Jutta Eckstein
Hubert Baumeister (Eds.)

Extreme Programming
and Agile Processes
in Software Engineering

5th International Conference, XP 2004
Garmisch-Partenkirchen, Germany, June 2004
Proceedings

LNCS 3092

#4): Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA
Moni Naor
Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz
University of Bern, Switzerland
C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

MosheY. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3092

Springer
Berlin
Heidelberg
New York
Hong Kong
London

Milan

Paris

Tokyo

Jutta Eckstein Hubert Baumeister (Eds.)

Extreme Programming
and Agile Processes
in Software Engineering

5th International Conference, XP 2004
Garmisch-Partenkirchen, Germany, June 6-10,2004
Proceedings

Springer

eBook ISBN: 3-540-24853-6
Print ISBN: 3-540-22137-9

©2005 Springer Science + Business Media, Inc.
Print ©2004 Springer-Verlag
Berlin Heidelberg

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

Preface

Software development is being revolutionized. The heavy-weight processes of
the 1980s and 1990s are being replaced by light-weight, so called agile processes.
Agile processes move the focus of software development back to what really
matters: running software. This is only made possible by accepting that software
development is a creative job done by, with, and for individual human beings. For
this reason, agile software development encourages interaction, communication,
and fun.

This was the focus of the Fifth International Conference on Extreme Pro-
gramming and Agile Processes in Software Engineering which took place between
June 6 and June 10, 2004 at the conference center in Garmisch-Partenkirchen at
the foot of the Bavarian Alps near Munich, Germany. In this way the conference
provided a unique forum for industry and academic professionals to discuss their
needs and ideas for incorporating Extreme Programming and Agile Methodo-
logies into their professional life under consideration of the human factor. We
celebrated this year’s conference by reflecting on what we had achieved in the
last half decade and we also focused on the challenges we will face in the near
future.

The focus of the whole conference was on learning and interaction. We
brought practitioners together in different sessions to discuss their experien-
ces in solving software problems. XP 2004 facilitated the swapping of ideas in
a number of ways, including featured talks by professionals on the cutting edge
of extreme programming and agile processes, technical presentations, activity
sessions, panels, posters, code camps, workshops, tutorials, and other opportu-
nities to exchange and elaborate on new findings. XP 2004 also featured a PhD
symposium for PhD students and a trainer and educator track for everybody
with a vested interest in training and education.

This volume is divided into several topical sections. First you will find full
papers, then the abstracts of the invited talks, followed by the abstracts of the
posters and demonstrations. Then you will find the papers of the trainers’ and
educators’ track, right before the abstracts of the PhD symposium papers. Next,
all accepted workshops are presented, followed by the panels and the activities
to conclude the book.

The papers went through a rigorous reviewing process. Each paper was
reviewed by at least three program committee members and was discussed ca-
refully among the program committee members. Of 69 papers submitted, only
23 were accepted as full papers. These papers were grouped into six categories,
focusing on the following themes:

— Acceptance Testing: These papers focus on different ways of dealing with the
problem of creating acceptance tests. Most of them suggest a framework that
supports the customer as well as the developer to ensure the functionality
of the system.

VI Preface

— Scalability Issues: This section collects all the papers dealing with agile de-
velopment in a larger setting. Some of them consider the aspect of dispersed
development, others the issues that arise when outsourcing parts of the de-
velopment, and others discuss the problems and solutions of diverse agile
practices, such as continuous integration, in a large team.

— New Insights: These papers present various new ideas in the field of agile
development. Some suggest the use of agile development in a different field
such as open source development and others explore new techniques such as
agile specification driven development.

— Refactoring: This section contains papers discussing problems and solutions
within the practice of refactoring. Large refactorings is one topic, whereas
refactoring in a legacy system is another one.

— Social Aspects: All papers focusing on social aspects are collected in this
section. The characteristics of XP teams and different roles in agile teams
are one focus, employee satisfaction is another.

— Practitioner Reports: Several authors report on their experiences with agile
development. You will find papers about the influence of user participation in
agile development, the loss and gain with adapting the agile process during
development, as well as agile project controlling.

Next you will find the abstracts of the invited talks, right before we pre-
sent the posters and demonstrations. Posters and demonstrations are ideal for
presenting preliminary research results, experience reports, late-breaking deve-
lopments, or for giving an introduction to interesting, innovative work.

Then you will find the papers and posters of the trainers’ and educators’
track. This track was aimed at industry and academic professionals who are
interested in teaching and learning extreme programming and agile processes.
Professionals from academia and industry were invited to discuss their needs
and ideas for integrating extreme programming and agile processes into training
plans and courses.

The next section presents the abstracts of the PhD symposium papers. In the
symposium, students presented and discussed their research objectives, methods,
and (preliminary) results.

After this, all accepted workshops are presented. The XP 2004 workshop
program provided a forum for groups of participants to exchange opinions and to
enhance community knowledge about research topics and real-life applications of
agile processes. The workshops also provided the opportunity for representatives
of the technical community to coordinate efforts and to establish collective plans
of action.

In the last section you will find the descriptions of the activities and the
panels. Panels and activity-sessions were lively, participatory, educational, and
entertaining. They offered an interactive opportunity to share perspectives, de-
bate opinions, and communicate best-practices.

These proceedings contain conference versions of the papers, posters, demon-
strations, and panel position statements as well as the papers of the trainer and
educator track and the abstracts of the PhD symposium. Besides a collection

Preface VI

of ideas and experiences, they represent an aspect of collective learning and
understanding within a community of people who came together in Garmisch-
Partenkirchen for five days in June 2004.

We would like to thank everybody who contributed to XP 2004; the authors,
the workshop and activity leaders, the tutorial speakers, the panelists, those
who served on the various committees, our sponsors, those who offered their
experience of running previous XP conferences, the staff of the conference center
in Garmisch-Partenkirchen and, last but not least, the participants.

April 2004 Jutta Eckstein
Hubert Baumeister

This page intentionally left blank

Organization

XP 2004 is organized by Software und Support Verlag in cooperation with the
Institut fiir Informatik of the Ludwig-Maximilians-Unversitit Miinchen.

Executive Committee

General Chair:

Program Chair:
Academic Chair:

Tutorial Chair:
Workshop Chair:

Panels and Activities:
Poster Chair:

Educators Track Chairs:
PhD Symposium Chairs:
Chair of Social Activities:

Program Committee

Ann Anderson (USA)
Barbara Russo (Italy)
Bernhard Rumpe (Germany)
Charles Poole (USA)

Daniel Karlstrom (Sweden)
David Hussman (USA)
Diana Larsen (USA)

Dierk Konig (Switzerland)
Don Wells (USA)

Erich Gamma (Switzerland)
Frank Westphal (Germany)
Giancarlo Succi (Italy)
Helen Sharp (UK)

Hubert Baumeister (Germany)
Jim Highsmith (USA)

Joe Bergin (USA)

John Favaro (Italy)

José H. Canés Cerdd (Spain)
Joseph Pelrine (Switzerland)
JoshuaKerievsky (USA)
Laurie Williams (USA)
LindaRising (USA)

Martin Fowler (ThoughtWorks Inc., USA)
Jutta Eckstein (Germany)

Hubert Baumeister (LMU Munich, Germany)
Rachel Davies (UK)

Vera Peeters (Belgium)

Steven Fraser and Joshua Kerievsky (USA)
Rachel Reinitz (UK)

Helen Sharp and Mike Holcombe (UK)
Barbara Russo (Italy)

Nicolai Josuttis (Germany)

Marco Abis (Italy)

Martin Fowler (USA)
Martin Lippert (Germany)
Mary Lynn Manns (USA)
Mary Poppendieck (USA)
Michael Hill (USA)
Michele Marchesi (Italy)
Mike Holcombe (UK)
Nicolai Josuttis (Germany)
Paul Griinbacher (Austria)
Rachel Davis (UK)

Rachel Reinitz (USA)
Rick Mugridge (New Zealand)
Ron Jeffries (USA)

Scott W. Ambler (USA)
Sian Hopes (UK)

Steve Freeman (UK)
Steven Fraser (USA)

Till Schiimmer (Germany)
Tim Mackinnon (UK)
Vera Peeters (Belgium)
Ward Cunningham (USA)

This page intentionally left blank

Table of Contents

Acceptance Testing

The Video Store Revisited Yet Again: Adventures in GUI
Acceptance Testing viiiit i e 1
Johan Andersson, Geoff Bache

Test Driving Custom Fit Fixtures 11
Rick Mugridge

Putting a Motor on the Canoo WebTest
Acceptance Testing Framework oo i, 20
Jennitta Andrea

Generative Acceptance Testing for Difficult-to-Test Software............ 29
Jennitta Andrea

Scalability Issues

Moomba — A Collaborative Environment for Supporting Distributed
Extreme Programming in Global Software Development 38
Michael Reeves, Jihan Zhu

When XP Met Outsourcingvvuiininiiininenneenennennns 51
Angela Martin, Robert Biddle, James Noble

Distributed Product Development Using Extreme Programming 60
Charles J. Poole

Scaling Continuous Integrationoviveiviiniuneinnnns 68
R. Owen Rogers

New Insights

Efficient Markets, Efficient Projects, and Predicting the Future 77
John Favaro

Agile Principles and Open Source Software Development:
A Theoretical and Empirical Discussion............o, 85
Stefan Koch

XP Lite Considered Harmful? i i 94
Ben Aveling

Agile Specification-Driven Development 104
Jonathan S. Ostroff, David Makalsky, Richard F. Paige

XII Table of Contents

Refactoring

Towards a Proper Integration of Large Refactorings
in Agile Software Development, 113
Martin Lippert

An Agile Approach to a Legacy Systemccoviiiiiiiniennn.. 123
Chris Stevenson, Andy Pols

Cynical Reengineeringvvuvve ettt 130
Kristoffer Kvam, Daniel Bakkelund, Rodin Lie

Social Issues

The Characteristics of XP Teamsccotvrieirinrtniar e, 139
Hugh Robinson, Helen Sharp

The Oregon Software Development Process............coovviiiiune. 148
Till Schiimmer, Robert Slagter

Roles in Agile Software Development Teams 157
Yael Dubinsky, Orit Hazzan

Empirical Analysis on the Satisfaction of IT Employees Comparing
XP Practices with Other Software Development Methodologies 166
Katiuscia Mannaro, Marco Melis, Michele Marchesi

Practitioner Reports

Agile Processes Enhancing User Participation for Small Providers
of Off-the-Shelf Softwarecvii i 175
Christina Hansson, Yvonne Dittrich, Dave Randall

Self-Adaptability of Agile Software Processes:

A Case Study on Post-iteration Workshopsov vt 184
Outi Salo, Kari Kolehmainen, Pekka Kyllonen, Jani Lothman,
Sanna Salmijarvi, Pekka Abrahamsson

Enterprise Continuous Integration Using Binary Dependencies.......... 194
Mike Roberts

Agile Project Controllingc..vvuriiiiiniiiiiiiniiineenn.. 202
Stefan Roock, Henning Wolf

Invited Talks

Leading Fearless Change—Introducing Agile Approaches and Other
New Ideas into Your Organization.c.c.uueerneeunneinneeen.. 210
Linda Rising, Mary Lynn Manns

Table of Contents

Posters

Automated Generation of Unit Tests for Refactoring

Bartosz Walter, Blazej Pietrzak

XP: Help or Hindrance to Knowledge Management?

Hans Dermot Doran

Test Driven Development and Software Process Improvement in China. . .

Kim Man Lui, Keith C.C. Chan

Project Management and Agile Methodologies: A Survey..............

Michela Dall’Agnol, Alberto Sillitti, Giancarlo Succi

Evaluating the Extreme Programming System — An Empirical Study

Panagiotis Sfetsos, Lefteris Angelis, loannis Stamelos,
Georgios L. Bleris

A Comparison of Software Development Process Experiences

Robert Gittins, Julian Bass, Sian Hope

Abstract Test Aspect: Testing with AOP............................

Robert Wenner

XMI for XP Process Data Interchange

Sandro Pinna, Nicola Serra

Analyzing Pair-Programmer’s Satisfaction with the Method,

the Result, and the Partnerc. ..

Uuno Puus, Asko Seeba, Priit Salumaa, Sven Heiberg

Literate Programming to Enhance Agile Methods

Vreda Pieterse, Derrick G. Kourie, Andrew Boake

Demonstrations

Mockrunner — Unit Testing of J2EE Applications —....................

Alwin Ibba

Application of Lean and Agile Principles to Workflow Management.

Barbara Weber, Werner Wild

Assistance for Supporting XP Test Practices

in a Distributed CSCW Environmentc..o.vrteinunenne ..

Ibrahim Lokpo, Michel Babri, Gérard Padiou

Requirements of an ISO Compliant XP Tool..................

Marco Melis, Walter Ambu, Sandro Pinna, Katiuscia Mannaro

Going Interactive: Combining Ad-Hoc and Regression Testing

Michael Kélling, Andrew Patterson

XIII

211

215

219

223

227

X1V Table of Contents

Complete Test Generation for Extreme Programming.................. 274
Mike Holcombe, Florentin Ipate

Story Managementoouuit i 278
Olaf Lewitz

Conditional Test for JavaBeans Componentscou... 282
Hironori Washizaki, Yuhki Sakai, Yoshiaki Fukazawa

Trainers and Educators Track

Agile Methods in Software Engineering Education..................... 284
Christian Bunse, Raimund L. Feldmann, Jorg Dorr

Extreme Programming in Curriculum:

Experiences from Academia and Industry 294
Matthias M. Miiller, Johannes Link, Roland Sand,
Guido Malpohl

Human Aspects of Software Engineering:
The Case of Extreme Programming ooii.. 303
Orit Hazzan, Jim Tomayko

Extreme Programming in a University Project........................ 312
Roger A. Miiller

Ph.D. Symposium

Agile Methods: The Gap between Theory and Practice 316
Kieran Conboy

Correlating Unit Tests and Methods under Test....................... 317
Markus Gdlli

Exploring the XP Customer Role — Part IT 318
Angela Martin

A Selection Framework for Agile Methodologies....................... 319
Ernest Mnkandla, Barry Dwolatzky

Workshops

Refactor Our WIitingso oottt e i 321

Joshua Kerievsky

Be Empowered (That’s an Order!) “Experience the Dynamics and
the Paradoxes of Self-Organizing Teams”c.cvvveinn .. 323
Laurent Bossavit, Emmanuel Gaillot

Table of Contents

How to Maintain and Promote Healthy Agile Culture..................
David Hussman, David Putman

Customer Collaborationttt
Ole Jepsen

Assessing Agility
Peter Lappo, Henry C.T. Andrew

Designing the Ultimate Acceptance Testing Framework
Sean Hanly, Malcolm Sparks

Panels and Activities

The XP Customer Role............c. i
Steven Fraser, Angela Martin, David Hussman, Chris Matts,
Mary Poppendieck, Linda Rising

Fishbowl: XP TOO0IS . ..o\ttt i e e e e e i c i
Joshua Kerievsky, Steven Fraser

The XP Gameot ii e e e e e e
Olivier Lafontan, Ivan Moore, Vera Peeters

XP and Organizational Change: Lessons from the Field
Diana Larsen, David Hussman, Mary Lynn Manns,
David Putman, Linda Rising

Author Index

This page intentionally left blank

The Video Store Revisited Yet Again:
Adventures in GUI Acceptance Testing

Johan Andersson and Geoff Bache

Carmen Systems AB, Odinsgatan 9, SE-41103 Go6teborg, Sweden

geoff.bache@carmensystems.com

Abstract. Acceptance testing for graphical user interfaces has long
been recognised as a hard problem. At the same time, a full suite of
acceptance tests written by the Onsite Customer has been a key princi-
ple of XP since it began [1]. It seems, however, that practice has lagged
behind theory, with many practitioners still reporting weak or no accep-
tance testing. At XP2003, we presented our successes with text-based
acceptance testing of a batch program[2]. In the past year we have ex-
tended this approach to apply to a user interface. We have developed an
approach based on simulation of user actions via a record/replay layer
between the application and the GUI library, generating a high-level
script that functions as a use-case scenario, and using our text-based ap-
proach for verification of correctness. We believe this is an approach to
GUI acceptance testing which is both customer- and developer-friendly.

1 XP Acceptance Testing

We should be clear what we regard as the primary aims of acceptance tests.
These are the standards by which we judge acceptance tests and approaches to
acceptance testing:

— The tests should model the actions of a user as closely as possible.
— Writing the tests should be quick, painless and require as few programming

skills as possible,

~ Running the tests should be as smoothe as possible - press a button and
watch them go green/red.

— Maintaining the tests should not be too laborious.

— Tests should be as stable under changes as possible. In particular they should
be independent of things like font, user interface layout and internal design.

— Tests should document the features of the system in as readable a way as
possible.

Let’s also be clear at what we are not aiming for. While the following are worthy
aims, they are mainly the responsibility of other practices, for example Unit
Testing or the various replacements for it that we described in last year’s paper
2].
— The tests should not aim to improve or document the design.
— The tests should concentrate on indicating the presence of errors, not pri-
marily help in fixing them.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 1-10, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 J. Andersson and G. Bache

2 Introduction

Our open source acceptance testing tool, TextTest [3], has traditionally been
a console application that we have used to test UNIX batch tools. Recently,
however, we wrote a GUI for it, and wanted to be able to test this GUI using
a variation of the same approach. We have come up with an approach to do
this that we found to be highly effective. For the sake of this paper, however,
we thought that we would use what we have learned to revisit the classic Video
Store problem, as this is likely to be more familiar to readers and avoids the
meta-situation of programs testing themselves! The Video Store has been used
to illustrate a few aspects of XP already, from refactoring to unit testing. [4]

TextTest is written in Python, and its GUI uses the PyGTK library[5]. The
examples are therefore taken from this environment.

3 The Theory: Principles of Our Approach

3.1 Separating Simulation from Verification

Acceptance testing of GUIs has traditionally been regarded as one activity. Per-
haps due to our background with applications that do not have an interactive
aspect, we have come to regard it as two, largely independent activities: simu-
lating the interactive actions of a user in some persistent way (e.g. a test script)
and verifying that the behaviour is correct when performing these actions. For
future reference we refer to these as simulation and verification.

This simplifies matters somewhat because it removes the need for a tool that
does both, decoupling the activities. Each tool can then concentrate on being
good at one thing only. Armed with a pre-existing verification tool, TextTest [3],
(discussed later) which has proved successful in the world of batch applications,
the main challenge of testing a GUI is to find an effective approach to simulation.

3.2 An Agile Record/Replay Approach

Record/Replay approaches have a strong theoretical appeal to us. To be able to
create tests as a user simply by clicking around the application under test seems
to be the easiest imaginable interface. Many tests can be created quickly, it is
totally clear to the person creating them what they represent, no (potentially
error-prone) code needs to be written per test and the only qualification for
writing them is understanding the system under test, which is needed anyway.

Record/Replay tools are nothing new. A wide range of them exist, of which
QCReplay[6] is the one we have most experience of. In recent years, a bewilder-
ing array of open source varieties for Java have appeared as well[7]. They are
generally based on intercepting mouse clicks and keyboard input, recording them
in a script, and asserting behaviour by taking screen dumps (“photographing”
the screen)

They are not renowned for their popularity in the Agile community, however.
They tend to produce long, low-level scripts which are extremely tied to the
environment at the time when they were recorded. [8] For example:

The Video Store Revisited Yet Again 3

1. Taking screen dumps is fragile under changes of font settings or window
manager.

2. Moving the mouse across a GUI generates lots of focus-in events, focus-out
events, mouse-over events etc. The application is only connected to (‘listening
for’) a fraction of these, so they fill up the script with junk.

3. Even relevant events are recorded in very low level terms, with commands
like click (124, 21). Change the GUI layout and all bets are off: everything
must be re-recorded.

In short, they do not embrace change. They are fun for a while but usually
a maintenance headache in the long run.

For this reason, they have been abandoned by many in favour of data-driven
approaches, that sacrifice some of the advantages listed initially for the ulti-
mately greater gain of maintainibility in a changing world. We, however, have
tried to rehabilitate record/replay in a more agile and maintainable form. In our
view this requires a radical change to the way it works.

3.3 Test Scripts as Use-Case Scenarios

We believe that the fundamental difference between acceptance tests and unit
tests is that acceptance tests have a customer focus and unit tests have a devel-
oper focus. A GUI acceptance test therefore has a lot in common with a Use-Case
scenario. It should be a description of an interaction sequence between the user
(actor) and the system under test from the point of view of the user. It should
not describe what happens internally in the system, instead, as a Use-Case sce-
nario, it should aim to give a user-readable statement of what happens during
the actor/system interaction in the high-level language of the domain.

Such a test has two major advantages over the kind of test generated by
traditional record/replay approaches. It is easy to read and functions well as
documentation of system behaviour. More importantly, it is much more inde-
pendent of the mechanism by which the use-case has been implemented.

We therefore want the test script that we will record and replay to be a high-
level natural language file describing what the user does in the terminology of
the domain. This fits well with the chosen verification approach, of comparing
high-level natural language files produced by the system.

How can this be done? It is clear that it is not possible to write such a
record/replay tool that sits on top of the application, starting, stopping it and
recording its events at the system level. We need a layer between the application
and the GUI library which can be told something about the terminology of the
domain and the intent of the application rather than its mechanics.

4 Applying the Theory: Simulation with PyUseCase

We have developed an open source record/replay layer for PyGTK,
“PyUseCase” [9], extending it as we have needed to, in the process of testing

4 J. Andersson and G. Bache

TextTest in the past year. While this scripting engine will only be useful to
other PyGTK developers, the approach is possible with any GUI library.

To summarise, it differs from other record/replay tools in the following re-
spects:

1. It does not generate scripts in any particular ‘language’. What comes out is
a high-level use-case description in the terminology of the domain.

2. The relationship between it and the application is reversed. Instead of sitting
on top of the application and starting and stopping it, it sits between the
application and the GUI library.

3. It is assertion-free, i.e. it is a pure simulation tool. Another tool (e.g.
TextTest) is needed for verification.

4.1 Creating a Domain-Language Script

(Note that PyGTK’s terminology of ‘connecting to signals’ may be understood
better as ‘listening for events’ for readers used to other GUI libraries)

Our ideal is to be as close as possible to the terms in the user’s domain, and
not use the terms of the GUI layout or the mechanics of how it is used. For
example, when the user of VideoStore clicks the ‘add movie’ button, we want
the script to simply say

add movie

rather than

click(‘add movie’) or

click(124, 21)

This has obvious advantages. It’s about as stable under changes as is possible
: it survives as long as the user can in some way add a pre-selected movie at that
point. It is not dependent on the user interface layout, the choice of widgets for
the purpose of adding movies or the internal system design. It also leaves the
reader in little doubt as to what happens at this point.

How does it work? We need our developers to connect the GUI widget signals
to script commands at the same time they connect them to the methods that
will be called when the user performs some action. This tells the script engine
how to record the emission of that signal into a use-case description, and how
to convert it back again.

For example, PyGTK programmers might implement the ‘add movie’ button
like this:

button.connect (‘clicked’, addMovie)

where addMovie is the method that actually performs the change, and but ton
is the widget. To use PyUseCase, they would instead write

scriptEngine.connect (‘add movie’, button, ‘clicked’, addMovie)

Instead of connecting the addMovie method directly to the signal emitted
when the button is clicked, they connect it indirectly via the script engine, giving
the user action a name at the same time. This is not much of an extra burden
for the programmers. They just need to give names to everything the user can
do via the GUI by adding extra arguments to their ‘connect’ statements.

The Video Store Revisited Yet Again 5

This is basically the only API to PyUseCase. The syntax varies a bit for
different widgets, and for more complex widgets like list views you need to tell
it how to parse the arguments for selecting rows, etc. You also need your appli-
cation to know about record and replay mode, so it can forward these things to
PyUseCase.

Note that we only tell the script engine about signals we are connected to
anyway. This means that any signals we aren’t connected to won’t be recorded
by the script, whatever the user does with his mouse.

5 Verification with TextTest

TextTest and its usage were discussed in some detail in last year’s paper[2]. The
basic idea is the same, though it has gained many more features and users since
then, including a GUI.

Essentially, the developers ensure that the system writes a plain-text ‘be-
haviour file’ describing what it is doing. This file will contain all information
considered useful to the customer: internal state, parsing and response to user
actions, text that has appeared on the screen. Verification is achieved by the cus-
tomer saving this file (and any other text-convertible generated files considered
relevant) at the point he is happy both with what he is able to do with the sys-
tem and how the system responds to his actions. Note that this is not a ‘system
diagnostic’ file and should be free of statements that only have meaning to devel-
opers. Developer-statements should be written to a different file, which can also
be generated and saved, but whose contents will not be viewed by the customer.
By convention the ‘behaviour file’ is simply written to standard output.

A test-run then consists of replaying what the customer did and checking the
system’s text output for any differences from when the customer approved it.
Differences will show up as test failure, though they may be saved and turned into
the new correct behaviour if the customer approves the change. In conjunction
with a simulation tool, this can be used on a GUI just as easily as on a batch
application.

This has several advantages over requiring the customer to select assertions
to make per test. In essence, many more verifications can be made, at a level of
detail largely determined by the developers, who have a better overview of this.
The customer has one less thing to worry about, and cannot “forget” to make
some vital assertion. He can concentrate on using the system in an appropriate
way and looking out for correct responses from it.

The tests consist only of automatically generated plain text. This removes
the need to write any code per test. Your tests then depend on your program’s
behaviour file, but not on its internal design. This means refactoring will not
disturb the acceptance tests, and you will not end up needing to maintain a lot
of test code once you have a lot of tests. Bugs in your test code will not be hiding
bugs in your real code.

Also, a customer without development skills can interact with the behaviour
file, even if he isn’t writing it. It is written in natural language and describes

6 J. Andersson and G. Bache

in words what is happening. He can spot if the important number he saw on
the screen didn’t appear in the behaviour file, for example. If the verification
is implemented as a load of Java test code, he can only hope it does what he
intended when writing the test.

6 Customer-Developer Interaction

We have developed a test-first approach to using these tools. This requires close
interaction between the customer and the implementing developers. The process
looks something like this. (See the appendix for examples of it in action!)

1. The customer does the simulation to record the test. He does as much as he
is able of what he wants to be able to do, generating a use-case script and a
behaviour file that records system responses.

2. The customer can force-fail the test by editing the use-case script (giving the
system some ‘command’ it does not yet understand). This tells the developers
to add some user capability.

3. The customer can also force-fail the test by editing the behaviour file, if the
system responded incorrectly or incompletely. This tells the developers to
change the behaviour.

4. The developers take this test and implement the functionality, taking care
to make the system output descriptions of important new system actions to
the behaviour file.

5. The customer repeats the simulation with the new improved system (if
needed). When he is happy, the new test is added to the suite of accep-
tance tests.

In this way development can be considered to be ‘driven’ by acceptance tests,
in that tests describing work to be done are provided by the customer before
that work is begun by developers. However, we have found this process most
practical for small incremental user stories, which are hopefully the daily stuff of
XP projects. Where the user wants completely new screens or totally different
behaviour, it’s more practical to describe this in words to developers and only
try to create acceptance tests when some attempt has been made to provide the
functionality. This is also likely to be the case in the very early stages of a project
when there is not so much around to write tests on yet. It is still possible to use
the approach for larger steps: but it requires a bit more of the test writer and is
more prone to tests needing to be re-written when the functionality is present.

With this process in place, we have also experienced less of a need for unit
tests. See our XP2003 paper[2] for details.

7 Other Benefits of the Record/Replay Layer

The fact that our record/replay tool sits between the application and the GUI
library means it is a part of the application, rather than an optional extra for
the testers. This opens up some interesting possibilities for using it for other
things than directly recording and replaying tests.

The Video Store Revisited Yet Again 7

7.1 Refactoring the Tests

Everything possible has been done to keep the scripts short, high-level, and
change-resilient, staving off the evil day when they get too hard to manage
easily by pure record/replay. But applications get big and complex, and maybe
that day will come anyway. As we don’t have a language with syntax, we cannot
take the approach of refactoring out common code by hand. We need some other
way of updating a large number of tests when their use-case scripts prove to be
insufficiently resilient.

Fortunately, we have the possibility to run in record and replay mode simul-
taneously. This enables us to automatically update a great deal of tests very
quickly by telling the script engine to keep the old names for ‘replay’ only, while
introducing the new ones for ‘record’. This will work well where use-case actions
disappear or change description. It works less well when new use-case actions
need to be introduced to a lot of pre-existing tests, or when one conceptual
‘use-case action’ starts to require several clicks. This requires another approach,
which we have called “GUI Shortcuts”.

7.2 GUI Shortcuts: Towards a Dynamic User Interface

The record/replay layer is available at any time to any user of the system. This
raises the possibility that individual users can personally tweak the user interface
and eliminate repetitive actions by making use of the record/replay capabilities.

Most people have at one time or another ended up using a GUI in a repetitive
way. They generally do not need all of its capabilities, and may have to make
5 or so clicks just to reach the screen they usually work with. Or for example,
who hasn’t at some time or other been frustrated by constant pop-up dialogues
that demand “Are you sure you want to do this?” or something similar. This
can be minimised by good user interface design, but fundamentally applications
have to be configurable for their power users, and this can make them unwieldy
for their novice users.

The user can simply record a “shortcut” for his repetitive actions. He goes
into record mode at the appropriate point, records his usual five clicks (or OKs
all his annoying pop-ups), and then gives the script he has recorded a name. A
new button appears at the bottom of his screen, which he can click whenever he
wishes to repeat what he did. This will save him time and repetitive work.

In the case of maintaining scripts when a user action starts to require more
than one click, you can rely on the fact that shortcut names are recorded in
scripts if they are available. Therefore, you would record a shortcut for the
single click in the old system, run in record and replay mode simultaneously
as described previously to insert the shortcut into all tests, and then simply
re-record the shortcut (by hand) in the new system.

8 Conclusion

We feel that true Acceptance testing of GUIs can best be achieved by trying to
make record/replay approaches more ‘agile’. This in turn is best achieved by an

8 J. Andersson and G. Bache

approach that separates simulating user actions from verifying system behaviour
and uses co-operating, but separate tools for these things.

Simulation of user actions will be most change-resilient if it records use-case
descriptions that are independent of the mechanics of the GUI, and this can
only really be achieved by a record/replay layer between the application and
GUI library, rather than one that sits on top of the application. PyUseCase is
such a tool that works for PyGTK applications.

Verifying system behaviour is best done by a tool that compares automati-
cally generated plain text. Organised plain text is easy to update and maintain
and is independent of the system’s internal design. TextTeat is such a tool that
will work for a program written in any language.

9 Appendix: Examples from the VideoStore

9.1 Step by Step: Fixing a Bug in VideoStore

Let’s suppose that the system allows the user to add two movies with the same
name. This isn’t good, so we as customer want to create a test for it. Here’s
what we would do.

1. Open TextTest’s test creation functionality for the VideoStore application.

2. Enter ‘DuplicateMovieBug’ as test name, describe problem in description
field. Create test.

3. Press ‘Record Use-Case’ button. TextTest will then start VideoStore in
record mode, which forwards this mode to PyUseCase. We use the GUI
to enter a movie ‘Star Wars’, add it twice, and then quit.

4. The test now contains a use-case script generated by PyUseCase. It looks
like this:
set new movie name to Star Wars
add movie
add movie
quit

5. We now have the chance to edit this script, but it describes what we did and
reproduced the bug, so we don’t need to.

6. Press ‘Run Test’ button. TextTest now starts VideoStore in replay mode
(using our generated script), and collects VideoStore’s behaviour file. It looks
like this:

‘set new movie name to’ event created with arguments ‘Star Wars’

‘add movie’ event created

Adding new movie ‘Star Wars’. There are now 1 movies,

‘add movie’ event created

Adding new movie ‘Star Wars’. There are now 2 movies.

‘quit’ event created

The ‘event created’ lines are created by PyUseCase when it successfully re-
plays a script event. The ‘Adding new movie’ lines are simple output state-
ments from VideoStore describing what it is doing.

7.

8.

The Video Store Revisited Yet Again 9

We can now edit this as well. System behaviour was wrong, so we do so,
replacing the second ‘Adding new movie’ line with a suitable error message.
Now we’re done. The test is handed over to the developers, who can run it
and will be given failure on the line we edited. They can then fix the problem,
and get VideoStore to send the error message to both the behaviour file and
the screen.

9.2 Step by Step: Adding New Functionality to VideoStore

Let’s suppose that we want to be able to sort the list of movies alphabetically.
This functionality doesn’t yet exist.

L.
2.
3.

10.

Open TextTest’s test creation functionality for the VideoStore application.
Enter ‘SortMovies’ as test name, describe functionality in description field.
Press ‘Record Use-Case’ button as before. TextTest will then start Video-
Store in record mode. We enter two movies ‘Star Wars’ and ‘Die Hard’.

. These are in the wrong order, so we want to sort them. But we can’t do that

yet. We quit.

TextTest then shows us the script it has generated. It looks like this:
set new movie name to Star Wars

add movie

set new movie name to Die Hard

add movie

quit

. We now have the chance to edit this script. We wanted to do something we

couldn’t, so we add a line sort movies before the quit command.

. Press ‘Run Test’. TextTest now starts VideoStore in replay mode, using our

script and collects the behaviour file. It looks like this:

‘enter new movie name’ event created with arguments ‘Star Wars’

‘add movie’ event created

Adding new movie ‘Star Wars’. There are now 1 movies.

‘add movie’ event created

Adding new movie ‘Die Hard’'. There are now 2 movies.

ERROR - ‘sort movies’ event not understood.

‘quit’ event created

We can now edit this as well. System behaviour was wrong, so we edit the
file, replacing the ‘ERROR’ line with ‘T’d like to press a sort button here.
It should sort the movie list into alphabetical order’ (or whatever, just to
make a difference appear on this line when the test is run)

Now we’re done. The test is handed over to the developers, who can run it
once again and will be given failure on the line we edited. They can then add
the sort button, and probably a little print-out to the behaviour file saying
what order our beloved movies are in. When they swap order suitably, the
developers return the test to the customer.

The customer can now review what happens. If he is happy that the sys-
tem behaves correctly, and that both user and system actions are correctly
recorded in their respective files, he saves the new behaviour and checks it
in to the acceptance test suite. If not, the process iterates.

10 J. Andersson and G. Bache

References

1. Beck, K.: Extreme Programming Explained. Addison-Wesley, 1999.

2. Andersson, J., Bache, G. and Sutton, P.: “XP with Acceptance-Test Driven Devel-
opment: A Rewrite Project for a Resource Optimization System” in Proceedings
of the 4th International Conference on Extreme Programming and Agile Processes
in Software Engineering (XP2003). Italy, 2003.

3. TextTest is open source and can be downloaded from
http://sourceforge.net/projects/texttest

4. An entire chapter on writing a Video Store GUI with unit tests is present in Astels,
D.: “Test-Driven Development: A Practical Guide” Prentice Hall, 2003 A discus-
sion of refactoring with the same problem can be found in van Deursen, A. and
Moonen, L.: “The Video Store Revisited - Thoughts on Refactoring and Testing”
in Proceedings of the 3rd International Conference on Extreme Programming and
Flexible Processes in Software Engineering (XP2002). Italy, 2002.

5. PyGTK is available from http://www.daa.com.au/ james/pygtk/. It comes as stan-
dard with Red Hat Linux versions 8.0 and onwards.

6. http://www.centerline.com/productline/qcreplay/qcreplay.html

7. At least 6 record/replay tools for Java can be found at
http://www junit.org/news/extension/gui/index.htm

8. The tool ‘Android’ gives a beautiful example of the kind of low-level script you get
from recording a test that does 1 + 2 = 3 in xcalc.
http://www.wildopensource.com/larry-projects/articlel.html

9. PyUseCase isn’t formally released at time of writing, though it hopefully will be
by the time of XP2004. It is in any case bundled with TextTest as TextTest itself
uses it for its own testing.

Test Driving Custom F1it Fixtures

Rick Mugridge

University of Auckland, New Zealand
r.mugridge@auckland.ac.nz

Abstract. Fit is an automated testing framework, developed by Ward
Cunningham, that is a great way to develop automated customer
tests. Custom fixtures can allow us to express some tests in a more
convenient, expressive and direct form for customers (and ourselves).
The open-ended and generic nature of the Fit framework enables new
custom fixtures to be easily incorporated. We show how to test drive
the development of such custom fixtures using FixtureFixture.

Keywords: Customer testing, tdd, Fit.

1 Introduction

JFit uses HTML tables to express data-driven tests. Each test table specifies a Fit
fixture, which defines how the tests in the table are to be interpreted [1]. Three
standard fixtures are provided with Fét. ColumnFixture tables are for testing
business rules involving calculations. ActionFixture tables are for testing se-
quences of actions that change the state of the system under test. RowFixture
tables are for testing that collections in the system under test contain the ele-
ments that are expected.

New types of fixtures can allow us to express some tests in a more convenient,
expressive and direct form for customers (and ourselves). For example, the Socket
Acceptance Testing framework (SAT) uses a custom fixture that has been used
to test a chat server [2]. A test may involve several clients interacting with a
server, where the actions of each client is represented in its own column of a
SAT table. This makes it easier to see the impact of the actions of the clients on
the state of the server over time, going down the table.

Clearly, a test driven approach to the development of complex custom fixtures
is desireable. What sort of tests are needed for such fixtures?

When we write tests for applications using Fit, the tests in a table pass when
there are no unexpected values and no exceptions are thrown. However, when
we test or define a new type of fixture, we also need to specify what is to happen
when tests don’t pass. We can do this in terms of the markings (colours and
extra information) that we expect in the table report, as provided by Fit.

We introduce FixtureFixture, a fixture for testing and test-developing new
types of fixtures for Fit. A FixtureFixture table embeds another table within
it in order to test or define it. FixtureFixture was developed test-first, using

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 11-19, 2004.
© Springer-Verlag Berlin Heidelberg 2004

12 R. Mugridge

itself. It has been used to define the standard JFit fixtures and six generic custom
fixtures.

We begin by looking at examples of Fit tables, based on ColumnFixture and
RowFixture, and the reports that result from running them in Section 2. In the
next Section, we show FixtureFixture tables that test (or define) some aspects
of these standard fixtures. We then show in Section 4 how FixtureFixture itself
was developed test-first using FixtureFixture tables. We consider some design
issues in Section 5 before concluding.

2 Markings in Table Reports

After running test tables, Fit provides feedback by producing an HTML report.
For example, consider the Fit report in Fig. 1 for a ColumnFixture table. All
but the first two rows of the table are independent calculation tests, where the
plus() value is expected to be the sum of a and b. The first two tests in the
table pass and are marked green. The third test fails and is marked red, along
with the actual value.

:§rimu,C'.ohmmFixhu'cUndchest
L pows rimu. RowFixtureUnderTest
1 {12 13 :
§ a
-2 {107 103 |
lone 1
. g e e senes o
ol (1w surpius 1 |
&:"_;' E LR r— i
Fig. 1. Report of ColumnFixture ta- Fig. 2. Report of RowFixture table
ble with last row wrong with an unexpected third row

A RowFixture table checks that the elements of a collection from the system
under test are as expected. A report for such a table marks row cells that have
unexpected values and rows that are “missing”. Any “surplus” rows, that were
unexpected, are added to the reported table. For the example shown in Fig. 2,
the first two rows were expected but a third was also actually present.

3 Testing with FixtureFixture

To automatically test an existing or custom fixture, we need to specify what
markings (colourings and added text and rows) we expect from tests in a table
that uses our new fixture. The obvious way to do this is to use Fit itself.

Test Driving Custom Fit Fixtures 13

A FixtureFixture table (the outer table) encloses another Fit table (the
inner table). All but the first row and first column of the whole table make up
the inner table. For example, the table shown in Fig. 1 is embedded inside the
table reported in Fig. 3. The first (outer) column specifies the markings that we
expect in the resulting Fit report for each of the cells of the corresponding inner
row.

andardFixtureSpecificationOne.SpecifyColumnFixture - Mozilla

Siinbpaniiiialiige siiiiiiialif

Usual operation of "' ColumnFixture'

| “TestsExplicit:
| | rimu. FixtureFixture

fixture | rimu. ColunmFixtureUnder T est
. a b plus()
-t 1 |12 |13

-2

Fig. 3. FixtureFixture table report

The first inner row (ie, the first row of the inner table) in Fig. 3 specifies
the name of the fixture. The second inner row includes the names of the fields
and methods (for the ColumnFixture). We expect these three cells to be left
unmarked (“-”) in the report. The first outer column specifies the expected
markings as “---”, with a “-” for each of the three cells (trailing “-” are unnec-
essary).

For the third inner row, the last cell is expected to be right (“r”) and
to be coloured green. As the other cells in that row remain unmarked, the
expected markings is “-- r”. For the fifth inner row, the last cell is expected
to be wrong (“w””) and to be coloured red. Hence the expected markings is “--w”.

99

A blank cell in a ColumnFixture table is filled, in the report, by the current
value of the column’s field or method. We need to be able to test this marking.
We use a report row in the FixtureFixture table, which checks the values of
the previous row. For example, in the third inner row of 1, the cells are empty,

14 R. Mugridge

so their values should be added in the report. The report in the fourth inner
row checks that the two cells in the previous (empty) inner row of the report
each have the value “0”, the initial values of a and b.

Table 1. Empty Cells in the Report

rimu.FixtureFixture

fixture|rimu.ColumnFixtureUnderTest
alb|plus()

report |0]|0|0
--r 12|13

—
3]
[¥%]

report

Similarly, a report is used in the last outer row of the table to check the
markings of that inner row after the fields have been changed. The Fit report
for 1 is shown in Fig. 4.

_FitBook.StandardF ixtureSpecificationOne.SpecifyColumnFixture - Mozilla
Briziziziiof e iiit Gk ciiniiiiic

rimu. FixtureFixture

fixture | rimu. ColunmFixtureUnderTest

Fig. 4. Report of Table 1

Finally, we need to specify that we expect extra rows to be inserted into a
reported table. For example, 2 shows a FixtureFixture test for the report of
the table shown in Fig. 2. The markings of the outer cell of the last row of 2
start with “I”. This means that an inner row is expected to be inserted here,
with the given markings (“w”) and the given text (“two surplus” and “1”).

Test Driving Custom Fit Fixtures 15

Table 2. Report extra row

rimu.FixtureFixture

fixture|rimu.RowFixtureUnderTest
s a

IT one 1

T two 2

Tw two surplus|1

4 Developing FixtureFixture Itself

These ideas were used to develop FixtureFixture itself, using an inner table
with a fixture with known behaviour. The fixture class used is transparent as
possible; class FixtureUnderTest has actions that correspond directly with the
markings that it makes in a reported table'.

We began with an inner table with fixture FixtureUnderTest, as shown
in 3. The single cell of the inner table contains the action “r”, which means
that the cell itself will be marked as right (green) by FixtureUnderTest. This
corresponds to the expected marking of “r” in the first column.

Table 3. Right table for FixtureFixture

rimu.FixtureFixture
fixture|rimu.FixtureUnderTest
r T

This fixture class was then extended to handle the other cell markings, for
wrong (“w”), exception (“e”), ignored (“1”) and unmarked (““-”). A table with all
the markings, in various combinations, is shown in 4. We also test that trailing
“” are not needed.

The code for fixture FixtureUnderTest is very simple and direct. Each action
encodes the markings to be carried out. For example, “rw” codes for the first
cell to have marking right (green) and the second wrong (red). The fixture code
is kept as simple as possible, so it’s quite clear what it does. Given that its role
is rather like a test (in some sense tests and code mirror each other), we avoid
introducing any generality.

4.1 Testing Added Text in Reports

We can now define the handling of extra text in reports, with two tables. In the
fourth row of 5 we use the action reports of FixtureUnderTest to add the
text “reported” to the fourth cell of that row.

! See [3] for further details.

16 R. Mugridge

Table 4. Colouring table for FixtureFixture

rimu.FixtureFixture

fixture rimu.FixtureUnderTest
r r

W= w |

i i

e- e

T™W W wrong

ri ri ignore

iw-- iw W

1w iw W
rwrwiwiee-|rwrwiwiee- |wir wlilw[iieiel

Table 5. Reports

rimu.FixtureFixture
fixture|rimu.FixtureFixture
fixture|rimu.FixtureUnderTest
T reports
w-rw |report reported|no

We doubly nest FixtureFixture to allow us to test the results of the inner
FixtureFixture. The last row of this table checks that report reports correctly.
The “reported” cell matches but the “no” cell doesn’t. As not all the cells match,
the report cell and the last cell are both expected to be wrong, as shown in the
report in Fig. 5.

”? TestFixtureFixture -
piiateintacfpnesaanic) ; i :
rimu. FixtureFixture it
fixture | rimu. FixtureFixture

fixture | rimu, FixtureUnderTest

Mozilla

reports reported

reported

Fig. 5. Report of Table 5

Test Driving Custom Fit Fixtures 17

In the fourth row of 6, we test that a cell is marked wrong with an inserted
message. This is carried out with the action wMsg of FixtureUnderTest. The
fifth row then uses report to test the markings. We also test that the report
fails when the message doesn’t match, as in the last row.

Table 6. Reports from wrong

rimu.FixtureFixture

fixture|rimu.FixtureFixture

fixture|rimu.FixtureUnderTest

rw w whMsg
T report |[wMsg expectedMessage actual
W w whMsg

ww |report |Message

4.2 Testing Inserted Rows in Reports

FixtureFixture can test that the contents of rows have been inserted in a
reported table. For example, consider the tests in 7. The action insertTwoRows
inserts two new rows into the report of the inner table after that row; each row
consists of a right cell containing the text “one” and a wrong cell containing the
text “two”. The fourth and fifth row of the overall table in 7 specify that rows
will be added in those positions, with the given markings and text.

Table 7. Row insertions

rimu.FixtureFixture
fixture|rimu.FixtureUnderTest
insertTwoRows

Irw |one{two

Irw |one|two

Other tests were developed to ensure that an error is given by
FixtureFixture when rows are unexpectedly inserted in the report by the inner
fixture, when the inserted rows contain text that don’t match the actual inserted
rows, and when an expected row insertion doesn’t occur.

4.3 Testing That Problems Are Handled

We also need to test that FixtureFixture correctly handles awkward cases,
such as when a fixture doesn’t exist or it is not specified. For example, 8 tests
that a wrong results when the unknown class UnknownClass is specified as a
fixture in the inner FixtureFixture table.

18 R. Mugridge

Table 8. Unknown fixture class

rimu.FixtureFixture
fixture|rimu.FixtureFixture

-W fixture|UnknownClass

report UnknownClass : Unknown Class

S Design and Other Approaches Considered

Several issues were considered in the design of FixtureFixture:

— We need to be able to easily read the tables. We don’t want them cluttered
with unnecessary detail.

— We expect each outer test to be right, and to count in fit.Summary. Counts
from inner tables need to be ignored so that we can just check the summary
and/or the Jit runner output to see that the (outer) tests have all passed.

— FixtureFixture needs to be sufficient to test most aspects of the standard
fixtures. We don’t want to have to specify the reported value of every cell,
as many are not of interest — we always have to make tradeoffs when we
write tests.

— We’re not interested in matching the fine details of the HTML in cells.

— We want to work within Fit as it is currently defined (release 2003-9-15).

Several other approaches were considered for FixtureFixture:

— A table could be followed by another, special one that defines the fixture tests
instead of using embedding®. But we don’t want to count right, wrong, etc of
the table under test in our overall count, as that means we’d have to manually
check the results. And it may not be so easy to see the correspondence
between the two tables. On the other hand, this approach avoids mixing the
two levels together.

— Each row of the table under test could be followed by a testing row with
expected markings. But it’s messy to mix colorings and cell values which
have changed (although two rows could’ve been used).

— Instead of having a single cell to encode the expected markings for the inner
row, we could’ve used the same number of cells as in the inner row. But this
would’ve led to bulky tables. And it’s difficult to handle tables with varying
numbers of rows. Fit doesn’t currently allow nested tables, so nesting wasn’t
an option.

6 Summary

The Fit framework is very powerful and open-ended, allowing for a wide range
of fixtures to be used in testing. Custom fixtures can be developed to enable
tests to be expressed in a more convenient, expressive and direct form.

? This is the approach used with fat, which has somewhat different aims [1]

Test Driving Custom Fit Fixtures 19

Fit tests can be applied well to testing fixtures themselves, by embedding
atable inside a FixtureFixture table. FixtureFixture tests that cells of the
inner table have the correct markings. The marking codes are cryptic, but it
doesn’t take long to get used to them. FixtureFixture can also test, with
report, that a cell has an appropriate value in the generated report and that
appropriate rows have been added.

FixtureFixture has been used to test/define several of the standard fixtures,
as well as to develop and to test FixtureFixture itself [3]. We don’t expect to
use FixtureFixture to test everything about a fixture. For example, we are
unable to directly check that the right exception has been thrown. However, this
is dependent on the programming language being used.

FixtureFixture has proved to be very useful in understanding the behavior
of the existing, standard fixtures of Fit as well as in developing six new generic
custom fixtures.

Acknowledgements. Special thanks to Ward Cunningham for making Fit
publically available, for pointing out problems for FixtureFixture with inserted
rows in reported tables, and for feedback on an earlier version of this paper.

References

1. For an introduction to JFit, see http://fit.c2.com.

2. Rick Mugridge and Ewan Tempero, “Retrofitting an Acceptance Test Framework
for Clarity”, Agile Development Conference, Salt Lake City, June 2003, pp92-98.

3. A longer version of this paper, the Fit test tables (for FixtureFixture and the
standard fixtures), and the fixture code are all available at:
www.cs.auckland.ac.nz/~ {}rick/fit/FixtureFixture/.

Putting a Motor on the Canoo WebTest Acceptance
Testing Framework

Jennitta Andrea

jennitta@agilecanada.com

Abstract. User acceptance testing is finally getting the attention and tool sup-
port it deserves. It is imperative that acceptance tests follow the best practices
and embody the critical success factors that have been established over the
years for automated unit testing. However, it is often challenging for accep-
tance tests to be repeatable, readable, and maintainable due to the nature of the
tests and the tools currently available for automation. The key contributions
this paper makes to the agile community are: first, it provides concrete exam-
ples of applying test automation patterns to user acceptance testing, and sec-
ondly it provides a description of various extensions to the WebTest acceptance
testing framework that facilitate developing automated acceptance tests ac-
cording to these established best practices.

Keywords: Automated testing, Canoo WebTest, framework extension, test
automation patterns, testing strategy, user acceptance testing

1 Introduction

Years of test first development using automated unit testing tools and frameworks,
like Junit [1], have resulted in a collection of best practices that enable key critical
success factors, namely: automated tests that are repeatable, readable, and maintain-
able [2]. Automated tests create the safety net that enables a team to confidently
evolve a system incrementally, and to be assured that it is production-ready. A team
must be able to efficiently develop tests that they trust, specifically, tests that are free
from side effects, and that perform predictably every time they are executed. Because
the tests encode system requirements, it is important that the tests are more readable
than the system code itself. When there is as much test code as system code, the tests
must be maintainable, so as to continually keep their benefits higher than their costs.

It is imperative that both acceptance tests and unit tests follow best practices and
embody these critical success factors. It is often more challenging for acceptance tests
to accomplish this because of the nature of the tests and the tools available for auto-
mation. Acceptance tests embody real business workflow scenarios, thus all input and
validation occurs as a result of interaction with the user interface, and execution
through all of the layers of the application.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 20-28, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Putting a Motor on the Canoo WebTest Acceptance Testing Framework 21

This paper describes a series of customizations made to the Canoo WebTest [4] ac-
ceptance-testing framework that were implemented during the course of an XP/Scrum
project to develop automated acceptance tests that are repeatable, readable, and
maintainable.

2 Acceptance Testing Strategy

Automated software testing is not simply about tools and techniques for automating
tests. In fact, the choice of tool should be one of the last decisions made when devel-
oping a testing strategy because the tool should enable the overall strategy, rather than
drive it. While this paper is ultimately about a tool, we are obliged to start with the
strategy. Software projects must balance many different, often competing, concerns
when developing a testing strategy. The testing strategy as a whole considers the
significance of each type of testing, including: unit, acceptance, usability, perform-
ance, security, etc. Decisions made about the one type of testing are likely to have an
impact on the choices made about another type. For example, a system with an exten-
sive unit test suite will tend to focus the content of acceptance tests on workflow
concerns rather than on detailed business rule validation.

The team builds their acceptance testing strategy by considering questions like the
following: What is the budget for user acceptance testing? Is the purpose of the test
to specify requirements, to assess quality, or both? Who is responsible for writing the
test specification? Who executes the tests and assesses failure? How are the tests
executed? How often? How are the automated tests kept in sync with the test speci-
fications? What parts of the system does the automated test touch? What techniques
should be used? What tools should be used? The answers to one question are often
inter-dependent on other ones. Some answers may contradict each other, making the
formation of the strategy all the more challenging.

The experience described in this paper is based on a particular project with an accep-
tance testing strategy driven by budgetary concerns. Specification, automation, and
execution of the acceptance tests were allotted an average of twenty hours per week
of a single developer’s time. The remainder of the strategy, including tool selection,
had to facilitate automating as many tests as possible in a short timeframe. Given the
size and complexity of the system, this budget was not sufficient to automate accep-
tance tests for the entire system, so the developer and customer collaborated to define
the smallest possible set of representative tests for the highest priority areas of the
system. The customer did not have time to automate the tests themselves, but re-
viewed the automated tests in order to sign off on them. While automating acceptance
tests was considered late in the project, the system was built unit test-first, ensuring
acceptable test coverage of small-grained business rules. Thus the acceptance tests
were required to focus on overall workflow scenarios, using the user interface in ways
that a real user would. After a limited exploration of various techniques and tools,
including HttpUnit [6], FIT[5], and a custom framework to generate test code from an

22 J. Andrea

excel spreadsheet [10], the Canoo WebTest framework was the tool selected for this
project.

3 Canoo WebTest

Canoo WebTest is a layer on top of HttpUnit, where the tests are specified using
descriptive XML targets (like clickbutton, verifyitle, etc), and executed via Ant [7].
The key characteristics of WebTest that made it a good fit for this project, are: a
scripted approach to testing against the user interface (as opposed to a record-
playback approach [8]); a succinct, high level specification language; readable and
detailed output reports; and the interpreted execution, which made test development
very fluid. The output reports were probably the most important characteristic for
this project; not only do they provide visual clues as to the success/failure of each
individual step, they also include captured screen shots. This facilitates a slow motion
replay of the test, which is used by the customer to verify the correctness of the test,
and can be used to debug the test when necessary.

The development team immediately recognized issues related to weak tool support
for XML development and cross-technology refactoring, especially when contrasted
to the powerful capabilities they exploited when developing Java with Idea [9]. In
addition, the noisy XML syntax within the specifications was deemed to hinder read-
ability. This latter concern was not a showstopper because the customer is able to
review the output reports instead of the XML test specification.

4 Customizing Canoo WebTest

The examples in this section are fragments from a real acceptance test for a system
that is used by hospitals to archive inactive patient records (called volumes). A patient
is identified by a chart number, and may have one or more volumes. A volume is
essentially a file folder that contains treatment details for a patient. If a patient has not
received treatment for five or more years, their volume is considered to be inactive.
Before boxes of inactive volumes are physically sent to an off-site storage location, a
user enters the data associated with each volume into the Volume Archiving System
(VAS). The acceptance test takes the volume and box through their normal life cycle
(volume created, added to box, box moved off site, volume removed from box). It
also demonstrates the following business rules: (a) creating a new volume will create
the associated chart if it doesn’t exist, (b) a box may contain duplicate volume num-
bers, (c) chart numbers are not unique across sites.

This section displays fragments of a single acceptance test, not necessarily in the
order they would appear in a complete test. The entire acceptance test, which is too
large to include in this paper, can be found at [11]. The WebTest extensions described
here have been submitted to [4].

Putting a Motor on the Canoo WebTest Acceptance Testing Framework 23

Critical Success Factor 1: Repeatability

The rhythm of test-first development is: write a test, watch it fail, and then make it
pass by developing the missing system capability or fixing the incorrect behavior [3].
Once the test is complete, it should pass repeatedly, whether it executes by itself or
within a test suite. When a completed test fails, we need to quickly and accurately
pinpoint the cause: did the test uncover a bug in the system, or is the test faulty? We
strive to eliminate time spent debugging tests, especially the nasty situations when
side effects of one test cause a different test to fail (the interacting test smell [2]).
Best practices for achieving repeatability focus on making tests independent. Ideally,
a test should operate on its own unique data set, and should clean up after itself (the
clean slate approach [2]).

The most obvious shortcoming of the WebTest framework is the inability to manage
the test fixture data directly from within the test. By default, one must use mecha-
nisms external to the test to setup the precondition data and remove it when the test
has finished. It is generally possible to setup independent test data for a number of
tests in advance, however, this approach creates the mystery guest test smell [2], and
reduces the readability of the test.

Our solution was to develop various new framework components in Java that enable
creating precondition data directly within the test and cleaning it up when the test
ends'. Example 1 shows the use of the two new Ant tasks: preconditions and
cleanup, which act as bookends to the body of a test. Other custom domain specific
Ant tasks are contained within these wrappers, and are responsible for creating or
deleting a specific type of domain object. To keep the test readable and succinct, the
test specification includes only the attributes of the domain objects that are necessary
for understanding the tests. All other attributes are generated ‘anonymously’ within
the Java implementation of the custom creation/cleanup Ant task.

! For those familiar with the WebTest framework, the following is a high level summary of
the changes made. Text in bold font are new classes/methods we introduced; text in italic
font are existing framework classes/methods. Precondition Wrapper extends StepContainer,
and contains a sequence of steps of type PreconditionStep (an extension to TestStepSe-
quence). The project specific subclass of PreconditionStep overrides the method doCom-
monPreSetup to perform all of the necessary one-time data base initialization tasks. It then
executes each specific fixture setup step, which creates and populates one or more domain
objects, and registers them as being ready for persistence. The final task is to override do-
CommonPostSetup which causes the objects to be stored using a specific persistence
mechanism. Following this same pattern, we added TearDownWrapper to the framework,
which contains a sequence of steps of type TearDownStep. Modifications were made to the
WebTest framework in order to accommodate these new classes. TestStepSequence recog-
nizes the two new wrappers and process them appropriately. TestSpecificationTask keeps
track of the teardown steps. A finally clause was added to the Engine’s doExecute method to
ensure the teardown steps are executed after a test failure. The final piece is to write custom
fixture setup and cleanup steps for the business objects needed by the test. These steps create
business objects, populate them and register them for persistence.

24 J. Andrea

1. <preconditions>

2 <site name="site1”/>

3 <site name="site2”/>

4 <volume name="v1c1s1” chart="chart1” site="site1” box="box1”/>
5. </preconditions>

6. <cleanup>

7 <deleteSite name="site1”/>

8. <deleteSite name=""site2”/>

9 <deleteVolume name="v1clsl1”/>
10. </cleanup>

Example 1. Preconditions and Cleanup

Critical Success Factor 2: Readability

It is crucial that all tests are readable, as they are the definitive reference for the sys-
tem requirements. It is even more imperative for acceptance tests to be readable, be-
cause the customer is responsible for signing off on them and must fully understand
them. A number of best practices help improve readability, namely: write the test
declaratively (focus on what not how); write the test succinctly (include only the
details that are pertinent to understanding the test); and make the test unambiguous
(ideally, two different people with a similar understanding of the business domain
should understand the test in the same way).

WebTest’s steps (e.g. clickbutton, verifytext, etc) and output reporting facilitate de-
veloping readable tests, especially compared to writing raw HttpUnit and only having
the red/green bar for feedback. In practice, we found that because user acceptance
tests capture multi-step workflow, they tend to be fairly long. Even when reviewing
the WebTest output report, the reader quickly becomes lost in a forest of low-level
tactical details related to using the user interface. They must consciously re-construct
the intent of the sequence of steps in order to understand the big picture. A series of
simple adjustments to the framework and the report formatter improved this situation
greatly.

A new attribute, description, was added to the restSpec target (see Example 2). This
free-form text attribute is intended to capture an overall summary of the test and is
displayed at the beginning of the test output.

Another new step container, called group, is used to assemble related steps together
under a higher-level description (see Example 3). The primary purpose of this con-
tainer is to enable the steps to be visually grouped together in the output report, giv-
ing the reader the big picture; steps 13-20 must be performed in order to create a new
volume in VAS.

Putting a Motor on the Canoo WebTest Acceptance Testing Framework 25

11. <testSpec name="basic volume and box lifecycle” description="This test
takes the volume and box through their normal life cycle (volume created,
added to box, box moved off site, volume removed from box). It also dem-
onstrates the following business rules: (a) creating a new volume will create
the associated chart if it doesn’t exist, (b) a box may contain duplicate vol-
ume numbers, (c¢) chart numbers are not unique across sites.”/>

Example 2. Description attribute

12. <group stepid="create a volume”>

13. <clickbutton label="${ mainMenu.button.addVolume}"/>

14. <verifytitle text="%{addVolume.title } *" regex="true"/>

15. <setinputfield name="${addVolume.field.boxNum}" value="box1"/>
16. <setinputfield name="${addVolume.field.chartNum}" value="chart1"/>
17. <setinputfield name="${addVolume.field.volNum}" value="v1c1s2"/>
18. <setinputfield name="${addVolume.field.date}" value="2003-11-13"/>
19. <clickbutton name="%{addVolume.button.save}"/>

20. <verifytitle text="${addVolume.title } * regex="true"/>

21. </group>

Example 3. Group step

We also added a simple custom step to the framework that corresponds to the fail()
assertion from junit, called forceTestFailure. This facilitates an active to-do list style
of writing tests that ensures the system will remind us when a test is incomplete rather
than comments in code or notes on scraps of paper.

Critical Success Factor 3: Maintainability

Test first development yields as much (or more) test code than system code, thus we
have to be as concerned (or more) with the maintenance costs of test code as com-
pared to system code. Refactoring is a common practice on agile projects, because the
system continually evolves over time as new features are developed. Acceptance tests
are modified to reflect changes to business rules and screen details. Maintenance costs
can be reduced if the acceptance tests don’t break when Ul elements merely change
position on the screen. While development tools greatly assist the maintenance effort
through powerful refactoring features, developers remain responsible for making
design decisions that enable system and test code to be modified efficiently. This
section contains a series of refactorings that were performed on the test specification
fragment shown in Example 3.

A user goal level use case [12], e.g. to create a patient volume, is achieved through a
number of detailed interactions with the user interface (entering text into fields,
clicking buttons, etc). The acceptance test suite contains multiple instances of the
same user goal level use case, so a strategy for code reuse must be devised. The sim-
plest possible thing to try initially was to use XML componentization within the test
specification. The WebTest framework was extended with a new step, storeVariable,

26 J. Andrea

as a simple way to pass parameters to an XML component. Example 4 is the result of
refactoring the original test specification fragment (Example 3) to reference a com-
mon XML component.

22. <group stepid="create a volume”>

23. <storeVariable name="${param.boxNum}" value="box1"/>
24, <storeVariable name="${param.chartNum}" value="chart1"/>
25. <storeVariable name="${param.volNum}" value="vlc1s2"/>

26. <storeVariable name="${param.date}" value="2003-11-13"/>
27 &createVolume;
28. </group>

Example 4. Test spec with custom XML component reference

The body the original test specification fragment was moved into the createVolume
XML component (see Example 5), with specific values replaced by references to the
stored ‘parameters’.

29. <clickbutton label="${mainMenu.button.addVolume}"/>

30. <verifytitle text="${addVolume.title} *" regex="true"/>

31. <setinputfield name="${addVolume.field.boxNum}"
value="#{param.boxNum}"/>

32. <setinputfield name="${addVolume.field.chartNum}"
value="#{param.chartNum}"/>

33. <setinputfield name="${addVolume.field.volNum}"
value="#{param.volNum}"/>

34. <setinputfield name="${addVolume.field.date }"
value="#{param.date}"/>

35. <clickbutton name="${addVolume.button.save}"/>

36. <verifytitle text="${addVolume.title}* regex="true"/>

Example 5. The custom XML component

While this was a simple and workable solution, it falls short of being maintainable.
The same tools cannot be used to refactor XML acceptance testing components and
Java unit tests and system code. The second approach was a natural progression to-
wards this end, namely turn the XML components into custom action steps (i.e., Ant
targets), written in java. Example 6 is the result of refactoring the previous test speci-
fication fragment (Example 4) to reference a custom action step that embodies the
desired behavior. The storeVariable attribute is no longer necessary, as the parame-
ters are passed to the Java implementation via the specified attributes (e.g., boxNum-
ber).

37. <createVolume boxNumber="box1" chartNumber="chart1"
volumeNumber="vl1cls2” archiveDate="2003-11-13"/>

Example 6. Test spec with custom action reference

Putting a Motor on the Canoo WebTest Acceptance Testing Framework 27

The createVolume XML component (see Example 5), is replaced with a custom Java
class (see Example 7), that encodes each detailed step as method calls that are imple-
mented in the CustomA ctionStep super class.

38. public class CreateVolumeActionStep extends CustomActionStep {

39. private String archiveDate, boxNumber, chartNumber, volumeNumber;

40. private static final String STEP_ID = "create volume";

41. public void doExecute(Context context) {

42, verifyParameters();

43. super.doExecute(context);

44. clickbutton(context, Properties.mainMenu.button.addVolume);

45, verifyTitle(context, Properties.addVolume.title);

46. setinputfield(context,Properties.addVolume.field.boxNum, getBoxNum ());
47. setinputfield(context,Properties.add Volume.field.chartNum, getChartNum());
48. setinputfield(context, Properties.addVolume.field.volNum, getVolumeNum());
49. setinputfield(context, Properties.addVolume.field.date, getArchiveDate());
50. clickbutton(context, Properties.addVolume.button.save);

51. verifyTitle(context, Properties.addVolume.title); }

Example 7. Specific custom action step

The CustomActionStep superclass provides Java access to each of the WebTest steps
(see Example 8 for the implementation of the verifyTitle step). Each method inte-
grates with the WebTest reporting infrastructure, so that the output reports look the
same as they did previously.

52. public abstract class CustomA-ctionStep extends GroupWrapper {
53. public void verifyTitle(Context context, String title) {

54. VerifyElementText step = new VerifyElementText();

55. getStepSequence().getSteps().add(step);

56. step.setStepType("verify title starts with");

57. step.setType(ELEMENT_TYPE_TITLE);

58. step.setText(title);

59. step.setRegex(true);

60. try {

61. step.notifyStarted(context);

62. step.doExecute(context);

63. step.notifyCompleted(context);

64. } catch (Exception e) {

65. throw new StepFailedException(e.getMessage(), step); } }}

Example 8. Generic support for custom action steps

28 J. Andrea

5 Conclusions

The key drivers from this particular project’s acceptance testing strategy that guided
the tool selection decision were: the customer must be able to read the test specifica-
tion in order to sign off on it, the acceptance tests must capture significant system
workflow scenarios and must use the user interface as the primary touch point, and
the tests must be developed as quickly as possible.

After a short and limited tool evaluation period, the Canoo WebTest framework was
deemed the best choice for satisfying these key drivers. Was it the only choice? No,
the list of acceptance testing tools and frameworks is impressive, covering the full
spectrum of techniques. Was it a good choice? Yes, the framework is solid and fea-
ture rich. While it was missing some key capabilities to meet our standards for devel-
oping repeatable, readable, and maintainable acceptance tests, the framework proved
to be easily extended. Was it worth the extra effort? Yes, the introduction of frame-
work support for custom precondition, action, and cleanup steps enabled the team to
develop a domain specific testing language. The elements from this testing language
formed the building blocks for quickly developing user acceptance tests.

Acknowledgements. It’s been my privilege for many years to work with and be
mentored by Gerard Meszaros and Shaun Smith on test automation best practices.
The work customizing Canoo WebTest was made possible with the cooperation,
insights, and participation of: Linda Duhn, Allen Ho, Tom Kuntz, Amy Law, Eric
Liu, Chris Klementis, Brad Marlborough, Jim McDonald, Robert Purdy, Lynne
Ralston, Dave Shellenberg, Brent Sprecher, and Ross Taylor.

References

—

Junit, http://www.junit.org/index.htm.

Meszaros, Gerard and Shaun Smith “Test Automation Manifesto”, XP Agile Universe

Conference, 2003.

Beck, Kent, Extreme Programming Explained, Addison Wesley, 2001.

‘WebTest, http://webtest.canoo.com/webtest/manual/WebTestHome.html

FIT, http://fit.c2.com

HttpUnit, http://httpunit.sourceforge.net

Ant, http://ant.apache.org

Meszaros, Gerard, et al al “Agile Regression Testing Using Record & Playback”, XP Agile

Universe Conference, 2003.

. Idea, http://www jetbrains.com/idea/

10. Andrea, Jennitta, “Generative Acceptance Testing for Difficult-to-Test Situations”,
XP2004 Conference, 2004

11. http://agilecanada.com/wiki/Wiki.jsp?pages=JennittaAndrea

12. Cockburn, Alistair, Writing Effective Use Cases, Addison Wesley, 1997.

N

0N oYW

Generative Acceptance Testing for Difficult-to-Test
Software

Jennitta Andrea

jennitta@agilecanada.com

Abstract. While there are many excellent acceptance testing tools and frame-
works available today, this paper presents an alternative approach, involving
generating code from tests specified in a declarative tabular format within Ex-
cel spreadsheets. While this is a general approach, it is most applicable to dif-
ficult-to-test situations. Two such situations are presented: one involving com-
plex fixture setup, and another involving complex application workflow con-
cerns.

Keywords: Automated testing, code generation, domain specific testing lan-
guage, test automation patterns, testing strategy, user acceptance testing, XML,
XSL

1 Introduction: Acceptance Testing Difficulties

As a result of the agile movement, teams now pay more attention to their testing
practices, and seek out the advantages of automated testing. Acceptance tests' are
performed to ensure a system has suitably implemented the user’s requirements. The
primary objective of an acceptance test is to ensure the core business rules are imple-
mented correctly in the context of the overall application workflow.

Automated acceptance tests are used in a wide range of situations, motivated by a
variety of different goals. The purpose commonly mentioned in testing literature is to
support custom software development in a test-first manner; the acceptance tests
describe the essence of what is to be developed, and objectively signal when it is
complete [1]. Application integrators use acceptance tests to specify, manage, and
verify outsourced or commercial software components [2]. Acceptance tests are being
created after-the-fact for existing legacy systems to support both ongoing mainte-
nance and application renewal [3].

Due to the nature of acceptance tests, a number of difficulties may be experienced
when automating them that may not be experienced when automating unit tests for
the same system. Direct customer involvement is crucial to the acceptance testing
process. It also raises the bar for the usability of automated testing frameworks to

' Also known as customer tests, functional tests, system tests, etc.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 29-37, 2004.
© Springer-Verlag Berlin Heidelberg 2004

30 J. Andrea

ensure the customers can read and potentially write the automated test themselves.
There are additional implications for test management, including: maintaining syn-
chronization between the customer test specifications and the automated tests, and
maintaining the tests as the user interface and/or workflow evolve over time. Poor
performance of an automated acceptance test suite is often an issue because the tests
typically operate on the user interface, and involve all of the application layers and
other integrated components. Stubbing out a problematic component is a common
solution to performance problems, but unless the application was originally designed
for testability, selective stubbing is often impossible. Test data management is an-
other area rife with difficulties. Acceptance tests are automated to accelerate and
standardize regression testing. The key to achieving reliable and repeatable regression
tests is the use of unique test-specific data rather than real production data [4]. If the
application has not been designed for testability, it is often difficult to create the test
data, or to control the execution environment in order to create a specific event.

This paper examines how a particular project overcame these types of difficulties, and
developed an innovative acceptance testing strategy: generating the code to automate
acceptance tests that are specified in a declarative tabular format. For the project this
was not just the simplest thing that could possibly work, it was the only thing that
could possibly work.

2 Motivation: Invention through Necessity

We did not set out to create an alternative approach to automating acceptance tests.
Our expectation was that an existing framework (e.g.: FIT [5] HttpUnit [6] jWebUnit
[7] WebTest [8] to name just a few) would be used to automate our tests. As it turned
out, none of these highly capable frameworks was up for the combination of chal-
lenges we faced on project Alpha’.

The first hurdle was the large number of acceptance tests that had to be written in a
very short period of time. For a variety of reasons, acceptance testing was considered
late in the game; in addition, the critical system features being tested did not have
adequate unit test coverage. To compensate for this, and to increase the users confi-
dence in this part of the system, the acceptance test suite was larger than normal to
include coverage of the business rules as well as the overall workflow. We started
with ~100 tests, and expected this number to increase as subsequent releases intro-
duced new features. The strategy for managing the integrity of such a large suite of
acceptance tests was to ensure the test specification created by the business expert
was directly executable. We could not afford the time or potential for error associated
with translating a user specification into an automated test. A number of frameworks
being considered were dropped from the list because coding the tests directly in Java
was out of the question.

2 Not the real name of the project.

Generative Acceptance Testing for Difficult-to-Test Software 31

The core challenges were architecturally rooted, thus much more problematic. Alpha
was part of a family of applications, which together supported a large corporate busi-
ness process. A number of the other related applications supplied portions of the
precondition data referenced in Alpha’s acceptance tests. Due to incomplete applica-
tion integration, and technological and architectural differences between the applica-
tions, creating the precondition data required by the tests was complex and convo-
luted, a common side effect when testability is not a key architectural consideration.
No single framework could work the magic required to dynamically set up the pre-
condition data; we definitely needed to think outside of the box.

3 Overview: Code Generation Approach

An outline of the code generation approach is shown in Fig. 1. The customer defines
their acceptance tests in a tabular format within Excel spreadsheets using a formal
domain specific testing language. An XML representation of the test is created as a
result of running a custom macro within the spreadsheet. Members of the develop-
ment team use XSL to transform the XML test specification into an executable fest,
which encodes the detailed steps required to interact with the system under test, using
the syntax and mechanisms required by the target festing framework. An important
result of this is that the front end can drive many different back ends. The XML gen-
erated from the spreadsheet can be manipulated by any number of XSL specifications
to create automated tests based on any of the available frameworks (e.g., Junit,
HttpUnit, jWebUnit.WebTest).

i Testing i
Front end | Frame- |
- sAs i work i
r N it i)
e e ey P AREREEITS: I'-'"", R R e |
Excel i XML i | XSL i Test i | System |
Spread- _E (generated) - _E (generated) ;,__E Under s
sheet ; E i : Test E
L s
N
Back end

Fig. 1. Code Generation Components

Inspired by FIT, our goal was to provide the customer with a declarative, clean, and
powerful testing language for defining acceptance tests. The customer already fre-
quently used Excel spreadsheets to specify calculated outcomes, so we decided to use
them to document the entire acceptance test. The customer had numerous tests to

32 J. Andrea

write in a short amount of time; human error was minimized wherever possible by
taking advantage of Excel’s cell cross reference and calculation features.

Fig. 2 provides an example acceptance test for a system that is used by hospitals to
archive inactive patient records (called volumes). A patient is identified by a chart
number, and may have one or more volumes. A volume is essentially a file folder that
contains treatment details for a patient. If a patient has not received treatment for five
or more years, their volume is considered to be inactive. Before boxes of inactive
volumes are physically sent to an off-site storage location, a user enters the data asso-
ciated with each volume into the Volume Archiving System (VAS).

This is one of the simplest acceptance tests for VAS, which demonstrates the follow-
ing business rules: (a) adding a new volume will create the associated chart and/or
box if they don’t pre-exist, and (b) volumes for the same chart may be archived in
different boxes.

1 Test Scenario 1

2 Feature Name Add Volume

3 Description Dynamically create boxes as necessary when volumes are
added to the system. Volumes for the same chart may be

archived in different

unchanged|!

Fig. 2. Example Excel Spreadsheet Test Specification

This specification is declarative in that it focuses on what, not how; it gives no hint of
the gory details associated with actually executing the test. It is clean because only
the essential concepts are described; we have the assurance that everything else that

Generative Acceptance Testing for Difficult-to-Test Software 33

needs to be taken care of will be. It is powerful because the various table and column
headings form a domain specific testing language that is familiar to the customer.

The body of the test (lines 4-20) is divided into three sections:

- Preconditions identify the data that is expected to be in the system prior to run-
ning the test. The table heading (line 5) defines a business object, and the column
headings (line 6) reference attributes of the object. Each row represents a sepa-
rate object (line 7). Many different business objects can be specified in the pre-
conditions section, following the same pattern shown in the example.

- Processing refers to workflow, or user goal level use cases [9](line 9), supported
by the system. Each column heading (line 10) represents user input that is re-
quired at some point within the workflow. Workflow is processed sequentially in
the order specified in this section.

- Expected Results are described in the last section in terms of the changes made
to the business objects. The appropriate verbs (e.g., created, updated, deleted) are
placed in column 1.

The XML corresponding to the spreadsheet is shown in Fig. 3. A custom macro
within the spreadsheet understands several simple rules about placement and the use
of color within a test specification: fields describing the test start in cell (1,1) and end
at the first yellow line; major sub-sections of the test are found in lines highlighted in
yellow; domain classes and their attributes are found in lines highlighted in grey;
domain objects exist in the uncolored rows. The XML is semantically equivalent to
the excel spreadsheet, but in a different (and noisy) format. The macro generically
handles test specifications from any business domain, supporting any number of do-
main classes and associated attributes.

1 <test TestScenario="1" FeatureName="Add Volume" Description="Dynamic..." >
2 <Preconditions><classes>

3 <class name="Volume">

4 <object Volume#="1" Chart#="1" Box#="1"/>

] </class> </classes></Preconditions>

6 <Processing><classes>

i <class name="AddVolume">

8 <object Volume#="2" Chart#="1" Box#="2"/>

9 </class> </classes></Processing>

10<ExpectedResults><classes>

11 <class name="Volume">

12 <object verb="created" Volume#="2" Chart#="1" Box#="2"/>
13 <object verb="unchanged" Volume#="1" Chart#="1" Box#="1"/>
14 </class>

15 <class name="Box">

16 <object verb="created" Box#="2"/>

17 </class></classes></ExpectedResults></test>

Fig. 3. Example Generated XML

34 J. Andrea

While this is one of the simplest acceptance tests for VAS, the actual steps required to
carry out the test (either manually or automated) are significantly more complicated.
Automated tests contain the details of the application workflow and proper test data
management, and are typically divided into four sections:

- Fixture Setup (lines 4-7): Create a unique volume object with the specified at-
tributes (note, the business logic will also cause the chart and box to be created).
All remaining required attributes are generated as unique, ‘anonymous’ values
[4]. Persist this object in the database.

- Exercise System Under Test (lines 9-11): Ensure the objects that will be created
by the test (lines 15 and 20) do not exist prior to running the test. Navigate
through the screens to accomplish the user goal of adding a volume to a box.
The values listed on line 11 are used as inputs as appropriate within this
workflow. For this application, this simple workflow involves logging in, and
navigating through 3 different screens.

- Results validation (lines 12-17): Navigate through the application to ensure that:
the objects that should have been created actually exist, the objects that should
have been deleted no longer exist, and the objects that should have been updated
have the new values. Each of these validations involves multi-screen navigation
starting from the main screen.

- Fixture teardown (lines 4-7, 12-17): Remove any objects created in the precon-
ditions (line 7). Remove any objects created as a result of exercising the System
Under Test (line 15, 20).

4 Project Alpha: Difficult Fixture Setup

As described in Section 2, the motivation for this code generation approach was to
find a solution to the complicated test fixture setup problem experienced by project
Alpha. Test data creation was a multi-step process performed partially using: Alpha’s
user interface, another application’s user interface, Alpha’s java API, and a series of
carefully hand-written SQL scripts aimed directly at several databases (a simplified
outline is shown in Fig. 4). Multiple XSL code generators were developed to take
information from the XML specification and transform it into a specific step in the
data loading process. The standard acceptance-testing tool for the project was QA
Run [10]. The testing team developed a customized script-based interface to supple-
ment QA Run’s standard record-playback interface.

This is a case where the front end and the back end of the tests are radically different.
Because the data creation process was so complex and time consuming, the code
generated to handle the fixture setup stage pre-loaded all of the data for an entire test
suite while still insuring that each test operated on it’s own unique data set (private
fixture data [4]). The key critical success factor for pre-loading private fixture data is
to follow a naming convention that ensures each test references only its own data.
The test scenario and feature name from the header part of the test specification (lines

Generative Acceptance Testing for Difficult-to-Test Software 35

1-2 of the spreadsheet; line 1 of the XML) were encoded into the test data during the
code-generation process.

[XSLsept |—p] QA Run Ul Delta
SL step2 QA Run Ul Alpha
Excel XML
Spread-
heet
shee XSL siep3 |—| SQL

XSL steps SQL
o -

A\ 4

p DB Alpha

Fig. 4. Multiple Targets for Fixture Setup

This turned out to be a remarkably elegant and efficient solution that resolved both
the technical challenges and the usability requirements. The business experts were
able to quickly develop acceptance tests, given the declarative, and domain-oriented
specification language. This approach addressed all of the problems and constraints
related to loading the test data, and did so in an error-free and consist manner. Ulti-
mately, less time was spent automating the large number of acceptance tests using the
code generation approach, as compared to having to hand-code each test from a cus-
tomer specification.

5 Project Bravo: Complex System Workflow

The results from project Alpha were so encouraging, that a second project was imme-
diately sought out to verify the general applicability of the approach. Project Bravo®
also considered acceptance testing late in the game, but was very different from proj-
ect Alpha in a number of ways. First, a disciplined (unit) test-first process was fol-
lowed during application development. As a result, the system was very testable;
none of the fixture setup difficulties experienced by Alpha were experienced on this
project. Because the intricacies of the business rules were well covered by the unit
tests, far fewer acceptance tests were needed as compared to Alpha. The team had
been using HttpUnit to unit-test the user interface, so this was the target tool for the
second code-generation case study (see Fig. 5).

While Bravo did not share the difficulties of Alpha, there were different project char-
acteristics that made this approach compelling as an option. Bravo is very rich in
features, supporting many detailed business workflows. Because the declarative na-
ture of the spreadsheets focuses on the business intent (what), not the detailed steps

3 Not the real name of the project.

36 J. Andrea

HttpUnit
[
Excel XML XSL Test Bravo
Spread- | - - L
sheet

Fig. 5. Code Generation for project Bravo

within the workflow (how), the test specifications will remain quite stable while the
actual system evolves over time. In addition, the highly collaborative and fluid design
approach taken by the team results in user interface and workflow details that are not
solidified until relatively late in the sprint. Thus the front end of the tests can be de-
fined early on, and the back end of the tests can be developed later once the details
have been worked out. Furthermore, as the system evolves over time, test mainte-
nance will typically be localized in a small number of XSL components; once the
code for the acceptance tests are re-generated they are all brought up to date.

While this approach worked well the second time, it wasn’t necessarily the best strat-
egy for Bravo. The customer was not responsible for actually writing the tests, so it
was not as crucial to have a user-friendly specification. As a result, the XSL code
generation layer was deemed to be extra overhead, requiring specialized skills and
tools that the team had not needed thus far. Because the number of acceptance tests
automated on Bravo was quite low (in the order of ten to twenty), hand-coding the
tests in a more direct fashion was acceptable. The team ultimately decided to use an
extensively customized WebTest framework [11] for hand-coding the acceptance
tests.

6 Conclusions

While there are many excellent acceptance testing tools and frameworks available
today, this paper presents an alternative approach, involving generating test code
from acceptance tests specified in excel spreadsheets. This approach has been tried on
two substantially different projects, providing insights about its applicability. Al-
though this is a general-purpose approach, it is not a silver bullet. In particular, the
project must weigh the extra cost of developing the code-generation layer against the
resulting benefits. In particular, if there are a manageable number of tests, and an
existing acceptance testing framework can be used directly, then the code-generation
approach would likely introduce unnecessary overhead. Thus, the most basic criterion
for applicability is that the situation is too difficult to test using an existing framework
directly. One or more of the following project characteristics further increase the
appropriateness of this approach:

Generative Acceptance Testing for Difficult-to-Test Software 37

- The customer writes the acceptance tests themselves and needs a simple, domain
specific testing language to express the concepts clearly.

- Acceptance tests act as requirements and are focused on capturing strategic con-
cepts (e.g., overall business rules and relationships) rather than tactical details
(e.g., application steps to enact the workflow). Decoupling the specification from
the automation makes this separation of concerns possible.

- A large number of tests must be automated in a short amount of time. The tests
contain calculations and interrelationships between the data that a spreadsheet
supports well.

- The user interface evolves over time, and test maintenance is a concern.

Does the automated acceptance testing world need yet another approach? For a diffi-
cult-to-test project like Alpha, the code generation approach worked exceptionally
well, in a situation where nothing else could have possibly worked.

Acknowledgements. It’s been my privilege for many years to work with and be
mentored by Gerard Meszaros and Shaun Smith on test automation best practices.
The work described in this paper would not have been possible without the courage,
insights, and contributions of members of the Alpha project team: Bryan
Ambrogiano, Kevin Holroyd, and Bud Newman. The work was significantly
improved by the insights and contributions of the Bravo project team: Amy Law,
Robert Purdy, Lynne Ralston, and Ross Taylor.

References

1. Beck, Kent, Extreme Programming Explained, Addison Wesley, 2001.
. Andrea, Jennitta, “An Agile Request For Proposal (RFP) Process”, ADC, 2003

3. Meszaros, Gerard, et al “Agile Regression Testing Using Record & Playback”, XP Agile
Universe, 2003

4. Meszaros, Gerard and Shaun Smith, “Test Automation Manifesto”, XP Agile Universe,

2003

FIT, http://fit.c2.com

HttpUnit, http://httpunit.sourceforge.net

jWebUnit, http://jwebunit.sourceforge.net/

WebTest, http://webtest.canoo.com/webtest/manual/WebTestHome.html

Cockburn, Alistair, Writing Effective Use Cases, Addison Wesley, 1997.

10. QA Run, http://www.compuware.com/products/qacenter/qarun.htm

11. Andrea, Jennitta, “Putting a Motor on Canoo WebTest Acceptance Testing Framework”,
XP2004 Conference, 2004.

O 20NN

Moomba' — A Collaborative Environment for Supporting
Distributed Extreme Programming in Global Software
Development

Michael Reeves and Jihan Zhu

Information Environments Program
School of Information Technology and Electrical Engineering
The University of Queensland
Brisbane 4073, Queensland, Australia

m.reeves@ug.edu.au, jihan@itee.ug.edu.au

Abstract. Global Software Development (GSD) is an emerging distributive
software engineering practice, in which a higher communication overhead due
to temporal and geographical separation among developers is traded with gains
in reduced development cost, improved flexibility and mobility for developers,
increased access to skilled resource-pools and convenience of customer
involvements. However, due to its distributive nature, GSD faces many fresh
challenges in aspects relating to project coordination, awareness, collaborative
coding and effective communication. New software engineering methodologies
and processes are required to address these issues. Research has shown that,
with adequate support tools, Distributed Extreme Programming (DXP) - a
distributive variant of an agile methodology — Extreme Programming (XP) can
be both efficient and beneficial to GDS projects. In this paper, we present the
design and realization of a collaborative environment, called “Moomba”, which
assists a distributed team in both instantiation and execution of a DXP process
in GSD projects.

Keywords: eXtreme Programming, CSCW, groupware, distributed teams,
awareness, coordination

1 Introduction

Global Software Development [1] stems from the Software Industry’s desire for
globalisation of business to derive increased market-share and from its’ desire to gain
a competitive edge through outsourcing, subcontracting and forming strategic
partnerships. Rapid advances in computer networks, telecommunication and internet
technologies have made it possible for developers from different geographical
locations and technical specialities to form virtual teams in a distributed setting. This
allows teams to jointly develop the same artefact of software in a collaborative way.
However, GSD represents a radical shift from the way software is engineered
traditionally in a collocated team setting. Many challenges arise due to GSD’s

I Moomba is an Australian aboriginal word meaning: “let us get together and have fun” which
captures well the synergistic spirit that our collaborative environment endeavours to create.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 38-50, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Moomba — A Collaborative Environment 39

distributive nature, where developers are dispersed at different development sites
across many countries and time zones. Four aspects of software engineering process
are most impacted by the distribution of team members, these include - project
coordination, awareness, collaborative coding and effective communication.

A software development process is needed in a GSD project to coordinate the
activities of the project and govern the project’s lifecycle. The question is then which
software process best lends itself to GSD. In recent years, Extreme Programming
(XP) has proven to be a popular methodology for its’ relatively ‘lightweight’
approach which encompasses many valuable user-centric design principles and
usability values. The XP methodology relies predominately on the development team
working in close proximity, ideally within the same workspace to facilitate tight
communication. To allow XP to be utilized within distributed environments, it is
necessary to introduce communication and awareness support that is closely
comparable to collocated XP practices. Several efforts have been made to apply XP
methodologies to a distributed setting, notably in TUKAN and MILOS [2, 3].

A collaborative environment is essentially any virtual workspace specifically
designed to support communication and awareness to afford a strong sense of
coherency within a group. It should integrate with existing systems used by the
organization, such as document repositories coupled with versioning and
configuration control tools (such as CVS), databases, videoconference facilities and e-
mail systems. This can provide improved communication through use of notifications,
document sharing and an increased understanding of the software process. This will
allow for greater collaboration among team members by unifying people with diverse
skills into a more cohesive unit. The goal of the Moomba collaborative environment
aims at creating an online virtual community by encouraging cooperative teamwork.
Moomba implements a three-tier awareness model based on the model inspired by
Rodden [4]. This model describes the interactions of users with a shared workspace
in terms of a spatial metaphor.

The rest of the paper is organized as follows. Moomba’s three-tier awareness
model for support collaborations in DXP software process is defined and discussed in
section 2. A realization of the three-tier awareness model use as part of our
collaborative development environment is described in section 3. Related work is
reviewed in section 4, followed by conclusions and future work in section 5.

2 Moomba’s Awareness Model

“Workspace awareness is the up-to-the minute knowledge a person requires about
another group member’s interaction with a shared workspace to collaborate
effectively” as defined by Greenberg et al.[5]. People can use this awareness
information to help coordinate their work based on an understanding of the activities
of others. To determine how Moomba supports awareness it is helpful to determine
how different types of awareness can be categorized. According to Greenberg [5],
there are several categories of awareness that must be used to provide effective
collaboration.

40 M. Reeves and J. Zhu

Table 1. Four types of group awareness.

Type of Description
Awareness

Informal Basic knowledge about the presence of users sharing a
workplace.

Group- Knowledge people’s roles and responsibilities, their position

structured on an issue, their status and group processes.

Social Information people maintain about others in a social or
conversational context.

Workspace Knowledge a person requires about another group member’s
interactions in a shared workspace.

It is essential that the awareness system captures enough information about the
interactions of the users within the workspace, and provides awareness support
through the appropriate notification of events. Careful consideration should be made
to the value or importance each awareness sub-type brings to the system to ensure an
effective and compact awareness model.

2.1 Rodden’s Spatial Awareness Model

Several models have been developed to deliver awareness information without
flooding the user with irrelevant information. A well-known model presented by
Rodden describes the interactions of users with a shared workspace in terms of a
spatial metaphor. Within the spatial model, artifacts are arranged in a three
dimensional space. As users interact with various artifacts, other users may see where
their team members are positioned. The important concepts used by this model are
focus and nimbus as described in [6].

e Nimbus describes the location (s) where a user is located in the workspace.

e Focus describes the location(s) at which the user may be looking.

TUKAN’s Awareness Model

TUKAN, developed by Schiimmer and Schiimmer [2], uses this specialized spatial
model with focus and nimbus. The focus includes all objects that are of interest to the
user, while the Nimbus includes all positions in space where the object might
influence other objects. TUKAN automatically arranges the artifacts within the
artifact space according to the following relationships:

¢ Structural relationships like inheritance
e Usage relationships such as calling class method
* Version relationship between artifacts with the same version

Based on these relationships a semantic distance function can be used to find the
range between two artifacts. A color-coding scheme is used to visualize the distance
to the nearest team member in the nimbus. Thus this information can be used to

Moomba - A Collaborative Environment 41

indicate the presence of users working on related artifacts, which may encourage pair
programming. The same distance can be used to measure possible configuration
conflicts. Potential conflicts between artifacts are represented using a weather
metaphor in TUKAN.

2.2 Moomba’s Three-Tier Awareness Model

The Moomba three-tier awareness model extends TUKAN’s awareness model to
support a greater level of awareness. This particularly includes workspace knowledge
and group-structure awareness needed to support DXP. The collaborative space model
used by TUKAN provides detailed awareness information in relation to the project
artifacts. However, we believe that TUKAN’s awareness model is somewhat passive
when supporting pair-programming, as the awareness model is fundamentally based
on the proximity between two programmers’ foci. It is our belief that a greater level
of support for workspace knowledge and group-structure awareness holds the key to
creating a sense of community among the development team.

I
Process Tier Y

1

1

1 T' 7 . By {
{User Tier i “\ |

; —= Adfelavts
Arfefact Tier

Fig. 1. Illustrates Moomba’s three-tier awareness model

Moomba’s three-tire collaboration model can be visualized within cubic space as
illustrated in Fig.1. The cubic space has three planes, each corresponding to a tier of
awareness within the collaborative environment. The top tier represents system
entities that provide social and group-structure awareness. The middle tier captures
awareness information regarding interactions and collaboration performed by users,
while the bottom tier focuses on software artifact interactions. The projection cones in
Fig. 1 represent the interactions and relationships between each tier in the awareness
model.

The model is essentially a means to capture awareness information of interest to
team members. At each tier of awareness, there are many types of the associated
events that need to notify different team members. However, not all events are
relevant to each team member. Different types of events must be handled differently

42 M. Reeves and J. Zhu

by the collaborative mechanisms that support awareness. We have adopted an event
classification system defined by Schlichter et al [6] to categorize these events. In
general, the events are classified into four awareness modes as describe in the
Table 2.

Synchronous awareness is concerned with events that are currently occurring in the
collaborative environment. This is in contrast to asynchronous awareness, where
events have occurred in the past. Coupled and uncoupled awareness is used to
categorize events according to the user’s focus in the workspace. Participants
collaborating on the same artifact and are aware of each other is considered coupled
awareness. While uncoupled awareness is information that is interesting, but not
related to the user’s current focus of work.

Table 2. A scheme for classifying awareness events.

Synchronous Asynchronous

Coupled What is currently ‘What has changed in the actual scope of the
happening in the actual work since last access?
scope of the work?

Uncoupled | Things of importance, Has anything of interest happened recently
which occur currently somewhere else?
anywhere else?

2.3 The Process Tier of Awareness

The process tier is used to place team members along with their interactions with
project artifacts into a collaborative context. Process entities are used to form relations
among user entities found within the user tier. Analyzing a user’s responsibilities,
roles, ambitions, self-improvement objectives, XP experiences and skill sets allows
process entities to construct relations detailing a project’s organizational and social
structure. Information collected at this tier is essential for providing users with
knowledge about potential programming partners for current and future collaboration
on the project. Events associated with the process tier include events related to
potential collaborators and requests for interactions. An example of events for the
process tier is illustrated in the Table 3 (not comprehensively listed).

It is important to realize that the events listed in Table 3 do not represent what is
captured by the process entities. What the process entities capture basically consists of
information regarding relations between user entities and the user entity’s relationship
with the artifact-tier.

2.4 The User Tier of Awareness

The User tier is essentially a simplified version of TUKAN’s collaborative space. All
software artifacts evaluated to be of interest or relevant to the user are added to their
focus. Whereas TUKAN arranged artifacts within the artifact space by analyzing the
semantic structure of each class, Moomba uses an artifact’s collaborators, as defined
by the Class, Responsibility and Collaboration (CRC) cards.

Moomba — A Collaborative Environment 43

Table 3. A classification of events in the process tier.

Synchronous Asynchronous
Coupled e A potential collaborator has e Changes in potential
become online / offline collaborator’s schedule and
* Anexpert in current work plans.
interest has become on-line / * Requests for pair
offline programming / task
e A task which matches a negations left by
programmer’s skill sets is collaborators.
available
Uncoupled | e A pair-programming request e New member has joined the
has arisen in an area of my team since last access
learning interest e Staff departure
e On-line technical seminar has
started
e On-line status of the rest of
team

Awareness information similar to TUKAN is captured at this tier. Moomba
provides information regarding the presence of users as they interact with software
artifacts. Knowing that a user is working on the same or related artifacts can resolve
potential configuration conflicts. When a potential conflict is detected programmers
can work together to resolve the problem. Thus continuous integration can be
achieved while coding. In addition to resolving conflicts, knowing that another user is
sharing the same artifact or an artifact closely related can encourage users to work
collaboratively. Examples of events belonging to the user tier are listed in the
Table 4:

Table 4. Examples of events belong to the user tier.

Synchronous Asynchronous
Coupled e Potential conflicts » Version changes to this
e Sharing the same artifact artifact since last access.
e Configuration changes to
this artifact
Uncoupled * Any changes to collaborating s Version changes occurred on
artifacts (as defined in CRC) not closely related artifacts

2.5 The Artifact Tier of Awareness

The artifact tier is concerned with capturing events generated when a user modifies a
shared artifact. It is more specificly interested in events limited to the scope of an
artifact. This is how the user level is able to determine potential conflicts and the
presence of potential collaborators. However, the artifact tier is of particular
importance when users are engaged in a pair programming sessions. Examples of
events in the artifact tier are listed in Table 5.

44 M. Reeves and J. Zhu

Table 5. Examples of events belong to the artifact tier.

Synchronous Asynchronous
Coupled * Actions performed by oneself | e History of changes the
. Actions performed by current shared artifact

collaborator
Uncoupled ® Actions performed on other | ® History of all changes to
instances of the shared artifact other instances of the share
artifact

Moomba’s collaborative editing system is based on the relaxed WYSIWIS (what
you see is what I see) model. This corresponds to the ability of participants to each
work in seperate sections of the document. The model is nesscessary to allow the
document’s participants the freedom to browse its contents, while not disrupting their
pair’s position. For example, while pair programming one user may check the
implementation of method, while their parnter continues to code. Moomba allows two
or more users to remotely collaborate on a shared artifact simultaneously. The shared
artifact is not limited to the project’s source files, so it covers the possibility to create
or modify user stories or tasks collaboratively.

3 A Realization of Moomba’s Collaborative Environment

Moomba’s collaborative environment consists of a set of tools which integrate these
support mechanisms to facilitate the instantiation and execution of a DXP process.
We begin by describing the overall architecture of Moomba. Each of tools will be
discussed in the next section. Examples are then used to illustrate how Moomba’s
tools can be applied for supporting a DXP process.

3.1 Overall Architecture

The overall architecture for Moomba is illustrated in Fig.2. Moomba consists of three
main tools: HyperStackXP — a web portal for project coordination and tracking; a
collaborative server — for coordinating manipulation and management of shared
artefacts; and MCIDE - a collaborative programming environment for pair-
programming in Moomba. In addition, both the web portal and the collaborative
server are integrated with CVS code/document repositories and a user database.

|

I

e - (B User Knowledge Elvin i l

| HyperStack XP r—-: Dulabase Ly
| 1

Fig. 2. An illustration of Moomba’s collaborative environment architecture.

1

I

H e T | |
1| MCIDE '—-‘: Collaboration Server :
| . i
i !
|

|

|

|

|

Moomba - A Collaborative Environment 45

3.2 Web Portal — HyperStack XP

Moomba offers a flexible, web-based project management web portal - HyperstackXP
to help streamline the project management and planning. Its goal is to support both
coupled and uncoupled asynchronous event notifications. It is essential to keep users
informed of any project changes through indirect communication. Each user’s web
interface is customized to receive notifications or updates based on the user’s
responsibilities within a project. HyperstackXP contains a rich set of functionalities,
although not all features will be described in this paper. A selected few screen shots
demonstrating the functionalities of HyperstackXP are included in Fig.3. The web
portal integrates process execution with a user database to simplify project
management, minimize overhead, and notify requirement changes. It incorporates key
XP practices such as release planning, iterating planning and tracking, and story and
task management.

Tracking Project Overall Status. Hyperstack provides overviews on the current
status of a project by release and iteration. This allows developers the quickly assess
the project’s status. User stories and task requirements are organized into releases and
iterations. In a distributed environment where members frequently change it important
that the system has a good support structure to help new users become familiar with
the project.

Supporting Planning Game. Release Planning lists all the stories that have not been
completed or planned for an iteration. This allows users to group selected stories to be
added to the current or a future iteration. The Iteration display can be used to show
users their tasks and assignments. In most XP projects, task assignment is generally
decided by allowing users to signup for a particular task as soon as it becomes
available. The drawback with this approach is it may be difficult for all users to be
present each time a new task is added. This is especially true with large distributed
projects, where the development team is typically dispersed across many time zones.
Moomba handles this dilemma by maintaining a user’s presence within the system
when the user is offline. The system has the responsibility within the system to ‘act’
on the user’s behalf. For example, Moomba detects that a new task has been added to
system, which requires extra functionality to the applications sound API. Using
information from the user knowledge base and analysing user involved with related
artefacts, the system can notify potential users that a task may be of interest.

Pair-Programming Partner Finder. The Finder is essentially an advanced search
through the user database with the goal being to find a programming partner. The
Finder defines the search criteria based on the requirements or attributes a user may
be interested in. This can then be used to search each user’s profile for pair
compatibility. For example, a user may choose to use the Finder to collaborate with
another user at a particular skill level, coding interest or programming role. This
feature is also helpful for pairing new users to more advanced and experienced users
to balance and develop the XP team.

46 M. Reeves and J. Zhu

User Profile Management System. The user profile management system is a
collection of information relating to each user’s: Programming interests, ambitions,
project goals, XP experience, programming experience, availability, project schedule,
time zone, performance rating given by peers, and completed user stories and tasks.
The user database can help bring together users for pair programming by using
Moomba’s Pair-Programming Finder. The user database is created when a new user
joins the development team and some fields are dynamically updated each time a user
has completed a task. For example, after each successful task completion, the user’s
performance is rated by peers; the user’s XP experience and programming experience
also increase. The manager updates their skills set when a user has successfully
completed a task that requires new skills or has completed a training course.

3.3 Moomba’s Collaborative IDE (MCIDE)

Moomba’s collaborative editor supports all the functionality usually found in today’s
leading development environment. This includes syntax highlighting, code
completion, find/replace, indentation and a symbol finder. Moomba allows two or
more users to remotely collaborate on a shared artifact simultaneously. The shared
artifact is not limited to the project’s source files, but can allow users to create and
modify user stories or tasks collaboratively. The editing is completely unconstrained
and users can insert and delete characters at any location.

The most important feature for supporting text-based collaboration involves
making all participants aware of each other’s changes to a document. Taking this into
account, it is paramount that the input generated by each user be distributed to all
participants, so that consistency among participants is maintained. To further add
awareness, a participant’s contribution to the document can be visualized using a
different background colour to emphasize what they have typed. It is important that
the collaboration be based on the relaxed WYSIWIS model. The main advantage
being participants have the freedom to scroll to any location within the document
without affecting what other participants are doing. However, this freedom can lead
to reduced awareness. Thus there is the requirement to provide appropriate widgets to
allow participants to be aware of each other activities. Moomba features several
widgets to counter the lack of reduced awareness. These widgets are shown in Fig 4.

The functionality of Moomba can also support collaborative debugging of
programs. Each collaboration session allows participants to collaboratively control
program execution, while receiving essential debugging information. Participants
have access to information regarding the call sequence of each thread and its
variables. The editor also allows participants to follow the execution of a program
within the source code. Currently, only the textual output of an executing program can
be shared. For programs, such as applets, only the host will be able to see the output
sent to the screen. Moomba also allows users to execute groups of JUnit tests. The
results of the tests are distributed to all participants within session. Users can move to
the failed test by clicking of the error message listed in the Testing output window.

Moomba — A Collaborative Environment 47

. s B

& HyperStack 7. o B = 4’ ﬂn

Fig. 3. Screen shots demonstrate (clockwise: project overall progress statistics, user-stories
sorted into iterations, pair-programming partner finder, and the status for a release.

gl ik st

v A vl

Mt ol o
gt S

b h e
pmtrian » g"'

po B W fm pemec e
’

B e umeiy» i

Fig. 4. Moomba’s collaborative features allow participants to editor, build, test and debug a
project collaboratively.

4 Related Works

The term DXP was first used by Kircher et al [7] when they investigated the
possibility of extending the agile methodology XP to distributed software engineering
settings by relaxing the team’s collocation constraint. Their empirical study showed

48 M. Reeves and J. Zhu

that almost all of XP’s key practices can be directly applied in distributed software
development. This is with the exception of the following four XP practices: planning
game, pair-programming, continuous integration and on-site customer. Their solution
to collocation constraint is to use off-shelf groupware (such as Microsoft Net-
meeting, email and chat channels) to provide awareness support to facilitate to
communication, collaboration and coordination in execution of the XP software
process in a distributed setting. Their experience shows that XP principles and
practices can be extended into distributed software developments, provided that there
is adequate awareness support to facilitate efficient communication and collaboration.

TUKAN is a groupware tool developed by Schiimmer and Schiimmer [2] to
support software development in distributed teams using the DXP methodology.
Since TUKAN has been extensively reviewed in above sections, we will not repeat
here.

MILOS, developed by Maurer and Martel [3], is web-based project coordination
and management tool for supporting the DXP software process. MILOS overcomes
the collocation constraints by providing support for project coordination, information
routing and team communication. MILOS provides the development team with
overviews detailing the current state of all project tasks, stories and development
plans. The system easily allows for accessing the information generated from a task.
This information can be viewed within a standard Web browser. The support for pair-
programming is done by Microsoft Net-meeting.

Baheti et al [8] conducted an empirical investigation to the effectiveness of pair-
programming in distributed teams. This was achieved by comparing the performance
level between a distributed team and a collocated team within an academic
environment. It was suggested that the efficiency of the dispersed teams was
comparable to that of collocated teams, with respect to the productivity (lines of code
per hour) and quality (test subjects’ grades) of the code produced. The results also
showed that the distributed pairs showed a higher level of communication and
collaboration. This result gives incentives for continuing to develop and improve
collaborative tools for distributed pair-programming.

Damian and Eberlein [9] conducted an empirical study of the efficiency of
groupware tools such as Microsoft’s Net-Meeting for supporting requirement
negotiation in a distributed software development environment. The results suggest
that the group performance in requirement negotiations in a face-to-face setting is no
better than in distributed group setting; and collocated negotiators actually manage
conflicts less well than the distributed negotiators. This is because face-to-face
negotiations are usually more emotionally intense. The results appear to confirm
experiences reported in Kircher’s DXP work that used groupware communication
tools such as Microsoft Net-Meeting might not hinder the decision-making ability of a
distributed team.

Starbase CodeWright™ 7.0 [10] is a commercial programming environment.
CodeWright’s most attractive and relevant feature is known as CodeMeeting that
serves the function of a shared editor that allows pair-programming over a distributed
environment. Pairs see the same source code simultaneously and can take turns
writing, editing and commenting the source. CodeWright also features a text chat
feature that drastically speeds up development time, as an external messaging system

Moomba — A Collaborative Environment 49

is not necessary. The awareness support provided by CodeWright is comparable to the
third level as defined in our awareness model.

RECIPE™ (REal-time Collaborative Interactive Programming Environment) [11]
is a prototype for an internet-based real-time collaborative programming environment.
Its goal is to allow physically dispersed programmers to collaboratively design, code,
test, debug, and document the same software source code. The awareness features
supported in RECIPE are comparable to the third level as defined in our awareness
model.

5 Conclusion and Future Work

Workspace knowledge and group-structure awareness in distributed teams is crucial
for facilitating strong collaboration required by distributed teams to practise XP in
GSD projects. While TUKAN’s awareness model provides detailed awareness
information in relation to project artifacts, Moomba’s three-tier awareness model
extends TUKAN’s awareness model to support a greater level of awareness. This
particularly includes workspace knowledge and group-structure awareness which are
vital for seamless collaborations at project coordination and management level.
Moomba’s collaboration environment supports our awareness model by using two
collaboration tools: a web portal — HyperstackXP and a collaborative editor - MCIDE.

In future work, intelligent agent systems will be investigated to automatically
support some of the functionalities in the process tier. For example, match-making
agents will replace the current the finder for searching potential pair-programming
partners. A reputation agent will automatically rank a developer’s performance. The
direct communication in the current system uses Microsoft Net-meeting to provide
video and audio. In the future work, the video and audio conferencing facility will be
fully integrated to the collaborative editor. The usability of Moomba’s collaborative
environment is currently under evaluation at a commercial company. Features and
functionalities in both HyperstackXP Web portal and MCIDE collaborative editor
will be refined according to the usability study report. The final product of Moomba
will be release as open-source software.

References

1. Damian, D., Workshop on Global Software Development. 2002, Web Conference
Proceedings on “Global Software Development” available at http://www.cis.ohio-
state.edu/~nsridhar/ICSE02/GSD/PDF/summary.pdf.

2. Schiimmer, T. and J. Schiimmer. Support for Distributed Teams in eXtreme Programming.
in Proceedings of Second International Conference on eXtreme Programming and Agile
Processes in Software Engineering (XP2001)”,. 2001. Cagliari, Sardinia, Italy: Addison
Wesley, pp. 355-377.

3. Maurer, F. Support Distributed Extreme Programming. in Proceedings of Extreme
Programming and Agile Methods - XP/Agile Universe 2002, Lecture Notes in Computer
Science. 2002. Chicago, IL, USA: Springer-Verlag Heidelberg, pp. 13 - 22.

50

10.
. Shen, H. and C. Sun. RECIPE: A Web-based Environment for Supporting Real-time

M. Reeves and J. Zhu

Rodden, T. Population the Application: A Model of Awareness for Cooperative
Applications. in Proceedings of International Conference on Computer Supported
Cooperative Work. 1996, pp. 87-96.

Greenberg, S., C. Gutwin, and A. Cockburn, Using distortion-oriented displays to support
workspace awareness. 1996, Dept of Comp. Science, Univ. of Calgary, Canada.

Schlichter, J., M. Koch, and M. Biirger. Workspace Awareness for Distributed Teams. in
Proceedings of International conference on Coordination Technology for Collaborative
Applications - Organizations, Processes, and Agents, Lecture Notes in Computer Science.
1998. Singapore: Springer Verlag, Berlin, pp. 199-218.

Kircher, M., et al. Distributed eXtreme Programming. in Proceedings of Second
International Conference on eXtreme Programming and Agile Processes in Software
Engineering (XP2001)”,. 2001. Cagliari, Sardinia, Italy: Addison Wesley, pp. pages 66-71.
Baheti, P., et al., Exploring pair programming in distributed object-oriented team projects.
2002, In Web Proceedings of 17th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications - Educator’s Symposium
2002, available at:
http://collaboration.csc.ncsu.edu/laurie/Papers/EdSymDistPPFinalSubmission.pdf.

Damian, D. and A. Eberlein, Groupware Support for Requirements Negotiation in
Distributed Software Development. 2001, Web Conference Proceedings on “Global
Software Development” available at
http://sern.ucalgary.ca/~maurer/icse2001ws/submissions/Damian.pdf.

Borland, Starbase CodeWright, http://www.codewright.com/.

Collaborative Programming. in Proceedings of IASTED International Conference on
Networks, Parallel and Distributed Processing, and Applications (NPDPA 2002). 2002.
Tsukuba, Japan, pp.

When XP Met Outsourcing

Angela Martin', Robert Biddlez, and James Noble'

! Faculty of Information Technology, Victoria University of Wellington
Wellington, New Zealand

{angela, kjx}@mcs.vuw.ac.nz
? Human-Oriented Technology Laboratory, Carleton University

Ottawa, Canada
robert_biddleC@carleton.ca

Abstract. Outsourcing is common for software development, and is the context
for many projects using agile development processes. This paper presents two
case studies concentrating on the customer role in projects using outsourcing
and extreme programming (XP). The studies follow an interpretive approach
based on in-depth interviews, and suggest some tensions between some con-
tractual arrangements in outsourcing, and the XP process. In particular, one
suggests XP worked well in the context of their particular outsourcing ar-
rangements, and the other study suggests difficulty in aligning XP with a dif-
ferent set of outsourcing arrangements.

1 Introduction

Outsourced software development has become commonplace in today’s business
environment [3, 5]. The outsourcing environments of today are complex, involving
multiple organisations for different services: management, development, infrastruc-
ture and integration, to name but a few. Agile development, as it moves into the
mainstream of software development, will come face-to-face with the realities of
these complex outsourcing environments. Outsourcing arrangements typically result
in the XP customer residing in a separate organisation to the development team. Our
research [6, 7], which focuses on the XP customer role, quickly brought to the fore
that outsourcing is an issue facing the XP customer.

In this paper we present two case studies that highlight the practical realities faced
in using XP with complex outsourcing arrangements. In the next section we outline
some of the related work in this area, followed by our research method. The fourth
and fifth sections outline the two cases, while the final section presents our conclu-
sions.

2 Related Work

Members of the agile community have begun to raise some of the issues potentially
associated with outsourcing arrangements and agile development.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 51-59, 2004.
© Springer-Verlag Berlin Heidelberg 2004

52 A. Martin, R. Biddle, and J. Noble

Ambler [1] argues that outsourcing is riskier than it initially appears and organisa-
tions should seriously consider an alternative to outsourcing; that of running a small
internal agile development team. Ambler’s main argument is that the agile alternative
may gain many of the intended cost savings without some of the inherent risks of
outsourcing. So while Ambler does raise the question of whether the organisation
really should be outsourcing, he does not provide detailed advice to the practitioner
on how to effectively work in an outsourced environment.

Poppendieck & Poppendieck [9] take a different tack. Recognising that there is a
perceived barrier to agile development in an outsourcing situation, they have explored
the potential implications of different contracting models. The contracting models
they have reviewed and analysed include fixed-price, time-and-materials, multi-stage,
target-cost, target-schedule and shared-benefit contracts. They conclude that contracts
that allow optional scope are more likely to create effective software development
environments. Since the publication of their book [9], the Poppendiecks have run a
series of workshops [10] at international conferences that are aimed at further evolv-
ing our understanding in this area.

3 Research Method

Information Systems Development (ISD) methodology researchers [2, 8] have ex-
pressed a growing concern that existing ISD methods do not meet the needs of to-
day’s business and software development environments. Studies [8, 7] in this area
have begun to explore practices in natural settings in order to begin to address these
issues. Given this trend, we have used interpretative in-depth case studies to explore
our research questions within their natural setting, software development projects. We
used semi-structured in-depth one-on-one interviews to collect the data for this paper.
Two outsourced projects are explored, in the first we interviewed 5 project partici-
pants and in the second we interviewed 3 project participants. The interviewees, in
both cases, have covered the spectrum of core XP roles including the customer, pro-
grammer, coach and tester. In the second case, the participants moved between roles
over the life of the project. All interviews were taped and later transcribed in detail.
The interviewees were asked to validate both the transcriptions of the interview and
the interpreted findings. We use a number of quotes from the interviews to illustrate
our findings in this paper; names have been avoided or invented to preserve anonym-

ity.

4 Project Endeavour

This section tells the story of Project Endeavour, an outsourced XP project involving:
* KiwiCorp, alarge New Zealand company, is the customer organisation

* DevCorp, a large consultancy, is the development vendor and

s BureauCorp, a large software services companys, is the infrastructure vendor

When XP Met Outsourcing 53

The data that forms this section was collected in a series of interviews with both Ki-
wiCorp and DevCorp project participants, near the completion of the project [6, 7].

4.1 Case Description

Project Endeavour is seen as a success by both KiwiCorp and DevCorp, and part of
that success was attributed to the use of an agile development method. Project En-
deavour had been attempted by KiwiCorp previously, but each previous attempt was
unsuccessful. In fact, the KiwiCorp customer representative notes that when her man-
ager was handed this project to ‘sort-out’:
“We felt we could probably only do it if we used [DevCorp] ... because
we had such a lot of confidence in them based on previous experience ...
[later in the interview] ... we knew what they were capable of, ... they
could actually deliver what they said they could... a key value of working
with [DevCorp is that] it was ajoint effort” — Customer, KiwiCorp
The project was approximately 15 months long, and at its peak the project team
had 11 full-time experienced team members. Initially the project was a traditional
waterfall project and was divided into three phases, planning (deciding what to build),
development (building the application) and implementation (user acceptance testing,
training and roll out). The planning phase focused on gathering requirements using
standard workshop techniques and involved a series of user workshops that were at-
tended by the business users. At the end of the planning phase it was decided to use
XP for the development phase. The requirements gathered during the planning phase
were used as a basis for the XP user stories. The implementation phase was retained as
this approach meshed with the existing practices of KiwiCorp and BureauCorp.
The relationships amongst these three companies, outside of the specific project,
are complex and also worth noting. The items of particular interest are:
¢ KiwiCorp and BureauCorp have a business alliance, they work together to deliver
outsourced services. Each company also delivers services outside of the alliance.
¢ BureauCorp is the outsourced vendor for all KiwiCorp’s internal infrastructure.
¢ BureauCorp and DevCorp both have software development service lines and com-
pete against each other in this area.
Please see the technical report of this research [6] for further information concerning
Project Endeavour.

4.2 Participant Reflection and Discussion

During the course of the interviews, the participants reflected on their experiences
with XP and outsourcing. These reflections are outlined and discussed in this section.

Time and Materials Contract. The project manager from DevCorp reflected on
some of the benefits they encountered working on a time and materials contract,
rather than working on a fixed price arrangement:
“We were very fortunate that we were working on [a] time and materials
contract with [KiwiCorp], if we were working on a fixed price per itera-

54 A. Martin, R. Biddle, and J. Noble

tion ...I would have had to be a lot harder on the client... I would have
to have been a lot more strict about things like getting change signed off
and if circumstances came along [e.g. infrastructure difficulties caused
by BureauCorp] and we lost a day ... I'd have to go back to the client and
say well actually you’ve lost a day ... therefore you need to subtract that
functionality [from this iteration]... I was sort ofable to let that ride with
the client ... It didn’t become blindingly obvious to me until I was [dis-
cussing the issue with a manager responsible for a fixed price XP proj-
ect] ... if at the end of the iteration if we had not finished all of the stories
on the wall we would just put them into the next iteration, but [on the
fixed price project] they’ve still got to finish them without getting any
more money” — Project Manager, DevCorp
So a fixed price contract arrangement would result in a changed working relation-
ship between the two companies. In a fixed price arrangement, the vendor needs to
add an overhead to the process to ensure the sorts of issues noted above, would be at
the client’s expense and not the vendors. However, the project manager also noted
some of the limitations of the time and materials approach encountered on this proj-
ect:
“We didn’t establish criteria for [the customer to complete acceptance
testing] this is one of the differences between us [time and materials con-
tract] and a fixed price contract ... if we were working on a fixed price
basis we would have had to put some criteria around a sign-off .. .we’ve
not had to do that but what it does mean is that you don’t get a very quick
turnaround” — Project Manager, DevCorp
The obvious impact of not having agreed delivery dates for acceptance testing was
that (a) the defect stream was unpredictable making it difficult to manage the devel-
opment team’s workload and (b) the feedback from the customer was not immediate
and hence errors in the development team’s understanding remained for a longer
time. Perhaps the not so obvious issues are (a) the customer may not realise that their
actions caused this chain of events that directly impacts the cost of the project and (b)
the customer may not realise that DevCorp team members could interpret the cus-
tomer’s tardiness as a lack of commitment from KiwiCorp, potentially impacting their
own commitment to the project. Although it would be possible to negotiate and agree
delivery dates in this area the lack of a contractual agreement can make it difficult to
enforce these dates. Additionally, it is difficult for a services organisation such as
DevCorp to ‘chastise’ KiwiCorp regarding this behaviour without endangering future
work streams from KiwiCorp.
Multiple Organisations. This project not only had three organisations, but three
organisations approaching the project with very different processes:
“We were happy to step out of XP and work within the processes that
[BureauCorp] dictated for any kind of change or to migrate any software
or to actually have any software installed so we’ve almost had to take the
whole infrastructure thing and stick it out of XP” — Project Manager,
DevCorp

When XP Met Outsourcing 55

All of the interviewees agreed that the effect of multiple organisations involved in the
project, using a mixture of agile and non-agile processes, affected the timeline of the
project, as summed up by this quote:
“I was fully [committed to] the project but I was ... all of these technical
integration issues were just taking up about half the time [and later in the
interview regarding the project delay] the big delay has been in the tech-
nical integration. You know, just getting the application to work on the
software in the various environments” — Customer, KiwiCorp
The term “technical integration issue” was used to refer to all of the issues en-
countered between DevCorp and BureauCorp. The impact of the inter-organisational
issue was that the customer had significantly less time to spend on the requirements
and testing tasks. While the customer understood that this impacted the quality of the
delivered software, the flow-on delay caused by the quality issues appeared to be
eclipsed by the obvious technical integration issues encountered.
The project manager recognised that the relationship between the three organisa-
tions was not a simple one and noted:
“[KiwiCorp] at the end of the day is also a client of [BureauCorp] ... be-
cause of the nature of the relationship they have, [KiwiCorp] haven’t got
any weight to push around, they signed up for these processes and they
have to follow them so there is frustration on both sides of the camp’
— Project Manager, DevCorp
He also reflected on how to improve the situation between the three organisations
next time:
“We need to actually work together to build something that actually
doesn’t hinder the project process ... this is my first time working with
three parties ... and I think sitting down and sorting [the] rules of en-
gagement out at the start would be something ... I would ...in hindsight,
like to have done — Project Manager, DevCorp

Summary. This story focussed on some of the differences between a fixed price and
a time and materials outsourcing contract arrangement on agile development projects,
concluding that there are benefits and limitations to both arrangements. It also high-
lighted the types of issues encountered when multiple organisations are involved in
the project, which appears to be an increasingly common trend. We need to ensure
that agile contracts and approaches are able to work in these complex outsourcing
environments.

5 Project Pinta

This section tells the story of Project Pinta, an outsourced XP project involving:

* RCCorp, a large organisation based in Europe, is the customer organisation

* ManageCorp, an international management consulting, technology services and
outsourcing company, is the outsourced vendor for all of RCCorp’s IT functions
and plays the role of proxy customer

56 A. Martin, R. Biddle, and J. Noble

¢ FalconCorp, a large international software product company based in the United
States of America, is the development vendor.

The data that forms this section was collected in a series of interviews with Falcon-

Corp project participants.

5.1 Case Description

Project Pinta has not been seen as a success by FalconCorp, and part of the concerns
with the project have been the use of an agile development method. The project has
taken longer than the original schedule, currently more than three times the original
estimate, and has yet to be accepted by the RCCorp. The project can be divided into
two stages, Stage I covers the originally estimated period and Stage II covers the
remaining time. Stage I started out as a typical “death march” project:
“Everyone that was on it said it was doomed for failure [but] we were
going to make it work anyway ” — Customer Proxy, FalconCorp.
The team had less than six months to cover almost 30 functional areas, so manage-
ment quickly scaled the project up to more than 60 people across several XP labs.

Project Pinta is not a typical custom build project, as the intent of this project is to
develop a product that will both meet the needs of RCCorp and become a product
within FalconCorp’s product suite. The labs were structured so that each lab had a
customer representative, two of the labs had product managers from FalconCorp and
two of the labs had business analysts from the European office of ManageCorp. The
ManageCorp analysts had been involved in writing the initial high level requirements
that had been accepted by RCCorp. No representatives from RCCorp were on the
project.

The team quickly established a pace with weekly iterations. At the end of each
week the team produced working software that implemented the prioritised stories. It
quickly became obvious that all of the functionality would not be completed by the
required deadline, despite everyone’s best efforts. However, FalconCorp had com-
mitted to deliver the functionality by this deadline. The unintended outcomes of how
this unwelcome knowledge was handled are outlined below.

In typical software development projects, scope creep must be managed by the
outsourced vendor, particularly in an aggressive fixed price project such as this one.
FalconCorp managed the scope by not exploring exceptions or evolving the require-
ments:

“We had the client on site but we didn’t make use of them in [the] way

that we should [as] we didn ’t want to raise any questions that would lead

to gaps in the requirements that we would ultimately be responsible for ...

and so we built [to the specification] without asking questions ... [our

aim was to build a product that] we could check off and say ... we made

our deadline, we deserve our payment” — Customer Proxy, FalconCorp
In fact, the level of mistrust and organisational self-protection rose to such a level on
this project, that the ManageCorp analysts were removed from the labs:

“There [were] roadblocks that were on both sides [that stopped] real

communication. We had the client over here and I remember the first

When XP Met Outsourcing 57

week that [was here they were talking about kicking one of the [Man-
ageCorp] people out of the labs because they were a spy ...they were
going back and reporting what was going on in the labs... You’d think
that was part of what they were for but, you know, they thought they were
giving a bad impression back to the client ... and so they actually kicked
them out of the labs at one point.” — Customer Proxy, FalconCorp
The result of this environment occurred at the end of Stage I when members of the
team presented the software to RCCorp in Europe:
“It was kind of a sales pitch because they [RCCorp] didn’t really test it.
We [demonstrated how it worked with] some scenarios instead of letting
them just hammer anything, because if you hammered on anything, you
[would] have big huge gaping holes ” — Customer Proxy, FalconCorp
The demonstration to RCCorp went well, so well that FalconCorp laid off over two
thirds of the original staff, as they were now entering “bug-fixing” mode. During the
first two months of Stage II, new project management was appointed in FalconCorp.
These new managers quickly assessed that the project required significantly more
work than “bug-fixing”. The final decision was to treat Stage I as a throw-away pro-
totype and re-write the entire product. The contract was renegotiated and FalconCorp
expect to complete the project in mid 2004.

5.2 Participant Reflection and Discussion

During the course of the interviews, the participants reflected on their experiences
with XP and outsourcing. These reflections are outlined and discussed in this section.

Scope Definition. A non-negotiable area for FalconCorp as part of the contract rene-
gotiation was an up-front requirements gathering and documentation stage. As an
indication of the size of the gaps discussed, one of the documents expanded the initial
requirements document from a 30 page document to a 250 page document.

Schwaber [11] writes that agile development, in that case Scrum, is not a silver
bullet for fixed price contracts. In fixed-price contracts an upfront requirements gath-
ering phase is required to accurately estimate scope. It is interesting that FalconCorp
did not believe Stage I gave them sufficient knowledge and that an additional signifi-
cant up-front requirements activity was commissioned. During the interviews poten-
tial reasons were uncovered, including (a) significant product knowledge was lost
when the majority of the staff from Stage I were laid off and this was compounded
with XP documentation practices and (b) there was a perceived failure of XP by man-
agement and so waterfall processes were seen as ‘safer’ in a contracting arrangement.

Development Process. Stage II of this project has yet to complete but the interview
participants’ are clear that the project is now much closer to a typical waterfall proc-
ess than an XP process. One participant reflected on this change:

“ XP [if you go straight from the book] is useless from my perspective ...

if you have a fixed scope, a fixed date, well ... how well is that spec going

to play in that space — not very, because it relies on the ability to manage

that and to change that and impact that over time as realities come out.

58 A. Martin, R. Biddle, and J. Noble

Whereas with a contractual arrangement, you can’t, you have very little
wiggle room to be able to shift that and manage that and change that,
and so XP finds itself significantly hampered and you have to start shift-
ing it more towards Waterfall over time, because you just had to deal
with the realities of the fact that you must get certain things out in certain
timeframes.” —Development Coach, FalconCorp

It appears XP will end up taking the blame for the problems encountered within
this project in FalconCorp. And while it seems from both of these cases that there are
issues with using XP on fixed price contracts without an upfront requirements gath-
ering and documentation phase, perhaps there is more to this case.

Kern, Willcocks and Heck [4] outline a typical outsourcing issue called the Win-
ner’s Curse that may play a significant role in this case. The Winner’s Curse occurs
where the winning organisation or person has over-estimated the value of the object
being bided on, typically due to inaccurate assumptions made during the bidding
process. Inaccurate assumptions in IT outsourcing can range from the Client Organi-
sation’s political climate causing long turn-around times through to functional scope
complexity, such as the one-line functional bullet item in the original specification
that becomes a complex sub-system over the course of the project. The end-result: the
organisation or person makes a loss or at least no profit on the transaction. The Win-
ner’s Curse is a prevalent issue in IT outsourcing.

In IT Outsourcing the ‘Winning’ organisation will then typically concentrate on
cost-cutting strategies, such as placing inexperienced staff on the project or focussing
on the letter of the contract scope not the spirit, to reduce their loss. The end result for
both parties is a loss situation, as the resulting software is unlikely to meet the client’s
needs. Project Pinta exhibits all of the signs of the Winner’s Curse.

Summary. This story focussed on some of the typical issues faced by companies in
an outsourcing environment. One of the key issues highlighted is the need for an up-
front scope definition phase for fixed price contracts, irrespective of the development
process. The second issue discussed was the Winner’s Curse; that of being the suc-
cessful bidder for a contract that will result in a loss, or very little profit, for the win-
ning vendor. The Winner’s Curse is a prevalent issue in IT outsourcing, irrespective
of the contract type or development process, and significantly impacts the project
environment. Developers who find themselves with the Winner’s Curse should con-
sider carefully what they want from an agile process.

6 Conclusions

We are studying the customer role in agile development, and in this paper we pre-
sented two interpretive case studies where XP was used in projects involving
outsourcing. The studies are based on in-depth interviews with project participants. In
both cases we saw a strong awareness of the interactions between outsourcing ar-
rangements and the XP process. Additionally, we noted that the issues facing out-

When XP Met Outsourcing 59

sourced XP projects include general agile issues, outsourcing issues as well as multi-
organisational issues.

In the first study, we learned that the agility fostered by continual contact between
developers and customer worked well with the contractual arrangements based on
time and materials charging. In the second study, we found a more fixed contractual
basis for the project, and heard about experience that suggests this clashed with the
XP process. In both cases, we saw that the involvement of multiple organisations
required accommodation of the different cultures of the organisations, and presented
challenges in interpreting the XP customer role.

All these findings show us that for XP to embrace change, an organisational and
contractual context is needed that allows change to be embraced without penalty.

References

—

Ambler, S. Outsourcing Examined. Software Development Journal, April 2003.

2 Fitzgerald, B. Systems development methodologies: the problem of tenses. Information
technology and people, 13 (3). pp. 174 - 185.

3 Kern, T. The Gestalt of an Information Technology Outsourcing Relationship: An Ex-
ploratory Analysis. Proceedings of the Eighteenth International Conference on Informa-
tion Systems, Atlanta, Georgia, United States, pp: 37 — 58, 1997.

4 Kern, Thomas, Leslie P. Willcocks, Eric van Heck, The “Winner’s Curse” in IT
Outsourcing, California Management Review 44, no. 2, p. 47-69, Winter 2002.

5 Klepper, R & Jones, W. Outsourcing Information Technology, Systems, & Services.
Prentice Hall PTR, 1997.

6 Martin, A. A case study: exploring the role of customers on eXtreme programming proj-
ects, CS-TR-03-1, School of Computing and Mathematical Sciences, Victoria University
of Wellington, Wellington, 2002.

7 Martin, A., Noble, J., and Biddle, R. Proceedings of the Fourth International Conference
on eXtreme Programming and Agile Processes in Software Engineering, Giancarlo Succi
(Ed.), Being Jane Malkovich: a Look into the World of an XP Customer. Lecture Notes in
Computer Science 2675, Springer-Verlag. 2003.

8 Nandhakumar, J. & Avison, D. The fiction of methodological development: a field study
of information systems development. Information Technology & People, 12(2). pp. 176-
191.

9 Poppendieck, M & Poppendieck, T. Lean Software Development: An Agile Toolkit.
Addison-Wesley, 2003

10 Poppendieck, M. Poppendieck, T (Eds). Proceedings of the Oopsla Workshop on Agile
Contracts, Anaheim, California, USA, 2003. http://poppendieck.com/.

11 Schwaber, K. Fixed Price, Fixed Date Contracts at Engage. In Poppendieck, M., Pop-

pendieck, T. (Eds.), Proceedings of the Oopsla Workshop on Agile Contracts, Anaheim,

California, USA, 2003. http://poppendieck.com/.

Distributed Product Development Using Extreme
Programming

Charles J. Poole

8001 Braddock Road, Springfield, VA 27150

cpoole@suscom-maine.net

Abstract. This paper uses the experience of developing a shrink wrapped soft-
ware product to examine issues related to distributed software development us-
ing agile methodologies. The work is based on the author’s time at IONA
Technologies as a senior manager delivering their Web Services Integration
Platform (WSIP) product suite. It is focused on the issues of distributed devel-
opment using Extreme Programming (XP) by describing the development ef-
fort: its organization, practices, and processes and evaluating, using both quali-
tative and quantitative measures, the success of four of the practices adopted by
the team (distributed stand-ups, cultural exchanges, common source code, and
shared vision). Regardless of the ultimate success or failure of the product and
development effort, the lessons taken from the experience are valuable and have
reinforced many of the observations and experiences reported by others [1,2].

Keywords. Extreme Programming, Agile Methods, Software Development,
Project Management, Distributed Development

1 Introduction

Let’s get this straight right from the beginning. There would probably be very little
argument to the statement that software development works best when the develop-
ment team is co-located. Extreme Programming [3 Jand its reliance on on-site cus-
tomers, stand-up meetings, pairing, etc (or for that matter any of the other Agile
Methodologies) is best implemented when the teams are co-located. So why set up
distributed development environments? Well, as most are aware circumstances are not
always perfect in the field of software development. Acquisitions, off-shoring, tele-
commuting, the desire to utilize the best available development staff, and open source
are but a few examples of reasons why distributed development exist and will con-
tinue to exist in the foreseeable future. This paper is not an attempt to promote dis-
tributed development rather an attempt to ensure that when you adopt a distributed
development environment, for whatever reason, that you have the tools to be success-
ful. In this case those tools are a set of recommendations based on the experiences of
the author in a highly distributed development environment in which XP represented
the adopted approach to developing a software product.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 60—67, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Distributed Product Development Using Extreme Programming 61

1.1 Development Organization

Early in 2001 IONA Technologies acquired a company in Santa Clara, California that
had developed a suite of Business to Business (B2B) applications, adaptors, and tools.
During the first part of 2001 and through 2002 IONA focused not only on integrating
the new B2B product suite and associated technologies into a new product strategy
and road map but also on bringing the acquired engineering team under its Extreme
Product Development' engineering umbrella. This meant bringing together efforts
from development sites in California, Massachusetts, Virginia, and Dublin, Ireland to
produce two new product suites. The first was the Application Server Platform (ASP)
and the second was the Web Services Integration Platform (WSIP). The development
effort spanned eight time zones and two countries and at times involved over 130 en-
gineers.

1.2 The Product Suite

It is useful in the context of the rest of the paper to gain some understanding of the
WSIP product and the role that each of the teams played in implementing the new
product suite. The core element of WSIP was developed in Santa Clara. It consisted
of a B2B server and associated gateway and system management tools, a set of busi-
ness process modeling/orchestration and monitoring tools that in addition to support-
ing standards based business process development also supported the creation and in-
tegration of web services into those process flows, and finally a set of business
protocol adaptors. The Santa Clara team was also responsible for integration, pack-
aging, system testing, load and performance testing, and manufacture of master CDs.
The Reston team was responsible for the enterprise integration component and associ-
ated integration adaptors. The Waltham team delivered a web services stack as well as
a set of tools to create, expose, and manage web services. This was bundled in a com-
ponent called XMLBus. Lastly, the Dublin team provided the J2EE application server
from IONA’s ASP product on top of which the WSIP product could be deployed.

Each of the teams from the various locations had previously produced separate
products which now came under the WSIP or ASP heading. Each would need to be
integrated into the new product strategy. In some cases integration was nothing more
than a wrapper around the existing product in others it was a tightly coupled integra-
tion based on various Application Programmer Interfaces (APIs) exposed by the soft-
ware components and in a few instances brand new applications and application
functionality was required to satisfy Product Management requirements.

1.3 The Focus
One of the difficulties in writing this paper was that there is so much to tell about the

experiences of the author while with IONA. Transforming such a large organization
to using agile methods presented many problems and issues and there is the tendency

I Extreme Product Development was the umbrella term given to the set of practices and proc-
esses developed internally by the IONA engineering and product management and product
marketing teams. Its foundation was the XP practices used by the engineering teams.

62 C.J. Poole

to want to tell it all at once, something not necessarily appropriate in this instance.
So, instead of looking at the broader issues this paper will only examine the develop-
ment of the WSIP product and the four key practices used as part of the distributed
XP effort. It will also focus less on the issues around the development and program-
matic execution of the new product strategy and more on the issues related to creating
an agile development environment in such a distributed product development team. It
is useful to note that the teams in Reston, Dublin, and Waltham were in the process of
or had already adopted XP as their development model prior to the acquisition with
the Dublin team and its full XP implementation at the forefront.

2 Extreme Team Building — Key Practices

This paper is really all about team building and the critical element of communica-
tions in a distributed environment. That is what these four practices represent. Joshua
Kerievsky in Industrial XP (IXP) [4] has encapsulated some of this in IXPs project
community and project chartering practices. Kent Beck focuses considerable attention
to communications and team building in XP. One of the core XP values is communi-
cations reflecting a need for broad, regular, open, and honest communications not just
between developers but also between the customer (real or proxy) and the develop-
ment team. XP strategies also include elements that foster team building. The XP fa-
cilities strategy suggests an open space arrangement that encourages almost constant
communication and situational awareness and the regular planning, visible story
cards, and stand-ups create yet more opportunity for communicated a shared under-
standing of the work and product vision.

However, none of these specifically addresses the issues of distributed develop-
ment efforts. When IONA’s development plan was first laid out, the various imple-
mentation teams identified, and the initial stories were created by Product Manage-
ment, what was left was a disparate group of engineers located all over the globe who
needed to work together in an agile way to create a product. When one is looking at a
collocated team the natural first step is to pull everyone into the same room and have
a kick-off meeting, to recognize face to face for the first time who you’re going to be
working with. You can’t do that as readily or easily when half your team is some-
where else. How do you bring the developers together to work as a team on the new
program, to get them to buy-in to a vision as a team? With XP you have iteration
planning meetings, daily stand-ups (scrum meeting with Scrum [5]. You plan team
activities to improve morale, and create team areas to improve team cohesion and
awareness. What do you do if the team isn’t even on the same continent? How do you
maintain a sense of team with a focus on a common goal and clear and up-to-date un-
derstanding of the development effort and their role in it not just in the beginning of
the project but through out the entire life cycle of project? So some experimenting
was in order. The results are the set of practices or practice extensions identified be-
low.

Distributed Product Development Using Extreme Programming 63

2.1 Cultural Exchange

One of the things that was discovered very early on was the need to create a common
understanding not only of the project and its associated artifacts but also of how
members of the team from different parts of the country or world, worked, thought,
communicated, and in general dealt with the various issues and problems that arose
from the development effort. A Cultural exchange is simple in practice and potentially
expensive in the short term but provides benefits that far out way any perceived short-
comings. The idea is to exchange one or two developers between remote sites for a
few weeks or if possible a few months. The desire is to create a stronger sense of
community between the various team members as well as to improve communications
by locating someone who knows the remote team intimately and can help people
make the right pairings — to talk to the right person.

In putting together the WSIP product it was discovered that the developers in Cali-
fornia were having problems getting the WSIP application suite to deploy quickly on
the IONA application server and were not using it to do component and system level
testing. Instead of being proactive and trying to address the issues with the Dublin
developers they switched to another application server and went on their merry way.
It’s a big problem when your application or product isn’t being tested on your own
application server. So, we found an engineer in Dublin who was willing to relocate to
California for six months and on a regular basis we started sending engineers from
California to Dublin for a couple of weeks at a time. It worked. The Dublin engineer
got to know the California engineers and likewise the California engineers the Dublin
engineers. Each began to understand how the other worked and how to effectively
communicate needs and to work with the other team. The Dublin engineer taught the
California team how to get stories into the Dublin planning game. The California
team was able to demonstrate face to face what the WSIP application suite did and the
Dublin team started showing how it could better use the J2EE architecture. Ultimately
both WSIP and the J2EE application server were improved to the ultimate benefit of
the customer. It didn’t happen over night but within a month or two the sorts of prob-
lems between the Dublin and California developers no longer became an issue. Simi-
lar cultural exchanges occurred between all four of the development sites.

Although not a part of the WSIP project, the practice of a cultural exchange was
also used in an off-shoring effort run by IONA. A team of Indian engineers who were
to take over the maintenance and enhancement of IONA’s old generation CORBA
middleware products came to Dublin in 1999 to learn the product. They worked in
Dublin setting up a duplicate environment in preparation for the movie to India. The
intent was to eventually maintain a regular exchange of engineers and management
once the code was moved. This effort highlighted the differences between engineers
from truly different cultures. Issues such as understanding and dealing with differ-
ences in how authority is perceived between co-workers or between employee and
employer or simply interpreting differences in body language all of which was aided
by promoting a cultural exchange.

One of the other big benefits to the exchanges can be a breakdown in what might
be called the castle complex - teams establishing technical or visionary domains that
they are reluctant to share or to collaborate constructively on. This too can be helped
with cultural exchanges as was demonstrated between the developers in California
and Virginia who through regular exchanges were able to develop a common under-
standing of each other’s domain and to work on creating a viable shared vision and

64 C.]J. Poole

architecture for the WSIP B2B and Enterprise Integration adapters: Unfortunately, in
other instances cultural exchanges did not seem to work towards resolving the conflict
as there was a significant disagreement between various arms of product manage-
ment, marketing, and the senior technical leaders over the product direction at the vi-
sionary or strategic level and the allocation of resources to those various visions was a
constant battle.

2.2 Stand-Ups and Wikis

One of the elements of several agile methodologies (both Scrum and XP incorporate a

short daily meeting) is the practice of a daily stand-up. The main focus of such meet-

ings is as a tool for eliminating blockers and to a lesser degree gives each member of
the development team the opportunity to hear what others in the team are working on.

For distributed teams this practice can be quite difficult to follow given the time dif-

ference and the size of the team involved and is a reflection of the loss of communi-

cations bandwidth when using distributed development. The following stand-up prac-
tices were adopted by various elements of the WSIP development team to help
improve this sort of regular communication:

¢ It was found that a daily conference call during the product delivery iteration was
critical to quickly identifying who needed to get together after the meeting to do a
little long distance pairing to resolve pending issues or eliminate blockers.

¢ Stand-ups tended to happen on a daily basis with the co-located team members.
And across sites for some components for which there was a smaller number (less
than 15) of developers. Daily stand ups involving the whole team were not seen as
productive and were never attempted.

e To ensure good communications between the various sites, twice weekly stand ups
between remote site team and technical leads and managers were substituted for
the daily stand up. Having a conference call a couple of times a week seemed to
work out best during the normal development iterations.

Wiki pages were used a lot by IONA. Although not used as effectively as they
might have been (no common standards and issues with regular updating) the Wiki
pages added the ability to present a distributed story board that everyone in the or-
ganization could use to see what each development team was doing. Not all teams
used this but where it was used effectively the situational awareness of the developers
seemed to be a step above other teams although never as good as using cards posted
on a wall or cork board. Any electronic white board, messaging, system, or even de-
fect tracking system (e.g. Bugzilla') could be used just as effectively.

2.3 Shared Vision

How does one work on something if they don’t know what it is and how it satisfies
the customer’s needs, or the business goals and priorities of the company? Here is an
instance of abject failure on the part of the WSIP team. As mentioned in the introduc-
tion, much of this failure is probably attributable to the lack of a common shared vi-
sion by the senior technical leaders, the product management, and the product mar-
keting elements of the team. Their inability to promote the vision they did have in a

Distributed Product Development Using Extreme Programming 65

way that the developers could understand it, buy-in to it, and throw their support be-
hind it also played a part. The result was a group of people moving behind each others
backs to try and push personal as well as site specific objectives with executive man-
agement. It was not a team effort and for all intents and purposes created a degree of
tension that in some instances no amount of extreme anything could over come.

It is critical in developing a shrink wrapped product that those elements of the or-
ganization acting in the role of the customer or customer proxy are prepared to create
the stories and set the priorities in a consistent and clear fashion based on a common
and agreed vision. If there is dissent or differences of opinion you only have a few
options: you can work towards compromise between the dissenting voices, you can let
them fight it out by letting the two visions compete (takes more resources in a re-
source limited environment), or you can simply ask the dissenting voices to toe the
line or leave (sometimes forcing some to leave to better establish a team with a solid
shared vision is more desirable then holding on to a dissatisfied group of people).
Over time IONA did a bit of all of the above as part of its efforts reestablish a consis-
tent vision between the customer proxy and the development team as well as between
the various development teams.

It is very important to get a handle on that vision and market it to the development
team using a simple clear vocabulary. Involve the team in working with the customer
or customer proxy to create the vision. The importance of this is indicated by its in-
clusion in IXP as part of creating a project charter. In a distributed environment it be-
comes even more critical as it is that much harder to gain that shared vision due to
cultural, ideological, and technical differences that seem to be so easily misunder-
stood and misrepresented and are amplified by the remoteness of a team.

2.4 Common Source

Although mentioned last this is one of the first things that a distributed development
team should get right. It includes not only the idea that everyone regardless of loca-
tion has access to a common source base but that they have access to a common set of
automation tools and processes. If you can’t build your entire product down to the
packaging from a common source base and use a common set of automated testing
and production tools then you are going to have a much harder time getting anything
out the door. This is true of any development effort but is even more so when consid-
ering integration across multiple remote sites. Some of the more important elements
of this practice applied to distributed development include:

e Use of a multi-site source control system. Anything will do although some are
better than others. Not having it makes code synchronization almost impossible

¢ The source control system is used to support an automated nightly build and inte-
gration capability that includes automated integration and system testing and auto-
matic build and test report generation.

e Access to a common build environment. A developer at any site should be able to
easily build and run all of the tests for the purposes of continuous integration test-
ing against their view of the source.

Over time all of the WSIP development sites were able to integrate with IONA’s
common source control system. Additionally, many man months of effort went into
developing automated build and test systems that could be run nightly and kicked off

66 C.J. Poole

with a single command by any developer. Nightly reporting of integration and system
testing results on over a dozen operating system and application server combinations
created an environment in which on a daily basis one was aware of the problems in
the code. As indicated in the table below this effort was rewarded with significant im-
provements in the ability of the team to deliver an integrated tested product.

Table 1. Improvements Due to Common Source Access and Automation

Metric Before adoption After adoption
Time for complete build 2 days — 18 people 6 hrs - automated
and test
Average time from code 12 weeks — 70 people 2 weeks — 10 people
freeze to shipment
Time to get successful 6 months — 2-5 people 2 weeks — two people
soak test

It is recognized that the above metrics don’t necessarily provide a good quantita-
tive measure of the correlation between common shared access and automation and
the improvements that are presented. However, it is noteworthy that the only opera-
tional changes that occurred in the teams working on building and system testing of
the B2B product was the adoption of the practices and processes described above.
That is to say, they did nothing but work on the automation of all build, test, and inte-
gration systems with in IONA’s common source code repository. Hence the inference
that these practices and process led to the improvements seems correct.

3 Conclusions

It is useful to note that the creation, management, and in hindsight failure, of the new
product strategy had a significant impact on the ability of the engineering team to ef-
fectively adopt XP. This fact has been presented as one of many contributing ele-
ments and is ultimately the focus perhaps for another treatment looking at the devel-
opment of product strategies and program management with agile methods in a multi-
product company. Ultimately the WSIP product suite failed to claim much in the way
of market. It was eventually replaced by other products and strategies. However, the
successes and failures that the WSIP engineering team experienced as a part of the di-
stributed development effort taught some significant lessons. First, IONA no longer
focuses on large widely distributed teams. Whether by economic necessity or product
strategy the engineering group has realigned itself with product business units that are
for the most part co-located or have dependencies between only two development si-
tes. The teams in California and Reston no longer exist and efforts run through those
development offices have been eliminated or moved to one of the other development
teams in Massachusetts or Ireland. Second, the business units themselves have been
used to improve on the vision around each product IONA sells. Although the business
unit does not eliminate the potential for dissent it does increase the probability of buy-
in from the whole team by providing a clearer focus on who the customer is and what

Distributed Product Development Using Extreme Programming 67

their priorities are by elliminating some of the infighting between competing elements
in product managment and marketing.

The lessons of extreme distributed development boiled down in the authors eye’s
to one thing — Communications. Each of the key practices or processes focused on
different modes of communication to bring understanding across a breadth of deve-
lopment issues and concerns. Whether it was to better understand the members of the
team in another location and the culture (development or otherwise) they exist in or
have created, or to having a common view of the source code and daily build and test
processes, or to know what blockers people are experiencing that you can help elle-
viate, or establishing and sharing a common vision in the context of the companies
product strategy and vision (and ultimately reflect the needs of the customer) it all
was about communications. Utimately distributed development with XP is possible if
the lessons of how to effectively communicate are heeded and addressed. It is as
though we are turning the nob up on communications and perhaps in some ways is
even more extreme (e.g. cutural exchanges) than XP originally laid out.

Author. Charles Poole worked with IONA Technologies for four years from 1999
through 2002. He is currently employed by Computational Physics, Inc. as the Senior
Systems Analyst and Architect for a U.S. Department of Defense distributed simula-
tion system. He has continued his focus on promoting Agile Methods through his ef-
forts to integrate Extreme Programming under an Earned Value Management frame-
work

References

Martin Fowler’s web site, http://www.martinfowler.com/articles/agileOffshore.html
Matt Simons, Internationally Agile, Mar 15, 2002, http://www.informit.com

Kent Beck, Extreme Programming Explained, Embrace Change, Addison Wesley, 2000
Industrial XP web site, http://www.industrialxp.org/

Scrum web site, http://www.controlchaos.com

Bugzilla home page, http://www.bugzilla.org

A e ol

Scaling Continuous Integration

R. Owen Rogers

ThoughtWorks, Inc.
Peek House, 20 Eastcheap
London, United Kingdom
orogers@thoughtworks.com
http://www.thoughtworks. com

Abstract. Of all the Extreme Programming practices, continuous inte-
gration is one of the least controversial — the benefits of an integrated,
streamlined build process is something that software developers immedi-
ately recognise. However, as a project scales up in size and complexity,
continuous integration can become increasingly hard to practice success-
fully. By focussing on the problems associated with a growing project,
this paper describes a variety of strategies for successfully scaling con-
tinuous integration.

1 Continuous Integration

The practice of continuous integration represents a fundamental shift in the
process of building software. It takes integration, commonly an infrequent and
painful exercise, and makes it a simple, core part of a developer’s daily activi-
ties. Integrating continuously makes integration a part of the natural rhythm of
coding, an integral part of the test-code-refactor cycle. Continuous integration
is about progressing steadily forward by taking small steps.

1.1 Integrating Continuously

Integration should happen continuously, and continuously is more often than
you might think. The frequency of integration will vary from project to project,
from developer to developer, and from modification to modification. However,
as a goal and a good rule of thumb, developers should integrate their changes
once every few hours and at least once per day.

Learning how to integrate so frequently requires practice and discipline. Fun-
damentally, an integration can occur at any point when the code compiles and
all the unit tests are passing. The challenge is learning how to write software so
that you never stray too far from this point. If you are testing at the right level
of granularity and are refactoring regularly, then you should never be more than
a few minutes away from this point. This means that you are almost always in
a position where you can launch a new integration.

Deciding when to integrate is all about controlling risk. When making mod-
ifications in a high traffic area of the code base or when conducting broad refac-
torings like class renaming or package reorganisation, there is an elevated risk

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 68-76, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Scaling Continuous Integration 69

of impacting other developers or of having merge conflicts when committing.
The longer that developers go without integrating, the greater the likelihood
of conflicts and the larger the effort required to resolve those conflicts. As the
effort of integration increases exponentially in proportion to the time between
integrations[2], best practices dictate that when making high-risk changes a de-
veloper should start from a clean workspace, focus only on required modifica-
tions, proceed with the smallest logical steps, and then commit at the earliest
opportunity.

A successful integration is a measure of progress. It provides feedback that
the new code runs correctly in the integration environment and successfully
interoperates with the rest of the code base. Code sitting unintegrated in a
developer’s workspace simply does not exist. It is not part of the code base, it
cannot be accessed by other developers or tested by the customer. Only when it
has been successfully integrated is the benefit of the new code realised.

1.2 Continuous Integration Tools

In order to integrate as frequently as possible, the integration process must be
easy to launch. If the integration process requires multiple manual steps then
it is easy to forget steps or make mistakes. Ideally, the integration should be
initiated by invoking a single, simple command. Build tools such as make, Ant,
or NAnt are excellent candidates for scripting the integration process to achieve
this.

Automated integration servers, such as CruiseControl (Java), CruiseCon-
trol.NET(C#) or DamageControl (Ruby), automate the integration process
by monitoring the team’s source control repository directly. Every time a devel-
oper commits a new set of modifications, the server will automatically launch
an integration build to validate the changes. When the build is complete, the
server notifies the developer whether the changes that they committed inte-
grated successfully or not. Effectively, integration becomes as easy as checking
in code. Using an automated integration server not only makes integration easy,
it also guarantees that an integration build will happen. There is no danger of
developers forgetting to validate their changes after checking in.

1.3 Practicing Continuous Integration

Tools play an essential role in practicing continuous integration. Having the
right set of tools is what changes integration from a painful and time-consuming
task into an integral part of the development process. However, with the power
that they bring, it is easy to focus on the tools and lose sight of the fact that
continuous integration is a practice — it is about what people do, not about what
tools they use.

As a project starts to scale, it is easy to be deceived into thinking that the
team is practicing continuous integration just because all of the tools are set up
and running. If developers do not have the discipline to integrate their changes
on a regular basis or to maintain the integration environment in good working

70 R.O. Rogers

order then they are not practicing continuous integration. Full stop. Having all
the right tools does not make any difference. Tools are great facilitators, but
they are only as effective as the discipline of the people involved. Ultimately,
continuous integration is about people and the way that they interact to build
software.

2 Scaling Continuous Integration

As the success of continuous integration depends on the discipline of the team,
it is important to foster an environment where it is easy for the team to be
disciplined. However, as a project scales up in terms of the size of its code base
or in terms of the size of the team, there are several factors that undermine the
discipline of team members, making continuous integration increasingly hard to
practice. Understanding these obstacles and their symptoms is instrumental in
devising strategies to overcome them.

2.1 More Code

As the size of the code base starts to grow, it takes an increasingly long time to
run an integration build. While compilation time does grow with the size of the
code base, for most XP projects, the primary factor influencing the build time
is the increasing number of tests. If not properly managed, the build time can
increase exponentially in proportion to the number of tests executed.

The growing build time means that it takes longer for developers to receive
feedback on the results of their integration. It is not uncommon for integration
builds to rapidly reach 30 minutes to an hour as a product of the expanding
code base. Waiting for the integration to finish before proceeding can amount
to a considerable stretch of unproductive time. A natural reaction is to reduce
the frequency of commits so as to minimise this unproductive time. However,
committing less frequently means that more changes are included in each integra-
tion, which, in turn, increases the likelihood of merge conflicts and, if integration
problems do occur, increases the difficulty of fixing those problems. Reducing the
frequency of commits undermines the benefits of continuous integration.

The growing build time also decreases the window in which a developer can
integrate their changes. It is bad karma to leave work after checking in a build-
breaking change. Doing so means that your teammates are stuck either fixing
your bad code, rolling back your changes, or working around your problems. To
avoid this frustrating and embarrassing situation, the easiest thing to do is to
commit early enough in the day so that if integration problems do arise, they
can be tackled before leaving. However, if you are not ready to commit your
changes before this cut-off point then you need to wait until the next day to do
the commit. In the meantime, the inclination is to start something new. Doing
so, however, only delays and increases the difficulty of the next integration.

The common result is that as the code base grows developers commit less
frequently and the practice of continuous integration starts to break down.

Scaling Continuous Integration 71

2.2 More People

Adding more developers to a project team has two major impacts on the integra-
tion process. First, it increases the rate of code production; this only exacerbates
the problems of a rapidly growing code base as discussed in the previous sec-
tion. Second, it means that more people are dependent on a working build. Any
developer committing code that breaks compilation or causes some tests to fail
has the potential to affect a lot more people.

On a small team, the probability of another developer needing to commit
while the build is broken is relatively small. However, as the team grows in size,
the overall frequency of commits increases. If the build is broken, developers
not working directly on fixing the problem are not permitted to commit their
changes. If they were, it could greatly complicate the problems for the people
engaged in fixing the build, only serving to increase the time that the build is
broken for. Therefore, they are stuck waiting for the build to be fixed.

Rather than wait for the build to be fixed, there is a temptation, whether
out of frustration or from desperation, to ignore the build breakage and check in
anyway. It might seem innocent enough to sneak in a quick change while no one
is looking. However, as the build is already broken, it is very difficult to verify
whether or not the new changes actually work properly (either by doing a local
build in the developer’s workspace or on the integration server). This makes it
easy to use the broken build as an excuse for checking in unverified code, and
risk ending up in a tragedy of the commons situation where a broken build leads
to a free-for-all of frustrated developers dumping in their changes.

If bad code has been committed, every developer that updates their local
workspace will be affected. Normally it is good practice for developers to check
the integration server before updating their workspace to ensure that they can
avoid being affected by a broken build. However, because of the lag caused by the
growing build, there is a window during which developers may unwittingly pick
up the bad code. Pulling down broken code requires figuring how to rollback the
broken code from the local workspace which is a hassle at best and a showstopper
at worst. Either way, it is a very frustrating and time-consuming experience.

A broken build, especially a protracted one, is a serious broken window in the
development process — it undermines productivity and morale. To deal with this
broken window, a common approach is to institute a strict and thorough pre-
commit procedure that will make it as hard as possible for developers to break
the build. The pre-commit procedure typically amounts to requiring developers
to run a full integration build locally on their machine before they are allowed
to commit their changes.

While this approach may be successful at reducing the likelihood of com-
mitting build-breaking code, it has the side effect of greatly increasing the time
required to integrate a set of changes. The increased integration time tends to
drastically reduce the frequency with which developers will integrate their code.
As the goal of continuous integration is to make integrating changes as quick
and easy as possible so that developers will do it all the time, this approach is
clearly an anathema.

72 R.O. Rogers

Fundamentally, it needs to be acceptable to break the build. That’s what
an integration server is there for — to inform developers that the committed
code has integration problems. Introducing a stringent pre-commit procedure
and turning each developer’s workstation into a poor man’s integration server is
not an effective way to deal with integration, and only wastes productivity and
undermines morale.

3 Strategies for Scaling Continuous Integration

As the project grows in size, it is easy to use these obstacles as an excuse for
dismissing continuous integration as a practice only useful to small projects.
This is not the case. By careful attention to when integration starts to become
infrequent and when developers start to suffer integration pain as a result, it
is normally possible to tune the process to ensure that continuous integration
remains feasible. Here are five strategies for successfully scaling continuous inte-
gration:

Establish a maximum build length

Create targeted builds

Write faster unit tests

Smaller teams with local integration servers
Modularise the code base

|

3.1 Establish a Maximum Build Length

Keeping the build quick is easier said than done. First you need to determine
how quick is quick enough. This requires deciding what an appropriate maximum
build length should be and then coming up with a set of strategies for keeping
it below that threshold.

The question of how quick is quick enough is a product of the requisite
frequency of integration. The frequency with which developers are willing to
integrate their code is proportional to the time and effort that it takes to do so.
This is a common pattern of human behaviour'. If integration takes 20 minutes,
it is unreasonable to expect developers to integrate every hour. This would mean
that they spend 30% of the iteration integrating their code. If the goal is to give
developers the potential to integrate every hour, it is important for integration
to take a small enough proportion of the overall development time so as to be
unnoticeable. If the integration process is quick enough, taking say two minutes
or less, then it can effectively become a background activity that developers can
do whenever they are not typing or getting the code to pass. On many large
projects this is a difficult goal to reach, so there will be a trade-off between a
longer build and a reduced frequency of integration.

! The Planning XP book makes this observation with relation to planning [3]. The
amount of time spent planning needs to be proportional to the length of the iteration.
Clearly it makes no sense spending two days planning for a one week iteration.

Scaling Continuous Integration 73

Integration frequency vs. Build time

80

70
= B0
£

40

30 4

.
20 4
10 4
0 T T T T T
0 10 20 30 40 50 60
Build time {minutes)

Fig. 1. Integration frequency chart.

Conceptually, the relationship between the frequency of integration and the
length of the build is similar to the graph shown in Figure 1. If the build time
is below a certain threshold (two or three minutes), then there is no noticeable
effort involved in integration and it can be done as frequently as required. As the
integration time and effort becomes perceptible, integrations start to become an
interruption to the flow of development and will be scheduled accordingly. This
drastically reduces their frequency. For integrations of 5 to 10 minutes, it still
feasible for developers to integrate several times per day. However, as the build
time increases above this threshold, the time and effort involved in integration
increase rapidly.

On a recent project that I was on, the integration time was 30 to 40 min-
utes and developers were integrating their changes once per week on average.
The build time rose to almost an hour before being reduced again to more sus-
tainable levels. Developers would typically allocate most of one day to do their
integration. Once integrations begin to take this long, there are certain limit-
ing factors that affect the frequency of integration. Factors such as iteration
length set an upper limit on integration frequency (developers need to integrate
successfully at least once per iteration).

Specific build time thresholds and recommendations will vary from project
to project; however, human factors, such as the limits of perceptible time, will
remain constant. Keeping these constants in mind will help you to set thresholds
and targets that are appropriate for your project.

74 R.O. Rogers

3.2 Create Targeted Builds

As the build is a central, regularly scheduled task, it is easy to chuck everything
into it, including the kitchen sink. It is common to end up with a single integra-
tion process that compiles the code, runs the unit tests and the acceptance tests,
builds deployment packages for QA and the customer, validates code coverage,
and checks coding standards amongst other things. Including all of these tasks
in the build is, in general, a good thing because it means that they are running
as regularly as possible and the team can benefit from their feedback. However,
when included in a single serial integration process, these extra tasks can greatly
increase the length of the build. Dividing the build into a set of independent con-
secutive or concurrent processes is an excellent way to prioritise build tasks and
ensure that feedback is given fastest to those that need it most.

When thinking about the contents of the build, it is important to consider the
different parties that rely on the integration build and what their requirements
are. For developers, it is essential to have a code base that can compile and that
passes the unit tests at all times. Creating a separate developer build process
that runs only these tasks minimises the build time and thereby increases the
potential frequency with which developers will integrate their code.

Feedback on the status of the acceptance tests is also important; however,
acceptance tests take substantially longer to run than the unit tests. Deciding
whether or not to include acceptance tests is a trade-off between the overhead
of integration and the stability of the code base. For most development teams,
it is fine to permit acceptance tests to break over the course of the iteration as
long as the team ensures that the tests are all passing prior to the end of the
iteration.

The other parties that rely on the integration process are typically content
with less frequent feedback. QA and the customer often use the build as a means
of acquiring a new copy of the system. However, they typically will pick up a
new version on an infrequent basis — once per day or on-demand. Setting up an
alternate QA/customer build process to package the distributables and run the
acceptance tests is a great way of ensuring that these tasks are run regularly,
yet do not affect the quick developer build.

3.3 Write Faster Unit Tests

Slow tests are typically the main culprit behind a slow build. Separating unit
tests from functional and acceptance tests is key to reducing test execution time.
Developers learning XP are typically new to testing and may not have a clear
idea of the distinction between these different types of tests. Most developers
when they start writing unit tests end up writing a hybrid between unit and
functional tests. This is because when testing a particular class, it is easy to
end up pulling in and testing the entire web of objects that that class depends
on. Without proper testing and design techniques, it is quite common to end
up in a situation where practically every unit test hits the database or some

Scaling Continuous Integration 75

external system. The overhead of redundantly testing through multiple layers of
the system greatly increases the unit test execution time.

Unit tests, when written at the right level of granularity should run extremely
quickly. Thousands of properly decoupled, orthogonal unit tests can execute in a
matter of seconds. However, there is an art to learning how to write unit tests like
this. Getting to this point requires a lot of practice doing test-driven development
and a good understanding of unit testing tools and techniques. Making extensive
use of mock objects[4] and dependency injection[1] are essential techniques for
testing each class as a discrete and independent unit.

It normally takes some time before getting to the point where every devel-
oper can write fast, decoupled unit tests. In the meantime, it is important to
repeatedly refactor slow unit tests to keep the build time down. Most automated
integration servers report a sorted list of test execution times. As the build time
starts to grow, it is good practice to regularly pick the slowest running unit
tests and try to refactor them. If refactoring is not possible, move them into a
designated functional test area.

3.4 Smaller Teams with Local Integration Servers

It needs to be acceptable to break the build. That is, after all, why you use an
integration server. Even negative feedback is good feedback. However, if a large
number of people are affected by a build breakage, it is tempting to think that
breaking the build is a deadly sin to be avoided at all costs. Stopping developers
from breaking the build involves adding overhead to the integration process,
which simply ends up decreasing the frequency with which they will commit
their changes. Instead, it is important to to allow developers to break the build
with relative impunity without adversely impacting their colleagues.

The simplest approach is to organise into small development teams (4-8 de-
velopers per team) and to modularise the code base on a per team basis. This
modularisation introduces a level of isolation between teams. As each team op-
erates predominately within their own area of the code base, they only need to
compile and run the tests for their module. As a result, the build is very quick
to run. If a developer commits modifications that cause the build to break only
the handful of developers on their team relying on the code in their module will
be potentially affected.

Each team can and should set up their own automated integration server.
However, there need not be anything special about an integration server; it
can be run on any box. If developers practice pair programming then half of the
available workstations are sitting idle. There is no reason why a vacant developer
box cannot be turned into an integration server.

3.5 Modularise the Code Base

The primary issue with splitting into smaller teams is that it creates the problem
of cross-team integration. Teams are effectively delaying full system integration
in exchange for a faster, leaner integration process and the productivity benefits

76 R.O. Rogers

associated with it. By delaying the full system integration, teams are poten-
tially building up an integration debt that will be painful to resolve when the
integration finally happens.

To mitigate the pain of cross-team integration, it is important to carefully
consider the way that modularisation is done. Modularisation should minimise
cross-team dependencies. Ideally, teams should be organised along independent
vertical slices of functionality — not in accordance with application layers. Mod-
ularisation along application layers, albeit the typical, traditional approach to
organising software teams is inadvisable because it maximises cross-team depen-
dencies. In a n-tier architecture, any piece of functionality effectively needs to
integrate with each of the modules of the other n teams. This approach also
greatly slows down development as each team depends on all of the other teams
to finish their work before any piece of functionality can be judged complete.

Integration with other teams should be done through published interfaces
and common value objects. This integration can be accomplished either at bi-
nary or source level. Binaries offer the benefit of decreased compilation time
(teams do not need to recompile each other’s source) and provide a controlled,
versioned, releasable unit. However, having the source available helps diagnose
and fix integration problems, and helps ensure consistent coding standards across
teams.

4 Conclusion

The goal of continuous integration is to maximise developer productivity and
minimises integration risk by making integration an easy, natural part of the de-
velopment cycle. It provides the development team with the invaluable feedback
that the code base is continuously in a working, integrated condition. However,
continuous integration is considerably harder to practice on projects with large
code bases and large teams. The strategies proposed in this paper provide guide-
lines for successfully scaling continuous integration to deal with these issues.
Applying these strategies can help ensure that practicing continuous integration
is feasible even for very large projects.

References

1. Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern.
http://martinfowler.com/articles/injection.html

2. Fowler, M., Foemmel, M.: Continuous Integration. http://martinfowler.com/
articles/continuousintegration.html (2001)

3. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley (2001)

4. Mackinnon, T., Freeman, S., Craig, P.. Endo-Testing: Unit Testing with Mock Ob-
jects. Extreme Programming Examined. Addison-Wesley (2001)

Efficient Markets, Efficient Projects,
and Predicting the Future

John Favaro

Consulenza Informatica, Via Gamerra 21,
56123 Pisa, Italy

jfavaro@tin.it

Abstract. Economic concepts have provided valuable sources of insight into
important concepts underlying agile methodologies. The dynamics of capital
markets are understood through the concept of market efficiency; an analogy is
developed to project efficiency for understanding the dynamics of agile proj-
ects. The efficient project concept is then used to motivate the preoccupation of
agile developers with dealing only with available information at any time and
not trying to predict the future. Finally, six lessons of project efficiency are pre-
sented.

Keywords: Economics, efficiency, value, market, project.

1 Introduction

Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.
— The Agile Manifesto

One of the ways in which agile methods such as Extreme Programming (XP) have
differentiated themselves from other software development methodologies has been
their explicit elevation of economic arguments onto an equal (or greater) footing with
the more familiar technical arguments. Therefore it is perhaps not surprising that
economics and finance have also proven to be a rich source of analogies for explain-
ing the values, principles, and practices of agile methods.

Certainly the most widely disseminated of these has been the analogy of “business
options,” introduced both in the White Book [1] and in other publications [2], where
concepts from option pricing theory are used to support the discussion of flexibility in
agile methods. In another recent example [3], the concept of residual income (or
Economic Profit), commonly used in financial management to monitor usage of
capital resources such as inventory, helped illustrate the notions of “software inven-
tory” and “software in process” currently being promoted in the agile community.

In this paper an analogy is developed between agile project dynamics and the con-
cept of efficient markets from corporate finance.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 77-84, 2004.
© Springer-Verlag Berlin Heidelberg 2004

78 J. Favaro

2 Efficient Markets

The ideas leading up to the theory of efficient markets are over a hundred years old.
Louis Bachelier, in his doctoral thesis [4] in 1900, put forward the proposition that
stock price movements are completely random — an idea considered so preposterous
at the time that it was quickly forgotten. (This was unfortunate, because Bachelier not
only anticipated the next formulation of this proposition by 53 years, he also antici-
pated Albert Einstein’s work by five years in postulating that stock prices follow
Brownian motion. As if that weren’t enough, he also managed to contribute several
key ideas in the field of option pricing.)

Fig. 1. Which is the real chart of stock prices?

In 1953, Kendall performed an extensive study of patterns in stock market prices,
and subsequently reported [S] on the number of patterns he had found: none. To his
own amazement, he had been unable to find evidence of any regularity or cycles. On
the contrary, prices seemed to walk around randomly, as though their direction were
being determined by a simple toss of a coin. This report was also greeted by skepti-
cism, even hostility (especially from those making a living from finding patterns in
stock prices). But this time the conclusions were harder to ignore: time and again it
has proven to be impossible to distinguish between a chart generated entirely by ran-
dom coin tosses and a chart of real stock prices. Three of the four stock price charts in
Fig. 1 were generated for this article from a spreadsheet in which successive up and
down movements were determined randomly. Which is the real chart? (The answer is
given at the end of this article.)

The reason that the randomness of stock price movements was so hard to accept, of
course, is that it seemed to make no sense at all: how can stock price movements be
random when stocks are obviously affected in a very concrete way by profits, losses,
acquisitions, mergers — in short, by significant events of all kinds? The explanation

Efficient Markets, Efficient Projects, and Predicting the Future 79

arrived in the form of the Efficient Market Hypothesis, first proposed formally by
Fama in the mid-1960s [6].

In an efficient market, information travels freely among the large number of intel-
ligent, motivated participants (as Malkiel [7] says, “money attracts brains”). As soon
as any bit of information becomes available, investors pounce upon it, and its impli-
cations are quickly incorporated into the prices of stocks. As a result, the market is
always completely “up-to-date” — it reflects all information that is currently available
to investors.

Most importantly: not only does an efficient market reflect everything that has
happened in the past, it also reflects anything that can currently be said about what
might happen in the future. Legions of investors scrutinize, discuss, and analyze any
new information over and over until every useful conclusion from that information
has been drawn — and also acted upon:

If today’s direction ... does indeed predict tomorrow’s step, then you will act on
it today rather than tomorrow. Thus, if market participants were confident that
the price of any security would double next week ... Why wait? [7]

This is the key insight in understanding the puzzle of random stock price move-
ments. In an efficient market, the incessant activity (motivated by greed and fear) of
investors assures that any information that clearly points the way to the future is acted
upon without delay. Afterwards, only one type of information remains: that which
does not yet exist. Its arrival must come as a genuine surprise. But the timing of unex-
pected new information is by definition unpredictable (as Paulos notes [8], it would
have been extremely strange to have seen a newspaper headline in 1890 exclaiming
“Only 15 years to relativity!”). And therefore, each new step by the stock market is
taken in response to new information whose timing and impact are necessarily un-
known beforehand — a random walk (also called a “drunkard’s walk™).

Today, more than 50 years after Kendall’s report, the degree to which the market is
efficient is a matter of lively ongoing debate, but the essential validity of the Efficient
Market Hypothesis is widely accepted.

3 Efficient Projects

The Efficient Market Hypothesis turns out to provide a very good conceptual frame-
work for gaining insight into the dynamics of agile projects. Working within this
conceptual framework, we now introduce the notion of efficient projects.

Before proceeding, it is worth noting that the word “efficient” is used here more in
the engineering sense of “completely consuming all input” than in the bureaucratic
sense of “well-organized and disciplined” more commonly seen in the software engi-
neering literature today. Another engineering definition of efficiency is “high ratio of
output to input”: A perfectly efficient market quickly and completely consumes in-
formation as it becomes available, converting every bit into investor action. It is this
same goal of perfect efficiency that agile projects strive to attain, the rapid and com-

80 J. Favaro

plete absorption of new information and its immediate conversion into implementa-
tion.

The concept of common knowledge [8] is central to the functioning of efficient
markets. Information is disseminated in such a way that all participants are aware of
it, and moreover, are aware that others are aware of it. As a result, information is not
compartmentalized. Agile projects strive to achieve rapid information dissemination
and a state of common knowledge through a variety of techniques including stand-up
meetings, pair programming, ruthless refactoring, collective ownership, continual re-
estimation of effort and velocity, and the absence of fixed roles that tend to compart-
mentalize information. Rapid and complete information dissemination is coupled with
techniques for rapid conversion into implementation, such as the principle of the
Simplest Design That Could Possibly Work.

We can contrast this with traditional projects that might be called inefficient proj-
ects (in the engineering sense we are using it). At any one time, there is information
that is not common knowledge in the project. On the contrary, information is seg-
mented and compartmentalized. This prevalence of “insider information” is partially a
result of roles such as, for example, a “Chief Architect,” who may act as the sole
custodian of much important information. Moreover, information is generally not
quickly converted into system functionality. At any one time, there is much informa-
tion that is not reflected in the current state of the system — much design, much im-
plementation, much testing is still in the future.

4 Predicting the Future

The notion of efficient projects yields insight into the preoccupation of agile practi-
tioners, so puzzling to many, with not trying to predict the future — expressed, for
example, in the familiar YAGNI (You Aren’t Going to Need It) principle. Many
cannot understand why agile projects do not try to deal with the future; paradoxically,
this arises from the fact that they deal so completely with the past.

In an efficient project, everything to date — requirements, analysis, design, test,
everything implied by the information available — is completely reflected in the im-
plemented system. (This objective is also reflected in the so-called Customer Bill of
Rights [9], where the customer “... can cancel at any time and be left with a useful
working system reflecting investment to date.”).

The less efficient a project, the more the “future is built-in.” It is built in by the de-
sign that is not yet coded, by tests not yet run, by assumptions and claims made for
the future. It is more difficult to change direction because it is predetermined by the
very state of the implemented system that does not reflect all currently available in-
formation.

In contrast, in an efficient project, as in an efficient market, the future literally is
unpredictable — because the past and present have been so completely digested. It is
ready to react to this unpredictable future (for example, a user decision to introduce a
new story). Each new step in an agile project (e.g. an iteration) leads to the rapid

Efficient Markets, Efficient Projects, and Predicting the Future 81

absorption and implementation of new information, leaving behind no assumptions
about the future, in its own form of a random walk.

5 The Six Lessons of Market and Project Efficiency

In their classic text on corporate finance [10], Brealey and Myers presented six “les-
sons” that conveyed succinctly the most important implications of market efficiency.
It is instructive to revisit these lessons now from the perspective of this discussion.
Each lesson is presented and summarized first in its original form for efficient mar-
kets, then in an adapted form for efficient projects. Where appropriate, quotes from
the original presentation in [10] will be utilized.

Lesson 1: No Memory

Efficient markets have no memory. “[In an efficient market] ... the sequence of past
price changes contains no information about future changes.” This is the most funda-
mental message of the Efficient Market Hypothesis: the past does not condition the
future — there are no patterns or cycles implied by past movements.

Efficient projects have no memory. An efficient project likewise strives to not build
the future into the system. By working only for the present, the project builds in only
what is necessary to handle what has happened up to now, so that there are no
mechanisms that condition how new information will be handled. For example, in a
web project, if the system is built to handle, say, 200 users now, there is nothing in
the current implementation (e.g. “hooks”) from which to infer that the system might
be asked to handle 1000 users in the future. The more efficient the project, the more it
will decouple its past from its future, leaving it optimally ready to react to new infor-
mation.

This is much different from an inefficient project, where the past strongly condi-
tions the future, making it difficult to change course — because so much remains to be
done, based upon so many suppositions.

Lesson 2: Trust

Trust market prices. “In an efficient market you can trust prices, for they impound all
available information about the value of each security. To [improve on this], you not
only need to know more than anyone else, but you also need to know more than eve-
ryone else.” Often managers, confident of their superior investing ability, acquire
other companies simply because they think those companies are undervalued. But in
an efficient market, the phenomenon of arbitrage ensures that the values placed on
securities (and therefore companies) by investors quickly converge to the correct
ones: if the available information indicates that a price is too low, investors quickly
take advantage of this and drive the price up; the converse happens when the price is

82 J. Favaro

too high. Even when the price is not correct, it is unbiased: any error is just as likely
to be in one direction as another.

Trust the implemented system. In an efficient project, you can trust the imple-
mented system, because it impounds all available information about what the system
should do. In a phenomenon similar to arbitrage, the principles of the simplest possi-
ble implementation and refactoring place downward pressure on complexity, while
information such as failing tests act to produce upward pressure, resulting in an im-
plementation whose complexity is generally appropriate for the information available.
When you try to second-guess the implementation, you are not only saying that you
can improve on the consolidated wisdom of the project, but that you have a better
idea of where the project is headed next. But since the system impounds all available
information, then even if it is not yet completely right, it is still unbiased: there is no
reason to think that you have a better idea about what the future holds.

Lesson 3: Read the Entrails

Read the market entrails. Since the prices in an efficient market reflect all available
information, it is there that we must go for answers. For example, if the stock price of
a company (e.g. Oracle) is sinking in response to the bidding war it is waging to ac-
quire another company (e.g. Peoplesoft), it is the clearest signal available that inves-
tors are displeased with this initiative. As another example, reading the entrails of
long-term versus short-term interest rates will tell us whether the market thinks that
interest rates are set to rise in the future.

Read the system entrails. “Ask the code,” as the common saying goes. Since the
implementation impounds all available information, it is there that we must go for
answers. When there is a question, then look to how the system is actually imple-
mented and performing — an addition to the suite of tests is invariably the best route.
If the code smells or, for example, if the system seems to be able to get to 90% of
tests passing and can’t move beyond, then the system is sending a strong signal that
something could be fundamentally wrong with the implementation. In an inefficient
project, in contrast, where much important information remains outside the imple-
mentation, the system cannot be reliably interrogated for answers.

Lesson 4: There Are No Illusions

There are no financial illusions. “In an efficient market ... investors are unromanti-
cally concerned with the firm’s cash flows ...” In recent years there have been a
number of cases of “creative accounting,” where reported earnings were manipulated
in order to appear to make them appear higher (think of so-called pro forma earnings
reported by many tech firms). But the incessant scrutiny of investors has invariably
exposed the financial window-dressing and kept the focus on the true cash flows of
the firm (with some infamous exceptions during the years of the dotcom mania — and
even those were eventually exposed).

Efficient Markets, Efficient Projects, and Predicting the Future 83

There are nofunctional illusions. In an efficient project, customers are unromanti-
cally concerned with the functionality of the system. The unrelenting rhythm of im-
plementation and testing in an efficient project quickly peels off any functional “win-
dow dressing” (perhaps in the form of a colorful and flashy GUI) and keeps the focus
on whether the customer functionality (e.g. handling a particular set of file formats) is
really implemented by the system or not.

Lesson 5: The Do-It Yourself Alternative

“In an efficient market, investors will not pay others for what they can do equally
well themselves.” The transparency of efficient markets reveals the costs and value of
operations undertaken by firms — and consequently a firm must demonstrate to the
investor that it can offer something at a cheaper price than he could have done him-
self. For example, companies that merge or acquire others often try to convince in-
vestors that they have added value by “diversifying.” But the investor can easily and
more cheaply diversify on his own, simply by buying shares in several different com-
panies. There is no reason for him to prefer the generally more costly route offered by
a merger.

In an efficient project, customers will not pay others for what they can do equally
well themselves. Efficient projects are very transparent: the relentless cycle of esti-
mating and re-estimating stories leads to the customer always knowing the cost and
value to him of paying to have a feature implemented within the context of the proj-
ect, down to a relatively fine grain. He will therefore always have the opportunity of
being aware of possibilities to acquire the feature at a cheaper price outside of the
project (say, a COTS or open source tool or component that implements that feature
perfectly) — or to renounce altogether, when the efficient processes in the project
reveal that the cost/value relationship of the feature is not advantageous.

In contrast, in an inefficient project, the implementation is generally not feature-
aligned; as a consequence there is generally little or no opportunity to separate out
and evaluate features that could be provided in a more cost-effective way outside the
project. The customer must simply trust the implementers and hope for the best.

Lesson 6: Seen One, Seen Them All

Seen one stock, seen them all. “Investors don’t buy a stock for its unique qualities;
they buy it because it offers the prospect of a fair return for its risk.” In an efficient
market, stocks are perfectly substitutable for each other: investors don’t care whether
their cash flows are generated by selling cars, computers, or candy.

Seen one implementation, seen them all. In efficient projects, customers don’t buy
features for the unique characteristics of their implementation; they buy them because
they deliver the functionality requested at a fair price, whether it is implemented with
objects or with acorns. Agile methods support this view by being relatively technol-
ogy-neutral: although certain technological categories are recognized to be generally
effective (just as certain market sectors are recognized to be generally profitable),

84 J. Favaro

agile methods focus on delivery of features at the promised cost and consider the
supporting technologies to be essentially substitutable for each other.

6 Conclusions

The notion of efficient markets is central to modern corporate finance: it is the pri-
mary mechanism through which the value of capital assets is determined. The notion
of efficient projects can help agile project managers understand the mechanisms that
lead to the production of software with measurable value. Agile project managers
don’t try to predict the future, because they strive to have projects that completely
impound the past and present. This leaves them free of the baggage of the past and
present, and ready to confront an unpredictable future. Of course, neither markets nor
projects are ever perfectly efficient all of the time — but the concept provides agile
developers a way of understanding what they are trying to achieve.

The upper right-hand chart in Fig. 1 tracks the S&P500 index from 20 November
2002 to 19 November 2003.

References

1. Beck. K., Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.

2. Erdogmus, H. and J.M. Favaro, “Keep your options open: Extreme Programming and the
economics of flexibility,” in Extreme Programming Perspectives, M. Marchesi, G. Succi,
D. Wells and L. Williams, Editors: Addison-Wesley, 2003.

3. Favaro, J.M., “Value-Based Management and Agile Methods,” Proc. Fourth International
Conference on Extreme Programming and Agile Processes, Genoa, May 2003.

4. Bachelier, Louis, Théorie de la spéculation, Annales scientifiques de 1’Ecole Normale
Supérieure, 3° série, 17 :21-86, 1900.

5. Kendall, M.G., “The Analysis of Economic Time Series,” Part 1. Prices, Journal of the
Royal Statistical Society 96 (1953), pp. 11-25.

6. Fama, E. F., “Random Walks in Stock Market Prices,” Financial Analysts Journal, Sep-

tember/October 1965.

Malkiel, B.G., A Random Walk Down Wall Street, W.W. Norton, 1996.

Paulos, J. A., A Mathematician Plays the Stock Market, Basic Books, 2003.

Jeffries, R. et al., Extreme Programming Installed, Addison-Wesley, 2001.

0 Brealey, R. and S. Myers, Principles of Corporate Finance, McGraw-Hill, 2000.

Al

Agile Principles and Open Source Software
Development: A Theoretical and Empirical
Discussion

Stefan Koch

Vienna University of Economics and BA, Department of Information Business,
Augasse 2-6, A-1190, Vienna, Austria

stefan.koch@wu-wien.ac.at

Abstract. In the last years, two movements have been widely dis-
cussed in the software development community: Agile and open source
development. Both have faced some of the same criticism, and both
claim some of the same benefits. This paper poses the question whether
open source software development is in accordance with agile software
development principles and therefore well within the planning spectrum.
To this end, the general principles of both movements are detailed and
compared, and some empirical data from open source software devel-
opment projects is given on any similarities and dissimilarities uncovered.

Keywords. Software Development, Agile, Open Source, Software Met-
rics, Coordination

1 Introduction

Agile software development has been proposed as a solution to problems resulting
from the turbulent business and technology environment faced by organizations
engaged in software development [8]. Several methods like Extreme Program-
ming (XP) [1], Scrum, Lean Development or Adaptive Software Development
exist that embody the principles of this approach as laid down in the Manifesto
for Agile Software Development. While there is some evidence, mostly based on
singular projects, of positive practical application of these methods, there is a
lively discussion on this topic [2,13]. On the other hand, Boehm in his analysis
[3] sees both the agile and more plan-driven approaches as having a responsible
center, and argues for a risk analysis of a project’s characteristics for determin-
ing the right balance of disciplines in each case [4]. All of these contributions
have not yet ended the ongoing debate, even if some first empirical results on
both use of agile principles and the results in cost, productivity and quality
have already been published [15], and seem an important step towards this end.
There is one point in the discussion that has as yet been largely omitted: Like
agile development, there has been another movement which has received much
attention in the last years: Open source software development. Also in this case
there is considerable debate about benefits and efficiency [11,5,17]. While any

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 85-93, 2004.
© Springer-Verlag Berlin Heidelberg 2004

86 S. Koch

discussion of agile development contains the words cowboy coding, unplanned
and undisciplined hacking or similar terms, from which this movement is seen
as different, the term open source is not mentioned. Many of the same argu-
ments brought to bear against agile development are also faced by open source
development. So, using the planning spectrum introduced by Barry Boehm, the
question is where to place open source development? On the far end with the
hackers or more towards XP and agile methods? In order to facilitate this classi-
fication, this article seeks to compare both methods, and tries to give some first
empirical results on any similarities and dissimilarities. Besides clarifying terms
and classifications, open source projects and their wealth of data [10,12] might
form additional testbeds for agile development methods, and both movements
might learn and benefit from each other.

2 Agile Software Development

Both the business and technology environment continue to change at an increas-
ing pace. In software projects, this leads to more frequent changes during the
life cycle. Therefore the main question is how to better handle these changes,
not stop them by anticipating and including them in the requirements definition,
while still achieving high quality and timeliness. To this end, a group of people
created the Manifesto for Agile Software Development that values individuals
and interactions over processes and tools, working software over comprehensive
documentation, customer collaboration over contract negotiation, responding to
change over following a plan, while explicitly acknowledging the value of the
latter items. Furthermore there is a set of principles giving more details, stress-
ing the importance of quality in design, especially in simplicity, the honesty of
working code, delivered early and continuously, for communication between de-
velopers and sponsors, short feedback loops, the importance of motivated and
competent individuals interacting face to face and welcoming change even late
in the development. There has been a lot of criticism, one of them being that
planning, processes and documentation are essential, and agile development is
an excuse for hackers to do as they like, coding away without planning or design
[13]. Barry Boehm on the other hand sees agile methods as having a responsible
center with a fair amount of planning, and as an important advantage of this
movement to draw hackers away from pure hacking [3]. Another point of criti-
cism is the reliance on individual competency, craftsmanship, working together
in self-organizing teams in intense collaboration including customers [6]. It is
argued that the number of developers possessing excellent technical knowledge
paired with the necessary social skills is naturally limited. Also the possible size
of agile development teams is discussed. While successful projects with up to
250 people are cited [6], others see a limit of 15 to 20 people.

3 Open Source Software Development

Open source (or free) software has generated much interest in the last years, espe-
cially following the rise of Linux and several similar projects like GNU project’s

Agile Principles and Open Source Software Development 87

utilities and libraries, the Perl and Tcl programming languages, and the Apache
Web server. Regarding these examples, the notion that software of considerable
quality can result from this form of development can not be dismissed. Open
source software (using the Open Source Definition) is software under a license
that fulfills several criteria, giving the user more rights than most other terms
of distribution. These include the free redistribution, the inclusion of the source
code, the possibility for modifications and derived works, which must be allowed
to be distributed under the same terms as the original software, and some others.
One example for a license that fits these criteria is the well-known GNU General
Public License (GPL) advocated by the Free Software Foundation, which im-
poses even stricter regulations. While these definitions pertain to the legal terms
of distribution, there is also a distinct form of development associated with open
source software. The guiding principle is that by sharing source code, developers
cooperate under a model of rigorous peer-review and take advantage of “par-
allel debugging” that leads to innovation and rapid advancement in developing
and evolving software products. The best and most widely used description of
this development form is an article by Raymond titled ‘The Cathredal and the
Bazaar’, in which he contrasts the cathredal model of commercial software de-
velopment with the bazaar model of open source using fetchmail as a case study
[14]. In this article, he gives several lessons, which form the guiding principles of
this form of software development. These therefore constitute the counterpart of
the principles behind the agile manifesto and need to be compared with those
and reality in open source projects. The criticism faced by the open source devel-
opment paradigm has several main arguments, the first being that finding and
correcting bugs late in the life cycle during coding incurs very high costs [11], a
point also discussed in the context of agile development [16]. In addition, effort
by people looking for bugs, but not being able to find or fix them, is hidden
by spreading it. The inattendance to analysis, requirements engineering and de-
sign causes additional limitations due to architectural problems, hiding of useful
code, etc. On the other hand it is argued that due to the high modularity of
open source code, which is much more stringently enforced to allow more people
to work in parallel, and because the context of an error is not lost due to fast
release cycles, the costs for fixing bugs in code are not much higher [5].

4 Comparison and Empirical Data

Using several key areas mostly denoted by the principles of agile development
and lessons from Raymond’s description of open source software development,
both movements are compared. Empirical data is used where appropriate to
further emphasize and confirm any similarities and dissimilarities. The data em-
ployed is derived from several empirical analyses including Apache and Mozilla
[12], GNOME [10] and an analysis of Sourceforge, a repository providing free
services like version-control or mailing lists for several thousand hosted open
source projects. The main idea for this empirical research was to use existing
data on the projects available to the public, especially the version control sys-

88 S. Koch

tems that stores every single check-in of a file by a programmer with additional
information like the number of lines-of-code changed, and mailing lists.

4.1 Software Process

Both agile and open source development are no description of a software process
as envisioned by this research area. They consist of a set of principles for a
software project. While agile in contrast to open source development has several
approaches and methods that embody these principles, some of these, e.g. XP, do
not have much more detail on the software process, but also restrict themselves to
general guidelines. On the other hand, several open source projects have devised
elaborate process descriptions, e.g. for release management [9].

4.2 Craftsmanship, Chief Programmers, and Individuals

Agile software development focuses on individual competency and on motivated
individuals (‘Build projects around motivated individuals.”). This attitude is
also described by the term craftsmanship [6], and manifests in pair program-
ming, collective code ownership and mentoring in XP, or chief programmers in
FDD. In open source development, Raymond gives a possible explanation for
the free effort contributed by using the craftsmanship model, in which the pure
artistic satisfaction of designing beautiful software and making it work drives
the developers. Empirical data on open source projects show an interesting dis-
tribution of the effort invested. While a large number of people participate in
the development by giving feedback or testing, a smaller number contributes to
the source code, and an even smaller number is responsible for the vast majority
of the outcome. In the Apache project, while over 3,000 people submitted prob-
lem reports, a core group of 15 programmers out of 400 is responsible for 88%
of the lines-of-code [12]. In the GNOME project, which is much more diverse
containing several sub-projects, the top 15 of 301 programmers added 48% of
the total lines-of-code, while clustering hints at a still smaller 11 person core
programmer group. In total, about 1,900 people participated by showing some
activity on the mailing lists [10]. Analysis of the Sourceforge repository shows
that of more than 12,000 programmers in 8,600 projects, the top 10% are re-
sponsible for about 80% of the total source code. Regarding the distribution in
single projects, all 65 projects with more than 500k lines-of-code added and at
least 5 developers were analyzed. These projects range up to 88 programmers
with a mean of 17 persons per project. In the mean, only the top 20.4% of
the participating programmers (2.8 people) were necessary to reach 80% of the
project’s source code. In open source development, each project therefore seems
to center around a small number of highly competent and motivated individu-
als. These individuals, at least some of them, will need to have the social and
communication skills necessary to bring larger numbers of people to the project,
and hold them there. Open source development can therefore be termed chief
programmer teams, as a large number of supporters center around a small inner
circle of programmers responsible for most part of actual design and coding.

Agile Principles and Open Source Software Development 89

4.3 Team Size

While successful agile projects of up to 250 people are cited [6], most authors see
a size limit at about 15 to 20 persons due to the tightly coordinated teamwork
necessary. Both of these ranges are within the bounds of open source projects.
As demonstrated above, large projects like Apache or GNOME number a few
hundred programmers, but there is empirical evidence for a very small core
team in the range of 10 to 20 persons. In smaller open source projects, these
numbers decrease accordingly, down to one highly motivated developer with a
small team of supporters. The core team seems to have a size of about 5 to
20%, resulting in a group within whom frequent and even personal interactions
are easier. While Boehm in his analysis of agile development correctly remarks
that 49.9999% of the world’s software developers are below average, he concedes
that a project does not necessarily require uniformly high-capability people.
This seems to exactly mirror the situation in open source projects, where highly
capable chief programmers are supported by a larger number of participants.

4.4 Self-Organizing Teams

Agile development stresses the importance of self-organizing teams that are able
to rapidly adjust to changing requirements and new challenges (“The best ar-
chitectures, requirements, and designs emerge from self-organizing teams.’, ‘At
regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.’). This requires common focus, mutual trust
and respect, and intense collaboration. In open source development, a common
focus is ensured, as all participants voluntarily join and therefore follow the goals,
which might available implicitly in a vision or example like an existing commer-
cial system. In order to efficiently apply the manpower available to the project,
self-organization is strictly necessary. As each participant needs only to do what
he wants, self-selection will lead to each one doing what he does best and most
efficiently. As Raymond writes ‘...open source hackers organize themselves for
maximum productivity by self-selection...’. For the GNOME project it has been
shown that the number of participating programmers in each month, at least un-
til the time of operation, closely follows the efficient manpower distribution pro-
posed for commercial software projects [10]. As there is no central management,
the community of developers really seems to be able to organize itself accord-
ingly. Of course, coordination is still necessary also in this form of project, and
data from the GNOME project shows that the activity on the mailing lists was
strongest during the build-up in active programmers, while declining afterwards
[10]. This hints at some sort of briefing or introduction necessary for newcomers.
If the data of the GNOME project’s source-code versioning system is analyzed,
in the mean only 1.8 programmers are found to work together on a single file,
even larger files are worked on by only a few programmers. This indicates a divi-
sion of labour on a higher level. In the Apache project [12], data on the problem
reports show that this activity is more widely spread than actual programming,
the top 15 people only produced 5% of the total reports, and only three of these
were also among the core programmers. This again hints at a high degree of

90 S. Koch

division of labour, with the tasks that can more easily be performed in parallel
being spread out more than others. In the Sourceforge repository, in the mean 1.2
programmers work an a given file, but as this number might be distorted by the
large number of small projects, analysis of the 65 large projects (more than 500k
lines-of-code, at least 5 developers) was again undertaken. While the number
within this group is slightly higher with 1.5 programmers, it is still rather small
and near the GNOME project, further enhancing the findings given above. In
addition, when the data from the Sourceforge repository is analyzed using text
parsing of the commit log messages by the programmers, distinctive names of
design patterns show up at about 10% of the projects. One of the main benefits
often associated with patterns is improved communication between developers.
In fact, there is a significant positive correlation between the number of partici-
pants in a project and the number of different patterns used. This indicates that
larger teams seem to have an increased need for the improved communication
provided by patterns. As this usage is not prescribed, this can be seen as an
additional example of self-organization for maximizing efficiency.

4.5 Team Co-location

Agile development aims at close, personal contact and collaboration within the
development team (‘The most efficient and effective method of conveying infor-
mation to and within a development team is face-to-face conversation.”), while
open source development is performed by large numbers of developers scattered
throughout the world [7]. While the empirical data given above suggests that
most work is done by a small inner circle of programmers, which could and also
do meet in person sometimes, that the self-organization works remarkably well,
and is enhanced especially by the Internet medium, this difference remains. In
fact, open source software development sees the Internet with all its tools includ-
ing mailing lists, source code versioning, e-mail, maybe even video-conferencing,
as a means for achieving collaboration that is sufficient (‘Provided the develop-
ment coordinator has a medium as least as good as the Internet, and knows how
to lead without coercion, many heads are inevitably better than one.’).

4.6 Customer Interactions

In agile development, the continuos interaction and collaboration with the cus-
tomers is paramount. A short feedback loop is necessary to be able to respond
quickly to new information like changes in the requirements. These principles are
embodied in practices like customer on site in XP. In fact, agile development sees
a development team as spanning organizational boundaries and therefore includ-
ing customers. The same attitude is at the heart of open source development:
Users should join the development community and become co-developers in or-
der to more rapidly improve the software (“Treating your users as co-developers
is your least-hassle route to rapid code improvement and effective debugging.’,
‘Release early, release often. And listen to your customer.’, ‘The next best thing
to having good ideas is recognizing good ideas from your users. Sometimes the

Agile Principles and Open Source Software Development 91

latter is better.”). Of course, the necessary precondition for this is the availabil-
ity of the source code. Even more so than in XP, there is indeed collective code
ownership. As has been detailed above, in larger open source projects thousands
of people, read users, participate to some degree, not necessarily coding, which
only a minority actively does, but in reporting errors, filing change reports or
claiming additional functionalities and requirements. In the GNOME project,
the nearly 1,900 participants in the mean contributed 10.6 separate postings to
the diverse mailing lists. In the FreeBSD project, 82% of the developers indi-
cated that they received some form of feedback on their code, either as a problem
report or a bugfix performed on the code [9]. Therefore the open source process
is specifically designed to allow customer collaboration, in fact depends on it.

4.7 Early Delivery of Working Code and Feedback

Agile development sees working code as the ‘primary measure of progress’. To
use this measure in the collaboration with customers, and in order to ensure
short feedback cycles, frequent releases of working software are intended (‘De-
liver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.”). These practices increase the moti-
vation for all participants, allow for easier discussion of the current status and
therefore increased chances to uncover necessary changes and efficient possi-
bilities for incorporating them (‘Our highest priority is to satisfy the customer
through early and continuous delivery of valuable software.”). In open source soft-
ware development, frequent releases are also propagated (‘Release early, release
often.”). This has several reasons, including that a larger number of users and
co-developers should test und debug the code, thus faster finding and correcting
any errors (‘Given a large enough beta-tester and co-developer base, almost ev-
ery problem will be characterized quickly and the fix obvious to someone.”). In
order to minimize the lost time spent by participants looking for problems which
have already been found or even solved, everyone needs to be kept at the current
status. This is achieved by releasing new versions even with only a small number
of changes. During the early days of Linux, new releases could occur daily. In
the FreeBSD project, approximately 200 developers have been granted commit
authority, and any change committed by these individuals results in instant cre-
ation of a new release [9]. There is an additional effect of releasing open source
software often: Keeping developers constantly stimulated and rewarded, as they
have new challenges to rise to, and at the same time see the results of their prior
work take shape in the form of improved software. This motivational aspect has
been mentioned by 81% of the FreeBSD developers [9]. These points correspond
remarkably well: Working software is released often to facilitate change, to keep
the effort for rework under control, to ease collaboration with the users and
customers, and as a primary measure of progress.

4.8 Changing Requirements, Good Design, and Simplicity

Closely connected to frequent releases is the attitude of agile development to-
wards change. As release and feedback cycles are short, changes in the require-

92 S. Koch

ments happening anyhow due to the turbulent environment can easily be uncov-
ered, and can more easily be implemented than at the end of the development
(‘Welcome changing requirements, even late in development. Agile processes har-
ness change for the customer’s competitive advantage.’). Incorporating these
changes in addition needs an appropriate design (‘Continuous attention to tech-
nical excellence and good design enhances agility.”). Therefore agile development
stresses the importance of having a simple design that allows for easy changes
(‘Simplicity - the art of maximizing the amount of work not done - is essential.’)
and refactoring. The same is also inherent in open source development. There
is evidence for both the strive for simple designs allowing for change, and also
refactoring, if not actually using this term. Raymond describes how he changed
to a new development base (‘...I'd be throwing away the coding I'd already done
in exchange for a better development base...the first thing I did was reorganize
and simplify...”). It is also evident in the saying ‘Plan to throw one away; you
will, anyhow’, originally by Fred Brooks, adopted by the open source community.
This of course also hints at prototyping and feedback from users. Another em-
bodiment of refactoring can be found in the principles ‘Often, the most striking
and innovative solutions come from realizing that your concept of the problem
was wrong.” and ‘Good programmers know what to write. Great programmers
know what to rewrite (and reuse).” from Raymond. The strive for a simple de-
sign is obvious in the saying ‘Perfection (in design) is achieved not when there
is nothing more to add, but rather when there is nothing more to take away.” As
the data from the Sourceforge repository suggests the usage of design patterns,
these could also be used as a target for refactoring later in the life cycle.

5 Conclusion

As both agile and open source development have been hotly debated, claim some
of the same benefits, and face some identical criticism, a comparison seems a log-
ical step. Using their main principles, we have discussed whether open source
development can be seen as an agile form of development. In several areas, amaz-
ing similarities have been found, for example the emphasis on highly skilled in-
dividuals or ‘craftsmen’ at the center of a self-organizing development team, the
acceptance and embrace of change by using short feedback loops with frequent
releases of working code, and the close integration and collaboration with the
customers and users. For these points, empirical indications were found that at
least partially confirmed the presence of these agile principles in open source
projects. For example, empirical data suggests that an open source project has a
relatively small inner circle of highly skilled and productive developers, around
which a larger number of participants and users cluster in a highly efficient
self-organization. On the other hand, one major difference showed up, the team
co-location and personal contact demanded by agile development, which is not
seen as a precondition in open source development. In addition, while Boehm
and Turner see small product size as agility homeground [4], open source projects
have undoubtedly been able to realize quite large products, with similar com-
ments applying for safety criticality, as quality assurance is often cited as a main

Agile Principles and Open Source Software Development 93

benefit of open source development. Overall, the question whether the ‘hackers’
and ‘cowboy coders’ mentioned by the proponents of agile development and oth-
ers are indeed the open source software developers of the world may therefore
not be so easy to answer as it might seem at first glance. Additional research
into the real workings of both agile and open source projects is in order, both
to compare them to more plan-driven methods and also among each other.

References

10.

11.

13.
14.
15.
16.

Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading, Mass. (1999)

Beck, K., Boehm, B.: Agility through Discipline: A Debate. IEEE Computer 36
(2003) 44-46

Boehm, B.: Get Ready for Agile Methods, with Care. IEEE Computer 35 (2002)
64-69

Boehm, B., Turner, R.: Using Risk to Balance Agile and Plan-Driven Methods.
IEEE Computer 36 (2003) 57-66

. Bollinger, T., Nelson, R., Self, K.M., Turnbull, S.J.: Open-Source Methods: Peering

through the Clutter. IEEE Software 16 (1999) 8-11

. Cockburn, A., Highsmith, J.: Agile Software Development: The People Factor.

IEEE Computer 34 (2001) 131-133

. Dempsey, B.J., Weiss, D., Jones, P., Greenberg, J.: Who is an Open Source Software

Developer? Communications of the ACM 45 (2002) 67-72

. Highsmith, J., Cockburn, A.: Agile Software Development: The Business of Inno-

vation. IEEE Computer 34 (2001) 120-122

Jorgensen, N.: Putting it All in the Trunk: Incremental Software Sevelopment in
the FreeBSD Open Source Project. Information Systems Journal 11 (2001) 321—
336

Koch, S., Schneider, G.: Effort, Cooperation and Coordination in an Open Source
Software Project: Gnome. Information Systems Journal 12 (2002) 27-42
McConnell, S.: Open-Source Methodology: Ready for Prime Time? IEEE Software
16 (1999) 6-8

Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two Case Studies of Open Source
Software Development: Apache and Mozilla. ACM Transactions on Software En-
gineering and Methodology 11 (2002) 309-346

Rakitin, S.R.: Manifesto Elicits Cynicism. IEEE Computer 34 (2001) 4
Raymond, E.S.: The Cathedral and the Bazaar. O’Reilly, Cambridge, Mass. (1999)
Reifer, D.J.: How Good Are Agile Methods? IEEE Software 19 (2002) 16-18
Williams, L.: The XP Programmer: The Few-Minutes Programmer. IEEE Software
20 (2003) 1620

Wilson, G.: Is the Open-Source Community Setting a Bad Example? IEEE Soft-
ware 16 (1999) 23-25

XP Lite Considered Harmful?

Ben Aveling

Faculty of Information Technology, UTS, Australia
bena@triode.net.au

Abstract. It is generally prescribed that XP be adopted in full. However, a
review of existing XP adoption case studies suggests that full adoption is
exceptional; most companies adopt XP only partially and they adapt XP to fit
existing practices and philosophies. Drawing on interviews with industry
participants, the paper recommends using XP as a ‘tool kit’ of techniques and
philosophies.

1 Introduction

There is a rapidly growing wealth of case studies of adoption of XP. In the main,
good results are claimed. However, early adoptions can be genuinely but atypically
successful: ,,With small projects carried out by highly motivated zealots, success is a
lot easier to achieve® (Yourdon 1997, p. 63). Furthermore, most existing studies are
post-hoc assessments of their authors’ adoption of XP.

What is missing is independent comparative studies. This paper draws on the
existing literature and on a series of interviews with practitioners in order to provide a
comparative assessment of multiple instances of the adoption and use of XP. In
particular, the paper looks at adaptations made in the implementation of XP. Beck
and other long-standing proponents of XP believe that partial adoption of XP is
undesirable. This study, however, suggests that full adoption of XP is unusual; most
organisations adopt XP only partially.

2 Methodology

Existing case studies of the adoption of XP were reviewed and the XP practices
followed and omitted were noted, as were comments on the drivers and consequences
thereof. Informed by these results, an interview study was undertaken of four
companies that had adopted or failed to adopt XP. The author has no commercial
relationship with any of the companies reviewed.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 94—-103, 2004.
© Springer-Verlag Berlin Heidelberg 2004

XP Lite Considered Harmful? 95
3 Literature Review

All case studies reviewed were authored by people reporting their own experiences.
As such, the studies’ authors were highly involved, financially and emotionally. No
case was considered a failure by its author, although many were obviously qualified
successes, at best. One must draw on these results with some caution. For example,
most projects reported adopting Collective Ownership. This could indicate that
Collective Ownership is not difficult to adopt. Alternately, it could indicate that any
project incapable of adopting Collective Ownership is doomed to failure.

Table 1 lists practices identifiably used or omitted in each of the case studies
reviewed. The results show that it is possible to deviate from the XP practices and still
enjoy the benefits of an Agile Methodology. If these cases are typical, it suggests that
partial adoption of XP is more common than full adoption of XP.

The most difficult practices to adopt were Metaphor and the ‘Customer Practices’
of On-Site Customer, Planning Game and Small Releases. The other ‘Developer
practices’ were not generally difficult to adopt. Explanations given for difficulties in
adopting practices broadly fell into one of three categories: 1) insufficient discipline;
2) initial temporary failure to understand the practice; or 3) failure to persuade third
party stakeholders. The first two categories generally resulted in lower but acceptable
productivity. The third category often compromised or prevented various practices,
occasionally led to the cancellation of projects and, in one case, led to retrenchments.

Most of the published cases succeeded without an On-Site Customer,
demonstrating that the practice, while desirable, is not strictly necessary. Several
projects used a proxy customer while others used more traditional methods.

Wells and Buckley (2001) report that their attempt to introduce the Planning Game
resulted in ,.total disaster”. The local culture was that schedules were not driven by
estimates but by desired outcome, allowing for an anticipated overrun. Adding this
hidden multiplier made accurate estimates appear unrealistically high. The resultant
backlash forced the project to revert to conventional scheduling practices. This is
consistent with McBreen (2003): ,,many organisations still seem to think that it is
possible to negotiate estimates.” Kini and Collins (2003) were more successful but
could not fully implement the Planning Game because the customer felt that bug fixes
were ‘owed’ to them and should not be included in the estimating process. Instead,
two developers were assigned to fixing bugs with a resulting reduction in effort
available for new features. The evidence suggests that customer participation in the
Planning Game, while desirable, is not necessary.

There are sufficient examples of successful projects that do not do Small Releases
to indicate that the practice is not totally necessary. However, omitting Small
Releases precludes using the Planning Game to set scope. Further, Small Releases
may be an important source of discipline in that the practice dictates release-quality
code at all times.

96 B. Aveling

Table 1. Practices identifiably used in each case study

Johnson |Wells & |Schuh Kini & Greening (2001)
(2000) Buckley [(2001) Collings
(2001) (2003)
On-site customer no no no yes partial
Planning game no no no yes partial
Small releases yes no yes
Metaphor yes no no
Simple design yes yes yes
Testing yes yes yes yes partial
Refactoring yes yes yes yes yes
Pair programming no yes partial yes yes
Collective ownership yes yes yes yes
Continuous integration |yes yes yes yes
40-hour week yes no yes yes
Coding standards yes yes no yes
Whole Team yes
Coach yes yes
Stand up meetings no yes
Ungqualified Success yes no no yes no
Moore Poole & |Johnson |White Johansen,
(2001) Huisman [(2002) (2002) Stauffer &
(2003) Turner (2002)
On-site customer partial no no
Planning game yes yes yes
Small releases yes partial
Metaphor no
Simple design yes no yes
Testing yes yes yes yes
Refactoring yes yes yes
Pair programming partial modified |yes yes
Collective ownership no
Continuous integration modified |yes
40-hour week no yes yes
Coding standards yes yes yes
Whole Team yes no yes
Coach yes
Stand up meetings yes modified |yes yes
Ungqualified Success yes no

Note: Blank cells are used where it was less than clear if a practice was used or not.

XP Lite Considered Harmful? 97

Metaphor appears to be a useful technique, when a project succeeds in finding a
suitable metaphor. Most projects succeed without finding a metaphor.

Simple Design was not reported as being difficult to adopt, although several
authors reported that it takes time to become adept (eg Lippert et al. 2002, p. 168).

Some level of Automated Testing appears necessary to support Refactoring. The
evidence suggests that a small degree of laxity in automatic testing is not
automatically fatal. For example, Johnson (2000) reports success without Automated
Testing but a dramatic increase in progress after its adoption.

The results do not make clear if Test First development is or is not essential for
Agile Development, but it appears to be significant in producing a Simple Design.

As with Simple Design, Refactoring was not difficult to adopt but was difficult to
do well: ,It took us a long time to learn how to break down a refactoring ... into as
small chunks as we wanted” (Lippert et al. 2002, p. 171). Refactoring appears to be
essential for developing and maintaining a Simple Design. It appears unlikely that a
project could omit refactoring and remain Agile.

Pair Programming was universally regarded by authors as beneficial, although
Poole and Huisman found that persuading their engineers of the value of Pair
Programming was ,,one of the hardest things* in XP (2003, p. 229). Johnson (2002)
reported successfully using a form of virtual pair programming on a project with
developers spread around America. Johnson concluded that the only reason the
project succeeded was because virtual contact was heavily supplemented by regular
face-to-face meetings. Other projects succeeded without Pair Programming. Pair
Programming is clearly not essential but, without Pair Programming, other practices
are less rigorously followed, especially those that require high levels of discipline,
communication, team alignment or technical knowledge.

It is unclear from the cases examined if Collective Ownership could be omitted or
not. The main obstacle to Collective Ownership is the minority of programmers with
an especially strong desire to avoid scrutiny and/or unwillingness to share in
responsibility for the project as a whole.

Continuous Integration demonstrates many benefits and is essential if Refactoring
is to be practised. It does not appear to be contentious or difficult to adopt.

40-Hour week, also known as Sustainable Pace, is probably the most contentious
practice. It is potentially dangerous, career-wise (Johansen et al, 2002). It also appears
to be essential for Agile Development. Without 40-Hour Week, discipline declines,
practices are not followed, mistakes are made and shortcuts are taken (Schuh, 2001;
Kini and Collins, 2003). Something approximating 40-Hour Week appears to be
essential to Extreme Programming. Agile Development appears to require that
developers have the time and peace of mind to reflect critically on what they are and
should be doing.

Coding Standard has many benefits in its own right. It is important if Pair
Programming or Common Ownership is to be practised. It does not appear to be
contentious or difficult to adopt. As with Common Ownership, any developer too
individualistic and opinionated to accept a common Coding Standard is probably a
liability to the team and the project.

98 B. Aveling

It appears that none of the cases studied adopted all 12 of the XP practices. Almost
all were happy with almost all of the practices that they were able to attempt. The XP
practices appear sound, with the possible exception of Metaphor. However, On-Site
Customer appears to be largely unachievable, and Planning Game and Small Releases
appear to be an internal exercise for the majority of projects.

Even allowing for bias in reporting, the main obstacles to XP appear to be
political, not technical. Wells and Buckley (2001, p. 405) reported that introducing
XP practices was successful when and only when the practices could be seen to
address a recognised problem. Greening (2001, p. 28) commented that trying to
persuade the customer to accept full XP would have prevented any XP practices
being adopted.

4 Case Comparison

Interviews were conducted with representatives from four companies that had
adopted XP, or attempted to do so. All interviewees were identified through
attendance at SyXPAC XP user group functions. Company 3 has engaged the services
of Company 4. Otherwise, the companies have no relationship to each other.
Interviews were semi-structured, ranged between 1 and 2 hours and were tape
recorded and transcribed. The interview guide was based on the literature review
discussed above.

4.1 Practices Adopted and Barriers to Adoption

Consistent with the literature review, the companies interviewed did not adopt
Metaphor or the Customer Practices (Planning Game, Small Releases and On-site
Customer) and did adopt the other ‘Developer Practices’, excepting Company 1,
which all but failed to adopt any practices (see Table 2). Customer involvement was,
as the Company 1 interviewee put it, ,,very difficult to get ... It would mean that we
would need to change our relationship with them totally.“ All of the companies
interviewed were happy with the results of the practices they had adopted. None of
the interviewees expressed interest in reverting to a more Waterfall-based
methodology.

Company 2 experimented with On-Site Customers but found that giving customers
direct access to developers led to uncontrollable scope creep for which it was unable
to be renumerated. Using marketing as Proxy Customers proved more successful.
While Companies 3 and 4 did not take issue with the demands Whole Team placed on
developers, Company 3 reported that their business staff found ,,being called on
constantly [was] difficult and disruptive to their work®. In contrast to the more
common Proxy Customer, Companies 3 and 4 agreed that the technical lead would
act as a ‘Proxy Developer’, collecting questions from the other developers and
meeting for one hour a day with the business staff. While successful, even that was ,,a
big cultural shift for the business to apply that sort of time from their business staff™.

XP Lite Considered Harmful? 99

No company used Small Releases for more than testing. Only final versions were
released to the live: ,,There’s a greater organisation and it no longer becomes project
issues, it becomes interfaces with other divisions that stops small releases from
getting as small as they could be* (Company 4). No company used the Planning
Game although Companies 3 and 4 implemented a modified version, keeping overall
scope fixed while allowing flexibility in the exact implementation of the preset scope.

As a practice, Metaphor engenders more curiosity than compliance. In the words
of an XP consultant from Company 4, ,I don’t think it’s that people find Metaphor
hard. It’s they’re not quite sure what it means. So that we’re not quite sure what they
should be doing, yet. And I'm probably one of those people.*

Table 2. Practices adopted per company.

Company 1 Compan | Company Company 4
y 2 3
Company Small Small Large Consultancy
software software | corporate
house house
Informant Developer Manager | Manager Developer
On-site Customer no no modified modified
Planning Game no no modified modified
Small Releases no no partial partial
Metaphor no no no no
Simple Design no yes yes yes
Testing no yes partial partial
Refactoring partial yes yes yes
Pair Programming no partial yes yes
Collective no partial yes yes
Ownership
Continuous no yes yes yes
Integration
40-Hour Week no yes yes yes
Coding Standards partial yes yes yes
Whole Team yes yes yes yes
Coach no yes yes yes
Stand Up Meetings | partial no yes yes
Unqualified no yes yes yes
Success

Company 1 banned Pair Programming because management did not perceive it as
cost efficient: ,,if 'm only now going to get 4 man hours’ work out of what was
originally 8 man hours, I can’t see the value in that.“ Company 2 felt Pair
Programming was worthwhile only for the initial education of new staff, in part
because it made it hard to review the performance of individual developers.

100 B. Aveling

Companies 3 and 4 had a broader view of the benefits of pairing, believing that it
increases both productivity and ‘survivability’; the ability to survive the loss of
individual developers, something that significantly impacted Company 1: ,,The guy
who’s leaving tomorrow, he is the only one with any training in the middle-ware*.
Adoption of 40-Hour Week, as with Pair Programming, was sometimes blocked by
management perceptions of cost efficiency. However, evidence from Company 1
suggests that excessive schedule pressure may be a false economy: ,,The code is just
Byzantine and brittle. And this is killing us. This is absolutely killing us.* A driver for
adoption of something approaching 40-Hour Week at Company 2 was staff turnover:
»We’ve never pushed developers to work ridiculous hours because they leave.*

4.2 Drivers for Adoption

The engineers interviewed held an extremely positive view of XP. They were no less
positive about practices they themselves had not attempted. The managers
interviewed entertained basically positive attitudes towards practices they had
experienced but were less positive, even dismissive, of practices they had not
personally experienced.

Adoption was generally motivated not so much by perceived benefits of XP in
general as by perceived shortcomings in the current methodologies. Company 1 said
that ,,what we have been doing ... didn’t work last time and isn’t working now. XP
couldn’t be worse”, while Company 3 said that ,in hearing about the solution we
started to understand that it may solve problems that we had. We weren’t actively
looking for a change in methodology.*

4.3 Key Success Factors

The strongest predictor for successful adoption of XP appears to be the competence
with which the existing methodology is executed. Factors that drive success with the
existing methodology tend to have similar impact on any XP adoption effort.
Company 3’s culture featured coalition building, executive intervention and generous
but tightly managed resourcing. Personal leadership and careful use of rewards had
made Company 2 successful. At both companies, the XP adoption effort employed
the same tactics — successfully. Conversely, at Company 1, the very factors XP was
intended to address crippled the attempt to adopt XP: poor communication, excessive
time pressure, a hostile customer, short-termism, a culture of blame and distrust and
above all, a refusal to acknowledge the existence of problems: ,,changing couldn’t be
worse [but] a bit of pressure came on and it all went out the window*.

XP Lite Considered Harmful? 101

5 Recommendations

Extreme Programming is the first popular methodology to view software
development as an exercise in coding rather than an exercise in management. Kent
Beck spends the first 50 pages of his Extreme Programming Explained (2000)
describing the values and principles of Extreme Programming. Arguably, these are
more important than the exact practices: ,,Kent’s most important vision is about ...
changing the way people treat each other and are treated in organisations (Highsmith
2002, p. 52). For Beck, XP is an alternative to the ‘Taylorism’ he sees as implicit in
existing methodologies because Taylorism makes ,,no business sense [and] no human
sense (Beck 2000, p. 172). Intuitively, XP is humane. The question is, does XP make
business sense?

Waterfall structures software development so as to be manageable using traditional
procurement and management practices. In particular, it attempts to fix scope up-
front. XP determines scope as an ongoing function of the project itself. Unfortunately,
this flexibility proscribes funding models that appear incompatible with current
business practice. In the words of Company 2: ,,it’s nearly impossible, in any size
commercial contract, to not have fixed price, fixed deliverables. It is just not doable.
Nobody will ever agree.“ Even for in-house projects, such as at Company 3, project
approval is almost always contingent on a business case demonstrating that benefits
sufficiently exceed costs. Full XP denies senior management information they
habitually depend upon when assessing the merits of business a case: ,,Arguably
approval processes could be changed to allow anything, if justified but their
management can’t cope with not knowing what the outcome is going to be for a given
spend.*

The evidence of this paper is that businesses are insufficiently motivated by Full
XP to engage in the required change. It has been suggested that an alternative to Full
XP is fully adopting an alternate, less demanding, agile methodology (Cockburn
2002, p. 204). It is sometimes argued that one should adopt an XP practice when it
addresses a felt need without challenging any strongly held norm: ,,We regarded XP
as a toolbox from which we could use practices that addressed concrete, recognisable
problems* (Lippert et al. 2002).

This author suggests that those wishing to mix-and-match practices begin with an
‘XP Lite’ consisting of 40-Hour Week, Pair Programming, Single Work Site,
Continuous Integration, Simple Design, Test First Programming, Automated Testing,
Coach, Proxy Customer, Refactoring, Coding Standard, Stand-Up Meetings, End of
Iteration Retrospectives and a degree of Collective Ownership.

Although not enumerated amongst Beck’s 12 core practices, Coach, Stand-up
Meetings and Retrospectives appear necessary for developers to acquire an
understanding of XP and to share local knowledge. I have used the term Single Work
Site instead of the more common Whole Team to avoid the inference that the
customer’s presence, however desirable, is essential. Automated testing and test first
programming are often considered to be aspects of a single practice: Testing. My
findings suggest they are distinct, Test First being not so much a testing technique as
a design technique that produces tests as a side effect.

102 B. Aveling

Evidence from the literature review and the interviews shows that the above
practices are not generally politically difficult to implement, perhaps because they are
only visible locally. The exceptions are Single Work Site and 40-Hour Week. Single
Work Site is not contentious but can be unachievable in companies used to open-plan
offices, especially when project teams are not ‘long lived’. 40-Hour Week is both
contentious and highly visible. Sadly, it is essential, if other practices are to be
rigorously followed.

Metaphor may be desirable — there may even be value in an unsuccessful search
for metaphor — but Metaphor is, as yet, too poorly understood to be a core practice.
The Customer Practices of On-Site Customer, Planning Game and Small External
Releases require cooperation from non-developers. The practices are desirable but
neither necessary nor easily achievable. Small Internal Releases and Proxy Customer
are adequate if not ideal substitutes, even though they do not generate ‘customer buy-

s

in’.

6 Conclusion

Organisational cultures enable or prevent adoption of Full XP. Given the variation in
organisational cultures, it seems impossible that any single methodological solution
could be universally applicable. Experience shows that XP is most often used as a
tool kit of practices, all of which offer value, some of which depend on other
practices and some of which are politically difficult to adopt. This paper has
identified a subset of the XP practices that excludes as many as possible of the
difficult-to-adopt practices while still remaining viable. This ‘XP Lite’ is suggested as
a reasonable starting point for many organisations.

References

Beck, Kent (2000), Extreme Programming Explained, Reading, Mass.: Addison-Wesley.

Cockburn, Alistair (2002), Agile Software Development, Agile Software Development Series,
Boston: Addison-Wesley.

Greening, James (2001), ,,Launching Extreme Programming at a Process Intensive Company*,
IEEE Software, November/December, pp. 27-33.

Highsmith, Jim (2002), Agile Software Development Ecosystems, Agile Software Development
Series, Boston: Addison-Wesley.

Johansen, Kay, Stauffer Ron and Turner Dan (2002), ,Learning by Doing: Why XP Doesn’t
Sell”, in M. Marchesi et al. (eds), Extreme Programming Perspectives, pp. 411-419.

Johnson, Ralph (2000), ,,.Developing the Refactoring Browser®, in G. Succi and M. Marchesi
(eds), Extreme Programming Examined, Boston: Addison-Wesley, p. 323-331.

Johnson, Sue (2002), ,,Talk Isn’t Cheap®, in K. Auer and R. Miller, Extreme Programming
Applied, Boston: Addison-Wesley, pp. 303-4.

Kini, Natraj and Collins, Steve (2003), ,.Lessons Learned from an XP Project”, in Marchesi et
al. (eds), Extreme Programming Perspectives, Boston: Addison-Wesley, pp. 363-373.

XP Lite Considered Harmful? 103

Lippert, Martin, Roock, Stefan and Hening Wolf (2002), Extreme Programming in Action:
Practical Experiences from Real World Projects, Chichester: John Wiley & Sons.

McBreen, Pete (2003), Questioning Extreme Programming, XP Series, Boston: Addison-
Wesley.

Moore, Robert (2001), ,,Evolving to a Lighter Methodology: A Case Study*, pdf available
online at sel.gsfc.nasa.gov/website/sew/2001/Session2R.Moore.pdf

Poole, Charles and Huisman, Jan (2003), ,,Extreme Maintenance* in M. Marchesi et al. (eds),
Extreme Programming Perspectives, Boston: Addison-Wesley, pp. 215-234.

Schuh, Peter (2001), ,,Recovery, Redemption and Extreme Programming®, IEEE Software,
November/December, pp. 34-41.

Wells, Don and Buckley, Trish (2001), ,,The VCAPS Project: An Example of Transitioning to
XP“ in G. Succi and M. Marchesi (eds), Extreme Programming Examined, Boston:
Addison-Wesley, pp. 399-421.

Yourdon, Edward (1997), Death March, Upper Saddle River: Prentice Hall.

White, Richard (2002), ,,Odyssey*, Unpublished Thesis, University of Technology, Sydney.

Agile Specification-Driven Development

Jonathan S. Ostroff', David Makalskyl, and Richard F. Paige2

! Department of Computer Science, York University, Canada.
{jonathan, dm}@cs.yorku.ca
? Department of Computer Science, University of York, UK
paige@cs.york.ac.uk

Abstract. We present an agile approach to Specification-Driven Development,
which combines features of Test-Driven Development and the plan-based ap-
proach of Design-by-Contract. We argue that both tests and contracts are different
types of specifications, and both are useful and complementary for building high
quality software. We conclude that it is useful for being able to switch between
writing tests and writing contracts, and explain how Specification-Driven Devel-
opment supports this capability.

1 Introduction

Traditional software development methods stress the elicitation and documentation of a
“complete” set of requirements, followed by architectural and high-level design, coding,
inspection and testing. This general approach is sometimes described as plan-driven de-
velopment. Agile methods were a reaction to these traditional “documentation driven,
heavyweight software development processes” [2], focusing on an iterative design pro-
cess with rapid feedback in which code appears early [15].

In this paper, we describe an integrated approach, Specification-Driven Development
(SDD), which combines the best features of the agile Test-Driven Development (TDD)
methodology with the best features of the plan-driven approach of quality-first Design-
by-Contract (DbC) [11]. The emphasis in TDD is the production of executable tests that
act as restricted emergent specifications of collaborative behaviour. DbC emphasises a
concept of contract, which can be represented using constructs such as preconditions,
postconditions, and class invariants for explicitly specifying expected behaviour. At first
glance, TDD and DbC conflict, or, as one authority put it:

If it’s a matter of gut feeling, then mine is that the two approaches, test first
and Design by Contract, are the absolute extreme opposites with no combina-
tion possible or desirable. It’s nice once in a while to see a real irreconcilable
opposition [13].

We attempt to show that not only are TDD and DbC compatible, but that each can
enhance the other. In SDD, both unit tests and contracts are specifications, and there are
advantages to using each type of specification in producing reliable systems. TDD is
superior for capturing complex emergent behaviour (e.g., trace behaviour) that cannot
easily be expressed statically with contracts; DbC is superior for completely specifying

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 104-112, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Agile Specification-Driven Development 105

behaviour. The two approaches are compatible: both TDD and DbC are iterative and are
based on the view that it is important to produce working code as soon as possible.

We make our arguments in the context of the Eiffel language which has DbC built-in.
But, DbC works in other languages such as Java as well [7].

2 Plan-Driven Development

The conventional, systematic plan-driven approach to software development is inherited
from systems engineering. Plan-driven development approaches, such as DbC, stress the
elicitation and documentation of a complete set of requirements, followed by architec-
tural and high-level design. Code and tests often appear at the tail end of the process. The
gap between requirements and code is thus bridged by specifications, which describe
constraints on behaviour shared between the physical world and the system. Iterations
between writing specifications and coding are often encouraged. Incremental approaches
to plan-driven development have been adopted, but all still emphasise documentation
and traceability between requirements, specification, and code.

Plans can be written in a variety of ways, including structured natural language,
UML class and sequence diagrams, and formal methods. There is an associated cost
with applying mathematical techniques; in general, it is much more than testing with the
benefit of obtaining higher quality [3]. The economic reality is that for most software
development, testing and inspections trump formal specifications.

In plan-driven approaches, complete documentation brings with it two main prob-
lems. First, there is the problem of keeping the documentation consistent with changes
in the design and code. And second, there is the sheer volume of documentation that
must be produced. Analysts must document the requirements, designers must create the
design specifications, and programmers must document their code. At each stage, addi-
tional detail must be added as we do not know who will be reading the documentation;
it may therefore be safer to err on the side of caution.

2.1 Design by Contract

DbC is a form of plan-driven development that naturally lends itself to agile development
because of the way in which its documentation is expressed. It also has almost all the
benefits of mathematical methods — and these are formidable for emphasising software
quality first — without the associated cost. Contracts on software are written using pre-
conditions, postconditions and class invariants, providing mathematical specifications.
These contracts are written in the assertion language of the programming language itself,
and are therefore executable; contracts are thus a form of the best kind of documentation,
that which executes with the code, and which is always guaranteed to be consistent with
the code (otherwise an assertion violation would arise at run-time).

Suppose we need to calculate the square root of a real number to four decimal places.
Fig. 1 provides an example illustrating how this might be done using contracts.

There are many benefits to using contracts to document software: contracts are
checked every time the code is executed (and violations are immediately flagged); com-
ponents are self-documenting because the contracts are part the documentation (and

106 J.S. Ostroff, D. Makalsky, and R.F. Paige

class MATH feature
square_root(x: DOUBLE): DOUBLE is
require x>=0
do -- your algorithm goes here, e.g., Newton’s method
ensure
(Result*Result - x).abs <= epsilon;
epsilon = o0ld epsilon

end
epsilon: DOUBLE -~ accuracy
invariant
0 < epsilon and epsilon <= 0.001
end -- MATH

Fig. 1. Example of a contract for class MATH

inconsistency between code and contracts is impossible). And The benefits of using
contracts to document software are as follows: contracts provide design rules for main-
taining and modifying the behaviour of components, cf., behavioural subtyping, and a
basis for formal verification.

In [11] Meyer describes the “quality-first” DbC design method. Meyer implements
quality-first DbC using Eiffel and the BON visual modelling language, both of which
support contracts, and for which integrated tool support exists. A brief summary of
quality-first DbC in BON/Eiffel follows.

1. Write Eiffel code or produce BON diagrams as soon as possible, because then
supporting tools immediately do syntax, type, and consistency checking.

2. Get the current unit of functionality working before starting the next. Deal with
abnormal cases, e.g., violated preconditions, right away.

3. Intertwine analysis, design, and implementation.

Always have a working system.

5. Get cosmetics and style right.

E

DbC can be seen as an instance of plan-driven development, but unlike some ap-
proaches it does not suffer from the “big design up front” problem, in part because the
plans in DbC are validated code. There are two vague steps in the quality-first DbC
approach: (a) in step (2) we must get the current unit of functionality working, but how
do we progress from informal requirements to a contract or a BON diagram? (b) in step
(4) we are told to constantly compile, execute, and test the system but how the testing is
to be performed is not explained. These two problems can at least partially be alleviated
with the use of TDD techniques.

3 Test-Driven Development

Test Driven Development (TDD) is one of the popular evolving agile methods [1]; it
emphasises testing first as a replacement for up-front design. Like all agile methods,

Agile Specification-Driven Development 107

TDD stresses the development of working code over documentation, models and plans.
The TDD cycle proceeds as follows: (1) write the test first (without worrying if it does not
compile); (2) write enough code to make the test pass; (3) refactor the code to eliminate
redundancies and other design flaws introduced by making the test pass.

A striking aspects of this approach is the idea that the code that is implemented may
not be behaviorally correct: itjust has to pass the test. Correctness means passing all the
tests. The test is therefore the specification. Another striking aspect is refactoring as a
replacement for up-front design (sometimes pejoratively called a “big up front design”)
[5]. Testing, with tool support, occurs all the time: before and after refactoring, and
whenever new functionality is implemented.

Tests are a form of specification, typically (though not exclusively) dealing with
normal and expected behaviour. Tests do not provide precise documentation of class
interfaces. Thus, they are useful in capturing traces of valid behaviour for scenarios of
the system, but may miss the big picture, i.e., the architecture and component views.
Thus tests cannot be described as complete requirements. Tests encompass both unit and
regression tests, and also what we call collaborative tests. These latter tests are related
to UML sequence and collaboration diagrams in that they show the messages (method
calls) sent between a number of specific objects within a use case. A good example of a
collaborative test is shown below, in Fig. 2, for a simple banking system. An account is
initialised and withdrawal is made, with the expected result of the account checked for
correctness.

test_teller_withdrawal_request: BOOLEAN is
local a: ACCOUNT; t:TELLER_TRANSACTION
do
-- initial balance $900 in John’s account
create a.make("John Doe",900)
check a.balance=900 end
create t

-~ test scenario

t.request(a,500)

t.withdrawal_request

result := a.balance=400 and t.succeeded
end

Fig. 2. Collaborative test for banking system

The benefits of TDD are many. For one, the cost of verification is spread across
the development process. The TDD process also provides low-level information about
test failures, on the operation or even statement level, thus making debugging easier.
Experience has shown that designs driven by tests tend to exhibit high cohesion and
loose coupling, perhaps possibly due to the frequent refactoring and the requirement to
keep the design as simple as possible. TDD also allows predictive specification of what
code will do, independent of the existence of the code itself. Finally, the tests produced

108 J.S. Ostroff, D. Makalsky, and R.F. Paige

using TDD provide documentation of the design and the design process. The latter, in
particular, will be essential for any requisite auditing and review.

The limitations of TDD come in part from the incompleteness of tests: requirements
cannot be completely captured by tests in general without enumerating all scenarios.
Further, tests cannot deal with phenomena that are in the environment of the system,
whereas contracts can express constraints on such constructs.

3.1 Collaborative vs. Contractual Specifications

Test-based unit and collaborative specifications are incomplete, because they consider
only specific scenarios. Consider the following unit test, written in Eiffel.

test_integers_sorted:BOOLEAN is
local sal,sa2: SORTABLE_ARRAY[INTEGER]

do
sal := <<4, 1, 3>>; sa2 := <<1,3,4>>;
sal.sort;
Result := equal(sal, sa2)

end

in which we create an unsorted array sal, execute routine sort, and then assert that
the array is equal to the expected sorted array sa?2 . The unit test does three things for
us. The test is a precise specification of a unit of functionality (the sort function in the
special case of array <<4, 1, 3>>). The test also drives the design. It induces the
public interface of class SORTABLE_ARRAY with features such as sort. However,

— The unit test specifies that array <<4, 1, 3>> must be sorted. But what about tests
for all the other (possibly infinite) arrays of integers?

— The unit test does not test arrays of REAL, or arrays of PERSON (say by age). After
all, the class SORTABLE_ARRAY [G] has a generic parameter G.

— Itis hard to describe preconditions with unit tests. For example, we might want the
sort routine to work only in case there is at least one non-void element in the array.
(We could make the sort routine have no precondition, but that would then force us
to always program defensively [10, p344].)

By contrast, the contractual specification in Fig. 3 is a precise and detailed specifi-
cation of the sorted array. The quantifiers can be expressed using Eiffel’s agent notation.

The generic parameter G of class SORTABLE_ARRAY is constrained to inherit from
COMPARABLE. This allows us to compare any two elements in the array, e.g., the expresion
item(i) <= item(i+1) is legal whether the array holds instances of integers or poeple,
provided the instances are from classes that inherit from COMPARABLE.

Routine sort is specified via preconditions and postconditions. The preconditions
state that there must be at least one non-void element to sort. The unit test did not specify
this, nor is it generally easy for unit tests to specify preconditions. The postcondition
states that the array must be sorted and is unchanged. This postcondition specifies this
property for all possible arrays, holding elements of any type. Again, only an infinite
number of unit tests could capture this property.

Agile Specification-Driven Development 109

class SORTABLE_ARRAY [G — > COMPARABLE] inherit ARRAY[G]
feature sort is
require

count_positive: count > 0
elements_not_void: Yi | lower < 1 < upper e item(i) # Void

do

ensure
sorted: Vi | lower <1 < upper o item(i) < item(i+ 1)
count unchanged: count = 0ld count

end

Fig. 3. Class SORTABLE_ARRAY

Since contracts and tests are both specifications (the contract being more general),
they can both serve to drive development of the code.

Unit tests can be used to automatically check that the code satisfies its specification
— just run the tests. Can code be checked against the contracts? One approach would
be program verification which provides strong assurance but requires qualitatively more
time and effort than testing. The simpler approach is to turn assertion checking on in the
programming language. But, unit tests will now be required to execute the code so that
contracts can be checked. However, there is a test amplification effect, which we discuss
in the next section.

While contractual specifications are detailed and complete, they have disadvantages.
Consider a class STACK [G] with routines given by push(xz : G) and pop. While
contracts can fully specify the effects of push and pop individually, they cannot directly
describe the last-in-first-out (LIFO) property of stacks which asserts that

Vs:S8TACK,z : G e pop(push(z,s)) = s

By contrast, the LIFO behaviour can easily be captured using test-based collaborative
specifications.

4 Specification-Driven Development

Clearly there are benefits to plan-driven development based on DbC, and test-driven
development. Choosing between the value offered by the approaches will equally clearly
depend on the project at hand. There are surprising commonalities between TDD and
DbC, particularly: both contracts and tests are specifications; both TDD and DbC seek to
transform requirements to compilable constructs as soon as possible; both TDD and DbC
are lightweight verification methods; both methods are incremental; and both emphasise
quality first in terms of units of functionality. We claim that it is not necessary to choose
between the two approaches a priori, and that there are substantial benefits to using TDD
and DbC together in a project.

Specification-Driven Development (SDD) provides the ability to use TDD and DbC
techniques in the same development. It assumes (a) the availability of a contract-aware

110 J.S. Ostroff, D. Makalsky, and R.F. Paige

programming language (e.g., Eiffel, or Java with a suitable pre-processor), and (b) a
suitable testing framework (e.g., JUnit or ETester). The statechart of Fig. 4 describes
the approach. It does not dictate where to start — it is the developer’s choice whether to
start with TDD or DbC based on project context. However, the emphasis is always on
transforming customer requirements into compilable and executable code.

sDD

Do
Quality First
Design by Contract

Write test based
Collaborative Specifications

Write a unit test

TDD

Fig. 4. SDD: Specification-Driven Development

SDD provides more than TDD or DbC individually, as it eliminates some of the
limitations with each approach. But SDD is more than the sum of TDD and DbC, as
there are synergies between the approaches. In particular, contracts act as test amplifiers.
When writing a contract, it is easy to make mistakes, or write a contract that is simply
too weak and which underconstrains the system. Some of these flaws will be caught
by executing the system; but this is not sufficient in general. Writing tests to exercise
the contracts (i.e., which validate and invalidate each pre- and postcondition) can help
validate the tests, and can also help drive the production of tests.

4.1 Some Observations

SDD can start with writing tests (as illustrated by the left-most state in the statechart), or
with writing contracts. However, there are two reasons to prefer writing unit tests before
contracts:

Closure: A unit test provides a precise description of a unit of functionality and hence
also a clear stopping point — you write just enough clean code to get the test to pass.
Contracts do not provide clear stopping points for units of functionality in quite the
same way, thus allowing for the possibility of unnecessary design.

Agile Specification-Driven Development 111

Collaborative specification friendly: tests can formalize instances of collaborative
specifications more easily than contracts, as illustrated by the last-in-first-out prop-
erty of stacks.

Contracts, of course, can provide precise documentation of the complete behaviour
of code in a way that tests cannot (as illustrated in Fig. 3). Contracts also provide
preconditions; tests cannot document or check for preconditions. Finally, contracts can
supply a qualitative level of assurance for code beyond that of testing in the case of
program verification, and can act as an automatic test amplifier in the case that assertion
checking is turned on.

In summary:

1. Contracts are good for fleshing out the design while making underlying assumptions
explicit.

2. Contracts spell out the logical assumptions underlying a design more completely
and concisely than unit tests.

3. Tests are good for writing collaborative specifications; as such, they are likely to be
more appropriate early in the development process when scenarios are being refined
to executable constructs. Contracts are good for constraining the design to meet the

requirements.
Table 1. SDD synergies ~ SDD > mez(TDD, DbC)
TDD lacks: |Quality First DbC has:
Good Design Documentation v" Self-Documenting Design (automated using

seamless and reversible BON)
Detailed interface specifications of normal and ab-|v" Contracts and contractual specifications
normal behaviours

[TDD has: [Quality First DbC lacks:

v~ Collaborative specifications Units of functionality for Quality First

v~ Automated Tests (JUnit/ETester) Systematic regression tools for exercising contracts
Synergies:

v Contracts are test amplifiers
v~ Contractual and collaborative specifications provide lightweight verification of the design

5 Conclusions

We have investigated the compatibility and complementarity of TDD and DbC, in pro-
ducing a new agile approach called Specification-Driven Development. Our conclusion
is that TDD and DbC are complementary technologies and can be used synergistically,
but also to supplement limitations: contracts make design decisions explicit that may
only be implicit in tests; and tests can better capture requirements (such as the LIFO
property on stacks) than contracts.

We are providing tool support for the Eiffel language that allows TDD and DbC to
be used together. This support comes via the ETester framework, documented elsewhere

112 J.S. Ostroff, D. Makalsky, and R.F. Paige

[8]. ETester is specifically designed to make it easy to write unit tests and tests involving
contracts. Additional work on an Eiffel plug-in for Eclipse will also make use of ETester.

Our work has similarities to that of Feldman [4]; his work focused particularly on
the relationship between contracts and refactoring, whereas we have focused on the
assistance that contracts provide to the TDD process. Feldman in particular makes the
point that using contracts can reduce the amount of tests that need to be written because
contracts cover the correctness of methods. We disagree on this point as tests must
still be written to exercise the contracts, and to particularly deal with contracts that
underspecify behaviour. However, we do agree with Feldman’s findings that contracts
work synergistically with refactoring.

Table 1 summarises our conclusions.

References

—

. Beck, K. Test-driven Development: by example, Addison-Wesley, 2003.

2. Beck, K., A. Cockburn, R. Jeffries, and J. Highsmith. Agile Manifesto
www.agilemanifesto.org/histoty.html. 2001.

3. Berry, D.M. Formal methods: the very idea — Some thoughts about why they work when
they work. Science of Computer Programming, 42(1): p11-27, 2002.

4. Feldman, Y. Extreme Design by Contract. In Proc. XP 2003, LNCS, Springer-Verlag, 2003.

5. Fowler, M. and K. Beck. Refactoring, Addison-Wesley, 1999.

6. Gamma, E. and K. Beck. JUnit: A cook’s tour. Java Report, p27-38,1999.

7. Leavens, G.T., K.R.M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations and tools
supporting detailed design in Java. In OOPSLA 2000 Companion, ACM, 2000.

8. Makalsky, D. ETester Unit Testing Framework. Available at www.cs.yorku.ca/eiffel/etester,
2004.

9. Martin, R.C. Agile software development, Pearson Education, 2003.

10. Meyer, B. Object-Oriented Software Construction. Prentice Hall, 1997.

11. Meyer, B. Practice to Perfect: the Quality-First Model. IEEE Computer 30(5), 1997.

12. Meyer, B. Towards practical proofs of class correctness. In Proc. ZB 2003, Springer-Verlag,
LNCS 2651, p359-387, 2003.

13. Meyer, B. Personal communication, June 2003.

14. Paige, R. and J.S. Ostroff. The Single Model Principle. Journal of Object Oriented Technology,
1(5): 2002.

15. Williams, L. and A. Cockburn. Agile Software Development: It’s about Feedback. Computer,

36(6): p39-43,2003.

Towards a Proper Integration of Large Refactorings in
Agile Software Development

Martin Lippert

University of Hamburg, Software Engineering Group & it-wps GmbH
Vogt-Koélln-Strale 30

22527 Hamburg, Germany
lippert@acm.org

Abstract. Refactoring is a key element of many agile software development
methods. While most developers associate small design changes with the term
refactoring (as described by Martin Fowler and William F. Opdyke), everyday
development practice in medium- to large-sized projects calls for more than
fine-grained refactorings. Such projects involve more complex refactorings,
running for several hours or days and sometimes consisting of a huge number
of steps. This paper discusses the problems posed by large refactorings and pre-
sents an approach that allows agile teams to integrate large refactorings into
their daily work.

1 Introduction

Refactoring is part of everyday programming practice in agile software development'.
The use of small-scale refactorings such as Rename Method or Extract Interface is
well understood (see [6], [12]), many of them now being directly supported and
automated by an Integrated Development Environment (IDE).

Of greater complexity are refactorings that introduce or remove pattern-like struc-
tures into a software system. The Refactoring to Patterns catalogue by Joshua Keriev-
sky provides an overview and handbook for some of the GoF patterns in [9]. Alur,
Crupi and Malks describe J2EE-oriented pattern refactorings in [4]. Initial prototypes
for automating these refactorings using specialized tools have appeared within the
research community (see [3, 16]).

This paper focuses on refactorings that go beyond these small or pattern-based re-
factorings. In medium- to large-scale projects, we sometimes have refactorings that
cannot be realized by means of a few renames, etc. For example, a refactoring that
restructures the central inheritance hierarchy of a non-small system might affect sev-
eral hundred or several thousand references to these classes. Such a refactoring could
easily take several days or weeks, maybe even months to complete.

! This paper focuses on agile software development. Refactoring may also be part of any other
development method.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 113—-122, 2004.
© Springer-Verlag Berlin Heidelberg 2004

114 M. Lippert

While the scope and complexity of these refactorings is highly diverse, the term
“large refactoring” has different connotations to different people. We therefore define
some basic terminology before going on to introduce large refactorings and discuss
them in more detail.

1.1 Integration Steps

An important concept in agile software development projects, especially when using
Extreme Programming (see [l], [11]), is the idea of continuous integration. This
means that changes and improvements to the system are realized in small steps. This
paper subsumes all the changes made by one programmer (or pair of programmers)
between two integrations under the term Integration Step.

Integration steps are not allowed to take more than one day each, the guideline for
many agile development methods being to integrate by the end of the day (or throw
the code away). Their duration thus ranges from minutes to hours. Each integration
step must result in a properly running system and is integrated into the team’s com-
mon code base.

Consequently, every task, requirement, feature or user story must be realized by
proceeding in integration steps. Everything has to be done within this framework.

1.2 Small Refactorings

Many refactorings described in [6] can be realized within a single integration step.
Such refactorings are called Small Refactorings in this paper. Examples are Rename
Class (with a proper IDE) or Extract Method.

2 Large Refactorings

Some design changes and improvements cannot be realized completely within a sin-
gle integration step’. Kent Beck and Martin Fowler describe this in their chapter on
Big Refactorings in [6]. To fit these refactorings into the general concept of integra-
tion steps, they have to be split into smaller chunks. This is already a common task
for user stories within Extreme Programming. The same is necessary for big refac-
torings to enable them to be handled within an agile development project”.

It is quite difficult to decide why and when refactoring is big rather than small.
Basing this purely on the number of changes to the system seems inappropriate. Mod-

The reasons why these larger design changes occur even in the presence of merciless refac-
torings are not analyzed in detail in this paper.

We do not discuss the possibility of realizing large refactorings in a separate branch of the
system because the paper’s focus is on integrating large refactorings into everyday develop-
ment practice.

Towards a Proper Integration of Large Refactorings 115

ern IDEs offer automated refactoring support allowing several hundred places in the
code to be changed in a few seconds. While the impact on the team is most significant
in a big refactoring, it is becoming more and more apparent that big refactorings are
best characterized by the time the team takes to complete them. The term Large Re-
factoring is thus defined to reflect this.

Definition:
Large Refactorings are refactorings that cannot be realized within a single integra-
tion step.

This definition of large refactorings includes refactorings that span only two or three
days. It might be an exaggeration to call them “large” refactorings. The real focus of
this paper is on refactorings that take weeks or months rather than a few days to com-
plete. Nevertheless, many of the problems we have observed with three-month refac-
torings (see below) also occur with refactorings that span only a few days — only on a
much smaller scale. Thus ideas on how to deal with these problems are just as appli-
cable to two- or three-day as they are to three-month refactorings. Of course, the
proposed approach becomes more important, the more time the refactoring takes.

2.1 Why Are Large Refactorings More Problematic than Small Ones?

Large refactorings differ from small ones not only in terms of their size or the time
they take. Beck and Fowler emphasize in [6], for their big refactorings, that it is of
crucial importance that all members of the team are aware of the big refactoring, that
they know where it is going and how it affects their daily work. This is important
because large refactorings have to be split into a number of steps (as discussed
above). Each step of the large refactoring is realized and integrated into the common
source-code repository of the system.

[RIR[RIR]|R]R]

Fig. 1. A large refactoring split into small steps. Each R describes a refactoring step. Time runs
from left to right.

If integrated into the general development process, this is done parallel to other de-
velopers of the team working on the system. The complete integration flow of the
team may look like this:

[.IR[RI[D[R[D [D [R [D [R [D[D [D [R [.. |

Fig. 2. A complete integration flow. The steps for the large refactoring and the normal devel-
opment (D) are interlocked.

This situation can cause a number of difficulties, especially if the large refactoring is
complicated and runs for several weeks or months. Frequently observed problems are:

116

M. Lippert

Interim states of large refactorings: Interim states of large refactorings be-
come visible to the team. This means that all developers may be confronted
with changes made to the common code base as a result of the large refactor-
ing. In this case, the system typically contains code parts that follow the new
structure as well as code parts that are not yet adapted to it. By-passes in the
code are often used to make this possible. Such situations — dealing with new
and old parts of the code’s structure — can confuse developers who are not fa-
miliar with the details of the refactoring. In addition, it is hard for the develop-
ers to keep track of all the by-passes and different code states.

Teams get lost: Sometimes teams get lost in large refactorings. This often
happens because the team has to implement a large number of changes over a
lengthy period of time. After several weeks of doing the refactoring alongside
the daily feature development, and faced with hundreds of changes, a huge
number of deprecated methods and different parts of the system following dif-
ferent designs, individual team developers may get confused. Sometimes they
even end up forgetting the main goal of the refactoring, resulting in an unfin-
ished refactoring.

Unfinished refactorings: One risk with large refactorings is that they never
get finished. Developers simply forget to finish the refactoring completely,
perhaps because major parts of the refactoring are finished or other things dis-
tract them. This mostly results in code-structure flaws. Parts of the system con-
form to the new structure, while other parts follow the old one. This situation
can even result in a code structure that is, overall, worse than before the re-
factoring.

More complex planning: A large refactoring is much more difficult to plan
and predict than small refactorings. While a team is doing a large refactoring,
the rest of the system changes, too. Team members implement new features or
do small refactorings at the same time that other team members are working on
the large refactoring. Changes to the system can have an impact on future
large-refactoring steps.

Another important planning issue with large refactorings is that they need to be inte-
grated somehow into the release and/or iteration planning. This is necessary to reserve
development time for the refactoring and to concentrate the work on such bigger
design changes.

2.2 Consequences

Faced with the challenge of more complex design changes, many projects opt for one
of the following alternatives:

They avoid more complex changes to the structure and make do with a bad
system design.

Towards a Proper Integration of Large Refactorings 117

e They stop normal system development to concentrate exclusively on the large
refactoring.

Since both alternatives appear unsuitable in agile software development, this paper
analyzes in more detail the issues surrounding large refactorings. The goal is to work
out a way of dealing with large refactorings so as to make them manageable in the
daily development practice of agile projects.

3 Explicit Refactoring Routes

As described earlier, a large refactoring has to be split into a number of smaller steps.
These steps are not chosen randomly. They describe a route from the current to the
desired design. This route is called a Refactoring Route. Its key features are:

e A refactoring route subsumes a number of steps that lead from the current to
the desired design.
e FEach step should be realizable within one or more integration steps.

Following the definition of integration step (see Section 1.1), this means that a large
refactoring has to be split into a number of steps, where

e each step results in a running system
e cach step can be realized in a maximum of one day

This relates directly to the mechanics sections for each refactoring in [6], especially
for big refactorings. But such sections are written generically, e.g.: “Decide which job
is more important and is to be retained in the current hierarchy and which is to be
moved to another hierarchy” from the Tease Apart Inheritance refactoring ([6], pp.
362ff). With a concrete large refactoring, the refactoring route could be described in a
much more concrete and meaningful way for the team using the concrete class names
and concrete concerns of the system.

In Extreme Programming projects, the individual steps for a large refactoring can
be written on separate task cards — enhanced by an overall card describing the large
refactoring as a whole. But experience with large refactorings has shown that this is
often not enough. The above-mentioned problems still remain.

3.1 A Refactoring Plan

This paper proposes enhancing refactoring mechanics and tasks cards for large re-
factorings. Key to this is the concept of an explicit refactoring route written in the
form of a Refactoring Plan.

A refactoring plan consists of a sequence of Refactoring Steps. A refactoring step
is of the same scope as one or multiple integration steps. An example of a refactoring

118 M. Lippert

step is: “Analyze all usages of class A and shift them to usages of class B, where
possible”. Depending on the size of the project, a refactoring step may have to be split
into multiple integration steps or can be done within a single integration step.

The entries of a refactoring plan reflect the concrete system and the route that
makes sense for the large refactoring in the concrete situation. The team thus arranges
the refactoring steps in the order in which they are to be realized.

To track the progress of the large refactoring, each step of a refactoring plan can be
marked as finished, work-in-progress or open. The steps of a refactoring plan can be
rearranged, deleted or adapted, if necessary”.

3.2 Refactoring Plans in Practice

Refactoring plans serve two different purposes. On the one hand, the team can use
refactoring plans to discuss, rethink or replan large refactorings. They are thus vital
elements in the development process. On the other, they allow developers to keep an
eye on the refactoring while developing new features, thus serving as a map and a
reminder.

Typically, a refactoring plan for a concrete large refactoring is drawn up by the
team while discussing what refactoring needs to be done. The plan is initially
sketched out on a sheet of flipchart paper and pinned on the wall to make it visible to
the whole team.

When the team is working on the refactoring, they usually pick the next open step
from the refactoring plan and mark that step as work-in-progress on the paper. Once
they finish the refactoring step, they mark it as finished.

It sometimes happens that the steps in the refactoring plan have to be replaced or
rearranged. In this case, the team or pair doing the refactoring discuss the changes. As
a result, a changed refactoring plan is communicated to the team in the same way the
old refactoring plan was.

3.3 Forms of Refactoring Plans

Refactoring plans can take different forms and be at different stages of expansion.
Three possible variants are:
¢ The Manual Refactoring Plan: One way of dealing with explicit refactoring
plans is a simple, manual approach, using a handwritten plan on a flipchart or
whiteboard visible to all members of the team. This is the simplest form of ex-
plicit refactoring plan, and one that has been successfully used by us in a proj-
ect context.
¢ The Electronic Refactoring Plan: Greater potential for team support is of-
fered by an electronic version of a refactoring plan that is part of the project
source base. A simple and suitable tool can help to integrate refactoring plans

* Examples of refactoring plans can be found at [10].

Towards a Proper Integration of Large Refactorings 119

into the IDE to make them directly and easily visible to all project members
(e.g. via specialized views in the Eclipse Java Tooling, see [5]). The electronic
version makes it easy to modify the plan and facilitates teamwork across dif-
ferent locations (a handwritten plan being more suitable for a single location).
We have also used a wiki page to sketch out and track a refactoring plan. The
downside of electronic refactoring plans is that they do not attract the same
attention as a big poster-size plan on the wall.

e Vision — the Connected Refactoring Plan: In addition, electronic refactoring
plans could be connected to the source code to allow navigation from finished
refactoring steps to changed parts of the source code and vice versa. This is
useful to find information on large refactorings, together with the changes they
have introduced into the code. Developers can easily find out whether the
large refactoring has affected the code they are going to work on.

e Vision — the Refactoring Map: To make it easier for developers to check
whether their work is affected by a running large refactoring, the idea of a
Refactoring Map emerged. A refactoring map displays the complete system in
a map-like form. The parts of the system affected by changes due to the re-
factoring are marked (e.g. in a particular color). The developer can use the
map to see at a glance if the large refactoring comes close to the part of the
system he is working on.

3.4 Implications of Refactoring Plans

Refactoring plans can change the way developers deal with large refactorings in agile
development projects. The anticipated benefits from using refactoring plans include:

e All developers of a team are aware of ongoing large refactorings and can ob-
serve the progress.

e Developers can easily see which large refactorings are not yet finished. This
prevents the team from forgetting unfinished large refactorings.

e The team can track the progress of a refactoring. This can help to plan the re-
factoring effort required in current and future iterations.

e The risk of getting lost within a large refactoring is reduced by the refactoring
plan. Developers can watch the plan while immersing themselves in the re-
factoring. They can check whether the current activity really yields a benefit
for the overall refactoring or not.

¢ Developers can recognize changes and by-passes within the code that are in-
troduced as part of a large refactoring (using the electronic version of a refac-
toring plan).

3.5 Consequences for Project Planning

The discussion of large refactorings reveals that agile development projects need to
pay explicit attention to large refactoring tasks. While small refactorings are part of

120 M. Lippert

everyday programming practice — and thus not a separate project-planning issue —
large refactorings need to be taken into account in the planning process. They must be
scheduled somehow during iteration and release planning as they could easily take up
a large part of an iteration’s development time.

4 Related Work

In [13], Don Roberts and John Brant describe a tool designed to support mass
changes to source code automatically. Basically, they took the source-code transfor-
mation engine of their Smalltalk Refactoring Browser (see [2]) and used it to auto-
matically modify Smalltalk source code following a user-written script-like list of
rules. This rule script is used by the transformation engine to modify the source code.

Unlike us, Roberts and Brant adopt an “all-at-once” approach, in which a large re-
factoring is basically prototyped using their rule engine. If the complete path through
the refactoring is found, they execute the rule-based script for the refactoring in one
step. Their approach completely ignores the communication issues of an agile team.
The team’s developers have to live with situations in which many lines of code
change from one day to the next. In addition, the approach of working on a fixed
version of the system to do the refactoring (or writing the rewriting rules) involves
similar risks to doing the refactoring in a separate branch (merging, major changes to
the head version, etc.). Another drawback of their approach is that writing rules on
top of parse trees can be quite complicated for developers not used to thinking in
terms of parse trees (see [13]).

Nevertheless, using a rewrite engine like the one they propose to realize parts of
large refactorings is a conceivable solution. It would be most powerful for refactoring
steps with simple transformations but a high number of dependencies on these
changes.

Tammo Freese has proposed a way of using Inline Method refactoring to facilitate
API changes within an application (see [7]). His work demonstrates an elegant way to
split API interface changes into smaller steps. This technique could be used to split
large refactorings into smaller steps.

In [8], Tammo Freese describes an approach designed to facilitate what he calls
global refactorings within agile development teams. The basic goal of his work, with
regard to the topic of this paper, is to facilitate automatic refactorings that affect large
parts of the system. He proposes a specialized version-management system that is
aware of refactorings and is therefore able to merge refactoring results automatically.
This approach could be quite useful for developers dealing with large refactorings.
While this paper focuses on a different issue, namely how to integrate large refactor-
ings into the daily work of an agile team, individual steps of a large refactoring could
be supported by a refactoring-aware version-management system.

The concept of a refactoring plan is derived from the work on process patterns for
situated action (see [14], [15]). The authors use process patterns to reify typical work
processes in application domains. Their process patterns replace workflow systems
with a more flexible way to describe common processes and deal with them individu-

Towards a Proper Integration of Large Refactorings 121

ally. Unlike the process patterns, refactoring plans are written for a concrete refac-
toring only. They cannot be reused for similar refactorings and they do not serve as a
template for multiple refactorings.

5 Conclusion

This paper introduces the notion of large refactorings and emphasizes that they are an
important issue in today’s agile software development methods. The main problems
and characteristics of large refactorings are presented and briefly discussed. The pa-
per focuses on the team issues posed when dealing with large refactorings, in contrast
to a formal approach designed to somehow automate large refactorings. The focus,
then, is on the problems faced by agile teams when dealing with large design changes.

The concept of explicit refactoring plans is presented, which are designed to inte-
grate large refactorings into the daily programming work of an agile software devel-
opment team. These plans combine the notions of situated process patterns and task
planning to create a simple and easy-to-use concept. They aim to help teams manage
large refactorings smoothly within an agile development project.

While electronic refactoring plans have yet to be implemented, initial experience
with manual refactoring plans has been gained and shows promise. Nevertheless,
what the paper presents is more a concept for supporting teams dealing with large
refactorings than a proven solution. Further research is needed to verify the suitability
of the presented approach in a larger number of projects.

Acknowledgments. My thanks go to Axel Schmolitzky, Holger Breitling and Marko
Schulz for their comments on draft versions of this paper, and to the other members
of the Software Engineering Group at the University of Hamburg for their comments
and discussions on the topic in general. I would also like to thank Stefan Roock for
his work and feedback on the topic.

I am particularly indebted to the following participants of the OT 2003 Workshop
on Large Refactorings: Peter Marks, Erik Groeneveld, Peter Hammond, Alan Francis,
Ray Farmer, Pascal Van Cauwenberghe, Peter Schrier, Marc Evers, Willem-Jan van
den Ende and Matt Stephenson, as well as to the participants of the OOPSLA 2003
Workshop on Beyond Greenfield Development, especially to Kyle Brown for his
feedback. My very special thanks go to Brian Barry for his comments and the idea of
refactoring maps.

References

1. Beck, K.: Extreme Programming Explained — Embrace Change, Addison-Wesley (2001)
2. Brant, J., Roberts, D.: Smalltalk Refactoring Browser.
http://st-www.cs.uiuc.edu/~brant/RefactoringBrowser.

122

10.

11.

12.

13.

14.

15.

16.

M. Lippert

Cinnéide, M. O.: Automated Refactoring to Introduce Design Patterns, Proceedings of the
22nd International Conference on Software Engineering, Limerick, Ireland (2000)

Crupi, J., Alur, D., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies,
Prentice Hall PTR (2001)

Eclipse Project: http://www.eclipse.org

Fowler, M.: Refactoring — Improving the Design of Existing Code, Addison-Wesley
(1999)

Freese, T.: Inline Method Considered Helpful: An Approach to Interface Evolution, in:
Extreme Programming and Agile Processes in Software Engineering, Proceedings of the
4" International Conference XP 2003, Genova, Italy, LNCS 2675, Springer (2003), 271-
278

Freese, T.: Software Configuration Management for Test-Driven Development, in: Ex-
treme Programming and Agile Processes in Software Engineering, Proceedings of the 4"
International Conference XP 2003, Genova, Italy, LNCS 2675, Springer (2003), 431-432
Kerievsky, J.: Refactoring to Patterns, Addison Wesley (2004)

Lippert, M.: Refactoring-Plans — Examples and Experiences,
http://www.martinlippert.com

Lippert, M., Roock, S., Wolf, H.: Extreme Programming in Action — Experiences from
Real-World Projects, Wiley & Sons (2002)

Opdyke, W. F.: Refactoring Object-Oriented Frameworks. PhD thesis, University of
Mlinois at Urbana-Champaign, Dept. of Computer Science (1992) Tech. Report
UIUCDCS-R-92-1759.

Roberts, D., Brant, J.: Tools for Making Impossible Changes, to be published in IEE Pro-
ceedings-Software, Dec. (2003)

Suchman, L.: Plans and Situated Actions. The Problem of Human-Machine Communica-
tion. Cambridge University Press (1987)

Wulf, M., Gryczan, G., Ziillighoven, H.: Process Patterns - Supporting Cooperative Work
in the Tools & Materials Approach, Information Systems Research Seminar In Scandina-
via: IRIS 19; proceedings, Lokeberg, Sweden, 10-13 August, 1996. Bo Dahlbom et al.
(eds.). - Gothenburg: Studies in Informatics, Report 8 (1996), pp. 445 — 460

Zannier, C., Maurer, F.: Tool Support for Complex Refactoring to Design Patterns, in:
Extreme Programming and Agile Processes in Software Engineering, Proceedings of the
4" International Conference XP 2003, Genova, Italy (2003), LNCS 2675, Springer (2003),
123-130

An Agile Approach to a Legacy System

Chris Stevenson' and Andy Pols®

! ThoughtWorks Technologies (India) Pvt Ltd.
Diamond District, Airport Road
Bangalore, India
CStevenson@thoughtworks.com
http://www. thoughtworks.com
% Pols Consulting,

5 Granary House, Hope Sufferance Wharf,
St Marychurch Street, London SE16 4JX, UK
andy@pols.co.uk
http://www.pols.co.uk

Abstract. We describe how a small, successful, self-selected XP team
approached a seemingly intractable problem with panache, flair and im-
modesty. We rewrote a legacy application by delivering new features, a
radically different approach to those previously applied. This proved to
be a low cost, low risk proposition with a very high payoff for success.
Most importantly it provided users with new functionality quickly that
could never have been retrofitted into the legacy system. In the longer
term it may give a migration strategy for replacing the legacy system.

1 Background

InkBlot is a large financial legacy application feeding dozens of other applications
and supporting up to 100 in-house traders on a daily basis. The system was
originally developed in the 1990s and the original team disbanded long ago.
There are many external apps that talk directly to the database.

There are no clean external interfaces, which means that we have no idea
who is connecting to the system and what they are doing in the system. In fact
all external access uses the same well-known username and password.

Business logic is distributed across 1600+ stored procedures, some of which
are 3000+ lines of SQL, and exist in multiple versions. Whenever a stored pro-
cedure was changed, a new version was added because no-one knew who was
using the old version.

There are no primary or foreign keys on the 250+ tables, and triggers are
used to maintain data ‘integrity’. Code was not under source control and written
in a mixture of 4GL, C, SQL and unix shell scripts.

2 Our Evolving Strategy

There had been several previous initiatives to improve the system. The most
recent was an attempt to rewrite a key part of the system in a language that we

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 123—-129, 2004.
© Springer-Verlag Berlin Heidelberg 2004

124 C. Stevenson and A. Pols

knew (Java) on the assumption that this would increase understanding of the
system and make it more amenable to refactoring.

This strategy did not work.

With hindsight the reasons for this failure are clear: we were attempting to
change the legacy application itself, therefore we were likely to break it before
we fixed it. Also since we were rewriting what was already legacy code, we were
by definition writing legacy code.

For example if (say) 75% of the code is unused or irrelevant (probably a lower
bound in this legacy application) then working on that proportion of the code
is wasted time. Even worse, since there are bugs in the legacy application that
other parts of the system assume or work around, we would need to reproduce
the bugs in our new code.

The refactoring effort was started as a spike, and morphed into a multi-
month project - it should have been time-boxed to prevent this. Also note that
this approach, even if it could have worked, was slow, demoralising and would
have provided (again by definition) zero benefit to the business.

The drive for the original rewrite came from development management and
developers not business and users. Management drive was to improve reliability
of the system. This was incorrectly interpreted as a mandatory requirement to
rewrite existing code. At one stage we were told specifically ‘no business value
work is allowed’.

When the rewrite failed we decided a new strategy was needed.

Therefore our rule of thumb is: Don’t reproduce legacy code

Next, we got a good customer proxy' who was able to identify the key prob-
lem in the use of the system by front office staff. The system was being used
as a reporting tool, using stored procedures that would run for up to 5 minutes
before producing a result. This frustrated the users who ended up running the
reports continually, adding to the load on the system.

When we asked the users what they wanted, they had very clear ideas about
what was wrong. Of course none of them mentioned the part of the system we
had been working on — to them it was invisible. If we had persisted on the original
rewrite we would not have solved their problem. The area of the system we were
focussed on was not even the one causing their problem.

Therefore our rule of thumb is: Always ask the users what the problem is

Deciding that our users knew better where they were hurting, our next ap-
proach was driven by user requirements. We wrote a greenfield application to
extract data from the legacy application database and display it to users in a
flexible and timely manner. An already successful team was given the task of

! Customer proxy: Someone from the development organisation acting as a proxy for
the customer, when an onsite customer is not possible.

An Agile Approach to a Legacy System 125

writing a quick one-week spike to prove that the required data could be extracted
in real time. This gained the trust of our customer proxy and gave the team the
confidence to continue.

This proved to be very easy and ‘How difficult can it be’ became the team’s
motto.

Our approach was low risk in that we didn’t change the legacy application,
and so the potential cost of failure was small. However the payoff for success
was extremely high. The new system obsoletes legacy application functionality
incrementally while delivering regular new features to users.

The new system only extracts the key relevant data from the legacy appli-
cation, ignoring the irrelevant code and database tables, and makes no changes
in the legacy application. This means that the team gains an understanding of
the important parts of the legacy system while ignoring those parts that do not
matter.In fact we use only 10 of the 250+ tables in the legacy application.

Therefore our rule of thumb is: Refactor a legacy application by delivering
new business value

3 How We Built the Team

We started the Greenfield application with a team of two people who had just
successfully completed an unrelated project. They were bored and looking for
something challenging to sink their teeth into. The legacy application team’s
credit bank was at zero, so there was no confidence in their ability to deliver
using this new strategy. The new team believed in the new strategy and lobbied
project management hard to get a chance to try it. The new team was given
permission to start work unofficially to validate the approach.

The first story was to prove to our customer proxy that we could extract
the data in real time, without impacting the performance of the legacy applica-
tion. This proved to be easy, and basic functionality was implemented rapidly,
leading to much more confidence in the approach. As time went on and our and
confidence grew, we raised our heads above the parapet more and more, until
we were able finally to demonstrate the app to our users. Up to that point all
conversations with the users had been theoretical.

Therefore our rule of thumb is: Incrementally build trust - prove that you
can do the hardest part of the system

After the initial spike®, people around the team were infected by their en-
thusiasm, and lobbied to join the team. The team grew to 6 and then fought

2 Spike: An experiment to explore a possible solution to an unfamiliar problem. So-
called because a spike is “end to end, but very thin”, like driving a spike all the way
through a log.

126 C. Stevenson and A. Pols

hard to keep that size. This self-selection meant that the team had a unique
ethos and passion. Since everyone wanted to be there the team was committed
to the success, and members took collective responsibility for the success of the
project.

Therefore our rule of thumb is: Build a small, self-selected team

Unlike some XP teams that we have seen, we did not allocate cards to specific
programmer pairs. Instead the cards were placed on a whiteboard near the team,
and we would take them when we had finished another story. Interestingly even
the boring cards were picked up early, as the team’s pride was at stake.

We initially planned to have one-week iterations, and most of the time that
was fine. Occasionally a piece of work would come along that would block other
avenues of development. When this happened we planned for a short ‘blitz’ to
complete the work as soon as possible. This meant that some of our iterations
turned out to be quite short - some as short as three days. We sometimes finished
all of the work planned for an iteration early, and again in this case we would
have an early planning meeting. We found that variable iterations worked well
and helped us keep the development focused.

Therefore our rule of thumb is: Don’t get hung up on process

We would regularly call each other on bad code or small mistakes. When the
build broke, we would very quickly call out to the culprit. In fact we did not use
automatic integration, because we were integrating ourselves about every 10-15
minutes, and would just shout out if the build had broken.

Team discussions were ego-less but opinionated, and we were all willing to be
wrong. Discussions about the system were very robust, but once we had thrashed
out a solution, the group would invest in the idea. Ideas were always owned by
the group, not individuals.

Single pairs felt very uncomfortable with architectural refactorings that
would affect a large proportion of the code base. So we would spend half an
hour around a whiteboard to thrash out the details, and then the whole team
would work on that refactoring only, until we could commit and move on to
something else. Before the first release we refactored the back end architecture
completely 4 times in this way, approximately once every couple of weeks. This
meant that the architecture stayed flexible and easy to adapt.

Therefore our rule of thumb is: Involve the whole team with larger refactor-
ings so the team can move on as quickly as possible

We built our own culture and rituals as the project progressed. For example
every afternoon about 3pm we would disappear to the local coffee shop for a half
hour. Discussions there were often (but not necessarily) about code problems,

An Agile Approach to a Legacy System 127

but the primary benefit was that it gave the team a known break point, so that
we could maintain a higher pace. Some of our best work happened after these
breaks, as the brainstorming and fresh air gave us more energy.

The team socialised together outside work hours as well. When we released we
went to a local bar for rounds of Flaming Absinthe - a ritual that we occasionally
regretted the next day.

Therefore our rule of thumb is: Effective teams need break points

4 Delivering

There were people who had no confidence in the team’s ability to deliver. Others
feared that failure would reflect on them, or the solution compromise the existing
legacy application. We approached these antibodies in the same way we would
approach a customer - teasing out their fears and requirements and building them
into our process as carded activities. We anticipated these sorts of problems and
brainstormed the expected antibodies and our response to their concerns. All
members of the team were aware of politics surrounding the system and able to
‘sing from a common hymn sheet’.

One particularly effective strategy was ‘don’t say no, say later’. We would
take the fear on board (literally carding it and putting it on the whiteboard) for
a later iteration, by which time we would have proved that it was no longer an
issue, or the initial reason for the request had changed or been forgotten. Fears
could then be prioritised in the same way as any other piece of work.

Therefore our rule of thumb is: Treat politics as a user requirement

Our initial increments were tested using static data loaded into a test
database. We were able to simulate some of functionality of the legacy ap-
plication. However, we did not appreciate the complexity of the real system’s
behaviour until we connected our system to the live database.

We could not rely on our unit tests and simulations because these only re-
produced what we thought the legacy application did, not what was actually
happening. In particular, some external systems that we did not know existed,
were directly manipulating crucial tables in ways we were unaware of.

Within minutes of connecting to the live database we noticed inconsistencies
and bugs that had been in our code for months. This meant that we had to
rethink a large part of the back end of the system. We ran the system with
live data for a month before delivery, and built tools to automatically compare
the results of our system with those produced by the legacy application. These
became our most important integration/user acceptance tests. We did have some
of our own ‘stress tests’ but these were not used for functional testing of the
system.

128 C. Stevenson and A. Pols

After our first release we no longer left the test system connected to live, and
we lost a lot of our reliability. In fact our second release had to be rolled back
as bugs were exposed within minutes of going live. Ironically the main piece of
functionality of this release had been to allow us to record and play back the
events generated by the live system, so that we could improve testing. We had
relearned our lesson - and when we connected our test release to the live system
again, we managed to do a successful release.

Therefore our rule of thumb is: A System that connects to a legacy system
must be tested using live feeds.

Even though we had live data feeds to tease out business rule bugs, we still
had gui bugs that eluded our unit tests. With hindsight we would like to find
ways of introducing robust and flexible acceptance tests much more early in the
process. Gui testing is still an open issue for us. We have been bitten by it on
several occasions, but have yet to find an effective solution.

Three months into the project (around Iteration 12) we showed the system
to key business users and asked them to try it for a while. The system had been
running on live data for a month by this stage. The system was so popular that
we had problems removing access to the system - when we released the final
version, there were still 20 users running the original, some of whom we had not
actually given it to. We had designed the system to automatically deploy new
versions, so the upgrade was not painful.

We never told the users that they must use the new system. Nor did we
remove access to the old system. We relied on making the system so compelling
that there was no reason to use the old. This also meant that we stayed focused
on the users real requirements.

Because we had actually been °‘live’ for a month, the first release was an
anti-climax. The Project Manager of another team commented that he could
not believe we were releasing that week - none of us were staying late and no
one worked weekends. In fact our coffee breaks in the afternoons continued.

Therefore our rule of thumb is: Engage users and they not only won’t they
turn it off, they will fight some of your battles for you.

After delivery of the first release we suffered from a bout of ‘post-delivery de-
pression’. We concentrated on technical infrastructure problems and refactorings
without adding any business value. The team became bored and unmotivated,
and the team lost its spark.

Once we got back on business value, the team’s demeanour lifted and we
sparked again, but we had lost a couple of iterations. A dynamic team like this
needs problems and challenges to remain motivated.

Therefore our rule of thumb is: Keep giving a good team motivated by giving
them new hard problems - don’t waste a good team

An Agile Approach to a Legacy System 129

5 Reflection on the Experiences

The project has now been going for seven months. We gave some users a test
version to try after two months. They continued to use this version for two
months until we delivered the first official release four months into the project.
We are about to deliver the fourth release.

We are still running the new system in parallel with the legacy system. We
are currently adding major new functionality that is missing from the legacy
application and has been an outstanding feature request for some time.

We are also working to enable the new system to operate independently from
the legacy application, so that eventually we can switch off the legacy application.

Our project was initially kicked off as a strategic short-term fix. The organi-
sation was planning a long-term project to replace the legacy system, for delivery
in ‘a couple of years’. Due to the success of our project, this rewrite has now
been put on hold.

The team has been asked by other parts of the business to spike solutions to
hard problems. This enhanced the motivation of the team.

Looking back on our experiences, we find that our “rules of thumb” paid off
well on this project, and we intend to try them out on future projects to see how
well they stand up under different circumstances.

Acknowledgements. The InkBlot team for letting us put our ideas into prac-
tice and for making development of the system a pleasure.

Special thanks to Alistair Cockburn for encouragement and advice; to Martin
Fowler, Joe Walnes, Gregor Hohpe, Tim Bacon for thoughtful feedback; Ben
Authers for de-geeking our prose; and to the London Extreme Tuesday Club
(XTC) for their continuous stream of good ideas and discussions.

Cynical Reengineering

Kristoffer Kvam, Daniel Bakkelund, and Rodin Lie

Telenor, CRM, Business Logic,

{kristoffer.kvam,daniel .bakkelund, rodin.lie}@telenor.com

Abstract. This paper presents a solution for saving large systems
from increasing entropy. The solution is proven on a large middleware
platform giving good results. The method’s objective is to rework the
system so that reengineering investments pays off. Reaching agile prac-
tices is the methods basis. In order to reach the objective the method
cynically relies on measurements to find unwanted characteristics of the
system. Subjective opinions due to ownership and politics are ignored in
the method. An extensive open source tool, the Cosmos Radar, is given
to the community to make these measurements. Various symptoms and
measurements are identified and approaches to solutions are discussed.

Keywords: Reengineering, Refactoring, Software Metrics, Open Source

1 Introduction

1.1 Challenge

One of the major challenges we face in software development are the old systems.
Systems having reached maturity often have a mysterious tendency to produce
highly unexpected errors and maintenance is a pain. Taking inspiration from the
Second Law of Thermodynamics some call this phenomenon increasing system
entropy: In time a system experiences increasing disorder if not explicitly tended
to [1]. This disorder adds unnecessary complexity to the problem domain’s in-
herent complexity, something many organisations experience as their systems
mature. A great deal of time is being spent fixing bugs and testing the fixes
while development of new functionality is costly, risky and likely to introduce
regression errors.

Techniques within the Agile initiatives such as automated acceptance test-
ing, test driven development, continuous integration and refactoring all aim at
preventing systems to end up as described above [2]. This idea works well with
new systems development, but what about all the existing systems?

One alternative is a complete rewrite, but the cost might not pay off the
investment. Rewriting a system is a risky and tricky affair, but not something
we shall venture into in this paper.

The other alterative is to facilitate agile practices by reengineering the old
system. This process is not free of challenges, whereof some of the more obvious
ones are:

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 130-138, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Cynical Reengineering 131

How to get management acceptance?
Where to start?

What to prioritise?

How to reduce risk?

In addition to this you will most likely have very important organizational chal-
lenges, such as the process and culture change needed to establish the agile
practices. These are not in the scope of this paper.

The following presents a solution to the challenges mentioned above (save
the cultural and process related ones). The solution is based on quantitative
measurements to make objective reengineering decisions. As a means of obtain-
ing the measurements a new free open source tool, the Cosmos Radar [6], is
introduced.

1.2 Telenor

Telenor is Norway’s largest telecommunications company with numerous inter-
national interests.

COS is a middleware system designed to give front-end applications a con-
sistent view across multiple back-end systems. There are more than 20 front
end applications serving retail outlets, customer support, large corporate cus-
tomers and internal functions. The back end systems include Sybase and Oracle
databases, network connections and mainframes, all of which are logically inter-
connected through the use of batch jobs, scripts and database stored procedures.

COS has evolved over 5 years into a large system, composed of many sub-
systems. After a period of sustained development the problems were manifold.
The system state corresponded well with the description of increasing entropy
as defined above.

The Pareto project was instigated with solving the problems. The results
presented here rely heavily on the work done during the project.

2 Objectives

A project proposal that sounds like “saving the system from the entropy spiral”
will likely face scepticism from management. The project’s business case must
show that the increased life of the system defends the investment. After all, a
very sensible alternative from a business point of view is to let the system die a
silent death and invest in new development or buying a packaged solution. (In
some cases that will also be the better solution.) The following issues must be
taken into consideration when deciding the reengineering roadmap.

2.1 Reduced Time to Market

Reducing the time from an idea is created to it is put into production is a critical
competitive factor for businesses today. Often the willingness to pay for a change

132 K. Kvam, D. Bakkelund, and R. Lie

is very high but the organizations ability to implement the changes is limited
and time consuming. Hence, reducing the time to production of highly prioritised
changes is often the most important factor for the business.

2.2 Increased Flexibility to Change

Having aflexible system architecture usually means being able to introduce large
changes into the system at low cost and low risk. Flexibility also increases insight
into the systems secrets causing general maintenance costs to decrease. Finding
system bottlenecks and optimising performance will also be much easier once
the systems architecture is flexible.

2.3 Reduced Number of Critical Errors

Developing zero defect software is one of the observed merits of agile practices
such as XP [3]. Unfortunately, this is not the track record of the typical mature
system one faces. Even small changes can have catastrophic effects on the sta-
bility of the system. Since these mature systems often are heavily depended on,
downtimes can amount to painful losses for the business. Consequently, a focus
on this area is usually appreciated by the organisation.

3 The Cynical Reengineering Method

A reengineering project is likely to have a mandate corresponding to the objec-
tives mentioned above. In the targeted system there are probably several causes
to the problems. Below, typical causes are identified and means of measuring
them are presented. Once you have identified the most pressing problems, ways
of attacking them are needed. We give you details on that. An unfortunate prob-
lem with a reengineering project is that you discover so many issues you want
to resolve, but must prioritise the problems that give the greatest benefit for
the company. The Prioritisation section summarises and gives insights into that
issue.

3.1 Metrics

Object oriented metrics [4] can be used to analyse various characteristics of a
system. Unfortunately, in a stand-alone form their value is often limited as a
means for architectural decision-making. Questions like what values are accept-
able for this system, how can they be combined to add more value and what
metrics to emphasize usually arises.

To give true insight you need to see the metrics’ dynamical nature and the
value of combining them to form a more high-level view of the system. You are
interested in how the characteristics of your system changes over time. In this
way you can easily see which aspects of the system that are trending negatively
and consequently where countermeasures are needed - a dynamic view.

Cynical Reengineering 133

Another issue is the particular metric’s value in a reengineering project. Our
experience is that most of the symptoms you search for cannot be found by
the classical metrics. Instead, knowledge of the system must be combined with
various measurements to produce valuable reports. A tool like the Cosmos Radar
can help you with that.

We worked with many different views of the underlying metrics, but ended
up with combining some selected metrics to get at picture of the amount of
redundant code, illegal dependencies and code rot.

3.2 Redundant Code

Problem. As time goes, old code tends to be forgotten. When changes are
done developers forget to (or are not given any time to) clean up the code. Code
may be inaccessible or simply never used. This redundant code decreases the
maintainability of the system. Our experience with redundant code is that the
readability decreases, build cycles go slower and the impression of the system is
more complex than what it inherently is. The last issue is important when con-
sidering system flexibility. Time is spent analysing regression effects and testing
code that is worthless for the business.

Removal of redundant code is one of the easy wins in a reengineering project.
It is among the tasks with the lowest risk that you can do in the code base.

Solution. We use two techniques to find redundant code: static analysis and
statistics from the production environment showing the usage of public access
points into the system. When you start removing public entry points, new rounds
of static code analysis will most likely report large amounts of internal unused
code that can be removed, and so goes the cycle: remove, analyse, remove, anal-
yse. As this process goes on, the code base diminishes and becomes more man-
ageable.

Static analysis of the code base can give valuable insights into the inaccessible
parts of the code such as private methods, fields and inner classes that are never
accessed. In a similar manner, you can also statically find the unused classes in
the system.

Access points typically refer to the publicly available component services of
the system. The largest part of redundant code in the system can be found by
instrumenting all public access points and detecting which are never used in
production (no client applications calling the methods). For a mature system
not being maintained with dedication to the redundant parts, the system will
most likely have a considerable amount of unused code that may be removed.

Being Cynical. Code that is detected as unused through static code analysis
may be removed immediately, but some care should be taken to avoid deleting
classes that are only accessed through mechanisms such as reflection in Java.
When the unused entry points are detected these should be deprecated and
allowed to remain in the system for enough time for the clients to report in wrong

134 K, Kvam, D. Bakkelund, and R. Lie

deprecations (e.g. methods that are used very seldom, but still are important).
In this way you will avoid deleting skin-dead code. Still, our experience is that in
many cases you need to be ruthless. Clients often report that they have references
to the code that you deprecate - references that more often than not originates
in client code that also is unused and redundant. Pushing and involving them a
little extra on code removal may often create gains for both.

3.3 Illegal Dependencies

Problem. Illegal dependencies are dependencies that cause unnecessary en-
tangling of the parts of your system. It is obvious that since there are some
dependencies that are “illegal” there must also be some that are “legal”. The
definition of which are what arises from a defined “dependency graph”.

A dependency graph contains a set of sub-systems (that make up your sys-
tem) and the legal dependencies between these (making up the edges in the
graph). For each sub-system it says what code belongs to it (e.g. which Java-
packages comprises a specific sub-system). The dependency graph should be a
directed acyclic graph.

Sources for defining this structure might be found in architecture documents
and by doing interviews with system domain experts. Once the work is done you
actually have a declared and measurable definition of the vertical and horizontal
layering of the system. Based on such a graph it is easy to see whether for
example the integration layer framework makes use of customer functionality
(which probably is not desirable).

A particularly unwanted problem area are cyclic dependencies [2]. Cyclic
dependencies in a system appear when one module calls another module which
again directly or indirectly calls the first module. This is a major pain that results
in a plethora of problems that all directly negatively affects the objectives of a
reengineering project.

The immediate result of these cyclic dependencies is code entangling. Differ-
ent subsystems with different responsibility depend on each other. This greatly
increases the risk for regression errors, and the burden of development and test-
ing changes become large. Hence, flexibility to change and the number of critical
errors suffer.

The second problem with cyclic dependencies is that you have to build and
deploy all components for each release. It is not possible to develop, build and
deploy a single module, and bug fixes are risky since they need to be patched into
the system. In sum, such dependencies hinder incremental builds and deployment
into production. The end result of that is slow time to market of prioritised
functionality.

Solution. The advantages gained from removing illegal dependencies between
subsystems are numerous, but as in many other circumstances in life; with great
gain comes high risk. Mature systems are not likely to have automated accep-
tance tests that you can use for regression testing. Unit tests are probably not

Cynical Reengineering 135

used either. Going into details in this area is not the scope of the paper, but
having a clear strategy for both of these testing elements are essential before one
starts to do massive restructuring of the code base.

Once the testing strategy has been developed and proved to work for the
system, one can start removing the illegal dependencies. There are several ways
to remove illegal dependencies and these vary greatly with the nature of the
system. Still, some are probably typical:

— The first thing to be done with the illegal dependencies should simply be to
optimise the imports in the system. Redundant imports are not part of the
code base, but are still references. Several tools exist that can automate that
process.

— Second, move methods, classes and modules that are placed in the wrong
subsystem. Moves like these often give major results. Of course, one must
give attention to clients and interface changes before moving public API
related modules.

~ Third, standard refactoring and redesign techniques must be used to remove
the last illegal dependencies. This part is naturally the most risky, but may
result in major gains for the system such as reusable frameworks.

Being Cynical. When working on the third and most complex part, our advice
is to start at the most fundamental and risky element. Having that part separated
out gives confidence, proof of the theory and will probably give the greatest gains
for the organisation. The rest of the subsystems will then be much easier to
separate out. The Cosmos Radar may continually give you the complete picture
of how the system compares to the legal dependency graph. When you are done
the path is clear to implement an incremental build configuration and you have
a highly more flexible and maintainable code base.

3.4 Code Rot

Problem. Developers often associate complexity with spaghetti code. Spaghetti
code comes in many forms but is often caused by illegal dependencies. Hence,
to be precise we define code rot as code with bad smells [5] caused by high
complexity. Attacking this problem has been an extensive area of research, and
today refactoring [5] is a well accepted practice. In light of that, we focus here
on practices for discovering the most immediate problems in a large code base.

Solution. Identifying code rot is a task that depends on the nature of the sys-
tem. Still, some problems are universal, two of these being high method complex-
ity and duplicated (copied and pasted) code. We present our ways of identifying
these, all supported by the Cosmos Radar.

Here we define a method complex if it has a high McCabe metric for Cy-
clomatic Complexity [4]. This metric simply is a count of the number of paths
a call to a method can go. One typically counts each conditional in a method

136 K. Kvam, D. Bakkelund, and R. Lie

and out comes the magic number. Usually one sets the threshold on this to 10.
All methods with a value above 10 should in time be refactored. The reason to
this is that such code has reduced readability and testability. The result is less
maintainable code. The metric can be found by static analysis of the code base.

Copying and slightly modifying code are results of quick wins for the short
term. Such an act results in duplicated code [1]. For maintenance such code
becomes a nightmare, especially if the copying and pasting continues on the
originally copied code.

In our experience measuring copied and pasted code can be done in two ways:

— There exists several free tools that can statically analyse the code and find
equal sequences of code in the same code base. Such an approach gives fast
discoveries.

— The other method is to group all methods in the code base according to the
method names and cyclomatic complexity. This measurement is a little more
error prone compared to the previous but is often very effective. The theory
is that methods with similar names and cyclomatic complexity have been
copied. It has been our experience that this is usually true for methods with
a CC larger than 10.

Being Cynical. After having done analysis of the code, you want to make a
choice on which parts to focus on. One typically makes a list of code that is overly
conditionally complex and/or copied and pasted. Maybe another code measure-
ment has been crucial for your system, and violating code to this measurement
has also been added to the list. What should you start with?

Prioritise the refactoring based on a very important dimension: Historical
activity on the code base. Luckily, this measurement is easily obtainable from
the source control system. Most of these systems have an API that one can
program against to obtain the maintenance metrics on the code files. If, for
instance, you have a list of classes in your system where code rot is a critical,
prioritise them according to how much source control activity these have been
involved in. The assumption is that the most historically maintained classes will
likely continue to be maintained. Hence, the greatest benefit is achieved if you
refactor and write unit tests on these classes first.

3.5 Prioritisation

When doing a reengineering project, your success is measured. Hence, even
though your heart tells you to attack a certain problem you discover, it is not
necessarily the right thing to do compared to all the other activities that are
lined up. The philosophy should be to attack the problems that give the great-
est benefits to the company on both the long and short term. We have used the
following approach with success:

— It is strongly recommended to start by deleting obsolete code since the results
are easy to obtain and it reduces the amount of code for the rest of the tasks
in the project.

Cynical Reengineering 137

— After that, attack the illegal dependencies. You will not be able to save the
typical mature and neglected system without having focus on this aspect.

— Last, pure code rot removal should be focused on. The risk will be minimized
when you have a clearly defined and followed dependency graph. Further-
more, such work takes an immense effort to produce small results in a large
system. From a project perspective, code-refactoring work usually does not
defend the investment. The proposal is not to neglect code rot. Analyse
the problems as suggested above and produce a prioritised list of the prob-
lems. The list should be attacked as part of continual maintenance after the
reengineering project finishes.

Lack of dedicated maintenance was our reason why the system needed to be
reengineered. We believe no reengineering projects will succeed if this knowledge
is neglected by the organisation. It is time the system starts to continually pay
back its technical debt.

4 Cosmos Radar

The Cosmos Radar is a batch processing application developed as a response to
the Pareto project’s needs. It gets results from more 8 open source projects and
a couple of in house grown projects and presents the results as massive unified
html/svg reports. The architecture is based on java, xml and xsl. Presently it
only supports Java, but there are plans to produce plug ins for other leading
languages. [6] presents the Cosmos Radar in detail.

Although developed as a corporate tool, it has been decided to make it open
source (at the time of writing, the URL has not been established, but it will be
given during the paper presentation). It heavily relies on open source products,
and in this way we can give something back.

Measurements. As default, the Cosmos Radar gives measurements on stan-
dard software metrics such as package metrics and dependencies, code size and
complexity, coding violations and code-style violations.

Data from unit test metrics and code coverage are also integrated, but must
be obtained running the test suites on the system while doing monitoring. We
have also integrated even more measurements such as from source control, per-
formance metrics and SQL procedures. Similar plug ins will be made available
for the public once we have produced a common generic API.

Reports. The Radar is available in two forms. Cosmos Radar Statics gives
reports on the current build of the system. The other form, Cosmos Radar Dy-
namics, includes the time dimension and views the historical and present versions
along the time axis. The Dynamics version relies on a set of two or more Statics
runs of different system releases to work properly.

138 K. Kvam, D. Bakkelund, and R. Lie

5 Conclusion

Based on our experience with reengineering a large component based system,
we have presented a method for attacking such systems in general. The method
is based on software metrics and quantitative measurements. The various symp-
toms and approaches for their resolution have been discussed in relation to the
typical objectives of a reengineering project - objectives with a mandate in a
business case. The methods goal is to get the old system technically ready for
typical agile practices. The results of using the method have been very good. A
future paper will present the hard results.

As a means of performing such reengineering work we have presented the
community a new open source tool, the Cosmos Radar, that has been developed
in parallel with the methodology. The tool is based solely on other open source
projects. It can be used to measure all the various symptoms on a system as
discussed.

Our viewpoint here has only had focus on the system challenges. When adapt-
ing a system to agile practices it is just as important to focus on the human side,
methodology and process. The organization and process involved in maintenance
of such a system needs a major shift in order to take out the potential resulting
from reengineering. One does not want the system to go back to its old sins.

References

1. Hunt, A., Thomas, D.: Pragmatic Programmer, from Journeyman to Master (2000)

2. Martin, Robert C.: Agile software development, Principles, Patterns, and Practices
(2002)

3. Beck, Kent: Extreme Programming Explained: Embrace Change (1999)

4. Fenton, Norman E., Pfleeger, Shari L. : Software Metrics: A Rigorous and Practical
Approach, Revised. (1998)

5. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code (1999)

6. Kvam, K., Lie, R., Bakkelund, D.: A Tool for Cynical Reengineering (2004) Pre-
sented at the rOOts 2004 conference

The Characteristics of XP Teams

Hugh Robinson and Helen Sharp

Centre for Empirical Studies of Software Development
The Open University
Walton Hall
Milton Keynes MK7 6AA UK

{h.m.robinson; h.c.sharp}@open.ac.uk

Abstract. What is special about XP teams? Adopting XP involves social
change as well as technical change, but what characterises a successful team?
What happens when a team takes on the 12 practices and four underlying
values? This paper contributes empirical findings that help answer such
questions. We expand on previous work that suggested four characteristics of
an XP team by analysing the data from both the previous study and from a
further study of another mature XP team. While there are clear differences
between the two teams in terms of operating environment, their detailed
implementation of the 12 practices and the team’s overall character, we find that
the four characteristics are present in both teams. The paper describes the
characteristics in detail and discusses how those characteristics are embedded in
the detail of the practices of XP as observed in the two particular settings.

1 Introduction

The practices of XP, as given by Beck [1], are carried out by teams of individuals
working in particular settings. Teams and the characteristics of teams are central to
XP: Beck [1, p35] asserts ‘If members of a team don’t care about each other, XP is
doomed’. Indeed, XP is as much about human values as about technical values.
Interviewing Beck, Highsmith [2] observes that his ‘important vision is about
changing social contracts, changing the way people treat each other and are treated in
organizations’ and quotes Beck’s response to an article that attempted to revise XP: ‘I
was furious that someone would strip out all of the social change and still call it XP.’

But what is special about XP teams? What does a successful XP team look like?
What effect does XP have on a team when the 12 practices and the underlying values
are put into practice? While authors have discussed specific aspects of team
interaction (e.g. [3]) and have reported on XP team activity (e.g. [4]), no reported
work has focussed on the characteristics of mature XP teams. A team’s character is
determined in part by the individuals who are its members and the organisational and
cultural setting within which they operate. However the claim from XP proponents
that successful adoption involves social change suggests that the 12 practices
themselves might sustain and be sustained by a common set of team characteristics
that go beyond the documented practices and values.

This paper is about the characteristics of XP teams and how those characteristics
are sustained by the detail of XP practices. We expand on the results of an earlier

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 139-147, 2004.
© Springer-Verlag Berlin Heidelberg 2004

140 H. Robinson and H. Sharp

empirical study of a mature XP team [5,6] that suggested four characteristics of XP
teams, using an additional empirical study of a second mature XP team operating in
quite a different environment. We first describe our empirical approach and then give
some details of the setting for each of the two studies. We then move to an analysis of
how team characteristics are embedded in the detail of XP practices, and finally
discuss our findings and conclusions.

2 Empirical Approach

Our empirical approach was qualitative and emphasized understanding the reality of
practice. Each team was studied by a researcher for a period of a week, complemented
by follow-up visits to discuss findings. A different researcher was used for each study.
Each week-long study involved the researcher immersing themselves as far as
possible in the day-to-day business of XP development, and actively taking part in
that business where possible. The detail of practice was documented via a range of
means that included contemporaneous field notes, audio recordings of discussions and
meetings, photographs/sketches of the physical layout, copies of various documents
and artefacts, and records of interviews with practitioners.

Our approach was one of observing as far as possible the natural setting of practice
without any form of control, intrusion or experiment. Our analysis sought to
understand the practice we observed in its own terms, minimizing the impact of our
own backgrounds, prejudices and assumptions. We placed emphasis on attending to
the taken-for-granted, accepted and un-remarked aspects of practice, deliberately not
discounting any feature of practice and explicitly considering the totality of practice
with all its ‘messy’ characteristics. This observational and analytic approach is an
ethnographic approach — a rigorous and non-subjective approach from the social
sciences that has been used successfully to study software development (see [7-9] for
example).

In both cases, the start of the study coincided with the start of an iteration and all
12 practices were observed.

3 Teams and Their Settings

3.1 TeamA

Team A were part of a small company developing web-based intelligent
advertisements in Java for paying customers. The team has used XP right from start-
up, uses all 12 practices and is mature in its use of XP. At the time of the study, there
were eight developers in the team, one graphic designer and one person who looked
after the infrastructure. Iterations were three weeks long and the only documentation
support tool was a wiki site where the team captured details of each iteration such as
the identifier of the stories planned, those completed, those removed or added, and the
team’s velocity. Stories, indeed anything that was written down, were captured on 4"
by 6" index cards, which were then discarded once they had been used for their
purpose. The company employed four marketing people who determined what was

The Characteristics of XP Teams 141

required in collaboration with clients. Marketing were regarded as being, in effect, the
on-site customer.

Each member of the development team apart from the graphic designer had
experience of traditional software development methods. As a team they had only
ever used XP, and while the membership of the team had expanded and contracted
over its lifetime (two and a half years at the time of the study), the individuals
involved had remained stable.

The setting for the XP team was a long rectangular first-floor office organized so
that it was both open but also had distinct areas. There was an area where pair
programming took place, with desks shaped specifically for programmers to sit two to
a machine. The wall in this area had a notice board devoted to the active story cards.
There were also four ‘to do’ lists on the board headed by a picture of Anton Chekhov
and one of Pavel Chekhov. These lists were checked-off to signal certain events, and
the area was known as the Chekhov Board. This is where stand-ups took place. There
was a separate area for the Planning Game, with tables, chairs and a sofa. Adjacent to
this area was the machine used to release modified and tested code into the main
system. The marketing team was located at one end of the floor; each person had their
own desk. The infrastructure support person and the graphic designer also had their
own area. There was a well-equipped kitchen that was used extensively and it had a
homely and personal feel to it.

3.2 TeamB

Team B were part of a company producing software products to support the use of
documents in multi-authored work environments. They have 3,500 accounts
worldwide and over half a million users. Software is produced by two development
teams: one in Capetown, South Africa, and the other in London, UK. We studied the
latter team. They adopted XP in early 2001, as a result of problems with a
conventional, but unstructured, approach. The team adopted all 12 XP practices. At
the time of the study, there were 23 people working in the team, including three
programme managers (who took the role of the on-site customer), two testers, a
technical author, a development team coach (who also managed the development
team and pair programmed) and 16 developers. Within each iteration (which lasted
two weeks), the development team organised itself into sub-teams oriented around the
various software products or related issues. For example, during the week’s study, a
sub-team of a dozen or so individuals (developers, programme managers, testers)
worked on stories in connection with an up-coming release of the company’s most
recent software product.

The team developed software in C++. They used a custom-built computer
documentation tool to record, communicate and progress stories, rather than index
cards. The tool was a significant medium of communication in that it captured the
detail of each story: the estimate, a brief description, the customer acceptance test,
who was working on it, progress through development, integration, pre-quality
assurance testing, etc.

The development team occupied the whole of the first floor in a converted
warehouse. The space was large and open-plan with seven rectangular tabled areas.
Each tabled area had four workstations in twos, back to back, organised for pair
programming. There was considerable space between each tabled area and there were

142 H. Robinson and H. Sharp

also two separate round tables for discussions or small meetings. Adjacent to this
open area was a partitioned conference room. The whole effect was of an open, airy
working environment. On the ground floor was a modern dining area and kitchen with
everything that was needed for making drinks or light snacks.

3.3 Team Differences and Similarities

The main similarity between our two teams is that they had both been using XP
successfully for a number of years at the time of our studies. They both had found and
continued to find difficulties in using XP but were committed to finding solutions to
any problems they encountered. Apart from this, they were different in many ways:
some cultural, some technical, and some operational.

They had two distinct organisational cultures working in different application
domains. Team A was part of a very small company that had only been in existence
for two and a half years, while Team B were in an SME that had been in business for
over seven years. The overall atmosphere for Team B was considerably more intense
and solemn than in Team A. This may have been a result of the differences in pair
programming. When Team A were programming they were focused on their work and
became intense, but they took common breaks, and so there were also times when the
mood lightened. For Team B, however there were no common breaks, and so at any
time of the day there would be pairs programming intensely. The pairs in Team B also
appeared to be different in character, being on the one hand more rigid insofar as
individual pairs often paired for more than one day and sometimes for a whole
iteration, but also more flexible in their approach to coding. This flexibility was
evident by the ease with which a pair might be interrupted, for example growing
easily to be a threesome or indeed a group of people all working on one issue, and if
one of the pair was absent for a while the partner would continue to work alone.

Team A would celebrate their successes, e.g. making a little box on top of the
release machine ‘moo’ whenever a new piece of code was released. Team B however
showed no such celebrations. Even within the pair, it was sometimes difficult for the
observer to be sure that an issue had been settled because this may be signalled by
something as small as a sigh and leaning back in the chair, or by nothing discernible
at all.

Technical differences included the development languages and the software and
support environments they used, while operational differences were evident in the
manner in which they carried out the XP practices, including iterations, stand-ups,
planning game, and organisation of pairing.

In the next section, we will illustrate how the two teams exhibit a set of four
common characteristics. However we shall also note how the detail of practice varies
between them, to underscore that although they are comparable, they are certainly not
the same.

4 Team Characteristics and Their Relationship to Practices
Our earlier study [5,6] suggested that the characteristics of XP teams are that:

1. both individuals and the team are respected,;
2. both individuals and the team take responsibility;

The Characteristics of XP Teams 143

3. both individuals and the team actively encourage the preservation of the
quality of working life;
4. both individuals and the team have faith in their own abilities to achieve

the goals they have set themselves, which is constantly re-validated and
re-affirmed.
In the following we provide an expanded description of these characteristics, and
explain how they are embedded in the detail of XP practices as deployed in the two
settings. This detail has both commonalities across the two teams and differences, and
the explanation is based on observations from our empirical studies.
The first two of our characteristics deal with respect and responsibility. These are
closely related in terms of our analysis and we therefore discuss them together.

4.1 Respect and Responsibility

Respect is Beck’s underlying core value and he describes the importance of members
of the team respecting each other and caring about the project [1, p35]. Our
characteristic includes these two aspects of respect, but also includes some other
aspects. The simple way we have stated the characteristic obscures these different
facets and it is worth unpacking them explicitly before we describe how they manifest
themselves in each team. In our context, respect involves three main parties: the
individual, the team and those outside the team. What we have found is that
individuals within the team respect each other in a variety of ways, individuals within
the team respect the goals and desires of the whole team, the whole team respects
each individual within the team, and those external to the team such as customers
respect the team.

In both teams under study, the individual is respected and takes responsibility in a
variety of ways, which centre around what work they do and how they carry out that
work. Work was not allocated to individuals, with an allotted time in which that work
must be completed, for their passive acceptance. Rather, individuals actively agreed
their responsibilities. Individuals clearly felt that they had the respect of their fellow
team members and were therefore empowered to take on responsibility in this way.

The daily business of pair programming continued this emphasis on an individual’s
respect and responsibility. Within the overall scope of the iteration, pairing was a
process that acknowledged the individual, each person self-electing to work on a
particular piece of the system. This self-election might be on the basis of particular
expertise but equally it might be on the basis of a desire to become more familiar with
a particular area of the code base. Within a pair, the process of programming was
conducted as a conversation between equals with snippets such as ‘I’'m not sure about
that. Can we go back and look at ... 7’ being typical. Much effort was expended on
understanding code and it was demonstrably important that this understanding was
shared between the pair. Similarly, the process of writing code was a negotiated
process between two individuals: one perhaps writing code, the other correcting it. In
both teams, no-one dominated the process or monopolized control of the keyboard.
Developers were quite happy to take (and relinquish) responsibility when one of a
pair wanted control of the keyboard following a particular insight.

Respect for the individual permeated the other practices associated with producing
working, released code. There was no sense of frustration or a lack of understanding
of a common purpose. For example, in Team B, testing typically required the tester to

144 H. Robinson and H. Sharp

discuss some issues with the developers. This discussion was not conducted as a
planned, formal meeting but involved the tester initiating the discussion with a casual
interruption of the work of developers. There was no sense of an unwelcome or
irritating interruption: the need to discuss was accepted and welcomed.

Similarly, in both Team A and Team B, the team was respected and took
responsibility. Whilst the individual actively accepted responsibility for work, the
nature and significance of that work was embedded in the team activity of the
Planning Game and the negotiation of what work was to be done and how the team
organized themselves to achieve that work. The Planning Game we observed in Team
A was an unusually (for them) protracted process, for a variety of reasons, but
everyone accepted that it was important that the team took whatever time was needed
to get the iteration off to a good start. Similarly, estimates were discussed and revised
in Team B until consensus was achieved. For both teams, team decisions were
respected and upheld by members of the team and were accepted by customers. For
example, in Team A, the developers’ decision that a technical story took priority was
accepted unquestioningly by the customers.

Team B offered an interesting insight into the relationship between respect and
responsibility. Each sub-team actively agreed responsibility for work and respected
the similar action of the other sub-teams. When we questioned a member of one sub-
team about a crucial release date for a software product that was vital to the
company’s plans the reply was ‘Don’t know: I’'m not working on that.” This does not
show indifference, but trust in the sub-team that was working on that software
product, and focus on the developer’s own responsibilities. It is worth noting that we
found evidence that developers in Team B did not offer trust automatically, since they
displayed a rather more critical attitude to the other XP team based in South Africa.

4.2 Preservation of the Quality of Working Life

Observations of Team A and Team B showed both individuals and the team actively
encouraging the preservation of the quality of working life. This manifested itself
most strongly with the atmosphere of calmness that was prevalent in both teams. The
Planning Game was notable for the absence of adversarial or confrontational
exchanges and for the presence of shared discussion where risks and other factors
were carefully considered. Stand-ups for both teams were opportunities to share and
facilitate achievement as opposed to any monitoring of progress against plan. The
organization of work via pair programming oriented to the quality of working life
insofar as pairing took account of the wishes and needs of individuals as well as the
purpose and priorities of the team.

Both teams adhered to the 40-hour week practice but as a rule around which to
orient working life rather than as a rule to govern working life; working hours were
organised to take account of the individual. Evidence for this included, in Team A, an
acceptance by all when one developer needed to leave early because he had a long
way to travel that night, and in Team B when one of a pair needed to take time away
for a medical appointment. In neither case, did this disrupt the rhythm of the day. The
overall impression from both teams was that of the skillful and accomplished
achievement of a productive, sustainable and enjoyable working life via their shared
responsibility for, and ownership of, the work product, and of control over how the

The Characteristics of XP Teams 145

work was achieved. The end result was to make development sustainable in its human
dimension.

Within this overall context there were clear differences between the two teams,
although both exhibited this characteristic. Team A seemed more overtly concerned
about the quality of working life with a range of activities that contributed explicitly
and implicitly to it. For example, regular and communal breaks were taken in the
morning, afternoon and at lunchtime, particularly during the Planning Game. These
regular breaks were perceived as being important by all members of the team, and one
developer took it upon himself to remind people to take them. Other indications were
the blue stress ball that sat on the Planning Game table, the instigation of ‘gold cards’
(two days a month when a developer could pursue something on his/her own) and the
identification of an ‘exposed pair’ (to protect pairs from customer interrupts).

In contrast, Team B did not have any such activities. For example, meal breaks
were not taken together. Indeed, on one occasion we witnessed a pair who stopped for
lunch with one of the pair going to the ground floor dining area where they ate their
packed lunch, whilst the other continued work as a singleton, reviewing code. Short
breaks for tea, coffee, etc. were usually taken by pairs at the workstation: one or both
of the pair would descend the stairs, make their drinks, and come back up to continue
work. We detected a desire to stay in the immediate area of the workstations even
when an impromptu meeting took place, such as a discussion between a pair, a
customer and a tester. Despite there being two convenient round tables close by the
workstations, such discussions were always carried out around the workstation even
though some participants had to stand. It was clear that this way of working was not
imposed by management since the development coach commented that he wished
developers would take more breaks away from the workstations.

Despite these differences, Team B valued the quality of working life in a similar,
albeit sometimes different, fashion. The discussions took place as and when needed
and there was no sense that they were a distraction. Indeed, they seemed a vital part of
working life and we speculate that they gave a similar rhythm to the day as that of the
regular and communal breaks of Team A. Neither should the situations where a pair
became a singleton be seen as some diminishment in the quality of working life. This
would occur at mealtimes but also at both ends of the day and it was clear from the
way in which a pair discussed this singleton work that it was viewed as a natural
continuation of the main activity of pairing to produce work in which shared pride
could be taken. In addition, the development team coach had an orchestrating and
support role, always being aware of the pulse of the team and actively intervening and
supporting where needed. For example, we observed a particularly intense bout of
pairing which lasted without a break all afternoon. In subsequent conversation it
became abundantly clear that both the team coach and other members of the team had
noticed this and were monitoring it; in the end, the coach intervened to provide the
necessary break and support.

4.3 Faith in Their Own Abilities

In both teams, faith in their own abilities, and the sense of re-validation and re-
affirmation of those abilities flowed through working life: from the agreement of
work in the Planning Game, through the acceptance of tasks in pair-programming
allocation, the reporting of progress in the stand-up, and the desire for creating quality

146 H. Robinson and H. Sharp

code. It is worth emphasising here what is remarkable about XP practices in terms of
creating quality code: faith in the customer to know what is required, faith in the team
to estimate appropriately and faith in two individuals who have self-elected to work
together to produce code. This faith in their own abilities had no sense of heroism or
arrogance; indeed, it had two aspects: both believing that they were capable of
achieving the tasks they set themselves, but also understanding where their limitations
lay. It was a natural part of this process to involve others, maybe to go to the customer
for clarification or to seek out expertise of another developer outside the pair.

So, for example, in Team A the sense of competence and cool belief in their own
abilities did not mean that the team were over-confident — they brought in outside
expertise when faced with a situation they had doubts about. Issues were carefully
discussed and alternatives considered, but once the team had agreed the course of
action, it was carried through with certainty. Their abilities were re-validated and re-
affirmed through feedback from the code (which executes successfully), the customer
(who is happy with the software) and each other (who provide solid support and
encouragement to each other).

4.4 A Fifth Characteristic: Trust

In working through the detail of our observations of XP practices we were forced to
the conclusion that there was a fifth characteristic which pervades the original four:
that of trust. Trust has been identified explicitly as a key attribute of relationships
between customers and the development team (e.g. [10]) but from our detailed
empirical observations, it is also clear that trust is required within the team. Trust is
complementary to the four characteristics discussed above, and is needed in order for
them to flourish throughout the team’s activities.

For example, trust underpins the Planning Game, so that the four characteristics
necessary to enable the active agreement over what work was to be done and what
estimate of resource was required, could be effective. Without trust, the sense of
respect, responsibility, concern for the quality of working life and faith in ability
would not be as strong, and developers would not be sure that their colleagues, nor the
team as a whole, could deliver what they promised.

Similarly, the activity of pair programming depends on a relationship between two
individuals which demands trust, so that they may respect what each brings to the
encounter and have faith in their abilities as a pair and as a singleton. The nature of
the trust relationship here transcends the immediate business of two individuals
pairing and is persistent. It also applies across pairs (and sub-teams), with each pair
trusting the others to do their part, and it extends beyond the detail of the 12 practices,
so that, for example, respect of the need for interruptions shows trust that the
interruption wouldn’t happen unless the interrupter thought it important enough.

5 Discussion

In our previous work, we identified four characteristics of a mature XP team. In this
paper we have deepened our analysis, included a second team, and have introduced a
fifth characteristic: trust. We have found that both of the teams studied show evidence

The Characteristics of XP Teams 147

of having these characteristics, despite being different in nearly all other aspects apart
from their use of XP.

What do we therefore claim? It is tempting to simply say that we have shown that
carrying out the practices of XP gives rise to teams with these characteristics and that
we have uncovered a causal relationship. However, reality is not that simple and we
do not make such a claim. We are mindful of the fact that both the organisations in
which the teams were situated had their own culture and values and, broadly, those
organisations were open and positive in their attitude. It is therefore not a surprise that
the characteristics and values we have described exist in such organisations. Similarly
we do not claim that we have shown all teams carrying out software development in
these organisations will have these characteristics. Rather we suggest that there is a
reflexive relationship between characteristics and practices that is mediated by the
detailed setting in which activity takes place. That is, the practices actively and
continuously sustain and are actively and continuously sustained by the characteristics
we describe and that the detailed setting influences this process.

Acknowledgements. We would like to thank our collaborator companies, Connextra
and Workshare for their support and co-operation during the studies reported here.

References

[1] Beck K. eXtreme Programming Explained: embrace change. In: Beck K, editor. The XP
Series. San Francisco: Addison-Wesley, 2000.

[2] Highsmith J. Agile Software Development Ecosystems. In: Highsmith J, editor. The
Agile Software Development Series. San Francisco: Addison-Wesley, 2002.

[3] Pentecost K. XP and Emotional Intelligence. IT Cutter Journal 2003;16 (2):5-11.

[4] Roodyn N. Dear Diary: the making of an XP team. IT Cutter Journal 2003;16 (2):18-25.

[5] Sharp H, Robinson HM. An ethnography of XP practice. Proceedings of the Joint
Conference on the Empirical Assessment of Software Engineering (EASE) and the
Psychology of Programming Interest Group (PPIG). Keele University, 8-10 April, 2003.
pp. 15-27.

[6] Robinson HM, Sharp H. XP culture: why the twelve practices both are and are not the
most significant thing. Proceedings of the Agile Development Conference. Salt Lake
City, Utah, 25-28 June: IEEE Computer Society Press, 2003. pp. 12-21.

[71 Singer J, Lethbridge T, Vinson N, Anquetil N. An examination of software engineering
work practices. Centre for Advanced Studies Conference (CASCON). Toronto, Ontario,
1997. pp. 1 -15.

[8] Sim SE. Evaluating the Evidence: Lessons from Ethnography. Workshop on Empirical
Studies of Software Maintenance. Oxford, England, 1999.

[9] Robinson HM, Segal J, Sharp H. The case for empirical studies of the practice of
software development. In: Ciolkowski M, editor. Proceedings of the ESEIW Workshop
on Empirical Studies in Software Engineering. Rome Castles, Italy, 29 September, 2003.
pp- 99-108.

[10] Sharp H, Robinson HM. Customer collaboration: challenges and successes in practice
(Technical Exchange session). Agile Development Conference. Salt Lake City, USA,
2003.

The Oregon Software Development Process

Till Schiimmer' and Robert Slagter2

' Computer Science Department, FernUniversitiit in Hagen,
Universititsstrasse 1, 58084 Hagen, Germany
Till.Schuemmer@fernuni-hagen.de

2 Telematica Instituut, P.O. Box 589, 7500 AN, Enschede, The Netherlands
Robert.Slagter@telin.nl

Abstract. User participation is still a difficult topic in software develop-
ment. Based on the results of the Oregon experiment in construction we
propose a novel development process — the Oregon Software Development
Process. The process focusses on patterns to empower end-users so that
they can make well-informed design decisions and tailor their environ-
ments. The four core principles of the process — participation, piecemeal
growth, patterns, and diagnosis — are discussed and first anecdotal usage
experiences are provided.

1 Introduction

Although many technical problems in software development have been solved
over the last twenty years, we still observe a lack of support for end-user partici-
pation. While most modern software development processes highlight the impor-
tance of considering all different stakeholders, it is still a difficult task to actively
involve the end-user. Especially the knowledge transfer to end-users is difficult.
We therefore propose the adaptation of a design process known in construction
as the Oregon experiment.

This design process combines aspects that are typically left unrelated. To
give an overview, these aspects are:

End-user participation, as it is present in a participatory design approach
12],

Piec[em]eal growth in short iterations, which is proposed by most iterative
processes [5], especially the eXtreme Programming methodology [4],

Adaptability that is typically achieved by composing software out of indepen-
dent functional building blocks (software components [15]) that are plugged
into a framework,

Pattern oriented application design, which is represented by design pat-
terns [9], and

End-user tailorability that is proposed by recent literature to handle the
changing needs and personal preferences [11].

This paper first summarizes how the design process worked in the Oregon
experiment. It will then compare the process with the XP methodology as one
representative for agile processes.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 148-156, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The Oregon Software Development Process 149

We will show that aspects from the Oregon process are used in current agile
processes, but that there is still no holistic approach that includes all aspects of
the Oregon experiment. We propose a combination of several up-to-now unre-
lated design activities to fill this gap for end-user centered design. The resulting
development process is denoted as the Oregon Software Development Process.
The paper ends by briefly reporting on experiences with the process in a research
development project.

2 Summary of the Oregon Experiment

The Oregon experiment was based on the vision of the architect Christopher
Alexander, stating that every user of a building or a place should have the
freedom to shape the environment in a way that it suits his needs and personal
preferences. This vision was institutionalized in the planning process of the cam-
pus of the university of Oregon — the Oregon Experiment [2]. The process defines
six basic principles: organic order, participation, piecemeal growth, patterns, di-
agnosis, and coordination. Organic order and coordination — as applied in the
Oregon Experiment — are very specific to the context of town planning. We
therefore concentrate on the remaining four principles, explain their application
in the Oregon experiment, and investigate how to apply them to software de-
velopment. Coordination returns as an important aspect when software design
decisions impact various participants.

Participation ensures that the end-users will be part of the planning process

and therefore participate in shaping their environments. Alexander defines
participation on different levels, ranging from acting as a client for an archi-
tect to actually building their environment. ([2], p. 39)
In the Oregon Experiment, participation led to a very successful campus
design [14]. The university established a user group with students, faculty
members, and staff. The user group decided, which projects should be built
in the next phases. In a refinement phase, special focus groups (users with
specific interests) concentrated on one aspect of the building. In both user
group and focus groups, the prospective users started thinking about the
various parts of the space and how each part should be improved.

Piecemeal growth. By concentrating on one part at a time, one follows the
principle of piecemeal growth. This includes identifying one concrete problem
and finding a solution for this problem.

Patterns. To empower the end-users so that they can find working solutions,
they necessarily need a way of accessing established proven solutions. By
means of patterns, one can describe expert knowledge in the form of rules
of thumb. These rules include a problem description, which highlights a set
of conflicting forces and motivate a proven solution, which helps to resolve
the forces.

In this manner, patterns can serve as an educational resource in the user
group: they make the core of the problem and the solution explicit by ex-
plaining what happens to the inner forces.

150 T. Schiimmer and R. Slagter

Additionally, patterns are the essential language applied in the user group:
the patterns (taken from a pattern language [1]) act as a basis to commu-
nicate on a high level of abstraction the key properties of design. Although
patterns are proven solutions, they are not static. Users are encouraged to
enhance, adapt, or correct the patterns. Changed patterns will be incorpo-
rated in the community pattern language, as long as the community agrees
with the adaptation.

Diagnosis is the process of analyzing the existing campus regarding aspects
that work and aspects that do not work. This includes a phase of reflection:
during the use of the environment, users are encouraged to step back and
ask themselves, whether or not the environment serves their needs. If not,
they are asked to mark the deficits and thus state change requests for the
environment. The planning committee uses a map to catalogue all patterns
that are not working (and the places where patterns are working well).

All the mentioned principles are in use at the university of Oregon for nearly
30 years, where new patterns are still brought in by the users.

3 Comparing the Oregon Process with XP

The principles of the Oregon process partially map to the principles of XP [4].
We can observe the following equivalences and differences:

Participation takes place in the planning game of XP and in the principle
of the on-site customer. Compared to the Oregon process, agile processes
argue for a more light-weight integration of the customer (without formal
user groups).

Piecemeal growth corresponds to the principle of small releases. It is implic-
itly present in the principle of simple design. Every change in the environ-
ment should just be as large enough to reach the goal of the small release.

Patterns become more and more common in software development. They can
be considered as a general development technique for developers but they
are not explicitly mentioned in the practices of XP. One could argue that
patterns and simple design are contrasting concepts: Patterns provide proven
solutions to common problems. These solutions are reusable and thus comply
with the counter-example for small releases stated in [4]: “Implenment for
today, design for tomorow” (p. 57).

Diagnosis is the process of adapting the software to changing needs. It is one
of the core assumption that underlies all XP practices: requirements are
changing and the process should be flexible enough to suit the users’ chang-
ing needs. we find the process of diagnosis and repair in the practice of
refactoring.

The core difference between the two processes is the role of patterns. In the
Oregon process, patterns inform the other principles.

The Oregon Software Development Process 151

Participation uses patterns as a common language and as a means for edu-
cating end-users so that they can actually shape their environment as experts
would do. With this respect, patterns bridge the gap in the communication be-
tween end-users and professional software developers. At least for less technical
users, this means that the patterns have to be understandable by non-software
developers. This is often not true for technical design patterns (as collected for
instance in [9]). As we discuss later, we need patterns for end-users that are
closer to the prosaic style of Alexander.

Piecemeal growth always focusses on one pattern at a time. Compared with
story cards in planning games, patterns have the advantage that they explic-
itly name the different interacting forces and the consequences and trade-offs
involved. This empowers the end-user to make more responsible decisions.

Diagnosis is always supported by means of patterns. The patterns indicate
possible problems and help to find out, why a specific part of the environment
does not work. Moreover, patterns provide hints on how to repair the problematic
aspects. Actually, the 72 refactorings in [8] are such patterns that help to improve
the quality of source code — although they focus on the developer.

In summary, the comparison of the Oregon process with XP highlights the
importance of patterns and the need for empowering the end-user to make well-
informed design decisions. To satisfy these needs in an agile process is the goal
of the Oregon Software Development Process proposed in this paper.

4 The Oregon Software Development Process

The Oregon Software Development Process (OSDP) intends to foster end-user
participation, pattern-oriented transfer of design knowledge, piecemeal growth
in form of short iterations, and frequent diagnosis or reflection that leads to an
improved application.

Figure 1 shows the different phases of OSDP. It suggests three different kinds
of iterations, denoted by the three circles. In the following paragraphs, we will
explain the different iterations (numbers refer to the step number in figure 1). In
the actual execution of the OSDP, each iteration may be executed many times.

Throughout all iterations, the users participate and work with a shared soft-
ware pattern language. This language consists of patterns on two levels with dif-
ferent target groups: High-level patterns describe issues and solutions typically
targeted at end-users. Low-level patterns describe issues and solutions typically
targeted at software developers on a more technical level. A large number of low
level patterns and several high level patterns have been collected by the design
patterns community — cf. www.hillside.net.

High-level patterns aim to provide end-users with profound design knowl-
edge. This empowers them to act as a designer and solve some issues, without
having to escalate them to a designer. In cases, where high-level patterns can be
implemented by adding functions (without the need of changing software code),
the end-users can perform these tailoring actions themselves.

152 T. Schiimmer and R. Slagter

%]
D A
5 %
5 x@@dﬁ O/)/
é\' \).;;aP?\Qheb & : 0%, ?Q'
e SN s § o
< é\“‘g‘\? é\a»\‘e'fi:" ®%, %
@ Q@;&G}g“é %
@ R @%% i
@)
&
%;:%f;;f% o S5 RO ®
"O‘ 370’\7- \SPQ & \@)
OO/ o 0 | W& A
./@) @s\oo A R & \)@Q
LN I O
9(0 @ Y9
%, P

Fig. 1. The Oregon Software Development Process.

The innermost inceptive iterations comprise the activities of (1) use-case
analysis and (2) the selection of appropriate patterns. First, the users describe
the intended system use with simple use cases. These can be stories (for users,
who are not familiar with formal use-cases) or success scenarios, which describe
the use-case’s story in a more formal but still prosaic way [6].

The use-cases then drive the selection of initial patterns from the software-
patterns catalogue, which serve as starting points for exploring the different
forces in the area. During the inceptive iterations, the end-users will be highly
involved. In most cases, there will be technology experts present to support the
users in writing stories and pointing the users to appropriate sets of patterns.
One result of inceptive iterations is a common pattern language, which then
eases the communication within the design team. The other result is a set of
initial user requirements.

The second set of iterations is made up from (3) the detection of conflicting
forces, (4) a pattern-driven object-oriented design, (5) the implementation of this
design using object-oriented development technologies like frameworks or low-
level components, and (6) functional tests. We call these iterations development
iterations since they form the part of the process, where software engineers
develop the application.

The user first identifies the conflicting forces. Developers will assist the user
in this task, by structuring the discussion. Together with the user, the developer
then looks for low-level design patterns to solve the issue.

The Oregon Software Development Process 153

Developers typically implement a pattern by means of application frameworks
or developer-centered component frameworks. This may involve the development
of new software components. Such components can be built using frameworks
or other base technologies. To ease the implementation, each software-pattern
can have technology recipes that show, how the pattern is implemented with a
specific technology (using the cookbook style that was described in the Assembly
Cookbook pattern [7]).

The result is tested using as much automated tests as possible (note that it
is often better to exchange steps 5 and 6 as it is done in XP’s test first practice).
Steps (3) to (6) require a software developer to be involved. The user still makes
an important contribution to the design because he participates in steps (3) and
(4) and provides test data in step (6).

In the tailoring iteration, end-users use the application for the desired pur-
pose. While using the system, end-users with pattern-based groupware design
knowledge are encouraged to (7) reflect on their activities. This reflection in ac-
tion [13] reveals actions that complicate or hinder the work process. If the users
want to remove these difficulties, they start a tailoring iteration.

They first analyse the forces that are in conflict. High-level groupware pat-
terns (8) help in this process by describing frequently occurring issues, the various
forces and a proven solution in a way that is appropriate for tailoring end-users.
These patterns are typically written fully in a natural language. We have gained
good experiences with patterns that include a concrete usage scenario. Such sce-
narios can be easily understood by the end-users and empower them to learn,
what needs to be changed to solve the pattern’s problem.

The tailoring environment supports the tailoring end-users in the process of
(10) selecting and composing appropriate functions. The prosaic nature of the
stories in the patterns helps the tailor to make a well-informed selection of this
functionality.

inceptive
iterations

/ development
iterations

iterations 5

importance of iteration type

project timeline

Fig. 2. Frequency of iterations during the project.

154 T. Schiimmer and R. Slagter

During project life, the different kinds of iterations will be executed in dif-
ferent frequencies as shown in figure 2. It is not intended to prescribe exact
frequencies over time. The frequencies rather evolve over the project life cycle.
At project start, inceptive iterations are the most important iterations. Pro-
totypical development accompanies the gathering of use cases and patterns in
development iterations. While the project evolves, the frequency of development
iterations grows, while inceptive iterations are not as important anymore. Since
the development iterations produce more sophisticated prototypes, users will
start using the system more frequently and reflect on their system use. Thus,
the number of user-triggered tailoring iterations increases towards the end of the
project while the other two kinds of iterations become less important.

4.1 Pattern Structure

We have argued that patterns are the core of the OSDP. The OSDP advocates
to represent patterns in an manner that is appropriate for end users as well as
software designers.

We argue to use an extended Alexandrian pattern form [1]. The pattern name
is followed by other possible names for the pattern (AKA), the inftent, and the
context of the pattern. All these sections help the reader to decide, whether or
not the following pattern may fit into his current situation.

Then follows the core of the pattern composed of the problem and the so-
lution statement in bold font separated by a scenario and a symptoms section.
The scenario is a concrete description of a situation where the pattern could be
used, which makes the tension of the problem statement (the conflicting forces)
tangible. The symptoms section helps to identify the need for the pattern by de-
scribing aspects of the situation more abstract again. The section lists observable
forces that are unbalanced before the pattern was applied.

After the solution section, the solution is explained in more detail (partici-
pants, rationale, danger spots, known uses) and indications for further improve-
ment after applying the pattern are provided (in the related patterns section).
The participants section explains the main components or actors that interact
in the pattern and explains how they relate to each other. The rationale section
explains, why the forces are resolved by the pattern. Unfortunately, the applica-
tion of a pattern can in some cases raise new unbalanced forces. These counter
forces are described in the section labelled danger spots.

S Experiences

The OSDP has been applied in an interdisciplinary development project that ran
for 9 months at the FernUniversitit in Hagen. The goal of this project was to
develop a web-based collaborative learning environment for students distributed
throughout Germany. The system is currently in production state. More infor-
mation on the goals and design of the system can be found in [10]. We report

The Oregon Software Development Process 155

on our survey based on informal interviews and observations with the involved
project members.

In the inception phase, we invited students, university teachers, and software
developers to develop scenarios of system use. In addition, we presented a set
of groupware patterns (to be exact, the prosaic stories of these patterns, the
problem statements, and the solutions) to the members of this group. Since the
group members were not aware of the current state of the art of groupware de-
velopment, they appreciated this informative phase. As a result of the inception
phase, the group identified five different learning scenarios that should be sup-
ported by the learning environment. Implicitly, the group members also selected
patterns (they used the pattern names in their description of learning scenarios)
that were considered relevant for the future development iterations.

In the development iterations, the users developed more detailed story cards
together with the software developers. Again, patterns played an important role
here. They served as metaphors for talking about the software system and helped
the users to focus on one aspect at a time for each story card. The developers
implemented the stories with help of the patterns (since the patterns were already
mentioned on the card, the development was quite straight-forward). In parallel
with the development, automated tests were created. Regarding the tests, one
must note that the test coverage decreased in the last third of the project,
since the project schedule was far too optimistic and the developers tended to
neglect writing tests. But, as XP would suggest, this behavior caused even larger
problems by the end of the project and a more complete test coverage is one of
the first tasks for the follow-up project.

After the first development iteration (approx. 2 weeks of development), the
users (teachers) started to use the system. They did functional tests (of the first
prototypes) and requested new functionality (informed by their knowledge of
system design that was based on groupware design patterns). They also started
to reflect on their activities following the principle of diagnosis.

In the early phases of the project, these requests were escalated to the devel-
opers. In the later phases, the users could start to tailor the environment using
the provided mechanisms for tailoring. These mechanisms included the compo-
sition of communication and collaboration technology as well as the tailoring
of collaboration spaces (the creation of a virtual environment for collaborative
learning). In the last third of the project, approx. 300 students started to use
the system. They were asked to participate in development iterations (using the
system itself to report feature requests by means of story cards) and in tailoring
iterations (students were allowed to create their own learning environment).

In all phases of the development, the patterns (and especially the stories
from the patterns) were very helpful for participating users and developers. The
main problem with the patterns was that we did not yet have an comprehensive
pattern catalogue (only few areas of groupware design are described by means
of patterns by now). The other problem was that the system showed errors in
the production phase for those parts that had a low test coverage. This is yet
another indication, how important the test phases are in the process.

156 T. Schiimmer and R. Slagter

6 Conclusions

This paper addressed the issue that the involvement of end-users is often still
problematic in software development projects. We proposed a development pro-
cess that heavily involves end-users and fosters the reuse of existing knowledge —
the Oregon Software Development Process, which is based on the results of the
Oregon experiment in construction. It combines the four principles of participa-
tion, piecemeal growth, patterns, and diagnosis.

Patterns play a key role in this process. But to be easily understood by end-
users, they have to be written in a more prosaic way than many technology
oriented patterns. We have gained good experiences with patterns that include
prosaic descriptions of situations, where the problem occurred and of how to ap-
ply the pattern. To increase the usefulness of the process, an extensive catalogue
of such patterns is needed, which is an indication for future work.

References

1. Alexander, C.; Ishikawa, S.; Silverstein, M.; Jacobson, M.; Fiksdahl-King, I.; An-
gel, S.: “A pattern language”, New York: Oxford University Press, 1977.

2. Alexander, C.; Silverstein, M.; Angel, S.; Ishikawa, S.; Abrams, D.: “The Oregon
Experiment”, Oxford University Press, 1980.

3. Alexander, C.: “The timeless way of building”, Oxford University Press, 1979.

4. Beck, K.: “eXtreme Programming Explained”, Addison Wessley, 1999.

5. Boehm, B.; Hansen, W. J. (Ed.): “Spiral Development: Experience, Princi-
ples, and Refinements”, Spiral Development Workshop, CMU/SEI-2000-SR-008 -
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00sr008.pdf, 2000.

6. Cockburn, A.: “Writing Effective Use Cases”, Boston: Addison-Wesley, 2000.

7. Eskelin, P.: “Assembly Cookbook Pattern”,

http://c2.com/cgi/wiki?AssemblyCookbook: 1999.

8. Fowler, M.: “Refactoring: Improving the Design of Existing Code”, Addison-
Wesley, 1999.

9. Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: “Design Patterns: Elements of
Reusable Object-Oriented Software”, Reading, MA: Addison-Wesley, 1995.

10. Haake, J.; Schiimmer, T.; Haake, A.; Bourimi, M.; Landgraf, B.: “Supporting
flexible collaborative distance learning in the CURE platform”, Proceedings of
HICSS-37, Hawaii, 2004.

11. Kahler, H.; Mgrch, A.; Stiemerling, O.; Wulf, V.: “Tailorable Systems and Cooper-
ative Work (introduction)”, in: Special Issue of Computer Supported Cooperative
Work, vol. 9, no. 1, 2000.

12. Muller, M. J.; Kuhn, S.: “Participatory design”, in: Communications of the ACM,
vol. 36, no. 6, 1993, 24-28.

13. Schon, D.: “The Reflective Practitioner. How Professionals Think in Action”, New
York: Basic Books, 1983.

14. Snider, J. R.: “User Participation and the Oregon Experiment as Implemented
with the Esslinger Hall Recreation and Fitness Center”,
http://darkwing.uoregon.edu/~jrsnider/esslinger.htm: 1999.

15. Szyperski, C.: “Component Software: Beyond Object-Oriented Programming”,
Addison-Wesley / ACM Press, 1998.

Roles in Agile Software Development Teams

Yael Dubinsky' and Orit Hazzan®

' Department of Computer Science, Technion, Israel
% Department of Education in Technology & Science, Technion, Israel

Abstract. One of the key elements in describing a software development
method is the roles that are assigned to the members of the software
team. This article describes our experience in assigning roles to students
who are involved in the development of software projects, working in Ex-
treme Programming teams. This experience, which is based on 25 such
projects, teaches us that a personal role for each teammate increases per-
sonal responsibility while maintaining the essence of the software devel-
opment method. In this paper we discuss ways in which different software
development methods address the place of roles in a software develop-
ment team. We also share our experience in refining role specifications
and suggest a way to achieve and measure progress by using the perspec-
tive of the different roles.

1 Introduction

Agile software development methods (SDMs) are composed of several elements,
such as practices, values, roles, techniques, and tools. Different agile SDMs differ
in their role specifications. In fact, one way by which an SDM may emphasize
its main principles is through the roles that it specifies.

In order to achieve personal responsibility of all teammates when guiding Ex-
treme Programming (XP) projects in the academia, we add personal roles to the
original XP roles. By having a personal role, developers are expected to perform
their development tasks as well as the tasks related to their personal role. Thus,
no teammates are merely developers. As it turns out, the two activities have a
mutual positive influence, and consequently, the collaboration between the team
members is enhanced. For example, let us assume that one of the teammates
is a developer who also has the role of the tester (and as such is in charge of
testing activities, such as writing unit tests and guiding other teammates in the
writing of tests). This responsibility leads the teammate to write more tests for
his or her own development tasks. These tests can, in turn, serve as examples
that illustrate to other teammates how unit tests should be written. Another ex-
ample is when a teammate, who is a developer, also has the role of the customer.
On the one hand, telling customer stories leads to an awareness of these stories
when developing ones own tasks; on the other hand, the development work may
inspire the definition of acceptance tests that are to be defined by the customer.
This “changing of hats” is possible as long as everyone is aware of which hat
is appropriate for each situation. In other words, each team member plays two

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 157-165, 2004.
© Springer-Verlag Berlin Heidelberg 2004

158 Y. Dubinsky and O. Hazzan

roles and switches between them according to the situation; other teammates
comprehend these switches and refer to the appropriate hat depending on the
relevant context.

In this paper we elaborate on the roles in a software development team, share
our experience in adding roles and refining role specifications, and suggest a way
to achieve and measure progress by using the perspectives of these different roles.

2 Role Experience

This section describes the evolution of possible XP roles. The description is based
on the experience of guiding the development of XP projects in five different one-
semester courses, in which 25 projects were developed by about 325 students.
Main lessons are highlighted.

Summer 2002 Semester. Our first experience with XP projects was in the
“Projects in Operating Systems” course given by the Department of Computer
Science at the Technion, Israel. The course is a project-based capstone course.
Since the Summer 2002 semester, XP has been implemented in the course on a
regular basis. The students work in groups of twelve, and each group is guided
by an academic coach. Each group has a dedicated equipped Studio (see [4]) for
the project purposes.

In the said semester, four XP projects were developed. Every student of every
team was required to select one special role out of six possible roles - assistant
coach, tracker, tester, on-site customer, release presenter and iteration presenter
- and to fill that role for a period of half a semester. The grading policy took
the personal XP role into consideration; therefore, each student was required
to have a role. In this first semester we decided that the academic coach would
play the role of XP coach and would act as the main on-site customer. The
role of assistant coach was defined as that of the XP coach but was supervised
over by the academic coach. We identified the continuous integration practice as
a technical obstacle, especially in an academic environment in which students
meet only once a week. Accordingly, during the semester, the responsibility of
continuous integration was added to that of the release and iteration presenters.
Lesson 1. A personal role helps to increase teammates’ involvement in and
commitment to the software development process.

Lesson 2. Role performance improves during the second half of the semester
due to the learning that takes place during the first half of the semester.
Winter 2003 Semester. In this semester, the second in which the “Projects
in Operating Systems” course was offered, we continued with 2 projects, using
the same 6 roles used in the Summer 2002 semester. In addition, XP was also
introduced, this semester, into a course dealing with operating systems concepts
and the teaching of such, which was attended by 30 prospective computer science
teachers. The class, working as a single team, developed a single XP project.
Roles were assigned in this case as follows: two students were trackers; two
students were responsible for the different stages of the continuous integration,
and the others were developers.

Roles in Agile Software Development Teams 159

Lesson 3. The academic coach does not have to be the XP coach in order to
evaluate the team’s work. Therefore, the role of XP coach should be given to a
student.

Lesson 4. An XP project can be developed by 30 students, but they will not all
be involved in the actual development process. In addition, those students who
do have specific roles tend to feel that they deserve bonus points for their extra
work.

Spring 2003 Semester. Some changes were made in the roles assigned in the
four projects that were developed in the “Projects in Operating Systems” course.
The number of roles was increased to seven, since there were some groups with
13 students. The roles were: coach, assistant coach, tracker, person in charge of
continuous integration, tester, person in charge of presentations, and person in
charge of documentation. In this semester, the academic coach was no longer
the XP coach. We cancelled the on-site customer student role, assuming that
this role would be the focus of the academic coach. We added a documentation
role that handles the documentation of the development process, as well as the
user’s guide and installation manual. We also separated the topic of continuous
integration from the presentations.

Lesson 5. We realized that we could not do without the on-site customer student
role, but that we could give up the assistant coach role since the role of XP coach
was now played by one of the students. The appropriate steps were taken at the
second release developed later in the semester.

XP was also introduced into two other courses that were held this semester.
The first course was on object-oriented concepts and on the teaching of this topic,
and was attended by 30 prospective computer science teachers. Special roles
were not assigned to the students during this first semester, and the students
developed a single project, working as a single team. Similar to our experience the
semester before, we found that in this way, too, an XP project can be completed,
but again many students were not involved in the actual development process.
The second course into which XP was introduced was a course on software
engineering methods attended by 22 mathematics major students. In this course,
the seven aforementioned roles were assigned, but several roles were performed
by more than one student.

Lesson 6. The upper limit for the group’s size should be about 12 students.
The assignment of personal roles solves the problem of lack of involvement in
the actual project work.

Summer 2003 Semester. During the fourth semester, we had 4 project groups
in the “Projects in Operating Systems” course with no more than 12 students in
each group. It was in this semester that the list of six roles that we then consid-
ered to be an optimal list was reached: coach, tracker, tester, person in charge of
continuous integration, on-site customer, and person in charge of presentations.
The documentation task was added to the role of the team member who was in
charge of presentations.

Winter 2004 Semester. During the fifth semester of the “Projects in Oper-
ating Systems” course we again had four project groups and the same list of

160 Y. Dubinsky and O. Hazzan

six roles was used as in the previous semester. In addition, XP was used in
two other courses. The first of the two dealt with operating systems concepts
and the teaching of such, and was attended by 18 prospective computer science
teachers. The second course was on object-oriented concepts and was attended
by 25 mathematics major students. In both courses, the class was divided into
two project groups of 9 to 13 students each.

Students were asked to offer topics for projects that were related to the course
topics, and then voted on the different subjects until only two subjects remained.
From previous experience we had learned that projects that are developed in the
framework of courses that are not project-based courses should be based on a
single release that is composed of two iterations. Thus, we assigned 13 roles in
the largest group; one role per student for the entire duration of the semester.
The roles were assigned after several meetings, when the students had become
acquainted with each other. Each group was asked to decide on the best way
to assign roles to students. This way, each student had a single role to learn, to
guide the other teammates accordingly, and to support on-going related activities
during the semester.

The roles, on which we will elaborate in the sequel, were coach, tracker, person
in charge of unit testing, person in charge of functional testing, person in charge
of continuous integration, on-site customer, person in charge of presentations,
person in charge of documentation, person in charge of design, person in charge
of code standards and tools, end user, person in charge of installation shield, and
person in charge of code correctness and efficiency.

Lesson 7. In the coming semester (Spring 2004), which will be the sixth
semester in which we will implement XP in the “Projects in Operating Systems”
course, one XP role will be assigned to each student for the entire duration of
the semester. This lesson is observed clearly if we examine the learning curve
of these roles, and is based on the positive experience expressed in the other
courses (see Winter 2004 Semester).

Note: In parallel to the above gradual clarification and refinement of the stu-
dent’s roles, the academic coach role was continuously refined as well during the
last five semesters. We began by assuming the roles of the team coach and the
customer to the academic coach, and underwent several phases through which
the responsibility of this role was transferred to the students. A framework for
coaching XP projects in the university is presented in [3].

3 Roles in XP Teams

In the Appendix', we describe the roles defined by the different agile software de-
velopment methods [5,1,2]. Clearly all agile SDMs have roles that aim to enhance
communication and produce a better product. Differences among the methods
result mainly from the different emphasis of the SDM itself.

When guiding a software project in the academia, an equal academic load
should be assigned to all students. Therefore, according to the number of stu-

' You may contact yael@cs.technion.ac.il for the full version including the appendix.

Roles in Agile Software Development Teams 161

dents in the project team, some roles are split or, alternatively, several roles are
combined into a single role. Indeed, a relevant question that should be asked now
is how different roles are split or combined. We have found that all of the roles
together should cover as many as possible of those practices that we wish our
students to implement throughout the project development. The importance of
this principle is illustrated by the following example. Teammates may be aware
of the importance of continuous integration and may appreciate working at a
sustainable pace. These practices may, however, be applied properly (in most of
the cases) only if one of the team members actively pushes the team in these
directions. Accordingly, we refer to roles as practice representatives.

In Section 2, we explained the process that led to the formulation of the dif-
ferent roles. In total, we identified 13 roles, which are described and grouped into
four major groups in Table 1. The first is the leading group, which consists of
the coach and tracker. The second is the customer group, which consists of three
roles. This group of roles focuses on providing the customer with the required
product. The third group of roles is the code group, which is composed of five
roles and focuses on those aspects of software development that are directly re-
lated to the design and to the code. The fourth group is the maintenance group,
which comprises three roles and focuses mainly on the external presentation of
the product. In addition to this grouping, some of the roles support the com-
munications between the four groups. For example, the team member who is in
charge of continuous integration is also in charge of communications with the
customer group.

4 Using Roles to Achieve and Measure Progress

This section presents an analysis of data that was gathered in a qualitative re-
search during the five aforementioned semesters. The data were gathered from
videotapes of the meetings of one team in each semester, interviews with stu-
dents and academic coaches, students’ electronic forums and reflections, project
presentations, and the impressions and periodical summaries of the various role
holders. This data helps us illustrate how roles can be used to achieve and mea-
sure the progress of the software project.

The progress is examined from the following three perspectives: endowing XP
values, learning XP practices, and increasing awareness to the human aspects
of software development. Measurement of progress using roles is executed by
examining the adherence to the time schedule and to the customer stories.

We found that the XP values establish a valuable framework for teamwork.
Having a role causes each teammate to become more involved and much more
communicative with other team members. For example, it is not possible to
motivate one’s teammates to write unit tests or to write according to specific
coding standards without extensively communicating with them. Courage is re-
quired in order to take on additional responsibility besides being a developer,
to accomplish the required work and to urge the other teammates to follow
one’s instructions within a specific area of responsibility. Feedback is provided

162

Y. Dubinsky and O. Hazzan

Table 1. Roles in an academic XP team

Role

Description

Leading Group

Coach Coordinates and solves group problems, checks the web fo-
rum and responds on a daily basis, leads some development
sessions.

Tracker Manages the group diary, measures the group progress with

respect to the estimations and tests score, manages and up-
dates the boards.

Customer Group

End user

Performs on-going testing of the software as an end user,
contacts real end users to test the software, collects and pro-
cesses the feedback received.

On site customer

Tells customer stories, makes decisions pertaining to each
release and iteration, provides feedback, defines and develops
acceptance tests.

In charge of acceptance
testing

Works with the customer to define and develop acceptance
tests, learns the topic of first-test development and instructs
the others on the subject.

Code Group

In charge of unit test-
ing

Learns about unit testing, establishes an automated test
suite, guides and supports others in developing unit tests.

In charge of design

Maintains current design, works to simplify design, searches
for locations in the software that need refactoring and en-
sures proper execution of such.

In charge of code stan-
dards and tools

Establishes and refines group code standards, searches for
development tools that can help the team, guides and sup-
ports in the maintaining of standards and use of tools.

In charge of code ef-
fectiveness and correct-
ness

Guides other teammates in the benefits of pair programming,
enforces code inspection in pairs, searches for places in the
code whose effectiveness requires improvement.

In charge of continuous
integration

Establishes an integration environment including source con-
trol mechanism, publishes rules pertaining to the addition of
new code using the test suite, guides and supports other
teammates in the integration task.

Maintenance Group

In charge of presenta-
tions

Plans, organizes and presents version presentations, demos,
and time schedule allocations.

In charge of documen-
tation

Plans, organizes and presents the project documentation:
process documentation, user’s guide, and installation in-
structions.

In charge of installation

shield

Plans and develops an automated installation kit, supports
and instructs other teammates as to the appropriate way to
develop software for easy and correct installation.

Roles in Agile Software Development Teams 163
to others and received from other’s concerning one’s role and performance. In
turn, this feedback increases communication. When assuming responsibility for
a specific topic related to the development of a software project, one wants it to
be as simple as possible in order to easily establish and maintain it. Simplicity
naturally leads to the assuming of the appropriate scope of one’s responsibility.

Table 2 presents students’ feeling about their roles with respect to XP values.

Table 2. Students’ feeling about their roles with respect to XP values

Role

XP Values

Students’ expressions

Tracker

Simplicity

We do it the simplest way because we have tons of]
other things to do and we aren’t looking for unnec-
essary complications.

Coach

Courage

First of all, I don’t have the characteristics of a
manager; I'm quite shy, not charismatic...

In charge of
continuous

integration

Communication

It’s also hard to urge everyone to do their part ...
All of this is of course understandable, and I believe
I handled it well ... together with the hard work on
the project.

In charge of
documentation

Communication
and feedback

This role is recommended for people who like to
interact with other people, whether if it’s in the
presentation, the making of the presentation, the
coding documentation or the project’s working pro-
cess report. If you don’t like these things too much
- take another role. If you do, I recommend ... Make
sure from the start that people ... It is very impor-
tant that they get used to doing it during the entire
process of coding, and not just at the end, because
... Pay attention to the fact that people are used to
... so you have to be tough...

Customer

Feedback

As a customer, I wrote customer stories and de-
cided... and gave feedback.

Tester

Communication

I continuously pushed them and asked them to
write testing for their units and publish it on the fo-
rum. The main problem was that some of the team
members didn’t finish ... and in some cases I asked
the coach for help in obtaining the test code.

Coach

Courage

I would say that a substantial part of the coach’s
duty was rendered superfluous due to the effort
made by the entire group to work as a team.

The need to learn the XP practices leads to an on-going refinement of role
definitions. Students performed their roles while learning the XP practices. Grad-

164 Y. Dubinsky and O. Hazzan

ually, they became practitioners. Following are students’ expressions of their
feelings with respect to their perception of the different XP practices.

Customer: I had to follow and see that during implementation time people
were working according to my stories.

In charge of unit testing: I published two documents that explain the testing
subject. I published a request that teammates send me their planned tests
for each module... I gave a short lecture about software testing...

Coach: I provided the team with the applications and operating systems, I
tried to coordinate and make people move fast...

In charge of documentation: I published a documentation guidelines that
also deals with coding techniques, and checked the team’s code to see if they
played along.

The human aspect of software development is a broad area. In this paper, we
focus on students’ feelings and awareness with respect to their roles, as expressed
by them during the development process. Satisfaction on the part of the students
in being role holders was observed, as well as in being able to obtain a global view
of the project in additional to the accomplishment of specific development tasks.
Most of the students reported that they handled this additional responsibility
well and enjoyed it. Following are students’ expressions of their feelings about
their role handling.

Customer: The role gave me a “real life” feeling, not that we have a predefined
task and we just perform it. This is very real, a customer with requirements,...

In charge of continuous integration: I enjoyed seeing that everything was
integrated...

In charge of unit testing: I didn’t enjoy the role at all ... it caused me a
great deal of nervousness in the past two months...

In charge of documentation: So / wrote the documentation that he was
supposed to write...it didn’t kill me, but I consider it as a personal failure.

Measuring the development progress is usually a complicated task. As it
turns out, by using roles we can obtain information on many of the elements
of the progress of a software project in the form of narratives expressed by role
holders. We used three narrative tools: stand-up meetings, periodical summaries
by roles holders, and role holders’ web expressions and reflections. An analyzed
collection of the narratives information at every stage gives quick glances on the
status of the team, and when looking at them over time, the progress in the
different aspects of the project is revealed. Following are quotes taken from role
holders’ summaries of a specific project. These summaries were written at the
beginning of the project after one week of development and two weeks before
the presentation of the first iteration of the first release.

End user: I worked with the customer. We met with the coach in order to
discuss the graphical interface. We defined each button...

Coach: I met most of the teammates in order to coordinate... I worked with
the tracker on the documentation and publishing of the development tasks...

Roles in Agile Software Development Teams 165

In charge of installation shield: I’'m going to search for installation software
and try to learn it for future use.

In charge of unit testing: I learnt about the subject...

In charge of presentations: For now, no actions concerning my role were
required, but there soon will be.

5 Conclusion

It is a well-known fact that software development is a complicated process. In
practice, a very unique kind of teamwork is required in order to accomplish its
many significant elements. This paper raises the question whether each team-
mate in a development team should have one major role in addition to his or
her personal development tasks. It is suggested that when a teammate has a
specific role, his or her personal responsibility and accountability with respect
to that aspect of the software development process represented by the said role,
increase. The total array of roles enables the accomplishment of all practices we
wish to include in the development process and leads to a high involvement of all
teammates in the development process. Although this article presents data anal-
ysis of XP projects conducted in a university setting, we suggest that the above
conclusion need not be limited to the academia, but rather its implementations
for the software industry should be considered as well.

Acknowledgements. This research was supported by Technion V.P.R. Fund
— B. and G. Greenberg Research Fund (Ottawa).

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
2000.

2. Crispin, L. and House, T.: Testing Extreme Programming. Addison-Wesley 2002.

3. Dubinsky, Y. and Hazzan, O.: eXtreme Programming as a Framework for Student-
Project Coaching in Computer Science Capstone Courses. Proceedings of the IEEE
Int. Conf. on Software - Science, Technology & Engineering, pp. 53-59, 2003.

4. Hazzan, O.: The reflective practitioner perspective in software engineering educa-
tion. The Journal of Systems and Software 63(3), pp. 161-171, 2002.

5. Highsmith, J.: Agile Software developments Ecosystems. Addison-Wesley 2002.

Empirical Analysis on the Satisfaction of IT
Employees Comparing XP Practices with Other
Software Development Methodologies

Katiuscia Mannaro, Marco Melis, and Michele Marchesi

DIEE, Department of Electric and Electrical Engineering, University of Cagliari
Piazza d’ Armi,
09123 Cagliari, Italy
{mannaro, marco.melis, michele}@diee.unica.it
http://agile.diee.unica.it

Abstract. Job satisfaction has been studied by economists and psychol-
ogists. We believe this factor is very important in that it influences the
effectiveness of the software development process. This paper reports the
first results of a comparative analytic study on the job satisfaction of de-
velopers that use XP practices and others that do not use XP practices.
By determining the factors that are highly valued by developers, the re-
search can provide insight in currently practised software development
processes, and help make changes that increase their strategic value.

1 Introduction

Extreme Programming (short XP) is a lightweight discipline of software de-
velopment that became very popular in recent years. This paper reports the
comparative results of a research study on job satisfaction of IT employees that
use XP practices in their software development process and IT employees that
do not not use them'.

Many XP projects have been completed but to our knowledge no quantitative
study, to point out the efficiency of this light approach objectively compared to
others Non-XP practices, has been accomplished yet.

Job satisfaction involves any work area and job performance is strictly cor-
related with it. Organizations interested in job satisfaction that identify and
measure the perceptions and opinions of their IT employees, will get a better re-
turn for the same investment on research. Consequently, it is important to study
the effectiveness of software development methodologies from the viewpoint of
developers.

The development of an effective, validated and reliable survey for evaluating
job satisfaction is fundamental to this purpose. In this paper we describe the
rationale and procedures for the developing a survey to assess the job satisfaction

This study is part of MAPS research project (Agile Methodologies for Software
Production) funded by the FIRB research fund (grant nr. RBNEO1JRKS) of the
Italian Government (MIUR).

—

. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 166—174, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Empirical Analysis on the Satisfaction of IT Employees 167

of IT employees (Section 2 and Section 4); we explain how data are gathered to
support validation and reliability of this survey (Section 3); finally we present
its results (Section 5).

2 Method

At present in the field of software engineering research, there has been great
interest in the explorative type of surveys. Understanding the factors affecting
software development is one of the main goals of empirical software engineering,
and explorative surveys are very useful to this purpose. Since our research in-
terest is the opinions and perceptions of adopted software development method-
ologies, we have carried out an empirical study using a questionnaire, in order
to gather quantitative data about the population of IT employees.

2.1 Web-Based Survey

After a careful study and an analysis of several survey typologies [2], we chose to
perform an on-line Survey, using a commercially available web survey tool: Cre-
ate Survey”. This tool helped us reduce time and development costs in carrying
out the survey. Data can be directly entered by the respondents, avoiding the
tedious error-prone tasks of manual data entry by an operator. A Web-based
survey presents a number of advantages [4] compared to telephone, e-mail or
other traditional techniques. For instance, in traditional paper-based surveys,
questions can be passed over for lack of care, or other reasons. On the contrary,
on-line surveys allow to answer a subsequent question only if the previous one
has been answered. Moreover, we chose a web-based survey also because all the
members of our sample population are daily web-browsers users.

2.2 Structure of the Survey
The research process has been carried out according to the following phases:

— Formulation of the problem by establishing study objectives and a research
plan: GQM approach;

Sampling by definition of population characteristics;

Data gathering;

— Data processing and data analysis;

— Research report.

GQM approach. To structure our research, we followed the Goal-Questions-
Metrics (GQM) approach, the well known paradigm proposed by Victor Basili
[3]. Our purpose in this survey is to understand the feelings and satisfaction of XP
users (XPers) and non-XP users (Non-XPers) about their software development
process. A secondary goal is to evaluate how Non-Xpers consider XP practices

2 www.createsurvey.com

168 K. Mannaro, M. Melis, and M. Marchesi

and their possible adoption. The GQM framework of the research is shown in
Table 1.

Once the goals have been defined, a set of questions is used to achieve a
specific goal, while a set of metrics may be associated with every question. We
developed two questionnaires, one for persons using XP practices and one for
those not using XP practices.

Table 1. GQM Approach

Goal Purpose | Evaluate
Issue [the job satisfaction related to
Object [the software development process adopted
Viewpoint | from the viewpoint of XP and Non-XP software developers.
Question QI Is there a difference in background and application sector between
XP and Non-XP developers?
Metrics M1 Background Questions: age, gender, level of education completed,
kind of product/service developed,...
Question Q2 What is the job satisfaction and the team's work productivity as
perceived by XP Users and Non-XP Users?
Metrics M2 Assessment of quality of life and quality on the job of the developers,
on the basis of the adopted software development method.
M3 Productivity rating by the developers on the basis of the adopted
software development method.
Question Q3 How are XP practices evaluated by XP developers and Non-XP de-
velopers?

Metrics M4

Question Q4
Metrics M5

Subjective evaluation by the IT manager and IT developers.

How willing are non-XP developers to adopt XP practices?

Subjective evaluation by the Non-XP developers.

3 Data Gathering

In order to avoid biases and ensure greater homogeneity in the answers, the
period of data collection was limited to the Autumn-Winter 2003-2004.

The quantitative survey uses a non-systematic sampling approach. Though a
probability sample was not drawn, the significance of the sample is guaranteed
by the fact that the respondents have been recruited in many and very different
ways, including mailing lists, newsgroups, interpersonal relations, and by self-
recruiting (many developers spontaneously found the questionnaire on our web-
site and decided to answer).

It is impossible to eliminate survey errors completely, but we have taken
special care to avoid obvious errors. A sample survey is subject to four major
sources of error [2]. In this survey we have taken the following steps to obviate
them:

Empirical Analysis on the Satisfaction of IT Employees 169

Coverage Error. We believe coverage error is low, because the analyzed popu-
lation is a population of Internet users. This makes sample bias a non-concern
in this population.

Sampling Error. The web-based survey has been carried out using a sample
of available and volunteer respondents.

Measurement Error. We cannot check the results of inaccurate responses,
because we do not know whether the respondents understood the questions
correctly. However, some questions have very similar goals, and are written
in several ways. So a check was made on the answers to these questions in
order to eliminate incoherent responses.

Non Response Error. Respondents can only go on to the next question after
having answered the previous one.

4 Design of Questionnaire

We have developed 69 questions for XPers and 57 questions for Non-XPers. For
the sake of brevity we cannot report every question. The full questionnaires are
available on our web site.’

Background Questions. We organized the questionnaires in various sections.
This first and last part of the survey include questions about personal data,
providing several data capable of classifying XPers and Non-XPers.

Satisfaction Rating Questions. The second section proposes the questions
about satisfaction which are quite similar in the two questionnaires. Job satisfac-
tion is analyzed by comparing the effects of variables on satisfaction with overt
behaviors. We related some economic variables with subjective variables and we
adopted a scale from 1 to 6, where 1: “I Strongly Disagree” and 6: “I Strongly
Agree”.

A major determinant of our survey is the empirical analysis on job satisfac-
tion. By combining the rating of generic questions with the rating of specific
questions on satisfaction, it is also possible to evaluate the job productivity of
the sample. Some of these questions are: “The adoption of XP practices/the de-
velopment process adopted by my team has favoured a better management of my
time”; “The co-ordination among the team members taking part in the project
work is satisfactory”; “The team developers are highly motivated towards the
present software development method”.

Satisfaction on XP practices Rating Questions. A third section, included
only in the XPers questionnaire, was needed to estimate their level of satisfaction
in the use of XP practices in the project. We adopted a scale from 1 to 5, where
I: “Very Dissatisfied” and 5: “Very Satisfied”. Examples of questions are: “How
satisfied are you with Pair Programming?”, “How satisfied are you with On-site
Customer?”.

3 http://www.agilexp.org

170 K. Mannaro, M. Melis, and M. Marchesi

Potential XP User Rating Questions. Finally, we included a fourth sec-
tion only in the Non-XPers questionnaire. These questions help to estimate the
propensity of Non-XPers to use XP practices. We adopted a scale of 1 to 5,
where 1: “Potentially Not at All Desirable” and 5: “Potentially Very Desirable”.
Some of these statements are: “The project is directed by the customer,who is
available to answer questions, set priorities, and determine project requirements
any time”; “Every developer may be free to modify any code”.)

5 Results

Q1: Structure of the Population Sample. The population sample is made
up of 55 XPers and 67 Non-XPers. In this section, we report some significant
results about the answers received. We characterized our sample by studying the
answers to the two questionnaires and the cross-correlations between them.
We found no significant statistical demographic difference between the two
groups in terms of gender (91% male), age (a significant 75% of the respondents
is aged between 26 to 40 years), and level of education (the majority has a
bachelor’s degree). Respondents by country are structured as follows:

— XPers: 64% Europe, 24% America, 2% Oceania, 9% Asia, 2% Africa
— Non-Xpers: 69% Europe, 20% America, 7% Oceania, 4% Asia.

55%

IT Manager Davaloper, Analyel, .. Researcher

(a) Methodologies (Non-XPers) (b) Roles

Fig. 1. Methodologies and Roles of the population sample.

In Fig. 1(a) we report the subdivision of Non-XPers respondents in relation
to the particular software methodology adopted and (Fig. 1(b)) their profes-
sional role. It can be seen that among the Non-XPers respondents, 35% use an
Iterative Incremental process, 9% the more traditional Waterfall process, and 7%
RUP. Eighteen percent use agile methodologies such as Scrum, Feature Driven
Development or other agile customised processes, while 18% of the Non-XPers
declare: “We do not use any specific development process”.

In Fig. 2 we characterize the population sample comparing the role with the
experience gained with software development.

Empirical Analysis on the Satisfaction of IT Employees 171

45%

XPers O Researchers 45% - Non - XPers
0% m Developers 3,6%
a5, = Manager AN g 0 Researchers

35% 4
30%
25%
20%
15% -
10% -

5%

0% . =
57 10 1015 <2 25 57 710 10415 > 15

Years of experience Years of experience
(a) XPers Experience (b) nonXPers Experience

Fig. 2. Distribution of the population sample in relation to the Experience and the
Role.

Q2: Job/Life Satisfaction and Productivity. The variables representing
personal/familiar sphere, which cause an improvement in life quality, have shown
a significant difference between XPers and Non-XPers (Table 2).

The adoption of XP practices seems to have a significant effect on job quality.
In Table 3 the number of the variables representing job quality are been reduced
to 6 macro areas:

1. the development process adopted favours the relationships and communica-
tion with colleagues (TC);

2. the job environment is pleasant and comfortable (JE);

3. the development process adopted has reduced the amount of perceived stress
(RS);

4. the development process adopted has significantly increased the team’s work
productivity (P);

5. the developers are very motivated and have a positive attitude towards the
project (M);

6. how respondents are willing to adopt the current development process again
(W).

We have defined a Team Productivity Index. Agree/Disagree variables with
statements related to team productivity have been weighted in the following way:

— Concentration (10%)

— Work Attitude (10%)

— Productivity (40%)

— Team developers’ high motivation towards current development pro-
cess(10%)

Release Planning (15%)

Time spent to supply the first version of product since the beginning of the
project (15%).

Using this index, we found that 78% of XPers versus 57% of Non-XPers be-
lieve the adoption of the adopted process methodology has increased their team

172 K. Mannaro, M. Melis, and M. Marchesi

Table 2. “The adoption of the adopted methodology has Reduced the perceived Stress
during my job” (ReducedStress); “My job does not interfere with my Family Relation-
ship and/or with the management of my spare time” (FamilyRelations); “The develop-
ment process adopted by my team favours a better management of my time” (TimeM-
ngmt). 1=Strongly Disagree, 6=Strongly Agree

ReducedStress | FamilyRelations | TimeMngmt

Mean StdDev | Mean StdDev Mean StdDev
Waterfall 2,8 1,10 2,6 1,14 2,2 1,30
Incremental Iterative | 3,47 1,43 2,79 1,47 3,32 1,34
RUP 3,00 1,41 3,25 2,06 2,25 1,89
Agile practices 3,64 1,03 2,64 0,92 4,27 1,42
other 4,00 1,41 3,67 1,37 4,17 1,17
none 3,60 1,43 2,90 1,29 2,80 1,14
XP 4,51 1,35 3,71 1,36 4,27 1,22

Table 3. Results (Mean and Standard deviation) regarding satisfaction on: Team
Communication (TC), Job Environment (JE), Reduced Stress (RS), Productivity
(P), Motivation (M), Willingness (W). 1 = Strongly Disagree, 6 = Strongly Agree

| Tc | JE | Rs | P | M | w

XPers | 4,12 (1,25) | 4,33 (1,39) | 4,51 (1,35) | 4,75 (1,12) | 4,54 (1,15) | 5,35 (0,96)
NonXPers | 3,46 (1,38) | 3,96 (1,26) | 3,49 (1,30) | 3,78 (1,39) | 3,79 (1,25) | 3,47 (1,51)

productivity. In this connection we can say that the former percentage is very
important and significant in this survey, while the latter is not very significant be-
cause the sample of Non-XPers is very heterogeneous on account of the adopted
methodology.

Q3, Q4: about XP practices. Of the XPers respondents, 85.5% claim that
they have a medium to high knowledge of XP practices. We analyzed their
satisfaction on the 12 XP practices, which were rated on a scale from 6 (Very
satisfied) to 1 (Very dissatisfied). The average values and standard deviations
are reported in Fig. 3(a).

Of XPers respondents, only 22% has had some difficulties adopting XP prac-
tices (see Fig. 4(a)) and 53% did not adopt the Metaphor practice (this re-
sult confirms previous empirical studies [6]) while 65% of those adopting the
Metaphor practice are satisfied with it(Fig. 4(b)). We also found that the same
percentage of XPers respondents (27,3%) do not adopt the Planning Game and
On Site Customer practices. All the remaining XP practices are adopted with
satisfaction by the majority of XPers .

Pair Programming is felt to positively affect job satisfaction and quality:
72,7% claimed that Pair Programming speeds up the overall software develop-
ment process.

We have measured the assessment of some XP elements, from the Non-XPers
viewpoint, which was rated on a scale from 5 (Very desirable) to 1 (Not at all

Empirical Analysis on the Satisfaction of IT Employees 173

e Oy [
v oo SR — -

1 2 3 4 & L] 7
1uMot ot all Desidersble S=Very Desiderable

(a) XPers (b) nonXPers

Fig. 3. Level of satisfaction of XPers on XP practices and propensity of Non-XPers to
adopt XP practices (Mean and Standard Deviation).

50%
A5%
40%
5%
g Somewhat
29% | Satisfied
- 16%
15%
Satisfied
% 13%
LY
% Very Satisfied
2%

1=Strangly Disagree G=Strongly Agres

(a) Difficulties with learning XP (b) Metaphor practice
practices

Fig. 4. Difficulties with XP approach.

Agree

Somewhat
Disagrese
A%

1
= |92%

(a) XPers (b) Non-XPers

Fig. 5. “I would like my Company to carry on adopting the present software develop-
ment method”.

desirable). The average values and standard deviations are shown in Fig. 3(b).
We can highlight a positive attitude toward Pair Programming practice.

174 K. Mannaro, M. Melis, and M. Marchesi

6 Conclusions

We have presented some results from an experimental analysis on IT Employ-
ees Satisfaction by comparing XP practices with other software development
methodologies.

It should be noted that the question whether “I would like my Company
to carry on adopting the present software development method”, was answered
with “Agree” by 92% of XPers and 40% of Non-XPers (see Fig. 5). Moreover the
question whether “I think I will adopt our current development process again
in the future”, was answered with “Agree” by 96.4% of XPers and 54.6% of
Non-XPers.

Clearly, there is a very favourable feeling about XP practices, indicating that
they ensure more satisfaction, the job environment is more comfortable and
productivity increases. The tendency of Non-XPers towards XP core practices is
positive and usually they are not very satisfied with their software development
process.

The presented results confirm the validity of XP practices, though for the
sake of brevity we had to present only a subset of the collected data. We are
currently working on processing the whole bunch of answers collected, and on
extending the sample.

Acknowledgements. We thank Elena Sensi for support in job psychology and
special thanks go to Marco Abis and Davide Carboni for help in identifying
contact persons. We finally thank the online respondents who made this work
possible.

References

1. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley,
Boston (2000)

2. Dillman, Don A.: Mail and Internet Survey: The Tailored Design Methode. John
Wiley (eds), New York. (2000)

3. Basili V.: Applying the Goal/question/metric Paradigm in the Experience Factory.
Software Quality Assurance and Measurement: A Worldwide perspective, Chapter
2, pp 21-44, International Thomson Computer Press (1995)

4. Dillman, Don A., Phelps, G.,Tortora, R., Swift, K., Kohrell, J., Berck, J. (ed.):
Response Rate and Measurement Differences in Mixed Mode Survey: Using mail,
Telephone, Interactive Voice response and the Internet. Paper available from
http://survey.sesrc.wsu.edu/dillman/papers/ Mixed

5. Punter,T., Ciolkowsi,M., Freimur,B., John, I. (ed.): Conducting On-Line Survey in
software Engineering. Proceedings of 2003 International Symposium on Empirical
software. IEEE Computer Society, Los Alamitos, California (2003)

6. Rumpe, B., Schroeder, A.: Quantitative Survey on Extreme Programming Projects.
Proceedings of XP2002 Alghero (Sardinia), May 2002. Available at
http://www.xp2002.org

7. Succi, G., Marchesi, M.,Pedrycz, W., Williams L.: Preliminary Analysis of the Ef-
fects of Pair Programming on Job Satisfaction. Proceedings of XP2002 Alghero
(Sardinia), May 2002. Available at http://www.xp2002.org

Agile Processes Enhancing User Participation for Small
Providers of Off-the-Shelf Software

Christina Hanssonl, Yvonne Dittrichl'z, and Dave Randall®

'Department of Software Engineering and Computer Science, Blekinge Institute of Technol-
ogy, Sweden, {Christina.hansson, yvonne.dittrich}@bth.se
2 IT-University, Copenhagen, Denmark, ydi@itu.dk

*Department of Sociology, Manchester Metropolitan University, United Kingdom,
D.Randall@mmu.ac.uk

Abstract. To survive in today’s competitive software market, software devel-
opers must maintain contact with their customers and users and adopt a flexible
organization which allows response to feedback and the changing requirements
from the use-context. This also requires a software development that enables
change proposals and error reports to be acted upon quickly. The present article
uses a case study of a flexible development practice which so far has proved to
be sustainable and successful to reconsider user involvement and software de-
velopment practices of small software providers from an agile perspective. Im-
plementing an agile process may allow for competitive flexibility without nec-
essarily jeopardizing quality.

Keywords. Agile software development, user participation, qualitative methods

1 Introduction

During a research project focusing on e-government,' the manager of a one-stop shop
in one of the municipalities involved pointed to a program for booking premises as
the most useful and well-designed system they use. To our surprise, the provider was
not a major company, but a small one, consisting of six people in a small town in
southern Sweden. The company is known as Idavall. They allowed us to study their
software development practice and how they co-operate with their customers and
users; the aim is to improve their product called FRI.

What we observed can be regarded as a user-driven agile software development prac-
tice, although Idavall did not use the term “agile”. The combination of use orientation
and agile software development is a sustainable one: Idavall celebrated its 15" anni-
versary this year and users continue to be satisfied with the product

This article presents the software development practice and user involvement we
observed. We discuss the possibility of small companies implementing agile proc-
esses as a way of involving users and customers in the improvement of their product,

Design of IT in use - supportive technologies for public services (DitA), funded by the
Swedish Agency for Innovation Systems VINNOVA, April 2000 — December 2002. The
project leader is Dr. Sara Eriksén. The partners are five municipalities, two software consul-
tancy firms, a Call Center and researchers at Blekinge Institute of Technology.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 175-183, 2004.
© Springer-Verlag Berlin Heidelberg 2004

176 C. Hansson, Y. Dittrich, and D. Randall

and if this can be done, what methods should be implemented. For small software and
application service providers, the practices observed could provide a starting point for
rethinking their software development processes. This case also provides examples of
how to systematically gather feedback from users and how to make use of the feed-
back in the development process.

The article starts by taking up our research methods and is followed by a discussion of
user participation and agile processes. Section four provides a ‘rich’ description of
Idavall’s practices; this provides the basis for our discussion. We take up what needs
to be taken into account when users play a central role in the development process.
The risks entailed with such a development practice are also discussed. We finish
with a conclusion based on our findings.

2 Research Methods

The research we describe here was mainly based on a pragmatic approach which we
might loosely term ‘ethnographic;” we used qualitative methods. The latter were
complemented by a quantitative questionnaire.

The fieldwork at Idavall began in January 2002. We visited Idavall regularly during
the spring. Specific methods used included semi-structured and open-ended inter-
views, participatory observations at the company, field notes and analysis of docu-
ments. We also participated in a couple of user meetings and training courses. In the
fall 2003 we returned to Idavall to follow up our previous fieldwork. The question-
naire was prepared in cooperation with Idavall. Most of the questions were of the
multi-choice type and gave additional space for personal comments. Some questions
were so-called open ones which gave space for individual comments. We sent out 787
e-mails and received 121 answers. The purpose of the questionnaire was to support
our qualitative fieldwork and be able to find nuances among the overwhelmingly
positive responses in our earlier interviews with users.

By using multiple ways of collecting data and combining different kinds of methods it
is possible to support one finding with the help of others. It is also possible to find
new information, i.e. to acquire additional information which can complement the
overall picture. This method of evaluation is called triangulation and is a valuable and
widely-used strategy. [14] We validated our impressions from the fieldwork by con-
stantly referring back to, and cross-checking against various informants. This member
checking is also a form of triangulation. [Ibid]

3 User Participation and Agile Processes

Usability and the usefulness of software are still problematic issues for software engi-
neers. One of the reasons is possibly that use qualities are not attributes of the soft-
ware only: they originate in the interaction between software and its use context. Use
practices are not the product of design but are rather responses to the designed soft-
ware. [5,10] As this response cannot be anticipated, constructive measures have been
proposed to promote a useful outcome: participation of users during design and de-

Agile Processes Enhancing User Participation for Small Providers 177

velopment of software [9], co-development of software and work practices, and evo-
lutionary development allowing for feedback [7].

Mainstream software engineering addresses a somewhat different set of concerns. The
aim is to control lead time, development costs, product qualities such as low number
of errors, or certain real-time attributes, as well as the relation between the software
development process and these variables. [1,12] The required control over develop-
ment practices, decision processes and communication results in contradictory rec-
ommendations for the development process and increases the power of the devel-
oper’s organization at the expense of user or customer control. [11]

Agile Software Development facilitates the discussion of user participation in soft-
ware development in a new way. By introducing such concepts as community, amica-
bility, joint decision-making, rapidity of communication, and connections to the inter-
actions of individuals it is possible to facilitate user participation throughout devel-
opment and obtain continuous user feed back. [4] The present article reports on ob-
servations of a software development practice in which the researchers did not make
any direct contributions. We observed a company that combined close contact with
their user community with a software development process that can be described as
agile. The agile development practice allows the developers to react quickly to users
requirements.

With respect to empirical work, agile development provides a different frame for
understanding — and further developing — observed practices. A certain way of devel-
oping software can be regarded as a practice of agile development rather than consti-
tuting a chaotic development process. Such a perspective seems to fit software devel-
oping practices that emphasise usability and user participation. (See also [5].) The
company whose development process is the subject of this article is a good example
of this approach.

4 How Idavall Gets Users Involved

Idavall was founded in 1987. In the early years, the company developed a number of
different programs, but from 1991 they have focused primarily on the booking system
referred to here as FRI. Customers are widely dispersed, mainly in Sweden, but also
in Finland and Norway.

FRI is one of the most frequently used booking systems in Sweden. Its most important
users are the Swedish municipalities; a large number of different municipal admini-
strations use the booking system. The software has a web interface that complements
the basic program. The booking system is responsible for the administration of in-
voices, admission control and subsidies as well as bookings.

Idavall’s avowed objective is to keep contact with the users of its program and to let
their feedback guide future development of the system. By ‘user’ we mean the one
who actually uses the program. When we use the word ‘customer’ we mean those
who have money and the mandate to decide what to buy. Often, the user and the cus-
tomer are not the same person. FRI was designed at the outset for one specific user.
Since then the user community has expanded dramatically. This expansion has not
altered the fundamental business concept employed at Idavall, which is to listen to
users and develop software in a way that continues to keep customers and users satis-

178 C. Hansson, Y. Dittrich, and D. Randall

fied. Gary, one of the employees, expressed his standpoint at a demonstration of FRI
as follows: “The development is driven by our users, not by ourselves”. In pursuance
of this, representatives from Idavall meet their users by means of different kinds of
activities. Following is a description of some of these activities. This description
forms the basis of ensuing discussions.

4.1 User Meetings

Every year about 8 to 10 meetings for users and customers are held throughout Swe-
den, Norway and Finland. The meetings are informal, and their purpose is to dis-
seminate news, discuss further developments, and answer questions about the book-
ing system. For the users, user-meetings provide the opportunity to meet other users
in the same area. User meetings thus offer an opportunity to create networks that
make it easier to make contact with one other and thus co-operate on common ques-
tions or problems. Most of those who participate in user meetings (67%) think they
are a good opportunity to learn new functions and meet other users and representa-
tives from Idavall. Those who do not participate think that they do not need to, or
feel that they do not have the time to attend. Some prefer to have individual teaching
and support. One said “I do not want to listen to other users’ problem; who is inter-
ested in listening to our problems?” Idavail’s representatives encourage users to pre-
sent proposals for new functionality and report errors. Every user meeting has its
own link on the Idavall web site; participants are presented here as well as proposals,
and failures are documented. This information is valuable to Idavall in the future
development of FRL

4.2 Support

One of the most important parts of Idavall’s business philosophy is to offer adequate,
friendly and professional support. According to the questionnaire, users think that the
support service provided is very good. The majority think that they always receive
quick and personal help. Explanations of problems are easy to understand. In addi-
tion to the user meetings, user support offers one of the most important ways of
keeping informed about users’ needs, wishes and proposals. Idavall claims that the
objective is to talk to the user in exactly the same way that users normally talk,
avoiding technical jargon. As one respondent said, ‘no one should feel stupid or
crazy when calling Idavall for support’. 86% of those who returned the questionnaire
gave the highest or second highest score to the overall comprehension of the support
service. However, it should also be mentioned that one desire was to have support
service during the lunch break and in the evening. Many users work for associations
and only use the booking-system after office hours. Support is given Monday to Fri-
day between 8 am and 12 am. Everybody answers support calls, even the developers
of the team. This in turn means that the developers receive first-hand feedback about
problems with their product, thereby removing a reporting problem.

A call to the support service is initially generated when a problem arises. However,
during the course of such calls proposals for new functionalities also appear. As a
result, almost every phone call to the support service is logged in a searchable text
database.

Agile Processes Enhancing User Participation for Small Providers 179

4.3 Courses

FRI can easily be tailor-made to specific requirements. How it is used depends on the
customer; a higher level of knowledge is required than for using Microsoft Windows
and Office'™. Idavall offers courses where the use of different parts of the booking
system is discussed and taught. In the questionnaire, users state that they consider it
important to participate in courses. Besides learning about the booking system, they
suggest they also get to know other users, which in turn makes it easier to share
knowledge, e.g. by calling and asking how other organizations adapt the program to
a specific task. They also like to come to Idavall and meet the developers. ‘It be-
comes easier to call the support service when you know the face of a person’. Those
who do not participate say that courses are too far away or too expensive. About 16%
of those who returned the questionnaire say that they do not have enough time to
take on extra responsibilities. Others remark that they teach each other at their place
of work, or that they learn by doing.

5 Agile Development to Accommodate User Feedback

The development of FRI is an ongoing process. The system is continually being im-
proved to satisfy the ever-evolving needs of users. How do the developers at Idavall
manage to read and take advantage of all the error reports and change proposals sent
in by their users? Despite the absence of a formal development process, the process
can be seen as two different cycles. The faster and smaller on-going development
cycle where errors are corrected and minor improvements continually take place is
highly flexible. In the larger and slower long-term development cycle, major im-
provements take place. These cycles run simultaneously throughout the year.

5.1 Deciding What to Do

Before the implementation of new functionality starts, the proposals from users are
reviewed and informally ranked by staff. Proposals are ranked according to their
quality: Is the change generic? How would it affect other functionality? Is it useful
for many users? How cumbersome would it be to implement the change? Ted, one of
the developers, said that he preferred to implement many smaller improvements as
opposed to one large one because many smaller changes make a lot of people happy.
As every developer also has contact with users and customers, the users’ perspec-
tives are shared by many.

5.2 Daily Ongoing Development Cycle

The focus here is on implementation of users’ proposals, refinement of existing func-
tionalities, improvements in existing parts and correcting errors. Correcting errors has
the highest priority. The code increases continuously since the functionality is grow-
ing. Sometimes code is written twice as a similar functionality is implemented. The
developers must therefore re-factor their code regularly to make it easier to maintain.
Jason tests all new code locally on his computer before he integrates it into the ver-

180 C. Hansson, Y. Dittrich, and D. Randall

sion on the common server. This means that the version on the server is always the
latest tested version.

Programming takes place primarily in the afternoons, when the support service is
closed. It takes between one and five weeks for a new version to be released on the
website. This means that each release is quite small. A ‘What’s new’ description is
published for every version. This allows users to choose for themselves whether or
not to download the most recent version. The system is designed so that not every
change needs to be downloaded and installed. The idea is that every user shall be able
to download and install a new version without the help of a technician. However, the
questionnaire shows that new versions are in most cases installed by a technician; this
is often because FRI is hosted on a server. 28% of the users returning the question-
naire download all versions while 18% only download the compulsory ones. Where
this is the case, it is posted on the website and every user receives an e-mail.

5.3 Long-Term Development Cycle

The last major development took place in 1996, when a module was added that intro-
duced steering number code locks throughout the system. Today, a new 32-bit version
of FRI, which will replace the present 16-bit version, is being developed by Ted. The
development of this new version normally takes place when the daily ongoing devel-
opment cycles are relatively quiet. The new version will offer opportunities to add
several new features. Today it is impossible to implement some of the change propos-
als in the present software due to an outdated implementation technique. The new
version will accommodate the new improvements. The questionnaire shows that there
is a great demand for the new 32-bit version.

A beta-version is already available to pilot-users. These users give feedback on the
new version; this influences the ongoing development. The old version of the soft-
ware will be maintained in parallel to the new version for an indefinite time.

6 Discussion

From a mainstream software engineering perspective the above-described practice
could only be described as unorganized software development without any agreement
on process. The success of the company argues against this perception: 15 years and a
very satisfied and active user community is more than many companies achieve. So
how can we make sense of what we observed? Idavall’s practices are not a conscious
implementation and adaptation of the ideas of the Agile manifesto [4] The company
only came to know about agile processes through us. Applying an agile perspective
[4], however, allows us to see our observations as a practice of agile development,
and to understand how the necessary flexibility to react to user and customer feedback
is achieved in a way that is sustainable for the developers as well as for the business.
Instead of highlighting the shortcomings from a traditional software engineering per-
spective, we can understand how the developers at Idavall make things work and
discuss their way of developing software.

Agile Processes Enhancing User Participation for Small Providers 181

6.1 What Is Needed to Take into Account User Feedback?

The decision as to whether to implement an agile process, and also which one should
be implemented, is left to the discretion of each development organization. However,
to use agile development to implement a user-driven software development process,
additional measures are needed. Below we focus on what we see as the central factors
behind a user-driven agile development process related to Idavall’s way of developing

FRI.

Communication is one of the main values in agile processes [2, 4]. The absence of
communication or inadequate communication can jeopardize a project. Informal
meetings between developers normally take place during the day and take the form of
‘stand-up’ meetings, i.e. people walk in and out of each other’s rooms and discuss
how to solve problems or what to implement next. Spatial arrangements are also im-
portant; Idavall’s lunchroom, which is an open area, is located at the heart of the or-
ganization. A lot of discussions about design issues and problems take place here
during coffee and lunch breaks.

Possibilities for direct communication between developers and users are also impor-
tant. Arranging user meetings and courses around the country is one way to bring
together users from a specific area and Idavall personnel. These activities also stimu-
late co-operation and mutual learning between users. An ongoing process of contri-
butions and discussions in smaller groups would have a fruitful impact on the on-
going development of a system. These smaller groups can be compared to what
Fischer (2001) called Communities of Interests (Col). A basic challenge faced by the
Cols is developing a shared understanding of the task at hand. New knowledge is
constructed through discussions and mutual learning. Participation shifts in such cir-
cumstances from designing a system to using and evolving it. User-meetings and
courses are typical activities that bring users together and help to develop such Cols.
Similar user communities can be observed in the computer game industry. [8] Expert
users receive preview versions of new developments and become involved in design-
ing new features. As the computer gamers feel at ease with electronic communication,
the establishment of a website virtual community seems sufficient [3].

User meetings, user communities and courses are important arenas where developers
and users can discuss problems and future developments. Nonetheless, the support
service is the most valuable and most frequent way of keeping in touch with users
since it is conducted on a daily basis. Such frequent user contact ensures that the
‘right thing’ is developed. It is important that developers man the support service on a
regular basis. They also become aware of shortcomings in the booking system as well
as users’ requirements and needs. Through such frequent contact it is possible to react
quickly and flexibly to new requirements. Close and continuous contact with satisfied
users also stimulates the developers to do a good job.

It is necessary to keep a record of feedback and proposals arising from the support
service, user-meetings and courses. Idavall runs the text database and web site men-
tioned earlier. Rittenbruch et al. [13] discuss their interaction with distributed users.
They used an electronic system where users communicated their requirements, feed-
back and proposals via a web interface. These requirements were integrated into the
design process in the same way as the requirements and proposals from Idavall’s
database and web site were integrated into Idavall’s development process.

182 C. Hansson, Y. Dittrich, and D. Randall

Working close to users requires a technical as well as a social competence. The de-
velopers work flexibly with different kinds of tasks. In addition to development tasks
and support, they also teach and plan courses. Most of them also plan and participate
in user meetings around the country. Their relationship to the users is friendly and
relaxed. They must be able to talk to a technician using technical language and to the
common user in non-technical language.

6.2 The Risks of Such a Development Practice

As proposed above, Idavall’s practices successfully combine user participation with
an agile-like software development process. Users are highly involved in the devel-
opment process, and developers can react quickly to new requirements. But of course,
one can find problems, and the development process has disadvantages and involves
risks as well. These can have a serious impact on the development process and cause
problems. We have identified the following potential problems.

The prioritization process is totally controlled by the developers at Idavall: users are
only able to propose new functionality but have no impact on the prioritization proc-
ess. This is a potential problem since wrong proposals may be implemented.
Relatively few users returned the questionnaire; this may mean that only a few users
might be active users and bother to tell Idavall when problems arise or when new
functionality is required. This means that only certain parts of the user community
participate in the development process in the end and have any impact on the system.
These users may not be typical users and may thus not be representative.

The informality of the development practice and the fact that only six people are em-
ployed at Idavall makes the process highly dependent on the individual person, and
thus vulnerable. Every employee has his or her own specialties and cannot be easily
replaced. It takes a long time to learn how the different parts of a booking system are
built up and how to support them. According to Gary, it takes about one year before
you are able to give FRI support in a proper way and on your own. If someone falls ill
for a long period there would be serious problems.

Program developers at Idavall take care of support, develop the program, teach
courses and participate in user meetings. To implement such a practice one must find
employees who are able to rule out both the technical and social aspects of the work.
It is difficult to find the right person for the job. Gary told us that the last time he had
to find someone to employ it took him more than one year to find the right man.
Despite these potential problems, the case provides an example of how users and
developers can work together on a daily process throughout the project.

7 Conclusions

This article describes a way of developing software where the users have a decisive
impact on the process. Users steer developments in the sense that they give feedback
on an existing program and make proposals for new functionality. Users and develop-
ers meet each other face-to face on a regular basis and in a variety of circumstances.
Users also have a feeling that they are developing FRI in a co-operative way. This is
made possible by a user-driven agile development practice. The agility of the process

Agile Processes Enhancing User Participation for Small Providers 183

makes the development highly flexible and sensitive to the environment in which the
software is used.

Small companies in particular could learn from this way of using agile development
processes as a means of becoming more sensitive to customer and user requirements.
They also could learn how to systematically gather user feedback and make use of it
in the development process. We claim that this method of software development re-
sults in a product that satisfies both customers and users. The software is brought into
line with customers’ and users’ needs.

Agile development provides a framework in which to understand existing software
practices and an orientation for improvement that does not eliminate the flexibility
that is necessary for responding to continuously evolving user requirements.
Combining user participation and agile development processes is our focus for future
research, primarily in the area of computer support for municipalities.

References

1. Basili, V., Greeen, S.: Software Process Evolution at the SEL, IEEE Software, July
(1994) 58-66

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley (1999)

3. Chang, A-M., Kannan, P.K., Whinston, A. B.: Electronic Communities as Intermediaries:
The Issues and Economics. In: Proceedings of the 32™ Hawaii International Conference
on System Science, IEEE Computer Society Press, Los Alamitos, CA, (1999)

4. Cockburn, A.: Agile Software Development. Addison-Wesley, UK (2002)

5. Dittrich, Y., Eriksén, S., Hansson, C.: PD in the Wild: Evolving Practices of Design in
Use. In: Binder, T., Gregory, J., Wagner, 1. (eds): Proceedings of the PDC 2002, Malmo,
Sweden (2002)

6. Fischer, G.: Communities of Interests: Learning through the Interaction of Multiple
Knowledge Systems. 24" Annual Information System Research Seminar in Scandinavia
(IRIS’24), Ulvik, Norway (2001)

7. Floyd, C., Reisin, F.M., Schmidt, G.: STEPS to Software Development with Users. In:
Ghezzi, G., McDermid, J.A. (eds.): Software Development and Reality Construction.
Springer Verlag, Berlin (1989) 48-64

8. Henfridsson, O., Holmstrom, H.: Developing E-commerce in internetworked organiza-
tions: A case of customer involvement throughout the computer gaming value chain, Da-
tabase for Advances in Information Systems 2002 vol.: 33 issue: 4 (2002) 38-50,

9. Kensing, F., Blomberg, J.: Participatory Design: Issues and Concerns, Computer Sup-
ported Cooperative Work 7, (1998) 167-185

10. Lehmann, M.: Programs, LifeCycles, and Laws of Software Evolution. In: Proceedings of
the IEEE 68, (1980) 1060-1076

11. Ngrbjerg, J., Kraft, P.: Software Practice is Social Practice. In: Dittrich, Y. Floyd, C.,
Klischewski, R. (eds.): Social thinking — Software practice. MIT Press, Cambridge Mass,
(2002)

12. Paulk, M C,, Curtis, B., Chrissis, M B., Weber, C V.: Capability Maturity Model, Version
1.1., IEEE Software , July (1993) 18-27

13. Rittenbruch, M., McEvan, G., Ward, N., Mansfiels T., Bartenstein, D.: Extreme Partici-
pation — Moving Extreme Programming Towards Participatory Design. In: Binder, T.,
Gregory, J., Wagner, 1. (eds): Proceedings of the PDC 2002, Malmo, Sweden, (2002)

14. Robson, C.: Real World Research. Blackwell Publishing, (2002)

Self-Adaptability of Agile Software Processes:
A Case Study on Post-iteration Workshops

Outi Salo', Kari Kolehmainen', Pekka Kyll(inen1 ,Jani Lothman?,
Sanna Salmij'eirviz, and Pekka Abrahamsson'

' VTT Technical Research Centre of Finland,
P.O. Box 1100, FIN-90571 Oulu, Finland

{Outi.sSalo; Kari.Kolehmainen; Pekka.Kyllonen;
Pekka.Abrahamsson}@vtt.fi

? Department of Information Processing Science,
P.O.Box 3000, FIN-90014 University of Oulu, Finland

{Jani.Lothman; Sanna.Salmijarvi}@oulu.fi

Abstract. None of the agile methods are claimed to fit all development
situations. A team should attempt to adapt the methods and practices to fit their
specific needs. For that reason agile principles call for self-reflection on a
regular basis in order to identify where and how to make improvements. While
some systematic approaches on how to execute this self-reflection process
effectively have already been proposed, little empirical evidence currently
exists. This paper reports empirical results based on a study where a project
team conducted a self-reflection process called “post-iteration workshop” in
order to improve and optimize the adopted practices in an XP project. Both
qualitative and quantitative data were collected from four 1-2 hour workshops.
The results show that with less than 4% effort it is possible to hold post-
iteration workshops that significantly help to improve and optimize practices
and enhance the learning and satisfaction of the project team.

1 Introduction

Agile methodologies and principles [see e.g., 1] place emphasis on incremental
software development with short iterations, adaptation to changing requirements,
close communication, self-organizing teams, and simplicity [2]. While all of them are
challenging to implement in practice, relying on self-organizing teams is an ambitious
goal in itself.

Agile proponents have noted that “each situation calls for a different methodology”
[2, p. 184]. Thus, one of the principles behind agile manifesto (www.agilemanifesto.
org/principles.html) suggests that the team should regularly reflect on how to become
more effective, and fine-tune and adjust its behavior accordingly. Cockburn refers to
“the mystery of how to construct a different methodology for each situation without
spending so much time designing the methodology” [2, p. 184]. Some systematic
approaches have been proposed on how to execute this self-reflection process

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 184—193, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Self-Adaptability of Agile Software Processes: A Case Study 185

effectively. Cockburn [2] suggests a methodology-growing technique including a
team reflection workshop after each iteration. Furthermore, Dingsgyr and Hanssen [3]
have suggested a learning mechanism called postmortem reviews to be used as an
extension for agile software development methods. It works towards making good use
of the experiences of project participants at the end of iteration to enhance the
development process. In agile software development, one iteration may last from one
to four weeks [4]. In terms of knowledge management, post mortem reviews could be
described as a method that targets “dynamic interaction that facilitates the
transformation of personal knowledge into organizational knowledge” [5, p. 14]. The
idea of postmortems in software development projects is not a new one. In recent
years different postmortem techniques have been used in traditional software
development approaches [examples 6, 7]. They suggest that each project should
conclude with postmortem review to analyze our shortcomings in order to learn and
improve [7]. Postmortem reviews have been found to be effective as a tool for
organizational learning and productive from the software process improvement (SPI)
point of view [example 8]. However, they are not suitable, as such, to an agile
software development environment since they focus on traditional software
development approaches involving long durations, rich and detailed documentation
and large projects [see example 7].

However, little empirical evidence on using either team reflection workshops or
the lightweight postmortem reviews in agile software development exists. This paper
presents empirical results from a case study (eXpert) where a project adopting
Extreme Programming (XP) method systematically reflected its practices after each
increment in a session that combined elements from both the Cockburn’s team
reflection workshop [2] and the lightweight postmortem review technique suggested
by Dingsgyr and Hanssen [3]. This technique, as presented here, is referred to as a
post-iteration workshop. The case study presented here is the first among an ongoing
series of Agile case studies conducted at the Technical Research Centre of Finland.

This paper is composed as follows. The following section presents the research
design including the method, the research target and settings. The paper continues
with the results, experiences of the post-iterations workshops and conclusions. The
paper concludes with final remarks.

2 Research Design

In this section, the research method, data collection, the post-iteration workshop
technique (i.e., research target), and the research setting are described.

2.1 Research Method and Data Collection

The research method used in this study was action research [9] that can be seen as one
form of case study. The focus is more on what practitioners do rather than what they

186 O. Salo et al.

say they do [10]. The resulting knowledge should guide the practice [11]. In action
research, the modification of reality requires the possibility of researcher intervention
[12]. In the post-iteration workshops the researchers’ acted in the role of a moderator
and participated in the generation of positive and negative findings and enhancing the
process with the project team. However, they did not participate in the actual software
development work, but acted more as a support team for the developers.

Quantitative and qualitative research data was collected on a) effort used on
workshops, b) quantity of findings and c) their content and, d) quantity and e) content
of suggested and actual process enhancements (i.e. action points). Furthermore,
developers maintained diaries to record their negative and positive perceptions on the
process. A final interview was also held for the project team at the end of the project.

2.2 Research Target: Post-iteration Workshop Technique

The research aims to study how a short iterative reflection session is suitable for self-
adapting the practices during an Agile software development project. The existing
reflection techniques (i.e. lightweight postmortem review and team reflection
workshop techniques) were examined beforehand. The aim was to combine and adopt
these techniques in order to attain effective self-adaptability with minimal effort and
high impact. As a result, a post-iteration workshop technique was constructed.

As suggested in the postmortem review technique, the problem-solving
brainstorming method called KJ method [6] was adopted in the post-iteration
workshops. It was used for gemerating experiences from the project team and
collecting and structuring this data. As a result, the project team generated positive
experiences, i.e. the practices that should remain the same, on post-it notes and placed
them individually for display on a flip chart with clarifying comments. The findings
were then grouped and the groups were labeled to simplify the discussion on the
emerged topic areas. Similarly, the negative findings were placed on display and
grouped in order to identify the problem area. The reason for using KJ for generating
experiences in post-iteration workshops instead of more free discussion, as suggested
by Cockburn [2], was its controllability and effectiveness as a result of strict
procedures.

Both techniques suggested prioritizing the negative findings and analyzing only
the most important ones. However, in post-iteration workshop technique all the
findings were considered to be equally important (whether positive or negative) and
were included in further discussion. Furthermore, the amount of post-it notes was not
limited in any way, as reported to be in the case of the lightweight postmortem review
technique [3]. Moreover, a root cause analysis technique called the Ishikawa diagram
for analyzing the underlying causes, as suggested in lightweight postmortem review
technique, was considered but not included. As an alternative, the Cockburn’s
suggestion of analyzing the negative issues and collecting improvement suggestions
along with discussion was followed using the organized flipchart of negative findings
as a guide.

Self-Adaptability of Agile Software Processes: A Case Study 187

The post-iteration workshops ended with the generation and agreement on the
improvement actions for the next iteration, i.e. list of action points. Finally, the list of
action points from the previous workshop was revised to find out what improvements
had actually taken place and which ones were not implemented for whatever reason.

2.3 Research Setting

The case study was conducted in a software development project (eXpert) where a
team of four developers implemented an intranet application for managing the
research data obtained over years at a Finnish research institute. The project lasted
eight weeks and the size of the resulting product was 10000 lines of code (see more
details in [15]). The development team followed the XP process as suggested by Beck
[4]. The team consisted of experienced university students to confirm comparability
to practitioners in industry as suggested in [13]. The development team worked in a
co-located environment with an on-site customer (a representative of a management
organization), as suggested in XP practices [14].

The project members were novice on using agile software development methods.
They were guided to adopt all the central XP practices including planning game,
small releases, metaphor, simple design, testing practices, refactoring, pair
programming, collective ownership, continuous integration, 40-hour week, on-site
customer, and coding standards [4]. However, the project had the freedom to adapt
the practices based on their experiences from the first iteration onwards. The
decisions concerning process enhancements were to be made in the post-iteration
workshops.

The project team worked a 24-hour week in four days, in other words from Monday
to Thursday. As proposed by the 40-hour week rule, no overtime was recommended.
The possible overtime was compensated in the following iteration. The project
consisted of five iterations during the eight-week period. The first four iterations were
the actual software development iterations and the last one was a corrective iteration.
The first three iterations lasted for two weeks and the last two iterations for one week
each. A post-iteration workshop was held after each of the iterations. Only the first
four workshops are comparable and as a result included in the analysis presented in
this paper. The last workshop can be regarded as post-project workshop that
concentrates on the experiences from the entire project instead of the previous
iteration. It is a valuable part of software process improvement (SPI) in an Agile
organization and will be reported thoroughly in the near future.

3 Case Study Results

In this section, the results of the post-iteration workshops are presented and
interpreted. Each post-iteration workshop concentrated on the experiences gained

188 0. Salo et al.

from the previous iteration. At the end of this section, the perceptions of the project
team are summarized.

3.1 Post-iteration Workshop Findings

Table 1 presents the costs of post-iteration workshops in terms of effort usage. The
data includes the effort of the four software developers. Results show that the effort
spent reduced from iteration to iteration. In other words, the duration of a workshop
went down from over 2.5 hours to less than one hour per session. It should be noted
that due to the shorter duration of the fourth iteration (i.e. one week) the proportion of
effort rises even though the actual effort spent is lower. Also, one factor that
presumably increases the duration of workshop in the eXpert case study is the fact
that the amount of findings was not limited and all of the findings were considered
equally important (i.e., no prioritization).

Table 1. Cost of post-iteration workshop

Trotuskin Effort on post-iteration| Total project effort | Effort spent on post-iteration
workshops (in hours) (in hours) workshops (%)
1 10,7 1954 55%
2 7,3 189,7 3.8%
3 4,0 193,7 2,1%
4 3.7 110,7 33%
TOTAL 25,7 689,5 3,7 %

In Dingsgyr and Hanssen’s [3] study, the effort spent on lightweight postmortem
reviews was around 4.7% and the duration of one workshop was roughly 14 hours
per person (calculated from their data). Cockburn [2] estimates a minimal duration
from two to four hours. In this study, the average effort was 3.7% and the average
duration of the workshop was 1.6 hours. The percentual effort spent on post-iteration
workshops may seem somewhat high. However, it should be noted, that in eXpert the
project team worked a 24-hour week which increases the percentual effort proportion
comparing to a “normal” 40-hour week.

Findings of the post-iteration workshops are shown in Figure 1 including positive
and negative issues, and how many improvement actions they were followed by.

The four post-iteration workshops resulted a total of 93 positive and 52 negative
findings. Figure 1 shows the declining trend in both positive and negative findings.
The positive findings decreased from 38 to 11 and negative from 25 to 8 findings per
workshop. Furthermore, the implemented process changes lessened during the
project. This finding is in-line with that of Cockburn [2], who argued that the changes
needed in the process will be much smaller after the second and subsequent
increments.

Self-Adaptability of Agile Software Processes: A Case Study 189

@ Positive
0 Negative
@ Improvement actions|

R1(2weeks) R2 (2wesks) R3(2weeks) R4 (1week)

Fig. 1. Number of findings and improvement actions from the post-iteration workshop

However, other factors (than process satisfaction) might also influence the decline
in positive and negative findings. For example, as the team became more accustomed
to the adopted practices, their weaknesses and rewards may have been taken for
granted. Moreover, as the post-iteration workshops were relatively close to each other
(from one to two weeks apart) the team did not find it necessary to repeat the findings
except for the most disrupting ones. However, the repeated positive and negative
findings were recorded also in the subsequent workshops.

B % of Negative Findings|

B % of Positive Findings

Fig. 2. Ratio of positive and negative findings

Figure 2 illustrates how the satisfaction of the project team evolved during the
project by examining the ratio between positive and negative findings. During the
first three iterations, the proportion of positive findings rises from 60% to 73%
indicating increased satisfaction. In the fourth post-iteration workshop the proportion
of positive findings dropped by 15%, while the amount of negative findings remained
the same. The trend of three first iterations suggests that the process actually
improves as a result of post-iteration workshops. However, this analysis is not yet
strong enough to draw any conclusions. Furthermore, the closer examination of

190 0. Salo et al.

research data reveals that the topics causing negative findings became fewer during
the project. The “topics” here refer to the post-it note groupings made according to
the KJ-method to identify the specific problem areas for the findings. The data reveals
that the criticism of the project team focuses on nine topic areas at the beginning of
the project and declines rapidly to only two issues at the end. This analysis again
supports the assumption that the XP process practices had actually self-adapted to the
needs of the project team, i.e. increased their satisfaction for the process.

To explain the growing satisfaction that the data implicates, it should be reported
that all except one suggestion for enhancing the software process practices were
actually implemented. Alone, this power to influence on the daily working practices
is likely to raise the positive atmosphere among the project team. Furthermore, the
rapid and visible effect of the process changes is likely to satisfy the developers. The
spread between the negative findings and process changes can be explained by the
fact that several of the negative findings needed no actions but were rather
misunderstandings or other issues solved by learning through discussion during the
post-iteration workshops.

Table 2 demonstrates the top five positive and negative findings during the entire
project. Interestingly, the top positive finding was the controversial pair programming
practice. It continued to appeal to team members during the entire project.
Noteworthy is also the fact that all of the top five positive topics belong to the
practices of XP. The top negative finding was time tracking. Due to the research
character of the project, the collection of measurement data was heavy and time
tracking detailed. Testing only became a negative issue towards the end of the project
when the motivation of the outside testing group clearly decreased. Code commenting
and time estimating findings generated mostly from the lack of proper standards and
instructions. Test-driven development was found to be difficult as it was the first time
the project team had encountered it and an experienced coach was not available.

Table 2. Top five of the positive and negative findings

Top 5 positive findings Top 5 negative findings
1 Pair programming Time tracking
2 Short iterations Testing
3 Continuous integration Code commenting
4 On-site customer Effort estimation
5 Refactoring Test-first development

Table 3 presents a summary of the improvement suggestions and actions on the top
5 negative issues to provide an overview on what kind of enhancements arose from
the post-iteration workshop in the eXpert case study. The lines in an italic font
indicate suggestions that were not implemented during the project as the others are
the actual action points for the next iteration.

Self-Adaptability of Agile Software Processes: A Case Study 191

Table 3. Process improvement suggestions

Practice Improvement Suggestions/actions

Time Tracking e New column to project hours-table for dump task (PM2)

* Own task for refactoring comments (PM2)

¢ Developing personal process for time tracking (PM3)

® Tool support for time tracking (PM5)

Testing ¢ Internal audits (code reviews) (PM2)

* Pre-release testing (PM1)

Code Commenting ¢ Refactor old comments (PM2)

« Commenting on test code also (PM2)

e Coding standards needed (PM2) x3

o Improve commenting: do immediately and in detail (PM5) x3
s Coding standard should be agreed at the beginning (PM5) x2

Time Estimating * Improve task descriptions: More exact tasks (PM3)
o Analyzing time estimates of previous releases (PM3)
Test First * Modify test cases to find errors (PM2)

3.2 Developer’s Perceptions

The project team felt that the post-iteration workshop technique was an effective and
convenient way to learn because it summarized the previous iteration and forced each
team member to think about its difficulties and negative aspects. This way each
member was able to learn and improve their own actions and pay attention to negative
issues even if they were not always written down as improvement suggestions. In
addition, post-iteration workshops were seen as an efficient and honest way to
improve the process because they actually forced the process to take a better
direction. The project team found it very creative to discuss experiences and solutions
in a group and to criticize the things that were done sloppily or could have been done
better. The issues were brought to light and the improvement actions turned out to be
successful, according to the project members. As an example, pre-release testing was
brought as a new practice to the process and relieved the actual release testing with
customer.

The opinion of the project team was that the post-iteration workshop, as applied in
eXpert, didn’t take too much effort yet still improved the weak aspects of the process
significantly. When the development was done in short cycles the things agreed in
post-iteration workshops stayed clear in the mind and the effects of improvements
were noticeable in the following iterations. All developers were confident that post-
iteration workshop was a way to get better outcome from the development process.
All also favor using this technique in future projects when applicable.

4 Conclusions and Further Work

Agile software development relies on self-organizing teams and the Agile principles
suggest that the team should regularly reflect on how to become more effective, and

192 0. Salo et al.

fine-tune and adjust its behavior accordingly. While some systematic approaches have
been proposed on how to execute this self-reflection process effectively, little
empirical evidence exists as yet. This paper has served for this purpose. Two known
self-reflection approaches were combined and 4 post-iteration workshops were held
on an XP project. The case study presented (eXpert) is the first in an ongoing series
of Agile case studies conducted at the Technical Research Centre of Finland and
provides a baseline for further replications for the progress of the post-iteration
workshop technique.

Based on our experiences, the KJ method (see section 2.2. for details) proved to be
an effective tool in adapting practices in an XP project, as was suggested by Dingsgyr
and Hanssen [3]. The quantitative and qualitative findings from the case study
support the assumption that with less than 4% effort it is possible to hold post-
iteration workshops that concretely help improving and optimizing practices, and
enhance the learning and satisfaction of the project team. The empirical data from the
case study shows that the post-iteration workshops fine-tuned the development
process and increased the project team’s satisfaction. A strong indication of the
benefit of the post-iteration workshop was the positive remarks made by the
developers.

However, this study lacks evaluation of the effects of process improvements on,
for example, the effectiveness of the process or quality of the product. One reason for
this is that the existing project level SPI techniques, including the post-iteration
workshops, lack a detailed procedure for the follow-up of software process
improvement actions, as well as their support with, for example, measurement data.
Furthermore, the existing techniques lack important aspects in enhancing the extensive
learning in the future projects. As a result, the post-iteration workshop technique has
been evolved and is currently being applied for further evaluation in a third XP case
study (bAmbie).

References

[1] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, “New directions on agile
methods: A comparative analysis,” presented at International Conference on Software
Engineering (ICSE25), Portland, Oregon, 2003.

[2] A. Cockburn, Agile Software Development. Boston: Addison-Wesley, 2002.

[3] T. Dingsgyr and G. K. Hanssen, “Extending Agile Methods: Postmortem Reviews as
Extended Feedback,” presented at 4th International Workshop on Learning Software
Organizations (LSO’02)), Chicago, Illinois, USA, 2002.

[4] K. Beck, Extreme Programming Explained: Embrace Change: Addison Wesley
Longman, Inc., 2000.

[5] 1. Nonaka and H. Takeuchi, The Knowledge-Creating Company, 1995.

[6] R. Scupin, “The KJ Method: A Technique for Analyzing Data Derived from Japanese
Ethnology,” Human Organization, vol. 56, pp. 233-237, 1997.

[71 B. Collier, T. DeMarco, and P. Fearey, “A defined process for project post mortem
review,” IEEE Software, vol. 13, pp. 65-72, 1996.

[8] M. J, Tiedeman, “Post-mortems-methodology and experiences,” IEEE Journal on
Selected Areas in Communications, vol. 8, pp. 176-180, 1990.

(9]

[10]
(11]
[12]

(13]

[14]

[15]

Self-Adaptability of Agile Software Processes: A Case Study 193

J. B. Cunningham, “Case study principles for different types of cases,” Quality and
quantity, vol. 31, pp. 401-423, 1997.

D. Avison, F. Lau, M. Myers, and P. A. Nielsen, “Action Research,” Communications of
the ACM, vol. 42, pp. 94-97, 1999.

P. Oquist, “The epistemology of action research,” Acta Sociologica, vol. 21, pp. 143-163,
1978.

G. I. Susman and R. D. Evered, “An Assessment of the Scientific Merits of Action
Research,” Administrative Science Quarterly, vol. 23, pp. 582-603, 1978.

M. Host, B. Regnell, and C. Wohlin, “Using Students as Subjects - A Comparative Study
of Students and Professionals in Lead-Time Impact Assessment,” Empirical Software
Engineering, vol. 5, pp. 201-214, 2000.

K. Beck, “Embracing Change with Extreme Programming,” IEEE Computer, vol. 32, pp.
70-77, 1999.

P. Abrahamsson, “Extreme Programming: First Results from a Controlled Case Study,”
presented at 29th Euromicro Conference, Belek-Antalya, Turkey, 2003.

Enterprise Continuous Integration Using Binary
Dependencies

Mike Roberts

ThoughtWorks, Ltd., Peek House, Eastcheap, London, UK

mroberts@thoughtworks.com

Abstract. Continuous Integration (CI) is a well-established practice which
allows us as developers to experience fewer development conflicts and achieve
rapid feedback on progress. CI by itself though becomes hard to scale as
projects get large or have independent deliverables. Enterprise Continuous
Integration (ECI) is an extension to CI that helps us regain the benefits of CI
when working with separately developed, yet interdependent modules. We
show how to develop an ECI process based upon binary dependencies, giving
examples using existing .NET tools.

Keywords: Continuous integration, scalability, tools and techniques, .NET

1 Continuous Integration — A Review

Kent Beck defines Continuous Integration (CI) by stating ‘No code sits unintegrated
for more than a couple of hours. At the end of every development episode, the code is
integrated with the latest release and all the tests must run at 100%’ [1]

Automated CI [2] takes much of the CI effort away by running an automated
build every time a developer commits a change to version control (see ‘Ubiquitous
Automation’ [3]) Automated CI is implemented by using a dedicated CI build server
tool like CruiseControl [4] or CruiseControl. NET [5].

Both of these processes assume you have a single source tree which is developed
as one advancing ‘code line’ [6].

Unfortunately, there can be scalability issues with this. While describing CI, Kent
Beck states ‘If integration took a couple of hours, it would not be possible to work in
this style ... You also need a reasonably complete test suite that runs in a few minutes’
[1]. For a medium to large sized project (e.g. upwards of 5000 classes) a full build can
take an hour to complete when compilation, unit testing and acceptance testing are
included. This is long enough to significantly break up the development flow of a
project using CI.

There can also be business concerns with forcing a large development effort onto a
single source base with unified build and release timelines. Consider a client/server
application that has a server layer communicating not only with the client GUI but
also with other external applications. The release schedule for those external
applications places requirements on the server code that do not exist for the client
code. Thus, there is a need to decouple the GUI and server development efforts.
However, if the client code needs the server code to compile, the client build must be
able to find and reference the server code for each of its builds. Finally, you may
decide to break up your application into different ‘bounded contexts’[7] when it
makes sense to have semi-independent domain models within your application.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 194-201, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Enterprise Continuous Integration Using Binary Dependencies 195

All of these issues point to the same thing - sometimes the ideal approach of
developing with one tightly bound source tree doesn’t work out and we need to
introduce extra processes to help.

2 Breaking up the Build by Introducing Binary Dependencies

One way to start addressing the above issues is to separate out the source tree into
different modules, each with their own independent build and CI processes. Each
module uses pre-built binary versions of any other modules it depends on.

We’re going to use the client/server decoupling example from section 1 as a
common example thread throughout the rest of this paper. We’ll start resolving it by
applying this binary separation idea.

Assuming the application has a layered architecture [8], its source code should be
easily split into client, server and ‘common’ code. We can decouple the development
of the client and server layers by moving the source that is specific to the client into a
separate module in version control, leaving the common and server code in the
original module (which we call simply the server module from now on.)

The client code requires the server code in order to compile. As a ‘first cut’
implementation to get the client building, we can include a pre-built binary version of
the server module in the client’s version control tree. We also setup separate CI
servers to build each of the 2 modules.

This technique by itself is nothing new, but we now consider how we can extend
Continuous Integration techniques to such separated projects.

3 Enterprise Continuous Integration

By itself, the above separation process has a flaw. With the separated client and server
modules, as soon as a developer commits code to the server module, the client module
is building against an old version of the server code. In other words, the new server
code has not been integrated with the client code. Despite not having a unified build
and source tree, we can still apply the principles of Continuous Integration to the
complete application.

We define Enterprise Continuous Integration (ECI) as the process of integrating
2 separated but dependent source trees whenever code changes in either of the 2 trees.

ECT allows us to continually integrate separated modules as if they were developed
as one module.

3.1 Designing an Enterprise Continuous Integration Process

Reviewing our client/server example:

¢ We have 2 separated modules in version control, one for the client and one for the
server

+ Each module has its own CI process that builds the contents of version control and
produces a versioned binary distribution

196 M. Roberts

o The client source tree includes a built version of the server module

The next step is to add an Enterprise Continuous Integration (ECI) process that will
attempt to build the client module with the latest binary version of the server. This is
in addition to the existing CI process that just builds what is specified by the client’s
build script.

3.1.1 Specifying Dependency Versions

To setup such an ECI process we need a way of varying which version of the server
module the client is to build against. The first step to implementing this is to publish
the built versions (or distributions) of the server module to a file server. It needs a
structured directory layout, including the ability to locate distributions by both version
number, and latest logical tag.

We can now update our client build to fetch a specified version of the server
module from the build server before building, rather than keeping a fixed copy within
the version control tree. The version of the client build script checked into the source
tree would always default to use a last-known-good version of the server that we have
successfully integrated with the client. However, the ECI process overrides the
server version to latest.

We'll see concrete examples of all of this later on.

3.1.2 When to Integrate

The next question is when do we integrate? With normal CI, we perform an
integration run whenever the source code changes, since that is the only changing
input of our integration process. However, our client build now has a ‘latest server
build’ that can also change, so we should perform an ECI run whenever there is a
change in either the source code we are integrating, or the binary dependencies upon
which the source code depends.

3.1.3 What to Do on a Successful ECI Build

The client’s standard CI build is already responsible for producing a release-ready
distribution and corresponding source label, so what can you usefully do with a
successful ECI build? It’s always good to know when everything is working together,
so marking the client source with an appropriate label is a good practice. You can
automate it so it’s zero effort, and in most modern Source Control systems labeling is
a cheap, and fast, operation.

However, you know that the client build now passes all of its tests against a new
version of the server, so it’s also useful to automatically update the client’s last-
known-good server version so that developers, and future client builds, are up-to-date
with the server version.

3.1.4 What to Do on a Failed ECI Build
There are 2 possible causes of an ECI build break:

o The source module (the client module in our example) is internally broken.
e There is a discrepancy between the source module and the latest versions of the
dependencies.

Enterprise Continuous Integration Using Binary Dependencies 197

The first of these should also be picked up by standard CI processes. If an ECI
build fails in this way we should check that the standard CI process has failed in the
same way.

Breakages of the second kind are the feedback that ECI provides beyond single-

module CI. There are various reasons why such a situation can have occurred:

e A compilation error may indicate a change in the interface of the server module. In
this event, the development team could consider using deprecation cycles to avoid
breaks between modules.

e A breaking test could indicate that the client code was relying on ‘accidental
behavior’ of the server code. In this case the client code should be updated.

s A breaking test could also expose an untested part of the server code. In this case
the server module would need updating, preferably including a new test that would
simulate how the client code had broken the old code.

3.2 Versioning

So far we have made a few assumptions with respect to versioning:

e We do not need to worry about the versions of chained dependencies (e.g. the
dependencies of the server module itself.)

e Versions of the server module increase linearly, with no branching of versions.

e If the server module is branched, it is always appropriate for the client to build
against the trunk version of the server, rather than against a stable branch.

The first of these is a complicated area beyond the scope of this paper. A solution to it
would allow us to perform binary dependency-based ECI for scenarios where we’d
like any module in a complex dependency tree to cause an integration attempt for all
dependent modules.

The second two points do not require assessment if dependency modules are never
branched, but if they are we have some decisions to make. We’ll have an introductory
look at this area in the rest of this section.

3.2.1 Aside: Continuous Integration and Branching

Extreme Programming steers towards a model of continual release, and source tree
branching is not required in such an ideal model. However, due to business concerns
many agile development projects can’t release to the actual customer at the end of
every iteration (especially if iterations are 1 or 2 weeks long.) Typically a
development team will construct a release branch for fixing any bugs that may appear
in the release, but still be able to carry on continual development on the trunk.

In such a case, it is worth using the same CI process on the release branch that is
used on the trunk, e.g. to use the same automated build, testing, and distribution
techniques. However, if the CI process publishes distributables and performs labeling,
how do we perform CI for both the trunk and the branch in a non-conflicting manner?

A good answer is to do the following:

e Use different CI instances for each code line.
e Use an appropriate version numbering scheme so that the distributables and
labels produced by each CI instance are distinguishable from each other.

198 M. Roberts

3.2.2 Targeting a Project at a Branched Dependency

In our ongoing example, it may be necessary to target the client code at a branched
version of the server module. When branching the server, we would implement 2
standard CI processes (one for the branch and one for the head.) The branch CI
process should publish a ‘branch-latest’ distributable and the ECI process for the
client module should be updated to use this branch-specific version, rather than the
latest trunk version.

3.2.3 Ranged Versions and Published Interfaces
What we have done above is to create a ranged version. E.g. if the branch of the
server defined the /.2 version range of the module, we are saying that the client
module should be able to build against /.2. * (any 1.2 version) of the server.

The server trunk could now be considered the /.3 version range. The differences
between 12 and 1.3 may include an update of the ‘published interface’ [9] of the
module.

4 Example — Implementing Enterprise CI in .NET

Now we have a design for ECI, how do we implement it? For Java and .NET the tools
already exist since we can use standard CI and build applications. In .NET
specifically we can use CruiseControl. NET [4] and NAnt [10]. There are various other
NET build and CI tools (Draco.NET [11] and Hippo.NET [12] are alternative CI
tools, and MSBuild is an alternative build tool to be released as part of .NET 1.2)

We will follow on with the client / server example and will assume that the client
depends on a ‘1.2” branch of the server. We use NAnt and CruiseControl. NET as our
build and CI tools.

4.1 Defining the Distribution File Server Directory Structure

We are implementing ECI using binary dependencies, so let’s start off by setting up
our dependency distribution file server structure. Below is a directory tree that would
be created by the 3 individual ‘atomic’ CI instances (1 for the client, 1 for the server’s
1.2 branch, and 1 for the server’s 1.3 trunk).

\\DistributionFileServer\
+--> Server
| +--> 1.2.455

| | +--> gerver.zip distribution file
| +--> 1.2.456
| +--> 1.2.457 the last successful 1.2 builad
| +--> 1.2.latest always the last successful 1.2 build
! +-->1.3.20
| +--> 1.3.21 the last successful 1.3 build
| +--> latest always the last successful trunk build
I
+--> Client
+--> 1045
| +--> client.zip distribution file

+--> 1046 the last successful client build

Enterprise Continuous Integration Using Binary Dependencies 199

4.2 The Client Build Script

We now setup a NAnt build script for the client. NAnt uses targets to define actions to
happen during the build. Our build script needs a target to retrieve dependencies (get-
dependencies), and a main target (all) that makes sure this happens before the rest of
the build occurs. The server-version number is specified in a property, and this can be
overridden by the environment calling the NAnt script. The server-version property
enables us to specify exactly which server distribution file to use.

<project name="client" default="all">

<property name="server-dist-location"
value="\\DistributionFileServer\Server"/>

<property name="server-version" value="1.2.456"/>
<property name="server-dist-name®” value="server.zip"/>

<target name="get-dependencies">
<mkdir dir="dependencies\server"/>

<unzip zipfile=="${server-dist-location}\${server-
version}\${server-distname}" todir="dependencies\server" />
</target>

<target name="all" depends="get-dependencies, compile, test,
deploy, dist"/>

<!-- .. Other targets would go here.. -->
</project>

4.3 The CruiseControl. NET Config File for the ECI Build

Now we can create a CruiseControl. NET instance for our ECI build. We do this by

setting up a configuration file like the following. It has 2 critical sections:

1. A sourcecontrol section which defines where to check for modifications. We look
in 2 locations — on the filesystem to check for server version 1.2 changes and in cvs
to check for client changes.

2. A build section which defines what to build when a change is detected. It runs the
NAnt build tool, and specifies the client project’s build directory and build script
(which configured in the previous section). Importantly it overrides the server-
version property to always use the latest version of the server.

It is the check of the server distribution directory, and the override of the server-
version property that would differentiate this from the client’s normal configuration.

<cruisecontrol>
<project name="ClientECI">
<gourcecontrol type="multi">
<sourceControls>
<filesystem>
<repositoryRoots>\\DistributionFileServer\Server\1.2.latest</repositoryRo
ot>
</filesystem>
<CVS>
<executable>c:\tools\cvs-exe\cvswithplinkrsh.bat</executable>
<workingDirectory>c:\localcvs\myproject\client</workingDirectory>
</cvs>
</sourceControls>
</sourcecontrol>

200 M. Roberts

<build type="nant">
<executablerc:\localcvs\myproject\client\tools\nant\nant.exe</executable
>
<baseDirectory>c:\localcvs\myprojecticlient</baseDirectory>
<buildArgs>-D:gerver-version=1.2.lateat</buildArgs>
<buildFile>ccnet.build</buildFile>
<targetList>
<target>build</target>
</targetList>
</build>

<!-- Other CCNet config would also appear as normal -->
</project>
</cruisecontrol>

5 Other Solutions
5.1 Continue to Use Atomic Code Lines

Our motivations for Enterprise Continuous Introduction were 2 possible issues that
can occur in medium-large development projects:

e Build process too slow

e Requirements for separated delivery of different components

The best solution, if possible, may well be not to separate out code lines.
Enterprise Continuous Integration adds extra process to your team and so if (for
example) you could actually shorten your build times by reworking your tests, etc.,
then t