

Agile Documentation

Agile documentation.book Page i Wednesday, June 11, 2003 11:11 AM

Agile documentation.book Page ii Wednesday, June 11, 2003 11:11 AM

Agile Documentation

A Pattern Guide to
Producing Lightweight Documents
for Software Projects

Andreas Rüping

Agile documentation.book Page iii Wednesday, June 11, 2003 11:11 AM

Copyright © 2003 by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs
and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or
emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on
the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA
Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA
Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany
John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia
John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic
books.

Library of Congress Cataloging-in-Publication Data

Rüping, Andreas.
 Agile documentation : a pattern guide to producing lightweight
documents for software projects / Andreas Rüping.
 p. cm.
 ISBN 0-470-85617-3 (Paper : alk. paper)
 1. Flexible manufacturing systems. 2. System design. I. Title.
 TS155.65.R87 2003
 005.1'5–dc21

2003011756

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-85617-3
Typeset in Garamond Light and Frutiger by WordMongers Ltd, Treen, Cornwall TR19 6LG, England
Printed and bound in Great Britain by Biddles Ltd., Guildford and Kings Lynn
This book is printed on acid-free paper responsibly manufactured from sustainable forestry,
in which at least two trees are planted for each one used for paper production.

Agile documentation.book Page iv Wednesday, June 11, 2003 11:11 AM

Contents

Foreword ix

Preface xi

Acknowledgements xvii

Introduction 1

Project Background 11

1 Finding the Right Topics 19

Target Readers 24
Focused Information 26
Individual Documentation Requirements 28
Documentation Portfolio 30
Focus on Long-Term Relevance 34
Specification as a Joint Effort 36
Design Rationale 39
The Big Picture 40
Separation of Description and Evaluation 42
Realistic Examples 44
Experience Reports 46

Agile documentation.book Page v Wednesday, June 11, 2003 11:11 AM

vi Contents

2 Structuring Individual Documents 61

Structured Information 66
Judicious Diagrams 70
Unambiguous Tables 73
Guidelines for Readers 75
Thumbnail Sketches 77
Traceable References 78
Glossary 79
Document History 81
Experience Reports 82

3 Layout and Typography 93

Text on 50% of a Page 98
Two Alphabets per Line 100
120% Line Spacing 102
Two Typefaces 104
Careful Use of Type Variations 106
Careful Ruling and Shading 108
Adjacent Placement 109
Coherent Pages 111
Experience Reports 112

4 Infrastructure and Technical Organisation 117

Document Landscape 120
Document Archive 123
Wiki 125
Code-Comment Proximity 126
Reader-Friendly Media 128
Separation of Contents and Layout 131
Single Source and Multiple Targets 133
Import by Reference 136
Separation of Processing and Printing 138
Document Templates 139
Few Tools 142
Annotated Changes 144
Notification upon Update 145
Reorganisation upon Request 147

Agile documentation.book Page vi Wednesday, June 11, 2003 11:11 AM

Contents vii

Experience Reports 149

5 Management and Quality Assurance 159

A Distinct Activity 161
One Responsible Author 164
Continuing Documentation 166
Writing and Reflection 168
Review Culture 170
Review Before Delivery 174
Customer Review 175
A Distant View 177
Information Marketplace 179
Knowledge Management 180
Experience Reports 182

Final Remarks 193

Pattern Thumbnails 197

Finding the Right Topics 197
Structuring Individual Documents 198
Layout and Typography 200
Infrastructure and Technical Organisation 201
Management and Quality Assurance 203

Glossary 205

References 211

Index 221

Agile documentation.book Page vii Wednesday, June 11, 2003 11:11 AM

Agile documentation.book Page viii Wednesday, June 11, 2003 11:11 AM

Foreword

As Jerry Weinberg says in his classic text

The Psychology of Computer
Programming

:

Documentation is the castor oil of programming. Managers think it is good
for programmers, and programmers hate it! The value of documentation is
only to be realized if the documentation is well done. If it is poorly done, it
will be worse than no documentation at all.

Nothing in the Agile Manifesto (

http://agilemanifesto.org/

) states ‘Thou shalt
not do any documentation’, but since many developers have a genetic reluc-
tance to any form of writing that isn’t expressed in a programming language,
they have clasped the following principle to their collective bosoms:

…we have come to value: Working software over comprehensive document-
ation

and proclaimed to the world that documentation is out.

My software development career has been mostly on large projects, like the
one that developed the software for the Boeing 777. There is no way that
projects like that can dispense with documentation. I would be the first to
admit that the 777 project and all the others I have seen close up could have
been done better. They could have been completed just as well in a less
ponderous fashion. Not only do I believe that there’s always room for
improvement, but I also believe that we should strive continually to improve
– especially on safety-critical projects. So either we admit that projects of this
magnitude are hopelessly ‘non-agile’, or we agree that, when it’s appropriate
– that is, when it adds value – there is a need for documentation. I vote for
the latter.

Agile documentation.book Page ix Wednesday, June 11, 2003 11:11 AM

x Foreword

Now, however, we’re faced with the dilemma – what does that mean on an
agile project? Can a project really follow agile principles and still produce
documentation? This is the question Andreas Rüping addresses in this book.
Andreas has documented his experiences of successful and unsuccessful
project adventures with documentation. He shares an array of encounters
with diverse projects: small to large, old technology to new, spanning the
past 12 years. I’ve become a believer in the power of stories – nothing is
better than hearing what others have done. When we share our successes
and failures, we all learn. There are lots of good stories here, real projects all,
with some instructive lessons learned and some pitfalls to be avoided.

Andreas does a good job of explaining the trade-offs: when documentation is
better than face-to-face, when on-line is better than hard copy, when
diagrams are more useful than text. In a discussion near and dear to my heart,
he also shows how documentation impacts the customer.

All this information is captured as a set of related patterns. Just like stories,
I’m a believer in the power of patterns. I’ve written many myself and I can
attest that they provide guidance in a useful form. Andreas provides sufficient
information for us to apply this guidance and benefit from his experience.
This is useful, practical stuff.

The book follows its own principles. It is lightweight and presents the useful
ideas without burdening the user. It is easy to read and understand and
presents solutions that are clearly based on real project experience. I found
myself nodding in agreement or tilting my head in consternation as I read
something surprising. I learned a lot by reading this little book, and I’m sure
you will, too.

Linda Rising

Agile documentation.book Page x Wednesday, June 11, 2003 11:11 AM

Preface

If you work in the software industry, you will know that documentation plays
an important role in many projects. Among other things, documents describe
user requirements, software architectures, design decisions, source code and
management issues.

There can be a lot of value in such documents. Documentation can
contribute to the success of a project by making necessary information avail-
able to the team members. Documents can preserve knowledge within a
team, and prevent the team from re-inventing things when team members
leave and new people join. Documents can capture expertise gained in one
project and make it available to future projects. When knowledge has been
committed to paper, it cannot be lost.

However, we are living in the information age. We are surrounded by much
information, often too much. It can become difficult to filter what we really
need. Projects sometimes suffer from too many documents and too long
documents. If this is the case, team members looking for specific information
can easily get lost. Some things are also much better communicated face-to-
face than via written documents. Too much documentation is as bad as no
documentation at all.

It is also hard to keep documents up to date when their subjects undergo
change. Keeping documents up to date is especially hard when a project is
busy and many other things require attention. But outdated documents can
easily lead readers onto the wrong track – outdated documents often do
more harm than good.

This book takes an

agile

 approach to documentation – an approach that is
both lightweight and sufficient, in the same vein as the agile approaches to

Agile documentation.book Page xi Wednesday, June 11, 2003 11:11 AM

xii Preface

software development that recently have become popular (Cockburn 2001,
Highsmith 2002, Ambler 2002).

This book presents a collection of patterns – guidelines that offer solutions to
the recurring yet multi-faced problems of documentation. These patterns are
governed by the following overall principles:

• Project documentation is most effective when it is lightweight, without
any unnecessary documents, yet providing all the information relevant to
readers.

• Documents that are considered necessary can only prove useful if they
are of high quality: accurate, up-to-date, highly readable and legible,
concise and well structured.

• Tools and techniques are useful only if they facilitate the production of
high-quality documents and make their organisation and maintenance
easier.

• The documentation process must be efficient and straightforward, must
adapt to the requirements of the individual project and must be able to
respond to change.

It is important to emphasise that this book does not prescribe a standard
method that claims to solve all the problems associated with software project
documentation. First, such a method is virtually impossible, as no two
projects have the same documentation requirements. Second, a heavyweight
method is the last thing I would want to propose – a fully-fledged ‘standard’
documentation method would be too inflexible and would involve too much
bureaucracy to be useful. It would certainly not be agile.

This book focuses rather on the elements and processes that can repeatedly
be found in good project documentation, and that express an agile attitude.
Such elements and processes have been shaped into patterns that you can
use to design the documentation that fits your individual project best, and
that contributes to the expertise held in your organisation.

Scope

This book is meant for people who work in the software industry and whose
job includes writing software documentation at some point. This is true for
most software engineers, designers, consultants and managers. If you belong
to any of these groups, then this book is for you.

1

Agile documentation.book Page xii Wednesday, June 11, 2003 11:11 AM

Preface xiii

Perhaps you enjoy documentation, or perhaps you see it as a burden. In
either case, this book will give you hints on how to focus on what is impor-
tant in documentation, it should make your documentation process more
efficient, and it should lead you to better results.

You can use agile documentation in different kinds of projects. First, agile
documentation is targeted at software development projects. Development
projects have an overall goal of delivering working software that satisfies the
customer’s requirements. In a development project, documentation is a
means, not an end: documentation is supposed to help the team accomplish
their tasks. This book recommends documentation that is as lightweight as
possible, but no lighter.

Consultancy projects are also within the scope of this book. Consultancy
projects place slightly different requirements on documentation than develop-
ment projects, since consultancy projects sometimes have documentation,
rather than software, as the desired project output. Consultancy projects can
profit from an agile approach, as such an approach makes the documentation
process more efficient and the resulting documents more compact and
straightforward.

Organisation

Before presenting the actual patterns for agile documentation, this book
begins with some introductory remarks on agile development and on
patterns. If you would like to read about the

Agile Manifesto

 and how it
relates to documentation, this introduction will be useful to you. If you would
like to learn what patterns are and how they can be used, you will also find
answers in the introduction. A section follows that briefly describes the
projects in which the patterns in this book were observed.

The actual collection of patterns is found in the five main chapters of the
book, each of which deals with a particular topic of software project docu-
mentation. Specifically, the main chapters address the following areas:

1.

Finding the Right Topics

Documentation is important: some aspects of a project require document-
ation desperately, while others do not. So which documents are necessary
in your project, and what topics should they cover? What level of detail is

1. The book, however, is not about the sort of user manuals that come, for example, with standard soft-
ware packages, software installation guides or the like, nor is the book targeted at documentation
that is produced by professional technical writers.

Agile documentation.book Page xiii Wednesday, June 11, 2003 11:11 AM

xiv Preface

necessary? What documents are perhaps unnecessary? This chapter
presents some guidelines on how to find out what documentation your
project requires.

2.

Structuring Individual Documents

Well-structured documents give readers better and quicker access to infor-
mation than poorly-structured documents. But what does a document
structure look like? How can you make sure your readers easily find the
information they’re looking for? This chapter offers suggestions about how
to increase the readability of project documents.

3.

Layout and Typography

Readability is one thing, legibility is another. How can document layout
support the readers’ ability to grasp a document’s contents quickly and reli-
ably? How can such a layout be achieved with standard word processors?
This chapter tells you how to improve the appearance of your documents
easily.

4.

Infrastructure and Technical Organisation

This chapter talks about how you can manage your project documents.
The chapter begins with organisational issues: how can you obtain an
overview of the project documentation? Are the documents supposed to be
printed on paper? What about on-line documentation, which is becoming
more and more popular? Solving such issues quickly leads us into more
technical topics: how can documents be processed and stored? How can
you make sure that individual documents can be found easily? What steps
need to be taken to make project documentation easily maintainable? What
tools are necessary for this?

5.

Management and Quality Assurance

The final chapter addresses management issues such as budget, responsi-
bilities and priorities, as far as project documentation is concerned. The
questions to ask here are: what does an efficient documentation process
look like, or, how can bureaucracy be avoided? Being agile means putting
people in the foreground, so this chapter emphasises the roles people play
in the documentation process and stresses the importance of feedback and
reflection.

Agile documentation.book Page xiv Wednesday, June 11, 2003 11:11 AM

Preface xv

How to read
this book

There are different ways to read this book. You don’t necessarily have to read
the book in sequential order:

• If you are interested in a quick overview, just go through each pattern
quickly and read the boldface sections. These form thumbnail sketches
that give you an overall impression of the actual pattern. In addition, a
summary of all such thumbnails is given at the end of the book.

• Read the complete patterns if you want to gain deeper insight, and partic-
ularly if you’re interested in the rationale behind the individual patterns.

• Begin with the experience reports, if you’d like to take a journey through
several real-world projects. The reports explain how the patterns were
used in those projects.

It’s a good idea to combine these approaches. You can start with the thumb-
nails, so you get an overview of what the book has in store, and read the
complete patterns when you become interested in the details or the back-
ground of a pattern. You can then use the thumbnails as a checklist when
you work on the documentation of your project, using the complete patterns
when dealing with more detailed issues. Alternatively, you can begin with the
experience reports, and follow the references to the individual patterns
whenever you feel a pattern is of particular interest to you.

If you are interested in some topics more than others, you can concentrate on
the chapters that are of particular interest to you. Pointers will occasionally
refer you to related material in other chapters.

This is a relatively short book: it is intentionally lightweight and aims to
follow the approach it proposes – you don’t have to read many hundreds of
pages. Many of the patterns fit on two or three pages, and you can use the
thumbnails if all you need is a short overview. It won’t take you too long to
make yourself familiar with an agile approach towards the documentation of
software projects. I’d like to invite you to take this approach with the goal of
making documentation more effective for authors and readers alike.

I am interested in receiving your feedback on this book. If you have any
comments, feel free to contact me at

rueping@acm.org

.

Andreas Rüping

Agile documentation.book Page xv Wednesday, June 11, 2003 11:11 AM

Agile documentation.book Page xvi Wednesday, June 11, 2003 11:11 AM

Acknowledgements

Project
thanks

My first ideas on agile documentation (though I didn’t refer to it as such

at the
time) date back several years to a time when I was working at FZI
(Forschungszentrum Informatik, Research Centre for Information Tech-
nology) in Karlsruhe, Germany. During a few research projects and several
industrial collaborations, I had the chance to learn a lot about what character-
ises good project documentation. But there was more to it than this: the team
spirit among the group allowed me to enjoy those years a lot. My thanks go
out to everybody in the group, especially Gerhard Goos, Claus Lewerentz,
Simone Rehm, Franz Weber, Dieter Neumann, Walter Zimmer, Thomas
Lindner, Eduardo Casais, Annette Lötzbeyer, Achim Weisbrod, Helmut
Melcher, Oliver Ciupke, Benedikt Schulz, Rainer Neumann, Artur Brauer, Jörn
Eisenbiegler, Markus Bauer and Holger Bär.

My understanding of good documentation was refined when, a few years
later, I joined sd&m software design & management AG, Germany. I had the
chance to look at the documentation produced in several projects in which I
was involved. Many of the patterns included in this book came to my atten-
tion when they were successfully applied in sd&m’s projects. Thanks go out
to my colleagues for being a good team, for the fruitful collaboration
throughout many projects and for many insightful discussions.

Over the last few years, EuroPLoP – the European conference on software
patterns – has been an excellent forum for discussing all sorts of topics
around patterns, for me and for others. Thanks to everybody with whom I
was happy to collaborate in our efforts to organise the conference, especially
Frank Buschmann, Jens Coldewey, Martine Devos, Paul Dyson, Jutta Eckstein,
Kevlin Henney, George Platts, Didi Schütz and Christa Schwanninger.

Agile documentation.book Page xvii Wednesday, June 11, 2003 11:11 AM

xviii Acknowledgements

EuroPLoP turned out to be particularly helpful when I submitted papers on
various aspects of documentation. First of all, I’d like to thank those who
acted as shepherds for my papers: Ken Auer, Ward Cunningham, James Noble
and Charles Weir. Their comments and suggestions for improvement had a
lasting influence on the patterns that would make it into this book. Moreover,
many people offered valuable feedback and loads of good ideas in the Euro-
PLoP workshops. They are too many to name in person, but their help was
greatly appreciated.

A workshop on ‘Patterns for Managing Light-Weight Documentation’ at the
OT 2002 conference in Oxford also generated helpful ideas. Thanks to all
participants.

When I put the manuscript for this book together, several people volunteered
to work as reviewers. Scott Ambler, Wolfgang Keller, Klaus Marquardt, Linda
Rising, Peter Sommerlad, Markus Völter and Egon Wuchner took the time to
read the draft, offered their insight and made valuable suggestions for
improvement. This book has profited a lot from their generous help.

Several people have provided a lot of support throughout the publishing
process. First of all, I’d like to thank Gaynor Redvers-Mutton of John Wiley &
Sons for her work as the editor of this book. She provided a lot of help in
making the book come to life. Thanks also to Karen Mosman for her support
in the early stage of the publication process, to Jonathan Shipley for taking
care of many organisational details, and Juliet Booker for her work as the
production editor. Last, but certainly not least, I’d like to thank Steve Rickaby
of WordMongers for the smooth ride through the copyediting stage. This was
a very enjoyable process that spawned fruitful discussions on the contents,
language and layout of the book.

Family
thanks

I’m happy to acknowledge that this book has also profited greatly from
people who weren’t directly involved. My final thanks go out to Gerhard,
Hiltrud, Jutta, Sven-Folker, Magnus, Nils Johann and Mareike for encourage-
ment, support and those moments of balance that you need when you go
through the process of writing a book.

Agile documentation.book Page xviii Wednesday, June 11, 2003 11:11 AM

Introduction

Agile
development

Agile documentation has borrowed its name from the ideas of

Agile Software
Development

. Agile software development was originally proposed by the

Agile Alliance

 – a group of 17 software practitioners who first met in February
2001 to collect ideas for better ways of software development.

These ideas are described in the

Agile Manifesto

, which can be found on the
Web (

www.AgileAlliance.org

) and which is also cited in a number of books
(Cockburn 2001, Ambler 2002, Highsmith 2002).

Here is the central part of what the Agile Manifesto says:

The manifesto continues with a number of more detailed statements and
concrete recommendations.

Agile development is not one specific method of developing software. Agile
development comprises several methods proposed by different people,
which apply in different contexts and have different characteristics. All these

We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:

Individuals and interactions

 over processes and tools

Working software

 over comprehensive documentation

Customer collaboration

 over contract negotiation

Responding to change

 over following a plan

That is, while there is value in the items on the right, we value the items
on the left more.

Agile documentation.book Page 1 Wednesday, June 11, 2003 11:11 AM

2 Introduction

methods have in common, however, the fact that they are centred on the core
values expressed in the manifesto.

Some of the best-known agile methods have been described in books:

• In his book on

Agile Software Development

 (Cockburn 2001), Alistair
Cockburn speaks about the central role that teamwork plays in software
development projects, and about the communication issues that arise in
development projects of different sizes and at different levels of rigour.

• Jim Highsmith’s book on

Adaptive Software Development (

Highsmith
2000) views software development issues from the perspective of
complex adaptive systems. His new book on

Agile Software Development
Ecosystems

 (Highsmith 2002) gives an overview of the principles of agile
development, and includes interviews with several noteworthy figures
from the agile community.

• Scott Ambler’s book on

Agile Modeling

 (Ambler 2002) addresses the
modelling part of the software development process. It details practices
that lead to effective and lightweight modelling, placing special emphasis
on the human aspects of software development.

•

eXtreme Programming

 (Beck 2000) was proposed by Kent Beck. XP, as it
is usually known, is an agile method centred on programming in its social
context. XP welcomes changing requirements and places much emphasis
on teamwork.

• Another agile method is

Scrum

 (Schwaber Beedle 2001), put forward by
Ken Schwaber, Michael Beedle and Jeff Sutherland, who draw on the
importance of self-organisation and reflection.

• Mary Poppendieck’s forthcoming book on

Lean Development

(Poppendieck 2003) describes a number of principles of lean thinking,
targeted at software development leaders.

As the Agile Manifesto is still rather new, we can expect more agile methods
for software development to arise in the near future.

What role does documentation play in an agile project?

The first thing to understand is that documentation appears on the right-hand
side of the value statements in the Agile Manifesto. This means, in short, that
the best documentation in the world is no excuse if the project is supposed to
deliver software, but fails to do so.

The role of
documentation

Agile documentation.book Page 2 Wednesday, June 11, 2003 11:11 AM

Introduction 3

This does not mean, however, that documentation is generally unimportant
or that documentation need not be provided.

Let’s take a look at what the authors of some of the agile methods have to say
about documentation:

• Alistair Cockburn recommends that documentation be ‘light but sufficient’
(Cockburn 2001). He introduces the

Crystal

 family of methodologies,
which is targeted at projects of different size and criticality. The

Crystal

methodologies require documentation to be created, but let the individual
project decide what that documentation should consist of.

• Scott Ambler’s book on

Agile Modeling

 (Ambler 2002) includes a chapter
entirely devoted to documentation. This chapter is named

Agile Devel-
opment

, just like this book. Scott Ambler’s chapter and Chapter 1 of this
book were parallel efforts. They follow different presentation styles, but
they come to similar conclusions. Scott Ambler compares the agile
approach to documentation with ‘travelling light’: to ‘create just enough
models and just enough documentation to get by’.

• Jim Highsmith, in

Agile Software Development Ecosystems

 (Highsmith
2002), warns us not to produce documentation for documentation’s sake,
but calls for a balance: ‘Documentation, in moderation, aids communi-
cation, enhances knowledge transfer, preserves historical information,
and fulfils governmental and legal requirements’.

My view is that a light-but-sufficient approach is favourable for two reasons.
First, such an approach prevents the project team from expending unneces-
sarily large effort on documentation. Second, light-but-sufficient document-
ation is more accessible, and therefore more useful, for a team than
voluminous documentation. I think Scott Ambler asks the right question:
‘What would you rather have, a 2000-page system document that is likely to
have a significant number of errors in it, or a 20-page, high-level overview?’
(Ambler 2002)

Certainly, detailed documentation is sometimes necessary, but usually the
more concise and accessible documents resonate most among readers.
Details often change more quickly than documentation can be updated, and
are better communicated face-to-face. (There is more on written, as opposed
to face-to-face, communication at the beginning of Chapter 1.)

Agile documentation.book Page 3 Wednesday, June 11, 2003 11:11 AM

4 Introduction

Figure 1 demonstrates the relationship between the amount of documentation
and its usefulness. Beyond a certain point, the usefulness of documentation
decreases when more information is added, because finding relevant infor-
mation becomes more and more difficult as the overall amount of
documentation increases.

I think I can summarise this by saying that quality is more important than
quantity in project documentation. A certain level of detail and comprehen-
siveness is necessary – and depends greatly on the individual project – but it
is the concise documents that contribute most to communication in a project
team. The effort that you can save by producing

light

 documentation is better
spent on the

quality

 of the documents that you do create, making those
documents accurate, up-to-date and well organised.

People sometimes get the impression that, in an agile context, not only is
lightweight documentation given preference over comprehensive document-
ation, but also that quality isn’t so important. I think this is a misconception,
and clearly I disagree. If you decide that a document is necessary, then it
must have a purpose, otherwise you wouldn’t make the decision to create it.
But to fulfil that purpose, a certain quality is essential.

As with so many other things, you can choose to do something or you can
choose not to, but if you choose to do it, then it’s best to do it ‘right’.

Figure 1. The usefulness of documentation

usefulness of
documentation

amount of documentation

Agile documentation.book Page 4 Wednesday, June 11, 2003 11:11 AM

Introduction 5

The patterns in this book invite you to deal with documentation in an agile
way. They don’t prescribe a strict process, but offer best practices for defining
the right amount of documentation in your project, and for making that docu-
mentation flourish.

Patterns

So what are patterns? Let me explain.

This book deals with a variety of questions about documentation. What docu-
mentation is necessary and useful? Which topics should be covered? How
should individual documents be structured? How can the project document-
ation as a whole be organised, and what tools are necessary to do so? How
can you organise the documentation process?

If you have been responsible for aspects of the documentation of a software
project, you have probably faced at least some of these questions. Such ques-
tions aren’t new – whoever contributes to the documentation of a software
project faces them over and over again.

Lurking behind such questions are recurring problems that have recurring
solutions. These recurring solutions, or patterns, can be used as guidelines for
the documentation of future projects.

A

pattern

 in this sense is essentially a well-proven problem-solution pair,
presented in a structured form. Users can look up patterns for their particular
problems, apply the solutions, and thereby draw on the general expertise
available.

In fact a pattern is a little bit more than this. A good pattern also describes the

forces

 that are associated with a problem – all those issues that influence or
constrain possible solutions. A pattern therefore not only presents a solution,
but also offers the rationale behind that solution.

Finally, patterns normally don’t stand alone. A single pattern solves a single
problem, but when we approach a topic in its entirety, more often than not
we are faced with a set of related problems. So what we need is a set of
related patterns. The degree to which patterns are related differs. Some
collections of patterns are loosely coupled and take the form of a catalogue,
while others are more strongly interwoven. In the latter case, we speak of a

pattern language

.

Agile documentation.book Page 5 Wednesday, June 11, 2003 11:11 AM

6 Introduction

Domain expertise from several disciplines has been described in pattern
form:

• The idea of patterns originally emerged from architecture. The architect
Christopher Alexander coined the phrases ‘pattern’ and ‘pattern
language’. He uses patterns to capture century-long expertise on building
towns and houses (Alexander Ishikawa Silverstein 1977, Alexander 1979).

• The idea became popular in software engineering in the early 1990s. The
first pattern book to gain much attention was the book on object-oriented

Design Patterns

 by Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides – the ‘Gang of Four’. This book includes a catalogue of patterns
that describe reusable object-oriented designs (Gamma Helm Johnson
Vlissides 1995).

• Since the mid 1990s, a book series on

Pattern-Oriented Software Archi-
tecture

 has covered various aspects of software engineering. The first
volume (Buschmann Meunier Rohnert Sommerlad Stal 1996) deals with
software architecture in general, while the second (Schmidt Stal Rohnert
Buschmann 2000) focuses on distributed systems.

• Jim Coplien has worked extensively on organisational patterns. His

Generative Development-Process Pattern Language

 (Coplien 1995) covers
the management of organisations and projects, with an emphasis on
various aspects of teamwork.

• Martin Fowler’s book on

Analysis Patterns

 covers requirements analysis
and analytical modelling (Fowler 1996).

•

Small Memory Software

by James Noble and Charles Weir offers patterns
for software development in a context in which memory resources are
limited, such as embedded systems (Noble Weir 2000).

•

Server Component Patterns

 by Markus Völter, Alexander Schmid and
Eberhard Wolff presents patterns for building server-side component
infrastructures (Völter Schmid Wolff 2002).

• Alistair Cockburn’s book on

Surviving Object-Oriented Projects

 gives an
experience account of object-oriented projects and includes a set of
project management patterns (Cockburn 1998).

• Mary Lynn Manns and Linda Rising plan to publish a pattern book on

Introducing New Ideas Into Organizations (Manns Rising 2003).

Agile documentation.book Page 6 Wednesday, June 11, 2003 11:11 AM

Introduction 7

• More patterns have been created to describe various aspects of software
engineering, including analysis, architecture and design, management and
teaching. Many have been published through the books in the patterns
series (PLoPD 1995, 1996, 1998, 2000) or through the conference
proceedings of EuroPLoP, the European conference on software patterns
(EuroPLoP 1998, 1999, 2000, 2001).

• Linda Rising published a Pattern Almanac that consists of an index to
patterns in software and related areas, and which provides a rich list of
references (Rising 2000b).

• More resources on patterns are available through the Web site of the
Hillside Group (www.hillside.net), a non-profit organisation that runs
several patterns conferences.

Patterns aren’t invented – they are observed. The great benefit of patterns is
that they emerge from many people’s long-term experience: patterns repre-
sent mature knowledge. They describe what has worked many times, which,
on the other hand, means that they do not describe brand-new scientific
results. The patterns in this book have been ‘mined’ over many years from
several projects in which I was involved. They describe the essence of what
has worked well in the documentation produced in these projects.

Patterns don’t stop here. The patterns community places much emphasis on
review culture. The community runs several conferences at which patterns
are written, read and discussed. Authors receive feedback on submitted
patterns through a so-called ‘shepherding’ process prior to a conference. At
the conference, patterns undergo a sound review process when they are
taken to a writers’ workshop.2 Many people offered feedback and shared
their insight when earlier versions of the patterns in this book were discussed
in such workshops (Rüping 1998a, 1998b, 1999a, 1999b). This book therefore
contains the shared experience of many people.

Many of the patterns in this book may give you an ‘aha!’ experience, because
they describe things with which you’re familiar. The collection as a whole,
however, is new, and should serve you well as a compact guide.

2. This review culture has been described in several works: Richard Gabriel’s book on writers’ work-
shops (Gabriel 2002), as well as pattern languages about shepherding by Neil Harrison (Harrison
2000) and about writers’ workshops by Jim Coplien (Coplien 2000).

Agile documentation.book Page 7 Wednesday, June 11, 2003 11:11 AM

8 Introduction

Pattern
structure

A great benefit of patterns is that they follow a common, structured form that
makes them easily accessible – a pattern form. The pattern literature has seen
many different forms, ranging from more heavily structural to more prose-like
forms.

Problem

Figure 2. Patterns – guidelines in structured form

Forces

Discussion

Solution

Problem

Forces

Discussion

Solution

Problem

Forces

Discussion

Solution

Problem

Forces

Discussion

Solution

Agile documentation.book Page 8 Wednesday, June 11, 2003 11:11 AM

Introduction 9

Throughout this book, I use the pattern form illustrated in Figure 2:

• Each pattern begins with a brief problem statement. This statement
consists of a question that introduces you into the problem.

• Next is the forces section that motivates why the problem really is a
problem. The section describes which forces have an influence on
possible solutions. Often conflicting forces tug at possible solutions and
build up a tension that the solution will resolve.

• The solution gives an answer to the question posed in the problem
section. It begins with a brief statement on how the problem can be
solved, and continues with a more detailed description of that guideline.

• Finally, the discussion section gives you some additional information and
describes relationships to other patterns – mostly other patterns in this
book, although occasionally there are connections to patterns written by
other people.3

Together, the problem section and the first paragraph of the solution form a
thumbnail that makes it possible for you to get an idea of the pattern quickly.
The forces section, the rest of the solution and the discussion section offer
more detail, background information, and rationale.

3. Pattern names of patterns in the book are set in small capitals, while patterns written by other people
are set in italics and have a reference to the original source.

Agile documentation.book Page 9 Wednesday, June 11, 2003 11:11 AM

Agile documentation.book Page 10 Wednesday, June 11, 2003 11:11 AM

Project Background

Before we plunge into the actual patterns, I’d like to take a brief look at the
projects from which the patterns in this book were mined. It’s a rather diverse
set of projects, ranging from software development to consulting, from old
technology to new technology, from small teams to large teams. I was
involved in most of these projects as a software engineer, project manager or
consultant, while for some projects I had a chance to act as a reviewer. These
projects were carried out at the organisations I worked for during the last
twelve years:

• FZI (Forschungszentrum Informatik; Research Centre for Information
Technology), Karlsruhe, Germany, carries out research projects as well as
industrial collaborations, with good documentation being a natural part of
all projects.

• sd&m software design & management AG, Germany, is a software
company that runs projects in various application domains – development
projects using all kinds of technology, as well as consultancy projects.
Documentation plays an important role at sd&m, with a focus on quality
rather than quantity.

The examples I provide throughout this book draw on these real-world
projects. The example materials are not taken verbatim from these projects,
however, and do not represent the original contents. This was necessary to
avoid disclosing proprietary information such as business ideas and software
architectures owned by customers. I also had to translate some of the original
material from German into English. In addition, I present the projects anony-
mously to avoid discomfiting any organisations. The topics, structure and
purposes of the example documents are, however, authentic.

Agile documentation.book Page 11 Wednesday, June 11, 2003 11:11 AM

12 Project Background

Project
Paracelsus

This project started off with a specification prepared by the customer that
detailed the interfaces the framework components had to implement. The
first task for the project team was to come up with a design, which was then
discussed with the customer.

In the next stage, the components were implemented and integrated into the
customer’s framework. Once this was done successfully, the project was
considered complete. Later, the customer made a few changes to the compo-
nents when the framework, of which they now were a part, was used in
actual pharmaceutical applications.

Project
Webber

This project was carried out when the Web was still new – at the beginning of
the 1990s. The customer requested support for setting up their new Web site.
The project team and the customer met for a small workshop session, in

Customer A medium-sized German software company

Type Software development

Topic Building components for a framework for warehouse
management that the customer planned to sell to the
pharmaceutical industry.

Technical Basis UNIX, C++

Size 6 people plus 2 people from the customer’s staff

Duration 1 year

Customer A scientific association

Type Consulting

Topic Introducing Web technology to the customer, setting up
a Web server and structuring the Web site.

Technical Basis UNIX, Netscape Server, HTML

Size 3 people

Duration 6 months

Agile documentation.book Page 12 Wednesday, June 11, 2003 11:11 AM

Project Background 13

which the contents and structure of the Web site were discussed. This
revealed that the Web site was supposed to mirror the hierarchical structure
of the customer’s organisation. The team refined the Web site’s structure,
installed a Web server and launched the site.

After the project was completed, the customer developed the Web site further
and maintained the Web server themselves.

Project
Extricate

The goal of this project was to re-engineer a legacy life insurance system to
improve its maintainability. This involved a transformation of the data model,
and a migration strategy to move the system from the old model to the new
one. The functionality was not supposed to change.

Before starting any migration activities, the team had to understand how the
old system worked. The team learned from the users and documented what
they had understood. Based on this understanding, the team sketched the
new data model and outlined the way in which the system should work in
the future. The actual refactoring then took place, extracting many of the
hard-coded properties into a database.

Customer A medium-sized German insurance company

Type Re-engineering

Topic Extracting hard-coded information about insurance
products from the policy management system into a
database.

Technical Basis BS 2000, Windows NT, Cobol

Size 8 people plus 4 members of the customer’s staff;
more people from the customer involved temporarily

Duration 2 years

Agile documentation.book Page 13 Wednesday, June 11, 2003 11:11 AM

14 Project Background

Project
Persistor

This project was embedded in the larger context of other related projects that
together developed several new systems for an insurance company. The goal
of this specific project was to provide a database access layer to be used in
several applications that were developed by the other projects. The data
access layer was designed as a framework, so it could be adapted individually
by the projects that would use it.

The project team collaborated closely with the teams who worked on the
related projects, in particular during the specification phase and the integra-
tion of the data access layer into the applications.

Project
Vista

Customer A large German insurance company

Type Software development

Topic Building a framework for database access, including
application object versioning; introducing the framework
into several projects.

Technical Basis BS 2000, CICS, DB2, Windows NT, Cobol, an OO Cobol
extension

Size 6 people, plus 2 people from the customer’s staff;
about 50 people from 6 other projects during
requirements analysis and integration

Duration 2 years; integration with other projects extending over 2
more years

Customer A large European insurance company

Type Consulting

Topic Analysis of the application landscape in the customer’s
company and the relationships between the various
software systems; risk management.

Agile documentation.book Page 14 Wednesday, June 11, 2003 11:11 AM

Project Background 15

The customer’s organisation operated a large number of systems that imple-
mented many business processes, using a wide range of technologies. Some
of the systems were fairly new, while others had been in use for almost
twenty years. All these systems worked together, passing data to each other,
calling functions and so on. An understanding of the relationships between
these systems was important as far as maintenance of the whole system land-
scape was concerned.

The goal of this project was to analyse the application landscape and to point
out risks in the overall architecture.

Project
Navigator

This project developed several user interface components for which the spec-
ification was provided by the customer. The components were integrated to
form a full graphical user interface such as it is used in the navigation and
communication systems found in many cars.

The team designed and coded the components, ensuring that they could be
configured to match different ‘look and feel’ standards. The components were
tested under conditions specific to embedded systems.

Technical Basis Various systems, COBOL, C++, Smalltalk

Size 2 people; several members of the customer’s staff

Duration 8 months

Customer A supplier of automotive software

Type Software development

Topic Building a graphical user interface for an automotive
navigation and communication system.

Technical Basis Windows CE; C++

Size 8 people

Duration 1 year

Agile documentation.book Page 15 Wednesday, June 11, 2003 11:11 AM

16 Project Background

Project
FlexiCar

When the project started, the customer already had a clear idea of the
expected outcome of the project. Car manufacturing consists of many
production steps: the customer was looking for an automated scheduling of
these steps, so that the production machines would be used to maximum
capacity, and the entire production process would therefore become faster
and thus less costly.

The scheduling details were clear to the experts, but the technical implemen-
tation represented a great challenge. The team collaborated closely with the
customer on a precise specification, and designed the system carefully, taking
into account issues such as performance requirements and fail-safety. After
the implementation was completed, the customer carried out maintenance of
the system.

Project
AirView

Customer An automobile manufacturer

Type Software development

Topic Scheduling of automated production steps for time and
cost minimisation.

Technical Basis UNIX, Java, WebLogic Application Server

Size 50 people, including several members of the customer’s
staff

Duration 2 years

Customer A European airline

Type Software development

Topic User interface for passenger check-in.

Technical Basis Windows, C++, Java, CORBA

Size 30 people; several members of the customer’s staff also
involved

Duration 2 years

Agile documentation.book Page 16 Wednesday, June 11, 2003 11:11 AM

Project Background 17

The outline of this project was to provide a new graphical user interface for a
passenger check-in application. The functionality itself would not be
changed. The user interface had to meet certain ergonomic criteria.

The project began with an analysis, carried out with the customer, of the
typical use cases. The team then designed some prototypical user interface
elements and discussed them with the customer. Once there was agreement
over the detailed appearance of the interface, the components were fully
implemented.

Project
Contentis

The customer organisation was looking for a Web content management
system. The project goal was to support the organisation with the choice of a
system that would fit their needs. The team’s first task was to analyse what
these needs were. The team talked to the people who were going to use the
system to determine the processes associated with the maintenance of the
organisation’s intranet and extranet Web sites.

A catalogue of criteria emerged from the process analysis that the content
management system had to fulfil. Once the complete list of criteria was estab-
lished, several vendors were invited to demonstrate their systems in
workshops. Based on these workshops, the team made a recommendation of
the system that met the customer’s requirements best.

Project
OpenDoors

Customer The umbrella organisation of a German industry

Type Consulting

Topic Selection of a Web content management system.

Technical Basis UNIX, XML, HTML

Size 3 people, plus 2 members of the customer’s staff

Duration 3 months

Customer A company in the financial industry

Type Software development

Topic Design and implementation of a Web architecture.

Agile documentation.book Page 17 Wednesday, June 11, 2003 11:11 AM

18 Project Background

The customer intended to create an Internet-based software architecture that
allowed them to conduct electronic commerce over the Web. The project goal
was to set up a portal through which banks could access information on
insurance products and sell such products to their customers.

The project consisted of several collaborating teams. One team worked on
the overall architecture, one team worked on the Web content that was going
to be presented, and more teams worked on the individual applications that
were going to be integrated into the portal. A special emphasis was placed on
extensibility, so that the customer could gradually integrate more applications
as their business demanded. The teams worked closely together to first create
a working prototype of the portal, then to extend the portal and make it more
widely available to business partners.

Technical Basis J2EE, JSPs, Servlets, EJBs, Web services

Size 50 people, including several members of the customer’s
staff

Duration 2 years

Agile documentation.book Page 18 Wednesday, June 11, 2003 11:11 AM

1 Finding the Right Topics

The correct amount of documentation is exactly that needed for the receiver
to make her next move in the game.

Alistair Cockburn (Cockburn 2001)

A couple of years ago, a colleague of mine joined a project that had been
running for a while. On his first day, he met the project manager, who
explained a few things, then handed the new team member a set of docu-
ments. Some of those were huge – they contained the entire specification of a
complex application. The project manager was visibly proud of the fact that
his team had produced such comprehensive documentation. A couple of
hours later, I saw my colleague sitting in his office, in front of a large pile of
paper, looking rather unhappy. A question about how he was getting on with
the project materials revealed that the poor guy wasn’t getting on well at all.
He said he was “drowning in the specification”, and that he couldn’t keep all
the details in his mind. Eventually he learned many of those details, but more
from discussions with the other team members over the next weeks than
from reading the documentation.

I remember contrary stories, as well. A colleague, who had just joined the
company, was given an introductory document for her first project – a 20-
page paper that included all the useful things to know about the project, as
well as a list of people to contact for various questions. The colleague later
commented that this document was really helpful in making her familiar with
the project.

In the first incident, the amount of information was simply too large. The new
team member resorted to face-to-face communication, which is what the

Agile documentation.book Page 19 Wednesday, June 11, 2003 11:11 AM

20 Finding the Right Topics

project manager should have planned in the first place. In the second inci-
dent, the brevity of the introductory document and the links it provided were
the key to its success.

Claiming that shorter documents should generally be given preference over
longer documents is a bit too simplistic, though. I remember a team who had
to do some refactoring and were happy that a substantial design document
was available, since the original designers were no longer on the project. This
document was rather detailed, as it included a discussion of the design alter-
natives the original designers had considered, and described the reasons for
the design they had chosen. The document was of much help during the
refactoring, and prevented the team from exploring design options the orig-
inal designers had already rejected for good reasons.

These stories conjure up the question of why some documents turn out to be
useful, while others do not. Apparently some things can be communicated
very well through documents, but others cannot. To this end, it is useful to
contrast the role of documentation with face-to-face communication. The
following table summarises the important characteristics of each.

Face-to-face communication Documentation

Direct interaction

Face-to-face communication allows
for quick question-and-answer
cycles. You ask something, someone
answers, you ask back on a specific
detail, you get a more precise
answer, someone else offers their
ideas and so on. Face-to-face
communication involves people in a
very direct way.

Self-determined pace

Different people grasp information
at different speeds. Many people
find they still have questions when a
discussion is over – questions they
didn’t think of in the heat of the
debate. Documents, however, allow
people to read at their own pace,
going back and forth through the
material as they need to.

Agile documentation.book Page 20 Wednesday, June 11, 2003 11:11 AM

21

Non-verbal communication

People don’t communicate through
words exclusively. A large part of
communication takes place in a
non-verbal way – through sound,
gestures and subconscious body
language. These things are possible
only through face-to-face
communication.

Introvert communication

While some people love to engage
in debate, others don’t. Introverted
people are sometimes painfully
silent during discussions, though
they may have a lot to say. They
have their say more easily when
they are given the chance to write
things down, as this allows them to
have second thoughts and take time
to reflect.

Personal involvement

Talking to each other means getting
to know each other. Building trust
happens much faster among people
who are in the same room than
among people who communicate
through writing only.

Scalability

Documents can be made widely
available. You can address an almost
unlimited number of people at a
time. Moreover, documents can
reach the members of a distributed
team – people working in different
places.

Fast availability

In a well-organised project, there
are Experts In Earshot (Cockburn
1998) readily available for
answering questions you may have.
Discussions can come up on the
spur of the moment. Documents
may be available as well, but time
goes by until documents are written
and made available.

Long-term availability

Once a project reaches its end the
team disperses – experts may no
longer be available. The software,
however, will still need maintenance
or even refactoring. Only written
documents are available beyond the
limits of the actual project.

Face-to-face communication Documentation

Agile documentation.book Page 21 Wednesday, June 11, 2003 11:11 AM

22 Finding the Right Topics

So face-to-face communication and documentation aren’t opposed to each
other. Neither is generally better or more effective than the other. Which
communication channel is more appropriate always depends on the situation.
Either has its advantages, and both complement each other. There are plenty
of examples from everyday life. Students learn from books as well as from
their teachers’ lessons. We learn what’s going on in the world around us both
from reading the newspaper and from talking to our friends. Neither verbal
nor written communication is dispensable in a civilised society.

It’s no surprise therefore that projects require both face-to-face communica-
tion and written documentation. Exchange of information happens frequently
in software projects, and it happens in very different contexts. Agile docu-
mentation aims at using the type of communication that best fits such
contexts.

So in which contexts is written documentation recommended?

Let’s go back to the Agile Manifesto for a moment. The manifesto says that
individuals and interaction, as well as working software, are among the core
values of an agile development project. We can conclude that documentation
is most valuable if it contributes to these overall goals. In this sense, docu-
mentation is a means, not an end. The more it helps the individuals in a team
interact, the more useful documentation becomes, and the easier it makes it
for the team to develop working software.

This at least is true for development projects. In consultancy projects,
however, documentation may be the primary goal. Although non-develop-
ment projects are outside the scope of the Agile Manifesto, we can apply an
agile attitude to the documents written in consultancy projects as well.

This book does not promise a fully-fledged documentation method. Projects
differ greatly and documentation requirements differ from project to project.
Therefore this chapter won’t present a list of documents and tell you that
these are the documents your project needs. Instead, I have put together
several patterns that guide you on your way to defining the specific docu-
mentation requirements for your individual project, and determining the
necessary contents of those documents.

Figure 3 presents a roadmap diagram of these patterns. It sketches the
patterns and the relationships that hold between them, and so gives you a
brief overview of this chapter.

Agile documentation.book Page 22 Wednesday, June 11, 2003 11:11 AM

23

THE BIG PICTURE

help explain the

keep a

keeps a

can choose
from the

ask for

appreciate

TARGET READERS

REALISTIC
EXAMPLES

FOCUSED
INFORMATION

SEPARATION OF
DESCRIPTION AND

EVALUATION

Figure 3. Patterns for finding the right topics

appreciate the

appreciate facilitates

serve as input
for the

INDIVIDUAL
DOCUMENTATION

REQUIREMENTS

learn
from

uses

FOCUS ON LONG-
TERM RELEVANCE

SPECIFICATION
AS A JOINT

EFFORT

DOCUMENTATION
PORTFOLIO

DESIGN
RATIONALE

suggests a
suggests to

document the

is in sync
with the

Agile documentation.book Page 23 Wednesday, June 11, 2003 11:11 AM

24 Finding the Right Topics

Target Readers
Problem How can the project team ensure that the documents they produce will

be appreciated?

Forces Project documentation addresses many different readers: project managers,
architects, designers, programmers and users. People in different roles typi-
cally take different perspectives, and are interested in different aspects of a
software project. Managers might not be interested in reading a more tech-
nical document, even if they are able to understand it, while programmers
might not be interested in a management summary.

Moreover, different people often have different backgrounds. Material can be
straightforward for some people and difficult to understand for others.

But it’s the readers for whom you prepare a project document (Haramundanis
1998). If your document isn’t suited to the intended readers’ needs, it’s likely
to be of little or no use.

Worse yet, the very existence of a document is questionable if it is unclear
who should read it. If the intended audience cannot be named, what is the
point in writing the document?

Solution First and foremost, each document must have a target readership, and
must address these readers in order to prove useful.

In an agile context, you don’t write a document because a process dictates it.
You write a document because that document fulfils a purpose for the
intended readers.

The first step is therefore to decide, for each document, who the target
readers are. These can be colleagues from the same project, acting in any of
the roles mentioned above, colleagues from other projects, perhaps future
team members, perhaps customers.

Once this is clear, matching the document to the readers’ needs includes the
following:

• Making clear who the target readers are by mentioning them explicitly,
preferably near the front.

• Explaining what background information is necessary for understanding
the document. This can be technical knowledge or knowledge of project
specifics.

Agile documentation.book Page 24 Wednesday, June 11, 2003 11:11 AM

Target Readers 25

• Not assuming more background knowledge than can be expected among
the target readers.

• Restricting the scope of the document to what the target readers will
expect. This helps keep the documentation short and precise, as does
restricting the level of detail to what the intended readers can understand.

• Making the document comprehensible by providing examples and other
supplementary material from your readers’ everyday project life.

When you prepare a document, regard your work as a service to the readers,
and therefore keep asking yourself: ‘Who are my target readers?’, ‘What infor-
mation do my readers need?’ and ‘What will my readers be able to
understand?’

If you conclude that you cannot determine who your target readers are and
why they should read your document, there is a high probability that the
document is unnecessary.

Discussion Several other patterns help you implement this pattern. Addressing the target
readers has much to do with keeping a focus: the more focused your docu-
ment is, the clearer can you make the target audience. Presenting FOCUSED

INFORMATION helps you stay on target. The inclusion of REALISTIC EXAMPLES and
of a GLOSSARY makes it easier for your readers to understand what you’re
saying.

Certain documents find a large readership easily. For example, overview
documents fall into this category – documents that describe THE BIG PICTURE

of a software architecture. Because such documents have many target
readers, they are useful in many projects.

Becoming aware of your target readers is one thing, addressing them directly
is another. The GUIDELINES FOR READERS at the beginning of a document is the
perfect place to explain who the target readers are and what background
information is required for the understanding of the document.

Sometimes it’s hard to imagine what material readers will expect from a docu-
ment, and what the readers will or will not be able to understand. If you find
this makes it hard to define the scope of your document, you can ask others
to review the outline of your document. Someone from outside the project
can perhaps take A DISTANT VIEW and provide feedback.

Agile documentation.book Page 25 Wednesday, June 11, 2003 11:11 AM

26 Finding the Right Topics

Focused Information
Problem How can documents be prevented from meandering and getting

nowhere fast?

Forces Project documentation as a whole often addresses multiple topics and is typi-
cally distributed over several documents. This invites the following questions:
in which cases should you opt for separate documents, what material should
go into each document, and how long should the individual documents be?

The first aspect worth mentioning is that relatively short and concise docu-
ments help keep the project documentation within reasonable proportions.
This is desirable both for the project team that has to spend resources on
documentation, and for the readers who must access information quickly and
reliably.

However, brevity alone doesn’t make documents easy to use. Another impor-
tant aspect is to avoid redundant information. If you let each document cover
exactly one topic, you can avoid overlaps between documents to a large
extent. This has two advantages. First, a clear focus on one topic makes it
easy for readers to identify the document that holds the information they are
looking for. Second, avoiding redundant information makes documents easier
to maintain and prevents documentation from becoming inconsistent.

Avoiding redundant information also has drawbacks. If, in an attempt to
avoid redundancy, too many aspects are extracted into documents of their
own, the resulting documents will be less self-contained. Documents will be
cluttered with references to other documents, which is counter-intuitive to
normal sequential reading.

Solution A clear and identifiable focus on a particular topic makes a document
concise and straightforward. The straightforward document offers the
information relevant to this topic, but no more than that.

Related information should therefore go into a separate document if it can be
considered to form a topic of its own, while information that is necessary for
the immediate understanding of a document should be kept inside it.

Here are some signals that indicate whether a document has a clear focus:

• A document should be aptly titled; a clear title suggests that the focus of
the document is also clear.

Agile documentation.book Page 26 Wednesday, June 11, 2003 11:11 AM

Focused Information 27

• The differences in scope between two related documents must be clear
from their titles.

• An abstract or summary at the beginning of a document can explain the
focus of the document.

• All sections of the document should consist of material that is relevant to
the topic the document represents.

You can achieve straightforward documents if you remind yourself to check
that whatever you are saying really contributes to the topic the document
represents. If you find that this is not the case, go back and ask yourself what
the purpose of the document is, and what you intend to convey to your
readers.

The consequence of this pattern is that you avoid redundant information to
some degree, but not entirely. Small overlaps between documents are fine as
long as they are necessary to make documents self-contained.

This pattern doesn’t only apply when you set up a new document. Docu-
ments evolve as a project goes on, and it’s important that they do not evolve
into a verbose mass of text, growing beyond reasonable length. Whenever
you add information to the project documentation, make sure the information
goes into the right place, so that all project documents keep their focus.

Discussion A DOCUMENTATION PORTFOLIO is a first step towards focused information. Such
a portfolio describes various types of documents that a project may need, and
what their typical contents are. The portfolio takes into account that each
document has a distinct group of TARGET READERS. You can fine-tune the focus
of any document from the portfolio by adapting it to its intended readers’
expectations.

The documents you create in a project form the DOCUMENT LANDSCAPE – a
network of related documents that the team members use for communication.
The more focused the individual documents are, the clearer the DOCUMENT

LANDSCAPE, and as a consequence the more effective it is.

Focused information isn’t only desirable for complete documents, but can be
broken down to the level of chapters and sections of individual documents.
This is true especially for documents that present STRUCTURED INFORMATION – a
format that employs stylistic elements to convey the structure of a document
and its contents.

Agile documentation.book Page 27 Wednesday, June 11, 2003 11:11 AM

28 Finding the Right Topics

Individual Documentation Requirements
Problem How can unnecessary documentation requirements be avoided?

Forces There are development projects that can do with very little documentation.
Small teams working on one site can often do without comprehensive docu-
mentation. For example, XP (eXtreme Programming) is well known for
producing only a minimum of documentation (Beck 2000).

Other projects, however, require more documentation. Perhaps the project
stakeholders ask for more documentation, perhaps the team needs the docu-
ments for cross-site communication, perhaps the design needs to be
described in more rigour than is possible just using informal discussion.

The cause for differing documentation requirements lies partly in the various
methodologies that different teams may follow, and partly in the fact that
project scopes differ. We can build new software or we can re-engineer
existing systems. Sometimes we design the overall architecture, sometimes
we contribute components to a larger whole. A project may involve just one
person or hundreds of people.

Moreover, development projects and consultancy projects may attach
differing significance to documentation. In development projects, the value of
documentation can often be measured by how well the documentation
contributes to the communication within the team. In consultancy projects,
however, documentation may be the project’s goal.

In his book on Agile Modeling, Scott Ambler writes: ‘Each system has its own
unique documentation needs; one size does not fit all’, and recommends:
‘Keep it just simple enough, but not too simple’ (Ambler 2002). In a similar
vein, Alistair Cockburn, in his book on Agile Software Development, recom-
mends creating documentation that is ‘light but sufficient’ or ‘barely
sufficient’, and goes on: ‘The ideal quantity, “barely sufficient”, varies by time
and place within any one project.’ (Cockburn 2001)

In other words, if you define a standard documentation process for all
projects, and force the teams to create all documents that might be useful in
any one context, you impose an unnecessary documentation workload on
many projects.

Agile documentation.book Page 28 Wednesday, June 11, 2003 11:11 AM

Individual Documentation Requirements 29

Solution The most effective approach towards documentation is for each project
to define its documentation requirements individually.

The actual amount of documentation necessary depends on factors like the
project’s size, whether the team can work on one site or not, and the project’s
criticality, among other things.

You can break down the ‘right’ amount of documentation for your project
into the following:

• The amount of documentation required by the project stakeholders.

• The amount of documentation the team needs to communicate.

• The amount of documentation individual team members might need to
think ideas through.

• The amount of documentation the project will need in a later stage.

• The amount of documentation a follow-up project will probably need.

The individual documentation requirements must define which documents
are necessary and what material these documents should cover. Agile docu-
mentation encourages you to do without any documents that you consider
unnecessary in a concrete situation, but on the other hand, to plan actively
for documents that are needed.

Documentation requirements can change over time. More documentation can
become necessary, for example towards the end of a project when the team
will soon disperse. Or less documentation can become necessary, for
example during stages of intense collaboration in which everybody involved
can easily communicate directly. Re-evaluating the requirements from time to
time is necessary to keep the documentation at the appropriate level of
volume and detail.

Discussion Working out what documentation the team or the project stakeholders need
is closely related to working out who the TARGET READERS of potential docu-
ments are. The actual task of defining the documentation requirements
should be part of any agile project. If you think of documentation as A

DISTINCT ACTIVITY, you can define the documentation requirements and the
resources you plan to spend in the same way as you plan any other project
activity.

Defining the documentation requirements individually for each project does
not mean that you have to define them from scratch every time. A DOCUMENT-

Agile documentation.book Page 29 Wednesday, June 11, 2003 11:11 AM

30 Finding the Right Topics

ATION PORTFOLIO can show you what documents might be needed and what
their contents might be. You can then choose the documents you need and
tailor them to your project’s specific needs.

Documentation Portfolio
Problem How can teams reuse the knowledge about which documents might be

required in their projects?

Forces There is no point in defining a standard documentation process, or standard
documentation requirements for software projects in general. Software
projects are much too diverse for standard requirements to be possible.

Many software projects do however have things in common. For example,
almost all software projects make a difference between what a system, a
program, or a module does on one hand, and how its internals are designed
on the other. This distinction stems from the ‘information hiding’ principle
(Parnas 1972) and it is often reflected in the documentation, resulting in sepa-
rate documents for the system specification and the system design.

There are other categories of documents that are repeatedly found in project
documentation, ranging from documents on testing to documents that
explain how to use the software. Many projects require management-oriented
documents. Despite the fact that these documents vary greatly in length and
detail, there is no reason why every project should re-invent the categories of
documents that should be considered when the documentation requirements
are defined.

Solution A documentation portfolio describes which documents might be
necessary in a software project, and their scope. If an organisation sets
up such a portfolio, projects can choose those documents they need,
checking the necessity of each candidate document individually.

A documentation portfolio prevents the team from having to decide which
document candidates exist. The portfolio includes a set of suggestions for the
team to consider.

Figure 4 presents a documentation portfolio that includes the candidate docu-
ments for most software projects. A similar list is given in Scott Ambler’s book
on Agile Modeling in the chapter on documentation (Ambler 2002). You can

Agile documentation.book Page 30 Wednesday, June 11, 2003 11:11 AM

Documentation Portfolio 31

use this portfolio, or you can tailor it to the typical needs of your organisa-
tion’s projects.

The documents included in the portfolio fall into the following categories:

• Management documents define the management context for a project,
such as the overall scope and the project schedule. A typical example is
the management summary – a document that describes the overall goals
of the project and puts them into a business context. Management
documents may also include a short paper that introduces new team
members to the project.

• Specification documents describe what the software does. This includes
aspects as widespread as data, functionality, the user interface, efficiency
and more. The primary purpose of specification documents is to clarify
exactly what software is needed. Specification documents serve as a basis
for discussions with the customer, or as a basis for discussion with teams
who work on related tasks. In addition, the specification is what a system
can be tested against.

• Design documents explain how the software works, including why it
works this way. They look at the internals of a system, a module or a class,
at its structure and its behaviour. Small overlaps with the specification are
possible – the data model, for example, is important during both specifi-
cation and design. Design documents are used mostly for communication
among the development team, but can also be useful for communication
with the interested customer. A design document can help pass on the
project’s expertise to future projects – a knowledge management
mechanism that should not be ignored.

• Hardly any project is an island. There is often an old system that is going
to be replaced by the new software to some degree, perhaps gradually.
This may make a migration concept necessary. A migration concept
describes how the functionality of the old system gives way to the
functionality of the new system, and how the data that was stored by the
old system is transformed into data that can be used by the new system.

Agile documentation.book Page 31 Wednesday, June 11, 2003 11:11 AM

32 Finding the Right Topics

Project management

• Management summary

• Delivery plan

• Project manual / team guidelines

Usage

• Usage guidelines / concepts

• Cookbook

• Tutorial

Requirements specification

• System overview

• Use cases

• Data model

• Functional specification

• User interface specification

• Timed behaviour

• Non-functional requirements (execu-
tion speed, maintenance, etc.)

• Glossary

Design

• Architecture overview

• Data model

• Class hierarchy

• Class interaction diagrams

• User interface design / event
management

• Database access / transactions

• Integration with neighbouring
systems

• Guidelines and naming conventions

Migration

• Functionality migration

• Data migration

Figure 4. A documentation portfolio

Test

• Use cases

• Test cases

• Test concept

Operations

• Deployment

• Operations guidelines

• Trouble-shooting

Agile documentation.book Page 32 Wednesday, June 11, 2003 11:11 AM

Documentation Portfolio 33

• Often tests have to be specified, perhaps using test documents. These may
overlap with the specification. Use cases, for example, fall into either
category (Cockburn 2000). Depending on the actual project and
customers’ requirements, a complete set of test cases can serve as the
system specification, and can make separate specification documents
redundant to some degree.

• Usage documents describe how a system, module or class can be used.
They outline the use of parameters, for example, and the order in which
functions can be called, and are often required for system integration.
Usage documents may turn out to be no more than a few guidelines, but
may amount to an overall usage concept. When you deliver a framework,
for example, the usage concept deserves particular attention, as it advises
the users how to build a working application.

• Operations documents describe how a system is to be operated and how
problems with the operation can be tackled.

Many of the documents mentioned above are well known from the literature
on software engineering (Sommerville 1996) or from software engineering
methods such as the Unified Process (UP) (Jacobsen Booch Rumbaugh 1999,
Kruchten 2000).

Your project may or may not need any of the documents listed here, or
perhaps you can merge several documents from one category into one docu-
ment. Perhaps some documents are completely unnecessary in your situation.
It is up to the project team to decide what documentation is necessary in a
specific situation, taking the customer’s requirements into account. A healthy
dose of scepticism is fine when it comes to the decision over what project
documents should be written. Agile software development encourages us to
provide the documentation that is necessary, but to go without unnecessary
paperwork.

Discussion The decision about whether or not a document from the portfolio is needed
is closely related to who the TARGET READERS are. If you cannot name the
TARGET READERS for a document, the project can probably do without that
document. After all, which set of documents you decide to produce depends
on the INDIVIDUAL DOCUMENTATION REQUIREMENTS of your project. A UP project
is likely to come to different conclusions than an XP project.

Documents from the portfolio can vary in scope and level of detail. A FOCUS

ON LONG-TERM RELEVANCE helps you to include information that is useful in the

Agile documentation.book Page 33 Wednesday, June 11, 2003 11:11 AM

34 Finding the Right Topics

long term and to produce documents with high significance. On the other
hand, information that will soon be irrelevant probably doesn’t need to be
documented.

Overview documents typically attract the highest number of readers. Manage-
ment summaries, architecture overviews and so on describe THE BIG PICTURE

of a project or a system. To many projects, these documents are among the
most important ones within the portfolio.

More detailed documents, however, are in the centre of the trade-off between
verbal and written communication. A specification document, for example, is
typically the result of a requirement analysis. It can complement discussions
with the customer, but it can never replace these discussions. (See also SPECI-

FICATION AS A JOINT EFFORT.) Almost all projects need a specification
document, but not necessarily one at the finest possible level of detail.

Similarly, design documentation is necessary and useful in most projects. In
most cases, however, design documents need not be concerned with low-
level technical details, which are better communicated face-to-face. Design
documents should instead focus on the DESIGN RATIONALE – the motivation
that led to the design decisions the team has made.

Finally, the classification given by the documentation portfolio contributes to
the goal of presenting FOCUSED INFORMATION. It roughly sketches which docu-
ments you might need and outlines how these documents can focus on a
particular topic.

Focus on Long-Term Relevance
Problem How can projects avoid producing documentation that expires too

soon?

Forces Software project documentation deals with a most diverse set of information.
The information you rely on ranges from specification to design, from overall
principles to technical details, from team-oriented to customer-oriented.

In an agile project, we don’t automatically document all this information in
writing. An agile project avoids spending more resources on documentation
than necessary, and concentrates on those documents that have a clear
purpose that justifies the time and effort that go into their production.

Agile documentation.book Page 34 Wednesday, June 11, 2003 11:11 AM

Focus on Long-Term Relevance 35

Moreover, if you decided to prepare documents for each aspect of the
project, you might choose written communication as a medium indiscrimi-
nately and without regard for its appropriateness.

These factors lead to the question: how can you determine whether a written
document is appropriate or not?

Let’s take a look at a software project done in an agile fashion. People
exchange ideas frequently through discussions and informal communication.
Much of the information that is exchanged is important on the spur of the
moment, to help team members make progress with their current work. Not
all this information will be relevant a couple of months or years later.

Some will, however. Being agile doesn’t mean being short-sighted. The litera-
ture on agile development reminds us that while delivering the software is
the primary goal of a development project, preparing for future projects is a
secondary goal that should not be ignored (Ambler 2002). This is what
Alistair Cockburn means by ‘preparing for the next game’ (Cockburn 2001).
To prepare for a later project stage, or for a future project, you have to
capture the knowledge that others will rely on.

This is the point where documentation can unfold its greatest benefit: knowl-
edge that must be preserved for the future is worth documenting.

This isn’t a mere assumption. Knowledge preservation has been the subject of
much discussion and much research. For example, Stuart Brand emphasises
the importance of digital and non-digital libraries in his book on long-term
thinking and planning, The Clock of the Long Now (Brand 1999).

Solution There is much value in documentation that focuses on issues with a
long-term relevance – issues that will play a role in a later project phase
or in future projects.

Documentation is essentially an instrument for knowledge management, both
within a project and across projects:

• Documents, when they describe the fundamentals of a project, are
important throughout all projects phases. Examples include an essential
specification, or a central document that describes the software archi-
tecture. The long-term relevance of these issues suggests that they should
be captured in written form.

Agile documentation.book Page 35 Wednesday, June 11, 2003 11:11 AM

36 Finding the Right Topics

• The lessons learned from a project are often useful for future projects.
Insight gained into the software architecture, design decisions or conclu-
sions drawn at a project retrospective are all candidates for written
documentation.

There is less value in the comprehensive documentation of things with only
short-term relevance. If, due to limited resources, not everything can be
documented – which is almost always the case – preference should be given
to topics with long-term significance.

Discussion This pattern is closely related to the TARGET READERS pattern. Both patterns
raise the issue of whether producing a document is justified or not. Raising
this question is essential when you choose the documents that your project
needs from the DOCUMENTATION PORTFOLIO. Several examples exist of docu-
ments that are typically characterised by a long-term relevance and are almost
always justified: a document that describes THE BIG PICTURE, a specification
document, provided the team performed the SPECIFICATION AS A JOINT EFFORT

with the customer, and a document for the DESIGN RATIONALE.

If a topic has long-term relevance and needs to be documented beyond the
limits of the current project, long-term availability becomes an issue. To have
the TARGET READERS benefit from the document, it must be widely available.
This is essentially a matter of documentation management, and is addressed
in the INFORMATION MARKETPLACE and KNOWLEDGE MANAGEMENT patterns.

Specification as a Joint Effort
Problem How can development projects ensure that they head in the direction

the customer wants?

Forces The specification of a software system requires a lot of input from domain
experts. A close collaboration between the software experts and the domain
experts is necessary to make sure that the software meets the customer’s
expectations. The project team must learn from the domain experts what the
software is supposed to do. This collaboration involves a lot of face-to-face
communication.

However, it is dangerous to rely on verbal communication alone, for two
reasons. First, there can be misunderstanding between the project team and
the customer that even a series of thorough discussions won’t reveal. Often,

Agile documentation.book Page 36 Wednesday, June 11, 2003 11:11 AM

Specification as a Joint Effort 37

you may think you have reached a common understanding during a discus-
sion, but when you try to commit your understanding to paper, you find this
isn’t the case. A written specification is much less likely to let misunderstand-
ings go unnoticed.

Second, a written document can avoid quarrels over who is right and who is
wrong, should differing opinions arise over the system requirements, perhaps
several months into the project. Even the friendliest customer relationship
suffers when accusations are made that the team designed the wrong soft-
ware. A written specification largely avoids such accusations.

This is even more true when more than two parties are involved. This is not
uncommon – often several software companies collaborate on a project, and
different departments of the customer’s organisation may also have a stake in
the project. In such a project a written specification gives all parties some
planning safety.

This does not mean that the system has to be specified down to the finest
detail, nor does it mean that the requirements cannot undergo change. It is
acceptable to leave details open in the specification, but the specification
must make this clear, so that the team is aware of decisions that still have to
be made.

Changing requirements are considered natural in an agile project that follows
an iterative development process. The specification document helps to deal
with changing requirements in an acceptable manner, updating the project
plan and perhaps re-scheduling deadlines accordingly.

Solution Every development project requires a specification, which reflects the
requirement analysis done jointly by the project team and the
customer.

Writing the specification should be much like keeping a record of what has
been said during the discussion of the requirements. Nowhere is it as impor-
tant as here that face-to-face communication and documentation complement
each other:

• The specification document describes the common understanding of the
system that the project team and the customer have achieved, and
provides the team with the information necessary to begin the design.

Agile documentation.book Page 37 Wednesday, June 11, 2003 11:11 AM

38 Finding the Right Topics

• Use cases, stories and scenarios provided by the domain experts usually
furnish excellent input for the specification document. Sometimes a suffi-
ciently complete set of use cases can be all the specification document
requires, as long as the use cases are sufficiently detailed to ensure that
the project team and the customer have reached a common under-
standing.

• The specification document can be used to get further discussions started.
You can take an initial specification document to the domain experts for
feedback, so improving the specification.

It is important that all stakeholders agree on this specification. This requires
more than a general agreement from whoever represents the customer’s
organisation as a whole. Stakeholder agreement requires a common under-
standing shared by the team and all departments of the customer’s
organisation, in fact by all individuals involved.

Discussion As much as this pattern stresses that a close collaboration with the customer
is necessary for producing a good specification, you shouldn’t draw the
conclusion that other documents won’t require similar collaboration. In fact
all project documents do. The point here, and the motivation for this partic-
ular pattern, is that the requirements specification deserves an especially
close collaboration between the project team and the customer from day one.

This principle has much been stressed in the literature on agile development.
The Agile Manifesto (in one of its follow-up recommendations) suggests that
‘business people and developers work together daily throughout the project’,
as cited in Alistair Cockburn’s book (Cockburn 2001). Alistair Cockburn
comments: ‘…the longer it takes to get information to and from the devel-
opers, the more damage will occur to the project’. Scott Ambler cites active
stakeholder participation as one of the core principles of Agile Modeling
(Ambler 2002).

The role of customer collaboration has also been the subject of many other
works. For example, Jim Coplien, in his organisational patterns, recommends
that you Engage Customers (Coplien 1995) not only in quality assurance, but
also in specification and design.

Still, customer collaboration can be hard, as it requires you to speak a
common language. One way to ease this problem is to plan for a CUSTOMER

REVIEW.

Agile documentation.book Page 38 Wednesday, June 11, 2003 11:11 AM

Design Rationale 39

In addition, speaking a common language is more difficult in the abstract
than in the concrete. Customer collaboration can profit a lot from working on
REALISTIC EXAMPLES to which both the project team and the customer can easily
relate. This is, among other things, why use cases are so particularly useful.

Design Rationale
Problem How can the team make sure that the foundations are laid for future

design changes?

Forces Most projects choose to document the design of the system they’re building.
A design document describes the system’s interfaces as well as its internal
functioning, typically addressing both structural and behavioural aspects. The
purpose of such a document is to convey the system design to other team
members, to customers or to future projects.

Such a design description is fair enough, as it can prove useful during system
maintenance.

When a system undergoes change, however, a mere account of the actual
design might not be sufficient. As the design evolves, it is important that the
team is aware of why the design was chosen in the first place and what other
design options might exist. However, implementation details are likely to
change whenever the software changes, so won’t be of much long-term use.

Solution Design documents become a valuable source of information if they
aren’t restricted to describing the actual design, but also focus on the
rationale behind the design and explain why the particular design was
chosen.

The more experience a design document reveals, the more useful it can be
for future projects. It is the lessons learned from the system design that makes
a design document a valuable contribution to the project documentation.

This leads to the following guidelines:

• The design document should not only be concerned with the results of
the design process, but should explain the reasons that led to the actual
design.

• The design document should explore possible design alternatives, discuss
their pros and cons, and explain why these alternatives were declined.

Agile documentation.book Page 39 Wednesday, June 11, 2003 11:11 AM

40 Finding the Right Topics

The rationale behind a design is what is useful for team members who need
to understand the internals of the software, perhaps because they have to
maintain, extend or improve it, perhaps because they would like to re-use the
concept, at least partially, on their project, or otherwise profit from the expe-
riences made.

On the other hand, good design documents can often do without technical
details of the actual coding.

Discussion This pattern is very much in sync with the desire to put a FOCUS ON LONG-
TERM RELEVANCE. Specific design details may be of little interest after a while,
and therefore might not require documentation. The overall design will still
be essential years after the system was first launched, however, and is there-
fore a good candidate for documentation, along with the reasons that led to
the design.

The explanation of the design rationale can gain significantly from the use of
REALISTIC EXAMPLES. Use cases, or other scenarios, help explain the principles
behind the design that was chosen, as well as its pros and cons.

The Big Picture
Problem How can people be introduced to a project without being confronted

with a deluge of technical details?

Forces When people look at a painting in a gallery, they often step back and look
from a short distance. This allows them to see the painting as a whole. If they
stood right in front of it, they would be able to see the detail, but the overall
impression would be lost.

By analogy, project documentation sometimes deals with many technical
details – specification details, design details and the like. These details may
be crucial to a successful project, and documenting them can be useful.
However, it is sometimes hard to see the wood for the trees.

In The Mythical Man Month, Frederick Brooks explains: ‘Most documentation
fails in giving too little overview. The trees are described, the bark and leaves
are commented, but there is no map of the forest.’ (Brooks 1995)

Detailed material, as useful as it may be for people who are already experts,
isn’t much help for those new to a topic, who would like to understand a
concept, or who need to get an introduction into new material.

Agile documentation.book Page 40 Wednesday, June 11, 2003 11:11 AM

The Big Picture 41

However, the documentation must also cater for people who aren’t yet
experts but who are going to familiarise themselves with the project. Think of
people who join a team, or think of customers who will maintain a system
once it has been completed. Such people need to get a feel for the project
before they can even start to work on the details.

Solution A good feel for a project is best conveyed through a description of the
‘big picture’ of the architecture that underlies the system under
construction.

A big picture document can provide some overall understanding:

• The big picture describes the overall architecture, shows how the entire
system is composed of subsystems and modules, and explains the basics
of the system’s dynamic behaviour.

• The big picture explains the design principles and motivates the decisions
that led to the actual design.

• The big picture names the technology that is fundamental to building the
system.

• The big picture intentionally abstracts over any details, technical or
otherwise, that are irrelevant to an overview.

Preferably, a big picture document should be fairly short and concise – a
lengthy document couldn’t provide the brief introduction that most readers
need, and would probably turn out to be counter-intuitive. For the vast
majority of projects, 10 or at most 20 pages are enough. The big picture docu-
ment can provide links to other, more detailed documents whenever
necessary, as Figure 5 illustrates.

Beyond providing an overall understanding, a big picture document is
perfectly suited to get discussions started. Mainly because a big picture is of
general interest, but also because it’s typically short, a big picture document
easily finds readers. If you need to have a discussion with the team or with
the customer on any issues concerning the overall system architecture, pass
the description of the big picture around and you have a perfect starting
point.

Discussion This pattern shows how you can provide an overview without losing yourself
in technical detail. Despite the desire for brevity, a big picture document
often profits from the inclusion of REALISTIC EXAMPLES, as such examples will

Agile documentation.book Page 41 Wednesday, June 11, 2003 11:11 AM

42 Finding the Right Topics

help the readers get a feel for the architecture. You can certainly add value to
the big picture document if you take the word picture seriously and provide
JUDICIOUS DIAGRAMS that help you argue your case.

All documentation can profit from a REVIEW CULTURE that provides authors
with valuable feedback. A document that presents the big picture can benefit
especially from a review that takes A DISTANT VIEW, and so focuses on the
overall impression rather than on details.

Separation of Description and Evaluation
Problem How can authors prevent loss of credibility?

Forces In development projects, much of the project documentation deals with anal-
ysis, design, architecture, tests and the like. The nature of these documents is
to a large extent descriptive.

However, sometimes you are required to draw a conclusion, make an evalua-
tion, or even come up with your personal opinion. Perhaps you, as a skilled
and experienced software engineer, are asked for your opinion on a certain

Figure 5. A big picture document providing pointers to the details

Agile documentation.book Page 42 Wednesday, June 11, 2003 11:11 AM

Separation of Description and Evaluation 43

design or a certain concept. A strategy paper, for example, typically includes
personal views and concludes with the recommendation of one specific
concept or strategy.

Personal views are even more common in documents that emerge from
consultancy projects. If you work on a consultancy project it may be the
central part of your job to come up with an assessment or a recommendation.
We can see that both descriptive material and personal opinions can be
necessary and useful.

But while both are necessary and useful, they’re not the same thing. It’s
important to tell them apart.

For an analogy, let’s take a brief look at the realm of journalism. It is a good
rule of thumb that you should make it clear whether an article in a news-
paper or a journal presents facts, or whether it expresses the author’s opinion
(Glasser 1992). We can adopt this rule of thumb for our purposes. It isn’t
good style to try to influence readers by confusing description and judgement
– readers might doubt the contents of a document that seems to be
suggestive.

Solution Authors gain credibility if, in their documents, they clearly separate
description from evaluation.

The following table shows roughly how different kinds of information can be
classified:

Description Evaluation

Facts Judgement

Observations Author’s opinions

Analysis Recommendation

Data Validation

Statistics Interpretation

Agile documentation.book Page 43 Wednesday, June 11, 2003 11:11 AM

44 Finding the Right Topics

The separation of description and evaluation must be clear to readers. There
are various ways to achieve this goal:

• The separation of description and evaluation can be reflected in the
document’s structure. You can reserve certain sections of a document for
analysis, and draw conclusions or come up with a recommendation in a
separate section.

• You can use layout techniques, such as special boxes, extra columns, or
type variations to make clear to the readers that certain material isn’t a
fully objective description, but represents your opinion or the conclusions
that you draw.

In addition, you can draw on your command of the language to support the
separation of description and evaluation. Descriptive material should not
implicitly include any judgement: adjectives such as good, desirable, reason-
able, useful or bad, problematic, etc. must be used carefully when describing
facts or observations.

Discussion The separation of description and evaluation contributes to the general goal
of presenting FOCUSED INFORMATION. Material presented in a document, or in a
section, is supposed to have a clear focus. One precondition for a clear focus
is not to confuse description and evaluation.

Using layout techniques to support the separation of description and evalua-
tion is particularly useful when you choose to organise documents as
STRUCTURED INFORMATION. You can then employ structural elements, such as
textual blocks or cells within UNAMBIGUOUS TABLES, to visualise the separation
of description and evaluation. Similarly, the CAREFUL USE OF TYPE VARIATIONS

can make that separation clearly visible.

Realistic Examples
Problem How can abstract material be explained in a comprehensible way?

Forces Most people work better from the concrete to the abstract than vice versa.
Technical material, however, is sometimes abstract and difficult to under-
stand. Furthermore, not all readers of a project document are necessarily
experts in the field. Material is usually more successfully presented when it is
accompanied by convincing examples.

Agile documentation.book Page 44 Wednesday, June 11, 2003 11:11 AM

Realistic Examples 45

Moreover, readers are sometimes sceptical when a document gives only
general advice. Examples can provide evidence that what is said in a docu-
ment is substantial information.

However, ‘toy’ examples can have the opposite effect on readers. When a
major point is explained only with a toy example, readers are led to believe
that the point is not substantial, and that a suggested solution might not work
in practical cases.

On the other hand, huge examples or a large number of extensive examples
can break the flow of a document and can increase its volume unnecessarily.
Including more example material than necessary isn’t desirable, either.

Solution Project documents are much more convincing if they include realistic
examples from the project’s context.

Discussions among the team or with the customers will normally reveal many
appropriate examples:

• When you specify the software with your customer you’ll normally
develop use cases and scenarios. These use cases and scenarios represent
valuable input to a specification document. In some projects they can
make up the entire specification.

• When you explain a technical design or the system architecture, it is still
a good idea to rely on examples from typical use cases. This makes your
explanation easier to follow and demonstrates that your design tackles the
right problems.

• Consultancy projects aren’t necessarily concerned with a concrete devel-
opment task and may not have concrete use cases to rely on. Realistic
examples are still useful, such as typical scenarios from the problem
domain.

When realistic examples are too large to be presented in their entirety, it is
acceptable to use only an extract or to ignore irrelevant details. It is important
that the examples are taken from real-world material, though.

Discussion This pattern applies to almost all documents from the DOCUMENTATION PORT-

FOLIO. When you carry out the SPECIFICATION AS A JOINT EFFORT with the
customer, you can learn from use cases and scenarios, and you can include
them in your documents as well. When you prepare a design document, you

Agile documentation.book Page 45 Wednesday, June 11, 2003 11:11 AM

46 Finding the Right Topics

can illustrate the DESIGN RATIONALE with examples that demonstrate the pros
and cons of any design alternatives the project may have.

When choosing examples, you have to keep in mind who the TARGET READERS

for your document are. You have to tailor the examples to the intended
readers’ backgrounds and expectations, so that they can understand the
examples and the examples prove as helpful as they are intended to.

Experience Reports
In the following I’d like to present some experience reports that show how
the patterns of this chapter were applied in several real-world projects. I’ll
refer to several projects from the list at the beginning of this book.

The first thing that springs to mind is how different the requirements for
documentation were in these projects. On one hand, take a development
project such as Paracelsus. The team was small and the collaboration with the
customer quite close. Everybody knew what they were doing from the start,
and having only little documentation was no problem. The documents
produced were lightweight, in a positive sense.

Individual
Requirements

Project Paracelsus: minimum documentation
In this small project the task was clear from the start: the customer needed certain compo-
nents for data transformation that they were going to integrate into a framework they were
building. Close collaboration came naturally. The team and the customer decided early on
that a minimum amount of documentation would be sufficient.

The specification that was produced consisted essentially of the notes that someone had
taken during a small workshop in which the customer explained what the components
were supposed to do.

Simultaneously with design and coding, the team produced a design paper and a usage
concept. The design paper documented the basic ideas behind the data transformation
components. The paper was made available to the customer as input for a second work-
shop, in which the team and the customer checked that the components’ design and the
overall framework design were compatible, before coding began. The usage concept pro-
vided information about how the components could be called, which parameters had to be
supplied and so on. The customer used this concept a lot when they integrated the compo-
nents into their framework.

Agile documentation.book Page 46 Wednesday, June 11, 2003 11:11 AM

Experience Reports 47

Consider Project AirView. The specification document focused on the defini-
tion of use cases. As the team had chosen to build a prototype, a lengthy
specification of the user interface geometry became unnecessary. The team
had understood that discussing the user interface using the prototype was
much more effective than producing endless specifications. The amount of
documentation could therefore be reduced significantly.

On the other hand, some projects did require a more comprehensive
documentation.

Project FlexiCar (see page 48), for instance, required more comprehensive
documentation because many people were involved, and because it was
clear from the start that system maintenance would eventually be handed
over from the project team to the customer.

Next, there is Project Extricate (see page 48). This project was a huge re-engi-
neering effort. A specification of what the new system should look like was
not enough. The team always had to keep the migration from the old system
to the new system in mind. This migration was crucial for the project’s
success, and it was necessary to document it, so that the many stakeholders
could examine it.

Project Persistor was a large effort, involving many people from different teams
and different companies. Because the goal of this project was to develop a
framework, more documents from the DOCUMENTATION PORTFOLIO became

Project AirView: GUI specification
The project’s goal was to develop a new graphical user interface, so an important task was
to specify what that interface should look like. Nevertheless, the project team and the cus-
tomer agreed that the specification document should not include a fully-fledged description
of the user interface geometry. The specification document defined the use cases the inter-
face would implement, but intentionally left out details of the visual appearance.

The specification of the use cases turned out to be quite important. It was done jointly by
the project team and the customer, and the process of committing the use cases to paper
clarified many details.

To describe the user interface geometry, the team instead chose to build a prototype. This
prototype acted as a living specification. It was given to the customer for reviews, it could
be adapted quickly, and it provided much input, both more quickly and more concretely
than an abstract specification could have done.

Agile documentation.book Page 47 Wednesday, June 11, 2003 11:11 AM

48 Finding the Right Topics

Project FlexiCar: detailed design description
When the project started, the customer already had a clear idea of how their car manufac-
turing process could be improved and accelerated. The project team was still small at the
time, and it produced an overview document that summarised the customer’s requirements.
The document also sketched the architecture the team had in mind. The customer reviewed
the document, ensuring that the team was heading in the right direction.

The lead designer then set up a document that described the system architecture in more
detail, refining this document as the project progressed. This document was quite technical,
as it was intended mainly for software engineers. The document served two purposes. First,
it was used to communicate the principles behind the architecture to the entire team. At
some point, the project involved up to 50 people, so couldn’t rely on verbal communica-
tion alone. The design document clearly facilitated knowledge exchange. Second, the doc-
ument was later to be used by team members from the customer, who were to maintain the
system beyond the project’s time frame.

Project Extricate: mapping from old to new
This project faced two major challenges. First, it involved many people: the project team,
software engineers from the customer, and domain experts from the customer. Each of
these parties had contributions to make, and each had to have their say. Second, as this
was a re-engineering project, the team first had to familiarise themselves with the old sys-
tem and its application domain.

The functional specification was easy: the system’s functionality wasn’t going to be changed
at all. The system had to be refactored to become more flexible though. The team had to
search the system for hard-coded properties of life insurance products, and had to under-
stand what these properties meant so that they could accurately be extracted into a data-
base. This involved several subtle and intricate details, which easily went unnoticed during
discussions with the customer. Often the domain experts took things for granted that the
software engineers hadn’t even thought of.

A specification document was a great help as far as detecting such misunderstandings was
concerned. The specification represented what the team had understood of the various
insurance products, and was given to the domain experts for review. The domain experts
used the specification to verify the mapping from the old, hard-coded properties to the new
properties. The discussions spawned by this document revealed many important details.
The document was updated several times following the discussion, and served as a reliable
source of information.

Agile documentation.book Page 48 Wednesday, June 11, 2003 11:11 AM

Experience Reports 49

necessary. First of all, this included a usage concept. The framework users had
to learn how to incorporate the framework into their applications: as they
worked on different sites, documentation was indispensable. Second, the
framework documentation included a design concept that was needed for
future maintenance and refactoring (see page 50).

These experience reports clearly demonstrate that the projects did have INDI-

VIDUAL DOCUMENTATION REQUIREMENTS. Some projects were fine with a
minimum of documentation, while others would have been in serious trouble
without more comprehensive documentation. The key idea of agile document-
ation is not to go without comprehensive documentation in each and every
project, but to make sure that all documents are justified by the benefit they
represent for the TARGET READERS.

Despite the varying documentation requirements, there are several things that,
in my experience, all successful projects have in common, as far as document-
ation is concerned. When I reviewed the projects to find out about what kind
of documentation worked and what didn’t, I noticed some things over and
over again.

First, no project can do without a specification, and agile projects are no
exception. Almost all of the development projects I looked at produced speci-
fication documents, and those that didn’t regretted this strategy. The
experience reports from Projects FlexiCar, Extricate and Persistor show that
they all produced a specification (or received one from the customer), and
they all made good use of it.

Of all the specification documents I have seen, some were rather short, some
were more detailed. In most cases, a less detailed specification was no disad-
vantage, because many specification details only evolved over time. Projects
Paracelsus and AirView demonstrate that it is more crucial to success to regard

One other document was particularly important: the migration strategy paper. First, it
revealed the dependencies between the migration of different subsystems – which subsys-
tems had to be migrated before others and so on. Second, the migration paper demon-
strated that there was a trade-off between the quality of the new data model and the
complexity of the migration process: the better the new data model was, the more complex
the mapping from old to new would become. On the other hand, the simpler the migration
was kept, the more flaws would be carried from the old data model to the new one. The
customer appreciated this discussion a lot.

The Need for
a Specification

Agile documentation.book Page 49 Wednesday, June 11, 2003 11:11 AM

50 Finding the Right Topics

Project Persistor: documenting a framework
Documentation played an important role, as this project involved many people from many
companies, even in different cities, and because the contributions from the different parties
had to be integrated closely. The team tried to keep the documentation within reasonable
proportions, mostly with success, though also with a few problems.

After the project’s kick-off, the team produced an initial specification of the data access
layer framework. The specification was quite short, won the customer’s approval, and was
used as the basis for design. However, as the project evolved, additional requirements came
to light, some of which were implemented, others not. In the heat of the project, however,
these additional requirements were never specified in writing. After a while this led to con-
flicting views about which additional functions had to be implemented and which had been
declined. At this point the relationship between the customer, the framework developers
and the other projects became rather tense. The main problem wasn’t that there were con-
flicting views, but that the conflict hadn’t been resolved properly when it had first arisen.
All parties felt that specifying the additional requirements in writing would have been use-
ful, not to introduce bureaucracy into the project, but to increase the awareness of what
changes were necessary, who was in charge, and the consequences on schedules.

The most important problem the project faced was how to train the other teams to integrate
the framework into their applications. As teams from different cities were involved, face-to-
face communication alone was insufficient. The team decided to use a mix of document-
ation and workshops. A usage concept for the framework was passed to all other teams.
This document explained how the framework could be configured for use by a concrete
application, how its interface methods could be called, and the general guidelines to be fol-
lowed. Once the teams had familiarised themselves with the ideas behind the framework
and the use guidelines, the framework team ran workshops in which they explained in
detail how to adapt the framework to individual project’s needs. These workshops took
from several days to several weeks, complementing the understanding that the usage con-
cept had supplied.

Although testing played a huge role, the team, along with the customer, decided that docu-
menting the test cases was unnecessary. Instead, the team implemented a large number of
test cases, and extended and maintained the test code as the project progressed. As the
tests were executable, they served the project much better than any test document could
have done.

Agile documentation.book Page 50 Wednesday, June 11, 2003 11:11 AM

Experience Reports 51

the SPECIFICATION AS A JOINT EFFORT than to complete the specification to the
smallest detail. In other words, an incomplete specification may be fine, as
long it is clear that it is incomplete, and as long it is clear which parts are still
to be decided.

In a few cases, however, a project did not have a specification at all. At one
stage Project Navigator suffered this fate. No written specification was available
until well into the project: a few informal statements were all the team could
rely on when they were asked to begin coding. In the end, much code had to
be deleted and re-written. As a consequence, morale among the team was low.

Project Navigator: confusion due to a lack of specification
This team had to develop several user interface elements that were rather complex in their
appearance and their behaviour. The time frame was fairly short and the deadlines were
tight. Software development had to be fast, and lightweight documents were a must.

The project team and the customer had agreed on the following documents for each user
interface component: a brief specification describing appearance and behaviour, a design
document consisting of a UML diagram and an interface description, and a document on
test cases.

There had to be agreement on the specification, not only among the team and the cus-
tomer, but also with the customer’s customer – the car manufacturer that would ultimately
buy the navigation system. Unfortunately, the ultimate customer was consistently late in
committing themselves to a particular GUI specification, but urged the team to begin with
the design and the implementation nevertheless. At some point, the team was asked to
begin the coding, although component specifications weren’t available. Code was written –
but later had to be re-written completely.

In retrospect, the team felt that the project would have profited if it hadn’t tried to do with-
out a written specification. A specification document could have clarified which parts of the
specification were settled and which were still open. The design and implementation could
have focused on those parts that were clear, leaving room for changes in the hot spots.
Without any specification, the team felt they weren’t getting anywhere near the desired
result, and morale was low.

Otherwise the lightweight documentation worked well. The design documents and the test
documents consisted of only a few pages each, but contained all information necessary for
the customer to integrate the components.

Agile documentation.book Page 51 Wednesday, June 11, 2003 11:11 AM

52 Finding the Right Topics

Project Persistor did produce a specification, but failed to maintain it over the
course of the project, and in particular, over the course of several change
requests. As a consequence, misunderstandings over the specification became
an increasing nuisance. Better maintenance of the specification would have
made things easier for all parties involved.

Overviews A second observation I have made is that no project can go without THE BIG

PICTURE. Whatever may be the necessary level of detail for the documentation
of your project, you always need an overview of the system you’re building.

Figure 6. Project Persistor: the big picture of the multi-layered framework architecture

Application Layer

Object Layer

inactivependingactive

Versioning

Database Access

Agile documentation.book Page 52 Wednesday, June 11, 2003 11:11 AM

Experience Reports 53

Project Persistor provides a good example. In this project the team produced
a specification, a design concept, a usage concept and test cases. Apart from
the usage concept, which was heavily used by the framework users, the
information that received most attention was the framework’s ‘big picture’
that was presented within the design document. The big picture was essen-
tially a diagram that showed the multi-tier architecture, demonstrated the
database access and explained the different object states. It is shown in
Figure 6. The team used this diagram a lot when they defined the frame-
work’s architecture, and used it to communicate the architecture to the other
teams.

Project Vista also relied on a big picture document a lot – actually this project
lived on THE BIG PICTURE. The big picture here was a diagram that outlined the
organisation’s application landscape, as shown in Figure 7. The diagram itself
doesn’t contain much detail. For example, the interfaces between the systems
aren’t properly specified. Yet this diagram was used in so many discussions
and conjured up so many good ideas that the project would not have been
the same without it.

Project Webber (see page 56) is yet another example of how important THE

BIG PICTURE can be. The goal of this fairly small project was to set up a Web
site, and the customer was much concerned with the design of the site map.

Project Vista: discussing the application landscape
Analysing the application landscape involved talking to many people, as well as browsing
through existing documentation. It turned out that some of the system interfaces were doc-
umented in detail, while others weren’t documented at all. However, the main problem was
that nobody knew exactly what relationships existed between the systems. It was even dif-
ficult to get a complete list of all systems involved. An overview was much missed.

One of the main results of this project was the overview diagram of the application land-
scape given in Figure 7, in which boxes represent the systems and arrows represent the
various kinds of relationships between these systems. This big picture diagram was used
many times to get a discussion started. It got the customer ‘hooked’ immediately. Many
people looked at it, made additions and corrections, and so provided a lot of valuable
insight. The diagram was updated several times during the project with every step forward
the system analysis made.

An entirely different document was devoted to the technological risks that the project had
identified. The risks were judged with respect to their relevance as well as their probability.

Agile documentation.book Page 53 Wednesday, June 11, 2003 11:11 AM

54 Finding the Right Topics

Figure 7. Project Vista: the application landscape

Access Control

LDAP

Account
Management

Commissions

Sales

Sales Partners

Customers

RES Customers VITA Customers

RES
(Property Insurance)

Customers

Contracts

VITA
(Life Insurance)

Contracts

Payment

Payment

Statistics

Life Insurance

Automobile

Customers

Payment

Bookkeeping Controlling Human Resources

Bank

Customer

replication

updates

Agile documentation.book Page 54 Wednesday, June 11, 2003 11:11 AM

Experience Reports 55

As a consequence, the diagram that gave an overview of the site map became
the most important document (Figure 8).

Project OpenDoors shows the problems that arise from not having a ‘big
picture’ document. In this project the team produced quite comprehensive
documentation on the portal they developed, some of which was useful and
some of which wasn’t. As there was no document that described the portal’s
overall architecture, obtaining an overview was difficult, and inconsistent
views of the overall architecture emerged.

These examples not only show that big picture documents are important,
they also demonstrate why big picture documents are so important. Big
picture documents often build a bridge between written documentation and
face-to-face communication. They attract the readers’ attention and invite
them to ask team members for more detailed information.

Project OpenDoors: communicating the design
As this project involved several teams, a certain degree of documentation was necessary to
manage the communication between these teams. Nevertheless, little documentation was
produced for the specification of the web portal. The reason was that the specification was
done when the team was still small, and that people from both the software company and
the customer were on that team.

When it came to implementing the design, however, more people were involved and docu-
mentation of the design became necessary. Unfortunately this led to a number of overlap-
ping design documents, which, at least in places, offered conflicting views. The project
documentation was rather confusing at this point. The individual teams had provided
design documents that described the individual subsystems, but there was no description of
the overall architecture that would hold all parts together. Moreover, the design documents
included a number of details that would soon be outdated due to changed requirements.

The documentation mirrored the actual design. The individual designs of the subsystems
had gone separate ways, and after a while it became difficult to integrate them into a com-
mon architecture. At that point the project decided to consolidate the architecture. This was
accompanied by writing an architecture document that explained how the different subsys-
tems were to collaborate to form a web portal. This document referenced some of the ear-
lier design documents for details, but profited a lot from the fact that it could do without
fast-changing details itself.

Agile documentation.book Page 55 Wednesday, June 11, 2003 11:11 AM

56 Finding the Right Topics

Project Webber: a long-lived diagram
At project kick-off the team and the customer met in a small workshop session to discuss
the contents and the structure of the Web site. It turned out that the site map was supposed
to mirror the hierarchical structure of the customer’s organisation. As a result the team pro-
vided a diagram that gave an overview of the intended structure (Figure 8). This diagram
became the central part of the specification. This intentionally ignored details such as the
layout of the individual web pages or the full list of hyperlinks that had to be included, as
these details would change frequently. In addition, only a small concept paper was pro-
duced that described how to configure the web server and how to integrate content into
the Web site.

The diagram served its purpose well. It was used throughout several discussions. After the
consultancy project finished the customer still used this diagram for the further develop-
ment of their Web site.

Figure 8. Project Webber: the site map

Committees
Regional
Groups

Publications Events

Presidents &
Vice Presidents

Northeast
(Berlin)

Journals Meetings

Home page

Board North
(Hamburg)

Conference
Proceedings

Conferences

Special Interest
Groups (SIGs)

West
(Bonn)

Professional
Services

Middle
(Frankfurt)

South
(Munich)

Agile documentation.book Page 56 Wednesday, June 11, 2003 11:11 AM

Experience Reports 57

Projects Persistor, Vista and Webber give powerful evidence of the fact that
written documentation and face-to-face communication aren’t opposed to
each other. The same phenomenon can be observed in other projects as well.

Credibility My third observation is that the SEPARATION OF DESCRIPTION AND EVALUATION

does a lot of good, although many people aren’t very aware of this principle.
Project Vista, for example, described the application landscape and the archi-
tectural risks separately. Project Contentis made a clear separation between
the requirements and the actual recommendation of a tool. Both projects
gained credibility in this way.

Preserving
the
Knowledge

Finally, I’d like to stress once more the importance of keeping a FOCUS ON

LONG-TERM RELEVANCE. During the review of many projects I noticed the
importance of documents that describe things that matter in the long term,
especially the DESIGN RATIONALE. Two projects demonstrate this importance
particularly well.

Project Contentis: requirements and recommendation
The team began with an analysis of how the customer would like to use a content manage-
ment system. The team interviewed the customer, the customer responded, the team
pinned down what they had understood, and the customer reviewed what had been writ-
ten. What emerged was a sufficiently accurate understanding of the future processes. From
this understanding the team derived a list of requirements for the content management sys-
tem.

Next, the team contacted several vendors and asked them to run workshops in which they
should demonstrate how their systems worked. They were given the requirements docu-
ment so they could prepare for the workshops. They were also given a description of a
concrete use case – the web newsletter the customer wanted to implement. In the work-
shops the vendors demonstrated how the newsletter could be implemented with their sys-
tems, and to which degree their systems fulfilled the requirements.

The team concluded the project with an evaluation document that mirrored how the team
felt the different products on the market matched the requirements. The team provided
both: a requirements document, clearly objective, following a thorough analysis, and an
evaluation document, influenced by the impressions from the workshops.

It was clear that the recommendation made in the evaluation document included personal
views. Ultimately, it was the customer who decided which system they were going to use.

Agile documentation.book Page 57 Wednesday, June 11, 2003 11:11 AM

58 Finding the Right Topics

In the case of Project Persistor, the DESIGN RATIONALE was exactly what was
missing from the design concept. The consequence was that the design
concept turned out to be less useful as it could have been, and the team
experienced significant trouble during the framework’s maintenance that
could have been avoided.

Project FlexiCar was more successful at capturing the DESIGN RATIONALE. The
design document outlined why the particular design had been chosen,
named the pros and cons of several design alternatives, and used REALISTIC

EXAMPLES to explain these decisions. This was a precondition for the soft-
ware’s longevity, and contributed much to the project’s success.

Project Persistor: difficulties with changed requirements
Two years after the first release of the data access layer framework, the implementation of
the object versioning mechanism had to be changed due to new requirements, and in order
to increase the framework’s time performance. Only a few people from the original team
were still on the project, and they weren’t familiar with the pros and cons of the various
design alternatives the team had evaluated two years previously.

This was the moment when the design concept was consulted. Unfortunately, it gave little
information on the motivation behind the actual design. It did describe the principles of the
design that had been chosen, but it didn’t mention the reasons, nor why any alternative
designs had been rejected. A good degree of reverse engineering became necessary to
work out what alternatives existed and what the various trade-offs were. Had the rationale
behind the original design been documented, the team would have been able to react to
the new requirements much more quickly.

Project FlexiCar: managing the design responsibility
The lead architect had produced a design document that, over the years, was heavily used.
First, it represented an ideal starting point for new team members to learn about the sys-
tem’s architecture. The document didn’t just describe the system, but also explained the
motivation for the design decisions. For example, the document explained why an applica-
tion server was used and why bean-managed persistence had been given preference over
container-managed persistence with the EJBs (Enterprise Java Beans), and so on.

Agile documentation.book Page 58 Wednesday, June 11, 2003 11:11 AM

Experience Reports 59

Second, when the project reached its end, the team was reduced and software engineers
from the customer were to maintain the system. These software engineers had been on the
project, so they already knew a lot about the architecture, although they hadn’t invented it.
The design document, however, allowed them to understand the motivation behind design
decisions made one or two years before. The fact that such a design document was availa-
ble made it easier for them to accept responsibility for system maintenance and possible
future extensions.

Agile documentation.book Page 59 Wednesday, June 11, 2003 11:11 AM

Agile documentation.book Page 60 Wednesday, June 11, 2003 11:11 AM

2 Structuring Individual
Documents

Voluminous documentation is part of the problem, not part of the solution.

Tom DeMarco, Timothy Lister (DeMarco Lister 1987)

Have you ever looked for something in a document and been unable to find
it, even though you knew you had the right document? You probably have –
this problem is common enough.

In most cases, voluminous documentation isn’t exactly a service to readers.
Despite the intention to provide readers with comprehensive information,
voluminous documentation often veils knowledge when it should instead
convey it.

Unfortunately, project documents are sometimes quite lengthy and poorly
organised. If readers are faced with such documents, it may be ages before
they find the information they’re looking for.

At some point they just give up. Frustrated with going through a document
over and over again, they resort to other ways of obtaining the same informa-
tion, or decide to try to get by without it.

This is the moment at which a document has ultimately failed to serve its pur-
pose. Such a document is a waste of time, both for those who wrote it and for
those who must read it.

Before I present the patterns that address this problem, let’s do a little exper-
iment. I’d like to ask you to look at the excerpts from project documents
given in Figure 9 and Figure 10, to see which you prefer.

Agile documentation.book Page 61 Wednesday, June 11, 2003 11:11 AM

62 Structuring Individual Documents

These two documents look quite different, although they contain the same
information. Their appearance and structure couldn’t be more different,
though. The first excerpt consists of a few paragraphs, while the second
features stronger structural elements and a diagram for illustration.

Interestingly, the second excerpt is longer than the first one. But it isn’t as
dense, and due to its improved structure has less of a voluminous feel.

Figure 9. Excerpt from a project document

Deployment Processes for Web Content

There are essentially two different ways to deploy content to the web: one for editorial
changes, and the other for structural changes. Editorial changes are made by editors
and are hot-deployed to the web. Structural changes influence the content’s
programming, such as Java code within JSPs, and undergo testing before they are
released.

Web content is stored and edited in a content management system (CMS). In the
following, we explain in more detail how the two deployment processes from the CMS
to the web look like.

To make editorial changes, an editor adds or updates content in the CMS. Once this is
done, an editor-in-chief reviews and publishes the content. Publishing means that the
editor-in-chief calls a function offered by the CMS, which results in the new or
modified content being deployed directly to the web server. The web server need not
be restarted.

Structural changes are performed by a programmer who makes changes to the JSP
programming within the templates used in the CMS. Once these changes are finished,
the programmer calls a function that exports the content from the CMS into a file
system structure known as the transfer area. Next, the programmer invokes a process
that transfers the contents onto a test server. The programmer then tests the changes
with a web server that runs on the test machine. Programming and testing are
repeated until the tests are successful. The changes are now ready to be published to
the web. To do this, a web server administrator stops the web server process, transfers
the modified content from the test machine to the web server, and re-starts the web
server process.

Agile documentation.book Page 62 Wednesday, June 11, 2003 11:11 AM

63

Figure 10. Excerpt from a project document, organised differently

Deployment Processes for Web Content

There are essentially two different ways to deploy content to the web: one for editorial
changes, and the other for structural changes. Editorial changes are made by editors
and are hot-deployed to the web. Structural changes influence the content’s
programming, such as Java code within JSPs, and undergo testing before they are
released.

The following diagram explains which systems are involved.

Editorial changes

1. An editor adds or updates content in the content management system (CMS).

2. An editor-in-chief reviews and publishes the content. Upon calling a function
offered by the CMS, the new or modified content is deployed directly to the web
server. The web server need not be restarted.

Structural changes

1. A programmer makes changes to the JSP programming within the templates used
in the CMS.

2. Once the changes are finished, the programmer calls a function that exports the
content from the CMS into a file system structure known as the transfer area.

3. The programmer invokes a process that transfers the contents onto the test server.

4. The programmer tests the changes with a web server that runs on the test
machine.

5. Steps 1 to 4 are repeated until the tests are successful. The changes are now ready
to be published to the web.

6. A web server administrator stops the web server process, transfers the modified
content from the test machine to the web server, and re-starts the web server
process.

Web Server

Test Server

CMS

Transfer Area

Export

Deploy

Transfer

Deploy

Agile documentation.book Page 63 Wednesday, June 11, 2003 11:11 AM

64 Structuring Individual Documents

Readers can access information much faster in documents that follow the
style of the second excerpt, which is taken from Project OpenDoors.

Agile documentation follows this approach and aims to produce better docu-
ments through the following techniques:

• The key idea is to provide documents with a useful structure that guides
readers through the material, thereby helping them to obtain the infor-
mation they need.

• The inclusion of meaningful diagrams can make documents a trigger for
face-to-face communication.

• A reasonable dose of meta-information informs readers about the material
they have in front of them, so that they can decide whether the material
is for them and see how it relates to other project artefacts, for example
the software that is being built.

This chapter begins with patterns that take a general look at the structure of
documents, then moves on to patterns that suggest concrete elements you
can use. Figure 11 provides an overview.

These patterns not only make documents more accessible to their readers,
they also help authors write project documents more quickly. Adding infor-
mation to a well-structured document is much easier than updating a
complex literary artefact. A useful document structure paves the way for light-
weight documents and to an agile documentation process.

Related to the way in which you structure your project documents is the
writing style you use, though it is not covered by these patterns. Generally, a
straightforward style will do your project documents good. If you’re inter-
ested in style issues, I’d like to refer you to the body of literature. English
readers will find The Elements of Style by William Strunk and E. B. White most
useful – short, precise and to the point (Strunk White 1979). German readers
might profit from Wolf Schneider’s books (Schneider 1996, 1999).

Finally, I’d like to point out that the patterns in this chapter do not prescribe
a specific writing style. Everybody has their own individual writing style, and
this is fine. Instead, these patterns offer you some suggestions on how you
can improve your documents by enhancing their structure and by making
them more accessible to your readers.

Agile documentation.book Page 64 Wednesday, June 11, 2003 11:11 AM

65

introduce
theoften uses

includes

refer to

THUMBNAIL
SKETCHES

GLOSSARY

GUIDELINES FOR
READERS

STRUCTURED
INFORMATION

JUDICIOUS
DIAGRAMS

Figure 11. Patterns for structuring individual documents

DOCUMENT
HISTORY

TRACEABLE
REFERENCES

UNAMBIGUOUS
TABLES

point out to

includes

can include

often includes

may use

may use

often includes

Agile documentation.book Page 65 Wednesday, June 11, 2003 11:11 AM

66 Structuring Individual Documents

Structured Information
Problem How can information be presented in an easily accessible way?

Forces Project documents have two types of readers. You might want to read a docu-
ment from beginning to end, or you might be an occasional reader who is
mainly interested in looking up information and who reads longer passages
only when necessary. Ideally, project documents should allow both for
sequential reading and for quick information retrieval, so serving both kinds
of readers.

Robert Horn analysed written communication and found that humans can
process structured information more quickly and more reliably than unstruc-
tured information (Horn 1989). Readers can retrieve information more easily
when it is accurately classified and structured.

Experience shows that, indeed, poorly-structured documents often fail to
serve their purpose with occasional readers. Occasional readers, when they
look for specific information, are willing to browse through a document for a
while, but give up when their search proves unsuccessful and assume the
information isn’t available.

This might suggest that project documents should be organised as hypertext,
using hyperlinks to lead readers through the parts of a document that are
relevant to them. However, we must bear in mind that documents must also
allow for sequential reading, and that hypertext is counter-intuitive to reading
from beginning to end. Enhancing a sequential text with a rich structure
springs to mind. But to which degree should a document be structured?

A prominent psychological study gives us a hint. In 1956, the psychologist
George A. Miller observed that people are generally able to identify and
memorise about seven pieces of information at one time (Miller 1956). This
observation can be applied to the overall structure of documents.4 For
example, a chapter consisting of significantly more than seven sections is
difficult to handle for occasional readers who seek to memorise the docu-
ment structure. On the other hand, a chapter consisting of significantly less
than seven sections seems to be poorly structured. The same applies to the

4. Miller’s rule of seven has often been misinterpreted and misused. The sidebar on page 67 explains
why it can indeed be applied to the structure of project documents, as far as making documents
accessible to occasional readers is concerned.

Agile documentation.book Page 66 Wednesday, June 11, 2003 11:11 AM

Structured Information 67

Sidebar: the magical number seven
George A. Miller’s ground-breaking paper from 1956, ‘The magical number seven, plus or
minus two: Some limits on our capacity for processing information’ (Miller 1956), has been
much referenced in the literature on both communication sciences and computer science.

Miller conducted a number of experiments that tested the short-term memory of the human
brain. The experiments were based on a discrete set of stimuli in a linear, that is one-
dimensional, order such as points on a line, pitches or loudnesses. People had to identify a
randomly chosen stimulus.

The ratio of successful tests vs. the overall number of tests gets smaller as the set of stimuli
gets larger. Miller observed that around a total of seven stimuli, the chances of accurate
identification sink dramatically. This observation was independent of the type of stimulus –
visual, acoustic or other.

Miller concluded that seven represents an upper limit on the human capacity for processing
information, and claims of the number seven that there is ‘some pattern governing its
appearance’.

It is important to understand that this limit of seven applies:

• When the stimuli are in linear order, and

• When individual stimuli need to be identified

Miller’s rule therefore doesn’t say that a novel shouldn’t have more than seven chapters.
True, the chapters of a novel are in linear order, but why would someone want to identify
an individual chapter?

Miller’s rule doesn’t apply to Web sites either, in the sense that a Web site shouldn’t have
more than seven pages. Users might have to identify an individual page from an entire site
in order to retrieve some particular information. But then, Web sites aren’t organised in a
one-dimensional way.

Miller’s rule does apply to typical documents from software projects. Because such docu-
ments are structured into chapters, sections and so on, they are organised in a one-dimen-
sional order. And while some people read a document from beginning to end, occasional
readers browse a document, read something here, and look for some other information
somewhere else. Occasional readers can familiarise themselves with a document much
more easily if the document structure – its chapters and sections – meets Miller’s ‘Rule of
Seven’.

Agile documentation.book Page 67 Wednesday, June 11, 2003 11:11 AM

68 Structuring Individual Documents

number of chapters in the entire document and the number of subsections to
a section.

However, the rule of seven does not say anything about how deeply informa-
tion should be structured. Chapters, sections and subsections are fairly
normal, but what about sub-subsections? There is no general limit to the
depth of structured documents, but it seems that most readers prefer docu-
ments to be structured no more than three levels deep.

Solution Most project documents are best organised as sequential yet well-struc-
tured text. This begins with well-chosen chapters and sections, but may
well extend to using textual building blocks consistently throughout a
document.

Let’s take a closer look at what this means.

• The first step is to organise documents with meaningful chapters, sections
and perhaps subsections. Given such a structure, readers can access infor-
mation in a document much more easily than if the structure was missing.
The structure is most effective if it follows Miller’s rule of seven: about
seven chapters to a document, about seven sections to a chapter and so
on.

• You can enhance the structure of your documents by taking a second
step. Figure 12 illustrates a page that could be taken from a design
document – a section that consists of five building blocks. What could
these building blocks represent? For the sake of the argument, let’s
assume that the page describes a class, and that the building blocks
represent the class name, an introductory text, a class diagram, an
interface specification and a message sequence chart. You could then use
sections that are structured in this way repeatedly all over the document,
describing all classes consistently. A consistent structure for a class
description is of course just one example, but a similar structure could be
equally useful in many other kinds of documents.

Whether structuring sections into building blocks makes sense depends on
the actual document, or whether a clear structure of chapters and sections is
all you can, or want to, achieve. Either way, this pattern allows you to create
a well-structured and evenly-balanced document.

Discussion For a quick example, look back to Figure 9 and Figure 10. Figure 10 presents
structured information, Figure 9 doesn’t. The structure is exactly what makes

Agile documentation.book Page 68 Wednesday, June 11, 2003 11:11 AM

Structured Information 69

the difference between the two documents, and it is clear that the structure
adds to the readability displayed by Figure 10.

A prominent example of structured information is CRC cards (Beck
Cunningham 1989). CRC cards provide a common structure to describe the
responsibilities of the classes involved in a design. The consistent structure of
the CRC cards makes CRC cards quick to follow and convenient to work with.

The pattern form used in this book is another example of structured informa-
tion. Each pattern consists of five building blocks: its title, the problem, the
forces, the solution and the discussion. The structure makes it easy for
readers to identify which part of the pattern holds which type of information.
Tags such as problem, forces, solution and discussion represent the meta-
information that allows you, the reader, to classify the information that this
book has in store for you.

Figure 12. Structured information – a section consisting of five building blocks

Agile documentation.book Page 69 Wednesday, June 11, 2003 11:11 AM

70 Structuring Individual Documents

An important idea behind structuring information is that the use of diagrams
and tables can make a document’s structure more visible. This visibility helps
readers perceive the contents of a document. Figure 12 illustrates this with
two building blocks consisting of a diagram, and Figure 10 gives a concrete
example. In general, JUDICIOUS DIAGRAMS can provide excellent overviews,
while UNAMBIGUOUS TABLES present systematic information. In addition, you
can enhance the structure of your documents by means of layout and typog-
raphy, especially with CAREFUL USE OF TYPE VARIATIONS and through CAREFUL

RULING AND SHADING.

All these ideas about structuring documents beg the question of which
sections and subsections you actually need. Naturally, there is no general
answer to this question, but there are several patterns that address this issue.
When you set up the overall structure of a document, be sure to include
GUIDELINES FOR READERS and a DOCUMENT HISTORY. Often you’ll need a GLOS-

SARY, as well as a section with TRACEABLE REFERENCES to other documents.
When it comes to more fine-grained structuring, THUMBNAIL SKETCHES added to
the sections of your document give quicker access for occasional readers.

A final remark on the rule of seven. When you structure a document, you
should always keep the overall principle of presenting FOCUSED INFORMATION

in the back of your mind. There is no point in setting up seven chapters if
you don’t have enough material for seven chapters. Creating a chapter or a
section is sensible only when you can define its focus. So take the rule of
seven with a grain of salt.5

Judicious Diagrams
Problem How can authors provide an overview of structures and processes in a

convenient way?

Forces Structures and processes play an important role in software engineering. The
structure of a software system describes how the system is organised and
how it is composed from smaller parts. Processes describe the dynamic side
of software – interaction and state-driven behaviour, among other things.

5. For example, the number of chapters in this book is at the lower end of the range that the rule of
seven suggests, while the number of patterns in each chapter tends to be at (or even a little beyond)
the upper end.

Agile documentation.book Page 70 Wednesday, June 11, 2003 11:11 AM

Judicious Diagrams 71

If we look at common modelling techniques, we see that diagrams are
frequently used to describe structures and processes. UML, for example, has
class diagrams, message sequence diagrams, use case diagrams and others
(Rumbaugh Jacobsen Booch 1998, Fowler 2000).

This is not really surprising – we all know that one picture can be worth
more than a thousand words. Diagrams speak to our intuition.

There is also scientific evidence that diagrams help readers perceive informa-
tion. For example, Edward Tufte’s books on the visual representation of
information give an impressive account (Tufte 1997, 2001).

Moreover, there is a subtle psychological reason why diagrams are sometimes
better suited for explaining material to readers. Diagrams allow us to illustrate
information in a two-dimensional way, which increases its comprehensibility
(Miller 1956).

There are more points in favour of diagrams. Readers tend to get bored with
long, monotonous texts. Texts that include diagrams are much less monoto-
nous. Diagrams serve as eye-catchers that quickly attract readers, and also
help readers memorise information. Readers often associate a text with the
included diagrams, so that when they browse the text in search of specific
information a while later, the diagrams give them orientation (Tufte 1997,
2001).

Yet diagrams lack the nuances that language offers. Unless diagrams are very
complicated, they contain less detail than text. Complicated diagrams,
however, lose much of the charm that make simple, ‘in-your-face’ diagrams
appeal to us.

This leaves us in the dilemma that diagrams alone, however valuable they
may be, cannot provide comprehensive information, but often leave detailed
questions unanswered.

Solution Diagrams can provide excellent overviews, while an accompanying
text explains details to the extent that is necessary.

Good diagrams complement the text. A diagram often describes a whole and
its parts, as well as the relationships and dependencies that hold between the
parts. The surrounding text can refer to the diagram and can dig deeper into
the subject matter.

Agile documentation.book Page 71 Wednesday, June 11, 2003 11:11 AM

72 Structuring Individual Documents

There is a wide range of things that can be described very well through
diagrams. The following list isn’t complete, but gives you a good idea of the
different kinds of diagrams, some of which are well known from UML
(Rumbaugh Jacobsen Booch 1998, Fowler 2000):

• Architecture overviews

• Class diagrams

• Interaction diagrams

• Activity diagrams

• State diagrams

• Deployment diagrams

Of course, you shouldn’t clutter your documents with unnecessary diagrams.
If a diagram isn’t meaningful, go without it. But whenever you write a docu-
ment, keep asking yourself whether there is some information that would be
better expressed visually.

The best diagrams are often those that are clear and simple. Ideally, a
diagram uses only a fairly small number of graphical elements, which, if
necessary, should be explained in a legend. Sometimes even a perfectly
informal whiteboard drawing captured by a digital camera makes an excel-
lent diagram (Cockburn 2001, Ambler 2002).

Discussion Diagrams are prominent in good documentation anyway, but they are partic-
ularly important in an agile context. Agile documentation gives preference to
communicating THE BIG PICTURE over writing down long lists of details, so a
diagram is often the method of choice. Diagrams can get an idea across,
diagrams can get a discussion started, diagrams promote communication.

Because diagrams are such good eye-catchers, they can increase the effi-
ciency of STRUCTURED INFORMATION. If you choose to organise your document
with the help of a distinct structure, the inclusion of diagrams can turn out to
be helpful, as Figure 13 illustrates.

The GUIDELINES FOR READERS can almost always make good use of a diagram
to give an overview and to explain how the sections of a document relate to
each other. In a similar vein, but on a larger scale, a project’s introductory
document can use a diagram to give an overview of the entire documentation
and to explain how individual documents relate to each other. In other
words, a diagram can visualise the DOCUMENT LANDSCAPE.

Agile documentation.book Page 72 Wednesday, June 11, 2003 11:11 AM

Unambiguous Tables 73

Unambiguous Tables
Problem How can authors present systematic information in a precise way?

Forces Systematic information is common in software projects. In a world where
analytical thinking plays a major role, systematic information becomes an
essential tool of the trade.

Think of all the lists you keep: the list of all modules of a system, of all inter-
face methods, of all error codes, of all data types, of all work packages, just to
name a few. More examples of systematic information are also found in many
projects: classification schemes, steps in a process, mappings and so on.

Such systematic information is often subject to documentation. Team
members, however, aren’t interested in reading a long text when all they
want to know could easily be presented as a list entry.

Using tables to present systematic information is the obvious choice. Tables
are clear and direct. Similar to diagrams, tables profit from the psychological
advantage that they are two-dimensional. The two dimensions are repre-
sented by the rows and columns, which allow for arrangements that
sequential text cannot render.

Figure 13. Text mixed with a diagram

Agile documentation.book Page 73 Wednesday, June 11, 2003 11:11 AM

74 Structuring Individual Documents

Similarly to diagrams, tables can make a text less monotonous. If only for the
typographical variety, tables can attract the reader’s attention easily.

However, tables also have a disadvantage that they share with diagrams.
Tables offer only little linguistic expressiveness. If material requires an argu-
ment for its explanation, more than can fit into a table cell, a table alone
cannot be sufficient.

Solution Tables offer a compact format for the concise and unambiguous
presentation of information.

The following list doesn’t claim completeness, but gives you a few examples
of systematic materials that can very well be presented in tables:

• Interface specifications (function name, signature, abstract, error codes)

• Lists of classes, methods, data types, etc.

• Error handling tables (error code, reaction)

• Comparison of the pros and cons of a design option

• Different steps to be taken in a process or an activity

• Work packages and their deadlines

The more self-contained a table is, the easier it is to understand. Ideally, the
headings for the rows and columns give the readers all the information neces-
sary to understand the table. Background information on what is presented in
the table will often have to go into the surrounding text, however.

Discussion Tables are often found in the context of STRUCTURED INFORMATION, as they add
to the document structure. Figure 14 illustrates this.

Tables can be used to implement the SEPARATION OF DESCRIPTION AND EVALUA-

TION, for example by devoting one column to observations and another to
comments, or by placing facts in a table and interpr etations in the
surrounding text.

The variety in the layout has been mentioned as one of the advantages that
tables offer. CAREFUL RULING AND SHADING allows you to produce tables that
look good from a typographical point of view.

Agile documentation.book Page 74 Wednesday, June 11, 2003 11:11 AM

Guidelines for Readers 75

Guidelines for Readers
Problem How can potential readers be informed whether they should read a

document, and if so, on which parts they should focus?

Forces People who are involved in a software project are typically occupying
different roles that have different information needs. A document can be
important for someone and completely irrelevant to someone else.

Moreover, several people can read the same document with different inten-
tions. Some readers might only want to get an overview of the topic, others
might be looking for some specific detail, while a third group might want to
read the document in its entirety.

In addition, some documents require that readers have read other documents
previously, or otherwise be familiar with certain material. Potential readers
therefore need to be informed of the prerequisites for understanding a
document.

There might also be dependencies within the document itself. The chapters
of some documents are relatively independent of each other, and readers can
concentrate on the chapters in which they are interested. But sometimes

Figure 14. A clearly-structured table between surrounding text

Agile documentation.book Page 75 Wednesday, June 11, 2003 11:11 AM

76 Structuring Individual Documents

readers need to go through one chapter before they’re able to understand
another.

Solution Some brief guidelines at the beginning of each document can inform
potential readers of the purpose the document serves and explain how
different groups of readers should approach the document.

The guidelines must prevent readers from studying documents that don’t
contain the information they require. They must also prevent readers from
going through a complete document when only parts of it are relevant.

To do this, the guidelines must answer the following questions:

• Who should read the document?

• What is inside, and what is outside the scope of the document?

• How is the document organised?

• What are the dependencies between the different chapters of the
document? Is there a specific order in which to read the chapters?

• What are the relationships to other documents? Are there other documents
that readers are expected to have read previously?

• How can readers get a quick overview of the contents?

• Is the document complete, or does it describe a work in progress? Are
updates to be expected? If the document is an update of a former version,
which parts have changed?

Discussion However the guidelines for readers appear in detail, they are meant to
welcome the TARGET READERS to a document. They explicitly say who the
TARGET READERS are, address them, and let them know how to use the
document.

A diagram (see JUDICIOUS DIAGRAMS) is often the method of choice for
describing the overall organisation of a document, as well as the dependen-
cies between its chapters. The diagram can serve as a road map for readers
when they browse through the document to find the parts of interest.

Pointing out to the readers how they can get a quick overview is particularly
easy when the individual chapters of the document are provided with THUMB-

NAIL SKETCHES. It’s also useful to refer to the DOCUMENT HISTORY, as it informs
potential readers of the document’s status and of changes between previous
versions.

Agile documentation.book Page 76 Wednesday, June 11, 2003 11:11 AM

Thumbnail Sketches 77

Thumbnail Sketches
Problem How can readers get an overview of the topics dealt with in a

document?

Forces It is difficult for readers to find what they want in a document that contains a
lot of information. Guidelines can tell readers what to expect from the docu-
ment, but cannot say where to look for any specific detail.

A clear structure of chapters, sections and subsections makes it easier for
readers to find particular information, yet a clear structure alone may not be
sufficient to allow readers to retrieve information quickly.

Quick information retrieval is necessary, however. Ideally, readers can
browse through a document at a high level, and dig deeper whenever they
feel that some part of the document is particularly relevant to them.

Gerald Weinberg explains in The Psychology of Computer Programming: ‘…
different users of the documentation will need different levels of detail in the
information they extract. The highest level should be just sufficiently detailed
to tell the user whether or not he will be able to read the documents.’ (Wein-
berg 1998)

Solution Thumbnail sketches provide brief descriptions of the sections of a
document, including the section’s general goals, as well as its major
ideas.

A document that supplies thumbnail sketches allows for sequential reading at
different levels of detail. After reading a thumbnail sketch, readers can decide
whether they would like to go deeper or whether to move on to the next
section.

There are two ways to set up thumbnail sketches:

• You can let each section begin with some kind of abstract or summary.

• You can choose a few paragraphs from each section, though not neces-
sarily at the beginning, and use those as thumbnail sketches. Layout
techniques can be used for their identification.

Both techniques preserve the sequential order of the text, so that people can
read the document from beginning to end if they want to, while other readers
can focus on the thumbnails for a quick scan.

Agile documentation.book Page 77 Wednesday, June 11, 2003 11:11 AM

78 Structuring Individual Documents

Discussion This pattern builds upon the idea of STRUCTURED INFORMATION. When you use
a common structure consistently throughout a document, thumbnail sketches
appear repeatedly at the same place within a section, where they can easily
be identified.

This effect is strengthened by the CAREFUL USE OF TYPE VARIATIONS, for
example by the use of boldface or italics for the thumbnail sketches.

Consider this book. It uses a pattern form consistently. For each pattern, the
problem section and the first paragraph of the solution section form a thumb-
nail sketch. You can find out the main idea behind each pattern without
having to read its every detail. The boldface parts give you a first impression:
you can go deeper, but you don’t have to.

Finally, since thumbnail sketches help readers navigate through a document,
you will probably want to mention them in the GUIDELINES FOR READERS.

Traceable References
Problem How can documents be linked to each other?

Forces Each document is supposed to focus on one topic. However, no document
can be seen in isolation. There are always related topics that need to be
understood beforehand or related documents that provide additional informa-
tion. As a consequence, almost all documents must include references to
other documents.

But what happens if a referenced document isn’t available to the reader? After
all, the reader is supposed to look up that reference if more information is
required. A reference to a document that’s unavailable isn’t worth much and
could just as well be left out.

Solution A document should include references to other documents only if
readers can obtain those documents without much effort.

The following rules of thumb are useful:

• References to other documents in the same project are obviously fine.

• References to documents from other projects are fine only so long as
those documents can be distributed among the team. There shouldn’t be
any references to documents that are restricted to internal use or that
underlie a non-disclosure agreement.

Agile documentation.book Page 78 Wednesday, June 11, 2003 11:11 AM

Glossary 79

• Almost all organisations have libraries that contain the standard literature
of software engineering. References to such books and journals are easy
to follow.

• Scientific publications that aren’t readily available are a different matter.
References to such sources are often difficult to track down, and are
therefore inappropriate.

Within a project, it is useful not only to refer to a related document, but also
to point out to the readers explicitly where they can find the document.

Discussion You might ask whether references can be avoided altogether. The FOCUSED

INFORMATION pattern provides the answer. Your aim should be to produce
self-contained documents that aren’t cluttered with references to other docu-
ments. However, in order to give each document a clear focus and to avoid
large overlaps between documents, you cannot avoid references completely.

If you aren’t sure whether you should use a reference or include material, the
inclusion of THUMBNAIL SKETCHES may represent a good compromise. This
solution avoids overlaps to a large extent, although not entirely, while still
adding to the document’s self-containedness.

The appropriateness of references also depends on who the TARGET READERS

of a document are. Team members normally have access to a different set of
documents to customers, and so have team members as opposed to
managers. When referencing other documents, you need to take this into
account.

Electronic documents can use hyperlinks to reference related documents. In
this way, readers can navigate from one referenced document to the other.
This is a nice technique for documents that are intended for on-line use.
However, many project documents are intended to be printed, so hyperlinks
are only of limited use. (See also the discussion on READER-FRIENDLY MEDIA.)

Glossary
Problem How can authors make sure that readers understand the vocabulary

used in a document?

Forces Technical terms often occur in the documentation produced for a software
project. Design documents in particular cannot do without terms that are
specific to the technology used. While some technical terms more or less

Agile documentation.book Page 79 Wednesday, June 11, 2003 11:11 AM

80 Structuring Individual Documents

belong to the standard vocabulary of software engineering, readers might be
unfamiliar with others.

Moreover, many software projects use terminology that is specific to the
customer’s organisation or the application domain, and not all readers can be
expected to be familiar with it. Domain-specific terms can be a hurdle, espe-
cially to new team members.

If you explain all these terms wherever they occur, however, you scatter
explanations all over the text. This carries the additional danger that in
different places you offer slightly different explanations, which is not going to
make your documents more accurate.

Moreover, an explanation somewhere in the text is fine for people who read
the document from beginning to end, but is not really helpful for occasional
readers who browse the document in search of a definition or explanation.

Solution A glossary can explain technical terms as well as the terms specific to
the application domain.

Most project documents can profit from a glossary. The more technical docu-
ments will mainly require explanations of technical terms, while requirement
specifications rely heavily on the vocabulary of the application domain.

In a first step, setting up a glossary is easy:

• The glossary lists all specific terms relevant to the document in alpha-
betical order.

• Each entry presents a definition or explanation that is understood by the
team members, and perhaps includes a reference to further information
sources.

If a project requires several documents, and these documents have overlap-
ping glossaries, redundant effort is the consequence. To avoid this, you can
use a central glossary and reference it from project documents.

Discussion Giving definitions of domain-specific terms may not be easy. Regarding the
SPECIFICATION AS A JOINT EFFORT helps, as you can almost always obtain good
explanations from the customer.

Readers must be aware of a glossary if they are to use it. In particular, if you
use a central glossary, the fact that the glossary exists at all is not always
obvious. Mentioning the glossary in the GUIDELINES FOR READERS helps.

Agile documentation.book Page 80 Wednesday, June 11, 2003 11:11 AM

Document History 81

A large project might consider a glossary tool – essentially a small database of
technical terms and terms from the application domain – that you can use to
extract a list of those terms you need in a special context. Such a tool
manages redundancy between the glossaries of several documents. It should,
however, be chosen only if managing redundancy manually isn’t quicker.
There’s no point in using a tool if the tool doesn’t make things easier.

Document History
Problem How can confusion be avoided between versions of a document?

Forces At the beginning of a project not all the details of what needs to be docu-
mented are known. The project will evolve and will undergo change, and so
do the project documents. Documents are going to be created, updated and
extended, perhaps many times.

But even documents that are updated regularly can get out of sync with what
they describe. You cannot update documentation at the same rate as that at
which the software progresses, otherwise you would be updating the docu-
mentation on a daily basis. The consequence is that in between updates,
documentation isn’t quite up to date.

This isn’t a huge problem, as long as readers are aware that what they read
might be slightly out of date, and as long as they know that in the meantime
the software may have been developed further.

Solution A document history can explain the differences to previous versions of
a document, and can relate the document to versions of the software it
describes.

A document history is essentially a table with an entry for each new version.
It is extended as the document evolves. Each entry is typically associated with
a version number for the document, and includes the following information:

• The author of that version.

• A brief list of the changes that were made since the last version of the
document was released.

• If the document describes actual software, the version of the software to
which the document refers.

Agile documentation.book Page 81 Wednesday, June 11, 2003 11:11 AM

82 Structuring Individual Documents

This way, readers can understand how a document has evolved during the
course of a project.

Discussion Maintaining a document history only makes sense in the presence of CONTIN-

UING DOCUMENTATION. The document history is not meant as an excuse for
documents never being updated, but serves to bridge the natural lag between
versions.

The document history can be part of the GUIDELINES FOR READERS, or should
otherwise be referred to from there.

You might choose to store earlier versions of important documents in a DOCU-

MENT ARCHIVE, especially in larger projects. Some archives are capable of
adding entries to a document history automatically, though normally this is
possible only with plain text files.

Experience Reports
Let’s look at how the patterns in this chapter were applied in the document-
ation of some of our example projects.

Document
structure

I’d like to begin with the idea of STRUCTURED INFORMATION. This idea was
present in the documentation of most projects, but some documents demon-
strate the usefulness of structured information particularly well. Let’s go back
for a moment to the experiment at the beginning of this chapter. Figure 10 on
page 63 contains a page from the deployment description that Project Open-
Doors produced. Figure 9 on page 62 contains a page I mocked up to
demonstrate the difference. Figure 10 features STRUCTURED INFORMATION,
whereas Figure 9 doesn’t.

There are more examples of how adding structure makes a document more
readable. The design document from Project Navigator defines a text struc-
ture that is uniformly applied to the design description of all components.
Figure 15 shows the description of one such component. Each component
description features a brief overview statement, an interface description, a
description of the component’s internals, as well as a UML diagram. The UML
diagrams grasp the functionality of all these components: they are JUDICIOUS

DIAGRAMS.

The usage concept from Project Persistor is targeted towards the users of the
data access layer framework. The usage concept explains how each interface

Agile documentation.book Page 82 Wednesday, June 11, 2003 11:11 AM

Experience Reports 83

Figure 15. Project Navigator: structured information applied to a design document

Navigation Box
The navigation box is a user interface control that takes input from the user and adjusts
the details of the map currently under display.

The control’s visual appearance is that of a small box, with arrows symbolising the
functions for moving the displayed area, and knobs symbolising the zoom for displaying
different levels of detail. See the GUI specification for an example screenshot.

The class NavigationBox implements the interface for user interface controls.

Interface description

class NavigationBox

// This method shifts the area of the map that is currently
// under display, either upwards, downwards, to the left, or
// to the right. It takes the desired direction as a
// parameter.

public void move (unsigned short direction);

// This method changes the level of detail that is shown.
// Depending on the parameter that is passed to the method,
// the display either zooms into the map by one step, or
// zooms out.

public void zoom (boolean zoom-in);

Class diagram

<<interface>>
ControlIfc

NavigationBox

EventListener

move
zoom

Agile documentation.book Page 83 Wednesday, June 11, 2003 11:11 AM

84 Structuring Individual Documents

Figure 16. Project Persistor: a well-structured document

4.2.1 Adding an object

Preconditions:

none

Function:

The data access layer provides an initial version of a new object,
according to the entry date and the process number passed on to it as
parameters. Upon initialisation, the new object may still be incomplete;
components can be added successively. The new object’s state is
“pending”.

The key that is passed to this function as an input parameter is a logical key,
which may or may not carry application-specific information. It is normally
generated by a specific module that all applications can use.

In case the specified key has been used previously for adding an object, an error
code is returned.

The process number is generated by the workflow management system.

Return Codes:

addObject ()

IN objectType : DT-TYPE
IN fullKey : DT-KEY
IN entryDate : DT-DATE
IN processNumber : DT-NR

RC-OK The object has been entered and initialised
correctly.

RC-KEY The specified logical key isn't available.

RC-DB The database is not available.

RC-PARAMETER The entry date or the process number are illegal.

Agile documentation.book Page 84 Wednesday, June 11, 2003 11:11 AM

Experience Reports 85

method can be applied. Figure 16 shows the description of one such method.
The interface description consists of building blocks for the signature, the list
of parameters, preconditions, a description, and the error codes. Throughout
all method descriptions, the signature, the list of parameters and the first
paragraph of the description form THUMBNAIL SKETCHES for each function. The
error codes for each function are presented using UNAMBIGUOUS TABLES.

Useful
elements

Let’s take a closer look at the usage concept from Project Persistor, as it
features several of the useful elements the patterns in this chapter suggest
should be included in a document. Figure 17 shows the DOCUMENT HISTORY

taken from one of the first pages of the document. It explains the document
status, the changes that have been made to the document in the past, who
made these changes and why.

Figure 17. Project Persistor: a document history

History

Version Status Date Authors Remark

0.1 draft 1999-Jun-19 A. Rüping First draft

• architectural overview

• using the interface

0.2 draft 1999-Jun-24 A. Rüping A few small changes

0.3 draft 1999-Jun-30 A. Rüping Changes after internal review:

• state model added

• example on versioning
added

0.4 draft 1999-Aug-06 A. Rüping A few minor changes:

• API definitions

• logical transactions

1.0 released 1999-Aug-30 A. Rüping Changes after external review

2.0 released 1999-Oct-22 A. Rüping Update reflecting the release of
the new framework version

Agile documentation.book Page 85 Wednesday, June 11, 2003 11:11 AM

86 Structuring Individual Documents

Figure 18 shows the GUIDELINES FOR READERS, which, in the original document,
appear at the beginning of the introduction. They directly address the readers
through a few introductory words. Although they are quite short, they make
clear who should read the document and how the document is organised.

Figure 19 shows an excerpt from the GLOSSARY that appears in an appendix at
the end of the usage concept. It briefly explains the special terms used in the
document, including both technical terms and vocabulary specific to the
application domain.

Finally, Figure 20 shows the list of references from the usage document. They
are TRACEABLE REFERENCES, as team members can easily obtain the information

Figure 18. Project Persistor: guidelines for readers

Guidelines for Readers

This document describes the usage of the data access layer named XXXX that was
developed in the XXX project performed jointly by XXX and sd&m. The document is
meant to be used by team members of all XXXXXX projects.

The data access layer is to be used by all applications currently under development. At
this point, these are the new health insurance system and the new customer system.
More projects are expected to start soon; they will use the data access layer too.

To allow the data access layer to be used by several projects, it has been designed as a
framework. This framework can (and must) be configured to reflect the specifics of a
project that uses it, in particular its data model.

This document describes how to configure and to use the data access layer framework
(release 4.0 / 2000-June-28). We begin with a sketch of the basic concepts the data
access layer uses, and then briefly describe its architecture. The main part of this
document is an API description which explains each function separately. Guidelines
for the configuration follow. We conclude with a few hints that explain how to use the
framework along with some examples from the health insurance project.

Agile documentation.book Page 86 Wednesday, June 11, 2003 11:11 AM

Experience Reports 87

Figure 19. Project Persistor: a glossary

Glossary

state The data access layer allows objects to be in different states: active,
pending, and inactive. In the application domain these states match
the modes in which an insurance contract can be: valid, under
revision, offer.

logical
transaction

A logical transaction consists of the entirety of steps to be performed
together: an atomic use case. If one step leads to an error or is
interrupted, the previous steps need do be undone.

database
transaction

A database transaction consists of a sequence of write / update / delete
commands that are either committed to the database (commit) or
ignored (rollback). This is the mechanism that a database offers to
implement logical transactions. In the data access layer, logical
transaction may consist of several database transactions. The data
access layer uses caching mechanisms to make sure a logical rollback
is possible.

Figure 20. Project Persistor: list of references

References

[*MS] Management Summary, "~/architecture/summary.doc".

[*RS] Requirement Specification, "~/specification/requirements.doc".

[*AD] Architecture & Design Overview, "~/architecture/architecture+design.doc".

[GoF] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. “Design
Patterns”, Addison-Wesley, 1995.

Agile documentation.book Page 87 Wednesday, June 11, 2003 11:11 AM

88 Structuring Individual Documents

to which they refer: a couple of other project documents and a readily avail-
able book on software design.

Diagrams
and tables

In all the project documents we have looked at in the experience reports, we
have already come across several diagrams that proved extremely useful. THE

BIG PICTURE documents described in Figure 6, Figure 7 and Figure 8 (pages
52–56) all make use of JUDICIOUS DIAGRAMS, and so did the design concept
from Project Navigator (Figure 15). I think it’s easy for you to imagine many
more examples – you have probably come across many useful diagrams in
your everyday practice.

Let me give you just one more example. Figure 21 is again taken from Project
Persistor, and while the details of what the diagrams describe are irrelevant,
the project report explains why the diagrams were so useful to the team.

Not only diagrams add structure to a text and make it less monotonous – the
same is true for tables. Again, I’m sure you can think of many examples, so
I’ll only present two here.

Figure 22 shows an excerpt from a table that lists the requirements placed on
the Web content management system in Project Contentis. Separate columns
are reserved for unique numbering, the actual requirements and their priori-
ties. Without a table, the assignment of priorities to requirements would not
have been nearly as clear as it is here.

Figure 23 shows an excerpt from the table illustrating the characteristics of
various insurance products that was used to document the re-engineering

Project Persistor: getting the idea across with a diagram
Two-dimensional history is a concept common in financial information systems that sepa-
rates the moment in which a value is entered into a system from the moment that value
becomes effective. The concept features some algorithmic complexity, and explaining it in
words is an intricate matter, but diagrams help a lot. Two axes represent effectiveness on
one hand and known-at time on the other (Figure 21). Time intervals appear as bounded
areas on a plane. Because the framework used two-dimensional history a lot, the usage
concept included several diagrams that explained the concept. After reading the usage con-
cept, someone from the customer’s team said: ‘I never quite understood what two-dimen-
sional history is all about. It’s so incredibly abstract. But now that I have seen these
diagrams, I’ve finally understood.’ Several other team members expressed similar experi-
ences.

Agile documentation.book Page 88 Wednesday, June 11, 2003 11:11 AM

Experience Reports 89

effort in Project Extricate. It is clear that you, as reader of this book, may not
understand the contents of this table, but I think you can gauge how impor-
tant it was to the project. For all insurance products, the table clearly states
their properties and demonstrates why we speak of UNAMBIGUOUS TABLES. The
table was of great use to the project team, as the project report explains.

Figure 21. Project Persistor: diagrams explaining a special kind of versioning

known-
at time

premium modified

child
added

original contract

effective-
at time

child added +
premium modified

2001-
Jan

2001-
Feb

2001-
Mar

2001-
Apr

2001-
Jan

2001-
Feb

2001-
Mar

2001-
-Apr

child added +
premium modified

contract
reinstated2001-

Aprknown-
at time

premium modified

child
added

original contract

effective-
at time

child added +
premium modified

2001-
Jan

2001-
Feb

2001-
Mar

2001-
Apr

2001-
Jan

2001-
Feb

2001-
Mar

2001-
-Apr

child added +
premium modified

2001-
Aprknown-

at time

premium modified

child
added

original contract

effective-
at time

child added +
premium modified

2001-
Jan

2001-
Feb

2001-
Mar

2001-
Apr

2001-
Jan

2001-
Feb

2001-
Mar

2001-
-Apr

2001-
Apr

Agile documentation.book Page 89 Wednesday, June 11, 2003 11:11 AM

90 Structuring Individual Documents

Figure 22. Project Contentis: a table used to prioritise software requirements

1.3.2 Is there support for different publication processes? A

1.3.3 Which publication channels are supported? B

1.4 Templates

1.4.1 Is there a template editor? A

1.4.2 Can templates be organised in a hierarchical fashion? C

1.4.3 Can templates inherit features from parent templates? C

1.4.4 Is the number of templates limited? A

1.4.5 Do the templates offer support for HTML frames? B

1.4.6 Can templates include code, such as JSP? A

1.5 Import / Export

1.5.1 Which import mechanisms does the CMS provide (text, graphics,
XML)?

A

1.5.2 Which print formats (PDF etc.) can be imported? A

1.6 Versioning

1.6.1 Is there support for branching? B

Project Extricate: information condensed into one table
Specifying all insurance products and their properties to the last detail would have been
incredibly complex. It soon turned out, however, that what the team needed most was an
overview of all the products and their properties – a list or a table, something systematic. As
a consequence, the team developed a huge spreadsheet in which various kinds of proper-
ties were assigned to various kinds of insurance products.

This spreadsheet table was set up first at the beginning of the project, but was maintained
and updated for almost two years. Both developers and customers used the spreadsheet in
meetings whenever they discussed how product properties could be modelled in the new
system. There was more documentation than just this spreadsheet, documentation that pro-
vided more details, but it was the spreadsheet that was used in many discussions and was
most useful.

Agile documentation.book Page 90 Wednesday, June 11, 2003 11:11 AM

Experience Reports 91

Figure 23. Project Extricate: a table summarising insurance product properties

p
ro

d
u

ct

o
ld

 k
ey

n
ew

 k
ey

ty
p

e

su
b

ty
p

e

o
p

en
in

g
 d

at
e

cl
o

si
n

g
 d

at
e

st
at

u
s

g
en

er
at

io
n

n
u

m
b

er
 o

f
in

su
re

d
 p

er
so

n
s

su
p

p
le

m
en

t

su
p

p
le

m
en

t
p

o
ss

ib
le

su
p

p
le

m
en

t
m

an
d

at
o

ry

p
re

m
iu

m
 t

yp
e

d
yn

am
ic

s

fl
ex

ib
le

 p
re

m
iu

m

re
d

u
ce

d
 p

re
m

iu
m

fl
ex

ib
le

 t
er

m
in

at
io

n

p
o

lic
y

m
o

d
e

ch
ild

re
n

fu
n

d
s

L1S 11 0001 LFE STD 1948-01 1955-05 C 1 X N N N R N N N N I P COV
L1R 12 0002 LFE RSK 1948-01 1955-05 C 1 1 N N N R N N N N I P COV
L1F 13 0003 LFE FIX 1948-01 1955-05 C 1 1 N N N R N N N N I S COV
LG 19 0004 LFE STD 1948-01 1955-05 C 1 1 N N Y R N N Y N G P COV
L2S 21 0005 LFE STD 1955-05 1970-01 C 2 X N N N P N N N N I P COV
L2R 22 0006 LFE RSK 1955-05 1970-01 C 2 1 N N N P N N N N I P COV
L2F 23 0007 LFE FIX 1955-05 1970-01 C 2 1 N N N P N N N N I S COV
X 29 0008 LFE STD 1955-05 1970-01 C 2 1 N N Y R N N Y N G P COV
L3S 51 0009 LFE STD 1970-01 1990-10 C 3 1 N Y N P N Y N Y I P COV
L3R 52 0010 LFE RSK 1970-01 1990-10 C 3 1 N Y N P N N N N I P COV
L3F 53 0011 LFE FIX 1970-01 1990-10 C 3 1 N Y N P N N N N I P COV
L4S 61 0012 LFE STD 1990-10 O 4 1 N Y N P P Y N Y I P COV
L4R 62 0013 LFE RSK 1990-10 O 4 1 N Y N P P N N N I P COV
L4F 63 0014 LFE FIX 1990-10 O 4 1 N Y N P P N N N I P COV
LF 70 0015 LFE STD 1999-01 C 5 1 N N N R P Y N Y I P FND
P1 14 0016 PEN IMM 1948-01 1957-01 C 1 1 N N N R N N N N I P COV
P2 24 0017 PEN IMM 1957-01 1963-07 C 2 1 N N N R N N N N I P COV
P3 34 0018 PEN IMM 1963-07 1970-01 C 2 1 N N N R N N N N I P COV
P3D 36 0019 PEN DEL 1963-07 1970-01 C 2 1 N N N P N N N N I P COV
P4 54 0020 PEN IMM 1970-01 1990-10 C 3 1 N N N R N N N N I P COV
P4D 56 0021 PEN DEL 1970-01 1990-10 C 3 1 N Y N P N N N N I P COV
P5 64 0022 PEN IMM 1990-10 O 4 1 N N N R P N N N I P COV
P5D 66 0023 PEN DEL 1990-10 O 4 1 N Y N P P N N N I P COV
I1 15 0024 INV MAIN 1948-01 1952-07 C 1 1 N N N R N N N N I P COV
IG 18 0025 INV MAIN 1948-01 1952-07 C 1 1 Y N N R N N Y N G P COV
I2 25 0026 INV MAIN 1952-07 1970-01 C 2 1 N N N R N N N N I P COV
I3 55 0027 INV MAIN 1970-01 1990-10 C 3 1 N N N R N N N N I P COV
I3S 57 0028 INV SUP 1970-01 1990-10 C 3 1 N N N R N N N N I P COV
I4 65 0029 INV MAIN 1990-10 O 4 1 N N N R P N N N I P COV
I4S 67 0030 INV SUP 1990-10 O 4 1 Y N N R P N N N I P COV

Agile documentation.book Page 91 Wednesday, June 11, 2003 11:11 AM

Agile documentation.book Page 92 Wednesday, June 11, 2003 11:11 AM

3 Layout and Typography

Consistency and repetition establish pattern, which is an important aspect
of order […]. As experienced readers, we have learned to anticipate and
expect pattern.

Suzanne West (West 1990)

In a book on agile documentation, a chapter dealing with layout and
typography had better begin with an explanation. I can almost hear people
exclaim: ‘What do layout and typography have to do with an agile approach?
Do they even matter?’

Yes, they do matter, though in a rather subtle way. Most readers are blissfully
unaware of what it is that makes a document look good. There are factors
that determine the quality of the layout, and the quality of the layout has an
influence on the legibility of a document that is not to be ignored.

So what is the connection to being agile? Agile documentation suggests that
you focus on documents that are necessary, and make sure that the necessary
documents become high-quality documents. High legibility is one aspect of
that quality.

You may argue that project documents don’t require the same quality stand-
ards with respect to layout as do printed books, and this is of course correct.
In an agile project documents cannot go through a lengthy layout process:
other things are more important. Our goal must be to find a quick and easy
way to produce documents with a high standard of legibility.

Agile documentation.book Page 93 Wednesday, June 11, 2003 11:11 AM

94 Layout and Typography

Let me support the significance of layout and typography with the following
two points.

• Typography is an old art. The art of printing books dates back many
centuries, gaining momentum in 1454, when Johannes Gutenberg
invented printing using reusable letter forms. Typesetting rules have been
developed and have matured since then. People wouldn’t have spent so
much time on typography if it didn’t have any effect on legibility.

• Research underpins the significance of layout and typography. Miles
Tinker conducted endless experiments in the middle of the last century
and proved that bad typography slows down reading significantly. His
findings are summarised in his book on the Legibility of Print (Tinker
1963). A study done in 2000 revealed that typography had an influence
on the quality of proposals to a major funding agency and the percentage
of successful proposals (Berleant 2000).

Still unconvinced? Look at the pages shown in Figure 24 and Figure 25. Both
pages contain the same material. Which would you rather read? All aesthetics
aside, which page do you think allows you to receive information more
quickly and more reliably?

I think it’s clear that the second page is much more legible than the first, and
that layout and typography is what makes the difference between the two.

Fortunately, the road ahead of us on our way to a layout like that of Figure 25
isn’t too rough – it requires less work than one might at first think. We can
obtain a reasonably good layout for our project documents with quite little
effort, and this is what the patterns in this chapter are about.

There are three reasons why little effort is needed to significantly improve the
document layout:

1. A fairly small set of patterns can do a lot of good. The 80–20 rule applies:
80 percent of the advantages typography offers can be obtained by using
about 20 percent of all typographical techniques available. Following an
agile attitude, let’s focus on the patterns that describe these techniques.

2. The patterns in this chapter can easily be implemented on most word proc-
essors.

3. Not everyone in the team needs to be concerned with these patterns. It is
highly recommended that a project, or even an organisation, use DOCUMENT

Agile documentation.book Page 94 Wednesday, June 11, 2003 11:11 AM

95

Figure 24. Page layout: one variation

- 20 -

4.2.1 ADDING AN OBJECT

Preconditions:
none

Function:
The data access layer provides an initial version of a new object according to the entry
date and the process number passed on to it as parameters. Upon initialisation, the new
object may still be incomplete; components can be added successively. The new
object’s state is “pending”.
The key that is passed to this function as an input parameter is a logical key, which may
or may not carry application-specific information. It is normally generated by a specific
module that all applications can use.
In case the specified key has been used previously for adding an object, an error code is
returned.
The process number is generated by the workflow management system.

Return Codes:

4.2.2 DELETING AN OBJECT

Preconditions:
the object has previously been added

Function:

addObject ()

IN objectType : DT-TYPE
IN fullKey : DT-KEY
IN entryDate : DT-DATE
IN processNumber : DT-NR

RC-OK The object has been entered and initialised correctly.

RC-KEY The specified logical key isn't available.

RC-DB The database is not available.

RC-PARAMETER The entry date or the process number are illegal.

deleteObject ()

IN objectType : DT-TYPW
IN fullKey : DT-KEY
IN deletionDate : DT-DATE
IN processNumber : DT-NR

Agile documentation.book Page 95 Wednesday, June 11, 2003 11:11 AM

96 Layout and Typography

Figure 25. Page layout: another variation

- 20 -

4.2.1 Adding an object

Preconditions:

none

Function:

The data access layer provides an initial version of a new object
according to the entry date and the process number passed on to
it as parameters. Upon initialisation, the new object may still be
incomplete; components can be added successively. The new
object’s state is “pending”.

The key that is passed to this function as an input parameter is a logical
key, which may or may not carry application-specific information. It is
normally generated by a specific module that all applications can use.

In case the specified key has been used previously for adding an object,
an error code is returned.

The process number is generated by the workflow management system.

Return Codes:

4.2.2 Deleting an object

addObject ()

IN objectType : DT-TYPE
IN fullKey : DT-KEY
IN entryDate : DT-DATE
IN processNumber : DT-NR

RC-OK The object has been entered and initialised
correctly.

RC-KEY The specified logical key isn't available.

RC-DB The database is not available.

RC-PARAMETER The entry date or the process number are illegal.

deleteObject ()

IN objectType : DT-TYPE
IN fullKey : DT-KEY
IN deletionDate : DT-DATE
IN processNumber : DT-NR

Agile documentation.book Page 96 Wednesday, June 11, 2003 11:11 AM

97

TEMPLATES to form the basis of all project documents. Once these templates
have been designed according to the patterns on layout and typography,
the project documents inherit the attractive layout of the templates. Individ-
ual authors find elementary typesetting rules already established before
they begin to work on a document. All it then takes is a little discipline in
using the features that the word processor offers.

Figure 26 gives an overview of the patterns from which the legibility of your
project documents can profit. Reading your documents will be significantly
more comfortable. The patterns ensure that the layout is adequate, if not
perfect.

allows for

uses

can be
enriched by

combines
well with

requires

TWO TYPEFACES

TEXT ON 50% OF
A PAGE

120% LINE
SPACING

TWO ALPHABETS
PER LINE

CAREFUL USE OF
TYPE VARIATIONS

Figure 26. Patterns for layout and typography

CAREFUL RULING
AND SHADING

ADJACENT
PLACEMENT

COHERENT PAGES

can form

require

corresponds with

Agile documentation.book Page 97 Wednesday, June 11, 2003 11:11 AM

98 Layout and Typography

There are, of course, many more typographical rules, and interested readers
are invited to consult the rich body of literature on typography for more
guidelines (Gulbins Kahrmann 1992, Tinker 1963, West 1990). But to obtain
project documents that are reasonably well designed and which offer a high
degree of legibility, the patterns in this chapter, combined with a good dose
of common sense, will suffice.

One final introductory word: the patterns in this chapter apply to documents
that are going to be printed, but they don’t necessarily apply to on-line docu-
mentation. We’ll have a discussion about what READER-FRIENDLY MEDIA are in
Chapter 4, which raises the issue of print vs. on-line document delivery. Some
guidelines for setting up on-line documents are given there.

Text on 50% of a Page
Problem How much space on a page should be devoted to text?

Forces The page layout should be aesthetic if it is to be pleasing to readers. The
aesthetics of the page geometry are largely influenced by the size of the so-
called ‘live area’ – the area in which the main text is placed, excluding
headers or footers. The live area of a page is surrounded by the margins.
Almost all readers prefer pages with ample margins to pages that appear to
be crowded with text (West 1990).

Margins are not necessary for aesthetic reasons alone, but also for functional
reasons. The inner margin (also called the ‘gutter’) must allow enough space
for binding. All margins must allow enough space for readers to hold a page
without obscuring any text (West 1990).

However, margins that are excessively large aren’t appropriate either. Printing
a document would require more paper than necessary, which is undesirable
for economical as well as ecological reasons.

Apart from the size of the live area, its position influences a document’s legi-
bility. The optical centre of a page is the place where the reader’s eye first
focuses. The optical centre is slightly above the geometric centre of the page.
The live area should therefore be slightly closer to the top than to the bottom
of a page. In other words, the optimum margin size is smaller for the top
margin than for the bottom margin (Conover 1985, West 1990).

Agile documentation.book Page 98 Wednesday, June 11, 2003 11:11 AM

Text on 50% of a Page 99

Solution About 50% of the page should be devoted to text.

The rest of the page is reserved for white space, headers and footers. This is
a generally accepted rule among layout experts (Conover 1985, Tinker 1963,
West 1990).

To put the centre of the text near the optical centre, the text should be posi-
tioned nearer to the top than to the bottom of the page. A ratio of 2:3:4:5
between the sizes of the inner, top, outer and bottom margins is often recom-
mended as it allows the margin size to increase from inner to top to outer to
bottom (Gulbins Kahrmann 1992).

Some documents don’t differentiate between left pages and right pages, so
that the left and right margins are the same size. In this case, the margin ratio
can be adjusted to, for example, 3:3:3:5. The bottom margin should still be
larger than the top margin, however.

To obtain a pleasing page geometry, you should also take the following into
account:

• Because headers and footers are not part of the live area of a page, they
don’t count when the 50% rule is implemented.

• The minimum gutter margin should be 2 cm, to allow for binding.

50 %50 %

Figure 27. 50% text on a page

Agile documentation.book Page 99 Wednesday, June 11, 2003 11:11 AM

100 Layout and Typography

• A live area covering slightly more than 50% of the page is acceptable
when not all of the live area is actually covered by text, for example due
to the use of side-heads that leave enough white space.6

A standard A4 page has a size of 21 × 29.7 cm. Here margins of 2, 3, 4 and 5
cm meet the rule, leaving a live area of 15 × 21.7 cm. The live area space is
325.5 square cm, which is 52% of the A4 page.

Similar margin sizes can be used for the US letter format (size 21.59 × 27.94
cm), which yields a live area of approximately 15.6 × 20 cm – an area of 312
square cm (52% of the US letter page).

Discussion The 50% rule is surprising to many people at first. When people look at a
printed page, they often overestimate the amount of space devoted to the live
area and underestimate the amount of space devoted to margins. Average
readers estimate that the live area covers about 75% of a page, when it in fact
covers only 50% (Tinker 1963). In other words, 50% text is more than it
seems.

There is a limit on the line width that states that there should be about TWO

ALPHABETS PER LINE, as shown in Figure 28. If more than two and a half lower-
case alphabets fit on one line, the line is too wide. Once you have defined
the live area of your page, you should check whether a line across it meets
this rule, and otherwise employ techniques to reduce the line width. Having
two columns per page is one option, using side-heads is another, using a
larger font size is a third.

To give the live area a regular appearance and even texture, normally no
more than TWO TYPEFACES should be used, and lines should be separated by
120% LINE SPACING.

Two Alphabets per Line
Problem What is the optimum line width?

Forces When reading, the reader’s eyes travel along the line from left to right.7 The
eyes make small, jerky movements called ‘saccades’, between which there are
periods called ‘fixations’. Fixations last for about a quarter of a second, while

6. Side-heads are headings that are placed to the left or to the right of the actual paragraphs, as is done
in this book for the second-level headings.

Agile documentation.book Page 100 Wednesday, June 11, 2003 11:11 AM

Two Alphabets per Line 101

saccades are only 0.01 seconds long. It is during the fixations that information
is picked up (Crowder 1982).

A line break interrupts the eye movement along the line. The reader’s eyes
have to shift back to the beginning of the next line. Short lines increase the
number of line breaks. If lines are too short, the reader’s eyes have to find the
beginning of the next line more often than necessary, which breaks the flow
of reading and makes reading tiresome (Conover 1985, Gulbins Kahrmann
1992).

On the other hand, lines that are too long also make reading difficult and tire-
some. Long lines make it difficult for the reader’s eyes to follow a line and to
find the beginning of the next line once a line break occurs (Conover 1985,
Gulbins Kahrmann 1992).

Moreover, the optimum line width depends on the typeface and type size
used. Type set in larger sizes requires longer line widths (Conover 1985,
Gulbins Kahrmann 1992).

Solution Approximately two lowercase alphabets of the standard typeface
should fit on one line.

As a rule of thumb, the lower limit is near one and a half lowercase alpha-
bets, while the upper limit lies near two and a half and at most three
lowercase alphabets (Gulbins Kahrmann 1992).

7. Some languages are not written from left to right, but, for example, from top to bottom. This pattern
and the next do not apply to documents written in such languages.

Figure 28. Two alphabets per line

abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz

Agile documentation.book Page 101 Wednesday, June 11, 2003 11:11 AM

102 Layout and Typography

If lines are too long, there are several ways to fix this problem:

• You can choose a larger type size.

• You can make the lines shorter by increasing the margins.

• You can make the lines shorter by using two columns rather than one.

• You can make the lines shorter by using side-heads.

Discussion When you choose to optimise the line width, either by increasing the margins
or by using two columns, you should make sure that the page layout
conforms to the TEXT ON 50% OF A PAGE rule.

Justified text can be problematic when the line width is near the lower limit.
Since justification requires that the spacing between words (and sometimes
between characters) be varied, unnaturally long word separations can occur.
It is therefore important to use hyphenation (West 1990). Using ragged right
rather than justification can also be worth considering.

There is also a subtle effect that spacing has on the range of acceptable line
widths. When the standard of 120% LINE SPACING is slightly increased, line
widths a little above two and a half lowercase alphabets can be acceptable.

120% Line Spacing
Problem What is the optimum line spacing?

Forces An even texture is crucial for the legibility of a document (West 1990).
Reasonable spacing between words and lines is a prerequisite for an even
texture. While word spacing is to a large degree determined by the typeface
used, line spacing is not.

If there is too much line spacing, consecutive lines no longer form a unit –
which they should – but instead appear to be separated from each other. This
makes text difficult to read (West 1990).

Line spacing, however, should not be too small either. To explain why, we
need to understand that the line spacing results from adding the type size to
the ‘leading’ – the actual space between lines. A certain amount of leading is
necessary to ensure that the ascenders of one line do not collide with the
descenders of the previous line.8

Agile documentation.book Page 102 Wednesday, June 11, 2003 11:11 AM

120% Line Spacing 103

Moreover, the appearance of a typeface is influenced by its x-height.9 A type-
face with a relatively small x-height appears to be smaller than its size
suggests, and leaves more natural space between lines, thus reducing the
need for extra leading.

Solution The best line spacing is roughly 120% of the type size.

In other words, 20% leading is normally fine. For standard type sizes such as
10, 11 or 12 point this means that 2-point leading is appropriate.

Fortunately, most word processors set the line spacing to about 120% as a
default, and so provide you with the right spacing whatever type size you
use.

In the following cases the spacing may need some fine-tuning:

• Spacing can be decreased for typefaces with a relatively small x-height.

• Spacing can be increased for typefaces with a relatively large x-height.

• Spacing should be increased for long lines.

Discussion 120% line spacing is appropriate for body text. Headings, however, are an
exception, as they are supposed to make the structure of the text visible. To
help readers perceive the structure of a text, headings should stand out not

8. An ascender is the letter stroke that extends above the x-height of a lowercase character; a descender
is a stroke of a lowercase letter that extends below the x-height.

9. The x-height is the height of the lowercase letter ‘x’.

Figure 29. Line spacing

 abcdefgh
 klmnoxyz 100% 120%

Agile documentation.book Page 103 Wednesday, June 11, 2003 11:11 AM

104 Layout and Typography

only by an increased type size, but also by a line spacing that may exceed
120%.

The optimum line width is defined by the TWO ALPHABETS PER LINE pattern.
You can, however, bend this rule a little. If you increase the spacing, lines
that slightly increase the standard line width will still be acceptable. However,
this technique can be applied only to a small extent. If lines contain signifi-
cantly more than two and a half lowercase alphabets, they are inappropriate,
even with increased spacing.

Two Typefaces
Problem How many typefaces are appropriate, and which?

Forces Word processors often offer a large variety of typefaces and type sizes to
choose from whenever authors wish to express the different meanings text
can have, such as headings, emphasis, references or citations.

However, when you look at a document that uses many different typefaces
you’ll notice that the document appears to be chaotic: using a large number
of typefaces is problematic both for aesthetic and for ergonomic reasons.

Moreover, using many different typefaces is completely unnecessary, since
things such as emphasis can very well be expressed with the type variations
available.

But even if we restrict ourselves to using only a small number of typefaces,
which ones should we use? Typefaces can express things such as soundness,
formality, innovation, fashion and so on (Conover 1985). They should there-
fore be chosen in accordance with what they represent. Software project
documents normally aren’t supposed to express fashion or a ‘trendy’ style –
the major requirement is that typefaces be highly legible.

To this end we need to distinguish between serif and sans-serif typefaces.
Serifs are the short lines that cross the ends of the strokes of a printed letter.
As far as body text is concerned, serif typefaces are more legible than sans-
serif typefaces, and should therefore be given preference. However, single
pieces of text printed in a sans-serif typeface stand out from the main text and
can attract the reader’s eye (Gulbins Kahrmann 1992).

Agile documentation.book Page 104 Wednesday, June 11, 2003 11:11 AM

Two Typefaces 105

Solution In most cases, two typefaces per document are appropriate – a serif
typeface for the body text and a sans-serif typeface for the headings.

You should also take the following into account:

• There is nothing completely wrong with using only one typeface
throughout an entire document. In this case a serif typeface should be
chosen for legibility reasons. However, a second typeface can improve a
document’s appearance.

• Using more than two typefaces is almost always inappropriate. A possible
exception is the use of a third typeface for code fragments included in a
document. The third typeface should still be used sparingly.

• The type size for body text should be 10 to 12 point, while 14 to 18 point
is appropriate for headings, and up to 24 point for chapter and document
titles.

There is no general rule to tell you which typefaces you should use, this is
matter of personal taste. The more traditional typefaces such as Times and
Garamond tend to offer a higher legibility than more fashionable typefaces;
therefore they seem more appropriate for the documentation of software
projects.

When you choose different typefaces for body text and headings, these type-
faces should not be too similar, so that they can easily be told apart. Still, they
have to fit together in an aesthetic sense. Typical examples are Times and

Figure 30. Different typefaces

Example
Here Frutiger (12 point) is the sans-
serif typeface chosen for the heading.
The body text is printed in Garamond
(11 point), which is a serif typeface.

Example
Here Helvetica (12 point) is the sans-
serif typeface chosen for the heading.
The body text is printed in Times New
Roman (11 point), another serif
typeface.

Agile documentation.book Page 105 Wednesday, June 11, 2003 11:11 AM

106 Layout and Typography

Helvetica or Garamond and Frutiger (Gulbins Kahrmann 1992), as shown in
Figure 30.

Discussion When this pattern speaks of ‘body text’, it means text in normal paragraphs as
well as text used in tables or diagrams (except screen shots, whiteboard
copies, etc.). There is no need to use different typefaces in tables or diagrams
compared with the main text.

Neither is there a need to express emphasis through different typefaces. In
fact, it’s counter-intuitive. You can express all necessary kinds of emphasis by
CAREFUL USE OF TYPE VARIATIONS.

Careful Use of Type Variations
Problem How can parts of a text be emphasised?

Forces You can use type variations to express emphasis, cross-references, etc. When
used this way, different type variations help readers to understand the text,
and in particular to understand the particular role that some words take on.

There is, however, a drawback to the use of type variations. Normal lower-
case words appear in a characteristic shape defined by the ascenders and
descenders of the letters. A characteristic shape is crucial for a word’s legi-
bility. Many type variations don’t feature the characteristic shape as much as a
standard lowercase typeface does, and therefore decrease the legibility.

Let’s take a look at the different type variations in detail. Words printed in
italics still have a characteristic shape. Nonetheless, italics slightly decrease
the legibility of text. Reading text printed in italics takes about 4% more time
than reading the same text printed in a standard lowercase type (Tinker
1963).

Capital letters do not feature a characteristic shape at all. They decrease the
legibility of text quite dramatically. Reading text printed in all capital letters
requires about 12% more time than a normal text (Tinker 1963). Moreover,
‘all caps’ are not appreciated by a vast majority of readers. In addition, all
caps break the flow of a text.

The same is true for underlines. Underlines used to be a common technique
on typewriters, where no other style elements were available. But both
underlines and all capital letters are hardly ever used in printed books.

Agile documentation.book Page 106 Wednesday, June 11, 2003 11:11 AM

Careful Use of Type Variations 107

Solution Type variations can be used for emphasis, but they should be used with
care.

The following type variations are considered fine style elements (Conover
1985):

• Boldface can be used to emphasise single paragraphs.

• Italics are commonly used to place emphasis on a particular word.

• Small caps are often used to represent cross-references or people’s
names.10

All capital letters and underlines decrease the legibility to such an extent that
they should be avoided altogether.

Discussion You can use special font styles when you organise a document as STRUCTURED

INFORMATION. For example, boldface is often used to let THUMBNAIL SKETCHES

stand out from the remaining text. Italics and small caps can be useful for
references to other documents.

Using underlines is fairly common for hyperlinks in on-line documents. This
may be justified, but printed documents are a different matter. Since this
chapter is about printed documents, however, underlines are not
recommended.

10. In contrast to all caps, small caps clearly have a less bulky feel, so their occasional use is fine. In ad-
dition, small caps can be set with a leading capital, in which case they offer some characteristic
shape.

Figure 31. Shapes of different type styles

 shape SHAPE shape

Agile documentation.book Page 107 Wednesday, June 11, 2003 11:11 AM

108 Layout and Typography

Careful Ruling and Shading
Problem How can table cells be separated?

Forces Documents created in software projects often include tables. To easily access
the information in a table, readers must be able to recognise the table cells at
first glance. Moreover, the table’s heading must be immediately clear.

There are various ways to achieve these goals: the use of white space, ruling
and shading.

The use of white space between the table cells, however, is problematic,
since quite a bit of white space is necessary if the separation of cells is to be
clear, in particular when table cells extend over more than one line. If you
use white space for separating table cells, you lose space that otherwise you
could use for text.

Ruling is a more effective technique for separating table cells. However,
ruling is fine only as long as the lines surrounding the table cells have the
right thickness. Lines that are too thin are difficult to recognise, while lines
that are too thick aren’t aesthetically pleasing and irritate the reader. Ideally,
lines separating table cells should have about the same thickness as the letters
of the typeface chosen for body text.

Finally, shading can provide structure to a table, but must not lead to a poor
contrast between the text and its background.

Solution Careful ruling and shading leads to highly legible tables.

Technically, careful ruling and shading means the following:

• Lines surrounding table cells have the right thickness if they are about as
thick as the uppercase letter I (Gulbins Kahrmann 1992).

• Greyscales ranging from 10% to 20% guarantee good contrast and high
legibility.

You can combine both techniques, for example by using ruling to separate
table cells and shading to identify the table heading.

Agile documentation.book Page 108 Wednesday, June 11, 2003 11:11 AM

Adjacent Placement 109

Discussion Obviously, careful ruling and shading is useful in order to achieve UNAMBIG-

UOUS TABLES, but is in fact applicable to the presentation of STRUCTURED

INFORMATION in general.

The CAREFUL USE OF TYPE VARIATIONS can complement ruling and shading, for
example through the use of boldface in the table heading.

Adjacent Placement
Problem How can tables and diagrams be integrated into text?

Forces The placement of tables and diagrams can be difficult. The ideal place for a
table or diagram is directly below the line where it is referenced, as this is
where the reader first looks for it. However, the larger a table or diagram is,
the smaller is the chance that it will fit in the ideal place. There might not be
enough room left on the page.

As far as tables are concerned, the problem can be solved by allowing page
breaks to be inserted within a table. This, however, does not work for
diagrams.

The obvious idea is to insert a page break between the paragraph and the
diagram if the diagram doesn’t fit on the current page, which causes the
diagram to appear on the next page. This strategy, however, is fine only if no
large empty space occurs at the bottom of the current page.

Figure 32. Table ruling and shading

Task Deadline

Work package 1 2003-Jul-20

Work package 2 2003-Aug-31

Work package 3 2003-Sep-10

Work package 4 2003-Oct-15

Agile documentation.book Page 109 Wednesday, June 11, 2003 11:11 AM

110 Layout and Typography

Sometimes, however, a large empty space does occur. Especially large
diagrams can cause half-empty pages, which is clearly undesirable. In such a
case, we need to decouple the diagram from the paragraph in which it is
referenced and to which it would normally be anchored. We may need to
place the diagram anywhere near the paragraph, perhaps below, perhaps
above, perhaps on the next page.

The consequence is that the paragraph does not immediately precede the
diagram and other text appears in between. This is acceptable, but requires
that all diagrams be numbered and be referred to by their numbers, rather
than by an expression like ‘the following diagram’. The same applies to tables
if page breaks within tables are to be avoided.

Even the strategy of decoupling large diagrams or tables from the referencing
text might not be sufficient. If a document contains a large number of
diagrams, there might not be enough text to fill the gaps left by the diagrams.

Solution Diagrams and tables are best placed close to the text from which they
are referenced.

The following techniques can help you to put tables and diagrams as near to
the referencing paragraph as possible without creating awkward empty
spaces on the page:

• Small tables and diagrams can often be integrated into the text flow, and
appear directly below the paragraph in which they are referenced.

• Larger diagrams must be allowed to ‘float’, that is, they must be required
to appear anywhere near the paragraph from where they are referenced,
but not necessarily directly below that paragraph. Text is allowed to fill
the gaps.

• Larger tables, from 4 rows onwards, should allow for page breaks.

• Diagrams must be given numbers and must be referred to by their
numbers.

• If there are too many diagrams for smooth integration into the text flow,
moving at least some of them into an appendix can be preferable, as this
may allow the text flow to remain intact. (Half-empty pages are much
more acceptable in an appendix than in the main text.)

Discussion Most word processors allow the use of anchored frames in which a diagram
can be placed. Such an anchored frame is automatically moved with the para-

Agile documentation.book Page 110 Wednesday, June 11, 2003 11:11 AM

Coherent Pages 111

graph to which it is anchored. Good systems also allow anchored frames to
be defined as floating, which means that a frame is kept near the paragraph,
but may be placed on the next page if this allows better text flow on the
current page. If it is available, choose this option for large diagrams.

Allowing page breaks in tables makes the placement of tables easier. Still,
page breaks in tables should only be allowed as long as they don’t sacrifice
COHERENT PAGES.

Coherent Pages
Problem What options exist to avoid awkward pagination that tears related

information apart?

Forces Page breaks are a perfectly normal thing, yet some page breaks seem to be
acceptable, while others don’t. Page breaks are particularly awkward when
they break the flow unnecessarily and force readers to jump back and forth.

This is the case whenever a page break makes a small snippet of information
appear on one page and related material appear on the next or the previous
page. One example is a section heading that appears on the bottom of a page
while the first paragraph of that section appears on the next page. Others are
‘widow’ or ‘orphan’ lines. A widow is the last line of a paragraph that appears
isolated at the top of a page, while an orphan is the first line of a paragraph
that appears isolated at the bottom of a page.

Such page breaks are irritating and can make it difficult for readers to grasp
an idea or line of argument, especially for readers who browse a document
quickly.

Solution The reading flow is supported by coherent pages – pages that make
sure a minimum of related information appears on either side of a page
break.

You can achieve coherent pages by using the following rules:

• No headings should appear at the bottom of a page. A heading is always
followed by at least one paragraph that appears on the same page.

• There are no widow or orphan lines. At least two lines of a paragraph
must be kept together on each page.

Agile documentation.book Page 111 Wednesday, June 11, 2003 11:11 AM

112 Layout and Typography

• Small tables should appear on one page. If a page break must occur
within a table, the widow line rule applies: at least two table rows must
be kept together on each page.

• There are no page breaks within table cells.

Discussion All these rules can be implemented with standard word processors fairly
easily. You need to disallow widow and orphan lines for all paragraph types
and to force all paragraph types for headings to be kept with any paragraph
that follows. You also have to disallow page breaks for the paragraph types
used in table cells – which of course requires that distinct paragraph types be
used in table cells. Only the page breaks within tables (as opposed to within
table cells) might require manual intervention.

Coherent pages can take on a slightly different form in the context of STRUC-

TURED INFORMATION. You can decide not to allow page breaks within building
blocks. If you look back at Figure 12 on page 69, you see a page that consists
of a heading and four blocks. Such a structure profits from not being inter-
rupted by page breaks. However, if the building blocks become large, you
must allow page breaks, otherwise half-empty pages would be the conse-
quence – a contradiction to having TEXT ON 50% OF A PAGE.

Experience Reports
There are myriads of examples of the typographical patterns described in this
chapter. You can find instances of these patterns in almost every printed book
– the patterns are common practice. If you’re interested in seeing a large
variety of applications of these patterns, a look at a couple of printed books
will do.

The following figures, however, show that the patterns can also be used in
project documentation easily. Figure 33 shows the page we already know
from the beginning of this chapter, taken from the usage concept of Project
Persistor. Figure 34 shows a page from the requirements document of Project
Contentis. Annotations point out where the patterns have been applied, and
how.11

11. Don’t be surprised by the relatively small font in these examples. The original documents were A4
and had to be shrunk to fit the page size of this book. The original font did allow for comfortable
reading.

Agile documentation.book Page 112 Wednesday, June 11, 2003 11:11 AM

Experience Reports 113

- 20 -

4.2.1 Adding an object

Preconditions:

none

Function:

The data access layer provides an initial version of a new object
according to the entry date and the process number passed on to
it as parameters. Upon initialisation, the new object may still be
incomplete; components can be added successively. The new
object’s state is “pending”.

The key that is passed to this function as an input parameter is a logical
key, which may or may not carry application-specific information. It is
normally generated by a specific module that all applications can use.

In case the specified key has been used previously for adding an object,
an error code is returned.

The process number is generated by the workflow management system.

Return Codes:

4.2.2 Deleting an object

addObject ()

IN objectType : DT-TYPE
IN fullKey : DT-KEY
IN entryDate : DT-DATE
IN processNumber : DT-NR

RC-OK The object has been entered and initialised
correctly.

RC-KEY The specified logical key isn't available.

RC-DB The database is not available.

RC-PARAMETER The entry date or the process number are illegal.

deleteObject ()

IN objectType : DT-TYPE
IN fullKey : DT-KEY
IN deletionDate : DT-DATE
IN processNumber : DT-NR

Figure 33. Project Persistor: good layout and typography

good
pagination

reasonable
use of

boldface

good spacing
and line width

good table
placement

appropriate
ruling and

shading

enough white
space

one font for
headings, one
for text, one

for code

Agile documentation.book Page 113 Wednesday, June 11, 2003 11:11 AM

114 Layout and Typography

- 20 -

4.2 Newsletter Deployment

Distributing a newsletter consists of several steps which will all be supported by
the web content management system. These steps are:

1. Meta information
Meta information includes the newsletter’s author, headline, topic and release
date. The CMS offers a web interface for users to provide this information. In
addition, the system provides the number and the date of recording. This meta
information is necessary for improved search capabilities.

2. Main text
The editor in charge writes the text for the newsletter using the web editor the
content management system offers. Formatting tools are available that allow
the editor to choose font size and font styles.

3. Attachments
Most newsletters come with one or more attachments, such as documents, web
pages, or presentations. The editor adds these attachments to the newsletter
using a function the content management system provides.

4. Document Generation
Once all elements for the news letter have been assembled, the editor can click
a button, and so choose a function that generates a PDF file for the newsletter,
and then invokes the workflow module for the review process.

5. Review
The head-of-department receives a message that the newsletter is ready for
review, and can either accept, change or reject the newsletter. Upon
acceptance, the newsletter is copied into the content management system’s
production environment, and is thus available within the extranet.

The following diagram summarises this process, and makes clear that the editor is
free to perform steps 1, 2 and 3 in arbitrary order.

Fig. 5: Deployment process for newsletters

Main TextMeta Information Attachments

Document Generation

Reviews

Figure 34. Project Contentis: another example of layout and typography

spacing and
line width

meeting the
rules

good
pagination

one font for
text, one for
headings and

diagrams

well-placed
diagram

white space
leaving

enough room
for the

diagram

italics for
captions

Agile documentation.book Page 114 Wednesday, June 11, 2003 11:11 AM

Experience Reports 115

Although all example documents feature almost all patterns from this chapter,
they do not have the same layout. You can see that the typographical patterns
presented leave ample room for creativity – or for following layout guidelines
that hold for an organisation or a project. The patterns provide a framework
for increasing the legibility and the aesthetics of printed documents, but they
leave a lot of their implementation open. You can apply the typographical
patterns in many different and creative ways.

Agile documentation.book Page 115 Wednesday, June 11, 2003 11:11 AM

Agile documentation.book Page 116 Wednesday, June 11, 2003 11:11 AM

4 Infrastructure and
Technical Organisation

Managing documentation and managing software is essentially the same
thing.

Anonymous

So far this book has dealt with the documents that we need in our software
projects and what they should look like. We have talked about their contents,
their structure and their layout. This chapter looks at the tools and techniques
that we can use to obtain such documents and to make them available to a
project team. Among other things, documents have to be processed and
printed, stored and retrieved.

To summarise, this chapter brings up the issue of what the documentation
infrastructure should look like and how it can be organised.

I’d like to begin with an example that demonstrates why organising the docu-
mentation infrastructure is necessary. Look at the file system structure
illustrated in Figure 35, which I found in a project a while ago.

In this project, nobody was able to find the documents they were looking for.
The directories overlap, related documents don’t seem to be grouped into
directories, copies of documents have been scattered over different directo-
ries, and symbolic links complete the confusion. It’s a complete mess – and
Figure 35 shows just an excerpt. Yet this is a scenario I found in a real-world
project.

Team members in this project put the documents they had written more or
less anywhere. More than once someone assumed a document did not exist,
when in fact it was just hidden in the chaos. Redundant versions of docu-

Agile documentation.book Page 117 Wednesday, June 11, 2003 11:11 AM

118 Infrastructure and Technical Organisation

Figure 35. Poorly organised project documentation

Agile documentation.book Page 118 Wednesday, June 11, 2003 11:11 AM

119

undergo

yields

reside in

can be backed
up with a

can be
represented

by a

require

must be
implemented with

refer to
documents

in the

requires can
require

undergoes

require

can help
maintain the

rely on

is often
stored in

a

refers to
documents

in the

affects

REORGANISATION
UPON REQUEST

DOCUMENT
ARCHIVE

Figure 36. Patterns for infrastructure and technical organisation

DOCUMENT
LANDSCAPE

READER-
FRIENDLY MEDIA SEPARATION OF

PROCESSING AND
PRINTING

DOCUMENT
TEMPLATES

NOTIFICATION
UPON UPDATE

SINGLE SOURCE
AND MULTIPLE

TARGETS

SEPARATION OF
CONTENTS AND

LAYOUT

IMPORT BY
REFERENCE

can help
maintain the

rely on

WIKI

CODE-COMMENT
PROXIMITY

ANNOTATED
CHANGES

FEW TOOLS

undergoes

undergoes

complement

can
refer

to

is a precondition
for

Agile documentation.book Page 119 Wednesday, June 11, 2003 11:11 AM

120 Infrastructure and Technical Organisation

ments were kept, inconsistencies occurred and outdated versions were the
source of much confusion.

We certainly want to avoid a scenario like this, and I think it’s clear from this
example that a little organisation is necessary. But how much organisation do
we need? After all, over-organisation is the opposite of an agile approach.

A follow-up question deals with tools. To which extent are tools helpful as far
as producing and maintaining the documentation is concerned? There is
much value in tools if they make our jobs easier, but an over-emphasis on
tools isn’t agile either.

These questions demarcate the area that the patterns in this chapter address.
The patterns deal with the technical organisation of all the documents
produced in a project, from just a handful of short papers to the comprehen-
sive documentation found in larger projects or projects with a higher
criticality. Figure 36 gives an overview.

The patterns cannot provide prefabricated solutions to all problems associ-
ated with the technical organisation of project documents – project
documentation can take on too many different forms for off-the-shelf solu-
tions to be possible. Instead, these patterns describe the principles that
underlie an agile approach to the creation and the maintenance of project
documents and the management of the relationships between them.

Document Landscape
Problem How can team members get a good overview of what documentation

exists in a project?

Forces Documentation, when it is poorly organised, will ultimately fail to serve its
overall purpose of making project expertise available to other team members
and to future projects. There’s no point in producing documents if potential
readers don’t know that they exist. On a more technical level, organising
project documentation must serve two purposes: authors among the team
members must be told how to integrate new documents into the existing
documentation, and readers must be told where to look for specific
documents.

What does such an organisation look like? To this end, it is helpful to
remember that project documents are often connected by various kinds of

Agile documentation.book Page 120 Wednesday, June 11, 2003 11:11 AM

Document Landscape 121

relationships, and to examine how humans organise related items in their
minds.

Cognitive psychology tells us that humans can represent sets of related items
as mental images, or landscapes in our minds. In his book How The Mind
Works, Steven Pinker explains that the human brain is well trained to recog-
nise objects by their shapes, and that complex objects create a reference
frame by which their parts can be located (Pinker 1997).

This suggests that a good way to represent the set of documents is some kind
of landscape – but which? We will not only imagine this landscape, but when
we browse the documentation, we will, in a way, navigate through it. Let’s
therefore take a look at hypertexts.

Experiences with hypertexts suggest that linked networks are relatively easy
to follow if they span a tree (Botafogo Rivlin Shneiderman 1992) – a tree
represents a balance between structure and comprehensibility. Apparently
most users prefer a broad tree to a narrow one: in most cases, a depth of 3 is
sufficient (Horton 1994). Some studies suggest that hypertexts need not be
exact trees, as short-cuts or multiple entry points seem to be fine (Furnas
Zacks 1994).

Solution The project documentation can be represented as a kind of landscape
that team members can use as a mental map when they retrieve or add
information. A document landscape that roughly forms a tree suits
human intuition best.

Ideally, the document landscape follows the project structure. Figure 37
shows an example. Documents are grouped if they are closely related. This
landscape presents an intuitive way of representing the project document-
ation. It isn’t static, though, but evolves as the project goes on.

There are various ways in which you can implement a document landscape:

• The easiest way is to use file system directories and subdirectories. Associ-
ating directories with topics leads to an easy but efficient organisation, as
long as there are no overlaps caused by orthogonal topics.

• In addition, you can use a diagram that visualises the document landscape
(like the one in Figure 37) and include that diagram into an introductory
document. Such a document describes the project and explains what
other documents exist, their purpose and how they can be obtained.

Agile documentation.book Page 121 Wednesday, June 11, 2003 11:11 AM

122 Infrastructure and Technical Organisation

• You can put the document landscape on-line with hyperlinks acting as
pathways to the actual documents, allowing users to actually travel
through the document landscape.

Discussion Which technique should be preferred? Lurking behind this question is the
desire to use READER-FRIENDLY MEDIA when presenting information. Due to its
high degree of referentiality, the document landscape is often best presented
on-line. If you give all team members read and write access, the document
landscape amounts to a project WIKI. Whether an on-line presentation is the
medium of choice ultimately depends on the typical scenario in which the
TARGET READERS will use the document landscape. A crucial question to ask
here is whether all members of the project team have access to an intranet by
which they can obtain the individual documents.

If the document landscape is indeed put on-line, should it be enhanced with
a search engine? In large projects this can be worth considering. The useful-
ness of a search engine is generally limited, though, since search engines
suffer from a trade-off between recall and precision. Recall and precision

Figure 37. A document landscape

System
overview

Requirement
specification

Test cases

Testing
requirements

Design
overview

Module
specifications

Agile documentation.book Page 122 Wednesday, June 11, 2003 11:11 AM

Document Archive 123

typically add up to 100 percent (Salton 1989)12: 50 percent recall and 50
percent precision can be considered a typical result (Dumais 1988). Neverthe-
less, a search engine can prove useful if a large number of documents have to
be managed and the overview given by the document landscape, however
useful, isn’t fully sufficient.

You can sense the importance of this pattern by an analogy to individual
documents. We have seen that the GUIDELINES FOR READERS serve as a road
map to an individual document, and similarly a document landscape provides
a way to approach the documentation of an entire project.

Finally, the document landscape’s degree of cohesion gives you feedback on
how well the project documentation meets the goal of presenting FOCUSED

INFORMATION. If it turns out to be difficult to find an appropriate structure for
the document landscape, a lack of focus in the individual documents may be
the cause, possibly giving rise to a r eorganisation of the project
documentation.

Document Archive
Problem How can projects avoid the loss of any document versions?

Forces Project documents are typically organised in a system of folders and sub-
folders, hopefully in a well-defined way so that readers are able to retrieve a
particular document quickly.

However, many documents undergo change as a project goes on. It can
become necessary to track down information in an older version of a docu-
ment. Therefore it sometimes isn’t sufficient to keep only the most recent
versions of all documents.

Still, users often prefer not to see the old versions of all documents, but to
have the old versions hidden and deal with them only when they really need
to do so.

12. Recall describes how much of the relevant information is found, while precision describes how
much of the information found is relevant. If a search yields 80% of all relevant information, then only
about 20% of the results are relevant – the other results have just slipped in due to a lack of precision.
If you restrict the search parameters so that 80% of the results are relevant, the recall typically goes
down to about 20% – the remaining 80% of relevant results are not found.

Agile documentation.book Page 123 Wednesday, June 11, 2003 11:11 AM

124 Infrastructure and Technical Organisation

Moreover, as we keep different versions of documents, we need to make sure
that we don’t confuse them. Sometimes several people contribute to a docu-
ment, so we need a mechanism that prevents these people from working on
the same version at the same time, overriding each other’s work.

Finally, we must keep in mind that technical problems such as hard disk
crashes can lead to project documentation being lost. This sounds trivial, but
much damage has been done, ruining the work of weeks or months, by a
single hardware failure.

Solution Archiving project documentation offers the advantage that versions
can be retrieved when necessary.

A document archive13 can have different degrees of sophistication.

• The simplest form of archiving consists of a naming convention for old
document versions, which are not deleted, but remain in the file system,
along with a central back-up service that covers the entire project
documentation.

• A configuration management system offers more features. It allows users
to check in and check out documents. A locking mechanism makes sure
that changes to a document can be made only by the person who has
checked it out. The system stores old versions automatically and retrieves
them on request (Berczuk Appelton 2003).

As we intend to use the simplest tools that fulfil our purposes, the idea of file-
system based versioning has great appeal, as it doesn’t require any extra
tools, despite the fact that it doesn’t render old versions invisible.

However, many projects use a configuration management system anyway,
especially for source code. In this case, the second option does not represent
additional effort and is well worth considering. A fairly simple configuration
management system is usually appropriate, because complex systems require
a learning effort that is rarely justified.

Discussion Setting up a DOCUMENT LANDSCAPE establishes a tree-like structure. An archive
is one way to implement such a landscape. You can group related documents

13. An archive here refers to any mechanism used to keep track of versions. Unlike a more narrow mean-
ing of the term, archiving does not necessarily imply that old versions be moved to off-line storage
media for purposes such as freeing up space.

Agile documentation.book Page 124 Wednesday, June 11, 2003 11:11 AM

Wiki 125

in folders and possibly sub-folders, either in the file system or in a configura-
tion management system.

Wiki
Problem How can documentation be given a more interactive edge?

Forces Documentation has much in its favour, long-term and wide availability among
other things. However, interaction is important in a collaborative team.
People have questions, or would like to give answers. It’s been said many
times before: documentation and interaction aren’t opposed to each other,
but complement each other.

For example, you might have a question concerning a document while its
author is on leave. Perhaps someone else also knows the answer, but you
don’t know who that person might be.

To this end, technical support for the combination of documentation and
interaction could be helpful. What might support look like? It should aim to
increase interaction among the team, but should also take into account that
asynchronous communication might be required.

Solution A Wiki offers access to the project documentation via an intranet
server, and in addition allows the team to post notes and messages to
others as necessary.

A Wiki is essentially a Web site to which all team members have both read
and write access.14

As a team member, you can use a Wiki in various ways:

• You can add documents or new versions of documents.

• You can download the documents you need.

• You can leave messages for others with any new ideas or questions you
might have.

• You can answer messages from others.

14. ’Wiki’ is the Hawaiian word for ‘quick’. The term ‘Wiki Web’ was introduced by Ward Cunningham
for collaborative Web sites that give their users quick read and write access (Leuf Cunningham 2001).

Agile documentation.book Page 125 Wednesday, June 11, 2003 11:11 AM

126 Infrastructure and Technical Organisation

In other words, a Wiki is a forum for collaborative interactive yet asynchro-
nous communication.

Discussion A Wiki implements the project’s DOCUMENT LANDSCAPE and allows the team
members to navigate through it. A Wiki doesn’t provide the safety with
respect to versioning that a DOCUMENT ARCHIVE does. However, you can install
an archive at the Wiki’s back-end to take care of things such as versioning
and back-up.

Wikis are well known for not imposing any write-access restrictions on their
users: everybody can change anything. This may seem a bit risky when a
large and anonymous group of people have access, although experiences are
positive, and to be on the safe side, you can still make back-ups. A project
team, however, isn’t an anonymous mass, and general access for everybody
shouldn’t represent a problem. Nevertheless, most project documents have
ONE RESPONSIBLE AUTHOR, and team members can be asked to check with the
person who is in charge of a document before they make changes to it.

Because a project Wiki offers a higher degree of interaction than a mere
archive does, establishing a Wiki gets you on your way towards an INFORMA-

TION MARKETPLACE in which documents are actively offered and exchanged.

Code-Comment Proximity
Problem What is an easy way to maintain documentation that refers to the actual

code?

Forces Documentation can take on different forms. First, documentation consists of
the documents that are produced in a project. Second, documentation covers
the comments that programmers put into the source code, which are not to
be ignored. The question here is, which form of documentation should we
prefer?

A certain proximity of code and the comments that refer to it offers several
advantages. First, programmers, when they look at a program, don’t have to
search for helpful commentary elsewhere.

Second, source code comments are relatively easy to maintain. If you change
something in a program and its documentation is located somewhere else,
the chances are that you will forget to change the documentation accordingly.

Agile documentation.book Page 126 Wednesday, June 11, 2003 11:11 AM

Code-Comment Proximity 127

Updates are much easier if all you need to do is to update a few comments in
the code.

Literate Programming goes one step further. Literate programming denotes a
programming style that was put forward by Donald Knuth. He suggested that
programs should be written in a way that explains to other humans what the
computer is supposed to do (Knuth 1992). The careful choice of variable
names is particularly important. Ideally, a program turns into a text that needs
no further comments.

But is this always possible? Not every topic that requires documentation is
directly related to the code. There are higher-level topics such as user
requirements or the software architecture that cannot be related to single
lines of code, and which are therefore beyond what can be documented
within a program.

Solution Documentation of the code, to the extent that a project team considers
it necessary, is best done through source code comments. Separate
documents should be reserved for higher-level issues such as
overviews, requirements, design and architecture.

The following guidelines will help to make code comments as simple as
possible.

• Keep the software as clear as possible, for example through well-chosen
names for objects and functions.

• Add comments only when the code alone doesn’t provide enough infor-
mation, and keep those comments close to the code to which they refer.

The proximity of code and the corresponding comments makes the
comments relatively easy to maintain. Whenever you change the code, you
have the corresponding comments right in front of you and you can change
them accordingly. Updates to documents will only be necessary when
changes affect more than just the code, such as the overall design.

Discussion This pattern already touches the subject of READER-FRIENDLY MEDIA. That
pattern focuses on the question of the choice of media for project documents,
but that question is reasonable only if we are certain that a document is the
right medium at all. The current pattern points out that for some information
a document may not be necessary, and that the information is better kept
within the program.

Agile documentation.book Page 127 Wednesday, June 11, 2003 11:11 AM

128 Infrastructure and Technical Organisation

Reader-Friendly Media

Problem Which is more appropriate: documents intended for on-line use, or
documents intended for print?

Forces For ergonomic reasons, most people prefer to read paper documents rather
than on-line documents. This is true in particular for longer documents which
readers may spend more time reading. Printed documents offer better resolu-
tion and contrast than a computer screen, printed documents don’t need an
electrical power supply, and readers can take printed documents with them
without having to carry a computer around (Hsu Mitchell 1997). Printed
documents can easily be marked for making editorial comments. To summa-
rise, paper allows readers to sit down, lie back and concentrate.

There is an on-going discussion about whether printed documents and books
will eventually be replaced by electronic versions. There are technological
advances as far as the ergonomics of electronic documents are concerned
(Press 2000). But for the time being, most people prefer printed documents
for reading.

However, some project documents are characterised by a high degree of
referentiality. There can be cross-references within documents, as well as
references to other documents. Only electronic documents offer mechanisms
such as hyperlinks that make navigation of such references easy. Readers
have to use on-line documents if they wish to use such features (Hsu Mitchell
1997).

Moreover, on-line presentations can allow readers to play a more active role.
In an advanced scenario, readers can become involved if the documentation
includes a simulation or an animation, though this is fairly uncommon for the
documentation of normal software projects.

There are two more arguments that seem to suggest an advantage that on-line
documents have over printed documents. Neither argument holds, but both
should be mentioned for clarity’s sake.

First, it may sound interesting to present quickly-changing documents on-line,
in the hope that readers automatically read the most recent versions. It’s a
nice idea – but it doesn’t work. When people find that they have to read such
a document, they frequently print it, even if wasn’t meant for printing in the
first place, and so won’t notice when there is an update available on-line.

Agile documentation.book Page 128 Wednesday, June 11, 2003 11:11 AM

Reader-Friendly Media 129

Second, the use of search engines is sometimes used as an argument for elec-
tronic documents, but this isn’t a valid argument either. Applying a search
engine to a document requires that the document be available electronically,
yet it has nothing to do with the medium at which the document is targeted:
documents that are going to be printed can be parsed just as well as on-line
documents can.

Solution The choice of a medium must reflect a document’s typical usage. The
rule of thumb is: print is good for reading, on-line is good for looking
things up.

The following guidelines can help you make the decision.

• Some documents will typically be read, as opposed to being browsed, at
least in parts. Team members will sit down and concentrate on the parts
in which they are interested. Perhaps they’ll take the document home or
on a business trip. These documents should be provided in a format that
allows printing.

• Some documents are used in a way that cannot really be referred to as
‘reading’. Rather, people take a brief look at such documents, or browse
through them, often during programming or design, typically spending
only a short period of time on them. Such documents are best presented
on-line.

The following table summarises which medium is typically best suited for
several kinds of documents.

Print On-line

Feasibility study

Concept or strategy paper

Architectural overview

Specification

Design document

Usage concept

Management summary

Glossary

Document landscape

Architectural overview

API description

User manual

On-line help

On-line simulation

Glossary

Agile documentation.book Page 129 Wednesday, June 11, 2003 11:11 AM

130 Infrastructure and Technical Organisation

As the table shows, there is no clear separation between those documents
that are best presented as print and those that are best presented on line. The
architectural overview is listed under both print and on-line, as is the
glossary.

So what is ultimately the ‘right’ medium? The truth is that there are documents
that some readers prefer to print that others prefer to use on line, and all have
reasons for their choice. This happens with documents that some readers will
read from beginning to end, but that others use for looking up information
and for following references. In this case meeting readers’ needs requires that
you provide both a printable version and an on-line version.

Discussion If a document is necessary both on paper and on-line, it is sometimes
tempting to set up the document for on-line use and use the same version for
printing. Besides the reduction in effort, this has the advantage that informa-
tion isn’t kept redundantly in two documents. Nevertheless, this isn’t a good
idea. Documents that aren’t properly formatted don’t print very well. Using
on-line documents for printing should be avoided for ergonomic reasons. It is
a much better idea to generate the on-line version automatically – a feature
that many word processors offer, and one that avoids redundancy.

Generating on-line documents automatically isn’t only useful when we
require both a print an on-line version. Typical on-line documents – those we
don’t read, but just browse through, those with many references – can often
be extracted from other sources. For example, an API description can often
be obtained from source code comments. Generating on-line documents is a
good idea whenever possible, as it avoids inconsistencies by keeping a SINGLE

SOURCE AND MULTIPLE TARGETS.

The decision over media typically isn’t restricted to individual documents, but
extends to all documents of a particular kind, at least within a project. You
decide on the medium for all specifications, for example, rather than for just
one specification. The decision therefore strongly influences the definition of
DOCUMENT TEMPLATES that form the basis for several documents of the same
kind.

Different media place different requirements on layout and formatting. Docu-
ments that are going to be printed should follow the guidelines presented in
Chapter 3 on Layout and Typography. These guidelines, however, do not
necessarily apply to on-line documents.

Agile documentation.book Page 130 Wednesday, June 11, 2003 11:11 AM

Separation of Contents and Layout 131

As far as on-line documentation is concerned, the guidelines to follow are
essentially those given in the literature for organising Web sites. Since this
book has its main focus on printed documents, such guidelines are beyond
its scope, but the literature offers plenty of sources. One example is Jakob
Nielsen’s book on Designing Web Usability (Nielsen 2000), another is William
Horton’s book on Designing and Writing Online Documentation (Horton
1994). On-line documentation is also subject to patterns: Robert Orenstein
has published a Pattern Language for an Essay-Based Web Site (Orenstein
1996). Among other things, he recommends Low-depth Document Trees and
an Introductory Section with an Introductory Picture.

Separation of Contents and Layout
Problem How can the layouts of text documents be changed and reused easily?

Forces The layout of a document may have to change. First, we may have to adapt
the layout to conform to some standard, perhaps following specific guide-
lines, perhaps following a customer’s request. Second, and more likely, we
may have to support an additional output channel: perhaps a print document
must be made available for on-line use as well.

Going through all the paragraphs of a document just to change its appear-
ance is a tedious job, and an unacceptable one. We have to perform such a
change at the least possible cost. Whether we perform the layout change
manually, or whether a tool is available, changes to the layout must not turn
out to be cost-intensive activities.

Moreover, once a good layout has been designed, we want to be able to
reuse it for other documents as well. How could we do that?

If we take a look at content management systems, we can see what a possible
solution might look like. Content management systems decouple contents
and layout: they record the contents without formatting on one hand, and on
the other provide mechanisms to define layout styles. The degree of sophisti-
cation found in content management systems is unnecessary for ordinary
project documents, but the underlying principle hints at a direction we can
take.

Agile documentation.book Page 131 Wednesday, June 11, 2003 11:11 AM

132 Infrastructure and Technical Organisation

Solution Layout styles can be defined and assigned to content portions. These
layout styles can easily be changed and can be reused across
documents.

Using a typical word processor, the separation of content and layout can be
implemented very easily in the following way:

• Define the necessary paragraph types for your document.

• Assign a format to each paragraph type.

• Assign a paragraph type to each paragraph, and so determine that
paragraph’s layout.

• Avoid any overrides of the format that a paragraph has been assigned by
its type.

This implementation is illustrated in Figure 38.

Another option, though a less common one, is to use XML to structure the
contents of a document, and to use XSLT to assign formats to the individual
XML blocks. Or you could write documents in HTML, and provide the format-
ting through style sheets (CSS).

In either case, changing the definition of the layout affects the entire docu-
ment consistently, wherever the particular layout style is used. Reusing the
layout styles in other documents is not a problem either.

Discussion This pattern is the precondition for two other patterns. First, without a separa-
tion of contents and layout, DOCUMENT TEMPLATES would not be possible. Such
templates define content-independent formatting that is reused in all the
documents that are derived from them.

Second, we can sometimes generate documents automatically, which gives us
a SINGLE SOURCE AND MULTIPLE TARGETS. Such a mechanism is often used to
assign a different format to the same contents, for example to generate HTML
from well-formatted text. Such a mechanism could not be implemented
without the separation of content and layout.

When you use a word processor, you’ll probably find the separation of
content and layout to be a bit arduous if you follow it to the last detail. In
fact, even desktop publishing experts have been spotted overriding a para-
graph layout once in a while when they felt the definition of an extra
paragraph type wasn’t justified. This is acceptable as long as it is an excep-
tion, and as long as you are aware that you are trading layout flexibility for

Agile documentation.book Page 132 Wednesday, June 11, 2003 11:11 AM

Single Source and Multiple Targets 133

momentary convenience. Ultimately, overrides break the concept of DOCU-

MENT TEMPLATES and sacrifice its advantages. Whether a limited separation of
contents and layout is justified or not depends on the likelihood and the
frequency with which you are likely to have to react to requests for layout
changes.

Single Source and Multiple Targets
Problem How can multiple views of a document be created without doubling

maintenance?

Forces Sometimes the same document needs to appear in different formats. For
example, we may require both a printable version and an HTML version of a

Figure 38. Separation of contents and layout as done by a word processor

Solution

Layout styles can be
defined and assigned to
content portions.

On a word processor this
means:

• Define the paragraph
types

• Assign formats to these
types

• Assign a type to each
paragraph

• Avoid overrides

Heading

Bullet

Thumbnail

Block

Sans-serif 14point,
boldface, no indentation

Serif 11point,
indentation, bullet

Serif 11point, boldface,
no indentation

Serif 11point,
no indentation

Agile documentation.book Page 133 Wednesday, June 11, 2003 11:11 AM

134 Infrastructure and Technical Organisation

document. Preparing a separate document for either format, however, leads
to redundant documents.

Or consider comments in the source code describing, say, class interfaces on
one side and an HTML API description on the other. Perhaps you cannot, or
don’t want to, sacrifice either. Again, redundancy occurs.

We can see from these scenarios that redundant information cannot always
be avoided.

Redundancy, however, creates numerous problems – this is as true for docu-
mentation as it is for software. When information is stored redundantly in
several places, document maintenance becomes expensive and error-prone.
Changes have to be made several times and inconsistencies occur easily.

This is not what we aim for – clearly we don’t want to maintain redundant
documents and manually keep them consistent.

Fortunately there are ways to deal with redundancy. The key idea to under-
stand is that all we need are multiple views of the same information, and that
there is no need to keep more than one original.

Solution The documentation infrastructure can employ mechanisms that take
source documents and automatically generate additional views. Such
mechanisms avoid double maintenance and ensure consistency.

While this technique does not avoid redundancy, it does manage it: only the
source document has to be maintained.

The following mechanisms are prominent examples:

• Most word processors are capable of exporting HTML, as illustrated in
Figure 39.

• Tools such as JavaDoc from the Java Developers Kit (Flanagan 2002)
allow HTML to be generated from source code comments.

An interesting question remains: if you need several views of a document,
which should be the source and which should be the targets?

A mechanism to generate a specific view can only lose structure on the way,
so the view that offers the highest degree of structure must always be the
source. For instance, a well-structured document is inherently more
profoundly structured than an HTML document, so it is wise to use the docu-
ment as the source and HTML as the target format. As a consequence, if you

Agile documentation.book Page 134 Wednesday, June 11, 2003 11:11 AM

Single Source and Multiple Targets 135

know you need both text and HTML, always maintain the text and generate
the HTML.

Similarly, as source code comments are associated with code lines, and there-
fore feature a higher degree of structure than HTML, source code comments
are extracted from the code and into HTML, and not vice-versa.

Discussion Automatic document generation does not change a document’s structure, just
the document’s format or its layout: the contents remain untouched. The
precondition for this to work is that content and layout are not mixed in a
document, but are properly separated. Therefore the feasibility of automatic
document generation depends on the SEPARATION OF CONTENTS AND LAYOUT

principle being adopted for the source document.

Mechanisms for document generation often have to assume that the sources
are available at a certain place in the DOCUMENT ARCHIVE. A stable archive
structure is therefore the precondition for this pattern to be useful. This can
be achieved by permitting REORGANISATION UPON REQUEST only.

Figure 39. An HTML document generated from a text document

Agile documentation.book Page 135 Wednesday, June 11, 2003 11:11 AM

136 Infrastructure and Technical Organisation

Import by Reference
Problem How can different documents use the same diagram or table consist-

ently?

Forces Information contained in diagrams, pictures and tables is sometimes useful in
the context of multiple documents. For example, a diagram describing the
software architecture can turn out useful in an architecture overview, a design
document and a usage concept.

If we include such information items in several documents, these items
appear redundantly, bringing with it the well-known problems of redun-
dancy: double maintenance, possible inconsistencies and so on.

However, generating documents in which these items appear is not a solu-
tion, as it is not the entire documents that are redundant, only small artefacts
inside them.

Still, there is no need to store such pieces of information redundantly. All we
need are multiple representations of the same information.

Solution Artefacts that need to appear in multiple contexts can be imported by
reference into the documents that include them.

Figure 40. A graphic referenced by two documents

Agile documentation.book Page 136 Wednesday, June 11, 2003 11:11 AM

Import by Reference 137

This technique is illustrated in Figure 40, and can be characterised as follows:

• The diagrams, pictures, tables and so on are stored in appropriate places.

• They are included in all documents wherever they are needed using the
‘import by reference’ mechanism that most word processors offer.

• If the original item is changed, all instances within those documents are
updated automatically the next time the documents are opened.

Discussion This technique avoids the maintenance problems associated with redun-
dancy. However, it cannot be denied that there are several drawbacks
associated with import by reference, which you have to weigh against its
advantages when you consider using it.

First, if you refer to the artefact with text, that text will not be updated auto-
matically when the artefact changes, which carries the danger of conflicting
information in the diagram or table on one hand and the surrounding text on
the other.

Next, if specific artefacts are needed in several documents, these documents
overlap, at least to a certain degree. This can be an indication that such docu-
ments aren’t properly focused, although not necessarily. If this is the case,
you can try to avoid the situation altogether by striving for more FOCUSED

INFORMATION, resulting in smaller overlaps.

Another disadvantage is that a document that references external artefacts
requires several files, so that opening such a document might take more time
than it otherwise would. Furthermore, using many referenced artefacts within
a document is often a rather fragile construction, as the DOCUMENT ARCHIVE in
which the items are stored might undergo a reorganisation. It helps here to
implement REORGANISATION UPON REQUEST only, that is, to only reorganise the
archive when it is actively requested by its users. Still, maintenance of docu-
ments with references to information items can be awkward.

To solve the last problem, you may consider importing artefacts by reference
only as long as its main advantage applies: use import by reference while the
artefacts are likely to change frequently, and replace the references by
imported copies when changes become less likely and separate maintenance
no longer appears a burden.

Agile documentation.book Page 137 Wednesday, June 11, 2003 11:11 AM

138 Infrastructure and Technical Organisation

Separation of Processing and Printing
Problem How can projects produce useful, printable documents?

Forces Team members must be able to read and print each other’s documents,
whether they use the same tools or not, and independently of the platform on
which the documents were produced. Moreover, customers and members of
other teams who have access to the project documentation must also be able
to read and print it.

However, other people sometimes aren’t supposed to modify the document-
ation, so there should be a way to provide a document version that does not
allow further processing.

Further, a document should look the same wherever it is printed. When a
document is delivered, readers should not be able to override the layout and
formatting, nor should the layout and formatting be overridden incidentally
by, for example, the printer configuration.

Unfortunately, some word processors change documents automatically the
moment they are opened. Worse, macros, font installations and printer
configurations allow documents to look different on different systems. Under
these circumstances the use of even simple formatting elements such as page
breaks becomes a matter of pure chance.

In addition, opening a document can be unsafe when the document contains
macros that are executed automatically, as macros can host viruses. Prefer-
ably, no macros should be executed when reading or printing a document.

Solution If a team chooses to deliver the project documentation in a print format
that is widely available, all readers are able to print the documents,
independent of the platform they use.

The key to this solution is the clear separation of formats for document
processing on one hand and print formats on the other. Teams should take
care to distribute only versions of their documents in the print format when-
ever the recipients aren’t expected to process the documents further.

Agile documentation.book Page 138 Wednesday, June 11, 2003 11:11 AM

Document Templates 139

In detail, print formats should meet the following requirements:

• Print formats must fully capture all information about the layout and
formatting of a document. This includes the use of typefaces, the page
geometry and so on. The page layout of the printed document must be
part of the document alone, and must not depend on the surrounding
infrastructure.

• Print formats must not allow further processing.

• Ideally, print formats should not allow macro execution either.

• To ensure the documentation is widely available, access to print formats
must be free.

Discussion The page description language PDF (Portable Document Format) is the most
prominent example of a print format that completely and unambiguously
describes the printed page. PDF is an excellent choice, as it can be read with
the Adobe Acrobat Reader, a tool that is freely available for multiple
platforms.

PostScript is another useful print format, as it can be read with GhostView –
another free tool. However, PostScript is less widely used, and not as plat-
form-independent as PDF.

Obviously, the use of a print format has an influence on the choice of a docu-
mentation tool. If you’re responsible for setting up the documentation
infrastructure, you might want to give preference to tools that directly
support print formats, for example tools that generate PDF. Keep in mind,
though, that FEW TOOLS should be sufficient for documentation purposes.

Document Templates
Problem How can all project documents acquire a reasonable structure and a

good layout at little cost?

Forces We have seen that layout and formatting matter. A good layout makes a docu-
ment more legible. Project documents must meet a certain degree of
formatting standards.

However, it is inefficient to let the team members take care of things such as
layout and formatting individually. Everybody would come up with their indi-

Agile documentation.book Page 139 Wednesday, June 11, 2003 11:11 AM

140 Infrastructure and Technical Organisation

vidual solutions, so there wouldn’t be a consistent look and feel throughout
the project documents. More importantly, it would be a waste of resources.

In an agile project, assuming an agile attitude, not everybody has the time to
design document layouts. And even if several people took the time, they
would end up doing similar things independently of each other.

Finally, it’s likely that not everybody in the team has the knowledge to come
up with a useful layout.

Reusing well-designed document layouts sounds like a good idea. However,
it’s not just the document layout that we can reuse.

Most projects have some experience with the typical contents of specific
documents. They know what kind of materials should go into a requirement
specification, or into a design document, and so on. It is worthwhile reusing
this experience, so that team members need not r e-invent the typical
elements of a document they intend to write.

Solution Document templates, once they have been properly designed, impose
their structure and layout on all documents that are produced using
them.

Almost all word processors allow templates to be used as the basis for new
documents:

• A template defines the layout for all documents of a specific kind. The
entire set of document templates defines a layout to be inherited by the
project documents, as shown in Figure 41. Furthermore, the templates can
ensure, at least to some general degree, a consistent look and feel over
the entire project documentation.

• A template specifies the structure of all documents of a specific kind, or
at least part of it. For example, a template may include the sections and
subsections that all specification documents require, while leaving further
structuring to the authors of the individual specifications. It can even
include some sample text as a kind of prototype.

Ideally, one person, or a small group of people, can provide all necessary
templates, and the rest of the team need not be concerned with any layout
and formatting. Templates may even be available organisation-wide, so that a
project can simply reuse the work of previous projects.

Agile documentation.book Page 140 Wednesday, June 11, 2003 11:11 AM

Document Templates 141

Discussion To make sure that templates lead to documents that are highly legible and
aesthetically pleasing, the templates must follow the typographical patterns
from Chapter 3, otherwise typographical mistakes and awkward layouts
would be copied into many documents.

Next, templates must be easy to use. Often relatively simple templates do
perfectly well. To a certain degree, their simplicity can be measured by how a
template employs the SEPARATION OF CONTENTS AND LAYOUT: the template typi-
cally defines paragraph formats for the authors of the project documents to
use. A small set of paragraph formats, say ten or so, is almost always suffi-
cient. An extensive set of formats, however, makes templates complex and
difficult to use.

How exactly can templates provide a tentative structure for a document? A
template can introduce placeholders for the structural elements described in
Chapter 2, in particular for GUIDELINES FOR READERS, for a GLOSSARY and for a
DOCUMENT HISTORY.

Templates can do more than this, however. If you choose to have a template
for each document from the DOCUMENTATION PORTFOLIO, you can set up
sections for all topics that are normally dealt with in these documents.

Figure 41. Document templates

Agile documentation.book Page 141 Wednesday, June 11, 2003 11:11 AM

142 Infrastructure and Technical Organisation

Finally, for a collection of document templates to be generally available, they
are best stored in a well-defined place inside the project’s DOCUMENT ARCHIVE.
To make sure that users find the templates easily, these archives should
undergo REORGANISATION UPON REQUEST only.

Few Tools
Problem How can projects minimise the effort spent on the introduction and

use of documentation tools?

Forces We want to produce high-quality documentation. Appropriate tools are
necessary for producing, maintaining, printing, storing and retrieving docu-
ments. But which tools should we choose?

To this end, we have to remind ourselves that the introduction of tools brings
with it a learning effort. Teams must familiarise themselves with tools before
they can use them efficiently. The effort that goes into this can become quite
large when a large number of tools is involved and, most importantly, when
tools are complex in use. Complex tools can easily turn out to burden rather
than support the users.

To make the last statement sound more positive: we can reduce the effort if
we manage with fewer and simpler tools.

The effort associated with tools also depends on which tools the team
members have used previously. Things are much easier if a team can rely on
tools that many of the team members have been using for years.

Moreover, there is a cost advantage in using tools that are readily available
within the organisation, as no licences for additional tools are necessary. This
suits us well, as we don’t want to spend an undue amount of money on the
documentation infrastructure.

The cost argument, however, should not lead us to decide on tools that ulti-
mately do not fulfil their purpose. The best cost advantage isn’t worth much
when the tool cannot provide the service that is needed.

Agile documentation.book Page 142 Wednesday, June 11, 2003 11:11 AM

Few Tools 143

Solution Almost all projects can manage with a small set of documentation tools.

The following table gives a list of tools that a project may need.

When you have a choice of dif ferent products for each category, the
following criteria can help you make a decision:

• Quality: tools must be reliable and easy to use.

• Availability: tools that are readily available in the organisation cost less
than tools that need to be purchased.

• Cost: if quality and availability aren’t the decisive factor, pay as little as
you can.

The general guideline to follow is that tool support for documentation should
be as simple as possible.

Sometimes projects are inclined to use more complex tools, such as CASE
tools that also support documentation. Before a project makes a decision on
such a tool, however, it must be able to explain why the tool is necessary,
and how it helps the team more than simpler tools could.

Tool Purpose

Word processor Produce all texts that go into paper documents,
including diagrams and tables

HTML editor Produce Web pages, unless they can be
generated

Digital camera Capture the output of workshops and whiteboard
discussions

Spreadsheet Work on planning sheets

PDF reader Read and print printer-ready documents

Web browser Read on-line documents

Web site Make the project documentation available

Configuration
management

Store documents and document versions

Agile documentation.book Page 143 Wednesday, June 11, 2003 11:11 AM

144 Infrastructure and Technical Organisation

Discussion The Agile Manifesto gives preference to humans and interaction over proc-
esses and tools (as cited in Alistair Cockburn’s book (Cockburn 2001)). This
does not mean that there isn’t any value in tools, but it reminds us that tools
should serve people, not vice versa.

Scott Ambler recommends the use of the simplest tools possible, but comments
that this is not always the same as simple tools. The appropriate degree of
simplicity depends on the project’s INDIVIDUAL DOCUMENTATION REQUIREMENTS.

One example of a simple tool is the digital camera mentioned in the table on
page 143. It may surprise you to see it in the list of documentation tools, but
it makes a lot of sense. A digital camera is easy to use, and can turn the
results of whiteboard discussions into JUDICIOUS DIAGRAMS. This technique has
been suggested in the literature on agile development (Cockburn 2001,
Ambler 2002).

As far as word processors are concerned, make sure the tool you use
supports PDF generation, preferably in a straightforward way. This is the
easiest way to achieve a SEPARATION OF PROCESSING AND PRINTING. Also give
preference to tools that take a technically sound approach to the SEPARATION

OF CONTENTS AND LAYOUT, for example by offering a straightforward way to
define paragraph formats.

Annotated Changes
Problem How can authors avoid confusion over changes they have made?

Forces While a document is still under development, changes are made frequently.
This does not represent a problem, as long as only one person is involved in
writing the document.

Documentation, however, can be a collaborative effort. Several people can
contribute to a document as co-authors. Co-authoring a document is much
more effective if all authors are aware of the recent changes the others have
made.

Logging recent changes springs to mind as a solution, and most word proces-
sors offer such a feature. But as more changes are made, the size of the
change logs grows and grows, and after a while the logs become too long to
be useful.

Agile documentation.book Page 144 Wednesday, June 11, 2003 11:11 AM

Notification upon Update 145

Solution While a document is under development, authors can use automatic
annotations to identify those parts of the document that have changed
recently.

Word processors offer the following techniques to track changes made to a
document:

• Change bars on the outer margin indicate the paragraphs that have
recently changed.

• New text can appear in different colours, even indicating the person who
added the text.

• Text that has been deleted may still be visible, but crossed out.

• Annotations can be attached to text that say who last changed it and
when.

Once a document has reached a stable state, is distributed among the team,
or is even delivered to the customer, such annotations must be removed. Not
only would they clutter the document and destroy the overall layout, they
would be meaningless to most readers.

Discussion This pattern is of great use when a document is written by co-authors as a
joint effort. However, another pattern recommends that each document have
ONE RESPONSIBLE AUTHOR. Is this a contradiction? No, it’s not: co-authoring a
document is perfectly natural. The job of the responsible author is to ensure
that the document is written as intended, and if there are co-authors, that
contributions are integrated smoothly. Change bars and annotations are there
to help the responsible author.

Notification upon Update
Problem How can readers be prevented from using outdated versions?

Forces Information can expire, in particular in a project that has not yet been
completed. New documents are added, existing documents are updated.

Normally we want our colleagues to read the most recent versions of our
documents, since the most recent versions represent the best of our knowl-
edge. But how can people know that there is a new document, or a new
version of an existing document?

Agile documentation.book Page 145 Wednesday, June 11, 2003 11:11 AM

146 Infrastructure and Technical Organisation

You can’t expect people to check the archive regularly for new versions. And
there is little benefit in asking people to use your documents on-line so that
they get new versions automatically. Since print is the medium of choice for
many documents, people will print those documents anyway, and changes
would then go unnoticed.

So you have to inform people when a document has changed. But how
detailed should the information be? Information about updates must be
detailed enough for people to decide whether a new version is relevant for
them.

However, it’s not a good idea to send an e-mail message including the new
version itself. This would only ensure that the document was stored redun-
dantly many times in the recipients’ mailboxes.

Solution Whenever there is a significant change in a project document, all
potential readers should be notified of the new version. The notifi-
cation should roughly explain what has been changed, but should not
include the updated material itself.

Often electronic mail is the method of choice to notify readers. The notifica-
tion should include the following information:

• Which documents have been added or updated, and the relevant version
numbers.

• Why the new version became necessary, and which material is new.

• A pointer to where the new versions can be found.

Discussion Notifications become necessary as a consequence of doing CONTINUING DOCU-

MENTATION, caused by the need to develop software and documentation
concurrently. The version number and the list of changes given in the notifi-
cation should be synchronised with the DOCUMENT HISTORY listed in the
document itself.

Before sending out the notification of a new version to readers, the author
must ensure that the new version has been checked into the DOCUMENT

ARCHIVE. The pointer to where the new version can be found is then a pointer
to the location in the archive where the version is stored.

When new documents are added, informing potential readers may not be
enough – the DOCUMENT LANDSCAPE may need to be updated as well.

Agile documentation.book Page 146 Wednesday, June 11, 2003 11:11 AM

Reorganisation upon Request 147

Reorganisation upon Request
Problem How can the documentation infrastructure be maintained?

Forces A stable infrastructure is a key factor for useful documentation. Users expect
documents to be stored in specific places, expect tools to work in a particular
way and so on. Frequent reorganisation confuses everybody.

However, at some point reorganisation of the infrastructure can become inev-
itable. When a project starts the documentation infrastructure cannot be
complete. As the project evolves, additional requirements for the infrastruc-
ture develop. Maybe the hierarchy in which the documents are organised
needs to be extended, maybe additional document templates become neces-
sary and so on.

However, reorganisation represents a fair amount of effort. Adapting access
paths, checking if tools still work and so on are typical tasks that follow reor-
ganisation. This makes reorganisation quite expensive.

Also, an infrastructure is hardly ever perfect; it can almost always be
improved. This fact alone doesn’t justify reorganisation. Making a useful infra-
structure even better hardly ever pays off.

Experience shows that, when documentation management runs smoothly,
users simply use the documentation infrastructure. When the documentation
infrastructure is problematic to the point that reorganisation becomes inevi-
table, users actively ask for changes.

Solution Frequent reorganisation makes things worse, not better. Reorgani-
sation of the documentation infrastructure should take place only
when it is actively requested by the members of the project team.

Reorganisation should meet the following preconditions:

• The expected benefits must justify the effort that is caused by the conse-
quences for existing documents, tools or methods.

• Project efforts rise and fall in natural cycles, sometimes of a year,
sometimes half a year. This period is a threshold time span during which
it should be probable that further reorganisation will not be necessary.

In other words, if you’re in charge of managing the documentation, you
should take users’ complaints about the documentation infrastructure seri-

Agile documentation.book Page 147 Wednesday, June 11, 2003 11:11 AM

148 Infrastructure and Technical Organisation

ously, but you shouldn’t overreact to small problems that, while they may
exist, are hardly crucial.

Discussion Reorganising the documentation infrastructure has a number of conse-
quences. It can affect the DOCUMENT TEMPLATES in two different ways. First,
their location in the DOCUMENT ARCHIVE can change, and second, the
templates themselves can be reorganised. The latter, if done while a project is
in progress, can put the consistent layout of existing and future documents at
risk.

Reorganisation also influences the use of tools. First, this is true for a configu-
ration management system used in the DOCUMENT ARCHIVE, which at least
needs its access paths adjusted. But perhaps also the archive hierarchy is
affected: in this case the reorganisation must preserve, or re-create, the
archive’s structural clarity and balance.

Second, reorganisation affects mechanisms that automatically generate docu-
ments following the SINGLE SOURCE AND MULTIPLE TARGETS principle, as well as
mechanisms for IMPORT BY REFERENCE. Again, access paths need to be
updated.

Programming and documentation – an analogy
There is an interesting analogy between several of the patterns in this chapter and several
programming principles.

• Setting up a DOCUMENT LANDSCAPE and implementing it using a DOCUMENT ARCHIVE resem-
bles the principles of data structures and their physical representation. The fact that these
are two patterns has its roots in the idea that specification and implementation should be
separated.

• The SEPARATION OF CONTENTS AND LAYOUT contributes to decoupling, which adds to a
document’s flexibility. This is similar to the flexibility gained by a software system
through decoupling components following the ‘separation of concerns’ principle.

• The discussion of formats in the SEPARATION OF PROCESSING AND PRINTING parallels the
discussion of data exchange formats known from software engineering.

• The use of DOCUMENT TEMPLATES promotes reuse through a mechanism similar to inherit-
ance. Document templates provide structures that are reused many times.

Agile documentation.book Page 148 Wednesday, June 11, 2003 11:11 AM

Experience Reports 149

Experience Reports
Let’s now look at the documentation infrastructure of some of our sample
projects. We’ll see the different techniques that the projects used to organise
their documentation, and we’ll also see the problems they faced.

Storing and
retrieving
documents

If you look back at Figure 35 on page 118, you can see what a poorly organ-
ised project infrastructure looks like. So how does a well-organised DOCUMENT

LANDSCAPE look like? Figure 42 shows how Project Contentis organised its
documentation.

Contentis was a fairly small project, so the team chose a very simple solution
for organising their documents. The documents were stored in the file system,
and versioning merely consisted of adding version numbers to the document
names. Despite, or perhaps because of, its simplicity, this solution worked
very well.

In a larger project, however, a more elaborate solution probably makes sense.
Project Persistor also chose to use the file system as the basis for its DOCU-

MENT LANDSCAPE, but recognised that it was necessary to have an underlying
DOCUMENT ARCHIVE. Project Persistor was a development project, and a config-
uration management system was already in use for versioning software
modules. It was only logical to use this system for the project documentation

• Having a SINGLE SOURCE AND MULTIPLE TARGETS as well as the IMPORT BY REFERENCE tech-
nique avoid (or at least manage) redundancy by adding a level of indirection. A certain
loss of efficiency is accepted in order to make maintenance easier. You can find the same
trade-off in software development.

• The principle of NOTIFICATION UPON UPDATE greatly resembles event-based software
architectures.

• REORGANISATION UPON REQUEST discusses the trade-off between the advantage of an
improved organisation and the costs of reorganisation – a discussion that can be found in
many software projects.

These principles are as important in documentation as they are in software engineering.
Often people will not notice their application, and will only miss them when they are not
applied. These principles help you pursue a straightforward programming style on one
hand and a lean organisation of your documentation on the other.

Agile documentation.book Page 149 Wednesday, June 11, 2003 11:11 AM

150 Infrastructure and Technical Organisation

as well. Figure 43 shows the file system organisation, which mirrors the struc-
ture within the configuration management system, in which old versions
aren’t visible.

Project Navigator came up with yet another solution. This project used a
CASE tool anyway, and stored several text documents within it. In addition,
the project also felt a need for HTML documentation, to enable them to navi-
gate through the descriptions of the component designs and the interface
specifications. These HTML documents were placed in a project WIKI, as
shown in Figure 44.

Figure 42. Project Contentis: a file system based document landscape

clearly
distinguished

directories

PDF versions for
distribution

simple versioning

Agile documentation.book Page 150 Wednesday, June 11, 2003 11:11 AM

Experience Reports 151

Figure 43. Project Persistor: Document landscape on top of configuration management

documentation
integrated into
configuration
management

clear structure

appropriate
formats for

processing and
printing

project templates
made available

Agile documentation.book Page 151 Wednesday, June 11, 2003 11:11 AM

152 Infrastructure and Technical Organisation

As different as these solutions are, they all have in common that they are well
organised, clear and easy to memorise. You get a feel for the DOCUMENT LAND-

SCAPE and you know where to look for each document.

All these examples also make use of READER-FRIENDLY MEDIA. Both Project
Persistor and Project Contentis chose to produce documents intended for

Figure 44. Project Navigator: a web-based document landscape

Agile documentation.book Page 152 Wednesday, June 11, 2003 11:11 AM

Experience Reports 153

print, and implemented this through PDF generation. As you can see in
Figures 42 and 43, both projects provided PDF versions of the documents that
were going to be distributed.

Project Navigator faced strong requests for navigation through the project
documentation, and therefore supplied on-line versions of some documents.
Project FlexiCar came to the same conclusion. This project decided to provide
specific information on-line at the customer’s request. In both cases, the high
degree of referentiality had led to on-line documents as READER-FRIENDLY

MEDIA.

Producing
documents

This discussion takes us to the question of how these on-line documents
were produced. The on-line documents, both in Project Navigator and in
Project FlexiCar, included information that originated elsewhere. This was no
problem, however, as in both cases the on-line versions could be generated
automatically. Project Navigator generated its documents automatically from a
CASE tool. Project FlexiCar had followed the principle of CODE-COMMENT

Project Persistor: a simple file system structure
The infrastructure for all project files was set up as soon as the project had started. This
included both project documents and source code. It was clear that the team would use a
configuration management system for the code, so it was an easy decision to use the same
system to archive the project documents as well.

The documents describing the data access layer framework were stored in well-organised
file system directories that were accessible by the entire project team for reading and writing
(Figure 43). The underlying configuration management system made sure that a document
had to be checked out before anyone could change it, and that earlier versions could be
retrieved if necessary.

Project FlexiCar: generating implementation documents
In addition to the design documents produced, the customer was interested in the docu-
mentation of the actual implementation.

JavaDoc was the perfect tool to generate this documentation without any additional effort.
The team had supplied source code comments whenever necessary, and had followed the
guidelines for Java comments from the start. An HTML commentary for all classes could
therefore be generated at no extra effort.

Agile documentation.book Page 153 Wednesday, June 11, 2003 11:11 AM

154 Infrastructure and Technical Organisation

PROXIMITY and had supplied rich source code comments at the crucial points
within the software, allowing JavaDoc to be employed.

This demonstrates the benefits that tools can bring very well: they can save
extra work. Double work and double maintenance are things we clearly want
to avoid – we don’t want to document the same thing twice.

Project Vista gives another example how a tool can help in this case. Again,
information had to be made available in different formats, and having a
SINGLE SOURCE AND MULTIPLE TARGETS was the key to managing redundancy.

However, Project Navigator also has a warning for us. It took this project a
while before the documentation infrastructure was up and running, which
caused some trouble. Once it was running, it was re-organised several times.
People had to adjust tool configurations more than once. Instead of
performing a REORGANISATION UPON REQUEST, unnecessary reorganisations
used up resources that could have been spent better elsewhere.

Project Vista: generating a table from a diagram
The diagram of the application landscape (Figure 7, page 54) revealed most of the depend-
encies between the systems the customer used. The diagram was maintained using Micro-
soft Visio, and was updated whenever the team gained more insight into the customer’s
application landscape.

The diagram was perfect for handing out and for getting discussions started. The diagram
wasn’t appropriate, however, for a more detailed description of the dependencies the team
had identified. What was needed was a list of all dependencies, to which more information
could be added and which allowed the dependencies to be classified.

The team decided to keep a list of all system dependencies in a Microsoft Excel spread-
sheet. This spreadsheet was far too large to be maintained manually. One person wrote a
small script that extracted the information about arrows that connected boxes in the Visio
diagram and transformed this information into a format that could be imported into the
spreadsheet.

This was a relatively easy mechanism that was implemented within a few hours. It worked
efficiently enough to allow the spreadsheet to be updated on an almost daily basis.

Agile documentation.book Page 154 Wednesday, June 11, 2003 11:11 AM

Experience Reports 155

Project Navigator: integrating design and documentation
The team really had mixed feelings about the documentation in this project.

The good part was that the project followed the strategy of documenting everything at most
once. The customer had suggested the use of generation mechanisms to avoid the mainte-
nance of redundant documents.

• Rational Rose was used as a modelling tool. For each component, the Rose model
included a description, a class diagram and the interface specification. A code frame for
each component could be generated automatically, which included sour ce code
comments for the interface methods.

• In addition, the customer wanted a small design document for each component. This
document also consisted of the description, the class diagram and the interface specifica-
tion, and was generated from the Rose model.

• Several developers felt that on-line versions of the design documents were helpful, as
they used these components in their everyday programming. HTML pages were gener-
ated automatically and integrated into the overall web documentation the project had set
up (Figure 44).

The drawback was that it took quite a while before the infrastructure was established.

First of all, it took time for a file system directory to be defined to which everybody in the
team had access. This was mainly because the team worked on different sites. Until the
problem was solved, team members resorted to circulating documents via e-mail whenever
an update became available. People soon had lots of different versions of project documents
in their mailboxes, which led to several conflicts in which someone used an outdated ver-
sion.

Second, it took a while before all the generation mechanisms were up and running. Until
this was done, the components’ Rose model and design documents were maintained redun-
dantly, despite an attempt to avoid this.

Finally, the infrastructure, and in particular the generation mechanisms, underwent frequent
reorganisation. The team had to use different mechanisms several times, which caused a sig-
nificant overhead.

Agile documentation.book Page 155 Wednesday, June 11, 2003 11:11 AM

156 Infrastructure and Technical Organisation

Similarly, Project Paracelsus got into trouble because it took too long to make
the documentation infrastructure available. In this case, the DOCUMENT

TEMPLATES were missing. Project Persistor shows how this specific problem
should be solved: the project templates are stored in the DOCUMENT LANDSCAPE

along with all other materials (Figure 43).

The conclusion we can draw from these examples is that a clear and effective
infrastructure is the best technical support for documentation that you can
have. The sooner the infrastructure is available, the better. DOCUMENT

TEMPLATES are an essential part of this infrastructure, as are simple tools,
providing that they avoid duplicated work.

Almost all projects can manage with FEW TOOLS, provided that the tools work
reliably and efficiently. Of all the projects mentioned here, none relied on
complex tools that were difficult to use. Simplicity and straightforwardness
were strategies that worked well, while problems were caused by complexity,
frequent reorganisation and infrastructures being implemented too late into
the project.

I’d like to conclude this experience report with an example of how easy and
how effective tool support can be. Among others, Alistair Cockburn and Scott
Ambler recommend the use of a digital camera for documenting design
discussions (Cockburn 2001, Ambler 2002): here is an example from Project

Project Paracelsus: missing templates
When the team started writing the specification and the design documents, no templates for
these documents were available because the organisation didn’t provide any. The team had
the choice of either designing a template on their own or doing without one.

A few weeks into the project, one person took the time to set up a simple document tem-
plate. By this time, however, everybody had already been working on their documents,
which had a rather inconsistent structure and layout as a result. Most of the documents
lacked some of the elements that are useful to readers: guidelines, a document history and
so on.

The documents were manually adapted to the new template. It was a small project with
only a few documents, so the damage could quickly be repaired. Nevertheless, more time
than necessary was spent in giving those documents an appropriate structure, let alone for-
matting and layout. Had the template been available from the start, the double work could
have been avoided.

Agile documentation.book Page 156 Wednesday, June 11, 2003 11:11 AM

Experience Reports 157

OpenDoors. It’s the result of a whiteboard discussion that describes deploy-
ment processes for an Internet portal. It’s a useful diagram, and it took only
about ten minutes to commit it to paper.

Figure 45. Project OpenDoors: a digital camera snapshot

Agile documentation.book Page 157 Wednesday, June 11, 2003 11:11 AM

Agile documentation.book Page 158 Wednesday, June 11, 2003 11:11 AM

5 Management and Quality
Assurance

The value of documentation is only to be realized if the documentation is
well done. If it is poorly done, it will be worse than no documentation at all.

Gerald M. Weinberg (Weinberg 1998)

Martin and Daniel, programmers, and Laura, the project manager, sat around
in the cafeteria, drinking espresso and discussing the latest football results.
Laura said: ‘Oh yes, one thing I forgot about at the project meeting – what are
we going to do about the documentation?’ ‘Hmm… you mean, we are
supposed to do documentation?’ ‘Well, sure we are.’ ‘Ok, but can’t we do that
when we’ve completed the next code release? We’ve got absolutely no time
for that now.’

The conclusion to draw from this story is not that you shouldn’t plan the
documentation for your project in the cafeteria. If you choose to sit down
together in a nice atmosphere and plan your project with a cup of coffee in
your hand, there’s nothing wrong with that.

Neither is the conclusion that you should sacrifice the testing before code
release, spend the time on documentation instead, and deliver software that
hasn’t been tested.

Still, something’s wrong here. Documentation, when it gets that type of atten-
tion, probably doesn’t even vaguely meet its purposes. Important documents
are likely to be missing, because the project manager and the team forgot to
plan the documentation in the first place. They’re discussing documentation
between other meetings and don’t really take it seriously. This isn’t a strategy
that will ensure that documentation efforts are well-targeted. The documents

Agile documentation.book Page 159 Wednesday, June 11, 2003 11:11 AM

160 Management and Quality Assurance

is the
precondition

for

leads
into

can take
on is a step

towards

takes a
document

to the

is the
precondition for

requires

representsconsists of

is
complemented

by

extends
to

is coordinated by

is responsible
for

is responsible
for

REVIEW BEFORE
DELIVERY

Figure 46. Patterns for management and quality assurance

A DISTINCT
ACTIVITY

WRITING AND
REFLECTION

CONTINUING
DOCUMENTATION

A DISTANT VIEW
KNOWLEDGE
MANAGEMENT

ONE
RESPONSIBLE

AUTHOR

REVIEW CULTURE

CUSTOMER
REVIEW

INFORMATION
MARKETPLACE

can invite

can invite

Agile documentation.book Page 160 Wednesday, June 11, 2003 11:11 AM

A Distinct Activity 161

that do get written might well end up as a bunch of ‘write-once-read-never’
documents, and so not offer any benefit to readers.

Documentation doesn’t happen automatically. You have to see to it that
documentation takes place, and that it takes place in a way that fits the needs
of your project. Planning need not, and should not, be confused with a
heavyweight methodology or even with a documentation bureaucracy. Plan-
ning simply means that you make the necessary decisions.

When you decide about the documentation you need to balance the
following forces. On one hand, high-quality documentation requires time and
effort, but on the other, time and effort are valuable resources that must be
spent with care. The key is to make sure that the effort spent on document-
ation is spent well.

One step is to identify the materials that really should go into written docu-
ments. This has been much discussed in Chapter 1. The next step is to
identify the people who should work on the documentation. Management
should always be concerned with people, and documentation management is
no exception. The team members’ personal preferences and skills play a role
here. How can the authors of the project documentation be supported? Yet
another step is to involve quality assurance. These are issues the patterns in
this chapter address.

It’s time to state again that this book does not present a documentation
method ready to be used by the project manager. The following patterns
don’t say who should write specific documents and at what time. Rather, they
guide you to set up your own way of documenting projects and assembling
expertise in your organisation. Figure 46 gives an overview.

A Distinct Activity
Problem How should resources be assigned to documentation activities?

Forces Documentation can be important for later project stages or for the next
project. If we produce inaccurate documentation or ignore the document-
ation requirements altogether, much of the expertise held by the team
members will be lost. The result is that we’ll need to re-invent things later,
due to a lack of documentation in the first place.

Agile documentation.book Page 161 Wednesday, June 11, 2003 11:11 AM

162 Management and Quality Assurance

However, documentation binds resources. These resources cannot be used
for other things such as programming or testing. It is pointless to argue that
documentation should be given as much time as possible. First, document-
ation doesn’t automatically get better when you spend more time on it.
Second, documentation need not always be perfect.

Agile development suggests that documentation be sufficient, but no more
than that. It’s unacceptable if a development project ends up with a number
of nice documents but without operational software when the deadline is
due.

We should therefore spend a reasonable amount of time on the document-
ation of our software projects. Spending time on documentation must be
justified by the expected benefits.

But what is a reasonable amount of time? There is no general answer to this
question, since projects differ a lot – a development project is likely to have
different demands on documentation than a consultancy project, for example.

A well-known psychological phenomenon makes the matter even more diffi-
cult. Many people are reluctant to invest in something that only pays off later.
This phenomenon is even more marked if only others will profit. If you
spend time writing project documents, it’s not necessarily you who will profit
from those documents – more likely your colleagues or your customers will.
Moreover, even if you profit from the documents yourself, you have to invest
time now, but won’t get any benefit until later.

All this calls for planning, and the planning must take into account the bene-
fits that documentation has for the entire project, both now and in the future.
This may seem obvious, but too many projects have ended up with poor
documentation because they didn’t plan documentation properly in the first
place.

Planning, however, isn’t restricted to assigning a budget. A budget isn’t worth
much when a team is too busy with other project activities – which always
have higher priority. Documentation needs a reasonable budget and a
reasonable priority, whatever ‘reasonable’ means in a specific project.

Agile documentation.book Page 162 Wednesday, June 11, 2003 11:11 AM

A Distinct Activity 163

Solution When documentation is considered a distinct project activity, and not
just the by-product of coding, it can be assigned its own budget, priority
and schedule. Documentation can then be weighed against other
project activities.

The core idea is to make the assignment of resources to documentation
explicit, and open to discussion, individually for each project. Exactly what
budget is reasonable differs greatly, depending on the type of project. The
important thing is to understand that documentation is one activity among
others, and that similar to other activities, one that uses up resources.

• The project manager normally keeps a list of all project activities with a
budget assigned to each activity, adding up to the total project budget. All
documentation activities should be on that list, and a budget (time and
resources) should be assigned to each.

• Moderated by the project manager, the team should assign priorities to all
activities due in the near future. Documentation activities, if taken
seriously, will be given a high priority at some points and a lower priority
at others. The project manager should see to it that, over the course of the
project, documentation receives the priority it needs when compared to
other project activities.

• The team should also agree on a schedule for the documentation, and fix
a delivery date for the next version of each document needed.

Customers often expect documentation to be delivered at various points
throughout a project. Of course, you need to take this into account when you
plan documentation activities.

Discussion The time and budget you’ll need for documentation clearly depends on the
amount of documentation that’s necessary. Because projects have INDIVIDUAL

DOCUMENTATION REQUIREMENTS, the effort you have to spend can vary greatly.
Choosing the necessary documents from the DOCUMENTATION PORTFOLIO,
combined with a healthy dose of scepticism when it comes to large amounts
of paperwork, will allow you to determine the resources you’ll need, and to
keep them within reasonable limits.

Determining the necessary amount of documentation actively and explicitly is
a strategy also recommended in the literature on agile development. Alistair
Cockburn does not make any assumptions about what or how much docu-

Agile documentation.book Page 163 Wednesday, June 11, 2003 11:11 AM

164 Management and Quality Assurance

mentation a project needs, but he requires a team to pose and answer this
question, for example through a planning game (Cockburn 2001).

There are more aspects to managing documentation than budget and priority.
Another issue is to provide an environment that allows authors to treat docu-
mentation as a mix of WRITING AND REFLECTION. Moreover, a REVIEW CULTURE

needs to be established that enforces the REVIEW BEFORE DELIVERY rule. Last
but not least, it is essential to appoint ONE RESPONSIBLE AUTHOR for each docu-
ment – preferably someone who enjoys doing documentation.

One Responsible Author
Problem How many people should be responsible for a document?

Forces If a large number of people are responsible for one task, it is likely that the
task will not be done at all – everybody will think that someone else is in
charge.

Responsibilities are clearer if only one person, or at most a small team, is
responsible for any task. One idea is to have someone work on the project
documentation full-time, since this person could then focus on the job.

Perhaps the project, however, can’t spare one person for long enough to
write the documentation alone, or no one person has enough knowledge to
do so. Moreover, someone who exclusively works on documentation isn’t
involved in any other project activities. It’s easier to produce good document-
ation when you are actively involved in a project rather than just observe it.
This suggests that several people may have to contribute to the
documentation.

As people are different, they have different interests and skills. Some software
engineers dislike writing documentation and prefer the more technical tasks,
while others quite like it. If we are interested in high-quality documentation,
we must make sure that authors are skilled and motivated. What’s the point
in forcing someone to do the job who isn’t inclined to do it?

Agile documentation.book Page 164 Wednesday, June 11, 2003 11:11 AM

One Responsible Author 165

Solution For each project document, there must be one person who accepts
responsibility for it. This person need not write the document alone,
but must coordinate the contributions from other people.

The responsible person should be a member of the project team, have good
writing skills and also enjoy writing (Weir 1997). That person should do the
following:

• Collect material and arrange brainstorming sessions with other team
members.

• Set up the overall document structure.

• Commit material to paper.

• If there are co-authors (which will sometimes be the case), solicit contri-
butions from the co-authors and integrate these contributions, while
ensuring a consistent writing style for language, diction and lines of
argument.

• Arrange for document reviews and incorporate feedback from the
reviewers.

Different project documents typically have different responsible authors, to
ensure that for each responsible author the workload of documentation
doesn’t get too great in proportion to other project activities.

Discussion This pattern is a special rendition of a general management principle. Among
his patterns of project management risk reduction, Alistair Cockburn stresses
that in a project there must be exactly one Owner Per Deliverable (Cockburn
1998), otherwise several people might work on the same thing, or important
tasks might be neglected. This principle applies to documents as much as to
all other types of deliverables, hence the requirement that the responsibility
for a document be devolved to one person.

This responsibility includes establishing a process to ensure CONTINUING

DOCUMENTATION, and arranging for a REVIEW BEFORE DELIVERY.

Agile documentation.book Page 165 Wednesday, June 11, 2003 11:11 AM

166 Management and Quality Assurance

Continuing Documentation
Problem When should project documentation be written?

Forces It is clear that at the beginning of a project we are unable to document every-
thing that we would like to see documented by the end. We don’t yet know
what the software architecture will look like, let alone more detailed design
aspects. Of the things that we could describe already, such as user require-
ments, at least some are likely to change as the project evolves.

However, we cannot postpone documentation until the project is finished.
Documentation is needed for communication with customers and between
team members. It has to be available during the project.

These points suggest that documentation should be started early in the
project, at a relatively coarse-grained level, and should be continued, refined
and updated regularly. For example, a design document can begin as a mere
sketch and can be extended as the design evolves.

The question, however, is what we mean by ‘regular’ updates. On one hand,
if we wait too long before documents are updated, readers are likely to be
irritated by outdated information. Inaccurate information can be the source of
serious misunderstandings, and can therefore do a lot of harm.

Worse still, excessively long time spans between documentation updates
create the danger of the updates never being carried out at all. At some point,
updating the documentation is easily forgotten. This clearly isn’t what we
want, as it would render the documentation useless in the long term due to
inaccuracy.

All this suggests that we should be fairly quick with updates. If we wait until
problems arise with outdated documents, we have waited too long – the
damage has been done.

On the other hand, if documentation is updated immediately whenever a
project detail changes, it will have to be modified almost continuously. This is
expensive – documentation will require much more attention than necessary.

Moreover, updating documentation too frequently ensures that most of the
time no stable documentation is available. This is in conflict with our desire
to have useful documentation, however incomplete, from the beginning of
the project.

Agile documentation.book Page 166 Wednesday, June 11, 2003 11:11 AM

Continuing Documentation 167

Solution Project documentation, when it evolves continuously as the project
goes on, offers the advantage that it reflects the last stable state of the
project.

Continuing documentation calls for documentation to be updated at regular
intervals. What time frame you can assume for these regular intervals
depends on the individual project:

• It is often a good idea to update the documentation with new software
releases, thereby keeping the time scale of software and documentation
releases in sync.

• The frequency of updates also depends on the type of document. More
general documents, such as architecture descriptions, are more stable and
need fewer updates than, for example, an interface specification, which
may change daily in a busy project.

• Updates can be less or more urgent. An important document, one that is
used on a day-to-day basis, must be updated quickly when its object has
changed. A different document may be used less frequently: updating this
document is not so urgent and can perhaps wait.

The existing documentation, in its perhaps intermediate state, should be
made available to all team members, to allow them to use it as the project
progresses.

Discussion The Agile Manifesto recommends release cycles for software from a couple of
weeks to a couple of months (in one of its concrete recommendations, as
cited in Alistair Cockburn’s book (Cockburn 2001)). Preference is given to a
shorter timescale so that software delivery isn’t slowed. A couple of weeks
also sounds like a good average time frame for updating documents,
although shorter as well as longer intervals can make sense.

Between updates, the documentation is not entirely up to date. Is this a
problem, and is there something we can do about it? The first thing to do is to
keep a DOCUMENT HISTORY, so that readers are aware of potential inaccuracies.
Otherwise, people can overcome this problem by using a simple technique
that Charles Weir suggests among his Patterns for Designing in Teams: all
team members can keep a printed copy of the documentation and make Ad-
hoc Corrections (Weir 1997) until the next version is distributed to the team.

Fortunately, many of the documents that undergo rapid change are those that
people use to look up information – documents that are typically presented

Agile documentation.book Page 167 Wednesday, June 11, 2003 11:11 AM

168 Management and Quality Assurance

on-line (see READER-FRIENDLY MEDIA). These documents can often be gener-
ated. On the other hand, paper documents often put a FOCUS ON LONG-TERM

RELEVANCE, which clearly reduces the problem.

To make continuing documentation possible, documentation must be consid-
ered A DISTINCT ACTIVITY – an integral part of a project that requires personnel
capacity and a budget, just like all other project activities. For each document,
the team must decide on the update frequency, and the ONE RESPONSIBLE

AUTHOR should ensure that the update frequency is met.

Because the documentation is written and used while the project progresses,
it is open to the REVIEW CULTURE that the project hopefully has established.
This is a two-fold issue. First, writing documentation can provide insight into
the software, as WRITING AND REFLECTION can go hand in hand. For example,
when you describe a design, you implicitly validate it, much as you do when
you explain it to others. This way, the documentation can contribute to the
quality of the software. Second, as the documentation is used during the
project, team members can give feedback concerning the quality of the docu-
mentation itself.

Writing and Reflection
Problem How can documentation and other project activities stimulate each

other?

Forces Good ideas take time. Documentation is a creative process, and creative
processes need time to allow ideas to develop and mature. A pre-requisite for
a well-written text is that the author is given time for reflection during the
writing.

This is even truer for documentation in conditions of rapid change. Evolving
projects normally go hand in hand with piecemeal growth of the document-
ation, which requires authors to reflect on the changes and adaptations they
need to make.

Authors do not only reflect upon the documents they write, they also reflect
on the subject matter. Documentation is an important means of validation.
You can gain insight for example into a software design while you document
it, and notice things that are imperfect or incomplete. Writing documentation
provides feedback on what is being documented.

Agile documentation.book Page 168 Wednesday, June 11, 2003 11:11 AM

Writing and Reflection 169

In some cases, reflection can be the main purpose of a document. Some
people get their best ideas in conceptual work when they try to commit the
concept to paper. If someone works on a document with the purpose of
thinking a concept or an idea through, it is crucial to take the time needed for
new ideas and reflection.

Time isn’t everything, however. Authors also require an environment that
allows them to concentrate on their work. A member of the project team, the
author typically deals with many other people, develops software, takes part
in discussions, meetings and workshops and so on. That’s fine, but when it
comes to documentation, a little peace and quiet can do a lot of good. The
importance of teamwork notwithstanding, a room with many people around
isn’t an environment that allows a person to concentrate on writing.

Solution To get the best out of documentation, team members have to spend time
on the actual writing, as well as in reflection on what they have written,
preferably in an undisturbed environment.

This can be broken down into the following concrete advice:

• Collecting material and structuring that material involves creativity. It is
almost impossible to write a perfect document straight off. The choice of
material and the definition of an initial document structure have to be the
subject of reflection. You have to expect the contents and the structure of
a document to go through several steps of refinement before the
document is completed.

• While writing, you should check the documentation for problems and
inconsistencies. If you observe that parts of the documentation are
problematic, this may suggest that it is the subject of the documentation
that is itself problematic. In this way you obtain feedback on the project
itself.

• Most people cannot reflect immediately upon what they have just written.
– they need to gain a little distance. You should therefore let any writing
process extend over a period long enough to allow ideas to develop in
the back of your mind. This doesn’t mean that you’ll spend more time on
documentation. Just plan to take a break, and to do other things in
between, before you complete a document.

Agile documentation.book Page 169 Wednesday, June 11, 2003 11:11 AM

170 Management and Quality Assurance

• For the purpose of documentation, team members should be given the
opportunity to retreat to their own office, undisturbed by other team
members or customers.

Figure 47 expands on the idea that documentation can become a means of
validation. In a style similar to UML sequence diagrams, with time flowing
from top to bottom, the diagram shows how the design and the document-
ation processes evolve to produce their final results. Documentation,
consisting of writing and reflection, is performed at regular intervals, and
supplies feedback to the design process, which continues uninterrupted.

Discussion In most projects it is appropriate to reserve regular time frames for document-
ation and reflection. One idea is to spend four days a week designing,
coding, having meetings and discussions, perhaps working at the customer’s
site, but to reserve one day per week for documentation and reflection in a
quieter environment. Such a policy allows for CONTINUING DOCUMENTATION.

Since documentation is A DISTINCT ACTIVITY, its budget and priority can be
high or low, depending on the project, so the ‘four day vs. one day’ rule
might not always be appropriate. In many cases, however, it represents a fine
balance between software development on the one hand and documentation
and reflection on the other.

Finally, the need for a quiet environment doesn’t mean that you should write
documentation in isolation. Only an appropriate REVIEW CULTURE allows you
to conduct a REVIEW BEFORE DELIVERY among the team, or a CUSTOMER REVIEW,
which gives you the necessary input from others.

Review Culture
Problem How can the quality of the project documents be improved?

Forces Hardly anybody manages to write good documents without help from others.
This is too much to ask – nobody is that smart. Documents need reviews, just
as software needs testing.

Unfortunately, many reviews only mention what’s wrong with a document,
while the good things go unnoticed. People are, to varying degrees, afraid of
criticism, and authors sometimes feel reluctant to have their documents
reviewed. They might be afraid that their work is considered faulty when it is
laid out before the critics’ beady eyes, or they might be afraid of the extra

Agile documentation.book Page 170 Wednesday, June 11, 2003 11:11 AM

Review Culture 171

effort of incorporating feedback into their work. Reviews can be tricky, so it’s
important to find ways to make reviews a positive experience both for the
author and for the reviewers.

Most people accept criticism much better if it is clear that the criticism is
intended to help them, not to put them down. To achieve this goal, a review
must not be restricted to negative feedback, but must also have positive

Figure 47. Documentation as a means of validation

design writing reflection

input for
documentation

subject to
reflection

validation

final design final document

input for
documentation

subject to
reflection

validation

input for
documentation

Agile documentation.book Page 171 Wednesday, June 11, 2003 11:11 AM

172 Management and Quality Assurance

comments to make, and the review must offer concrete suggestions for
improvement along with its critical remarks (Coplien 2000).

As well as this psychological issue, there is also a practical point that suggests
that a review should include both positive and negative feedback. Authors
are sometimes unsure about whether to keep or to replace specific material.
Suggestions for either approach – keep or replace – can be helpful. But when
a review doesn’t mention what is good, the author might end up replacing
material that really should have been left as it was. An all-negative review
leaves the author in the dark and is not very helpful.

Solution Documentation can profit a lot from reviews, provided a review culture
has been established in which both authors and reviewers feel
comfortable.

A positive review culture requires the following:

• Team members must be willing to discuss material and provide feedback
when their expertise is required. They must understand their role as one
of providing a service to the author.

• Reviewers must force themselves to be honest and must come up with
clear comments about the quality of the material. They must mention both
what they feel is good about the document and should be kept, and what
they feel is not so good and which needs improvement.

• Along with critical comments, reviewers should make concrete sugges-
tions for improvement whenever possible.

• Team members offering feedback must receive the acknowledgement and
credit they deserve.

• Authors must be willing to accept feedback, knowing that the feedback
will enable them to write a much better document.

• When another document is written, colleagues may choose to mutually
change the roles of author and reviewer.

A positive team spirit, often underpinned by social events or casual out-of-
office activities, helps team members to understand that they’re all in the
same boat. This isn’t only true for documentation, it is true for all project
tasks, and documentation is no exception.

Agile documentation.book Page 172 Wednesday, June 11, 2003 11:11 AM

Review Culture 173

Discussion Review culture, and teamwork in general, has been the subject of much
attention in the literature.

Several books that place emphasis on human issues in computing acknowl-
edge the importance of teamwork in all aspects of software development.
Gerald Weinberg, in his book on The Psychology of Computer Programming,
speaks of ‘ego-less’ programming (Weinberg 1998). Frederick Brooks, in The
Mythical Man-Month, (Brooks 1995), and Tom DeMarco and Timothy Lister
in Peopleware (DeMarco Lister 1987), also provide plenty of insight into
teamwork.

Teamwork, reviews, reflection and feedback also play an enormous role in
the agile world. The Agile Manifesto, in one of its concrete recommendations,
suggests that at regular intervals teams reflect on how they can become more
effective, then tune and adjust their behaviour accordingly (Cockburn 2001).
Several agile methods elaborate on this (Cockburn 2001, Ambler 2002,
Schwaber Beedle 2001).

Norman Kerth, in his book Project Retrospectives, describes in detail what
reflection meetings can be like, and gives many examples (Kerth 2001).

Neil Harrison’s Organisational Patterns for Teams (Harrison 1996) stress the
importance of team spirit to all team activities. A Unity of Purpose – sharing a
common goal – is crucial for a team to work well together.

In his book Writers’ Workshops, Richard Gabriel describes a review culture
that is quite common among authors of prose and poetry, and one that has
been adopted by the patterns community for reviewing software patterns
(Gabriel 2002). A writers’ workshop is an event specifically designed to allow
authors to give each other intense feedback on their work.

Jim Coplien has described this review culture in his Pattern Language for
Writers’ Workshops (Coplien 2000). He claims that authors and reviewers must
form a Community of Trust in which critical comments are useful, rather than
just cause irritation. Jim Coplien asks that, for criticism to be practically useful,
concrete Suggestions For Improvement be offered with each critical remark.
He also emphasises the importance of having Positive Feedback First, since
for psychological reasons, critical comments are more readily accepted after
positive feedback has been provided.

None of these insights into teamwork apply exclusively to documentation.
Most of the ideas apply to software development in general, whereas the

Agile documentation.book Page 173 Wednesday, June 11, 2003 11:11 AM

174 Management and Quality Assurance

ideas for writers’ workshops are, within the software engineering context,
mainly targeted towards the discussion of software patterns. However, what
all the people mentioned above had in mind when they wrote about team-
work was to empower teams to collaborate on a common goal. This is
something from which documentation can also profit.

Review Before Delivery
Problem How can authors receive the right feedback at the right time?

Forces We know that documents need to be reviewed. However, we also know that
reviews use up resources, and that unnecessary reviews should be avoided
for economical reasons. To what extent are reviews necessary?

This depends on several factors. First, the author’s familiarity with the subject,
and the author’s writing experience, both have an influence on how much a
review is needed.

Next, the document’s status plays an important role. Documents that describe
work in progress cannot be expected to be complete, as they will undergo
change. It is perfectly acceptable to circulate such documents amongst
colleagues who understand that they are preliminary documents.

Official reviews for preliminary versions don’t make sense. Nonetheless, feed-
back on a preliminary version can help shape the scope and the overall
structure of a document right from the start.

At some point, however, documents are officially distributed – perhaps just
among the team, or perhaps to the customer, with a software release. Such
documents must meet higher quality standards.

Solution Early reviews are fine as they help the author shape the scope and the
structure of a document. But before a document is officially distributed,
or delivered to the customer, a review is mandatory.

Only the author can decide to what degree early or intermediate reviews are
useful. In most cases an informal review is sufficient to give the author early
feedback.

The final review is not up for debate. As a general rule of thumb, no docu-
ment should be released to uninvolved readers until it has passed a final
review.

Agile documentation.book Page 174 Wednesday, June 11, 2003 11:11 AM

Customer Review 175

This review should take place well before the document’s planned distribu-
tion date, to allow time for revisions, and should address the following
questions:

• Does the document meet its goals, and will it be of use to the readers?

• Is the document technically accurate, and does it provide the right level
of technical detail?

• Is the overall structure and organisation right?

• Does the document provide enough examples to be comprehensible?

• What about layout and language?

Discussion Reviews don’t happen automatically. It is the responsibility of the document’s
ONE RESPONSIBLE AUTHOR to make sure that reviews take place and to ensure
that the feedback is incorporated.

Obviously, the responsible author may disagree with what a reviewer says, or
different reviewers may have conflicting opinions. Ultimately, the responsible
author not only has to see to it that the feedback is incorporated, but is also
free to decide how the feedback is incorporated.

The need for this pattern stems largely from the idea of CONTINUING DOCU-

MENTATION. In the early stages of a project it is too early to review the details
of any documents. As the release date for the software draws nearer and a
document is supposed to be completed, this is also the time to plan the final
review.

Reviews are mainly concerned with the contents of a document. In addition,
reviewers can check the quality of presentation. Especially, they can examine
how well a document addresses the TARGET READERS, how well it presents
FOCUSED INFORMATION, and the quality of REALISTIC EXAMPLES.

Customer Review
Problem How can a team use documentation to increase customer involvement?

Forces In any project it is the team, and not the customer, who is in charge. The
team is expected to deliver results, and documentation is no exception.

Teams are therefore inclined to make progress fast, so that they have results
they can deliver. Yet customer involvement is necessary. First, the project

Agile documentation.book Page 175 Wednesday, June 11, 2003 11:11 AM

176 Management and Quality Assurance

stakeholders are interested in how the project is progressing, and involving
them is a way to keep them informed. Second, the customer is clearly knowl-
edgeable, especially in the application domain, and can contribute much to
make the project more successful.

Documentation is one area where customers can be involved. Handing out
documentation to the stakeholders is one way to show them where the
project is heading. On the other hand, the customer can also provide valuable
feedback on the documentation.

This all can be summarised by saying that the better the collaboration with
the customer, the better are the chances for a successful project.

Solution Customer reviews can improve the quality of a document, especially as
far as the domain expertise is concerned, and at the same time add to
team building and integration.

The following guidelines help make customer review successful:

• The customer must be made aware that the document under review is a
draft. The document should clearly say so, because otherwise it can be
mistaken for a final but badly done document.

• A draft shouldn’t be too tentative. As a team member, you cannot expect
the customer to do your job and turn a collection of raw materials into a
document for you.

A customer review can spawn important discussions, and can contribute
much to making a project a joint effort in which the team and the customer
work together towards a common goal.

Discussion Customer collaboration is one of the core values of the Agile Manifesto. It has
been much stressed in the literature on agile development, and more gener-
ally in the literature on effective project teamwork. For example, Jim Coplien,
in his Generative Development-Process Pattern Language (Coplien 1995),
recommends that projects Engage Customers, especially, though not exclu-
sively, for purposes of quality assurance.

In her Customer Interaction Patterns, Linda Rising discusses this topic in
detail (Rising 2000a). Among other things, she recommends that teams learn
to Know The Customer, and that they Listen, Listen, Listen to what the
customer says. Having the documented concepts reviewed by the customer
clearly contributes to the desired customer collaboration.

Agile documentation.book Page 176 Wednesday, June 11, 2003 11:11 AM

A Distant View 177

For a customer review to work smoothly, the team and the customer have to
establish a REVIEW CULTURE in which such reviews are considered normal, and
in which no individual team member has reason to feel offended by criticism.
The customer must acknowledge the team’s need for feedback, and must not
blame the team for not being experts in the application domain. The
customer must understand that the request for a review is one way to ensure
the quality of the project’s results.

A Distant View
Problem How can authors obtain unbiased feedback?

Forces Reviewers who are all too familiar with a document under review are likely
to have a somewhat biased view. They might take a lot of things for granted
that might be questioned by an unbiased reviewer, and so may fail to come
up with a reliable assessment.

This is often the case when team members act as reviewers. It is generally
fine to have team members review project documentation, but sometimes
they are so immersed in the project that they take the project’s fundamentals
for granted. What seems to be self-evident to the team can still be sophisti-
cated to non-experts.

Moreover, project documents are often reviewed by people with a technical
background. These reviewers tend to focus on the technical contents of a
document but overlook presentation issues. However, the quality of presenta-
tion also deserves attention.

Solution Authors can obtain unbiased feedback from reviewers who are inter-
ested in the topic and who are generally knowledgeable in the field, but
who are not involved in the actual work described in the document.

Good candidates for a distant-view review are:

• Someone from outside the team who is familiar with the application
domain.

• The customer, who can often take a slightly different perspective.

• To a lesser degree, a reviewer from inside the team with a different educa-
tional background.

Agile documentation.book Page 177 Wednesday, June 11, 2003 11:11 AM

178 Management and Quality Assurance

Normally such people aren’t going to focus on technical details in their
reviews – and indeed, really shouldn’t. Rather, it is their job to comment on
the overall structure of a document, its general ‘big picture’ and on whether
they feel the document generally addresses the right issues.

Discussion Actually there are two kinds of reviews that complement each other. For the
benefits of a REVIEW CULTURE to fully materialise, feedback at different levels is
needed. On one hand, close colleagues who are familiar with the material
presented can provide helpful comments on a more technical level. On the
other, people from outside the team, perhaps the TARGET READERS, can take a
distant view and provide valuable high-level comments. If it’s the customer
who takes the distant view, keep the guidelines for a CUSTOMER REVIEW in
mind.

The recommendation to bring in someone from outside the team is
commonly found in the literature. In his Generative Development-Process
Pattern Language (Coplien 1995), Jim Coplien deals with the issue of design
reviews. He suggests hiring a Mercenary Analyst from outside the team who
is an expert in the domain and who can provide feedback. This is an impor-
tant principle, not only for design reviews, but also for project documentation
reviews.

In the Creator-Reviewer pattern from the Patterns for Designing in Teams
(Weir 1997), Charles Weir explains that detailed knowledge of the application
domain is an important requirement for a reviewer. He also recommends that
reviewers not be involved in the work under review.

Finally, this pattern also corresponds to an observation described in Neil
Harrison’s Organisational Patterns for Teams (Harrison 1996). Diversity of
Membership states that mixed teams – teams with people of different ages
and gender, as well as with different educational and cultural backgrounds –
generally perform better than more homogenous teams, since the team
members complement each other. As far as the review process is concerned,
the best feedback can be expected from reviewers with different back-
grounds, both to each other and to the author.

Agile documentation.book Page 178 Wednesday, June 11, 2003 11:11 AM

Information Marketplace 179

Information Marketplace
Problem How can good documents be prevented from going sadly unnoticed?

Forces Producing documents alone is not enough. The best document in the world
isn’t worth much if it doesn’t reach the intended readers. There is no point in
completing a document, putting it in the archives and waiting for other team
members to come across it. This would be the right strategy only if all you
intended for a document was to use it as an excuse when the project goes
astray, for example like arguing: ‘This isn’t my fault, I have documented it all.’

Such an attitude is the exact opposite to being agile. In an agile context, we
don’t want the project documents to serve as excuses, we want them to facil-
itate communication among the team. This means that we have to actively
address team members and let them know that there is a document that
might help them with their work.

Yes, there are technical options to make documents easily available, and
there are technical ways to distribute documents among a team. It’s fine to
use these possibilities, and they are the first step to making documentation an
effective means of communication. But you can take an important second
step by addressing the intended readers directly.

Solution Documents gain more attention if the intended readers are actively
invited to read them.

There are different ways in which you can approach other team members
when an important document has been finished and is being made available:

• You can mention the document at a team meeting, give a brief intro-
duction to what the document says and invite the team to contact you
whenever questions remain unanswered.

• You can pin a printed copy on the project notice board.

• You can send a brief e-mail message to the team in which you explain the
purpose of the document and where it can be found.

In any case, documentation profits greatly from an atmosphere in which
information is freely exchanged, and in which people let others know of any
documents that might help them.

Discussion This pattern seems similar to the idea of letting colleagues know of a new
version through a NOTIFICATION UPON UPDATE. The emphasis of this pattern,

Agile documentation.book Page 179 Wednesday, June 11, 2003 11:11 AM

180 Management and Quality Assurance

however, is not on any kind of technical support, but rather on the attitude
people take towards documentation. This pattern reminds us that, when we
have completed a document, we are supposed to take the document to the
TARGET READERS.

One of the implementation options for this pattern – pinning an important
document to the project notice board – is closely related to what Alistair
Cockburn calls an ‘information radiator’. In Agile Software Development, he
suggests that each project use an information radiator that displays informa-
tion in a place where passers-by can see it (Cockburn 2001). If a team is used
to electronic communication, you can also choose to put the document on
the project WIKI and stick a message to it for all team members to see.

Adopting a culture of free information exchange in projects paves the way for
an agile attitude towards dealing with information beyond the projects. If we
regard documentation as something that is actively distributed, we meet the
precondition for successful, organisation-wide KNOWLEDGE MANAGEMENT.

Knowledge Management
Problem How can future projects profit from a successful project?

Forces No two projects are the same. Nevertheless, projects do have things in
common. There are analogies and similarities. We’ve all been in situations in
which we had to find a solution to a problem, well aware that others must
have solved a similar problem before. If only we could learn about their solu-
tion, we might save time and effort.

Almost all projects can profit from experience gained in previous projects.
But we can draw on this experience only if it is made available within the
organisation. Documentation is one way to do this, as it commits expertise to
paper and saves it for future use.

However, even the best documentation isn’t useful if no-one knows it exists,
or no-one has access to it. All too often, new projects re-invent things, not
because previous projects didn’t document them, but because people aren’t
aware that the information is available.

Agile documentation.book Page 180 Wednesday, June 11, 2003 11:11 AM

Knowledge Management 181

Solution Only when project documentation is made available organisation-wide
do future projects have a chance of drawing on the expertise gained.

This has both a technical and a cultural aspect:

• Making the documentation available requires some kind of knowledge
management system, as illustrated in Figure 48. Perhaps this is a publicly
available directory, perhaps it’s an intranet.

Project E

Project D

Project A

Figure 48. Extracting knowledge and passing it on

Knowledge base

Project B

Project C

Agile documentation.book Page 181 Wednesday, June 11, 2003 11:11 AM

182 Management and Quality Assurance

• The cultural aspect is more important. Using documentation for
knowledge management can prove useful only in a culture that
encourages people to share their experiences. Informal communication
plays an enormous role here. As a project member, tell colleagues that the
documentation exists. Invite people to examine it and to come back to
you if they have questions. Make it clear there is a chance that others can
profit from your work.

Discussion Technically, what this pattern suggests is the integration of the project’s DOCU-

MENT LANDSCAPE into a landscape of documents that are relevant to the whole
organisation. If you use an intranet this is particularly easy, turning your
project WIKI into an in-house WIKI.

Here is where the documentation cycle closes. You have been busy doing
CONTINUING DOCUMENTATION throughout your project, you have gone through
stages of WRITING AND REFLECTION, and the REVIEW CULTURE has allowed you to
profit from the knowledge of your colleagues.

Now the expertise that you have acquired can become useful for others. This
is true in particular for material that places a FOCUS ON LONG-TERM RELEVANCE,
such as documents conveying THE BIG PICTURE of the architecture, or the
DESIGN RATIONALE.

At this point, you have produced a number of documents in your project.
There shouldn’t be too many of them. The previous patterns in this book will
have guided you to a focus on the right topics, and to making the document-
ation well-organised and lightweight. Now you and others can profit from
work that was done. This is the idea of agile documentation.

Experience Reports
I’d like to conclude this chapter with by examining the documentation proc-
esses in several example projects, and how these processes met or failed to
meet the patterns in this chapter.

Processes
and plans

The Agile Manifesto favours individuals and interactions over processes and
tools, and responding to change over following a plan. Again, the manifesto
does not deny the value of processes and plans. But it warns us not to follow
a plan for the plan’s sake.

Agile documentation.book Page 182 Wednesday, June 11, 2003 11:11 AM

Experience Reports 183

Project Persistor gives a good example of what a lightweight documentation
process can look like. The team was well aware that a certain degree of
documentation was crucial to the project’s success, regarded documentation
as A DISTINCT ACTIVITY, and included the documentation tasks into the list of
project activities, as shown in Figure 50.

DesignSpecification Coding Tests

30 % 15 % 50 % 15 %

Documentation

Figure 49. Project Persistor: expected documentation budget in a development project

Figure 50. Project Persistor: project planning sheet including documentation tasks

Work packages for release 5.0
No. Package Budget Priority Responsible Remark Release

1 Functionality

1.1 Manual unlocking 2 C RS unclear if really needed 5.0

1.2 API typechecking 5 B AK 5.0

1.3 Improved error codes A

2 Tests

2.1 Test cases for caching mechanisms 2 A RS 5.0

2.2 Java test drivers for all use cases 5 A CW 5.0

3 Performance

3.1 Performance tuning mechanisms 20 B RS 5.0 or later

4 Documentation

4.1 Usage concept: describe additional functionality 2 A AR 5.0

4.2 Usage concept: add example for the state model 1 A AR 5.0

4.3 Design concept: updates 5 C 5.0 or later

5 Coaching

5.1 Workshop 2000-05-25 5 A AR

Agile documentation.book Page 183 Wednesday, June 11, 2003 11:11 AM

184 Management and Quality Assurance

Project Persistor: documentation as a normal project task
The team met regularly for short status meetings in which the next steps were discussed.
Documentation was addressed during these meetings, like all other project tasks. At the
beginning, the project had defined certain documents that had to be written, and had
decided on a few additional documents later. During the regular meetings the team checked
the documents’ status and what still needed to be done.

Documents were considered project artefacts just like code, test cases and so on. For each
document one person was in charge. Each document had a budget that could be extended
on demand and if necessary, but it was clear from the start approximately how much time
the project was willing to spend on each document. Figure 50 shows an excerpt from the
project planning sheet.

How did the team manage to estimate the effort that was necessary for documentation? This
was done mostly based on experience. Figure 49 shows how, in this organisation, the
development effort is typically distributed over the various stages of a project, based on the
experience of previous projects (Siedersleben 2003). Figure 49 also shows how much of the
effort the team expected to go into documentation – proportionately more during the spec-
ification stage but diminishing thereafter. The percentage for documentation may seem
quite high, and indeed it is smaller in many projects, but the fact that the team was going to
build a framework required a comprehensive usage concept, and this justified a larger effort
for documentation.

The people who wrote the documents learned a lot in the process. For example, writing the
framework’s usage concept forced the framework developers to see their framework from a
different viewpoint. The authors gained insight into their own system during the writing.
Committing a clear concept to paper of how to apply the framework in practical cases
forced them to reflect on issues that had gone unnoticed in the design discussions, and that
they perhaps had taken for granted.

Unfortunately, the design document wasn’t managed so well. The design document lost the
team’s attention when the team became very busy with other things. The problem wasn’t
that updates to this document were delayed, it was that from some point on nobody felt
responsible for the document, so the necessary updates were never made. Different people
added material, but in an uncoordinated way. The document ended up inconsistent and
outdated, providing some design ideas but lacking the motivation behind the design and
the pros and cons of different approaches that had been discussed. This document didn’t
serve its purpose very well.

Agile documentation.book Page 184 Wednesday, June 11, 2003 11:11 AM

Experience Reports 185

The team decided what documentation was necessary and adjusted their
decisions regularly. Overall, this process worked quite well. The document-
ation in its entirety was broken down into manageable packages, and each
document had ONE RESPONSIBLE AUTHOR and a deadline that would allow for a
REVIEW BEFORE DELIVERY.

The documentation of Project Persistor faced one major problem, however.
Although it had begun as CONTINUING DOCUMENTATION, updates to the docu-
mentation were later neglected when deadlines drew closer and bustling
activity set in. As a consequence, the documents’ accuracy suffered. Instead
of describing how the framework’s design had evolved and why, all the
design document mentioned were the design ideas the team had had at the
beginning of the project.

This was not much of a problem at first, but the team paid for these short-
comings two years later when a major refactoring became necessary, as the
DESIGN RATIONALE was not available. (See also the project report in Chapter 1,
Project Persistor: difficulties with changed requirements, page 58.) Browsing
outdated documents, the team had a hard time working out the reasoning
behind the design changes made during the past two years, and got stuck in
dead ends already explored by their colleagues.

I think the important conclusion to draw from this experience is that as far as
updating your documents is concerned, you cannot wait until an accurate
version is actually needed. This is the moment at which it’s too late. Often
enough, updates to the documentation are not the most urgent thing a project
has to do. But don’t confuse urgent with important. Waiting a little while for
documentation updates may be justified – just don’t wait until the experts
have left the project or are busy with other things.

The experiences of Project Vista back up this view (page 186). The fact that
this project performed CONTINUING DOCUMENTATION was the key to its success.
Not that the application landscape it produced was accurate all the time – it
wasn’t. But as the team learned more and more about the applications in the
customer’s organisation and how they interrelated, they updated the applica-
tion landscape, which always mirrored the current understanding and iterated
towards an accurate description.

As far as planning the documentation is concerned, we should also look at
Project OpenDoors. The documentation in this project lacked THE BIG

PICTURE, and overlapping documents didn’t exactly present FOCUSED INFORMA-

Agile documentation.book Page 185 Wednesday, June 11, 2003 11:11 AM

186 Management and Quality Assurance

TION. (See also the project report in Chapter 1, Project OpenDoors:
communicating the design, page 55.) This was mainly caused by a problem
with the documentation management in this project: most of the documents
did not have ONE RESPONSIBLE AUTHOR. Instead, different people added mate-
rial to the project documentation in a rather uncoordinated way. Overlapping
documents and inconsistent information were the consequence, as well as an
unnecessary effort spent on too many documents. It was not only the docu-
ments that overlapped. The documentation mirrored the overlapping and
inconsistent design ideas that were represented in the architecture of the Web
portal.

Things changed for the better when a major refactoring occurred. Not only
was the software refactored, the documents were as well. This could happen
only because at this stage documentation was considered A DISTINCT ACTIVITY.
The refactored documents turned out well because each had ONE RESPONSIBLE

AUTHOR, who cared for the documentation quality.

Circulating
documents

Looking at the reports from Projects Persistor, Vista and OpenDoors, we
notice that careful planning alone isn’t enough to produce documentation
that is useful and that is used. The documents that were used heavily have in

Project Vista: regular updates to the application landscape
The diagram with the application landscape (Figure 7, page 54) was updated after each
interview the consulting team had with the customer. In this way, the diagram always
reflected the current knowledge the team had of the application landscape they were to
analyse.

This was important, because the diagram was regularly used in interviews to get discussions
started. It was given to various customer representatives, who were asked to comment on
it, and to add the applications they knew of, as well as the dependencies between applica-
tions. By keeping the diagram up to date, the team could make sure that each interview
brought additional insight.

Because the diagram had been used successfully during the project, the team felt that a sim-
ilar technique might be used in other projects as well. The application landscape diagram
was presented to the software company’s general staff in an article that appeared in the
company’s quarterly in-house journal. This article briefly introduced the project, and
explained the role the diagram had played in the specification of the application landscape.
Moreover, the specification (which consisted of essentially that diagram) became part of the
software company’s repository of exemplary documents for consultancy projects.

Agile documentation.book Page 186 Wednesday, June 11, 2003 11:11 AM

Experience Reports 187

common that they were actively distributed among the team and to the
customer.

There are two sides to this. First, you can distribute a document for a review.
A manifest REVIEW CULTURE adds greatly to customer participation and allows
teams to receive much feedback on what they have written. Projects Persistor
and OpenDoors received a lot of useful feedback when the framework docu-

Project OpenDoors: circulating the documentation for feedback
This project involved many teams. The framework team extended a framework that pro-
vided the basic functionality for the customer’s web portal. Other teams worked on the
applications that were going to be integrated into the portal. Because so many teams were
involved, and because the teams were under time pressures, the designs of the different
applications evolved in slightly different directions. The overall architecture of the web por-
tal thereby became somewhat inconsistent.

Interestingly, there was a similar effect on the documentation. The documentation went a
little awry when a number of people worked on different concept papers that addressed
overlapping topics. Some of these documents were updated, others weren’t, and as a result
the documentation became inconsistent in places.

At some point, the architects decided it was time for a refactoring, so that all applications
would share a common architecture. During this refactoring, documentation was also
addressed. A small group took care of a new set of documents that on one hand described
the overall architecture and the design principles, and on the other how the various appli-
cations were integrated and how they could be deployed to the Web. These documents
underwent an informal review process. Informal though it was, it gave people from several
departments an opportunity to share their thoughts. The documentation was reviewed
within the framework team and was circulated among the application developers, which
included many colleagues from the customer’s staff.

Because the concept papers were distributed before the actual coding, the teams who were
to use the future versions of the framework could examine these concepts in advance. They
learned about what they could expect, but also had the chance to comment on the design
concepts. Several weak spots were identified as many other people offered their views.

As a result, both the overall architecture and its documentation were improved. More than
that, circulating the documents and asking for feedback contributed to the sense of unity
between all parties involved: the IT company, a sub-contractor and the customer. Every-
body had been involved, although in different ways.

Agile documentation.book Page 187 Wednesday, June 11, 2003 11:11 AM

188 Management and Quality Assurance

mentation was passed to the framework users. Project Vista learned a lot from
discussing the application landscape and what was still missing from it with
many of the stakeholders in the customer’s organisation. None of these
reviews went through a heavyweight process, and the fact that bureaucracy
could be avoided contributed much to the review’s successes.

Project Extricate, however, provides a warning. While a CUSTOMER REVIEW can
be extremely useful, it must be clear to the customer that the document under
review is indeed a draft. Project Extricate entered a critical situation when
documents were distributed that had not undergone a REVIEW BEFORE DELIVERY

and the customer falsely assumed these documents were final.

The second aspect of the distribution of documents is to emphasise that
whoever writes a document is in charge of contacting the TARGET READERS.
There’s no point in storing a document somewhere, even in its appropriate
place, and waiting for others to read it. You stand a much better chance of
reaching your readers if you contact them actively and create an INFORMATION

MARKETPLACE. In Project Persistor, the team invited the framework users via e-
mail to look at the documentation before workshops were held. Project
OpenDoors distributed the architecture description actively among the team.
Project Vista took a copy of their application landscape diagram to all
meetings.

Project Extricate: problems with unreviewed material
At one point, the team was asked to make a tentative version of the re-engineering concept
paper available. This document was important for the customer, and since the customer
relationship was good, the team agreed to hand out the preliminary document even though
it hadn’t been reviewed internally.

Unfortunately, due to some earlier misunderstandings of the application domain, the docu-
ment contained a few mistakes that hadn’t been corrected. When this document was distrib-
uted to one of the customer’s departments, several people were upset at these mistakes, as
they felt they weren’t understood. The tentative document version had caused more trouble
than good.

The team decided that they would make future versions available only after they had been
internally reviewed. These internal reviews never became bureaucratic procedures, but they
ensured that serious mistakes in the documentation could be fixed before they could cause
unnecessary embarrassment.

Agile documentation.book Page 188 Wednesday, June 11, 2003 11:11 AM

Experience Reports 189

Gaining and
preserving
knowledge

One good reason for producing a document is to provide an opportunity to
think a topic through. This happened in Project Persistor (see the experience
report on page 184). The team had had many whiteboard discussions, from
which a good idea of the overall architecture had emerged. But when the
team committed their design ideas to paper, they were forced to dig deeper.
A process of WRITING AND REFLECTION allowed them to think their ideas
through and to check for possible inconsistencies of details. Documentation
allowed the team to fine-tune the design.

My experience is that this approach works much better for some people than
for others. Some people have good ideas in front of a whiteboard, others
have excellent thoughts when documenting. The observation is that more
introvert people tend to be more creative during writing, while more extro-
vert people more often than not prefer working with a whiteboard. Since
some people learn a lot during a process of WRITING AND REFLECTION, it is wise
to retain this opportunity.

Once we have acquired the knowledge that’s essential for a project, how do
we deal with it? The knowledge needs to be shared among the team. Docu-
mentation is one way to express knowledge. Direct interaction, for example
through discussions and workshops, is another. I’ve mentioned before that a
combination of both is the best strategy for making the collected wisdom of a
team available to all members. The more you actively offer the project docu-

Project FlexiCar: keeping the expertise within the company
The designers had chosen an architecture based on an application server, and using EJBs
(Enterprise Java Beans) to implement the optimum scheduling of production steps for car
manufacturing. The design document that described this architecture evolved along with
the software. The document was maintained over the course of the project, which ensured
that software and documentation never really got out of sync. Simultaneously, the users of
the document provided feedback both on the actual design description and on what was
described.

By the time that the project was completed, the design document described the architecture
very accurately, including a discussion of the pros and cons of the chosen technological
approach. At this point, this document became useful beyond the actual project. The docu-
ment became part of the company’s repository for design documentation, so that other
projects in different application domains could profit from the experiences gained with
application servers and EJBs.

Agile documentation.book Page 189 Wednesday, June 11, 2003 11:11 AM

190 Management and Quality Assurance

ments to the intended audience in an INFORMATION MARKETPLACE, the more
you’ll reach your readers.

The role of documentation isn’t restricted to single projects, however. Alistair
Cockburn mentions that one important role of documentation is to ‘prepare
for the next game’ (Cockburn 2001). So you need to identify the documents
that may be useful beyond the limits of your current project, and make those
documents more widely available.

Several project reports give examples of how this can be done. The projects
FlexiCar, AirView and Persistor all contributed to the software company’s
knowledge base – a Web-based information pool that hosts exemplary
concept papers and experience reports from earlier projects.

Project Vista also contributed to that knowledge base, and in addition became
the subject for an article in the software organisation’s in-house journal, as
described in the project report on page 186.

Obviously, not all project documents are candidates for an organisation’s
KNOWLEDGE MANAGEMENT. However, when a team keeps a FOCUS ON LONG-
TERM RELEVANCE as far as documentation is concerned, the chances are that
some documents may be useful in future contexts as well. Documents that
describe the DESIGN RATIONALE are particularly useful – the discussion of the

Project AirView: making knowledge on GUI design available
This project was unique in the sense that it focused so much on the GUI design. The design
involved ergonomic aspects that weren’t normally found in the software company’s typical
projects.

The company keeps a repository of successful specifications and designs that originate from
different projects. The aim is to make experience available company-wide for other project
teams to study and, if possible, to reuse. The documents are made available through an
intranet. Colleagues can search this intranet for documents that are relevant to a particular
technology or to a particular application domain.

The documentation of the GUI design was added to that repository, so that future GUI
projects could profit from the experience gained, especially with GUI ergonomics. The
documentation was also used as exemplary material in an in-house seminar on specifica-
tion, in which more experienced software engineers passed on their knowledge to younger
colleagues.

Agile documentation.book Page 190 Wednesday, June 11, 2003 11:11 AM

Experience Reports 191

pros and cons of different approaches is exactly what will be most useful for
future projects.

Finally, Project Contentis demonstrates that KNOWLEDGE MANAGEMENT isn’t
only about collecting information, but also about retrieving and using it. This
project was able to deliver a result much more quickly because the team
could rely on experiences from previous projects – a nice example of how
useful documentation can be in the long term.

Project Persistor: feeding the organisation’s knowledge base
The documentation included a description of the special versioning technique the data
access layer used – two-dimensional versioning (Figure 21 on page 89). This is a rather spe-
cialised technique, but it is fairly common for information storage and retrieval in the finan-
cial industry. Once the concept had been understood, it was clear that other projects could
profit from the expertise as well.

One team member produced an introductory paper for the organisation’s knowledge base.
This paper explained the basics of two-dimensional versioning and used the same exam-
ples as had the framework’s usage concept. This paper could be produced with relatively
little effort, as most of the material was readily available. Several colleagues used this paper
as an information source when they were assigned a project in which two-dimensional ver-
sioning played a role.

Project Contentis: collected knowledge of CMS requirements
This project had a rather short time frame in which the team had to come up with a list of
requirements for a Web content management system.

The team could profit from the fact that their organisation had done consulting on Web
content management systems before, and that expertise was already available. Within days,
the team had several example requirement lists from previous projects in their hands.

These lists couldn’t be used verbatim, of course, since the requirements had to be tailored
to the customer’s specific needs. Indeed – and not unexpectedly – what used up most of
the time in the project was to figure out what those specific requirements were.

Nevertheless, the requirements lists from the previous projects were helpful, as the team
didn’t have to start from scratch, but could draw on existing material. Alternately, once the
project was completed, a new list on requirements could be added to the organisation’s
knowledge base.

Agile documentation.book Page 191 Wednesday, June 11, 2003 11:11 AM

Agile documentation.book Page 192 Wednesday, June 11, 2003 11:11 AM

Final Remarks

Now that you have come this far, what are the next steps? You have read the
patterns on agile documentation, or at least some of them, and have probably
taken a look at the experience reports from the projects in which the patterns
were used. The question now is, what can you do to actually improve the
documentation processes and the documentation products in your project?

In his book on Agile Software Development, Alistair Cockburn recommends:
‘Consider agile as an attitude, not a formula’. He goes on: ‘In that frame of
mind, look at your current project and ask, “How can we, in this situation,
work in an agile way?”’ (Cockburn 2001).

I think this approach is as viable for agile documentation as it is for agile soft-
ware development, and I recommend you take this approach when you plan
to apply agile documentation in your project. After you have made yourself
familiar with the overall ideas of agile documentation, you can look at your
project and see how the documentation can be done with an agile attitude.

At this point, I’d like to recollect the principles of agile documentation.

More documentation isn’t always better than less. Long documents aren’t
always better than short ones. An agile project gives preference to lightweight
documentation. Look for the topics you feel must be addressed in written
documents. Ensure that these documents are written, and written well, but try
to do without further documentation. Focus on the right materials.

Project documentation is most effective when it is lightweight, without any
unnecessary documents, yet providing all the information relevant to read-
ers.

Agile documentation.book Page 193 Wednesday, June 11, 2003 11:11 AM

194 Final Remarks

Once you have decided that a document is necessary, don’t produce that
document half-heartedly. The document can serve its purpose well only if it
is accurate and well organised. Straightforwardness will do your documents
good.

Take an unbiased approach to tools. Tools are supposed to help you in your
job, and documentation is no exception. If tools make the documentation in
your project harder, do without them. Keep in mind that relatively simple
techniques are often sufficient to produce useful documentation.

Don’t define a complex process for documentation. Alistair Cockburn writes:
‘Agile implies being effective and manoeuvrable. An agile process is both
light and sufficient’ (Cockburn 2001). Just take the steps that are necessary:
ensure that good documentation is written, by the right people, and with
reasonable effort, but don’t make plans beyond that point.

How can you start?

Start small. Starting small is much more promising than trying to achieve
everything at a time, as Mary Lynn Manns and Linda Rising point out when
they recommend the introduction of new ideas Step by Step (Manns Rising
2003).

Start with a few patterns from this book that you feel you can apply in your
project easily. The patterns about structuring individual documents, for
example, can often be applied immediately. Other things, such as estab-
lishing processes, may take a bit longer, but don’t require too great an effort
either.

Documents that are considered necessary can only prove useful if they are
of high quality: accurate, up-to-date, highly readable and legible, concise
and well structured.

Tools and techniques are useful only if they facilitate the production of
high-quality documents and make their organisation and maintenance eas-
ier.

The documentation process must be efficient and straightforward, must
adapt to the requirements of the individual project and must be able to
respond to change.

Agile documentation.book Page 194 Wednesday, June 11, 2003 11:11 AM

Final Remarks 195

Integrate these patterns into your everyday work in an incremental fashion. If
you have identified a pattern that you would like to use, the links to related
patterns tell you what other issues you might want to consider. In this way
you can build up a culture of agile documentation, an attitude of preparing
documents in such a way that they are useful for others, your customers and
your colleagues alike.

Applying the patterns for agile documentation is rewarding in the sense that
your readers will appreciate and profit from your work more. Agile docu-
mentation encourages you to do without some of the paperwork found in
more heavyweight projects, but makes sure that the effort that you do place
on your documents pays off well. You’ll be amply repaid by the efficiency of
communication in your project.

Agile documentation.book Page 195 Wednesday, June 11, 2003 11:11 AM

Agile documentation.book Page 196 Wednesday, June 11, 2003 11:11 AM

Pattern Thumbnails

Finding the Right Topics
Target Readers How can the project team ensure that the documents they produce will be

appreciated?

First and foremost, each document must have a target readership, and must
address these readers in order to prove useful.

Focused
Information

How can documents be prevented from meandering and getting nowhere fast?

A clear and identifiable focus on a particular topic makes a document concise
and straightforward. The straightforward document offers the information
relevant to this topic, but no more than that.

Individual
Documentation
Requirements

How can unnecessary documentation requirements be avoided?

The most effective approach towards documentation is for each project to
define its documentation requirements individually.

Documentation
Portfolio

How can teams reuse the knowledge about which documents might be
required in their projects?

A documentation portfolio describes which documents might be necessary in
a software project, and their scope. If an organisation sets up such a portfolio,
projects can choose those documents they need, checking the necessity of
each candidate document individually.

Agile documentation.book Page 197 Wednesday, June 11, 2003 11:11 AM

198 Pattern Thumbnails

Focus on Long-
Term Relevance

How can projects avoid producing documentation that expires too soon?

There is much value in documentation that focuses on issues with a long-
term relevance – issues that will play a role in a later project phase or in
future projects.

Specification as
a Joint Effort

How can development projects ensure that they head in the direction the
customer wants?

Every development project requires a specification, which reflects the
requirement analysis done jointly by the project team and the customer.

Design
Rationale

How can the team make sure that the foundations are laid for future design
changes?

Design documents become a valuable source of information if they aren’t
restricted to describing the actual design, but also focus on the rationale
behind the design and explain why the particular design was chosen.

The Big Picture How can people be introduced to a project without being confronted with a
deluge of technical details?

A good feel for a project is best conveyed through a description of the ‘big
picture’ of the architecture that underlies the system under construction.

Separation of
Description and
Evaluation

How can authors prevent loss of credibility?

Authors gain credibility if, in their documents, they clearly separate descrip-
tion from evaluation.

Realistic
Examples

How can abstract material be explained in a comprehensible way?

Project documents are much more convincing if they include realistic exam-
ples from the project’s context.

Structuring Individual Documents
Structured
Information

How can information be presented in an easily accessible way?

Most project documents are best organised as sequential yet well-structured
text. This begins with well-chosen chapters and sections, but may well extend
to using textual building blocks consistently throughout a document.

Agile documentation.book Page 198 Wednesday, June 11, 2003 11:11 AM

Structuring Individual Documents 199

Judicious
Diagrams

How can authors provide an overview of structures and processes in a conven-
ient way?

Diagrams can provide excellent overviews, while an accompanying text
explains details to the extent that is necessary.

Unambiguous
Tables

How can authors present systematic information in a precise way?

Tables offer a compact format for the concise and unambiguous presentation
of information.

Guidelines for
Readers

How can potential readers be informed whether they should read a document,
and if so, on which parts they should focus?

Some brief guidelines at the beginning of each document can inform poten-
tial readers of the purpose the document serves and explain how different
groups of readers should approach the document.

Thumbnail
Sketches

How can readers get an overview of the topics dealt with in a document?

Thumbnail sketches provide brief descriptions of the sections of a document,
including the section’s general goals, as well as its major ideas.

Traceable
References

How can documents be linked to each other?

A document should include references to other documents only if readers can
obtain those documents without much effort.

Glossary How can authors make sure that readers understand the vocabulary used in a
document?

A glossary can explain technical terms as well as the terms specific to the
application domain.

Document
History

How can confusion be avoided between versions of a document?

A document history can explain the differences to previous versions of a
document, and can relate the document to versions of the software it
describes.

Agile documentation.book Page 199 Wednesday, June 11, 2003 11:11 AM

200 Pattern Thumbnails

Layout and Typography
Text on 50% of
a Page

How much space on a page should be devoted to text?

About 50% of the page should be devoted to text.

Two Alphabets
per Line

What is the optimum line width?

Approximately two lowercase alphabets of the standard typeface should fit
on one line.

120% Line
Spacing

What is the optimum line spacing?

The best line spacing is roughly 120% of the type size.

Two Typefaces How many typefaces are appropriate, and which?

In most cases, two typefaces per document are appropriate – a serif typeface
for the body text and a sans-serif typeface for the headings.

Careful Use of
Type Variations

How can parts of a text be emphasised?

Type variations can be used for emphasis, but they should be used with care.

Careful Ruling
and Shading

How can table cells be separated?

Careful ruling and shading leads to highly legible tables.

Adjacent
Placement

How can tables and diagrams be integrated into text?

Diagrams and tables are best placed close to the text from which they are
referenced.

Coherent Pages What options exist to avoid awkward pagination that tears related informa-
tion apart?

The reading flow is supported by coherent pages – pages that make sure a
minimum of related information appears on either side of a page break.

Agile documentation.book Page 200 Wednesday, June 11, 2003 11:11 AM

Infrastructure and Technical Organisation 201

Infrastructure and Technical Organisation
Document
Landscape

How can team members get a good overview of what documentation exists in
a project?

The project documentation can be represented as a kind of landscape that
team members can use as a mental map when they retrieve or add informa-
tion. A document landscape that roughly forms a tree suits human intuition
best.

Document
Archive

How can projects avoid the loss of any document versions?

Archiving project documentation offers the advantage that versions can be
retrieved when necessary.

Wiki How can documentation be given a more interactive edge?

A Wiki offers access to the project documentation via an intranet server, and
in addition allows the team to post notes and messages to others as
necessary.

Code-Comment
Proximity

What is an easy way to maintain documentation that refers to the actual
code?

Documentation of the code, to the extent that a project team considers it
necessary, is best done through source code comments. Separate documents
should be reserved for higher-level issues such as overviews, requirements,
design and architecture.

Reader-Friendly
Media

Which is more appropriate: documents intended for on-line use, or documents
intended for print?

The choice of a medium must reflect a document’s typical usage. The rule of
thumb is: print is good for reading, on-line is good for looking things up.

Separation of
Contents and
Layout

How can the layouts of text documents be changed and reused easily?

Layout styles can be defined and assigned to content portions. These layout
styles can easily be changed and can be reused across documents.

Agile documentation.book Page 201 Wednesday, June 11, 2003 11:11 AM

202 Pattern Thumbnails

Single Source
and Multiple
Targets

How can multiple views of a document be created without doubling
maintenance?

The documentation infrastructure can employ mechanisms that take source
documents and automatically generate additional views. Such mechanisms
avoid double maintenance and ensure consistency.

Import by
Reference

How can different documents use the same diagram or table consistently?

Artefacts that need to appear in multiple contexts can be imported by refer-
ence into the documents that include them.

Separation of
Processing and
Printing

How can projects produce useful, printable documents?

If a team chooses to deliver the project documentation in a print format that
is widely available, all readers are able to print the documents, independent
of the platform they use.

Document
Templates

How can all project documents acquire a reasonable structure and a good
layout at little cost?

Document templates, once they have been properly designed, impose their
structure and layout on all documents that are produced using them.

Few Tools How can projects minimise the effort spent on the introduction and use of
documentation tools?

Almost all projects can manage with a small set of documentation tools.

Annotated
Changes

How can authors avoid confusion over changes they have made?

While a document is under development, authors can use automatic annota-
tions to identify those parts of the document that have changed recently.

Notification
upon Update

How can readers be prevented from using outdated versions?

Whenever there is a significant change in a project document, all potential
readers should be notified of the new version. The notification should
roughly explain what has been changed, but should not include the updated
material itself.

Agile documentation.book Page 202 Wednesday, June 11, 2003 11:11 AM

Management and Quality Assurance 203

Reorganisation
upon Request

How can the documentation infrastructure be maintained?

Frequent reorganisation makes things worse, not better. Reorganisation of the
documentation infrastructure should take place only when it is actively
requested by the members of the project team.

Management and Quality Assurance
A Distinct
Activity

How should resources be assigned to documentation activities?

When documentation is considered a distinct project activity, and not just the
by-product of coding, it can be assigned its own budget, priority and
schedule. Documentation can then be weighed against other pr oject
activities.

One
Responsible
Author

How many people should be responsible for a document?

For each project document, there must be one person who accepts responsi-
bility for it. This person need not write the document alone, but must
coordinate the contributions from other people.

Continuing
Documentation

When should project documentation be written?

Project documentation, when it evolves continuously as the project goes on,
offers the advantage that it reflects the last stable state of the project.

Writing and
Reflection

How can documentation and other project activities stimulate each other?

To get the best out of documentation, team members have to spend time on
the actual writing, as well as in reflection on what they have written, prefer-
ably in an undisturbed environment.

Review Culture How can the quality of the project documents be improved?

Documentation can profit a lot from reviews, provided a review culture has
been established in which both authors and reviewers feel comfortable.

Review Before
Delivery

How can authors receive the right feedback at the right time?

Early reviews are fine as they help the author shape the scope and the struc-
ture of a document. But before a document is officially distributed, or
delivered to the customer, a review is mandatory.

Agile documentation.book Page 203 Wednesday, June 11, 2003 11:11 AM

204 Pattern Thumbnails

Customer
Review

How can a team use documentation to increase customer involvement?

Customer reviews can improve the quality of a document, especially as far as
the domain expertise is concerned, and at the same time add to team building
and integration.

A Distant View How can authors obtain unbiased feedback?

Authors can obtain unbiased feedback from reviewers who are interested in
the topic and who are generally knowledgeable in the field, but who are not
involved in the actual work described in the document.

Information
Marketplace

How can good documents be prevented from going sadly unnoticed?

Documents gain more attention if the intended readers are actively invited to
read them.

Knowledge
Management

How can future projects profit from a successful project?

Only when project documentation is made available organisation-wide do
future projects have a chance of drawing on the expertise gained.

Agile documentation.book Page 204 Wednesday, June 11, 2003 11:11 AM

Glossary

Agile Alliance
A group of 17 people who first met in February 2001 with the aim of finding
better ways of developing software. The authors of the Agile Manifesto.

See www.AgileAlliance.org.

Agile development
Software development following the principles expressed in the Agile
Manifesto.

Agile Manifesto
A collection of core values and principles intended to lead to better ways of
software development, as defined by the Agile Alliance.

See www.AgileManifesto.org.

Agile process
Any process – specifying, modelling, designing, coding or other process –
that follows the principles expressed in the Agile Manifesto.

Author
For the purposes of this book, anyone who writes a project document. Typi-
cally this is a team member who also has other tasks. Hardly ever a
professional technical writer.

CASE
Computer-aided software engineering, as in ‘CASE tool’.

Agile documentation.book Page 205 Wednesday, June 11, 2003 11:11 AM

206 Glossary

Class diagram
A UML diagram that shows classes, their attributes and their operations, as
well as various static relationships that exist between these classes such as
association, aggregation and inheritance.

Content
The actual text of a document, independent of layout or formatting.

Cookbook
A document that explains how to use a software system through step-by-step
advice.

Deliverable
Any artefact that a project is supposed to deliver to the customer. This can
include source code, executable software and documents.

Design document
A document that describes how the software is organised internally and why
it is organised that way. Typically, a design document describes how software
is composed from smaller parts and how these parts are related. Class
diagrams and interaction diagrams are often the method of choice to
describe a design.

Document
A persistent artefact that is set up specifically to provide information in
writing. A document is typically produced electronically, and can be read
either as a printed copy or on-line.

Documentation
The entirety of documents and source code comments produced in a project.
Also the process that comprises the collection, classification and dissemina-
tion of information.

Document processing
The process of creating, editing, changing, maintaining and printing docu-
ments, as is typically done with a word processor.

Font
The set of characters belonging to a certain typeface of a given size.

Agile documentation.book Page 206 Wednesday, June 11, 2003 11:11 AM

Glossary 207

HTML
Hypertext Markup Language. A language used to define the appearance and
behaviour of pages when displayed in a Web browser. HTML allows the defi-
nition of text blocks as well as the definition of hyperlinks.

Hypertext
Text organised in a non-sequential way with hyperlinks providing access
from one chunk of information to others. Typically, multiple access paths
allow readers to travel through a hypertext in different ways.

Interaction diagram
A UML diagram that visualises the message passing between collaborating
objects.

Layout
The set of characteristics that define a document’s visual appearance.

Legibility
The degree to which a printed page can be recognised quickly and reliably.
The legibility mainly depends on how well readers can identify the characters
of the typeface used.

Meta-information
In the context of documentation, a chunk of text or a group of keywords that
provide information about the document’s status and the type of information
it contains.

On-line document
A document that is intended to be read with the use of a Web browser or
other viewing application. Often access to the document is given through the
Internet or an in-house intranet, but the document may also be located on the
local computer. On-line documents may have hyperlinks by which docu-
ments can be linked.

Paragraph format
A specification that defines the formatting properties for all paragraphs of a
given type within a document, as used in a word processor.

Agile documentation.book Page 207 Wednesday, June 11, 2003 11:11 AM

208 Glossary

PDF
Portable Document Format – an electronic document format developed by
Adobe Systems Inc. that is portable between different computer types,
designed for on-line viewing, but now also used as a print format.

PostScript
A document description language designed to be a print format portable
between printing devices.

Print document
A document intended for printing, as opposed to an on-line document.

Print format
A specification that describes exactly how a document will appear when
printed. Examples include PDF and PostScript.

Readability
The degree to which a text can easily be grasped and understood by the
reader.

Reader
A person who uses a document to obtain information at an arbitrary level of
detail. This includes not only those who read a document from beginning to
end, but also occasional readers who browse through a document in search
for specific information.

Refactoring
Reorganisation of a software system without changing its external behaviour,
with the aim of improving its internal structure. When applied to document-
ation: improving the project documentation’s structure without changing its
contents.

Review
The process of having a document checked by someone other than the
author, typically with the intention of improving the document’s quality with
regard to contents, structure and language.

Software project
A project the goal of which is in some way related to software development.
This may be a development project in which the deliverables are items of

Agile documentation.book Page 208 Wednesday, June 11, 2003 11:11 AM

Glossary 209

software, or it may be a consultancy project that is still concerned with soft-
ware development, although in a less direct way.

Specification document
A document that describes what a software product is supposed to do. A
specification document defines the requirements placed on the software.

Template
An artefact that is not itself a document, but specifies the layout and the
formatting for a class of similar documents. Most word processors support the
use of document templates.

Thumbnail
A brief summary of a longer text.

Tutorial
A document that explains how to use a software system.

Typeface
A collection of characters, including letters, digits and symbols, intended for
the visual display of language and all designed in a similar style. Examples
include Times, Helvetica, Garamond and Frutiger. Most typefaces are
designed as families and include sets of characters for different type sizes, as
well as variations such as boldface, italics and small caps.

Type size
The size of a typeface, normally measured in points. A typical range of type
sizes suitable for printed documents is 8–24 points.

Typography
The science, craft or art of setting up a printed page. Typography deals with
letters, diagrams, lines, area and colour.

UML
Unified Modeling Language.

UP
Unified Process.

Agile documentation.book Page 209 Wednesday, June 11, 2003 11:11 AM

210 Glossary

Use case
A sequence of actions to be performed with a software system that, as a
whole, represent a typical usage scenario.

Word processor
For the purposes of this book, a tool for document processing. Word proces-
sors cover varying degrees of complexity, ranging from simple text editors to
sophisticated desktop publishing systems.

Agile documentation.book Page 210 Wednesday, June 11, 2003 11:11 AM

References

Alexander Ishikawa Silverstein 1977

Christopher Alexander, Sara Ishikawa, Murray Silverstein: A Pattern
Language – Towns • Buildings • Construction, Oxford University Press,
New York, 1977.

Alexander 1979

Christopher Alexander: The Timeless Way Of Building, Oxford
University Press, New York, 1979.

Ambler 2002

Scott W. Ambler: Agile Modeling – Effective Practices for eXtreme
Programming and the Unified Process, John Wiley & Sons, 2002.

Beck Cunningham 1989

Kent Beck, Ward Cunningham: ‘A Laboratory for Teaching Object-
Oriented Thinking’, in Proceedings of OOPSLA ’89, ACM Press, 1989.

Beck 2000

Kent Beck: Extreme Programming Explained: Embrace Change,
Addison-Wesley, 2000.

Berczuk Appelton 2003

Steve Berczuk, Brad Appelton: Software Configuration Management
Patterns: Effective Teamwork, Practical Integration, Addison-Wesley,
2003.

Berleant 2000

Daniel Berleant: ‘Does Typography Affect Proposal Assessment’, in
Communications of the ACM, Vol. 43, No. 8, August 2000.

Agile documentation.book Page 211 Wednesday, June 11, 2003 11:11 AM

212 References

Botafogo Rivlin Shneiderman 1992

Rodrigo A. Botafogo, Ehud Rivlin, Ben Shneiderman: ‘Structural Analysis
of Hypertexts: Identifying Hierarchies and Useful Metrics’, in ACM
Transactions on Information Systems, Vol. 10, No. 2, April 1992.

Brand 1999

Stewart Brand: The Clock of the Long Now – Time and Responsibility,
Basic Books, New York, 1999.

Brooks 1995

Frederick P. Brooks: The Mythical Man-Month, Addison-Wesley,
Anniversary Edition, 1995.

Buschmann Meunier Rohnert Sommerlad Stal 1996

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal: Pattern-Oriented Software Architecture – A System of
Patterns, John Wiley & Sons, 1996.

Cockburn 1998

Alistair Cockburn: Surviving Object-Oriented Projects – A Manager’s
Guide, Addison-Wesley, 1998.

Cockburn 2000

Alistair Cockburn: Writing Effective Use Cases, Addison-Wesley, 2000.

Cockburn 2001

Alistair Cockburn: Agile Software Development, Addison-Wesley, 2001.

Conover 1985

Theodore E. Conover: Graphic Communications Today, West
Publishing Company, 1985.

Coplien 1995

James O. Coplien: ‘A Generative Development-Process Pattern
Language’, in Pattern Languages of Program Design, Vol. 1, James O.
Coplien, Douglas C. Schmidt (Eds.), Addison-Wesley, 1995.

Coplien 2000

James O. Coplien: ‘A Pattern Language for Writers’ Workshops’, in
Pattern Languages of Program Design, Vol. 4, Neil Harrison, Brian
Foote, Hans Rohnert (Eds.), Addison-Wesley, 2000.

Agile documentation.book Page 212 Wednesday, June 11, 2003 11:11 AM

References 213

Crowder 1982

Robert G. Crowder: The Psychology of Reading, Oxford University Press,
1982.

DeMarco Lister 1987

Tom DeMarco, Timothy Lister: Peopleware: Productive Projects and
Teams, Dorset House, 1987. (2nd Edition, Dorset House, 1999.)

Dumais 1988

Susan T. Dumais: ‘Textual Information Retrieval,’ in Handbook of
Human-Computer Interaction, Elsevier (North-Holland), 1988.

EuroPLoP 1998

Jens Coldewey, Paul Dyson (Eds.): Proceedings of the 3rd European
Conference on Pattern Languages of Programs, 1998, Universitätsverlag
Konstanz.

EuroPLoP 1999

Paul Dyson, Martine Devos (Eds.): Proceedings of the 4th European
Conference on Pattern Languages of Programs, 1999, Universitätsverlag
Konstanz.

EuroPLoP 2000

Martine Devos, Andreas Rüping (Eds.): Proceedings of the 5th European
Conference on Pattern Languages of Programs, 2000, Universitätsverlag
Konstanz.

EuroPLoP 2001

Andreas Rüping, Jutta Eckstein, Christa Schwanninger (Eds.):
Proceedings of the 6th European Conference on Pattern Languages of
Programs, 2001, Universitätsverlag Konstanz.

Flanagan 2002

David Flanagan: Java in a Nutshell, O’Reilly & Associates, 2002.

Fowler 1996

Martin Fowler: Analysis Patterns, Addison-Wesley, 1996.

Fowler 2000

Martin Fowler: UML Distilled, 2nd Edition, Addison-Wesley, 2000.

Agile documentation.book Page 213 Wednesday, June 11, 2003 11:11 AM

214 References

Furnas Zacks 1994

George W. Furnas, Jeff Zacks: ‘Multitrees: Enriching and Reusing Hierar-
chical Structure’, in CHI ’94 – Conference Proceedings on Human factors
in Computing Systems, ACM, 1994.

Gabriel 2002

Richard Gabriel: Writers’ Workshops and the Work of Making Things:
Patterns, Poetry … Addison-Wesley, 2002.

Gamma Helm Johnson Vlissides 1995

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design
Patterns: Elements of Reusable Object-Oriented Software, Addison-
Wesley, 1995.

Glasser 1992

Theodore L. Glasser: ‘Objectivity and News Bias,’ in Philosophical Issues
in Journalism, Elliot D. Cohen (Ed.), Oxford University Press, 1992.

Gulbins Kahrmann 1992

Jürgen Gulbins, Christine Kahrmann: Mut zur Typographie, Springer,
1992. (German language)

Haramundanis 1998

Katherine Haramundanis, The Art of Technical Documentation, Butter-
worth-Heinemann, 1998.

Harrison 1996

Neil B. Harrison: ‘Organizational Patterns for Teams’, in Pattern
Languages of Program Design, Vol. 2, John M. Vlissides, James O.
Coplien, Norman L. Kerth (Eds.), Addison-Wesley, 1996.

Harrison 2000

Neil B. Harrison: ‘The Pattern Language of Shepherding’, in Pattern
Languages of Program Design, Vol. 4, Neil Harrison, Brian Foote, Hans
Rohnert (Eds.), Addison-Wesley, 2000.

Highsmith 2000

Jim Highsmith: Adaptive Software Development, Dorset House, 2000.

Highsmith 2002

Jim Highsmith: Agile Software Development Ecosystems, Addison-Wesley,
2002.

Agile documentation.book Page 214 Wednesday, June 11, 2003 11:11 AM

References 215

Horn 1989

Robert E. Horn: Mapping Hypertext, Lexington Institute, 1989.

Horton 1994

William Horton: Designing and Writing Online Documentation, John
Wiley & Sons, 2nd Edition, 1994.

Hsu Mitchell 1997

Richard C. Hsu, William E. Mitchell: ‘After 400 Years, Print is Still
Superior’, in Communications of the ACM, Vol. 40, No. 10, October 1997.

Jacobsen Booch Rumbaugh 1999

Ivar Jacobsen, Grady Booch, James Rumbaugh: The Unified Software
Development Process, Addison-Wesley, 1999.

Kerth 2001

Norman Kerth: Project Retrospectives: A Handbook for Team Reviews,
Dorset House, 2001.

Knuth 1992

Donald E. Knuth: Literate Programming, Center for the Study of
Language and Information, 1992.

Kruchten 2000

Philippe Kruchten: The Rational Unified Process, Addison-Wesley, 2000.

Leuf Cunningham 2001

Bo Leuf, Ward Cunningham: The Wiki Way, Addison-Wesley, 2001.

Manns Rising 2003

Mary Lynn Manns, Linda Rising: Fear Less and Other Patterns for Intro-
ducing New Ideas into Organizations, 2003 (in preparation).

Miller 1956

George A. Miller: ‘The Magical Number Seven, Plus or Minus Two: Some
Limits on our Capacity for Processing Information’, in The Psychological
Review, Vol. 63, No. 2, American Psychological Association, March 1956.

Nielsen 2000

Jakob Nielsen: Designing Web Usability – The Practice of Simplicity, New
Riders Publishing, 2000.

Agile documentation.book Page 215 Wednesday, June 11, 2003 11:11 AM

216 References

Noble Weir 2000

James Noble, Charles Weir: Small Memory Software, Addison-Wesley,
2000.

Orenstein 1996

Robert Orenstein: ‘A Pattern Language for an Essay-Based Web Site’, in
Pattern Languages of Program Design, Vol. 2, John M. Vlissides, James
O. Coplien, Norman L. Kerth (Eds.), Addison-Wesley, 1996.

Pinker 1997

Steven Pinker: How the Mind Works, Allen Lane, The Penguin Press,
1997.

PLoPD 1995

James O. Coplien, Douglas C. Schmidt (Eds.): Pattern Languages of
Program Design, Vol. 1, Addison-Wesley, 1995.

PLoPD 1996

John M. Vlissides, James O. Coplien, Norman L. Kerth (Eds.): Pattern
Languages of Program Design, Vol. 2, Addison-Wesley, 1996.

PLoPD 1998

Robert C. Martin, Dirk Riehle, Frank Buschmann (Eds.): Pattern
Languages of Program Design, Vol. 3, Addison-Wesley, 1998.

PLoPD 2000

Neil Harrison, Brian Foote, Hans Rohnert (Eds.): Pattern Languages of
Program Design, Vol. 4, Addison-Wesley, 2000.

Parnas 1972

David Parnas: ‘On the Criteria to be Used in Decomposing Systems into
Modules’, in Communications of the ACM, Vol. 15, No. 2, December
1972.

Poppendieck 2003

Mary Poppendieck: Lean Development – An Agile Toolkit for Software
Development Managers, 2003 (in preparation).

Press 2000

Larry Press: ‘From P-books to E-books’, in Communications of the ACM,
Vol. 43, No. 5, May 2000.

Agile documentation.book Page 216 Wednesday, June 11, 2003 11:11 AM

References 217

Rising 2000a

Linda Rising: ‘Customer Interaction Patterns’, in Pattern Languages of
Program Design, Vol. 4, Neil Harrison, Brian Foote, Hans Rohnert (Eds.),
Addison-Wesley, 2000.

Rising 2000b

Linda Rising: The Patterns Almanac 2000, Addison-Wesley, 2000.

Rumbaugh Jacobsen Booch 1998

James Rumbaugh, Ivar Jacobsen, Grady Booch: The Unified Modeling
Language Reference Manual, Addison-Wesley, 1998.

Rüping 1998a

Andreas Rüping: ‘The Structure and Layout of Technical Documents’, in
Proceedings of the 3rd European Conference on Pattern Languages of
Programming and Computing 1998, Jens Coldewey, Paul Dyson (Eds.),
Universitätsverlag Konstanz.

Rüping 1998b

Andreas Rüping: ‘Writing and Reviewing Technical Documents’, in
Proceedings of the 3rd European Conference on Pattern Languages of
Programming and Computing 1998, Jens Coldewey, Paul Dyson (Eds.),
Universitätsverlag Konstanz.

Rüping 1999a

Andreas Rüping: ‘Project Documentation Management’, in Proceedings
of the 4th European Conference on Pattern Languages of Programming
and Computing 1999, Paul Dyson, Martine Devos (Eds.), Universitäts-
verlag Konstanz.

Rüping 1999b

Andreas Rüping: ‘Typography and Desktop Publishing’, in Proceedings
of the 4th European Conference on Pattern Languages of Programming
and Computing 1999, Paul Dyson, Martine Devos (Eds.), Universitäts-
verlag Konstanz.

Salton 1989

Gerard Salton: Automatic Text Processing – The Transformation,
Analysis, and Retrieval of Information by Computer, Addison-Wesley,
1989.

Agile documentation.book Page 217 Wednesday, June 11, 2003 11:11 AM

218 References

Schmidt Stal Rohnert Buschmann 2000

Douglas Schmidt, Michael Stal, Hans Rohnert, Frank Buschmann:
Pattern-Oriented Software Architecture 2 – Patterns for Concurrent and
Networked Objects, John Wiley & Sons, 2000.

Schneider 1996

Wolf Schneider: Deutsch für Kenner – Die neue Stilkunde, Piper, 1996.
(German language)

Schneider 1999

Wolf Schneider: Deutsch für Profis – Wege zu gutem Stil, Goldmann,
1999. (German language)

Schwaber Beedle 2001

Ken Schwaber, Mike Beedle: Agile Software Development with Scrum,
Prentice Hall, 2001.

Siedersleben 2003

Johannes Siedersleben (Eds.): Softwaretechnik, Hanser, 2003. (German
language)

Sommerville 1996

Ian Sommerville: Software Engineering, Addison-Wesley, 1996.

Strunk White 1979

William Strunk, E. B. White: The Elements of Style, Macmillan, 3rd
edition, 1979.

Tinker 1963

Miles A. Tinker: Legibility of Print, Iowa State University Press, 1963.

Tufte 1997

Edward R. Tufte: Visual Explanations: Images and Quantities, Evidence
and Narrative, Graphics Press, 1997.

Tufte 2001

Edward R. Tufte: The Visual Display of Quantitative Information,
Graphics Press, 2nd Edition, 2001.

Völter Schmid Wolff 2002

Markus Völter, Alexander Schmid, Eberhard Wolff: Server Component
Patterns – Component Infrastructures Illustrated With EJB, John Wiley &
Sons, 2002.

Agile documentation.book Page 218 Wednesday, June 11, 2003 11:11 AM

References 219

Weinberg 1998

Gerald M. Weinberg: The Psychology of Computer Programming, Silver
Anniversary Edition, Dorset House, 1998.

Weir 1997

Charles Weir: ‘Patterns for Designing in Teams: How Teams Can
Improve the Design Process’, in Pattern Languages of Program Design,
Vol. 3, Robert C. Martin, Dirk Riehle, Frank Buschmann (Eds.), Addison-
Wesley, 1997.

West 1990

Suzanne West: Working with Style: Traditional and Modern Approaches
to Layout and Typography, Watson Guptill, 1990.

Agile documentation.book Page 219 Wednesday, June 11, 2003 11:11 AM

Agile documentation.book Page 220 Wednesday, June 11, 2003 11:11 AM

Index

120% LINE SPACING 100, 102, 102–104

A
A DISTANT VIEW 25, 42, 177–178
A DISTINCT ACTIVITY 29, 161–164, 168, 170, 183, 186
Activity diagram 72
Adaptive Software Development 2
Ad-hoc Corrections 167
ADJACENT PLACEMENT 109–111
Agile Alliance 1, 205
Agile attitude 193
Agile development xiii, 1, 2, 3, 22, 35, 38, 144, 162,

163, 176, 205
and documentation 3

Agile Manifesto ix, xiii, 1, 2, 22, 38, 144, 167, 173, 176,
182, 205

Agile Modeling 2, 3, 28, 30, 38
Agile process 194, 205
Agile Software Development Ecosystems 2, 3
Analysis, with customer 37
ANNOTATED CHANGES 144–145
Architecture overview 72
Architecture, communicating design 41
Archiving, benefits 124
Author 7, 42, 43, 64, 97, 104, 120, 125, 140, 141, 144,

145, 146, 161, 164, 165, 168, 169, 170, 171, 172,
173, 175, 178, 184, 205

getting feedback 174, 177
maintaining credibility 42, 57
multiple 144, 164

Body text, choosing a font 105
Book

final comments 193–195
how to read xv
organisation xiii–xiv
scope xii

C
Camera, capturing information 143
CAREFUL RULING AND SHADING 70, 74, 108–109
CAREFUL USE OF TYPE VARIATIONS 44, 70, 78, 106, 106–

107, 109
CASE tool 143, 150, 153
Cell, separating 108
Class diagram 68, 71, 72, 83, 155, 206
Code, documenting 126
CODE-COMMENT PROXIMITY 126–127, 153
COHERENT PAGES 111, 111–112
Configuration management 143
Content 56, 62, 63, 88, 114, 131, 132, 135, 206
Content management 17, 57, 88, 114, 131, 191
Content-independent formatting 132
CONTINUING DOCUMENTATION 82, 146, 165, 166–168,

170, 175, 182, 185
Cookbook 32, 206
Creator-Reviewer 178
Crystal 3
Customer

capturing requirements 36
increasing involvement 175

CUSTOMER REVIEW 38, 170, 175–177, 178, 188

Agile documentation.book Page 221 Wednesday, June 11, 2003 11:11 AM

222 Index

Deliverable 206
Deployment diagram 72
Description, separation from evaluation 43
Design

communicating 41
rationale 39

Design document 20, 31, 34, 39, 45, 48, 51, 53, 55, 58,
68, 79, 82, 83, 129, 136, 140, 153, 155, 166, 184,
185, 189, 206

DESIGN RATIONALE 34, 36, 39–40, 46, 57, 182, 185, 190
Design, allowing for change 39
Diagram 70–72, 88

integrating into text 109
sharing between documents 136
use in overview 71
use of 70

Digital camera, capturing information 143
Diversity of Membership 178
Document

allocating responsibility 164
and examples 45
and multiple authors 144
circulation 186
controlling structure 139
controlling versions 145
coordinating inputs 165
creating multiple view 133
definition 206
design 39, 98, 100, 102, 104, 106, 107, 108, 109,

111, 206
diagrams and tables 88
environment for writing 168
explaining terminology 79
focusing 26
history 81
identifying readership 24
identifying versions 81
inviting readers 179
linking 78
making flexible 131
management 31
on-line xiv, 98, 107, 128, 129, 130, 131, 143, 153,

207

portfolio 30
preparing for print 138
presenting overview 77
print 98, 107, 115, 128, 131, 138, 208
print vs. on-line 128
processing 138, 206
producing 153
review 25, 165, 170–174, 174–175, 178, 187, 208
sharing diagrams 136
specification 31, 34, 36, 40, 45, 47, 48, 49, 51, 140,

209
storage and retrieval 149
structure xiv, 64, 66–70, 74, 82, 165, 169
template 97, 141, 147, 151, 209
tracking changes 144
useful elements 85

DOCUMENT ARCHIVE 82, 123–125, 126, 135, 137, 146,
148, 149

DOCUMENT HISTORY 70, 76, 81–82, 85, 141, 146, 167
DOCUMENT LANDSCAPE 27, 72, 120–123, 124, 126, 146,

148, 149, 152, 156, 182
DOCUMENT TEMPLATES 94, 130, 132, 133, 139–142, 148,

156
Documentation 206

alerting readers 75
allocating resources 161
and future projects 180
and other activities 168
and programming 148
archiving 124
capturing customer requirements 36
creating additional views 134
defining requirements 29
documenting code 126
ensuring lasting value 34
environment for creating 169
explaining abstract information 44
getting noticed 179
helping new staff 40
how to make useful 24
improving quality 170
in tree form 121
involving customer 175

Agile documentation.book Page 222 Wednesday, June 11, 2003 11:11 AM

Index 223

long-term relevance 35
maintaining focus 26
maintaining infrastructure 147
making accessible 66
making interactive 125
minimising effort 142
presenting overview 120
preserving versions 123
processes and plans 182
project portfolio 31
role of 2
specifying requirements 28
structure and readability 61–64
use of references 78
usefulness vs. amount 4
vs. face-to-face communication 20
when to write 166

DOCUMENTATION PORTFOLIO 27, 29, 30–34, 36, 45, 47,
163

Domain, explaining terminology 80

E
Emphasis, in text 106, 107
Engage Customers 38
Example project

AirView 16, 47, 190
Contentis 17, 57, 191
Extricate 13, 47, 90, 188
FlexiCar 16, 48, 58, 153, 189
Navigator 15, 51, 155
OpenDoors 17, 55, 187
Paracelsus 12, 46, 156
Persistor 14, 47, 50, 58, 88, 153, 184, 191
Vista 14, 53, 154, 186
Webber 12, 56

Examples, value of 45
Experience reports 46–59, 82–91, 112–114, 149–157,

182–191
Experts In Earshot 21
eXtreme programming 2, 28

F
Face-to-face communication xi, 3, 19, 20, 22, 34, 36,

37, 50, 55, 57, 64

Feedback, how to obtain 177
FEW TOOLS 139, 142–144, 156
FOCUS ON LONG-TERM RELEVANCE 33, 34–36, 40, 57,

168, 182, 190
FOCUSED INFORMATION 25, 26–27, 34, 44, 70, 79, 123,

137, 175, 185
Font 206

choice for emphasis 106, 107
choosing 104
size 100
style 107
use of serif 105

Formatting
and style sheets 132
content-independent 132

G
GLOSSARY 25, 70, 79–81, 86, 141
Glossary, value in documentation 80
GUIDELINES FOR READERS 25, 70, 72, 75–76, 78, 80, 82,

86, 123, 141
Guidelines, use in documentation 76

H
Heading, choosing a font 105
HTML 132, 133, 134, 135, 150, 207

editor 143
Hypertext 66, 121, 207

I
IMPORT BY REFERENCE 136–137, 148, 149
INDIVIDUAL DOCUMENTATION REQUIREMENTS 28–30, 33,

49, 144, 163
Information

abstract material 44
abstracting 75
making accessible 66
presenting overview 77
presenting systematic 73

INFORMATION MARKETPLACE 36, 126, 179–180, 188, 190
Interaction diagram 32, 72, 206, 207
Introductory Picture 131
Introductory Section 131

Agile documentation.book Page 223 Wednesday, June 11, 2003 11:11 AM

224 Index

JUDICIOUS DIAGRAMS 42, 70, 70–72, 82, 88, 144

K
Know The Customer 176
Knowledge

capture 35
extraction and transfer 181
management 31, 181, 182
preserving xi, 57, 189
reusing 30
transfer 3, 24, 48, 181

KNOWLEDGE MANAGEMENT 36, 180, 180–182, 190

L
Layout 93–114, 207

making flexible 131
use of styles 132

Lean Development 2
Legibility xiv, 93, 94, 97, 98, 102, 105, 106, 107, 108,

115, 207
Line

optimum spacing 102, 103
optimum width 100, 101

Listen, Listen, Listen 176
Low-depth Document Trees 131

M
Management document 31
Mercenary Analyst 178
Meta-information 207

N
NOTIFICATION UPON UPDATE 145–146, 149, 179

O
ONE RESPONSIBLE AUTHOR 126, 145, 164, 164–165, 168,

175, 185, 186
On-line document xiv, 98, 107, 128, 129, 130, 131,

143, 153, 207
Owner Per Deliverable 165

Page
avoiding breaks 111
optimising 111
space for text 98, 99

Paragraph format 141, 144, 207
Pattern language 5, 6
Patterns

and domain expertise 6
further resources 7
in architecture 6
structure 8
what are they? 5

PDF 139, 144, 150, 153, 208
PDF reader 143
Portable document format 139, 144, 150, 153
PostScript 139, 208
Print document 98, 107, 115, 131, 138, 208
Print format 138, 139, 208
Process, presenting overview 70
Programming and documentation 148
Project

communicating design 41
communications within team 125
credibility 57
defining documentation requirements 29
documentation overview 120
documentation scope 30
documenting stable states 167
getting people up to speed 40
protecting documentation 123
specification 37

Project AirView, experience 47, 190
Project Contentis, experience 57, 191
Project Extricate, experience 47, 90, 188
Project FlexiCar, experience 58, 153, 189
Project Flexicar, experience 48
Project Navigator, experience 51, 155
Project OpenDoors 64
Project OpenDoors, experience 55, 187
Project Paracelsus, experience 46, 156
Project Persistor

experience 47, 50, 58, 88, 153, 184, 191
the big picture 52

Agile documentation.book Page 224 Wednesday, June 11, 2003 11:11 AM

Index 225

Project Vista
application landscape 54
experience 53, 154, 186

Project Webber, experience 56

Q
Quality, of documents 170

R
Readability xiv, 69, 208

optimising 111
Reader 208

and correct versions 145
identifying targets 24
instructions to 76

READER-FRIENDLY MEDIA 79, 98, 122, 127, 128–131, 152,
153, 168

REALISTIC EXAMPLES 25, 39, 40, 41, 44–46, 58, 175
Refactoring 13, 20, 21, 49, 185, 187, 208
Reference, use in documentation 78
REORGANISATION UPON REQUEST 135, 137, 142, 147–

149, 154
Resource, allocating to documentation 161
Review 25, 42, 47, 48, 57, 165, 187, 208

culture 7
process 7
types 178
unreviewed material 188

REVIEW BEFORE DELIVERY 164, 165, 170, 174–175, 185,
188

REVIEW CULTURE 42, 164, 168, 170, 170–174, 177, 178,
182, 187

Reviewer, choosing 177
Ruling, use of 108

S
Scope of the book xii
Scrum 2
SEPARATION OF CONTENTS AND LAYOUT 131–133, 135,

141, 144, 148
SEPARATION OF DESCRIPTION AND EVALUATION 42–44,

57, 74
SEPARATION OF PROCESSING AND PRINTING 138–139,

144, 148

Shading, use of 108
SINGLE SOURCE AND MULTIPLE TARGETS 130, 132, 133–

135, 148, 149, 154
Software project 208
SPECIFICATION AS A JOINT EFFORT 34, 36, 36–39, 45, 51,

80
Specification document 31, 34, 36, 40, 45, 47, 48, 49,

51, 140, 209
Spreadsheet 90, 143, 154
State diagram 72
Step by Step 194
Structure, presenting overview 70
STRUCTURED INFORMATION 27, 44, 66–70, 72, 74, 78, 82,

107, 109, 112

T
Table 88

design 108
integrating into text 109
sharing between documents 136
use to present data 74

TARGET READERS 24–25, 27, 29, 33, 36, 46, 49, 76, 79,
122, 175, 178, 180, 188

Template 97, 141, 147, 151, 209
and structure 140

Terminology, explaining 79
Text

emphasizing 106, 107
space on page 98, 99
use of building blocks 68
use of styles 132

TEXT ON 50% OF A PAGE 98–100, 102, 112
THE BIG PICTURE 25, 34, 36, 40–42, 52, 53, 72, 88, 182,

185
Thumbnail 209

pattern 197–204
use in documentation 77

THUMBNAIL SKETCHES 70, 76, 77–78, 79, 85, 107
Tool, choosing 142
TRACEABLE REFERENCES 70, 78–79, 86
Tutorial 32, 209
TWO ALPHABETS PER LINE 100, 100–102, 104
TWO TYPEFACES 100, 104–106

Agile documentation.book Page 225 Wednesday, June 11, 2003 11:11 AM

226 Index

Type size 101, 102, 103, 104, 105, 209
Typeface 101, 102, 103, 105, 106, 108, 139, 206, 207,

209
and length of line 101
choosing 104

Typography 70, 93–114, 209

U
UML diagram 51, 71, 72, 82, 170, 206, 207, 209
UNAMBIGUOUS TABLES 44, 70, 73–74, 85, 89, 109
Unified Process 33, 209
UP 33, 209
Use case 17, 32, 33, 38, 39, 40, 45, 47, 57, 71, 210

V
Version

identifying 81

tracking documents 145
View, of document 133

W
Web

browser 143, 207
content 17, 18, 56, 62, 63, 88, 191
site 7, 12, 13, 17, 53, 56, 67, 125, 131, 143

WIKI 122, 125–126, 150, 180, 182
Word processor xiv, 94, 97, 103, 104, 110, 112, 130,

132, 133, 134, 137, 138, 140, 143, 144, 145, 209,
210

WRITING AND REFLECTION 164, 168, 168–170, 182, 189
Writing, environment 169

X
XP 2, 28

Agile documentation.book Page 226 Wednesday, June 11, 2003 11:11 AM

