A Ragtesn Guide to
Producing Lightweight
Deocuments
s

Sofeware Projects

Agile Documentation

Agile Documentation

A Pattern Guide to

Producing Lightweight Documents
for Software Projects

Andreas Riiping

%)

JOHN WILEY & SONS, LTD

Copyright © 2003 by John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England
Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk
Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs
and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road,
London WIT 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the
Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or
emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on
the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada MOW 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic
books.

Library of Congress Cataloging-in-Publication Data
Riiping, Andreas.

Agile documentation : a pattern guide to producing lightweight
documents for software projects / Andreas Riiping.

p.cm.

ISBN 0-470-85617-3 (Paper : alk. paper)

1. Flexible manufacturing systems. 2. System design. I. Title.

TS155.65.R87 2003

005.1'5-dc21

2003011756

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN 0-470-85617-3
Typeset in Garamond Light and Frutiger by WordMongers Ltd, Treen, Cornwall TR19 6LG, England
Printed and bound in Great Britain by Biddles Ltd., Guildford and Kings Lynn

This book is printed on acid-free paper responsibly manufactured from sustainable forestry,
in which at least two trees are planted for each one used for paper production.

Contents

Foreword

Preface
Acknowledgements
Introduction

Project Background

1 Finding the Right Topics

Target Readers

Focused Information

Individual Documentation Requirements
Documentation Portfolio

Focus on Long-Term Relevance
Specification as a Joint Effort

Design Rationale

The Big Picture

Separation of Description and Evaluation
Realistic Examples

Experience Reports

Xi

xvii

11

19

24
26
28
30
34
36
39
40
42
44
46

vi

Contents

Structuring Individual Documents

Structured Information
Judicious Diagrams
Unambiguous Tables
Guidelines for Readers
Thumbnail Sketches
Traceable References
Glossary

Document History
Experience Reports

Layout and Typography

Text on 50% of a Page

Two Alphabets per Line

120% Line Spacing

Two Typefaces

Careful Use of Type Variations
Careful Ruling and Shading
Adjacent Placement

Coherent Pages

Experience Reports

Infrastructure and Technical Organisation

Document Landscape

Document Archive

Wiki

Code-Comment Proximity
Reader-Friendly Media

Separation of Contents and Layout
Single Source and Multiple Targets
Import by Reference

Separation of Processing and Printing
Document Templates

Few Tools

Annotated Changes

Notification upon Update
Reorganisation upon Request

61

66
70
73
75
77
78
79
81
82

93

98
100
102
104
106
108
109
111
112

117

120
123
125
126
128
131
133
136
138
139
142
144
145
147

Contents

vii

Experience Reports 149
5 Management and Quality Assurance 159
A Distinct Activity 161
One Responsible Author 164
Continuing Documentation 166
Writing and Reflection 168
Review Culture 170
Review Before Delivery 174
Customer Review 175
A Distant View 177
Information Marketplace 179
Knowledge Management 180
Experience Reports 182
Final Remarks 193
Pattern Thumbnails 197
Finding the Right Topics 197
Structuring Individual Documents 198
Layout and Typography 200
Infrastructure and Technical Organisation 201
Management and Quality Assurance 203
Glossary 205
References 211

Index 221

Foreword

As Jerry Weinberg says in his classic text The Psychology of Computer
Programming:

Documentation is the castor oil of programming. Managers think it is good
for programmers, and programmers bate it! The value of documentation is
only to be realized if the documentation is well done. If it is poorly done, it
will be worse than no documentation at all.

Nothing in the Agile Manifesto (http://agilemanifesto.org/) states “Thou shalt
not do any documentation’, but since many developers have a genetic reluc-
tance to any form of writing that isn’t expressed in a programming language,
they have clasped the following principle to their collective bosoms:

...we have come to value: Working software over comprehensive document-
ation

and proclaimed to the world that documentation is out.

My software development career has been mostly on large projects, like the
one that developed the software for the Boeing 777. There is no way that
projects like that can dispense with documentation. I would be the first to
admit that the 777 project and all the others I have seen close up could have
been done better. They could have been completed just as well in a less
ponderous fashion. Not only do I believe that there’s always room for
improvement, but I also believe that we should strive continually to improve
— especially on safety-critical projects. So either we admit that projects of this
magnitude are hopelessly ‘non-agile’, or we agree that, when it's appropriate
— that is, when it adds value — there is a need for documentation. I vote for
the latter.

Foreword

Now, however, we're faced with the dilemma — what does that mean on an
agile project? Can a project really follow agile principles and still produce
documentation? This is the question Andreas Riiping addresses in this book.
Andreas has documented his experiences of successful and unsuccessful
project adventures with documentation. He shares an array of encounters
with diverse projects: small to large, old technology to new, spanning the
past 12 years. I've become a believer in the power of stories — nothing is
better than hearing what others have done. When we share our successes
and failures, we all learn. There are lots of good stories here, real projects all,
with some instructive lessons learned and some pitfalls to be avoided.

Andreas does a good job of explaining the trade-offs: when documentation is
better than face-to-face, when on-line is better than hard copy, when
diagrams are more useful than text. In a discussion near and dear to my heart,
he also shows how documentation impacts the customer.

All this information is captured as a set of related patterns. Just like stories,
I'm a believer in the power of patterns. I've written many myself and I can
attest that they provide guidance in a useful form. Andreas provides sufficient
information for us to apply this guidance and benefit from his experience.
This is useful, practical stuff.

The book follows its own principles. It is lightweight and presents the useful
ideas without burdening the user. It is easy to read and understand and
presents solutions that are clearly based on real project experience. I found
myself nodding in agreement or tilting my head in consternation as I read
something surprising. I learned a lot by reading this little book, and I'm sure
you will, too.

Linda Rising

Preface

If you work in the software industry, you will know that documentation plays
an important role in many projects. Among other things, documents describe
user requirements, software architectures, design decisions, source code and
management issues.

There can be a lot of value in such documents. Documentation can
contribute to the success of a project by making necessary information avail-
able to the team members. Documents can preserve knowledge within a
team, and prevent the team from re-inventing things when team members
leave and new people join. Documents can capture expertise gained in one
project and make it available to future projects. When knowledge has been
committed to paper, it cannot be lost.

However, we are living in the information age. We are surrounded by much
information, often too much. It can become difficult to filter what we really
need. Projects sometimes suffer from too many documents and too long
documents. If this is the case, team members looking for specific information
can easily get lost. Some things are also much better communicated face-to-
face than via written documents. Too much documentation is as bad as no
documentation at all.

It is also hard to keep documents up to date when their subjects undergo
change. Keeping documents up to date is especially hard when a project is
busy and many other things require attention. But outdated documents can
easily lead readers onto the wrong track — outdated documents often do
more harm than good.

This book takes an agile approach to documentation — an approach that is
both lightweight and sufficient, in the same vein as the agile approaches to

Xii

Preface

Scope

software development that recently have become popular (Cockburn 2001,
Highsmith 2002, Ambler 2002).

This book presents a collection of patterns — guidelines that offer solutions to
the recurring yet multi-faced problems of documentation. These patterns are
governed by the following overall principles:

e Project documentation is most effective when it is lightweight, without
any unnecessary documents, yet providing all the information relevant to
readers.

e Documents that are considered necessary can only prove useful if they
are of high quality: accurate, up-to-date, highly readable and legible,
concise and well structured.

e Tools and techniques are useful only if they facilitate the production of
high-quality documents and make their organisation and maintenance
easier.

e The documentation process must be efficient and straightforward, must
adapt to the requirements of the individual project and must be able to
respond to change.

It is important to emphasise that this book does not prescribe a standard
method that claims to solve all the problems associated with software project
documentation. First, such a method is virtually impossible, as no two
projects have the same documentation requirements. Second, a heavyweight
method is the last thing I would want to propose — a fully-fledged ‘standard’
documentation method would be too inflexible and would involve too much
bureaucracy to be useful. It would certainly not be agile.

This book focuses rather on the elements and processes that can repeatedly
be found in good project documentation, and that express an agile attitude.
Such elements and processes have been shaped into patterns that you can
use to design the documentation that fits your individual project best, and
that contributes to the expertise held in your organisation.

This book is meant for people who work in the software industry and whose
job includes writing software documentation at some point. This is true for
most software engineers, designers, consultants and managers. If you belong
to any of these groups, then this book is for you.!

Preface

xiii

Organisation

Perhaps you enjoy documentation, or perhaps you see it as a burden. In
either case, this book will give you hints on how to focus on what is impor-
tant in documentation, it should make your documentation process more
efficient, and it should lead you to better results.

You can use agile documentation in different kinds of projects. First, agile
documentation is targeted at software development projects. Development
projects have an overall goal of delivering working software that satisfies the
customer’s requirements. In a development project, documentation is a
means, not an end: documentation is supposed to help the team accomplish
their tasks. This book recommends documentation that is as lightweight as
possible, but no lighter.

Consultancy projects are also within the scope of this book. Consultancy
projects place slightly different requirements on documentation than develop-
ment projects, since consultancy projects sometimes have documentation,
rather than software, as the desired project output. Consultancy projects can
profit from an agile approach, as such an approach makes the documentation
process more efficient and the resulting documents more compact and
straightforward.

Before presenting the actual patterns for agile documentation, this book
begins with some introductory remarks on agile development and on
patterns. If you would like to read about the Agile Manifesto and how it
relates to documentation, this introduction will be useful to you. If you would
like to learn what patterns are and how they can be used, you will also find
answers in the introduction. A section follows that briefly describes the
projects in which the patterns in this book were observed.

The actual collection of patterns is found in the five main chapters of the
book, each of which deals with a particular topic of software project docu-
mentation. Specifically, the main chapters address the following areas:

1. Finding the Right Topics

Documentation is important: some aspects of a project require document-
ation desperately, while others do not. So which documents are necessary
in your project, and what topics should they cover? What level of detail is

1. The book, however, is not about the sort of user manuals that come, for example, with standard soft-
ware packages, software installation guides or the like, nor is the book targeted at documentation
that is produced by professional technical writers.

xiv

Preface

necessary? What documents are perhaps unnecessary? This chapter
presents some guidelines on how to find out what documentation your
project requires.

. Structuring Individual Documents

Well-structured documents give readers better and quicker access to infor-
mation than poorly-structured documents. But what does a document
structure look like? How can you make sure your readers easily find the
information they’re looking for? This chapter offers suggestions about how
to increase the readability of project documents.

3. Layout and Typography

Readability is one thing, legibility is another. How can document layout
support the readers’ ability to grasp a document’s contents quickly and reli-
ably? How can such a layout be achieved with standard word processors?
This chapter tells you how to improve the appearance of your documents
easily.

4. Infrastructure and Technical Organisation

This chapter talks about how you can manage your project documents.
The chapter begins with organisational issues: how can you obtain an
overview of the project documentation? Are the documents supposed to be
printed on paper? What about on-line documentation, which is becoming
more and more popular? Solving such issues quickly leads us into more
technical topics: how can documents be processed and stored? How can
you make sure that individual documents can be found easily? What steps
need to be taken to make project documentation easily maintainable? What
tools are necessary for this?

5. Management and Quality Assurance

The final chapter addresses management issues such as budget, responsi-
bilities and priorities, as far as project documentation is concerned. The
questions to ask here are: what does an efficient documentation process
look like, or, how can bureaucracy be avoided? Being agile means putting
people in the foreground, so this chapter emphasises the roles people play
in the documentation process and stresses the importance of feedback and
reflection.

Preface

XV

How to read
this book

There are different ways to read this book. You don’t necessarily have to read
the book in sequential order:

e If you are interested in a quick overview, just go through each pattern
quickly and read the boldface sections. These form thumbnail sketches
that give you an overall impression of the actual pattern. In addition, a
summary of all such thumbnails is given at the end of the book.

e Read the complete patterns if you want to gain deeper insight, and partic-
ularly if you’re interested in the rationale behind the individual patterns.

e Begin with the experience reports, if you’d like to take a journey through
several real-world projects. The reports explain how the patterns were
used in those projects.

It's a good idea to combine these approaches. You can start with the thumb-
nails, so you get an overview of what the book has in store, and read the
complete patterns when you become interested in the details or the back-
ground of a pattern. You can then use the thumbnails as a checklist when
you work on the documentation of your project, using the complete patterns
when dealing with more detailed issues. Alternatively, you can begin with the
experience reports, and follow the references to the individual patterns
whenever you feel a pattern is of particular interest to you.

If you are interested in some topics more than others, you can concentrate on
the chapters that are of particular interest to you. Pointers will occasionally
refer you to related material in other chapters.

This is a relatively short book: it is intentionally lightweight and aims to
follow the approach it proposes — you don’t have to read many hundreds of
pages. Many of the patterns fit on two or three pages, and you can use the
thumbnails if all you need is a short overview. It won’t take you too long to
make yourself familiar with an agile approach towards the documentation of
software projects. I'd like to invite you to take this approach with the goal of
making documentation more effective for authors and readers alike.

I am interested in receiving your feedback on this book. If you have any
comments, feel free to contact me at rueping@acm.org.

Andreas Riiping

Acknowledgements

Project
thanks

My first ideas on agile documentation (though I didn’t refer to it as such at the
time) date back several years to a time when I was working at FZI
(Forschungszentrum Informatik, Research Centre for Information Tech-
nology) in Karlsruhe, Germany. During a few research projects and several
industrial collaborations, I had the chance to learn a lot about what character-
ises good project documentation. But there was more to it than this: the team
spirit among the group allowed me to enjoy those years a lot. My thanks go
out to everybody in the group, especially Gerhard Goos, Claus Lewerentz,
Simone Rehm, Franz Weber, Dieter Neumann, Walter Zimmer, Thomas
Lindner, Eduardo Casais, Annette Lotzbeyer, Achim Weisbrod, Helmut
Melcher, Oliver Ciupke, Benedikt Schulz, Rainer Neumann, Artur Brauer, Jorn
Eisenbiegler, Markus Bauer and Holger Bir.

My understanding of good documentation was refined when, a few years
later, T joined sd&m software design & management AG, Germany. I had the
chance to look at the documentation produced in several projects in which I
was involved. Many of the patterns included in this book came to my atten-
tion when they were successfully applied in sd&m’s projects. Thanks go out
to my colleagues for being a good team, for the fruitful collaboration
throughout many projects and for many insightful discussions.

Over the last few years, EuroPLoP — the European conference on software
patterns — has been an excellent forum for discussing all sorts of topics
around patterns, for me and for others. Thanks to everybody with whom I
was happy to collaborate in our efforts to organise the conference, especially
Frank Buschmann, Jens Coldewey, Martine Devos, Paul Dyson, Jutta Eckstein,
Kevlin Henney, George Platts, Didi Schiitz and Christa Schwanninger.

Xviii

Acknowledgements

Family
thanks

EuroPLoP turned out to be particularly helpful when I submitted papers on
various aspects of documentation. First of all, I'd like to thank those who
acted as shepherds for my papers: Ken Auer, Ward Cunningham, James Noble
and Charles Weir. Their comments and suggestions for improvement had a
lasting influence on the patterns that would make it into this book. Moreover,
many people offered valuable feedback and loads of good ideas in the Euro-
PLoP workshops. They are too many to name in person, but their help was
greatly appreciated.

A workshop on ‘Patterns for Managing Light-Weight Documentation’ at the
OT 2002 conference in Oxford also generated helpful ideas. Thanks to all
participants.

When I put the manuscript for this book together, several people volunteered
to work as reviewers. Scott Ambler, Wolfgang Keller, Klaus Marquardt, Linda
Rising, Peter Sommerlad, Markus Volter and Egon Wuchner took the time to
read the draft, offered their insight and made valuable suggestions for
improvement. This book has profited a lot from their generous help.

Several people have provided a lot of support throughout the publishing
process. First of all, I'd like to thank Gaynor Redvers-Mutton of John Wiley &
Sons for her work as the editor of this book. She provided a lot of help in
making the book come to life. Thanks also to Karen Mosman for her support
in the early stage of the publication process, to Jonathan Shipley for taking
care of many organisational details, and Juliet Booker for her work as the
production editor. Last, but certainly not least, I'd like to thank Steve Rickaby
of WordMongers for the smooth ride through the copyediting stage. This was
a very enjoyable process that spawned fruitful discussions on the contents,
language and layout of the book.

I'm happy to acknowledge that this book has also profited greatly from
people who weren’t directly involved. My final thanks go out to Gerhard,
Hiltrud, Jutta, Sven-Folker, Magnus, Nils Johann and Mareike for encourage-
ment, support and those moments of balance that you need when you go
through the process of writing a book.

Introduction

Agile
development

Agile documentation has borrowed its name from the ideas of Agile Software
Development. Agile software development was originally proposed by the
Agile Alliance — a group of 17 software practitioners who first met in February
2001 to collect ideas for better ways of software development.

These ideas are described in the Agile Manifesto, which can be found on the
Web (www.AgileAlliance.org) and which is also cited in a number of books
(Cockburn 2001, Ambler 2002, Highsmith 2002).

Here is the central part of what the Agile Manifesto says:
We are uncovering better ways of developing software by doing it and
helping others do it. Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
That is, while there is value in the items on the right, we value the items
on the left more.
The manifesto continues with a number of more detailed statements and
concrete recommendations.

Agile development is not one specific method of developing software. Agile
development comprises several methods proposed by different people,
which apply in different contexts and have different characteristics. All these

Introduction

The role of
documentation

methods have in common, however, the fact that they are centred on the core
values expressed in the manifesto.

Some of the best-known agile methods have been described in books:

In his book on Agile Software Development (Cockburn 2001), Alistair
Cockburn speaks about the central role that teamwork plays in software
development projects, and about the communication issues that arise in
development projects of different sizes and at different levels of rigour.

Jim Highsmith’s book on Adaptive Software Development (Highsmith
2000) views software development issues from the perspective of
complex adaptive systems. His new book on Agile Software Development
Ecosystems (Highsmith 2002) gives an overview of the principles of agile
development, and includes interviews with several noteworthy figures
from the agile community.

Scott Ambler’s book on Agile Modeling (Ambler 2002) addresses the
modelling part of the software development process. It details practices
that lead to effective and lightweight modelling, placing special emphasis
on the human aspects of software development.

eXtreme Programming (Beck 2000) was proposed by Kent Beck. XP, as it
is usually known, is an agile method centred on programming in its social
context. XP welcomes changing requirements and places much emphasis
on teamwork.

Another agile method is Scrum (Schwaber Beedle 2001), put forward by

Ken Schwaber, Michael Beedle and Jeff Sutherland, who draw on the
importance of self-organisation and reflection.

Mary Poppendieck’s forthcoming book on Lean Development
(Poppendieck 2003) describes a number of principles of lean thinking,
targeted at software development leaders.

As the Agile Manifesto is still rather new, we can expect more agile methods
for software development to arise in the near future.

What role does documentation play in an agile project?

The first thing to understand is that documentation appears on the right-hand
side of the value statements in the Agile Manifesto. This means, in short, that
the best documentation in the world is no excuse if the project is supposed to
deliver software, but fails to do so.

Introduction

This does not mean, however, that documentation is generally unimportant
or that documentation need not be provided.

Let’s take a look at what the authors of some of the agile methods have to say
about documentation:

e Alistair Cockburn recommends that documentation be ‘light but sufficient’
(Cockburn 2001). He introduces the Crystal family of methodologies,
which is targeted at projects of different size and criticality. The Crystal
methodologies require documentation to be created, but let the individual
project decide what that documentation should consist of.

e Scott Ambler’s book on Agile Modeling (Ambler 2002) includes a chapter
entirely devoted to documentation. This chapter is named Agile Devel-
opment, just like this book. Scott Ambler’s chapter and Chapter 1 of this
book were parallel efforts. They follow different presentation styles, but
they come to similar conclusions. Scott Ambler compares the agile
approach to documentation with ‘travelling light”: to ‘create just enough
models and just enough documentation to get by’.

e Jim Highsmith, in Agile Software Development Ecosystems (Highsmith
2002), warns us not to produce documentation for documentation’s sake,
but calls for a balance: ‘Documentation, in moderation, aids communi-
cation, enhances knowledge transfer, preserves historical information,
and fulfils governmental and legal requirements’.

My view is that a light-but-sufficient approach is favourable for two reasons.
First, such an approach prevents the project team from expending unneces-
sarily large effort on documentation. Second, light-but-sufficient document-
ation is more accessible, and therefore more useful, for a team than
voluminous documentation. I think Scott Ambler asks the right question:
‘What would you rather have, a 2000-page system document that is likely to
have a significant number of errors in it, or a 20-page, high-level overview?’
(Ambler 2002)

Certainly, detailed documentation is sometimes necessary, but usually the
more concise and accessible documents resonate most among readers.
Details often change more quickly than documentation can be updated, and
are better communicated face-to-face. (There is more on written, as opposed
to face-to-face, communication at the beginning of Chapter 1.)

Introduction

usefulness of
documentation

|
amount of documentation

Figure 1. The usefulness of documentation

Figure 1 demonstrates the relationship between the amount of documentation
and its usefulness. Beyond a certain point, the usefulness of documentation
decreases when more information is added, because finding relevant infor-
mation becomes more and more difficult as the overall amount of
documentation increases.

I think T can summarise this by saying that quality is more important than
quantity in project documentation. A certain level of detail and comprehen-
siveness is necessary — and depends greatly on the individual project — but it
is the concise documents that contribute most to communication in a project
team. The effort that you can save by producing /ight documentation is better
spent on the quality of the documents that you do create, making those
documents accurate, up-to-date and well organised.

People sometimes get the impression that, in an agile context, not only is
lightweight documentation given preference over comprehensive document-
ation, but also that quality isn’t so important. I think this is a misconception,
and clearly T disagree. If you decide that a document is necessary, then it
must have a purpose, otherwise you wouldn’t make the decision to create it.
But to fulfil that purpose, a certain quality is essential.

As with so many other things, you can choose to do something or you can
choose not to, but if you choose to do it, then it’s best to do it ‘right’.

Introduction

Patterns

The patterns in this book invite you to deal with documentation in an agile
way. They don’t prescribe a strict process, but offer best practices for defining
the right amount of documentation in your project, and for making that docu-
mentation flourish.

So what are patterns? Let me explain.

This book deals with a variety of questions about documentation. What docu-
mentation is necessary and useful? Which topics should be covered? How
should individual documents be structured? How can the project document-
ation as a whole be organised, and what tools are necessary to do so? How
can you organise the documentation process?

If you have been responsible for aspects of the documentation of a software
project, you have probably faced at least some of these questions. Such ques-
tions aren’t new — whoever contributes to the documentation of a software
project faces them over and over again.

Lurking behind such questions are recurring problems that have recurring
solutions. These recurring solutions, or patterns, can be used as guidelines for
the documentation of future projects.

A pattern in this sense is essentially a well-proven problem-solution pair,
presented in a structured form. Users can look up patterns for their particular
problems, apply the solutions, and thereby draw on the general expertise
available.

In fact a pattern is a little bit more than this. A good pattern also describes the
Jforces that are associated with a problem — all those issues that influence or
constrain possible solutions. A pattern therefore not only presents a solution,
but also offers the rationale behind that solution.

Finally, patterns normally don’t stand alone. A single pattern solves a single
problem, but when we approach a topic in its entirety, more often than not
we are faced with a set of related problems. So what we need is a set of
related patterns. The degree to which patterns are related differs. Some
collections of patterns are loosely coupled and take the form of a catalogue,
while others are more strongly interwoven. In the latter case, we speak of a
pattern language.

Introduction

Domain expertise from several disciplines has been described in pattern
form:

The idea of patterns originally emerged from architecture. The architect
Christopher Alexander coined the phrases ‘pattern’ and ‘pattern
language’. He uses patterns to capture century-long expertise on building
towns and houses (Alexander Ishikawa Silverstein 1977, Alexander 1979).

The idea became popular in software engineering in the early 1990s. The
first pattern book to gain much attention was the book on object-oriented
Design Patterns by Erich Gamma, Richard Helm, Ralph Johnson and John
Vlissides — the ‘Gang of Four’. This book includes a catalogue of patterns
that describe reusable object-oriented designs (Gamma Helm Johnson
Vlissides 1995).

Since the mid 1990s, a book series on Pattern-Oriented Software Archi-
tecture has covered various aspects of software engineering. The first
volume (Buschmann Meunier Rohnert Sommerlad Stal 1996) deals with
software architecture in general, while the second (Schmidt Stal Rohnert
Buschmann 2000) focuses on distributed systems.

Jim Coplien has worked extensively on organisational patterns. His
Generative Development-Process Pattern Language (Coplien 1995) covers
the management of organisations and projects, with an emphasis on
various aspects of teamwork.

Martin Fowler’s book on Analysis Patterns covers requirements analysis
and analytical modelling (Fowler 1996).

Small Memory Software by James Noble and Charles Weir offers patterns
for software development in a context in which memory resources are
limited, such as embedded systems (Noble Weir 2000).

Server Component Patterns by Markus Volter, Alexander Schmid and
Eberhard Wolff presents patterns for building server-side component
infrastructures (Volter Schmid Wolff 2002).

Alistair Cockburn’s book on Surviving Object-Oriented Projects gives an
experience account of object-oriented projects and includes a set of
project management patterns (Cockburn 1998).

Mary Lynn Manns and Linda Rising plan to publish a pattern book on
Introducing New Ideas Into Organizations (Manns Rising 2003).

Introduction

e More patterns have been created to describe various aspects of software
engineering, including analysis, architecture and design, management and
teaching. Many have been published through the books in the patterns
series (PLOPD 1995, 1996, 1998, 2000) or through the conference
proceedings of EuroPLoP, the European conference on software patterns
(EuroPLoP 1998, 1999, 2000, 2001).

e Linda Rising published a Pattern Almanac that consists of an index to
patterns in software and related areas, and which provides a rich list of
references (Rising 2000b).

e More resources on patterns are available through the Web site of the
Hillside Group (www.hillside.net), a non-profit organisation that runs
several patterns conferences.

Patterns aren’t invented — they are observed. The great benefit of patterns is
that they emerge from many people’s long-term experience: patterns repre-
sent mature knowledge. They describe what has worked many times, which,
on the other hand, means that they do not describe brand-new scientific
results. The patterns in this book have been ‘mined’ over many years from
several projects in which I was involved. They describe the essence of what
has worked well in the documentation produced in these projects.

Patterns don’t stop here. The patterns community places much emphasis on
review culture. The community runs several conferences at which patterns
are written, read and discussed. Authors receive feedback on submitted
patterns through a so-called ‘shepherding’ process prior to a conference. At
the conference, patterns undergo a sound review process when they are
taken to a writers’ workshop.? Many people offered feedback and shared
their insight when earlier versions of the patterns in this book were discussed
in such workshops (Riping 1998a, 1998b, 1999a, 1999b). This book therefore
contains the shared experience of many people.

Many of the patterns in this book may give you an ‘aha!l’ experience, because
they describe things with which you’re familiar. The collection as a whole,
however, is new, and should serve you well as a compact guide.

2. This review culture has been described in several works: Richard Gabriel’s book on writers’ work-
shops (Gabriel 2002), as well as pattern languages about shepherding by Neil Harrison (Harrison
2000) and about writers’ workshops by Jim Coplien (Coplien 2000).

Introduction

Problem

=5

Forces

=%

Solution

=23

Discussion

o

=%

Problem
00
Forces v
OcoO
Solution

S

o

fi

Problem

=%

Forces

Discussion
.00

i

=%

Solution

=%

Discussion

3

=25

Figure 2. Patterns — guidelines in structured form

A great benefit of patterns is that they follow a common, structured form that

Problem .
i
Forces .
i
Solution a
i
Discussion @
i
Pattern
structure

makes them easily accessible — a pattern form. The pattern literature has seen
many different forms, ranging from more heavily structural to more prose-like

forms.

Introduction

Throughout this book, I use the pattern form illustrated in Figure 2:

Each pattern begins with a brief problem statement. This statement
consists of a question that introduces you into the problem.

Next is the forces section that motivates why the problem really is a
problem. The section describes which forces have an influence on
possible solutions. Often conflicting forces tug at possible solutions and
build up a tension that the solution will resolve.

The solution gives an answer to the question posed in the problem
section. It begins with a brief statement on how the problem can be
solved, and continues with a more detailed description of that guideline.

Finally, the discussion section gives you some additional information and
describes relationships to other patterns — mostly other patterns in this
book, although occasionally there are connections to patterns written by
other people.3

Together, the problem section and the first paragraph of the solution form a
thumbnail that makes it possible for you to get an idea of the pattern quickly.
The forces section, the rest of the solution and the discussion section offer
more detail, background information, and rationale.

3. Pattern names of patterns in the book are set in small capitals, while patterns written by other people

are set in italics and have a reference to the original source.

Project Background

Before we plunge into the actual patterns, I'd like to take a brief look at the
projects from which the patterns in this book were mined. It’s a rather diverse
set of projects, ranging from software development to consulting, from old
technology to new technology, from small teams to large teams. I was
involved in most of these projects as a software engineer, project manager or
consultant, while for some projects I had a chance to act as a reviewer. These
projects were carried out at the organisations I worked for during the last
twelve years:

e FZI (Forschungszentrum Informatik; Research Centre for Information
Technology), Karlsruhe, Germany, carries out research projects as well as
industrial collaborations, with good documentation being a natural part of
all projects.

e sd&m software design & management AG, Germany, is a software
company that runs projects in various application domains — development
projects using all kinds of technology, as well as consultancy projects.
Documentation plays an important role at sd&m, with a focus on quality
rather than quantity.

The examples I provide throughout this book draw on these real-world
projects. The example materials are not taken verbatim from these projects,
however, and do not represent the original contents. This was necessary to
avoid disclosing proprietary information such as business ideas and software
architectures owned by customers. I also had to translate some of the original
material from German into English. In addition, I present the projects anony-
mously to avoid discomfiting any organisations. The topics, structure and
purposes of the example documents are, however, authentic.

12

Project Background

Project
Paracelsus

Project
Webber

Customer A medium-sized German software company

Type Software development

Topic Building components for a framework for warehouse
management that the customer planned to sell to the
pharmaceutical industry.

Technical Basis | UNIX, C++

Size 6 people plus 2 people from the customer’s staff

Duration 1 year

This project started off with a specification prepared by the customer that
detailed the interfaces the framework components had to implement. The
first task for the project team was to come up with a design, which was then
discussed with the customer.

In the next stage, the components were implemented and integrated into the
customer’s framework. Once this was done successfully, the project was
considered complete. Later, the customer made a few changes to the compo-
nents when the framework, of which they now were a part, was used in
actual pharmaceutical applications.

Customer A scientific association

Type Consulting

Topic Introducing Web technology to the customer, setting up
a Web server and structuring the Web site.

Technical Basis | UNIX, Netscape Server, HTML

Size 3 people

Duration 6 months

This project was carried out when the Web was still new — at the beginning of
the 1990s. The customer requested support for setting up their new Web site.
The project team and the customer met for a small workshop session, in

Project Background 13

Project
Extricate

which the contents and structure of the Web site were discussed. This
revealed that the Web site was supposed to mirror the hierarchical structure
of the customer’s organisation. The team refined the Web site’s structure,
installed a Web server and launched the site.

After the project was completed, the customer developed the Web site further
and maintained the Web server themselves.

Customer A medium-sized German insurance company

Type Re-engineering

Topic Extracting hard-coded information about insurance
products from the policy management system into a
database.

Technical Basis | BS 2000, Windows NT, Cobol

Size 8 people plus 4 members of the customer’s staff;
more people from the customer involved temporarily

Duration 2 years

The goal of this project was to re-engineer a legacy life insurance system to
improve its maintainability. This involved a transformation of the data model,
and a migration strategy to move the system from the old model to the new
one. The functionality was not supposed to change.

Before starting any migration activities, the team had to understand how the
old system worked. The team learned from the users and documented what
they had understood. Based on this understanding, the team sketched the
new data model and outlined the way in which the system should work in
the future. The actual refactoring then took place, extracting many of the
hard-coded properties into a database.

14 Project Background
Project
Persistor Customer A large German insurance company
Type Software development
Topic Building a framework for database access, including
application object versioning; introducing the framework
into several projects.
Technical Basis | BS 2000, CICS, DB2, Windows NT, Cobol, an OO Cobol
extension
Size 6 people, plus 2 people from the customer’s staff;
about 50 people from 6 other projects during
requirements analysis and integration
Duration 2 years; integration with other projects extending over 2
more years
This project was embedded in the larger context of other related projects that
together developed several new systems for an insurance company. The goal
of this specific project was to provide a database access layer to be used in
several applications that were developed by the other projects. The data
access layer was designed as a framework, so it could be adapted individually
by the projects that would use it.
The project team collaborated closely with the teams who worked on the
related projects, in particular during the specification phase and the integra-
tion of the data access layer into the applications.
Project
Vista Customer A large Furopean insurance company
Type Consulting
Topic Analysis of the application landscape in the customer’s

company and the relationships between the various
software systems; risk management.

Project Background 15

Project
Navigator

Technical Basis | Various systems, COBOL, C++, Smalltalk

Size 2 people; several members of the customer’s staff

Duration 8 months

The customer’s organisation operated a large number of systems that imple-
mented many business processes, using a wide range of technologies. Some
of the systems were fairly new, while others had been in use for almost
twenty years. All these systems worked together, passing data to each other,
calling functions and so on. An understanding of the relationships between
these systems was important as far as maintenance of the whole system land-
scape was concerned.

The goal of this project was to analyse the application landscape and to point
out risks in the overall architecture.

Customer A supplier of automotive software
Type Software development
Topic Building a graphical user interface for an automotive

navigation and communication system.

Technical Basis | Windows CE; C++

Size 8 people

Duration 1 year

This project developed several user interface components for which the spec-
ification was provided by the customer. The components were integrated to
form a full graphical user interface such as it is used in the navigation and
communication systems found in many cars.

The team designed and coded the components, ensuring that they could be

configured to match different ‘look and feel’ standards. The components were
tested under conditions specific to embedded systems.

16

Project Background

Project
FlexiCar

Project

AirView

Customer An automobile manufacturer
Type Software development
Topic Scheduling of automated production steps for time and

cost minimisation.

Technical Basis | UNIX, Java, WebLogic Application Server

Size 50 people, including several members of the customer’s
staff
Duration 2 years

When the project started, the customer already had a clear idea of the
expected outcome of the project. Car manufacturing consists of many
production steps: the customer was looking for an automated scheduling of
these steps, so that the production machines would be used to maximum
capacity, and the entire production process would therefore become faster
and thus less costly.

The scheduling details were clear to the experts, but the technical implemen-
tation represented a great challenge. The team collaborated closely with the
customer on a precise specification, and designed the system carefully, taking
into account issues such as performance requirements and fail-safety. After
the implementation was completed, the customer carried out maintenance of
the system.

Customer A European airline
Type Software development
Topic User interface for passenger check-in.

Technical Basis | Windows, C++, Java, CORBA

Size 30 people; several members of the customer’s staff also
involved

Duration 2 years

Project Background 17

Project
Contentis

Project
OpenDoors

The outline of this project was to provide a new graphical user interface for a
passenger check-in application. The functionality itself would not be
changed. The user interface had to meet certain ergonomic criteria.

The project began with an analysis, carried out with the customer, of the
typical use cases. The team then designed some prototypical user interface
elements and discussed them with the customer. Once there was agreement
over the detailed appearance of the interface, the components were fully
implemented.

Customer The umbrella organisation of a German industry
Type Consulting
Topic Selection of a Web content management system.

Technical Basis | UNIX, XML, HTML

Size 3 people, plus 2 members of the customer’s staff

Duration 3 months

The customer organisation was looking for a Web content management
system. The project goal was to support the organisation with the choice of a
system that would fit their needs. The team’s first task was to analyse what
these needs were. The team talked to the people who were going to use the
system to determine the processes associated with the maintenance of the
organisation’s intranet and extranet Web sites.

A catalogue of criteria emerged from the process analysis that the content
management system had to fulfil. Once the complete list of criteria was estab-
lished, several vendors were invited to demonstrate their systems in
workshops. Based on these workshops, the team made a recommendation of
the system that met the customer’s requirements best.

Customer A company in the financial industry

Type Software development

Topic Design and implementation of a Web architecture.

18

Project Background

Technical Basis | J2EE, JSPs, Servlets, EJBs, Web services

Size 50 people, including several members of the customer’s
staff
Duration 2 years

The customer intended to create an Internet-based software architecture that
allowed them to conduct electronic commerce over the Web. The project goal
was to set up a portal through which banks could access information on
insurance products and sell such products to their customers.

The project consisted of several collaborating teams. One team worked on
the overall architecture, one team worked on the Web content that was going
to be presented, and more teams worked on the individual applications that
were going to be integrated into the portal. A special emphasis was placed on
extensibility, so that the customer could gradually integrate more applications
as their business demanded. The teams worked closely together to first create
a working prototype of the portal, then to extend the portal and make it more
widely available to business partners.

Finding the Right Topics

The correct amount of documentation is exactly that needed for the receiver
to make ber next move in the game.

Alistair Cockburn (Cockburn 2001)

A couple of years ago, a colleague of mine joined a project that had been
running for a while. On his first day, he met the project manager, who
explained a few things, then handed the new team member a set of docu-
ments. Some of those were huge — they contained the entire specification of a
complex application. The project manager was visibly proud of the fact that
his team had produced such comprehensive documentation. A couple of
hours later, I saw my colleague sitting in his office, in front of a large pile of
paper, looking rather unhappy. A question about how he was getting on with
the project materials revealed that the poor guy wasn’t getting on well at all.
He said he was “drowning in the specification”, and that he couldn’t keep all
the details in his mind. Eventually he learned many of those details, but more
from discussions with the other team members over the next weeks than
from reading the documentation.

I remember contrary stories, as well. A colleague, who had just joined the
company, was given an introductory document for her first project — a 20-
page paper that included all the useful things to know about the project, as
well as a list of people to contact for various questions. The colleague later
commented that this document was really helpful in making her familiar with
the project.

In the first incident, the amount of information was simply too large. The new
team member resorted to face-to-face communication, which is what the

20

Finding the Right Topics

project manager should have planned in the first place. In the second inci-
dent, the brevity of the introductory document and the links it provided were
the key to its success.

Claiming that shorter documents should generally be given preference over
longer documents is a bit too simplistic, though. I remember a team who had
to do some refactoring and were happy that a substantial design document
was available, since the original designers were no longer on the project. This
document was rather detailed, as it included a discussion of the design alter-
natives the original designers had considered, and described the reasons for
the design they had chosen. The document was of much help during the
refactoring, and prevented the team from exploring design options the orig-
inal designers had already rejected for good reasons.

These stories conjure up the question of why some documents turn out to be
useful, while others do not. Apparently some things can be communicated
very well through documents, but others cannot. To this end, it is useful to
contrast the role of documentation with face-to-face communication. The
following table summarises the important characteristics of each.

Face-to-face communication Documentation

Direct interaction Self-determined pace

Face-to-face communication allows | Different people grasp information
for quick question-and-answer at different speeds. Many people
cycles. You ask something, someone | find they still have questions when a
answers, you ask back on a specific | discussion is over — questions they

detail, you get a more precise didn’t think of in the heat of the
answer, someone else offers their debate. Documents, however, allow
ideas and so on. Face-to-face people to read at their own pace,

communication involves people in a | going back and forth through the
very direct way. material as they need to.

21

Face-to-face communication

Documentation

Non-verbal communication

People don’t communicate through
words exclusively. A large part of
communication takes place in a
non-verbal way — through sound,
gestures and subconscious body
language. These things are possible
only through face-to-face
communication.

Introvert communication

While some people love to engage
in debate, others don’t. Introverted
people are sometimes painfully
silent during discussions, though
they may have a lot to say. They
have their say more easily when
they are given the chance to write
things down, as this allows them to
have second thoughts and take time
to reflect.

Personal involvement

Talking to each other means getting
to know each other. Building trust
happens much faster among people
who are in the same room than
among people who communicate
through writing only.

Scalability

Documents can be made widely
available. You can address an almost
unlimited number of people at a
time. Moreover, documents can
reach the members of a distributed
team — people working in different
places.

Fast availability

In a well-organised project, there
are Experts In Earshot (Cockburn
1998) readily available for
answering questions you may have.
Discussions can come up on the
spur of the moment. Documents
may be available as well, but time
goes by until documents are written
and made available.

Long-term availability

Once a project reaches its end the
team disperses — experts may no
longer be available. The software,
however, will still need maintenance
or even refactoring. Only written
documents are available beyond the
limits of the actual project.

22

Finding the Right Topics

So face-to-face communication and documentation aren’t opposed to each
other. Neither is generally better or more effective than the other. Which
communication channel is more appropriate always depends on the situation.
Either has its advantages, and both complement each other. There are plenty
of examples from everyday life. Students learn from books as well as from
their teachers’ lessons. We learn what’s going on in the world around us both
from reading the newspaper and from talking to our friends. Neither verbal
nor written communication is dispensable in a civilised society.

It’s no surprise therefore that projects require both face-to-face communica-
tion and written documentation. Exchange of information happens frequently
in software projects, and it happens in very different contexts. Agile docu-
mentation aims at using the type of communication that best fits such
contexts.

So in which contexts is written documentation recommended?

Let’s go back to the Agile Manifesto for a moment. The manifesto says that
individuals and interaction, as well as working software, are among the core
values of an agile development project. We can conclude that documentation
is most valuable if it contributes to these overall goals. In this sense, docu-
mentation is a means, not an end. The more it helps the individuals in a team
interact, the more useful documentation becomes, and the easier it makes it
for the team to develop working software.

This at least is true for development projects. In consultancy projects,
however, documentation may be the primary goal. Although non-develop-
ment projects are outside the scope of the Agile Manifesto, we can apply an
agile attitude to the documents written in consultancy projects as well.

This book does not promise a fully-fledged documentation method. Projects
differ greatly and documentation requirements differ from project to project.
Therefore this chapter won’t present a list of documents and tell you that
these are the documents your project needs. Instead, I have put together
several patterns that guide you on your way to defining the specific docu-
mentation requirements for your individual project, and determining the
necessary contents of those documents.

Figure 3 presents a roadmap diagram of these patterns. It sketches the
patterns and the relationships that hold between them, and so gives you a
brief overview of this chapter.

appreciate the
TARGET READERS -

\ FOCUSED
appreciate INFORMATION facilitates
* ask for

INDIVIDUAL

i g | FOCUS ON LONG-
\j PDOCUMENTATION k TERM RELEVANCE
REQUIREMENTS eep a

SEPARATION OF
DESCRIPTION AND
EVALUATION

appreciate

THE BIG PICTURE can choose *
from the keeps a
DOCUMENTATION .
learn is in sync
from PORTFOLIO with the
uses
suggests a suggests to
documentthe
serve as input

v v for the SPECIFICATION
AS A JOINT
EFFORT

help explain the

DESIGN

REALISTIC

RATIONALE

EXAMPLES

Figure 3. Patterns for finding the right topics

24

Finding the Right Topics

Problem

Forces

Solution

Target Readers

How can the project team ensure that the documents they produce will
be appreciated?

Project documentation addresses many different readers: project managers,
architects, designers, programmers and users. People in different roles typi-
cally take different perspectives, and are interested in different aspects of a
software project. Managers might not be interested in reading a more tech-
nical document, even if they are able to understand it, while programmers
might not be interested in a management summary.

Moreover, different people often have different backgrounds. Material can be
straightforward for some people and difficult to understand for others.

But it’s the readers for whom you prepare a project document (Haramundanis
1998). If your document isn’t suited to the intended readers’ needs, it’s likely
to be of little or no use.

Worse yet, the very existence of a document is questionable if it is unclear
who should read it. If the intended audience cannot be named, what is the
point in writing the document?

First and foremost, each document must have a target readership, and
must address these readers in order to prove useful.

In an agile context, you don’t write a document because a process dictates it.
You write a document because that document fulfils a purpose for the
intended readers.

The first step is therefore to decide, for each document, who the target
readers are. These can be colleagues from the same project, acting in any of
the roles mentioned above, colleagues from other projects, perhaps future
team members, perhaps customers.

Once this is clear, matching the document to the readers’ needs includes the
following:

e Making clear who the target readers are by mentioning them explicitly,
preferably near the front.

e Explaining what background information is necessary for understanding
the document. This can be technical knowledge or knowledge of project
specifics.

Target Readers

25

Discussion

e Not assuming more background knowledge than can be expected among
the target readers.

e Restricting the scope of the document to what the target readers will
expect. This helps keep the documentation short and precise, as does
restricting the level of detail to what the intended readers can understand.

e Making the document comprehensible by providing examples and other
supplementary material from your readers’ everyday project life.

When you prepare a document, regard your work as a service to the readers,
and therefore keep asking yourself: “Who are my target readers?’, ‘What infor-
mation do my readers need?” and ‘What will my readers be able to
understand?’

If you conclude that you cannot determine who your target readers are and
why they should read your document, there is a high probability that the
document is unnecessary.

Several other patterns help you implement this pattern. Addressing the target
readers has much to do with keeping a focus: the more focused your docu-
ment is, the clearer can you make the target audience. Presenting FOCUSED
INFORMATION helps you stay on target. The inclusion of REALISTIC EXAMPLES and
of a GLOSSARY makes it easier for your readers to understand what you’re
saying.

Certain documents find a large readership easily. For example, overview
documents fall into this category — documents that describe THE BIG PICTURE
of a software architecture. Because such documents have many target
readers, they are useful in many projects.

Becoming aware of your target readers is one thing, addressing them directly
is another. The GUIDELINES FOR READERS at the beginning of a document is the
perfect place to explain who the target readers are and what background
information is required for the understanding of the document.

Sometimes it’s hard to imagine what material readers will expect from a docu-
ment, and what the readers will or will not be able to understand. If you find
this makes it hard to define the scope of your document, you can ask others
to review the outline of your document. Someone from outside the project
can perhaps take A DISTANT VIEW and provide feedback.

26

Finding the Right Topics

Problem

Forces

Solution

Focused Information

How can documents be prevented from meandering and getting
nowhere fast?

Project documentation as a whole often addresses multiple topics and is typi-
cally distributed over several documents. This invites the following questions:
in which cases should you opt for separate documents, what material should
go into each document, and how long should the individual documents be?

The first aspect worth mentioning is that relatively short and concise docu-
ments help keep the project documentation within reasonable proportions.
This is desirable both for the project team that has to spend resources on
documentation, and for the readers who must access information quickly and
reliably.

However, brevity alone doesn’t make documents easy to use. Another impor-
tant aspect is to avoid redundant information. If you let each document cover
exactly one topic, you can avoid overlaps between documents to a large
extent. This has two advantages. First, a clear focus on one topic makes it
easy for readers to identify the document that holds the information they are
looking for. Second, avoiding redundant information makes documents easier
to maintain and prevents documentation from becoming inconsistent.

Avoiding redundant information also has drawbacks. If, in an attempt to
avoid redundancy, too many aspects are extracted into documents of their
own, the resulting documents will be less self-contained. Documents will be
cluttered with references to other documents, which is counter-intuitive to
normal sequential reading.

A clear and identifiable focus on a particular topic makes a document
concise and straightforward. The straightforward document offers the
information relevant to this topic, but no more than that.

Related information should therefore go into a separate document if it can be
considered to form a topic of its own, while information that is necessary for
the immediate understanding of a document should be kept inside it.

Here are some signals that indicate whether a document has a clear focus:

e A document should be aptly titled; a clear title suggests that the focus of
the document is also clear.

Focused Information 27

Discussion

e The differences in scope between two related documents must be clear
from their titles.

e An abstract or summary at the beginning of a document can explain the
focus of the document.

e All sections of the document should consist of material that is relevant to
the topic the document represents.

You can achieve straightforward documents if you remind yourself to check
that whatever you are saying really contributes to the topic the document
represents. If you find that this is not the case, go back and ask yourself what
the purpose of the document is, and what you intend to convey to your
readers.

The consequence of this pattern is that you avoid redundant information to
some degree, but not entirely. Small overlaps between documents are fine as
long as they are necessary to make documents self-contained.

This pattern doesn’t only apply when you set up a new document. Docu-
ments evolve as a project goes on, and it's important that they do not evolve
into a verbose mass of text, growing beyond reasonable length. Whenever
you add information to the project documentation, make sure the information
goes into the right place, so that all project documents keep their focus.

A DOCUMENTATION PORTFOLIO is a first step towards focused information. Such
a portfolio describes various types of documents that a project may need, and
what their typical contents are. The portfolio takes into account that each
document has a distinct group of TARGET READERS. You can fine-tune the focus
of any document from the portfolio by adapting it to its intended readers’
expectations.

The documents you create in a project form the DOCUMENT LANDSCAPE — a
network of related documents that the team members use for communication.
The more focused the individual documents are, the clearer the DOCUMENT
LANDSCAPE, and as a consequence the more effective it is.

Focused information isn’t only desirable for complete documents, but can be
broken down to the level of chapters and sections of individual documents.
This is true especially for documents that present STRUCTURED INFORMATION — a
format that employs stylistic elements to convey the structure of a document
and its contents.

28

Finding the Right Topics

Problem

Forces

Individual Documentation Requirements

How can unnecessary documentation requirements be avoided?

There are development projects that can do with very little documentation.
Small teams working on one site can often do without comprehensive docu-
mentation. For example, XP (eXtreme Programming) is well known for
producing only a minimum of documentation (Beck 2000).

Other projects, however, require more documentation. Perhaps the project
stakeholders ask for more documentation, perhaps the team needs the docu-
ments for cross-site communication, perhaps the design needs to be
described in more rigour than is possible just using informal discussion.

The cause for differing documentation requirements lies partly in the various
methodologies that different teams may follow, and partly in the fact that
project scopes differ. We can build new software or we can re-engineer
existing systems. Sometimes we design the overall architecture, sometimes
we contribute components to a larger whole. A project may involve just one
person or hundreds of people.

Moreover, development projects and consultancy projects may attach
differing significance to documentation. In development projects, the value of
documentation can often be measured by how well the documentation
contributes to the communication within the team. In consultancy projects,
however, documentation may be the project’s goal.

In his book on Agile Modeling, Scott Ambler writes: ‘Each system has its own
unique documentation needs; one size does not fit all’, and recommends:
‘Keep it just simple enough, but not too simple’ (Ambler 2002). In a similar
vein, Alistair Cockburn, in his book on Agile Sofiware Development, recom-
mends creating documentation that is ‘light but sufficient’ or ‘barely
sufficient’, and goes on: ‘The ideal quantity, “barely sufficient”, varies by time
and place within any one project.” (Cockburn 2001)

In other words, if you define a standard documentation process for all
projects, and force the teams to create all documents that might be useful in
any one context, you impose an unnecessary documentation workload on
many projects.

Individual Documentation Requirements 29

Solution

Discussion

The most effective approach towards documentation is for each project
to define its documentation requirements individually.

The actual amount of documentation necessary depends on factors like the
project’s size, whether the team can work on one site or not, and the project’s
criticality, among other things.

You can break down the ‘right’ amount of documentation for your project
into the following:

e The amount of documentation required by the project stakeholders.
e The amount of documentation the team needs to communicate.

e The amount of documentation individual team members might need to
think ideas through.

e The amount of documentation the project will need in a later stage.
e The amount of documentation a follow-up project will probably need.

The individual documentation requirements must define which documents
are necessary and what material these documents should cover. Agile docu-
mentation encourages you to do without any documents that you consider
unnecessary in a concrete situation, but on the other hand, to plan actively
for documents that are needed.

Documentation requirements can change over time. More documentation can
become necessary, for example towards the end of a project when the team
will soon disperse. Or less documentation can become necessary, for
example during stages of intense collaboration in which everybody involved
can easily communicate directly. Re-evaluating the requirements from time to
time is necessary to keep the documentation at the appropriate level of
volume and detail.

Working out what documentation the team or the project stakeholders need
is closely related to working out who the TARGET READERS of potential docu-
ments are. The actual task of defining the documentation requirements
should be part of any agile project. If you think of documentation as A
DISTINCT ACTIVITY, you can define the documentation requirements and the
resources you plan to spend in the same way as you plan any other project
activity.

Defining the documentation requirements individually for each project does
not mean that you have to define them from scratch every time. A DOCUMENT-

30

Finding the Right Topics

Problem

Forces

Solution

ATION PORTFOLIO can show you what documents might be needed and what
their contents might be. You can then choose the documents you need and
tailor them to your project’s specific needs.

Documentation Portfolio

How can teams reuse the knowledge about which documents might be
required in their projects?

There is no point in defining a standard documentation process, or standard
documentation requirements for software projects in general. Software
projects are much too diverse for standard requirements to be possible.

Many software projects do however have things in common. For example,
almost all software projects make a difference between what a system, a
program, or a module does on one hand, and how its internals are designed
on the other. This distinction stems from the ‘information hiding’ principle
(Parnas 1972) and it is often reflected in the documentation, resulting in sepa-
rate documents for the system specification and the system design.

There are other categories of documents that are repeatedly found in project
documentation, ranging from documents on testing to documents that
explain how to use the software. Many projects require management-oriented
documents. Despite the fact that these documents vary greatly in length and
detail, there is no reason why every project should re-invent the categories of
documents that should be considered when the documentation requirements
are defined.

A documentation portfolio describes which documents might be
necessary in a software project, and their scope. If an organisation sets
up such a portfolio, projects can choose those documents they need,
checking the necessity of each candidate document individually.

A documentation portfolio prevents the team from having to decide which
document candidates exist. The portfolio includes a set of suggestions for the
team to consider.

Figure 4 presents a documentation portfolio that includes the candidate docu-
ments for most software projects. A similar list is given in Scott Ambler’s book
on Agile Modeling in the chapter on documentation (Ambler 2002). You can

Documentation Portfolio 31

use this portfolio, or you can tailor it to the typical needs of your organisa-
tion’s projects.

The documents included in the portfolio fall into the following categories:

Management documents define the management context for a project,
such as the overall scope and the project schedule. A typical example is
the management summary — a document that describes the overall goals
of the project and puts them into a business context. Management
documents may also include a short paper that introduces new team
members to the project.

Specification documents describe what the software does. This includes
aspects as widespread as data, functionality, the user interface, efficiency
and more. The primary purpose of specification documents is to clarify
exactly what software is needed. Specification documents serve as a basis
for discussions with the customer, or as a basis for discussion with teams
who work on related tasks. In addition, the specification is what a system
can be tested against.

Design documents explain how the software works, including why it
works this way. They look at the internals of a system, a module or a class,
at its structure and its behaviour. Small overlaps with the specification are
possible — the data model, for example, is important during both specifi-
cation and design. Design documents are used mostly for communication
among the development team, but can also be useful for communication
with the interested customer. A design document can help pass on the
project’s expertise to future projects — a knowledge management
mechanism that should not be ignored.

Hardly any project is an island. There is often an old system that is going
to be replaced by the new software to some degree, perhaps gradually.
This may make a migration concept necessary. A migration concept
describes how the functionality of the old system gives way to the
functionality of the new system, and how the data that was stored by the
old system is transformed into data that can be used by the new system.

32

Finding the Right Topics

Project management
e Management summary
¢ Delivery plan

e Project manual / team guidelines

Requirements specification
e System overview

e Use cases

e Data model

e Functional specification

e User interface specification
¢ Timed behaviour

¢ Non-functional requirements (execu-
tion speed, maintenance, etc.)

Design

e Architecture overview

e Data model

e Class hierarchy

e Class interaction diagrams

e User interface design / event
management

e Database access / transactions

e Integration with neighbouring

* Glossary systems
¢ Guidelines and naming conventions
Migration Usage

¢ Functionality migration

e Data migration

e Usage guidelines / concepts
e Cookbook

e Tutorial

Test
e [Use cases
e Test cases

e Test concept

Operations
¢ Deployment
e Operations guidelines

e Trouble-shooting

Figure 4. A documentation portfolio

Documentation Portfolio 33

Discussion

e Often tests have to be specified, perhaps using test documents. These may
overlap with the specification. Use cases, for example, fall into either
category (Cockburn 2000). Depending on the actual project and
customers’ requirements, a complete set of test cases can serve as the
system specification, and can make separate specification documents
redundant to some degree.

e Usage documents describe how a system, module or class can be used.
They outline the use of parameters, for example, and the order in which
functions can be called, and are often required for system integration.
Usage documents may turn out to be no more than a few guidelines, but
may amount to an overall usage concept. When you deliver a framework,
for example, the usage concept deserves particular attention, as it advises
the users how to build a working application.

e Operations documents describe how a system is to be operated and how
problems with the operation can be tackled.

Many of the documents mentioned above are well known from the literature
on software engineering (Sommerville 1996) or from software engineering
methods such as the Unified Process (UP) (Jacobsen Booch Rumbaugh 1999,
Kruchten 2000).

Your project may or may not need any of the documents listed here, or
perhaps you can merge several documents from one category into one docu-
ment. Perhaps some documents are completely unnecessary in your situation.
It is up to the project team to decide what documentation is necessary in a
specific situation, taking the customer’s requirements into account. A healthy
dose of scepticism is fine when it comes to the decision over what project
documents should be written. Agile software development encourages us to
provide the documentation that is necessary, but to go without unnecessary
paperwork.

The decision about whether or not a document from the portfolio is needed
is closely related to who the TARGET READERS are. If you cannot name the
TARGET READERS for a document, the project can probably do without that
document. After all, which set of documents you decide to produce depends
on the INDIVIDUAL DOCUMENTATION REQUIREMENTS of your project. A UP project
is likely to come to different conclusions than an XP project.

Documents from the portfolio can vary in scope and level of detail. A FOCUS
ON LONG-TERM RELEVANCE helps you to include information that is useful in the

34

Finding the Right Topics

Problem

Forces

long term and to produce documents with high significance. On the other
hand, information that will soon be irrelevant probably doesn’t need to be
documented.

Overview documents typically attract the highest number of readers. Manage-
ment summaries, architecture overviews and so on describe THE BIG PICTURE
of a project or a system. To many projects, these documents are among the
most important ones within the portfolio.

More detailed documents, however, are in the centre of the trade-off between
verbal and written communication. A specification document, for example, is
typically the result of a requirement analysis. It can complement discussions
with the customer, but it can never replace these discussions. (See also SPECI-
FICATION AS A JOINT EFFORT.) Almost all projects need a specification
document, but not necessarily one at the finest possible level of detail.

Similarly, design documentation is necessary and useful in most projects. In
most cases, however, design documents need not be concerned with low-
level technical details, which are better communicated face-to-face. Design
documents should instead focus on the DESIGN RATIONALE — the motivation
that led to the design decisions the team has made.

Finally, the classification given by the documentation portfolio contributes to
the goal of presenting FOCUSED INFORMATION. It roughly sketches which docu-
ments you might need and outlines how these documents can focus on a
particular topic.

Focus on Long-Term Relevance

How can projects avoid producing documentation that expires too
soon?

Software project documentation deals with a most diverse set of information.
The information you rely on ranges from specification to design, from overall
principles to technical details, from team-oriented to customer-oriented.

In an agile project, we don’t automatically document all this information in
writing. An agile project avoids spending more resources on documentation
than necessary, and concentrates on those documents that have a clear
purpose that justifies the time and effort that go into their production.

Focus on Long-Term Relevance 35

Solution

Moreover, if you decided to prepare documents for each aspect of the
project, you might choose written communication as a medium indiscrimi-
nately and without regard for its appropriateness.

These factors lead to the question: how can you determine whether a written
document is appropriate or not?

Let's take a look at a software project done in an agile fashion. People
exchange ideas frequently through discussions and informal communication.
Much of the information that is exchanged is important on the spur of the
moment, to help team members make progress with their current work. Not
all this information will be relevant a couple of months or years later.

Some will, however. Being agile doesn’t mean being short-sighted. The litera-
ture on agile development reminds us that while delivering the software is
the primary goal of a development project, preparing for future projects is a
secondary goal that should not be ignored (Ambler 2002). This is what
Alistair Cockburn means by ‘preparing for the next game’ (Cockburn 2001).
To prepare for a later project stage, or for a future project, you have to
capture the knowledge that others will rely on.

This is the point where documentation can unfold its greatest benefit: knowl-
edge that must be preserved for the future is worth documenting.

This isn’t a mere assumption. Knowledge preservation has been the subject of
much discussion and much research. For example, Stuart Brand emphasises
the importance of digital and non-digital libraries in his book on long-term
thinking and planning, The Clock of the Long Now (Brand 1999).

There is much value in documentation that focuses on issues with a
long-term relevance — issues that will play a role in a later project phase
or in future projects.

Documentation is essentially an instrument for knowledge management, both
within a project and across projects:

e Documents, when they describe the fundamentals of a project, are
important throughout all projects phases. Examples include an essential
specification, or a central document that describes the software archi-
tecture. The long-term relevance of these issues suggests that they should
be captured in written form.

36

Finding the Right Topics

Discussion

Problem

Forces

e The lessons learned from a project are often useful for future projects.
Insight gained into the software architecture, design decisions or conclu-
sions drawn at a project retrospective are all candidates for written
documentation.

There is less value in the comprehensive documentation of things with only
short-term relevance. If, due to limited resources, not everything can be
documented — which is almost always the case — preference should be given
to topics with long-term significance.

This pattern is closely related to the TARGET READERS pattern. Both patterns
raise the issue of whether producing a document is justified or not. Raising
this question is essential when you choose the documents that your project
needs from the DOCUMENTATION PORTFOLIO. Several examples exist of docu-
ments that are typically characterised by a long-term relevance and are almost
always justified: a document that describes THE BIG PICTURE, a specification
document, provided the team performed the SPECIFICATION AS A JOINT EFFORT
with the customer, and a document for the DESIGN RATIONALE.

If a topic has long-term relevance and needs to be documented beyond the
limits of the current project, long-term availability becomes an issue. To have
the TARGET READERS benefit from the document, it must be widely available.
This is essentially a matter of documentation management, and is addressed
in the INFORMATION MARKETPLACE and KNOWLEDGE MANAGEMENT patterns.

Specification as a Joint Effort

How can development projects ensure that they head in the direction
the customer wants?

The specification of a software system requires a lot of input from domain
experts. A close collaboration between the software experts and the domain
experts is necessary to make sure that the software meets the customer’s
expectations. The project team must learn from the domain experts what the
software is supposed to do. This collaboration involves a lot of face-to-face
communication.

However, it is dangerous to rely on verbal communication alone, for two
reasons. First, there can be misunderstanding between the project team and
the customer that even a series of thorough discussions won’t reveal. Often,

Specification as a Joint Effort 37

Solution

you may think you have reached a common understanding during a discus-
sion, but when you try to commit your understanding to paper, you find this
isn’t the case. A written specification is much less likely to let misunderstand-
ings go unnoticed.

Second, a written document can avoid quarrels over who is right and who is
wrong, should differing opinions arise over the system requirements, perhaps
several months into the project. Even the friendliest customer relationship
suffers when accusations are made that the team designed the wrong soft-
ware. A written specification largely avoids such accusations.

This is even more true when more than two parties are involved. This is not
uncommon — often several software companies collaborate on a project, and
different departments of the customer’s organisation may also have a stake in
the project. In such a project a written specification gives all parties some
planning safety.

This does not mean that the system has to be specified down to the finest
detail, nor does it mean that the requirements cannot undergo change. It is
acceptable to leave details open in the specification, but the specification
must make this clear, so that the team is aware of decisions that still have to
be made.

Changing requirements are considered natural in an agile project that follows
an iterative development process. The specification document helps to deal
with changing requirements in an acceptable manner, updating the project
plan and perhaps re-scheduling deadlines accordingly.

Every development project requires a specification, which reflects the
requirement analysis done jointly by the project team and the
customer.

Writing the specification should be much like keeping a record of what has
been said during the discussion of the requirements. Nowhere is it as impor-
tant as here that face-to-face communication and documentation complement
each other:

e The specification document describes the common understanding of the
system that the project team and the customer have achieved, and
provides the team with the information necessary to begin the design.

38

Finding the Right Topics

Discussion

e Use cases, stories and scenarios provided by the domain experts usually
furnish excellent input for the specification document. Sometimes a suffi-
ciently complete set of use cases can be all the specification document
requires, as long as the use cases are sufficiently detailed to ensure that
the project team and the customer have reached a common under-
standing.

e The specification document can be used to get further discussions started.
You can take an initial specification document to the domain experts for
feedback, so improving the specification.

It is important that all stakeholders agree on this specification. This requires
more than a general agreement from whoever represents the customer’s
organisation as a whole. Stakeholder agreement requires a common under-
standing shared by the team and all departments of the customer’s
organisation, in fact by all individuals involved.

As much as this pattern stresses that a close collaboration with the customer
is necessary for producing a good specification, you shouldn’t draw the
conclusion that other documents won’t require similar collaboration. In fact
all project documents do. The point here, and the motivation for this partic-
ular pattern, is that the requirements specification deserves an especially
close collaboration between the project team and the customer from day one.

This principle has much been stressed in the literature on agile development.
The Agile Manifesto (in one of its follow-up recommendations) suggests that
‘business people and developers work together daily throughout the project’,
as cited in Alistair Cockburn’s book (Cockburn 2001). Alistair Cockburn
comments: ‘...the longer it takes to get information to and from the devel-
opers, the more damage will occur to the project’. Scott Ambler cites active
stakeholder participation as one of the core principles of Agile Modeling
(Ambler 2002).

The role of customer collaboration has also been the subject of many other
works. For example, Jim Coplien, in his organisational patterns, recommends
that you Engage Customers (Coplien 1995) not only in quality assurance, but
also in specification and design.

Still, customer collaboration can be hard, as it requires you to speak a
common language. One way to ease this problem is to plan for a CUSTOMER
REVIEW.

Design Rationale

39

Problem

Forces

Solution

In addition, speaking a common language is more difficult in the abstract
than in the concrete. Customer collaboration can profit a lot from working on
REALISTIC EXAMPLES to which both the project team and the customer can easily
relate. This is, among other things, why use cases are so particularly useful.

Design Rationale

How can the team make sure that the foundations are laid for future
design changes?

Most projects choose to document the design of the system they’re building.
A design document describes the system’s interfaces as well as its internal
functioning, typically addressing both structural and behavioural aspects. The
purpose of such a document is to convey the system design to other team
members, to customers or to future projects.

Such a design description is fair enough, as it can prove useful during system
maintenance.

When a system undergoes change, however, a mere account of the actual
design might not be sufficient. As the design evolves, it is important that the
team is aware of why the design was chosen in the first place and what other
design options might exist. However, implementation details are likely to
change whenever the software changes, so won’t be of much long-term use.

Design documents become a valuable source of information if they
aren’t restricted to describing the actual design, but also focus on the
rationale behind the design and explain why the particular design was
chosen.

The more experience a design document reveals, the more useful it can be
for future projects. It is the lessons learned from the system design that makes
a design document a valuable contribution to the project documentation.

This leads to the following guidelines:

e The design document should not only be concerned with the results of
the design process, but should explain the reasons that led to the actual
design.

e The design document should explore possible design alternatives, discuss
their pros and cons, and explain why these alternatives were declined.

40

Finding the Right Topics

Discussion

Problem

Forces

The rationale behind a design is what is useful for team members who need
to understand the internals of the software, perhaps because they have to
maintain, extend or improve it, perhaps because they would like to re-use the
concept, at least partially, on their project, or otherwise profit from the expe-
riences made.

On the other hand, good design documents can often do without technical
details of the actual coding.

This pattern is very much in sync with the desire to put a FOCUS ON LONG-
TERM RELEVANCE. Specific design details may be of little interest after a while,
and therefore might not require documentation. The overall design will still
be essential years after the system was first launched, however, and is there-
fore a good candidate for documentation, along with the reasons that led to
the design.

The explanation of the design rationale can gain significantly from the use of
REALISTIC EXAMPLES. Use cases, or other scenarios, help explain the principles
behind the design that was chosen, as well as its pros and cons.

The Big Picture

How can people be introduced to a project without being confronted
with a deluge of technical details?

When people look at a painting in a gallery, they often step back and look
from a short distance. This allows them to see the painting as a whole. If they
stood right in front of it, they would be able to see the detail, but the overall
impression would be lost.

By analogy, project documentation sometimes deals with many technical
details — specification details, design details and the like. These details may
be crucial to a successful project, and documenting them can be useful.
However, it is sometimes hard to see the wood for the trees.

In The Mythical Man Month, Frederick Brooks explains: ‘Most documentation
fails in giving too little overview. The trees are described, the bark and leaves
are commented, but there is no map of the forest.” (Brooks 1995)

Detailed material, as useful as it may be for people who are already experts,
isn’t much help for those new to a topic, who would like to understand a
concept, or who need to get an introduction into new material.

The Big Picture

41

Solution

Discussion

However, the documentation must also cater for people who aren’t yet
experts but who are going to familiarise themselves with the project. Think of
people who join a team, or think of customers who will maintain a system
once it has been completed. Such people need to get a feel for the project
before they can even start to work on the details.

A good feel for a project is best conveyed through a description of the
‘big picture’ of the architecture that underlies the system under
construction.

A big picture document can provide some overall understanding:

e The big picture describes the overall architecture, shows how the entire
system is composed of subsystems and modules, and explains the basics
of the system’s dynamic behaviour.

e The big picture explains the design principles and motivates the decisions
that led to the actual design.

e The big picture names the technology that is fundamental to building the
system.

e The big picture intentionally abstracts over any details, technical or
otherwise, that are irrelevant to an overview.

Preferably, a big picture document should be fairly short and concise — a
lengthy document couldn’t provide the brief introduction that most readers
need, and would probably turn out to be counter-intuitive. For the vast
majority of projects, 10 or at most 20 pages are enough. The big picture docu-
ment can provide links to other, more detailed documents whenever
necessary, as Figure 5 illustrates.

Beyond providing an overall understanding, a big picture document is
perfectly suited to get discussions started. Mainly because a big picture is of
general interest, but also because it’s typically short, a big picture document
easily finds readers. If you need to have a discussion with the team or with
the customer on any issues concerning the overall system architecture, pass
the description of the big picture around and you have a perfect starting
point.

This pattern shows how you can provide an overview without losing yourself
in technical detail. Despite the desire for brevity, a big picture document
often profits from the inclusion of REALISTIC EXAMPLES, as such examples will

42

Finding the Right Topics

Problem

Forces

AN
-

-l‘ﬁ

Figure 5. A big picture document providing pointers to the details

help the readers get a feel for the architecture. You can certainly add value to
the big picture document if you take the word picture seriously and provide
JUDICIOUS DIAGRAMS that help you argue your case.

All documentation can profit from a REVIEW CULTURE that provides authors
with valuable feedback. A document that presents the big picture can benefit
especially from a review that takes A DISTANT VIEW, and so focuses on the
overall impression rather than on details.

Separation of Description and Evaluation

How can authors prevent loss of credibility?

In development projects, much of the project documentation deals with anal-
ysis, design, architecture, tests and the like. The nature of these documents is
to a large extent descriptive.

However, sometimes you are required to draw a conclusion, make an evalua-
tion, or even come up with your personal opinion. Perhaps you, as a skilled
and experienced software engineer, are asked for your opinion on a certain

Separation of Description and Evaluation 43

Solution

design or a certain concept. A strategy paper, for example, typically includes
personal views and concludes with the recommendation of one specific
concept or strategy.

Personal views are even more common in documents that emerge from
consultancy projects. If you work on a consultancy project it may be the
central part of your job to come up with an assessment or a recommendation.
We can see that both descriptive material and personal opinions can be
necessary and useful.

But while both are necessary and useful, they’re not the same thing. It’s
important to tell them apart.

For an analogy, let’s take a brief look at the realm of journalism. It is a good
rule of thumb that you should make it clear whether an article in a news-
paper or a journal presents facts, or whether it expresses the author’s opinion
(Glasser 1992). We can adopt this rule of thumb for our purposes. It isn’t
good style to try to influence readers by confusing description and judgement
— readers might doubt the contents of a document that seems to be
suggestive.

Authors gain credibility if, in their documents, they clearly separate
description from evaluation.

The following table shows roughly how different kinds of information can be
classified:

Description Evaluation

Facts Judgement
Observations Author’s opinions
Analysis Recommendation
Data Validation
Statistics Interpretation

44

Finding the Right Topics

Discussion

Problem

Forces

The separation of description and evaluation must be clear to readers. There
are various ways to achieve this goal:

e The separation of description and evaluation can be reflected in the
document’s structure. You can reserve certain sections of a document for
analysis, and draw conclusions or come up with a recommendation in a
separate section.

* You can use layout techniques, such as special boxes, extra columns, or
type variations to make clear to the readers that certain material isn’t a
fully objective description, but represents your opinion or the conclusions
that you draw.

In addition, you can draw on your command of the language to support the
separation of description and evaluation. Descriptive material should not
implicitly include any judgement: adjectives such as good, desirable, reason-
able, useful or bad, problematic, etc. must be used carefully when describing
facts or observations.

The separation of description and evaluation contributes to the general goal
of presenting FOCUSED INFORMATION. Material presented in a document, or in a
section, is supposed to have a clear focus. One precondition for a clear focus
is not to confuse description and evaluation.

Using layout techniques to support the separation of description and evalua-
tion is particularly useful when you choose to organise documents as
STRUCTURED INFORMATION. You can then employ structural elements, such as
textual blocks or cells within UNAMBIGUOUS TABLES, to visualise the separation
of description and evaluation. Similarly, the CAREFUL USE OF TYPE VARIATIONS
can make that separation clearly visible.

Realistic Examples

How can abstract material be explained in a comprehensible way?

Most people work better from the concrete to the abstract than vice versa.
Technical material, however, is sometimes abstract and difficult to under-
stand. Furthermore, not all readers of a project document are necessarily
experts in the field. Material is usually more successfully presented when it is
accompanied by convincing examples.

Realistic Examples 45

Solution

Discussion

Moreover, readers are sometimes sceptical when a document gives only
general advice. Examples can provide evidence that what is said in a docu-
ment is substantial information.

However, ‘toy’ examples can have the opposite effect on readers. When a
major point is explained only with a toy example, readers are led to believe
that the point is not substantial, and that a suggested solution might not work
in practical cases.

On the other hand, huge examples or a large number of extensive examples
can break the flow of a document and can increase its volume unnecessarily.
Including more example material than necessary isn’t desirable, either.

Project documents are much more convincing if they include realistic
examples from the project’s context.

Discussions among the team or with the customers will normally reveal many
appropriate examples:

e When you specify the software with your customer youll normally
develop use cases and scenarios. These use cases and scenarios represent
valuable input to a specification document. In some projects they can
make up the entire specification.

e When you explain a technical design or the system architecture, it is still
a good idea to rely on examples from typical use cases. This makes your
explanation easier to follow and demonstrates that your design tackles the
right problems.

e Consultancy projects aren’t necessarily concerned with a concrete devel-
opment task and may not have concrete use cases to rely on. Realistic
examples are still useful, such as typical scenarios from the problem
domain.

When realistic examples are too large to be presented in their entirety, it is
acceptable to use only an extract or to ignore irrelevant details. It is important
that the examples are taken from real-world material, though.

This pattern applies to almost all documents from the DOCUMENTATION PORT-
FOLIO. When you carry out the SPECIFICATION AS A JOINT EFFORT with the
customer, you can learn from use cases and scenarios, and you can include
them in your documents as well. When you prepare a design document, you

46 Finding the Right Topics

can illustrate the DESIGN RATIONALE with examples that demonstrate the pros
and cons of any design alternatives the project may have.

When choosing examples, you have to keep in mind who the TARGET READERS
for your document are. You have to tailor the examples to the intended
readers’ backgrounds and expectations, so that they can understand the
examples and the examples prove as helpful as they are intended to.

Experience Reports

In the following I'd like to present some experience reports that show how
the patterns of this chapter were applied in several real-world projects. T'll
refer to several projects from the list at the beginning of this book.

Individual The first thing that springs to mind is how different the requirements for

Requirements documentation were in these projects. On one hand, take a development
project such as Paracelsus. The team was small and the collaboration with the
customer quite close. Everybody knew what they were doing from the start,
and having only little documentation was no problem. The documents
produced were lightweight, in a positive sense.

Project Paracelsus: minimum documentation

In this small project the task was clear from the start: the customer needed certain compo-
nents for data transformation that they were going to integrate into a framework they were
building. Close collaboration came naturally. The team and the customer decided early on
that a minimum amount of documentation would be sufficient.

The specification that was produced consisted essentially of the notes that someone had
taken during a small workshop in which the customer explained what the components
were supposed to do.

Simultaneously with design and coding, the team produced a design paper and a usage
concept. The design paper documented the basic ideas behind the data transformation
components. The paper was made available to the customer as input for a second work-
shop, in which the team and the customer checked that the components’ design and the
overall framework design were compatible, before coding began. The usage concept pro-
vided information about how the components could be called, which parameters had to be
supplied and so on. The customer used this concept a lot when they integrated the compo-
nents into their framework.

Experience Reports 47

Consider Project AirView. The specification document focused on the defini-
tion of use cases. As the team had chosen to build a prototype, a lengthy
specification of the user interface geometry became unnecessary. The team
had understood that discussing the user interface using the prototype was
much more effective than producing endless specifications. The amount of
documentation could therefore be reduced significantly.

Project AirView: GUI specification

The project’s goal was to develop a new graphical user interface, so an important task was
to specify what that interface should look like. Nevertheless, the project team and the cus-
tomer agreed that the specification document should not include a fully-fledged description
of the user interface geometry. The specification document defined the use cases the inter-
face would implement, but intentionally left out details of the visual appearance.

The specification of the use cases turned out to be quite important. It was done jointly by
the project team and the customer, and the process of committing the use cases to paper
clarified many details.

To describe the user interface geometry, the team instead chose to build a prototype. This
prototype acted as a living specification. It was given to the customer for reviews, it could
be adapted quickly, and it provided much input, both more quickly and more concretely
than an abstract specification could have done.

On the other hand, some projects did require a more comprehensive
documentation.

Project FlexiCar (see page 48), for instance, required more comprehensive
documentation because many people were involved, and because it was
clear from the start that system maintenance would eventually be handed
over from the project team to the customer.

Next, there is Project Extricate (see page 48). This project was a huge re-engi-
neering effort. A specification of what the new system should look like was
not enough. The team always had to keep the migration from the old system
to the new system in mind. This migration was crucial for the project’s
success, and it was necessary to document it, so that the many stakeholders
could examine it.

Project Persistor was a large effort, involving many people from different teams
and different companies. Because the goal of this project was to develop a
framework, more documents from the DOCUMENTATION PORTFOLIO became

48 Finding the Right Topics

Project FlexiCar: detailed design description

When the project started, the customer already had a clear idea of how their car manufac-
turing process could be improved and accelerated. The project team was still small at the
time, and it produced an overview document that summarised the customer’s requirements.
The document also sketched the architecture the team had in mind. The customer reviewed
the document, ensuring that the team was heading in the right direction.

The lead designer then set up a document that described the system architecture in more
detail, refining this document as the project progressed. This document was quite technical,
as it was intended mainly for software engineers. The document served two purposes. First,
it was used to communicate the principles behind the architecture to the entire team. At
some point, the project involved up to 50 people, so couldn’t rely on verbal communica-
tion alone. The design document clearly facilitated knowledge exchange. Second, the doc-
ument was later to be used by team members from the customer, who were to maintain the
system beyond the project’s time frame.

Project Extricate: mapping from old to new

This project faced two major challenges. First, it involved many people: the project team,
software engineers from the customer, and domain experts from the customer. Each of
these parties had contributions to make, and each had to have their say. Second, as this
was a re-engineering project, the team first had to familiarise themselves with the old sys-
tem and its application domain.

The functional specification was easy: the system’s functionality wasn’t going to be changed
at all. The system had to be refactored to become more flexible though. The team had to
search the system for hard-coded properties of life insurance products, and had to under-
stand what these properties meant so that they could accurately be extracted into a data-
base. This involved several subtle and intricate details, which easily went unnoticed during
discussions with the customer. Often the domain experts took things for granted that the
software engineers hadn’t even thought of.

A specification document was a great help as far as detecting such misunderstandings was
concerned. The specification represented what the team had understood of the various
insurance products, and was given to the domain experts for review. The domain experts
used the specification to verify the mapping from the old, hard-coded properties to the new
properties. The discussions spawned by this document revealed many important details.
The document was updated several times following the discussion, and served as a reliable
source of information.

Experience Reports 49

One other document was particularly important: the migration strategy paper. First, it
revealed the dependencies between the migration of different subsystems — which subsys-
tems had to be migrated before others and so on. Second, the migration paper demon-
strated that there was a trade-off between the quality of the new data model and the
complexity of the migration process: the better the new data model was, the more complex
the mapping from old to new would become. On the other hand, the simpler the migration
was kept, the more flaws would be carried from the old data model to the new one. The
customer appreciated this discussion a lot.

The Need for
a Specification

necessary. First of all, this included a usage concept. The framework users had
to learn how to incorporate the framework into their applications: as they
worked on different sites, documentation was indispensable. Second, the
framework documentation included a design concept that was needed for
future maintenance and refactoring (see page 50).

These experience reports clearly demonstrate that the projects did have INDI-
VIDUAL DOCUMENTATION REQUIREMENTS. Some projects were fine with a
minimum of documentation, while others would have been in serious trouble
without more comprehensive documentation. The key idea of agile document-
ation is not to go without comprehensive documentation in each and every
project, but to make sure that all documents are justified by the benefit they
represent for the TARGET READERS.

Despite the varying documentation requirements, there are several things that,
in my experience, all successful projects have in common, as far as document-
ation is concerned. When I reviewed the projects to find out about what kind
of documentation worked and what didn’t, T noticed some things over and
over again.

First, no project can do without a specification, and agile projects are no
exception. Almost all of the development projects I looked at produced speci-
fication documents, and those that didn’t regretted this strategy. The
experience reports from Projects FlexiCar, Extricate and Persistor show that
they all produced a specification (or received one from the customer), and
they all made good use of it.

Of all the specification documents I have seen, some were rather short, some
were more detailed. In most cases, a less detailed specification was no disad-
vantage, because many specification details only evolved over time. Projects
Paracelsus and AirView demonstrate that it is more crucial to success to regard

50 Finding the Right Topics

Project Persistor: documenting a framework

Documentation played an important role, as this project involved many people from many
companies, even in different cities, and because the contributions from the different parties
had to be integrated closely. The team tried to keep the documentation within reasonable
proportions, mostly with success, though also with a few problems.

After the project’s kick-off, the team produced an initial specification of the data access
layer framework. The specification was quite short, won the customer’s approval, and was
used as the basis for design. However, as the project evolved, additional requirements came
to light, some of which were implemented, others not. In the heat of the project, however,
these additional requirements were never specified in writing. After a while this led to con-
flicting views about which additional functions had to be implemented and which had been
declined. At this point the relationship between the customer, the framework developers
and the other projects became rather tense. The main problem wasn’t that there were con-
flicting views, but that the conflict hadn’t been resolved properly when it had first arisen.
All parties felt that specifying the additional requirements in writing would have been use-
ful, not to introduce bureaucracy into the project, but to increase the awareness of what
changes were necessary, who was in charge, and the consequences on schedules.

The most important problem the project faced was how to train the other teams to integrate
the framework into their applications. As teams from different cities were involved, face-to-
face communication alone was insufficient. The team decided to use a mix of document-
ation and workshops. A usage concept for the framework was passed to all other teams.
This document explained how the framework could be configured for use by a concrete
application, how its interface methods could be called, and the general guidelines to be fol-
lowed. Once the teams had familiarised themselves with the ideas behind the framework
and the use guidelines, the framework team ran workshops in which they explained in
detail how to adapt the framework to individual project’s needs. These workshops took
from several days to several weeks, complementing the understanding that the usage con-
cept had supplied.

Although testing played a huge role, the team, along with the customer, decided that docu-
menting the test cases was unnecessary. Instead, the team implemented a large number of
test cases, and extended and maintained the test code as the project progressed. As the
tests were executable, they served the project much better than any test document could
have done.

Experience Reports 51

Project Navigator: confusion due to a lack of specification

This team had to develop several user interface elements that were rather complex in their
appearance and their behaviour. The time frame was fairly short and the deadlines were
tight. Software development had to be fast, and lightweight documents were a must.

The project team and the customer had agreed on the following documents for each user
interface component: a brief specification describing appearance and behaviour, a design
document consisting of a UML diagram and an interface description, and a document on
test cases.

There had to be agreement on the specification, not only among the team and the cus-
tomer, but also with the customer’s customer — the car manufacturer that would ultimately
buy the navigation system. Unfortunately, the ultimate customer was consistently late in
committing themselves to a particular GUI specification, but urged the team to begin with
the design and the implementation nevertheless. At some point, the team was asked to
begin the coding, although component specifications weren’t available. Code was written —
but later had to be re-written completely.

In retrospect, the team felt that the project would have profited if it hadn’t tried to do with-
out a written specification. A specification document could have clarified which parts of the
specification were settled and which were still open. The design and implementation could
have focused on those parts that were clear, leaving room for changes in the hot spots.
Without any specification, the team felt they weren’t getting anywhere near the desired
result, and morale was low.

Otherwise the lightweight documentation worked well. The design documents and the test
documents consisted of only a few pages each, but contained all information necessary for
the customer to integrate the components.

the SPECIFICATION AS A JOINT EFFORT than to complete the specification to the
smallest detail. In other words, an incomplete specification may be fine, as

long it is clear that it is incomplete, and as long it is clear which parts are still
to be decided.

In a few cases, however, a project did not have a specification at all. At one
stage Project Navigator suffered this fate. No written specification was available
until well into the project: a few informal statements were all the team could
rely on when they were asked to begin coding. In the end, much code had to
be deleted and re-written. As a consequence, morale among the team was low.

52 Finding the Right Topics

Project Persistor did produce a specification, but failed to maintain it over the
course of the project, and in particular, over the course of several change
requests. As a consequence, misunderstandings over the specification became
an increasing nuisance. Better maintenance of the specification would have
made things easier for all parties involved.

Overviews A second observation I have made is that no project can go without THE BIG
PICTURE. Whatever may be the necessary level of detail for the documentation
of your project, you always need an overview of the system you’re building.

Application Layer

— (£
Object Layer | L
A
| A A A L
< | &
e | | e
. ol " IRy
o @] v] v L]
Versioning . A . . A]] A]
A A A A A A A
v v v
v
v Iﬁv v E"‘v v Iﬁv
Database Access @

Db
<

S D
Eal ==
A

Figure 6. Project Persistor: the big picture of the multi-layered framework architecture

i

Experience Reports 53

Project Persistor provides a good example. In this project the team produced
a specification, a design concept, a usage concept and test cases. Apart from
the usage concept, which was heavily used by the framework users, the
information that received most attention was the framework’s ‘big picture’
that was presented within the design document. The big picture was essen-
tially a diagram that showed the multi-tier architecture, demonstrated the
database access and explained the different object states. It is shown in
Figure 6. The team used this diagram a lot when they defined the frame-
work’s architecture, and used it to communicate the architecture to the other
teams.

Project Vista also relied on a big picture document a lot — actually this project
lived on THE BIG PICTURE. The big picture here was a diagram that outlined the
organisation’s application landscape, as shown in Figure 7. The diagram itself
doesn’t contain much detail. For example, the interfaces between the systems
aren’t properly specified. Yet this diagram was used in so many discussions
and conjured up so many good ideas that the project would not have been
the same without it.

Project Vista: discussing the application landscape

Analysing the application landscape involved talking to many people, as well as browsing
through existing documentation. It turned out that some of the system interfaces were doc-
umented in detail, while others weren’t documented at all. However, the main problem was
that nobody knew exactly what relationships existed between the systems. It was even dif-
ficult to get a complete list of all systems involved. An overview was much missed.

One of the main results of this project was the overview diagram of the application land-
scape given in Figure 7, in which boxes represent the systems and arrows represent the
various kinds of relationships between these systems. This big picture diagram was used
many times to get a discussion started. It got the customer ‘hooked’ immediately. Many
people looked at it, made additions and corrections, and so provided a lot of valuable
insight. The diagram was updated several times during the project with every step forward
the system analysis made.

An entirely different document was devoted to the technological risks that the project had
identified. The risks were judged with respect to their relevance as well as their probability.

Project Webber (see page 56) is yet another example of how important THE
BIG PICTURE can be. The goal of this fairly small project was to set up a Web
site, and the customer was much concerned with the design of the site map.

54

Finding the Right Topics

» Customers
Commissions replication
4/_; RES Customers ¢ VITA Customers [¢—
Sales
M
Sales Partners ¢ ¢
RES VITA
T > (Property Insurance) (Life Insurance)
Customers - Contracts ¢
Access Control gpu— t
Contracts ¢ Payment —

LDAP

Account
Management Payment

N
Statistics
updates Life Insurance |«
A 4 A 4 A 4
Payment
» Automobile
Bookkeeping Controlling Human Resources
T T » Customers <
N

Figure 7. Project Vista: the application landscape

Experience Reports 55

As a consequence, the diagram that gave an overview of the site map became
the most important document (Figure 8).

Project OpenDoors shows the problems that arise from not having a ‘big
picture’ document. In this project the team produced quite comprehensive
documentation on the portal they developed, some of which was useful and
some of which wasn’t. As there was no document that described the portal’s
overall architecture, obtaining an overview was difficult, and inconsistent
views of the overall architecture emerged.

Project OpenDoors: communicating the design

As this project involved several teams, a certain degree of documentation was necessary to
manage the communication between these teams. Nevertheless, little documentation was
produced for the specification of the web portal. The reason was that the specification was
done when the team was still small, and that people from both the software company and
the customer were on that team.

When it came to implementing the design, however, more people were involved and docu-
mentation of the design became necessary. Unfortunately this led to a number of overlap-
ping design documents, which, at least in places, offered conflicting views. The project
documentation was rather confusing at this point. The individual teams had provided
design documents that described the individual subsystems, but there was no description of
the overall architecture that would hold all parts together. Moreover, the design documents
included a number of details that would soon be outdated due to changed requirements.

The documentation mirrored the actual design. The individual designs of the subsystems
had gone separate ways, and after a while it became difficult to integrate them into a com-
mon architecture. At that point the project decided to consolidate the architecture. This was
accompanied by writing an architecture document that explained how the different subsys-
tems were to collaborate to form a web portal. This document referenced some of the ear-
lier design documents for details, but profited a lot from the fact that it could do without
fast-changing details itself.

These examples not only show that big picture documents are important,
they also demonstrate why big picture documents are so important. Big
picture documents often build a bridge between written documentation and
face-to-face communication. They attract the readers’ attention and invite
them to ask team members for more detailed information.

56 Finding the Right Topics

Home page
I I I 1
Committees Regional Publications Events
Groups
| F’residepts & | Northgast Journals Meetings
Vice Presidents (Berlin)
Board || North | | Conference Conferences
(Hamburg) Proceedings
Special Interest West Professional
Groups (SIGs)] (Bonn) | Services
Middle
| (Frankfurt)
South
] (Munich)

Figure 8. Project Webber: the site map

Project Webber: a long-lived diagram

At project kick-off the team and the customer met in a small workshop session to discuss
the contents and the structure of the Web site. It turned out that the site map was supposed
to mirror the hierarchical structure of the customer’s organisation. As a result the team pro-
vided a diagram that gave an overview of the intended structure (Figure 8). This diagram
became the central part of the specification. This intentionally ignored details such as the
layout of the individual web pages or the full list of hyperlinks that had to be included, as
these details would change frequently. In addition, only a small concept paper was pro-
duced that described how to configure the web server and how to integrate content into
the Web site.

The diagram served its purpose well. It was used throughout several discussions. After the
consultancy project finished the customer still used this diagram for the further develop-
ment of their Web site.

Experience Reports 57

Projects Persistor, Vista and Webber give powerful evidence of the fact that
written documentation and face-to-face communication aren’t opposed to
each other. The same phenomenon can be observed in other projects as well.

Credibility My third observation is that the SEPARATION OF DESCRIPTION AND EVALUATION
does a lot of good, although many people aren’t very aware of this principle.
Project Vista, for example, described the application landscape and the archi-
tectural risks separately. Project Contentis made a clear separation between
the requirements and the actual recommendation of a tool. Both projects
gained credibility in this way.

Project Contentis: requirements and recommendation

The team began with an analysis of how the customer would like to use a content manage-
ment system. The team interviewed the customer, the customer responded, the team
pinned down what they had understood, and the customer reviewed what had been writ-
ten. What emerged was a sufficiently accurate understanding of the future processes. From
this understanding the team derived a list of requirements for the content management sys-
tem.

Next, the team contacted several vendors and asked them to run workshops in which they
should demonstrate how their systems worked. They were given the requirements docu-
ment so they could prepare for the workshops. They were also given a description of a
concrete use case — the web newsletter the customer wanted to implement. In the work-
shops the vendors demonstrated how the newsletter could be implemented with their sys-
tems, and to which degree their systems fulfilled the requirements.

The team concluded the project with an evaluation document that mirrored how the team
felt the different products on the market matched the requirements. The team provided
both: a requirements document, clearly objective, following a thorough analysis, and an
evaluation document, influenced by the impressions from the workshops.

It was clear that the recommendation made in the evaluation document included personal
views. Ultimately, it was the customer who decided which system they were going to use.

Preserving Finally, I'd like to stress once more the importance of keeping a FOCUS ON
the LONG-TERM RELEVANCE. During the review of many projects I noticed the
importance of documents that describe things that matter in the long term,
especially the DESIGN RATIONALE. Two projects demonstrate this importance
particularly well.

Knowledge

58 Finding the Right Topics

In the case of Project Persistor, the DESIGN RATIONALE was exactly what was
missing from the design concept. The consequence was that the design
concept turned out to be less useful as it could have been, and the team
experienced significant trouble during the framework’s maintenance that
could have been avoided.

Project FlexiCar was more successful at capturing the DESIGN RATIONALE. The
design document outlined why the particular design had been chosen,
named the pros and cons of several design alternatives, and used REALISTIC
EXAMPLES to explain these decisions. This was a precondition for the soft-
ware’s longevity, and contributed much to the project’s success.

Project Persistor: difficulties with changed requirements

Two years after the first release of the data access layer framework, the implementation of
the object versioning mechanism had to be changed due to new requirements, and in order
to increase the framework’s time performance. Only a few people from the original team
were still on the project, and they weren’t familiar with the pros and cons of the various
design alternatives the team had evaluated two years previously.

This was the moment when the design concept was consulted. Unfortunately, it gave little
information on the motivation behind the actual design. It did describe the principles of the
design that had been chosen, but it didn’t mention the reasons, nor why any alternative
designs had been rejected. A good degree of reverse engineering became necessary to
work out what alternatives existed and what the various trade-offs were. Had the rationale
behind the original design been documented, the team would have been able to react to
the new requirements much more quickly.

Project FlexiCar: managing the design responsibility

The lead architect had produced a design document that, over the years, was heavily used.
First, it represented an ideal starting point for new team members to learn about the sys-
tem’s architecture. The document didn’t just describe the system, but also explained the
motivation for the design decisions. For example, the document explained why an applica-
tion server was used and why bean-managed persistence had been given preference over
container-managed persistence with the EJBs (Enterprise Java Beans), and so on.

Experience Reports 59

Second, when the project reached its end, the team was reduced and software engineers
from the customer were to maintain the system. These software engineers had been on the
project, so they already knew a lot about the architecture, although they hadn’t invented it.
The design document, however, allowed them to understand the motivation behind design
decisions made one or two years before. The fact that such a design document was availa-
ble made it easier for them to accept responsibility for system maintenance and possible
future extensions.

Structuring Individual
Documents

Voluminous documentation is part of the problem, not part of the solution.

Tom DeMarco, Timothy Lister (DeMarco Lister 1987)

Have you ever looked for something in a document and been unable to find
it, even though you knew you had the right document? You probably have —
this problem is common enough.

In most cases, voluminous documentation isn’t exactly a service to readers.
Despite the intention to provide readers with comprehensive information,
voluminous documentation often veils knowledge when it should instead
convey it.

Unfortunately, project documents are sometimes quite lengthy and poorly
organised. If readers are faced with such documents, it may be ages before
they find the information they’re looking for.

At some point they just give up. Frustrated with going through a document
over and over again, they resort to other ways of obtaining the same informa-
tion, or decide to try to get by without it.

This is the moment at which a document has ultimately failed to serve its pur-
pose. Such a document is a waste of time, both for those who wrote it and for
those who must read it.

Before I present the patterns that address this problem, let’s do a little exper-
iment. I'd like to ask you to look at the excerpts from project documents
given in Figure 9 and Figure 10, to see which you prefer.

62 Structuring Individual Documents

M

Deployment Processes for Web Content

There are essentially two different ways to deploy content to the web: one for editorial
changes, and the other for structural changes. Editorial changes are made by editors
and are hot-deployed to the web. Structural changes influence the content’s
programming, such as Java code within JSPs, and undergo testing before they are
released.

Web content is stored and edited in a content management system (CMS). In the
following, we explain in more detail how the two deployment processes from the CMS
to the web look like.

To make editorial changes, an editor adds or updates content in the CMS. Once this is
done, an editor-in-chief reviews and publishes the content. Publishing means that the
editor-in-chief calls a function offered by the CMS, which results in the new or
modified content being deployed directly to the web server. The web server need not
be restarted.

Structural changes are performed by a programmer who makes changes to the JSP
programming within the templates used in the CMS. Once these changes are finished,
the programmer calls a function that exports the content from the CMS into a file
system structure known as the transfer area. Next, the programmer invokes a process
that transfers the contents onto a test server. The programmer then tests the changes
with a web server that runs on the test machine. Programming and testing are
repeated until the tests are successful. The changes are now ready to be published to
the web. To do this,a web server administrator stops the web server process, transfers
the modified content from the test machine to the web server, and re-starts the web
server process.

/\/\—/—\/\

Figure 9. Excerpt from a project document

These two documents look quite different, although they contain the same
information. Their appearance and structure couldn’t be more different,
though. The first excerpt consists of a few paragraphs, while the second
features stronger structural elements and a diagram for illustration.

Interestingly, the second excerpt is longer than the first one. But it isn’t as
dense, and due to its improved structure has less of a voluminous feel.

63

Deployment Processes for Web Content

There are essentially two different ways to deploy content to the web: one for editorial
changes, and the other for structural changes. Editorial changes are made by editors
and are hot-deployed to the web. Structural changes influence the content’s
programming, such as Java code within JSPs, and undergo testing before they are
released.

The following diagram explains which systems are involved.

- Deploy
ﬁ \ixport

Transfer
_>

Transfer Area Test Server

Editorial changes

1.
2.

An editor adds or updates content in the content management system (CMS).

An editor-in-chief reviews and publishes the content. Upon calling a function
offered by the CMS, the new or modified content is deployed directly to the web
server. The web server need not be restarted.

Structural changes

1.

R

A programmer makes changes to the JSP programming within the templates used
in the CMS.

Once the changes are finished, the programmer calls a function that exports the
content from the CMS into a file system structure known as the transfer area.

The programmer invokes a process that transfers the contents onto the test server.
The programmer tests the changes with a web server that runs on the test
machine.

Steps 1 to 4 are repeated until the tests are successful. The changes are now ready
to be published to the web.

A web server administrator stops the web server process, transfers the modified
content from the test machine to the web server, and re-starts the web server
process.

Figure 10. Excerpt from a project document, organised differently

64

Structuring Individual Documents

Readers can access information much faster in documents that follow the
style of the second excerpt, which is taken from Project OpenDoors.

Agile documentation follows this approach and aims to produce better docu-
ments through the following techniques:

e The key idea is to provide documents with a useful structure that guides
readers through the material, thereby helping them to obtain the infor-
mation they need.

e The inclusion of meaningful diagrams can make documents a trigger for
face-to-face communication.

e A reasonable dose of meta-information informs readers about the material
they have in front of them, so that they can decide whether the material
is for them and see how it relates to other project artefacts, for example
the software that is being built.

This chapter begins with patterns that take a general look at the structure of
documents, then moves on to patterns that suggest concrete elements you
can use. Figure 11 provides an overview.

These patterns not only make documents more accessible to their readers,
they also help authors write project documents more quickly. Adding infor-
mation to a well-structured document is much easier than updating a
complex literary artefact. A useful document structure paves the way for light-
weight documents and to an agile documentation process.

Related to the way in which you structure your project documents is the
writing style you use, though it is not covered by these patterns. Generally, a
straightforward style will do your project documents good. If you're inter-
ested in style issues, I'd like to refer you to the body of literature. English
readers will find The Elements of Style by William Strunk and E. B. White most
useful — short, precise and to the point (Strunk White 1979). German readers
might profit from Wolf Schneider’s books (Schneider 1996, 1999).

Finally, I'd like to point out that the patterns in this chapter do not prescribe
a specific writing style. Everybody has their own individual writing style, and
this is fine. Instead, these patterns offer you some suggestions on how you
can improve your documents by enhancing their structure and by making
them more accessible to your readers.

65

UNAMBIGUOUS JUDICIOUS

TABLES DIAGRAMS

often includes

] may use
often includes

STRUCTURED
INFORMATION

. GUIDELINES FOR
includes READERS

poin’:y

introduce
the

can include

THUMBNAIL
SKETCHES

GLOSSARY

may use

v includes refer to

TRACEABLE DOCUMENT

HISTORY

REFERENCES

Figure 11. Patterns for structuring individual documents

66

Structuring Individual Documents

Problem

Forces

Structured Information

How can information be presented in an easily accessible way?

Project documents have two types of readers. You might want to read a docu-
ment from beginning to end, or you might be an occasional reader who is
mainly interested in looking up information and who reads longer passages
only when necessary. Ideally, project documents should allow both for
sequential reading and for quick information retrieval, so serving both kinds
of readers.

Robert Horn analysed written communication and found that humans can
process structured information more quickly and more reliably than unstruc-
tured information (Horn 1989). Readers can retrieve information more easily
when it is accurately classified and structured.

Experience shows that, indeed, poorly-structured documents often fail to
serve their purpose with occasional readers. Occasional readers, when they
look for specific information, are willing to browse through a document for a
while, but give up when their search proves unsuccessful and assume the
information isn’t available.

This might suggest that project documents should be organised as hypertext,
using hyperlinks to lead readers through the parts of a document that are
relevant to them. However, we must bear in mind that documents must also
allow for sequential reading, and that hypertext is counter-intuitive to reading
from beginning to end. Enhancing a sequential text with a rich structure
springs to mind. But to which degree should a document be structured?

A prominent psychological study gives us a hint. In 1956, the psychologist
George A. Miller observed that people are generally able to identify and
memorise about seven pieces of information at one time (Miller 1956). This
observation can be applied to the overall structure of documents.* For
example, a chapter consisting of significantly more than seven sections is
difficult to handle for occasional readers who seek to memorise the docu-
ment structure. On the other hand, a chapter consisting of significantly less
than seven sections seems to be poorly structured. The same applies to the

4. Miller’s rule of seven has often been misinterpreted and misused. The sidebar on page 67 explains
why it can indeed be applied to the structure of project documents, as far as making documents
accessible to occasional readers is concerned.

Structured Information 67

Sidebar: the magical number seven

George A. Miller's ground-breaking paper from 1956, ‘The magical number seven, plus or
minus two: Some limits on our capacity for processing information’” (Miller 1956), has been
much referenced in the literature on both communication sciences and computer science.

Miller conducted a number of experiments that tested the short-term memory of the human
brain. The experiments were based on a discrete set of stimuli in a linear, that is one-
dimensional, order such as points on a line, pitches or loudnesses. People had to identify a
randomly chosen stimulus.

The ratio of successful tests vs. the overall number of tests gets smaller as the set of stimuli
gets larger. Miller observed that around a total of seven stimuli, the chances of accurate
identification sink dramatically. This observation was independent of the type of stimulus —
visual, acoustic or other.

Miller concluded that seven represents an upper limit on the human capacity for processing
information, and claims of the number seven that there is ‘some pattern governing its
appearance’.

It is important to understand that this limit of seven applies:
e When the stimuli are in linear order, and
e When individual stimuli need to be identified

Miller’s rule therefore doesn’t say that a novel shouldn’t have more than seven chapters.
True, the chapters of a novel are in linear order, but why would someone want to identify
an individual chapter?

Miller’s rule doesn’t apply to Web sites either, in the sense that a Web site shouldn’t have
more than seven pages. Users might have to identify an individual page from an entire site
in order to retrieve some particular information. But then, Web sites aren’t organised in a
one-dimensional way.

Miller’s rule does apply to typical documents from software projects. Because such docu-
ments are structured into chapters, sections and so on, they are organised in a one-dimen-
sional order. And while some people read a document from beginning to end, occasional
readers browse a document, read something here, and look for some other information
somewhere else. Occasional readers can familiarise themselves with a document much
more easily if the document structure — its chapters and sections — meets Miller’s ‘Rule of
Seven’.

68

Structuring Individual Documents

Solution

Discussion

number of chapters in the entire document and the number of subsections to
a section.

However, the rule of seven does not say anything about how deeply informa-
tion should be structured. Chapters, sections and subsections are fairly
normal, but what about sub-subsections? There is no general limit to the
depth of structured documents, but it seems that most readers prefer docu-
ments to be structured no more than three levels deep.

Most project documents are best organised as sequential yet well-struc-
tured text. This begins with well-chosen chapters and sections, but may
well extend to using textual building blocks consistently throughout a
document.

Let’s take a closer look at what this means.

e The first step is to organise documents with meaningful chapters, sections
and perhaps subsections. Given such a structure, readers can access infor-
mation in a document much more easily than if the structure was missing.
The structure is most effective if it follows Miller’s rule of seven: about
seven chapters to a document, about seven sections to a chapter and so
on.

* You can enhance the structure of your documents by taking a second
step. Figure 12 illustrates a page that could be taken from a design
document — a section that consists of five building blocks. What could
these building blocks represent? For the sake of the argument, let’s
assume that the page describes a class, and that the building blocks
represent the class name, an introductory text, a class diagram, an
interface specification and a message sequence chart. You could then use
sections that are structured in this way repeatedly all over the document,
describing all classes consistently. A consistent structure for a class
description is of course just one example, but a similar structure could be
equally useful in many other kinds of documents.

Whether structuring sections into building blocks makes sense depends on
the actual document, or whether a clear structure of chapters and sections is
all you can, or want to, achieve. Either way, this pattern allows you to create
a well-structured and evenly-balanced document.

For a quick example, look back to Figure 9 and Figure 10. Figure 10 presents
structured information, Figure 9 doesn’t. The structure is exactly what makes

Structured Information 69

| B

Figure 12. Structured information — a section consisting of five building blocks

the difference between the two documents, and it is clear that the structure
adds to the readability displayed by Figure 10.

A prominent example of structured information is CRC cards (Beck
Cunningham 1989). CRC cards provide a common structure to describe the
responsibilities of the classes involved in a design. The consistent structure of
the CRC cards makes CRC cards quick to follow and convenient to work with.

The pattern form used in this book is another example of structured informa-
tion. Each pattern consists of five building blocks: its title, the problem, the
forces, the solution and the discussion. The structure makes it easy for
readers to identify which part of the pattern holds which type of information.
Tags such as problem, forces, solution and discussion represent the meta-
information that allows you, the reader, to classify the information that this
book has in store for you.

70

Structuring Individual Documents

Problem

Forces

An important idea behind structuring information is that the use of diagrams
and tables can make a document’s structure more visible. This visibility helps
readers perceive the contents of a document. Figure 12 illustrates this with
two building blocks consisting of a diagram, and Figure 10 gives a concrete
example. In general, JUDICIOUS DIAGRAMS can provide excellent overviews,
while UNAMBIGUOUS TABLES present systematic information. In addition, you
can enhance the structure of your documents by means of layout and typog-
raphy, especially with CAREFUL USE OF TYPE VARIATIONS and through CAREFUL
RULING AND SHADING.

All these ideas about structuring documents beg the question of which
sections and subsections you actually need. Naturally, there is no general
answer to this question, but there are several patterns that address this issue.
When you set up the overall structure of a document, be sure to include
GUIDELINES FOR READERS and a DOCUMENT HISTORY. Often you’ll need a GLOS-
SARY, as well as a section with TRACEABLE REFERENCES to other documents.
When it comes to more fine-grained structuring, THUMBNAIL SKETCHES added to
the sections of your document give quicker access for occasional readers.

A final remark on the rule of seven. When you structure a document, you
should always keep the overall principle of presenting FOCUSED INFORMATION
in the back of your mind. There is no point in setting up seven chapters if
you don’t have enough material for seven chapters. Creating a chapter or a
section is sensible only when you can define its focus. So take the rule of
seven with a grain of salt.

Judicious Diagrams

How can authors provide an overview of structures and processes in a
convenient way?

Structures and processes play an important role in software engineering. The
structure of a software system describes how the system is organised and
how it is composed from smaller parts. Processes describe the dynamic side
of software — interaction and state-driven behaviour, among other things.

5. For example, the number of chapters in this book is at the lower end of the range that the rule of
seven suggests, while the number of patterns in each chapter tends to be at (or even a little beyond)
the upper end.

Judicious Diagrams 71

Solution

If we look at common modelling techniques, we see that diagrams are
frequently used to describe structures and processes. UML, for example, has
class diagrams, message sequence diagrams, use case diagrams and others
(Rumbaugh Jacobsen Booch 1998, Fowler 2000).

This is not really surprising — we all know that one picture can be worth
more than a thousand words. Diagrams speak to our intuition.

There is also scientific evidence that diagrams help readers perceive informa-
tion. For example, Edward Tufte’s books on the visual representation of
information give an impressive account (Tufte 1997, 2001).

Moreover, there is a subtle psychological reason why diagrams are sometimes
better suited for explaining material to readers. Diagrams allow us to illustrate
information in a two-dimensional way, which increases its comprehensibility

(Miller 1956).

There are more points in favour of diagrams. Readers tend to get bored with
long, monotonous texts. Texts that include diagrams are much less monoto-
nous. Diagrams serve as eye-catchers that quickly attract readers, and also
help readers memorise information. Readers often associate a text with the
included diagrams, so that when they browse the text in search of specific
information a while later, the diagrams give them orientation (Tufte 1997,
200D).

Yet diagrams lack the nuances that language offers. Unless diagrams are very
complicated, they contain less detail than text. Complicated diagrams,
however, lose much of the charm that make simple, ‘in-your-face’ diagrams
appeal to us.

This leaves us in the dilemma that diagrams alone, however valuable they
may be, cannot provide comprehensive information, but often leave detailed
questions unanswered.

Diagrams can provide excellent overviews, while an accompanying
text explains details to the extent that is necessary.

Good diagrams complement the text. A diagram often describes a whole and
its parts, as well as the relationships and dependencies that hold between the
parts. The surrounding text can refer to the diagram and can dig deeper into
the subject matter.

72

Structuring Individual Documents

Discussion

There is a wide range of things that can be described very well through
diagrams. The following list isn’t complete, but gives you a good idea of the
different kinds of diagrams, some of which are well known from UML
(Rumbaugh Jacobsen Booch 1998, Fowler 2000):

e Architecture overviews
e C(Class diagrams

e Interaction diagrams

e Activity diagrams

e State diagrams

e Deployment diagrams

Of course, you shouldn’t clutter your documents with unnecessary diagrams.
If a diagram isn’t meaningful, go without it. But whenever you write a docu-
ment, keep asking yourself whether there is some information that would be
better expressed visually.

The best diagrams are often those that are clear and simple. Ideally, a
diagram uses only a fairly small number of graphical elements, which, if
necessary, should be explained in a legend. Sometimes even a perfectly
informal whiteboard drawing captured by a digital camera makes an excel-
lent diagram (Cockburn 2001, Ambler 2002).

Diagrams are prominent in good documentation anyway, but they are partic-
ularly important in an agile context. Agile documentation gives preference to
communicating THE BIG PICTURE over writing down long lists of details, so a
diagram is often the method of choice. Diagrams can get an idea across,
diagrams can get a discussion started, diagrams promote communication.

Because diagrams are such good eye-catchers, they can increase the effi-
ciency of STRUCTURED INFORMATION. If you choose to organise your document
with the help of a distinct structure, the inclusion of diagrams can turn out to
be helpful, as Figure 13 illustrates.

The GUIDELINES FOR READERS can almost always make good use of a diagram
to give an overview and to explain how the sections of a document relate to
each other. In a similar vein, but on a larger scale, a project’s introductory
document can use a diagram to give an overview of the entire documentation
and to explain how individual documents relate to each other. In other
words, a diagram can visualise the DOCUMENT LANDSCAPE.

Unambiguous Tables 73

Problem

Forces

Figure 13. Text mixed with a diagram

Unambiguous Tables

How can authors present systematic information in a precise way?

Systematic information is common in software projects. In a world where
analytical thinking plays a major role, systematic information becomes an
essential tool of the trade.

Think of all the lists you keep: the list of all modules of a system, of all inter-
face methods, of all error codes, of all data types, of all work packages, just to
name a few. More examples of systematic information are also found in many
projects: classification schemes, steps in a process, mappings and so on.

Such systematic information is often subject to documentation. Team
members, however, aren’t interested in reading a long text when all they
want to know could easily be presented as a list entry.

Using tables to present systematic information is the obvious choice. Tables
are clear and direct. Similar to diagrams, tables profit from the psychological
advantage that they are two-dimensional. The two dimensions are repre-
sented by the rows and columns, which allow for arrangements that
sequential text cannot render.

74

Structuring Individual Documents

Solution

Discussion

Similarly to diagrams, tables can make a text less monotonous. If only for the
typographical variety, tables can attract the reader’s attention easily.

However, tables also have a disadvantage that they share with diagrams.
Tables offer only little linguistic expressiveness. If material requires an argu-
ment for its explanation, more than can fit into a table cell, a table alone
cannot be sufficient.

Tables offer a compact format for the concise and unambiguous
presentation of information.

The following list doesn’t claim completeness, but gives you a few examples
of systematic materials that can very well be presented in tables:

e Interface specifications (function name, signature, abstract, error codes)
e Lists of classes, methods, data types, etc.

e Error handling tables (error code, reaction)

e Comparison of the pros and cons of a design option

e Different steps to be taken in a process or an activity

e Work packages and their deadlines

The more self-contained a table is, the easier it is to understand. Ideally, the
headings for the rows and columns give the readers all the information neces-
sary to understand the table. Background information on what is presented in
the table will often have to go into the surrounding text, however.

Tables are often found in the context of STRUCTURED INFORMATION, as they add
to the document structure. Figure 14 illustrates this.

Tables can be used to implement the SEPARATION OF DESCRIPTION AND EVALUA-
TION, for example by devoting one column to observations and another to
comments, or by placing facts in a table and interpretations in the
surrounding text.

The variety in the layout has been mentioned as one of the advantages that
tables offer. CAREFUL RULING AND SHADING allows you to produce tables that
look good from a typographical point of view.

Guidelines for Readers 75

Problem

Forces

Figure 14. A clearly-structured table between surrounding text

Guidelines for Readers

How can potential readers be informed whether they should read a
document, and if so, on which parts they should focus?

People who are involved in a software project are typically occupying
different roles that have different information needs. A document can be
important for someone and completely irrelevant to someone else.

Moreover, several people can read the same document with different inten-
tions. Some readers might only want to get an overview of the topic, others
might be looking for some specific detail, while a third group might want to
read the document in its entirety.

In addition, some documents require that readers have read other documents
previously, or otherwise be familiar with certain material. Potential readers
therefore need to be informed of the prerequisites for understanding a
document.

There might also be dependencies within the document itself. The chapters
of some documents are relatively independent of each other, and readers can
concentrate on the chapters in which they are interested. But sometimes

76

Structuring Individual Documents

Solution

Discussion

readers need to go through one chapter before they're able to understand
another.

Some brief guidelines at the beginning of each document can inform
potential readers of the purpose the document serves and explain how
different groups of readers should approach the document.

The guidelines must prevent readers from studying documents that don’t
contain the information they require. They must also prevent readers from
going through a complete document when only parts of it are relevant.

To do this, the guidelines must answer the following questions:

e Who should read the document?

e What is inside, and what is outside the scope of the document?
e How is the document organised?

e What are the dependencies between the different chapters of the
document? Is there a specific order in which to read the chapters?

e What are the relationships to other documents? Are there other documents
that readers are expected to have read previously?

e How can readers get a quick overview of the contents?

e Is the document complete, or does it describe a work in progress? Are
updates to be expected? If the document is an update of a former version,
which parts have changed?

However the guidelines for readers appear in detail, they are meant to
welcome the TARGET READERS to a document. They explicitly say who the
TARGET READERS are, address them, and let them know how to use the
document.

A diagram (see JUDICIOUS DIAGRAMS) is often the method of choice for
describing the overall organisation of a document, as well as the dependen-
cies between its chapters. The diagram can serve as a road map for readers
when they browse through the document to find the parts of interest.

Pointing out to the readers how they can get a quick overview is particularly
easy when the individual chapters of the document are provided with THUMB-
NAIL SKETCHES. It’s also useful to refer to the DOCUMENT HISTORY, as it informs
potential readers of the document’s status and of changes between previous
versions.

Thumbnail Sketches 77

Problem

Forces

Solution

Thumbnail Sketches

How can readers get an overview of the topics dealt with in a
document?

It is difficult for readers to find what they want in a document that contains a
lot of information. Guidelines can tell readers what to expect from the docu-
ment, but cannot say where to look for any specific detail.

A clear structure of chapters, sections and subsections makes it easier for
readers to find particular information, yet a clear structure alone may not be
sufficient to allow readers to retrieve information quickly.

Quick information retrieval is necessary, however. Ideally, readers can
browse through a document at a high level, and dig deeper whenever they
feel that some part of the document is particularly relevant to them.

Gerald Weinberg explains in The Psychology of Computer Programming: *...
different users of the documentation will need different levels of detail in the
information they extract. The highest level should be just sufficiently detailed
to tell the user whether or not he will be able to read the documents.” (Wein-
berg 1998)

Thumbnail sketches provide brief descriptions of the sections of a
document, including the section’s general goals, as well as its major
ideas.

A document that supplies thumbnail sketches allows for sequential reading at
different levels of detail. After reading a thumbnail sketch, readers can decide
whether they would like to go deeper or whether to move on to the next
section.

There are two ways to set up thumbnail sketches:
* You can let each section begin with some kind of abstract or summary.

e You can choose a few paragraphs from each section, though not neces-
sarily at the beginning, and use those as thumbnail sketches. Layout
techniques can be used for their identification.

Both techniques preserve the sequential order of the text, so that people can
read the document from beginning to end if they want to, while other readers
can focus on the thumbnails for a quick scan.

78

Structuring Individual Documents

Discussion

Problem

Forces

Solution

This pattern builds upon the idea of STRUCTURED INFORMATION. When you use
a common structure consistently throughout a document, thumbnail sketches
appear repeatedly at the same place within a section, where they can easily
be identified.

This effect is strengthened by the CAREFUL USE OF TYPE VARIATIONS, for
example by the use of boldface or italics for the thumbnail sketches.

Consider this book. It uses a pattern form consistently. For each pattern, the
problem section and the first paragraph of the solution section form a thumb-
nail sketch. You can find out the main idea behind each pattern without
having to read its every detail. The boldface parts give you a first impression:
you can go deeper, but you don’t have to.

Finally, since thumbnail sketches help readers navigate through a document,
you will probably want to mention them in the GUIDELINES FOR READERS.

Traceable References

How can documents be linked to each other?

Each document is supposed to focus on one topic. However, no document
can be seen in isolation. There are always related topics that need to be
understood beforehand or related documents that provide additional informa-
tion. As a consequence, almost all documents must include references to
other documents.

But what happens if a referenced document isn’t available to the reader? After
all, the reader is supposed to look up that reference if more information is
required. A reference to a document that’s unavailable isn’t worth much and
could just as well be left out.

A document should include references to other documents only if
readers can obtain those documents without much effort.

The following rules of thumb are useful:
e References to other documents in the same project are obviously fine.

e References to documents from other projects are fine only so long as
those documents can be distributed among the team. There shouldn’t be
any references to documents that are restricted to internal use or that
underlie a non-disclosure agreement.

Glossary

79

Discussion

Problem

Forces

e Almost all organisations have libraries that contain the standard literature
of software engineering. References to such books and journals are easy
to follow.

e Scientific publications that aren’t readily available are a different matter.
References to such sources are often difficult to track down, and are
therefore inappropriate.

Within a project, it is useful not only to refer to a related document, but also
to point out to the readers explicitly where they can find the document.

You might ask whether references can be avoided altogether. The FOCUSED
INFORMATION pattern provides the answer. Your aim should be to produce
self-contained documents that aren’t cluttered with references to other docu-
ments. However, in order to give each document a clear focus and to avoid
large overlaps between documents, you cannot avoid references completely.

If you aren’t sure whether you should use a reference or include material, the
inclusion of THUMBNAIL SKETCHES may represent a good compromise. This
solution avoids overlaps to a large extent, although not entirely, while still
adding to the document’s self-containedness.

The appropriateness of references also depends on who the TARGET READERS
of a document are. Team members normally have access to a different set of
documents to customers, and so have team members as opposed to
managers. When referencing other documents, you need to take this into
account.

Electronic documents can use hyperlinks to reference related documents. In
this way, readers can navigate from one referenced document to the other.
This is a nice technique for documents that are intended for on-line use.
However, many project documents are intended to be printed, so hyperlinks
are only of limited use. (See also the discussion on READER-FRIENDLY MEDIA.)

Glossary

How can authors make sure that readers understand the vocabulary
used in a document?

Technical terms often occur in the documentation produced for a software
project. Design documents in particular cannot do without terms that are
specific to the technology used. While some technical terms more or less

80

Structuring Individual Documents

Solution

Discussion

belong to the standard vocabulary of software engineering, readers might be
unfamiliar with others.

Moreover, many software projects use terminology that is specific to the
customer’s organisation or the application domain, and not all readers can be
expected to be familiar with it. Domain-specific terms can be a hurdle, espe-
cially to new team members.

If you explain all these terms wherever they occur, however, you scatter
explanations all over the text. This carries the additional danger that in
different places you offer slightly different explanations, which is not going to
make your documents more accurate.

Moreover, an explanation somewhere in the text is fine for people who read
the document from beginning to end, but is not really helpful for occasional
readers who browse the document in search of a definition or explanation.

A glossary can explain technical terms as well as the terms specific to
the application domain.

Most project documents can profit from a glossary. The more technical docu-
ments will mainly require explanations of technical terms, while requirement
specifications rely heavily on the vocabulary of the application domain.

In a first step, setting up a glossary is easy:

e The glossary lists all specific terms relevant to the document in alpha-
betical order.

e Fach entry presents a definition or explanation that is understood by the
team members, and perhaps includes a reference to further information
sources.

If a project requires several documents, and these documents have overlap-
ping glossaries, redundant effort is the consequence. To avoid this, you can
use a central glossary and reference it from project documents.

Giving definitions of domain-specific terms may not be easy. Regarding the
SPECIFICATION AS A JOINT EFFORT helps, as you can almost always obtain good
explanations from the customer.

Readers must be aware of a glossary if they are to use it. In particular, if you
use a central glossary, the fact that the glossary exists at all is not always
obvious. Mentioning the glossary in the GUIDELINES FOR READERS helps.

Document History

81

Problem

Forces

Solution

A large project might consider a glossary tool — essentially a small database of
technical terms and terms from the application domain — that you can use to
extract a list of those terms you need in a special context. Such a tool
manages redundancy between the glossaries of several documents. It should,
however, be chosen only if managing redundancy manually isn’t quicker.
There’s no point in using a tool if the tool doesn’t make things easier.

Document History

How can confusion be avoided between versions of a document?

At the beginning of a project not all the details of what needs to be docu-
mented are known. The project will evolve and will undergo change, and so
do the project documents. Documents are going to be created, updated and
extended, perhaps many times.

But even documents that are updated regularly can get out of sync with what
they describe. You cannot update documentation at the same rate as that at
which the software progresses, otherwise you would be updating the docu-
mentation on a daily basis. The consequence is that in between updates,
documentation isn’t quite up to date.

This isn’t a huge problem, as long as readers are aware that what they read
might be slightly out of date, and as long as they know that in the meantime
the software may have been developed further.

A document history can explain the differences to previous versions of
a document, and can relate the document to versions of the software it
describes.

A document history is essentially a table with an entry for each new version.
It is extended as the document evolves. Each entry is typically associated with
a version number for the document, and includes the following information:

e The author of that version.

e A brief list of the changes that were made since the last version of the
document was released.

e If the document describes actual software, the version of the software to
which the document refers.

82

Structuring Individual Documents

Discussion

Document
structure

This way, readers can understand how a document has evolved during the
course of a project.

Maintaining a document history only makes sense in the presence of CONTIN-
UING DOCUMENTATION. The document history is not meant as an excuse for
documents never being updated, but serves to bridge the natural lag between
versions.

The document history can be part of the GUIDELINES FOR READERS, or should
otherwise be referred to from there.

You might choose to store earlier versions of important documents in a DOCU-
MENT ARCHIVE, especially in larger projects. Some archives are capable of
adding entries to a document history automatically, though normally this is
possible only with plain text files.

Experience Reports

Let’s look at how the patterns in this chapter were applied in the document-
ation of some of our example projects.

I'd like to begin with the idea of STRUCTURED INFORMATION. This idea was
present in the documentation of most projects, but some documents demon-
strate the usefulness of structured information particularly well. Let’s go back
for a moment to the experiment at the beginning of this chapter. Figure 10 on
page 63 contains a page from the deployment description that Project Open-
Doors produced. Figure 9 on page 62 contains a page I mocked up to
demonstrate the difference. Figure 10 features STRUCTURED INFORMATION,
whereas Figure 9 doesn’t.

There are more examples of how adding structure makes a document more
readable. The design document from Project Navigator defines a text struc-
ture that is uniformly applied to the design description of all components.
Figure 15 shows the description of one such component. Each component
description features a brief overview statement, an interface description, a
description of the component’s internals, as well as a UML diagram. The UML
diagrams grasp the functionality of all these components: they are JUDICIOUS
DIAGRAMS.

The usage concept from Project Persistor is targeted towards the users of the
data access layer framework. The usage concept explains how each interface

Experience Reports

83

e D e

,\//_/—/—\/—_/_

Navigation Box
The navigation box is a user interface control that takes input from the user and adjusts
the details of the map currently under display.

The control’s visual appearance is that of a small box, with arrows symbolising the
functions for moving the displayed area, and knobs symbolising the zoom for displaying
different levels of detail. See the GUI specification for an example screenshot.

The class NavigationBox implements the interface for user interface controls.

Interface description
class NavigationBox

// This method shifts the area of the map that is currently
// under display, either upwards, downwards, to the left, or
// to the right. It takes the desired direction as a

// parameter.

public void move (unsigned short direction);

// This method changes the level of detail that is shown.
// Depending on the parameter that is passed to the method,
// the display either zooms into the map by one step, or
// zooms out.

public void zoom (boolean zoom-in);

Class diagram

<<interface>>
Controllfc
NavigationBox | N
move ~ —
zoom T — | EventlListener

Figure 15. Project Navigator: structured information applied to a design document

84 Structuring Individual Documents

T T —_

4.2.1 Adding an object

addObject O

IN objectType : DT-TYPE
IN fullKey : DT-KEY
IN entryDate : DT-DATE
IN processNumber : DT-NR

Preconditions:

none

Function:

The data access layer provides an initial version of a new object,
according to the entry date and the process number passed on to it as
parameters. Upon initialisation, the new object may still be incomplete;
components can be added successively. The new object’s state is
“pending”.

The key that is passed to this function as an input parameter is a logical key,
which may or may not carry application-specific information. It is normally
generated by a specific module that all applications can use.

In case the specified key has been used previously for adding an object, an error
code is returned.

The process number is generated by the workflow management system.

Return Codes:

RC-0OK The object has been entered and initialised
correctly.

RC-KEY The specified logical key isn"t available.

RC-DB The database is not available.

RC-PARAMETER The entry date or the process number are illegal.

-

Figure 16. Project Persistor: a well-structured document

Experience Reports 85

Useful
elements

m

method can be applied. Figure 16 shows the description of one such method.
The interface description consists of building blocks for the signature, the list
of parameters, preconditions, a description, and the error codes. Throughout
all method descriptions, the signature, the list of parameters and the first
paragraph of the description form THUMBNAIL SKETCHES for each function. The
error codes for each function are presented using UNAMBIGUOUS TABLES.

Let’s take a closer look at the usage concept from Project Persistor, as it
features several of the useful elements the patterns in this chapter suggest
should be included in a document. Figure 17 shows the DOCUMENT HISTORY
taken from one of the first pages of the document. It explains the document
status, the changes that have been made to the document in the past, who
made these changes and why.

History
Version |Status Date Authors Remark
0.1 draft 1999 Jun-19 |A.Riiping First draft
¢ architectural overview
¢ using the interface
0.2 draft 1999Jun-24 |A.Riiping A few small changes
0.3 draft 1999Jun-30 |A.Riiping Changes after internal review:
e state model added
¢ example on versioning
added
0.4 draft 1999-Aug-06 |A.Riiping A few minor changes:
¢ API definitions
¢ logical transactions
1.0 released [1999-Aug-30 |A.Riiping Changes after external review
2.0 released [1999-Oct-22 |A.Riiping Update reflecting the release of
the new framework version

W

Figure 17. Project Persistor: a document history

86 Structuring Individual Documents

Figure 18 shows the GUIDELINES FOR READERS, which, in the original document,
appear at the beginning of the introduction. They directly address the readers
through a few introductory words. Although they are quite short, they make
clear who should read the document and how the document is organised.

VJ\/\/\/M

Guidelines for Readers

This document describes the usage of the data access layer named- that was
developed in the- project performed jointly by- and -.T he document is
meant to be used by team members of al rojects.

The data access layer is to be used by all applications currently under development.At
this point, these are the new health insurance system and the new customer system.
More projects are expected to start soon; they will use the data access layer too.

To allow the data access layer to be used by several projects, it has been designed as a
framework.This framework can (and must) be configured to reflect the specifics of a
project that uses it, in particular its data model.

This document describes how to configure and to use the data access layer framework
(release 4.0 / 2000-June-28). We begin with a sketch of the basic concepts the data
access layer uses, and then briefly describe its architecture. The main part of this
document is an API description which explains each function separately. Guidelines
for the configuration follow.We conclude with a few hints that explain how to use the
framework along with some examples from the health insurance project.

~ T~

Figure 18. Project Persistor: guidelines for readers

Figure 19 shows an excerpt from the GLOSSARY that appears in an appendix at
the end of the usage concept. It briefly explains the special terms used in the
document, including both technical terms and vocabulary specific to the
application domain.

Finally, Figure 20 shows the list of references from the usage document. They
are TRACEABLE REFERENCES, as team members can easily obtain the information

Experience Reports

87

Glossary

state

The data access layer allows objects to be in different states: active,
pending, and inactive. In the application domain these states match
the modes in which an insurance contract can be: valid, under
revision, offer.

logical
transaction

A logical transaction consists of the entirety of steps to be performed
together: an atomic use case. If one step leads to an error or is
interrupted, the previous steps need do be undone.

database
transaction

A database transaction consists of a sequence of write / update / delete
commands that are either committed to the database (commit) or
ignored (rollback).This is the mechanism that a database offers to
implement logical transactions. In the data access layer, logical
transaction may consist of several database transactions.The data
access layer uses caching mechanisms to make sure a logical rollback
is possible.

W

Figure 19. Project Persistor: a glossary

W/\/\/\/\A/w

/W

References

[*MS] Management Summary, "~/architecture/summary.doc".
[*RS] Requirement Specification, "~/specification/requirements.doc".
[*AD] Architecture & Design Overview, "~/architecture/architecture+design.doc".

[GOF] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. “Design
Patterns”, Addison-Wesley, 1995.

/_/_//\/—/—\

Figure 20. Project Persistor: list of references

88

Structuring Individual Documents

Diagrams
and tables

to which they refer: a couple of other project documents and a readily avail-
able book on software design.

In all the project documents we have looked at in the experience reports, we
have already come across several diagrams that proved extremely useful. THE
BIG PICTURE documents described in Figure 6, Figure 7 and Figure 8 (pages
52-56) all make use of jupICIOUS DIAGRAMS, and so did the design concept
from Project Navigator (Figure 15). I think it’s easy for you to imagine many
more examples — you have probably come across many useful diagrams in
your everyday practice.

Let me give you just one more example. Figure 21 is again taken from Project
Persistor, and while the details of what the diagrams describe are irrelevant,
the project report explains why the diagrams were so useful to the team.

Project Persistor: getting the idea across with a diagram

Two-dimensional history is a concept common in financial information systems that sepa-
rates the moment in which a value is entered into a system from the moment that value
becomes effective. The concept features some algorithmic complexity, and explaining it in
words is an intricate matter, but diagrams help a lot. Two axes represent effectiveness on
one hand and known-at time on the other (Figure 21). Time intervals appear as bounded
areas on a plane. Because the framework used two-dimensional history a lot, the usage
concept included several diagrams that explained the concept. After reading the usage con-
cept, someone from the customer’s team said: ‘I never quite understood what two-dimen-
sional history is all about. It's so incredibly abstract. But now that I have seen these
diagrams, T've finally understood.” Several other team members expressed similar experi-

ences.

Not only diagrams add structure to a text and make it less monotonous — the
same is true for tables. Again, I'm sure you can think of many examples, so
I'll only present two here.

Figure 22 shows an excerpt from a table that lists the requirements placed on
the Web content management system in Project Contentis. Separate columns
are reserved for unique numbering, the actual requirements and their priori-
ties. Without a table, the assignment of priorities to requirements would not
have been nearly as clear as it is here.

Figure 23 shows an excerpt from the table illustrating the characteristics of
various insurance products that was used to document the re-engineering

Experience Reports

89

known-
at time

A

contract

known-
at time

AL

reinstated

ded +
n modified

ded +
n modified

n modified

n modified

known-
at time A
2001-
Apr [
2001- _|
Apr child | child added +
2001- added premium modified
Mar |
premium modified
2001-
Feb —
2001- original contract
S | | |
| | | | —
2001- 2001- 2001- 2001- effective-
Jan Feb Mar -Apr at time

j01 - effective-

Apr at time

jm- effective-

Apr at time

Figure 21. Project Persistor: diagrams explaining a special kind of versioning

effort in Project Extricate. It is clear that you, as reader of this book, may not
understand the contents of this table, but I think you can gauge how impor-
tant it was to the project. For all insurance products, the table clearly states
their properties and demonstrates why we speak of UNAMBIGUOUS TABLES. The
table was of great use to the project team, as the project report explains.

90 Structuring Individual Documents

_/\/]
133 |Which publicatorrumanniels are supported? B
1.4 Templates
1.4.1 Is there a template editor? A
1.4.2 Can templates be organised in a hierarchical fashion? C
1.4.3 Can templates inherit features from parent templates? C
1.44 Is the number of templates limited? A
1.4.5 Do the templates offer support for HTML frames? B
1.4.6 Can templates include code, such as JSP? A
1.5 Import / Export
1.5.1 Which import mechanisms does the CMS provide (text, graphics, |A
XML)?
1.5.2 Which print formats (PDF etc.) can be imported? A
1.6 Versioning

Figure 22. Project Contentis: a table used to prioritise software requirements

Project Extricate: information condensed into one table

Specifying all insurance products and their properties to the last detail would have been
incredibly complex. It soon turned out, however, that what the team needed most was an
overview of all the products and their properties — a list or a table, something systematic. As
a consequence, the team developed a huge spreadsheet in which various kinds of proper-
ties were assigned to various kinds of insurance products.

This spreadsheet table was set up first at the beginning of the project, but was maintained
and updated for almost two years. Both developers and customers used the spreadsheet in
meetings whenever they discussed how product properties could be modelled in the new
system. There was more documentation than just this spreadsheet, documentation that pro-
vided more details, but it was the spreadsheet that was used in many discussions and was
most useful.

Experience Reports

91

:

& =

a @ % c

8 g 2 e |E -8

S 3 |® S 2 |z

9 g o [E 8_ e = B
© 2 c = [|g |E [& o |2 [E 5

& > v |o i SPRERELERE]R
S 3|2 s g o s C8lclels ZIERISE |=I[E |,
S BE g E 8 B ZEEREEEERBR: BE
= = v > S Q] Slez|553|s > |0 @ (|9 [|5
o o |C = 7 o [»n O [C |8 v b | 0 F [F & [C N
L1S |11 |0001 |LFE STD 1948-01 [1955-05 [C [1 [X [N [N [N [R [N [N [N [N [I [P [COV
LTR [12[0002 [LFE [RSK [1948-071 [1955-05 [C [T [T [N [N [N [R [N [N [N [N [I [P |COV
L1F |13 |0003 |LFE FIX 1948-01 [1955-05 [C |1 [T [N [N [N [R [N [N [N [N I [S [COV
LG |19 |0004 |LFE STD 1948-01 [1955-05 [C [1 [T [N [N [Y [R [N [N [Y [N |G [P [COV
L2S [21]0005 |[LFE |[STD 1955-05 [1970-01 [C |2 [X [N [N [N [P [N [N [N [N [I [P [COV
L2R |22 |0006 |LFE RSK 1955-05 [1970-01 [C [2 [T [N [N [N [P [N [N [N [N I [P [COV
L2F |23 |0007 |LFE FIX 1955-05 [1970-01 [C [2 [T [N [N [N [P [N [N [N [N [I [S [COV
X 29 [0008 [LFE |[STD 1955-05 [1970-01 [C |2 [T [N [N [Y [R [N [N [Y [N [G [P [COV
L3S |51 |0009 |LFE STD 1970-01 [1990-10 [C [3 [T I[N |[Y [N [P [N [Y [N |[Y [I [P [COV
L3R |52 |[0010 |LFE RSK 1970-01 [1990-10 [C [3 [T IN |[Y [N [P [N [N [N [N [I [P [COV
L3F [53 {0011 |[LFE [FIX 1970-01 [1990-10 [C [3 [T [N [Y [N [P [N [N [N [N [I [P [COV
L4S |61 |0012 |LFE STD 1990-10 O[4 1T INJY NP [P [Y INI|Y I [P [COV
L4R |62 |0013 |LFE RSK 1990-10 O[4 1T IN|Y NP [P N[NNI [P [COV
L4F [63 [0014 |[LFE [FIX 1990-10 O4 T [N[Y NP [P NN I[N [P [COV
LF 70 |0015 |LFE STD 1999-01 C[5 (T ININ N [R [P [Y [N J|Y I [P [FND
P1 14 10016 [PEN [IMM [1948-01 [1957-01 |[C [1 [1 [N [N [N [R [N [N [N [N [I [P [COV
P2 2410017 [PEN [IMM [1957-01 [1963-07 [C [2 [T [N [N [N [R [N [N [N [N I [P |COV
P3 |34 |0018 |[PEN |[IMM [1963-07 |1970-01 |[C |2 |1 [N [N [N [R [N [N [N [N [I [P |COV
P3D (36 [0019 |[PEN |DEL 1963-07 [1970-01 [C [2 [T [N [N [N [P [N [N [N [N [I [P [COV
P4 [54 10020 [PEN [IMM [1970-07 [1990-10 [C [3 [T [N [N [N [R [N [N [N [N [I [P |COV
P4AD |56 0021 |PEN |DEL 1970-01 [1990-10 [C [3 [T I[N |[Y [N [P [N [N [N [N I [P [COV
P5 |64 0022 |[PEN [IMM [1990-10 O[4 [T ININ|N R [P N[N I[N |I [P [COV
P5D [66 (0023 [PEN [DEL [1990-10 O4 T [N[Y NP [P NN I[N [P [COV
K] 15 {0024 |INV |MAIN [1948-01 {1952-07 |[C |1 |T [N [N [N [R [N [N [N [N [I [P |COV
1G 18 [0025 [INV |[MAIN [1948-01 [1952-07 |C [1 [1 [Y [N [N [R [N [N [Y [N |G [P [COV
12 [2510026 [INV [MAIN [1952-07 [1970-01 [C [2 [T [N [N [N [R [N [N [N [N [I [P |COV
13 55 (0027 [INV [MAIN [1970-01 [1990-10 [C [3 [T [N [N [N [R [N [N [N [N [I [P [COV
13S |57 |[0028 |[INV [SUP 1970-01 [1990-10 [C [3 [T [N [N [N [R [N [N [N [N [I [P [COV
14165 [0029 [INV [MAIN [1990-10 O4 T NN N R [P NN I[N [P [COV
14S |67 |0030 |[INV |SUP 1990-10 O[4 1T |[Y NN R [P NN I[N [P [COV

Figure 23. Project Extricate:

a table summarising insurance product properties

Layout and Typography

Consistency and repetition establish pattern, which is an important aspect
of order[...]. As experienced readers, we have learned to anticipate and
expect pattern.

Suzanne West (West 1990)

In a book on agile documentation, a chapter dealing with layout and
typography had better begin with an explanation. I can almost hear people
exclaim: “What do layout and typography have to do with an agile approach?
Do they even matter?

Yes, they do matter, though in a rather subtle way. Most readers are blissfully
unaware of what it is that makes a document look good. There are factors
that determine the quality of the layout, and the quality of the layout has an
influence on the legibility of a document that is not to be ignored.

So what is the connection to being agile? Agile documentation suggests that
you focus on documents that are necessary, and make sure that the necessary
documents become high-quality documents. High legibility is one aspect of
that quality.

You may argue that project documents don’t require the same quality stand-
ards with respect to layout as do printed books, and this is of course correct.
In an agile project documents cannot go through a lengthy layout process:
other things are more important. Our goal must be to find a qguick and easy
way to produce documents with a high standard of legibility.

94

Layout and Typography

Let me support the significance of layout and typography with the following
two points.

e Typography is an old art. The art of printing books dates back many
centuries, gaining momentum in 1454, when Johannes Gutenberg
invented printing using reusable letter forms. Typesetting rules have been
developed and have matured since then. People wouldn’t have spent so
much time on typography if it didn’t have any effect on legibility.

e Research underpins the significance of layout and typography. Miles
Tinker conducted endless experiments in the middle of the last century
and proved that bad typography slows down reading significantly. His
findings are summarised in his book on the ZLegibility of Print (Tinker
1963). A study done in 2000 revealed that typography had an influence
on the quality of proposals to a major funding agency and the percentage
of successful proposals (Berleant 2000).

Still unconvinced? Look at the pages shown in Figure 24 and Figure 25. Both
pages contain the same material. Which would you rather read? All aesthetics
aside, which page do you think allows you to receive information more
quickly and more reliably?

I think it's clear that the second page is much more legible than the first, and
that layout and typography is what makes the difference between the two.

Fortunately, the road ahead of us on our way to a layout like that of Figure 25
isn’t too rough — it requires less work than one might at first think. We can
obtain a reasonably good layout for our project documents with quite little
effort, and this is what the patterns in this chapter are about.

There are three reasons why little effort is needed to significantly improve the
document layout:

1. A fairly small set of patterns can do a lot of good. The 80-20 rule applies:
80 percent of the advantages typography offers can be obtained by using
about 20 percent of all typographical techniques available. Following an
agile attitude, let’s focus on the patterns that describe these techniques.

2. The patterns in this chapter can easily be implemented on most word proc-
€SSOors.

3. Not everyone in the team needs to be concerned with these patterns. It is
highly recommended that a project, or even an organisation, use DOCUMENT

95

-20-

4.2.1 ADDING AN OBJECT

addObject O
IN objectType : DT-TYPE
IN fullkey : DT-KEY
IN entryDate - DT-DATE
IN processNumber - DT-NR

Preconditions:
none

Function:

The data access layer provides an initial version of a new object according to the entry
date and the process number passed on to it as parameters. Upon initialisation, the new
object may still be incomplete; components can be added successively. The new
object’s state is “pending”.

The key that is passed to this function as an input parameter is a logical key, which may

or ma?/ not carry application-specific information. It is normally generated by a specific
module that all applications can use.

In case the specified key has been used previously for adding an object, an error code is
returned.

The process number is generated by the workflow management system.

Return Codes:

database 1s not available.

4.2.2 DELETING AN OBJECT

deleteObject ()

IN objectType : DT-TYPW
IN fullKey : DT-KEY
IN deletionDate : DT-DATE
IN processNumber : DT-NR

Preconditions:
the object has previously been added

Function:

Figure 24. Page layout: one variation

Layout and Typography

4.2.1 Adding an object

addObject O

IN objectType

IN fullKey

IN entryDate

IN processNumber

Preconditions:
none

Function:

The data access layer provides an initial version of a new object
according to the entry date and the process number passed on to
it as parameters. Upon initialisation, the new object may still be
incomplete; components can be added successively. The new
object’s state is “pending”.

The key that is passed to this function as an input parameter is a logical
key, which may or may not carry application-specific information. It is
normally generated by a specific module that all applications can use.

In case the specified key has been used previously for adding an object,

an error code is returned.

-20-

: DT-TYPE
: DT-KEY

: DT-DATE
: DT-NR

The process number is generated by the workflow management system.

Return Codes:

RC-0OK The object has been entered and initialised
correctly.

RC-KEY The specified logical key isn"t available.

RC-DB The database is not available.

RC-PARAMETER |The entry date or the process number are illegal.

4.2.2 Deleting an object

deleteObject O

IN objectType

IN fullKey

IN deletionDate
IN processNumber

: DT-TYPE
: DT-KEY
- DT-DATE
: DT-NR

Figure 25. Page layout: another variation

97

TEMPLATES to form the basis of all project documents. Once these templates
have been designed according to the patterns on layout and typography,
the project documents inherit the attractive layout of the templates. Individ-
ual authors find elementary typesetting rules already established before
they begin to work on a document. All it then takes is a little discipline in
using the features that the word processor offers.

Figure 26 gives an overview of the patterns from which the legibility of your
project documents can profit. Reading your documents will be significantly
more comfortable. The patterns ensure that the layout is adequate, if not
perfect.

TWO ALPHABETS

PER LINE corresponds with
allows for

TEXT ON 50% OF 120% LINE
A PAGE requires SPACING

uses

TWO TYPEFACES R
can be
enriched by

can form combines
v well with

CAREFUL USE OF
TYPE VARIATIONS

CAREFUL RULING
COHERENT PAGES | —————p» ADJACENT

require

PLACEMENT AND SHADING

Figure 26. Patterns for layout and typography

98

Layout and Typography

Problem

Forces

There are, of course, many more typographical rules, and interested readers
are invited to consult the rich body of literature on typography for more
guidelines (Gulbins Kahrmann 1992, Tinker 1963, West 1990). But to obtain
project documents that are reasonably well designed and which offer a high
degree of legibility, the patterns in this chapter, combined with a good dose
of common sense, will suffice.

One final introductory word: the patterns in this chapter apply to documents
that are going to be printed, but they don’t necessarily apply to on-line docu-
mentation. We'll have a discussion about what READER-FRIENDLY MEDIA are in
Chapter 4, which raises the issue of print vs. on-line document delivery. Some
guidelines for setting up on-line documents are given there.

Text on 50% of a Page

How much space on a page should be devoted to text?

The page layout should be aesthetic if it is to be pleasing to readers. The
aesthetics of the page geometry are largely influenced by the size of the so-
called ‘live area’ — the area in which the main text is placed, excluding
headers or footers. The live area of a page is surrounded by the margins.
Almost all readers prefer pages with ample margins to pages that appear to
be crowded with text (West 1990).

Margins are not necessary for aesthetic reasons alone, but also for functional
reasons. The inner margin (also called the ‘gutter’) must allow enough space
for binding. All margins must allow enough space for readers to hold a page
without obscuring any text (West 1990).

However, margins that are excessively large aren’t appropriate either. Printing
a document would require more paper than necessary, which is undesirable
for economical as well as ecological reasons.

Apart from the size of the live area, its position influences a document’s legi-
bility. The optical centre of a page is the place where the reader’s eye first
focuses. The optical centre is slightly above the geometric centre of the page.
The live area should therefore be slightly closer to the top than to the bottom
of a page. In other words, the optimum margin size is smaller for the top
margin than for the bottom margin (Conover 1985, West 1990).

Text on 50% of a Page 99

Solution

About 50% of the page should be devoted to text.

The rest of the page is reserved for white space, headers and footers. This is
a generally accepted rule among layout experts (Conover 1985, Tinker 1963,
West 1990).

To put the centre of the text near the optical centre, the text should be posi-
tioned nearer to the top than to the bottom of the page. A ratio of 2:3:4:5
between the sizes of the inner, top, outer and bottom margins is often recom-
mended as it allows the margin size to increase from inner to top to outer to
bottom (Gulbins Kahrmann 1992).

Figure 27. 50% text on a page

Some documents don’t differentiate between left pages and right pages, so
that the left and right margins are the same size. In this case, the margin ratio
can be adjusted to, for example, 3:3:3:5. The bottom margin should still be
larger than the top margin, however.

To obtain a pleasing page geometry, you should also take the following into
account:

e Because headers and footers are not part of the live area of a page, they
don’t count when the 50% rule is implemented.

e The minimum gutter margin should be 2 c¢m, to allow for binding.

100

Layout and Typography

Discussion

Problem

Forces

e A live area covering slightly more than 50% of the page is acceptable
when not all of the live area is actually covered by text, for example due
to the use of side-heads that leave enough white space.®

A standard A4 page has a size of 21 x 29.7 cm. Here margins of 2, 3, 4 and 5
cm meet the rule, leaving a live area of 15 x 21.7 cm. The live area space is
325.5 square cm, which is 52% of the A4 page.

Similar margin sizes can be used for the US letter format (size 21.59 x 27.94
cm), which yields a live area of approximately 15.6 x 20 cm — an area of 312
square cm (52% of the US letter page).

The 50% rule is surprising to many people at first. When people look at a
printed page, they often overestimate the amount of space devoted to the live
area and underestimate the amount of space devoted to margins. Average
readers estimate that the live area covers about 75% of a page, when it in fact
covers only 50% (Tinker 1963). In other words, 50% text is more than it
seems.

There is a limit on the line width that states that there should be about TwO
ALPHABETS PER LINE, as shown in Figure 28. If more than two and a half lower-
case alphabets fit on one line, the line is too wide. Once you have defined
the live area of your page, you should check whether a line across it meets
this rule, and otherwise employ techniques to reduce the line width. Having
two columns per page is one option, using side-heads is another, using a
larger font size is a third.

To give the live area a regular appearance and even texture, normally no
more than TWO TYPEFACES should be used, and lines should be separated by
120% LINE SPACING.

Two Alphabets per Line
What is the optimum line width?

When reading, the reader’s eyes travel along the line from left to right.” The
eyes make small, jerky movements called ‘saccades’, between which there are
periods called ‘fixations’. Fixations last for about a quarter of a second, while

6. Side-heads are headings that are placed to the left or to the right of the actual paragraphs, as is done
in this book for the second-level headings.

Two Alphabets per Line 101

Solution

saccades are only 0.01 seconds long. It is during the fixations that information
is picked up (Crowder 1982).

A line break interrupts the eye movement along the line. The reader’s eyes
have to shift back to the beginning of the next line. Short lines increase the
number of line breaks. If lines are too short, the reader’s eyes have to find the
beginning of the next line more often than necessary, which breaks the flow
of reading and makes reading tiresome (Conover 1985, Gulbins Kahrmann

1992).

On the other hand, lines that are too long also make reading difficult and tire-
some. Long lines make it difficult for the reader’s eyes to follow a line and to
find the beginning of the next line once a line break occurs (Conover 1985,
Gulbins Kahrmann 1992).

Moreover, the optimum line width depends on the typeface and type size
used. Type set in larger sizes requires longer line widths (Conover 1985,
Gulbins Kahrmann 1992).

Approximately two lowercase alphabets of the standard typeface
should fit on one line.

As a rule of thumb, the lower limit is near one and a half lowercase alpha-
bets, while the upper limit lies near two and a half and at most three
lowercase alphabets (Gulbins Kahrmann 1992).

abcdefghijklmnopqrstuvwxyz abcdefghijklmnopqrstuvwxyz

Figure 28. Two alphabets per line

7. Some languages are not written from left to right, but, for example, from top to bottom. This pattern
and the next do not apply to documents written in such languages.

102

Layout and Typography

Discussion

Problem

Forces

If lines are too long, there are several ways to fix this problem:

e You can choose a larger type size.

e You can make the lines shorter by increasing the margins.

e You can make the lines shorter by using two columns rather than one.
e You can make the lines shorter by using side-heads.

When you choose to optimise the line width, either by increasing the margins
or by using two columns, you should make sure that the page layout
conforms to the TEXT ON 50% OF A PAGE rule.

Justified text can be problematic when the line width is near the lower limit.
Since justification requires that the spacing between words (and sometimes
between characters) be varied, unnaturally long word separations can occur.
It is therefore important to use hyphenation (West 1990). Using ragged right
rather than justification can also be worth considering.

There is also a subtle effect that spacing has on the range of acceptable line
widths. When the standard of 120% LINE SPACING is slightly increased, line
widths a little above two and a half lowercase alphabets can be acceptable.

120% Line Spacing
What is the optimum line spacing?

An even texture is crucial for the legibility of a document (West 1990).
Reasonable spacing between words and lines is a prerequisite for an even
texture. While word spacing is to a large degree determined by the typeface
used, line spacing is not.

If there is too much line spacing, consecutive lines no longer form a unit —
which they should — but instead appear to be separated from each other. This
makes text difficult to read (West 1990).

Line spacing, however, should not be too small either. To explain why, we
need to understand that the line spacing results from adding the type size to
the ‘leading’ — the actual space between lines. A certain amount of leading is
necessary to ensure that the ascenders of one line do not collide with the
descenders of the previous line.8

120% Line Spacing 103

Solution

Discussion

Moreover, the appearance of a typeface is influenced by its x-height.? A type-
face with a relatively small x-height appears to be smaller than its size
suggests, and leaves more natural space between lines, thus reducing the
need for extra leading.

The best line spacing is roughly 120% of the type size.

In other words, 20% leading is normally fine. For standard type sizes such as
10, 11 or 12 point this means that 2-point leading is appropriate.

abcdefgh
m:¢ 100% ¢ 120%

Figure 29. Line spacing

Fortunately, most word processors set the line spacing to about 120% as a
default, and so provide you with the right spacing whatever type size you
use.

In the following cases the spacing may need some fine-tuning:
e Spacing can be decreased for typefaces with a relatively small x-height.
e Spacing can be increased for typefaces with a relatively large x-height.

e Spacing should be increased for long lines.

120% line spacing is appropriate for body text. Headings, however, are an
exception, as they are supposed to make the structure of the text visible. To
help readers perceive the structure of a text, headings should stand out not

8. Anascender is the letter stroke that extends above the x-height of a lowercase character; a descender
is a stroke of a lowercase letter that extends below the x-height.
9. The x-height is the height of the lowercase letter ‘x’.

104

Layout and Typography

Problem

Forces

only by an increased type size, but also by a line spacing that may exceed
120%.

The optimum line width is defined by the TWO ALPHABETS PER LINE pattern.
You can, however, bend this rule a little. If you increase the spacing, lines
that slightly increase the standard line width will still be acceptable. However,
this technique can be applied only to a small extent. If lines contain signifi-
cantly more than two and a half lowercase alphabets, they are inappropriate,
even with increased spacing.

Two Typefaces

How many typefaces are appropriate, and which?

Word processors often offer a large variety of typefaces and type sizes to
choose from whenever authors wish to express the different meanings text
can have, such as headings, emphasis, references or citations.

However, when you look at a document that uses many different typefaces
you’ll notice that the document appears to be chaotic: using a large number
of typefaces is problematic both for aesthetic and for ergonomic reasons.

Moreover, using many different typefaces is completely unnecessary, since
things such as emphasis can very well be expressed with the type variations
available.

But even if we restrict ourselves to using only a small number of typefaces,
which ones should we use? Typefaces can express things such as soundness,
formality, innovation, fashion and so on (Conover 1985). They should there-
fore be chosen in accordance with what they represent. Software project
documents normally aren’t supposed to express fashion or a ‘trendy’ style —
the major requirement is that typefaces be highly legible.

To this end we need to distinguish between serif and sans-serif typefaces.
Serifs are the short lines that cross the ends of the strokes of a printed letter.
As far as body text is concerned, serif typefaces are more legible than sans-
serif typefaces, and should therefore be given preference. However, single
pieces of text printed in a sans-serif typeface stand out from the main text and
can attract the reader’s eye (Gulbins Kahrmann 1992).

Two Typefaces

105

Solution In most cases, two typefaces per document are appropriate — a serif
typeface for the body text and a sans-serif typeface for the headings.

You should also take the following into account:

e There is nothing completely wrong with using only one typeface
throughout an entire document. In this case a serif typeface should be
chosen for legibility reasons. However, a second typeface can improve a
document’s appearance.

e Using more than two typefaces is almost always inappropriate. A possible
exception is the use of a third typeface for code fragments included in a
document. The third typeface should still be used sparingly.

e The type size for body text should be 10 to 12 point, while 14 to 18 point
is appropriate for headings, and up to 24 point for chapter and document
titles.

Example Example

Here Frutiger (12 point) is the sans- Here Helvetica (12 point) is the sans-

serif typeface chosen for the heading. serif typeface chosen for the heading.

The body text is printed in Garamond The body text is printed in Times New

(11 point), which is a serif typeface. Roman (11 point), another serif
typeface.

Figure 30. Different typefaces

There is no general rule to tell you which typefaces you should use, this is
matter of personal taste. The more traditional typefaces such as Times and
Garamond tend to offer a higher legibility than more fashionable typefaces;
therefore they seem more appropriate for the documentation of software
projects.

When you choose different typefaces for body text and headings, these type-
faces should not be too similar, so that they can easily be told apart. Still, they
have to fit together in an aesthetic sense. Typical examples are Times and

106

Layout and Typography

Discussion

Problem

Forces

Helvetica or Garamond and Frutiger (Gulbins Kahrmann 1992), as shown in
Figure 30.

When this pattern speaks of ‘body text’, it means text in normal paragraphs as
well as text used in tables or diagrams (except screen shots, whiteboard
copies, etc.). There is no need to use different typefaces in tables or diagrams
compared with the main text.

Neither is there a need to express emphasis through different typefaces. In
fact, it’s counter-intuitive. You can express all necessary kinds of emphasis by
CAREFUL USE OF TYPE VARIATIONS.

Careful Use of Type Variations

How can parts of a text be emphasised?

You can use type variations to express emphasis, cross-references, etc. When
used this way, different type variations help readers to understand the text,
and in particular to understand the particular role that some words take on.

There is, however, a drawback to the use of type variations. Normal lower-
case words appear in a characteristic shape defined by the ascenders and
descenders of the letters. A characteristic shape is crucial for a word’s legi-
bility. Many type variations don’t feature the characteristic shape as much as a
standard lowercase typeface does, and therefore decrease the legibility.

Let’s take a look at the different type variations in detail. Words printed in
italics still have a characteristic shape. Nonetheless, italics slightly decrease
the legibility of text. Reading text printed in italics takes about 4% more time
than reading the same text printed in a standard lowercase type (Tinker
1963).

Capital letters do not feature a characteristic shape at all. They decrease the
legibility of text quite dramatically. Reading text printed in all capital letters
requires about 12% more time than a normal text (Tinker 1963). Moreover,
‘all caps’ are not appreciated by a vast majority of readers. In addition, all
caps break the flow of a text.

The same is true for underlines. Underlines used to be a common technique

on typewriters, where no other style elements were available. But both
underlines and all capital letters are hardly ever used in printed books.

Careful Use of Type Variations 107

Solution

Discussion

Type variations can be used for emphasis, but they should be used with
care.

The following type variations are considered fine style elements (Conover

1985):
e Boldface can be used to emphasise single paragraphs.
e Ttalics are commonly used to place emphasis on a particular word.

e Small caps are often used to represent cross-references or people’s
names. !0

All capital letters and underlines decrease the legibility to such an extent that
they should be avoided altogether.

shape| [shape] |SHAPE

Figure 31. Shapes of different type styles

You can use special font styles when you organise a document as STRUCTURED
INFORMATION. For example, boldface is often used to let THUMBNAIL SKETCHES
stand out from the remaining text. Italics and small caps can be useful for
references to other documents.

Using underlines is fairly common for hyperlinks in on-line documents. This
may be justified, but printed documents are a different matter. Since this
chapter is about printed documents, however, underlines are not
recommended.

10. In contrast to all caps, small caps clearly have a less bulky feel, so their occasional use is fine. In ad-
dition, small caps can be set with a leading capital, in which case they offer some characteristic
shape.

108

Layout and Typography

Problem

Forces

Solution

Careful Ruling and Shading

How can table cells be separated?

Documents created in software projects often include tables. To easily access
the information in a table, readers must be able to recognise the table cells at
first glance. Moreover, the table’s heading must be immediately clear.

There are various ways to achieve these goals: the use of white space, ruling
and shading.

The use of white space between the table cells, however, is problematic,
since quite a bit of white space is necessary if the separation of cells is to be
clear, in particular when table cells extend over more than one line. If you
use white space for separating table cells, you lose space that otherwise you
could use for text.

Ruling is a more effective technique for separating table cells. However,
ruling is fine only as long as the lines surrounding the table cells have the
right thickness. Lines that are too thin are difficult to recognise, while lines
that are too thick aren’t aesthetically pleasing and irritate the reader. Ideally,
lines separating table cells should have about the same thickness as the letters
of the typeface chosen for body text.

Finally, shading can provide structure to a table, but must not lead to a poor
contrast between the text and its background.

Careful ruling and shading leads to highly legible tables.
Technically, careful ruling and shading means the following:

e Lines surrounding table cells have the right thickness if they are about as
thick as the uppercase letter I (Gulbins Kahrmann 1992).

e Greyscales ranging from 10% to 20% guarantee good contrast and high
legibility.

You can combine both techniques, for example by using ruling to separate
table cells and shading to identify the table heading.

Adjacent Placement 109

Discussion

Problem

Forces

Task Deadline
Work package 1 2003-Jul-20
Work package 2 2003-Aug-31
Work package 3 2003-Sep-10
Work package 4 2003-Oct-15

Figure 32. Table ruling and shading

Obviously, careful ruling and shading is useful in order to achieve UNAMBIG-
UOUS TABLES, but is in fact applicable to the presentation of STRUCTURED
INFORMATION in general.

The CAREFUL USE OF TYPE VARIATIONS can complement ruling and shading, for
example through the use of boldface in the table heading.

Adjacent Placement

How can tables and diagrams be integrated into text?

The placement of tables and diagrams can be difficult. The ideal place for a
table or diagram is directly below the line where it is referenced, as this is
where the reader first looks for it. However, the larger a table or diagram is,
the smaller is the chance that it will fit in the ideal place. There might not be
enough room left on the page.

As far as tables are concerned, the problem can be solved by allowing page
breaks to be inserted within a table. This, however, does not work for
diagrams.

The obvious idea is to insert a page break between the paragraph and the
diagram if the diagram doesn’t fit on the current page, which causes the
diagram to appear on the next page. This strategy, however, is fine only if no
large empty space occurs at the bottom of the current page.

110

Layout and Typography

Solution

Discussion

Sometimes, however, a large empty space does occur. Especially large
diagrams can cause half-empty pages, which is clearly undesirable. In such a
case, we need to decouple the diagram from the paragraph in which it is
referenced and to which it would normally be anchored. We may need to
place the diagram anywhere near the paragraph, perhaps below, perhaps
above, perhaps on the next page.

The consequence is that the paragraph does not immediately precede the
diagram and other text appears in between. This is acceptable, but requires
that all diagrams be numbered and be referred to by their numbers, rather
than by an expression like ‘the following diagram’. The same applies to tables
if page breaks within tables are to be avoided.

Even the strategy of decoupling large diagrams or tables from the referencing
text might not be sufficient. If a document contains a large number of
diagrams, there might not be enough text to fill the gaps left by the diagrams.

Diagrams and tables are best placed close to the text from which they
are referenced.

The following techniques can help you to put tables and diagrams as near to
the referencing paragraph as possible without creating awkward empty
spaces on the page:

e Small tables and diagrams can often be integrated into the text flow, and
appear directly below the paragraph in which they are referenced.

e Larger diagrams must be allowed to ‘float’, that is, they must be required
to appear anywhere near the paragraph from where they are referenced,
but not necessarily directly below that paragraph. Text is allowed to fill
the gaps.

e TLarger tables, from 4 rows onwards, should allow for page breaks.

e Diagrams must be given numbers and must be referred to by their
numbers.

e If there are too many diagrams for smooth integration into the text flow,
moving at least some of them into an appendix can be preferable, as this
may allow the text flow to remain intact. (Half-empty pages are much
more acceptable in an appendix than in the main text.)

Most word processors allow the use of anchored frames in which a diagram
can be placed. Such an anchored frame is automatically moved with the para-

Coherent Pages

111

Problem

Forces

Solution

graph to which it is anchored. Good systems also allow anchored frames to
be defined as floating, which means that a frame is kept near the paragraph,
but may be placed on the next page if this allows better text flow on the
current page. If it is available, choose this option for large diagrams.

Allowing page breaks in tables makes the placement of tables easier. Still,
page breaks in tables should only be allowed as long as they don’t sacrifice
COHERENT PAGES.

Coherent Pages

What options exist to avoid awkward pagination that tears related
information apart?

Page breaks are a perfectly normal thing, yet some page breaks seem to be
acceptable, while others don’t. Page breaks are particularly awkward when
they break the flow unnecessarily and force readers to jump back and forth.

This is the case whenever a page break makes a small snippet of information
appear on one page and related material appear on the next or the previous
page. One example is a section heading that appears on the bottom of a page
while the first paragraph of that section appears on the next page. Others are
‘widow’ or ‘orphan’ lines. A widow is the last line of a paragraph that appears
isolated at the top of a page, while an orphan is the first line of a paragraph
that appears isolated at the bottom of a page.

Such page breaks are irritating and can make it difficult for readers to grasp
an idea or line of argument, especially for readers who browse a document
quickly.

The reading flow is supported by coherent pages — pages that make
sure a minimum of related information appears on either side of a page
break.

You can achieve coherent pages by using the following rules:

e No headings should appear at the bottom of a page. A heading is always
followed by at least one paragraph that appears on the same page.

e There are no widow or orphan lines. At least two lines of a paragraph
must be kept together on each page.

112

Layout and Typography

Discussion

e Small tables should appear on one page. If a page break must occur
within a table, the widow line rule applies: at least two table rows must
be kept together on each page.

e There are no page breaks within table cells.

All these rules can be implemented with standard word processors fairly
easily. You need to disallow widow and orphan lines for all paragraph types
and to force all paragraph types for headings to be kept with any paragraph
that follows. You also have to disallow page breaks for the paragraph types
used in table cells — which of course requires that distinct paragraph types be
used in table cells. Only the page breaks within tables (as opposed to within
table cells) might require manual intervention.

Coherent pages can take on a slightly different form in the context of STRUC-
TURED INFORMATION. You can decide not to allow page breaks within building
blocks. If you look back at Figure 12 on page 69, you see a page that consists
of a heading and four blocks. Such a structure profits from not being inter-
rupted by page breaks. However, if the building blocks become large, you
must allow page breaks, otherwise half-empty pages would be the conse-
quence — a contradiction to having TEXT ON 50% OF A PAGE.

Experience Reports

There are myriads of examples of the typographical patterns described in this
chapter. You can find instances of these patterns in almost every printed book
— the patterns are common practice. If you're interested in seeing a large
variety of applications of these patterns, a look at a couple of printed books
will do.

The following figures, however, show that the patterns can also be used in
project documentation easily. Figure 33 shows the page we already know
from the beginning of this chapter, taken from the usage concept of Project
Persistor. Figure 34 shows a page from the requirements document of Project
Contentis. Annotations point out where the patterns have been applied, and
how.!!

11.Don’t be surprised by the relatively small font in these examples. The original documents were A4
and had to be shrunk to fit the page size of this book. The original font did allow for comfortable
reading.

Experience Reports 113

good
pagination
|

-20-

4.2.1 Adding an object

addObject

\I reasonable

use of

,I boldface

IN objectType

IN fullKey

IN entryDate

IN processNumber

Preconditions:
none
one font for
Function: headings, one
The data access layer provides an initial version of a new object for text, one
according to the entry date and the process number passed on to for code

it as parameters. Upon initialisation, the new object may still be

incomplete; components can be added successively. The new = /I—
object’s state is “pending”.

The key that is passed to this function as an input parameter is a logical
key, which may or may not carry application-specific information. It is
normally generated by a specific module that all applications can use.

In case the specified key has been used previously for adding an object,

good spacing

an error code is returned. i i
T and line width

The process number is generated by the workflow management system.

Return Codes:

RC-0OK The object has been entered and initialised
correctly.
RC-KEY The specified logical key isn"t available. —— | good table

placement
RC-DB The database is not available.

/

RC-PARAMETER |The entry date or the process number are illegal. \
4.2.2 Deleting an object \I appropriate
ruling and
deleteObject) — shading
IN objectType : DT-TYPE _|—
IN fullKey : DT-KEY
IN deletionDate : DT-DATE

IN processNumber : DT-NR
| enough white
"_l space

Figure 33. Project Persistor: good layout and typography

114

Layout and Typography

-20 -

good
pagination

4.2 Newsletter Deployment

Distributing a newsletter consists of several steps which w
the web content management system. These steps are:

1. Meta information
Meta information includes the newsletter’s author, headline, topic and release
date. The CMS offers a web interface for users to provide this information. In
addition, the system provides the number and the date of recording. This meta
information is necessary for improved search capabilities.

2. Main text

The editor in charge writes the text for the newsletter using the web editor the
content management system offers. Formatting tools are available that allow
the editor to choose font size and font styles.

3. Attachments

Most newsletters come with one or more attachments, such asm -

pages, or presentations. The editor adds these attachments to the newsletter
using a function the content management system provides.

4. Document Generation
Once all elements for the news letter have been assembled, the editor can click
a button, and so choose a function that generates a PDF file for the newsletter,
and then invokes the workflow module for the review process.

5. Review
The head-of-department receives a message that the newsletter is ready foy
review, and can either accept, change or reject the newsletter. Upo,
acceptance, the newsletter is copied into the content management syste
production environment, and is thus available within the extranet.

The following diagram summarises this process, and makes clear that the edi
free to perform steps 1, 2 and 3 in arbitrary order.

4/¢\>

Meta Information Main Text Attachments |

\ | Document Generation | /

| Reviews |

Fig. 5: Deployment process for newsletters

|

\I one font for

text, one for
headings and
diagrams

spacing and
line width

T meeting the

rules

well-placed
diagram

white space
leaving

enough room
for the
diagram

| italics for

\| captions

Figure 34. Project Contentis: another example of layout and typography

Experience Reports 115

Although all example documents feature almost all patterns from this chapter,
they do not have the same layout. You can see that the typographical patterns
presented leave ample room for creativity — or for following layout guidelines
that hold for an organisation or a project. The patterns provide a framework
for increasing the legibility and the aesthetics of printed documents, but they
leave a lot of their implementation open. You can apply the typographical
patterns in many different and creative ways.

Infrastructure and
Technical Organisation

Managing documentation and managing software is essentially the same
thing.

Anonymous

So far this book has dealt with the documents that we need in our software
projects and what they should look like. We have talked about their contents,
their structure and their layout. This chapter looks at the tools and techniques
that we can use to obtain such documents and to make them available to a
project team. Among other things, documents have to be processed and
printed, stored and retrieved.

To summarise, this chapter brings up the issue of what the documentation
infrastructure should look like and how it can be organised.

I'd like to begin with an example that demonstrates why organising the docu-
mentation infrastructure is necessary. Look at the file system structure
illustrated in Figure 35, which I found in a project a while ago.

In this project, nobody was able to find the documents they were looking for.
The directories overlap, related documents don’t seem to be grouped into
directories, copies of documents have been scattered over different directo-
ries, and symbolic links complete the confusion. It's a complete mess — and
Figure 35 shows just an excerpt. Yet this is a scenario I found in a real-world
project.

Team members in this project put the documents they had written more or
less anywhere. More than once someone assumed a document did not exist,
when in fact it was just hidden in the chaos. Redundant versions of docu-

118 Infrastructure and Technical Organisation

= 1) Controlling
@ budget
I Propasal 2001-01-16
= 1) Design
@ Architecture
|ﬂ el
= |2y Design Documentation
@.ﬁ.rchitecture Descripkion 6,3, 2001
@ Board Presentation
@ Copy of Presentation
'@Design
'@Design 0.9
'@Design 2.0
T\ Design 6.3.2001
'@Design (outdated wersion, don't know if this is still needed)
'@Speciﬁcatinn
|ﬂ swskem inkegration
= 1) Documents
'@.ﬁ.rchitecture Handbook,
'@Develnpment Handbook,
THTHML Guidelines
= 1 Inkernet
@ el
= 1) Management
'@new proposal
@pruject proposal
8] Proposal 2001-01-16
|ﬂ Stage 3 Proposal caloulation sheet
'@Stage 4 proposal
@ Architecture
@ Archibecture
@Architecture Description &,3.2001 . doc
@.ﬁ.rchitecture.duc
@Design 2.0.doc
@ Syskem Design and Architecture

Figure 35. Poorly organised project documentation

119

implemented with

READER-

CODE-COMMENT < rely on
FRIENDLY MEDIA

PROXIMITY complement

SEPARATION OF
PROCESSING AND

/

PRINTING

requires can rely on
require
require
SEPARATION OF

NOTIFICATION yields CONTENTS AND
UPON UPDATE /

LAYOUT

can

/ SINGLE SOURCE
refer can help \

to

anhn AND MULTIPLE
maintain the

refer to TARGETS
documents DOCUMENT
v ﬁ(LANDSCAPE

can help

is often maintain the

storedin
a

ANNOTATED
CHANGES

IMPORT BY
REFERENCE

DOCUMENT
ARCHIVE

must be

affects

can be
represented
P b undergoes
y a
v can be backed
up with a
FEW TOOLS
REORGANISATION
WIKI
undergoes UPON REQUEST

Figure 36. Patterns for infrastructure and technical organisation

require
DOCUMENT is a precondition
refers to - ' o
documents TEMPLATES
in the reside in

120

Infrastructure and Technical Organisation

Problem

Forces

ments were kept, inconsistencies occurred and outdated versions were the
source of much confusion.

We certainly want to avoid a scenario like this, and I think it’s clear from this
example that a little organisation is necessary. But how much organisation do
we need? After all, over-organisation is the opposite of an agile approach.

A follow-up question deals with tools. To which extent are tools helpful as far
as producing and maintaining the documentation is concerned? There is
much value in tools if they make our jobs easier, but an over-emphasis on
tools isn’t agile either.

These questions demarcate the area that the patterns in this chapter address.
The patterns deal with the technical organisation of all the documents
produced in a project, from just a handful of short papers to the comprehen-
sive documentation found in larger projects or projects with a higher
criticality. Figure 36 gives an overview.

The patterns cannot provide prefabricated solutions to all problems associ-
ated with the technical organisation of project documents — project
documentation can take on too many different forms for off-the-shelf solu-
tions to be possible. Instead, these patterns describe the principles that
underlie an agile approach to the creation and the maintenance of project
documents and the management of the relationships between them.

Document Landscape

How can team members get a good overview of what documentation
exists in a project?

Documentation, when it is poorly organised, will ultimately fail to serve its
overall purpose of making project expertise available to other team members
and to future projects. There’s no point in producing documents if potential
readers don’t know that they exist. On a more technical level, organising
project documentation must serve two purposes: authors among the team
members must be told how to integrate new documents into the existing
documentation, and readers must be told where to look for specific
documents.

What does such an organisation look like? To this end, it is helpful to
remember that project documents are often connected by various kinds of

Document Landscape 121

Solution

relationships, and to examine how humans organise related items in their
minds.

Cognitive psychology tells us that humans can represent sets of related items
as mental images, or landscapes in our minds. In his book How The Mind
Works, Steven Pinker explains that the human brain is well trained to recog-
nise objects by their shapes, and that complex objects create a reference
frame by which their parts can be located (Pinker 1997).

This suggests that a good way to represent the set of documents is some kind
of landscape — but which? We will not only imagine this landscape, but when
we browse the documentation, we will, in a way, navigate through it. Let’s
therefore take a look at hypertexts.

Experiences with hypertexts suggest that linked networks are relatively easy
to follow if they span a tree (Botafogo Rivlin Shneiderman 1992) — a tree
represents a balance between structure and comprehensibility. Apparently
most users prefer a broad tree to a narrow one: in most cases, a depth of 3 is
sufficient (Horton 1994). Some studies suggest that hypertexts need not be
exact trees, as short-cuts or multiple entry points seem to be fine (Furnas

Zacks 1994).

The project documentation can be represented as a kind of landscape
that team members can use as a mental map when they retrieve or add
information. A document landscape that roughly forms a tree suits
human intuition best.

Ideally, the document landscape follows the project structure. Figure 37
shows an example. Documents are grouped if they are closely related. This
landscape presents an intuitive way of representing the project document-
ation. It isn’t static, though, but evolves as the project goes on.

There are various ways in which you can implement a document landscape:

e The easiest way is to use file system directories and subdirectories. Associ-
ating directories with topics leads to an easy but efficient organisation, as
long as there are no overlaps caused by orthogonal topics.

e In addition, you can use a diagram that visualises the document landscape
(like the one in Figure 37) and include that diagram into an introductory
document. Such a document describes the project and explains what
other documents exist, their purpose and how they can be obtained.

122 Infrastructure and Technical Organisation
System
overview
Requirement | — | | - Design
specification overview
Testing ‘
requirements
Test cases | — —_—
— — Module
specifications
Figure 37. A document landscape
e You can put the document landscape on-line with hyperlinks acting as
pathways to the actual documents, allowing users to actually travel
through the document landscape.
Discussion Which technique should be preferred? Lurking behind this question is the

desire to use READER-FRIENDLY MEDIA when presenting information. Due to its
high degree of referentiality, the document landscape is often best presented
on-line. If you give all team members read and write access, the document
landscape amounts to a project Wikl. Whether an on-line presentation is the
medium of choice ultimately depends on the typical scenario in which the
TARGET READERS will use the document landscape. A crucial question to ask
here is whether all members of the project team have access to an intranet by
which they can obtain the individual documents.

If the document landscape is indeed put on-line, should it be enhanced with
a search engine? In large projects this can be worth considering. The useful-
ness of a search engine is generally limited, though, since search engines
suffer from a trade-off between recall and precision. Recall and precision

Document Archive 123

Problem

Forces

typically add up to 100 percent (Salton 1989)!2: 50 percent recall and 50
percent precision can be considered