunderstanding is often related to misconception #1, that models imply docu-
mentation. Its impact is that project teams often abandon modeling altogether because
the HW process becomes too complex or too burdensome for them. This assumption
clearly does not have to be the case, as I hope this book shows. The reality is that you
can model in an agile manner by developing simple models using simple tools. Your
modeling efforts can be as light or as heavy as you choose to make them. You tailor
your modeling process to meet the needs of your environment in accordance with the
principle of Local Adaptation.

Misconception #4: You Must “Freeze”
Requirements
This request often comes from senior managers who want to ensure that they know
exactly what they’re going to get from a project team. The good news is that by freez-
ing your requirements early in the lifecycle they are likely to get exactly what they
asked for. The bad news is that they likely won’t get what they actually need. Change
happens. As development progresses, your project stakeholders’ understanding of the
problem domain changes, their priorities change, and their vision of the solution also
changes as they see the system evolve. It is a fundamental aspect of most software
development efforts, in particular business application software development, that
requirements change. AM advises that you accept this fact with its principle Embrace
Change. Instead take an iterative and incremental approach to software development
where you can act appropriately when your requirements evolve—you are much bet-
ter advised to follow AM’s practice Model in Small Increments than you are to freeze
requirements.

Misconception #5: Your Design Is
Carved in Stone
This misunderstanding is similar to the desire to freeze requirements. In this case,
management wants to ensure that every developer marches to the same tune by fol-
lowing “the design.” By freezing your design in place, you are unable to take advan-
tage of knowledge gained as the project evolves. The result is that developers either

72244_CH09I 2/27/02 10:52 AM Page 91

92 Chapter 9

build the wrong things, or they build the right things the wrong way to conform to
“the design.” Alternatively, they may simply ignore “the design” negating any possible
benefits of the design efforts. Furthermore, developers are motivated to write signifi-
cant amounts of documentation instead of actual software and to use documentation-
oriented CASE tools instead of ones focused on implementation that are likely to pro-
vide real value to your project. Agile modelers expect to evolve their designs, often
based on the feedback from following the practice Prove it with Code when your pro-
gramming or database efforts show that your design isn’t ideal. The reality is that
nobody is perfect, even the best designers and neither is their work. Do you really
want to carve imperfection into stone and not allow yourself to fix mistakes? Further-
more, if you don’t freeze your requirements, by implication you cannot freeze your
design—changes to your requirements will force changes to your design. Remember
that your design isn’t finished for a given release until you’ve shipped the code.

Misconception #6: You Must Use a
CASE Tool
Modeling is often seen as a complex effort, and in many ways it is, but you can create
effective yet simple models that only show critical information and not irrelevant
details. Throughout this book I present examples of models created using simple tools
such as index cards, sticky notes, flip-chart paper, and whiteboards. Figures 9.1 and 9.2
provide examples of such models. These models fulfilled their purpose and provided
significant value to the efforts of the project team, showing that you can be successful
following the practice, Use the Simplest Tools. Chapter 10, “Using the Simplest Tools
Possible?” explores in detail how to use modeling tools effectively, including both low-
technology tools and sophisticated CASE tools.

Misconception #7: Modeling Is a
Waste of Time
Many novice developers entertain this misunderstanding, often because their educa-
tion focused on how to write code and not on the full software development process.
Their experiences as junior programmers focused solely on implementing code. These
developers are forgoing an opportunity to dramatically increase their productivity as
well as to learn skills that they can easily transfer between projects and organizations.
The reality is that you are very often more productive sketching a diagram, develop-
ing a low-fidelity prototype, or creating a few index cards to think something through
before you code it—you are following the practice Model to Understand. Productive
developers often model before they code; they think and then they act. Furthermore,
modeling is a great way to promote communication among team members and proj-
ect stakeholders because you’re talking through issues, coming to a better under-
standing of what needs to be built, and building bonds between everyone involved
with the project in the process. In other words, you are following the practice Model to
Communicate.

72244_CH09I 2/27/02 10:52 AM Page 92

Nurturing an Agile Culture 93

Figure 9.1 A low-fidelity prototype of a data input screen.

Misconception #8: The World
Revolves Around Data Modeling
Many organizations hobble their new development efforts by starting with a data
model. There are several reasons why this happens: Your organization has operated
this way for years and has difficulty imagining that another way exists; the data com-
munity effectively has a political death grip on your IT department and, therefore,
does everything in its power to ensure that it controls your software development pro-
jects; or your legacy database(s) are such a mess that you have no other choice. My

72244_CH09I 2/27/02 10:52 AM Page 93

94 Chapter 9

Figure 9.2 A whiteboard drawing of a high-level business component architecture.

experience is that for most business application development efforts, data modeling is
an important but secondary modeling task, one that is best performed to design your
physical database schema based on your software design (Ambler 2001a). The same is
true of data-oriented efforts such as data warehousing projects—without a solid
understanding of how people intend to use the data warehouse (something that data
models don’t show), these projects often end up as failures. As the principle Multiple
Models tells you, the reality is that you have a wide variety of models at your disposal
—use cases, business rules, activity diagrams, class diagrams, component diagrams,
user interface flow diagrams, and CRC models to name a few—and data models are
merely one such model. Each model has its strengths and weaknesses. You should fol-
low the practice Apply the Right Artifact(s) as appropriate instead of blindly following
the same prescriptive modeling process over and over. If you find yourself in a situa-
tion where someone tells you to base your system on a data model, I would investigate
how well they truly understand software development. Ask them when to, and when
not to, apply the models listed on the preceding pages. If they can’t explain, or if they
simply wave the questions off as “something the programmers worry about,” then
they clearly do not have sufficient grasp of the fundamentals to advise your project.

Misconception #9: All Developers
Know How To Model
A serious problem that our industry faces is that most nondevelopers, including senior
management and users, do not understand how software is built. As a result, they can-

72244_CH09I 2/27/02 10:52 AM Page 94

Nurturing an Agile Culture 95

not distinguish between skilled developers and hack programmers, and certainly not
between extreme programmers in the XP sense of the term and hack programmers
claiming to do XP. They have a tendency to assume that all developers have the neces-
sary skills to develop a system from end to end. This simply isn’t true. Modeling skills,
for one, are gained over years of experience and only when a developer chooses to
gain them. Programmers, as highly intelligent people, often believe they can do any-
thing—they’re programmers after all. The result is that people get in over their heads;
in their arrogance, they take on tasks that they simply don’t have the skills to follow
through on. The reality is that software development is too hard and too complex for a
single individual to have all of the skills required to successfully develop and deploy
even a reasonably complicated system. Instead people need to work together, to bal-
ance one another’s strengths. People with modeling skills should work together with
people who have hard-core implementation skills. Everyone should have the humility
to understand that they don’t know everything and that they can always learn some-
thing important from everyone else: Modelers can learn details of a certain technology
from programmers, and programmers can learn valuable design and architecture tech-
niques from modelers. My personal philosophy is that everyone is a novice, including
myself, underscoring the importance of AM’s principle Everyone Can Learn From Every-
one Else.

Think Small

To overcome many of the misconceptions listed on the preceding pages, your organi-
zation will discover that it needs to change its overall philosophy toward software
development. In the early 1990s, it was common to hear the phrase “small is beautiful”
when it came to organization size. Now we’re hearing that “small is agile” within the
software development world. For example, you should prefer:

Short (small) modeling sessions. Short modeling sessions enable you to focus on
one part of a system, to work on it, and then quickly obtain feedback on the
results. Longer modeling sessions generally result in more functionality being
addressed at once. Longer sessions increase the amount of functionality that you
are motivated to attempt at one time, thereby decreasing the likeliness of
obtaining early feedback on your work and increasing the risk that you will
inadvertently get off track. Modeling sessions are discussed in detail later in this
chapter.

Small teams. Smaller teams require less management overhead, such as status
reports and meetings, than do larger teams. It is easier to colocate a small team
than a large one, thereby decreasing barriers to communication within your
project.

Small models. Small models are easier to create and understand than large ones.
The architecture, requirements, and detailed design of your system are often
better communicated by several small diagrams than one all-encompassing one.

Small documents. Small documents allow you to travel light—a 5-page document
is easier to maintain than a 500-page document.

72244_CH09I 2/27/02 10:52 AM Page 95

96 Chapter 9

Simplicity is one of the five values of AM. By keeping things as small as possible,
you are very likely keeping them simple as well.

Loosen Up a Bit

An important part of adopting a more agile mindset is accepting the fact that agile
models just need to be good enough; they don’t need to be perfect. For example, I’ve
often felt that too much focus is put on whether or not you apply the “official nota-
tion” properly, or if you’re “allowed” to create a certain type of model right now. I
once worked on a project where we spent hours discussing the appropriate use of the
<<uses>> and <<extends>>, now <<include>> and <<extend>>, stereotypes on
UML use case diagrams. The problem was that different people used the stereotypes
in different manners. Yes, you certainly want to follow a common set of modeling
guidelines if possible, as the practice Apply Modeling Standards advises, but some-
times you need to bend the rules a bit. In a few cases, people applied the stereotypes
inappropriately. I resolved the problem by giving a short briefing. But in other cases,
the stereotypes were in fact used in a manner that made sense for the situation. We
came to the conclusion that our modeling guidelines needed to be malleable. How-
ever, up to that point, we had developers wasting time arguing back and forth
because they unfortunately thought that there could only be one interpretation of the
guidelines.

I’ve had people get into heated arguments over when the most appropriate time is
to apply a certain model. A classic example is the insistence of some people that data
models should be created throughout the project lifecycle as part of your require-
ments, analysis, and design efforts. During requirements, data models can be devel-
oped to depict a domain model; during analysis, they can be developed for conceptual
modeling; and during design, they can be developed for modeling your physical per-
sistence schema. Yes, understanding the major domain entities as part of your require-
ments efforts can prove valuable, but do you need a data model for that? Hmmm . . .
you are working on requirements. Your project stakeholders should be actively
involved. They likely aren’t data modeling experts, so a data model may not be your
best option. A better option, in some cases, is to use CRC cards for domain modeling,
something that I show how to do in The Object Primer 2/e (Ambler 2001a). What about
an analysis-level conceptual model? Once again data models work well for this task,
but is it your best option? My experience, at least when developing systems that take
an object-oriented or component-based approach to development, is that UML class
diagrams are a better option. Class diagrams enable you to capture both data and
behavioral aspects of your system, effectively a superset of what can be captured by
data models. They fit in better with the other diagrams of the UML that you are also
likely using. The point is that you don’t need to slavishly follow a process that tells
you that to achieve goal X you need to produce artifact Y. First, question whether you
need to achieve goal X and, if you do, then ask yourself what the best artifact is. In
other words, follow the practice Apply the Right Artifact(s).

The bottom line is that the modeling police won’t hunt you down if you bend the
rules. So loosen up a bit and experiment with your models.

72244_CH09I 2/27/02 10:52 AM Page 96

Nurturing an Agile Culture 97

Rigidly Support Rights and Responsibilities

One of XP’s strengths is its clear and explicit definition of the roles that customers and
developers have on a project. Customers are responsible for describing what they
want the system to do and to prioritize the resulting requirements. Developers in turn
are responsible for fairly estimating those requirements and developing the system
based on the prioritization of the requirements. In other words, customers are respon-
sible for business issues, and developers are responsible for technical issues, and each
group acts accordingly.

I believe the concept that project stakeholders and developers each have a defined
role and scope of influence is critical to the success of your project. Because your proj-
ect stakeholders are paying you to develop systems for them, a good way to define
those roles is from their point of view. In Software Requirements (1999), Karl Wiegers
summarizes what he believes to be the rights and responsibilities of users. I have mod-
ified them here to extend to project stakeholders within the scope of AM. In my opin-
ion, these rights and responsibilities effectively define a contract between a
development team and its project stakeholders. You are effectively following the prac-
tice Formalize Contract Models when you choose to negotiate such a list with your stake-
holders, creating a contract that must be honored for the team to be successful.

The rights of project stakeholders are:

■■ To have developers learn about their business and objectives

■■ To expect developers to learn and speak their language

■■ To expect developers to identify and understand their requirements

■■ To receive explanations of artifacts that developers use as part of working with
project stakeholders, such as models they create with them (for example, user
stories or essential UI prototypes) or artifacts they present to them (for
example, UML deployment diagrams)

■■ To expect developers to treat them with respect

■■ To hear ideas and alternatives for requirements

■■ To describe characteristics which make the product easy to use

■■ To be presented with opportunities to adjust requirements to permit reuse,
reduce development time, or to reduce development costs

■■ To be given good-faith estimates

■■ To receive a system that meets their functional and quality needs

■■ To determine how the project team will spend their resources, including the
extent of the investment in permanent documentation (see Chapter 14)

The responsibilities of project stakeholders are:

■■ To provide resources (time, money, and so on) to the project team

■■ To educate developers about their business

■■ To spend the time to provide and clarify requirements

72244_CH09I 2/27/02 10:52 AM Page 97

98 Chapter 9

■■ To be specific and precise about requirements

■■ To make timely decisions

■■ To respect a developer’s assessment of cost and feasibility

■■ To set requirement priorities

■■ To review and provide timely feedback regarding relevant work artifacts of
developers

■■ To promptly communicate changes to requirements

■■ To own your organization’s software processes, to both follow them and
actively help to fix them when needed

Post these Rights and Responsibilities Publicly
The practice Display Models Publicly can be applied in this situation. Post your
negotiated rights and responsibilities list where everyone has access to it—to
ensure that your team is aware of its rights and responsibilities.

Rethink Presentations to Project
Stakeholders

I once worked on a project where the project manager insisted on putting together a
formal presentation to the project stakeholders once a month. The project stakeholders
loved the presentations. Not only did we summarize the current status of the team, we
also described the technical details of whatever it was that we had worked on since the
last presentation. One day I was working with a couple of user representatives. They
were explaining the details of some complex business rules, and they offered to be
available to me the following day to continue with the effort. I declined, saying that I
had to work on the presentation slides for the following Monday. They then offered to
work with me the next day, but once again I declined saying that the rest of the week
was going to be spent working on the slides. They were astounded that one of the
senior developers on the project would need to spend that much time working on
slides and were particularly upset when I pointed out that I also had several other
developers involved on a part-time basis to get the technical details of what they were
working on. My project stakeholders were incredibly upset that we would invest that
much effort in a status presentation, but unfortunately my manager insisted on it.
Needless to say, the next status meeting didn’t go very well for him—the meeting
agenda was changed to allow the project stakeholders and the project manager to
rework the project’s priorities to focus more on software development and less on
paper pushing. From then on, his presentations relied less on pretty slides, freeing up
the developers to focus on the creation of a working system.

Presentations to project stakeholders are a reality on most software projects: senior
management wants to keep track of your status, stakeholders who are not directly
involved on a day-to-day basis need demonstrations of the current version of the sys-
tem, and other development teams working on systems that integrate with yours need

TI P

72244_CH09I 2/27/02 10:52 AM Page 98

Nurturing an Agile Culture 99

to understand how it works. You could provide documentation for these groups, but
documentation often isn’t very effective—if you’re traveling light, you may not cur-
rently have the documentation that they need. As you’ll see in Chapter 6, documenta-
tion is a very ineffective approach to communication. The bottom line is that you need
to be prepared to give presentations to project stakeholders. Not only do you have to
deliver the presentation, you need to prepare for it and often follow-up after it. As a
result, presentations quickly become a leading cause of wasted time on your project.
Here’s how to be more agile:

Minimize the number of presentations that you give. The best presentation is the
one that wasn’t held. Presentations should have a clear purpose, a well-defined
audience (it should be clear why each person is there), and a justification for
why it is required. Just as you don’t want to give a presentation, chances are
good that many of your project stakeholders have more important things to do
than attend yet another meeting. Work with them closely to reduce the number
of presentations.

Try to find an alternative. Perhaps a quick telephone conversation, a face-to-face
conversation in the hallway, or an email will do. It is easier, and often more
effective, to find an alternative when you only need to communicate to a small
group of project stakeholders—presentations are better suited for large groups,
not small ones.

Turn the presentation into a working session. When you have project
stakeholders in the room, put them to work. Work with them to identify new
requirements, delve into existing requirements, or prioritize your upcoming
efforts.

Make project stakeholders aware of the costs. Everybody loves fancy slides, but
do they realize how much effort it takes to put them together? Do they realize
that the time invested in making fancy slides could have been spent on
developing software?

Project stakeholders decide whether they wish to have a presentation. Like
producing documentation, the decision to hold a presentation to project
stakeholders is a business one that is the responsibility of your project
stakeholders.

Keep it simple. Are your stakeholders interested in the system that you are
building for them or in your Microsoft PowerPoint skills? Many people make
the mistake of investing significant time preparing “pretty slides” for their
presentations. I used to spend hours transcribing hand-drawn diagrams into a
drawing tool to make them suitable for presentations. Then, one day, I ran out
of time and was forced to simply include a scanned drawing in a presentation.
Nobody cared. The world didn’t end. Since then I’ve included more and more
hand-drawings in my presentations and invested less effort in transcribing the
diagrams. The world still hasn’t ended. The few times that I’ve received any
comments regarding this approach, I tell my project stakeholders point blank
that I had to decide between spending my time drawing pretty pictures and

72244_CH09I 2/27/02 10:52 AM Page 99

100 Chapter 9

building software, so I naturally chose to build software. Nobody has ever
complained. In short, apply the principle, Maximize Stakeholder Investment and be
smart about what you do.

Minimize the number of people involved in preparation. Do not distract the
entire team with the creation of a presentation; it doesn’t have to be a
committee-based effort. Instead have one or two people create the presentation,
drawing on the expertise of others as need be. Note that AM’s practice of
Collective Ownership makes it easier for one or two people to put together a
comprehensive presentation. Chances are good that they have worked on a
wider range of the system than they normally would on non-AM projects. They
have ready access to the current versions of project artifacts as input.

Minimize the number of people that attend the presentation. Everybody on
your team doesn’t have to attend every single presentation. The best approach
is to identify the minimum number of people who need to attend the
presentation, ideally only the person giving it, and have them report back to
the rest of the team.

There is more to making AM work than simply adopting its values, principles, and
practices. You need to nurture an environment that is conducive to AM, one in which
you have reworked your attitudes toward modeling. This change includes overcom-
ing common misperceptions about modeling, thinking small, and for the most part,
loosening up a bit. It is also important to define and support the rights and responsi-
bilities of project stakeholders. Finally, because presentations can be a significant drag
on project teams, I implore you to streamline these activities. Remember that any time
you invest preparing for, holding, or following-up on a presentation is time taken
away from software development. It is possible to be successful at adopting AM
within your organization, but you must choose to succeed.

72244_CH09I 2/27/02 10:52 AM Page 100

Stick with simple tools, like pencil, paper, and whiteboard.
Communication is more important than whizbang.

—Kent Beck and Martin Fowler in Planning Extreme Programming

101

C H A P T E R

10
Using the Simplest Tools

Possible?

In Chapter 5, “Core Practices,” you discovered that one of AM’s core practices is Use
the Simplest Tools. For ease of discussion, AM distinguishes between two types of mod-
eling tools: simple tools and computer-aided software-engineering (CASE) tools. Sim-
ple tools are manual items that you use to model systems, including but not limited to,
flipchart paper, sticky notes, paper napkins, sheet paper, string, thumb tacks, white-
boards, and index cards. The vast majority of models can be created using simple
tools. CASE tools are software packages that you use to model systems. Common
CASE tools include TogetherSoft’s (www.togethersoft.com) Together Control Center,
Canyon Blue’s (www.canyonblue.com) Cittera, Embarcadero’s (www.embarcadero.com)
ER/Studio, Gentleware’s (www.gentleware.com) Poseidon, and Rational Corporation’s
(www.rational.com) Rational Rose. Each of these CASE tool products has its strengths
and weaknesses, and each is a potential candidate for use on a project following the
AM methodology.

Wait a minute. Aren’t you supposed to use only simple tools with AM, not CASE
tools? Not exactly. The practice says to use the simplest tools, not just simple tools—an
important distinction. However, you should use simple tools whenever possible. This
distinction makes sense when you are following practices such as Create Simple Models
and Depict Models Simply. The models that you are creating don’t have a lot of residual
value once they have fulfilled their purpose, which is typically to explore/understand
an issue or to communicate an idea to someone else. Furthermore, because you should

72244_CH10I 2/27/02 10:49 AM Page 101

102 Chapter 10

be following the AM practice Discard Temporary Models, investing the extra time mod-
eling with a CASE tool doesn’t make a lot of sense. If a simple tool such as index cards
or a whiteboard is sufficient for your needs, and according to the principle Model with
A Purpose, you should know what your needs are, otherwise you shouldn’t be model-
ing, then you should prefer the simple tool. Sometimes, though, simple tools aren’t
sufficient. Perhaps you need to create a “pretty” diagram to present to important proj-
ect stakeholders or you want to generate source code based on your models, in which
case, more complicated CASE tools make sense. In short, you want to use the simplest
tool possible that meets your needs. Sometimes that tool is a whiteboard and some
markers, and sometimes that tool is a leading-edge CASE tool.

In this chapter, I explore the following issues regarding modeling tools:

■■ Agile Modeling with simple tools

■■ The evolution of a model

■■ Agile Modeling with CASE tools

■■ Use the media

■■ The effects of tools on models

■■ Using the simplest tools in practice

Agile Modeling with Simple Tools?

What are simple tools for modeling? The eXtreme Programming community (Beck
2000) swears by the use of standard index cards for a wide variety of modeling tech-
niques, in particular CRC modeling, user stories, and tasks. Sticky notes are a common
tool used to develop a low-fidelity/essential user-interface prototype on large sheets of
paper (Constantine and Lockwood 1999). Sticky notes can be used in combination with
whiteboards—the sticky notes are used for the bubbles and the relationships between
the bubbles are drawn on the board. I’ve drawn UML use case diagrams and UML class
diagrams like this many times. Similarly, pieces of paper or index cards can be tacked
onto a corkboard, connected by strings, and used to create a wide variety of models. For
example: The individual sheets of paper can represent database tables and the lines can
represent relationships between tables on a physical data model. The sheets can repre-
sent screens and the strings can represent navigation flows between screens on a user
interface flow diagram. Or the sheets can represent use cases and actors, and the strings
can represent associations between the use cases and actors on a UML use case dia-
gram. Other simple tools include a paper napkin that you draw on, a whiteboard for
sketching on, and a digital camera to make copies of sketches that you want to keep.

The Advantages of Simple Tools
Why simple tools for modeling? I always advise that you should ask yourself why you
are modeling. My philosophy is that you should have an exact purpose in mind when
you develop, otherwise you shouldn’t model. If you are modeling to understand

72244_CH10I 2/27/02 10:49 AM Page 102

Using the Simplest Tools Possible? 103

something, then the value isn’t in the model that you create but in the modeling itself.
You don’t need to invest significant effort using a CASE tool to make your model look
pretty or to add comprehensive documentation to it. Instead you’re better off using a
simple tool, such as index cards or a whiteboard, to get your modeling done quickly
and get back to developing software.

Simple tools are inclusive. Everyone can work with simple tools, even your
project stakeholders. They need to actively participate because they are
responsible for providing the requirements.

Simple tools provide tactile feedback. You can easily manipulate simple tools.
Index cards can be moved around on a table. They can be touched. They can be
shared with others. By working directly with simple tools, people gain a better
understanding of what they are modeling.

Simple tools are inexpensive.

Simple tools are flexible. You can easily write on index cards, sticky notes,
napkins, or sheets of paper. You can move them around, and when you find you
no longer need them, simply rip them up. Furthermore, simple tools can be
used to create a wide variety of models. Appendix A, “Modeling Techniques,”
suggests at least one simple tool for each type of artifact described there,
including all of the ones defined by the UML.

Simple tools are non-threatening to users. In short, nobody is afraid of losing
their job to a stack of cards, a collection of sticky notes, or a whiteboard sketch.
Many people are afraid, however, of computers. When people are afraid of
losing their jobs, they are not very open to using software-based tools. By using
a non-threatening analysis technique, you decrease the probability of having to
deal with recalcitrant users.

Simple tools are quick to use. When was the last time you needed to wait for a
stack of index cards to load into memory?

Simple tools are portable. You can simply throw a package of index cards and a
pen in your briefcase and go.

Simple tools can be used in combination with more complex ones. Agile
modelers will often start out using simple tools to create many models. Then
when they discover that they want to keep the model or take advantage of the
features that a CASE tool has to offer, they will migrate their work to another
tool. The section, The Evolution of a Model, describes this concept in greater detail.

Simple tools promote iterative and incremental development. Developers taking
an iterative and incremental approach to development will tackle a problem a
small portion at a time. Luckily, simple tools are very useful for exploring small
problems, including portions of a larger problem. For example: You could easily
explore the internal structure of a component, perhaps comprised of twenty or
more classes, using index cards. Could you create an all-encompassing model,
perhaps representing hundreds of classes, using index cards? Maybe. But
creating the model would likely be clumsy. Exploring the requirements for a

72244_CH10I 2/27/02 10:49 AM Page 103

104 Chapter 10

report is easy to accomplish using flip chart paper and sticky notes. But
exploring every single screen and report within your system? Likely not.

Simple tools promote traveling light. When you don’t invest much effort in
something, you can easily discard it.

The Disadvantages of Simple Tools
Simple tools also have their weaknesses:

Simple tools aren’t acceptable to many people. Developers have become
accustomed to creating models using complex CASE tools. They find it difficult
to accept that whiteboard sketches or a stack of index cards are often sufficient
for their modeling needs. Users have become accustomed to sophisticated and
detailed requirements documents describing their systems. They find it
difficult to accept that the requirements for their system are described in a little
box of cards.

Simple tools are limited.

Simple tools aren’t well suited for permanent documentation. Although a box of
cards might sufficiently capture the requirements from the point of view of the
people that created the cards, most likely the cards aren’t sufficient for people
outside of the team or people trying to understand the system several years
later. You will find that you still need to use more complicated tools, such as
word processors or CASE tools, to create permanent documentation. Agile
documentation is described in detail in Chapter 14, “Agile Documentation.”

Simple tools do not support distributed teams easily. Simple tools are physical.
As a result, everyone needs to be in the same location at the same time to work
with simple tools. Yes, electronic whiteboards enable people at different
locations to work together on diagrams, and you could conceivably
teleconference people into your working session. But distributed
communication isn’t the same. Chapter 8, “Communication,” discusses the
challenges involved with distributed communication.

When Should You Use Simple Tools?
When should you use simple tools? Whenever you can, which is most of the time. My
rule of thumb is that the greater the amount of uncertainty surrounding the issue that
you are modeling, the greater the flexibility you will want in your tools. Therefore,
you should use simple tools. You can draw on a whiteboard faster than you can draw
with a drawing tool, such as Microsoft Visio or a more complicated CASE tool. You
can explore the requirements for a screen or report using sticky notes and flip chart
paper faster than you can with a software-based prototyping tool. Do you have to
limit yourself to simple tools? No. As you gain a greater understanding of an issue,
you can migrate to more complicated tools as required, assuming that the tools pro-
vide the best value possible for your investment. I discuss this topic in The Evolution of

72244_CH10I 2/27/02 10:49 AM Page 104

Using the Simplest Tools Possible? 105

a Model. In short, agile modelers typically start by discussing an issue, and they use
simple tools to aid their discussion if appropriate. Then, they choose to either manu-
ally write source code or to migrate to a CASE tool, which will hopefully generate
code for them.

Supporting Simple Tools with
Technology
To get around the deficiencies of simple tools, you may choose to use technology-
based tools to support your efforts. Commonly, you use one of these tools to create a
permanent record of your work or to share information with people at other physical
locations. Common technology-based tools used to support simple tools include:

Digital cameras and scanners. One of the easiest ways to “transcribe” the
information captured using simple tools is to simply take a picture of it using a
digital camera or scanner. You have seen several examples throughout this book
of whiteboard sketches and essential user interfaces captured using a digital
camera, as well as sketches drawn on paper or index cards that were scanned in.
These tools, in particular digital cameras, are quick and easy to use.

Picture software. There are several tools available to you to work with digital
pictures. I use products such as Adobe Illustrator (www.adobe.com) and Corel
Photo Paint (www.corel.com) to manipulate pictures. I crop the pictures to focus
on just the information that I need and to reduce the file size, which reduces
storage and transmission overhead. I also use a product called Whiteboardphoto
from Pixid (www.pixid.com) to clean up the pictures and to convert them to a
format suitable for optical character recognition (OCR) software. For example:
With Whiteboardphoto, I generated Figure 10.2 from Figure 10.1 in less than one
minute. As you can see, the clean version of the diagram is much easier to read.

Wikis. A Wiki (Leuf and Cunningham 2001) is a collaborative environment that
people use to co-author HTML-based information. Think of a Wiki as a web site
that comes with its own tools for editing, adding, and removing pages. Wikis
are often used in place of email-based discussion groups, particularly when the
discussion is relevant to the entire team. Development teams use Wikis to grow
their group memory (Ambler 1998) by recording their requirements artifacts,
key architectural and design decisions, and shared documents. Wikis support
AM’s principle of Open and Honest Communication and the practice Display
Models Publicly. For more information about Wikis, visit www.wiki.org.

Word processors, text editors, and HTML editors. These tools are useful at
capturing text-based information, particularly when you want sophisticated
editing capability. The resulting documents are easy to share with others and to
convert to HTML to be displayed on a shared web.

Electronic whiteboards. Electronic whiteboards range in capability. Some boards
simply scan your whiteboard and produce a paper copy of your sketches such
as Panasonic’s (www.panasonic.com) Panaboard product line. More
sophisticated tools include TeamBoard (www.teamboard.com) and PolyVision’s

72244_CH10I 2/27/02 10:49 AM Page 105

106 Chapter 10

Figure 10.1 A whiteboard sketch of a UML deployment diagram for SWA Online.

Figure 10.2 A “cleaned up” sketch.

Webster (www.websterboards.com). These tools integrate with a computer and
potentially collaborative software such as Microsoft’s NetMeeting so you can
share your work with distributed team members. Note that instead of
purchasing a new electronic whiteboard, many organizations opt to enhance
existing “manual whiteboards” with products such as Mimio
(www.mimio.com).

72244_CH10I 2/27/02 10:50 AM Page 106

Using the Simplest Tools Possible? 107

Figure 10.3 How simple tools and CASE tools are used.

The Evolution of a Model

How do agile modelers use simple tools and CASE tools in combination? Figure 10.3
depicts a flow chart that indicates how modeling tools are used by developers. Agile
modelers typically start by discussing an issue that they are working on. If that discus-
sion is sufficient, they can move forward and start writing code. Other times, they real-
ize that they need to Model to Understand, so they choose the simplest tool possible to
get the job done and begin modeling. The majority of the time, they will choose a sim-
ple tool. XP developers often choose index cards, although whiteboards are also a pop-
ular choice, and they will work together (following the practice Model with Others) to
explore the issue they are working on. Agile modelers may change tools as they see fit,
perhaps starting with index cards but then migrating to a CASE tool once their under-
standing of the issue stabilizes. Regardless of the modeling tool they are using, they
may choose to start producing code at any time. They will either write the code or gen-
erate it with their CASE tool(s), in accordance with the principle Software Is Your Pri-
mary Goal and the practices Model in Small Increments and Prove It with Code.

When agile modelers are initially exploring an issue, they need a very flexible tool
to quickly change the model they are working on. They don’t want to invest too much
time at the start because a lot of their initial work is likely to be discarded as their
understanding evolves. For example: when I am first exploring how to build a screen,
I will often use sticky notes. I stick them to the nearest flat surface that I can find—a
desktop, whiteboard, flip chart paper, and so on (see Figure 10.4). Sticky notes are easy
to work with. I can write brief descriptions on them or make little sketches, and they
are easy to move around. Furthermore, they stay where I put them because of the glue
on their backside. This approach allows me to get a feel for the layout very quickly,
adding and removing widgets as I need.

As Figure 10.3 implies, you should either move straight to coding the screen or
choose to continue modeling using another tool such as a whiteboard or CASE tool.
Base this decision on your initial purpose for developing the screen layout model. If
your goal was to simply determine a strategy for organizing the major widgets that
will make up the screen, then you’re very likely satisfied with that purpose, and you
can start coding. If your goal is to determine how to organize the screen and to identify
the widgets that you intend to use, then you should move to a whiteboard next. With

72244_CH10I 2/27/02 10:50 AM Page 107

108 Chapter 10

Figure 10.4 An essential UI prototype depicting the requirements for a screen/page.

a whiteboard, you can draw the widgets with greater accuracy, drawing them to their
relative size as reasonable facsimiles of the actual type of widget (check box, single-
line entry field, multiple-line entry field, and so on), see Figure 10.5. Note that the
screen design has evolved from Figure 10.6: A few items have moved around. We real-
ized that we needed to display the number and name of an order item instead of the
name and description; we needed to add the ability to remove individual items via
checkboxes; and we needed to show shipping charges as part of the total. However,
whiteboards aren’t as flexible as sticky notes. If you discover that you need to move
several widgets, then you may have a lot of erasing and redrawing with a whiteboard.

72244_CH10I 2/27/02 10:50 AM Page 108

Using the Simplest Tools Possible? 109

Figure 10.5 A whiteboard sketch of depicting an HTML page for placing an Order.

But with sticky notes, you simply move them around. What you gain in fidelity by
moving to a whiteboard you can lose in flexibility.

Should we use picture software to clean up Figure 10.5 as we did to convert Figure
10.1 to Figure 10.2? Or should we leave the figure alone? Depends on the situation. If
we want to show the picture to someone else, perhaps we want to email it to a few peo-
ple to obtain feedback, then we should invest the minute that it takes to run the figure
through the software. If we’re just using the diagram ourselves, then why bother? The
figure is readable as it is, and because we believe in AM’s principle that Content is More
Important Than Representation, we decide to not waste a minute when we don’t have to.
Just because you can clean up the diagram easily doesn’t mean that you have to.

Our next step is to once again consider coding or to transition to yet another tool,
in this case, a user interface prototyping tool. Figure 10.6 depicts a full-fledged UI
prototype, based on Figure 10.5, for placing orders. Notice that the model has
evolved. When our project stakeholders worked with the screen, they realized that
manipulating the order items was far more important than editing address informa-
tion, and they asked us to move this section higher on the page. Our model has
increased in fidelity once again. Our users clearly know what we intend to build. We
have applied corporate UI development standards (remember the practice Apply
Modeling Standards) using corporate colors and aligning fields effectively. In the case
of HTML, we’ve arguably coded part of our page, at least the visual aspects of it,

72244_CH10I 2/27/02 10:50 AM Page 109

110 Chapter 10

Figure 10.6 An HTML-based user interface prototype for placing orders.

although we may decide to refine our work further by hand-coding Javascript or to
tweak our page using a text editor to accomplish something that our HTML proto-
typing tool couldn’t.

Had you been working on a data model, you would want to consider using a data-
modeling tool. If you were working on a UML class diagram, then you would want to
consider using a tool that supports that kind of diagram, and so on. In other words,
pick the right tool for the job. An important aspect of the Use the Simplest Tools practice
is that you should only use a tool if it provides positive value. Often you will find that
you have already gained most of the value by modeling with index cards or a white-
board and that typing the model into a CASE tool only provides sufficient value when
you use that tool.

Why use tools at all? Why not jump straight to code? First, code isn’t as flexible as
either sticky notes or whiteboard sketches. We can’t move things around in code as
easily as we can with sticky notes, and we very likely can’t change widget types as eas-
ily as we can sketch. In short, a few minutes working with sticky notes and possibly

72244_CH10I 2/27/02 10:50 AM Page 110

Using the Simplest Tools Possible? 111

drawing some sketches will likely pay for itself, several times over in saved coding
time. Second, sticky notes and sketches are more inclusive than code. Non-developers
such as our direct users can become actively involved with the UI design effort—we’re
working on something, the user interface of the system we’re building for them, that
they can directly relate to and are clearly interested in.

Agile Modeling with CASE Tools

On the surface you can easily assume that if you’re an agile modeler, you aren’t going
to use a CASE tool. Poppycock! An agile modeler uses a tool, any tool, when that tool
makes the most sense for that situation. Just as a carpenter will use a manual screw-
driver sometimes and other times an electric screwdriver, sometimes an agile modeler
will use an index card and other times a complex software design tool. In this section,
I address the following issues regarding CASE tools:

■■ Choosing CASE tools

■■ Overcoming CASE tool misconceptions

■■ Generated source code

■■ Generated documentation

Choosing CASE Tools
Any tool, including a CASE tool, should be used only when it provides the maximum
value for your investment—in accordance with the principle, Maximize Stakeholder
Investment. The following is basic investment theory: If you can invest your money one
way and get a 10 percent overall return, or you can invest your money another way
and get a 15 percent overall return, everything else being equal, you’re better off with
the second investment. With respect to modeling tools, you always have several
choices: Use simple tools such as index cards and white boards, use a diagramming
tool such as Microsoft Visio, or use a more complicated tool such as TogetherSoft’s
Together Control Center or Computer Associate’s ERWin data modeling tool.

How do you calculate the expected value for your investment in a tool? I suggest
that you don’t, at least not in the strict accounting sense of the idea. Yes, you could pre-
pare a complex spreadsheet listing all the costs, both quantitative costs that have a
clear dollar value and qualitative costs that need to be fudged into a dollar value. Then
you could compare the costs with the expected benefits, both quantitative and qualita-
tive (see Table 10.1 for a listing of potential costs and benefits). Naturally, you’d have
to calculate the net present value (NPV) of those figures to ensure that you’re compar-
ing apples to apples. I’ve got a very good write-up of how to do all this in my book
Process Patterns (Ambler 1998) if you’re really interested, but I highly advise against
this sort of lengthy analysis. Why? Because this analysis is a lot of work that is more
often than not a façade used to justify a political decision anyway.

How do you select CASE tools in an agile manner? You could fall back on the prin-
ciples and practices of agile modeling. The principle Develop with a Purpose tells you

72244_CH10I 2/27/02 10:50 AM Page 111

112 Chapter 10

Table 10.1 Potential Advantages and Disadvantages of CASE Tools

ADVANTAGES DISADVANTAGES

• Forward engineering (code
generation)

• Reverse engineering of existing code

• Support for changing levels of
abstraction (for example, from
requirements to analysis to design
to code)

• Testing of the consistency and validity
of your models

• Synchronization of models with
delivered code

• Support for different views and/or
potential solutions to a problem

• Generation of documentation

• Initial training and education

• Evaluation costs

• Maintenance of the model over time
(it’s even worse when the model has
outlasted its usefulness but you’re
still maintaining it for posterity)

• Upgrade costs of the tool

• Ongoing usage/maintenance fees

• Time lost waiting for the tool to do its
job

• Time lost over-using the tool (for
example, making your diagrams look
pretty, extraneous information, and
so on)

• Migration costs to port models to
another tool

• Increased effort to synchronize
models with other artifacts, such as
source code

• CASE tools often promote syntax over
communication between developers
(in other words, your model looks
good but doesn’t necessarily work)

• Generated code often too simplistic,
or cluttered with extraneous
information required by the tool

• Poor user interfaces often hamper the
modeling effort

• Inadequate integration with other
tools reduces productivity and/or
requires integration work

• Internal toolsmithing to integrate with
other tools, often not budgeted but
necessary

that you should know why you are creating an artifact. Knowing the purpose for an
artifact indicates the extent of the work that you need to perform to complete your
model. You stop as soon as your model fulfills its purpose. In turn, you will have
insight into what you require of your tools. By knowing your actual requirements, you
can then determine whether a given tool will actually provide the most value for your

72244_CH10I 2/27/02 10:50 AM Page 112

Using the Simplest Tools Possible? 113

situation. In my experience, a gut-feeling approach to choosing your tools is often the
most effective approach, albeit one that senior management may not trust you to take.
The principle Know Your Tools tells you that you should know the features of the tools
that you are using. The practice Use the Simplest Tools tells you to select the simplest
tool (even if it’s a CASE tool) that will do the job.

Overcoming CASE Tool
Misconceptions
There are several common misconceptions regarding CASE tools that need to be
addressed:

CASE Tool Misconception #1: Agile modelers don’t use CASE tools. Agile
modelers follow the practice Use the Simplest Tools, and if the simplest tool for
the job is a CASE tool, then that’s what they’ll use.

CASE Tool Misconception #2: UML requires CASE. A lot of developers associate
the Unified Modeling Language (UML) with CASE tools, yet nothing could be
further from the truth. Throughout this book, even in this chapter, you’ve seen
many hand-drawn UML diagrams.

CASE Tool Misconception #3: You start modeling with CASE tools. As you saw
in the section, “The Evolution of a Model,” you typically want to start with
simple tools and only migrate to CASE tool usage when it makes sense to do so.
Yes, CASE tools can be very useful if they generate code for you, or if they can
reverse-engineer an understandable model from existing code, but at first you
are better advised to work with simple, flexible tools.

CASE Tool Misconception #4: The CASE tool is the master. No matter how good
your CASE tool, fundamentally only the source code is in sync with the source
code (Beck 2000). Agile modelers realize that as soon as you generate code from
a model, or write code based on a model, the code is now the primary artifact
and not the model. You may choose to reverse-engineer your code at some point
to update your model, following the practice Update Only When It Hurts.

Generated Source Code
Figure 10.3 includes a step for generating source code from a CASE tool model and a
step for reverse-engineering models from existing code. These steps can be very effec-
tive, or a complete disaster, depending on the CASE tool. With respect to code-related
features, here is what agile modelers will look for in CASE tools:

Conformance to your coding standards. You must expect to edit the source code
that your tools generate for you. If the code generated varies dramatically from
your own code, then it is harder to work with and reduces the benefit of
generating the code to begin with. Therefore, you need to either choose tools
that you can configure to conform to your coding conventions or rework your
coding conventions to conform to the tool (putting you at the mercy of the
whims of the vendor).

72244_CH10I 2/27/02 10:50 AM Page 113

114 Chapter 10

Support for customization. CASE tools should provide the ability to enable you to
define what type of code you want generated. Do you want scaffolding code,
such as getter and setter operations, generated for you? Do you want code
generated that is required by the frameworks that you are using, such as remote
interfaces for Enterprise JavaBeans (EJBs)? Do you want code generated for an
n-tier environment using a browser-based user interface or for a fat-client
architecture that uses a graphical UI?

Minimal intrusion. Some tools are intrusive, putting identifiers into your source
code comments such as unique IDs or proprietary marks to indicate which code
was generated. Some tools are even more intrusive and limit your changes to
certain parts of the generated source code, often indicating these sections with
comments. These “intrusions” are typically put in place for the convenience of
the tool vendor, making it easier to reverse-engineer their own code. The
intrusions are not there for your convenience and they are not needed. As CASE
tools mature, and the vendor understands reverse-engineering more thoroughly,
the intrusions are slowly dropped over time.

Support for flexible reverse-engineering. Developers typically work on a small
portion of a system at a time, and they may only be concentrating on one aspect
of that portion at any given time. To support this process effectively, you need to
be able to reverse engineer only a portion of the system at a time, perhaps ten
C++ classes out of the three hundred that comprise your system, and only
generate the types of diagrams that you need right now, perhaps a single UML
class diagram to start.

Ease of use. If a tool is difficult to use, it is difficult to learn, increasing its costs to
you and thereby decreasing the value of the tool.

Multi-language support. Many systems are developed using several languages;
for example, a web-based system may include HTML, JavaScript, Perl, Java, and
proprietary database code. Ideally a CASE tool should support the languages
that you intend to work with.

Here are strategies to help you remain agile using CASE tools with code generation
capabilities:

Recognize that code generation doesn’t automatically imply agility. A tool that
generates poor quality code, or even the wrong code, isn’t going to be of much
help to you. Don’t get fooled by slick marketing material. Work with a CASE
tool, and determine if it meets your specific needs.

You need to understand what is generated. Hunt and Thomas (2000) warn against
“evil wizards,” code generators that produce code that you do not understand.
Although generating very complex code automatically sounds good on the
surface because then you don’t need to pay for people with the necessary
expertise, what happens when you need to modify the generated source code to
meet your exact circumstances or to fulfill a new requirement? An implication of
the principle Embrace Change is to not put yourself into a position that makes it
very difficult to change.

72244_CH10I 2/27/02 10:50 AM Page 114

Using the Simplest Tools Possible? 115

Iterate, iterate, iterate. You should reverse-engineer your code back into your
model(s) on a regular basis to reduce the overhead. Reverse-engineering a few
small changes made by a couple of developers is easier than reverse-engineering
several weeks of changes from an entire team. When you reverse-engineer code,
you often find that you need to reposition graphical items because they’ve
changed size and that the tool has difficulty mapping the new version of the
code to the existing model.

Generated Documentation
If the primary reason why you’re using a CASE tool is to generate documentation,
then you clearly aren’t taking an AM approach to development. The principle Software
Is Your Primary Goal indicates that the production of software, not documentation,
should be your focus. Choose tools that are easy to work with and that generate high-
quality source code for you over tools with nifty documentation-generation features.
The documentation generated by most CASE tools is comprehensive, catering to the
“telephone book” school of thinking as opposed to the agile documentation (Chapter
14) school of thinking. Yes, the principle Enabling the Next Effort Is Your Secondary Goal
tells you that documentation is still an important consideration; it’s just not your pri-
mary one. Yes, many teams need to provide documentation to external groups, but as
you saw in Chapter 8, there are significantly better ways to communicate with others
than documentation. In short, generate documentation with CASE tools sparingly
because these features make it easy for you to do the wrong thing.

Use the Media

Agile modelers use tools to their full advantage to utilize the media of the tools. For
example, they will take advantage of:

Color. Coad, Lefebvre, and DeLuca (1999) describe in detail how to use color
effectively in your UML class diagrams, using different colors to indicate
different types of classes. You can use different colors of marker in whiteboard
sketches to indicate different issues. For example: you may decide to use red on
a deployment diagram to indicate things you’re not sure of, blue on a data
model to indicate lookup tables, and blue on data flow diagrams to indicate
items that are currently out of scope for your project.

Size. You can use different-size sticky notes to indicate different types of items on
essential UI prototypes, as you saw in Figure 10.6 where large sticky notes
indicate data entry fields.

Flexible drawing tools. Tools such as Microsoft Visio (www.microsoft.com) are
popular because they enable you to draw a wide range of diagrams and to mix
and match symbols. Because of Visio’s flexibility, you can easily draw very
sophisticated free-form diagrams. Free-form diagrams are particularly useful for
architecture diagrams and diagrams that are presented to project stakeholders

72244_CH10I 2/27/02 10:50 AM Page 115

116 Chapter 10

who require more intuitive graphics than what is typically promoted by
notations such as the UML.

Three-dimensional (3D) mock-ups. In some situations, you discover that you
need to gain a perspective on an issue that only 3D mock-ups can provide. For
example, with SWA Online, you need to worry about shipping products. When
someone has ordered several items, the way that the items are packed can affect
your cost (you want to use the smallest boxes possible) and the shipping costs
charged to your customer (the smaller the package, the lower the cost). Another
example would be the development of an air traffic control system. Not only do
you need to worry about the design of the software, but also the placement of
the furniture and the design of the room are considerations because air traffic
controllers need to physically see the airplanes as well as their computer
screens.

Don’t Get Too Retentive
People make mistakes. They pick up the blue marker and start drawing with it
instead of the black marker. They use a 2” by 2” sticky note instead of the 2” by
4” one. They use Microsoft Visio to create a diagram instead of your corporate
standard Microsoft PowerPoint. Or perhaps, you forgot to pick up a pack of
blue index cards as well as white and yellow ones. Your models don’t need to
be perfect; they just need to be good enough. Remember, Content is More
Important Than Representation.

The Effect of Tools on Models

When all you have is a hammer, everything looks like a nail.

—Unknown

Do the modeling tools you use have an effect on your work? My experience is that
they do. You need to recognize that this is a serious problem. First, if your tools don’t
fully support your chosen notation(s), then you may not create the same models that
you would if you had a more fully functional tool. Second, when a tool makes it easy
to go in one direction over another, you won’t get the same model. If your tool makes
it easy to apply common design patterns, you are much more likely to do so than with
a tool that doesn’t, conflicting with the practice Apply Patterns Gently. Third, the level
of model support will affect the quality and types of models that you create. For exam-
ple: you are likely to get a different answer using a tool that supports the UML, user
interface development, and database modeling than with a tool that just supports the
UML. A tool’s supported notations emphasize certain ways of looking at problems.
They reflect a specific modeling methodology such as ICONIX (Rosenberg and Scott
1999) or Catalysis (D’Souza and Wills 1999), which in turn affects the way you will
structure your models. Fourth, you are likely to get a different model when using sim-
ple tools than when using more complex ones—your project stakeholders are more

TI P

72244_CH10I 2/27/02 10:50 AM Page 116

Using the Simplest Tools Possible? 117

likely to actively participate with your modeling efforts when you’re using simple
tools, giving you a better understanding of what they need. Also, simple tools are far
more flexible and don’t suffer from the modeling limitations (such as only supporting
a defined notation) of most CASE tools.

Having said this, people are very likely to have a greater effect on the quality of
your models than tools will. Agile modelers with good people skills are likely to gain
a better understanding of requirements than those without. An agile modeler that
understands and can apply a wide range of techniques, such as those described in
Appendix A, will likely be more effective than one that has fewer modeling techniques
in their intellectual toolkit because they will be far more effective at the practice Apply
The Right Artifact(s).

Using the Simplest Tools In Practice

The practice Use The Simplest Tools advises you to use the modeling tool best suited for
the job, one that provides the best value for your investment in learning and working
with it, with a preference for simple tools such as index cards and whiteboard
sketches. More complicated tools, such as word processors, drawing tools, and even
full-fledged CASE tools, are viable options for agile modelers to work with. Let the
principles Know Your Tools and Maximize Stakeholder Investment guide your tool selec-
tion efforts. Agile modelers prefer the simplest tools that get the job done and choose
wisely.

72244_CH10I 2/27/02 10:50 AM Page 117

118

C H A P T E R

11

Agile Work Areas

The physical environment in which you work has a significant impact on how effec-
tive you are as an agile modeler. Remember the parable: A horseshoe was lost for want
of a nail, a horse was lost for want of a shoe, a knight was lost for want of a horse, an
army was lost for lack of a knight, and a kingdom was lost for lack of an army. Does it
make sense that your organization be lost for lack of a whiteboard marker? I hope not.
Yet I have been in organizations where people had to carry their own markers with
them. If they left markers behind in a meeting room, they would soon be gone. For
some reason, this organization purposely maintained a chronic shortage of white-
board markers—one of the most effective tools that people can use to enhance com-
munication (see Chapter 8, “Communication”). Aaarrrggghhh!!! For agile modelers to
be effective they need access to the appropriate resources, and they need a work area
that enables Agile Modeling practices.

Agile Modeling Room

What qualities make agile-modeling areas effective? In my experience the following
factors, presented in priority order, are critical for creating an effective work area:

You need dedicated space. The most effective teams have their own working
areas. Yes, space is at a premium in many organizations, but if senior
management wants your team to succeed, they have to provide the resources

72244_CH11I 2/27/02 10:48 AM Page 118

Agile Work Areas 119

that you need. You should not have to wait to find an available meeting room
to get some modeling done. You should not have to worry about somebody
erasing your whiteboards or throwing your index cards in the trash. I’ve
worked in companies with a severe shortage of space. We had to wait for days
to find meeting rooms. Progress ground to a halt.

Significant whiteboard space. As far as I’m concerned, you can never have too
much whiteboard space. Luckily whiteboards are incredibly inexpensive. My
preference is whiteboards floor to ceiling, wherever empty wall exists, even on
support pillars if they’re more than a foot (30 cm) wide. Developers should have
their own private whiteboard space so that they can sketch diagrams on them
on their own, with their development pair (many projects teams, particularly XP
teams, follow a pair programming approach), or with several coworkers. Don’t
have this whiteboard space? Talk to your facilities people, the folks responsible
for the physical premises within your organization. Tell them that whiteboards
are a priority for your team. Not allowed to have whiteboards? Have senior
management pull some strings for you, or simply install the whiteboards
yourself and ask for forgiveness later. Do you know you can purchase
whiteboard wallpaper? I’ve used it and it works. If you can’t find whiteboard
wallpaper, you next option is to purchase 8x4 sheets of whiteboard. Using either
technology you can easily cover a large room in a couple of hours.

Digital camera. Digital cameras can be used to take snapshots of your modeling
artifacts. Use digital cameras to take pictures of critical diagrams to display
them on internal project web sites, to capture images of paper-based models
such as essential UI prototypes or CRC models, to capture a snapshot of a
diagram describing an alternative approach you’ve decided against but may
want to revisit in the future, or simply to capture a permanent copy of a
diagram for version control. Digital cameras are inexpensive and easy to use. I
suggest purchasing a high-resolution camera, one that will capture the minute
details, because the price difference isn’t that great. Digital cameras often pay
for themselves quickly. The alternative is for one of your highly paid developers
to transcribe the models that you want to capture onto paper. Digital cameras
are also a good substitute for the printing whiteboards that were popular in the
early 1990s—digital cameras are more flexible, far more portable, and less
expensive.

Modeling supplies. The practice Use the Simplest Tools suggests that working with
the simplest tool will get the job done. Therefore, you need access to those tools.
You need ready access to whiteboard markers, sticky notes (have different colors
and different sizes), index cards (you may also want different colors and sizes as
well), writing paper, flip-charts, tape, stick pins, string, and whatever other
modeling supplies that your team requires.

A bookshelf or storage cabinet. You need somewhere to store your modeling
supplies and reference books.

Large table. Some techniques, such as CRC modeling, require a large table to work
on. Other times you need a table to place your notebooks on, or more
importantly, somewhere to put food when you have lunch delivered.

72244_CH11I 2/27/02 10:48 AM Page 119

120 Chapter 11

Computer. Having a computer in your modeling area can often prove
advantageous, particularly if you need to research information on the Internet
during a modeling session (something I would rather have someone do offline
after a modeling session) or simply to access previous models that have been
placed under version control. You may even want to have a CASE tool installed
on this computer so you can capture your work in your chosen tools. However,
never forget that complicated tools introduce a barrier to communication and
may actually be counterproductive for the team as a whole. See Chapter 8 for a
detailed discussion of communication. If you are going to have a computer in
your working area, then make sure you get a good one because you don’t want
a group of people waiting on a machine.

Chairs. Although stand-up working sessions are incredibly productive—people
focus on getting the work done and appear to be more willing to contribute—
the reality is that people want to be able to sit down occasionally. I believe in
having a few chairs in a working area. It’s interesting that it’s called a working
area and not a sitting area, so that if some people want to sit down, they can.
Sitting is particularly important at the beginning of a project because your
modeling sessions are likely to be longer, as described in Chapter 13, “Agile
Modeling Sessions,” and your team will be more likely to sit. During the
construction phase of your project, modeling sessions have a tendency to be
much shorter, often between ten and twenty minutes long. In this case, a stand-
up session is much more palatable.

Wall space to attach paper. It’s good to have some nonwhiteboard wall space.
You’ll have somewhere to attach paper artifacts. If possible have corkboard
installed, or worst case simply have a few sections of plain wall space.

Projector. If you are going to have a computer in your working area, you should
also consider having a projector to attach it to so you can display images on the
wall. Displaying images promotes communication because everyone can see the
information. However, teams make the common mistake of trying to capture
information in a CASE tool during a modeling session. They have a “CASE
jockey” who works the tool as everyone models, often projecting onto a
whiteboard where others will draw over the image. Unfortunately, this
approach is incredibly unproductive because everyone on the team ends up
waiting for the CASE jockey to capture the information. A better approach
would be to use the more flexible tools, such as the whiteboards, to work
together. Later use the less flexible tool, the CASE tool, to capture the results. To
support the whiteboard modeling effort you may choose to have the CASE
jockey display existing models, the difference would be that you don’t try to
update the models as you move forward.

Reference books. When you are modeling, you often need to access common
reference information, such as the UML notation for a specific concept or the
definition of a design pattern. In Table 11.1, I provide a short list of books that I
have found useful during modeling sessions. In fact, I typically ask my clients to
order at least one copy of each book for the team and suggest that developers
have their own copies to mark up as they please.

72244_CH11I 2/27/02 10:48 AM Page 120

Agile Work Areas 121

Table 11.1 Suggested Modeling Reference Books

TITLE USAGE

The Object Primer, Second Edition Reference book for a wide range of
Edition: The Application Developer’s techniques, including the UML
Guide to Object Orientation. diagrams.
(Ambler 2001a)

UML Distilled, Second Edition: Good reference manual for UML.
Applying the Standard Object
Modeling Language
(Fowler and Scott 1999)

Analysis Patterns: Reusable Object Defines solutions to common problems
Models (Fowler 1997) found in business applications.

Design Patterns: Elements of Defines solutions to common
Reusable Object-Oriented Software object-oriented design problems.
(Gamma, Helm, Johnson, and
Vlissides 1995)

A Systems of Patterns: Pattern-Oriented Defines solutions to common
Software Architecture object-oriented architecture and design
(Buschmann, Meunier, Rohnert, problems.
Sommerlad, and Stal 1996)

Food. Having food available in your working area is often appreciated by all and
will help to build camaraderie. A varied selection is a good idea. Not everyone
has the same tastes or eating habits. I personally gravitate toward hard candies;
they’re small and store well. Also include fresh fruit.

Toys. Having something to play with in your hands can help you get “unstuck”
when you’re working. Many teams enforce politeness rules by allowing people
to throw a foam ball at someone who is being rude or inconsiderate.

Access to Resources Gauge Management Support
My experience is that management’s willingness to give you the tools that you
need to do your job is a critical indicator of their actual support for your team.
Everything presented in the Agile Modeling Room section is perfectly
reasonable and frankly not very expensive. Yes, sometimes you have a space
crunch, and you do not have enough room for your team to have their own
work area. I can’t help but think that your organization should consider
addressing its physical facilities problems before it tackles a new software
project. Can’t get any whiteboard markers because the allocated budget for the
year has already been spent? Consider firing the accountant for being
pennywise and pound-foolish. The bottom line is that you’re not asking for
much. If senior management can’t provide them, chances are pretty good that

TI P

72244_CH11I 2/27/02 10:48 AM Page 121

122 Chapter 11

*I once worked at a company where you instantly knew how high up the corporate hierarchy
was by the configuration of their desk—people from level 1 to level 7 had desk configuration A,
from 8 through 12 desk configuration B, and so on. You knew someone was truly important, very
likely a senior vice president, when they had their own unique desk (typically large and made of
expensive hard wood).

they really don’t believe in your project, an issue that you desperately need to
address as soon as you can.

Consider Digital Photo Software
With the increased use of digital cameras to capture whiteboard images, we’re
starting to see software that cleans up your pictures and potentially even
captures textual information contained in them. A quick search on the web is
definitely warranted.

Effective Work Areas

There is more to your work area than just the space(s) used for modeling. You need
space that supports the rest of the project lifecycle. In addition to modeling, you need
space to program and test your system, implying the need for workstations for devel-
opers. The underlying process, such as XP or the Unified Process, that you use with
AM (see Chapter 1) should provide advice regarding work areas that are conducive to
that process. For example, on an XP project, your working area must include worksta-
tions for pairs of developers, whereas a UP project team may decide that everyone will
work in his or her own private cubicle or office. It is important to understand that you
will very likely need to combine the advice presented by these processes with the
advice I provide in this chapter to design your overall work area. Team size will also
affect the configuration of your work area—larger teams may want several working
areas with a shared common space.

Making This Work in the Real World

Very few organizations have more space than they need. It is very easy to explain that
a development team needs a dedicated workspace; it is a very different thing to obtain
and keep that workspace. It is very easy to explain that people should work together in
a common area, but the reality is that people need their privacy sometimes. It is very
easy for XP to insist that people work together at shared desks; it’s very hard to do so
in organizations where your importance is indicated by the size of your desk* or office.
I have applied the following techniques at various organizations over the years to set
up effective work areas:

Communicate the importance of having an effective workspace to senior
management. This issue is one that is worth spending political capital on
because your team cannot be effective without an environment conducive to the

TI P

72244_CH11I 2/27/02 10:48 AM Page 122

Agile Work Areas 123

work they are trying to accomplish. It may mean that other people are moved to
another area within your organization; it may mean that you need to do some
redecorating (perhaps removing existing cubicles to clear an area); or it may
mean that you obtain new office space completely. Do it. The cost is minimal
compared to the increase in productivity that will result.

Communicate the importance of having an effective workspace to the team.
Everyone who is actively participating on the project, including both developers
and project stakeholders, should understand why their workspace has been
configured in this “new” way. They might not be familiar with shared
workspaces or the required etiquette for such environments, and they very
likely are not aware of why the new workspace is critical to the success of your
effort. Talk with them about it.

Get rid of the headphones. For a work area to be effective, it should enable
communication within your team. But if everyone is wearing headphones so they
can listen to their favorite music, then they clearly aren’t communicating well.

Allow people to keep their former offices. If some people are concerned that
they’re going to lose their “good desk/office/. . .” if they join your project,
consider allowing them to keep them. Insist that they work in the team work
area during regular hours, but allow them to keep their personal workspace so
they can maintain their corporate image. Yes, this is a little dysfunctional, but
you need to make concessions like these when you are introducing new
techniques like AM.

Provide private areas. To enable people to make private phone calls, have private
conversations with another team member, or simply to get away from it all for a
few minutes, many project teams need access to small meeting rooms. I’ve
worked on some projects where a room was dedicated to the team although it is
far more common for meeting rooms to be a shared resource within the entire
organization.

I cannot overstress the importance of having adequate resources—note the use of
the word “adequate” instead of “extravagant.” Always remember to apply the princi-
ple, Maximize Stakeholder Investment and ask for resources that you need and can justify.

72244_CH11I 2/27/02 10:48 AM Page 123

There is no “I” in “agile.”

124

C H A P T E R

12

Agile Modeling Teams

The bottom line is that Agile Modeling AM is a collection of synergistic practices that
are supported and enhanced by a defined set of practices and values—without people
willing to follow those practices, people with the right attitude who are willing to
work and learn together, AM will be for naught. For AM to be successful within your
organization, development teams must include both developers and the project stake-
holders who ideally will actively work side-by-side with the developers. To build an
effective development team you need to:

■■ Recruit a few good developers

■■ Recognize that there is no “I” in agile

■■ Require that everyone actively participates

■■ Model in teams

Recruit a Few Good Developers

The first step for building an effective team is to recruit the right people for that team.
Cockburn (2001b) points out that while many methodologies define the roles that
developers may take on a software project and the types of tasks people in those roles
perform, what they often don’t do is define the type of people who are best suited for

72244_CH12I 2/27/02 10:47 AM Page 124

Agile Modeling Teams 125

those roles. For someone to be effective in a role, they should be a reasonably good fit
for it—they may not have all the requisite skills, but they should be able to grow into
them. In my experience, an effective agile modeler exhibits most of the following
traits:

Team player. First and foremost, agile modelers actively seek to work with others
because they recognize that they don’t have all the answers and that they
desperately need several points of view to be effective. Software development is
a lot like swimming, it’s dangerous to do it alone. To paraphrase a common
refrain about teamwork, there is no “I” in agile.

Communicative. Agile modelers have good communication skills. They can
present their ideas. They listen to others. They actively seek feedback. They can
write reasonably well when needed.

Practical. Agile modelers should be practical. They should be able to focus on
fulfilling the needs of their users and to not add unnecessary bells and whistles
(something often referred to as gold plating) to their models. They should be
satisfied with producing the simplest possible solution that gets the job done.

Inquisitive. Agile modelers enjoy exploring the problem domain as well as the
solution space.

Skeptical. Agile modelers do not take things at face value but instead ask further
questions, exploring an issue until they understand it sufficiently. They don’t
assume that a product or technique works according to its marketing literature;
instead, they try it out for themselves.

Realistic. Agile modelers should be humble enough to know that they don’t have
all the answers, and sufficiently cautious to recognize that they should prove
their models with code sooner rather than later.

Courageous. Agile modelers are willing to propose an idea, to model it, and then
to try to prove it with code. If it doesn’t work, they try to rework their approach
or even discard it as appropriate. It takes courage to offer your ideas to your
peers and then to try to validate them.

Experimental. Agile modelers should be willing to try new approaches, such as
applying a new (or old) modeling technique. They should also be open to agile
software development techniques in general and be willing to go against the
grain of conventional wisdom when needed in order to validate ideas such as
reducing the amount of documentation on a project.

Disciplined. It’s very easy to say to yourself “adding this extra feature isn’t going
to hurt anything” or “I know better than my project stakeholders” and then act
inappropriately. It takes discipline to stay on the agile path.

What happens if you don’t exhibit all of these traits, yet still want to become an agile
modeler? Don’t worry. You can grow into the role with a little effort. Believe me, I’m
not practical or realistic 100 percent of the time, and often I can become very uncom-
municative. Nobody is going to exhibit all of these traits all the time. Instead, people

72244_CH12I 2/27/02 10:47 AM Page 125

126 Chapter 12

Project Management
Environment
Infrastructure Management

Operations & Support
Deployment
Test
Implementation

Analysis & Design

Requirements

Business Modeling

Configuration & Change Mgmt

Iterations

Phases

Disciplines

Figure 12.1 The lifecycle for the Enterprise Unified Process (EUP).

will exhibit these traits to some extent. Everyone is different, and these differences
bring strength to agile development teams. To some people, being inquisitive comes
naturally. Other people need to consciously work on it. We’re only human.

Generalists or Specialists?

Specialists are not to be trusted. Specialists are masters of exclusion,
experts in the narrow.

Emperor Leto II, from God Emperor of Dune by Frank Herbert

When recruiting members for your team, you need to address the ratio of generalists
to specialists that you wish to include. You need to consider the nature of modern soft-
ware development. The lifecycle of the Enterprise Unified Process (EUP) (Ambler,
2001b) is depicted in Figure 12.1. The process workflows listed along the left-hand side
hint at the potential complexity of software development—you may need to business
model, gather requirements, analyze and design your system, and so on. This is clearly
just the tip of the iceberg. The phases, Inception through to Production, listed across
the diagram, are indicative of a changing focus throughout your project that requires
different skills at various times. Software development is clearly very complex and an
effort that requires significant skill and experience. It is important to understand that
this complexity is inherent in software development in general, not just in the EUP—
project teams taking an extreme Programming (XP) (Beck 2000) approach to develop-
ment, a DSDM (Stapleton 1997) approach, or a SCRUM (Beedle and Schwaber 2001)
approach also need to deal with these complexities. Although their lifecycles may not
depict it as explicitly as the EUP’s, XP’s lifecycle is explored in detail in Part Three of

72244_CH12I 3/5/02 3:49 PM Page 126

Agile Modeling Teams 127

this book. Project teams following these methods still perform configuration manage-
ment activities, management activities, and so on (albeit in different manners).

To address the complexity of software development, the first reaction of many orga-
nizations is to build a team of specialists. The general idea is that specialists are very
proficient at a specific task and are therefore more efficient. To become efficient at soft-
ware development, all you need to do is put together a team of specialists who work
on their part of the project and hand-off their work to other specialists who evolve it
from there. This is effectively the “assembly-line” school of thought, which works very
well if you are mass producing cars, but in my experience does not work very well
when you are attempting to hand-craft software. Furthermore, this approach is geared
towards larger teams—if there are X distinct tasks required to develop software, then
you need at least X specialists following this approach. How big is X? 20? 50? 100?
Depends on how finely you define the specialties, doesn’t it? If you are of the single
artifact developer mindset, then just to handle modeling alone you may need over
twenty specialists. There are that many artifacts listed in Appendix A, “Modeling
Techniques,” of this book. If you are of the single role developer mindset, then you
have eleven roles on an EUP project just to cover the workflows. Specialists often have
difficulties working with others. Either they lack the humility to recognize that people
with different specialties than their own have something of value to add, or they are so
narrowly focused that they don’t realize that what they are doing is causing someone
else later on to do significant rework (or perhaps the work that they are doing is sim-
ply being ignored). Another problem with specialists is their skills may not be very
good at all, even in their own specialty. The high rate of technical change within the IT
industry provides an environment where developers can work with a new technology
for several months, become reasonably familiar with it, and claim to be an expert
because few others are available with the same level of experience. Clearly there is a
problem with building a team from people who are only specialists.

Many Developers Specialize to Their Detriment
Because of this inherent complexity of software development, a common trap
is for developers to fall into the Single Artifact Developer anti-pattern (Ambler
2001a) where someone defines himself as a person that works on one type of
artifact (for example: code, a use case model, or a data model) or into the
Single Role Developer anti-pattern where someone defines herself as a person
that performs one kind of task (for example: modeling, testing, or coding). In
other words, the person is specializing in a specific role, a tendency that is
often encouraged within large organizations following prescriptive processes (if
they’re following any process at all). The problem is that developers who fall
into this trap are too narrowly focused to be productive on an agile software
development project, although if they are willing to expand their horizons this
issue can be overcome.

How about building a team of only generalists? Everyone would have a fairly good
understanding of how to develop software, but unfortunately they wouldn’t have the

WARN I NG

72244_CH12I 2/27/02 10:47 AM Page 127

128 Chapter 12

detailed knowledge required to get the job done. Your project will need people inti-
mately familiar with the techniques and technology that you are using. If you’re work-
ing with Enterprise JavaBeans (EJB), then you want developers with expertise in Java
programming and in EJB development. A team working with Oracle on the backend
will also want someone with Oracle database administration experience, and a team
developing software for a brokerage will want people that understand the nuances of
stock and bond trading.

In my experience, neither extreme works well. Instead, what you want is something
in the middle. One approach is to build a team with some people who are generalists
and some who are specialists; the generalists provide the glue within the team and
focus on the bigger picture whereas the specialists focus on the detailed complexities
of your project. This approach works well because the strengths of the generalists bal-
ance the weaknesses of specialists and vice versa, and it is often quite useful for a gen-
eralist to pair with a specialist because of this balance. A better approach would be to
build a team comprised of people who are generalists with one or two specialties. For
example: I would claim that I am a generalist because I have a pretty good handle on
how it all fits together, yet I have specialties in business application software model-
ing, object persistence, and Java programming. One of my current co-workers is a gen-
eralist with specialties in modeling, EJB development, and testing, whereas another is
a generalist with specialties in telecommunications networking and Java program-
ming. The advantage of building teams from generalists that have one or more spe-
cialties is that they quickly find common ground with their co-workers, they’re all
generalists after all, and they have the necessary background to appreciate the impor-
tance of other specialties. The main disadvantage is that these people are often at
senior level. A person easily needs ten to twenty years to gain sufficient experience to
become a generalist, and thus generalists are difficult to obtain. You’re very lucky if
people such as this form a portion of your team.

Novices Specialize at First
People who are new to development are typically overwhelmed by the vast
range of knowledge that they need to gain. That’s only natural. Most people
will start out by focusing on one or two aspects of development, perhaps
programming in Java or gathering user requirements, and then they use that
experience as a base and branch out from there. They’ll slowly build up their
skillset with experience, perhaps gaining a specialty or two in the process and a
better understanding of how it all fits together.

Recognize That There Is No “I” in Agile

In effective teams, everyone on the team realizes that they are supposed to be working
together as a team. You saw in Chapter 1, “Introduction,” that the first value of the Agile
Alliance (2001a) is to prefer “individuals and interactions to processes and tools” and the
third of four values is to prefer “customer collaboration to contract negotiation.” The
Agile Alliance also defined a collection of principles (Agile Alliance 2001b) for agile soft-

TI P

72244_CH12I 2/27/02 10:47 AM Page 128

Agile Modeling Teams 129

ware development, including “business people and developers must work together
daily throughout the project.” These values and principles clearly indicate a preference
toward teamwork within agile environments, toward people working together toward a
common goal. This preference rings true with my own experiences as a software devel-
oper. The quality of my work is dramatically improved when I am working with one or
more other people. My philosophy is that development is a lot like swimming. It is very
dangerous to swim alone. That belief is reflected in the practice Model with Others.

Several years ago, I worked on a billing system and supporting customer service
application for a large telecommunications firm. Part of that effort was the design of
the user interface (UI) that the customer service representatives would work with.
Because I had worked on a similar system previously for another client and because I
have some experience at UI design, I jumped right into the creation of a prototype. The
prototype was based on the requirements for the new billing system. We had invested
significant time developing detailed use cases that had been reviewed and signed off
by a committee representing our users (this wasn’t an agile project). I thought I had a
very good idea of what needed to be developed. Without any help from the project
user representatives, most of them were attending a use case training course that week
(long after they had learned about use cases from the developers, but that’s another
story about corporate dysfunction) and weren’t readily available to me, I started pro-
totyping. We were deploying to the Win32 platform, so I created a graphical user inter-
face (GUI) that complied with the Microsoft UI design guidelines (Microsoft
Corporation, 1995) and fulfilled the user requirements for the system. Or so I thought.
I had modeled, on my own, close to 20 screens, many of which you could navigate
between. In parallel, I had created a user interface flow diagram on the whiteboard in
my cubicle, so I had the UI prototype to the point where it seemed to make sense. The
UI prototype was amazing, at least in my mind, and I had clearly saved the project a
significant amount of time by nailing down this critical part of the design. Then reality
got in my way. When the user representatives returned, I was eager to show them
what I had done so that we could declare victory and move on with the project; at the
time I had not yet internalized AM’s value of Humility. I was shocked to find that the
prototype was completely unacceptable to them. Although we were deploying to a
Win32 environment, we needed to follow the corporate design guidelines that man-
dated a monochrome text-based UI, not a color GUI, a constraint that hadn’t been
reflected in the requirements I was working from because it was assumed that every-
one knew this, even though up until that point it was news to the developers. There
were also very specific ways that certain information had to be displayed so that our
system would look and feel like other customer service applications that our users cur-
rently worked with, yet another new constraint. Although the user interface flow dia-
gram proved of some value, the vast majority of my effort had to be scrapped. I
continued the UI prototyping effort from scratch, working closely with several of the
user representatives who knew the existing system, or sometimes portions thereof,
and who could provide guidance on how to design the user interface. When I had
worked alone, I had fallen into the trap of not obtaining input from others. I was not
following AM’s principle of Rapid Feedback, and thus started to go in the wrong direc-
tion without knowing it. When I obtained feedback I then realized my mistake, a mis-
take that was obvious to my project stakeholders but not to my fellow developers. I

72244_CH12I 2/27/02 10:47 AM Page 129

130 Chapter 12

got back on track by effectively following the practices Active Stakeholder Participation
and Model with Others—several heads were clearly better than one.

Effective teamwork and effective communication (covered in Chapter 8, “Commu-
nication”) are enablers of agility. Teamwork requires trust, something that must be
built over time as you work with people and get to know them. Agile modelers
actively seek out input and help from others; they are also happy to provide input and
help to their fellow teammates, including both developers and project stakeholders, as
required. AM’s values of Humility and Feedback are critical factors promoting effective
teamwork and communication. There is no “I” in team, and my experience is that
there is no “I” in agile either.

Require that Everyone Actively Participates

I only have one rule: Everyone fights and nobody quits or I’ll shoot you myself.

Sergeant Rasczak, From the movie, Starship Troopers

I couldn’t have said it better myself. Software development works best when everyone
works together. They are prepared to help their fellow teammates, and they are willing
to take on a wide variety of tasks. When someone doesn’t actively participate, when
they sit in a modeling session as a passive observer or they don’t help someone when
asked, they not only reduce the overall productivity of your team but they also force
someone else to do the work that they could have performed. People who are not
actively participating are dead weight and are slowing down your project—either
motivate them to join the effort or invite them to leave, either way you’re better off.

There is always a lot of work to go around. There isn’t any valid reason for someone
to not be productive. Luckily, as you saw in Chapter 7, “Order from Chaos: How the
AM Practices Fit Together,” AM includes several practices that promote active partici-
pation. First, Active Stakeholder Participation insists that project stakeholders are
expected to be actively involved in the software development effort, adding a valuable
resource to your overall project efforts. Second, the practice Collective Ownership
reduces barriers to participation by allowing everyone to work on anything that they
need to—artifacts are owned by the team, not by the individuals that created them.
Third, the practice Model with Others makes it difficult for people to hide because it
motivates you to seek out help when you are modeling.

Model in Teams

Why is it important to build an effective team? Because modeling is best done by
groups of people, not individuals. The practice Model with Others indicates that you
should work together in teams when you are modeling. What it doesn’t tell you is how
to do so effectively. How big should the team be? Who should be on it? How do you
ensure that a modeling session is effective?

72244_CH12I 2/27/02 10:47 AM Page 130

Agile Modeling Teams 131

There are several common styles of modeling teams:

Development pair. Many agile software development teams adopt the practice of
having developers work together in pairs; in fact, pair programming is an
explicit practice of XP (Beck 2000), and this includes modeling in pairs as well. It
is quite common for you and your development pair, I prefer to avoid the term
programming pair because you do far more than program, to discuss an idea or
approach by working on a model together—perhaps creating a sketch on a
whiteboard or writing a few CRC cards. Part Three of this book describes
modeling on XP teams in detail.

Small impromptu/ad-hoc team. An impromptu/ad-hoc modeling team is one that
is put together quickly, often in a matter of seconds, to address a specific issue.
Once the team has addressed the issue, it just as quickly disbands. Agile
developers will often form small ad-hoc modeling teams, often composed of
two or three people, when they realize that they need help with what they are
working on—perhaps they need more information about the business domain
from a project stakeholder or need technical help from another developer. It’s
very easy to put together an ad-hoc modeling team when the entire team is
co-located—when you know who is the best person to work with, you can
simply walk over to them and ask for help and when you don’t know who can
help, you simply shout out something like “does anyone know anything about
XYZ?” and hopefully someone does. When your team isn’t co-located, it
becomes much harder to put together an ad-hoc modeling team—it takes longer
to identify who can help you, it becomes harder to work with them because you
need to either communicate with them at a distance via a technology such as
email or phone (see Chapter 8 for a discussion of communication strategies), or
you need to wait until you can get together physically.

Designated team. Sometimes you will have designated teams of people who are
specifically brought together to model. At the beginning of a project you may
decide to have a requirements modeling session in which you bring together a
group of users whose goal is to help you to identify initial requirements for your
system and to identify your project’s scope. People are designated to this team,
the team fulfills its task, and the team disbands. Yes, some of the users may
become involved with the project on a full time basis in the role of “customer”
or “user representative,” but that is a different issue. It is common to have a
designated architecture team for a project, often comprised of all the developers
on small project teams or a subset of developers on large project teams.

Give Pair Development a Chance
Although pair development appears less productive on the surface because two
people appear to be doing the job of one, the reality is that this approach is
actually quite effective. Studies (Williams et. al. 2000) have shown that pair
development results in greater consistency, efficiency, quality, and job
satisfaction among developers. In my own anecdotal experience, pair
development works—I have found that when you honestly try it for a month,

TI P

72244_CH12I 2/27/02 10:47 AM Page 131

132 Chapter 12

although many people will be skeptical at first (good for them!), after this time
period, the vast majority of people will be exceptionally reluctant to go back to
their old “single developer” ways.

Members of Designated Modeling Teams Do More Than Model
Earlier, I argued that the most effective people on a development team are
those that are able and willing to take on a variety of tasks, one of which is
hopefully modeling. You may be a member of the designated architecture team,
but that doesn’t mean that architectural modeling is the only thing that you do.
Ideally, you will also roll up your sleeves and write some code. The danger is
that many developers prefer to focus on a single specialty and will use the fact
that they are on a designated modeling team to justify taking just one role,
such as architect or business analyst, on your team. The problem is that these
people become out of touch with what the rest of the team is doing. They are
not actively involved and likely not very interested in other aspects of the
project, increasing the chance of “office politics” within your team due to lack
of shared vision.

In my experience, small teams, either development pairs or small ad-hoc teams,
perform the vast majority of modeling on agile software development projects. When
you step back and think about it, this makes a lot of sense—when you follow the
highly iterative and incremental approach favored by agile software development
teams, you find that ad-hoc modeling efforts fit in very well. Furthermore, many agile
developers, particularly those on XP teams, frequently choose to work in pairs because
they find pair modeling to be very effective. Important work still occurs in designated
modeling teams, often at the beginning of a project to gather initial requirements or to
perform initial architecture or design modeling.

Making This Work in the Real World

Whenever I suggest the ideas presented in this chapter to my clients, the response
always seems to be along the lines of “Yes, this all sounds good but we can’t do that
here because . . .” Sigh. Everyone seems to be convinced that their situation is different,
and it is in some respects, but the reality is that the important things really are the
same. People are people are people. Individuals have strengths and weaknesses; they
have their own unique skill sets, their own priorities, and their own base of experience.
There will always be interpersonal conflicts; there will always be new friendships
formed and existing relationships to build upon. You can always build an effective
team if you choose to do so, and you can always find an excuse for not doing so. In my
experience, organizations that choose to be successful at team building often:

Communicate the importance of active stakeholder participation. I cannot stress
this enough—project stakeholders must recognize that their active involvement

WARN I NG

72244_CH12I 2/27/02 10:47 AM Page 132

Agile Modeling Teams 133

with your project is critical to its success, and developers must understand that
they need to work closely with their stakeholders.

Communicate the value of teamwork. The bottom line is that you’re in this
together, so work together effectively.

Ask people to try a new approach. Some people will always find an excuse for
why a new approach, such as co-locating developers and project stakeholders,
won’t work. They’ll often be unwilling to accept your arguments for the new
approach, having made up their minds that it isn’t going to work. When this is
the case, I will ask them to give the new approach a fair shake, often asking
them to honestly try it for a specified period of time (often a month or two) with
the promise that at the end of the period we’ll get back together to discuss the
issue.

Rethink the composition of your team. If some people are unwilling to work in
the manner that I’ve described in this chapter, one option that’s open to you is to
replace them with someone else. Some people simply don’t have the skills, or
the desire, to be part of a team—they work alone and are willing to live with the
career-related consequences of that decision.

Stress the importance of learning new skills. It’s very difficult to truly become a
generalist with several specialties, requiring years of hard work to gain the
necessary experience. If you haven’t yet made this investment in your career,
does that mean you can be involved with an agile modeling project? Of course
you can. You don’t need to know everything about software development, but
you should be willing to learn new skills when the opportunity presents itself.

Building an effective team is a difficult task, one that is critical to the success of your
project. The first step is to start with good raw material by recruiting good developers,
people who may not have all the skills that they will need but at least are willing to
learn them. The next step is to nurture the right attitude within the team—they need to
work together to succeed. Everyone should actively participate in the development of
your system and when modeling to work together in teams along the lines of the AM
practice Model with Others. It takes time to build and nurture an agile modeling team,
but doing so is one of the best investments your organization can make.

72244_CH12I 2/27/02 10:47 AM Page 133

134

C H A P T E R

13

Agile Modeling Sessions

A modeling session is an activity where several people focus on the development of one
or more models. Modeling sessions are an important part of any software development
effort because they provide an opportunity for people to collaborate together in order to
communicate their needs, to come to a better understanding, and ideally to work toward
a solution. Traditionally the effectiveness of modeling sessions seems to range widely,
from being very productive to virtually useless. In my experience, to be effective at Agile
Modeling you will need to rethink your approach to modeling sessions, focusing on
what works and excluding what doesn’t. You need to consider the following issues:

■■ Duration

■■ Types of modeling sessions

■■ Participants in modeling sessions

■■ The formality of modeling sessions

Modeling Session Duration

Many organizations need to rethink the time that they invest in individual modeling ses-
sions. The duration of effective modeling sessions often ranges from several minutes to
several days, with the majority of the sessions lasting between ten and thirty minutes. Why
such a wide range? To answer this question, you need to first consider when modeling ses-

72244_CH13I 2/27/02 11:24 AM Page 134

Agile Modeling Sessions 135

sions occur—modeling occurs throughout your entire development efforts. You need to
understand that your focus changes throughout the project lifecycle. At the beginning of
the lifecycle, you are typically more concerned with understanding “the big picture;” in
the middle of the lifecycle, you are more concerned with building specific parts of your
system; and at the end of the lifecycle, your focus is on transitioning your system into pro-
duction. This change in focus will motivate different styles of modeling sessions, including
different durations, throughout your effort.

You are likely to hold long modeling sessions at the beginning of the project lifecy-
cle. During this phase of your project, there is a great need to define the scope for the
project, to set the initial requirements, and to identify a candidate architecture based
on those requirements. To reach these goals, you often find that you need to hold ini-
tial modeling sessions that may take several hours or even several days because you
have a lot of ground to cover at the start of your project. In my experience, modeling
sessions longer than two or three days put your project at risk—the longer you go
without feedback, the greater the chance that what you are modeling does not reflect
the requirements or the architecture. AM’s principle of Rapid Feedback implores you to
reduce the time between modeling something and verifying your model, either by
reviewing it with someone else or by following the practice Prove It with Code. Another
issue with long modeling sessions is that fatigue begins to set in among participants;
modeling can be a mentally draining activity, reducing the quality of their work. Fur-
thermore, the need of participants to return to their regular jobs makes it difficult for
many participants to invest more than a couple of days at a time.

Sometimes there is significant pressure to have longer modeling sessions. Many
people will argue that you want to get requirements identification over with as soon as
possible. However, AM’s principle Embrace Change tells you that this is a naïve goal at
best because your stakeholders’ understanding of what they need will evolve as the
system does. Another common argument for longer sessions is that key personnel are
only going to be available once, so you’d better take advantage of them while you can.
Common justifications for this include that some people must travel great distances to
attend your modeling sessions or they are too busy to take time away from their regu-
lar jobs to attend a series of sessions. The travel issue can be dealt with by applying
alternative means of communication, covered in Chapter 8, such as videoconferencing
and email. The argument that someone is too busy to participate is a red herring—it’s
far easier to schedule time for several small sessions than one large one. People will
also argue that it’s a lot of work to organize modeling sessions; therefore, it’s better to
have a few large ones than a lot of smaller ones. My advice is to loosen up a bit, make
them less formal and therefore easier to organize.

You are likely to hold short modeling sessions, typically 10 to 20 minutes in length,
during construction. At this point in time, your focus is implementing specific require-
ments, ideally “small requirement chunks.” What are examples of small requirement
chunks? On an XP project (Beck 2000) you would implement a user story, on a Feature-
Driven Development (FDD) project (Coad, Lefebvre, and DeLuca 1999) you’d imple-
ment a feature, and on a Rational Unified Process (RUP) project (Kruchten 2000) you’d
implement a portion of a use case. You’ll be working very iteratively at this point,
working with your project stakeholder to explore the pertinent requirements, perhaps
creating an essential UI model or discussing the logic of a business rule, then moving
forward to discuss a potential solution for that requirement. Often you will create a

72244_CH13I 2/27/02 11:24 AM Page 135

136 Chapter 13

whiteboard sketch to facilitate the discussion and then move on to code and test the
solution. Agile developers iterate quickly between these steps, modeling requirements
with their project stakeholder(s) for a few minutes and then modeling the potential
solution for a few minutes (ideally in a small group of two or three developers follow-
ing the practice Model with Others). When you work on small requirement chunks and
proceed iteratively, you quickly discover that short modeling sessions are sufficient.

How do you keep a modeling session short? First, prefer stand-up modeling ses-
sions around a whiteboard or table because most people are only willing to stand up
for short periods of time. Second, make it a habit to hold short modeling sessions,
therefore when the sessions go longer people will start to feel uneasy about it. Third,
keep the modeling session focused on a single topic. This is one of the advantages of
working on a single, small requirement chunk at a time. Fourth, as the principle Model
with a Purpose advises, stop modeling once you’ve fulfilled your goal.

Types of Modeling Sessions

Part of being effective at AM is rethinking the type of modeling sessions that you hold.
A common problem that I see again and again is something that I call “single artifact
modeling sessions.” The problem is so common in fact that I’ve been tempted to write
it up as a process antipattern (Brown, McCormick, and Thomas 2000). Common exam-
ples of single artifact modeling sessions, when you take them at face value, include
use-case modeling sessions, data modeling sessions, and even class modeling sessions.
The problem is that the modeling effort is too narrowly focused, although each one of
those artifacts is important in its own right, they simply aren’t robust enough to be
effective. I’ve seen use-case modeling sessions that produced bloated use cases
because the team started to record business rules, technical requirements, and even
information about domain entities in their use cases because they didn’t consider
working on other artifacts. I’ve seen data modeling sessions that resulted in what
appeared to be a great data model, at least at first, but that eventually proved to need
significant refactoring—the data modelers focused only on data-related issues and
didn’t consider critical behaviors because “that was something the application pro-
grammers would worry about.” Similarly, I’ve seen class modeling sessions produce
models that resulted in horrendous performance because the object modelers chose to
ignore database issues. Their object-oriented analysis and design (OOA&D) methodol-
ogy was based strictly on the UML, the industry standard, and because UML still
doesn’t include a data model, they ignored these critical design issues. Besides, they
felt the data administrators would deal with the critical design issues.

Why do single artifact modeling sessions occur? Many times they are driven by
people who exhibit the Single Artifact Developer antipattern (Ambler 2001c). These are
developers who focus on a single artifact such as use cases, data models, or class mod-
els. When this is your focus, naturally having modeling sessions that focus on the cre-
ation of that single artifact makes sense to you. This perception clearly goes against the
tenets of AM, which explain that you need Multiple Models in your intellectual toolbox,
that you should Create Several Models In Parallel.

72244_CH13I 2/27/02 11:24 AM Page 136

Agile Modeling Sessions 137

A better approach is to hold what I call phase modeling sessions, a modeling session
where your focus is on creating models pertinent to the major phases of traditional
development, such as requirements, analysis, architecture, and design. In requirements
modeling sessions, your focus would be on defining what your project stakeholders
want your system to do. Analysis modeling sessions focus on fleshing out the require-
ments, architecture modeling sessions focus on identifying a high-level strategy for
how your system will be built, and design modeling sessions focus on identifying a
detailed strategy for building a portion of your system. In each of these modeling ses-
sions, your team works on several models at once, as appropriate to the phase. For
example: in a design modeling session, you may work on UML class diagrams, UML
state charts, and physical data models. Note that teams following the RUP may want to
consider these workflow-modeling sessions to stay consistent with RUP terminology.

The best approach is simply to hold agile modeling sessions. Agile software devel-
opment is highly iterative, particularly on a day-to-day basis, where it is quite common
to identify a requirement, analyze it, and propose a potential design strategy within
minutes if not seconds. In my experience, that is the way that people actually work,
including both developers and stakeholders. For example: when a stakeholder tells me
that they need to maintain the surface address for their customers, I quickly start think-
ing about changing the design of the customer editing screen, adding a new class called
SurfaceAddress that the Customer class will interact with, and then making changes to
my database on the back end to support this new requirement. Within seconds, I go
from thinking about requirements, through analysis, and then to design. From the proj-
ect stakeholder side of things, I have often run across stakeholders who not only had a
requirement but also had a strategy for fulfilling that requirement. Power users who
work with both the system and who create ad-hoc reports from the database commonly
have ideas about how things should be built. In this case, the power user is jumping
from requirements straight to design. Yes, it’s not the role of your stakeholders to deter-
mine how a system should be built; that’s a responsibility for developers (see Chapter
9). Therefore, you have an issue to deal with in this situation. If this is the way that peo-
ple actually work, they quickly iterate between phases, then doesn’t it make sense for
your software process to reflect this fact? This is where agile modeling sessions come
in. In an agile modeling session, you apply the practices of AM, and, in particular, you
Create Several Models In Parallel, you Apply The Right Artifact(s) as needed, and you Iter-
ate to Another Artifact as needed. An agile modeling session is one where you model
requirements when you need to, where you model your design when you need to, and
so on. Yes, you still want to consider requirements issues, analysis issues, and so on
when you are modeling, but now you will be iterating back and forth between them.

My advice is to never have single artifact modeling sessions, even if your intention
is in fact to work on several artifacts at once. This can be hard in some organizations,
particularly those that have been following traditional approaches in the past and
therefore may be predisposed to highly-specialized efforts such as data modeling ses-
sions or organizations that have bought into the “use-case driven” marketing rhetoric
that dominates object-oriented development methods right now. Phase modeling ses-
sions are often advisable at the beginning of a project when fundamental issues such
as the scope of the effort and what your architecture should be are yet to be deter-
mined. Phase modeling sessions are also appropriate when you are first adopting agile

72244_CH13I 2/27/02 11:24 AM Page 137

138 Chapter 13

software development practices and your organization is still struggling with the
inherent cultural changes required to do so—phase modeling sessions may be a palat-
able baby step away from single artifact modeling sessions. Agile modeling sessions
are common for short modeling sessions during construction as well as for teams
experienced in agile software development when they hold longer modeling sessions
that are common at the beginning of a project.

Participants in Modeling Sessions

Who should you include in a modeling session for it to be effective? There are two cat-
egories of roles in modeling sessions: active participants and supporting participants.
The active participant category contains three basic roles: Project stakeholders who
provide information about the business and help prioritize requirements; analysts
who specialize in working directly with project stakeholders to potentially gather/
elicit information from them, document that information, and validate that informa-
tion; and developers who work on the models. Active participants are first-class mod-
eling citizens; they do the “real work” of modeling and are critical to the success of
your project.

There Are Advantages and Disadvantages to Including Analysts
You need to be careful with how you involve analysts, sometimes known as
business analysts or requirements analysts, on your project. Although they
specialize in working with project stakeholders, clearly a very good thing, and
can often prove adept acting as a bridge between project stakeholders and
hard-core developers whose communication skills may be lacking, they can
also act as a barrier to project productivity. When a business analyst is involved
on a project many developers will choose to use them as a crutch, to let the
analyst focus on working with stakeholders and thereby freeing themselves up
to focus on the technology. This isn’t very good. You really want developers to
interact closely with project stakeholders and apply their technical skills to
build the appropriate software. In AM, there are two primary ways that analysts
can be effective. First, in situations where the developers are co-located with
project stakeholders, the analysts can help build initial rapport between
stakeholders and developers and mentor the developers in communication and
modeling skills. At the same time, the developers should mentor the analysts in
the technology, remember the principle Everyone Can Learn from Everyone
Else, to make them more effective. In this situation, your goal should be for
your business analysts to take on full development roles, they should no longer
specialize, as quickly as possible. Second, when your team does not have ready
access to project stakeholders, clearly a serious problem that threatens your
likelihood of success, they can gather information from project stakeholders for
the developers and present that information in a format that the developers
need. However, you are introducing an opportunity for information to be

TI P

72244_CH13I 2/27/02 11:24 AM Page 138

Agile Modeling Sessions 139

distorted and misinterpreted by not having direct communication. Think back to
the “telephone game” that you used to play as a child where one child
whispered a message to another, who then whispered that message to another,
and so on until the message got back to the original child. The more people in
between the transmitter and the receiver, the greater the distortion.

The supporting participant category encapsulates three roles: facilitator, scribe, and
observer. Many modeling sessions work perfectly well without anyone in these roles,
particularly small sessions between developers who are modeling to understand a
portion of the design of the system that they are working on. However, larger model-
ing sessions, particularly ones early in the project, will often have people who fulfill
these roles. Let’s explore them in detail:

Facilitator. A facilitator is someone who is responsible for planning, running, and
managing modeling sessions. As a result, facilitators have good meeting skills,
they understand the modeling process, and they ask valid, intelligent questions
to elicit information from the active participants. The role of facilitator is often
taken up by the coach, an XP role, or project team lead. This is usually a senior
person that the developers and stakeholders trust and respect and who has
good communication and modeling skills. Large organizations may have
professional meeting facilitators on staff that they typically use for more formal
modeling sessions. The advantage of professional meeting facilitators is that
they are very thorough and good at their jobs. The major disadvantage is that
they are often better suited for prescriptive processes and may need some
coaching in agility. Although smaller and informal modeling sessions may not
have a designated person whose only role is to facilitate, there still needs to be
someone(s) responsible for ensuring that the modeling session is run effectively.

Scribe. A scribe is a person responsible for recording information during a
modeling session. As a result, scribes need good listening skills, good oral
communication skills (they will often need to ask questions to determine exactly
what the active participants mean), and they have an ear for business logic and
technical details. There are two schools of thought regarding whom to put in the
scribe role: a professional scribe, often a technical writer, or a developer. I prefer
putting a developer in that role, both to help grow them as communicators as
well as to ensure that they are actually picking up what is being discussed. To
hear a user tell you what they actually want and how they actually work with
your software can be a good lesson in humility, as opposed to the really neat
features that you mistakenly believe they can’t wait to receive. To be fair, and to
ensure that everyone on your team has the opportunity to improve his or her
skill set, you should make this role a rotating one that an individual fills
occasionally. Finally, if you’re going to have scribes in your modeling sessions,
you may decide to simply record all information in the models that you are
creating. Then, you are best to have two or even three people scribing—you
can’t write as fast as several people can talk, and because each person has their
own unique background, they will pick up (as well as miss) different types of
information.

72244_CH13I 2/27/02 11:24 AM Page 139

140 Chapter 13

Observer. Traditionally, an observer is someone who is not there to participate in a
modeling session but instead is supposed to sit back and watch what occurs so
that they can learn the process. Perhaps they are a facilitator in training or they
are involved with an upcoming project that will take the same approach that
your team is following. Someone who sits there and does nothing? That doesn’t
sound right. A more agile approach is to put “observers” to work, as active
participants if they have domain knowledge or modeling skills or worst case as
scribes. The goal of an observer is to learn the process, and the best way to learn
things is through hands-on experience. By having them involved with the
modeling session not only do you increase the number of people actually
adding value in your modeling session, you also improve their learning
experience. Two birds, one stone.

How many people should be involved with a modeling session? Just barely
enough. Every single person should have a valid reason for being there, not just a
political reason such as “Sally Jones insists that someone from her group attends.” If
Sally Jones provides someone, then they should come to the modeling session pre-
pared to work and be willing to follow through on any action items that they are
assigned during the modeling session, such as obtaining more information or being
involved in a follow up effort. There is often significant political pressure for too many
people to be involved in a modeling session, particularly at the start of a project, pres-
sure that is hard to counteract. I will very often hold a large requirements gathering
session at the beginning of a project that has far too many people, twenty or thirty
people in these meetings are common although sometimes you can have several hun-
dred people in some situations, just to let everyone know that their voices are being
heard as well as to help identify the handful of project stakeholders that can actually
contribute something of value. I’ll also do the same thing when it comes to architec-
ture, involving a wide range of technical people throughout the organization. But
there are diminishing rates of return once you’ve reached groups of seven or eight
people—there is less of a chance that a new person will bring new information to the
group, assuming you’re picking participants in an intelligent manner, and there is less
opportunity for an individual to actively participate because you are dividing the
amount of “air time” between a greater number of people. Finally, the more people
you have in a modeling session the more formal it needs to become to manage the
effort.

The Formality of Modeling Sessions

First and foremost, just because a modeling session is formal it doesn’t mean that it is
necessarily less agile. Yes, formality has a bad reputation among many developers, but
that doesn’t mean that a formal session cannot be an effective one. At one end of the
spectrum, you have very formal modeling sessions such as Joint Application Develop-
ment (JAD) sessions (Wood and Silver 1995). Traditionally, a JAD is a facilitated and
highly structured meeting that has specific roles (facilitator, participant, scribe, and
observer), defined rules of behavior including when to speak, and suggestions for

72244_CH13I 2/27/02 11:24 AM Page 140

Agile Modeling Sessions 141

Table 13.1 When Each Formality Style Is Applicable

MODELING SESSION
STYLE APPLICABILITY

Formal (for example, • Large groups (greater than eight participants)
traditional JAD) • Long modeling sessions (greater than one day is

typical)
• Participants from different geographical areas
• Participants from different organizations or

organizational areas
• Qualified facilitator available
• Project has ability to tolerate increased time

required of formal modeling sessions
• Regulatory requirement to hold formal modeling

sessions (try to negotiate this requirement away)

Informal (for example, • Smaller, co-located groups
ad hoc) • People are readily available, willing, and able to

participate
• Shorter modeling sessions (less than one hour is

typical)
• Time-to-market a critical factor for your project

room organization (typically a U-shaped table). Before a JAD session, you commonly
distribute a well-defined agenda and an information package that everyone is
expected to read. Official meeting minutes are written and distributed after a JAD,
including a list of action items assigned during the JAD that the facilitator must ensure
are actually performed. At the other end of the spectrum are impromptu/ad hoc
“stand-up” modeling sessions where the impetus for having them is often the realiza-
tion that you need some help. People are quickly gathered, hopefully the “right” peo-
ple are readily available, you work together standing around a whiteboard, and once
you’re done you quickly disband.

The formality of modeling sessions can be anywhere in between these two
extremes, and, in fact, modern application of the JAD approach is often less formal.
Table 13.1 suggests when each style may be applicable. Because your immediate needs
often include applicability factors from each type of formality, you need to decide how
formal to make your session. For example: how formal would you want to make a ten-
person, half-day modeling session where all ten people work at the same physical
location and can be scheduled within a two-day notice? How about a five-person, two-
day modeling session where two people need to fly in from another location? The
answer is the same for both situations: just formal enough. The greater the formality,
the more work you need to do to hold the modeling session, and according to the prin-
ciple Maximize Stakeholder Investment, any work that you do should have positive value
for your project. Distribute an agenda if it will help people to prepare properly for the
session; don’t forget that your agenda could be as simple as an email. Distribute meet-
ing minutes if appropriate; the minutes could be as simple as an email listing point-
form action items assigned to individuals and a URL pointing to a web page of digital

72244_CH13I 2/27/02 11:24 AM Page 141

142 Chapter 13

pictures of the diagrams that you created during the modeling sessions. AM’s practice
Create Simple Content applies to management artifacts as well as models.

Formal Sessions Can Still Be Agile
There is nothing wrong with formality as long as it is applied in the appropriate
situations. In the end, it boils down to using the right tool for the job, and every
so often a formal modeling session is the best approach. Having said that, it
has been several years since I’ve been involved in one.

How to Make This Work in the Real World

There are two common challenges for organizations to overcome with respect to mod-
eling sessions:

1. No modeling sessions at all. Some organizations do not hold modeling sessions
as a regular part of their software development efforts—either they have no one
on staff with modeling skills, the developers don’t want to model, the project
stakeholders are unwilling to invest the time to be involved with modeling
efforts, or the organization simply has never tackled a software development
project before. When this is the case, the first step is to identify the root cause
and address it appropriately. If there is no one on staff with adequate modeling
skills, your staff needs training and mentoring, often from consultants or
contractors, and perhaps you need to hire someone with those skills. If either
the developers or project stakeholders are unwilling to be involved with
modeling sessions, education is clearly warranted.

2. Ineffective modeling sessions. A far more common problem occurs when
organizations hold too many modeling sessions, hold them for too long, invite
too many people to them, or require excessive formality. These organizations
must first recognize that they have a problem and that there are viable
alternatives to their current approach. The next step is to identify the problem
areas and deal with them appropriately following the advice presented in this
chapter. Very often this will become a political issue, one that weak managers
will avoid dealing with. In my mind, you need to make a decision: are you
taking an agile approach to development or not? If you choose to be agile, you
need to be prepared to step on a few toes—many of the people outside of your
team think and work in non-agile ways that conflict with your goals and
approaches. In Chapter 29, I describe techniques for overcoming common
adversities that you will face when you introduce AM into your organization.
One of the most important strategies available to you is to remain resolute
about being agile.

The advice presented in this chapter is simply common sense. It isn’t impossible to
adopt these techniques. Thousands of project teams manage to hold effective model-
ing sessions every day. You merely need to choose to be one of them.

TI P

72244_CH13I 2/27/02 11:24 AM Page 142

When I initially started work on Agile Modeling, I wanted to focus solely on principles
and practices for effective modeling, but I quickly discovered that this scope was not
sufficient. I also needed to consider how to be effective at the creation and mainte-
nance of documentation. Some agile models will ”evolve” into official system docu-
mentation, although the vast majority will not, and therefore it is relevant to discuss
how to be agile doing so.

Let’s start with understanding the relationships between models, documents, source
code, and documentation, something depicted in Figure 14.1. From AM’s point of view,
a document is any artifact external to source code whose purpose is to convey infor-
mation in a persistent manner. This is different from the concept of a model, which is
an abstraction that describes one or more aspects of a problem or a potential solution
addressing a problem. Some models will become documents, or be included as a part
of them, although many more will simply be discarded once they have fulfilled their
purpose. Some models will be used to drive the development of source code, although
some models may simply be used to drive the development of other models. Source
code is a sequence of instructions, including the comments describing those instruc-
tions, for a computer system. Although source code is clearly an abstraction, albeit a
detailed one, within the scope of AM it will not be considered a model because I want
to distinguish between the two concepts. Furthermore, for the sake of discussion, the
term documentation includes both documents and comments in source code.

In this chapter I address the following topics:

. . . anyone who leaves behind him a written manual, and likewise anyone who
receives it, in the belief that such writing will be clear and certain,

must be exceedingly simple-minded . . .

—Plato

143

C H A P T E R

14

Agile Documentation

72244_CH14I 2/27/02 11:22 AM Page 143

144 Chapter 14

Figure 14.1 The relationship between models, documents, documentation, and source code.

■■ Why do people document?

■■ When does a model become a document?

■■ What are the trade-offs associated with documentation?

■■ What does it mean to travel light?

■■ When is a document agile?

■■ What type of documents do you need?

■■ Effective hand-offs

■■ Strategies for increasing the agility of documentation

Why Do People Document?

Agile developers recognize that documentation is an intrinsic part of any system, the
creation and maintenance of which is a “necessary evil” to some and an enjoyable task
for others, an aspect of software development that can be made agile when you choose
to do so. There are four valid reasons to create documentation:

1. Your project stakeholders require it. The creation of documentation is
fundamentally a business decision, not a technical one. You are investing the
resources of your project stakeholders in the development of the documentation;
therefore, they should have the final say on whether their money is to be spent that
way. If your project stakeholders request a document from you, perhaps at your
suggestion, and understand the trade-offs involved (more on this later), then you
must create the document. It is important to note that eXtreme Programming (XP) is
very explicit about documentation being a business decision (Jeffries 2001b) but that

72244_CH14I 2/27/02 11:22 AM Page 144

Agile Documentation 145

the Unified Process (UP) does not appear to share this philosophy, a concept that
UP teams need to adopt to apply AM effectively.

You should create documentation only when your project stakeholders ask you to?
Preposterous you say! Well, in my experience, this isn’t preposterous. Your project
stakeholders include a wide variety of people, including all of the clients of your
system, and therefore they should have a reasonably good idea of what they want.
Maintenance developers, or someone representing them if they are not in place
yet, will request system overview documentation. Users and their management
will likely request user documentation. Operations staff will request operations
documentation. Yes, you will need to work closely with them to determine what
they actually need. Someone is going to have to decide to pay for the development
and subsequent maintenance of the documentation, and you may even need to
explain the implications of what is being requested, but this is doable.

2. To define a contract model. Contract models define how your system and an
external system interact with one another. Some interactions are bi-directional,
whereas others are uni-directional, making the interaction(s) explicitly to
everyone involved. Contract models are often required when an external group
controls an information resource that your system requires, such as a database,
legacy application, or information service. The AM practice Formalize Contract
Models states that a contract model is something that both parties should
mutually agree to, document, and change over time if required. It is important
to understand that your project stakeholder should still verify the development
of a contract model—it is their money that you are spending, and they can
choose to be at risk and not have the contract model in place.

3. To support communication with an external group. It isn’t always possible to
co-locate a development team and it isn’t always possible to have project
stakeholders (or at least the ones you need at the time) available at all times.
When you need to work with an external group of people, you need to find
ways to communicate with them, and shared documentation is often part of the
solution in combination with occasional face-to-face discussions,
teleconferencing, email, and collaborative tools. To use documentation as your
primary means of communication is a mistake because it’s far too easy to
misunderstand something that has been written, but it is a good supporting
mechanism. A good way to think of documentation in this situation is that it is
your option of last resort. Note that this in effect is an extension of the practice
Model to Communicate into the realm of documentation.

4. To think something through. Many people will write documentation either to
verify for themselves some group work they had just been involved with or
simply to increase their own understanding. This in effect is an extension of the
practice Model to Understand into the realm of documentation.* The act of

*Although I have cheated a bit here and applied the practices Model to Communicate and Model to
Understand to the creation of documentation I want to emphatically point out where AM is con-
cerned the concepts of “model” and “document” are orthogonal. I apologize if this is a bit frus-
trating, but unfortunately the world is a fuzzy place. Embrace fuzziness!

72244_CH14I 2/27/02 11:22 AM Page 145

146 Chapter 14

writing, of putting your ideas down on paper, can help you to solidify them and
discover problems with your thinking. What appears clear and straightforward
in your mind can often prove to be very complicated once you attempt to
describe it in detail, and you can often benefit from writing it down first. For
this reason, I suggest that people write comments before they write their code
(Ambler 2001a), a strategy that I have been following for years.

This likely differs from what you are used to doing, which makes sense because I’m
talking about how to become more agile in your approach to documentation. Why is
this different, and why is it more agile? In my experience, developers in non-agile
environments are often forced to create documentation for less-than-ideal reasons,
often based on political reasons and sometimes due to sheer ignorance, and therefore
may not have been allowed to be as effective as they possibly can. Questionable rea-
sons for creating documentation, and how to combat them, include:

The requester wants to be seen to be in control (although isn’t actually doing
anything of value). People will request documents, such as specifications and
detailed architecture documents, that they can sign off on and say, “Yes, go
ahead and build us one of these.” Whenever I find myself in this situation, I ask
the individual(s) requesting the documents if they also want to be seen as
responsible for the project’s failure because the development team was too busy
writing documentation and not building software. I’ll then suggest that instead
of requesting documentation they should instead request access to the software
itself, even if it is just an internal release of the software, so they can provide
constructive feedback about it. They can still be seen to be an active participant
in the project and can do so in a productive manner.

The requester wants to justify their existence. This typically occurs when someone
who is “dead wood” is desperate to be seen doing something. This is an insidious
problem because the requester often has what appears on the surface to be a good
reason for requesting the documentation, it’s something they’ve been doing for
years, and management often believes it’s necessary. To address this problem, ask
the requester what they intend to with the document, why they need it, why
creating that documentation for them is more important than other work that my
team needs to do, and so on to try to determine the actual value of what they’re
doing. These are valid questions to ask, albeit uncomfortable ones for someone that
doesn’t add much value to the development effort.

The requester doesn’t know any better. Many people have been working in
organizations that have been following non-agile processes for years, processes
that were likely documentation-centric, processes that produced a lot of
documents for review throughout the process and finally software at the end of
it. This is what they’re used to so they are simply asking you for something
they’ve received in the past. The idea that you can produce software early in the
project, that it’s your primary goal, is new and often radical to many people.

Your process says to create the document. Although this isn’t a problem with agile
software processes, it definitely can be one with prescriptive software processes.
The most common reasons for this problem include people wanting to justify

72244_CH14I 2/27/02 11:22 AM Page 146

Agile Documentation 147

their existence, people not understanding the software development process or
at least the implications of what they are requesting, and situations where the
primary goal is to bill for hours as opposed to develop software effectively. Once
again, the best strategy to address this problem is to explore whether the
creation of the document actually provides value to your efforts.

Someone wants reassurance that everything is okay. Your project stakeholders are
investing significant resources in your project team, they’re taking a risk on you,
and they want to know that their investment is being well spent. To get this
reassurance, they’ll ask you for documentation, status reports or overview
documents perhaps, not understanding that you need to take time away from
your true goal of developing software and not realizing that a better request
would be to see the software itself (as indicated earlier, they don’t know any
better). You need to recognize when your project stakeholders are looking for
reassurance, something common at the beginning of a project if they don’t trust
your team yet, and find an alternative way to provide that assurance (perhaps
by showing them working software).

You’re specifying work for another group. Although I identified this situation in
Chapter 1 as one where AM likely isn’t appropriate, the situation is still a
common one for justifying the creation of significant amounts of
documentation. Documentation is one way to communicate, but it isn’t the best
way (see Chapter 8). Try to find alternative approaches, such as occasional
meetings with the other group or use of collaborative tools, to reduce your
reliance on documentation.

Your development contracts are routinely subject to re-competition. This
problem is endemic in firms that work for government agencies, although
businesses will often threaten their contractors with putting a project up for bid
again if they don’t perform. So what? If your primary goal is to develop
software, then focus on doing so and you’re much more likely to perform
adequately enough to keep the contract. The direct client in this situation is
often operating under the misguided belief that if you don’t perform they can
take the documentation that you produce and provide it to the next contractor
who will start from there. This borders on delusional in my opinion. If you’re
doing such a bad job that you lose the contract chances are good that you’ve
also done a bad job of the documentation and therefore the next contractor will
need to rework it. Even if you’ve done a perfect job of the documentation, yet
still lose the contract, the next contractor will likely have people with different
skills and enough time will have passed that they will need to revisit the
requirements anyway. No matter how you look at it, the next contractor is
unlikely to take advantage of the documentation you produce.

When Does a Model Become Permanent?

On the surface, the lifecycle of an agile model is fairly straightforward. Figure 14.2
depicts a high-level UML statechart for models. Models will start out as an idea such as

72244_CH14I 2/27/02 11:22 AM Page 147

148 Chapter 14

Figure 14.2 A UML statechart that depicts the lifecycle of an agile model.

“we need to understand how we’re going to build this,” ”how do the users want this to
work,” or “we need to show what we’re going to deliver” that you either choose to
model or to abandon. (For the sake of our discussion, any activity you choose to perform
instead of modeling counts as abandonment.) The model starts out being temporary,
one that you intend to discard once it has fulfilled its immediate purpose, the typical
fate of the vast majority of models created by agile developers. These models are often
hand-drawn sketches resulting from the practice Model to Understand, although many of
the models created as the result of Model to Communicate are also discarded once the idea
has been communicated to your intended audience. You’ll naturally update temporary
models as needed, often creating them, working on them, and then discarding them
over a short period of time: many agile models are created by two or three people in a
couple of minutes to facilitate their discussion, whereas other agile models are created in
modeling sessions of several people over a period of several hours. The interesting tran-
sition depicted in Figure 14.2 occurs when you decide to keep a temporary model, to
make it permanent, to make it one of your project team’s official documents. A tempo-
rary model becomes a “keeper” when it meets all of the following criteria:

■■ There is a clear and valuable reason to make it permanent.

■■ There is an audience for which the model provides value.

■■ Your project stakeholders are willing to invest in having it evolved into
documentation.

Models Aren’t Necessarily Documents
An implication of Figure 14.2 is that models are not always documents; many
models are temporary in nature. Furthermore, documents aren’t always models.
For example: I would not consider a user manual to be a model. This is
important because many people believe otherwise. When they hear the word
“model” they automatically translate it to “document” and all the negative
connotations (although rarely the positive ones) that word implies. Repeat after
me—Models are not necessarily documents, models are not necessarily
documents, models are not necessarily documents. I like to say that the
concepts of “model” and “document” are orthogonal because you can clearly

NOTE

72244_CH14I 2/27/02 11:22 AM Page 148

Agile Documentation 149

have one without the other. In my experience, acceptance of this idea is an
important step toward becoming more agile.

Points #1 and #2 are driven by the principle Model with a Purpose: you should not
only have a valid reason for creating the model in the first place, but your documents
should also have a definite purpose. You should know whom you are creating the doc-
umentation for—perhaps a subgroup of your development team, your users, or the
team(s) that will maintain and operate your system once you’ve released it—and what
they need from that documentation. The fundamental idea is that the creation and
maintenance of a document is a burden on your development team, and if you want to
increase someone’s burden you should be able to justify why. It’s as simple as that.
Documentation is a burden, and when people recognize this simple fact they put
themselves in a significantly better position to consider it appropriately. The burden of
documentation is often underestimated, not only does it sap resources (and hence
budget) from your project team but it also saps morale because few developers enjoy
writing documentation and particularly resent writing needless documentation. Yes,
effective documentation can provide significant benefits to your project team and proj-
ect stakeholders, and as the principle Maximize Stakeholder Investment tells you, the
benefits should outweigh the increased burden on your team. It’s important to note
that sometimes the benefits are received by someone else other than the people experi-
encing the costs. For example: your development team is impacted by the costs of cre-
ating system documentation that your maintenance developers benefit from. The
implication is that when you are considering the costs and benefits of documentation
you need to look at the entire picture, the trade-offs of which are described in the What
Are the Trade-offs Associated with Documentation? section. Point #3 is also driven by the
principle Maximize Stakeholder Investment and the concept that because it is the resources
of your project stakeholders that are being invested that they should be the one to
direct how those resources are invested, for better or worse.

As you can see in Figure 14.2, you can rethink your decision about making a model
permanent, often because you realize that the benefit provided by the model is far less
than the burden of maintaining it. When this happens, the model is either discarded
outright or, more commonly, the owners of that model simply stop keeping it up to
date and it starts to “gather dust.” Sometimes these models are revived months or
years later by the development team, the maintenance team, or the “redevelopment
team” if the system is being rewritten. These stagnant models are often reviewed, rec-
ognized as being significantly out of date, and either then discarded or used as a tem-
plate from which to create a new version of the model. Ideally, this new version is
leaner than the original model, because if the original model didn’t provide positive
value to your effort then an updated version of it following the same approach likely
won’t provide value either. Techniques for doing so are discussed in the Section Strate-
gies for Increasing The Agility of Documentation.

Temporary Models Can Be Long Lived
Just because a model is temporary doesn’t mean that you discard it
immediately. Temporary models, all models in fact, should be discarded once
they are no longer needed. Many models, particularly sketches, are discarded

NOTE

72244_CH14I 2/27/02 11:22 AM Page 149

150 Chapter 14

almost immediately—you draw them on a whiteboard and then erase them.
Other models may exist for a much longer period, often evolving throughout
that period. For example, development teams commonly draw one or more
system architecture diagrams on a shared whiteboard and leave the drawings
there for weeks, evolving the diagram(s) over time as they explore how they are
going to build the system.

There are two basic reasons why many models are temporary. First, if a model
serves its purpose and no longer adds value, then it should be discarded so that it’s not
getting in your way. Remember, travel light. Second, many models are superceded by
other artifacts such as other models, source code, or test cases. When this happens, you
do not need the first model anymore so why keep it around? You may decide to keep
the first model, however, if it’s not being truly superceded by the new artifact(s). For
example, although a UML Class Diagram may be replaced by Java source code, you
may decide to keep that diagram because it provides an overview of your code. In this
case, the class diagram hasn’t truly been superceded.

What Are the Trade-Offs Associated
with Documentation?
Agile developers recognize that effective documentation is a balancing act, the goal
being to have just enough documentation at just the right time for just the right audi-
ence. To accomplish this you must address the following issues:

Software development versus documentation development. This is the
fundamental issue that you need to grapple with—any time spent creating
documentation is time spent not developing new functionality for your users.
At one end of the spectrum are projects where no documentation is written at
all, whereas at the other end no software is written at all; neither extreme is
likely to be appropriate for your situation. Remember that your primary goal is
to produce software—you want to support your users’ business activities, you
want to generate revenue for your organization, you want to receive feedback
on your work, you want to prove to your users that you can produce—but that
you need to counteract this with your secondary goal, which is to enable the
next effort.

Software developers have the knowledge; technical writers have the skill. Like it
or not, few technical people have good writing skills, if only for the simple
reason that they haven’t taken the time to gain them. The best person suited to
write documentation is the one that knows the topic being written about, in this
case the developers of the system. Many teams will simply hand off a system, or
portion thereof, to a technical writer and ask them to “figure it out.” This has the
advantage of minimizing the effort on the part of the developer but increases
the effort required by the technical writer and increases the chance that they’ll
get it wrong. A better approach is for the developer to write the initial version of
documentation and then hand it off to a technical writer for clean up. This is
likely more effective, the developer does a “knowledge dump” and the technical

72244_CH14I 2/27/02 11:22 AM Page 150

Agile Documentation 151

*I’m reticent to introduce the term “pair documentation,” similar conceptually to XP’s pair pro-
gramming practice, but if anyone wants to take it and run with it then be my guest.

writer refactors the material to present it effectively, but has the disadvantage
that the developer may not know how to get started or even what to write
about. A third approach, the best one in my opinion, is to have the technical
writer and developer work together* to write the documentation, learning from
each other as they do so.

What is required during development is often different than what is required
after development. You have different needs during development than you do
post-development—for the sake of discussion, post-development activities
include the period where you are transitioning a release into production, and
when the release is in production, the Transition and Production phases of the
Enterprise Unified Process (Ambler and Constantine 2002). During development
you’re exploring both the problem and solution spaces, trying to understand what
you need to build and how things work together. During post-development you
want to understand what was built, why it was built that way, and how to
operate it. Furthermore, during development you are much more willing to
tolerate rough drafts, sketches, and greater inconsistency—it’s your own work
after all—whereas during post-development, you typically want more formal
documentation. Finally, during development you likely want less
documentation, you prefer to travel light, than you do during post-development.

Willingness to write documentation versus willingness to read it. How many
times have you been asked a question by someone that was clearly documented
in a manual that they have at their desk? Happens all the time. The abbreviation
“RTFM,” read the !@#$%^& manual, is a common response in email. The
implication is that you can write documentation but it doesn’t mean that people
are going to read it—if this is the case, why are you writing so much?

Do you document as you work or when you are finished? One extreme is to write
all of your documentation in parallel with developing software. You capture
relevant information as you progress, but as your software evolves you will also
need to rework your documentation. This not only slows your development
efforts down, but it also results in wasted effort—documentation that you wrote
yesterday will need to be rewritten or discarded today. You are no longer
traveling light. When your requirements have not yet stabilized, and you are
taking an iterative approach to development, excessive documentation can
become very expensive to maintain because you are constantly updating it to
reflect changes. The other extreme is to wait until you are finished and then
write the documentation. The primary advantage being that you are writing
about a known and stable thing (the release of the software that you just built).
There are clearly several disadvantages to this approach. You have likely
forgotten some of the reasons behind the decisions that you made, you may not
have the right people anymore to write the documentation, you may not have
funding to do the work, or the will to write the documentation may no longer

72244_CH14I 2/27/02 11:22 AM Page 151

152 Chapter 14

exist. An effective middle ground is to take notes of important decisions that
you make, often something you can do in your source code, and to retain copies
of the critical diagrams and models that you create during development. In
other words, travel as light as you possibly can but no lighter.

Internal versus external documentation. Do you place all of your documentation
in your code, do you write “self-documenting” code for that matter, or do you
place all of your documentation in external artifacts? Once again, you need to
find an effective middle ground. When your audience is developers, the best
place to put the majority of the documentation is in the source code. Yes, you
will likely also need a system overview document for this group, but the reality
is that these people aren’t going to trust, let alone read, documentation outside
of the code—and if they’re really smart, they won’t trust the documentation in
the code either. However, the audience for documentation is much wider than
just developers. You will likely need to write documentation for people that
won’t have access to the source code or at least don’t have the ability to
understand it, such as users, senior management, and operations staff. These
audiences will require external documentation written to meet their exact needs.

Project-level versus enterprise-level documentation. Not all of the documentation
that you will write will be specifically for your project team or for the team(s)
taking over your system. Some of it may need to be made available at an
enterprise level. AM’s practice Reuse Existing Resources advises you to take
advantage of existing artifacts, including but not limited to system
documentation and models within your organization. This may include existing
definitions of business rules, existing interfaces to legacy systems and their
documentation (effectively existing contract models), a corporate metadata
repository describing the data resources throughout your company, or an
enterprise business model. Where did these resources come from? The source
information came from other project teams such as yours and is likely
administered by a corporate team of specialists. Yes, this is clearly a situation
that is likely to promote needless bureaucracy but it is still possible to be agile—
the centralized administration teams need to find a way to work with yours
effectively. During development, they should provide the resources such as
existing models and metadata that you need and act as consultants when you
need help understanding and working with those resources. Post-development
they should help you capture relevant information to feed back into the shared
enterprise resources, for example, part of the process of transitioning your
system into production may be to ensure that updates to your corporate
business rules and metadata repositories are made. Centralized administration
teams need to be customer focused to be truly agile, they must provide real
business value for their efforts, and actively strive to understand how and why
the resources that they manage are used by their customers.

Quantity versus quality. The basic trade-off is the “security” of having the
document against your trust in its accuracy. What would you rather have, a
2000-page system document that is likely to have a significant number of errors
in it but a lot of details or a 20-page, high-level overview? The large document

72244_CH14I 2/27/02 11:22 AM Page 152

Agile Documentation 153

would very likely have most of the information that you need to maintain and
enhance your system, but would you trust the information contained in it? The
short document likely wouldn’t contain the detailed information you need, but
it would provide a map from where you could dive into the source code, or
other documents, for details. You’d be more likely to trust this document
because it’s shorter, worst case you could easily update or simply rewrite it if
you found it to be grossly inaccurate, and it deals with high-level concepts such
as your system architecture that will change more slowly than the detailed
minutiae contained in the larger document. I am not saying that a larger
document is automatically of lower quality than a shorter one, but I am saying
that it is likely to be perceived as such until proven otherwise.

What Does It Mean to Travel Light?
One of the greatest misunderstandings people have about the concept of traveling
light is that it means you don’t create any documentation. The reality is that nothing
could be further from the truth. What traveling light does mean, at least in the context
of AM, is that you create just enough models and just enough documentation to get by.
On extremely rare occasions, that may mean you create no models whatsoever, per-
haps on a very small project, or even no documentation. But for the vast majority of
projects, you need to create some models and some documents.

How can you ensure that you’re traveling light? A good rule of thumb is that you
shouldn’t create a model or document until you actually need it—creating either too
early puts you at risk of wasting your time working on something you don’t actually
need yet. I once worked on a commercial software system—one that organizations can
either buy and install out of the box or, more typically, purchase and then modify it to
meet their exact needs. One day our sales person got a new lead on a company that
wanted our system, but this company was in a new domain that we didn’t have experi-
ence in yet. We figured we were going to get this sale, and we eventually did get it, so
before we even met with the client, myself and a couple of others started modeling the
expected changes that we thought we would need to make. After several days of model-
ing sessions, we came to the conclusion that the changes were going to be easy, our sys-
tem was amazing after all, and we would have no problem supporting this new client.
Then we talked to them. Of the seventy or so new requirements we had identified we
had gotten about half of them right, not bad considering we didn’t know what we were
talking about, but we had missed several hundred others. Naturally, our models based
on our faulty requirements were of little value and we had to discard them and start
fresh, something that was made a little harder because we needed to shift our mindset
away from our original approach. Even worse, we went into the first meeting with a
cocky attitude because we thought we knew it all, an attitude that would have lost us the
customer if it wasn’t for the fancy maneuvering of our sales person. The bottom line is
that we didn’t need the model at the time we created it. Instead we should have waited
to create the model after talking to our client and after securing the sale.

As another example, the RUP (Kruchten 2000) suggests that you create a Software
Architecture Description (SAD) document to define your architecture. Yes, defining

72244_CH14I 2/27/02 11:22 AM Page 153

154 Chapter 14

your system’s architecture is a very good thing to do, but do you need to create a docu-
ment early in the project? Sometimes yes, sometimes no. A couple of years ago I worked
on a mission-critical system where we developed our architecture model on a common
whiteboard as a collection of free-form diagrams, effectively following the practice Dis-
play Models Publicly. Because the process told us to create a SAD we did so, even though
most of the developers were working from the whiteboard sketches. Because the RUP
product (Rational Corporation 2001) provides a good Microsoft Word template for a
SAD we used it as the basis from which to work. A few of the developers printed out
diagrams from the SAD document (we had transcribed our sketches into Microsoft
Visio) to tack to their cubicle walls because they couldn’t easily see the diagrams from
where they sat. Every time the whiteboard sketches changed sufficiently we would
have to update the electronic versions of the diagrams plus corresponding sections in
the SAD document. The advantage of having the SAD document was that it provided a
description of what we were building, a document that we distributed to management
and made available to anyone within the organization that was interested. The disad-
vantage, from what I could tell, was that nobody was using the SAD document effec-
tively. I’m not sure the managers ever looked at it, and if they did it was a cursory
inspection at best because we never received any feedback from them. The developers
who needed copies of the diagrams could have taken a digital snapshot of the sketches
and either created a shared architecture web page or printed them out. This would have
also been a SAD document, albeit in a different form, according to the principle Content
is More Important Than Representation because it still would have described our architec-
ture (which is the fundamental purpose of a SAD document). By the same reasoning,
our whiteboard sketches were also a SAD document, although one that wasn’t perma-
nent and one that was fixed in a permanent location. In my opinion we had made three
fundamental mistakes and thus were traveling heavier than we needed to: we chose the
wrong format for the documentation, we documented too early, and we created too
much documentation. The added overhead of maintaining the SAD as a Word docu-
ment slowed us down because we had that information in several locations—on the
whiteboard that we were actually working from, in the Word document (which was
almost superfluous), and in our code. Furthermore, we could have been developing
software instead of documentation, and worse yet the update effort took up a large por-
tion of the time of one of our senior developers so he couldn’t help to mentor and coach
the junior developers. Granted, it was useful to have this document at the end of the
project as one of our deliverables to the maintenance team, but we certainly didn’t need
it during development and it clearly did the project team more harm than it did good.

Traveling light requires you to think about what you are doing. At the beginning of
your project, ask yourself what you think you’re going to need based on the nature of your
project. Development of an air traffic control system will likely require greater documenta-
tion than development of a Web site made from static HTML pages. As the project pro-
gresses you’ll find that your initial estimate of your documentation needs changes with
experience, perhaps you’ll need more or less. Highsmith (2000) likes to use the analogy of
hiking—packing too light or too heavy can lead to disaster. At worst it kills you and at best
it forces you to turn back and rethink your strategy. Imagine crossing a desert with insuffi-
cient water; you’re traveling too light. Or you’re trying to cross the same desert with a 100-
pound pack strapped to your back; now you’re traveling too heavy. Now imagine

72244_CH14I 2/27/02 11:22 AM Page 154

Agile Documentation 155

building a mission-critical e-commerce application without providing any documentation
describing how to operate it. Your project effectively fails because you’ve traveled too
light. Now imagine building the same system with thousands of pages of documentation
that you must update and validate every time you change the system. You fail again
because you’re traveling so heavy that you cannot respond quickly to changes in the mar-
ketplace. Traveling light means just enough models and documentation; too little or too
much puts you at risk.

When Is a Document Agile?

Agile documents are good enough in the eyes of the beholder.

Regardless of what some people will tell you, documentation can in fact be quite effec-
tive. When is a document agile? When it meets the following criteria:

Agile documents maximize stakeholder investment. The benefit provided by an
agile document is greater than the investment in its creation and maintenance,
and ideally the investment made in that documentation was the best option
available for those resources. In other words documentation must at least provide
positive value and ideally provides the best value possible. For example: if the
creation of a user document provides a 50 percent payback on investment, but
providing a training course to your users provides 100 percent payback, then
you’re better off choosing the training because it’s a better investment.

Agile documents are “lean and mean.” An agile document contains just enough
information to fulfill its purpose. In other words, it is as simple as it can possibly
be. For example: portions of an agile document could be written in point form
instead of prose—you’re still capturing the critical information without
investing time to make it look pretty, which is in accordance to the principle
Content is More Important Than Representation. Agile documents will often
provide references to other sources of information. For example, a contract
model describing the interface to an external system could indicate that the
SOAP 1.1 protocol is being used and provide a reference to the XML DTD and
schema definition that define the XML documents transmitted between systems.
When writing an agile document remember the principle Assume Simplicity, that
the simplest documentation will be sufficient, and follow the practice Create
Simple Content whenever possible. One way to keep agile documents lean and
mean is to follow pragmatic programming’s (Hunt and Thomas 2000) DRY
(don’t repeat yourself) principle. Also, don’t forget to work with your
document’s audience—what is lean and mean for you may be completely
insufficient for them.

Agile documents fulfill a purpose. Agile documents are cohesive; they fulfill a
single defined purpose. If you do not know why you are creating the document,
or if the purpose for creating the document is questionable (see earlier), then
you should stop and rethink what you are doing.

72244_CH14I 2/27/02 11:22 AM Page 155

156 Chapter 14

Agile documents describe information that is less likely to change. The greater
the chance that information will change, the less value there is in investing
significant time writing external documentation about it—the information may
change before you’re finished writing and it will be difficult to maintain over
time. For example: your system architecture, once it has stabilized, will change
slowly over time, so it’s a good candidate for external documentation.

Agile documents describe “good things to know.” Agile documents capture
critical information, information that is not readily obvious such as design
rationale, requirements, usage procedures, or operational procedures. Agile
documents do not capture obvious information. For example, documentation
indicating that the F_NAME column of the CUSTOMER table captures the first
name of a customer really doesn’t provide a lot of value to me. Documentation
indicating that the customer table does not include data for customers residing
in Canada’s Yukon Territory because that data is stored in an ASCII flat file on
another system due to regulatory reasons is likely good information to know.

Agile documents have a specific customer and facilitate the work efforts of that
customer. System documentation is typically written for maintenance
developers, providing an overview of the system’s architecture and potentially
summarizing critical requirements and design decisions. User documentation
often includes tutorials for using a system written in a language that your users
understand, whereas operations documentation describes how to run your
system and is written in language that operations staff can understand.
Different customers, different types of documents, and very likely different
writing styles must be accomodated. You must work closely with the customer,
or potential customer, for your documentation if you want to create something
that will actually meet their needs. For example, I would be reticent to write the
system documentation for the maintenance developers without involving some
of them in the effort. Yes, sometimes you can’t get these folks involved (you may
have none on staff at the moment) or you may not be able to identify who
within your maintenance organization will be the eventual “owners” of your
system. When you don’t have the customers involved, you’re at risk of creating
too much documentation or unnecessary documentation and hence becoming
less agile. You will often discover that when you involve the customers they
often have a very good idea of what they actually need and can often provide
examples of what works well for them and what doesn’t.

Agile documents are sufficiently accurate, consistent, and detailed. Have you
ever learned how to use new software by using a book describing a previous
version of that software? Did you succeed? Likely. Was it a perfect situation?
Likely not. Did it cover all the new features of the software? Of course not, but it
still got you up and running with the software package. Were you willing to
spend your own money, perhaps on the order of $30, to purchase the latest
version of the book you needed? Likely not, because it wasn’t worth it to you.
Agile documents do not need to be perfect, they just need to be good enough.

Agile documents are sufficiently indexed. Documentation isn’t effective if you
cannot easily find the information contained in it. Would you purchase a

72244_CH14I 2/27/02 11:22 AM Page 156

Agile Documentation 157

reference manual without an index or table of contents? Your indexing scheme
should reflect the needs of a document’s audience. Luckily, word processors
include features to easily create tables of contents, indexes, and even lists of
figures and tables.

Sometimes Documentation Needs to Be Perfect
You need to take the advice that agile documents need to be just good enough
with a grain of salt. If you are writing the operations manuals for a software
system for a nuclear power plant, then I highly suggest you get it right!
However, few systems are truly that critical, so investing the effort required to
get their documentation perfect isn’t appropriate. You need to make a
judgment call when it comes to writing documentation. The key issue is to
identify how much ambiguity the customers of the document can accept and
yet still be effective.

What Types of Documents Should We
Create?
You will need to create documentation on your project; this is true even of the most
“extreme” XP projects, let alone RUP projects. But what types of documentation will
you potentially need to create? Table 14.1 lists some of the most common documents
that you may decide to create as part of your development effort, documents that you
will deliver as part of your overall system. Table 14.1. does not include management
artifacts, such as project schedules, software deliverables (for example: source code
and test suites), or interim work products (for example: temporary models).

Sometimes Non-Agility Enables Agility
Agile software development is new to many organizations, and, as a result,
there is significant fear and uncertainty concerning its viability. Although it’s
frustrating at times, this is actually a good thing because it means that people
care. Because of this fear you may be required by your project stakeholders to
create extraneous documentation to help put them at ease, something that is
particularly true of senior management who have likely been burned in the
past by other new techniques and technologies. Often the creation of a single
document, perhaps an executive overview, will give your project stakeholders
enough of a ”warm and fuzzy feeling” about your project to allow you to work
in the manner of your choice (for example: in an agile way).

When Should You Update
Documentation?
In this respect documents are just like models. My recommendation is to follow the
practice Update Only When It Hurts. Agile documents, like agile models, are just good
enough. Many times a document can be out of date and it doesn’t matter very much.

NOTE

WARN I NG

72244_CH14I 2/27/02 11:22 AM Page 157

158

Ta
b

le
 1

4.
1

Po
te

nt
ia

l D
oc

um
en

ts
 C

re
at

ed
 B

y
Yo

ur
 D

ev
el

op
m

en
t T

ea
m

D
O

C
U

M
E

N
T

A
U

D
IE

N
C

E
D

ES
C

R
IP

TI
O

N
A

D
V

IC
E

C
on

tr
ac

t m
od

el
s

O
th

er
 T

ea
m

s
A

do
cu

m
en

t d
es

cr
ib

in
g

th
e

te
ch

ni
ca

l
•

C
on

ta
ct

 m
od

el
s

m
ay

 a
lre

ad
y

be
 in

 p
la

ce

in
te

rf
ac

e
to

 a
 s

ys
te

m
 o

r
po

rt
io

n
of

 a

fo
r

ex
is

tin
g

sy
st

em
s.

sy
st

em
.

D
es

ig
n

de
ci

si
on

s
D

ev
el

op
er

s,

A
su

m
m

ar
y

of
 c

rit
ic

al
 d

ec
is

io
ns

•

Fo
cu

s
on

 d
ec

is
io

ns
 th

at
 a

re
 n

ot
 o

bv
io

us

M
ai

nt
en

an
ce

pe

rt
ai

ni
ng

 to
 d

es
ig

n
an

d
ar

ch
ite

ct
ur

e
ha

d
ot

he
r

re
as

on
ab

le
 a

lte
rn

at
iv

es
, o

r
on

es

D
ev

el
op

er
s,

 P
ro

je
ct

th

at
 th

e
te

am
 m

ad
e

th
ro

ug
ho

ut

w
he

re
 y

ou
 e

xp
lo

re
d

w
ha

t i
ni

tia
lly

 lo
ok

ed

M
an

ag
er

s
de

ve
lo

pm
en

t
lik

e
a

re
as

on
ab

le
 a

lte
rn

at
iv

e
th

at
 in

 t
he

en

d
pr

ov
ed

 in
su

ffi
ci

en
t f

or
 y

ou
r

ne
ed

s.
•

Th
e

go
al

 o
f t

hi
s

ef
fo

rt
 is

 to
 a

vo
id

 n
ee

dl
es

s
re

fa
ct

or
in

g
at

 s
om

e
po

in
t i

n
th

e
fu

tu
re

 o
r

re
ha

sh
in

g
a

pr
ev

io
us

ly
 m

ad
e

de
ci

si
on

.
•

D
es

ig
n

de
ci

si
on

s
ar

e
of

te
n

do
cu

m
en

te
d

th
ro

ug
ho

ut
 o

th
er

 a
rt

ifa
ct

s,
 s

uc
h

as
 s

ys
te

m
ov

er
vi

ew
s

an
d

so
ur

ce
 c

od
e,

 a
lth

ou
gh

 y
ou

m
ay

 c
ho

os
e

to
 h

av
e

a
se

pa
ra

te
 d

oc
um

en
t

w
he

n
ap

pr
op

ria
te

 to
 th

e
si

tu
at

io
n.

Ex
ec

ut
iv

e
ov

er
vi

ew
Se

ni
or

 M
an

ag
em

en
t,

A
de

fin
iti

on
 o

f t
he

 v
is

io
n

fo
r

th
e

•
Th

is
 d

oc
um

en
t i

s
ty

pi
ca

lly
 u

se
d

to
 g

ai
n

U
se

r
M

an
ag

em
en

t,
sy

st
em

 a
nd

 a
 s

um
m

ar
y

of
 th

e
cu

rr
en

t
fu

nd
in

g
an

d
su

pp
or

t f
or

 y
ou

r
pr

oj
ec

t
an

d
to

Pr

oj
ec

t M
an

ag
em

en
t

co
st

 e
st

im
at

es
, p

re
di

ct
ed

 b
en

ef
its

,
pr

ov
id

e
st

at
us

 u
pd

at
es

 to
 im

po
rt

an
t

pr
oj

ec
t

ris
ks

, s
ta

ffi
ng

 e
st

im
at

es
, a

nd

st
ak

eh
ol

de
rs

 w
ho

 m
ay

 n
ot

 b
e

ac
tiv

el
y

sc
he

du
le

d
m

ile
st

on
es

.
in

vo
lv

ed
 w

ith
 y

ou
r

pr
oj

ec
t o

n
a

da
y-

to
-d

ay

ba
si

s.
•

H
av

e
th

e
co

ur
ag

e
to

 m
ak

e
th

is
 p

ub
lic

ly
av

ai
la

bl
e

to
 e

ve
ry

on
e

th
at

 s
ho

ul
d

ha
ve

ac
ce

ss
 to

 it
, e

ve
n

w
he

n
it

co
nt

ai
ns

 b
ad

ne
w

s,
 a

cc
or

di
ng

 to
 th

e
pr

in
ci

pl
e

O
pe

n
an

d
H

on
es

t C
om

m
un

ic
at

io
n.

72244_CH14I 2/27/02 11:22 AM Page 158

159

Ta
b

le
 1

4.
1

co
nt

in
ue

d

D
O

C
U

M
E

N
T

A
U

D
IE

N
C

E
D

ES
C

R
IP

TI
O

N
A

D
V

IC
E

O
pe

ra
tio

ns

O
pe

ra
tio

ns
 S

ta
ff

Th
is

 d
oc

um
en

ta
tio

n
ty

pi
ca

lly
 in

cl
ud

es

•
Yo

ur
 o

pe
ra

tio
ns

 d
ep

ar
tm

en
t o

ft
en

 h
as

 a

do
cu

m
en

ta
tio

n
an

 in
di

ca
tio

n
of

 th
e

de
pe

nd
en

ci
es

st

an
da

rd
 fo

rm
at

 fo
r

th
is

 ty
pe

 o
f

th
at

 y
ou

r
sy

st
em

 is
 in

vo
lv

ed
 w

ith
; t

he

do
cu

m
en

ta
tio

n
or

 a
t l

ea
st

 m
ay

 h
av

e
go

od

na
tu

re
 o

f i
ts

 in
te

ra
ct

io
n

w
ith

 o
th

er

ex
am

pl
es

 fr
om

 o
th

er
 s

ys
te

m
s

th
at

 t
he

y
ca

n
sy

st
em

s,
 d

at
ab

as
es

, a
nd

 fi
le

s;

pr
ov

id
e

yo
u

to
 b

as
e

yo
ur

 d
oc

um
en

t(
s)

 o
n.

re
fe

re
nc

es
 to

 b
ac

ku
p

pr
oc

ed
ur

es
;

a
lis

t o
f c

on
ta

ct
 p

oi
nt

s
fo

r
yo

ur

sy
st

em
 a

nd
 h

ow
 to

 r
ea

ch
 th

em
; a

su

m
m

ar
y

of
 th

e
av

ai
la

bi
lit

y/
re

lia
bi

lit
y

re
qu

ire
m

en
ts

 fo
r

yo
ur

 s
ys

te
m

; a
n

in
di

ca
tio

n
of

 th
e

ex
pe

ct
ed

 lo
ad

 p
ro

fil
e

of
 y

ou
r

sy
st

em
; a

nd
 tr

ou
bl

es
ho

ot
in

g
gu

id
el

in
es

.

Pr
oj

ec
t o

ve
rv

ie
w

D
ev

el
op

er
s,

A

su
m

m
ar

y
of

 c
rit

ic
al

 in
fo

rm
at

io
n,

•

I t
yp

ic
al

ly
 c

re
at

e
an

d
m

ai
nt

ai
n

th
is

M

an
ag

er
s,

su

ch
 a

s
th

e
vi

si
on

 fo
r

th
e

sy
st

em
,

do
cu

m
en

t d
ur

in
g

de
ve

lo
pm

en
t.

M
ai

nt
en

an
ce

pr

im
ar

y
us

er
 c

on
ta

ct
s,

 te
ch

no
lo

gi
es

•

Ke
ep

 it
 s

ho
rt

 a
nd

 to
 th

e
po

in
t.

I d
on

’t
ev

er

D
ev

el
op

er
s,

an

d
to

ol
s

us
ed

 to
 b

ui
ld

 th
e

sy
st

em
,

re
m

em
be

r
on

e
ge

tt
in

g
be

yo
nd

 t
en

 p
rin

te
d

O
pe

ra
tio

ns
 S

ta
ff

an
d

th
e

cr
iti

ca
l o

pe
ra

tin
g

pr
oc

es
se

s
pa

ge
s.

(s
om

e
ap

pl
ic

ab
le

 to
 d

ev
el

op
m

en
t,

•
Th

is
 d

oc
um

en
t s

er
ve

s
as

 a
 s

ta
rt

in
g

po
in

t
fo

r
su

ch
 a

s
ho

w
 to

 b
ui

ld
 th

e
sy

st
em

 a
nd

an

yo
ne

 n
ew

 to
 th

e
te

am
, i

nc
lu

di
ng

so

m
e

ap
pl

ic
ab

le
 to

 p
ro

du
ct

io
n,

 s
uc

h
m

ai
nt

en
an

ce
 d

ev
el

op
er

s,
 b

ec
au

se
 it

as

 h
ow

 to
 b

ac
k

up
 d

at
a

st
or

ag
e)

.
an

sw
er

s
fu

nd
am

en
ta

l q
ue

st
io

ns
 t

ha
t

th
ey

Al

so
 p

ro
vi

de
s

re
fe

re
nc

es
 to

 c
rit

ic
al

ar

e
lik

el
y

to
 h

av
e.

pr
oj

ec
t a

rt
ifa

ct
s

su
ch

 a
s

th
e

so
ur

ce

•
W

he
ne

ve
r

yo
u

fir
st

 s
ha

re
 th

is
 d

oc
um

en
t

co
de

 (
th

e
pr

oj
ec

t n
am

e
in

 th
e

so
ur

ce

w
ith

 a
ny

on
e,

 a
sk

 h
im

 o
r

he
r

to
 k

ee
p

tr
ac

k
co

de
 c

on
tr

ol
 s

ys
te

m
 is

 o
fte

n
of

 m
aj

or
 is

su
es

 th
at

 th
ey

 w
er

e
no

t
ab

le
 t

o
su

ffi
ci

en
t)

, w
he

re
 th

e
pe

rm
an

en
t

ea
si

ly
 r

es
ol

ve
 u

si
ng

 th
is

 d
oc

um
en

t,
or

 a
ny

m

od
el

s
pe

rt
ai

ni
ng

 to
 th

e
sy

st
em

m

is
in

fo
rm

at
io

n
th

ey
 d

is
co

ve
r,

to
 p

ro
vi

de

(i
f a

ny
)

ar
e,

 a
nd

 w
he

re
 o

th
er

in

si
gh

t i
nt

o
po

te
nt

ia
l u

pd
at

es
 fo

r
th

e
do

cu
m

en
ts

 (
if

an
y)

 a
re

.
do

cu
m

en
t.

co
nt

in
ue

s

72244_CH14I 2/27/02 11:22 AM Page 159

160

Ta
b

le
 1

4.
1

co
nt

in
ue

d

D
O

C
U

M
E

N
T

A
U

D
IE

N
C

E
D

ES
C

R
IP

TI
O

N
A

D
V

IC
E

Re
qu

ire
m

en
ts

D

ev
el

op
er

s,

Th
is

 d
oc

um
en

t d
ef

in
es

 w
ha

t t
he

•

XP
 p

ro
je

ct
s

ty
pi

ca
lly

 fa
vo

r
lo

w
-t

ec
h

do
cu

m
en

t
M

ai
nt

en
an

ce

sy
st

em
 w

ill
 d

o,
 s

um
m

ar
iz

in
g

or

re
qu

ire
m

en
ts

, a
rt

ifa
ct

s
su

ch
 a

s
us

er
 s

to
rie

s,

D
ev

el
op

er
s

, U
se

rs
,

co
m

po
se

d
of

 r
eq

ui
re

m
en

ts
 a

rt
ifa

ct
s

an
d

C
RC

 c
ar

ds
.

U
se

r
M

an
ag

er
s

su
ch

 a
s

bu
si

ne
ss

 r
ul

e
de

fin
iti

on
s,

•

R
U

P
pr

oj
ec

ts
 te

nd
 to

w
ar

d
m

or
e

fo
rm

al

us
e

ca
se

s,
 u

se
r

st
or

ie
s,

 o
r

es
se

nt
ia

l
re

qu
ire

m
en

ts
, a

rt
ifa

ct
s,

 a
nd

 d
oc

um
en

ta
tio

n.
us

er
 in

te
rf

ac
e

pr
ot

ot
yp

es

(t
o

na
m

e
a

fe
w

).

Su
pp

or
t

Su
pp

or
t S

ta
ff

Th
is

 d
oc

um
en

ta
tio

n
in

cl
ud

es
 tr

ai
ni

ng

•
Yo

u
w

ill
 fi

nd
 th

at
 y

ou
r

su
pp

or
t

de
pa

rt
m

en
t

do
cu

m
en

ta
tio

n
m

at
er

ia
ls

 s
pe

ci
fic

 to
 s

up
po

rt
 s

ta
ff;

 a
ll

of
te

n
ha

s
a

st
an

da
rd

 e
sc

al
at

io
n

pr
oc

ed
ur

e
us

er
 d

oc
um

en
ta

tio
n

to
 u

se
 a

s
a

in
 p

la
ce

; t
he

re
fo

re
, y

ou
 w

ill
 n

ot
 n

ee
d

re
fe

re
nc

e
w

he
n

so
lv

in
g

pr
ob

le
m

s;

to
 w

rit
e

on
e.

 A
nd

 li
ke

 th
e

op
er

at
io

ns

a
tr

ou
bl

e-
sh

oo
tin

g
gu

id
e;

 e
sc

al
at

io
n

de
pa

rt
m

en
t,

th
e

su
pp

or
t d

ep
ar

tm
en

t
m

ay

pr
oc

ed
ur

es
 fo

r
ha

nd
lin

g
di

ffi
cu

lt
ha

ve
 s

ta
nd

ar
d

te
m

pl
at

es
 o

r
ex

am
pl

es
 t

ha
t

pr
ob

le
m

s;
 a

nd
 a

 li
st

 o
f c

on
ta

ct

yo
u

ca
n

w
or

k
fr

om
.

po
in

ts
 w

ith
in

 th
e

m
ai

nt
en

an
ce

 te
am

.

72244_CH14I 2/27/02 11:22 AM Page 160

161

Ta
b

le
 1

4.
1

co
nt

in
ue

d

D
O

C
U

M
E

N
T

A
U

D
IE

N
C

E
D

ES
C

R
IP

TI
O

N
A

D
V

IC
E

Sy
st

em

M
ai

nt
en

an
ce

Th

e
pu

rp
os

e
of

 th
is

 d
oc

um
en

t i
s

to

•
Sy

st
em

 d
oc

um
en

ta
tio

n
he

lp
s

to
 re

du
ce

do

cu
m

en
ta

tio
n

D
ev

el
op

er
s,

pr

ov
id

e
an

 o
ve

rv
ie

w
 o

f t
he

 s
ys

te
m

pe

rc
ei

ve
d

ris
k

on
 th

e
pr

oj
ec

t b
y

pr
ov

id
in

g
D

ev
el

op
er

s
an

d
to

 h
el

p
pe

op
le

 u
nd

er
st

an
d

th
e

”t
ru

ck
 in

su
ra

nc
e,

”
th

e
as

su
ra

nc
e

th
at

 if
 th

e
sy

st
em

. C
om

m
on

 in
fo

rm
at

io
n

in

de
ve

lo
pm

en
t t

ea
m

 le
av

es
, o

r g
et

s
hi

t b
y

a
th

is
 d

oc
um

en
t i

nc
lu

de
s

an
 o

ve
rv

ie
w

tr

uc
k*

, c
rit

ic
al

 in
fo

rm
at

io
n

ab
ou

t t
he

 p
ro

je
ct

 is

of
 th

e
te

ch
ni

ca
l a

rc
hi

te
ct

ur
e,

 th
e

le
ft

be
hi

nd
. U

nf
or

tu
na

te
ly

, t
hi

s
is

 ty
pi

ca
lly

 fa
ls

e
bu

si
ne

ss
 a

rc
hi

te
ct

ur
e,

 a
nd

 th
e

in
su

ra
nc

e—
if

yo
u

lo
se

 s
om

eo
ne

, t
he

n
no

 m
at

te
r

hi
gh

-le
ve

l r
eq

ui
re

m
en

ts
 fo

r t
he

ho

w
 g

oo
d

th
e

do
cu

m
en

ta
tio

n
is

, y
ou

 h
av

e
a

sy
st

em
. D

et
ai

le
d

ar
ch

ite
ct

ur
e

an
d

se
rio

us
 p

ro
bl

em
 o

n
yo

ur
 h

an
ds

 b
ec

au
se

 n
ew

de

si
gn

 m
od

el
s,

 o
r r

ef
er

en
ce

s
to

pe

op
le

 s
til

l n
ee

d
to

 b
e

id
en

tif
ie

d,
 a

ss
ig

ne
d

to

th
em

, m
ay

 a
ls

o
be

 in
cl

ud
ed

 w
he

re

yo
ur

 s
ys

te
m

, a
nd

 n
ee

d
to

 le
ar

n
th

e
sy

st
em

.
ap

pr
op

ria
te

.
Yo

u’
re

 m
uc

h
be

tte
r o

ff
in

cr
ea

si
ng

 y
ou

r p
ro

je
ct

’s
”t

ru
ck

 n
um

be
r,”

 th
e

m
in

im
um

 n
um

be
r o

f
pe

op
le

 th
at

 if
 y

ou
 lo

st
 th

em
 w

ou
ld

 p
ut

 y
ou

r
pr

oj
ec

t a
t r

is
k,

 b
y

su
pp

or
tin

g
kn

ow
le

dg
e

sh
ar

in
g

pr
ac

tic
es

, s
uc

h
as

 A
ct

iv
e

St
ak

eh
ol

de
r

Pa
rt

ic
ip

at
io

n,
C

ol
le

ct
iv

e
O

w
ne

rs
hi

p,
 a

nd
 M

od
el

w
ith

 O
th

er
s.

U
se

r
do

cu
m

en
ta

tio
n

U
se

rs
, U

se
r

Yo
ur

 u
se

rs
 m

ay
 r

eq
ui

re
 a

 r
ef

er
en

ce

•
I t

yp
ic

al
ly

 b
as

e
m

y
us

ag
e

gu
id

e
an

d
tr

ai
ni

ng

M
an

ag
er

s
m

an
ua

l,
a

us
ag

e
gu

id
e,

 a
 s

up
po

rt

m
at

er
ia

ls
 o

n
th

e
us

e
ca

se
s

fo
r

th
e

gu
id

e,
 a

nd
 e

ve
n

tr
ai

ni
ng

 m
at

er
ia

ls
.

sy
st

em
—

th
e

us
e

ca
se

s
de

sc
rib

e
ho

w
 t

he

It’
s

im
po

rt
an

t t
ha

t y
ou

 d
is

tin
gu

is
h

ac
to

rs
 w

or
k

w
ith

 th
e

sy
st

em
; t

he
re

fo
re

,
be

tw
ee

n
th

es
e

di
ffe

re
nt

 ty
pe

s
of

th

ey
 s

ho
ul

d
be

 a
 g

oo
d

fo
un

da
tio

n
on

do

cu
m

en
ts

 b
ec

au
se

 th
e

w
ay

 th
at

w

hi
ch

 to
 b

as
e

bo
th

 o
f t

he
se

 d
oc

um
en

ts
.

ea
ch

 o
ne

 is
 u

se
d

va
rie

s:
 o

ne
 is

 fo
r

•
U

se
r

do
cu

m
en

ta
tio

n
sh

ou
ld

 b
e

co
ns

id
er

ed

qu
ic

k
lo

ok
up

s,
 o

ne
 is

 fo
r

di
sc

ov
er

in
g

pa
rt

 o
f t

he
 u

se
r

in
te

rf
ac

e
fo

r
yo

ur
 s

ys
te

m

ab
ou

t h
ow

 to
 w

or
k

w
ith

 th
e

sy
st

em
,

an
d

th
er

ef
or

e
sh

ou
ld

 u
nd

er
go

 u
sa

bi
lit

y
on

e
is

 fo
r

ho
w

 to
 o

bt
ai

n
ad

di
tio

na
l

te
st

in
g.

he
lp

, a
nd

 o
ne

 is
 fo

r
tr

ai
ni

ng
.

*I
 w

as
 o

nc
e

on
 a

 p
ro

je
ct

 w
he

re
 th

e
pr

oj
ec

t m
an

ag
er

, l
ea

d
de

ve
lo

pe
r,

an
d

ar
ch

ite
ct

 (
m

ys
el

f)
 w

er
e

in
 a

 c
ar

 th
at

 w
as

 h
it

he
ad

-o
n

by
 a

 tr
an

sp
or

t t
ru

ck
. W

e
al

l w
al

ke
d

aw
ay

fr
om

 it
, b

ut
 th

at
 w

ou
ld

 h
av

e
be

en
 a

 s
er

io
us

 b
lo

w
 to

 th
e

pr
oj

ec
t i

f w
e

ha
dn

’t —
no

t t
o

m
en

tio
n

ou
r

fa
m

ili
es

!

72244_CH14I 2/27/02 11:22 AM Page 161

162 Chapter 14

For example: at the time of this writing, I am working with the early release of the JDK
v1.3.1, yet I regularly use reference manuals for JDK 1.2.x—it’s not a perfect situation,
but I get by without too much grief because the manuals I’m using are still good
enough. Would the manuals for Java v1.0.x be sufficient? Likely not, because there has
been a significant change since that release and my productivity loss would be much
greater than the cost of new manuals.

In addition to the fundamental requirement of your project stakeholders authoriz-
ing the investment of resources required to do the work, you should use the following
heuristics for deciding when to update documentation:

■■ Update contract models and re-release them ideally before, and minimally
parallel to, releasing the item(s) that the model describes.

■■ Documentation that is intended as part of the system, such as operations and
user manuals, should be updated and released before or with the system itself.

■■ The customer of the documentation is being inordinately harmed, including a
significant loss of productivity, because the documentation is not updated (for
example: it hurts).

Yes, it can be frustrating having models and documents that aren’t completely accu-
rate or that aren’t perfectly consistent with one another. This frustration is offset by the
productivity increase inherent in traveling light, in not needing to continually keep
documentation and models up to date and consistent with one another. Do you want
to write software or write documentation?

Effective Documentation Handoffs
A documentation handoff occurs when one group or person provides documentation
to another group or person. Agile developers desperately try to avoid documentation
handoffs because they are not a very good way for people to communicate. Unfortu-
nately documentation hand-offs are a reality in some situations—often your develop-
ment team is so large it cannot be co-located, perhaps a subsystem is being created by
another company (implying the need for a contract model), perhaps important project
stakeholders are not readily available to your team, or perhaps regulations within
your industry or organization require the production of certain documents. The fol-
lowing strategies can help to increase the effectiveness of documentation handoffs:

Avoid documentation handoffs. As you migrate to an agile software development
process you will constantly run into people who are not as agile, and who see
nothing wrong with documentation handoffs. Point out that there are better
ways to communicate—face-to-face conversations, video conferencing, telephone
conferencing—that you should consider before writing documentation, and
whenever possible try to find a better way that fulfills your needs.

Support handoffs with other means of communication. If you can’t avoid
providing documentation to someone else, you should at least strive to support
the handoff with face-to-face communication or other approaches. This may
enable you to write less documentation, therefore allowing you to focus on

72244_CH14I 2/27/02 11:22 AM Page 162

Agile Documentation 163

other activities and will help you to avoid some of the common disadvantages
of documentation, such as misunderstanding the material.

Avoid documentation handoffs. Chances are good that the people you are
interacting with don’t like writing and receiving documentation either—at least
it doesn’t hurt to ask.

Write agile documentation. See the section Strategies for Increasing the Agility of
Documentation.

Avoid documentation handoffs. I can’t stress this enough.

Strategies for Increasing the Agility of
Documentation
If you can’t avoid writing a document, how can you at least write it in an agile man-
ner? The following strategies should help:

Focus on the customer(s). Identify who the potential customer(s) for your
documentation are and what they believe they require, and then negotiate with
them the minimal subset that they actually need. To discover what they believe
they require, ask them what they do, how they do it, and how they want to
work with the system documentation that you are to produce. By
understanding the needs of your customers you will be able to deliver succinct
and sufficient documentation and deliver it where they will actually need it and
find it—it doesn’t matter how well written a document is if nobody knows that
it exists.

Keep it just simple enough, but not too simple. Follow the principle Use the
Simplest Tools and the practices Create Simple Content and Depict Models Simply
when creating documentation. The best documentation is the simplest that gets
the job done. Don’t create a fifty-page document when a five-page one will do.
Don’t create a five-page document when five bullet points will do. Don’t create
an elaborate and intricately detailed diagram when a sketch will do. Don’t
repeat information found elsewhere when a reference will do. Write in point
form. Document only enough to provide a useful context. Start with a document
that’s minimal enough for the needs of its customers then augment it as needed.
To determine what is truly the minimum amount of documentation required by
my customers I will actively explore how they intend to use the documentation
and why they are using it that way.

The customer determines sufficiency. Years ago, I worked for a large Canadian
financial institution. One of their policies was that you couldn’t transition a
system to someone else until they were willing to accept it. They would inspect
your code and supporting artifacts, and if they felt the artifacts weren’t up to
par, then you needed to improve it and try again. Sometimes you would work
on improving the artifacts together, and sometimes not. This practice provided a
fair and effective quality gate between developers and the customers of our
work. As writer of the documentation your job is to ensure that the

72244_CH14I 2/27/02 11:22 AM Page 163

164 Chapter 14

documentation has true meaning and provides value; your customer’s role is to
validate that you have done so.

Document with a purpose. You should only create a document if it fulfills a clear,
important, and immediate goal of your overall project efforts. Don’t forget that
this purpose may be short term or long term, it may directly support software
development efforts, or it may not.

Prefer other forms of communication to documentation. Highsmith (2000)
believes that the issue is one of understanding, not of documentation; therefore,
you should not overrate the value of documentation. Your goal is to ensure that
maintenance developers understand how the system works so they can evolve it
over time, not to produce a mound of documentation that they may or may not
use. Your goal is to ensure that your users work with your system effectively,
not that they have a pretty help system available to them. Your goal is to enable
your support and operations staff, not bury them with paper. Documentation
supports knowledge transfer, but it is only one of several options available to
you, and it often isn’t the best option, as discussed in Chapter 8. Conversations
with project stakeholders, having them actively involved with development,
and being available to work through any issues with them often go much
further than the best documentation. Documentation becomes a better option
for you the greater the distance, either physical or temporal, between the
individuals who are communicating.

Put the documentation in the most appropriate place. Where will somebody
likely want a piece of documentation? Is that design decision best documented
in the code, added as a note on a diagram, or best placed in an external
document? The answer to this question should be driven by the needs of the
customer of that information; where are they most likely to need that
information? The answer is also driven by your desire to follow the principle
Quality Work—you should record the information where it enhances your work
the most. You should also consider issues such as indexing, linking, and
accessibility when writing documentation because you don’t always know who
will eventually become its customer.

Wait for what you are documenting to stabilize. Delay the creation of all
documents as late as possible, creating them just before you need them. For
example: system overviews are best written toward the end of the development
of a release because you know what you’ve actually built.

Display models publicly. When models are displayed publicly—on a whiteboard,
corkboard, or internal Web site—you are promoting transfer of information and
thus communication through the application of what Cockburn (2002) refers to
as an “information radiator.” The greater the communication on your project,
the less need for detailed documentation because people already know what
you’re doing. Having said that, don’t forget to indicate the status of your
models so that people can put them in context—you’ll treat a model that is still a
draft much different than one that has been baselined for your current release of
software.

72244_CH14I 2/27/02 11:22 AM Page 164

Agile Documentation 165

Start with models you actually keep current. If you’ve chosen to keep your UML
deployment diagram, your user interface flow diagram, and your physical data
diagram up to date throughout development then that is a good sign that these
are valuable models that you should base your documentation around. Models
that weren’t kept up to date likely weren’t because there was little sense in
doing so, so not only are they out of date, they aren’t of value anyway.

Require people to justify documentation requests. Does the person know what
they’re asking for and why they need it, or are they asking for it because they’ve
been told to ask for it? Are users asking for documentation because they were
burned in the past by developers, or their colleagues were burned in the past,
and now they ask for everything in the hopes they’ll get something? Does the
requester understand the trade-offs that are being made, that documentation
comes at a cost? See the section What Are the Tradeoffs Associated with
Documentation?. In my experience, when you explore the documentation issue
with your project stakeholders, you quickly discover they’re asking for it
because they don’t trust you, they often don’t understand the implications of
what they’re asking for, and they often don’t know that there is an alternative
(for example: less documentation). Really good questions to ask are what they
intend to use the documentation for and how they actually use the
documentation. When you ask those questions you often discover that they
don’t use all the documentation, that they instead just want it there as a security
blanket more than anything else. There are much better ways to address fear
than writing documentation. You should also consider explaining the AM
principle Maximize Stakeholder Investment to them because everyone should be
able to show that what they are doing provides the best value possible to your
organization.

Write the fewest documents with least overlap. One way to achieve this is to
build larger documents from smaller ones. For example: I once worked on a
project where all documentation was written as HTML pages, with each page
focusing on a single topic. One page described the user interface architecture for
our system, a page that included a user interface flow diagram and appropriate
text describing it. The table of contents pages for the system documentation and
the support guide both linked to this UI architecture page. This information was
defined in one place and one place only, so there was no opportunity for
overlap.

Get someone with writing experience. Technical writers bring a lot to the table
when it comes time to writing documentation because they know how to
organize and present information effectively. Don’t have access to a technical
writer? Consider reading and following the advice presented in UnTechnical
Writing (Bremer 1999) or taking a night-school course in writing fundamentals.
Also try writing documentation with a partner, just as there is significant value
in pair programming (www.pairprogramming.com), there is similar value in
“pair documenting.” You may also consider purchasing text-to-speech software
that allows you to listen to what you’ve written, a great way to discover poorly
written passages.

72244_CH14I 2/27/02 11:22 AM Page 165

166 Chapter 14

Table 14.2 Critical Points Regarding Agile Documentation

1. The fundamental issue is effective communication, not documentation.

2. Documentation should be ”lean and mean.”

3. Travel as light as you possibly can.

4. Documentation should be just good enough.

5. Models are not necessarily documents, and documents are not necessarily
models.

6. Documentation is as much a part of the system as the source code.

7. Your team’s primary goal is to develop software; its secondary goal is to enable
your next effort.

8. The benefit of having documentation must be greater than the cost of creating
and maintaining it.

9. Never trust the documentation.

10. Each system has its own unique documentation needs; one size does not fit all.

11. Ask whether you NEED the documentation, and why you believe you NEED the
documentation, not whether you want it.

12. The investment in system documentation is a business decision, not a
technical one.

13. Create documentation only when you need it—Don’t create documentation for
the sake of documentation.

14. Update documentation only when it hurts.

15. The customer, not the developer, determines whether documentation is
sufficient.

Make it easy to remember the fundamentals. Table 14.2 summarizes the critical
points made in this chapter. Consider photocopying and publicly posting the
copy where you and your coworkers will see it so as to act as a reminder of how
to take an agile approach to documentation.

How Does This Work?
Your project team should ruthlessly focus on creating documentation that provides
maximum value to its customers. You should create documentation only when it is the
best option available to you; when you have better options, you should naturally
choose one of them instead. The simplest documentation that gets the job done is your
goal. Like an agile model an agile document just needs to be good enough for its intended
audience. How does this work? How could it not work? Although agile software devel-
opment process, such as AM value working software has over-comprehensive documen-
tation that doesn’t mean that you will not develop any documentation; you should just

72244_CH14I 2/27/02 11:22 AM Page 166

Agile Documentation 167

develop documentation that makes sense. Just as knee-jerk documentation is wrong,
knee-jerk non-documentation is just as wrong. Think first, then act.

The desire to get models perfect is one of the reasons why people fall into the
“analysis paralysis” trap—they’re too afraid to move on from modeling because they
want to get it right first. I also suspect this is why people invest a lot of time in docu-
mentation and maintenance of their models—when something changes they rush back
and update that issue throughout the myriad of artifacts they’ve been maintaining.
This is a comfortable feeling for them because they believe they’re accomplishing use-
ful work—unfortunately, from the point of view of Agile Modeling nothing could be
further from the truth. The true goal of software developers is to develop software that
meets the needs of their users. How relevant is maintaining mounds of documentation
to achieving that goal? Not very. Yes, you need some documentation but not a lot.
What I’m getting at is an aspect of eXtreme Programming’s (XP) practice of traveling
light. You want to maintain a minimal amount of artifacts that is appropriate for your
situation—for an XP project that minimal amount of artifacts could be source code and
your test cases, whereas on a Rational Unified Process (RUP) project it would include
these things as well as other artifacts such as requirements and architecture models. At
the same time, you want to invest the bare minimum effort in the artifacts that you do
maintain. Doing more work than you need to doesn’t make sense, and that means you
will update your artifacts within the tolerances of your project.

72244_CH14I 2/27/02 11:22 AM Page 167

The UML is not even remotely complete.

168

C H A P T E R

15

The UML and Beyond

The Unified Modeling Language (UML) (Object Management Group 2001) defines the
industry standard notation, and semantics for properly applying that notation, for
software models of systems built using object-oriented (OO) or component-based
technology. The artifacts of the UML, described in Appendix A, “Modeling Tech-
niques,” are: Activity diagram, Class diagram, Collaboration diagram, Component
diagram, Deployment diagram, Sequence diagram, State Chart diagram, and the Use
Case diagram. In fact, finding modeling books or tools that do not use the UML is dif-
ficult these days. The UML provides a common and consistent notation with which to
describe OO and component software systems, decreasing the learning curve for
developers because they only need to learn the one modeling language (in theory at
least). The UML is clearly a step in the right direction, if only for the reason that we are
no longer fighting the “notation wars” of the mid-1990s, but it isn’t perfect.

The goal of this chapter is to help you see through the marketing hype and miscon-
ceptions surrounding the UML—to be an effective modeler you must have a firm
understanding of the realities of the UML. In this chapter I argue that:

■■ The UML is not sufficient for the development of business software.

■■ The UML is more complex than what most developers need.

■■ The UML is not a methodology or process.

■■ The vision of Executable UML is ahead of its time.

72244_CH15I 2/27/02 11:21 AM Page 168

The UML and Beyond 169

The UML Is Not Sufficient

AM’s Multiple Models principle tells you that you need to have many modeling tech-
niques in your intellectual toolkit if you want to be effective as a developer. Appendix
A of this book presents an overview of many common modeling artifacts, including
but not limited to those of the Unified Modeling Language (UML), and as you can see,
there is a wide selection of models available to you. Each model has its strengths and
weaknesses; therefore, no single model is sufficient for all of your software develop-
ment needs. Although the UML is in fact quite robust, the reality is that it isn’t suffi-
cient for your modeling needs. For example, when I design the user interface of an
application, I generally like to create a user interface flow diagram (see Figure 15.1).
This diagram enables my team to explore how users will interact with the system from
a birds-eye view, and thus ask very important usability questions long before we’ve
built the user interface. Unfortunately, the UML currently doesn’t include such a dia-
gram, and it may never include one. So if you limit your modeling repertoire to the
artifacts defined by the UML, you forgo the potential productivity enhancements of

Figure 15.1 A diagram that represents navigational flow within a user interface.

72244_CH15I 2/27/02 11:21 AM Page 169

170 Chapter 15

Figure 15.2 A business process depicted with a UML activity diagram.

*I do not expect the notation presented in this book to be adopted by the Object Management
Group (OMG). However, I do see this book as an important step towards a data modeling profile
for the UML. Regardless, this book is still a good read.

this technique. Similarly, it is quite common for business application developers to cre-
ate data models representing the physical design of their database, yet the UML does
not yet have this sort of model either—luckily, work is being done to add a data model
to the UML (Naiburg and Maksimchuk 2001).*

Although the UML defines an important collection of models, I highly suggest
adopting them in accordance with the practice Apply Modeling Standards. The reality is
that the UML has narrowed the range of discussion within the modeling community.
Yes, sometimes it is possible to use UML diagrams in situations for which they really
weren’t intended. For example, using UML Activity diagrams to model business
processes is quite common (see Figure 15.2). However, this often proves less than
ideal. For example, in UML Activity diagrams you cannot depict a storage location for
information, such as the in box on someone’s desk or a relational database, informa-
tion that is often critical to know when you are exploring the current physical business
process—yes, you could add a process bubble entitled “Put Order in Box” but it does

72244_CH15I 2/27/02 11:21 AM Page 170

The UML and Beyond 171

not have the same visual impact that you would achieve with a data store symbol enti-
tled “In Box” had you instead used a data flow diagram (DFD) to model the process.
There are many situations where a UML Activity diagram is your best modeling
option; unfortunately, modeling an existing physical business process isn’t one of
them. Agile modelers follow the practice Apply the Right Artifact(s) and choose to fol-
low the best technique for the situation; in this case, creating a DFD is a better option
than a UML Activity diagram.

In my opinion, the UML is not sufficient for the needs of business application devel-
opment, although it is an important part of the overall picture. Even the Rational Uni-
fied Process (RUP) (Rational Corporation 2001), which comes from the same
organization that first proposed the UML, explicitly includes non-UML artifacts such
as business rules, data models, and user interface flow diagrams. Why is it important
to recognize that the UML isn’t complete? First, it puts you in a better position to eval-
uate development tools. Tool support for the UML is important but not sufficient—the
tool(s) also need to support other modeling artifacts that your project requires. Second,
it puts you in a position to better evaluate developers (including consultants and con-
tractors). An interesting question to ask in a job interview is “what’s missing from the
UML?”—someone with actual experience developing real-world systems will easily
answer this question; someone with book knowledge will think it’s a trick question.

The UML Is Too Complex

When you examine the artifacts that have been defined for the UML, you quickly see
that the notation and semantics for that notation is far more than you likely need. A
common refrain within the object community is that 80 percent of your object modeling
needs can be satisfied with 20 percent of the notation, an “objectification” of Pareto’s
law I suppose, that the UML has far too much in it. The UML is huge. It’s intimidating
to someone who is new to object-oriented development. The UML is strange: On the
one hand, it has too little in it, and, on the other hand, it has too much in it.

The UML Is Not a Methodology or Process

A common misunderstanding about the UML is that it is a process, yet nothing could
be further from the truth. The UML defines notation for a collection of diagrams and the
semantics (rules) for applying that notation. That’s it. It does not define when to create
each diagram nor does it even define how to create each diagram, it merely defines
what the diagrams are. I believe that there are several reasons for this confusion:

■■ People haven’t taken time to learn about the UML.

■■ Confusion with the Unified Process (UP). The UML and the UP originated
within the same organization, Rational Corporation, and have similar names.
The UP is in fact a process, one that I describe in Part 4 of this book, and many
developers have a problem distinguishing between the two.

72244_CH15I 2/27/02 11:21 AM Page 171

172 Chapter 15

■■ Historical precedent. Previous modeling languages, such as data modeling
notations or process modeling notations, were in fact associated with
methodologies. In fact, the notations that formed the foundation of the UML—
Object Modeling Technique (OMT) notation (Rumbaugh et. al. 1991), Booch
notation (Booch 1994), and the Objectory notation (Jacobson et. al. 1992)—were
all associated with methodologies themselves. Many developers naturally
associate a modeling language with a methodology, but with the UML this
simply isn’t the case.

Forget about Executable UML (for Now)

Ever wish you could draw a few diagrams, press a button, and have a working soft-
ware system that meets your needs? Sound like magic? Perhaps, but that’s a major
part of the Executable UML vision. The basic idea is that you will use a CASE tool to
develop detailed UML diagrams and then supplement them by specifications written
in a formal language, presumably the OMG’s Object Constraint Language (OCL)
(Warmer and Kleppe 1999). The basic idea behind executable UML is that systems can
be modeled at a higher level of abstraction than source code, simulated to support val-
idation of your efforts, and then translated into efficient code. This higher level of
abstraction should help to avoid premature design, enable you to change your system
as your requirements evolve, and delay implementation decisions until the last minute.
In my opinion, this sounds great in theory, but unfortunately there are several prob-
lems to making this work in practice:

The UML isn’t sufficient. The UML is clearly not sufficient for business
application development, as I argued earlier, so trying to generate a system only
from UML models at the present moment simply won’t suffice.

Integrating a collection of tools to support executable UML is currently difficult.
Let’s assume that one or more tool vendors decide to implement the executable
UML vision and fill in the gaping holes inherent in the UML. How would they
make it work? Ideally, some companies would focus strictly on building a good
modeling tool and others focus on taking the output from those tools to produce
a working executable on a given platform. Some vendors would produce plug-
ins for J2EE environments, others for .NET environments, and others yet for
mainframe environments. To support this, we would need a common standard
for sharing information between tools. The OMG’s XML Metadata Interchange
(XMI) standard comes to mind, although because XMI is based on the OMG’s
UML and Common Warehouse Metamodel (CWM) on its own, it isn’t yet
sufficient for fully specifying software from end-to-end. Although the CWM
provides insight for specifying persistence-related information, we still need to
specify other aspects of a system, such as its user interface. Because there isn’t a
complete standard in place, the various vendors will add to their own unique
extensions making multi-vendor tool integration difficult.

A single vendor approach will likely prove too narrow. Another approach would
be for a tool vendor to support both modeling and code generation features in

72244_CH15I 2/27/02 11:21 AM Page 172

The UML and Beyond 173

*Some interesting tools exist that support the concept of executable models, but they need to
extend the UML to do so.

their tool, something perfectly reasonable in theory. But, because of the wide
range of platforms, and the range of design options within those platforms, the
tool vendors will need to focus on a single niche. Perhaps one vendor will
specialize in generating J2EE development supporting Java Server Pages (JSPs),
servlets, Enterprise JavaBeans (EJBs), and relational databases. Perhaps another
will specialize in generating Java-based fat-client applications, whereas another
generates a Win32 fat client application. The implication is that organizations
that develop for several platforms will need several major development tools,
tools that must be purchased and supported often at great expense.
Furthermore, the wide range of required functionality of such a tool makes it
difficult for vendors to specialize and focus on a single aspect of the xUML
vision, likely resulting in slower improvement in the overall development
environment.

I have no doubt that we will begin to see some interesting tools* emerge over the
next few years based on the executable UML vision, but I suspect that this vision will
fall just as short as other similar visions have done in the past . . . we will always need
programmers. Would such a tool be agile? Potentially. If it is possible to build a tool
that is easy to use, that generates software that is sufficient for your environment, and
that provides better value for your investment (in accordance with the principle Maxi-
mize Stakeholder Investment) than do other approaches to development, then I would
have to say yes. Do I expect to see any tool that meets these requirements anytime
soon? No. Perhaps my experiences in the 1980s when CASE tool vendors bombarded
the IT industry with similar promises has made me a little jaded, but my expectation is
that the complexity of software development and the pace of technological change will
outstrip the ability of tool vendors to generate reasonably efficient source code to meet
my current needs. In other words, I fully expect the cobbler’s children to go without
shoes, or in this case for developers to go without “ultimate tools,” for quite some
time. In Chapter 10, “Using the Simplest Tools Possible?,” I explore effective and real-
istic tool usage in greater detail.

Making the UML Work in Practice

The following strategies should help you to make the UML work for you in practice:

Use the UML as your modeling core. For object-oriented and component-based
development, you should use the UML as a base collection of modeling
techniques that is then supplemented with other techniques to meet your project’s
unique needs. Furthermore, I wouldn’t replace the UML with other artifacts.
Although I am convinced that my own notation for class modeling (Ambler 1995)
is superior to that of the UML’s, the reality is that my notation isn’t in common

72244_CH15I 2/27/02 11:21 AM Page 173

174 Chapter 15

use and therefore, if you use it, you would make your diagrams difficult for
others to understand and thus reduce communication on your project team.

Adopt a critical subset of the notation. If you only need 20 percent of the UML
notation to do 80 percent of your modeling work, then start with that critical 20
percent. Good starting points are Martin Fowler and Kendall Scott’s (1999) UML
Distilled 2/e or my own The Object Primer 2/e (2001a).

Educate all developers in the UML.

Beware of UML hype. An unfortunate side effect of the popularity of the UML is
that it has become a marketing buzzword for tool vendors, consultants, and
even methodologists. It’s nice that a consultant is a UML expert, but what you
really need is a development expert. Whenever a new technology, such as XML
or .NET, or a new technique, such as XP, is released, members of the UML
community jump on the bandwagon and write books titled “[Buzzword] and
UML” or “UML for [Buzzword].” Instead of asking the question, “How do we
apply the UML with buzzword?” they would be better off asking, “How do we
model a buzzword-based application?” in my opinion.

The diagrams defined by the UML are important tools for an agile modeler to have
in their intellectual toolkit. In this chapter, I explored several issues pertaining to effec-
tive adoption of the UML, and hopefully cleared up any misconceptions that you may
have regarding the UML.

72244_CH15I 2/27/02 11:21 AM Page 174

PA R T

Three

Agile Modeling
and eXtreme
Programming (XP)

72244_CH16I 2/27/02 11:20 AM Page 175

In this part, I describe how to use AM and XP together. This section includes the fol-
lowing chapters:

■■ Chapter 16: Setting the Record Straight. This chapter explores the concept and
nature of modeling on an XP project, showing once and for all that modeling is
an important aspect of XP.

■■ Chapter 17: Agile Modeling and eXtreme Programming. This chapter
describes the conceptual fit between XP and AM and shows how XP’s practices
of refactoring and test-first design can be used to enhance your agile modeling
efforts.

■■ Chapter 18: Agile Modeling Throughout the XP Lifecycle. This chapter
overviews the XP project lifecycle and shows where AM techniques can be
applied to improve your effectiveness.

■■ Chapter 19: Modeling During the XP Exploration Phase. This chapter
describes how AM practices can enhance the identification of the initial
requirements for an XP project and in the development of a candidate
architecture for the SWA Online case study.

■■ Chapter 20: Modeling During an XP Iteration: Searching for Items. This
chapter describes in detail how the practices of AM are applied during the
implementation of a search page for the SWA Online case study.

■■ Chapter 21: Modeling During an XP Iteration: Totaling an Order. This chapter
explores how an XP team might model the totaling of an order for the SWA
Online case study.

176 Part Three

72244_CH16I 2/27/02 11:20 AM Page 176

Agile Modeling (AM) is a chaordic, practices-based software process whose scope is
to describe how to model and document in an effective and agile manner. In Chapter
1, “Introduction,” I stated that one of the goals of AM is to address the issue of how to
apply modeling techniques on software projects taking an agile approach such as
eXtreme Programming (XP) (Beck 2000). Because the scope of XP is much greater than
that of AM and XP covers the full development lifecycle, XP is a candidate “base
process” into which the techniques of AM may be tailored. Furthermore, although XP
clearly includes modeling as part of its process, it is not as explicit about how to do so
as many developers would prefer; hence an opportunity for AM. Luckily, XP, like
AM, is also an agile practices-based methodology, which makes the conceptual fit
between the two methods much easier than between AM and a prescriptive process
such as the Unified Process (Kruchten 2000; Ambler 2001b), the topic of Part Four of
this book.

People seem to have several common misconceptions regarding modeling on an XP
project. The three most common misconceptions are that you don’t model at all, that
you don’t document at all, or that, if you do model, your only options are the model-
ing artifacts of the UML. I’ll address these misconceptions in turn in this chapter, but
first, I want to explore why they occur so that you can recognize other misconceptions
when they arise. From what I can gather based on the conversations on the AM mail-
ing list, www.agilemodeling.com/feedback.htm, the source of these misconceptions is
often the result of one or more of the following:

In the time it would take you to code one design,
you can compare and contrast three designs using pictures.

—Kent Beck, in Extreme Programming Explained

177

C H A P T E R

16

Setting the Record Straight

72244_CH16I 2/27/02 11:20 AM Page 177

178 Chapter 16

Second-hand knowledge of XP. The Internet is a major source of information for
many developers, in particular newsgroups and emails from colleagues. As people
learn a new technique, they often join a newsgroup or mailing list, such as
extremeprogramming at Yahoo groups (groups.yahoo.com), and start monitoring
the group or list. Someone will post something, which may not be accurate, and
many people will accept it as official, particularly when they haven’t had an
opportunity yet to try it out for themselves. Don’t believe everything that you hear.

Questionable sources of information regarding XP. Determining the quality of
published material, be it electronic or printed form, is often hard. Sometimes
honest mistakes are made (that’s happened to me more than once), and
sometimes people publish misleading information on purpose. When you’re
just learning a new subject, you often cannot distinguish between high-quality
sources of information and questionable ones. If you base your understanding
on questionable sources, getting the wrong idea about XP is very easy. Visit the
Agile Modeling Resources page, www.agilemodeling.com/resources.htm, for an
up-to-date list of what I believe to be good sources of information regarding XP
and other agile software processes.

Difficulty seeing beyond their current environment. Many developers find
themselves in less-than-ideal environments. XP requires you to adopt practices
that are often foreign to your current environment; pair programming and test-
first development are new to most organizations, and sometimes these practices
simply aren’t feasible to adopt. If you cannot adopt the practice of pair
programming, then XP isn’t going to work for you. But instead of proclaiming
that XP doesn’t work in their environment, many people will instead proclaim
that XP doesn’t work at all. The reality is that XP does in fact work in the right
situations; your situation just may not be one of the right ones.

Too much focus on the word “extreme.” XP’s name is both one of its greatest
strengths and one of its greatest weaknesses. Because of the name, when some
people hear XP’s advice to travel light and to reduce the amount of
documentation that you create and maintain, they translate it to “create no
documentation at all.” That’s extreme, right? Or they’ll hear XP’s advice to use
simple modeling techniques, such as user stories and CRC cards, and somehow
translate that advice to “you don’t model at all.” That’s extreme, right? Sigh.

In this chapter, I will set the record straight regarding the three most common issues
that concern modeling and XP:

1. Modeling is a part of XP.

2. Documentation happens.

3. XP and the UML?

Modeling Is a Part of XP

User stories are a fundamental aspect of XP, as are Class Responsibility Collaborator (CRC)
cards. User stories provide a high-level overview of the requirements for a system; they are

72244_CH16I 2/27/02 11:20 AM Page 178

Setting the Record Straight 179

reminders to have a conversation with your project stakeholders regarding their require-
ments; they are used as a primary input into estimating and scheduling, and they drive the
identification of development tasks and acceptance test cases. CRC cards are used to
explore structure, perhaps for conceptual modeling to understand the problem domain or
for design to work through the structure of your software. User stories and CRC cards are
both models (see Appendix A, “Modeling Techniques”); therefore, modeling is clearly a
part of XP. XP developers will also create sketches, often on a whiteboard or a piece of
paper, whenever user stories and CRC cards aren’t the best option. In Extreme Programming
Explained (Beck 2000), the first book written about XP, Kent Beck includes hand-drawn
sketches of class diagrams and other free-form diagrams. The bottom line is that modeling
is a fundamental aspect of XP.

Documentation Happens

Documentation is also an important part of XP. Ron Jeffries (2001b) offers the follow-
ing advice:

“Outside your extreme programming project, you will probably need documen-
tation; by all means, write it. Inside your project, there is so much verbal commu-
nication that you may need very little else. Trust yourselves to know the difference.”

There are several interesting implications of that statement. First and foremost, the
XP community recognizes that documentation should be produced for people external
to your team, people that AM would term project stakeholders. Second, the statement
points out that verbal communication between team members reduces the need for
documentation within the team. A reduced need for documentation is the result of
project team members being co-located, making communication easier, and aspects of
XP, such as Pair Programming and Collective Ownership, that promote communication
between developers. Chapter 14, “Agile Documentation,” argued that documentation
is only one form of communication, one that is typically the least effective, that more
effective techniques, such as face-to-face communication can easily replace. Third, the
statement recognizes that sometimes you do, in fact, need internal documentation for
your team. This is consistent with the advice presented in Extreme Programming
Installed (Jeffries, Anderson, and Hendrickson 2001) where the authors point out that
information resulting from conversations with your project stakeholders regarding
user stories are captured as additional documentation attached to the card. I discuss
this in detail in Chapter 18, “Agile Modeling Throughout the XP Lifecycle.” Fourth,
the statement suggests that XP team members should know when documentation is
required and be allowed to act accordingly. Fifth, the statement implies that you should
trust the team and give them control over their own destiny. Trust can be difficult in
many organizations. If the team is untrustworthy, then you have a serious problem that
needs to be dealt with, regardless of whether they are following XP. Or if they are
trustworthy, but your organizational culture doesn’t allow you to act based on that
trust, then once again you have a serious problem to deal with. You may believe that
there isn’t enough documentation when you are an outsider to an XP team and when
you haven’t been actively involved in the conversations and interactions that have

72244_CH16I 2/27/02 11:20 AM Page 179

180 Chapter 16

replaced the need for documentation. When this is the case, instead of forcing the team
to write documentation, invest the time to determine if they need the documentation
that you believe is missing—suggest the documentation to the team, and if there is an
actual need for it, then they’ll create it. As Ron Jeffries likes to say, “It’s called Extreme
Programming not stupid programming” (Jeffries 2001e). Finally, the most important
implication for XP teams is that if you need documentation, then write it.

The need for documentation on an XP project is reduced by several of its practices.
First, because of test-first development and a focus on acceptance testing, there is
always a working test suite that shows that your system works and fulfills the require-
ments implemented to that point. For the developers, these tests act as significant doc-
umentation because they show how the code actually works. When you think about it,
tests make a lot of sense. When you are learning something new, do you prefer to read
a bunch of documentation or do you look for source code samples? Many developers
prefer to start at source code samples, and the test suite provides these samples. Sec-
ond, XP’s focus on simplicity and the practice of refactoring result in very clean and
clear code. If the code is already easy to understand, why invest a lot of time writing
documentation to help you to understand it? This applies to both internal and external
documentation—why add comments to code that is already clear and unambiguous?
If the code isn’t clear, then refactor it to improve its quality, or, as a last resort, write
documentation. Even though some development environments make it easy to
include documentation in your code, Java’s Javadoc utility is such an example; you
only want to invest in documentation when it makes sense to do so and not just
because it is easy.

What confuses many people regarding XP and documentation is that XP doesn’t
specify potential documents to create during development. This is unlike the Unified
Process (Kruchten 2000; Ambler 2001b), which suggests a slew of potential project arti-
facts. Instead, the suggestion is to work together with your project stakeholders in an
environment of rapid feedback and trust them to determine the things that they need,
not just documents but any type of project enhancements (Jeffries 2001b). Once again,
you need to have the courage to trust the people involved with the project. In Chapter
14, I discuss a collection of documents that you may choose to create, and I provide
advice for when to consider creating the documents.

One of the greatest misunderstandings people have about XP regards the concept
of traveling light—many people believe that it means you don’t create any documen-
tation, but nothing could be further from the truth. Traveling light actually means
that you create just enough models and documentation; too little or too much puts
you at risk. As I suggest in Chapter 14, a good rule of thumb to ensure that you’re
traveling light is that you shouldn’t create a model or document until you actually
need it—creating either too early puts you at risk of wasting your time working on
something you don’t actually need yet.

Documentation on an XP project is a business decision, not a technical one. This is
consistent with AM’s philosophy regarding documentation, discussed in Chapter 14.
Jeffries (2001b) says it best:

“If there is a need for a document, the customer should request the document in
the same way that she would request a feature: with a story card. The team will

72244_CH16I 2/27/02 11:20 AM Page 180

Setting the Record Straight 181

*I actually discuss how to adopt XP practices, as well as AM principles and practices for that
matter, within an EJB project in the book Mastering EJB 2/e (Roman, Ambler, and Jewell 2002).

estimate the cost of the document, and the customer may schedule it in any itera-
tion she wishes.”

XP and the UML?

Because XP has reached buzzword status within the IT community, whatever that
means, many people are now asking two typical questions: “Can you use buzzword1
with buzzword2?” and if yes then, “How do you use buzzword1 and buzzword2?”
together. Hence, we’re starting to see people asking about using XP with web services,
CORBA, EJB,* .NET, Linux, open source software (OSS), and of course the UML. I want
to explore the relationship between XP and UML, so let’s ask the two typical questions:

1. Can you use UML with XP? Yes. You can apply the artifacts of the UML—
activity diagrams, class diagrams, collaboration diagrams, component
diagrams, deployment diagrams, sequence diagrams, statechart diagrams, and
use case diagrams—when you are taking an XP approach to development.

2. How do you use UML with XP? Minimally, you should apply AM’s practice of
Apply the Right Artifact(s) and use UML artifacts on your XP project only where
appropriate. Ideally, you should apply all of the principles and practices of AM
when doing so.

Wait a minute. One of AM’s principles is Multiple Models, which tells you that you
need to have modeling skills pertaining to a wide variety of artifacts within your intel-
lectual toolkit. Yes, the artifacts of the UML are a good start but unfortunately not
enough: As I argue in Chapter 15, “The UML and Beyond,” the UML is not sufficient
for the real-world needs of business application developers, although luckily, as
Appendix A, “Modeling Techniques,” shows, we have far more than the artifacts of
the UML at our disposal. Seems to me that we have a problem here. If the UML is not
sufficient for the development of business applications, and if you are trying to
develop such an application following the XP methodology, then perhaps “How do
you use UML with XP?” is the wrong question to be asking. One of the problems with
the buzzword approach to software development is that when you limit your vocabu-
lary to buzzwords, you correspondingly limit your solution space to whatever can be
described by those buzzwords. Therefore, I believe that two more questions need to be
added to the buzzword approach: “Is using buzzword1 with buzzword2 the right
question to be asking?” and, if not, “What is the right question?” When you ask these
questions about XP and UML, you quickly realize that the right question to be asking
is more along the lines of “How do you model effectively on an XP project?” This is a
question addressed by AM, and in particular this chapter.

72244_CH16I 2/27/02 11:20 AM Page 181

182 Chapter 16

Not All UML Artifacts Are Appropriate
User stories (Beck 2000) are an important part of XP—user stories form the
foundation of the requirements for your system; they are a primary input into
your project planning efforts (referred to as The Release Game); they are the
primary artifact used to define what your team will be working on in a given
construction iteration; and they are used to drive the development of your
acceptance test cases. The UML does not include user stories but instead
describes an artifact called a Use Case Diagram that depicts the
interrelationships between actors that interact with the system and use cases
that describe usage-based requirements for your system. As I show in Appendix
A, use cases and user stories are alternatives to each other. Although clearly
different artifacts, they are both used to describe usage-based requirements. So
when you are using one, you very likely won’t be using another. The implication
is that because user stories are an integral part of XP you clearly will not want
to apply use cases on your project, hence you will not need to create UML use
case diagrams. Once again, remember to follow the AM practice Apply the
Right Artifact(s).

Another interesting buzzword combination to consider is how do you use the
Model Driven Architecture (MDA) (Object Management Group 2001b) approach with
XP? The MDA is part of the Object Management Group’s (OMG) vision to support
interoperability with specifications, defining the relationships among OMG standards
(such as the UML and CORBA) and how they can be used together in a coordinated
manner. The MDA defines an approach to system specification that distinguishes
between platform independent models (PIMs) that specify the system in a manner that
abstracts away technical details and models that are in turn realized by platform spe-
cific models (PSMs) that take into account technical considerations. The MDA also dis-
tinguishes between formal models and informal models. Formal models are based on
a language, such as the UML, that has a well-defined syntax and semantics and possi-
bly a defined way to show the validity of its constructs, such as rules of analysis, infer-
ence, or proof. Informal models, as you would expect, do not have a sufficient
definition behind them. The MDA requires the use of formal models and not informal
ones because of its focus on specifying the interoperability between systems. Basically,
the MDA defines a set of guidelines for structuring system specifications expressed as
formal models.

Now to my question: “Can XP and the MDA be used together?” Following the strict
definition of the MDA, the answer would have to be no. Models such as Class Respon-
sibility Collaborator (CRC) cards (Cunningham and Beck 1989; Wilkinson 1995) and
user stories (Beck 2000) are an integral part of the XP development process and
because they are not formally defined, that academically disallows the use of MDA
and XP. Practically, however, the answer may in fact be yes. The MDA is being used by
CASE tool companies as a conceptual framework from which they are borrowing ideas.
Frankly the idea of having platform independent and platform specific models has
been around for decades, and conceivably it will be common to see MDA-compliant
tools just as we see UML-compliant tools today. Just like UML-compliancy is in the eye

TI P

72244_CH16I 2/27/02 11:20 AM Page 182

Setting the Record Straight 183

of the beholder, every CASE tool has its idiosyncratic implementation of the UML. We
will also see the same thing with the MDA. Because an XP team is free to adopt any
tool that it wishes, granted that it should be a tool that improves the productivity of
the people using it, an XP team could in fact work with an MDA-compliant tool if the
situation warrants it. Of course, that MDA-compliant tool would need to automate
user stories and CRC cards in such a way as to not lose the benefits that these artifacts
currently provide, many of which are derived from the fact that these artifacts are cre-
ated using simple tools such as index cards. This leads me to suspect that in practice
the answer will likely still prove to be no.

And the Verdict Is?

Modeling and documentation are important aspects of XP, just like they are important
aspects of any other software development methodology. However, XP explicitly
advises you to minimize the effort that you invest in these activities to be just enough.
Luckily, the focus of AM is to make you as effective as possible when you are modeling
and documenting. In the next chapter, I explore the fit between the two methodologies.

72244_CH16I 2/27/02 11:20 AM Page 183

In Chapter 1, “Introduction,” I stated that Agile Modeling (AM) should be tailored
into an existing full lifecycle methodology in order to improve its approach to mod-
eling. Because modeling is clearly a part of eXtreme Programming (XP) (Beck 2000),
see Chapter 16, the potential exists for AM to add value to an XP project. Assuming,
of course, that it is possible to tailor AM into XP and that you can do so without
detracting from what currently exists within XP. In particular, XP’s practices of refac-
toring and test-first development clearly do a very good job of filling in for two criti-
cal goals—promoting clean design and thinking through your design before writing
code—that are typically associated with traditional modeling processes. In my expe-
rience, both refactoring and test-first development are complementary to AM and
arguably enablers of several AM practices. In this chapter, I explore the following
issues:

■■ The potential fit between AM and XP

■■ Refactoring and AM

■■ Test-First Development and AM

■■ Which AM practices should you adopt?

Routine is not organization, any more than paralysis is order.

—Sir Arthur Helps

184

C H A P T E R

17
Agile Modeling and eXtreme
Programming

72244_CH17I 2/27/02 11:17 AM Page 184

Agile Modeling and eXtreme Programming 185

The Potential Fit between AM and XP

A critical issue that must be addressed is how well AM fits in with XP. Table 17.1 lists
the practices of AM and either maps them to existing principles or practices of XP or
discusses the potential fit of the AM practice when it is not explicitly a part of XP.
Because XP was used as a foundation for AM, see Chapter 1, many AM practices map
straight to XP. However, because AM’s focus is on modeling, several practices are
clearly new, hence the potential for AM to bring value to an XP project.

The fact that AM’s practices are complementary to XP isn’t sufficient; there should also
be a philosophical alignment between the two methodologies as well. I believe that there
is. First, AM has adopted the four values of XP—Courage, Simplicity, Communication, and
Feedback—and added a fifth one, Humility, one that is clearly compatible with XP. Second,
the principles of AM are closely aligned with those of XP. Nine of eighteen are adopted
directly from XP, and the remaining ones—Software Is Your Primary Goal, Enabling the Next
Effort is Your Secondary Goal, Model with a Purpose, Multiple Models, Content is More Impor-
tant Than Representation, Everyone Can Learn From Everyone Else, Know Your Models, Know
Your Tools, and Maximize Stakeholder Investment—are clearly compatible with XP’s
philosophies. The three modeling-specific principles may cause a hard-core XP devel-
oper to pause for a moment, but on reflection should not prove arguable. Model with a
Purpose advises that you shouldn’t work on a model without good cause, Multiple Models
says that you have a wide range of techniques available that you may choose to apply
(including but not limited to CRC cards, user stories, and the diagrams of the UML), and
Know Your Models suggests that you need to know what you’re doing to be effective.

Refactoring and AM

Refactoring (Fowler 1999) is a technique to restructure code in a disciplined way, a
technique that is a fundamental practice of XP. The basic idea is that you make small
changes to your code, called refactorings, to support new requirements and to keep
your design as simple as possible. An important aspect of refactoring is that each
change that you make to your code leaves it semantically the same as before you made
the change. For example: if you change the name of an operation, then all the source
code that invokes the operation will still invoke it by using the same name. The advan-
tage of refactoring is that it enables programmers to safely and easily evolve their code
to fulfill new requirements or to improve its quality.

Is refactoring compatible with AM? Yes. Refactoring is a coding technique, and
because AM does not address programming-related issues there is no technical overlap
between the two. What about a conceptual overlap? AM addresses design modeling and
refactoring addresses design improvement of source code. This begs the question, “What
do you do when you have an existing design model and you refactor your code?”
Although it’s an interesting question, the real issue is that you have two artifacts, a design
model and source code, that describe the design of your system. The source code has
changed; now you need to decide whether or not you wish to update the model. The way
that you originally arrived at the model is irrelevant to this issue; you could have arrived

72244_CH17I 2/27/02 11:17 AM Page 185

186 Chapter 17

Table 17.1 Applicability of AM Practices on an XP Project

AM PRACTICE FIT WITH XP

Active Stakeholder This practice is simply a new take on XP’s On-Site
Participation Customer practice. AM uses the term project stakeholder

in place of customer and focuses on the concept of their
active participation, hence Active Stakeholder Participation
and not On-Site Stakeholder.

Apply Modeling This is the AM version of XP’s Coding Standards practice.
Standards

Apply Patterns Gently This practice reflects the YAGNI principle to the effective
application of patterns within your system, in conformance
to XP’s practice of Simple Design.

Apply the Right This practice is not explicitly described by XP principles
Artifact(s) and practices, although it is aligned with the XP

philosophies of “if you need it do it” and using the
most appropriate tool or technique for the job at hand.

Collective Ownership AM has adopted XP’s Collective Ownership practice.

Consider Testability This is a reflection of XP’s Testing practice with respect to
modeling—when you are modeling something, perhaps
with CRC cards or sketches, you should keep in the back
of your mind what test cases you’ll need to support the
ideas captured in your models. See Chapter 10 for a
detailed discussion of AM and testing.

Create Several Models This is a modeling-specific practice. XP developers can
in Parallel clearly work on several models—such as CRC cards,

acceptance test cases, and sketches—if they choose to
do so.

Create Simple Content This is complementary to XP’s Simple Design practice that
advises you to keep your models as simple as possible.

Depict Models Simply This is complementary to XP’s Simple Design practice that
suggests that your models do not need to be fancy to be
effective, perfect examples of which are CRC cards and
user stories.

Discard Temporary This practice reflects XP’s Travel Light principle, which AM
Models has adopted, explicitly advising you to dispose of models

that you no longer need.

Display Models This practice reflects XP’s (and AM’s) value of
Publicly Communication, its principle of Open and Honest

Communication (adopted by AM), and reflects its
practice of Collective Ownership.

72244_CH17I 2/27/02 11:17 AM Page 186

Agile Modeling and eXtreme Programming 187

Table 17.1 continued

AM PRACTICE FIT WITH XP

Formalize Contract This practice is not currently reflected within XP, though
Models perhaps it can be found in its “if you need to then do it”

philosophy. This practice was included in AM to provide
guidance for how to deal with the very common situation
of integrating with other systems.

Iterate to Another This practice explicitly states, in a general form, the
Artifact practice of XP developers to iterate between working on

various artifacts such as source code, CRC cards, and tests.

Model in Small This practice supports XP’s iterative and increment
Increments approach to development. Both XP and AM prefer an

emergent approach to development and not a big design
up front (BDUF) approach.

Model to This practice is modeling-specific, describing one reason
Communicate why you would want to model, a practice that reflects XP’s

and AM’s principle of Open and Honest Communication.

Model to Understand This practice is modeling-specific, describing the primary
reason why you would want to model. This practice is
consistent with XP’s existing use of CRC cards to explore
design issues and is effectively a generalization of the
concept.

Model With Others This is the AM version of XP’s Pair Programming practice.

Prove It With Code This is the AM version of XP’s Concrete Experiments
principle. In fact, it was originally called Concrete
Experiments, although it was renamed when it evolved
into a practice.

Reuse Existing This concept is not explicitly included in XP, although it
Resources clearly isn’t excluded either. XP developers are practical; if

there is something available that can be appropriately
reused, then they will likely choose to do so.

Update Only When This practice reflects AM and XP’s Travel Light principle,
It Hurts advising that you should update an artifact only when you

desperately need to.

Use the Simplest Tools This practice reflects AM and XP’s Assume Simplicity
principle and is consistent with XP’s preference for
low-tech tools such as index cards for modeling.

there because you took an AM approach to develop it, you could have taken a BDUF
approach, or you could have adopted an existing model and are coding to it (for example:
several organizations have developed persistence frameworks based on the design that I
present at www.ambysoft.com/persistenceLayer.html). The issue is irrelevant to the type

72244_CH17I 2/27/02 11:17 AM Page 187

188 Chapter 17

of design model, be it a UML class diagram, CRC cards, a physical data model, or a pro-
cedural structure chart. The good news is that AM provides advice for how to deal with
such a situation. In particular, the practice Discard Temporary Models suggests that you
should consider whether you really need the design model; if not, get rid of it. The prac-
tice Update Only When It Hurts suggests that having artifacts, such as the design model
and the code, out of sync is often unreasonable.

How do you apply AM and refactoring together? Apply AM practices as appropri-
ate when you are modeling, use those models as input into your programming efforts,
and refactor your code as you normally would have. If you discover that you need to
attempt a major refactoring, get the team together to discuss it, modeling whenever
appropriate, then approach the major refactoring as you would have in the past: as a
collection of small refactorings.

Modeling tools that reverse-engineer your code can prove valuable when you are
refactoring code, particularly when you are unfamiliar with that code. Many develop-
ers think visually; they grasp information communicated by pictures more readily
than they do information communicated textually. So CASE tools that quickly import
a bit of code and create diagrams from them can be very useful. It’s quite common for
CASE tools to import object-oriented source code, perhaps written in Java or C++, and
generate UML class diagrams that show the static structure of the code and UML
sequence diagrams that depict its dynamic nature. These diagrams can be used to
quickly understand the existing code, which is the first step in refactoring it.

Test-First Development and AM

Test-first development is a development practice in which you work in very short
cycles: you consider a test, write the test and business code for it, get it to work, then
continue. These tests are collected into a development integration testing suite that
must be successfully run whenever code is submitted to your shared repository. This
practice is integral to XP.

Is test-first development compatible with AM? Yes. Like refactoring, test-first devel-
opment is more of a coding practice, so there is little opportunity for technical overlap.
However, there is room for conceptual overlap because test-first development clearly
delves into the realm of detailed design since it provides developers with an opportu-
nity to think through their code before they write it (as well as important feedback
regarding their code). If you’ve chosen to do a little modeling before writing your
code, perhaps to think through an issue larger than a single test case, then that’s okay.
In fact, it may even make your test-first development efforts easier, particularly if you
have adopted AM’s Consider Testability practice.

Following a test-first approach agile developers quickly discover whether their ideas
actually work or not—the tests will either validate their models or not—providing rapid
feedback regarding the ideas captured within the models.

How do you apply AM within a test-first development environment? As with refac-
toring, simply apply AM practices as appropriate when you are modeling, use those
models as input into your programming efforts, and iterate between modeling, test-
ing, and programming as needed.

72244_CH17I 2/27/02 11:17 AM Page 188

Agile Modeling and eXtreme Programming 189

Which AM Practices Should You Adopt?

Only adopt the practices that add value to what your team is trying to accomplish. Ide-
ally that will be at least the core practices of AM, therefore it would be fair to claim that
you are in fact “doing AM,” as I indicate in Chapter 5, and perhaps you can even adopt
the supplementary practices, as well. You should note that your goal isn’t simply to be
able to say that you’re agile modeling, your goal is also to improve your productivity
as software developers.

The possibility clearly exists to use AM and XP together. You have seen that there is
a conceptual fit between AM and XP and that XP’s practices of refactoring and test-
first design complement AM. What remains to be seen is how the practices of AM can
be used to enhance XP projects. This is the primary issue addressed by the next four
chapters.

72244_CH17I 2/27/02 11:17 AM Page 189

To explain how the practices of Agile Modeling are applied on an eXtreme
Programming (XP) (Beck 2000) project, I will work through a portion of the SWA
Online case study (see Chapter 1, “Introduction”) and show how modeling is used
throughout the XP lifecycle. XP has a project lifecycle? Yes. Figure 18.1 depicts a high-
level view of the XP project lifecycle modified from (Wells 2001) to indicate a mapping
of Beck’s project phases (the Death phase, not shown, would follow maintenance).

First and foremost, don’t get hung up on the term “phase.” Although the term
phase may bring connotations of waterfall development, the fact is that phases can
occur iteratively, something that is apparent in Figure 18.1 by the fact that it is possible
to move back and forth between the Planning, Iterate to Release, and Productionizing
phases. Phases aren’t necessarily long—the Planning phase may only take several
hours, for example. Furthermore, XP teams typically don’t think of themselves as
working in phases, they just think of themselves as working. Also, it’s quite common
to be working in multiple phases at once; in fact, the Productionizing phase is often
subsumed into the Iterate to Release phase. In short, the concept of phases within XP is
weak at best and for the most part isn’t given much thought by XPers. The important
thing about the concept of phases is that it communicates the idea that the “flavor” of
your effort changes throughout an XP project. Furthermore, phases do provide a
handy way to organize the rest of this chapter, so let’s address the development effort
one phase at a time.

Though this be madness, yet there is method in it.

—William Shakespeare

190

C H A P T E R

18
Agile Modeling Throughout
the XP Lifecycle

72244_CH18I 2/27/02 11:16 AM Page 190

Agile Modeling Throughout the XP Lifecycle 191

Figure 18.1 The XP project lifecycle.

Exploration Phase

The first phase that an XP project experiences is the Exploration phase (Beck 2000),
which includes the development of the architectural spike and the development of the
initial user stories. From a requirements point of view, Beck suggests that you require
enough material in the user stories to make a first good release and so that the devel-
opers are sufficiently confident that they can’t estimate any better without actually
implementing the system. Every project has a scope, something that is typically based
on a collection of initial requirements for your system. Although the XP lifecycle pre-
sented in Figure 18.1 does not explicitly include a specific scope definition task, it
implies one with user stories being an input into release planning. User stories are a
primary driver of the XP methodology—they provide high-level requirements for
your system and are the critical input into your planning process. The implication is
that you need a collection of user stories, anywhere from a handful to several dozen, to
get your XP project started.

However, there’s a potential problem. When a project begins, a software approach may
not have been chosen for it. This decision is often made once the scope of the effort is
understood and people have been identified to work on the project because, as Cockburn
(2002) suggests, you want to choose the process that best aligns with the nature of your
project, team, and organizational culture. The implication is that if the decision hasn’t yet
been made to take an XP approach then the people performing the IRUF effort may
choose to create something other than user stories—shall statements, features, and use
cases are common options. If this is your situation, you will need to convert these artifacts
into user stories, working with your customers as needed (to remain consistent with the
terminology commonly in use by XP teams, I will use XP’s term customer, instead of
AM’s term project stakeholder). Luckily, shall statements and features are very similar to
user stories so that should be straightforward for you if this is your situation. And
because use cases typically have greater scope than user stories, the easiest approach is to

72244_CH18I 2/27/02 11:16 AM Page 191

192 Chapter 18

Figure 18.2 Example task cards pertaining to searching for items.

Submit Search to DB

• Parse the criteria customer defined from

the search page.

• Convert wild cards (*, _) to SQL

equivalents.

• Build SQL SELECT statement based on

search criteria, ordering by the item

number.

• Invoke statement in DB.

Build Search Result Page

• If a database or network error is

detected, build a standard error page

indicating the problem. Otherwise:

• At the top of the page indicate the

number of items in the result set.

• If no items resulted from the search,

display the text message “No items

found based on your criteria.” Otherwise:

• List the resulting databases rows on the

page, listing the item number, item

name, unit price, and a link that leads to

detailed information for the specific item.

simply declare them to be user stories and then go about splitting them as you normally
would to reduce them to a manageable size. Chapter 19, “Modeling During the XP
Exploration Phase,” describes an example of modeling during the XP Exploration phase.

Planning Phase

Following the Exploration phase is the Planning phase (Beck 2000), the purpose of
which is for you and your customers to agree on a date by which the smallest, most
valuable set of user stories will be implemented. When you are release planning, you
will brainstorm the tasks for a given user story (Wake 2002), writing a task card for
each task, providing you with enough insight about the user story to accurately esti-
mate the effort required to implement it. A task card, see Figure 18.2 for examples,
typically lists a text description of what you need to do to accomplish the task.
Sometimes a task card may be described using a model instead of text. For example,
Newkirk and Martin (2001) provide an example of a task that was described as a
sketch of an HTML page similar to the one presented in Figure 18.3 (their Figure 6.2).
The team may have simply sketched this figure on a whiteboard or used a combina-
tion of sticky notes and flip chart paper to create an essential user interface prototype
at first. Once they were happy with what they had, they quickly transcribed it onto an
index card. Both a whiteboard and sticky notes are far more flexible than pen and
paper, so they are a better option for you when initially thinking through the design
of a user interface component such as this one. You want to transcribe your sketch
onto a card to have a record of your design to base your coding efforts on during the
next iteration (see the following table), and cards are the preferred medium of choice
to do so—distributed teams might choose to record tasks electronically, perhaps in a

72244_CH18I 2/27/02 11:16 AM Page 192

Agile Modeling Throughout the XP Lifecycle 193

Figure 18.3 A hand-drawn sketch representing what needs to be built for the item
search page.

Figure 18.4 A sketch representing the logic of a task.

Wiki (Leuf and Cunningham 2001) or other collaborative environment. In this case, a
sketch of the screen is a more effective description of the task than free-form text.

Modeling is clearly a potential activity during this phase. For example: Figure 18.4
depicts a sketch representing the logic of a task—the team chose to create this sketch

72244_CH18I 2/27/02 11:16 AM Page 193

194 Chapter 18

Figure 18.5 The lifecycle of an XP iteration.

instead of writing text for it because they were more comfortable with a quick dia-
gram. This is perfectly fine. The AM principle Model with a Purpose advises that you
should know your audience and create models that reflect their needs (in this case,
your team itself is the audience of the task cards), and the AM practice Apply The Right
Artifact(s) advises you to create the best type of model suited for the task at hand.

XP Teams Keep Their Models in a Box
XP teams prefer simple tools, and one of their favorites is index cards. They use
index cards for user stories, for tasks (see Figures 18.2, 18.3, and 18.4 for
examples), and for Class-Responsibility Collaborator (CRC) models. What’s the
best way to store a collection of index cards? In an index-card box.

Iterations to Release Phase

The Iterations to Release Phase (Beck 2000) encompasses the primary effort of an XP
project, more typically referred to as construction iterations or simply iterations, as this
is where your major development efforts, including modeling, programming, testing,
and integration, occur. Figure 18.5 (Wells 2000) depicts the lifecycle for an iteration.
Iteration planning is the same type of effort as release planning, described in the pre-
ceding section, the only difference being that the focus is on the user stories assigned
to the current iteration. When you are working on iteration N you will find that new
user stories, ones that have not been estimated, have been added in; therefore, you
need to go through the effort of identifying tasks so you may accurately estimate each
user story. After estimating the new stories, and perhaps revisiting the other stories
just to be on the safe side, you may find that you have too many or too few stories for
the iteration and will need to move stories to/from other iterations.

From the point of view of modeling, the interesting aspect of an iteration is shown
in the development aspect of Figure 18.5. Figure 18.6 shows a detailed lifecycle (Wells
2000). A lot of the modeling that occurs during development happens in stand-up
meetings where the team gathers to discuss what they are currently working on, often
asking for advice regarding how to approach a specific issue. When this happens, dis-
cussing the issue around a whiteboard, drawing sketches as needed to enhance the
communication effort, is quite common. Stand up meetings are called exactly that

TI P

72244_CH18I 2/27/02 11:16 AM Page 194

Agile Modeling Throughout the XP Lifecycle 195

Figure 18.6 The lifecycle of XP development.

because everyone stands up when attending them, which tends to make them brief
(Beck and Fowler 2001). Figure 18.6 hints at the idea that after the stand-up meeting
the team breaks up into pairs to work on their parts of the system.

An alternative view is presented in Figure 18.7, which depicts a typical XP devel-
oper’s day (Wake 2002). It explicitly shows that people pair up after the stand-up
meeting, often starting with a quick design session as required to formulate an initial
design strategy for what they are working on. A fundamental aspect of XP is that peo-
ple work together in pairs, following a practice called Pair Programming, which
would have been more appropriately called Pair Development, which is defined as a

Figure 18.7 A typical XP developer’s day.

72244_CH18I 2/27/02 11:16 AM Page 195

196 Chapter 18

dialog between two people trying to simultaneously program (and analyze and design
and test) and understand how to program better (Beck 2000). XP developers will hold
a quick design session, what AM calls an ad hoc or impromptu modeling session (see
Chapter 13, “Agile Modeling Sessions”), whenever they are not sure how to proceed
with programming (Jeffries, Anderson, and Hendrickson 2001). The basic idea is that
you get a few people together to work through the issue, in other words follow AM’s
Model to Understand practice, to spend a few minutes discussing ideas and modeling as
necessary. You will naturally want to follow the practice Apply The Right Artifact(s) and
work on the type of models that are appropriate for the issue you are discussing. For
example: CRC cards are a good option if you are exploring the structure of your code,
and an essential user interface prototype may be just the thing if you are exploring the
design of your user interface. You’ll sometimes find that a design issue will require
several models, perhaps you need to create both a CRC model and an essential UI pro-
totype to fully explore the problem, and you will therefore want to follow the practices
Create Several Models in Parallel and Iterate to Another Artifact. These modeling sessions
are typically very short, hence the name quick design session, lasting anywhere from
ten to thirty minutes. To gain feedback regarding your design, you want to quickly get
back to coding, following the practice Prove It with Code, to determine if your approach
works or not. If it works, then that’s great; if it doesn’t, then go back to the whiteboard
for another quick design session.

Chapter 20, “Modeling During an XP Iteration: Searching for Items,” works through
an example of modeling during an iteration by examining how to approach the imple-
mentation of searching for an item as part of implementing the system for the SWA
Online case study. Chapter 21, “Modeling During an XP Iteration: Totaling an Order,”
works through a different example—how to model the taxation, discounting, and
totaling of an online order—in a similar manner.

Productionizing

XP’s Productionizing phase (Beck 2000) focuses on certifying that the software is ready
to go into production, perhaps by what I call “testing in the large” techniques (Ambler
1999; Ambler and Constantine 2002), such as system testing, load testing, and installa-
tion testing to name a few. During this phase, you will slow down the rate at which
you evolve the software; evolution doesn’t stop, but the risk of whether something
should go into the next release becomes important. Note that on many projects this
phase is little different than a typical construction iteration. The major difference is
that you release your system into your production environment instead of into your
development sandbox.

How does AM apply in this phase? In two ways. First, you may find that you need to
model as part of your rework efforts resulting from newly discovered defects. Second, this
point in your project is a good time to consider cleaning up your documentation. Although
the XP philosophy is to write clear, understandable code and to include effective com-
ments in the code as necessary, the reality is that you still need supporting documentation.
Remember that you have a wide range of project stakeholders, including users, senior
management, operations staff, and support staff. These people do not have access to the

72244_CH18I 2/27/02 11:16 AM Page 196

Agile Modeling Throughout the XP Lifecycle 197

code, nor would many of them understand it even if they did, so they will require other
forms of documentation (see Chapter 14, “Agile Documentation,” for a discussion of agile
documentation). This documentation should be at the request of project stakeholders. As
the AM principle Maximize Stakeholder Investment points out, their resources are being
invested in the documentation; therefore, they have the final word on what should be
done. I prefer to write documentation such as this late in the project lifecycle because what
you are writing about, the system, has become relatively stable for the current release;
therefore the documentation you write will be stable too. You may also need to produce
the following:

System documentation. For developers, including maintenance professionals, this
is the most important type of documentation. The purpose of this document is
to provide an overview of the system and to help people understand the system.
Common information in this document includes overviews of the technical
architecture and the business architecture, the high-level requirements for the
system, a summary of critical design decisions, architecture-level diagrams, and
important design models (if any).

Operations documentation. This documentation typically includes an indication
of the dependencies that your system is involved with; the nature of its
interaction with other systems, databases, and files; references to backup
procedures; a list of contact points for your system and how to reach them; a
summary of the availability/reliability requirements for your system; an
indication of the expected load profile of your system; and troubleshooting
guidelines.

Support documentation. This documentation includes training materials specific
to support staff; all user documentation to use as a reference when solving
problems; a trouble-shooting guide; escalation procedures for handling difficult
problems; and a list of contact points within the maintenance team.

User documentation. Your users may require a reference manual, a usage guide, a
support guide, and even training materials. You need to distinguish between
these different types of documents because the way that each one is used varies:
one document is for quick lookups, another is for discovering how to work with
the system, another is for how to obtain additional help, and the other
document is for training.

Maintenance

The XP Maintenance phase (Beck 2000) is actually the normal state of XP projects
because you keep evolving them over time. This phase encompasses the Planning,
Iterations to Release, and Productionizing phases for releases 2 through N of your sys-
tem. By implication, this phase also includes production-oriented activities, such as
the operation and support of your system. Systems built taking an XP approach are
put into production just like systems built using any other approach, even though pro-
duction issues are outside of the scope of both AM and XP. However, it is important to

72244_CH18I 2/27/02 11:16 AM Page 197

198 Chapter 18

recognize that your team needs to take production-related issues into account, which
is why AM explicitly includes operations and support staff as potential project stake-
holders. Remember, there is little value in building a system if you can’t deploy it and
then keep it in production.

How Do You Make This Work?

How should you approach modeling during development on an XP project? Beck
(2000) suggests that you should apply the XP practice of Small Initial Investment and
draw a few pictures at a time. He states that the XP strategy is that anyone can design
with pictures all they want, but as soon as a question is raised that can be answered
with code then the designers must turn to code for the answer. In other words, you
should then seek Rapid Feedback to discover whether your pictures are on target by fol-
lowing the AM practice Prove It with Code.

When should you consider modeling during development on an XP project?
Whenever creating a model is more effective than writing code. In other words, follow
the AM principle Maximize Stakeholder Investment and the AM practice Apply The Right
Artifact(s).

How should you model? Follow AM’s practice Use the Simplest Tools and prefer
tools such as index cards, whiteboards, and sticky notes instead of more complicated
CASE tools. Simple tools tend to promote interaction and communication, two factors
that are critical to your success. Although XP favors the use of index cards to record
user stories, CRC models, and story tasks, there is nothing wrong with using a CASE
tool as long as its use provides positive value to your effort. Chapter 10, “Using the
Simplest Tools Possible?” explores modeling tool usage in greater detail.

How should you document? XP teams prefer to write clean, easy-to-understand
source code—their philosophy is that only the source code is in sync with the source
code. However, remember that AM’s principle Model with a Purpose states that you
should understand the needs of a model/document’s audience. If the audience for
documentation is your system’s users or your senior management, then clean source
code isn’t going to do it. Instead, you will need to develop external documentation for
this audience. Your stakeholders should request this documentation; understand the
costs involved, one of which is the fact that any time you spend writing documenta-
tion isn’t spent writing software; and be willing to accept those costs.

XP developers need to recognize that you can model on an XP project and that mod-
eling is in fact a part of XP already with its existing application of user stories and CRC
cards. More importantly, XP developers must abandon any preconceived notions that
they may have about modeling—that big modeling up front (BMUF) is the only
approach to modeling, that models are permanent documents that must always be
updated, that you need to use complex CASE tools to model, and that the UML defines
the only models available to you—and approach modeling from a new perspective.
One such perspective was presented in this chapter: that you can tailor Agile
Modeling into a software process based on eXtreme Programming and remain effec-
tive as software developers. The next three chapters present examples of doing exactly
this.

72244_CH18I 2/27/02 11:16 AM Page 198

The first phase that an XP project experiences is the Exploration phase (Beck 2000),
which encompasses the development of the initial user stories and the development of
the architectural spike. Every project needs to start somewhere, even XP projects. This
chapter explores how to apply Agile Modeling’s practices throughout this phase of an
XP project and discusses the following topics:

■■ Initial requirements up front (IRUF)

■■ Metaphors, architectures, and spikes

■■ Setting the foundation for your project

Initial Requirements Up Front (IRUF)

From a requirements point of view, Beck suggests that you require enough material in
the user stories to make a first good release and to make the developers confident that
they can’t estimate any better without actually implementing the system. Every proj-
ect has a scope, something that is typically based on a collection of initial require-
ments for your system. Although the XP lifecycle presented in Chapter 18, “Agile
Modeling Throughout the XP Lifecycle,” does not explicitly include a specific scope
definition task, it implies one with user stories being an input into release planning.
User stories are a primary driver of the XP methodology—they provide (very) high-level

The difficult we do at once; the impossible takes a bit longer.

—American Seabees

199

C H A P T E R

19
Modeling During the XP

Exploration Phase

72244_CH19I 2/27/02 11:14 AM Page 199

200 Chapter 19

Figure 19.1 A high-level use-case diagram for SWA Online.

requirements for your system and are the critical input into your planning process.
Therefore, you need a collection of user stories, anywhere from a handful to several
dozen, to get your XP project started.

However, there’s a potential problem. When a project begins, a software approach
may not have been chosen for it. This decision is often made once the scope of the
effort is understood and people have been identified to work on the project because as
Cockburn (2002) suggests, you want to choose the process that best aligns with the
nature of your project, team, and organizational culture. If the decision hasn’t yet been
made to take an XP approach, then the people performing the IRUF effort may choose
to create something other than user stories—shall statements, features, and use-cases
are common options. If this is your situation, you will need to convert these artifacts
into user stories, working with your customers as needed. (To remain consistent with
the terminology commonly in use by XP teams, I will use XP’s term customer, instead
of Agile Modeling (AM)’s term project stakeholder.) Luckily, shall statements and fea-
tures are very similar to user stories, so they should be straightforward for you if this
is your situation. Because use-cases typically have greater scope than user stories, you
can simply declare them to be user stories and then go about splitting them as you nor-
mally would to reduce them to a manageable size.

For example, assume that your initial requirements up front (IRUF) modeling
efforts resulted in the use-case diagram of Figure 19.1 and a corresponding collection
of use-cases, and you have subsequently decided to take an XP approach to develop-

72244_CH19I 2/27/02 11:14 AM Page 200

Modeling During the XP Exploration Phase 201

Figure 19.2 The basic course of action for placing an order.

1. The use-case begins when a customer chooses to place an order.

2. The customer searches for items via the use-case Search for Item(s).

3. The customer adds an order item to their order.

4. The customer indicates the number of a given item they wish to order.

5. The system calculates the subtotal for the item by multiplying the unit price by the

number ordered.

6. The customer repeats steps 2 through 5 as necessary to build their order.

7. The customer finishes adding items to their order.

8. The customer provides their ship to and bill to information, including their name, phone

number, and surface address.

9. The system calculates the subtotal for the entire order by adding the subtotals of the

individual line items.

10. The system calculates the taxes applicable for the order according to the business rule

Calculate Taxes for an Order.

11. The system calculates applicable discounts for the order according to the business rule

Calculate Discounts for an Order.

12. The system displays the applicable taxes and discounts.

13. The system calculates the grand total for the order by adding the applicable taxes to the

order subtotal and subtracting the discounts.

14. The system displays a summary of the order.

15. The customer verifies that the order is what they want.

16. The system schedules the order for fulfillment (see the use-case Fulfill Order).

17. The system produces a receipt for the customer that summarizes the order.

ment. You need to translate these use-cases into a collection of user stories, both of
these artifacts are described in detail in Appendix A, “Modeling Techniques,” several of
which are presented in Figure 19.3. The Place Order use-case has been “converted” into a
collection of eleven user stories whereas the Search For Item(s) use-case became a single
user story because it was relatively simple. Luckily, the team that had identified the ini-
tial requirements had written up a reasonably good description for the Place Order use-
case (see Figure 19.2). So all we needed to do was work through the description and
introduce user stories as appropriate, writing each user story on an individual index
card. Why index cards? Index cards are easy to work with, both when we are writing
them and when we are using them to plan our project—several people can work on them
simultaneously as a team by moving them around on a table or tacking them to a bulletin
board. As part of our release planning effort, we may discover that we need to split some
of these proposed user stories further, but for now they should prove sufficient.

72244_CH19I 2/27/02 11:14 AM Page 201

202 Chapter 19

The customer can add an item to an The customer can remove an item from an

existing order. existing order.

For each individual order item, the system Customers can search for inventory item(s).

displays the name of the item, the item ID

code from the catalog, the unit price,

the number of items the customer has

ordered, and the subtotal before taxes

and discounts.

The customer can indicate their shipping The customer can indicate their billing

address for an order. address for an order, which may or may

not be the same as their shipping address.

The system calculates and displays a The system calculates and displays a grand

subtotal before taxes, discounts, and total for an order.

shipping and handling for an order.

The system calculates and displays The system allows a customer to look over

applicable taxes, discounts, and shipping an order to verify it before scheduling it for

and handling charges for an order. fulfillment.

The system generates an email summary The system allows a customer to update an

of an order and sends it to the customer order before scheduling it for fulfillment.

when the order is scheduled for fulfillment.

Figure 19.3 User stories for the Place Order and Search For Item(s) use-cases.

The user stories presented in Figure 19.3 may be sufficient for now because they
provide enough insight for us to begin development. Yes, as the project progresses we
would need to identify user stories for other aspects of the system, particularly order
fulfillment and inventory management, but placing orders is clearly our number one
priority for SWA Online, so these are the user stories that we can start with. Remember,
we develop software incrementally, not as one “big bang,” so it’s valid to work this
way. Having said that, we could also work through all of the use-cases indicated in
Figure 19.1 and identify a large collection of user stories to be used as input into the
Release Planning phase. We could also do something in between these two extremes
and flesh out the high priority use-cases at first, likely choosing to explore the Manage
Inventory and Fulfill Order use-cases in addition to Place Order and Search for Inven-
tory Items, and leave the rest for later. Which approach should we take? The approach
that requires the identification of the least number of user stories that gets our project
stakeholders to the point where they are confident that we understand the system’s
scope enough to move forward into development of the first release.

You May Not Get Technical Requirements At First
In XP, as in AM, your customers (project stakeholders) are the primary source of
requirements. Sometimes they won’t define user stories pertaining to technical

TI P

72244_CH19I 2/27/02 11:14 AM Page 202

Modeling During the XP Exploration Phase 203

issues, such as performance and system availability (Wake 2002). Yes, you have
the option to suggest these requirements to them, but your customers have the
final say on what becomes a user story and what doesn’t. Later in the lifecycle,
they may realize that these requirements are in fact important to them;
therefore, you may need to refactor your system to handle those requirements.
Last minute changes happen; there is nothing wrong with it.

Metaphors, Architectures, and Spikes

The second aspect of the Exploration phase focuses on your system architecture.
Architecture within an XP project is less formal than in traditional methodologies,
with a preference for keeping your system flexible—XP recommends that you embrace
change, as does AM, whereas architecture-driven approaches advise you to build the
skeleton of the system first because some things are difficult to change (Wake 2002).
The XP approach is to identify a metaphor that describes how you intend to build your
system. The metaphor acts as a conceptual framework, identifying key objects and
providing insight into their interfaces. The metaphor is defined during an architectural
spike early in the project, during the first iteration or during a pre-iteration that is
sometimes referred to as a zero-feature release (ZFR) (Wake 2002). Beck (2000) sug-
gests that you choose user stories for the first iteration so you will be forced to “create
the whole system, even if it is in skeletal form.” Do you identify the system metaphor
during a pre-iteration/architectural spike or during the first iteration? It doesn’t really
matter as long as you identify the system metaphor at the beginning of your project.

Just because XP focuses on a system metaphor, that doesn’t imply that you won’t
have an architecture, nor does it imply that you’re not going to have any architectural
diagrams. For example, Newkirk and Martin (2001) created a high-level diagram (their
Figure 4.1) that overviews their architecture to enable them to better understand what
they were building. A similar whiteboard sketch is presented in Figure 19.4 for SWA
Online. Notice how the diagram combines UML use-case diagram notation for actors,
the stick figures, and free-form diagramming—the AM principle Content Is More
Important Than Representation advises that modeling your ideas properly is more
important than using sanctioned diagramming notation or making your diagrams
look pretty. This diagram also shows an application of the AM principles of Depict
Models Simply and Create Simple Content: It is just good enough to indicate our pro-
posed technical architecture and no more.

The development team would draw the diagram of Figure 19.4, following the AM
practice Model with Others and standing up around a white board. The diagram is
based on the user stories of Figure 19.3 and the use-case diagram and corresponding
use-cases depicted in Figure 19.1. The team isn’t going to ignore the material captured
by the use-case diagram and use-cases just because they’re not official XP artifacts,
whatever that means; instead they would follow the AM practice Reuse Existing
Resources and take advantage of the use-case diagram and use-cases. You can see that
our candidate architecture seems to handle both order placement and order fulfillment
activities. The team has also indicated two aspects of the architecture that it feels are
uncertain—it believes it can place a shipment pickup request using XML to shippers

72244_CH19I 2/27/02 11:14 AM Page 203

204 Chapter 19

Figure 19.4 An architectural overview for SWA Online.

and calculate applicable taxes through a commercial off-the-shelf (COTS) system—by
labeling them with question marks (Ambler 2001a, Ambler 2002). At some point, they
will need to do spikes for these aspects of the system to determine if they are feasible
and potentially include these tasks as part of their initial architecture spike (just
enough code to show that this candidate architecture will work).

Modeling, Not Models, Is the Important Thing
When applying AM’s practices on an XP project, remember that a primary value
of XP, as of AM, is communication. The value isn’t in the models that you create,
it is in the modeling effort itself that a model has helped you understand what
your stakeholders want, or how you intend to fulfill their needs, or that a model
has helped you communicate that what you are doing is important. Although
we may choose to follow AM’s Display Models Publicly practice and leave
Figure 19.4 on the whiteboard for awhile, the figure doesn’t really provide a lot
of value to our team anymore, except perhaps to indicate that we still have two
outstanding issues to address. Because the team was involved in creating the
figure and because they are now developing based on the technical vision
captured in the diagram, they know the technical architecture and likely will
not need to look at the diagram again. Other people may learn about your
architecture, perhaps through osmotic communication (Cockburn 2002)
described in Chapter 8, “Communication,” as they walk by the figure, and
perhaps you’ll choose to show the diagram to your project stakeholders to help
you explain your approach (a good example of applying AM’s Model to
Communicate practice).

Although Figure 19.4 provides some insight into your technical architecture, the fig-
ure really doesn’t provide much insight into your system metaphor. For SWA Online,

TI P

72244_CH19I 2/27/02 11:14 AM Page 204

Modeling During the XP Exploration Phase 205

Figure 19.5 A sketch drawn while identifying a metaphor for the system.

traditionally a grocery store metaphor would be a likely candidate. An order is just
like a shopping cart. Customers browse through your online store placing items into
their carts, they pull items that they don’t want out of their carts, and eventually they
take their carts to the checkout where taxes, fees, discounts, and their order total are
calculated. Then the selected items would be placed in boxes and shipped, similar to
the way that bag-boys in grocery stores put purchased items in bags and give them to
the customer. The development team would have discussed this metaphor in parallel
to sketching the overview diagram, perhaps drawing a free-form sketch such as the
one presented in Figure 19.5 on another section of whiteboard, just as AM’s Create Sev-
eral Models in Parallel practice suggests. This sketch would likely be erased once the
team had agreed on the metaphor—the team followed the AM practice Model to Under-
stand, and now the practice Discard Temporary Models would apply. The sketch in Fig-
ure 19.5 is of course optional; some people like to draw when they speak, whereas
others don’t—do whatever works best for you.

Don’t Focus on Common Infrastructure Early In the Project
A fundamental philosophy of XP is to not overbuild your system, only build
what you need today and have the courage to trust that you can build what you
need tomorrow at that point. Many non-XP teams start a project by working on
common infrastructure, perhaps building a persistence layer (Ambler 2001d) or
a messaging framework upon which they intend to build the rest of the system.
Although this is very interesting work, it doesn’t provide the functionality that
your project stakeholders actually need. If you need these common facilities,
that will become apparent over time, and you will slowly build them as needed
and refactor your code to use them. This is what emergent design is all about.
Why do XP teams prefer this approach? Because of their belief in YAGNI (You
Aren’t Gonna Need It)—they don’t want to invest any time building software
unless they know they need it right now. If you know you aren’t going to be
building common infrastructure right away, then you also don’t need to model

TI P

72244_CH19I 2/27/02 11:14 AM Page 205

206 Chapter 19

it right now either. Your architectural modeling efforts early in the project
should be focused on the simplest solution possible that meets the high-level
requirements that have been identified for you. Building infrastructure early
gives you a false sense of security because you have running code and can
show progress even though no actual progress towards fulfilling the needs of
project stakeholders has been achieved (Newkirk and Martin 2001).

Setting the Foundation for Your Project

Your initial collection of user stories and architecture spike forms the foundation for
the rest of your project. During construction iterations, you will implement the user
stories, reworking them to reflect your improved understanding of what you are
building as your project progresses, evolving your system over time. Your system
metaphor will help to guide your development efforts and your system architecture
will emerge as a result. The next two chapters describe modeling efforts during a con-
struction iteration.

72244_CH19I 2/27/02 11:14 AM Page 206

We’re extreme, not stupid.

—Ron Jeffries

207

C H A P T E R

20
Modeling During an XP

Iteration: Searching for Items

The Iterations to Release Phase (Beck 2000), more typically referred to as construction
iterations or simply iterations, encompasses the primary effort of an eXtreme
Programming (XP) project because this is where your major development efforts
including modeling, programming, testing, and integration occur. Figure 20.1 (Wells
2000) depicts the lifecycle for an iteration. Iteration planning is the same type of effort as
release planning, described in Chapter 18, “Agile Modeling Throughout the XP
Lifecycle.” The only difference is that the focus is on the user stories assigned to the cur-
rent iteration. When you are working on iteration N, you will find that new user stories,
ones that have not been estimated, have been added in. Therefore, you need to go
through the effort of identifying tasks so that you may accurately estimate each user

Figure 20.1 The lifecycle of an XP iteration.

72244_CH20I 2/27/02 11:13 AM Page 207

208 Chapter 20

Figure 20.2 A hand-drawn sketch representing what needs to be built for the item
search page.

Figure 20.3 The task card for searching the database.

Submit Search to DB

• Parse the criteria customer defined from the search page.

• Convert wild cards (*, _) to SQL equivalents.

• Build an SQL SELECT statement based on search criteria, ordering by the item number.

• Invoke statement in DB.

story. After estimating the new stories, and perhaps revisiting the other stories just to be
on the safe side, you may find that you have too many or too few stories for the itera-
tion, and you will need to move stories to/from other iterations.

The Task

To gain insight into how Agile Modeling’s (AM) practices can be applied to an XP proj-
ect, let’s work through a quick example. Figure 20.2 presents a task card containing a
sketch of an HTML page for searching for items and Figure 20.3 depicts the task card
submitting searches to the database, both of which were first presented in Chapter 18.
Let’s assume that we’ve done the work to build the HTML page, and we are at the point

72244_CH20I 2/27/02 11:13 AM Page 208

Modeling During an XP Iteration: Searching for Items 209

where we need to implement the code to implement the actual search. Let’s also
assume that we’ve already built similar things in the past—we need to pull information
out of an HTML response, replace any wild cards within the criteria with SQL equiva-
lents (for example, replace * with %), build a string representing a SQL statement, and
submit the string to our database—therefore, we don’t need to spike anything.

Spike Unfamiliar Tasks
If you have never implemented an aspect of a task before, perhaps you are
updating information in a legacy database and this is the first time that you’ve
run across this feature before, then you should experiment a bit to learn how to
go about implementing the feature. This experimenting is called a spike
solution (Jeffries, Anderson, and Hendrickson 2001), and the goal is to do just
enough work to drive through the problem in one blow. In the case of the
legacy database update, you may write just enough code to update a single
record or perhaps even just a single column within a record in the database.
When you are working on a spike solution, you often hold a quick design
session to address that aspect of the task and then jump right into
development. Naturally, before spiking something you should ask your
teammates if they have performed a similar task before, and if so, then ask
them to help.

What modeling would we consider doing? Pulling information out of the HTML
response is fairly easy to code and so is replacing wild cards within the text. We may
even want to consider refactoring (Fowler 1999) our existing code, if we haven’t
already done so, to include classes or components that implement the two common
services. Building a SQL statement is also straightforward. You simply write code to
concatenate strings together, although building an SQL statement does hint at some-
thing we may want to model: our database design.

Modeling the Physical Database Schema

To build an appropriate SQL statement, we need to know the layout of the database,
including the names of tables and columns and the type of the column. Knowing what
indices exist for the tables we are accessing and any relevant stored procedures for
searching those tables provides some insight into potential performance and imple-
mentation issues that we want to consider. Many development teams will create and
maintain a physical data model that depicts some or all of this information. Very good
data-modeling tools exist that will not only generate the DDL (data definition lan-
guage) that you need to create the tables in your database and triggers on those tables
but that will also reverse-engineer existing legacy schemas so you can understand
legacy data schemas that you may need to access.

As the project progresses, our team has chosen to maintain and update a physical
data model, automatically generating the database code that we require, to reflect new
requirements. In the case of this task, we would want to ensure that the database

TI P

72244_CH20I 2/27/02 11:13 AM Page 209

210 Chapter 20

Figure 20.4 A simple data model for SWA Online.
This figure applies a UML-based data modeling notation that I first introduced in The Object Primer 2/e
(Ambler, 2001a) and later evolved for Mastering EJB 2/e (Roman, Ambler, Jewell, & Marinescu, 2002).

includes columns that store the name of an item, the item number, the item category
(for example: clothing, electronic goods), and the price as Figure 20.3 implies. Luckily,
the current data model, depicted in Figure 20.4, for the work we have already done
indicates that most of this information exists in the database. There are two potential
problems:

1. The primary key of the Item table is not the item number. The Item_Number
column is not the primary key, but instead the Item_OID column is. The
Item_OID is a persistent object identifier (Ambler 2001e), something that data
professionals often refer to as a surrogate key. According to the task card, we
must order the results by order number, something that is easy to achieve with
SQL’s “ORDER BY” clause, albeit something that may have slow performance
because the primary key isn’t the same column we are sorting on. If we find that
we have performance problems, we may want to use our CASE tool to add and
generate a secondary index based on Item_Number.

2. The item category does not exist. Although the HTML page enables users to
pick the category from a drop-down list box, see Figure 20.5, we discover that

72244_CH20I 2/27/02 11:13 AM Page 210

Modeling During an XP Iteration: Searching for Items 211

Figure 20.5 The updated data model.

the list of categories has been coded into the source code that generates the
HTML. Although this worked well at the time, it isn’t sufficient for our needs
now. First, we would modify the data model to add the Item_Category lookup
table. To maintain the relationship between items and categories, we would also
add the Item_Category_OID column to the Item table. Second, we would
formulate and then write test code to validate that these new features within the
database work. Third, we would generate the DDL code to modify the database
schema and then run the code against the database. (Naturally we would have
first backed up the database before making any changes.) Fourth, we would
need to write code to populate data into this new schema, first to load the
information describing the categories into the new table and to update the
Item_Category_OID column in the Item table to an appropriate default value to

72244_CH20I 2/27/02 11:13 AM Page 211

212 Chapter 20

maintain referential integrity within our database. Fifth, we would want to
refactor the code that generates the HTML screen to read data from the
Item_Category table instead of having the categories hard coded. Finally, we
would need to run our integration test suite against the entire code base to
ensure that our changes haven’t broken another part of the system. We would
have to fix any problems that we find. Likely problem areas would include any
code that accesses the Item table and that may now be broken because the Item
table schema has changed. We may have some refactoring to do.

How does everyone stay up to speed regarding the current data schema? First, dur-
ing the stand-up meetings each day (see Chapter 18) anyone who has made a change
to the database schema the previous day should say so. Second, the data model is a
good candidate for printing and putting up on the wall, following the practice Display
Models Publicly. This way when you’re having quick design sessions and you need to
consider a database change you have the schema in front of you, and, if you like, you
can even hand-draw changes as you talk about them. Note that you don’t need to print
out your diagram every time you make a tiny change; let AM’s practice Update Only
When it Hurts guide you with this. (Most people can live with a diagram that has a few
hand-drawings on it.) If you do make it a habit to print your diagrams, I highly sug-
gest investing in a plotter—taping printer-size pages together quickly becomes
tedious.

Observations

I have a few important observations to make regarding the implementation of this task:

The modeling effort was brief. We didn’t need to do a lot of modeling to
implement this task. In fact, all we had to do was make a few simple changes to
our existing physical data model from which we generated the code we needed
to change the schema of our database.

Modeling saved us time. This approach was far more effective than simply
writing the DDL code. Not only did our tool generate the simple code required
to add the new column and table but it also generated the database triggers
required to maintain referential integrity within the database. A trigger is an
operation that is automatically invoked as the result changes to data within a
database. The required triggers include a delete trigger on the Item_Category
table that will prevent a deletion from occurring if a record exists in the Item
table that references the given category; an insert trigger on the Item table
checks to see whether the category exists that the new item references; and an
update trigger on the Item table does the same. Yes, this code is straightforward
and easy to write, but it’s a lot easier to generate. Also, the physical data model
depicts our database schema in an easy to understand manner, critical
information required by any developer writing code that needs to work with the
database.

We modeled first. We modeled right away, setting the foundation for the rest of
our effort. The simple change to the database set in motion several refactorings

72244_CH20I 2/27/02 11:13 AM Page 212

Modeling During an XP Iteration: Searching for Items 213

to the Item class due to the addition of the insert and update triggers on the
Item table within the database—the code that inserted and updated Item objects
into the database now had to detect the error codes generated by the triggers
and act accordingly.

Everyone Doesn’t Need Training on All Your Development Tools
The idea of using a CASE tool on an XP project to maintain your DB schema
brings up an interesting issue—do you train everyone on how to use the CASE
tool? On the SWA Online team, we have one person, Brendan, who is working
on his certification as an Oracle DBA and is very eager to do any database-
related work. He has been working with the tool for several years now. We also
have Marion, someone who has been developing for years and who has
significant database and data modeling experience, who also has worked with
the tool. Other developers on the project—Henri, Ed, Marc, and Tyler—have all
paired with Brendan and Marion from time to time to work on the data aspects
of the project, but they have minimal experience with the tool. Should you train
the others on the tool? Right now your project team is working smoothly, you
have two people intimately familiar with the tool and four that could use it if
they needed to. If anyone wanted to learn more about the tool, they would be
more than welcome to pair up with Brendan or Marion whenever a database-
related task came up. If they wanted formal training, in fact, I would consider
giving it to them at the time. Would I send everyone to go on the training
course? Likely not. Because it wouldn’t provide a lot of value to do so.

TI P

72244_CH20I 2/27/02 11:13 AM Page 213

Use your own best judgment at all times.

—Nordstrom Corporate Policy Manual

214

C H A P T E R

21
Modeling During an XP
Iteration: Totaling an Order

Developers on an XP (Beck 2000) project will model as part of their construction
efforts. In Chapter 20, “Modeling During an XP Iteration: Searching for Items,” we
explored how to apply AM principles and practices when developing the functionality
for searching for order items within the SWA Online system. Now let’s consider a dif-
ferent example. Tasks are different from one another, and you will find that you will
use different modeling techniques to address each one.

The Task

Figure 21.1 depicts two user stories that describe the totaling of an order, indicating
that the system calculates applicable taxes, discounts, and shipping and handling
charges for an order. Working through XP’s Planning Game practice, you decide to

The system calculates and displays a The system calculates and displays a grand

subtotal before taxes, discounts, and total for an order.

shipping and handling for an order.

Figure 21.1 User stories for displaying summary information for an order.

72244_CH21I 2/27/02 11:12 AM Page 214

Modeling During an XP Iteration: Totaling an Order 215

Figure 21.2 A whiteboard sketch of depicting the total portion of an order.

create a quick user interface prototype for this portion of an order, depicted in Figure
21.2, to explore what you need to build—you follow the practice Model to Understand.
You quickly realize that the first user story is quite large, and you decide to split it into
four separate stories, which you see in Figure 21.3: one for the subtotal, one for taxes,
one for discounts, and one for shipping and handling charges. You discuss these new
user stories as a team and provide estimates for each one that you present to your cus-
tomer, whom you ask to prioritize the user stories. She decides to make the discount
user story low priority, so you put it at the bottom of your stack of story cards. She
makes the other stories high priority, and you assign them to this iteration.

The user stories pertaining to subtotaling the order and producing the final total are
clearly easy to implement; they’re simple addition. But the other two stories are clearly
more complicated. Because this is SWA Enterprise’s first foray into selling directly to
consumers, it has never had to deal with complex taxation or shipping issues before.
What do you do?

Requirements Modeling to the Rescue

First, recognize that you need to identify requirements for these two user stories. Con-
sult your source, your on-site customer. You ask Wendy, your customer, to help

Figure 21.3 Reworked user stories for displaying summary information for an order.

The system calculates and displays a The system calculates and displays applicable

subtotal for an order. discounts for an order.

The system calculates and displays shipping The system calculates and displays taxes for

and handling charges for an order. an order.

72244_CH21I 2/27/02 11:12 AM Page 215

216 Chapter 21

Figure 21.4 A typical XP developer’s day.

explain these user stories to you—an example of Q and A from Figure 21.4, which you
first saw in Chapter 18, “Agile Modeling Throughout the XP Lifecycle.” During Q and
A, the customer is available to provide immediate answers, often to make decisions
regarding how something should work or to provide information to the developers.
Luckily, Wendy has previously worked in your existing shipping department so she
has some idea how shipping and handling charges may work; however, she does not
have any knowledge of tax rules. She tells you that, for now, assume a flat shipping
and handling charge of $5 and that your state tax of 6.5 percent is the only applicable
tax and it should be applied to all products that SWA Online will carry. She agrees to
add the appropriate acceptance tests for these two decisions to the test suite that she
has been evolving throughout the project. She also tells you that she will look into both
issues for you and get back to you in the next day or so.

In XP, Acceptance Tests Are XP Requirements Artifacts
Often the customer will be asked to write an acceptance test answering the
question or sometimes to write a new story (Wake 2002). Acceptance tests are

TI P

72244_CH21I 2/27/02 11:12 AM Page 216

Modeling During an XP Iteration: Totaling an Order 217

an interesting aspect of XP—instead of writing a detailed requirements
document and then developing based on its contents, XP teams build up a
collection of acceptance tests with their project stakeholders and ensure that
their system fulfills those acceptance tests. This leads many XP developers to
claim that acceptance tests are requirements, and you know what, they’re right.

You now have a place to start because your customer has made a decision. Yes, the
details are likely to change when more information is available, but you’ll deal with
the changes when you know about them. After all, you’re part of an XP team, so you
embrace change. As Figure 21.4 indicates, you get into a Test-Code-Refactor cycle and
start coding. With XP, you start with a test so that you know when you are done. You
design and implement just enough to get that test running, and whenever you see a
chance, you simplify the design through refactoring.

Help from an Outside Expert

Later that day, Wendy drops by your desk as you and your pair are programming. She
tells you that she has left a voice mail with someone in accounting who should be able
to explain the relevant tax rules to you. She has also been in contact with a friend of
hers, Jake Blues, who works at Fly-By-Nite Shipping, the courier whom SWA Enter-
prises intends to use for the first release of the system. Jake is available tomorrow
morning at 9 a.m. for a half-hour conference call that Wendy wants the two of you to
attend. You also take the opportunity to show the work that you have completed on
the user story, showing that a line has been added to the order summary indicating the
shipping and handling charges and the new total for the order (the original subtotal
plus the new charges). She doesn’t like the way it looks on the screen (you got the
alignment wrong), and you promise to correct the problem.

The next morning you, your current pair, and Wendy get together in a meeting room
and call Jake. The three of you agree to take notes to ensure that you record the informa-
tion from Jake. Jake informs you that Fly-By-Night negotiates shipping rates with its
clients and provides an electronic spreadsheet for each quarter; he emailed a sample to
Wendy earlier that morning. There are two basic reasons why a new spreadsheet is pro-
duced quarterly—the overall rates may change based on changing costs for the shipping
company, fuel being the main factor, and the amount of business that you do with them
may change (the more you ship, the lower your rates). The spreadsheet is generated by
Fly-By-Night’s accounting department and is provided to their customers no less than
two weeks in advance of any rate changes. Within the spreadsheet, the rates vary by the
weight of the package being shipped, the size of the box, and the distance the package is
going. Weight is measured in ranges—for example < 6 oz., 6 to 12 oz., and so on—as is the
size of the box. Distance, on the other hand, is measured in zones. Jake asks you for your
fax number so he can send you a map indicating the zones. The zones are fairly straight-
forward, working outwards from their major distribution center in rough circles. An
entire state is either in a zone or it is out of it, and this zone system has been in place for

72244_CH21I 2/27/02 11:12 AM Page 217

218 Chapter 21

almost ten years without changing for seven years now. He provides you with a few more
details and offers to be available by phone and email if you have any more questions.

A Quick Design Session

After the phone call, the three of you walk back to your work area and decide to have
a quick design session to understand your approach to implement the calculation of
shipping and handling charges. Wendy points out that not only do you need to charge
the right amount for Fly-By-Night’s fees, you also need to cover your own internal
fees. Wendy remembers that the accounting department feels that $0.50 a shipment
was a fair price, but she would need to verify that with them. More importantly, you
need to understand how to calculate the shipper’s portion of the fees. The three of you
start by working through some CRC cards, presented in Figure 21.5, to identify the
potential classes and responsibilities that you believe you need. In parallel, you also
sketch on the whiteboard a UML Sequence diagram, presented in Figure 21.6, which
shows the interaction between the classes to support this functionality. Both CRC
cards and UML Sequence diagrams are described in detail in Appendix A, “Modeling
Techniques.” You work back and forth between the two models for about ten minutes

Figure 21.5 CRC cards relevant to calculating shipping costs.

Shipping Cost Calculator

Knows SWA costs Shipping Cost
Matrix

Calculate shipping State
cost for an order

Determine box size
for an order

Determine weight
for an order

Determine zone
for an order

State

Knows delivery zone
the state is in

Order Item

Knows number of Item
items ordered

Knows item

Shipping Cost Matrix

Knows applicability dates

Knows box size ranges

Knows weight ranges

Knows delivery zones

Knows shipment cost
for a given box size and
weight range within a
delivery zone

Order

Knows ship-to address Shipping Cost
Calculator

Knows order items Order Item

Calculate shipping and
handling costs

Item

Knows weight

Knows width

Knows height

Knows breadth

72244_CH21I 2/27/02 11:12 AM Page 218

Modeling During an XP Iteration: Totaling an Order 219

Figure 21.6 A sequence diagram for calculating shipping costs.

until you think you have a good strategy for implementing the calculation. Now
you’re ready to start coding. As you work on these models, you also discuss how you
will need to test this functionality, information that Wendy records on index cards, one
for each acceptance test.

The CRC cards and the UML sequence diagram aren’t perfectly consistent with one
another. That’s ok. In general, agile models don’t need to be in sync with one another;
they just need to be good enough, and these two models are. When you discover that
two artifacts are out of sync, you should follow the practice Update Only When it Hurts
and fix them only if it provides positive value to your project.

During this process you followed the AM practices:

■■ Apply the Right Artifact(s) when you chose to work with CRC cards to identify
the static structure of your software and sequence diagram to explore the
dynamic nature of the interactions between those classes. Yes, you could have
sketched a UML class diagram instead of creating CRC cards, but as you
learned in Chapter 10, “Using the Simplest Tools Possible?” the cards are easier
to work with and are more inclusive.

■■ Create Several Models in Parallel when you chose to work on both the models at
once.

■■ Iterate to Another Artifact when you chose to work back and forth between
models.

■■ Consider Testability when you identify acceptance tests while working on the
sequence diagram and CRC cards.

■■ Discard Temporary Models once you are finished coding the information captured
by your models. They likely won’t provide any more value to you, so you might
as well erase the diagram from the whiteboard and throw away the cards.

72244_CH21I 2/27/02 11:12 AM Page 219

220 Chapter 21

Formalizing a Contract Model

You’re just about to start coding when Wendy points out that you’re not done yet. You
need to introduce a new user story for accepting the spreadsheet from Fly-By-Night
Shipping and getting the new figures into the system. She indicates that this is a high
priority item that will likely need to be included in the next iteration. You realize that
your team may want to follow the practice Formalize Contract Models and put together
a short document describing this interface to the shipping company. The document
would likely include a paragraph or two describing the process of receiving the
spreadsheet, an example of the spreadsheet itself, and a description of the import
process (either automatic or manual, depending on your solution). This document
would become part of your overall system documentation.

You Can Use Patterns on an XP Project
Does the application of patterns go against XP’s practice of Simple Design?
Depends on how you use them. Joshua Kerievsky (2001) says it best: “Start
simple, think about patterns but keep them on the back burner, make small
refactorings, and move these refactorings towards a pattern (or patterns) only
when there is a genuine need for them.” In other words, follow AM’s practice
Apply Patterns Gently.

What about Changes in the Future?

Later that day, Wendy hears back from the accountant she contacted regarding the tax
rules. It appears that if you ship a product to someone within this state, then a state tax
of 6.5 percent applies for all products; otherwise, no sales taxes are collected. He also
indicated that individual states are in the process of considering laws that require the
collection of taxes for online sales where the shipping address is in their state, and he
feels that it is very likely that some states will pass these laws within the year. He also
indicated that the Federal Government is considering a value added tax (VAT) of 3
percent on online sales, although it is unlikely that this will come about any time soon.
Finally, he pointed out that most foreign countries have duties and sales taxes that
would be applicable once SWA Online went international.

This information has made Wendy a little nervous. What would happen if the tax
rules changed suddenly? You reply that the project team would act accordingly at that
time. She asks whether or not you need a big design session to ensure that your system
can handle these changes. You reply that you don’t want to overbuild your system to
implement functionality that you may not ever need, and you certainly wouldn’t want
to have to maintain that additional code over time either. But she’s still worried; she
wants to make sure that the team understands that the way you handle taxes will need
to change over time. So you suggest a compromise—instead of overbuilding your soft-
ware, why don’t you simply record these potential requirements and describe them to
the rest of the team at tomorrow’s stand-up meeting? Wendy accepts this idea, it’s

TI P

72244_CH21I 2/27/02 11:12 AM Page 220

Modeling During an XP Iteration: Totaling an Order 221

Figure 21.7 Recording the potential requirements regarding tax rules as change cases.

Change Case: Individual States Introduce Online Sales Tax

Likelihood: Very likely within 6 to 12 months

Potential Impact:

• We’ll need to collect taxes according to each individual state.

• We will need to remit taxes and transaction information as appropriate to each state.

Change Case: Federal Government Introduces Online Sales Tax

Likelihood: Unlikely within the next two years

Potential Impact:

• We’ll need to collect federal sales taxes accordingly.

• We will also need to remit taxes and transaction information as appropriate to the

government.

Change Case: Foreign Countries Levy Duties and Taxes on Shipments

Likelihood: Certain once we go international

Potential Impact:

• Minimal if we use a shipper that handles this for us.

• Otherwise, we will need to calculate and remit taxes and duties to each country accordingly.

worked well in the past, and you quickly write up some index cards as depicted in Fig-
ure 21.7.

Both AM and XP exhort you to embrace change; yet in practice, embracing change
can be particularly difficult. At first, deciding to go at risk and trusting that you can
solve tomorrow’s problem tomorrow, and therefore you don’t need to overbuild your
system today, is difficult. This philosophy is often very difficult for your project stake-
holders to accept, particularly when they’ve been involved with failed software devel-
opments before or when their career success is tied into your project. Platitudes to
embrace change likely will not be sufficient without proof that you can, in fact, solve
tomorrow’s problem tomorrow. You will need to find a compromise position, and
change cases are one such technique for doing so. By creating change cases, you show
your project stakeholders that you recognize the associated risks of the potential
changes, and you ease their concerns. Change cases will help to increase their trust in
your team, hopefully to the point where they are comfortable with the concept of
embracing change—without this trust, your team will have a serious problem moving
forward because you will not have sufficient stakeholder support. When creating
change cases, you may also gain important insights concerning current design decisions,
although that doesn’t give you license to overbuild your software based on these
insights.

72244_CH21I 2/27/02 11:12 AM Page 221

222 Chapter 21

Observations

Once again, modeling activities proved effective for our XP development efforts. The
quick sketch of the total section of an order helped to put our effort into perspective.
Our quick design session where we explored the calculation of shipping and handling
charges proved beneficial. A little bit of modeling helped us to identify an approach to
design that seemed very straightforward.

Most of the models described in this chapter were created using simple tools. We
used a whiteboard to sketch a UML sequence diagram and a user interface prototype.
We used index cards for user stories, CRC cards, and change cases. The only exception
was the contract model describing the interface that we have with our shipping com-
pany, a model that would likely be best developed with a word processor.

Although we needed to gather requirements concerning the calculation of taxes, we
didn’t need to model anything. Gathering requirements was simple enough that we
went straight into construction. Yes, we did in fact have a user story pertaining to
taxes, arguably a very high-level requirement, but that clearly isn’t anywhere close to
a traditional requirements model. The acceptance tests that our customer developed to
validate our work are much closer to documented requirements, they describe func-
tionality that our system must implement, so that’s the closest thing to documented
requirements that we have for taxes. This worked perfectly well because the accep-
tance tests met the needs of our customer by focusing on producing the functionality
that they required—remember the principle, Software Is Your Primary Goal.

In Part Three of this book, you have seen that modeling is an important aspect of XP
and that modeling has always been so regardless of what some of XP’s detractors may
tell you. You’ve also seen that the principles and practices of AM and XP fit well
together, which is to be expected considering AM has adopted many aspects of XP, and
that AM can be used to enhance your XP development efforts. In Part Four, we simi-
larly explore the fit between AM and the UP.

How to Make This Work in the Real World

Modeling is clearly a part of XP, but it is a very small part when compared to other
activities such as programming or testing. This works because of many of the primary
benefits of modeling—such as supporting communication and exploring pertinent
issues—are achieved through other means. There are several interesting impications
for using AM with XP:

■■ AM should be used in small doses to enhance XP.

■■ Keep it simple—although many modling techniques are described in Appendix
A, XP teams may only need to apply one or two of them.

■■ XP practitioners need to recognize that modeling does not have to be the
dysfunctional, paper-intensive burden they fear it to be.

■■ AM might be what makes XP palatable within organizations that are leery of
“vanilla XP.”

72244_CH21I 2/27/02 11:12 AM Page 222

PA R T

Four

Agile Modeling and the
Unified Process

72244_CH22I 2/27/02 11:11 AM Page 223

In this part I describe how to use Agile Modeling and the Unified Process (Jacobson,
Booch, and Rumbaugh 1999; Kruchten 2000; Ambler 2001b) together. This section
includes the following chapters:

■■ Chapter 22: Agile Modeling and the Unified Process. This chapter overviews
how modeling occurs on an UP project, and explores the fit between AM and
the UP.

■■ Chapter 23: Agile Modeling Throughout the Unified Process Lifecycle. This
chapter explores the disciplines of the UP in greater detail.

■■ Chapter 24: Agile Business Modeling. This chapter describes how to apply
AM principles and practices for business modeling activities on an UP/AM
project.

■■ Chapter 25: Agile Requirements. This chapter describes how to apply AM
principles and practices for requirements activities on an UP/AM project.

■■ Chapter 26: Agile Analysis and Design. This chapter describes how to apply
AM principles and practices for analysis and design activities on an UP/AM
project.

■■ Chapter 27: Agile Infrastructure Management. This chapter describes how to
apply AM principles and practices for the modeling portions of the
Infrastructure Management discipline, including suggestions for scaling AM to
larger projects.

■■ Chapter 28: Adopting AM on an UP Project. This chapter presents strategies
for overcoming common impediments that you may experience while adopting
AM on UP projects.

224 Part Four

72244_CH22I 2/27/02 11:11 AM Page 224

225

C H A P T E R

22
Agile Modeling and
the Unified Process

As we’ve discussed throughout this book, AM is a chaordic, practices-based software
process whose scope is to describe how to model and document in an effective and
agile manner. The practices of AM should be used, ideally in whole, to enhance other,
more complete software processes such as eXtreme Programming (XP) (Beck 2000), the
Rational Unified Process (RUP) (Rational Corporation 2001), and the Enterprise Uni-
fied Process (EUP) (Ambler 2001b) to name a few. These processes cover a wider scope
than AM. In the case of XP and the RUP, this is true for the development process and
with the EUP, the full software process including both development and production.
Although these processes all include modeling and documentation activities in one
form or the other, there is definitely room for improvement. In the case of XP the mod-
eling processes should be better defined, as we discussed in Part Three. In the case of
both the RUP and the EUP, the modeling processes could definitely stand to be made
more agile.

In this chapter I explore in detail how AM can be used in conjunction with the vari-
ous instantiations of the Unified Process (UP), including but not limited to the RUP
and the EUP. To understand an UP/AM approach to development, we need to cover:

■■ How modeling works in the Unified Process

■■ How good is the fit between AM and UP?

■■ Choose to be agile

72244_CH22I 2/27/02 11:11 AM Page 225

226 Chapter 22

Project Management
Environment
Infrastructure Management

Operations & Support
Deployment
Test
Implementation

Analysis & Design

Requirements

Business Modeling

Configuration & Change Mgmt

Iterations

Phases

Disciplines

Figure 22.1 The lifecycle for the Enterprise Unified Process (EUP).

*The Implementation discipline is arguably a fourth one because it includes an activity called
“Structure The Implementation Model” which is essentially a second look at the design model to
organize it in such a way as to avoid integration and build problems.

How Modeling Works in the Unified Process

All efforts, including modeling, are organized into disciplines (formerly called work-
flows) in the UP and are performed in an iterative and incremental manner. The lifecy-
cle of the EUP is presented in Figure 22.1, a superset of the current lifecycle for the
RUP. I like to say that the UP is serial in the large, iterative in the small, and delivers
incremental releases over time. The five phases of the EUP clearly occur in a serial
manner over time. During the Inception phase your focus is on project initiation activ-
ities. Once your initial scope is understood your major focus becomes requirements
analysis and architecture evolution during the Elaboration phase. During the Con-
struction phase, your focus shifts to building your system. In the Transition phase, you
move to deliver your software, and finally you operate and support your software in
the Production phase. However, on a day-to-day basis you work in an iterative man-
ner, perhaps doing some modeling, some implementation, some testing, and some
management activities.

In the RUP there are three disciplines* that encompass modeling activities for a single
project: Business Modeling, Requirements, and Analysis and Design. EUP adds a fourth
discipline, Infrastructure Management, that includes enterprise-wide requirements and
architecture modeling activities. All four disciplines are described in Table 22.1. Chapter

72244_CH22I 3/5/02 3:52 PM Page 226

Agile Modeling and the Unified Process 227

Table 22.1 The Modeling Disciplines of the Unified Process

WORKFLOW PURPOSE

Business Modeling The purpose of this discipline is to model the
business context, the scope, of your system.

Requirements The purpose of this discipline is to engineer the
requirements for your project, including the
identification, modeling, and documentation of
those requirements. The main deliverable of this
discipline is the Software Requirements
Specification (SRS), also referred to as the
Requirements Model, which encompasses the
captured requirements.

Analysis and Design The purpose of this discipline is to evolve a
robust architecture for your system based on
your requirements, to transform the
requirements into a design, and to ensure that
implementation environment issues are reflected
in your design.

Infrastructure Management This discipline encompasses activities that are
(EUP only) outside of the scope of a single project, including:

• Enterprise requirements modeling, the act of
creating and evolving models that reflect the
high-level requirements of your organization.

• Enterprise architectural modeling, the act of
creating and evolving models that depict the
business and technical infrastructure of your
organization.

23, “Agile Modeling Throughout the Unified Process,” explores the disciplines of the
UP, and how AM principles and practices can enhance them, in greater detail.

How Good Is the Fit?

Now that we understand the basics of how modeling in the UP works, we can exam-
ine how well AM fits in with it. Luckily many of AM’s principles and practices are
arguably a part of the UP already, although perhaps not as explicitly as I would like.
Table 22.2 examines how well each individual AM practice is currently implemented
in the UP, if at all, and discusses how to adopt the practice within the scope of the UP.
My experience is that it is relatively straightforward for UP teams to adopt AM prac-
tices if they choose to do so. This is because the UP is very flexible. One of its underly-
ing principles is that you should tailor it to meet your unique needs, making it easy to
merge AM practices into the UP.

72244_CH22I 2/27/02 11:11 AM Page 227

Table 22.2 The Fit between UP and AM

PRACTICE FIT

Active AM has a wide definition for project stakeholders, including users,
Stakeholder management, operations staff, and support staff to name a few. This
Participation definition is compatible with the UP. The UP clearly includes project

stakeholders, such as users and customers, throughout most of its
disciplines. To be successful, UP project teams should allow project
stakeholders to take on modeling roles such as Business Process
Designer and Requirements Specifier as appropriate; there is nothing in
the UP that prevents this. The more active project stakeholders are, the
less of a need there will be for reviews, management presentations, and
other overhead activities that reduce your team’s development velocity.

Apply The application of modeling standards, in particular the diagrams of the
Modeling UML, is a significant part of the UP. Furthermore, the RUP product
Standards (Rational Corporation 2001) includes guidelines for the creation of many

modeling artifacts, guidelines that your teams should consider adopting
and following as appropriate, and explicitly suggests that you tailor the
guidelines that they provide for your exact needs. To remain agile,
however, UP teams must recognize that you often need to bend the
guidelines and standards. In other words, don’t let them become a
straight jacket.

Apply UP teams are free to apply modeling patterns. The RUP product
Patterns describes many common modeling patterns as part of their efforts for a
Gently variety of modeling disciplines. This practice enhances the UP with its

advice to ease into the application of a pattern. The UP does not make
this concept as explicit as it could.

Apply The One of the strengths of the UP is that it provides some advice for when
Right to create each type of model. Recent incarnations of the RUP product
Artifact(s) include significant advice for non-UML artifacts such as data models and

user interface storyboards (UI flow diagrams).

Collective AM’s concept of collective ownership can be used to enhance the efforts
Ownership on UP projects, assuming that the team culture supports the concept of

open and honest communication. The UP supports collective ownership
with its strong focus on configuration management issues (it has a
discipline dedicated to this task), although its change management
processes may potentially get in your way if developers and project
stakeholders are unable to distinguish when to formalize change control
and when not to. To be fair, this is a problem regardless of when you
apply AM on an UP project, or on any type of project for that matter. UP
teams should turn the configuration management dial up a few notches
and allow anyone on the project to access and work on any artifact that
they wish, including models and documents.

Consider The UP includes a Test discipline in its lifecycle, making testing an explicit
Testability issue that everyone should keep in mind as they work. The UP also

includes many opportunities to review modeling artifacts, if you choose
to follow this form of validation. To fully adopt this practice the
consideration “Is it testable” should be included in all modeling activities.

228 Chapter 22

72244_CH22I 2/27/02 11:11 AM Page 228

Table 22.2 continued

PRACTICE FIT

Create The UP clearly includes this concept. One only has to look at the activity
Several diagrams that depict each discipline to see that several artifacts are
Models potentially worked on in parallel. However, this concept could be
in Parallel communicated better because the near-serial flow in the activity

diagrams presented for each major modeling activity doesn’t
communicate this concept well. There is a larger issue as well when you
consider the lifecycle as a whole. Because the UP has organized its
modeling efforts into separate disciplines, for very good reasons, it
isn’t as apparent that not only can you work on several business
modeling artifacts in parallel but you can also work on requirements-
oriented artifacts, analysis-oriented artifacts, architecture artifacts, and
design artifacts too. UP teams can turn the dial up a few notches by
reading between the lines of the discipline activity diagrams and the UP
lifecycle diagram and choosing to perform activities from several
disciplines simultaneously when it makes sense to do so.

Create This practice is a choice made by the modeler(s), albeit one that must
Simple be implicitly supported by the rest of the development team. UP teams
Content will need to adopt modeling guidelines that allow models that are

just good enough and the customers of those models (including
programmers, project stakeholders, and reviewers) must also be
willing to accept simple models. This is a cultural issue, one that is
often difficult for many organizations to adopt.

Depict See Create Simple Content.
Models
Simply

Discard Modelers on UP teams are free to discard anything that they wish. As
Temporary with the Simplicity practices your organization’s culture must accept
Models the concept of traveling light, of developing and maintaining just

enough models and documents, and no more.

Display UP teams are free to follow this practice. UP teams can turn the
Models communication dial up a notch by following the principle Open and
Publicly Honest Communication by making all artifacts available to everyone as

well as to publicly display the critical models used by the project team.

Formalize The UP includes the concept of integrating with external systems. These
Contract systems are typically identified on use case models and the RUP suggests
Models introducing “boundary classes” to implement the interface to these

systems. At the time of this writing the RUP appears weak with respect to
activities such as legacy system analysis and enterprise application
integration (EAI). The explicit adoption of this practice clearly strengthens
the UP’s integration activities and fits in well with it’s concepts of use
case realizations—the interaction between systems can be specified with
one or more use cases and then the corresponding use case realization
becomes the formalized contract model.

continues

Agile Modeling and the Unified Process 229

72244_CH22I 2/27/02 11:11 AM Page 229

Table 22.2 The Fit between UP and AM (continued)

PRACTICE FIT

Iterate To This practice can be easily adopted by UP teams. As mentioned
Another previously, the unfortunate depiction of UP modeling activities as quasi-
Artifact serial processes and the division of modeling activities into separate

disciplines can hinder the iterative mindset required of agile modelers.

Model in This practice is clearly an aspect of the UP. The UP’s support for
Small iterations implies that you can incrementally develop your model
Increments throughout the project. UP teams can easily turn the iterative and

incremental dial up a few notches by preferring smaller, simpler
models that quickly lead to implementation and testing.

Model to The UP implicitly includes this practice. UP teams can turn the
Communicate communication dial up a few notches by following the principle Model

With a Purpose by knowing who their audience for the model is and what
they require of that model.

Model to See Model to Communicate.
Understand

Model With The UP implicitly includes this practice. Every modeling discipline
Others clearly includes several roles; each role is filled by one or more people.

UP teams can turn the communication dial up a few notches by
adopting tools that support team modeling, such as whiteboards and
collaborative modeling tools (see Chapter 8) over single-user
modeling tools.

Prove it The UP explicitly includes this practice. At the end of each "iteration,
With Code except perhaps for the ones during the Inception phase (Ambler and

Constantine 2000a), the UP specifically states that you should have a
working prototype. Furthermore, the UP insists that you have a
working end-to-end prototype at the end of the Elaboration phase
(Ambler and Constantine 2000b) that proves your architecture.

Reuse Reuse is an implicit part of the UP, and reuse management is an
Existing explicit part of the EUP. UP teams can turn the reuse dial up a few
Resources notches by actively preferring to reuse existing resources instead of

building them from scratch, including but not limited to existing models,
existing components, open source software (OSS), and existing tools.

Update Only In theory this can be an easy concept for UP teams to adopt as it
When It dramatically reduces the effort expended to keep your artifacts up to
Hurts date. However, in practice many organizations prove to have a problem

with this concept, particularly if they have a strong “traceability” culture.
Traceability is the ability to relate aspects of project artifacts to one
another, the support for which is a strong feature of the UP because it’s
an important aspect of its Configuration and Change Management
discipline. Furthermore, the RUP product includes tool mentors for
working with Rational RequisitePro (hyperlink “http://www.rational
.com”), a requirements traceability tool, making it appear easy to

230 Chapter 22

72244_CH22I 2/27/02 11:11 AM Page 230

Table 22.2 continued

PRACTICE FIT

maintain a traceability matrix between artifacts. My experience is that
organizations with traceability cultures will often choose to update
artifacts regularly, even if it isn’t yet painful to have the artifacts out of
date, and update the traceability matrix that relates everything to one
another. To turn their productivity dial up several notches UP teams
should choose to travel light, to loosen up a bit and allow project artifacts
to get out of sync with one another. Maintain a traceability matrix
between artifacts only when there is a clear benefit to do so AND their
project stakeholders understand the issues involved as well as authorize
the effort. A traceability matrix is effectively a document and is therefore a
business decision made by project stakeholders.

Use the The RUP product includes tool mentors that make it easier for teams
Simplest to work with tools sold by Rational Corporation. However, the reality is
Tools that UP teams are welcome to use any development tool that they want

and Rational tools compete on their merits just like the products of any
other company. UP teams can turn their productivity dial up several
notches by expanding their horizons to include simple tools such as
whiteboards, index cards, and sticky notes in addition to CASE tools.

Agile Modeling and the Unified Process 231

Choose To Be Agile

In this chapter you’ve seen that modeling is an important part of the Unified Process,
the RUP instantiation of it includes three disciplines: Business Modeling, Require-
ments, and Analysis and Design. EUP adds a fourth discipline, Infrastructure Manage-
ment that includes significant modeling efforts. You’ve also seen that the potential
exists to take an UP/AM approach to development, if you choose to do so. The next
chapter explores how AM can be used to enhance the UP disciplines and Chapters 23
through 27 work through examples of taking an UP/AM approach to the SWA Online
case study. Chapter 28 explores specific issues that pertain to adopting AM on a UP
project. The greatest issue that UP teams face with respect to AM is the need to take an
agile approach to development, which is possible for an UP project team to do, but in
practice proves to be a difficult path to take. Choosing to succeed is often the most dif-
ficult decision to make.

72244_CH22I 2/27/02 11:11 AM Page 231

To understand how to apply the principles and practices of Agile Modeling on a Uni-
fied Process (Jacobson, Booch, and Rumbaugh 1999) project, we must explore how
modeling fits into the UP project lifecycle. To do this, we will examine the UP from the
point of view of the enhanced lifecycle of the Enterprise Unified Process (EUP)
(Ambler, 2001b), as it is currently the most comprehensive lifecycle available for the
UP. As you see in Figure 23.1, the EUP extends the original UP lifecycle with a new
phase, Production, and two new disciplines: Infrastructure Management and Opera-
tions and Support. To understand how to model on an UP/AM project, let’s first
examine the modeling disciplines and then focus on the non-modeling disciplines.

The Modeling Disciplines

This section explores the four modeling disciplines in greater detail, with a particular
emphasis on the types of modeling artifacts that you may wish to create. AM’s model-
ing practices are clearly applicable to these four disciplines. The fit between AM’s
practices and the UP was explored in Chapter 22, “Agile Modeling and the Unified
Process.” Chapters 24 through 27 explore the application of AM practices within each
UP modeling discipline by working through a portion of the SWA Online case study.
The four modeling disciplines are:

What can be more palpably absurd than the prospect held out
of locomotives traveling twice as fast as stagecoaches?

— The Quarterly Review, England, in 1825

232

C H A P T E R

23
Agile Modeling throughout the
Unified Process Lifecycle

72244_CH23I 2/27/02 11:11 AM Page 232

Agile Modeling throughout the Unified Process Lifecycle 233

Project Management
Environment
Infrastructure Management

Operations & Support
Deployment
Test
Implementation

Analysis & Design

Requirements

Business Modeling

Configuration & Change Mgmt

Iterations

Phases

Disciplines

Figure 23.1 The lifecycle for the Enterprise Unified Process (EUP).

1. Business Modeling

2. Requirements

3. Analysis and Design

4. Infrastructure Management

The Business Modeling Discipline
The purpose of the Business Modeling discipline is to explore the business environ-
ment in which your system will operate. Most of your business modeling activity
occurs during the UP’s Inception and Elaboration phases, although you will find that
you need to perform some business modeling efforts during the Construction phase
and sometimes even during the Transition and Production phases. Your goals are:

■■ To understand the target organization(s) where your system will be deployed

■■ To understand the issues that the target organization(s) need to have addressed
by your system

■■ To ensure that your development team and project stakeholders have a
common understanding of the target organization(s)

■■ To derive system requirements for the target organization(s) (Rational
Corporation 2001)

In many ways the Business Modeling discipline is simply traditional systems analy-
sis (Gane and Sarson 1979; Yourdon 1989) with a “use case twist.”

72244_CH23I 3/5/02 4:04 PM Page 233

234 Chapter 23

Table 23.1 lists potential UP deliverables for the Business Modeling discipline, the
modeling artifacts that you should consider creating (described in Appendix A, “Model-
ing Techniques”), and how each deliverable is potentially used by your project team.
You will want to follow the practice Apply the Right Artifact(s) and create only the ones
that your situation warrants. You also want to remember to Travel Light and keep only
those artifacts that provide positive value to your project. Table 23.1 also distinguishes
between a RUP version and a more agile (AM) version of a domain model. Whichever
version you choose depends on how far you want to take your domain modeling efforts.

Chapter 24, “Agile Business Modeling,” works through the Business Modeling disci-
pline for a portion of the SWA Online case study, applying AM practices wherever
appropriate. The AM practice with the biggest impact on this discipline, and the
Requirements discipline, is Active Stakeholder Participation. The UP has always pro-
moted working closely with your users and AM makes this practice even more explicit.

The Requirements Discipline
The purpose of the Requirements discipline is to engineer the requirements for your
project. This includes identifying with project stakeholders (and maintaining an agree-
ment regarding the requirements) what your system should do, providing developers
with a better understanding of the requirements, delimiting the system, providing a
basis for estimating, and defining a user interface for your system (Rational Corpora-
tion 2001). As you see in Figure 23.1, most requirements modeling activities occur dur-
ing the Inception and Elaboration phases, although you will still identify and explore
requirements during the other phases as well (particularly during Construction).

Table 23.2 lists the potential modeling artifacts that you may decide to create as part
of your Requirements discipline efforts. As with Table 23.1, the candidate artifacts are
described in Appendix A. Note that the table uses AM terms in the Candidate Artifacts
column instead of RUP terms. Use case story boards are listed twice: an AM version
that uses non-UML artifacts and a RUP version that constrains itself to UML artifacts.

The artifacts that you worked on as part of your Business Modeling efforts often
evolve into requirements versions of them, following your version-control strategy
(see the Change and Configuration Management discipline section later in this chap-
ter) as appropriate. Because of the similarity of these two disciplines, the Business
Modeling discipline focuses on understanding the business and identifying high-level
requirements. The Requirements discipline focuses on detailed requirements. Agile
modelers don’t bother to differentiate between the two types of artifacts. For example,
instead of having a Supplementary Business Specification and a Supplementary Spec-
ification, they’ll simply have a Supplementary Specification (if they have one at all).
Chapter 25, “Agile Requirements,” works through the Requirements discipline for the
SWA Online case study.

The Analysis and Design Discipline
The purpose of the Analysis and Design discipline is to evolve a robust architecture for
your system, to produce a detailed design for your system based on its requirements,
and to adapt your design to reflect the realities of your implementation environment

72244_CH23I 2/27/02 11:11 AM Page 234

235

Ta
b

le
 2

3.
1

Po
te

nt
ia

l M
od

el
in

g
Ar

tif
ac

ts
 fo

r
B

us
in

es
s

M
od

el
in

g

U
P

 D
E

LI
V

E
R

A
B

LE
C

A
N

D
ID

A
TE

 A
R

TI
FA

C
TS

U
S

A
G

E

B
us

in
es

s
Ar

ch
ite

ct
ur

e
•

O
rg

an
iz

at
io

n
C

ha
rt

O
ve

rv
ie

w
s

yo
ur

 c
ur

re
nt

 b
us

in
es

s
en

vi
ro

nm
en

t a
nd

 p
ot

en
tia

lly

D
oc

um
en

t
•

Te
ch

ni
ca

l R
eq

ui
re

m
en

t
pr

op
os

es
 a

 r
e-

en
gi

ne
er

ed
 v

ie
w

 o
f t

ha
t e

nv
iro

nm
en

t.
It

de
sc

rib
es

•

C
on

st
ra

in
t D

ef
in

iti
on

th
e

st
ru

ct
ur

e
an

d
cu

ltu
re

 o
f y

ou
r

or
ga

ni
za

tio
n,

 p
ro

po
se

d
ch

an
ge

s
to

 y
ou

r
or

ga
ni

za
tio

n,
 a

nd
 s

tr
at

eg
ie

s
fo

r
ac

hi
ev

in
g

th
os

e
ch

an
ge

s.
Th

e
do

cu
m

en
t i

nd
ic

at
es

 te
ch

ni
ca

l r
eq

ui
re

m
en

ts
 a

nd
 c

on
st

ra
in

ts
th

at
 p

er
ta

in
 to

 s
ys

te
m

 s
iz

e,
 p

er
fo

rm
an

ce
, a

nd
 q

ua
lit

y
at

tr
ib

ut
es

. I
t

al
so

 c
on

ta
in

s
a

su
bs

et
 o

f y
ou

r c
on

te
xt

 m
od

el
, t

he
 a

rc
hi

te
ct

ur
al

ly

si
gn

ifi
ca

nt
 u

se
 c

as
es

 o
r

bu
si

ne
ss

 p
ro

ce
ss

es
 th

at
 o

ffe
r

im
po

rt
an

t
ca

pa
bi

lit
ie

s
w

ith
in

 y
ou

r
bu

si
ne

ss
 a

nd
 w

hi
ch

 c
ov

er
 c

rit
ic

al
 a

sp
ec

ts

of
 y

ou
r

or
ga

ni
za

tio
n.

B
us

in
es

s
G

lo
ss

ar
y

•
G

lo
ss

ar
y

D
ef

in
es

 c
om

m
on

 v
oc

ab
ul

ar
y

us
ed

 in
 o

th
er

 a
rt

ifa
ct

s.

B
us

in
es

s
O

bj
ec

t M
od

el
 (

AM
)

•
C

RC
 M

od
el

D

es
cr

ib
es

 y
ou

r
bu

si
ne

ss
 e

nv
iro

nm
en

t.
B

ec
au

se
 m

uc
h

of
 t

he

•
U

M
L

C
la

ss
 D

ia
gr

am
su

gg
es

te
d

ef
fo

rt
 fo

r
cr

ea
tin

g
bu

si
ne

ss
 o

bj
ec

t m
od

el
s

(R
at

io
na

l
C

or
po

ra
tio

n
20

01
)

is
 o

fte
n

co
ns

id
er

ed
 h

ig
h-

le
ve

l a
na

ly
si

s
ac

tiv
iti

es
(A

m
bl

er
 2

00
1a

) —
in

 p
ar

tic
ul

ar
 th

e
cr

ea
tio

n
of

 A
ct

iv
ity

, C
ol

la
bo

ra
tio

n,
Se

qu
en

ce
, a

nd
 S

ta
te

 c
ha

rt
 d

ia
gr

am
s —

a
si

m
pl

er
 a

pp
ro

ac
h

is
 o

ft
en

ta
ke

n
w

hi
ch

 fo
cu

se
s

ju
st

 o
n

do
m

ai
n

m
od

el
in

g
vi

a
cr

ea
tio

n
of

 a
 C

RC
m

od
el

 o
r

a
U

M
L

C
la

ss
 d

ia
gr

am
.

B
us

in
es

s
O

bj
ec

t M
od

el
 (

R
U

P)
•

U
M

L
Ac

tiv
ity

 D
ia

gr
am

D
om

ai
n

in
fo

rm
at

io
n,

 s
uc

h
as

 th
e

de
fin

iti
on

 o
f b

us
in

es
s

en
tit

ie
s

an
d

•
U

M
L

C
la

ss
 D

ia
gr

am
th

ei
r

re
la

tio
ns

hi
ps

, i
s

de
sc

rib
ed

 u
si

ng
 U

M
L

C
la

ss
 d

ia
gr

am
s.

 T
he

•

U
M

L
C

ol
la

bo
ra

tio
n

D
ia

gr
am

dy
na

m
ic

 in
te

ra
ct

io
ns

 b
et

w
ee

n
th

os
e

en
tit

ie
s

ca
n

be
 m

od
el

ed
 u

si
ng

•

U
M

L
Se

qu
en

ce
 D

ia
gr

am
U

M
L

C
ol

la
bo

ra
tio

n
di

ag
ra

m
s

or
 U

M
L

Se
qu

en
ce

 d
ia

gr
am

s,
 a

nd
 t

he

•
U

M
L

St
at

e
C

ha
rt

 D
ia

gr
am

dy
na

m
ic

 n
at

ur
e

of
 th

e
en

tit
ie

s
th

em
se

lv
es

 w
ith

 U
M

L
St

at
e

ch
ar

t
di

ag
ra

m
s.

 U
M

L
Ac

tiv
ity

 d
ia

gr
am

s
ar

e
us

ed
 to

 d
es

cr
ib

e
bu

si
ne

ss
pr

oc
es

se
s.

co
nt

in
ue

s

72244_CH23I 2/27/02 11:11 AM Page 235

236

Ta
b

le
 2

3.
1

Po
te

nt
ia

l M
od

el
in

g
Ar

tif
ac

ts
 fo

r
B

us
in

es
s

M
od

el
in

g
(c

on
tin

ue
d)

U
P

 D
E

LI
V

E
R

A
B

LE
C

A
N

D
ID

A
TE

 A
R

TI
FA

C
TS

U
S

A
G

E

B
us

in
es

s
Ru

le
s

•
B

us
in

es
s

Ru
le

Id
en

tif
ie

s
th

e
cr

iti
ca

l b
us

in
es

s
ru

le
s

pe
rt

in
en

t t
o

yo
ur

 s
ys

te
m

.

B
us

in
es

s
U

se
 C

as
e

M
od

el
•

U
M

L
U

se
 C

as
e

D
ia

gr
am

D
es

cr
ib

es
 th

e
in

te
nd

ed
 fu

nc
tio

ns
 o

f t
he

 b
us

in
es

s,
 id

ea
lly

 in
 a

•

Es
se

nt
ia

l U
se

 C
as

es
te

ch
no

lo
gy

-in
de

pe
nd

en
t m

an
ne

r.
An

 im
po

rt
an

t p
ar

t o
f t

he
 m

od
el

 is
bu

si
ne

ss
 u

se
 c

as
e

sp
ec

ifi
ca

tio
ns

, t
ec

hn
ol

og
y-

in
de

pe
nd

en
t

us
e

ca
se

s,
 w

hi
ch

 th
is

 b
oo

k
re

fe
rs

 to
 a

s
es

se
nt

ia
l u

se
 c

as
es

.

Su
pp

le
m

en
ta

ry
 B

us
in

es
s

•
C

ha
ng

e
C

as
es

Pr
es

en
ts

 a
ny

 n
ec

es
sa

ry
 d

ef
in

iti
on

s
of

 th
e

bu
si

ne
ss

 n
ot

 in
cl

ud
ed

 in

Sp
ec

ifi
ca

tio
n

•
C

on
st

ra
in

t D
ef

in
iti

on

th
e

co
nt

ex
t m

od
el

 o
r

th
e

do
m

ai
n

m
od

el
. I

t m
ay

 c
on

ta
in

 b
eh

av
io

ra
l

•
Fe

at
ur

e
an

d
us

ab
ili

ty
 r

eq
ui

re
m

en
ts

, d
oc

um
en

te
d

us
in

g
fe

at
ur

es
 o

r
•

Te
ch

ni
ca

l R
eq

ui
re

m
en

t
co

ns
tr

ai
nt

s,
 a

s
w

el
l a

s
re

lia
bi

lit
y,

 p
er

fo
rm

an
ce

, a
nd

 s
ca

la
bi

lit
y

is
su

es
do

cu
m

en
te

d
as

 c
on

st
ra

in
ts

 o
r

te
ch

ni
ca

l r
eq

ui
re

m
en

ts
.

72244_CH23I 2/27/02 11:11 AM Page 236

237

Ta
b

le
 2

3.
2

Po
te

nt
ia

l M
od

el
in

g
Ar

tif
ac

ts
 fo

r
Re

qu
ire

m
en

ts

U
P

 D
E

LI
V

E
R

A
B

LE
C

A
N

D
ID

A
TE

 A
R

TI
FA

C
TS

U
S

A
G

E

C
on

te
xt

 M
od

el
•

D
at

a
Fl

ow
 D

ia
gr

am
 (

D
FD

)
D

es
cr

ib
es

 th
e

cu
rr

en
t b

us
in

es
s,

 o
fte

n
at

 th
e

sc
op

e
of

 t
he

 p
ro

po
se

d
•

U
M

L
U

se
 C

as
e

D
ia

gr
am

sy
st

em
. A

s
yo

u
w

ill
 s

ee
 in

 C
ha

pt
er

 2
5,

 a
 D

FD
 is

 o
fte

n
pr

ef
er

ab
le

 t
o

th
e

su
gg

es
te

d
ap

pl
ic

at
io

n
of

 a
 U

M
L

U
se

 C
as

e
di

ag
ra

m
 (

Ra
tio

na
l

C
or

po
ra

tio
n

20
01

).

G
lo

ss
ar

y
•

G
lo

ss
ar

y
D

ef
in

es
 th

e
co

m
m

on
 b

us
in

es
s

an
d

te
ch

ni
ca

l v
oc

ab
ul

ar
y

us
ed

 in
ot

he
r

ar
tif

ac
ts

.

Su
pp

le
m

en
ta

ry
 S

pe
ci

fic
at

io
n

•
C

ha
ng

e
C

as
es

Re
co

rd
s

an
y

ne
ce

ss
ar

y
re

qu
ire

m
en

ts
 n

ot
 in

cl
ud

ed
 in

 t
he

 U
se

 C
as

e
•

C
on

st
ra

in
t D

ef
in

iti
on

m
od

el
. I

t m
ay

 c
on

ta
in

 b
us

in
es

s
ru

le
s,

 b
eh

av
io

ra
l a

nd
 u

sa
bi

lit
y

•
Fe

at
ur

e
re

qu
ire

m
en

ts
, d

oc
um

en
te

d
us

in
g

fe
at

ur
es

 o
r

co
ns

tr
ai

nt
s,

 a
s

w
el

l a
s

•
Te

ch
ni

ca
l R

eq
ui

re
m

en
t

re
lia

bi
lit

y,
 p

er
fo

rm
an

ce
, a

nd
 s

ca
la

bi
lit

y
is

su
es

 d
oc

um
en

te
d

as

•
B

us
in

es
s

Ru
le

s
co

ns
tr

ai
nt

s
or

 te
ch

ni
ca

l r
eq

ui
re

m
en

ts
.

U
se

 C
as

e
M

od
el

•
U

M
L

U
se

 C
as

e
D

ia
gr

am
Se

rv
es

 a
s

th
e

pr
im

ar
y

re
qu

ire
m

en
ts

 a
rt

ifa
ct

 in
 th

e
U

P.
 Y

ou
r

U
se

•

Sy
st

em
 U

se
 C

as
es

C
as

e
m

od
el

 is
 ty

pi
ca

lly
 c

om
pr

is
ed

 o
f a

 U
M

L
U

se
 C

as
e

di
ag

ra
m

, U
se

C
as

e
sp

ec
ifi

ca
tio

ns
, a

nd
 d

ef
in

iti
on

s
of

 th
e

ac
to

rs
.

U
se

 C
as

e
St

or
y

B
oa

rd
 (

AM
)

•
U

se
r

In
te

rf
ac

e
Fl

ow
 D

ia
gr

am
Sh

ow
s

ho
w

 a
 u

se
 c

as
e

is
 s

up
po

rt
ed

 b
y

yo
ur

 s
ys

te
m

’s
 u

se
r

•
Ro

bu
st

ne
ss

 D
ia

gr
am

in
te

rf
ac

e.
 T

he
 r

ob
us

tn
es

s
di

ag
ra

m
 is

 u
se

d
to

 e
xp

lo
re

 t
he

 u
se

 c
as

e
an

d
to

 id
en

tif
y

th
e

va
rio

us
 c

on
tr

ol
le

r,
bo

un
da

ry
, a

nd
 e

nt
ity

 c
la

ss
es

.
Th

e
U

se
r

In
te

rf
ac

e
flo

w
 d

ia
gr

am
 is

 u
se

d
to

 p
ro

vi
de

 a
 b

ird
s-

ey
e

vi
ew

of
 th

e
us

er
 in

te
rf

ac
e

fo
r

th
e

si
ng

le
 u

se
 c

as
e.

 (
So

m
et

im
es

 U
se

r
In

te
rf

ac
e

flo
w

 d
ia

gr
am

s
ar

e
cr

ea
te

d
to

 o
ve

rv
ie

w
 th

e
en

tir
e

us
er

in
te

rf
ac

e
fo

r
a

sy
st

em
.)

 N
ot

e
th

at
 it

 is
 c

om
m

on
 to

 u
se

 o
ne

 d
ia

gr
am

bu
t n

ot
 th

e
ot

he
r

w
he

n
st

or
y

bo
ar

di
ng

.

co
nt

in
ue

s

72244_CH23I 2/27/02 11:11 AM Page 237

Ta
b

le
 2

3.
2

Po
te

nt
ia

l M
od

el
in

g
Ar

tif
ac

ts
 fo

r
Re

qu
ire

m
en

ts
 (

co
nt

in
ue

d)

U
P

 D
E

LI
V

E
R

A
B

LE
C

A
N

D
ID

A
TE

 A
R

TI
FA

C
TS

U
S

A
G

E

U
se

 C
as

e
St

or
y

B
oa

rd
 (

R
U

P)
•

Fe
at

ur
e

or
 C

on
st

ra
in

t
U

se
s

fe
at

ur
es

 o
r

co
ns

tr
ai

nt
s

to
 d

es
cr

ib
e

us
ab

ili
ty

 r
eq

ui
re

m
en

ts
,

•
U

M
L

C
la

ss
 D

ia
gr

am
ty

pi
ca

lly
 a

s
fr

ee
-f

or
m

 te
xt

 th
at

 p
er

ta
in

s
to

 y
ou

r
us

er
 in

te
rf

ac
e.

 U
M

L
•

U
M

L
Se

qu
en

ce
 D

ia
gr

am
s

or

Se
qu

en
ce

 d
ia

gr
am

s,
 a

lth
ou

gh
 U

M
L

C
ol

la
bo

ra
tio

n
di

ag
ra

m
s,

 a
re

•

U
M

L
C

ol
la

bo
ra

tio
n

D
ia

gr
am

s
of

te
n

dr
aw

n
to

 id
en

tif
y

th
e

cl
as

se
s

(i
nc

lu
di

ng
 b

ou
nd

ar
y/

in
te

rf
ac

e
•

U
sa

ge
 S

ce
na

rio

cl
as

se
s,

 e
nt

ity
 c

la
ss

es
, a

nd
 c

on
tr

ol
le

r
cl

as
se

s)
 r

eq
ui

re
d

to
 s

up
po

rt
th

e
us

e
ca

se
. A

 U
M

L
C

la
ss

 d
ia

gr
am

 is
 ty

pi
ca

lly
 u

se
d

to
 e

xp
lo

re
 t

he
st

ru
ct

ur
e

of
 th

e
id

en
tif

ie
d

cl
as

se
s.

 U
sa

ge
 s

ce
na

rio
s

m
ay

 b
e

w
rit

te
n

to
 d

es
cr

ib
e

us
er

 in
te

ra
ct

io
ns

 w
ith

 th
e

sy
st

em
.

U
se

r
In

te
rf

ac
e

Pr
ot

ot
yp

e
•

U
se

r
In

te
rf

ac
e

Pr
ot

ot
yp

e
or

Th

is
 is

 a
 “

tr
ad

iti
on

al
”

m
oc

ku
p

of
 y

ou
r

sy
st

em
’s

 u
se

r
in

te
rf

ac
e,

•

Es
se

nt
ia

l U
se

r
In

te
rf

ac
e

pe
rh

ap
s

us
in

g
a

U
I p

ro
to

ty
pi

ng
 to

ol
 o

r
an

 im
pl

em
en

ta
tio

n
la

ng
ua

ge

•
Pr

ot
ot

yp
e

su
ch

 a
s

Vi
su

al
 B

as
ic

 o
r

Ja
va

. A
gi

le
 m

od
el

er
s

w
ill

 o
fte

n
us

e
es

se
nt

ia
l

us
er

 in
te

rf
ac

e
pr

ot
ot

yp
es

 to
 e

xp
lo

re
 re

qu
ire

m
en

ts
 a

nd
 u

se
r i

nt
er

fa
ce

pr
ot

ot
yp

es
 fo

r
an

al
ys

is
 a

nd
 d

es
ig

n
pu

rp
os

es
 w

ith
 th

e
pr

oj
ec

t
st

ak
eh

ol
de

rs
.

238

72244_CH23I 2/27/02 11:11 AM Page 238

Agile Modeling throughout the Unified Process Lifecycle 239

(Rational Corporation 2001). With respect to models, the primary input into this disci-
pline is your requirements artifacts, although your business models provide important
context as well. As you can imagine, feedback from implementers and testers is clearly
important to your design effort, indicating the benefit of adopting AM’s Rapid Feedback
principle as well as AM’s Prove it With Code practice. As you see in Figure 23.1, the
majority of your analysis and design modeling efforts occur during the Elaboration
and Construction phases.

Table 23.3 lists the potential modeling artifacts that you may choose to create as part
of your analysis and design efforts. Two versions of use case realizations are indicated,
one suggested by the RUP and an agile one that agile modelers are more likely to con-
sider. An important note about use case realizations is that they describe the realiza-
tion of a use case AND related requirements artifacts, such as business rules and
constraints, and not just use cases as the name implies. Chapter 26, “Agile Analysis
and Design,” works through the Analysis and Design discipline for the SWA Online
case study.

Modeling in the Unified Process Is Challenging
Modeling within the Unified Process appears to suffer from several problems.
First, it’s overly complex. To be fair, it needs to be complex to handle a wide
range of applications and the folks at Rational are very clear that you need to
tailor the process to your environment (for example, cut out what you don’t
need). Second, the disciplines need to be reworked. Requirements are
identified as part of Business Modeling and Requirements. Third, some of the
artifacts need to be rethought. As Tables 23.1, 23.2, and 23.3 all indicate, there
is clearly opportunity to simplify major UP artifacts. A common theme is the
creation of artifacts that use simple tools, described in Chapter 10, “Using the
Simplest Tools Possible,” instead of artifacts that lend themselves to automated
CASE tools such as Rational Rose.

The Infrastructure Management
Discipline
The Infrastructure Management discipline focuses on the activities required to
develop, evolve, and support your organization’s infrastructure artifacts, such as
your organization/enterprise-wide models, your software processes, standards,
guidelines, and your reusable artifacts. Your software portfolio management efforts
are also performed in this discipline. In short, infrastructure management is a cross-
project effort, a concept that is not yet covered by the RUP (Kruchten 2000). Table
23.4 lists the modeling artifacts promoted by the EUP, including organization-wide
modeling standards. On the surface, the Infrastructure Management discipline
seems to go against the grain of AM, and if you implement this in a non-agile man-
ner, it in fact could easily do so, but as Chapter 27, “Agile Infrastructure Manage-
ment,” discusses, it is possible to take an agile approach to the Infrastructure
Management discipline.

TI P

72244_CH23I 2/27/02 11:11 AM Page 239

240

Ta
b

le
 2

3.
3

Po
te

nt
ia

l M
od

el
in

g
Ar

tif
ac

ts
 fo

r
An

al
ys

is
 a

nd
 D

es
ig

n

U
P

 D
E

LI
V

E
R

A
B

LE
C

A
N

D
ID

A
TE

 A
R

TI
FA

C
TS

U
S

A
G

E

An
al

ys
is

 M
od

el
•

U
M

L
C

la
ss

 D
ia

gr
am

D
es

cr
ib

es
 th

e
an

al
ys

is
 o

f y
ou

r
re

qu
ire

m
en

ts
 m

od
el

, s
er

vi
ng

 a
s

a
•

U
se

 C
as

e
Re

al
iz

at
io

ns

co
nc

ep
tu

al
 o

ve
rv

ie
w

 o
f t

he
 s

ys
te

m
. T

hi
s

is
 o

fte
n

a
te

m
po

ra
ry

(s

ee
 b

el
ow

)
m

od
el

, o
ne

 th
at

 is
 e

ith
er

 d
is

ca
rd

ed
 o

r
ev

ol
ve

d
in

to
 y

ou
r

de
si

gn
m

od
el

. A
gi

le
 m

od
el

er
s

ty
pi

ca
lly

 e
vo

lv
e

(p
or

tio
ns

 o
f)

 th
ei

r
B

us
in

es
s

O
bj

ec
t M

od
el

, i
f t

he
y

cr
ea

te
d

on
e,

 in
to

 a
n

An
al

ys
is

 M
od

el
.

D
at

a
M

od
el

•
D

at
a

M
od

el
D

es
cr

ib
es

 th
e

lo
gi

ca
l (

op
tio

na
l)

 a
nd

 th
e

ph
ys

ic
al

 r
ep

re
se

nt
at

io
n

of
pe

rs
is

te
nt

 d
at

a
in

 th
e

sy
st

em
, i

nc
lu

di
ng

 a
ny

 b
eh

av
io

r
de

fin
ed

 in
 t

he
da

ta
ba

se
.

D
ep

lo
ym

en
t M

od
el

•
U

M
L

D
ep

lo
ym

en
t M

od
el

D
ep

ic
ts

 th
e

ha
rd

w
ar

e
no

de
s,

 th
e

so
ftw

ar
e

co
m

po
ne

nt
s

di
st

rib
ut

ed
to

 th
os

e
no

de
s,

 a
nd

 m
id

dl
ew

ar
e

th
at

 c
on

ne
ct

s
th

e
no

de
s

of
 y

ou
r

sy
st

em
. T

hi
s

is
 o

fte
n

a
cr

iti
ca

l a
rc

hi
te

ct
ur

al
 m

od
el

 fo
r

yo
ur

 s
ys

te
m

.

D
es

ig
n

M
od

el
•

U
M

L
C

la
ss

 D
ia

gr
am

A
co

lle
ct

io
n

of
 m

od
el

s
th

at
 d

es
cr

ib
e

th
e

re
al

iz
at

io
n

of
 u

se
 c

as
es

•

U
se

 C
as

e
Re

al
iz

at
io

ns

an
d

se
rv

es
 a

s
an

 a
bs

tr
ac

tio
n

of
 y

ou
r

so
ur

ce
 c

od
e.

(s
ee

 b
el

ow
)

U
se

 C
as

e
Re

al
iz

at
io

n
(A

M
)

•
U

M
L

Se
qu

en
ce

 D
ia

gr
am

s
U

se
d

to
 a

na
ly

ze
 a

 u
se

 c
as

e,
 ty

in
g

th
e

re
qu

ire
m

en
ts

 d
es

cr
ib

ed
 w

ith
in

•

Ro
bu

st
ne

ss
 D

ia
gr

am
th

e
us

e
ca

se
 to

 th
e

an
al

ys
is

 m
od

el
 a

nd
/o

r
de

si
gn

 m
od

el
. A

gi
le

•

C
RC

 M
od

el
m

od
el

er
s

w
ill

 o
fte

n
cr

ea
te

 U
M

L
Se

qu
en

ce
 d

ia
gr

am
s

fo
r

co
m

pl
ex

po
rt

io
ns

 o
f l

og
ic

 w
ith

in
 th

e
us

e
ca

se
 (

be
tt

er
 y

et
 th

ey
’ll

 r
ew

or
k

th
e

lo
gi

c)
. C

RC
 c

ar
ds

 a
re

 a
 g

oo
d

op
tio

n
fo

r
ex

pl
or

in
g

th
e

st
ru

ct
ur

e
of

th
e

cl
as

se
s

to
 s

up
po

rt
 th

e
us

e
ca

se
 in

st
ea

d
of

 a
 U

M
L

C
la

ss
 d

ia
gr

am
as

 R
U

P
su

gg
es

ts
. A

no
th

er
 o

pt
io

n
is

 to
 c

re
at

e
a

Ro
bu

st
ne

ss
 D

ia
gr

am
fo

r
th

e
us

e
ca

se
 to

 id
en

tif
y

po
te

nt
ia

l c
la

ss
es

 (
se

e
C

ha
pt

er
 2

6)
.

U
se

 C
as

e
Re

al
iz

at
io

n
(R

U
P)

•
U

sa
ge

 S
ce

na
rio

U
sa

ge
 s

ce
na

rio
s

de
sc

rib
e,

 in
 te

xt
, f

lo
w

s
of

 lo
gi

c
th

ro
ug

h
th

e
us

e
•

U
M

L
Se

qu
en

ce
 D

ia
gr

am
s

or

ca
se

s.
 E

ac
h

flo
w

 o
f l

og
ic

 m
ay

 th
en

 b
e

ex
pl

or
ed

 v
ia

 a
n

in
te

ra
ct

io
n

•
U

M
L

C
ol

la
bo

ra
tio

n
D

ia
gr

am
s

di
ag

ra
m

, t
yp

ic
al

ly
 e

ith
er

 a
 U

M
L

Se
qu

en
ce

 d
ia

gr
am

 o
r

a
U

M
L

C
ol

la
bo

ra
tio

n
di

ag
ra

m
. S

eq
ue

nc
e

di
ag

ra
m

s
ar

e
th

e
m

os
t

co
m

m
on

ap
pr

oa
ch

 a
s

th
ey

 a
re

 w
el

l s
ui

te
d

fo
r

ex
pl

or
in

g
se

qu
en

tia
l b

us
in

es
s

lo
gi

c
(h

en
ce

 th
e

na
m

e)
.

72244_CH23I 2/27/02 11:11 AM Page 240

241

Ta
b

le
 2

3.
4

Po
te

nt
ia

l M
od

el
in

g
Ar

tif
ac

ts
 fo

r
In

fr
as

tr
uc

tu
re

 M
an

ag
em

en
t

E
U

P
 D

E
LI

V
E

R
A

B
LE

C
A

N
D

ID
A

TE
 A

R
TI

FA
C

TS
U

S
A

G
E

En
te

rp
ris

e
Re

qu
ire

m
en

ts

•
U

se
 C

as
e

D
ia

gr
am

Re
fle

ct
s

th
e

hi
gh

-le
ve

l r
eq

ui
re

m
en

ts
 o

f y
ou

r
or

ga
ni

za
tio

n
M

od
el

•
Es

se
nt

ia
l U

se
 C

as
e

(J
ac

ob
so

n,
 G

ris
s,

 J
on

ss
on

 1
99

7)
. A

 h
ig

h-
le

ve
l U

se
 C

as
e

di
ag

ra
m

 is

•
B

us
in

es
s

Ru
le

of
te

n
th

e
pr

im
ar

y
ar

tif
ac

t,
su

pp
or

te
d

by
 e

ss
en

tia
l/

bu
si

ne
ss

 u
se

•

C
on

st
ra

in
t

ca
se

s
th

at
 a

re
 te

ch
no

lo
gy

-in
de

pe
nd

en
t (

an
d

th
us

 lo
ng

 li
ve

d)
,

•
Te

ch
ni

ca
l R

eq
ui

re
m

en
t

re
fe

re
nc

in
g

ot
he

r
re

qu
ire

m
en

ts
 a

rt
ifa

ct
s

su
ch

 a
s

bu
si

ne
ss

 r
ul

e
an

d
co

ns
tr

ai
nt

 d
ef

in
iti

on
s.

 Y
ou

r
pr

oj
ec

t’s
 r

eq
ui

re
m

en
ts

 m
od

el
 s

ho
ul

d
re

fle
ct

, i
n

gr
ea

t d
et

ai
l,

a
sm

al
l p

or
tio

n
of

 th
is

 o
ve

ra
ll

m
od

el
.

D
om

ai
n

Ar
ch

ite
ct

ur
e

M
od

el
•

U
M

L
C

om
po

ne
nt

 D
ia

gr
am

 o
r

D
ep

ic
ts

 th
e

hi
gh

-le
ve

l b
us

in
es

s
st

ru
ct

ur
e

of
 y

ou
r

sy
st

em
s.

 In
 a

D

at
a

M
od

el
co

m
po

ne
nt

/o
bj

ec
t e

nv
iro

nm
en

t,
a

U
M

L
C

om
po

ne
nt

 d
ia

gr
am

 is
 o

fte
n

us
ed

 th
at

 d
ep

ic
ts

 th
e

la
rg

e-
sc

al
e,

 re
us

ab
le

 d
om

ai
n

co
m

po
ne

nt
s

th
at

ar
e

ev
ol

ve
d

ov
er

 ti
m

e
by

 y
ou

r p
ro

je
ct

 te
am

s.
 In

di
vi

du
al

 c
om

po
ne

nt
s

ar
e

in
 tu

rn
 d

es
cr

ib
ed

 b
y

U
M

L
C

om
po

ne
nt

 d
ia

gr
am

s
or

 U
M

L
C

la
ss

di
ag

ra
m

s
(i

f m
od

el
ed

 a
t a

ll)
. I

n
a

da
ta

-o
rie

nt
ed

 e
nv

iro
nm

en
t,

an
en

te
rp

ris
e

da
ta

 m
od

el
 is

 b
es

t s
ui

te
d

fo
r t

hi
s,

 id
ea

lly
 o

ne
 th

at
 s

ho
w

s
hi

gh
-le

ve
l d

at
a

su
bj

ec
t a

re
as

. S
ub

je
ct

 a
re

as
 in

 tu
rn

 a
re

 d
es

cr
ib

ed
 b

y
ot

he
r d

at
a

m
od

el
s

sh
ow

in
g

gr
ea

te
r d

et
ai

l.

Te
ch

ni
ca

l A
rc

hi
te

ct
ur

e
M

od
el

•
N

et
w

or
k

D
ia

gr
am

D
ep

ic
ts

 th
e

hi
gh

-le
ve

l t
ec

hn
ic

al
 in

fr
as

tr
uc

tu
re

 th
at

 s
up

po
rt

s
yo

ur
bu

si
ne

ss
. N

et
w

or
k

di
ag

ra
m

s
ar

e
of

te
n

us
ed

 to
 d

ep
ic

t y
ou

r h
ar

dw
ar

e/
ne

tw
or

k
en

vi
ro

nm
en

t,
al

th
ou

gh
 fr

ee
-f

or
m

 d
ia

gr
am

s
ar

e
al

so

co
m

m
on

.

M
od

el
in

g
St

an
da

rd
s

N
/A

Ag
ile

 m
od

el
er

s
fo

llo
w

 th
e

pr
ac

tic
e

of
 R

eu
se

 E
xi

st
in

g
R

es
ou

rc
es

an
d

w
ill

 a
do

pt
, a

nd
 m

od
ify

 if
 a

pp
ro

pr
ia

te
, e

xi
st

in
g

st
an

da
rd

s
an

d
gu

id
el

in
es

 a
pp

lic
ab

le
 to

 th
e

A
pp

ly
 M

od
el

in
g

St
an

da
rd

s
pr

ac
tic

e.

72244_CH23I 2/27/02 11:11 AM Page 241

242 Chapter 23

Non-Modeling Disciplines

There is far more to the UP than its modeling disciplines. Modeling is an important
part of the UP and because the modeling disciplines affect other disciplines, and vice
versa, we need to examine how the principles and practices of AM can potentially
affect these other disciplines. The non-modeling disciplines that we must examine are:

■■ Implementation

■■ Test

■■ Project Management

■■ Configuration and Change Management

■■ Environment

■■ Deployment

■■ Operations and Support

The Implementation Discipline
The purpose of the Implementation discipline is to write and initially test your soft-
ware and to integrate the results of individual developers into an executable system.
Your design model(s) are the primary driver of these efforts. When taking a UP/AM
approach to development, the principle Software Is Your Primary Goal will be a primary
motivator for you to focus on this discipline, and the practice Prove It With Code will
drive you in this direction as well. Implementers, including both application program-
mers and database administrators (DBAs), will provide feedback regarding your
design model, feedback that you should act on. Ideally, the implementers and the
modelers are the same people, something that is easily supported by the UP as people
are able to take on several roles in a project.

The Test Discipline
The purpose of the Test discipline is to verify and validate the quality and correctness
of your system. This includes both software testing activities such as unit testing and
integration testing as well as user-based testing activities such as usability testing and
user-acceptance testing. An important goal of this discipline is to ensure that defects
are identified and addressed appropriately before your system is deployed. Your
requirements and design models are critical inputs to your testing efforts. While mod-
eling, agile modelers follow the practice Consider Testability to ensure that their work is
not only testable but easy to test. Because agile modelers value simplicity, they follow
the practices Depict Models Simply and Create Simple Content, resulting in models that
are easy to understand by their audience, and in the case of this discipline, the audience
for some models includes people responsible for testing the system.

72244_CH23I 2/27/02 11:11 AM Page 242

Agile Modeling throughout the Unified Process Lifecycle 243

The Project Management Discipline
The purpose of the Project Management discipline is to guide an UP/AM project, includ-
ing activities that pertain to scheduling, risk management, staffing, and the monitoring
of your project. On an UP project, regardless of whether you have tailored it with the
principles and practices of AM, you work in an incremental and iterative manner. Your
project efforts are organized into iterations, indicated along the bottom of Figure 23.1.
Your project schedule is driven by use cases, which are written either as part of your
Business Modeling or Requirements discipline efforts. The use cases, or portions thereof,
are assigned to each iteration to define what is to be built during that iteration. As your
project progresses you will gain a better understanding of your requirements, and your
ability to implement those requirements, and therefore will need to rework your sched-
ule to reflect this (remember AM’s principle Embrace Change). The point to be made is that
your modeling efforts are affected by your project management efforts; you will want to
focus on (albeit not solely) the use cases for your current iteration to ensure that you stay
on schedule, and that your project management efforts are affected by your modeling
efforts. To do this, you update your schedule to reflect the current state of your models.

The Project Management discipline is potentially affected by several of AM’s princi-
ples. First, the principle of Open and Honest Communication implies that project man-
agers should be forthcoming both with their team and with their project stakeholders,
even when it isn’t convenient to do so. Second, the principles Software Is Your Primary
Goal, Enabling the Next Effort is Your Secondary Goal, and Travel Light provide clear guid-
ance as to how to prioritize your efforts. Project teams who take an UP/AM approach
are software-centric, not documentation-centric. These principles affect the artifacts
that you create during development, the manner in which you create them, and what
you finally deliver to your project stakeholders.

The Configuration and Change
Management Discipline
The purpose of the Configuration and Change Management discipline is to ensure the
successful evolution of your system, to control changes to and maintain the integrity of
your system’s artifacts. Taking an UP/AM approach to development you will find that
this discipline involves less work. First, you have fewer artifacts to manage because you
travel light and Use the Simplest Tools, you often find that you don’t want to keep many
of your models and therefore Discard Temporary Models whenever possible. Second, you
will change the modeling artifacts that you do decide to keep less often than you did in
the past because you follow the practice Update Only When It Hurts.

Although this discipline becomes easier, it also becomes more important because you
are also following AM’s practice of Collective Ownership. Everyone must have access to
your configuration control system, must understand your process, and must follow it
accordingly. Furthermore, in situations where your system must integrate with another
one, something that is quite common in practice, AM implores you to Formalize Contract
Models that describe this integration. These contract models should be put under configu-
ration management control, emphasizing the importance of this discipline.

72244_CH23I 2/27/02 11:11 AM Page 243

244 Chapter 23

Think Very Carefully Before Investing in a Requirements
Traceability Matrix
Traceability is the ability to relate aspects of a project’s artifacts to one another.
A requirements traceability matrix is the artifact that is often created to record
these relations. It starts with your individual requirements and traces them
through any analysis models, architecture models, design models, source code,
or test cases that you maintain. My experience is that organizations with
traceability cultures will often choose to update artifacts regularly, ignoring the
practice Update Only When it Hurts, so as to achieve consistency between the
artifacts (including the matrix) that they maintain. This is not traveling light. The
benefits of having such a matrix is that it makes it easier to perform an impact
analysis that pertains to a changed requirement because you know what
aspects of your system will potentially be affected by the change. However, if
you have one or more people familiar with the system, which you want to have
anyway, and if you want to be effective at enhancing the system, then it is
much easier and cheaper to simply ask them to estimate the change.
Traceability matrices are highly overrated because the costs to maintain such
matrices, even if you have specific tools to do so, typically far outweigh the
benefits. Make your project stakeholders aware of the real costs and benefits
and let them decide. After all, a traceability matrix is a document and is
therefore a business decision to be made by them.

The Environment Discipline
The purpose of the Environment discipline is to configure the processes, tools, stan-
dards, and guidelines used by your project team. Your agile modeling efforts are both
supported by and affect this discipline. The AM practice Apply Modeling Standards
depends on having access to modeling standards and guidelines, and one aspect of
this discipline is to identify and modify applicable standards and guidelines for your
team. AM’s principle Local Adaptation is supported by this discipline because tailor-
ing your software process to meet the needs of the team and of individuals is an
aspect of your Environment efforts. AM’s practice Use the Simplest Tools affects this
discipline because it simplifies the tool configuration process. There’s not much con-
figuration work required to work with index cards, whiteboards, and sticky notes.

The Deployment Discipline
The purpose of the Deployment discipline is to ensure the successful deployment of
your system. Your efforts in this discipline are most affected by how well you thought
through the deployment itself, something that is supported by your deployment mod-
eling efforts as part of the Analysis and Design discipline. AM’s principle Work With
People’s Instincts can improve your deployment efforts. If one of your co-workers or
project stakeholders thinks that a portion of your deployment strategy isn’t going to
work, then you should reconsider it.

WARN I NG

72244_CH23I 2/27/02 11:11 AM Page 244

Agile Modeling throughout the Unified Process Lifecycle 245

The Operations and Support
Discipline
The purpose of the Operations and Support discipline is to perform the activities
required to successfully operate and support your software. This discipline makes it
explicit within your project lifecycle that operations and support efforts are significant
considerations within your organization, the implication being that operations staff
and support staff are important project stakeholders. This realization affects how your
team supports and promotes the AM practice Active Stakeholder Participation—some of
the active participants should represent this contingent.

How Do You Make This Work?

First and foremost, for AM to work effectively with the UP you need to instantiate the
UP in an agile manner because AM works best when tailored into an agile process, a
concept that is discussed in more detail in Part 5. It is possible to instantiate the UP in
a manner that it is reasonably agile, although it’s also possible to instantiate it in such
a way that it is an unbearable anchor around the necks of developers. To succeed when
taking an UP/AM approach, you need to choose to be agile.

Second, you need to focus on producing quality software, not on producing docu-
mentation. This is related to my first point: that you need to be agile. Many organiza-
tions that adopt the RUP product (Rational Corporation 2001) like it because it’s
complex, it describes a wide range of development roles, it’s robust, and it describes
how to create a wide range of artifacts. The problem is that, in their exuberance, some
development teams forget that their primary goal is to develop software that meets
the needs of their project stakeholders and instead get lost wandering through the
documentation wilderness. Documentation is fine in adequate doses, but as Chapter
14, “Agile Documentation,” argues, too much documentation puts your project at
risk. The RUP product is a great resource when used appropriately, but you shouldn’t
necessarily create a supplementary business specification just because it tells you how
to do so. Agile modelers travel light and create only the artifacts that they need to ful-
fill their goals and no more. Project teams that take an UP/AM approach will pare
their efforts down to the bare minimum.

Third, recognize that you have a choice of artifacts available to you. Although the
RUP suggests specific types of models, you’ll see in the following chapters that you
can easily substitute other artifacts, particularly those built using simple tools, and still
achieve your goal of understanding or communicating an issue. For example, a CRC
model can often suffice in place of a UML Class diagram, or an essential user interface
prototype built from sticky notes and flipchart paper instead of something built using
a prototyping tool. Appendix A includes descriptions of several modeling artifacts that
you may decide to substitute in place of more complex and less inclusive techniques
suggested by the RUP or even the EUP.

72244_CH23I 2/27/02 11:11 AM Page 245

One of the greatest pains to human nature is the pain of a new idea.

—Walter Bagehot

246

C H A P T E R

24

Agile Business Modeling

You learned in Chapter 23, “Agile Modeling throughout the Unified Process Lifecy-
cle,” that the purpose of the Business Modeling discipline is to explore the business
environment in which your system operates. In this chapter we’ll work through a por-
tion of the SWA Online case study, described in Chapter 1, “Introduction”, to explore
how Agile Modeling’s principles and practices can be applied to improve your busi-
ness modeling efforts in a Unified Process environment.

How will you perform business modeling on an UP/AM project? First, at the beginning
of your project hold an initial modeling session with your project stakeholders, to both
explore the initial requirements for your system as well as to build a common business
vision with your project stakeholders. Chapter 13, “Agile Modeling Sessions,” provides
advice for taking an agile approach to organizing, holding, and then following up on such
a modeling session. Depending on the level of detail that we decide to go to with our mod-
eling efforts, and on the amount of time that we decide to invest in this initial modeling
session, we are likely to include Requirements discipline (Chapter 25, “Agile Require-
ments”) activities and perhaps even Analysis and Design discipline (Chapter 26, “Agile
Analysis and Design”) activities. Don’t worry, it’s very unlikely that the “process police”
will arrest you for doing so. Second, we need to be prepared to perform follow-up model-
ing sessions if we are unable to come to a common vision in our first session. Third, once
we agree to a common vision it is likely that any future business modeling efforts will sim-
ply occur during short, ad hoc modeling sessions instead of larger, formal sessions.

We would work on the following artifacts as part of our Business Modeling discipline
efforts if we chose to take the UP/AM approach to developing the SWA Online project:

72244_CH24I 2/27/02 11:09 AM Page 246

Agile Business Modeling 247

Figure 24.1 A high-level use case diagram for SWA Online.

■■ A business/essential use case model

■■ A simple business object model

■■ An agile supplemental business specification

■■ A business vision

A Business/Essential Use Case Model

Understanding the high-level requirements for your system, particularly early in a project
when you are trying to identify the scope of your effort, is important. The RUP (Rational
Corporation 2001) suggests that you create a business use case model, including a use case
diagram as well as supporting documentation, to explore the high-level requirements for
your system. Figure 24.1 depicts a digital picture of a whiteboard sketch of the high-level
use case diagram that we created during this session. Other information was also gath-
ered, in particular important business rules, constraints, and technical requirements that
we parked in our business supplementary specification described later in this chapter. The
goal of our initial modeling session was to understand the high-level requirements, not
just to identify high-level use cases, so we followed the practice Create Several Models In
Parallel and worked on several artifacts during the session.

72244_CH24I 2/27/02 11:09 AM Page 247

248 Chapter 24

An interesting thing happened during our modeling session when we applied the
<<include>> stereotype on the diagram. As you can see the Search for Item(s) use case
is included by both the Place Order and the Manage Inventory use cases. This was con-
fusing at first for several of our project stakeholders, so we needed to mentor them a
bit in the technique. At the beginning of the modeling session we spent a few minutes
describing the concept of use case modeling to provide everyone with a basic under-
standing of the technique. Doing this provides several benefits:

■■ It improves communication because everyone can understand the diagrams
created.

■■ It helps to build rapport with our project stakeholders because it puts everyone
in a position of learning new skills; we’re learning about the business and
they’re learning about software development.

■■ As our project stakeholders gain modeling skills it increases their ability to
actively participate on the project.

When you look at Figure 24.1 you quickly gain an understanding for what we’re trying
to accomplish with the SWA Online system, although not how we intend to accomplish it.
The model is arguably an essential use case diagram (Constantine & Lockwood 1999;
Ambler 2001a), what the RUP would call a business use case diagram, because it shows a
technology independent view of the system. You can implement a fully manual system or
a fully automated system based on this diagram. Yes, the use case “Post Product Review”
could be better renamed “Write Product Review” to make it more general, but our project
stakeholders chose the other name because it suited them better. You should always strive
to make requirements as technology independent as possible but the reality is that many
systems are already constrained to a subset of architectural options. For example, SWA
Online is constrained to an Internet-based solution, so investing time trying to abstract
away from this constraint is likely of little value to our immediate efforts. Remember the
principle Maximize Stakeholder Investment and focus your modeling efforts on tasks that
provide positive value.

The use cases are described in a simple manner; agile modelers often find that a point-
form description of the logic for each use case may be sufficient. You don’t need to specify
the system in detail at this point; you only need to gain a basic understanding of what the
system should accomplish and to identify the initial scope for the system. A point-form
description of each use case and actor does this. If your project stakeholders allow it, you
may not even need to go this far with your business modeling efforts. Perhaps identifying
three or four use cases is enough for now. If it is, then apply the principle Model With A Pur-
pose and stop your business modeling efforts for now, moving on to detailed modeling and
even implementation efforts for what you have already identified.

A Simple Business Object Model

An important goal of the Business Modeling discipline is to understand the underlying
business concepts, and one way to do that is to perform what is known as conceptual or
domain modeling. The RUP suggests that you create a collection of UML artifacts,
described in Chapter 23, but for many projects (including SWA Online) this is typically

72244_CH24I 2/27/02 11:09 AM Page 248

Agile Business Modeling 249

overkill. For SWA Online a better approach is to create a simple business object model
that focuses solely on the structure of business concepts and identifies major business
entities and the relationships between them. Structured methodologies typically suggest
the use of logical data models (LDMs) for this purpose, something that you should con-
sider if you’re building a system using structured or procedural technologies. Traditional
object-oriented development methodologies typically suggest creating a class diagram.

Agile modelers, on the other hand, follow the practice Use The Simplest Tools and
Apply The Right Artifact(s), and often choose simpler techniques such as CRC cards for
conceptual modeling. CRC cards are easy to learn to use (you can teach people to use
them in less than 10 minutes) and therefore are more inclusive than other conceptual
modeling techniques. You can and should use CRC cards to explore requirements with
your project stakeholders.

Figure 24.2 shows two CRC cards that are part of a conceptual model for SWA
Online. Across the top of the card is listed the name of the class, the left-hand side lists
the responsibilities of the class (the things that it knows, data, and the things that it
does, behaviors), and the right-hand side lists the classes that it needs to collaborate
with to fulfill its responsibilities. The collaborators indicate the existence of a relation-
ship between classes. For example, we know that customers have a relationship with
orders because the Customer card lists Order as one of its collaborators. We don’t
know the exact details of this relationship, something we want to explore later, but for
now this is sufficient to gain an understanding of the business domain that our sys-
tem operates in. In addition to customer and order, our CRC model will likely include
cards named Order Item, Tax, Shipping and Handling Charge, Inventory Item, Ship-
ment, and Warehouse (among others) that capture important domain concepts.

You Don’t Need to Create Every Artifact
A common misconception regarding the UP is that you need to create every
single artifact that it suggests. This isn’t the case—something that both the RUP
(Kruchten 2000; Rational Corporation 2001) and the EUP (Ambler 2001b) are
very clear about. Follow the principle Local Adaptation and tailor the UP to your
exact needs. If creating an artifact, or a portion thereof, will provide value to
your project then create it, otherwise don’t.

An Agile Supplementary Business
Specification

With an UP/AM approach your Supplementary Business Specification (SBS) artifact
collects the business modeling requirements that don’t seem to fit well anywhere else.
When agile modelers explore high-level requirements, as we did in our initial require-
ments modeling session with our project stakeholders, they will often identify related
business rules, constraints, technical requirements, and even potential future require-
ments for a system. Agile modelers prefer to “park” these requirements—often writing
them on flipchart paper, index cards, or a whiteboard. They capture just enough infor-
mation so that you know what the requirement is when you want to explore it in

TI P

72244_CH24I 2/27/02 11:09 AM Page 249

250 Chapter 24

Figure 24.2 CRC cards for the Customer and Order classes.

greater detail later during construction. Your goal is to capture just enough informa-
tion to understand the requirement, so that it can be estimated and scheduled into a
future iteration. For now this information would form your SBS.

Assuming that your project stakeholders are comfortable with the idea of you trav-
eling this light then you have nothing more to do than gather up your paper and cards
and perhaps take digital photos of information captured on your whiteboard—exactly
the tools we used in our initial requirements modeling session. If this isn’t the case you
need to consider transcribing this information into a more complicated tool such a
word processor or CASE tool. Chapter 10, “Using the Simplest Tools Possible?” dis-
cusses the concept of using the simplest tools and Chapter 14, “Agile Documentation,”

72244_CH24I 2/27/02 11:09 AM Page 250

Agile Business Modeling 251

discusses how to write agile documentation. UP/AM teams can greatly benefit from
the advice presented in both chapters. For SWA Online we were able to convince our
project stakeholders to allow us to keep most of our information recorded in our sim-
ple tools, although they insisted on a document that contained one-line descriptions,
sometimes just a name, for each business rule, constraint, technical requirement, and
potential future requirement.

Potential future requirement? An important part of your scoping effort is to identify
both what is currently in scope and what is currently out of scope, and by identifying a
requirement as a change case you are explicitly stating that it is out of scope for your
current project efforts. During both your Business Modeling and Requirements disci-
pline efforts your team will often identify requirements for future releases of your sys-
tem as well as potential requirements that you may need to implement at some point.
You don’t want to lose this information, although at the same time you don’t want to
invest too much time exploring it nor do you want to invest any time overbuilding your
software. However, there is some value to your architectural efforts—potential require-
ments may provide insights into the merits of one architectural alternative over another.

Change cases, described in Appendix A, are a simple technique for documenting
potential requirements. Figure 24.3 depicts two change cases for SWA Online, each of
which we captured on single index cards as we modeled with our project stakeholders.
Change cases describe requirements you may, or may not, need to support in the future
but you definitely do not need to support today. Change cases are often the result of
brainstorming with your project stakeholders, where questions such as, “How can the
business change?” “What legislation can change?” “What is your competition doing?”

Change: Expansion into North America

Likelihood: Very Likely

Timeframe: 12-18 Months

Impact:

Must support shipments to customers in Canada and Mexico.

Relationships with new shippers may be needed.

Relevant taxes and duties need to be calculated.

Product set sold within those markets likely to be different due

to legal issues and local preferences.

Support for multi-lingual site (English and French are official

languages of Canada, Spanish of Mexico)

--

Change: Sale of Virtual Products (online music, video, books, ...)

Likelihood: Very likely

Timeframe: 6-12 months

Impact:

Must be able to bypass physical shipping process.

We may need to support digital licenses for some products.

There may be limits (period of availability, number of copies) on

sales of individual items.

Figure 24.3 Two change cases for SWA Online.

72244_CH24I 2/27/02 11:09 AM Page 251

252 Chapter 24

and “Who else might use the system and how?” are explored. On the technical side,
developers will often ask fundamental questions such as, “What technology can
change?” and “What systems will we need to interact with?” that will lead to the iden-
tification of change cases. Change cases should be realistic, for example “We enter the
insurance business” for a bank or “We need to support the latest technology in our sys-
tem” are reasonable change cases but “Our sales staff is abducted by UFOs” isn’t. Fur-
thermore, change cases typically describe requirements that are reasonably divergent
from what you are currently working on, requirements that would potentially cause
major rework to fulfill. By identifying change cases you are now in a position to intelli-
gently choose between what would otherwise appear to be equal architectural or
design decisions. You should only bring relevant change cases into the decision mak-
ing process when your current requirements are not sufficient to help you to choose
between alternatives. Another advantage is that you can now explain to your project
stakeholders why you chose one approach over another, as I like to say you have a
story to tell. However, I cannot stress enough that change cases should not be used as
excuses to gold plate your system. Stay agile and don’t overbuild your system.

So what do you do when you think you have a change case that you truly believe
needs to be implemented now? Simple. Discuss it with your project stakeholders.
Ask them if the change case is an immediate requirement, and if so act accordingly. If
it isn’t an immediate requirement then accept the fact and move on. Never forget that
it is the project stakeholder’s responsibility to prioritize requirements, not yours.

Would there be harm in modeling for the future? This is a slippery slope because I
suspect that if you model it then you are much more likely to build it. It would require
great discipline not to overbuild, I believe, because once you’ve got it captured as a
collection of bubbles and lines it will be far too easy to convince yourself that there’s
no harm in overbuilding just this once. Having said that there’s nothing wrong with
drawing a few throw-away sketches as you discuss a change case; just don’t over
model any models you intend to keep.

Iterate between Disciplines
Although this chapter focuses on the Business Modeling discipline, the reality is
that you iterate between each discipline rapidly. You may do a little business
modeling, a little requirements modeling, some analysis, then some more
requirements modeling, then some analysis quickly followed by design and so
on. Agile modelers typically do not bother to distinguish between the different
“flavors” of modeling, they just model appropriately as the situation calls for.

A Business Vision

An important reason we decided to hold our initial requirements modeling session
with our project stakeholders was to identify a common business vision within the
group. However, it’s easy to say that you need to reach a common consensus between
project stakeholders but much more difficult to achieve it in practice. Individual proj-
ect stakeholders have different backgrounds, different priorities, and different prefer-
ences. To build a consensus everyone needs to recognize this, communicate what they

TI P

72244_CH24I 2/27/02 11:09 AM Page 252

Agile Business Modeling 253

need from the system, listen to what others have to say, and be prepared to negotiate.
Whenever I’m working with a group that has a problem coming to consensus we’ll
write down everyone’s issues on a whiteboard where everyone in the room can see
and discuss them. This visually depicts the extent of the group’s differences and pro-
vides a focus for their discussion. Sometimes we’ll remove an issue from the board, or
better yet simply cross it out because we often want to record scoping decisions after
the issue’s originator recognized that it wasn’t required or at least wasn’t important as
other issues. I also like to draw lines between contradictory issues so as to highlight
the need to discuss them, often using a specific color marker for just that purpose.

The RUP (Rational Corporation 2001) suggests that you create a business vision
document to record the results of your visioning efforts. Agile modelers recognize that
communication, not documentation, is your true goal. You want to come to a consen-
sus regarding the business vision. In practice vision documents can be very dangerous
things. In a situation where there is actual consensus regarding the vision then the
effort you invest documenting that vision is a make-work effort and you’d be much
better investing your time working on software to show your stakeholders what
you’re accomplishing, just as the principle Software is Your Primary Goal implores. In
situations where there isn’t consensus, a vision document can be used to cover up this
problem. Once it’s on paper someone can easily hold up the document and trumpet
the idea that a common vision has been reached when that isn’t actually the case—a
recipe for disaster later in the project. Instead of investing time documenting a false
vision, you would be much better served working with your project stakeholders to
explore their needs further.

How to Make This Work in Practice

Business Modeling appears to be the least-understood discipline within the UP. I sus-
pect that this is the result of the overlap between it and the Requirements discipline. In
many ways the Business Modeling discipline’s artifacts are simply high-level starts at
the Requirements discipline’s artifacts, as you shall soon see. This is perfectly fine, but
it does seem confusing for many developers. Don’t let this ambiguity worry you. With
respect to this discipline agile modelers will focus on understanding the business envi-
ronment and identify the initial scope of their system, at least at a high-level, and work
closely with their project stakeholders to do so.

72244_CH24I 2/27/02 11:09 AM Page 253

Meetings are indispensable when you don’t want to do anything.

—John Kenneth Galbraith

254

C H A P T E R

25

Agile Requirements

You learned in Chapter 23, “Agile Modeling throughout the Unified Process
Lifecycle,” that the purpose of the Requirements discipline is to engineer the require-
ments for your project. This includes identifying with project stakeholders what your
system should do, providing developers with a better understanding of the require-
ments, delimiting the system, providing a basis for estimating, and defining a user
interface for your system (Rational Corporation 2001). In this chapter we’ll work
through a portion of the SWA Online case study, described in Chapter 1,
“Introduction,” to explore how Agile Modeling’s principles and practices can be
applied to improve your requirements efforts in a UP environment.

How will you perform requirements modeling on an UP/AM project? As we discussed
in Chapter 24, “Agile Business Modeling,” we would likely start by holding one or more
formal modeling sessions at the beginning of our project, during the Inception phase, to
identify the initial requirements for the system and to come to a common vision for the sys-
tem. During these sessions we would also want to identify the scope of the system, or at
least the scope of the release that we are currently working on. Once we’ve achieved these
goals the rest of our requirements modeling efforts are likely to occur in short, informal ad
hoc modeling sessions (described in Chapter 13, “Agile Modeling Sessions”). Because
we’ve tailored AM into the UP we will need to have ready access to project stakeholders to
help identify and prioritize requirements for us, enabling our team to follow the practice
Active Stakeholder Participation. The requirements artifacts that you create form what the
RUP (Rational Corporation 2001) calls the Software Requirements Specification (SRS), for-
merly known as the Requirements Model in previous versions of the RUP.

72244_CH25I 2/27/02 11:41 AM Page 254

Agile Requirements 255

Taking an UP/AM approach to developing the SWA Online system we would work
on the following artifacts as part of our Requirements discipline efforts:

■■ The context model

■■ Use case model

■■ Use case story board

■■ Supplementary specification

The Context Model

Although our business use case model, described in Chapter 24, can be used to pro-
vide a good overview of our system, it doesn’t put the system into context. A use case
model is useful at describing what a system does but not so good at showing the sys-
tem within its external environment. The combination of what the system should
accomplish as well as an indication of the context of the system defines the scope for
your efforts. The RUP (Kruchten 2000; Rational Corporation 2001) suggests that scope
information be documented in the vision document for your system if you choose to
create such an artifact (remember that agile modelers choose to travel light). Your scope
definition may be a single statement, in the case of SWA Online it would be something
as simple as “To sell our products to customers via the Internet,” or a statement with
greater detail such as “To sell physical, but not virtual, products to existing or new cus-
tomers in the Continental United States.”

Consider Your Enterprise Requirements Model
Your organization may have a high-level requirements model that describes
your enterprise, an artifact of the Infrastructure Management discipline (see
Chapter 27, “Agile Infrastructure Management”). If this is the case an agile
modeler will follow the practice Reuse Existing Artifacts and use this model as
input into their requirements efforts. Enterprise requirements models can help
to provide context for your system. After all, the goal of your project is to
support a subset of your organization’s overall requirements.

A more detailed approach is to develop a context model that shows how your system
fits into its overall environment. Context models are often depicted using a use case dia-
gram, as you see in Figure 25.1, or as a dataflow diagram (DFD) as in Figure 25.2 (this
style of diagram is often called a “level-0” DFD). It is important to understand the scope
of your system so as to limit your development efforts. The first statement was too
vague; it could be taken to mean that you are selling to international customers, a signif-
icantly greater effort than selling only within the USA, as well as selling virtual products
such as online music which would require the addition of an online delivery system as
well as a physical one. You may find that your scope changes over time, a decision made
by your project stakeholders, so be prepared to embrace change.

So which is the best artifact to describe the scope of your system? A statement, a DFD,
or a use case diagram? Depends on your situation. Statements are straightforward but

TI P

72244_CH25I 2/27/02 11:41 AM Page 255

256 Chapter 25

Figure 25.1 A business use case diagram used to model the context of SWA Online.

Figure 25.2 A data flow diagram (DFD) used to model the context of SWA Online.

often not as communicative as a diagram. The DFD of Figure 25.2 shows the system in
the center of the diagram and its relationships with other external entities—organiza-
tions, people, or other systems—that are outside the scope of your control yet still inter-
act with your system. A major advantage of this approach is that it depicts in reasonable
detail the major flow of information between your system and the outside world. The
use case diagram of Figure 25.1 takes a different tack, depicting the system in the center
once again and the actors (organizations, people) that interact with your system. The
main advantage of this approach is that it depicts both the external and internal actors
that interact with your system, as opposed to the DFD that just depicts the external ones.

72244_CH25I 2/27/02 11:41 AM Page 256

Agile Requirements 257

The main disadvantage is that it does not indicate any detail regarding the interactions
between the system and the actors.

Which diagram should you create? Both have their advantages and disadvantages,
so perhaps you should consider creating both? No! That isn’t very agile. A better
approach is to create one diagram, breaking the rules a bit and combining the best of
both diagrams into one as you see in Figure 25.3. Notice how internal entities are indi-
cated with an “I” in the top corner of the two entities, my own style, and how numeric
identifiers with the entities are dropped. ID numbers are difficult to maintain manu-
ally and it’s easier to have a rule that entity names are unique to enable them to be
identifiers if needed. The figure could just as easily have used a use case diagram nota-
tion, although had it shown data flow I would have broken a serious use case model-
ing rule. Luckily our project stakeholders like DFDs so the notation used in Figure 25.3
works. Remember that the principle Model With a Purpose recommends that you know
your audience, enabling you to pick the artifacts best suited to them.

Don’t Be Afraid to Break the Rules
Although general practice is to not include internal entities on a level-0 DFD,
the idea is that you introduce internal entities when you start digging into the
details. We chose to do so anyway in Figure 25.2 because it enabled us to avoid
drawing a second diagram. The important thing to notice is that the world
hasn’t come to an end and the modeling police haven’t charged us with
software process malpractice. Yes, we have arguably gone against the practice
Apply Modeling Standards, but in doing so we have reduced both development
and maintenance costs.

TI P

Figure 25.3 A DFD including internal entities to model the context of SWA Online.

72244_CH25I 2/27/02 11:41 AM Page 257

258 Chapter 25

Figure 25.4 A high-level use case diagram for SWA Online.

*This example reveals a common problem with use cases—they are often too coarse-grained to
schedule into a single iteration. You are often motivated to either schedule a single use case
across multiple iterations, something that is uncomfortable from a project management point of
view, or refactor your use case into a collection of smaller ones which is often uncomfortable
from a modeling point of view.

Use Case Model

So how would we approach detailed requirements modeling for SWA Online? First,
let’s assume that the project has progressed to the point where we are now in the
Construction phase, and that our original use case diagram presented in Figure 25.4 is
still the most current version. The two of us are working together as a pair and our team
will be implementing the order definition and placement portions of the basic course of
action for the “Place Order” use case in this iteration. We won’t be implementing search
functionality, any sort of error or exception handling, tax calculations, or discount cal-
culations right now as that work has been scheduled to a future iteration.* The basic
course of action of a use case is often called the “happy path” because that is the logic
path where everything works. The alternative courses of action describe logic paths

72244_CH25I 2/27/02 11:42 AM Page 258

Agile Requirements 259

where things don’t work well. In the case of placing an order this would include being
out of stock of an item that the customer has requested. However, our goal this iteration
is to focus simply on a portion of the happy path for now. The other requirements will
be worked on either by other subteams or perhaps by us at a later date.

We decide to flesh out the logic for the basic course of action, which is presented in
Figure 25.5, and in parallel work on essential UI prototypes relevant to this use case,
one of which is presented in Figure 25.6. We work on these two artifacts in parallel
because they each approach the problem from a different direction, the use case
describes what the customer does to place an order and the essential UI prototype
specifies what the user interface of SWA Online must include to support this behavior.
Notice how the use case invokes the “Search for Item(s)” use case on line two, consis-
tent with the application of the <<include>> stereotype in Figure 25.4. Even though
this functionality is invoked in the part of the use case that we’re currently focused on

1. The use case begins when a customer chooses to place an order.

2. The customer searches for items via the use case “Search for Item(s)”

3. The customer selects and adds an order item to their order.

4. The customer indicates the number of a given item they wish to order.

5. The system calculates the subtotal for the item by multiplying the unit price by the number

ordered.

6. The customer repeats steps 2 through 5 as necessary to build their order.

7. The customer finishes adding items to their order.

8. The customer provides their ship to and bill to information, including their name, phone

number, and surface address.

9. The system calculates the subtotal for the entire order by adding the subtotals of the indi-

vidual line items.

10. The system calculates the taxes applicable for the order according to the business rule

Calculate Taxes for an Order.

11. The system calculates applicable discounts for the order according to the business rule

Calculate Discounts for an Order.

12. The system displays the applicable taxes and discounts.

13. The system calculates the grand total for the order by adding the applicable taxes to the

order subtotal and subtracting the discounts.

14. The system displays a summary of the order.

15. The customer verifies that the order is what they want.

16. The system schedules the order for fulfillment (see the use case Fulfill Order).

17. The system produces a receipt for the customer summarizing the order.

Figure 25.5 The basic course of action for placing an order.

72244_CH25I 2/27/02 11:42 AM Page 259

260 Chapter 25

Figure 25.6 An essential UI prototype depicting the requirements for a screen/page.

we won’t be implementing that functionality yet because it’s not in scope. Instead
we’ll stub out what we need, perhaps going straight to a results page listing the theo-
retical results of our search. Later on in the project the searching functionality will be
added as appropriate, just not now (remember, we’re working incrementally). Also
notice how the use case doesn’t take into consideration any sort of technology issues
yet, issues that we may decide to add in later on during analysis (Chapter 11, “Agile
Work Areas”) or design (Chapter 12, “Agile Modeling Teams”). Right now we just
want to understand the basic process of placing an order; we can worry about imple-
mentation details later (potentially in a few minutes from now). The use case describes

72244_CH25I 2/27/02 11:42 AM Page 260

Agile Requirements 261

logic that we won’t be implementing this iteration, such as the calculation of taxes and
discounts, functionality that we’ll need to stub out when we’re coding.

Although we know that we’ll be implementing the UI in a browser, we still choose to
work with sticky notes and flipchart paper instead of an HTMLeditor, because the paper
is more flexible and flexibility is what we need right now. As we initially explore the
requirements we will add UI elements, moving them around very quickly and we want
to use a tool that supports this effort. Later on, once the requirements for the page(s)
have stabilized we’ll switch over to an HTML editor because we’ll want to make our UI
more concrete for our project stakeholders to evaluate. For now we keep it simple.

We are following several of AM’s practices during this effort. We are clearly follow-
ing the practice Create Several Models in Parallel because we are working on a use case
and essential UI prototype, and Model With Others because the team is currently com-
prised of the two of us and as least one project stakeholder that is providing require-
ments. We are also following the practice Depict Models Simply. I would argue that
Figure 25.6 depicts a simple requirements model of the order placement page. I would
also argue that Figure 25.5 is a good example of an application of the practice Create
Simple Content because it provides just enough details to describe the business logic of
the use case. We are also following Apply The Right Artifact(s)—business rules are
being captured outside of the use case, although you could argue that the logic for cal-
culating the grand total of an order is a simple business rule, in a separate business
rules artifact (for now you would want to create placeholders for Calculate Taxes for an
Order and Calculate Discounts for an Order, either sections in a word processing docu-
ment or as individual index cards). Furthermore, user interface requirements are being
captured in a separate artifact, the essential UI prototype, and if we felt the need “data
requirements” could be captured in a conceptual model (see Chapter 24). We also fol-
lowed the practice Iterate To Another Artifact, moving back and forth between working
on the use case and the essential UI prototype—as we added features to the UI proto-
type we realized we were missing logic in the use case and vice versa. Finally, we
applied the practice Use The Simplest Tools—the UI prototyping was done using paper
and the use case logic was written on a whiteboard.

A common problem that developers following the UP seem to run into is how to write
use cases effectively. A common problem is to include everything but the kitchen sink in
a use case—people will mistakenly document business rules, constraints, data require-
ments, and even user interface requirements in use cases. Agile modelers, on the other
hand, will follow the practices Apply The Right Artifact(s), Create Several Models in Parallel,
and Iterate to Another Artifact when they are modeling. The end result is that they will not
try to put everything in their use cases, but instead use each type of artifact for what it is
good for. For example, in Figure 25.5 you see that step 10 invokes the Calculate Taxes For
An Order business rule described later in Figure 25.5. Instead of embedding the business
rule in the use case, something we could have easily done, we instead defined the busi-
ness rule as a first-class entity on its own and simply referenced it from the use case. This
approach makes sense because it keeps our artifacts simple and easy to understand. This
approach also makes it easy to reference the business rule from other artifacts, perhaps
our source code that implements this functionality. Furthermore, even if we don’t know
the exact details of how to calculate taxes right now the undocumented business rule
provides a placeholder reminding us to look into it. We can still proceed with working
on the rest of the use case, modeling it further (see Chapter 26, “Agile Analysis and

72244_CH25I 2/27/02 11:42 AM Page 261

262 Chapter 25

Design”) and hopefully getting into implementation quickly (remember the practice
Prove It With Code).

Consider Transcribing Your Use Case Diagram into an Electronic Tool
On an UP project use case diagrams are primary artifacts, being the centerpiece
of your requirements efforts. Figure 25.4 did not change from our initial
business modeling efforts (Chapter 24). In fact it’s the same diagram. The
reality is that our use case diagram will very likely need to be updated over
time. In future iterations it is likely that we’ll introduce new use cases, we’ll
split existing use cases up when we realize that alternative courses have
become more complex than we originally thought, and we may even assign
existing use cases to future releases. If you decide to maintain any
requirements artifacts over time this is the one that you are likely keep. My
suggestion would be to keep this diagram on a whiteboard for as long as you
can. I’ve seen diagrams such as this survive (evolving along the way) right
through to the deployment of a nine-month project, so it is possible to do
without a “pretty picture” created using a drawing or CASE tool. When there
becomes a clear need to migrate your diagram into such a tool then do so, but
until then Travel Light and leave it on your whiteboard. It’s amazing how little
documentation you truly need when you choose to do without it.

Assuming that we were satisfied with our modeling efforts, more than likely an
effort that took between thirty and sixty minutes, we would either continue on
through analysis (Chapter 11) and design (Chapter 13) and finally into implementa-
tion or we would first invest a few minutes to update the project team’s object model
with what we have just learned. I prefer to keep object models as simple as possible,
using CRC cards to do so as you saw in Chapter 24, because they are easy to work with
and very accessible to project stakeholders. Not only can they be used to show the
major entities within your domain but their responsibilities as well, including both
data and behavior.

Use Case Story Board

A use case story board shows how a use case is supported by the user interface for
your system. This is arguably an analysis or even a design activity because with a use
case story board you are exploring how you are going to implement the requirements
described by the use case. Agile modelers don’t worry about distinctions such as this,
we’re more concerned with Applying The Right Artifact(s) to get the job done—there
isn’t a practice called “Place Modeling Activities In The Right Category” within AM. If
the UP wants to categorize use case story boarding, and related user interface proto-
typing activities, as requirement modeling tasks then so be it.

A very effective artifact for use case story boarding, and for analyzing the logic of your
use cases is general, are robustness diagrams (Rosenberg and Scott 1999). Robustness dia-

TI P

72244_CH25I 2/27/02 11:42 AM Page 262

Agile Requirements 263

grams depict the major objects—classified into boundary/interface objects, entity objects,
or control/process objects—that participate in fulfilling an actor’s interaction with a sys-
tem as defined by a usage scenario. Boundary/interface objects represent user interface
elements such as screens, reports, HTML pages, or emails that actors interact with such as
the search page and shopping cart page. Entity objects are objects that are typically found
in your domain model, such as Order and Item. Control/process objects serve as the glue
between boundary/interface objects and entity objects, implementing the logic required to
manage the various objects and their interactions. Figure 25.7 shows a whiteboard sketch.
Once again we’ve followed the practice Use The Simplest Tool, representing the logic con-
tained in the Place Order use case of Figure 25.5. The boundary/interface objects are
depicted as circles with a “T” stuck into their side, control/process objects have an arrow-
head on the top, and entity objects have an underline.

By drawing this robustness diagram we quickly gain a sense for the work that we
need to do to implement this use case—as you can see we need to create six major user
interface items, very likely HTML pages seeing as we’re deploying to the Internet. We
also have seven process classes to build and four entity classes. Yes, this is a high-level
view of what we need to do, and once we get into detailed design and implementation
we will discover that there is more to it than this, but for now this is a good start.

Is Figure 25.7 sufficient for our need, which was to explore the user interface to sup-
port this use case? This is a question that agile modelers constantly ask themselves—
the principle Model With A Purpose tells us to stop modeling once the purpose has been
fulfilled. Although we have identified the boundary/interface classes that we need we
don’t know what each one should accomplish, hence we may decide to create essential
user interface prototypes such as the one presented earlier in Figure 25.6 and perhaps
even a traditional user interface prototype. We also don’t yet have a handle on the rela-
tionships between the various boundary/interface classes, something that a user inter-
face flow diagram is good at. Also, as part of our analysis and design activities we may
decide to develop UML sequence diagrams to explore how to implement this use case
(something we do in Chapter 26).

User interface (UI) flow diagrams can be used to explore the relationships between
major user interface elements, such as HTML pages in the case of SWA Online. Taking an
UP/AM approach to modeling the scope of a UI flow diagram will either be a single use
case or the entire system. In this case we’ve decided to create one for the entire system,
depicted in Figure 25.8, because the user interface for this release SWA Online system is
quite small. If we expected the system to have a large number of pages, 15 isn’t too bad
but fifty is definitely pushing it, then we would likely want to avoid a single “all-encom-
passing” diagram. Figure 25.8 enables our team to explore how customers will interact
with SWA Online from a birds-eye view, and thus ask very important usability questions
long before we’ve built the user interface. Does it make sense to be able to go from one
page to another? Should a customer be able to go directly from the order confirmation
page to the item information page? By looking at our user interface from this new per-
spective we are able to ask new questions of our project stakeholders, perhaps triggering
them to identify new requirements that will help to improve our system in the process.

The scope of Figure 25.8 is several use cases, making it a diagram that we would
evolve over time. In fact our team initially reserved a section of our white board space
so we evolve this diagram over time; luckily we used whiteboard wallpaper to cover

72244_CH25I 2/27/02 11:42 AM Page 263

264 Chapter 25

Figure 25.7 A robustness diagram for the Place Order use case.

most of our walls so we have a lot of working space. By taking this approach we didn’t
need to transcribe the diagram into a more sophisticated tool, such as Microsoft Visio,
instead we just updated it as required. Eventually we’ll decide to either erase the dia-
gram, following the practice Discard Temporary Models, take a digital photo of it if the
diagram is still of value to us but we need the whiteboard space, or perhaps we’ll tran-
scribe it into an electronic tool if that makes sense at the time.

72244_CH25I 2/27/02 11:42 AM Page 264

Agile Requirements 265

Figure 25.8 A diagram representing navigational flow within a user interface.

Supplementary Specification

A supplementary specification is where the vast majority of your systems require-
ments are documented. It supplements your use case by including business rule defi-
nitions, constraints, technical requirements, and any other non-use case requirement
pertinent to your system. Because most of the contents of a supplementary specifica-
tion are text based you are likely to choose to use a word processor. However, if there
isn’t a clear need to create and maintain your supplementary specification as an offi-
cial document then you may wish to reconsider this approach. Agile modelers choose
to follow the principle Travel Light and will therefore question the existence of any doc-
ument. For example, Figure 25.9 depicts two business rules that have been recorded on
index cards instead of in a word processor. We’ve followed the practice Use The
Simplest Tools, something that agile modelers always do. When we discussed the mer-
its of maintaining a supplementary specification as a word processing document, as
well as the inherent costs, and compared them with doing the same thing with index
cards we decided to proceed with the index cards. The creation of documentation is a

72244_CH25I 2/27/02 11:42 AM Page 265

266 Chapter 25

Maximum Order Total

The maximum amount that we will allow an order to reach is $10,000 USD before taxes and

any shipping and handling charges. This is to reduce our exposure to the risk of fraud.

Calculate Taxes For An Order

1. The state tax (currently 6.5%) shall be applied on all products sold by SWA Online.

2. Taxes shall be calculated on the order subtotal after any discounts have been applied.

3. Shipping and handling charges are not taxed.

Figure 25.9 Business rules in the SWA Online supplementary specification.

decision that project stakeholders make, see Chapter 14, and our stakeholders decided
not to incur the additional costs of this document.

Simple Tools Work in the Real World
A common refrain among developers, particularly those familiar with
prescriptive processes such as the UP, are that simple tools such as cards and
whiteboards aren’t sufficient for real-world application development. Really?
eXtreme Programming (Beck 2000) practitioners use simple tools all the time.
In fact, their entire requirements model is typically stored as a box of index
cards, and it seems to work incredibly well for them. CASE tools clearly have
their place, as Chapter 10, “Using the Simplest Tools Possible?” argues, but so
do simple tools.

When agile modelers work on the various aspects of a supplementary specification,
such as an individual business rule, the principle Maximize Stakeholder Investment
guides us to record just enough information to understand what is required. For exam-
ple, the business rules shown in Figure 25.9 are rather sparse—they include a name for
the business rule and a prose description and that’s it. Other information that we could
have recorded but chose not to was the source of the business rule (for example Sally
Jones), the date and time that the rule was recorded, a record of the rule being
reviewed, or a unique identifier for the rule. We have no intention to act on any of this
information so we’ve decided not to record it. Yes, we may regret this decision later,
but we’ll definitely regret investing the additional time recording this information
when we didn’t need to. Agile modelers have the courage to trust that they can deal
with any problems that arise when they actually do.

The constraints depicted in Figure 25.10 and the business rules in Figure 25.9 are
good examples of the results of two of AM’s simplicity practices:

Depict Models Simply. We could have used a more complex language, such as
OCL (Warmer and Kleppe 1999), to write the requirements. However, we used
simple prose instead because this approach was faster and far more readable by
our project stakeholders (who wrote many of the requirements themselves).

TI P

72244_CH25I 2/27/02 11:42 AM Page 266

Agile Requirements 267

Shipper

SWA Online will use our existing shipping company, Fly-By-Night Shipping, for the first release.

Database

SWA Online will use Oracle 11i to persist data as SWA Enterprises already has a corporate

license agreement with Oracle Corporation.

Figure 25.10 Two constraints for SWA Online.

Create Simple Content. Each requirement is cohesive. It describes one concept and
one concept only. For example, we could have chosen to write a single
requirement to describe every single technical environment constraint imposed
upon the team instead of one that focused only on the database. This
requirement would have specified the database, middleware, application server,
and so on that we needed to use.

There’s Nothing Wrong with Technical Constraints
Why are our project stakeholders specifying technology decisions for us? Isn’t
that “illegal” in the software development world? No. AM includes both senior
management and operations staff as project stakeholders, and a myriad of
other roles within your organization, and very often these two groups of people
will define constraints that you need to conform to. This includes constraints
that specify technical choices such as your database. Agile modelers will of
course explore these constraints to ensure that they’re realistic—if the manager
of operations suggests Oracle because you already have a corporate license,
that’s a good reason; if a senior manager suggests Oracle simply on the basis of
a magazine article they read, then you should thank them for the suggestion.

How to Make This Work in Practice

The Requirements discipline can be daunting at first, and the myriad documents and
models suggested by the RUP (Rational Corporation 2001) can lead project teams to
become very documentation centric. This does not need to be the case, as I’ve shown in
this chapter. To take an agile approach to this discipline you need to:

1. Focus on software, not documentation. When you tailor AM into the UP you
must remember that your primary goal is to develop software, not
documentation. Question every single artifact that your instantiation of the UP
recommends, and create it only if it is absolutely essential to your effort.

TI P

72244_CH25I 2/27/02 11:42 AM Page 267

268 Chapter 25

2. Keep it simple. Create the most minimalist version of each artifact that you can.
You saw that the business rule definitions of Figure 25.9 were just enough to
document the idea, nothing more and nothing less.

3. Proceed iteratively. On an UP/AM project you do not take a big-modeling-up-
front (BMUF) approach and create a comprehensive, all-encompassing software
requirements specification (SRS). You will start by identifying a high-level
model at first; a model with enough information to guide your development
efforts but one that isn’t highly detailed. Agile modelers gather the details as the
work proceeds, returning to requirements modeling efforts as required, and
assigning new work to future iterations (or releases) as appropriate. For
example, as you start to implement the order placement functionality you will
realize that you don’t quite understand the exact details of how it should work;
perhaps there are limits on how many items of a given type you may order. If
this is the case you have new functionality that must be estimated, prioritized,
and assigned to a future iteration. Perhaps your logic is out of order—maybe
the customer should provide their billing and shipping information first.
Perhaps there should be a way for customers to define a profile so as to define
billing and shipping information once, implying another new requirement that
must be dealt with in a future iteration.

4. Keep it simple. You can use simple tools. For example, our supplementary
specification was a box of index cards, not a word processing document, and it
seemed to work fine. A great benefit of the RUP product is that it provides
templates for key artifacts; however, that’s also a significant problem because it
makes it easy to become documentation centric and to not travel light.

5. Work as a team. Agile modelers work closely with developers; they are often
actively involved with implementation themselves, as well as testers. By
collaborating closely with the other people involved in your project you
improve communication and thereby reduce the need for documentation, which
in Chapter 8, “Communication,” you learned to be a very poor communication
vehicle. If your testers are actively involved in developing the requirements
they don’t need extensive documentation to formulate acceptance tests because
they know the requirements. In fact, in Part Three of this book you learned that
on XP projects that project stakeholders are responsible for writing user
acceptance tests (potentially with the aid of test professionals) and they don’t
need extensive documentation to do so. If it’s possible for XP surely it must be
possible for UP.

72244_CH25I 2/27/02 11:42 AM Page 268

The purpose of the Analysis and Design discipline is to evolve a robust architecture for
your system, to produce a detailed design for your system based on its requirements,
and to adapt your design to reflect the realities of your implementation environment
(Rational Corporation 2001). The primary inputs into this discipline are your require-
ments artifacts (see Chapter 25, “Agile Requirements”) and, less so, your business
models (see Chapter 24, “Agile Business Modeling”). In this chapter we will explore
how to take an agile approach to this discipline of the Unified Process (UP) (Jacobson,
Booch, and Rumbaugh 1999), applying the principles and practices of Agile Modeling
(AM) to do so.

How will you perform analysis and design modeling on a UP/AM project? During
the Inception phase most of your effort will focus on analysis of your business and
requirements models, although you will still be doing design work as needed. During
the Elaboration phase you will focus mostly on architecture, although analysis will also
be important and design work will become more prevalent as you prove your architec-
ture. During the Construction phase your focus will be on analysis and design activi-
ties. Your architecture should have been baselined and proven before leaving the
Elaboration phase, although changes can occur later in the lifecycle if appropriate—
agile modelers follow the principle Embrace Change so accept the fact that they may
need to change their architectural approach if it proves insufficient as their understand-
ing of the requirements evolves. During the Transition phase your modeling efforts will
focus on rework resulting from defects discovered by system and user testing efforts.

There is no such thing as rule-governed creativity.

—Emperor Leto II

in God Emperor of Dune by Frank Herbert

269

C H A P T E R

26

Agile Analysis and Design

72244_CH26I 2/27/02 11:41 AM Page 269

270 Chapter 26

*Many applications must work with legacy data and therefore don’t have the opportunity to
evolve their data schema, at least not much. In these cases you’ll want to follow the practice
Formalize Contract Models and gain access to a physical data model of the legacy database.
Hopefully one already exists, otherwise you will need to develop one for yourself.

It is important to understand that your approach to scheduling on a UP project is
use case driven, requirements driven is arguably a better term, with specific require-
ments (often centered around use cases) being assigned to each iteration. The basic
idea is that you will evolve your system, and any associated artifacts that you choose
to maintain, throughout each iteration. You will analyze the requirements assigned to
the iteration, possibly creating use case realizations for each use case and its associated
supplementary requirements. If you’re taking an object-oriented (OO) approach to
development, the assumption of this chapter, you’ll create models that lend them-
selves to OO development such as UML class diagrams and UML state charts. If
you’re taking a structured/procedural approach to development you would similarly
create artifacts that lend themselves to that paradigm, such as structure charts. If your
system is working with data, and most do, then you’ll also need to evolve a data
model over time.*

To explore the Analysis and Design discipline on a UP/AM project we will consider
the following issues with respect to developing the SWA Online system:

■■ Rethinking analysis and design models in the UP

■■ Architectural modeling

■■ Creating use case realizations

■■ Time to update our use case?

■■ Time to use a CASE tool?

■■ Design class modeling

■■ Data modeling

■■ Embracing change

■■ How does this work in practice?

Rethinking Analysis and Design Models in
the UP

In Chapter 23, “Agile Modeling throughout the Unified Process Lifecycle,” you
learned that in the UP an Analysis Model describes your analysis of your requirements
model, serving as a conceptual overview of the system. This is often a temporary
model, one that is either discarded or evolved into your design model. You also
learned that a UP Design Model is a collection of models describing the realization of
use cases and serving as an abstraction of your source code. My experience is that
some UP project teams can become very non-agile with respect to these two models,

72244_CH26I 2/27/02 11:41 AM Page 270

Agile Analysis and Design 271

Figure 26.1 Traceability between the major artifacts of the Unified Process.

particularly when they start trying to baseline versions of their models and to main-
tain some semblance of traceability between them.

Figure 26.1 explores the concept of traceability between the major artifact sets
within the UP—the System Requirements Specification (SRS), the Analysis Model, the
Design Model, and the Implementation Model. It does not consider other artifact sets
such as the Business Model and the Test Model, nor does it present sub-artifacts such
as use cases and classes that potentially exist within the major models because the dia-
gram is sufficiently complex as it is. Following an iterative and incremental approach
to development, which is exactly the approach that an UP/AM project team takes,
traceability between artifacts becomes very interesting. The diagram depicts the basic
concept that the design model for iteration n is developed based on both the analysis
model of iteration n and the existing design model from iteration n-1, therefore to
maintain full traceability you need to trace it back to both of these models. To do this
you would need to have the relevant artifacts baselined, something you may be doing
already as part of the Configuration and Change Management (C&CM) discipline,
and maintain a traceability matrix between the previous version of a model, in this
case design model n-1, and the current version of any input artifacts, in this case analy-
sis model n. You naturally also need to maintain the traceability matrix between arti-
facts within each major model as well, and you would need to consider baselining the
matrix itself at the end of each iteration so as to maintain full traceability throughout
your project.

Yikes! Teams that take this approach clearly are not traveling light. Even if they only
choose to maintain a traceability matrix that is current for the current iteration, evolv-
ing it along with their other project artifacts and not worrying about traceability from
one version to the next clearly have a lot of work to do, work that is taking away from
their software development efforts.

What would an agile modeler do? First, they realize that the concepts of an analysis
model and a design model are perfectly fine. They just don’t get hung up on them.

72244_CH26I 2/27/02 11:41 AM Page 271

272 Chapter 26

Second, they realize that they don’t really have an analysis model and a design model
per se, they just have modeling artifacts that they may or may not wish to maintain
over time—“analysis model” and “design model” are simply categories into which
their artifacts are organized. In other words they follow the practice Apply The Right
Artifact(s) and don’t worry all that much about academic categorizations of their
work. Third, they don’t go overboard on traceability. They realize that a traceability
matrix, regardless of the tool used to create and maintain it, is simply a document and
like every other document the decision to create and maintain it is the domain of their
project stakeholders. Therefore they discuss the concept with their project stakehold-
ers, presenting both the advantages (easier change management) and disadvantages
(increased documentation burden on the team) and let them decide whether they
wish to pay for this effort, which is in accordance to the principle Maximize Stakeholder
Investment.

Architectural Modeling

UP development teams will typically perform initial architectural modeling during
the UP Inception phase and during the Elaboration phase focus their Analysis and
Design discipline efforts on architecture. During this phase an architectural prototype
is developed as part of the Implementation discipline to show that the architecture
does in fact work—you follow the practice Prove It With Code. The primary architec-
tural artifact in the UP is called a System Architecture Document (SAD), a document
that summarizes your system architecture. Taking a UP/AM approach, agile modelers
will create a SAD if it provides value to their project and when their project stakehold-
ers are willing to invest in its creation and maintenance, just as they would any other
document. If your team does create a SAD, it typically contains:

■■ A summary of the architecturally significant requirements (if they’re
documented elsewhere you would simply reference the requirements to
remain agile).

■■ Overview diagrams representing the critical views of your system (see below).

■■ Documentation describing the diagrams as appropriate.

Agile modelers will typically create one or more overview diagrams, also called
navigation diagrams, which present an overview of the “landscape” of their system.
Just like a road map depicts the organization of a town, your overview diagram(s)
depict(s) the organization of your system. Overview diagrams are the instantiation of
your system’s architectural views. Kruchten (1995) describes a “4+1 view” of architec-
ture, which the RUP adopted initially and later expanded upon. The five views are:

1. Logical view. This view models the functional features that your system
provides to its end users.

2. Process view. This view models how your system fulfills non-functional
requirements, such as performance, system availability, concurrency and

72244_CH26I 2/27/02 11:41 AM Page 272

Agile Analysis and Design 273

distribution, system integrity, and fault-tolerance. It also specifies which thread
of control executes each operation of each class identified in the logical view.

3. Development view. This view models the organization of the actual software
modules (components, subsystems), often organized in layers, which can be
developed by one or more developers.

4. Physical view. This view models how your system will be deployed, often
including sub-views for your development, testing, and production
environments.

5. Scenario (use case) view. This view models a subset of architecturally
significant use cases or usage scenarios that show how elements of the first four
views fit together.

Agile modelers realize the concept of various architectural views is important, it’s
an implication of the principle Multiple Models, but that no one set of views is right for
every project. Instead, agile modelers will follow the practice Apply the Right Artifact(s)
and let the nature of the project define the types of models they create. The type of
overview diagram(s) that you create depends on the nature of the system that you are
building. For example, a team building a complex business application using J2EE-
based technology will likely find that a UML component diagram and a UML deploy-
ment diagram are appropriate for use as architectural overview diagrams. However, a
team building a corporate data warehouse will likely gravitate toward a data model
and UML deployment diagram on which to base their architecture. Different projects,
different architectural views, hence different types of overview diagram(s). You need
to be flexible in your approach because one size does not fit all.

How should we model the architecture for SWA Online? We start by gathering the
entire development team for an initial modeling session. This ensures that we hear a wide
range of opinions as well as build consensus regarding our architectural approach. Not
only do we want an architecture that works, we want one that everyone believes in.
Although we could have decided to leave it in the hands of a single person, perhaps
someone who has built this sort of system before, we instead chose to follow the practice
Model With Others and play it safe—remember, software development is a lot like swim-
ming, it’s dangerous to do it alone. We also decide to keep this modeling session short,
although we are prepared to go over time if necessary, and schedule it for two hours. The
principle Rapid Feedback prompts us to model a little bit and then seek to validate our
models, likely by creating an architectural prototype via the practice Prove It With Code. A
less-than-agile approach would be to model for several days or even weeks, the idea
being to specify the architecture in great detail to ensure that we have it right. However,
the longer we go without concrete feedback the likelier the chance that we’ve gotten it
wrong. We’re far better off thinking through the big issues now and then immediately
start into prototyping the “skeleton” (Jacobson, Booch, and Rumbaugh 1999) of our
application to verify that our approach works, or in the worst case to identify areas where
we need to rethink things. The bottom line is that everything works on a whiteboard
sketch. It isn’t until you try things in practice that you discover what actually works.

During our modeling session we focus on two diagrams, the UML deployment
model of Figure 26.2 and the UML component model of Figure 26.3, both of which we

72244_CH26I 2/27/02 11:41 AM Page 273

274 Chapter 26

Figure 26.2 A UML deployment diagram for SWA Online.

Figure 26.3 A UML component diagram for SWA Online.

drew on the whiteboard following the practice Create Several Models in Parallel. The
deployment model helped us to explore the proposed configuration of our system and
the component model enabled us to explore potential business components and their

72244_CH26I 2/27/02 11:41 AM Page 274

Agile Analysis and Design 275

Figure 26.4 A free-form sketch describing a strategy for implementing a business com-
ponent.

interrelationships. The two diagrams are clearly related. The deployment diagram
shows how some software components are deployed, which was the motivator to
work on both of them at once.

Are these two diagrams sufficient? At the beginning of the project, yes they are, so
as the principle Model With A Purpose implores we should stop working on them
because they fulfill their purpose. Based on the information contained in Figure 26.2
we can now proceed with setting up a development environment, during which we’ll
quickly discover whether or not our approach is feasible. We will likely find that we’ve
missed something, or that something doesn’t quite work as we expected, but that’s
okay. In fact, this is good stuff to discover as early as possible. Figure 26.3 provides us
with guidance as to how we might decide to organize our business code, although
during the modeling session one developer points out that he doesn’t understand how
we’ll build a large-scale business component using EJB technology (our chosen tech-
nology platform). A discussion quickly ensues and one developer steps up to the
whiteboard and presents an approach that he has seen work before in the past, the dia-
gram for which is shown in Figure 26.4. He explains that a component’s interface is
defined by one or more session beans and that his past experiences have led him to not
provide direct access to EJB entity beans. A session bean will either interact with EJB
entity beans, other EJB session beans, normal Java objects, or the database(s) on the
back end. The arrows on the diagram indicate the type of object that can invoke oper-
ations on other objects, for example following this approach EJB entity beans are not
allowed to invoke operations on session beans but they are allowed to interact with
other entity beans. The team discusses the advantages and disadvantages of this
approach for a few minutes and decides to adopt these design guidelines for now. As
agile modelers they choose to follow the practice Apply Modeling Standards, although
reserve the right to change the guidelines if their architectural prototyping efforts
show that this approach won’t work well for the project.

72244_CH26I 2/27/02 11:41 AM Page 275

276 Chapter 26

You Can Travel Light Architecturally
When most or all of your communication is face-to-face you will find that
overview diagrams, even ones that are hand drawn, are often sufficient to
describe your architecture. SADly many UP development teams mistakenly
invest time developing a comprehensive SAD when they don’t need to—pun
intended.

During our architecture modeling session we invited two of our key project stake-
holders to the modeling session. We have nothing to hide from them because we sub-
scribe to the principle of Open and Honest Communication. This decision was very
fortunate because we had several questions regarding the requirements that became
apparent as we discussed architectural options, so we benefited from the practice
Active Stakeholder Participation because we had our questions answered on the spot.
Yes, it can be embarrassing when project stakeholders discover that the developers
don’t know everything, for example during our initial architecture session it became
apparent that several developers needed to receive training on EJB and Oracle data-
bases, two of the main technologies chosen for this project. This was something that
the development team realized but that our project stakeholders might not have, but
it’s not a big deal. They would have found out eventually, they’ll be paying the train-
ing bill after all, and it shows that we’re only human.

When we created these two overview diagrams, a critical concern of our modeling
efforts was the principle Assume Simplicity. The practice Create Simple Content indicates
that we wanted to identify the simplest architectural approach(es) possible. The more
complicated our architecture, the greater the chance that it won’t be understood by
individual developers and the greater the opportunity for error and breakdown. The
principle Work With People’s Instincts guided our efforts when trying to identify the
simplest approach—our implementation efforts will quickly reveal what is simple and
what isn’t, right now the best we can do is make an educated guess. Furthermore, we
wanted our diagrams to contain the right level of information, showing how various
aspects of our system work together but not the details (future design sessions can
address the details), following the practice Depict Models Simply. We followed the prac-
tice Use the Simplest Tools to do the job—whiteboard sketches were all we needed to
model the critical aspects of our architecture.

You should recognize that your architectural models will reveal your system’s
dependencies on other systems or their dependencies on yours. For example, your sys-
tem may interact with a credit-card processing service via the Internet, access data
from a legacy relational database, or produce an XML data structure for another inter-
nal application. Network diagrams and UML deployment diagrams are very useful
for identifying these dependencies, as are process-oriented models such as workflow
diagrams, UML activity diagrams, and data-flow diagrams. The implication is that
these dependencies indicate the potential need to follow the practice Formalize Contract
Models between your team and the owner(s) of the systems that yours share depen-
dencies with. Ideally many of these models will already be in place; the credit card
processor likely has a strictly defined protocol that you must follow and the legacy
database likely has a physical data model defined for it, although new functionality
such as the XML data structure will require adequate definition. Sometimes you will

TI P

72244_CH26I 2/27/02 11:41 AM Page 276

Agile Analysis and Design 277

need to perform an analysis of the existing interface to a legacy system if accurate doc-
umentation is not in place, and other times you will need to design a new interface. In
both cases a corresponding contract model will need to be developed, either by your
team, the other team(s), or co-jointly as appropriate.

Creating Use Case Realizations

A use case realization is an artificial artifact in the sense that it is effectively a collection
of one or more models that describes the implementation of a single use case. You cre-
ate a use case realization by analyzing a use case and tying the information described
within the use case to your analysis and/or design. Although the RUP (Rational
Corporation 2001) associates use case realizations with system use cases, when you stop
and think about it system use cases can be thought of as the realization of business/
essential use cases. Having said that, our focus will be on realizing system use cases.

The RUP suggests that you explore flows of logic through the use cases, often
referred to as usage scenarios, via interaction diagrams—either UML sequence dia-
grams or UML collaboration diagrams. Sequence diagrams are the most common
approach as they are well suited for exploring sequential business logic (hence the
name) such as that described by usage scenarios. As you develop each interaction dia-
gram you identify collaborations between objects, which translate to operations imple-
mented by classes, and identify relationships between the classes. When one object
collaborates with another there is an implied relationship between the corresponding
classes, either an implicit one or an explicit one. The UML recognizes several types of
relationships between classes, including association, aggregation, composition, inheri-
tance, and dependency. The implication is that as you develop your interaction dia-
grams you are identifying important aspects of the static structure of your software,
information that is typically captured by a UML class diagram in the RUP. If you are
sketching the interaction diagrams by hand you might choose to work on the class dia-
gram at the same time, or if you are working with a sophisticated UML-based CASE
tool then it is likely that it is automatically doing this work for you. Either way you are
effectively following the AM practice Create Several Models In Parallel.

The RUP approach to use case realizations isn’t the only one available to you. Agile
modelers will often create UML sequence diagrams for complex portions of logic within
a use case, or better yet they’ll rework the logic, but will often opt for CRC cards instead
of a UML class diagram because they’ll follow the practice Use The Simplest Tools and will
choose index cards over white boards or CASE tools for this effort. Agile modelers that
aren’t comfortable with UML sequence diagrams will often opt to create a Robustness
Diagram first to identify potential classes and often follow with sequence diagrams
(Rosenberg and Scott 1999). It is important to recognize that you often have a choice, that
you should follow the principle of Local Adaptation and tailor your approach to reflect the
skills, experiences, and preferences of your team.

There’s No One “Official” Way
To explore the logic of a use case, some people will choose to create the
robustness diagrams, whereas many will go straight to sequence diagrams.

TI P

72244_CH26I 2/27/02 11:41 AM Page 277

1. The use case begins when a customer chooses to place an order.

2. The customer searches for items via the use case “Search for Item(s)”

3. The customer adds an order item to their order.

4. The customer indicates the number of a given item they wish to order.

5. The system calculates the subtotal for the item by multiplying the unit price by the number

ordered.

6. The customer repeats steps 2 through 5 as necessary to build their order.

7. The customer finishes adding items to their order.

8. The customer provides their ship to and bill to information, including their name, phone

number, and surface address.

9. The system calculates the subtotal for the entire order by adding the subtotals of the

individual line items.

10. The system calculates the taxes applicable for the order according to the business rule

Calculate Taxes for an Order.

11. The system calculates applicable discounts for the order according to the business rule

Calculate Discounts for an Order.

12. The system displays the applicable taxes and discounts.

13. The system calculates the grand total for the order by adding the applicable taxes to the

order subtotal and subtracting the discounts.

14. The system displays a summary of the order.

15. The customer verifies that the order is what they want.

16. The system schedules the order for fulfillment (see the use case Fulfill Order).

17. The system produces a receipt for the customer summarizing the order.

278 Chapter 26

Figure 26.5 The basic course of action for placing an order.

Some people prefer CRC cards to explore the static structure of software and
others prefer UML class diagrams. You’ll even vary yourself—one day you’ll take
one approach and the next day another.

Figure 26.6, which you saw in Chapter 25, shows a whiteboard sketch of a robust-
ness diagram representing the logic contained in the Place Order use case of Figure
26.5. It depicts many of the high-level classes that we will likely need to create to
implement the functionality described by the use case. With these classes identified it
is much easier for us to create a UML sequence diagram, depicted in Figure 26.7, for
this use case. In parallel we also developed the analysis-level class diagram of Figure
26.8, also a whiteboard sketch. We chose to create a class diagram instead of CRC cards
in this case, taking an approach in between the two suggested approaches described
earlier. (Normally I would use CRC cards, but in the next section I want to discuss
issues associated with transcribing a whiteboard sketch to a CASE tool model so chose
to show a UML class diagram instead.)

72244_CH26I 2/27/02 11:41 AM Page 278

Agile Analysis and Design 279

Figure 26.6 A robustness diagram for the Place Order use case.

Take a close look at the robustness diagram and the use case—they’re not consistent.
When we drew the robustness diagram we realized that we had forgotten to include
steps to collect payment for the order. We quickly called over Wendy, our on-site proj-
ect stakeholder who acts as our primary source of requirements, and verified that we
do in fact need to charge for the things we sell. Yes, even though this is an obvious
requirement that we really don’t need to verify with our users, a fundamental concept
of AM is that our project stakeholders are the only valid source of requirements, so we

72244_CH26I 2/27/02 11:41 AM Page 279

280 Chapter 26

Figure 26.7 A UML sequence diagram for the Place Order use case.

Figure 26.8 An analysis-level UML class diagram based on the Place Order use case.

have gotten in the habit of suggesting new requirements to Wendy no matter how
obvious we feel the requirements are. Although we were working on an activity of the
Analysis and Design discipline, in this case we quickly backtracked to the
Requirements discipline to work on our use case. This happens a lot—UP/AM teams
will commonly iterate back and forth between the various UP disciplines.

72244_CH26I 2/27/02 11:41 AM Page 280

Agile Analysis and Design 281

Time to Update Our Use Case?

Should we update the use case logic? We’re clearly missing an important requirement,
collecting payments for orders. Furthermore, Figure 26.5 is still a business/essential
use case because it doesn’t reflect technology/implementation decisions yet. It would
be reasonable to rework the use case to better describe what we’re working on. We first
baseline the original version of the use case via our chosen configuration management
process, a procedure described by the Configuration and Change Management disci-
pline. We have decided to maintain our use cases as official documentation; project
stakeholders are interested enough in having a reasonable definition of the require-
ments to invest in the creation and maintenance of the use case diagram and use cases.
The use case is also inconsistent with the user interface prototype for placing orders,
depicted in Figure 26.9, indicating that we also need to calculate shipping and han-
dling charges. This prototype was created in parallel to our efforts by other developers
on our team, based on our essential UI prototype that we had created earlier and on

Figure 26.9 An HTML-based user interface prototype for placing orders.

72244_CH26I 2/27/02 11:41 AM Page 281

282 Chapter 26

1. The use case begins when a customer chooses to place an order.

2. The system displays the Shopping Cart Page for placing an order.

3. The customer searches for items via the use case “Search for Item(s)”

4. The customer adds an order item to their order. [Alternative Course: The Customer

Removes an Order Item]

5. The customer indicates the number of a given item they wish to order.

6. The customer chooses to refresh the page.

7. The system calculates the subtotal for the item by multiplying the unit price by the number

ordered.

8. The system redisplays the Shopping Cart Page.

9. The customer repeats steps 3 through 8 as necessary to build their order.

10. The customer finishes adding items to their order.

11. The customer provides their ship to and bill to information, including their name, phone

number, and surface address.

12. The customer chooses to checkout. [Alternative Course: The Customer Chooses to

Continue Shopping.]

13. The system calculates the subtotal for the entire order by adding the subtotals of the

individual order items.

14. The system calculates the taxes applicable for the order according to the business rule

Calculate Taxes for an Order.

15. The system calculates applicable discounts for the order according to the business rule

Calculate Discounts for an Order.

16. The system calculates the shipping and handling charges for the order according to the

business rule Calculate Shipping and Handling Charges.

17. The system calculates the grand total for the order by adding the applicable taxes to the

order subtotal and subtracting the discounts.

18. The system displays the Summary page.

19. The customer verifies that the order is what they want.

20. The customer indicates how they wish to pay for the order. [Alternative Course:

The Customer Chooses to Continue Shopping.]

21. The system confirms the payment. [Alternative Course: Payment Isn’t Confirmed]

22. The system schedules the order for fulfillment (see the use case Fulfill Order).

23. The system displays the Order Confirmation Page.

24. The system generates and sends an order confirmation email to the customer.

Figure 26.10 The updated basic course of action for placing an order.

additional input from Wendy. It is clear that the practice Update Only When It Hurts is
applicable in this case.

Figure 26.10 depicts the updated use case. Notice how it now references aspects of the
user interface, indicating the HTML pages that customers use to place orders—as a result

72244_CH26I 2/27/02 11:41 AM Page 282

Agile Analysis and Design 283

the use case is no longer technology independent. Had we chosen to implement this sys-
tem using graphical user interface (GUI) technology such as Visual Basic or Java Swing the
use case would very likely be worded differently to reflect the different way of working
with that style of UI. Notice however that we’re not bringing design-level considerations
into the use case, for example we don’t indicate that the OrderValidator class validates an
order even though this is depicted in Figure 26.6. Also notice the addition of references to
alternative courses, flows of logic for when things don’t go perfectly, something that com-
monly occurs when evolving a business/essential use case into a system use case. We’ve
also tightened up the language of the use case. For example, the original version used the
terms “order item” and “line item” whereas the new one just uses “order item.” This was-
n’t a big deal, but Wendy indicated that the proper term is order item so we made this
minor change to avoid any confusion.

As we rewrite the use case we notice that there’s a problem with the user interface
prototype—there’s no way for the customer to indicate that they wish to checkout. We
realize that we need another button labeled “Checkout” that invokes the order confir-
mation process that is indicated in Figure 26.6. The practice Create Several Models in
Parallel has served us well in this instance, enabling us to find an error in our work
early on while it is still easy to fix.

There also isn’t any sort of indication of the user’s email address, which we need to
send an order confirmation. This suggests two possibilities—instead of using a cus-
tomer number to identify customers, as Figure 26.9 indicates, perhaps we should con-
sider using email addresses instead. Email addresses uniquely identify a customer and
they’re something that the person is likely to remember. We suggest this idea to
Wendy, our on-site project stakeholder, and she says that she likes it but will need to
sleep on it before making a decision.

Expect to Find Problems with Your Requirements
It is quite common to find problems in use case logic while you are creating use
case realizations. One of the values of the practice Create Several Models in
Parallel is that you often find such errors because you approach the same
problem from different directions. Agile modelers view this as a form of model
testing because you are validating the content of one model with that of
another. Yes, you may still get it wrong in both models but as you have seen in
this example it is possible to catch problems with your work.

Should we update Figure 26.6 since it is also out of sync? The diagram doesn’t
include the concept of calculating shipping and handling charges. In this case the
answer is likely no. We aren’t going to keep the robustness diagram much longer. In
fact, we’ll erase it once we’ve finished our design class modeling (see the next section)
based on the information that it contains. We could decide to update the diagram with
two extra bubbles, one for a controller/process class ShippingChargeCalculator and
another for a ShippingCharge entity class, but it’s fresh on our minds so we instead
decide to put this information straight into our design class model. The robustness dia-
gram has served its purpose so we follow the practice Discard Temporary Models and
erase it from the whiteboard.

TI P

72244_CH26I 2/27/02 11:41 AM Page 283

284 Chapter 26

Time to Use a CASE Tool?

The Figures 26.6, 26.7, and 26.8 lead to an interesting issue—each of them provides a
different view of the same information, with enough similarities between them to sug-
gest the use of a CASE tool instead of whiteboard sketches. Agile modelers will often
consider using CASE tools to create design-level diagrams, particularly when a CASE
tool exists that is easy to work with and will also generate quality source code for the
environment that they are working in. Luckily several CASE tools exist that support
J2EE, the platform that SWA Online is being developed on, so this is an option.

Sometimes a CASE Tool Is Simplest
The practice Use The Simplest Tools guides us to pick the simplest tool that will
do the job. When the job is writing source code a CASE tool that generates
quality code is simpler than using a programming tool that forces us to write
that same code by hand.

We discuss our modeling experiences to date and decide that having the class dia-
gram in a CASE tool makes a lot of sense because we can generate Java source code from
it. Sequence diagrams are also likely candidates to be captured in the CASE tool because
the tool will evolve our classes, and hence our class diagrams, to reflect the information
captured in the sequence diagrams. However, we don’t intend to keep the sequence dia-
grams as part of our official documentation so we decide to leave it up to the individual
modelers—if they don’t want to use the CASE tool for sequence diagrams that’s fine, but
they do need to use it to capture structural information about our software. We decide to
continue drawing robustness diagrams by hand, we’ve found that they’re useful as tem-
porary analysis artifacts but not something that we want to maintain over time.

To ensure that we are effective using the CASE tool the team decides to reverse engi-
neer our code regularly, as suggested in Chapter 10, “Using the Simplest Tools
Possible?” to keep the class diagram in sync with our code. This decision in effect
makes our CASE tool a primary development tool, not just a modeling tool. As an
aside, a common trend for CASE tool vendors that support code generation is to also
support integration of their tools with popular IDEs for that language.

Design Class Modeling

We realize that we’ve been investing a fair bit of time modeling, and very little coding,
and that begins to worry us. The longer we go without feedback the greater the risk
that what we’re modeling isn’t going to work well. Agile modelers believe in the prin-
ciple Rapid Feedback and thus prefer to follow the practice Prove It With Code—they
model a little, code a little, test a little, and then iterate. Thinking about it, we realize
that our modeling efforts have had too great of a scope. By focusing on a fairly large
use case, Place Order, we’ve bitten off a little more than we would normally prefer to
chew. For example our robustness diagram indicates the need for eighteen different
classes, and this is at an analysis level. At design these could easily become forty or

TI P

72244_CH26I 2/27/02 11:41 AM Page 284

Agile Analysis and Design 285

Figure 26.11 A design-level UML class diagram based on the Place Order use case.

fifty classes. A broad approach can work well at first when we’re defining initial
requirements, but when we get into detailed design we are much better off focusing on
a small subset at a time. Therefore, we decide to shift gears a bit and focus our initial
efforts on working with orders; the functionality concerning customers, payments,
and addresses can be tackled later.

We begin to transcribe the analysis class diagram of Figure 26.11 into our CASE tool.
Although it is a reasonably good analysis-level diagram it doesn’t reflect our architec-
tural approach based on domain components. Figure 26.3 indicates that we believe
that we need an order component and Figure 26.4 indicates that we should introduce
one or more EJB session beans to implement its public interface (the functionality that
the component provides to external components and applications). Figure 26.11
depicts our design translation of the information captured by the analysis diagram to
reflect our component strategy.

We introduced a session bean called OrderComponent to implement the public
interface of the component, effectively implementing the Façade design pattern
(Gamma, Helm, Johnson, and Vlissides 1995). This pattern advises you to introduce a
class that routes method invocations to other classes that you do not want the outside
world to access, reducing coupling within the overall system. As agile modelers we
normally follow the practice Apply Patterns Gently and ease into the application of a
pattern, although in this case Façade is a very simple one so we effectively eased com-
pletely into it right at the start.

Agile modelers prefer to follow the practice Apply Modeling Standards, which should
include conventions for naming model elements such as classes. Because this component-
based approach is a fundamental aspect of our architecture we would want to put a nam-
ing convention in place for these façade classes. We ask around and discover that we’re the
first to implement a domain component, in this case the Order component, so nobody
else has considered a naming convention yet. Nobody has a problem with the conven-
tion of BusinessNameComponent, resulting in names such as OrderComponent and
CustomerComponent. We also considered BusinessNameFacade as a convention but our
fellow teammates preferred the first approach.

It isn’t clear from our class diagram how the logic of operation of OrderComponent
works. We can make an intelligent guess based on the names but that’s about it. UML

72244_CH26I 2/27/02 11:41 AM Page 285

286 Chapter 26

class diagrams are very good at modeling the static structure of object-oriented soft-
ware, or the depiction of classes and relationships between them, but not very good at
modeling the dynamic nature, or the depiction of objects collaborating with one
another to fulfill responsibilities. At some point we’ll need to follow the practice Apply
The Right Artifact(s) and explore the implementation of each of these operations. Likely
candidates for doing so are source code, UML sequence diagrams, and UML collabo-
ration diagrams. The choice of which artifact you’ll use will depend on the complexity
of each operation, the greater the complexity the more likely it is that you’ll want to
model before coding it, and your familiarity with each type of model.

OrderComponent has a dependency with Item because it interacts with instances of
Item to search for them, invoking its EJB finder operations as appropriate. Finder oper-
ations? What finder operations? The finder operations are not shown in Figure 26.11
for two reasons:

1. The CASE tool generates finders. Because there is a standard way within EJB
for implementing finder operations, they are something that our CASE tool can
easily generate so we don’t need to explicitly indicate them at first. It is quite
common for tools to not show the code that they generate because you quickly
get used to having it done for you so there’s not reason to clutter your diagrams
with this “common” information—agile modelers choose to Depict Models
Simply. In addition to EJB finder operations, the CASE tool also generates remote
interfaces, getter operations that provide access individual data attributes, setter
operations that update individual data attributes, and the scaffolding code
required to maintain associations between objects (Ambler 2001a).

2. Finders are easy to code. We’ve coded several finder operations in the past, and
doing so again will be easy. Including the finder operations on our model won’t
be of much value. It’s much easier to let the CASE tool generate what it cases,
then update the code as we see fit, and then reverse-engineer our changes back
into our model as Chapter 10 suggests.

Is the class diagram of Figure 26.11 good enough? That depends on why we’re creat-
ing the model in the first place, as the principle Model With A Purpose implores. In this
case our goal is to model enough so we can start coding. Having said that, it appears that
we may have gone too far with our modeling efforts—we could have started by model-
ing the OrderComponent and Item classes and started coding based on that, focusing on
the functionality to search for items (see Chapter 20, “Modeling During an XP Iteration:
Searching for Items,” for a discussion of doing exactly this on an XP project). Once that
functionality was in place we could have returned to our class model and modeled the
concept of an Order and OrderItem, programming and testing that functionality. Then
we could have added the TaxCalculator, Discounter, and ShippingChargeCalculator one
at a time. The approach that we’ve taken so far is much closer to a “big design up front”
(BDUF) approach than we’d normally prefer, whereas the other approach that I just
described is more in line with the practice Model In Small Increments.

Take Baby Steps at First
This chapter has purposely deviated a bit from the more extreme approach to
modeling described in Part Three of this book. I did this because I wanted to

TI P

72244_CH26I 2/27/02 11:41 AM Page 286

Agile Analysis and Design 287

show that there is a range of opportunity for applying the principles and
practices of AM on software projects—you can take the highly iterative and
programming-intensive approach typical of XP projects or the still iterative but
more modeling-intensive approach described here. Many modelers who are
familiar with a big modeling up front (BMUF) style of working will find the
approach described in this chapter radical enough. As they become more
comfortable with agile development they may decide to become more extreme
over time.

Data Modeling

We decide to focus on implementing OrderComponent and Item at first. We use our CASE
tool to generate the source code for us and we use that as our starting point. For now our
goal is to implement and test the functionality for searching for items, the first step of
which is to implement the finder method of the item class. This operation has to:

1. Take a collection of parameters that represent the search criteria. To do this we
need to identify the parameters to the operation, something that we’ve already
done with our UI prototyping work of Figure 26.12. From this sketch we know
that the potential search criteria is currently the name of the item, the item
number, the category that the item is in, a minimum price, and a maximum
price. A customer may decide to specify one or more of these criteria.

Figure 26.12 A hand-drawn sketch that represents what needs to be built for the item
search page.

72244_CH26I 2/27/02 11:41 AM Page 287

288 Chapter 26

2. Parse the criteria. Parsing the search criteria is also easy, the only challenging
part is to convert wildcard characters such as “*” to the SQL equivalents of “%”,
something we can do with a single-purpose class.

3. Formulate a SQL SELECT statement representing the search criteria. Because
(for now) we’ve decided to take a bean managed persistence (BMP) approach
instead of a container-managed persistence (CMP) approach, we need to write
SQL code to interact with the database (Roman, Ambler, Jewell, and Marinescu
2002). To do this we need to map the individual search criteria attributes to
columns within the database. The implication is that we need to know what the
existing database schema is and update it if need be. We’re implementing this
system using a relational database to store our data, the schemas of which are
typically modeled using physical data models. Figure 26.13 depicts our existing
data model, using an unofficial UML-like notation (Ambler 2001a), which other
members on our team have created using a data modeling CASE tool. Like our
OO CASE tool that we’re using to model our UML class diagram this tool
generates, and reverse engineers, source code specific to our database including
data definition language (DDL) to create the schema as well as triggers
necessary to maintain referential integrity within the DB. As you can see the
columns do in fact exist in the database already.

4. Return the results of the search. The response from the database, which may be
an exception that needs to be handled, must be dealt with appropriately. Figure
26.11 indicates that the findItems() operation of OrderComponent returns an
XML document, therefore we need to write the code to package the response in
that format. To do this we decide to introduce two operations to Item, one to
build an appropriate error message XML document and another to build an
XML document containing one or more representations of items that match the
criteria.

Many Artifacts Aren’t Specific to a Methodology
You’ve seen several of the models presented in this chapter before. For example,
Figure 26.12 was used in Chapter 20 to explain how to model during an XP
iteration and Figure 26.13 was used in Chapter 21, “Modeling During an XP
Iteration: Totaling an Order,” for the same purpose. An important insight is to
recognize that you’ll use the same types of artifacts, such as UML class diagrams
and change cases, on projects following different software processes. Another
insight is that you may even arrive at the same answer following different
processes, although how you get to that answer may differ dramatically.

We implement the find functionality and begin testing it, only to discover that the
response time is extremely variable. The problem is that it’s possible to define very
wide-ranging searches, for example if someone merely presses the search button the
contents of the entire Item table are returned. This isn’t good. We call over Brendan,
the database administration (DBA) expert on the team, and ask for his help. He sug-
gests two strategies. The first one is to first submit the query to the database and ask it
to estimate the result size, if the estimation is too big then we simply return a message

TI P

72244_CH26I 2/27/02 11:41 AM Page 288

Agile Analysis and Design 289

Figure 26.13 The current data model for SWA Online.

asking the customer to tighten up their criteria. Otherwise we submit the query to the
database and return the results. The second approach is to work with database cur-
sors, returning a block of 20 items at a time and allowing the customer to scroll up and
down through the blocks as they see fit. This is more complicated as it requires us to
handle scroll up and scroll down requests. More importantly, because our require-
ments do not specify what we should do, we need guidance from our project stake-
holders. So, once again we iterate back to the Requirements discipline, explaining to
Wendy what the issue is and what the options are. We quickly estimate the effort for
each approach and ask her to decide, and she chooses to go with the cursor approach
because it’s more user friendly.

We rework our code to reflect this new approach, testing it as we work, and finally
decide to commit our work to our version control system. Because we’re following the

72244_CH26I 2/27/02 11:41 AM Page 289

290 Chapter 26

practice Collective Ownership we want to update our shared artifact repository on a
regular basis. This includes source code, any permanent models such as our class dia-
gram and data model, and any permanent documentation that we’ve decided to
maintain. Once we’ve resolved any conflicts, for example someone else may have also
made changes to the Item class that we need to reconcile with our own work, we con-
tinue working on the Place Order use case. Your version control process is described
by your instantiation of the Configuration and Change Management discipline (see
Chapter 23).

Embracing Change

The next step is to write the code to build the shopping cart page for placing orders. In
Figure 26.9 you can see that the current approach is to indicate the customer number at
the top of the page. We had discussed this issue with Wendy a couple of days ago, sug-
gesting the use of email address instead, and she had promised to consider it although
we hadn’t heard back from her yet. Once again we track down Wendy; she was work-
ing with a few other developers on the team so we had to wait until she was free to
help us. While we waited for her we took a look at our existing models to identify
potential changes that we needed to make. Regardless of Wendy’s decision regarding
using email addresses as unique customer IDs for customers we would still need to
handle email addresses to support the functionality of emailing an order summary to
the customer. The implication was that we may want to record the email address
where the order summary was sent and we may even want to record a default email
address for each customer to make their ordering process easier. Both of these deci-
sions hinged on new requirements—if we’re storing the email address for order sum-
maries then we should do something with it and if we’re maintaining a default email
address for customers then our customer information editing page will need to
include this functionality. More things to talk to Wendy about.

Wendy drops by to answer our questions. She agrees with our idea of having cus-
tomers identify themselves using their email addresses but she still wants us to main-
tain a unique customer number for them. She wants to allow customers to change their
email addresses over time; she recently changed her own email address and wants to
make sure that our system is flexible enough to handle this change. She likes our idea
of using the person’s email address as the default to which to send the order summary
although doesn’t see a need to keep a record in the database of where the summary
was sent.

These new requirements force the team to rework existing functionality that we had
already worked on. As agile modelers we follow the principle Embrace Change so this isn’t
as frustrating to us as it would have been in the past. We realize that the initial logon page
and the customer information page both need updating as do the corresponding EJBs.
The Customer table in Figure 26.13 also needs to have an email address column added to
it. This functionality then needs to be tested and placed under version control. Brendan
offers to update the data model and to update the database schema for us and we decide
to make the other changes. Luckily the code that generates the HTMLpages and that per-
forms the system logon is currently baselined so we check that out and get to work. Other

72244_CH26I 2/27/02 11:41 AM Page 290

Agile Analysis and Design 291

team members are working on the Customer class so we ask them to let us know when
it’s available to work on; in the mean time we make a copy of the latest version and begin
making our changes. A few hours later the new version of the Customer class, fully
tested, becomes available so we check it out of version control and apply our changes to
it. Once we’re done we test our code and put it back into the version control system.

How Does This Work in Practice?

The principles and practices of AM are clearly applicable to your Analysis and Design
discipline efforts, which shouldn’t be a surprise considering the focus of this discipline
is on modeling. However, you need to consciously decide to model in an agile manner,
something that we may have slipped on a bit in this chapter. It happens to the best of
us, which is why I choose to deviate a bit with the examples presented in this chapter.
When you do find yourself modeling in a less-than-agile manner, as we did working
on the use case realization, you want to stop yourself and ask why this has happened
to learn from your experiences.

As you would imagine, feedback from implementers and testers is clearly impor-
tant to your design effort, a concept that we focused on with the development of the
design-level UML class diagram and data model. Both of these models are very close
to your code, in fact many developers actively program using a combination of mod-
eling CASE tool and IDE, so source code is often a good option when we want to Iterate
To Another Artifact(s). Developers that follow AM’s Rapid Feedback principle as well as
its Prove it With Code practice find that their design efforts become far more agile than
their previous approach of creating more comprehensive models up front.

Not only should we be prepared to iterate to other artifacts, we should also be pre-
pared to iterate to other disciplines. Several times we needed to “fall back” and work
on requirements with one of our project stakeholders. This is to be expected because
we’re not going to get our requirements models perfectly right in the first place, and as
work progresses we’ll often discover that we need more information from our stake-
holders. We also iterated several times into the C&CM discipline to baseline our work.

An important part of the Analysis and Design discipline is the identification and evolu-
tion of a working architecture for your system. This architecture must reflect the require-
ments for your system as well as the constraints placed on it by your organization’s
existing infrastructure. Furthermore, because agile modelers follow the practice Reuse
Existing Resources you want to take advantage of the existing infrastructure in your model-
ing efforts within this discipline. One goal of the Infrastructure Management discipline,
described in Chapter 27, “Agile Infrastructure Management,” is to produce, support, and
evolve enterprise architecture models that development teams within your organization
can take advantage of.

72244_CH26I 2/27/02 11:41 AM Page 291

Danger Will Robinson, Danger!

—Robbie the Robot

292

C H A P T E R

27
Agile Infrastructure
Management

The Infrastructure Management discipline focuses on the activities required to
develop, evolve, and support your organization’s infrastructure artifacts, such as your
organization/enterprise-wide models, your software processes, standards, guidelines,
and your reusable artifacts. Your program management efforts, where you manage
your portfolio of software projects, are also performed as part of this discipline. In
short, infrastructure management is a cross-project effort.

Why is this discipline important to you as an agile modeler? Because in most large
organizations you are very likely to have teams of professionals focused on various
development support functions such as data administration, security administration,
or software process support. The goal of these groups is to support reuse and consis-
tency between development projects in order to reduce the overall costs to your orga-
nization for the systems that it develops and maintains. Your team will need to interact
with these groups, ideally taking advantage of what they have to offer and minimally
either conforming to their standards or finding a way to work around them. In this
chapter we will discuss:

■■ Infrastructure models

■■ Infrastructure modeling

■■ Setting standards and guidelines

■■ Core infrastructure teams

72244_CH27I 2/27/02 11:40 AM Page 292

Agile Infrastructure Management 293

■■ Scaling AM with core architecture teams

■■ How to make this work in the real world

Infrastructure Management Often Becomes Very Non-Agile
As you will learn in this chapter, it is possible to take an agile approach to
Infrastructure Management. However, most organizations that currently have a
process in place typically do so in a very non-agile manner, and most
organizations prefer to take a command-and-control approach to this discipline
instead of a guiding/mentoring approach. Be very careful because this
discipline treads on very dangerous grounds from the point of view of agility.

Infrastructure Models

There are three major models that your organization should develop to describe their
shared infrastructure:

1. Enterprise requirements model. This model reflects your organization’s high-
level requirements (Jacobson, Griss, and Jonsson 1997), and describes the
services that your organization performs within its external environment. In an
UP environment your best option is to develop a high-level use case diagram as
the primary artifact, supported by high-level essential/business use cases that
are technology-independent (and thus long lived), referencing other
requirements artifacts such as critical business rules and constraint definitions.
For example, I was once involved with developing an enterprise-requirements
model that described the business of a large insurance company—a model
comprised of less than 20 high-level use cases such as “Purchase Financial
Instrument,” “Make Claim,” and “Verify Claim.” This model, although clearly
high-level, described the requirements sufficiently so that we could plan what
systems needed to be developed and tie them directly back to the business of
the organization. An interesting aspect of the model was that we believed it was
long-lived. It described the insurance business of today, of 50 years ago, and
potentially of 50 years from now. Even though the way that the insurance
business is conducted has evolved over time, and continues to evolve, the
fundamentals are still the same. Instead of a use-case–based approach, you may
decide to use a Data Flow Diagram (DFD) as your main artifact, particularly if
such a model is already in place.

2. Domain architecture model. This model depicts the high-level business
structure of your systems that depicts the shared components or services
available to your organization’s business systems. This model indicates to
development teams what domain functionality is available for reuse, and
provides guidance as to how to architect their systems into the existing
infrastructure so that other project teams may potentially reuse their work. In a
component/object environment, a UML component diagram is often used that

WARN I NG

72244_CH27I 2/27/02 11:40 AM Page 293

294 Chapter 27

depicts the large-scale, reusable domain components that are evolved over time
by your project teams. These components, such as Order and Customer within
SWA Enterprises, would be accessed by any application that needs the
functionality that they provide. Although our focus so far has been on a single
application, SWA Online, it is easy to see how the business components
depicted in Figure 27.1 could potentially be applicable to other applications in
the future. Yes, you’d need to include additional functionality required by those
applications and you would likely need to refactor existing functionality, but
there is clearly an opportunity for reuse here. More on this later. The individual
components would in turn be described by other more detailed UML
component diagrams or UML class diagrams (if modeled at all). If you’re taking
a data-oriented approach, then an enterprise data model is best suited for this.
Ideally, this model should only show high-level data subject areas, the data
equivalent of domain components, which in turn could be modeled (if at all)
with detailed data models. Organizations that take a services-based approach
would be best served by identifying categories of services, perhaps representing
the categories as components or even more simply as a text list, potentially
supported by a list of shared services.

3. Technical architecture model. This model depicts the high-level technical
infrastructure that supports your business. Network diagrams are often used to
depict your existing/legacy application, hardware, and network environment,
although free-form diagrams are also common. Component/object-based
approaches will often produce a high-level component diagram that shows
technical infrastructure components for security, persistence, and audit control
to name a few. Some organizations will indicate both their domain components
and their technical infrastructure components on the same diagram, an
approach taken in Figure 27.1. Services-based approaches, such as Web Services
or legacy CICS environments, would once again model categories of services
potentially supported by a list of shared services.

Infrastructure Modeling

Now let’s consider the process of infrastructure modeling. Figure 27.2 depicts a high-
level overview of relationships between organization/enterprise-level models and
project-level models. The lines between each model represent “drives” or “affects”
relationships. For example, the information contained in your enterprise requirements
model can be used to drive or affect information in your project’s requirements model,
and vice versa (it’s a two-headed arrow). Your enterprise requirements model has
much greater breadth, that of your entire organization, than your project level require-
ments model, although far less detail. The enterprise model provides the overall con-
text; the project-level model fills in the details. Considering your project-level design
model, it is likely to take advantage of the functionality described by both your
domain architecture model and your technical architecture model. Furthermore, as
you explore the design of your system, you may feed back potentially reusable func-

72244_CH27I 2/27/02 11:40 AM Page 294

Agile Infrastructure Management 295

Figure 27.1 A UML component diagram for SWA Online.

tionality to the team(s) responsible for the architecture models. Let’s consider the
process implied by Figure 27.2 from both a top-down and bottom-up perspective.

Top-Down Modeling
Taking a top-down approach to development, you would start with the development
of an enterprise requirements model that’s then analyzed to formulate your domain
and technical architecture models. The initial effort, infrastructure modeling, is a con-
tinual process, that can take anywhere from several days to several months, depend-
ing on how much detail you wish to go into. Once these models are in place, your
organization will be in a position to understand what its mission is, as well as the
architectural landscape to support those requirements.

Individual project teams enter and start by scoping out a portion of the enterprise
requirements model, a goal of the Requirements discipline during the Inception phase,
and typically choose small slices of the functionality implied by several enterprise-
level use cases. The project team proceeds to work through the other UP disciplines as
they usually would, the only difference being that they also provide feedback to the
owners of the infrastructure models as appropriate to help evolve the models over
time. Existing functionality should obviously be reused. Functionality identified in
your models but that still remains unimplemented needs to be scheduled for develop-
ment (work which would be developed by one or both of the project team and/or your
infrastructure group). The previously unidentified functionality falls into one of three

72244_CH27I 2/27/02 11:40 AM Page 295

296 Chapter 27

Figure 27.2 The infrastructure-driven modeling process.

categories: behavior that belongs at the enterprise level to be shared by several appli-
cations, behavior that belongs within a single business unit that is applicable to several
applications in that business unit, or behavior that belongs within a single business
and that is specific to a single application. Following a component approach, this
behavior then needs to be added to either an enterprise-level domain component, a
business-unit specific domain component, or to the specific application code respec-
tively. Categorizing and scheduling this work is naturally a change-control activity of
the Configuration and Change Management discipline. Development work can then
proceed appropriately.

Bottom-Up Modeling
Following a bottom-up approach, your project team would iterate through each disci-
pline appropriately, and at some point during the project someone would try to cull
enterprise-level information from your team’s efforts. Perhaps several of the compo-
nents that your team develops can be evolved by other project teams to meet their spe-
cific needs. Better yet, your work could be harvested and reworked by specialized
developers called “reuse engineers” and placed in a common repository available to
all of your organization’s developers. The domain architecture and technical architec-
ture models could be evolved over time to depict the current resources available for
reuse as well as your legacy infrastructure. The enterprise requirements model can

72244_CH27I 2/27/02 11:40 AM Page 296

Agile Infrastructure Management 297

also be developed by summarizing the information contained in the detailed require-
ments models.

Comparing the Two Approaches
Which approach works best? The answer depends on your organization’s culture, the
resources available to you, and your desire to work towards a consistent enterprise
vision. Table 27.1 compares the two approaches. Both of these approaches require sup-
port from enterprise-level groups, discussed later in this chapter, so if your organiza-
tion isn’t willing to invest the necessary resources for such a group(s), then
infrastructure modeling and related reuse efforts aren’t a realistic option for you.

Setting Modeling Standards and Guidelines

An important aspect of the Infrastructure Management workflow is the creation, evo-
lution, and support of corporate standards and guidelines. This is important to agile
modelers because they follow the practice of Reuse Existing Resources and will adopt,
and modify when appropriate, existing standards and guidelines applicable to the
Apply Modeling Standards practice. The types of standards and guidelines that your
organization may wish to support include but are not limited to:

■■ User interface design conventions

■■ Modeling guidelines

■■ Data/component/service naming standards

■■ Programming standards and guidelines

Once again, you may choose to take either a top-down or bottom-up approach to
this aspect of the Infrastructure Management discipline, each of which has trade-offs
similar to those listed in Table 27.1. My preferred strategy is that when I realize the
need for standards, I will first try to identify existing industry standards and reuse
those. With respect to modeling, the UML (Object Management Group 2001a) is a well-
defined industry standard for the notation and semantics for object modeling. Stan-
dards exist in practice for most procedural techniques such as data modeling and data
flow diagrams (DFDs). A quick search on the Internet will lead to user interface design
guidelines for most major computing platforms, even for the design of Web pages.
When I can’t find industry-recognized guidelines, my next step is to look for applica-
ble documents on the Web that I can modify to meet my own needs. Worst case sce-
nario is that I write the guidelines myself when I need to.

If You Write Guidelines Well, Developers Will Adopt Them
A common problem that I see in many organizations are enterprise groups that
have defined a set of standards and guidelines only to discover that
development teams choose not to follow them. These groups will then futilely
try to enforce these standards and guidelines through review-based quality

TI P

72244_CH27I 2/27/02 11:40 AM Page 297

298

Ta
b

le
 2

7.
1

C
om

pa
rin

g
th

e
Tw

o
Ap

pr
oa

ch
es

 to
 M

od
el

in
g

A
P

P
R

O
A

C
H

A
D

V
A

N
TA

G
ES

D
IS

A
D

V
A

N
TA

G
ES

O
R

G
A

N
IZ

A
TI

O
N

A
L

FI
T

To
p-

D
ow

n
M

od
el

in
g

En
su

re
s

th
at

 a
 c

on
si

st
en

t
En

te
rp

ris
e

ar
ch

ite
ct

ur
al

C

ul
tu

re
 p

er
m

is
si

ve
 o

f h
ie

ra
rc

hi
ca

l
en

te
rp

ris
e

vi
si

on
 e

xi
st

s.
m

od
el

s
m

ay
 n

ot
 e

vo
lv

e
w

ith

or
ga

ni
za

tio
na

l s
tr

uc
tu

re
.

M
od

el
s

ex
is

t t
ha

t a
gi

le

th
e

tim
es

.
En

te
rp

ris
e-

le
ve

l g
ro

up
(s

)
ex

is
t

th
at

m

od
el

er
s

ca
n

us
e

as
 in

pu
t

In
fr

as
tr

uc
tu

re
 m

od
el

s
of

te
n

ac
tiv

el
y

su
pp

or
t a

nd
 e

vo
lv

e
th

e
m

od
el

s.
in

to
 th

ei
r

ef
fo

rt
s

(t
he

y
R

eu
se

us
ed

 a
s

a
m

an
ag

em
en

t
Ex

is
tin

g
A

rt
ifa

ct
s)

.
m

ec
ha

ni
sm

 to
 c

on
tr

ol

de
ve

lo
pm

en
t t

ea
m

s.
Ea

si
ly

 b
ec

om
es

 n
on

-a
gi

le

w
he

n
te

am
s

sl
ip

 in
to

 a
 b

ig

m
od

el
in

g
up

 fr
on

t (
B

M
U

F)

ap
pr

oa
ch

.
Re

qu
ire

s
co

m
pl

ex

co
nf

ig
ur

at
io

n
m

an
ag

em
en

t
an

d
de

ve
lo

pm
en

t p
ro

ce
ss

es
.

B
ot

to
m

-U
p

M
od

el
in

g
En

te
rp

ris
e

m
od

el
s

re
fle

ct

En
te

rp
ris

e
m

od
el

s
ca

n
ea

si
ly

C

ul
tu

re
 is

 d
ev

el
op

m
en

t-
te

am
–c

en
tr

ic
.

ac
tu

al
 a

nd
 c

ur
re

nt
 n

ee
ds

 o
f

be
co

m
e

ap
pl

ic
at

io
n-

sp
ec

ifi
c.

En
te

rp
ris

e-
le

ve
l g

ro
up

(s
)

ex
is

t
to

 h
ar

ve
st

de

ve
lo

pe
rs

.
Se

pa
ra

te
 d

ev
el

op
m

en
t t

ea
m

s
an

d
re

fa
ct

or
 r

eu
sa

bl
e

ite
m

s.
C

om
po

ne
nt

s/
fu

nc
tio

na
lit

y
th

at
 w

or
k

in
 p

ar
al

le
l m

ay

ha
rv

es
te

d
fo

r
re

us
e

is
 a

ct
ua

lly

in
ad

ve
rt

en
tly

 d
ev

el
op

 th
e

re
qu

ire
d

(t
he

y
ar

e
al

re
ad

y
in

sa

m
e

fu
nc

tio
na

lit
y.

us
e

in
 a

t l
ea

st
 o

ne
 a

pp
lic

at
io

n)
.

72244_CH27I 2/27/02 11:40 AM Page 298

Agile Infrastructure Management 299

gates or by management edict. The most common result is it encourages
animosity towards their group, often without increasing the adoption level of
their guidelines. It doesn’t have to be this way. For example, at www.ambysoft.
com/javaCodingStandards.html I have a PDF document that describes Java
coding conventions that you can download free of charge (at this page I also
provide URLs to other coding standards pages, many of them for other
languages). Developers are free to adopt these standards as they see fit. There
has been over a quarter of a million downloads of the document and a large
number of firms have purchased the rights to the source document, so I know
it’s being adopted. The advantages of this document are that it includes a
summary of the conventions and, more importantly, it describes why the
conventions are a good idea. Many developers will chaff at following a
convention when it is presented at face value, but when the reasoning behind
the convention is explained, they are much more likely to adopt it. My belief is
that if you want to be successful at corporate standards, you should make them
easy to use and the reasoning behind them clear.

Core Infrastructure Teams

The term Core Infrastructure Team (CIT) refers to any team with an enterprise-wide
scope whose mission is to support development teams. Examples of CITs include data
administration teams, security administration teams, process-support groups, and reuse
engineering teams. Some organizations have a single CIT responsible for all aspects of
the Infrastructure Management discipline, whereas others will have teams specializing
in one or two activities. CITs will develop, maintain, and support infrastructure artifacts
such as the infrastructure models discussed in this chapter—corporate standards and
guidelines, and reusable artifacts. It’s possible for CITs to be agile, unfortunately many
existing CITs are not. This has given the concept a bad image within the development
community.

Let’s examine two ways that you may choose to implement CITs, starting with an
approach that is not very agile and then one that is. Naturally your organization will
be somewhere between these two extremes if it chooses to implement CITs at all. The
least agile approach is based on the concept that CITs are corporate quality gates
through which all systems must pass. These CITs will mandate the standards, guide-
lines, and infrastructure models that development teams must conform to and then
will focus their efforts on formal reviews to verify that the development teams have
done so. They are also given the authority to stop projects from proceeding to their
next project phase, such as release of your system into production, until the project
teams meet corporate standards. CIT members are often perceived as being a cut
above the rest of your organization’s development staff and your only hope to prevent
the chaos that would result if development teams were to be set loose on their own.
The advantage of this approach is that it requires a minimal number of people to make
it work because the CITs only set the enterprise approach and then verify that they are

72244_CH27I 2/27/02 11:40 AM Page 299

300 Chapter 27

followed. The main disadvantage is that the relationship between the CITs and devel-
opment teams is often strained due to the adversarial nature of this approach. The
CITs view the developers as being lower-skilled than they are (often a self-fulfilling
prophecy) and as people that cannot be trusted. The ill will often goes both ways, with
the development teams perceiving the CITs as out-of-touch bureaucrats who stand in
the way of progress. Dysfunctional politics are very common in these situations.

Luckily, CITs can be agile. First and foremost, agile CITs are customer-oriented sup-
port groups to the development teams. The CITs may initiate a new standard within
your organization, or initiate work on a model, but will seek feedback regarding their
work by applying it on a development project. The main function of CIT members is as
active participants on development teams. They are simply another type of project
stakeholder from the point of view of the development team and therefore follow the
practice Active Stakeholder Participation. CIT members work closely with their immedi-
ate customers, primarily developers, although CITs have non-developer stakeholders
as well, to provide needed support. For example, a CIT specializing in data adminis-
tration would loan a database administrator (DBA) to your development team. The
DBA would not only help you to evolve your data models but they would also ensure
that your team follows your organzation’s data-naming conventions and development
standards. Similarly, a CIT responsible for evolving your technical architecture would
provide guidance to your development team regarding what computing facilities exist
within your organization, and actively helps you to work with and even evolve those
facilities. The advantages of this approach are:

■■ Your corporate infrastructure, including standards, guidelines, models, and
reusable assets, is evolved as part of your project efforts, ensuring that they
meet your actual needs.

■■ The relationship between developers and CIT members is much more positive,
increasing the chance that developers will actually take advantage of your
corporate infrastructure and will conform to your corporate standards.

■■ Reviews to ensure conformance to standards are minimized, if not removed
entirely, because the CIT members working with your team are responsible for
that effort.

The main disadvantage of this approach is that it is difficult to achieve. Critical
issues that you need to overcome include:

■■ This approach requires a high level of trust within your IT department. CIT
members must trust developers to do the right thing and developers must trust
that the advice provided by CIT members reflects what is best for your
organization and therefore should be followed. Furthermore, project
stakeholders must trust that CIT members and developers can work together
effectively to find a way to meet both immediate project needs as well as
corporate needs.

■■ CIT members need the skills required to help project teams, including both
hard technical skills as well as soft people and communication skills.
Unfortunately, these are the exact skills required of highly paid consultants,
which makes sense, because CIT members are in effect internal consultants to

72244_CH27I 2/27/02 11:40 AM Page 300

Agile Infrastructure Management 301

project teams, implying that CIT members must be well compensated if you
wish to retain them as employees.

■■ CIT members still need to look at the bigger picture to ensure that the long-
term needs of your organization are identified and met. The implication is that
they need to meet on a regular basis to consolidate their work. This can be
difficult because project teams soon come to rely on them. Schemes where
individual CIT members are assigned to a project X percent of the time but are
expected to focus on enterprise issues (100-X) percent of the time often devolve
into the CIT member working 100 percent of the time on the project and a little
bit of overtime on their enterprise responsibilities.

■■ It is very difficult for existing, non-agile cultures to adopt this approach. They
often can’t even conceive that this will work, which makes sense, because in
their current situation it often won’t. I have seen an agile approach to CITs
work in an organization involving several hundred people, an organization
where a culture of trust and teamwork had been grown since its founding.
Existing organizations, particularly those with thousands of developers, must
be prepared to evolve their cultures slowly over time to where it is possible for
CITs and developers to work together effectively.

Scaling AM with Core Architecture Teams

A similar concept to CITs is Core Architecture Teams (CATs) that support the efforts of
mid- and large-size project teams of 20 or more developers. A CAT is specific to a sin-
gle project, its goal is to identify, evolve, and support an architecture for your project.
Your core architecture team should be comprised of developers experienced in the
technologies that your organization is working with and have the ability to work on
architecture spikes to explore new technologies. They should also have a good under-
standing of the business domain and have the necessary skills to communicate the
architecture to developers and to other project stakeholders.

To organize an effective CAT at the beginning of a large project, you should identify
your most experienced developers and abstract thinkers, as well as a few people that you
want to see get some architectural experience, and invite them to be members of your
CAT. You should do this for two reasons. First, you want good people on this team. Sec-
ond, when you organize the large project team into smaller subteams, each focusing on
developing one or more subsystems, you want to ensure that each subteam includes one
or two members of the core architecture team. This helps to increase the chance that each
subteam learns and follows the architecture as well as increases the chance that the core
architecture team will not ignore portions of the system. Furthermore, it ensures that
each subteam has some senior people on it.

The core architecture team is responsible for identifying the initial architecture and
then bringing it to the rest of the project team for feedback and subsequent evolution.
Similar to agile CIT members, your CAT members will take active roles on the various
subteams on the project, communicating the architecture to the subteams and working
with them to prove portions of the architecture via concrete experiments. A CAT will

72244_CH27I 2/27/02 11:40 AM Page 301

302 Chapter 27

work along the same lines as depicted in Figure 27.2, the difference being that the
scope of the models on the top part of the diagram are for the project as a whole and
the scope of the models on the bottom half are for individual subteams.

The CAT will find that they need to meet occasionally to evolve the architecture as
the project progresses, negotiating changes to the architecture and updating their
architectural model(s) as appropriate. These architecture-modeling sessions will be
frequent at the beginning of a project and needed less and less as the architecture solid-
ifies. It will be common for members of the development subteams, who may not be
members of the core architecture team, to attend some architecture modeling sessions
to present information. Perhaps they were involved with some technical prototyping
and have findings to share with the architects. As you saw in Chapter 13, “Agile Mod-
eling Sessions,” the best modeling sessions are short, often no more than half an hour
in length, and are typically held standing up around a whiteboard. Everyone should
come prepared to the sessions, willing to present and discuss their issues as well as to
work together as a team to quickly come to resolutions. Having said that, at the begin-
ning of the project you may decide to have longer architectural modeling sessions, on
the order of a day or two, to help you to define your initial candidate architecture.

How to Make This Work in the Real World

I’d like to leave you with a few words of advice to help increase your effectiveness
adopting the techniques of the Infrastructure Management discipline:

1. Recognize that it is very difficult to make this discipline work effectively.
First and foremost, your organization needs to be realistic. If you are having
difficulties being successful at individual development projects, attempting to
succeed at supporting collections of projects is likely unrealistic. The
Infrastructure Management discipline is appropriate for organizations that are
reasonably adept at software development projects (yes, they are likely to still
have some hiccups), and are now looking for further productivity increases.

2. Keep it simple.

3. Don’t blur roles between enterprise teams and development teams. Although
CIT members actively work on project teams, and may be on loan to those
teams for a period of time, they are still part of the CIT and have responsibilities
beyond those of the single project.

4. Keep it simple.

5. Educate, educate, educate. Developers need to understand that their work must
reflect and support your organization’s infrastructure and environment. Project
stakeholders must recognize that the needs of the overall enterprise may have
greater priority over their personal preferences. CIT members must understand
that their role is to support and guide project team efforts, not to control them.

6. Keep it simple.

72244_CH27I 2/27/02 11:40 AM Page 302

Agile Infrastructure Management 303

7. Recognize that you likely need to change. If your existing Infrastructure
Management efforts are not working well, if your CITs and developers are not
working together effectively, then you should consider taking a new approach.
This new approach will likely require a culture change for everyone involved,
something that will take time and effort.

8. Keep it simple.

72244_CH27I 2/27/02 11:40 AM Page 303

304

C H A P T E R

28

Adopting AM on an UP Project

In this chapter, I explore the issues that surround the adoption of Agile Modeling prin-
ciples and practices on a Unified Process (UP) project (Jacobson, Booch, & Rumbaugh
1999; Kruchten 2000; Ambler 2001b). The issues addressed in this chapter are specific
to organizations that have adopted the UP, whereas Chapter 29 addresses strategies
for overcoming general adversities that are pertinent beyond UP efforts.

An UP/AM project team will need to overcome the common misconceptions that
developers have about the UP as well as several cultural barriers that are common
within organizations that instantiate the UP. Strategies that are likely to help you to do
this include:

1. Avoid the term use-case driven. Yes, it’s a wonderful marketing term but the
reality is that use cases aren’t sufficient to drive much of anything. Use cases are
a good technique to document behavioral requirements but that’s only a small
part of the functional requirements picture and an even smaller part of the total
requirements picture. They aren’t very good at documenting business rules,
user interface requirements, constraints, or non-functional requirements, which
is why the UP includes something called a supplementary specification to
contain all of these other things. Requirements drive things, use cases don’t.
Your modeling efforts will always remain hobbled if you don’t separate the
UP’s software-engineering wheat from its marketing-rhetoric chaff.

2. Recognize that there are more modeling artifacts than those described by the
UML. AM’s principle Multiple Models tells you that you have many modeling

72244_CH28I 2/27/02 11:36 AM Page 304

Adopting AM on an UP Project 305

artifacts at your disposal—change cases, user stories, business rules, UML
Activity diagrams, UML Class diagrams, data models, and external interface
specifications—to name a few (these artifacts and more are described in Appendix
A of this book). An interesting implication of this principle is that you have far
more than just the UML diagrams at your disposal, a topic discussed in detail in
Chapter 15, “The UML and Beyond.” The good news is that the UP recognizes
that a wide range of models is needed to explore the complexities of modern
software. Recent versions do in fact include data modeling and user interface
design activities that are currently outside the scope of the UML. (At the time of
this writing v1.4 of the UML is the current standard.) The bad news is that many
people erroneously perceive that the UP is simply a process for using the UML.

3. Recognize that the UP is not inherently documentation centric. The UP is
actually very clear that you should only develop the artifacts that you actually
need. However, this good message is something that often gets missed by many
software professionals. It is something worth repeating here. You should
question every single model that the UP suggests creating because it purposely
describes a wide variety of artifacts, many of which your project simply doesn’t
need. The UP includes three major sets of modeling-oriented artifacts: the
business modeling set, the requirements set, and the analysis and design set.
Each of these sets in turn is composed of several detailed artifacts. For example,
the business modeling set includes a business use-case model, business rules, a
business architecture document, and a business supplementary specification.
Do you actually need all of these things? Likely not. If you do need them, do
you need them as formal documentation? Likely not. Communicate AM’s Travel
Light and Model With a Purpose principles to your project stakeholders, as well as
the practices Update Only When It Hurts and Discard Temporary Models.

4. Build a common process vision between developers and project stakeholders.
Managers often lean toward a prescriptive software process, something that
appears well defined and comprehensive such as the UP, one with a perceived
focus on control. Developers, on the other hand, gravitate towards agile
techniques such as eXtreme Programming (XP) (Beck 2000) and AM due to their
perceived focus on what’s important to developers: building software. Because
management holds the purse strings, many developers find themselves in a
situation where their managers have chosen to adopt the UP and are now
required to follow it. Luckily the UP is flexible enough so that it can be tailored
to be reasonably agile, but to do so, developers and project stakeholders need to
come to an agreement as to the extent of the tailoring.

5. Actively promote iterative and incremental development. AM’s practices of
Model in Small Increments, Iterate to Another Artifact, and Create Models in Parallel
can be tough ones for experienced modelers to adopt. In addition, chances are
that your experienced modelers are already chaffing at the UP’s concepts of
iterations, let alone an even greater emphasis on iterative and incremental
modeling. Traditional modeling techniques often promote a single-artifact
approach, such as use-case modeling or user-interface prototyping sessions.
Also, they often promoted a Big Design Up Front (BDUF), or more accurately
Big Modeling Up Front (BMUF), approach where you modeled everything in

72244_CH28I 2/27/02 11:36 AM Page 305

306 Chapter 28

*If this isn’t the case then you have a serious human resources issue that you need to deal with
appropriately. Excessively complex models aren’t going to help address this situation in practice,
and their creation will help management avoid making the hard decisions regarding the quality
of their staff.

detail before you started coding. These concepts were great in theory, focusing
on a single artifact at a time should have allowed the modelers to get it right
quickly, but unfortunately practice shows this not to be the case. A good way to
ease into these practices is instead of use-case modeling sessions, run
requirements modeling sessions where you work on use cases, CRC cards,
business rules, and user-interface prototypes simultaneously. Similarly, hold
analysis sessions where you are use case modeling, sequence diagramming,
user interface prototyping, and class modeling. Include design sessions where
you are class modeling, state chart modeling, data modeling, component
modeling, user interface prototyping, and hopefully even developing business
code. Once you are comfortable with these practices, the next step is to then
merge your modeling efforts in with your implementation efforts and apply
multiple artifacts including all of your potential models, source code, and test
cases as needed-truly iterative development. While you do this, keep their focus
on the requirements that you implement in the current iteration, resulting in an
incremental delivery of functionality each iteration.

6. Actively promote simplicity. Simplicity is a fundamental value of AM, one that
motivates several critical principles that can dramatically improve the
effectiveness of your modeling efforts. Many experienced modelers want to
specify everything that they possibly can. For example, not only do they wish to
model the overall structure of their software in UML Class diagrams, they also
want to specify the scaffolding code needed to implement that structure. This is
a lot of effort that provides very little actual value. A better approach is to create
a Class diagram that is just barely good enough for your purpose, to depict the
likely structure of your classes, and then to start coding from there. Agile
modelers assume that the programmers, often themselves, can figure out the
details at the time and instead will focus on issues that may not be so obvious.
This approach implies less work for the modeler and less modeling noise for the
actual programmer to wade through. When an agile modeler creates a class
diagram they realize that they don’t need to model all of the classes required to
build the software, instead they focus on getting the core classes right and
assume that the programmers are competent enough to handle the rest.* By
keeping your models simple you are likely to work faster while at the same
time creating something that is actually of value to your programmers—models
that focus on critical issues and are devoid of fluff.

7. Staff projects with skilled generalists. Many organizations have separate
positions for modelers, motivating their staff to focus on specialties, a practice
that in my experience reduces your ability to be agile. Although the UP is very
clear that individual developers can and should take multiple roles on a project,

72244_CH28I 2/27/02 11:36 AM Page 306

Adopting AM on an UP Project 307

my experience has been that this is advice that falls on deaf ears within many
organizations. Instead what happens is that organizations that adopt the UP
tend to introduce positions along the lines of UP’s modeling roles such as
Requirements Specifier, System Analyst, User-Interface Designer, and Database
Designer and slot people into individual roles, going against the advice of both
AM and the UP. If your only job on a software project is to produce models then
there is a tendency for you to over model things, first because you naturally
want to do a good job and second because if it’s your job to model then that
means it’s likely someone else’s job not to model (for example, their job is to
program). Because there is a hand-off there is now greater motivation to add
more detail into your model; details that likely wouldn’t be needed if the people
writing the code also developed the models that helped them to identify what
needed to be coded in the first place.

8. Live AM’s principle of Open and Honest Communication. I’ve run into several
situations where a development team was reluctant to follow the Display Models
Publicly practice, one way to promote open and honest communication with
people external to your team, often because they were afraid of what another
political faction within the organization would do with the information.
However, when they finally worked up the courage to display their models
publicly they quickly discovered that the politicos they were so afraid of
couldn’t find much to criticize. If they did criticize, it provided valuable input
that the developers quickly acted on and benefited from.

Something that is important to understand is that for AM to be successful the cul-
ture of your organization must be open to the concepts, values, and principles of
agile software development. The problem is that the UP is often adopted by organi-
zations that either implicitly or explicitly do not accept the values of agile software
development. Their focus is often on following processes and using tools. The RUP
product (Rational Corporation 2001) clearly defines many processes and describes
how to apply Rational’s tools effectively on software projects, and therefore the RUP
is clearly attractive to them. Unfortunately this goes against the agile value of prefer-
ring individuals and interactions over processes and tools. When the culture of an
organization is documentation centric they may find the UP appealing because you
can instantiate it in such a way as to result in the creation of significant amounts of
documentation (you can also instantiate it to result in very little documentation.
Remember, the UP is flexible). If an organization is documentation centric then this
aspect of its culture goes against agile software development’s value of preferring
working software over comprehensive documentation. This organization may still
successfully adopt, tailor, and instantiate the UP but be unable to follow many of
AM’s principles and practices effectively because it does not have an agile culture
(see Chapter 1, “Introduction,” for a discussion of when adoption of AM makes
sense). My point is that how well AM and UP fit together in your organization
depends largely on your organization’s culture and not so much on the UP itself. You can
easily use the techniques of AM to improve your UP modeling efforts, but to be
effective you will find that you need to overcome cultural challenges within your
organization.

72244_CH28I 2/27/02 11:36 AM Page 307

308 Chapter 28

How Does This Work?

You have seen in this part of the book that it is clearly possible to tailor the Unified
Process with the practices of Agile Modeling. To succeed, your organization’s culture
must be receptive to both the UP and to AM, and therein lies the rub—the goal of orga-
nizations that adopt the UP is often to instantiate it as a fairly rigid and prescriptive
process, whereas organizations that adopt AM typically want to work in a more fluid
manner. In fact, to be truly effective, AM requires such an environment. Luckily the UP
is flexible enough so that it can be instantiated to be reasonably agile, as Robert Martin
(2001), Gary Evans (2001), and Craig Larman (2002) show with their instantiations of
the UP. When this is the case, when you have instantiated a light-weight version of the
UP, then the UP and AM fit together well. Both the UP and AM are based on the idea
that the majority of software is best delivered iteratively and incrementally. Because
the UP explicitly includes modeling disciplines it is very easy to identify where AM
practices should be used to enhance your own tailoring of the UP. This works when
your project team and your project stakeholders choose to make it work.

72244_CH28I 2/27/02 11:36 AM Page 308

PA R T

Five

Looking Ahead

72244_CH29I 2/27/02 11:36 AM Page 309

This part describes important organizational and management issues that pertain to
Agile Modeling. This section includes the following chapters:

■■ Chapter 29: Adopting Agile Modeling or Overcoming Adversity. This chapter
discusses proven ways to bring the AM methodology into your organization. It
presents a straightforward approach for organizations that already have an
agile mindset, as well as strategies for overcoming common challenges that you
may experience.

■■ Chapter 30: Conclusion: Choose to Succeed. This chapter looks at AM from a
manager’s perspective and examines how AM can help your organization. I
also recap with a quick retrospective of the methodology as a whole.

310 Part Five

72244_CH29I 2/27/02 11:36 AM Page 310

Do, or do not. There is no try.

—Yoda

311

C H A P T E R

29
Adopting Agile Modeling or

Overcoming Adversity

If you’ve read this far in the book, then you are likely interested in adopting Agile Model-
ing within your organization. This chapter presents the strategies for doing exactly that. As
a consultant who specializes in helping organizations to improve their internal software
processes, and just as important, aiding my co-workers in doing the same for the clients
they work for, I’ve been lucky enough (or unfortunate enough, depending on your point of
view) to gain a reasonably broad range of experience with software process improvement
(SPI). Recently, much of this experience has been in helping organizations adopt the prin-
ciples and practices of AM, as well as the enhancements of the Enterprise Unified Process
(Ambler 2001b), and before that, in my collecting of process patterns (Ambler 1998;
Ambler 1999). At the same time, I’ve been active in Internet newsgroups and mailing lists,
providing people with advice as well as simply observing the problems that people have
adopting other methodologies such as the Rational Unified Process (Kruchten 2000; Ratio-
nal Corporation 2001) and eXtreme Programming (Beck 2000). My goal in this chapter is to
aid your efforts in successfully adopting AM by sharing my experiences with you, as well
as to help you to avoid the problems and misunderstandings that people seem to run into
with other methodologies.

This chapter is organized into the following sections:

■■ Evaluate the fit

■■ Keep it simple

■■ Overcome organizational and cultural challenges

72244_CH29I 2/27/02 11:36 AM Page 311

312 Chapter 29

■■ Overcome project-related challenges

■■ Consider alternatives to full adoption of AM

■■ How to make this work in practice

Evaluate the Fit

In this section my basic assumption is that your organization is capable of making
decisions in a sensible and coherent manner, and is willing to consider and try new
techniques based on their merit. Wait! Don’t skip to the next section; there actually is
some good material in this section, even if your organization suffers from some of the
common adversities that I describe later in this chapter. My experience has been that
you need to do two fundamental things to adopt AM successfully. First, you must
determine whether AM makes sense for your situation, and that means you need to
recognize when AM will and will not work for you. Second, you must decide to keep
your adoption efforts as simple as possible—if you make it hard to adopt AM, then
you very likely will fail at the effort. If you are unable to adopt AM successfully, at
least not yet, I argue that you may want to consider alternatives to full adoption.

Recognize when Agile Modeling Can
Work for You
AM isn’t going to work for everybody; it isn’t a panacea that works in every situation.
Nor is it guaranteed to work even in situations where conditions are perfect. You can
still make mistakes implementing AM within your organization. Having said that, my
experience has been that AM has the potential to be very effective when the following
factors hold true:

You take an agile approach to software development. AM isn’t a complete
methodology, as you saw in Chapter 1, “Introduction.” The assumption is that
it will be applied within the scope of another process such as XP or an
instantiation of the Unified Process (UP) (Jacobson, Booch, and Rumbaugh
1999). For this to work successfully, there must be a conceptual fit between AM
and this other process, otherwise you will be forced to hobble one or more of
AM’s techniques and therefore not truly be doing AM. Part 3 of this book
explored how AM can be used with XP and Part 4 explored how to use AM
with agile instantiations of the UP.

You are willing to adopt the core principles and practices of AM. For you to truly
claim to be doing AM, you must minimally adopt the core principles (Chapter 3,
“Core Principles”) and core practices (Chapter 5, “Core Practices”) of AM. Yes,
you can still benefit from adopting only some of AM’s principles and practices.
However, you will not achieve the synergy inherent in full AM adoption (see
Chapter 7, “Order from Chaos: How the AM Practices Fit Together”) and could
potentially put your modeling efforts at risk because your adopted practices do
not have the support they require from the missing practices.

72244_CH29I 2/27/02 11:36 AM Page 312

Adopting Agile Modeling or Overcoming Adversity 313

You work iteratively and incrementally. The AM value Communication, and in
particular, its principle Rapid Feedback, both require an iterative and incremental
approach to software development to work.

You face uncertain or volatile requirements. Martin Fowler (2001a) points out that
if your project is exploratory in nature, and many are, then it is very likely that
an agile approach to development is the best fit. When your requirements aren’t
certain, or are actively changing, then you need to follow a software process that
reflects this fact. AM deals with changing requirements by embracing change,
by promoting an incremental approach to development, by seeking rapid
feedback, and by insisting on active participation from project stakeholders so
that the requirements may be quickly and effectively explored. Note that AM
still works in environments where your requirements are not volatile, although
a more document-centric approach may be preferable in this case.

Your primary goal is to develop software. This is one of AM’s core principles
(Chapter 3), something that is not always the case for many projects. For
example, sometimes a project team’s primary goal is to make money from your
customers (often the case in outsourcing, contracting, and consulting situations)
or simply to specify the system so it can be given to another team to implement.
Even worse, some development efforts are simply a political exercise with no
intention of delivering anything more than a perception that something is being
done. The goal of software development should be to produce systems that
meet the needs of their users in an effective manner. If you are doing anything
less, then AM is not for you.

You must have active stakeholder support and involvement. Fowler (2001a) also
believes that for agile software development efforts to be successful, you should
have the active support and involvement of your project stakeholders. As I’ve
discussed throughout this book, a project stakeholder is anyone potentially
affected by the development and/or deployment of a software project. This
includes direct users, indirect users, managers, senior managers, operations staff
members, support (help desk) staff members, testers, developers working on other
systems that integrate or interact with this one, and maintenance professionals. To
be successful with AM you need to know who your project stakeholders are, you
must have access to stakeholders on a daily basis who are able to provide
information and make decisions in a timely manner, and have full management
support for your project. Full management support implies having sufficient
resources, including but not limited to work space (see Chapter 11, “Agile Work
Areas”), equipment, and staff (see Chapter 12, “Agile Modeling Teams”).

Your development team has authority commensurate with your responsibilities.
Agile software development, and Agile Modeling is particular, is new to most
organizations. Adopting agile approaches will be difficult at best for many
organizations because it is a significantly new way to work for most people. To
be successful, my experience is that project teams must be given the opportunity
to succeed or fail on their own merits. They must be in a position to try new
techniques and be given the resources, including time, to let them run their
course. Ideally, your organizational environment must have minimal politics,

72244_CH29I 2/27/02 11:36 AM Page 313

314 Chapter 29

more on this later, implying that both senior management and other groups
within your organization need to get out of your way whenever appropriate.

You require responsible and motivated developers. Fowler (2001a) points out that
agile software development requires developers that have the discipline to work
together to develop quality software. The implication is that you need a healthy
team environment, one in which people trust one another and help each other to
succeed. Contrary to what many of the detractors of agile development will tell
you, my experience is that you don’t need people that can walk on water—you
simply need people who want to get the job done and who have the ability to
work with others effectively. By including teams of these kinds of people, you
increase the chance that your organization will give your team the opportunity to
be in control of its own destiny. Agile modeling teams are discussed in Chapter 12.

You have someone willing to champion AM within your organization. Whenever
you adopt something new, there will always be challenges. People don’t like to
change; they are often happy working in the non-agile way that they are used to.
Others see things differently than you, or simply don’t recognize the problems
that you are trying to address by adopting AM. Perhaps they are promoting their
own pet approaches to development, approaches that don’t fit well with AM.
Perhaps AM threatens the current power structure within your organization.
Regardless of the situation, there will always be people who will fight change. To
be successful at change someone must exist that champions the new cause, in this
case adoption of AM, someone willing to garner support of project stakeholders
and to protect and nurture AM efforts as they take root within your organization.
Change takes time, and champions buy you that time.

You have adequate resources available to you. You will see that agile modeling
requires people to work together closely. The implication is that you need “co-
location space(s),” such as a dedicated modeling room, to work in, a public wall
to display your models on, and ideally, even shared workstations for pair
development efforts. Furthermore, you need access to modeling tools such as
whiteboards, index cards, markers, and CASE tools as necessary. I’ve seen the
lack of basic resources such as decent chairs, tables, food, drink, and top-notch
workstations dramatically hamper software development efforts. If your project
team is being nickel-and-dimed to death, then I have to question if your project
is important to your organization—if it isn’t, cancel it now and invest your
efforts on something more productive. This includes environments where
people are forced to wait for system administration to set up their working
environment. I once worked on an eight-week contract where it would have
taken six weeks from the first day I physically arrived on site to have my
workstation fully configured, the normal time it took for full-time employees.

Recognize when Agile Modeling
Won’t Work for You
I suspect that you are likely to run into trouble with Agile Modeling in the following
situations:

72244_CH29I 2/27/02 11:36 AM Page 314

Adopting Agile Modeling or Overcoming Adversity 315

*As Ron Jeffries likes to say, “Change your organization or change your organization.”

1. One or more of the factors listed in the previous section is missing.

2. Your organizational culture is geared towards prescriptive processes. There are
many organizations that simply aren’t interested in taking an agile approach to
software development. These organizations are happy with the status quo and
that’s fine by them. This likely includes organizations such as Government
agencies, large established firms (some banks, insurance companies,
telecommunications firms, and so on), and consulting firms that specialize in
serving these organizations. This isn’t to say that it’s impossible to adopt AM in
these organizations, but it is likely that an extraordinary effort such as an off-site/
skunkworks effort will be required to be successful.

3. You have a large and/or distributed team. Agile modeling works very well on
teams that are co-located in the same work area, particularly when the
developers are co-located in a shared work room (often called a “tiger team”
room). You can attempt to apply AM on large or distributed teams, but you will
find that communication challenges quickly get in the way. This problem is
addressed later in this chapter.

I would also be leery of applying agile modeling to develop life-critical systems,
such as an air traffic control system or patient-monitoring system, simply because I
don’t work on such projects and have no insights into how well AM will work on
these. That doesn’t imply that AM won’t work, but I suspect that the documentation
needs of these types of projects will motivate you to take a less agile approach than
AM would prefer (and there’s nothing wrong with that). Similarly, I don’t work on
embedded software and therefore have never had a chance to apply AM techniques on
these types of projects. I highly suspect that AM is applicable to embedded software
development, but this is just speculation at the moment. I look forward to hearing
about your experiences in these situations on the Agile Modeling mailing list (visit
www.agilemodeling.com/feedback.htm for details).

Keep It Simple

So what do you do when your situation isn’t ideal? Less-than-ideal environments are the
norm from what I can tell, having personally never seen an ideal situation yet. My advice
is to focus on keeping things as simple as possible—live the principles and practices of AM
as best you can. A good start is to educate people in AM, including both developers and
project stakeholders, perhaps by sharing this book with them or by giving a short
overview presentation. Start talking with them, working together to determine where AM
(or a subset thereof) might fit in well. You don’t need to create a formal software-process
engineering group (SEPG), also known as a process improvement group (PIG), when a
couple of reasonable discussions over a beer or two will suffice.

Second, recognize that the decision to adopt AM (or any other process) is a difficult
one to make. You need to have courage to change your environment,* and to do this

72244_CH29I 2/27/02 11:36 AM Page 315

316 Chapter 29

you must garner support from your project stakeholders, in particular, senior manage-
ment. Identify a problem that is critical to their success, such as developing high-qual-
ity software quickly that meets their needs, and show that AM can help to address this
problem. You need to convince them that there are better ways to work; ask them to
give you a chance to prove it to them.

Overcome Organizational and Cultural
Challenges

When you introduce AM into your organization, there are several very common orga-
nizational and cultural challenges that you may run into. These challenges are:

■■ Skeptical developers

■■ Overzealous process police

■■ Paper pushers with power

■■ Cookbook philosophy

■■ Inability to accept blame

■■ Excessive documentation due to fear of losing everyone

Skeptical Developers
Many people are skeptical of new techniques, and as far as I’m concerned, this is a
very good thing because a little bit of skepticism is healthy. However, too much
skepticism will often hinder your ability as a software professional. Here are some of
the more common issues that skeptics will raise regarding AM, as well as my
responses:

1. I’ve seen this before. They’re right. They’ve seen much of this before. As I
described in Chapter 1, and I hope as you’ve seen throughout the book, the
individual principles and practices have been around for quite a long time.
What is new about AM is the packaging of these principles and practices into a
chaordic, synergistic methodology. Don’t let this skepticism dissuade you from
adopting AM. Many developers chose to ignore the object-oriented paradigm
shift for much longer than they should have for this very same reason.

2. It’s just another fad. I hope this isn’t true, but only time will tell. I suspect that
AM isn’t a fad for several reasons. First, it’s based on existing principles and
practices, many of which you likely follow already but were unwilling to admit
to publicly because it just didn’t seem like proper software engineering. Second,
as you’ve seen in this book, it works well in practice with leading
methodologies, particularly XP and UP, and in fact enhances them. Third, my
own organization has been field testing AM for a while now and, more
importantly, AM has received significant attention by modelers worldwide
through public discussions on the AM mailing list.

72244_CH29I 2/27/02 11:36 AM Page 316

Adopting Agile Modeling or Overcoming Adversity 317

3. It’s not software engineering. I guess this depends on how you define software
engineering, and the jury is clearly still out on this issue, but from the point of
view of people who are familiar with traditional/prescriptive forms of software
engineering, this is a fair statement. So what? There are a lot of commonly
accepted software engineering techniques that provide little benefit in practice
(Jones 2000), so perhaps this isn’t such a bad thing. The real issue isn’t whether
AM is software engineering or not; it’s whether AM offers the potential to
improve your productivity as a software developer. A good strong cup of coffee
has improved my own productivity more than once, and that has nothing to do
with software engineering.

4. It’s not proven. That’s true. The only proof that AM works is anecdotal. Once
again, so what? Most aspects of object-oriented (OO) development theory
remain unproven, yet OO is the dominant development paradigm within the
software development community. This skepticism, like the software
engineering issue, is a red herring: This is simply a convenient excuse to not
try something new. Organizations that wait for proof that techniques work are
almost guaranteed to remain 10 to 15 years behind the rest of the industry. From
this point of view, it may be more risky to not try AM than it is to try it.

Overzealous Process Police
Many organizations have well-defined software processes in place, processes that they
have been following (theoretically, at least) for years. This is particularly true in orga-
nizations that are working towards, or have already earned, accreditation in industry
standards such as ISO 900X and the Capability Maturity Model (CMM) of the Software
Engineering Institute (SEI) (1995). These processes are often prescriptive and very well
documented. In these organizations it is quite common for a software process group to
exist whose mission is to support and evolve your software process over time. Part of
their “support” efforts may include inspections to ensure that development teams fol-
low the process. The people doing this work are often disparagingly referred to as
“process police.” These people may not be fully aware of AM, or agile software devel-
opment approaches in general, and may have difficulty grasping that a practices-based
methodology can be just as effective as a prescriptive methodology. Instead of consid-
ering new ways of doing things, even ways that are potentially far more efficient, they
instead declare that you may not follow AM practices at all. In these situations I would:

■■ Work with your “process police” to discover their reservations regarding
adoption of AM practices. Try to identify any misconceptions that they may
have (see Chapter 30, “Conclusion: Choose to Succeed”).

■■ Ease into AM by adopting a few practices at a time within the existing scope of
your process.

■■ Identify potential problems with your existing process and suggest AM
practices that address them.

■■ Give an overview presentation to your process group and senior managers that
describes AM.

72244_CH29I 2/27/02 11:36 AM Page 317

318 Chapter 29

Paper Pushers with Power
In large organizations it is common to discover IT professionals who haven’t been
directly involved with software development—programming, modeling, testing, or
managing—for years. Often these people are in infrastructure support roles such as
software process management, reuse management, or program management, and
over time their roles have devolved to the point where their focus is on “pushing
paper.” These people often demand status reports from individuals or teams which
they review and provide feedback on, hold status meetings to be apprised of how the
project is progressing, and require metrics or evaluations of a project team with
regards to their specialized area of focus such as reuse metrics, security evaluations, or
data standards conformance evaluations. This isn’t to say that all people in these roles
are paper pushers. I’ve had many good experiences with reuse, security, and data pro-
fessionals who were able to actively support my project teams. However, I’ve also had
very bad experiences as well. I’ve found that the fundamental difference is that the
people who are willing and able to roll up their sleeves and help my project team were
of great value to me. The paper pushers that simply required documents or that sched-
uled review meetings were of little value and often a great hindrance.

Unfortunately, the ones that are a hindrance often can’t be easily ignored because
they are in positions of power. Refusal to fill out their forms can often result in their
manager pushing a complaint up the corporate organization structure and then back
down again to your project team. Whenever I come across a paper pusher with power,
I apply the following strategies in order:

1. Communicate. I first try to talk with the person(s) to identify their priorities
and to negotiate a more effective way of conforming to their request. I find that
this rarely works because many people are set in their ways, but it’s worth
trying anyway.

2. Deflect. Talk with my (other) project stakeholders to make them aware of the
impact the paper pusher’s requests are having on the team and ask them to deal
with the issue for me.

3. Flight or fight. Decide whether the team should acquiesce to the paper pusher’s
request or fight it out with them politically. The problem with fighting it out is
you invest energy and political capital doing so. You are likely to make political
enemies, and paper pushers are often more politically savvy than you.

Cookbook Philosophy
People who are not actively involved with software development, in particular senior
management, may have what is called a “cookbook philosophy” towards develop-
ment. The basic idea is that if your organization had a well-defined software process in
place that prescribed in excruciating detail the steps for each development activity,
then all your IT problems would be solved. This is founded on the belief that software
development is a science, that if the “right” procedures were developed that they
could hire low-skilled people that would simply follow the procedures and perfect

72244_CH29I 2/27/02 11:36 AM Page 318

Adopting Agile Modeling or Overcoming Adversity 319

software would be churned out on time and within budget. This belief is based on the
underlying concept that software development is a science. My experience is that this
isn’t true.

AM reflects the belief that software development is more of an art than a science, an
art that requires skilled craftsmen. AM doesn’t tell you how to create a use case model.
In fact, it doesn’t even tell you to create one. It only tells you to create the right model
that makes sense for that situation, for example, Apply The Right Artifact(s), and trusts
you to judge what’s right. AM’s approach is antithetical to the cookbook philosophy.
Therefore, anyone who believes in it is not likely to support the adoption of AM.
Whenever I encounter someone with this mindset, I will point out that:

■■ Software development requires skilled professionals.

■■ Most developers are unlikely to follow a highly detailed process, no matter
how well it is written.

■■ Software process is needed, but it should support and enhance the efforts of
developers, not restrict and burden them.

■■ Developers shouldn’t be expected to have every skill, but they should be
expected to learn new skills over time.

■■ AM can be used to enhance prescriptive processes, as Part 4 showed with the
Unified Process (arguably the most popular prescriptive process).

Inability to Accept Blame
A problem that I have seen with other processes, including both XP and the UP, are
people that blame project failures on the process they (mis-)followed instead of accept-
ing the blame themselves. Yes, they may have made a process-related mistake, but that
doesn’t mean that the process is at fault. It means that they are. The common process-
related mistakes that I often see are:

1. Right process, wrong situation. People will try to apply a process in a situation
that it isn’t well suited for. This problem was a primary motivator for the
Recognize When Agile Modeling Won’t Work For You section earlier in this chapter.
Hopefully your team can avoid applying AM in the wrong situations.

2. Right name, wrong process. A common problem within the XP community is
project teams that do not adopt all of XP’s practices; thus, they are not truly
doing XP. They fail because they have missed addressing a fundamental aspect
of software development supported by that practice. This is why I am so
adamant about the need to adopt the core principles and practices of AM in
order to claim that you’re doing AM. You could still run into trouble, but it
won’t be because you’ve missed a critical aspect of the methodology.

3. Right process, wrong instantiation. A common problem within the UP
community is organizations that adopt the Rational Unified Process (RUP)
(Rational Corporation 2001) right out of the box, not realizing that they need to
tailor it to their own environment. It is possible to make the same mistake with

72244_CH29I 2/27/02 11:36 AM Page 319

320 Chapter 29

AM, particularly when you do not follow the advice of the principle, Local
Adaptation.

Many organizations are successful with AM and it is reasonable to expect that AM
isn’t going to work for everyone. If your team fails with AM, please don’t blame AM.
To paraphrase America’s National Rifle Association (NRA)—processes don’t kill pro-
jects; people kill projects.

Excessive Documentation Due to Fear
of Losing Everyone
Many organizations fear the loss of their software development teams because when
all or most of the team leaves, very important and often undocumented knowledge
goes with them. There are several common reasons why you may lose your team:

■■ A competitor hires the team away from you to kick-start their own projects.

■■ Some developers job hop on a regular basis, never staying long at any one
company.

■■ You purposely disband a team once they’ve completed their project.

To counteract this problem, a common strategy is for senior management to request
significant amounts of documentation in the belief that if they lose the team, then they
can simply form another team and hand them the documentation. This approach
sounds good but often proves impotent in practice. First, although the documentation
may help the situation, the new development team is unlikely to trust it, preferring
instead to use it to get a “lay of the land” with respect to the system and then dive into
the code to get at the details. In other words, they’re only likely to use it for the small
subset of overview documentation that your detailed documentation contains. Sec-
ond, this strategy often becomes a self-fulfilling prophecy. You force your developers
to write excessive amounts of documentation because you fear they’ll leave, and then
they decide to leave because of your organizational bureaucracy, lack of trust in them,
and lack of focus on software development.

In this situation I will work with the people that request the documentation and try
to negotiate a more agile approach. My experience is that high-quality source code sup-
ported by succinct overview documentation and appropriate contract models provides
an adequate system description for the developers who need to maintain and enhance
it in the future. Chapter 14, “Agile Documentation,” presents strategies for writing
agile documentation.

Overcoming Project-Related Challenges

In addition to the organizational challenges described in the previous section, many
project teams will confront issues that are specific to them. These situations include:

72244_CH29I 2/27/02 11:36 AM Page 320

Adopting Agile Modeling or Overcoming Adversity 321

■■ Distributed development

■■ Hand-offs to other teams

■■ Fixed-price contracts

Your Project Isn’t Different
I often hear the refrain, “We’d love to adopt XYZ but unfortunately we’re
different.” Poppycock! I regret to inform you that there is nothing special about
your project. Yes, there are very likely some challenges that you need to
overcome. Yes, it will be difficult to do so. No, that isn’t an excuse for not trying
to be as effective as you possibly can. Stop looking for reasons why you can’t
adopt AM and start looking for ways to do so.

Distributed Development
Many projects, large and small, involve distributed teams of people. Perhaps your
organization has instituted a flex-time arrangement with some developers that
allows them to work from home part or all of the time. Perhaps your project is a
multi-
division effort that involves sub-teams throughout your organization. Perhaps your
project is a multi-organization effort with teams distributed across the globe. In all of
these situations, it is unlikely that you will be able to co-locate developers and project
stakeholders in a communication-rich environment in which AM thrives.

When faced with this situation, I will often try the following strategies:

1. Co-locate the team. Sometimes a distributed approach is taken for less than
logical reasons; perhaps there’s a political desire to spread the work out
between locations (common on government projects and multi-organization
efforts) or perhaps someone has simply jumped to the erroneous conclusion
that you can’t co-locate. It’s worth questioning why a project team is distributed
on the chance that you can change the situation and avoid this problem all
together. Does this project actually need to be performed in a distributed
manner? Is it an option to co-locate your team temporally to deliver the project?
Can it be reorganized into one co-located team that brings in expertise as
needed from the other locations?

2. Choose an underlying process that supports distributed development. Your
overall process must support distributed development; this isn’t just an AM
issue. Your chosen process will typically describe how to organize and manage
your project as a collection of smaller sub-projects, and it is on these sub-
projects that it may be possible to take an AM approach. Chapter 27, “Agile
Infrastructure Management,” overviewed the modeling aspects of the
Infrastructure Management discipline of the Enterprise Unified Process (EUP), a
discipline that describes programmer-management activities applicable to
distributed development efforts.

TI P

72244_CH29I 2/27/02 11:36 AM Page 321

322 Chapter 29

3. Use collaborative tools. Many tools exist—including collaborative modeling
tools, collaborative writing tools, discussion tools, conferencing tools, and
virtual meeting tools—that can be used to support distributed development
efforts. These tools were described in Chapter 8, “Communication.”

4. Have some travelers. A “traveler” is someone who moves back and forth
between locations, perhaps spending a certain amount of their time at a “home
location” and portions at other locations, to facilitate communication between
the groups. They’ll participate as active members of the groups when they are
there on site, often bringing insights regarding the project from the other teams.
Travelers are often actively involved with the practice Formalize Contract Models
when the various subteams are defining interfaces to their work. This is a role
often taken on by people who have a high-level view of the project. Although
the traveler role sounds romantic at first, particularly to people who have never
spent much time traveling for business, it is often very difficult on a personal
level for many people. It strains relationships and recovering from time-zone
differences can be very demanding on your body—regardless of what you may
have heard, you never get used to it. At best, you get good at fooling yourself
that you’re handling it as you stifle a yawn.

Hand-Offs to Other Teams
Many project teams find that they need to hand-off (deliver) their work to another
team. Perhaps you’re working on a development team within an organization, or on a
team within an outsourcing company, with the intention that you’ll deliver it to
another team that focuses on maintaining and enhancing systems over time. Similarly,
perhaps you’re a consultant or contractor who has been brought into an organization
for a specific time with the expectation that you will provide “fully-documented”
work to hand-off when you leave. Your hand-off is facilitated by the inclusion of the
people whom you are delivering your work to. These people are among your project
stakeholders, so follow the practice of Active Stakeholder Participation to ensure that
you’ve met their actual needs and that they understand what it is that you’re building.
This will help to reduce the need for extensive documentation because they won’t
require it. Furthermore, by actively involving your project’s stakeholders, you’ve
turned your situation into something where AM is likely to fit much better.

Another problematic situation is when you’re working on a “piece-meal project”
that focuses on a single aspect of a project. For example, a common approach taken by
the U.S. Federal Government is to award a firm the requirements engineering part of a
project, the goal often being to create a formal Software Requirements Specification
(SRS) that describes the system that should be built. The SRS is handed-off to the firm
that wins the bid for the construction phase of the project, which may be the same firm
that created the SRS to begin with. A similar approach is often taken for other phases,
such as architectural or design modeling. This situation clearly goes against several
fundamentals of agile software development. First, the team is taking a serial
approach instead of an iterative one. Second, the primary goal is to produce documen-
tation, not work on software. Assuming that you can’t avoid this situation to begin

72244_CH29I 2/27/02 11:36 AM Page 322

Adopting Agile Modeling or Overcoming Adversity 323

with, your best strategy is to partially adopt AM principles and practices as appropri-
ate. Practices that likely won’t work well in this situation are:

■■ Depict Models Simply because you’ll still want to keep your models as simple as
possible, but your need for comprehensive documentation will constrain your
efforts.

■■ Model in Small Increments and Prove It With Code will both be problematic
because you don’t have the opportunity to move beyond your current serial
phase.

■■ Update Only When It Hurts likely isn’t applicable because of the need for
consistent and thorough documentation. Another way to look at it is that the
practice is still applicable, although you have a spectacularly low pain
threshold.

■■ Use The Simplest Tools will likely be constrained by the need to produce
“professional” documentation.

Fixed-Price Contracts
Several years ago I spoke at a conference in Brazil. During my talk, one person asked
me how I would go about estimating a fixed-price contract where the requirements
weren’t well defined yet. My response was that I didn’t do fixed-priced contracts, but
that I would provide an estimate for the next two to three months of effort instead of
the eighteen to twenty-four months he was asking for. My estimate would have a
range instead of a fixed amount. This wasn’t the answer he was looking for. This per-
son then asked the same question of other speakers throughout the conference and
they gave him similar advice. The speakers were all very experienced software devel-
opers, most of whom had been in the industry for over 20 years. They had a wide vari-
ety of backgrounds and development philosophies, yet from what I could tell, no one
believed the fixed-price contract was a good idea.

Fixed-price contracts commonly occur because your project stakeholders, often
senior management, want to impose financial constraints on your project team to
avoid having them go over budget. This is something that the XP community would
refer to as “playing not to lose” (Beck 2000). Fixed price contracts are often imposed on
outsourcing and contracting firms that take over the development of the project with
little or no direct management by members of your organization, although there will
be indirect oversight of the effort. Internal fixed-price efforts are also common, partic-
ularly in organizations with strict budgeting processes or that have experienced sig-
nificant cost overruns in the past.

There is nothing inherently wrong with a fixed-price contract, as long as you’re
allowed to vary another aspect of your work. Project managers will often refer to the
“iron triangle” of planning—cost, scope, and quality—you can only fix two of these
three aspects on your project. Because your contract fixes the cost of the project and AM
fixes quality through its Quality Work principle, the implication is that you need to be
flexible on scope, the amount of functionality that you can deliver for that fixed amount
of money. Unfortunately, the real world is rarely that simple because the people who

72244_CH29I 2/27/02 11:36 AM Page 323

324 Chapter 29

define the contract also want to fix all three of these variables: They want to know
exactly what they’re getting for their money and naturally they want high-quality
work. Your best option is to educate people in this fundamental concept and try to
move them towards a less-dysfunctional situation such as one or more of the following:

■■ A ranged estimate, for example $500,000 +/- $100,000

■■ A series of smaller phases/iterations which you estimate as you reach them

■■ A low time and materials rate that covers costs plus bonuses for meeting
performance-based goals

Consider Alternatives to Full Adoption
of AM

It is very likely that your project team will face several challenges when taking an AM
approach, some of which you will be able to overcome and others that you’ll need to
learn to live with. You may discover that even after changing what you can, you’re still
not in a position to fully adopt AM. Therefore you need to choose one of the following
options:

1. Partially adopt AM. You can adopt as many of the principles and practices of
AM as possible; you won’t be truly doing AM but you will likely be more
productive as a developer. Once your organization discovers that there are
better ways to develop software, perhaps they will be more willing to change
the factors required to fully adopt AM. In other words, just as you want to
Apply Patterns Gently, you should consider the practice, Apply Methodologies
Gently as well.

2. Give up on AM within your organization. Personally, I don’t like this option
but I have to admit that it’s a valid one. The reality is that AM isn’t for everyone
and perhaps your organization is one where AM simply isn’t a good fit.

3. Start looking for employment elsewhere. There are a lot of organizations out
there that are choosing to succeed at the software development game—
organizations that are more than willing to hire motivated software developers.

How to Make This Work in Practice

The best advice that I can give you is to look for ways to make AM work for you
instead of looking for ways that it won’t work.

72244_CH29I 2/27/02 11:36 AM Page 324

Small shifts in deeply held beliefs and values can massively alter societal
behavior and results. In fact, may be the only things that ever have.

—Dee Hock

325

C H A P T E R

30

Conclusion: Choose to Succeed

Many people think of a conclusion as an ending, but I’d rather think of it as a beginning. A
beginning? By reading this book I hope that you have gained valuable new insights into
effective modeling practices as well as effective development practices. This is a beginning
because you can now start to apply these insights on a daily basis in your job.

Before you put this book down and get to work, let’s wrap up several very impor-
tant loose ends. First, I want to address several misconceptions that you or your co-
workers may have regarding Agile Modeling. Second, I want to provide some
guidelines to help you determine when you are in fact agile modeling. Third, I want
to introduce you to several important resources to help you adopt and apply AM
within your organization. Finally, I have a few parting words that I want to share
with you.

Common Misconceptions Regarding
Agile Modeling

Through discussions on public mailing lists and newsgroups as well as working closely
with my company’s clients, I have already met several people who held some disturbing
misconceptions regarding AM. To be fair, my description of AM at the time often wasn’t
complete and this book obviously wasn’t available yet. However, I’m still concerned

72244_CH30I 2/27/02 11:35 AM Page 325

326 Chapter 30

Table 30.1 Potential Misconceptions Regarding AM

MISCONCEPTION REALITY

Business analysts, architects, AM does in fact prefer that developers be generalists
and other specialized with one or more specialties, see Chapter 12, but
modelers are disallowed does not require it. Specialists such as business

analysts can be quite effective when you need
someone to work with project stakeholders at a site
distant from the development team and architecture
experts can be useful at the beginning of a project
to help you identify a candidate architecture.

You can’t/don’t review Although this book didn’t touch on the topic of
agile models reviews, there is no reason why you cannot review

an agile model or document for that matter. The
reviewers need to set their expectations accordingly,
remembering that Content Is More Important Than
Representation, and you want to organize the
review meeting itself in much the way that Chapter
13 suggests to organize modeling sessions.

AM is carved in stone This is partially true because at a minimum you
need to adopt AM’s core practices to claim an AM
approach to development, as you learned in Chapter
29. However, there is significant leeway in the way
that you follow these practices. For example AM
suggests that you Apply The Right Artifact(s) but
doesn’t tell you what the right artifacts are. (Some
suggestions are provided in Appendix A.)

You don’t use CASE tools Agile modelers follow the practice Use The Simplest
Tools, and sometimes the simplest tool for the job is
in fact a CASE tool, as Chapter 10 describes in detail.

Agile modelers are highly Having a wide range of modeling experience
skilled “super developers” certainly helps, but it isn’t a requirement. It can be

your first day on the job as a developer and you can
still follow the principles and practices of AM. It’s far
more important to be willing to work with others
and to learn new skills—anyone willing to do so can
become an agile modeler.

enough to address these misconceptions here because I suspect they will continue to crop
up. The misconceptions that I have observed are summarized in Table 30.1.

When Is(n’t) it Agile Modeling?

One of the biggest challenges that all development methodologies face is from those
developers who claim to follow the method, but in reality they don’t. This is because

72244_CH30I 2/27/02 11:35 AM Page 326

Conclusion: Choose to Succeed 327

Table 30.2 Factors to Determine If You’re Engaged in Agile Modeling

X FACTOR

Your customers/users are active participants in your requirements and/or
analysis modeling efforts.

Changing requirements are welcomed and acted upon accordingly; there is
no “requirements freeze.”

You work on the highest-priority requirements first, as prioritized by your
project stakeholders, and in turn focus on the highest-risk issues as work
progresses.

You take an iterative and incremental approach to modeling.

Your primary focus is on the development of software, not documentation
or the models themselves.

You model as a team where everyone’s input is welcome.

You actively try to keep things as simple as possible. You use the simplest
tools available to you and create the simplest model(s) to do the job.

You discard most, if not all, of your models as development progresses.

Customers/business owners make business decisions; developers make
technical decisions.

The model’s content is recognized as being significantly more important
than the format/representation of that content.

How you test what you describe with your model(s) is a critical issue
continually considered as you model.

they often run into trouble and then proceed to blame the method that they weren’t
following properly to begin with. As I described in Chapter 29, “Adopting Agile Mod-
eling or Overcoming Adversity,” we’ve seen this problem within both the XP (Beck
2000) and UP (Jacobson, Booch, and Rumbaugh 1999) communities. I would like to try
and avoid this problem with AM. Although your primary test is to determine whether
or not you’ve adopted all of AM’s core practices as described in Chapter 4, “Supple-
mentary Principles,” it may not always be clear to you whether or not you are indeed
following them. To make this clearer, Table 30.1 provides a factor checklist (all of
which must be true) that identifies when you are truly performing agile modeling.
Table 30.2 provides a factor checklist (only one of which needs to be true) that identi-
fies when you’re not agile modeling.

It’s important to note that although you may not be agile modeling, often due to
environmental circumstances beyond your control, you can still apply many of the
principles and practices of AM to your project. However, just because you’re sketching
on a whiteboard, doesn’t necessarily imply that you are agile modeling. All it implies
is that you’re sketching on a whiteboard.

72244_CH30I 2/27/02 11:35 AM Page 327

328 Chapter 30

Table 30.3 Factors to Determine If You’re Not Engaged in Agile Modeling

X FACTOR

Your goal is to produce documentation, such as a requirements document,
for sign-off by one or more project stakeholders or to deliver to another team.

You use a CASE tool to specify the architecture and/or design of your software
BUT don’t use that specification to generate part or all of your software.

Your customers/users have limited involvement with your efforts. For exam-
ple, they are involved with the initial requirement’s development, perhaps
are available on a limited basis to answer questions, and at a later date will
be involved in one or more acceptance reviews of your work.

You focus on a single model at a time. Common examples are “use case
modeling sessions,” “class modeling sessions,” or “data modeling sessions.”
The root cause of this problem is typically “one artifact developers” such as
people specialized in data modeling or user interface modeling. With AM,
generalists lead the effort.

You work towards a freeze of one or more of your models. In other words,
you take a serial approach.

Agile Modeling Resources

This book isn’t the only source of information regarding AM. There are several web-
based resources also available to you:

The Agile Modeling Web site. At www.agilemodeling.com I continue to describe
the AM methodology and provide links to other agile software development
and model resources on the Web.

The Agile Modeling mailing list. Everyone is free to join and get involved with
the AM mailing list. Visit www.agilemodeling.com/feedback.htm for details.

The Agile Modeling Workshop. In this three-day workshop students work on a
real-world case study where they apply the principles and practices of AM to
create a wide range of modeling artifacts. Visit www.ronin-intl.com/services/
agileModeling.htm for details.

Furthermore, I openly invite other authors, and budding authors for that matter, to
write about their experiences applying AM in practice. Ideas that currently come to
mind include books that describe how to use AM with software processes other than
XP or the UP, or how to apply AM’s principles and practices with other modeling
methodologies such as ICONIX (Rosenberg and Scott 1999) or Catalysis (D’Souza and
Wills 1999).

72244_CH30I 2/27/02 11:35 AM Page 328

Conclusion: Choose to Succeed 329

A Few Parting Thoughts . . .

I can only show you the door. You’re the one that has to walk through it.

-Morpheus, in The Matrix

My experience has been that one of the hardest choices that you will ever have to make
is to choose to succeed. AM asks you to do some very difficult things:

■■ Work closely with your project stakeholders and fight to have them actively
involved, even when they may not want to or when it is hard to gain access to
them.

■■ Work closely with other developers, ideally within a shared workspace, even
when your existing environment promotes individual efforts.

■■ Learn how to create a wide variety of models and be willing to continue to
learn new techniques, even if you prefer to specialize in only one or two.

■■ Iterate between those models and other artifacts (including source code), even
when pressure exists to focus on a single model in order to “complete it.”

■■ Focus on software development, even when other people within your
organization coerce you to write excessive documentation or to create more
paperwork than what is absolutely required.

■■ Embrace change by acting on it appropriately, even when you desperately want to
“freeze” your requirements so you can know exactly what you need to build.

■■ Create and accept models that are just good enough, models built with simple
tools that often aren’t perfect, even when other teams within your organization
invest their time creating more “professional looking” models with
sophisticated electronic tools.

AM can be a little overwhelming at first. Many people are taken aback with AM’s
brutal honesty regarding the number of modeling artifacts that you need to learn over
time. (There are over 30 modeling artifacts described in Appendix A, “Modeling Tech-
niques.”) Don’t worry, you don’t need to know every one of them to start and you’re
likely to find that you are effective with only a subset. If you keep an open mind and
are willing to learn new techniques, you will discover that your intellectual toolbox
slowly grows over time.

You’ll also find that AM requires discipline at first, particularly the discipline to stop
modeling once you have fulfilled the model’s purpose and to iterate to another artifact
once you’ve become stuck working on the current model. The reason why you need this
discipline isn’t because AM is difficult; it’s because you’re building new modeling habits
and that takes time and effort. Once you’ve internalized these modeling habits AM will
become quite easy for you; you just need patience until then. A good analogy is learning
how to walk: at first walking is quite difficult for young children, requiring great focus, yet
after gaining some experience walking and even running quickly, it becomes something
that you just do without any conscious thought. If you choose to succeed, you will very
quickly find that you can run with Agile Modeling where you used to crawl.

72244_CH30I 2/27/02 11:35 AM Page 329

This is a reference section that summarizes common modeling techniques that agile
modelers may choose to apply to their projects. While reading the material presented
in this section, please keep the following in mind:

1. This is only a subset of the techniques available to you. Although the list is
fairly robust and includes a wide range of techniques, it is not complete, nor is it
meant to be. There are hundreds of modeling techniques that you may use on
your project; I am merely describing some of the more common ones. The
important thing to understand is that there is a much wider variety of modeling
techniques than many methodologies or modeling language standards will lead
you to believe, so keep an open mind when a co-worker wants to try a new or
non-standard technique.

2. The techniques are merely summarized. My goal for this section is to
summarize each modeling technique and then point you in the right direction
for more information about it. It is not my intention to teach you how to become
proficient at each technique. Table A.1 overviews how each modeling artifact is
described. Table A.2 presents the different modeling techniques.

3. You need to understand a wide range of techniques. The more types of
modeling artifacts that you know, the greater the chance that you will be able to
Apply the Right Artifact(s) for the job at hand.

330

A P P E N D I X

A

Modeling Techniques

72244_AppA 2/27/02 11:07 AM Page 330

Modeling Techniques 331

4. The descriptions reflect common experiences. The descriptions reflect my
experiences and those of my colleagues at Ronin International over many years
working on a wide range of projects. Having said that, the one consistent aspect
of each of these projects is that they are unique and therefore we applied a
subset of these techniques in a different way on each project. In other words,
expect to locally adapt these techniques to meet your exact needs.

[[T T1
C=T]]
Table A.1 How the Artifact Summaries Are Organized

SECTION EXPLANATION

Description A description of the modeling artifact.

Common applications Common uses for the modeling artifact, with a focus on the
development of business applications.

Common Common misuses specific to the artifact that often lead to
misapplications busy work or rework because the concept could be better

captured using another development artifact. Generic
misapplications, such as investment in unnecessary detail
or complexity, are not included as they pertain to all types
of modeling artifacts. When it isn’t obvious what to do,
advice is presented for addressing the misapplication.

Iterate to Potential artifacts to work on after the given artifact, providing
insights for following the practice Iterate to Another Artifact.

Suggested media An ordered list of media that can be used to support the
artifact. Possible alternatives include:

• Diagramming tool (for example, Microsoft Visio or
Corel Draw)

• Hand-drawn sketch (for example, on a whiteboard)

• Index cards

• Modeling tool (for example, Together from TogetherSoft
or Cittera from Canyon Blue)

• Paper

• PostIt notes

When to keep it Advice for situations when it may make sense for this model
to be a “keeper.” However, never forget the principle of Travel
Light—don’t keep something unless you desperately need it.
This section also includes a rating (High, Medium, Low) of
the likeliness that keeping the artifact will actually prove of
value to your future efforts.

72244_AppA 2/27/02 11:07 AM Page 331

332

[[
T

 T
2a

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

Ac
tiv

ity

A
U

M
L

ac
tiv

ity

An
al

ys
is

 o
r

de
si

gn

N
on

e
kn

ow
n

•
Ac

ce
pt

an
ce

1.

H
an

d-
dr

aw
n

(L
ow

 V
al

ue
)

To

D
ia

gr
am

di

ag
ra

m

of
 a

 b
us

in
es

s
•

te
st

 c
as

e.
sk

et
ch

pr
ov

id
e

a
(U

M
L)

(R
um

ba
ug

h,

pr
oc

es
s

or

•
C

la
ss

2.

D
ra

w
in

g
to

ol
hi

gh
-le

ve
l

Ja
co

bs
on

, a
nd

bu

si
ne

ss
 r

ul
e.

•
di

ag
ra

m
.

3.
C

AS
E

to
ol

ov
er

vi
ew

 o
f t

he

B
oo

ch
 1

99
9;

D

es
ig

n
of

 th
e

•
Es

se
nt

ia
l

lo
gi

c
fo

r
a

Fo
w

le
r

an
d

lo
gi

c
flo

w
 o

f a

•
us

e
ca

se
.

bu
si

ne
ss

 p
ro

ce
ss

.
Sc

ot
t 1

99
9;

co

m
pl

ex
 o

pe
ra

tio
n.

•
O

rg
an

iz
at

io
n

Am
bl

er
 2

00
1a

)
D

ep
ic

tio
n

of
 th

e
•

ch
ar

t.
is

 u
se

d
to

lo

gi
c

of
 a

 u
se

 c
as

e,

•
So

ur
ce

 c
od

e.
m

od
el

 h
ig

h-
le

ve
l

us
ag

e
sc

en
ar

io
,

•
Sy

st
em

bu

si
ne

ss

or
 u

se
r

st
or

y.
•

us
e

ca
se

.
pr

oc
es

se
s

or
 th

e
•

U
sa

ge
tr

an
si

tio
ns

•
sc

en
ar

io
.

be
tw

ee
n

st
at

es

•
U

se
 c

as
e

of
 a

 c
la

ss
.

•
di

ag
ra

m
.

Ac
tiv

iti
es

 c
an

•

U
se

r
st

or
y.

ei
th

er
 b

e
bu

si
ne

ss
pr

oc
es

se
s

or

te
ch

ni
ca

l
pr

oc
es

se
s,

 s
uc

h
as

 c
ol

le
ct

io
ns

 o
f

op
er

at
io

ns
im

pl
em

en
te

d
by

cl

as
se

s
or

co

m
po

ne
nt

s.

72244_AppA 2/27/02 11:07 AM Page 332

333

[[
T

 T
2b

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

B
us

in
es

s
Ru

le

A
bu

si
ne

ss
 r

ul
e

Re
qu

ire
m

en
ts

D

oc
um

en
ta

tio
n

of

•
Ac

ce
pt

an
ce

1.

W
or

d
(M

ed
iu

m
 v

al
ue

)
D

ef
in

iti
on

(R
os

s
19

97
;

id
en

tif
ic

at
io

n
te

ch
ni

ca
l r

eq
ui

re
m

en
ts

•
te

st
 c

as
e.

pr
oc

es
so

r
W

he
n

ex
ac

t
W

ie
ge

rs
 1

99
9;

•

C
la

ss

2.
In

de
x

ca
rd

de
fin

iti
on

s
of

Am

bl
er

 2
00

1a
)

is

•
di

ag
ra

m
.

3.
C

AS
E

to
ol

bu
si

ne
ss

 r
ul

es

an
 o

pe
ra

tin
g

•
C

RC
 m

od
el

.
ar

e
re

qu
ire

d
in

 a

pr
in

ci
pl

e
or

•

Es
se

nt
ia

l
st

ak
eh

ol
de

r-
po

lic
y

th
at

 y
ou

r
•

us
e

ca
se

.
re

ad
ab

le
 fo

rm
at

.
so

ft
w

ar
e

m
us

t
•

Fl
ow

ch
ar

t.
sa

tis
fy

. B
us

in
es

s
•

G
lo

ss
ar

y.
ru

le
s

of
te

n
•

So
ur

ce
de

sc
rib

e
ac

ce
ss

•

co
de

.
co

nt
ro

l i
ss

ue
s,

•

Sy
st

em

bu
si

ne
ss

•
us

e
ca

se
.

ca
lc

ul
at

io
ns

, o
r

•
U

sa
ge

th
e

po
lic

ie
s

of

•
sc

en
ar

io
.

yo
ur

 o
rg

an
iz

at
io

n.

C
ha

ng
e

C
as

e
C

ha
ng

e
ca

se
s

Ex
pl

or
at

io
n

of

Ju
st

ifi
ca

tio
n

to

•
C

on
st

ra
in

t.
1.

In
de

x
ca

rd
(L

ow
 v

al
ue

)
(B

en
ne

tt
 1

99
7;

fu

tu
re

 p
ot

en
tia

l
ov

er
bu

ild
 s

of
tw

ar
e

to

•
C

RC
 m

od
el

.
2.

W
or

d
W

he
n

yo
u

ne
ed

Am

bl
er

 2
00

1a
)

re
qu

ire
m

en
ts

m
ee

t “
po

te
nt

ia
l”

•
Te

ch
ni

ca
l

pr
oc

es
so

r
to

 ju
st

ify
 d

es
ig

n
ar

e
us

ed
 to

re

qu
ire

m
en

ts
•

re
qu

ire
m

en
t.

or
 a

rc
hi

te
ct

ur
e

de
sc

rib
e

ne
w

•

U
sa

ge
de

ci
si

on
s

to

po
te

nt
ia

l
•

sc
en

ar
io

.
pr

oj
ec

t
st

ak
e

re
qu

ire
m

en
ts

 fo
r

•
U

se
 c

as
e.

ho
ld

er
s

AN
D

a

sy
st

em
 o

r
•

U
se

r
st

or
y.

th
ey

 r
eq

ui
re

m

od
ifi

ca
tio

ns
 to

do

cu
m

en
ta

tio
n.

ex
is

tin
g

re
qu

ire
m

en
ts

.

co
nt

in
ue

s

72244_AppA 2/27/02 11:07 AM Page 333

334

[[
T

 T
2c

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es
 (

co
nt

in
ue

d)

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

C
la

ss
 D

ia
gr

am

U
M

L
cl

as
s

C
on

ce
pt

ua
l

Ph
ys

ic
al

 d
at

ab
as

e
•

Co
lla

bo
ra

tio
n

1.
H

an
d-

dr
aw

n
(L

ow
 v

al
ue

)
Yo

u
(U

M
L)

di
ag

ra
m

s
m

od
el

in
g.

m
od

el
in

g.
•

di
ag

ra
m

.
sk

et
ch

ne
ed

 t
o

(R
um

ba
ug

h,

D
om

ai
n

m
od

el
in

g.
D

om
ai

n
m

od
el

•

C
om

po
ne

nt

2.
C

AS
E

to
ol

co
m

m
un

ic
at

e
Ja

co
bs

on
, a

nd

D
es

ig
n

of
 th

e
do

cu
m

en
ta

tio
n

fo
r

•
di

ag
ra

m
.

3.
In

de
x

ca
rd

s
th

e
in

te
rn

al

B
oo

ch
 1

99
9;

st

ru
ct

ur
e

of
 o

bj
ec

t-
us

er
s

(t
he

y
of

te
n

do
n’

t
•

C
RC

 m
od

el
.

co
nn

ec
te

d
by

st

ru
ct

ur
e

of
 y

ou
r

Fo
w

le
r

an
d

Sc
ot

t
or

ie
nt

ed
 s

of
tw

ar
e.

un
de

rs
ta

nd
 th

e
•

D
at

a
m

od
el

.
st

rin
g

so
ft

w
ar

e
to

19

99
; A

m
bl

er

D
et

ai
le

d
de

si
gn

 o
f

no
ta

tio
n)

.
•

G
lo

ss
ar

y.
ot

he
rs

.
20

01
a)

 d
ep

ic
t

th
e

in
te

rn
al

s
of

 a

O
nl

y
de

si
gn

 d
ia

gr
am

•

Se
qu

en
ce

cl
as

se
s,

 th
ei

r
co

m
po

ne
nt

.
fo

r
O

O
 s

of
tw

ar
e

(u
se

•

di
ag

ra
m

.
st

at
ic

 in
te

r-
m

ul
tip

le
 m

od
el

s)
.

•
So

ur
ce

 c
od

e.
re

la
tio

ns
hi

ps
•

St
at

e
ch

ar
t

(i
nc

lu
di

ng
•

di
ag

ra
m

.
in

he
rit

an
ce

,
•

U
sa

ge
 s

ce
na

rio
.

ag
gr

eg
at

io
n,

 a
nd

•

U
se

r
st

or
y.

as
so

ci
at

io
n)

,
an

d
th

e
op

er
at

io
ns

 a
nd

at

tr
ib

ut
es

 o
f t

he

cl
as

se
s.

72244_AppA 2/27/02 11:07 AM Page 334

335

[[
T

 T
2d

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

C
la

ss

A
C

la
ss

D

om
ai

n
m

od
el

in
g

N
on

e
kn

ow
n

•
Ac

ce
pt

an
ce

1.

In
de

x
ca

rd
s

Ty
pi

ca
lly

Re

sp
on

si
bi

lit
y

Re
sp

on
si

bi
lit

y
w

ith
 p

ro
je

ct

•
te

st
 c

as
e.

di
sc

ar
de

d
af

te
r

C
ol

la
bo

ra
to

r
C

ol
la

bo
ra

to
r

st
ak

eh
ol

de
rs

.
•

B
us

in
es

s
ru

le
.

us
e.

(C
RC

)
C

ar
ds

(C
RC

)
m

od
el

C

on
ce

pt
ua

l
•

C
ha

ng
e

ca
se

.
(B

ec
k

20
00

;
m

od
el

in
g

w
ith

•

C
on

st
ra

in
t.

Am
bl

er
 2

00
1a

)
pr

oj
ec

t
•

C
la

ss
 d

ia
gr

am
.

is
 a

 c
ol

le
ct

io
n

of

st
ak

eh
ol

de
rs

.
•

Es
se

nt
ia

l u
se

st

an
da

rd
 in

de
x

Ex
pl

or
at

io
n

of
 th

e
•

ca
se

.
ca

rd
s,

 e
ac

h
of

de

si
gn

 o
f t

he

•
G

lo
ss

ar
y.

w
hi

ch
 h

av
e

be
en

st

ru
ct

ur
e

of
 o

bj
ec

t-
•

O
rg

an
iz

at
io

n
di

vi
de

d
in

to

or
ie

nt
ed

 s
of

tw
ar

e.
•

ch
ar

t.
th

re
e

se
ct

io
ns

•

So
ur

ce
 c

od
e.

in
di

ca
tin

g:
 th

e
•

Sy
st

em
 u

se

na
m

e
of

 th
e

•
ca

se
.

cl
as

s,
 th

e
•

U
sa

ge
re

sp
on

si
bi

lit
ie

s
•

sc
en

ar
io

.
of

 th
e

cl
as

s,
 a

nd

•
U

se
 c

as
e

th
e

co
lla

bo
ra

to
rs

•

di
ag

ra
m

.
of

 th
e

cl
as

s.

•
U

se
r

st
or

y.
co

nt
in

ue
s

72244_AppA 2/27/02 11:07 AM Page 335

336

[[
T

 T
2e

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es
 (

co
nt

in
ue

d)

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

C
ol

la
bo

ra
tio

n
U

M
L

Ex
pl

or
at

io
n

of
 th

e
To

 e
xp

lo
re

 th
e

•
C

la
ss

1.

H
an

d-
dr

aw
n

(L
ow

 v
al

ue
)

D
ia

gr
am

 (
U

M
L)

co
lla

bo
ra

tio
n

dy
na

m
ic

 n
at

ur
e

of

se
qu

en
ce

 o
f o

bj
ec

t
•

di
ag

ra
m

.
sk

et
ch

Ty

pi
ca

lly

di
ag

ra
m

s
co

m
pl

ex
 o

bj
ec

t o
r

in
te

ra
ct

io
ns

 (
us

e
a

•
C

om
po

ne
nt

2.
C

AS
E

to
ol

di
sc

ar
de

d
af

te
r

(R
um

ba
ug

h,

co
m

po
ne

nt

se
qu

en
ce

 d
ia

gr
am

•

di
ag

ra
m

.
us

e,
 a

lth
ou

gh

Ja
co

bs
on

, a
nd

in

te
ra

ct
io

ns
in

st
ea

d)
•

D
ep

lo
ym

en
t

m
ay

 b
e

ke
pt

 t
o

B
oo

ch
 1

99
9;

•

di
ag

ra
m

.
sh

ow
 d

es
ig

n
of

 a

Fo
w

le
r

an
d

Sc
ot

t
•

Ro
bu

st
ne

ss

co
m

pl
ex

 p
or

tio
n

19
99

; A
m

bl
er

•

di
ag

ra
m

.
of

 s
of

tw
ar

e.
20

01
a)

 p
ro

vi
de

 a

•
So

ur
ce

bi
rd

s-
ey

e
vi

ew

•
co

de
.

of
 a

 c
ol

le
ct

io
n

•
Sy

st
em

of

 c
ol

la
bo

ra
tin

g
•

us
e

ca
se

.
ob

je
ct

s
th

at
 w

or
k

•
U

sa
ge

to
ge

th
er

 to
 fu

lfi
ll

•
sc

en
ar

io
.

a
co

m
m

on
•

U
se

r
pu

rp
os

e.
•

in
te

rf
ac

e
C

ol
la

bo
ra

tio
n

•
flo

w
di

ag
ra

m
s

sh
ow

•

di
ag

ra
m

.
m

es
sa

ge
 fl

ow

•
U

se
r

in
te

rf
ac

e
be

tw
ee

n
ob

je
ct

s
•

pr
ot

ot
yp

e.
in

 a
n

ob
je

ct
-

•
U

se
r

st
or

y.
or

ie
nt

ed
ap

pl
ic

at
io

n,
 a

nd

al
so

 im
pl

y
th

e
ba

si
c

as
so

ci
at

io
ns

(r

el
at

io
ns

hi
ps

)
be

tw
ee

n
cl

as
se

s.

72244_AppA 2/27/02 11:07 AM Page 336

337

[[
T

 T
2f

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

C
om

po
ne

nt

A
U

M
L

D
es

ig
n

of
 th

e
N

on
e

kn
ow

n
•

Co
lla

bo
ra

tio
n

1.
H

an
d-

dr
aw

n
(M

ed
iu

m
 v

al
ue

)
D

ia
gr

am
 (

U
M

L)
co

m
po

ne
nt

hi

gh
-le

ve
l

•
di

ag
ra

m
.

sk
et

ch
To

 p
ro

vi
de

 a
n

di
ag

ra
m

st

ru
ct

ur
e

of

•
C

la
ss

2.

In
de

x
ca

rd
s

ov
er

vi
ew

(R

um
ba

ug
h,

bu

si
ne

ss

•
di

ag
ra

m
.

co
nn

ec
te

d
di

ag
ra

m
 o

f y
ou

r
Ja

co
bs

on
, a

nd

ar
ch

ite
ct

ur
e

fo
r

•
D

ep
lo

ym
en

t
by

 s
tr

in
g

so
ft

w
ar

e
B

oo
ch

 1
99

9;

a
co

m
po

ne
nt

-
•

di
ag

ra
m

.
3.

C
AS

E
to

ol
ar

ch
ite

ct
ur

e.
Fo

w
le

r
an

d
Sc

ot
t

ba
se

d
sy

st
em

.
•

Se
qu

en
ce

19
99

; A
m

bl
er

D

es
ig

n
of

 th
e

•
di

ag
ra

m
.

20
01

a)
 d

ep
ic

ts

hi
gh

-le
ve

l s
tr

uc
tu

re

•
So

ur
ce

th
e

so
ftw

ar
e

of
 te

ch
ni

ca
l

•
co

de
.

co
m

po
ne

nt
s

of
 a

so

ftw
ar

e
sy

st
em

, t
he

ir
co

m
po

ne
nt

s
or

in

te
rf

ac
es

, a
nd

su

bs
ys

te
m

s.
th

e
re

la
tio

ns
hi

ps

be
tw

ee
n

th
e

co
m

po
ne

nt
s.

C
on

st
ra

in
t

A
co

ns
tr

ai
nt

D

ef
in

iti
on

 o
f a

D

ef
in

iti
on

 o
f a

•

Ac
ce

pt
an

ce

1.
In

de
x

ca
rd

(M

ed
iu

m
 v

al
ue

)
D

ef
in

iti
on

(W
ie

ge
rs

 1
99

9;

bu
si

ne
ss

 o
r

bu
si

ne
ss

 r
ul

e.
•

te
st

 c
as

e.
2.

W
or

d
Ke

pt
 a

s
pa

rt
 o

f
Am

bl
er

 2
00

1a
)

is

te
ch

ni
ca

l
D

ef
in

iti
on

 o
f a

•

C
ha

ng
e

ca
se

.
pr

oc
es

so
r

of
fic

ia
l d

ef
in

iti
on

a

re
st

ric
tio

n
on

co

ns
tr

ai
nt

.
te

ch
ni

ca
l r

eq
ui

re
m

en
t.

•
C

RC
 m

od
el

.
of

 r
eq

ui
re

m
en

ts
.

th
e

de
gr

ee
 o

f
•

D
ep

lo
ym

en
t

fr
ee

do
m

 y
ou

•

di
ag

ra
m

.
ha

ve
 in

 p
ro

vi
di

ng

•
Es

se
nt

ia
l u

se

a
so

lu
tio

n.

•
ca

se
.

co
nt

in
ue

s

72244_AppA 2/27/02 11:07 AM Page 337

338

[[
T

 T
2g

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es
 (

co
nt

in
ue

d)

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

C
on

st
ra

in
t

C
on

st
ra

in
ts

 a
re

•

G
lo

ss
ar

y.
D

ef
in

iti
on

ef
fe

ct
iv

el
y

gl
ob

al

•
So

ur
ce

re
qu

ire
m

en
ts

 fo
r

•
co

de
.

yo
ur

 p
ro

je
ct

.
•

Sy
st

em

C
on

st
ra

in
ts

 c
an

•

us
e

ca
se

.
be

 e
co

no
m

ic
,

•
Te

ch
ni

ca
l

po
lit

ic
al

, t
ec

hn
ic

al
,

•
re

qu
ire

m
en

t.
or

 e
nv

iro
nm

en
ta

l
•

U
sa

ge
an

d
pe

rt
ai

n
to

 y
ou

r
•

sc
en

ar
io

.
pr

oj
ec

t r
es

ou
rc

es
,

sc
he

du
le

, t
ar

ge
t

en
vi

ro
nm

en
t,

or

to
 th

e
sy

st
em

its

el
f.

D
at

a
D

ia
gr

am
A

da
ta

Ph

ys
ic

al
 d

at
ab

as
e

C
on

ce
pt

ua
l m

od
el

in
g

•
Ac

ce
pt

an
ce

1.

H
an

d-
dr

aw
n

(V
er

y
H

ig
h)

 T
o

di
ag

ra
m

/m
od

el

de
si

gn
.

of
 O

O
 s

of
tw

ar
e

(u
se

•

te
st

 c
as

e.
sk

et
ch

do
cu

m
en

t
(R

ei
ng

ru
be

r
an

d
C

on
ce

pt
ua

l o
r

a
cl

as
s

di
ag

ra
m

•

C
la

ss

2.
C

AS
E

to
ol

ph
ys

ic
al

G

re
go

ry
 1

99
4;

do

m
ai

n
m

od
el

in
g

in
st

ea
d)

.
•

di
ag

ra
m

.
da

ta
ba

se
 d

es
ig

n.
Am

bl
er

 2
00

1a
)

fo
r

a
da

ta

D
om

ai
n

m
od

el
in

g
fo

r
•

D
at

a
flo

w
(V

er
y

H
ig

h)
 A

s
a

de
pi

ct
s

da
ta

w

ar
eh

ou
se

.
O

O
 s

of
tw

ar
e

(u
se

 a

•
di

ag
ra

m
.

co
nt

ra
ct

 m
od

el

en
tit

ie
s

an
d

Ex
pl

or
e

cl
as

s
di

ag
ra

m
 in

st
ea

d)
.

•
D

ep
lo

ym
en

t
be

tw
ee

n
th

e
th

ei
r

in
te

r-
re

la
tio

ns
hi

ps

Ex
pl

or
at

io
n

of

•
di

ag
ra

m
.

da
ta

ba
se

 o
w

ne
rs

re

la
tio

ns
hi

ps
.

be
tw

ee
n

se
ve

ra
l

st
ru

ct
ur

e
of

 O
O

•

So
ur

ce
 c

od
e.

an
d

ot
he

r
en

tit
ie

s.
so

ftw
ar

e
(u

se
 a

 c
la

ss

•
Sy

st
em

sy

st
em

s
di

ag
ra

m
 in

st
ea

d)
.

•
us

e
ca

se
.

ac
ce

ss
in

g
th

e
A

pr
im

ar
y

dr
iv

er
 o

f t
he

•

U
sa

ge

da
ta

ba
se

.
st

ru
ct

ur
e

of
 a

 c
la

ss

•
sc

en
ar

io
.

di
ag

ra
m

.
•

U
se

r
st

or
y.

72244_AppA 2/27/02 11:07 AM Page 338

339

[[
T

 T
2h

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

D
ep

lo
ym

en
t

A
U

M
L

Id
en

tif
ic

at
io

n
of

To

 s
ho

w
 d

ep
en

de
nc

es

•
Ac

ce
pt

an
ce

1.

H
an

d-
dr

aw
n

(M
ed

iu
m

 v
al

ue
)

D
ia

gr
am

 (
U

M
L)

de
pl

oy
m

en
t

th
e

ph
ys

ic
al

be

tw
ee

n
so

ftw
ar

e
•

te
st

 c
as

e.
sk

et
ch

To

 d
oc

um
en

t
di

ag
ra

m

ar
ch

ite
ct

ur
e

fo
r

a
co

m
po

ne
nt

s
(u

se
 a

•

Ac
tiv

ity

2.
C

AS
E

to
ol

te
ch

ni
ca

l
(R

um
ba

ug
h,

sy

st
em

.
co

m
po

ne
nt

 d
ia

gr
am

•

di
ag

ra
m

.
ar

ch
ite

ct
ur

e
of

Ja

co
bs

on
, a

nd

Id
en

tif
ic

at
io

n
of

in

st
ea

d)
.

•
Co

lla
bo

ra
tio

n
yo

ur
 s

ys
te

m
.

B
oo

ch
 1

99
9;

ho

w
 s

of
tw

ar
e

•
di

ag
ra

m
.

Fo
w

le
r

an
d

Sc
ot

t
co

m
po

ne
nt

s
ar

e
•

C
om

po
ne

nt
19

99
; A

m
bl

er

an
d/

or
 w

ill
 b

e
•

m
od

el
.

20
01

a)
 d

ep
ic

ts

de
pl

oy
ed

 to

•
C

on
st

ra
in

t.
a

st
at

ic
 v

ie
w

 o
f

ph
ys

ic
al

•

D
at

a
m

od
el

.
th

e
ru

n-
tim

e
ar

ch
ite

ct
ur

e.
•

Ex
te

rn
al

co
nf

ig
ur

at
io

n
of

•

in
te

rf
ac

e
pr

oc
es

si
ng

•
sp

ec
ifi

ca
tio

n.
no

de
s

an
d

th
e

•
Se

qu
en

ce
co

m
po

ne
nt

s
th

at

•
di

ag
ra

m
.

ru
n

on
 th

os
e

•
U

sa
ge

no
de

s.
 T

hi
s

•
sc

en
ar

io
.

in
cl

ud
es

 th
e

•
U

se
r

st
or

y.
ha

rd
w

ar
e

fo
r

yo
ur

 s
ys

te
m

, t
he

so

ftw
ar

e
th

at
 is

in

st
al

le
d

on
 th

at

ha
rd

w
ar

e,
 a

nd

th
e

m
id

dl
ew

ar
e

us
ed

 to
 c

on
ne

ct

th
e

di
sp

ar
at

e
m

ac
hi

ne
s

to
 o

ne

an
ot

he
r.

co
nt

in
ue

s

72244_AppA 2/27/02 11:07 AM Page 339

340

[[
T

 T
2i

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es
 (

co
nt

in
ue

d)

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

D
at

a
Fl

ow

A
da

ta
-f

lo
w

An

al
ys

is
 o

f e
xi

st
in

g
O

ve
r-

sp
ec

ifi
ca

tio
n

of
 a

•

Ac
ce

pt
an

ce

1.
H

an
d-

dr
aw

n
(L

ow
 v

al
ue

)
To

D

ia
gr

am
 (

D
FD

)
di

ag
ra

m
 (

D
FD

)
bu

si
ne

ss

sy
st

em
 b

y
“d

ril
lin

g
•

te
st

 c
as

e.
sk

et
ch

co
m

m
un

ic
at

e
(Y

ou
rd

on
 1

98
9;

pr

oc
es

se
s.

 D
es

ig
n

do
w

n”
 in

to
 s

ub

•
C

ha
ng

e
2.

D
ra

w
in

g
to

ol
ov

er
al

l d
es

ig
n

of

G
an

e
an

d
Sa

rs
on

of

 n
ew

 o
r

up
da

te
d

pr
oc

es
se

s
w

ith
 m

or
e

•
ca

se
.

3.
C

AS
E

to
ol

a
pr

oc
es

s-
19

78
; A

m
bl

er

up
da

te
d

bu
si

ne
ss

D

FD
s.

 S
ig

ni
fic

an
t e

ffo
rt

•

C
on

st
ra

in
t.

in
te

ns
iv

e
sy

st
em

.
19

97
)

sh
ow

s
pr

oc
es

se
s.

to
 le

ve
l b

al
an

ce

•
D

at
a

m
od

el
.

th
e

m
ov

em
en

t
be

tw
ee

n
a

D
FD

 a
nd

•

D
ep

lo
ym

en
t

of
 d

at
a

w
ith

in
 a

its

 s
ub

-D
FD

s.
•

di
ag

ra
m

.
sy

st
em

 b
et

w
ee

n
•

O
rg

an
iz

at
io

n
pr

oc
es

se
s,

•
ch

ar
t.

en
tit

ie
s,

 a
nd

•

St
ru

ct
ur

e
da

ta
 s

to
re

s.
•

di
ag

ra
m

.
•

Sy
st

em

•
U

se
 c

as
e.

•
U

sa
ge

•
sc

en
ar

io
.

•
U

se
r

st
or

y.
•

U
se

 c
as

e
•

di
ag

ra
m

.

72244_AppA 2/27/02 11:07 AM Page 340

341

[[
T

 T
2j

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

Ex
te

rn
al

An

 e
xt

er
na

l
As

 a
 c

on
tr

ac
t

N
on

e
kn

ow
n

•
D

at
a

flo
w

1.

W
or

d
(V

er
y

hi
gh

)
As

 a

In
te

rf
ac

e
in

te
rf

ac
e

(E
I)

m

od
el

 d
ef

in
in

g
to

•

di
ag

ra
m

.
pr

oc
es

so
r

co
nt

ra
ct

 m
od

el

Sp
ec

ifi
ca

tio
n

sp
ec

ifi
ca

tio
n

in
te

rf
ac

e
(v

ia
 a

n
•

D
at

a
2.

C
AS

E
to

ol
be

tw
ee

n
yo

ur

(L
in

th
ic

um
 2

00
0)

AP

I,
da

ta
 fe

ed
, .

 .
.)

•
m

od
el

.
sy

st
em

 a
nd

 a
n

m
od

el
s

th
e

to
 a

 s
ys

te
m

.
•

D
ep

lo
ym

en
t

ex
te

rn
al

 o
ne

.
in

te
rf

ac
e(

s)
 to

 a

•
di

ag
ra

m
.

sy
st

em
 th

at
 is

•

G
lo

ss
ar

y.
ex

te
rn

al
 to

 y
ou

rs
.

B
ec

au
se

 e
xt

er
na

l
sy

st
em

s
ca

n
be

ac

ce
ss

ed
 u

si
ng

 a

va
rie

ty
 o

f
m

ea
ns

—
pe

rh
ap

s
vi

a
a

C
-A

PI
, v

ia

fil
e

ac
ce

ss
, o

r
vi

a
ca

lls
 to

 a
 s

ha
re

d
da

ta
ba

se
—

th
e

co
nt

en
ts

 a
nd

fo

rm
at

 o
f a

n
EI

sp

ec
ifi

ca
tio

n
m

ay
 v

ar
y.

co
nt

in
ue

s

72244_AppA 2/27/02 11:07 AM Page 341

342

[[
T

 T
2k

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es
 (

co
nt

in
ue

d)

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

Es
se

nt
ia

l U
se

r
An

 e
ss

en
tia

l u
se

r
Ex

pl
or

at
io

n
of

 th
e

N
on

e
kn

ow
n

•
B

us
in

es
s

1.
Pa

pe
r

an
d

Ty
pi

ca
lly

In

te
rf

ac
e

in
te

rf
ac

e
(U

I)

re
qu

ire
m

en
ts

 fo
r

•
ru

le
.

Po
st

-It
 N

ot
es

di
sc

ar
de

d.
Pr

ot
ot

yp
e

pr
ot

ot
yp

e
th

e
us

er
 in

te
rf

ac
e

•
C

on
st

ra
in

t.
2.

H
an

d-
dr

aw
n

(C
on

st
an

tin
e

of
 a

 s
ys

te
m

 in
 a

•

Es
se

nt
ia

l
sk

et
ch

an
d

Lo
ck

w
oo

d
te

ch
no

lo
gy

-
•

us
e

ca
se

.
19

99
; A

m
bl

er

in
de

pe
nd

en
t

•
G

lo
ss

ar
y.

20
01

a)
 is

 a
 lo

w
-

m
an

ne
r.

•
U

sa
ge

fid
el

ity
 m

od
el

, o
r

•
sc

en
ar

io
.

pr
ot

ot
yp

e,
 o

f t
he

•

U
se

r
U

I f
or

 y
ou

r
•

in
te

rf
ac

e
sy

st
em

. I
t

•
flo

w
re

pr
es

en
ts

 th
e

•
di

ag
ra

m
.

ge
ne

ra
l i

de
as

•

U
se

r
be

hi
nd

 th
e

U
I

•
in

te
rf

ac
e

bu
t n

ot
 th

e
ex

ac
t

•
pr

ot
ot

yp
e.

de
ta

ils
.

Es
se

nt
ia

l U
se

A

us
e

ca
se

 is
 a

Id

en
tif

ic
at

io
n

N
on

e
kn

ow
n

•
Ac

ce
pt

an
ce

1.

W
or

d
(M

ed
iu

m
 v

al
ue

)
C

as
e

se
qu

en
ce

 o
f

of
 u

sa
ge

•

te
st

 c
as

e.
pr

oc
es

so
r

Pa
rt

 o
f o

ffi
ci

al

ac
tio

ns
 th

at

re
qu

ire
m

en
ts

 fo
r

•
C

ha
ng

e
2.

C
AS

E
to

ol
re

qu
ire

m
en

ts

pr
ov

id
e

a
a

sy
st

em
.

•
ca

se
.

do
cu

m
en

ta
tio

n
m

ea
su

ra
bl

e
Id

en
tif

ic
at

io
n

of

•
C

on
st

ra
in

t.
fo

r
a

sy
st

em
.

va
lu

e
to

 a
n

ac
to

r.
en

te
rp

ris
e-

le
ve

l
•

Es
se

nt
ia

l
re

qu
ire

m
en

ts
 fo

r
•

us
er

an
 o

rg
an

iz
at

io
n.

•
in

te
rf

ac
e

•
flo

w
•

pr
ot

ot
yp

e.

72244_AppA 2/27/02 11:07 AM Page 342

343

[[
T

 T
2l

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

Es
se

nt
ia

l U
se

An

 e
ss

en
tia

l u
se

-
•

G
lo

ss
ar

y.
C

as
e

ca
se

 (
C

on
st

an
tin

e
•

Sy
st

em

an
d

Lo
ck

w
oo

d
•

us
e

ca
se

.
19

99
; A

m
bl

er

•
Te

ch
ni

ca
l

20
01

a)
 is

 a

•
re

qu
ire

m
en

t.
si

m
pl

ifi
ed

,
ab

st
ra

ct
,

ge
ne

ra
liz

ed
us

e
ca

se
 th

at

ca
pt

ur
es

 th
e

in
te

nt
io

ns
 o

f a

us
er

 in
 a

te

ch
no

lo
gy

 a
nd

im

pl
em

en
ta

tio
n-

in
de

pe
nd

en
t

m
an

ne
r.

Fe
at

ur
e

A
fe

at
ur

e
is

 a

Ex
pl

or
at

io
n

of

N
on

e
kn

ow
n

•
Ac

ce
pt

an
ce

1.

In
de

x
ca

rd
(M

ed
iu

m
 v

al
ue

).

“s
m

al
l,

us
ef

ul
 in

re

qu
ire

m
en

ts
.

•
te

st
 c

as
e.

2.
W

or
d

W
he

n
yo

u
ne

ed

th
e

ey
es

 o
f t

he

•
Bu

si
ne

ss
 ru

le
pr

oc
es

so
r

a
fe

at
ur

e
lis

t
cl

ie
nt

 r
es

ul
t”

. A

•
de

fin
iti

on
.

de
sc

rib
in

g
yo

ur

fe
at

ur
e

is
 a

 ti
ny

•

C
la

ss

sy
st

em
.

bu
ild

in
g

bl
oc

k
•

di
ag

ra
m

.
fo

r
pl

an
ni

ng
,

•
C

la
ss

re
po

rt
in

g,
 a

nd

•
Re

sp
on

si
bi

lit
y

tr
ac

ki
ng

.
•

C
ol

la
bo

ra
to

r
•

(C
RC

)
m

od
el

.
•

Co
lla

bo
ra

tio
n

•
di

ag
ra

m
.

co
nt

in
ue

s

72244_AppA 2/27/02 11:07 AM Page 343

344

[[
T

 T
2m

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es
 (

co
nt

in
ue

d)

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

Fe
at

ur
e

It’
s

•
C

on
st

ra
in

t
un

de
rs

ta
nd

ab
le

,
•

de
fin

iti
on

.
m

ea
su

ra
bl

e,
 a

nd

•
Es

se
nt

ia
l

do
-a

bl
e

(a
lo

ng

•
us

er
w

ith
 s

ev
er

al

•
in

te
rf

ac
e

ot
he

r
fe

at
ur

es
)

•
pr

ot
ot

yp
e.

w
ith

in
 a

 tw
o-

•
G

lo
ss

ar
y.

w
ee

k
in

cr
em

en
t

•
So

ur
ce

(C
oa

d,
 L

ef
eb

vr
e,

•

co
de

.
an

d
D

eL
uc

a,

•
U

se
r

19
99

).
 F

ea
tu

re
s

•
in

te
rf

ac
e

ty
pi

ca
lly

 d
es

cr
ib

e
•

pr
ot

ot
yp

e.
fu

nc
tio

na
l

re
qu

ire
m

en
ts

al
th

ou
gh

 m
ay

al

so
 d

es
cr

ib
e

co
ns

tr
ai

nt
s

de
sc

rib
in

g
pe

rf
or

m
an

ce
 o

r
op

er
at

io
na

l
ch

ar
ac

te
ris

tic
s

of

yo
ur

 a
pp

lic
at

io
n.

72244_AppA 2/27/02 11:07 AM Page 344

345

[[
T

 T
2n

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

Fl
ow

 C
ha

rt
Fl

ow
 c

ha
rt

s
D

ef
in

iti
on

 o
f

O
ve

r-
sp

ec
ifi

ca
tio

n
of

•

C
la

ss

1.
H

an
d-

dr
aw

n
(M

ed
iu

m
 v

al
ue

)
(G

an
e

an
d

co
m

pl
ex

 lo
gi

c.
lo

gi
c

(u
se

 s
ou

rc
e

co
de

•

di
ag

ra
m

.
sk

et
ch

D
es

cr
ip

tio
n

of

Sa
rs

on
 1

97
9)

or

 s
pe

ci
fic

at
io

n
•

Co
lla

bo
ra

tio
n

2.
D

ra
w

in
g

to
ol

th
e

lo
gi

c
fo

r
a

de
pi

ct
 th

e
lo

gi
c

la
ng

ua
ge

 in
st

ea
d)

.
•

di
ag

ra
m

.
3.

C
AS

E
to

ol
bu

si
ne

ss
 r

ul
e

or

flo
w

 o
f a

•

G
lo

ss
ar

y.
bu

si
ne

ss
 p

ro
ce

ss
.

bu
si

ne
ss

 p
ro

ce
ss

•

Se
qu

en
ce

or
 s

of
tw

ar
e

•
di

ag
ra

m
.

op
er

at
io

n.
 F

lo
w

•

So
ur

ce
ch

ar
ts

 a
re

 v
er

y
•

co
de

.
si

m
pl

e,
 d

ep
ic

tin
g

•
Sy

st
em

ac

tiv
iti

es
 o

r
•

us
e

ca
se

.
pr

oc
es

se
s,

 th
e

•
U

sa
ge

lo
gi

c
flo

w
 fr

om

•
sc

en
ar

io
.

pr
oc

es
s

to

•
U

se
r

st
or

y.
pr

oc
es

s,
 a

nd
 th

e
de

ci
si

on
 p

oi
nt

s
re

ac
he

d.

co
nt

in
ue

s

72244_AppA 2/27/02 11:07 AM Page 345

346

[[
T

 T
2o

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es
 (

co
nt

in
ue

d)

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

G
lo

ss
ar

y
A

gl
os

sa
ry

D

ef
in

iti
on

 o
f

D
ef

in
iti

on
 o

f b
us

in
es

s
•

Bu
si

ne
ss

 ru
le

1.

W
or

d
(M

ed
iu

m
 v

al
ue

)
(J

ac
ob

so
n,

bu

si
ne

ss
 a

nd

ru
le

s.
 D

ef
in

iti
on

 o
f a

ll
•

de
fin

iti
on

.
pr

oc
es

so
r

To
 d

ef
in

e
cr

iti
ca

l
B

oo
ch

, a
nd

te

ch
ni

ca
l t

er
m

s
po

ss
ib

le
 c

or
po

ra
te

•

C
la

ss

2.
In

de
x

ca
rd

s
bu

si
ne

ss
 t

er
m

s
Ru

m
ba

ug
h

19
99

;
pe

rt
in

en
t t

o
th

e
te

rm
s.

•
di

ag
ra

m
.

to
 d

ev
el

op
er

s.
Am

bl
er

 1
99

8)
 is

pr

oj
ec

t.
•

C
la

ss

(M
ed

iu
m

 v
al

ue
)

a
co

lle
ct

io
n

of

•
Re

sp
on

si
bi

lit
y

To
 d

ef
in

e
cr

iti
ca

l
de

fin
iti

on
s

of

•
Co

lla
bo

ra
to

r
te

ch
ni

ca
l t

er
m

s
te

rm
s

th
at

 a
re

•

(C
RC

)
to

 p
ro

je
ct

 s
ta

ke
re

le
va

nt
 to

 y
ou

r
•

m
od

el
.

ho
ld

er
s.

pr
oj

ec
t.

Yo
ur

•

C
on

st
ra

in
t

gl
os

sa
ry

 m
ay

•

de
fin

iti
on

.
in

cl
ud

e
bo

th

•
Es

se
nt

ia
l

bu
si

ne
ss

 a
nd

•

us
e

ca
se

.
te

ch
ni

ca
l t

er
m

s.
•

Sy
st

em

•
us

e
ca

se
.

•
Te

ch
ni

ca
l

•
re

qu
ire

m
en

t.
•

U
sa

ge
•

sc
en

ar
io

.
•

U
se

r
st

or
y.

N
et

w
or

k
N

et
w

or
k

An
al

ys
is

 o
f e

xi
st

in
g

N
on

e
kn

ow
n

•
C

om
po

ne
nt

1.

H
an

d-
dr

aw
n

(H
ig

h
va

lu
e)

D

ia
gr

am
di

ag
ra

m
s

de
pi

ct

te
ch

ni
ca

l
•

di
ag

ra
m

.
sk

et
ch

O
ffi

ci
al

th

e
va

rio
us

 ty
pe

s
in

fr
as

tr
uc

tu
re

.
•

Sy
st

em

2.
D

ra
w

in
g

to
ol

de
sc

rip
tio

n
of

of

 h
ar

dw
ar

e
D

es
ig

n
of

 p
ro

po
se

d
•

us
e

ca
se

.
3.

C
AS

E
to

ol
te

ch
ni

ca
l

no
de

s
an

d
th

e
te

ch
ni

ca
l

in
fr

as
tr

uc
tu

re
 fo

r
in

te
rc

on
ne

ct
io

ns

in
fr

as
tr

uc
tu

re
.

yo
ur

 s
ys

te
m

 o
r

be
tw

ee
n

th
em

.
or

ga
ni

za
tio

n.

72244_AppA 2/27/02 11:07 AM Page 346

347

[[
T

 T
2p

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

O
rg

an
iz

at
io

n
O

rg
an

iz
at

io
n

D
ep

ic
tio

n
of

N

on
e

kn
ow

n
•

Ac
tiv

ity

1.
In

de
x

ca
rd

s
(M

ed
iu

m
 v

al
ue

)
C

ha
rt

ch
ar

ts
 d

ep
ic

t t
he

ex

is
tin

g
or

•

di
ag

ra
m

.
&

st
rin

g
O

ffi
ci

al

re
po

rt
in

g
pr

op
os

ed

•
C

la
ss

2.

H
an

d-
dr

aw
n

de
sc

rip
tio

n
of

st

ru
ct

ur
e

or
ga

ni
za

tio
n

•
Re

sp
on

si
bi

lit
y

sk
et

ch
th

e
or

ga
ni

za
tio

n
be

tw
ee

n
th

e
st

ru
ct

ur
e.

•
Co

lla
bo

ra
to

r
3.

H
um

an

st
ru

ct
ur

e
of

 y
ou

r
pe

op
le

, p
os

iti
on

s,

D
oc

um
en

ta
tio

n
of

•

M
od

el
.

re
so

ur
ce

s
en

te
rp

ris
e

or

an
d

te
am

s
w

ith
in

w

ho
 is

 in
vo

lv
ed

•

D
at

a
flo

w

so
ftw

ar
e

po
rt

io
n

th
er

eo
f.

an
 o

rg
an

iz
at

io
n.

on
 a

 p
ro

je
ct

 te
am

.
•

di
ag

ra
m

.
4.

D
ra

w
in

g
to

ol
•

U
se

 c
as

e
•

di
ag

ra
m

.

Ph
ys

ic
al

Ph

ys
ic

al

Ex
pl

or
e

er
go

no
m

ic

N
on

e
kn

ow
n

•
Ac

tiv
ity

Ty

pi
ca

lly

Pr
ot

ot
yp

e
pr

ot
ot

yp
es

is

su
es

 o
f a

 s
ys

te
m

.
•

di
ag

ra
m

.
di

sc
ar

de
d.

(G
re

en
ba

um
,

D
et

er
m

in
e

ph
ys

ic
al

•

D
ep

lo
ym

en
t

an
d

Ky
ng

 1
99

1)

eq
ui

pm
en

t
•

di
ag

ra
m

.
m

od
el

 th
e

ac
tu

al

(h
ar

dw
ar

e,

•
N

et
w

or
k

en
vi

ro
nm

en
t i

n
fu

rn
itu

re
, .

..)

•
di

ag
ra

m
.

w
hi

ch
 a

 s
ys

te
m

re

qu
ire

m
en

ts
.

•
Sy

st
em

is

 to
 b

e
de

pl
oy

ed
.

•
us

e
ca

se
.

Ph
ys

ic
al

•
U

sa
ge

pr
ot

ot
yp

es
 c

an

•
sc

en
ar

io
.

be
 a

s
si

m
pl

e
as

•

U
se

r
st

or
y.

a
sh

oe
 b

ox

di
or

am
a

to
 a

si

m
ul

at
ed

w
or

ks
ta

tio
n

of
 a

si

ng
le

 u
se

r
to

so

m
et

hi
ng

 a
s

co
m

pl
ex

 a
s

an

en
tir

e
of

fic
e

si
m

ul
at

io
n.

co
nt

in
ue

s

72244_AppA 2/27/02 11:07 AM Page 347

348

[[
T

 T
2q

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es
 (

co
nt

in
ue

d)

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

Ro
bu

st
ne

ss

Ro
bu

st
ne

ss

An
al

yz
e

us
e

ca
se

s
To

 d
es

ig
n

us
er

 in
te

rf
ac

e
•

Ac
ce

pt
an

ce

1.
H

an
d-

dr
aw

n
Ty

pi
ca

lly

D
ia

gr
am

di
ag

ra
m

s
to

 id
en

tif
y

flo
w

 fo
r

a
sy

st
em

 (
us

e
•

te
st

 c
as

e.
sk

et
ch

di
sc

ar
de

d.
(R

os
en

be
rg

 a
nd

ca

nd
id

at
e

an
 in

te
rf

ac
e

flo
w

•

B
us

in
es

s
2.

C
AS

E
to

ol
Sc

ot
t 1

99
9)

bu

si
ne

ss
 c

la
ss

es

di
ag

ra
m

 in
st

ea
d)

.
•

ru
le

de
pi

ct
 th

e
m

aj
or

an

d
m

aj
or

 u
se

r
To

 d
es

ig
n

th
e

st
at

ic

•
de

fin
iti

on
.

ob
je

ct
s —

in
te

rf
ac

e
el

em
en

ts

st
ru

ct
ur

e
of

 O
O

•

Co
lla

bo
ra

tio
n

cl
as

si
fie

d
in

to

(s
cr

ee
ns

, r
ep

or
ts

, .
..)

.
so

ftw
ar

e
(u

se
 a

 c
la

ss

•
di

ag
ra

m
.

bo
un

da
ry

/
To

 p
er

fo
rm

 a
 s

an
ity

di

ag
ra

m
 in

st
ea

d)
.

•
C

on
st

ra
in

t
in

te
rf

ac
e

ob
je

ct
s,

ch

ec
k

on
 th

e
lo

gi
c

•
de

fin
iti

on
.

en
tit

y
ob

je
ct

s,
 o

r
of

 a
 b

eh
av

io
ra

l
•

G
lo

ss
ar

y.
co

nt
ro

l/
pr

oc
es

s
re

qu
ire

m
en

t
(u

se

•
Se

qu
en

ce
ob

je
ct

s —
th

at
ca

se
, u

se
r s

to
ry

, .
..)

.
•

di
ag

ra
m

.
pa

rt
ic

ip
at

e
in

To

 d
o

a
•

Sy
st

em

fu
lfi

lli
ng

 a
n

pr
el

im
in

ar
y

de
si

gn

•
us

e
ca

se
.

ac
to

r’s
 in

te
ra

ct
io

n
of

 y
ou

r
sy

st
em

.
•

U
sa

ge
w

ith
 a

 s
ys

te
m

 a
s

•
sc

en
ar

io
.

de
fin

ed
 b

y
a

•
U

se
r

us
ag

e
sc

en
ar

io
.

•
in

te
rf

ac
e

•
flo

w
•

di
ag

ra
m

.
•

U
se

r
•

in
te

rf
ac

e
•

pr
ot

ot
yp

e.
•

U
se

r
st

or
y.

72244_AppA 2/27/02 11:07 AM Page 348

349

[[
T

 T
2r

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

Se
qu

en
ce

Se

qu
en

ce

M
od

el
in

g
th

e
lo

gi
c

M
od

el
in

g
of

 th
e

lo
gi

c
•

C
la

ss

1.
H

an
d-

dr
aw

n
Ty

pi
ca

lly

D
ia

gr
am

 (
U

M
L)

di
ag

ra
m

s
of

 a
 u

sa
ge

fo

r
ev

er
y

si
ng

le
 p

at
h

•
di

ag
ra

m
.

sk
et

ch
di

sc
ar

de
d.

(R
um

ba
ug

h,

sc
en

ar
io

 o
r

a
pa

th

th
ro

ug
h

al
l t

he
 u

sa
ge

•

Ro
bu

st
ne

ss

2.
C

AS
E

to
ol

Ja
co

bs
on

, a
nd

th

ro
ug

h
on

e
or

re

qu
ire

m
en

ts
 fo

r
yo

ur

•
di

ag
ra

m
.

B
oo

ch
 1

99
9;

m

or
e

us
e

ca
se

s,

sy
st

em
 (

m
od

el
 ju

st

•
Sy

st
em

Fo

w
le

r
an

d
Sc

ot
t

us
er

 s
to

rie
s,

 o
r

th
e

co
m

pl
ic

at
ed

 p
at

hs

•
us

e
ca

se
.

19
99

; A
m

bl
er

us

ag
e

sc
en

ar
io

s
in

st
ea

d)
.

•
U

sa
ge

20
01

a)
 a

re
 u

se
d

(o
r

pa
rt

(s
)

•
sc

en
ar

io
.

to
 m

od
el

 th
e

th
er

eo
f)

. M
od

el
in

g
•

U
se

r
st

or
y.

lo
gi

c
of

 u
sa

ge

th
e

lo
gi

c
of

 a

sc
en

ar
io

s.
 A

co

m
pl

ex

us
ag

e
sc

en
ar

io
tr

an
sa

ct
io

n
to

is

 e
xa

ct
ly

 w
ha

t
ex

pl
or

e
its

 d
es

ig
n.

its
 n

am
e

in
di

ca
te

s —
th

e
de

sc
rip

tio
n

of
 a

po

te
nt

ia
l w

ay

th
at

 y
ou

r
sy

st
em

is

 u
se

d.

Sp
ec

ifi
ca

tio
n

Sp
ec

ifi
ca

tio
n

D
ef

in
e

pr
ec

is
e

O
ve

r-
sp

ec
ifi

ca
tio

n
on

•

Ac
ce

pt
an

ce

1.
C

AS
E

to
ol

La
ng

ua
ge

la
ng

ua
ge

 (
G

an
e

lo
gi

c
of

 a
 p

ro
ce

ss
,

di
ag

ra
m

s
(w

rit
e

•
te

st
 c

as
e.

2.
W

or
d

an
d

Sa
rs

on

op
er

at
io

n,

do
cu

m
en

ta
tio

n
or

•

B
us

in
es

s
pr

oc
es

so
r

19
79

)
is

 u
se

d
to

co

ns
tr

ai
nt

, o
r

re
co

rd
 a

s
co

m
m

en
ts

•

ru
le

.
de

sc
rib

e
lo

gi
c

in

bu
si

ne
ss

 r
ul

e.
in

 s
ou

rc
e

co
de

•

C
la

ss
a

st
ru

ct
ur

ed
,

D
ef

in
e

co
ns

tr
ai

nt
s

in
st

ea
d)

.
•

di
ag

ra
m

.
fo

rm
al

 m
an

ne
r.

or
 r

ul
es

 th
at

•

Co
lla

bo
ra

tio
n

ap
pe

ar
 o

n
•

di
ag

ra
m

.
di

ag
ra

m
s.

co
nt

in
ue

s

72244_AppA 2/27/02 11:07 AM Page 349

350

[[
T

 T
2s

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es
 (

co
nt

in
ue

d)

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

Sp
ec

ifi
ca

tio
n

Th
e

in
du

st
ry

Sp

ec
ifi

ca
tio

n
of

D

et
ai

le
d

•
C

om
po

ne
nt

La
ng

ua
ge

st
an

da
rd

co

ns
tr

ai
nt

s
or

do

cu
m

en
ta

tio
n

fo
r

•
di

ag
ra

m
.

sp
ec

ifi
ca

tio
n

in
va

ria
nt

s
on

pr

oj
ec

t s
ta

ke
ho

ld
er

s
•

D
at

af
lo

w
la

ng
ua

ge
 is

 th
e

cl
as

se
s,

(t

he
y

lik
el

y
do

n’
t

•
di

ag
ra

m
.

O
bj

ec
t C

on
st

ra
in

t
co

m
po

ne
nt

s,
 o

r
un

de
rs

ta
nd

 th
e

La
ng

ua
ge

 (
O

C
L)

op

er
at

io
ns

.
la

ng
ua

ge
 s

o
us

e
(W

ar
ne

r
an

d
di

ag
ra

m
s

su
ch

 a
s

Kl
ep

pe
 1

99
9)

.
flo

w
ch

ar
ts

 in
st

ea
d)

St
at

e
C

ha
rt

U

M
L

st
at

e
ch

ar
t

D
es

ig
n

th
e

M
od

el
 p

ro
ce

ss
 fl

ow

•
Ac

ce
pt

an
ce

1.

H
an

d-
dr

aw
n

(L
ow

 v
al

ue
)

Pa
rt

D

ia
gr

am
 (

U
M

L)
di

ag
ra

m
s

be
ha

vi
or

 o
f a

(u

se
 a

 d
at

a
flo

w

•
te

st
 c

as
e.

sk
et

ch
of

 y
ou

r
de

si
gn

(R

um
ba

ug
h,

co

m
pl

ex
 c

la
ss

 o
r

di
ag

ra
m

 in
st

ea
d)

.
•

B
us

in
es

s
2.

In
de

x
ca

rd
s

do
cu

m
en

ta
tio

n
Ja

co
bs

on
, a

nd

co
m

po
ne

nt
.

D
es

ig
n

th
e

be
ha

vi
or

 o
f

•
ru

le
.

an
d

st
rin

g
fo

r c
om

pl
ex

 c
la

ss
.

B
oo

ch
 1

99
9;

D

es
ig

n
th

e
a

si
m

pl
e

cl
as

s
an

d/
or

•

C
la

ss

3.
C

AS
E

to
ol

(M
ed

iu
m

 v
al

ue
)

D
ou

gl
as

s
19

99
;

fu
nc

tio
na

lit
y

of
 a

on

e
w

ith
ou

t
•

di
ag

ra
m

.
Pa

rt
 o

f y
ou

r
Fo

w
le

r
an

d
Sc

ot
t

ha
rd

w
ar

e
in

te
re

st
in

g
be

ha
vi

or

•
So

ur
ce

re

qu
ire

m
en

ts

19
99

; A
m

bl
er

co

m
po

ne
nt

.
ba

se
d

on
 s

ta
te

.
•

co
de

.
do

cu
m

en
ta

tio
n

20
01

a)
 d

ep
ic

t
An

al
yz

e
a

co
m

pl
ex

•

Sy
st

em

to
 d

es
cr

ib
e

a
th

e
va

rio
us

 s
ta

te
s

bu
si

ne
ss

 p
ro

ce
ss

.
•

us
e

ca
se

.
co

m
pl

ex

th
at

 a
n

ob
je

ct
 m

ay

•
U

sa
ge

bu

si
ne

ss
 p

ro
ce

ss
.

be
 in

 a
nd

 th
e

•
sc

en
ar

io
.

tr
an

si
tio

ns
be

tw
ee

n
th

os
e

st
at

es
. A

 s
ta

te

re
pr

es
en

ts
 a

 s
ta

ge

in
 th

e
be

ha
vi

ou
r

pa
tt

er
n

of
 a

n
ob

je
ct

 a
nd

 a

tr
an

si
tio

n
is

 a

pr
og

re
ss

io
n

fr
om

on

e
st

at
e

to

an
ot

he
r.

72244_AppA 2/27/02 11:07 AM Page 350

351

[[
T

 T
2t

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

St
ru

ct
ur

e
St

ru
ct

ur
e

Ex
pl

or
e

th
e

“c
al

l”

In
te

rn
al

 d
es

ig
n

of

•
D

at
af

lo
w

1.

H
an

d-
dr

aw
n

(V
er

y
lo

w
)

D
ia

gr
am

di
ag

ra
m

s
(G

an
e

hi
er

ar
ch

y
w

ith
in

ob

je
ct

-o
rie

nt
ed

•

di
ag

ra
m

.
sk

et
ch

H
ig

h-
le

ve
l d

es
ig

n
an

d
Sa

rs
on

th

e
de

si
gn

 o
f

so
ftw

ar
e

(u
se

•

So
ur

ce

2.
D

ra
w

in
g

to
ol

of
 s

tr
uc

tu
re

d
19

79
; P

ag
e-

Jo
ne

s
pr

oc
ed

ur
al

se

qu
en

ce
 o

r
•

co
de

.
3.

C
AS

E
to

ol
so

ft
w

ar
e

19
88

; Y
ou

rd
on

so

ftw
ar

e.
 E

xp
lo

re

co
lla

bo
ra

tio
n

di
ag

ra
m

s
19

89
)

sh
ow

 th
e

th
e

in
vo

ca
tio

n
of

in

st
ea

d)
.

m
od

ul
es

 o
f

(w
eb

)
se

rv
ic

es
.

pr
oc

ed
ur

e-
ba

se
d

co
de

 a
nd

 th
e

in
vo

ca
tio

n
re

la
tio

ns
hi

ps
be

tw
ee

n
th

os
e

m
od

ul
es

.

Sy
st

em
 U

se

A
sy

st
em

 u
se

An

al
ys

is
 o

f u
sa

ge

Id
en

tif
ic

at
io

n
of

 u
sa

ge

•
Ac

ce
pt

an
ce

1.

W
or

d
(M

ed
iu

m
 v

al
ue

)
C

as
e

ca
se

 (
C

oc
kb

ur
n

re
qu

ire
m

en
ts

.
re

qu
ire

m
en

ts
 fo

r
a

•
te

st
 c

as
e.

pr
oc

es
so

r
Pa

rt
 o

f y
ou

r
20

01
a;

 A
m

bl
er

H

ig
h-

le
ve

l d
es

ig
n

sy
st

em
. T

he
 O

N
LY

•

Co
lla

bo
ra

tio
n

2.
C

AS
E

to
ol

de
si

gn

20
01

a)
 is

 a
 u

se

of
 im

pl
em

en
ta

tio
n

so
ur

ce
 o

f s
ys

te
m

•

di
ag

ra
m

.
do

cu
m

en
ta

tio
n

ca
se

 in
 w

hi
ch

of

 u
sa

ge

sp
ec

ifi
ca

tio
n

fo
r

a
•

Es
se

nt
ia

l
fo

r
yo

ur
 s

ys
te

m
.

hi
gh

-le
ve

l
re

qu
ire

m
en

ts
.

sy
st

em
 (

fo
r

ex
am

pl
e,

•

us
e

ca
se

.
im

pl
em

en
ta

tio
n

yo
u

sh
ou

ld
 q

ue
st

io
n

•
Fl

ow
ch

ar
t.

de
ci

si
on

s
ar

e
us

e-
ca

se
 d

riv
en

•

G
lo

ss
ar

y.
re

fle
ct

ed
, s

uc
h

[IN
SE

RT
 T

ER
M

 H
ER

E]
).

•
Ro

bu
st

ne
ss

as
 th

e
sp

ec
ifi

c
•

di
ag

ra
m

.
ty

pe
 o

f u
se

r
•

Se
qu

en
ce

in
te

rf
ac

e
(G

U
I,

•
di

ag
ra

m
.

H
TM

L,
 ..

.)
 a

nd

•
St

at
e

ch
ar

t
yo

ur
 p

hy
si

ca
l

•
di

ag
ra

m
.

en
vi

ro
nm

en
t.

•
U

sa
ge

 s
ce

na
rio

.
•

U
se

 c
as

e
•

di
ag

ra
m

.
•

U
se

r i
nt

er
fa

ce

•
pr

ot
ot

yp
e.

co
nt

in
ue

s

72244_AppA 2/27/02 11:07 AM Page 351

352

[[
T

 T
2u

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es
 (

co
nt

in
ue

d)

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

Te
ch

ni
ca

l
A

te
ch

ni
ca

l
Re

qu
ire

m
en

ts

Id
en

tif
ic

at
io

n
of

•

Ac
ce

pt
an

ce

1.
In

de
x

ca
rd

(M
ed

iu
m

 v
al

ue
)

Re
qu

ire
m

en
t

re
qu

ire
m

en
t

id
en

tif
ic

at
io

n.
bu

si
ne

ss
 r

eq
ui

re
m

en
ts

.
•

te
st

 c
as

e.
2.

W
or

d
As

 p
ar

t
of

 y
ou

r
(W

ie
ge

rs
 1

99
9;

Id

en
tif

ic
at

io
n

of
 “

go
ld

•
C

ha
ng

e
pr

oc
es

so
r

of
fic

ia
l

Am
bl

er
 2

00
1a

)
pl

at
e”

 r
eq

ui
re

m
en

ts

•
ca

se
.

re
qu

ire
m

en
ts

pe

rt
ai

ns
 to

 a

th
at

 th
e

te
ch

ni
ca

l s
ta

ff
•

C
on

st
ra

in
t.

de
fin

iti
on

.
no

n-
bu

si
ne

ss
-

w
an

ts
 to

 im
pl

em
en

t.
•

D
ep

lo
ym

en
t

re
la

te
d

as
pe

ct
 o

f
•

di
ag

ra
m

.
yo

ur
 s

ys
te

m
,

•
G

lo
ss

ar
y.

su
ch

 a
s

a
•

N
et

w
or

k
pe

rf
or

m
an

ce
-

•
di

ag
ra

m
.

re
la

te
d

is
su

e,
 a

re

lia
bi

lit
y

is
su

e,

or
 te

ch
ni

ca
l

en
vi

ro
nm

en
t

is
su

e.

U
sa

ge
 S

ce
na

rio
A

us
ag

e
sc

en
ar

io

Ex
pl

or
at

io
n

of
 th

e
N

on
e

kn
ow

n.
•

Ac
ce

pt
an

ce

1.
In

de
x

ca
rd

Ty

pi
ca

lly

(G
re

en
ba

um

us
ag

e
of

 a
 s

ys
te

m
.

•
te

st
 c

as
e.

2.
W

or
d

di
sc

ar
de

d.
an

d
Ky

ng
 1

99
1;

•

Ac
tiv

ity

pr
oc

es
so

r
Am

bl
er

 2
00

1a
)

•
di

ag
ra

m
.

de
sc

rib
es

 a

•
B

us
in

es
s

si
ng

le
 p

at
h

of

•
ru

le
.

lo
gi

c
th

ro
ug

h
•

C
ha

ng
e

on
e

or
 m

or
e

us
e

•
ca

se
.

ca
se

s
or

 u
se

r
•

C
on

st
ra

in
t.

st
or

ie
s.

•
C

RC
 m

od
el

.

72244_AppA 2/27/02 11:07 AM Page 352

353

[[
T

 T
2v

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

U
sa

ge
 S

ce
na

rio
A

us
ag

e
•

D
ep

lo
ym

en
t

sc
en

ar
io

 c
ou

ld

•
di

ag
ra

m
.

re
pr

es
en

t t
he

•

Es
se

nt
ia

l
ba

si
c

co
ur

se

•
us

e
ca

se
.

of
 a

ct
io

n,
 th

e
•

Fl
ow

ch
ar

t.
ha

pp
y

pa
th

,
•

G
lo

ss
ar

y.
th

ro
ug

h
a

si
ng

le

•
N

et
w

or
k

us
e

ca
se

, a

•
di

ag
ra

m
.

co
m

bi
na

tio
n

of

•
Sy

st
em

po

rt
io

ns
 o

f t
he

•

us
e

ca
se

.
ha

pp
y

pa
th

•

Te
ch

ni
ca

l
re

pl
ac

ed
 b

y
th

e
•

re
qu

ire
m

en
t.

st
ep

s
of

 o
ne

 o
r

m
or

e
al

te
rn

at
e

pa
th

s
th

ro
ug

h
a

si
ng

le
 u

se
 c

as
e,

 o
r

a
pa

th
 s

pa
nn

in
g

se
ve

ra
l u

se
 c

as
es

or

 u
se

r
st

or
ie

s.

co
nt

in
ue

s

72244_AppA 2/27/02 11:07 AM Page 353

354

[[
T

 T
2w

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es
 (

co
nt

in
ue

d)

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

U
se

 C
as

e
A

us
e-

ca
se

Sy

st
em

 o
ve

rv
ie

w

Pr
oc

es
s

di
ag

ra
m

m
in

g
•

Ac
tiv

ity

1.
H

an
d-

dr
aw

n
(M

ed
iu

m
 V

al
ue

)
D

ia
gr

am
 (

U
M

L)
di

ag
ra

m

di
ag

ra
m

(u

se
 a

 d
at

a
flo

w

•
di

ag
ra

m
.

sk
et

ch
O

ve
rv

ie
w

 o
f

(C
oc

kb
ur

n
in

di
ca

tin
g

m
aj

or

di
ag

ra
m

 o
r

ac
tiv

ity

•
Es

se
nt

ia
l

2.
C

AS
E

to
ol

yo
ur

 u
sa

ge

20
01

a;
 F

ow
le

r
us

ag
e

di
ag

ra
m

 in
st

ea
d)

.
•

us
e

ca
se

.
3.

D
ra

w
in

g
to

ol
re

qu
ire

m
en

ts
.

an
d

Sc
ot

t 1
99

9;

re
qu

ire
m

en
ts

.
D

ia
gr

am
m

in
g

w
ith

ou
t

•
O

rg
an

iz
at

io
n

Ru
m

ba
ug

h,

Sy
st

em
 c

on
te

xt

su
pp

or
tin

g
us

e
ca

se
s.

•
ch

ar
t.

Ja
co

bs
on

, a
nd

di

ag
ra

m

•
Ro

bu
st

ne
ss

B
oo

ch
 1

99
9;

in

di
ca

tin
g

pr
oj

ec
t

•
di

ag
ra

m
.

Am
bl

er
 2

00
1a

)
sc

op
e.

 A
na

ly
si

s
of

•

Sy
st

em

de
pi

ct
s

a
us

ag
e

re
qu

ire
m

en
ts

•

us
e

ca
se

.
co

lle
ct

io
n

of
 u

se

of
 a

n
ex

is
tin

g
ca

se
s,

 a
ct

or
s,

sy

st
em

. S
um

m
ar

y
th

ei
r a

ss
oc

ia
tio

ns
,

ov
er

vi
ew

 o
f

an
d

op
tio

na
lly

 a

es
se

nt
ia

l o
r

sy
st

em
 b

ou
nd

ar
y

sy
st

em
 u

se
 c

as
es

.
bo

x.

72244_AppA 2/27/02 11:07 AM Page 354

355

[[
T

 T
2x

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

U
se

r
In

te
rf

ac
e

A
us

er
 in

te
rf

ac
e

Ex
pl

or
at

io
n

of

N
on

e
kn

ow
n

•
Es

se
nt

ia
l

1.
H

an
d-

dr
aw

n
(M

ed
iu

m
 v

al
ue

).

Fl
ow

 D
ia

gr
am

(U
I)

 fl
ow

us

er
 in

te
rf

ac
e

•
us

e
ca

se
.

sk
et

ch

Pa
rt

 o
f

di
ag

ra
m

re

qu
ire

m
en

ts
.

•
Es

se
nt

ia
l

2.
In

de
x

ca
rd

s
of

fic
ia

l d
es

ig
n

(C
on

st
an

tin
e

an
d

H
ig

h-
le

ve
l

•
us

er

co
nn

ec
te

d
do

cu
m

en
ta

tio
n

Lo
ck

w
oo

d
19

99
;

ar
ch

ite
ct

ur
al

 v
ie

w

•
in

te
rf

ac
e

by
 s

tr
in

g
to

 p
ro

vi
de

Pa

ge
-J

on
es

 2
00

0;

of
 a

n
ap

pl
ic

at
io

n’
s

•
pr

ot
ot

yp
e.

3.
D

ra
w

in
g

to
ol

ov
er

vi
ew

 o
f y

ou
r

Am
bl

er
 2

00
1a

)
us

er
 in

te
rf

ac
e.

•
Ro

bu
st

ne
ss

4.

C
AS

E
to

ol
us

er
 in

te
rf

ac
e

en
ab

le
s

yo
u

to

H
ig

h-
le

ve
l d

es
ig

n
•

di
ag

ra
m

.
de

si
gn

.
m

od
el

 th
e

of
 th

e
us

er

•
Sy

st
em

(M

ed
iu

m
 v

al
ue

)
hi

gh
-le

ve
l

in
te

rf
ac

e
to

•

us
e

ca
se

.
Pa

rt
 o

f y
ou

r
us

er

re
la

tio
ns

hi
ps

su

pp
or

t a
 u

se
 c

as
e

•
U

se
r

do
cu

m
en

ta
tio

n
be

tw
ee

n
m

aj
or

or

 u
sa

ge
 s

ce
na

rio

•
in

te
rf

ac
e

to
 p

ro
vi

de
 a

n
us

er
 in

te
rf

ac
e

(o
fte

n
ca

lle
d

•
pr

ot
ot

yp
e.

ov
er

vi
ew

 o
f t

he

el
em

en
ts

,
st

or
yb

oa
rd

in
g)

•
U

se
r

st
or

y.
sy

st
em

.
de

pi
ct

in
g

a
bi

rd
s-

ey
e

vi
ew

of

 th
e

us
er

in

te
rf

ac
e

of
 y

ou
r

sy
st

em
.

co
nt

in
ue

s

72244_AppA 2/27/02 11:07 AM Page 355

356

[[
T

 T
2y

C
=

T
]]

Ta
b

le
 A

.2
M

od
el

in
g

Te
ch

ni
qu

es
 (

co
nt

in
ue

d)

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

U
se

r
In

te
rf

ac
e

U
se

r
in

te
rf

ac
e

Ex
pl

or
at

io
n

of
 th

e
Th

e
O

N
LY

 s
ou

rc
e

of

•
B

us
in

es
s

1.
H

an
d-

dr
aw

n
Ty

pi
ca

lly

Pr
ot

ot
yp

e
(U

I)
 p

ro
to

ty
pi

ng

pr
ob

le
m

 s
pa

ce
.

sy
st

em
 s

pe
ci

fic
at

io
n.

•
ru

le
.

sk
et

ch
di

sc
ar

de
d

or

(C
on

st
an

tin
e

D
et

ai
le

d
de

si
gn

 o
f

Id
en

tif
ic

at
io

n
of

 u
se

r
•

C
on

st
ra

in
t.

2.
U

se
r

ev
ol

ve
d

in
to

an

d
Lo

ck
w

oo
d

a
us

er
 in

te
rf

ac
e.

in
te

rf
ac

e
re

qu
ire

m
en

ts

•
Es

se
nt

ia
l

in
te

rf
ac

e
w

or
ki

ng
 s

ys
te

m
.

19
99

; R
as

ki
n

(u
se

 a
n

es
se

nt
ia

l u
se

r
•

us
e

ca
se

.
pr

ot
ot

yp
in

g
20

00
; M

ay
he

w

in
te

rf
ac

e
pr

ot
ot

yp
e

•
G

lo
ss

ar
y.

to
ol

19
92

; A
m

bl
er

in

st
ea

d)
.

•
Ro

bu
st

ne
ss

3.

Pr
og

ra
m

m
in

g
20

01
a)

 is
 a

n
•

di
ag

ra
m

.
en

vi
ro

nm
en

t
ite

ra
tiv

e
an

al
ys

is

•
So

ur
ce

(f

or
 e

xa
m

pl
e

te
ch

ni
qu

e
in

•

co
de

.
Ja

va
)

w
hi

ch
 u

se
rs

 a
re

•

Sy
st

em

ac
tiv

el
y

in
vo

lv
ed

•

us
e

ca
se

.
in

 th
e

m
oc

ki
ng

-
•

U
se

r
up

 o
f t

he
 U

I f
or

•

in
te

rf
ac

e
a

sy
st

em
. U

I
•

flo
w

pr
ot

ot
yp

in
g

•
di

ag
ra

m
.

ty
pi

ca
lly

 in
vo

lv
es

ex

pl
or

at
io

n
of

th

e
re

qu
ire

m
en

ts

fo
r

th
e

U
I,

cr
ea

tio
n

or
 u

pd
at

e
of

 a

pr
ot

ot
yp

e
th

at

fu
lfi

lls
 th

os
e

re
qu

ire
m

en
ts

,
an

d
th

e
ev

al
ua

tio
n

of
 t

he
 p

ro
to

ty
pe

ag

ai
ns

t t
he

re

qu
ire

m
en

ts
.

72244_AppA 2/27/02 11:07 AM Page 356

357

[[
T

 T
2y

C
=

T
]]

Ta
b

le
 A

.2
co

nt
in

ue
d

C
O

M
M

O
N

C

O
M

M
O

N

S
U

G
G

ES
TE

D

W
H

E
N

 T
O

A

R
TI

FA
C

T
D

ES
C

R
IP

TI
O

N
A

P
P

LI
C

A
TI

O
N

S
M

IS
A

P
P

LI
C

A
TI

O
N

S
IT

E
R

A
TE

 T
O

M
E

D
IA

K
E

E
P

 I
T

U
se

r
St

or
y

A
us

er
 s

to
ry

Ex

pl
or

at
io

n
of

N

on
e

kn
ow

n
•

Ac
ce

pt
an

ce

1.
In

de
x

ca
rd

(N

ew
ki

rk
 &

re

qu
ire

m
en

ts
.

•
te

st
 c

as
e.

2.
W

or
d

M
ar

tin
 2

00
1;

Re

m
in

de
r

to
 h

av
e

•
Co

lla
bo

ra
tio

n
pr

oc
es

so
r

B
ec

k
an

d
Fo

w
le

r
a

co
nv

er
sa

tio
n

•
di

ag
ra

m
.

20
01

)
is

 a

w
ith

 a
 p

ro
je

ct

•
D

ep
lo

ym
en

t
re

m
in

de
r

to
 h

av
e

st
ak

eh
ol

de
r.

•
di

ag
ra

m
.

a
co

nv
er

sa
tio

n
•

G
lo

ss
ar

y.
w

ith
 y

ou
r

pr
oj

ec
t

•
Ro

bu
st

ne
ss

st
ak

eh
ol

de
rs

.
•

di
ag

ra
m

.
U

se
r

st
or

ie
s

•
Se

qu
en

ce
ca

pt
ur

e
•

di
ag

ra
m

.
hi

gh
-le

ve
l

•
So

ur
ce

re
qu

ire
m

en
ts

,
•

co
de

.
in

cl
ud

in
g

be
ha

vi
or

al
re

qu
ire

m
en

ts
,

bu
si

ne
ss

 r
ul

es
,

co
ns

tr
ai

nt
s,

 a
nd

te

ch
ni

ca
l

re
qu

ire
m

en
ts

.

72244_AppA 2/27/02 11:07 AM Page 357

358

Glossary of Definitions
and Abbreviations

The following list of terms and abbreviations are described as I have used them in this
book. They may deviate from usage in other publications and that’s okay; I’m not
attempting to write a dictionary.

Accessor An operation that is used to either modify or retrieve a single attribute.
Also known as getter and setter operations.

Agile developer Someone who develops software that follows an agile approach to
software development.

Agile model A model that is just barely good enough. This means that it fulfills its
purpose and no more; is understandable to its intended audience; is simple,
sufficiently accurate, consistent, and detailed; and investment in its creation and
maintenance provides positive value to your project.

Agile modeler Someone who follows the Agile Modeling methodology.

Agile Modeling (AM) A chaordic, practice-based methodology for effectively
modeling software-based systems.

API Application programming interface.

Agile modeling session A modeling session where you follow the principles, and
apply the practices, of AM.

72244_GlossI 2/27/02 11:33 AM Page 358

Glossary 359

Analysis modeling session A modeling session where your focus is on fleshing out
the requirements for your system.

Analysis paralysis The fear of moving forward until your models are perfect.

Analyst A developer responsible for working directly with project stakeholders to
potentially gather/elicit information from them, document that information,
and/or validate that information.

Architecture modeling session A modeling session where your focus is on
identifying a high-level strategy for how your system will be built.

Architecture spike An XP concept that refers to just enough code to show that a
candidate architecture will work.

Artifact A deliverable or work product.

Baseline A tested and certified version of a deliverable that represents a conceptual
milestone which thereafter serves as the basis for further development and that can
be modified only through formal change control procedures. A particular version
becomes a baseline when a responsible group decides to designate it as such.

BDUF Big design up front.

Behavioral requirement A requirements category that describes how a user will
interact with a system, how someone will use a system, or how a system fulfills a
business function.

Boundary object An object that represents user interface elements such as screens,
reports, HTML pages, or emails.

Business rule An operating principle or policy that your software must satisfy.

Cardinality Represents the concept “how many?” in associations.

CASE Computer-aided system engineering.

CASE tool Software that supports the creation and manipulation of models of
software-oriented systems.

Catalysis A next-generation software process for the systematic, business-driven
development of component-based systems.

C&CM Configuration and Change Management.

Change case An artifact used to describe a potential requirement for a system or a
potential modification to existing requirements.

Chaordic The behavior of a self-governing organism, organization, or system that
harmoniously blends chaos and order.

Class diagram A UML diagram that depicts classes, their static inter-relationships
(including inheritance, aggregation, and association), and the operations and
attributes of those classes.

72244_GlossI 2/27/02 11:33 AM Page 359

360 Glossary

Class Responsibility Collaborator (CRC) card A standard index card that has been
divided into three sections, one indicating the name of the class that the card
represents, one listing the responsibilities of the class, and the third listing the
names of the other classes that this one collaborates with to fulfill its
responsibilities.

Class Responsibility Collaborator (CRC) model A collection of CRC cards.

CMM Capability Maturity Model.

Cohesion The degree of relatedness within an encapsulated unit (such as a
component or a class).

Collaboration diagram A UML diagram that shows instances of classes, their
interrelationships, and the message flow between them. Collaboration diagrams
provide a birds-eye view of a collection of collaborating objects working together
to fulfill a common purpose.

Collaborative modeling tool A CASE tool that enables several developers to
simultaneously work on one or more models with real-time updates of those models.

Collaborative writing tool A word processing tool that enables several people to
simultaneously write a document with real-time updates of that document.

Communication The act of transmitting information between individuals.

Component diagram A UML diagram that depicts the software components of a
system, their interfaces, and the relationships between the components.

Connascence Between two software elements, A and B, the property by which a
change in A would require a change to B to preserve overall correctness within
your system.

Context diagram A diagram that shows how your system fits into its overall
environment. It is common to develop high-level data flow diagrams or
deployment diagrams for this.

Contract model A model that defines an agreement between two or more parties. A
contract model is something that the parties should mutually agree to and
mutually change over time if required. Contract models are often required when
an external group controls an information resource that your system requires, such
as a database, legacy application, or information service.

Control object An object that serves as the glue between boundary/interface
objects and entity objects, implementing the logic required to manage the various
objects and their interactions.

Constraint A restriction on the degree of freedom you have in providing a solution.

CORBA Common Object Request Broker Architecture.

Core infrastructure team (CIT) Any team with an enterprise-wide scope whose
mission is to support development teams.

COTS Commercial off-the-shelf.

72244_GlossI 2/27/02 11:33 AM Page 360

Glossary 361

Data definition language (DDL) Commands supported by a database that enable
the creation, removal, or modification of structures (such as relational tables or
classes) within it.

Data domain A collection of related data entities and the relationships between
those entities. Most data domains are based on a common theme or concept within
your business domain, such as customer, account, brokerage, and insurance within
a financial institution.

Data manipulation language (DML) Commands supported by a database that
enable the access of data within it, including the creation, retrieval, update, and
deletion of that data.

Data model A diagram that depicts data entities and their inter-relationships.

Data-flow diagram (DFD) A diagram that shows the movement of data between
processes, entities, and data stores within a system.

Death march A doomed software project, without any apparent hope of success,
where the developers carry on anyway.

Deliverable An artifact that is delivered as part of your overall system. Examples
include source code, user documentation, and technical system documentation for
operations and maintenance personnel.

Deployment diagram A diagram that depicts a static view of the run-time
configuration of processing nodes and the components that run on those nodes.

Design modeling session A modeling session where your focus is on identifying a
detailed strategy for building a portion of your system.

Developer Anyone directly involved in the creation of a software development
artifact. People in the roles of programmer, modeler, and tester are examples of
developers.

Development team Developers and the active project stakeholders.

Document Any artifact external to source code whose purpose is to convey
information in a persistent manner.

Documentation Persistent information written for people that describes a system,
including both documents and comments in source code.

Documentation handoff This occurs when one group or person provides
documentation to another group or person.

Domain model A model that depicts major business classes or entities and the
relationships between them. It is common to use a class diagram or data diagram
for this purpose.

Drawing tool A software tool that supports the ability to draw diagrams. Drawing
tools are effectively low-end CASE tools.

DSDM Dynamic Systems Development Method.

72244_GlossI 2/27/02 11:33 AM Page 361

362 Glossary

Enterprise architectural modeling The act of creating and evolving models that
depict the business and technical infrastructure of your organization.

Enterprise requirements modeling The act of creating and evolving models that
reflect the high-level requirements of your organization.

Entity object An object that is typically found in your domain model, such as Order
and Item in an inventory control system.

Essential use-case A simplified, abstract, generalized use case that captures the
intentions of a user in a technology and implementation-independent manner.

Essential user interface prototype A low-fidelity model for a portion of the user
interface for a system in a technology-independent manner.

EUP Enterprise Unified Process.

Evil wizard A code generator that produces code that you do not understand.

Executable UML A strategy in which systems are modeled using the artifacts of
the UML and a formal language such as the OCL from which working software is
generated.

Executive overview A definition of the vision for the system and a summary of the
current cost estimates, predicted benefits, risks, staffing estimates, and scheduled
milestones.

Facilitator Someone responsible for planning, running, and managing modeling
sessions.

FDD Feature-Driven Development.

Flow chart A diagram that depicts the logic flow of a business process or software
operation. Flow charts are a primary artifact of structured/procedural modeling.

Formal model A model that is based on a language that has a well-defined syntax
and semantics and possibly a defined way to show the validity of its constructs
such as rules of analysis, inference, or proof.

Getter An operation that obtains the value of a data attribute, or calculates the
value, of an object or class.

Glossary A collection of definitions of terms that are relevant to your project.

Gold owner The person or organization that funds your project.

Graphical user interface (GUI) A style of user interface composed of graphical
components such as windows and buttons.

Hardware node A computer, switch, printer, or other hardware device.

IDE Integrated Development Environment.

Increment The difference between two releases of a system.

72244_GlossI 2/27/02 11:33 AM Page 362

Glossary 363

Information radiator A display of information posted on the wall where passersby
can see it.

Interface In Java, a collection of zero or more operation signatures that a class
implements in whole.

Interface object See boundary object.

Iron triangle A planning concept that you can only fix two of three aspects—cost,
scope, and quality—on your project.

IRUF Initial requirements up front.

IT Information Technology.

Iterate To move on to the next step/task, often in a repetitious manner, taking small
steps each time.

Iteration A Unified Process term that refers to a distinct sequence of activities with
a baselined plan and valuation criteria that results in a release (either internal or
external).

Ivory tower architecture An architecture developed in isolation from the
developers, or teams of developers, responsible for following it.

Joint application development (JAD) A structured, facilitated meeting in which
modeling is performed by a group of people. JADs are often held for gathering
requirements or for modeling candidate architecture(s).

KISS Keep it simple stupid.

Landscape model See overview model.

Layering The organization of software collections (layers) of classes or components
that fulfill a common purpose.

Level-0 DFD A DFD used model used as a context diagram.

Major user interface element A large-grained item such as a screen, HTML page,
or report.

Message-invocation box The long, thin, vertical boxes that appear on sequence
diagrams which represent invocation of an operation on an object or class.

Minor user interface element A small-grained item such as a user input field,
menu item, list, or static text field.

Model An abstraction that describes one or more aspects of a problem or a potential
solution to that problem. Traditionally, models are thought of as zero or more
diagrams plus any corresponding documentation. However, non-visual artifacts
such as collections of CRC cards, a textual description of one or more business
rules, or the structured English description of a business process are also
considered to be models.

72244_GlossI 2/27/02 11:33 AM Page 363

364 Glossary

Model Document Architecture (MDA) Part of the OMG’s vision to support
interoperability with specifications, defining the relationships among OMG
standards and how they can be used together in a coordinated manner.

Modeling session An activity where one or more people focus on the development
of one or more models.

Multiplicity The UML combines the concepts of cardinality and optionality into the
single concept of multiplicity.

Network diagram A model that depicts the various types of hardware nodes and
the interconnections between them.

Non-behavioral requirement A category of requirements that describe technical
features of a system, features typically pertaining to availability, security,
performance, interoperability, dependability, and reliability.

Normalization (data) A data modeling technique, the goal of which is to organize
data elements in such a way that they are stored in one place and one place only.

Normalization (object) An object modeling technique, the goal of which is to
organize behavior in such a way that it is implemented in one place and one
place only.

Note A modeling construct for adding free-form text to UML diagrams.

Object Constraint Language (OCL) The industry standard specification language
defined by the Object Management Group (www.omg.org).

Object lifeline Represents, in a sequence diagram, the life span of an object during
an interaction.

OOA&D Object-oriented analysis and design.

Optionality Represents the concept “do you need to have it?” in associations.

Operations documentation This documentation typically includes an indication of
the dependencies that your system is involved with; the nature of its interaction
with other systems, databases, and files; references to backup procedures; a list of
contact points for your system and how to reach them; a summary of the
availability/reliability requirements for your system; an indication of the expected
load profile of your system; and troubleshooting guidelines.

Organization chart A model that depicts the reporting structure between the
people, positions, and/or teams within an organization.

Osmotic communication Indirect information transfer through overhearing
conversations or simply noticing things that happen around you.

Overview diagram A high-level depiction of one aspect of your system’s
architecture. Any type of diagram, such as a UML class diagram or a data model,
may be used as an overview diagram when appropriate for the given view.

Phase modeling sessions A modeling session where your focus is on creating
models pertinent to the major phases of traditional development. This includes but

72244_GlossI 2/27/02 11:33 AM Page 364

Glossary 365

is not limited to requirements, analysis, architecture, and design modeling
sessions.

Physical prototype A physical model of the actual environment in which a system
is to be deployed.

Platform Independent Model (PIM) A type of MDA model that specifies a system
in a manner that abstracts away technical details.

Platform Specific Model (PSM) A type of MDA model that realizes a portion, one,
or several PIMs to take into account technical considerations.

PIG Process improvement group (the pun is intended).

Process object See control object.

Project overview A document that summarizes critical information such as the
vision for the system, primary user contacts, technologies and tools used to build
the system, the critical operating processes (some applicable to development, such
as how to build the system, and some applicable to production, such as how to
back up data storage), and references to critical project artifacts such as the source
code, the permanent models, and other documents. This document serves as a
starting point for anyone new to the team.

Project Stakeholder A direct user, indirect user, manager, senior manager,
operations staff member, support (help desk) staff member, testers, developers
working on other systems that integrate or interact with this one, or maintenance
professionals potentially affected by the development and/or deployment of a
software project. For the sake of Agile Modeling, developers working on the
project shall be excluded whenever the term “project stakeholder” is used, even
though they clearly have an important stake in the projects that they work on.

Referential integrity The assurance that a reference from one entity to another
entity is valid. If entity A references entity B, then entity B exists. If entity B is
removed, then all references to entity B must also be removed.

Relational database (RDB) A permanent storage mechanism in which data is
stored as rows in tables.

Release The deployment of a working version of a system. Releases may be
internal, available only to the development team, or external, available to some or
all of the users for the system.

Requirements A description of what your project stakeholders want a system to do,
including the functionality that it should exhibit within a defined set of constraints.

Requirements document This document defines what the system will do,
summarizing or composed of requirements artifacts such as business rule
definitions, use cases, user stories, or essential user interface prototypes (to name
a few).

Requirements modeling The act of identifying and exploring the requirements for
a system.

72244_GlossI 2/27/02 11:33 AM Page 365

366 Glossary

Requirements modeling session A modeling session where your focus is on
defining what your project stakeholders want your system to do.

Requirements traceability matrix The artifact used to record traceability relations
between artifacts.

Reverse engineering The generation of a model based on the information
contained in source code.

Robustness diagram A model that depicts the major objects—classified into
boundary/interface objects, entity objects, or control/process objects—that
participate in fulfilling an actor’s interaction with a system as defined by a usage
scenario.

RUP Rational Unified Process.

Scaffolding Additional code, including both operations and attributes, required to
make your design work. Programmers often introduce scaffolding code or it is
automatically generated by a CASE tool; it is not modeled as part of analysis and
often not even as part of design.

Scribe A person responsible for recording information during a modeling session.

SEI Software Engineering Institute.

SEPG Software engineering process group.

Sequence diagram A UML diagram used to explore the logic of usage scenarios.

Setter An operation that sets the value of a data attribute of an object or class. Also
known as a mutator.

Simple tools Manual item that you use to model systems, including but not limited
to flipchart paper, Sticky Notes, paper napkins, sheet paper, string, thumb tacks,
whiteboards, and index cards.

Software development artifact. See artifact.

Source code A sequence of instructions, including comments that describe those
instructions, for a computer system. Also known as program code, program source
code, or simply as code.

Specification language A style of writing, such as Object Constraint Language (OCL)
and Structured English, used to describe logic in a structured/formal manner.

SPI Software process improvement.

Spike See architecture spike.

SRS Software Requirements Specification.

State chart diagram A UML diagram used to depict the various states that an
object may be in and the transitions between those states.

Stereotype A UML stereotype denotes a common usage of a modeling element.
Stereotypes are used to extend the UML in a consistent manner.

72244_GlossI 2/27/02 11:33 AM Page 366

Glossary 367

Structure diagram A diagram that depicts the modules of procedure-based code
and the invocation relationships between those modules.

Structured English A traditional, easy to read, style of specification language.

Support documentation This documentation includes training materials specific to
support staff; all user documentation to use as reference when solving problems; a
trouble-shooting guide; escalation procedures for handling difficult problems; and
a list of contact points within the maintenance team.

System The software, documentation, hardware, middleware, installation
procedures, and operational procedures.

System documentation The purpose of this document is to provide an overview of
the system and to help people understand the system. Common information in
this document includes an overview of the technical architecture, the business
architecture, and the high-level requirements for the system.

System use case A use case in which high-level implementation decisions are
reflected, such as the specific type of user interface and your physical environment.

Trigger An operation that is automatically invoked as the result of data
manipulation language (DML) activity within a database.

Technical requirement A requirement pertaining to a non-business-related aspect
of your system, such as a performance-related issue, a reliability issue, or a
technical environment issue.

Traceability The ease with which the features of one artifact—perhaps a document,
model, or source code—are related/traced to the features of another.

Truck insurance The assurance that if the development team leaves, or gets hit by a
truck, that critical information about the project is left behind in the form of
documentation.

Truck number An estimate of the minimum number of people you would need to
lose from your team before you find yourself in trouble (for example, the number
of people that would need to be hit by a truck).

UML Unified Modeling Language.

UP Unified Process.

Usage scenario A description of a single path of logic through one or more use
cases or user stories.

Use case A sequence of actions that provide a measurable value to an actor.

Use case diagram A UML diagram used to depict a collection of use cases, actors,
their associations, and optionally a system boundary box.

Use case model The combination of one or more use case diagrams and their
supporting use cases and actor definitions.

72244_GlossI 2/27/02 11:33 AM Page 367

368 Glossary

Use case realization An artifact of the Rational Unified Process (RUP) that is a
collection of one or more models that describes the implementation of a single
use case.

User documentation Documents that describe how to work with your system,
including reference manuals, usage guides, support guides, and training materials.

User interface (UI) The portion of the software that a user directly interacts with.

User interface element See major user interface element and minor user interface
element.

User interface flow diagram A diagram that enables you to model the high-level
relationships between major user interface elements, depicting a birds-eye view of
the user interface of your system.

User story A reminder to have a conversation with your project stakeholders that
captures a behavioral requirement, a business rule, a constraint, or a technical
requirement.

Version control tool A software tool used to check in/out, define, and manage
versions of project artifacts.

Virtual meeting tool A tool that enables communication between several people in
different physical locations.

Work product A type of artifact, such as a model or project schedule, that you
create during development that you can discard or evolve into an actual
deliverable.

Working software Software that has been tested, accepted by its users, and then
released.

XP eXtreme Programming.

YAGNI You Ain’t Gonna Need It Anyway.

ZFR Zero-feature release.

72244_GlossI 2/27/02 11:33 AM Page 368

Agile Alliance (2001a). Manifesto for Agile Software Development. www.agilealliance.org

Agile Alliance (2001b). Principles: The Agile Alliance. www.agilealliance.org/
principles.html

Ambler, S. W. (1995). The Object Primer: Application Developer’s Guide to Object
Orientation. New York, NY: Cambridge University Press.

Ambler, S. W. (1997). Building Object Applications That Work: Your Step-By-Step Handbook
for Developing Robust Systems with Object Technology. New York, NY: Cambridge
University Press. www.ambysoft.com/buildingObjectApplications.html

Ambler, S. W. (1998). Process Patterns: Building Large-Scale Systems Using Object
Technology. New York, NY: Cambridge University Press. www.ambysoft.com/
processPatterns.html

Ambler, S. W. (1999). More Process Patterns: Delivering Large-Scale Systems Using Object
Technology. New York, NY: Cambridge University Press. www.ambysoft.com/
moreProcessPatterns.html

Ambler, S. W. (2001a). The Object Primer, Second Edition: The Application Developer’s
Guide to Object Orientation. New York, NY: Cambridge University Press.
www.ambysoft.com/theObjectPrimer.html.

Ambler, S. W. (2001b). Enterprise Unified Process White Paper. www.ronin-intl.com/
publications/unifiedProcess.htm

369

References and
Suggested Reading

72244_RefsI 2/27/02 11:32 AM Page 369

370 References

Ambler, S. W. (2001c). Agile Modeling Home Page. www.agilemodeling.com

Ambler, S. W. (2001d). The Design of a Robust Persistence Layer. www.ambysoft.com/
persistenceLayer.html

Ambler, S. W. (2001e). Mapping Objects to a Relational Database. www.ambysoft.com/
mappingObjects.html

Ambler, S. W. (2001f). Agile Modeling Mailing List Instructions. www.agilemodeling.
com/feedback.htm

Ambler, S. W. and Constantine, L. L. (2000a). The Unified Process Inception Phase.
Gilroy, CA: CMP Books. www.ambysoft.com/inceptionPhase.html

Ambler, S. W. and Constantine, L. L. (2000b). The Unified Process Elaboration Phase.
Gilroy, CA: CMP Books. www.ambysoft.com/elaborationPhase.html

Ambler, S. W. and Constantine, L. L. (2000c). The Unified Process Construction Phase.
Gilroy, CA: CMP Books. www.ambysoft.com/constructionPhase.html

Ambler, S. W. and Constantine, L. L. (2002). The Unified Process Transition and
Production Phases. Gilroy, CA: CMP Books. www.ambysoft.com/
transitionProductionPhase.html

Bass, L., Clements, P., and Kazman, R. (1998). Software Architecture in Practice.
Reading, MA: Addison Wesley Longman, Inc.

Beck, K. (2000). Extreme Programming Explained: Embrace Change. Reading, MA:
Addison Wesley Longman, Inc.

Beck, K. and Cunningham, W. (1989). A Laboratory for Teaching Object-Oriented
Thinking. Proceedings of OOPSLA’89, pp. 1-6.

Beck, K. and Fowler, M. (2001). Planning Extreme Programming. Boston, MA: Addison
Wesley.

Beedle, M. and Schwaber, K. (2001). Agile Software Development With SCRUM. Upper
Saddle River, NJ: Prentice Hall, Inc.

Bennett, D. (1997). Designing Hard Software: The Essential Tasks. Greenwich, CT:
Manning Publications Co.

Boehm, B. W. (1988). A Spiral Model Of Software Development and Enhancement. IEEE
Computer, pp. 61-72, 21(5).

Booch, G. (1994). Object-Oriented Analysis and Design with Applications. Reading, MA:
Addison Wesley Publishing Company.

Bremer, M. (1999). UnTechnical Writing: How to Write About Technical Subjects and
Products So Anyone Can Understand. Concord, CA: UnTechnical Press.

Brooks, F. P. (1995). The Mythical Man Month: Essays on Software Engineering
Anniversary Edition. Reading, MA: Addison Wesley Publishing Company.

Brown, W. J., McCormick, H. W. III, and Thomas, S. W. (2000). AntiPatterns in Project
Management. New York, NY: John Wiley & Sons, Inc.

72244_RefsI 2/27/02 11:32 AM Page 370

References and Suggested Reading 371

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996). Pattern-
Oriented Software Architecture: A System of Patterns. New York, NY: John Wiley &
Sons Ltd.

Christel, M. G. and Kang, K. C. (1992). Issues in Requirements Elicitation. Software
Engineering Institute (SEI) Technical Report CMU/SEI-92-TR-12. www.sei.cmu.edu

Coad, P., Lefebvre, E., and DeLuca, J. (1999). Java Modeling in Color with UML:
Enterprise Components and Process. Upper Saddle River, NJ: Prentice Hall, Inc.

Cockburn, A. (1998). Surviving Object-Oriented Projects: A Manager’s Guide. Reading,
MA: Addison Wesley Longman, Inc.

Cockburn, A. (2001a). Writing Effective Use Cases. Boston, MA: Addison Wesley.

Cockburn, A. (2001b). Crystal Clear: A Human-Powered Software Development
Methodology for Small Teams. http://members.aol.com/humansandt/crystal/clear/

Cockburn, A. (2001c). Characterizing People as Non-Linear, First-Order Components in
Software Development. members.aol.com/humansandt/papers/nonlinear/
nonlinear.htm

Cockburn, A. (2002). Agile Software Development. Reading, MA: Addison Wesley
Longman, Inc.

Constantine, L. L., and Lockwood, L. A. D. (1999). Software For Use: A Practical Guide
to the Models and Methods of Usage-Centered Design. New York, NY: ACM Press.

Coplien, J. and Harrison, N. (2001). Organizational Patterns Site. www.bell-
labs.com/cgi-user/OrgPatterns/OrgPatterns

Davis, A. M. (1995). 201 Principles of Software Development. New York, NY: McGraw
Hill Inc.

Douglass, B. P. (1999). Doing Hard Time: Developing Real-Time Systems With UML,
Objects, Frameworks, and Patterns. Reading, MA: Addison Wesley Longman, Inc.

D’Souza, D. F., Wills, A. C. (1999). Objects, Components, and Frameworks with UML: The
Catalysis Approach. Reading, MA: Addison Wesley Longman, Inc.

Evans, G. (2001). Palm Sized Process: Point of Sale Gets Agile. Software Development,
September 2001.

Fowler, M. (1997). Analysis Patterns: Reusable Object Models. Menlo Park, CA: Addison
Wesley Longman, Inc.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Menlo Park, CA:
Addison Wesley Longman, Inc.

Fowler, M. (2001a). The New Methodology. www.martinfowler.com/articles/
newMethodology.html

Fowler, M. (2001b). Is Design Dead? www.martinfowler.com/articles/
designDead.html

Fowler, M. & Scott, K. (1999). UML Distilled Second Edition: A Brief Guide to the
Standard Object Modeling Language. Reading, MA: Addison Wesley Longman, Inc.

Gane, C., Sarson, T. (1979). Structured Systems Analysis: Tools and Techniques.
Englewood Cliffs, NJ: Prentice Hall, Inc.

72244_RefsI 2/27/02 11:32 AM Page 371

372 References

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design Patterns: Elements of
Reusable Object-Oriented Software. Reading, MA: Addison-Wesley Publishing
Company.

Gilb, T. & Graham, D. (1993). Software Inspection. Harrow, England: Addison Wesley
Longman Limited.

Gottesdiener, E. (2001). Specifying Requirements With a Wall of Wonder. http://www
.therationaledge.com/content/nov_01/t_wallOfWonder_eg.html

Graham, I., Henderson-Sellers, B., and Younessi, H. (1997). The OPEN Process
Specification. New York, NY: ACM Press Books.

Greenbaum, J. and Kyng, M., editors (1991). Design At Work: Cooperative Design of
Computer Systems. Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.

Highsmith, J. A. III (2000). Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. New York, NY: Dorset House Publishing.

Hock, D. W. (2000). Birth of the Chaordic Age. San Francisco, CA: Berrett-Koehler
Publishers, Inc.

Hohmann, L. (1996). Journey of the Software Professional: The Sociology of Computer
Programming. Upper Saddle River, NJ: Prentice Hall PTR.

Hunt, A. & Thomas, D. (2000). The Pragmatic Programmer: From Journeyman to Master.
Reading, MA: Addison Wesley Longman, Inc.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The Unified Software Development
Process. Reading, MA: Addison Wesley Longman, Inc.

Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G. (1992). Object-Oriented
Software Engineering: A Use Case Driven Approach. Wokingham, England: ACM Press.

Jacobson, I., Griss, M., and Jonsson, P. (1997). Software Reuse: Architecture, Process, and
Organization for Business Success. New York, NY: ACM Press.

Jeffries, R., Anderson, A., and Hendrickson, C. (2001). Extreme Programming Installed.
Boston, MA: Addison-Wesley.

Jeffries, R. (2001a). Essential XP: Card, Conversation, Confirmation.
www.xprogramming.com/xpmag/expCardConversationConfirmation.htm

Jeffries, R. (2001b). Essential XP: Documentation. www.xprogramming.com/xpmag/
expDocumentationInXp.htm

Jeffries, R. (2001c). Natural XP: Documentation. www.xprogramming.com/xpmag/
natural.htm

Jeffries, R. (2001d). Essential XP: Emergent Design. www.xprogramming.com/xpmag/
expEmergentDesign.htm

Jeffries, R. (2001e). Much Ado About Nothing: Documentation.
www.xprogramming.com/xpmag/FussAboutDocumentation.htm

Jones, C. (2000). Software Assessments, Benchmarks, and Best Practices. Boston, MA:
Addison Wesley Longman Inc.

Kerievsky, J. (2001). Patterns and XP. Extreme Programming Examined. pp. 207-220, Eds.
Succi, G. and Marchesi, M. Boston, MA: Addison Wesley.

72244_RefsI 2/27/02 11:32 AM Page 372

References and Suggested Reading 373

Kerth, N. (2001). Project Retrospectives: A Handbook for Team Reviews. New York, NY:
Dorset House Publishing.

Kruchten, P. (1995). The 4+1 View Model of Architecture. IEEE Software. 12(6), November
1995. pp. 42-50.

Kruchten, P. (2000). The Rational Unified Process, Second Edition: An Introduction.
Reading, MA: Addison Wesley Longman, Inc.

Larman, C. (2002). Applying UML and Patterns: An Introduction to Object-Oriented Analysis
and Design and the Unified Process. Upper Saddle River, NJ: Prentice Hall PTR.

Leuf, B. and Cunningham, W. (2001). The Wiki Way: Quick Collaboration on the Web.
Reading, MA: Addison Wesley Longman, Inc.

Linthicum, D. S. (2000). Enterprise Application Integration. Reading, MA: Addison
Wesley Longman, Inc.

Martin, R. (2001). The Process. www.objectmentor.com/publications/RUPvsXP.pdf

Mayhew, D. J. (1992). Principles and Guidelines in Software User Interface Design.
Englewood Cliffs, NJ: Prentice Hall.

McConnell, S. (1993). Code Complete: A Practical Handbook of Software Construction.
Redmond, WA: Microsoft Press.

Microsoft Corporation (1995). The Windows Interface Guidelines for Software Design: An
Application Design Guide. Redmond, WA: Microsoft Press.

Microsoft Corporation (2001). The Microsoft Solutions Framework (MSF).
www.microsoft.com/business/services/mcsmsf.asp

Naiburg, E. J. and Maksimchuk, R. A. (2001). UML for Database Design. Boston, MA:
Addison Wesley.

Newkirk, J. and Martin, R. C. (2001). Extreme Programming in Practice. Boston:
Addison Wesley.

Object Management Group (2001a). The Unified Modeling Language (UML)
Specification. www.omg.org/technology/documents/formal/uml.htm

Object Management Group (2001b). Model Drive Architecture (MDA). ftp.omg.org/
pub/docs/ormsc/01-07-01.pdf.

Page-Jones, M. (1988). Practical Guide to Structured Systems Design 2/e. Upper Saddle
River, NJ: Prentice-Hall, Inc.

Page-Jones, M. (2000). Fundamentals of Object-Oriented Design in UML. New York, NY:
Dorset-House Publishing.

Raskin, J. (2000). The Human Interface: New Directions for Designing Interactive Systems.
Reading, MA: Addison Wesley.

Rational Corporation (2001). Rational Unified Process Home Page.
www.rational.com/products/rup/index.jsp

Reingruber, M. C. and Gregory, W. W. (1994). The Data Modeling Handbook: A Best-
Practice Approach to Building Quality Data Models. New York, NY: John Wiley &
Sons, Inc.

72244_RefsI 2/27/02 11:32 AM Page 373

374 References

Roman, E., Ambler, S. W., Jewell, T., and Marinescu, F. (2002). Mastering Enterprise Java
Beans, Second Edition. New York, NY: John Wiley & Sons, Inc.

Rosenberg, D. and Scott, K. (1999). Use Case Driven Object Modeling With UML: A
Practical Approach. Reading, MA: Addison Wesley Longman, Inc.

Ross, R. G. (1997). The Business Rule Book, Second Edition. Houston, TX: Business Rules
Solutions, Inc.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-
Oriented Modeling and Design. Englewood Cliffs, NJ: Prentice Hall, Inc.

Rumbaugh, J., Jacobson, I., and Booch, G. (1999). The Unified Modeling Language
Reference Manual. Reading, MA: Addison Wesley Longman, Inc.

Software Engineering Institute. (1995). The Capability Maturity Model: Guidelines for
Improving the Software Process. Reading, MA: Addison-Wesley Publishing
Company, Inc.

Stapleton, J. (1997). DSDM: Dynamic Systems Development Method. Harlow, England:
Addison Wesley.

Vermeulen, A., Ambler, S. W., Bumgardner, G., Metz, E., Misfeldt, T., Shur, J., and
Thompson, P. (2000). The Elements of Java Style. New York, NY: Cambridge
University Press.

Wake, W. C. (2002). Extreme Programming Explored. Boston, MA: Addison Wesley.

Warmer, J. and Kleppe, A. (1999). The Object Constraint Language: Precise Modeling With
UML. Reading, MA: Addison Wesley Longman, Inc.

Weiss, E. H. (1991). How To Write Usable User Documentation. Phoenix, AZ: The Oryx
Press.

Wells, J. D. (2001). Extreme Programming: A Gentle Introduction.
www.extremeprogramming.org

Wiegers, K. (1999). Software Requirements. Redmond, WA: Microsoft Press.

Wilkinson, N. M. (1995). Using CRC Cards: An Informal Approach to Object-Oriented
Development. New York, NY: Cambridge University Press.

Williams, L., Kessler, R. R., Cunningham, W., and Jeffries, R. (2000). Strengthening the
Case for Pair Programming. IEEE Software, July/August 2000, pp. 19-25.

Wood, J. and Silver, D. (1995). Joint Application Development Second Edition. New York,
NY: John Wiley & Sons, Inc.

Xerox (2001). Aspect-Oriented Programming. http://www.parc.xerox.com/csl/
projects/aop/

Yourdon, E. (1989). Modern Structured Analysis. Upper Saddle River, NJ:
Prentice-Hall, Inc.

Yourdon, E. (1997). Death March: The Complete Software Developer’s Guide to Surviving
“Mission Impossible” Projects. Upper Saddle River, NJ: Prentice-Hall, Inc.

72244_RefsI 2/27/02 11:32 AM Page 374

A

acceptance testing, 23, 216—217
accuracy of AM, 13–14
activity diagram, UML, 45—46
ad hoc teams, 131
adaptation, local (See local

adaptation)
adaptive software development

(ASD), 72
Adobe Illustrator, 105
Agile Modeling defined, 11—15,

326—328
Agile Software Development

Alliance, 6
analysis and design modeling,

227, 234—240, 269—272
applying AM, 9—10
applying right artifacts, 45—47,

94, 96
in AM modeling sessions, 137
in design-class modeling

and, 286
in extreme programming and,

181—183, 196, 198, 219
in Unified Process and,

228, 234, 249, 261–262,
272–273

tools and, 117
Unified Modeling Language

(UML) and, 171

business process, Unified
Modeling Language
(UML), 170

business rules, 9, 236
business use case modeling,

236, 247—248
business object model in,

248—249
business vision modeling in,

252—253
future requirements and, 251
goals in, 253
iterative modeling in, 252
logical data model (LDM)

in, 249
specifications in, 249—252
supplementary business

specification in, 249—252
business vision modeling,

252—253

C

C#, 5, 41
Canyon Blue (See also CASE

tools), 101
capability maturity model

(CMM), 317
CASE tools, 17, 39—42, 58, 70, 85,

87, 92, 101, 104, 107—115,
117, 120, 172, 326

375

Index

architectural modeling, 272—277
artifacts, 4

B

big design up front (BDUF)
principles, 51

extreme programming
and, 187

in nurturing AM culture, 90—91
Unified Process and, 305—306

big modeling up front (BMUF)
principles, 59

design class modeling
and, 287

extreme programming
and, 198

Unified Process and, 268,
305—306

blame placing versus AM,
319—320

bottom up modeling,
infrastructure
management, 296—298

business architecture document
in Unified Process, 235

business glossary in Unified
Process, 235

business modeling discipline,
227, 233—234, 246—253

business object model, 235,
248—249

72244_Index 2/27/02 11:33 AM Page 375

advantages and
disadvantages of, 112

change and, 114
choosing, 111—113
customization using, 114
data modeling and, 289
design class modeling and,

277—280, 286
documentation from, 115
ease of use in, 114
extreme programming and,

182–183, 188, 198, 213
generated source code using,

113—115
in nurturing AM culture, 92
intrusion of, 114
iterative modeling and, 115
misconceptions regarding, 113
multilanguage support in, 114
purposeful modeling and,

111—113
reverse engineering and, 114
stakeholder investment

and, 111
standards and, 113
unified modeling language

(UML) and, 113
Unified Process and, 284

Catalysis, 16, 116, 328
chairs for work areas, 120
change response in AM, 7–8, 11,

28, 30—31, 41, 51, 313
CASE tools and, 114
documentation and, 156
eXtreme programming and,

220—221
in nurturing AM culture, 91—92
infrastructure management

and, 303
modeling sessions in AM

and, 135
refactoring and, 71
Unified Process and, 243,

290—291
Unified Process and, 243

change management discipline,
Unified Process, 243—244,
271, 281

changing technology, 5
chaordic process of AM, 8—9, 73,

79—80, 177, 225
“chunks,” modeling sessions in

AM, 135
Cittera (See also CASE tools),

87, 101
class diagram, 46, 66—67, 96
class modeling, 136
class responsibility collaborator

(CRC), 9, 40, 47—48, 50,
90, 102, 178—179, 182, 198,
219, 249

376 Index

content versus representation,
11, 38—41, 45, 51, 56—57, 70,
75—76, 78, 109

eXtreme programming and,
185, 203

Unified Process and, 229
context model in Unified

Process, 237, 255—257
contract models, 60, 70, 76—77,

97, 158
architectural modeling and,

276—277
documentation and,

65—66, 145
eXtreme programming

and, 220
fixed price contracts and,

323—324
Unified Process and, 229

contracts, 7, 147
contraindications for AM,

314—315
“cookbook philosophy” versus

AM, 318—319
CORBA and eXtreme

programming, 182
core infrastructure teams (CITs),

299—301
core practices of AM, 73—76
Corel, 105
courage, 11, 19–20, 23—25,

27, 185
Crystal Clear, 15
customer collaboration

(See stakeholder
investment/participation)

customer needs/satisfaction
(See also stakeholder
investment/participation),
8, 163

documentation and, 163

D

data definition language
(DDL), 289

data flow diagram (DFD), 45, 54
infrastructure management

and, 293
Unified Modeling Language

(UML) and, 171
Unified Process and, 255—257

data modeling, 93—94
CASE Tools and, 289
collective ownership in, 290
data definition language

(DDL) and, 289
modeling sessions in AM

and, 136
parameters and search criteria

in, 288—289

Click to Meet, 87
COBOL, 5
coding standards, 61
collaborative software, 106,

322
collections, 9
collective ownership, 54—55,

77–78
data modeling, 290
extreme programming and,

179
teamwork and, 74–75
Unified Process and, 228, 243

colocated teams, 321
color use, 115
Common Warehouse

Metamodel (CWM), 172
communication, 11, 19–20,

27—29, 33, 41–42, 53, 55, 60,
67, 83—88, 105, 204, 318

amicability and, 85
anxiety and, 86
architectural modeling

and, 276
dedicated space for, 86
documentation and versus,

88, 145, 164
effectiveness of, 83—88
eXtreme programming

and, 185
factors affecting, 85—86
learning through, 88
modes of, 84—85, 88
osmotic, 86
patterns and, 77
physical proximity and, 85
reuse and, 77
standards and, 77
teamwork and, 132—133
technologies for, 87
temporal proximity and, 85
tools for, 85, 87
Unified Process and, 243, 307
work areas and, 123

communication through
modeling, 70—71, 77, 92,
145, 148, 230

complementary nature of
AM, 16

complexity of infrastructure,
21—22

component-based modeling, 168
computers for work areas, 120
Concurrent Versions System

(CVS), 87
configuration management and

Unified Process, 243—244,
271, 281

consistency in AM, 13—14
constraints, technical, 267
Contact point pattern, 21

72244_Index 2/27/02 11:33 AM Page 376

parsing search criteria in, 289
SQL SELECT statements

for, 289
Unified Process and, 240,

288—290
data models, 9
data warehousing, 94
database access, 5
database modeling, eXtreme

programming, 209—212
deadlines, 3
“death march,” 3—4
dedicated space for AM,

118—119
dedicated space for

communication, 86
defects and errors, 35—37
deployment discipline in

Unified Process, 240, 244
design class modeling, 240

applying right artifacts in, 286
big modeling up front

(BMUF) and, 287
CASE tools and, 286
finder operation coding

in, 286
incremental modeling in, 286
patterns and, 285
proving design with code in,

284—285
purposeful modeling in, 286
standards and, 285
Unified Process and, 284—287

design decision,
documentation, 158

designated teams, 131—132
details in AM, 14
development pairs, 131—132
development view in

architectural
modeling, 273

diagrams, 45—46, 61—62, 169
digital cameras and scanners,

105, 119, 122
disciplines of modeling in

Unified Process, 226—227,
232—241

distributed development,
321—322

distributed modeling teams, 315
documentation, 6—7, 10, 17, 28,

35, 37, 57, 60, 64—68, 76—77,
95, 143—167, 320

accuracy, consistency, detail
in, 156–157

agility in, 155—157
CASE tools and, 115
change and, 156
communication and, 88, 145,

164
contents of, 156

Index 377

stakeholder requirements for,
144—145, 149, 155

sufficiency of, 163—164
support, 160, 197
system, 161, 197
technical writers for, 150—151,

165
temporary models and, 64—65,

76—77, 149—150
timing of, 151—152
tools and, 104
trade-offs of, 149—153
traveling light and, 153—155
types of, 157—161
understanding through

modeling and, 145—146
Unified Process and,

265—267, 305
update of, 157—162
updating models and, 65—68,

76—77
user, 161, 197
willingness in, 151

domain architecture
infrastructure model, 241,
293—294

drawing tools, 115—116
duration or length of modeling

sessions in AM, 134—136
dynamic system development

model (DSDM), 9–10, 126

E

editors, text, 105
education of developers, 4—5,

41, 94—95
effectiveness of AM, 16
ego versus teamwork, 128—130
electronic whiteboards, 105—106
e-mail, 87
Embarcadero (See also CASE

tools), 101
enabling designs, 28
Enterprise JavaBeans (EJB),

4, 13, 24, 76, 114, 128,
173, 275

enterprise level
documentation, 152

enterprise requirements
infrastructure model,
241, 293

Enterprise Unified Process
(EUP), 10, 91, 126—128,
225—227, 232, 239, 311

environment discipline, Unified
Process, 244

ER/Studio (See also CASE
tools), 101

eRoom, 87
ERWin data modeling, 111

contract models and, 65—66,
76—77, 145, 158

contracts and, 147
control through, 146
critical/fundamental points

regarding, 166
currency of, 165
customer needs for, 156, 163
design decision, 158
effectiveness of, handoffs in,

162—163
executive overview, 158
eXtreme programming and,

179—181, 198
handoffs of, 162—163
HTML pages, 154—155
ignorance and, 146
importance of, 166—167
in nurturing AM culture, 90
increasing agility in, 163—166
indexing of, 156—157
internal versus external, 152
justification through, 146, 165
“lean and mean,” 155
models versus, 148—149
operations, 159, 197
overlapping, 165
permanent versus temporary

models in, 147—167
placement of, 164
prescriptive processes and,

146—147
project level versus enterprise

level, 152
project overview, 159
public display of models

versus, 154, 164
purpose of, 155, 164
purposeful modeling and, 149
quantity versus quality in,

152—153
rational Unified Process

(RUP), 153, 157
reasons for, 144—147
reassurance through, 147
relationships among models,

source code and,
143—144

requirements for, versus
development, 151, 160

reuse, 152
self documenting code

and, 152
simplicity in, 155, 163
software architecture

description (SAD) in,
153—154

software development versus,
150

specifications and, 147
stabilization of, 164

72244_Index 2/27/02 11:33 AM Page 377

evaluating fit of AM to
organization, 312—315

evolution of model, 107—111
executable Unified Modeling

Language (UML), 172—173
executive overview

documentation, 158
expert input, eXtreme

programming, 217—218
exploration phase in extreme

programming, 191—192,
199—206

external documentation, 152
eXtreme programming (XP),

9—10, 15, 19, 25, 27, 37, 53,
58, 61, 65, 71, 91, 95, 102,
122, 126, 144—145, 177—198,
225, 311, 328

acceptance testing and,
216—217

adopting AM practices in, 189
applying right artifacts with,

181—183, 196, 198, 219
big design up front (BDUF)

principles, 187
big modeling up front

(BMUF) in, 198
CASE tools and, 182–183, 188,

198, 213
changes and, 220—221
class responsibility

collaborator (CRC) in,
178—179, 182, 198, 219

collective ownership in, 179
communication in, 185
content versus rep in, 185, 203
contract models and, 220
CORBA and, 182
courage in, 185
database example in, 209—212
design session in, 218—219
documentation and, 144—145,

179—181, 197–198
environment for, 178
expert input for, 217—218
exploration phase in, 191—192,

199—206
feedback in, 185, 198
goals in, 185
index card use in, 194
infrastructure development

and, 205—206
initial requirements up front

(IRUF) in, 199—203
iterations to release phase in,

194—196, 207—213
iterative modeling in,

207—213, 219
knowing your model in, 185
learning from others in, 185
lifecycle of, 179, 190—198

378 Index

Unified Modeling Language
(UML) and, 177,
181—183, 188

Unified Process and, 180, 305
updating models and, 188, 219
use cases in, 200
user stories in, 178—179,

201—202, 214
whiteboard in, 215
zero feature release (ZFR)

in, 203

F

facilitator in modeling sessions
in AM, 139

feature driven development
(FDD), 135

feedback, 11, 19–20, 22—23, 27,
35—37, 53–54, 313

architectural modeling
and, 273

eXtreme programming and,
185, 198

modeling sessions in AM, 135
teamwork and, 129—130
tools and, 103
Unified Process and, 239

finder operation coding, design
class modeling, 286

fixed price contracts, 323—324
food in work areas, 121

G

generalists versus specialists,
126—128, 306—307

Gentleware, 101
glossary in Unified Process,

235, 237
guidelines for modeling,

297—299

H

hackers, 95
hand offs to other teams,

322—323
documentation and, 162—163

heavy weight (HW) software
processes versus in
nurturing AM culture, 91

HTML documentation, 105,
154—155

HTML editors, 105
humility, 11, 20, 25—27, 31,

33, 129

I

ICONIX, 16, 116, 328
implementation discipline of

Unified Process, 242
implementation of model, 23

maintenance phase in,
197—198

making it work, 198, 222
metaphors, architectures and

spikes in, 203—206
model driven architecture

(MDA) and, 182
modeling in, 178—179, 204
modeling with others in, 203
multiple models and, 181, 185
OMG standards and, 182
organizational culture

and, 179
pair programming/

development in, 179,
195—196

parallel modeling in, 196,
205, 219

patterns in, 220
phases of modeling in, 190
planning phase in, 192—194
platform independent models

(PIMs) and, 182
platform specific models

(PSMs) and, 182
potential fit of AM and, 185
productionizing phase in,

196—197
proving design with code in,

196, 198
purposeful modeling in,

185, 198
refactoring and, 185—188
requirements modeling and,

215—217
reuse in, 203—204
searching for items in, 207—213
simplicity in, 185, 203
sketches in, 192—194
small initial investment

practice in, 198
sources of information

about, 178
spikes in, 209
stakeholder investment in,

185, 198
task card representation in,

208—209, 214—215
technical requirements

documents and, 202—203
temporary models and, 188,

205, 219
test first development in, 188
testing in, 188, 196—197, 219
time required for, 212
tools for, 185, 192, 194, 198
totaling an order, 214—222
traveling light and, 180
understanding through

modeling in, 196,
205, 215

72244_Index 2/27/02 11:33 AM Page 378

impromptu or ad hoc
teams, 131

incremental change, 31
incremental modeling (See

also iterative modeling),
12, 31, 44—52, 73, 75,
107, 313

applying right artifacts in,
45—47

design class modeling
and, 286

incremental modeling in,
51—52

iterated modeling in, 51
multiple models in parallel

for, 47—50
Unified Process and, 230,

305—306
index cards in XP, 194
indexing of documentation,

156—157
information technology (IT), 4
infrastructure design/

management, 21—22,
292—303, 321

initial requirements up front
(IRUF), 199—203

instinctive modeling, 42—43
architectural modeling

and, 276
Unified Process and, 244

“intellectual toolbox” (See also
tools), 33—34

internal documentation, 152
Internet as contract

model, 66
ISO 9000, 7, 317
Iterations to Release Phase in

eXtreme programming,
194—196, 207—213

iterative modeling, 11, 44—52,
73, 75, 77–78, 313

CASE tools and, 115
eXtreme programming and,

194—196, 207—213, 219
modeling sessions in AM

and, 137
multiple models in parallel

in, 75
multiple models in, 75
right artifacts applied in, 75
tools and, 103—104
Unified Process and, 230, 252,

261, 268, 305—306

J

Java, 5, 9, 25—26, 42
joint application development

(JAD), 140—141

Index 379

change and, 135
“chunks,” small requirement

chunks in, 135
class modeling, 136
data modeling, 136
duration or length of, 134—136
facilitator in, 139
feature driven development

(FDD), 135
feedback in, 135
formality of, 140—142
infective, 142
iterative modeling and, 137
joint application development

(JAD), 140—141
learning from others in,

138—139
modeling with others in, 136
multiple models and, 136
no modeling sessions

versus, 142
number of people in, 140
object oriented, 136
observer in, 140
parallel models in, 137
participants in, 138—140
phase type, 137—138
proving design with code

in, 135
purposeful modeling in, 136
rational Unified Process

(RUP) in, 135
scribe in, 139
simplicity in, 142
single artifact type, 136—138
stakeholder investment and,

141—142
types of, 136—138
use case, 136
workflow, 137

modeling versus models,
importance, 204

“modeling wall,” 55
modeling with others, 77, 107

architectural modeling
and, 273

eXtreme programming
and, 203

modeling sessions in AM
and, 136

teamwork and, 74, 130—132
Unified Process and, 230, 261

motivation, 60, 68—71, 77
communication through

modeling, 70—71, 77
understanding through

modeling, 69—70, 77
multilanguage support, 114
multiple models, 11, 28, 32—34,

44, 75, 77, 94

K

Keep it Complex Kamikaze
(KICK) rule, 22

Keep It Simple Stupid
(KISS), 22

knowing your model, 41, 185

L

legacy systems, 54, 270
length of modeling sessions in

AM, 134—136
lifecycle of AM, 147—167
lifecycle of EUP, 126—128
lifecycle of eXtreme

programming, 179,
190—198

lifecycle of Unified Process,
232—245

Linux, 4
local adaptation of AM, 11, 42

design class modeling
and, 277

in nurturing AM culture
and, 91

Unified Process and, 244
logical data model (LDM) in

Unified Process, 249
logical view, architectural

modeling, 272
LogiTech QuickCam, 87

M

mailing list for AM, 16, 87, 328
maintenance developers, 54
maintenance phase in eXtreme

programming, 197—198
management support for AM,

10, 53—54, 121—122, 314, 318
skeptics versus AM, 316—317

manifesto for Agile Software
Development, 6—7

media for tools, 115—116
metaphors, architectures and

spikes, in eXtreme
programming, 203—206

Microsoft Visio, 104, 111, 115
Mimio, 106
misconceptions regarding AM,

89—95, 325—326
model driven architecture

(MDA) and eXtreme
programming, 182

modeling, 9
modeling sessions in AM,

134—142
analysts in, advantages and

disadvantages to,
138—139

applying right artifacts in, 137

72244_Index 2/27/02 11:33 AM Page 379

architectural modeling and, 273
eXtreme programming and,

181, 185
modeling sessions in AM

and, 136
parallel for, 47—50
Unified Modeling Language

(UML) and, 169—171
Unified Process and, 229, 283,

304—305

N

naming standards, 62
“near-agile” approach, 10
NET, 4, 41, 172
net present value (NPV),

tools, 111
NetMeeting, 106
NetPerfect, 87
novices and teamwork, 128
nurturing agile culture, 89—100

big design up front (BDUF)
versus, 90—91

CASE tools versus 92
data modeling and, 93—94
documentation and, 90
goals and, 90—91
heavy weight (HW) software

processes versus, 91
learning from others

and, 95
local adaptation and, 91
misconceptions versus, 89—95
modeling skills and, 94—95
multiple models and, 94
presentations and, 98—100
proving design with code

and, 92
requirements versus change

in, 91—92
rights and responsibilities in,

97—98
“small” concepts for, 95—96
standards and, 96
value of modeling in, 92

O

object constraint language
(OCL), 15, 172

object model in Unified Process,
235, 248—249

object modeling technique
(OMT) notation, 172

object oriented modeling, 168
modeling sessions in AM

and, 136
Unified Process and, 270

observer in modeling sessions
in AM, 140

Occam’s Razor principle, 30

380 Index

PolyVision, 105
Poseidon (See also CASE

tools), 101
positive value of AM, 14—15
potential fit of AM and eXtreme

programming, 185
practices of AM, 44—59,

73—76, 312
prescriptive processes, 4, 9, 15,

146—147
presentations and AM, 98—100
principles of Agile Software

Development, 7—8, 11—12,
27—37, 312

private areas for work, 123
process improvement groups

(PIGs), 315
“process police” versus AM, 317
process view in architectural

modeling, 272—273
productionizing phase in

eXtreme programming,
196—197

productivity, 60—64, 77
patterns and, 62—64
reuse in, 64
standards in, 61—62

project level
documentation, 152

project management, 10, 72, 243
project overview

documentation, 159
project-related challenges to

AM, 320—324
projectors, 120
prototyping, 39, 43, 58
proving design with code, 59,

76, 78, 92, 107
in design class modeling,

284—285
in eXtreme programming,

196, 198
in modeling sessions in

AM, 135
in Unified Process, 230, 239,

242, 272–273
public display of models, 55,

77–78, 204
documentation and versus

154, 164
teamwork and, 74–75
Unified Process and, 229

purpose of AM, 12
purposeful modeling, 28,

31—32, 70
CASE tools and, 111—113
documentation and, 149
in architectural modeling, 275
in design class modeling, 286
in eXtreme programming,

185, 198

OMG standards and eXtreme
programming, 182

OMT notation, 40—41
on-site customer, 53
OPEN process, 4
operations and support

discipline in Unified
Process, 245

operations documentation,
159, 197

optical character recognition
(OCR), 105

organizational culture and AM,
307, 316—320

“osmotic communication,” 86
overarchitecting/overdesigning

versus AM, 21, 30
ownership of artifacts, 54—55

P

pair programming/
development, 179, 195—196

Panaboard, 105
parallel modeling, 47—50, 75, 77

architectural modeling and,
274—275

design class modeling and, 277
eXtreme programming and,

196, 205, 219
modeling sessions in AM

and, 137
Unified Process and, 229,

247—248, 261
partial adoption of AM, 324
patterns, 21, 60, 62—64,

77—78, 311
design class modeling and, 285
eXtreme programming

and, 220
tools and, 116
Unified Process and, 228

permanent versus temporary
models, 147—167

personnel (See also teamwork),
6, 16

rights and responsibilities in,
97—98

phases of modeling sessions in
AM, 137—138

phases of XP modeling, 190
Photo Paint, 105
physical view in architectural

modeling, 273
picture software, 105
planning phase in eXtreme

programming, 192—194
platform independent models

(PIMs), 182
platform specific models

(PSMs), 182
plug and play, 4

72244_Index 2/27/02 11:33 AM Page 380

in Unified Process, 257, 263
modeling sessions in AM

and, 136
tools and, 102

Q–R

quality, 11, 28, 34—35, 152—153,
323—324

Rational Corp. (See also CASE
tools), 101

Rational Rose (See also CASE
tools), 101

Rational Unified Process (RUP),
10, 225—227, 307, 311

documentation and, 153, 157
modeling sessions in AM

and, 135
Unified Modeling Language

(UML) and, 171
Unified Process and, 234, 239

recruiting developers, 124—128
refactoring, 71, 185—188
reference books, 120—121
relationship of AM principles/

practices, 77—79
requirements modeling, 160,

254—268, 313
applying right artifacts in, 261
big modeling up front

(BMUF) and, 268
change and, 290—291
context model in, 255—257
data flow diagrams (DFD) in,

255—257
documentation and, 265—267
eXtreme programming and,

215—217
in nurturing AM culture, 91—92
iterative modeling and,

261, 268
modeling with others in, 261
parallel modeling in, 261
reuse in, 255
robustness diagrams and,

262—263
simplicity in, 261, 266—268
software requirements

specification (SRS) in,
254, 268

specifications and, 254
standards in, 257
supplementary specification

in, 265—267
teamwork and, 268
technical constraints and, 267
temporary models in, 264
tools in, 261
Unified Process and, 227, 234,

283—284

Index 381

skills for modeling, 16, 94—95
“small” concepts for AM, 95—96
small initial investment

practice, in eXtreme
programming, 198

software architecture
description (SAD), 153—154

software development, 3
Software Engineering Institute

(SEI), 317
software engineering versus

AM, 317
software process engineering

group (SEPG), 315
software requirements

specification (SRS), 268, 322
source code, 45, 62

CASE generated, 113—115
documentation and, 143

SourceSafe, 87
specialists versus generalists,

126—128
specifications, 38—39, 147, 234,

236–237, 249—252
spikes, in eXtreme

programming, 203—206, 209
SQL, data modeling, 289
stakeholder investment/

participation, 12, 16, 28, 37,
40, 53—54, 77, 313

architectural modeling
and, 276

CASE tools and, 111
documentation and, 149, 155
eXtreme programming and,

185, 198
infrastructure management

and, 300
modeling sessions in AM and,

141—142
presentations and, 98—100
reuse and, 64
rights and responsibilities in,

97—98
teamwork and, 74, 130
Unified Modeling Language

(UML) and, 173
Unified Process and, 228, 234,

245, 248, 272, 305
updating models and, 66—68

standards, 12, 60—62, 77–78,
109—110, 317

architectural modeling and,
275—276

CASE tools and, 113
design class modeling

and, 285
in nurturing AM culture, 96
infrastructure management

and, 297

use case, use case story board
in, 255, 258—265

user interface flow diagrams
in, 263

resource access, 121—122, 314
resources on AM, 328
reuse, 12, 19, 27, 60, 64, 77

documentation and, 152
eXtreme programming and,

203—204
infrastructure management

and, 296–297
Unified Process and, 230, 255

reverse engineering, CASE
tools, 114

rights and responsibilities,
97—98, 313, 319—320

robustness diagrams, 16, 63,
262—263

Ronin International, 16

S

scaling AM, infrastructure
management, 301—302

scenario view in architectural
modeling, 273

scheduling AM practices, 3, 72
scribe in modeling sessions in

AM, 139
SCRUM, 9–10, 15, 126
searching for items, eXtreme

programming, 207—213
SELECT statement, data

modeling, 289
self-documenting code, 152
sessions, 95
simplicity, 8, 11–12, 15, 19—22,

27, 29—30, 33, 41, 45, 51,
56—58, 62, 71, 74—78, 96,
315—316

architectural modeling
and, 276

content versus rep in, 56—57,
75—76

depiction of models in, 57
documentation and, 155, 163
eXtreme programming and,

185, 203
modeling sessions in AM

and, 142
presentations and, 99—100
tools and, 58, 75—76, 101—106
Unified Process and, 229, 242,

261, 266—268
single artifact modeling sessions

in AM, 48—49, 136—138
size of model artifacts, 115
skeptics versus AM, 316—317
sketches, 9, 41, 61—62, 106

eXtreme programming and,
192—194

72244_Index 2/27/02 11:33 AM Page 381

Unified Modeling Language
(UML) and, 170—171

Unified Process and, 228, 241,
244, 257

state charts, 48
status reports, 28
sticky notes as tools, 102, 107,

192
storage areas, 119
story board, in Unified Process

and (See use case story
board), 262—265

Strategy pattern, 63—64
style issues, 13
subsets of artifacts, 46—47
supplemental nature of AM, 1

5—16
supplementary business

specification, 236, 249—252
supplementary practices of AM,

60—72, 76—77
supplementary specifications,

237, 265—267
supplies for modeling, 119
support (See management

support)
support documentation, 160, 197
sustainable development, 8
SWA Enterprises online case

study, 17—18
symbols, 15
system architecture document

(SAD), 272
system deployment, 4, 10
system documentation, 161, 197
system operations, 10
system requirements

specification (SRS), 271

T

tables for work areas, 119
task card representation, in

eXtreme programming,
208—209

teamwork, 6, 8, 11, 22, 42—44,
50, 52—55, 73—75, 95,
124—133, 313

active participation in, 130
blame placing versus AM,

319—320
characteristics of people

successful in, 125
collaborative tools and, 322
collective ownership in, 54—55,

74–75
colocating, 321
communication and, 132—133
composition of, 133
core infrastructure teams

(CITs) for, 299—301
designated teams in, 131–132

382 Index

Together Control Center (See
also CASE tools), 101, 111

TogetherSoft (See also CASE
tools), 101, 111

tools (See also CASE tools),
12, 33—34, 42, 45, 71, 78,
101—117

acceptability of, 104
advantages of simplicity in,

103—104
applying right artifacts in, 117
architectural modeling

and, 276
CASE tools and, 107—115
class responsibility

collaborator (CRC), 102
collaborative software as,

106, 322
color use, 115
combinations of, 103
communication and, 87
cost of, 103
design class modeling

and, 277
digital cameras and scanners

in, 105
disadvantages of simplicity

in, 104
documentation and, 104
drawing tools as, 115—116
ease of use in, 103
effect of, on models, 116—117
evolution of model and,

107—111
eXtreme programming and,

102, 185, 192, 194, 198
feedback from, 103
flexibility of, 103
inclusivity in, 103
iterative and incremental

modeling using, 103—104
limits of, 104
media used with, 115—116
net present value (NPV)

and, 111
patterns and, 116
picture software in, 105
portability of, 103
purposeful modeling and, 102
simplicity and, 58, 75—76,

101—106
size of items in, 115
sticky notes as, 102, 107
supplies and, 119
teamwork and, 104
technology support for,

105—106
temporary models and, 102
three-dimensional mock ups

as, 116
traveling light and, 104

development pairs in, 131—132
distributed, 321—322
distributed teams versus, 315
ego versus 128—130
feedback and, 129—130
generalists versus specialists

in, 126—128
hand offs to other teams and,

322—323
humility in, 129
importance of, 132—133
impromptu or ad hoc teams

in, 131
infrastructure management

and, 302
learning in, 133
modeling with others in, 52,

74, 130—132
novices in, 128
public display of models in,

55, 74–75
recruiting developers for,

124—128
rights and responsibilities in,

97—98, 313, 319—320
stakeholder participation in

53—54, 74, 130
tools and, 104
Unified Process and, 268,

306—307
work areas and, 123

TeamBoard, 105
technical architecture

infrastructure model,
241, 294

technical constraints, 267
technical writers, 150—151, 165
technology and change, 5, 41
temporary models, 12, 60,

64—65, 76—78, 147—167
documentation and, 149—150
eXtreme programming and,

188, 205, 219
permanent versus, 147—167
tools and, 102
Unified Process and, 229, 243,

264, 283, 305
test discipline of Unified

Process, 242
test first design, 58—59,

71—72, 188
testability and testing, 10, 12,

23, 45, 58—59, 76, 188,
219, 228

eXtreme programming and,
196—197, 216—217

Unified Process and, 242
text editors, 105
three-dimensional mock

ups, 116
timescale, 23

72244_Index 2/27/02 11:33 AM Page 382

Unified Modeling Language
(UML) and, 102, 172

Unified Process and, 231, 243,
249, 261, 265–266

use case diagrams and,
102, 262

whiteboard as, 104—106
Wikis in, 105
word processors, text editors,

HTML editors in, 105
top down modeling in

infrastructure
management, 295—296, 298

totaling an order example,
eXtreme programming,
214—222

toys in work areas, 121
traceability matrix, 244, 271
trade offs of documentation,

149—153
training, 54
traits of team players, 125
“traveling light,” 29, 65, 68

architectural modeling
and, 276

documentation and, 153—155
eXtreme programming

and, 180
tools and, 104
Unified Process and, 234, 243,

255, 265, 305

U

understandability of AM, 12—13
understanding through

modeling, 69—70, 77, 92,
107—111, 148

documentation and, 145—146
eXtreme programming and,

196, 205, 215
Unified Process and, 230

Unified Modeling Language
(UML), 12—13, 15, 32—33,
45—46, 48, 50, 56, 61, 66—67,
102, 168—174

applying right artifacts in, 171
business process in, 170
CASE tools and, 113
complexity of, 171
component based, 168
data flow diagrams (DFD)

in, 171
diagram in, 169
executable versions of, 172—173
eXtreme programming and,

177, 181—183, 188
hype concerning, 174
insufficiency of, 169—171
making it work, 173—174
modeling core use of, 173—174

Index 383

context model in, 237, 255—257
contract models and, 229,

276—277
data flow diagrams (DFD) in,

255—257
data modeling and, 240,

288—290
deployment discipline in,

240, 244
design class modeling in,

284—287
design model in, 240
disciplines of modeling in,

226—227, 232—241
documentation and, 145,

265—267, 305
domain architecture model

in, 241
enterprise requirements

model in, 241
enterprise Unified Process

(EUP) and, 226—227,
232, 239

environment discipline in, 244
eXtreme programming and,

180, 305
feedback in, 239, 273
finder operation coding

in, 286
“fit” of AM with, 227—231
future requirements and, 251
generalists versus specialists

in, 306—307
glossary in, 237
goals in, 243, 253
implementation discipline

of, 242
incremental modeling in,

230, 286
infrastructure management

discipline in, 227,
239—241, 292—303

instinctive modeling and,
244, 276

iterative and incremental
modeling in, 230, 252,
261, 268, 305—306

legacy systems and, 270
lifecycle of, 232—245
local adaptation and, 244
logical data model (LDM)

in, 249
making it work, 245
modeling in, 226—227, 239
modeling with others in, 230,

261, 273
multiple modeling and, 229,

273, 283, 304—305
non-modeling disciplines

of, 242

multiple models versus,
169—171

notations in, subsets for, 174
object constraint language

(OCL) and, 172
object modeling technique

(OMT) notation and, 172
object oriented, 168
Rational Unified Process

(RUP) and, 171
realities of, 168
stakeholder investment in, 173
standards and, 170—171
tools and, 172
Unified Process (UP) versus,

171, 270
vendors and, 172—173

Unified Process, 4, 9–10, 16,
39—40, 42, 122, 223—308, 312

analysis and design in, 227,
234—240, 269—272

applying right artifacts in, 228,
234, 249, 261–262,
272–273, 286

architectural modeling and,
272—277

big design up front (BDUF)
and, 305—306

big modeling up front (BMUF)
and, 268, 287, 305—306

business architecture
document in, 235

business glossary in, 235
business modeling discipline

in, 227, 233—234, 246—253
business object model in, 235,

248—249
business rules in, 236
business use case model in,

236, 247—248
business vision modeling in,

252—253
CASE tools and, 284, 286
change and, 243, 290—291
change management

discipline in, 243—244,
271, 281

chaordic AM and, 225
class responsibility

collaborator in, 249
collective ownership in,

228, 243
communication and, 243,

276, 307
communication through

modeling in, 230
configuration management

discipline in, 243—244,
271, 281

content versus rep in, 229

72244_Index 2/27/02 11:33 AM Page 383

object oriented, 270
operations and support

discipline in, 245
organization culture and, 307
parallel modeling in, 229,

247—248, 261,
274—275, 277

patterns and, 228, 285
project management

discipline in, 243
proving design with code in,

230, 239, 242, 272–273,
284—285

public display of models
in, 229

purposeful modeling in, 257,
263, 275, 286

Rational Unified Process
(RUP) and, 226—227, 234,
239, 307

requirements and, 227, 234,
254—268, 283—284

reuse in, 230, 255
robustness diagrams and,

262—263
simplicity in, 229, 242, 261,

266—267, 276, 306
software requirements

specification (SRS) in,
254, 268

specification and, 234,
236–237, 249—252, 254

stakeholder investment in,
228, 234, 245, 248, 272,
276, 305

standards and, 228, 241, 244,
257, 275—276, 285

supplementary business
specification in, 236,
249—252

supplementary specification
in, 237, 265—267

system architecture document
(SAD) in, 272

system requirements
specification (SRS)
in, 271

teamwork and, 268, 306—307
technical architecture model

in, 241
technical constraints and, 267
temporary models in, 229, 243,

264, 283, 305
test discipline of, 242
testability in, 228
tools in, 231, 243, 249, 261,

265–266, 276–277
traceability matrix and,

244, 271

384 Index

version control tools, 87
video, 87
views, architectural

modeling, 272
virtual meeting tools, 87
Visio, 104, 111, 115
vision, business vision

modeling, 252—253

W

“wall of wonder,” 55
wall space for work areas, 120
Web site for AM, 43, 328
Webster, 106
what-if scenarios and

design, 22
whiteboard, 104—106, 119,

192, 215
Whiteboardphoto, 105
Wikis, 105
word processors, text editors,

HTML editors, 87, 105
work areas, 118—123

access to resources in, 121—122
chairs for, 120
communication in, 123
computers for, 120
dedicated space for, 118—119
digital cameras and, 119, 122
effective setup of, 122
food in, 121
importance of, 122—123
management support for,

122—123
private areas and, 123
projectors for, 120
reference books in, 120—121
storage areas and, 119
supplies and, 119
tables for, 119
teamwork and, 123
toys in, 121
wall space for, 120
whiteboard space, 119

workflow modeling sessions in
AM, 137

workshops for AM, 328

X–Z

XML Metadata Interchange
(XMI), 172

You Ain’t Gonna Need It
(YAGNI) principle, 21, 205

zero feature release (ZFR) in
eXtreme programming,
203

traveling light and, 234, 243,
255, 265, 276, 305

understanding through
modeling in, 230

Unified Modeling Language
(UML) and, 171, 270

updating models in, 230,
243–244, 281—283, 305

use case diagrams in, 255
use case driven modeling

and, 304
use case model in, 236–237,

258—262
use case realization in, 240,

277—280
use case story board in,

237–238, 262—265
user interface flow diagrams

in, 238, 263
views in architectural

modeling and, 272
updating models, 60, 65—68,

76—78
documentation and, 157—162
eXtreme programming and,

188, 219
Unified Process and, 230,

243–244, 281—283, 305
use case diagrams, 102, 255, 262
use case driven modeling and

Unified Process, 304
use case modeling, 16, 45, 49, 70

eXtreme programming
and, 200

modeling sessions in AM
and, 136

Unified Process and, 236–237,
247—248, 258—262

updating models in, 281—283
use case realization, Unified

Process, 240, 277—280
use case story board, Unified

Process, 237–238, 262—265
user documentation, 161, 197
user interface (UI) design, 5, 9,

32—33, 47, 49, 66—69, 129,
238, 263

user needs and expectations, 5,
22—23, 28, 40, 53—54

user stories, 9, 178—179,
201—202, 214

V

validation, 45, 58—59,
74, 76

proving concepts with code
in, 59, 76

testability and, 58—59, 76
value of modeling, 92

72244_Index 2/27/02 11:33 AM Page 384

	Agile Modeling: Effective Practices for eXtreme Programming and the Unified Process
	Contents
	Foreword
	Preface
	Part One Introduction to Agile Modeling
	Chapter 1 Introduction
	Enter Agile Software Development
	Agile Modeling
	The SWA Online Case Study
	A Brief Overview of this Book

	Chapter 2 Agile Modeling Values
	Communication
	Simplicity
	Feedback
	Courage
	Humility
	Beyond Motherhood and Apple Pie

	Chapter 3 Core Principles
	Software Is Your Primary Goal
	Enabling the Next Effort Is Your Secondary Goal
	Travel Light
	Assume Simplicity
	Embrace Change
	Incremental Change
	Model with a Purpose
	Multiple Models
	Quality Work
	Rapid Feedback
	Maximize Stakeholder Investment
	Why Core Principles?

	Chapter 4 Supplementary Principles
	Content Is More Important Than Representation
	Everyone Can Learn from Everyone Else
	Know Your Models
	Local Adaptation
	Open and Honest Communication
	Work with People’s Instincts
	Benefiting from These Principles

	Chapter 5 Core Practices
	Practices for Iterative and Incremental Modeling
	Practices for Effective Teamwork
	Practices That Enable Simplicity
	Practices for Validating Your Work

	Chapter 6 Supplementary Practices
	Practices to Improve Your Productivity
	Practices for Agile Documentation
	Practices Concerning Your Motivation
	Really Good Ideas
	How to Schedule AM Practices on Your Project

	Chapter 7 Order from Chaos: How the AM Practices Fit Together
	The Core Practices
	The Supplementary Practices
	How the Categories Relate to One Another
	Chaos and Order: Chaordic
	Looking Ahead

	Part Two Agile Modeling in Practice
	Chapter 8 Communication
	How Do We Communicate?
	Factors That Affect Communication
	Communication and Agile Modeling
	Effective Communication

	Chapter 9 Nurturing an Agile Culture
	Overcome the Misconceptions That Surround Modeling
	Think Small
	Loosen Up a Bit
	Rigidly Support Rights and Responsibilities
	Rethink Presentations to Project Stakeholders

	Chapter 10 Using the Simplest Tools Possible?
	Agile Modeling with Simple Tools?
	The Evolution of a Model
	Agile Modeling with CASE Tools
	Use the Media
	The Effect of Tools on Models
	Using the Simplest Tools In Practice

	Chapter 11 Agile Work Areas
	Agile Modeling Room
	Effective Work Areas
	Making This Work in the Real World

	Chapter 12 Agile Modeling Teams
	Recruit a Few Good Developers
	Recognize That There Is No “I” in Agile
	Require that Everyone Actively Participates
	Model in Teams
	Making This Work in the Real World

	Chapter 13 Agile Modeling Sessions
	Modeling Session Duration
	Types of Modeling Sessions
	Participants in Modeling Sessions
	The Formality of Modeling Sessions
	How to Make This Work in the Real World

	Chapter 14 Agile Documentation
	Why Do People Document?
	When Does a Model Become Permanent?

	Chapter 15 The UML and Beyond
	The UML Is Not Sufficient
	The UML Is Too Complex
	The UML Is Not a Methodology or Process
	Forget about Executable UML (for Now)
	Making the UML Work in Practice

	Part Three Agile Modeling and eXtreme Programming (XP)
	Chapter 16 Setting the Record Straight
	Modeling Is a Part of XP
	Documentation Happens
	XP and the UML?
	And the Verdict Is?

	Chapter 17 Agile Modeling and eXtreme Programming
	The Potential Fit between AM and XP
	Refactoring and AM
	Test-First Development and AM
	Which AM Practices Should You Adopt?

	Chapter 18 Agile Modeling Throughout the XP Lifecycle
	Exploration Phase
	Planning Phase
	Iterations to Release Phase
	Productionizing
	Maintenance
	How Do You Make This Work?

	Chapter 19 Modeling During the XP Exploration Phase
	Initial Requirements Up Front (IRUF)
	Metaphors, Architectures, and Spikes
	Setting the Foundation for Your Project

	Chapter 20 Modeling During an XP Iteration: Searching for Items
	The Task
	Modeling the Physical Database Schema
	Observations

	Chapter 21 Modeling During an XP Iteration: Totaling an Order
	The Task
	Requirements Modeling to the Rescue
	Help from an Outside Expert
	A Quick Design Session
	Formalizing a Contract Model
	What about Changes in the Future?
	Observations
	How to Make This Work in the Real World

	Part Four Agile Modeling and the Unified Process
	Chapter 22 Agile Modeling and the Unified Process
	How Modeling Works in the Unified Process
	How Good Is the Fit?
	Choose To Be Agile

	Chapter 23 Agile Modeling throughout the Unified Process Lifecycle
	The Modeling Disciplines
	Non-Modeling Disciplines
	How Do You Make This Work?

	Chapter 24 Agile Business Modeling
	A Business/Essential Use Case Model
	A Simple Business Object Model
	An Agile Supplementary Business Specification
	A Business Vision
	How to Make This Work in Practice

	Chapter 25 Agile Requirements
	The Context Model
	Use Case Model
	Use Case Story Board
	Supplementary Specification
	How to Make This Work in Practice

	Chapter 26 Agile Analysis and Design
	Rethinking Analysis and Design Models in the UP
	Architectural Modeling
	Creating Use Case Realizations
	Time to Update Our Use Case?
	Time to Use a CASE Tool?
	Design Class Modeling
	Data Modeling
	Embracing Change
	How Does This Work in Practice?

	Chapter 27 Agile Infrastructure Management
	Infrastructure Models
	Infrastructure Modeling
	Setting Modeling Standards and Guidelines
	Core Infrastructure Teams
	Scaling AM with Core Architecture Teams
	How to Make This Work in the Real World

	Chapter 28 Adopting AM on an UP Project
	How Does This Work?

	Part Five Looking Ahead
	Chapter 29 Adopting Agile Modeling or Overcoming Adversity
	Evaluate the Fit
	Keep It Simple
	Overcome Organizational and Cultural Challenges
	Consider Alternatives to Full Adoption of AM
	How to Make This Work in Practice

	Chapter 30 Conclusion: Choose to Succeed
	Common Misconceptions Regarding Agile Modeling
	When Is(n’t) it Agile Modeling?
	Agile Modeling Resources
	A Few Parting Thoughts . . .

	Appendix A Modeling Techniques
	Glossary of Definitions and Abbreviations
	References and Suggested Reading
	Index

