

Lecture Notes in Computer Science 3092
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

MosheY. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Jutta Eckstein Hubert Baumeister (Eds.)

Extreme Programming
and Agile Processes
in Software Engineering

5th International Conference, XP 2004
Garmisch-Partenkirchen, Germany, June 6-10,2004
Proceedings

Springer

eBook ISBN: 3-540-24853-6
Print ISBN: 3-540-22137-9

©2005 Springer Science + Business Media, Inc.

Print ©2004 Springer-Verlag

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com
and the Springer Global Website Online at: http://www.springeronline.com

Berlin Heidelberg

Preface

Software development is being revolutionized. The heavy-weight processes of
the 1980s and 1990s are being replaced by light-weight, so called agile processes.
Agile processes move the focus of software development back to what really
matters: running software. This is only made possible by accepting that software
development is a creative job done by, with, and for individual human beings. For
this reason, agile software development encourages interaction, communication,
and fun.

This was the focus of the Fifth International Conference on Extreme Pro-
gramming and Agile Processes in Software Engineering which took place between
June 6 and June 10, 2004 at the conference center in Garmisch-Partenkirchen at
the foot of the Bavarian Alps near Munich, Germany. In this way the conference
provided a unique forum for industry and academic professionals to discuss their
needs and ideas for incorporating Extreme Programming and Agile Methodo-
logies into their professional life under consideration of the human factor. We
celebrated this year’s conference by reflecting on what we had achieved in the
last half decade and we also focused on the challenges we will face in the near
future.

The focus of the whole conference was on learning and interaction. We
brought practitioners together in different sessions to discuss their experien-
ces in solving software problems. XP 2004 facilitated the swapping of ideas in
a number of ways, including featured talks by professionals on the cutting edge
of extreme programming and agile processes, technical presentations, activity
sessions, panels, posters, code camps, workshops, tutorials, and other opportu-
nities to exchange and elaborate on new findings. XP 2004 also featured a PhD
symposium for PhD students and a trainer and educator track for everybody
with a vested interest in training and education.

This volume is divided into several topical sections. First you will find full
papers, then the abstracts of the invited talks, followed by the abstracts of the
posters and demonstrations. Then you will find the papers of the trainers’ and
educators’ track, right before the abstracts of the PhD symposium papers. Next,
all accepted workshops are presented, followed by the panels and the activities
to conclude the book.

The papers went through a rigorous reviewing process. Each paper was
reviewed by at least three program committee members and was discussed ca-
refully among the program committee members. Of 69 papers submitted, only
23 were accepted as full papers. These papers were grouped into six categories,
focusing on the following themes:

Acceptance Testing: These papers focus on different ways of dealing with the
problem of creating acceptance tests. Most of them suggest a framework that
supports the customer as well as the developer to ensure the functionality
of the system.

VI Preface

Scalability Issues: This section collects all the papers dealing with agile de-
velopment in a larger setting. Some of them consider the aspect of dispersed
development, others the issues that arise when outsourcing parts of the de-
velopment, and others discuss the problems and solutions of diverse agile
practices, such as continuous integration, in a large team.
New Insights: These papers present various new ideas in the field of agile
development. Some suggest the use of agile development in a different field
such as open source development and others explore new techniques such as
agile specification driven development.
Refactoring: This section contains papers discussing problems and solutions
within the practice of refactoring. Large refactorings is one topic, whereas
refactoring in a legacy system is another one.
Social Aspects: All papers focusing on social aspects are collected in this
section. The characteristics of XP teams and different roles in agile teams
are one focus, employee satisfaction is another.
Practitioner Reports: Several authors report on their experiences with agile
development. You will find papers about the influence of user participation in
agile development, the loss and gain with adapting the agile process during
development, as well as agile project controlling.

Next you will find the abstracts of the invited talks, right before we pre-
sent the posters and demonstrations. Posters and demonstrations are ideal for
presenting preliminary research results, experience reports, late-breaking deve-
lopments, or for giving an introduction to interesting, innovative work.

Then you will find the papers and posters of the trainers’ and educators’
track. This track was aimed at industry and academic professionals who are
interested in teaching and learning extreme programming and agile processes.
Professionals from academia and industry were invited to discuss their needs
and ideas for integrating extreme programming and agile processes into training
plans and courses.

The next section presents the abstracts of the PhD symposium papers. In the
symposium, students presented and discussed their research objectives, methods,
and (preliminary) results.

After this, all accepted workshops are presented. The XP 2004 workshop
program provided a forum for groups of participants to exchange opinions and to
enhance community knowledge about research topics and real-life applications of
agile processes. The workshops also provided the opportunity for representatives
of the technical community to coordinate efforts and to establish collective plans
of action.

In the last section you will find the descriptions of the activities and the
panels. Panels and activity-sessions were lively, participatory, educational, and
entertaining. They offered an interactive opportunity to share perspectives, de-
bate opinions, and communicate best-practices.

These proceedings contain conference versions of the papers, posters, demon-
strations, and panel position statements as well as the papers of the trainer and
educator track and the abstracts of the PhD symposium. Besides a collection

Preface VII

of ideas and experiences, they represent an aspect of collective learning and
understanding within a community of people who came together in Garmisch-
Partenkirchen for five days in June 2004.

We would like to thank everybody who contributed to XP 2004; the authors,
the workshop and activity leaders, the tutorial speakers, the panelists, those
who served on the various committees, our sponsors, those who offered their
experience of running previous XP conferences, the staff of the conference center
in Garmisch-Partenkirchen and, last but not least, the participants.

April 2004 Jutta Eckstein
Hubert Baumeister

This page intentionally left blank

Organization

XP 2004 is organized by Software und Support Verlag in cooperation with the
Institut für Informatik of the Ludwig-Maximilians-Unversität München.

Executive Committee

General Chair:
Program Chair:
Academic Chair:
Tutorial Chair:
Workshop Chair:
Panels and Activities:
Poster Chair:
Educators Track Chairs:
PhD Symposium Chairs:
Chair of Social Activities:

Martin Fowler (ThoughtWorks Inc., USA)
Jutta Eckstein (Germany)
Hubert Baumeister (LMU Munich, Germany)
Rachel Davies (UK)
Vera Peeters (Belgium)
Steven Fraser and Joshua Kerievsky (USA)
Rachel Reinitz (UK)
Helen Sharp and Mike Holcombe (UK)
Barbara Russo (Italy)
Nicolai Josuttis (Germany)

Program Committee

Ann Anderson (USA)
Barbara Russo (Italy)
Bernhard Rumpe (Germany)
Charles Poole (USA)
Daniel Karlström (Sweden)
David Hussman (USA)
Diana Larsen (USA)
Dierk König (Switzerland)
Don Wells (USA)
Erich Gamma (Switzerland)
Frank Westphal (Germany)
Giancarlo Succi (Italy)
Helen Sharp (UK)
Hubert Baumeister (Germany)
Jim Highsmith (USA)
Joe Bergin (USA)
John Favaro (Italy)
José H. Canós Cerdá (Spain)
Joseph Pelrine (Switzerland)
Joshua Kerievsky (USA)
Laurie Williams (USA)
Linda Rising (USA)

Marco Abis (Italy)
Martin Fowler (USA)
Martin Lippert (Germany)
Mary Lynn Manns (USA)
Mary Poppendieck (USA)
Michael Hill (USA)
Michele Marchesi (Italy)
Mike Holcombe (UK)
Nicolai Josuttis (Germany)
Paul Grünbacher (Austria)
Rachel Davis (UK)
Rachel Reinitz (USA)
Rick Mugridge (New Zealand)
Ron Jeffries (USA)
Scott W. Ambler (USA)
Sian Hopes (UK)
Steve Freeman (UK)
Steven Fraser (USA)
Till Schümmer (Germany)
Tim Mackinnon (UK)
Vera Peeters (Belgium)
Ward Cunningham (USA)

This page intentionally left blank

Table of Contents

Acceptance Testing

The Video Store Revisited Yet Again: Adventures in GUI
Acceptance Testing

Johan Andersson, Geoff Bache

Test Driving Custom Fixtures
Rick Mugridge

Putting a Motor on the Canoo WebTest
Acceptance Testing Framework

Jennitta Andrea

Generative Acceptance Testing for Difficult-to-Test Software
Jennitta Andrea

Scalability Issues

Moomba – A Collaborative Environment for Supporting Distributed
Extreme Programming in Global Software Development

Michael Reeves, Jihan Zhu

When XP Met Outsourcing
Angela Martin, Robert Biddle, James Noble

Distributed Product Development Using Extreme Programming
Charles J. Poole

Scaling Continuous Integration
R. Owen Rogers

New Insights

Efficient Markets, Efficient Projects, and Predicting the Future
John Favaro

Agile Principles and Open Source Software Development:
A Theoretical and Empirical Discussion

Stefan Koch

XP Lite Considered Harmful?
Ben Aveling

Agile Specification-Driven Development
Jonathan S. Ostroff, David Makalsky, Richard F. Paige

1

11

20

29

38

51

60

68

77

85

94

104

XII Table of Contents

Refactoring

Towards a Proper Integration of Large Refactorings
in Agile Software Development

Martin Lippert

An Agile Approach to a Legacy System
Chris Stevenson, Andy Pols

Cynical Reengineering
Kristoffer Kvam, Daniel Bakkelund, Rodin Lie

Social Issues

The Characteristics of XP Teams
Hugh Robinson, Helen Sharp

The Oregon Software Development Process
Till Schümmer, Robert Slagter

Roles in Agile Software Development Teams
Yael Dubinsky, Orit Hazzan

Empirical Analysis on the Satisfaction of IT Employees Comparing
XP Practices with Other Software Development Methodologies

Katiuscia Mannaro, Marco Melis, Michele Marchesi

Practitioner Reports

Agile Processes Enhancing User Participation for Small Providers
of Off-the-Shelf Software

Christina Hansson, Yvonne Dittrich, Dave Randall

Self-Adaptability of Agile Software Processes:
A Case Study on Post-iteration Workshops

Outi Salo, Kari Kolehmainen, Pekka Kyllönen, Jani Löthman,
Sanna Salmijärvi, Pekka Abrahamsson

Enterprise Continuous Integration Using Binary Dependencies
Mike Roberts

Agile Project Controlling
Stefan Roock, Henning Wolf

Invited Talks

Leading Fearless Change—Introducing Agile Approaches and Other
New Ideas into Your Organization

Linda Rising, Mary Lynn Manns

113

123

130

139

148

157

166

175

184

194

202

210

Table of Contents XIII

Posters

Automated Generation of Unit Tests for Refactoring
Bartosz Walter,

XP: Help or Hindrance to Knowledge Management?
Hans Dermot Doran

Test Driven Development and Software Process Improvement in China
Kim Man Lui, Keith C. C. Chan

Project Management and Agile Methodologies: A Survey
Michela Dall’Agnol, Alberto Sillitti, Giancarlo Succi

Evaluating the Extreme Programming System – An Empirical Study
Panagiotis Sfetsos, Lefteris Angelis, Ioannis Stamelos,
Georgios L. Bleris

A Comparison of Software Development Process Experiences
Robert Gittins, Julian Bass, Sian Hope

Abstract Test Aspect: Testing with AOP
Robert Wenner

XMI for XP Process Data Interchange
Sandro Pinna, Nicola Serra

Analyzing Pair-Programmer’s Satisfaction with the Method,
the Result, and the Partner

Uuno Puus, Asko Seeba, Priit Salumaa, Sven Heiberg

Literate Programming to Enhance Agile Methods
Vreda Pieterse, Derrick G. Kourie, Andrew Boake

Demonstrations

Mockrunner – Unit Testing of J2EE Applications –
Alwin Ibba

Application of Lean and Agile Principles to Workflow Management
Barbara Weber, Werner Wild

Assistance for Supporting XP Test Practices
in a Distributed CSCW Environment

Ibrahim Lokpo, Michel Babri, Gérard Padiou

Requirements of an ISO Compliant XP Tool
Marco Melis, Walter Ambu, Sandro Pinna, Katiuscia Mannaro

Going Interactive: Combining Ad-Hoc and Regression Testing
Michael Kölling, Andrew Patterson

211

215

219

223

227

231

237

242

246

250

254

258

262

266

270

XIV Table of Contents

Complete Test Generation for Extreme Programming
Mike Holcombe, Florentin Ipate

Story Management
Olaf Lewitz

Conditional Test for JavaBeans Components
Hironori Washizaki, Yuhki Sakai, Yoshiaki Fukazawa

Trainers and Educators Track

Agile Methods in Software Engineering Education
Christian Bunse, Raimund L. Feldmann, Jörg Dörr

Extreme Programming in Curriculum:
Experiences from Academia and Industry

Matthias M. Müller, Johannes Link, Roland Sand,
Guido Malpohl

Human Aspects of Software Engineering:
The Case of Extreme Programming

Orit Hazzan, Jim Tomayko

Extreme Programming in a University Project
Roger A. Müller

Ph.D. Symposium

Agile Methods: The Gap between Theory and Practice
Kieran Conboy

Correlating Unit Tests and Methods under Test
Markus Gälli

Exploring the XP Customer Role – Part II
Angela Martin

A Selection Framework for Agile Methodologies
Ernest Mnkandla, Barry Dwolatzky

Workshops

Refactor Our Writings
Joshua Kerievsky

Be Empowered (That’s an Order!) “Experience the Dynamics and
the Paradoxes of Self-Organizing Teams”

Laurent Bossavit, Emmanuel Gaillot

274

278

282

284

294

303

312

316

317

318

319

321

323

Table of Contents XV

How to Maintain and Promote Healthy Agile Culture
David Hussman, David Putman

Customer Collaboration
Ole Jepsen

Assessing Agility
Peter Lappo, Henry C. T. Andrew

Designing the Ultimate Acceptance Testing Framework
Sean Hanly, Malcolm Sparks

Panels and Activities

The XP Customer Role
Steven Fraser, Angela Martin, David Hussman, Chris Matts,
Mary Poppendieck, Linda Rising

Fishbowl: XP Tools
Joshua Kerievsky, Steven Fraser

The XP Game
Olivier Lafontan, Ivan Moore, Vera Peeters

XP and Organizational Change: Lessons from the Field
Diana Larsen, David Hussman, Mary Lynn Manns,
David Putman, Linda Rising

Author Index

325

328

331

339

342

347

348

351

357

This page intentionally left blank

The Video Store Revisited Yet Again:
Adventures in GUI Acceptance Testing

Johan Andersson and Geoff Bache

Carmen Systems AB, Odinsgatan 9, SE-41103 Göteborg, Sweden
geoff.bache@carmensystems.com

Abstract. Acceptance testing for graphical user interfaces has long
been recognised as a hard problem. At the same time, a full suite of
acceptance tests written by the Onsite Customer has been a key princi-
ple of XP since it began [1]. It seems, however, that practice has lagged
behind theory, with many practitioners still reporting weak or no accep-
tance testing. At XP2003, we presented our successes with text-based
acceptance testing of a batch program[2]. In the past year we have ex-
tended this approach to apply to a user interface. We have developed an
approach based on simulation of user actions via a record/replay layer
between the application and the GUI library, generating a high-level
script that functions as a use-case scenario, and using our text-based ap-
proach for verification of correctness. We believe this is an approach to
GUI acceptance testing which is both customer- and developer-friendly.

1 XP Acceptance Testing

We should be clear what we regard as the primary aims of acceptance tests.
These are the standards by which we judge acceptance tests and approaches to
acceptance testing:

The tests should model the actions of a user as closely as possible.
Writing the tests should be quick, painless and require as few programming
skills as possible,
Running the tests should be as smoothe as possible - press a button and
watch them go green/red.
Maintaining the tests should not be too laborious.
Tests should be as stable under changes as possible. In particular they should
be independent of things like font, user interface layout and internal design.
Tests should document the features of the system in as readable a way as
possible.

Let’s also be clear at what we are not aiming for. While the following are worthy
aims, they are mainly the responsibility of other practices, for example Unit
Testing or the various replacements for it that we described in last year’s paper
[2].

The tests should not aim to improve or document the design.
The tests should concentrate on indicating the presence of errors, not pri-
marily help in fixing them.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 1–10, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 J. Andersson and G. Bache

2 Introduction

Our open source acceptance testing tool, TextTest [3], has traditionally been
a console application that we have used to test UNIX batch tools. Recently,
however, we wrote a GUI for it, and wanted to be able to test this GUI using
a variation of the same approach. We have come up with an approach to do
this that we found to be highly effective. For the sake of this paper, however,
we thought that we would use what we have learned to revisit the classic Video
Store problem, as this is likely to be more familiar to readers and avoids the
meta-situation of programs testing themselves! The Video Store has been used
to illustrate a few aspects of XP already, from refactoring to unit testing. [4]

TextTest is written in Python, and its GUI uses the PyGTK library[5]. The
examples are therefore taken from this environment.

3 The Theory: Principles of Our Approach

3.1 Separating Simulation from Verification

Acceptance testing of GUIs has traditionally been regarded as one activity. Per-
haps due to our background with applications that do not have an interactive
aspect, we have come to regard it as two, largely independent activities: simu-
lating the interactive actions of a user in some persistent way (e.g. a test script)
and verifying that the behaviour is correct when performing these actions. For
future reference we refer to these as simulation and verification.

This simplifies matters somewhat because it removes the need for a tool that
does both, decoupling the activities. Each tool can then concentrate on being
good at one thing only. Armed with a pre-existing verification tool, TextTest [3],
(discussed later) which has proved successful in the world of batch applications,
the main challenge of testing a GUI is to find an effective approach to simulation.

3.2 An Agile Record/Replay Approach

Record/Replay approaches have a strong theoretical appeal to us. To be able to
create tests as a user simply by clicking around the application under test seems
to be the easiest imaginable interface. Many tests can be created quickly, it is
totally clear to the person creating them what they represent, no (potentially
error-prone) code needs to be written per test and the only qualification for
writing them is understanding the system under test, which is needed anyway.

Record/Replay tools are nothing new. A wide range of them exist, of which
QCReplay[6] is the one we have most experience of. In recent years, a bewilder-
ing array of open source varieties for Java have appeared as well[7]. They are
generally based on intercepting mouse clicks and keyboard input, recording them
in a script, and asserting behaviour by taking screen dumps (“photographing”
the screen)

They are not renowned for their popularity in the Agile community, however.
They tend to produce long, low-level scripts which are extremely tied to the
environment at the time when they were recorded. [8] For example:

The Video Store Revisited Yet Again 3

1.

2.

3.

Taking screen dumps is fragile under changes of font settings or window
manager.
Moving the mouse across a GUI generates lots of focus-in events, focus-out
events, mouse-over events etc. The application is only connected to (‘listening
for’) a fraction of these, so they fill up the script with junk.
Even relevant events are recorded in very low level terms, with commands
like click(124, 21). Change the GUI layout and all bets are off: everything
must be re-recorded.

In short, they do not embrace change. They are fun for a while but usually
a maintenance headache in the long run.

For this reason, they have been abandoned by many in favour of data-driven
approaches, that sacrifice some of the advantages listed initially for the ulti-
mately greater gain of maintainibility in a changing world. We, however, have
tried to rehabilitate record/replay in a more agile and maintainable form. In our
view this requires a radical change to the way it works.

3.3 Test Scripts as Use-Case Scenarios

We believe that the fundamental difference between acceptance tests and unit
tests is that acceptance tests have a customer focus and unit tests have a devel-
oper focus. A GUI acceptance test therefore has a lot in common with a Use-Case
scenario. It should be a description of an interaction sequence between the user
(actor) and the system under test from the point of view of the user. It should
not describe what happens internally in the system, instead, as a Use-Case sce-
nario, it should aim to give a user-readable statement of what happens during
the actor/system interaction in the high-level language of the domain.

Such a test has two major advantages over the kind of test generated by
traditional record/replay approaches. It is easy to read and functions well as
documentation of system behaviour. More importantly, it is much more inde-
pendent of the mechanism by which the use-case has been implemented.

We therefore want the test script that we will record and replay to be a high-
level natural language file describing what the user does in the terminology of
the domain. This fits well with the chosen verification approach, of comparing
high-level natural language files produced by the system.

How can this be done? It is clear that it is not possible to write such a
record/replay tool that sits on top of the application, starting, stopping it and
recording its events at the system level. We need a layer between the application
and the GUI library which can be told something about the terminology of the
domain and the intent of the application rather than its mechanics.

4 Applying the Theory: Simulation with PyUseCase

We have developed an open source record/replay layer for PyGTK,
“PyUseCase” [9], extending it as we have needed to, in the process of testing

4 J. Andersson and G. Bache

TextTest in the past year. While this scripting engine will only be useful to
other PyGTK developers, the approach is possible with any GUI library.

To summarise, it differs from other record/replay tools in the following re-
spects:

1.

2.

3.

It does not generate scripts in any particular ‘language’. What comes out is
a high-level use-case description in the terminology of the domain.
The relationship between it and the application is reversed. Instead of sitting
on top of the application and starting and stopping it, it sits between the
application and the GUI library.
It is assertion-free, i.e. it is a pure simulation tool. Another tool (e.g.
TextTest) is needed for verification.

4.1 Creating a Domain-Language Script

(Note that PyGTK’s terminology of ‘connecting to signals’ may be understood
better as ‘listening for events’ for readers used to other GUI libraries)

Our ideal is to be as close as possible to the terms in the user’s domain, and
not use the terms of the GUI layout or the mechanics of how it is used. For
example, when the user of VideoStore clicks the ‘add movie’ button, we want
the script to simply say

add movie
rather than
click(‘add movie’) or
click(124, 21)
This has obvious advantages. It’s about as stable under changes as is possible

: it survives as long as the user can in some way add a pre-selected movie at that
point. It is not dependent on the user interface layout, the choice of widgets for
the purpose of adding movies or the internal system design. It also leaves the
reader in little doubt as to what happens at this point.

How does it work? We need our developers to connect the GUI widget signals
to script commands at the same time they connect them to the methods that
will be called when the user performs some action. This tells the script engine
how to record the emission of that signal into a use-case description, and how
to convert it back again.

For example, PyGTK programmers might implement the ‘add movie’ button
like this:

button.connect(‘clicked’, addMovie)
whereaddMovie is the method that actually performs the change, andbutton

is the widget. To use PyUseCase, they would instead write
scriptEngine.connect(‘add movie’, button, ‘clicked’, addMovie)
Instead of connecting the addMovie method directly to the signal emitted

when the button is clicked, they connect it indirectly via the script engine, giving
the user action a name at the same time. This is not much of an extra burden
for the programmers. They just need to give names to everything the user can
do via the GUI by adding extra arguments to their ‘connect’ statements.

The Video Store Revisited Yet Again 5

This is basically the only API to PyUseCase. The syntax varies a bit for
different widgets, and for more complex widgets like list views you need to tell
it how to parse the arguments for selecting rows, etc. You also need your appli-
cation to know about record and replay mode, so it can forward these things to
PyUseCase.

Note that we only tell the script engine about signals we are connected to
anyway. This means that any signals we aren’t connected to won’t be recorded
by the script, whatever the user does with his mouse.

5 Verification with TextTest

TextTest and its usage were discussed in some detail in last year’s paper[2]. The
basic idea is the same, though it has gained many more features and users since
then, including a GUI.

Essentially, the developers ensure that the system writes a plain-text ‘be-
haviour file’ describing what it is doing. This file will contain all information
considered useful to the customer: internal state, parsing and response to user
actions, text that has appeared on the screen. Verification is achieved by the cus-
tomer saving this file (and any other text-convertible generated files considered
relevant) at the point he is happy both with what he is able to do with the sys-
tem and how the system responds to his actions. Note that this is not a ‘system
diagnostic’ file and should be free of statements that only have meaning to devel-
opers. Developer-statements should be written to a different file, which can also
be generated and saved, but whose contents will not be viewed by the customer.
By convention the ‘behaviour file’ is simply written to standard output.

A test-run then consists of replaying what the customer did and checking the
system’s text output for any differences from when the customer approved it.
Differences will show up as test failure, though they may be saved and turned into
the new correct behaviour if the customer approves the change. In conjunction
with a simulation tool, this can be used on a GUI just as easily as on a batch
application.

This has several advantages over requiring the customer to select assertions
to make per test. In essence, many more verifications can be made, at a level of
detail largely determined by the developers, who have a better overview of this.
The customer has one less thing to worry about, and cannot “forget” to make
some vital assertion. He can concentrate on using the system in an appropriate
way and looking out for correct responses from it.

The tests consist only of automatically generated plain text. This removes
the need to write any code per test. Your tests then depend on your program’s
behaviour file, but not on its internal design. This means refactoring will not
disturb the acceptance tests, and you will not end up needing to maintain a lot
of test code once you have a lot of tests. Bugs in your test code will not be hiding
bugs in your real code.

Also, a customer without development skills can interact with the behaviour
file, even if he isn’t writing it. It is written in natural language and describes

6 J. Andersson and G. Bache

in words what is happening. He can spot if the important number he saw on
the screen didn’t appear in the behaviour file, for example. If the verification
is implemented as a load of Java test code, he can only hope it does what he
intended when writing the test.

6 Customer-Developer Interaction

We have developed a test-first approach to using these tools. This requires close
interaction between the customer and the implementing developers. The process
looks something like this. (See the appendix for examples of it in action!)

1.

2.

3.

4.

5.

The customer does the simulation to record the test. He does as much as he
is able of what he wants to be able to do, generating a use-case script and a
behaviour file that records system responses.
The customer can force-fail the test by editing the use-case script (giving the
system some ‘command’ it does not yet understand). This tells the developers
to add some user capability.
The customer can also force-fail the test by editing the behaviour file, if the
system responded incorrectly or incompletely. This tells the developers to
change the behaviour.
The developers take this test and implement the functionality, taking care
to make the system output descriptions of important new system actions to
the behaviour file.
The customer repeats the simulation with the new improved system (if
needed). When he is happy, the new test is added to the suite of accep-
tance tests.

In this way development can be considered to be ‘driven’ by acceptance tests,
in that tests describing work to be done are provided by the customer before
that work is begun by developers. However, we have found this process most
practical for small incremental user stories, which are hopefully the daily stuff of
XP projects. Where the user wants completely new screens or totally different
behaviour, it’s more practical to describe this in words to developers and only
try to create acceptance tests when some attempt has been made to provide the
functionality. This is also likely to be the case in the very early stages of a project
when there is not so much around to write tests on yet. It is still possible to use
the approach for larger steps: but it requires a bit more of the test writer and is
more prone to tests needing to be re-written when the functionality is present.

With this process in place, we have also experienced less of a need for unit
tests. See our XP2003 paper[2] for details.

7 Other Benefits of the Record/Replay Layer

The fact that our record/replay tool sits between the application and the GUI
library means it is a part of the application, rather than an optional extra for
the testers. This opens up some interesting possibilities for using it for other
things than directly recording and replaying tests.

The Video Store Revisited Yet Again 7

7.1 Refactoring the Tests

Everything possible has been done to keep the scripts short, high-level, and
change-resilient, staving off the evil day when they get too hard to manage
easily by pure record/replay. But applications get big and complex, and maybe
that day will come anyway. As we don’t have a language with syntax, we cannot
take the approach of refactoring out common code by hand. We need some other
way of updating a large number of tests when their use-case scripts prove to be
insufficiently resilient.

Fortunately, we have the possibility to run in record and replay mode simul-
taneously. This enables us to automatically update a great deal of tests very
quickly by telling the script engine to keep the old names for ‘replay’ only, while
introducing the new ones for ‘record’. This will work well where use-case actions
disappear or change description. It works less well when new use-case actions
need to be introduced to a lot of pre-existing tests, or when one conceptual
‘use-case action’ starts to require several clicks. This requires another approach,
which we have called “GUI Shortcuts”.

7.2 GUI Shortcuts: Towards a Dynamic User Interface

The record/replay layer is available at any time to any user of the system. This
raises the possibility that individual users can personally tweak the user interface
and eliminate repetitive actions by making use of the record/replay capabilities.

Most people have at one time or another ended up using a GUI in a repetitive
way. They generally do not need all of its capabilities, and may have to make
5 or so clicks just to reach the screen they usually work with. Or for example,
who hasn’t at some time or other been frustrated by constant pop-up dialogues
that demand “Are you sure you want to do this?” or something similar. This
can be minimised by good user interface design, but fundamentally applications
have to be configurable for their power users, and this can make them unwieldy
for their novice users.

The user can simply record a “shortcut” for his repetitive actions. He goes
into record mode at the appropriate point, records his usual five clicks (or OKs
all his annoying pop-ups), and then gives the script he has recorded a name. A
new button appears at the bottom of his screen, which he can click whenever he
wishes to repeat what he did. This will save him time and repetitive work.

In the case of maintaining scripts when a user action starts to require more
than one click, you can rely on the fact that shortcut names are recorded in
scripts if they are available. Therefore, you would record a shortcut for the
single click in the old system, run in record and replay mode simultaneously
as described previously to insert the shortcut into all tests, and then simply
re-record the shortcut (by hand) in the new system.

8 Conclusion

We feel that true Acceptance testing of GUIs can best be achieved by trying to
make record/replay approaches more ‘agile’. This in turn is best achieved by an

8 J. Andersson and G. Bache

approach that separates simulating user actions from verifying system behaviour
and uses co-operating, but separate tools for these things.

Simulation of user actions will be most change-resilient if it records use-case
descriptions that are independent of the mechanics of the GUI, and this can
only really be achieved by a record/replay layer between the application and
GUI library, rather than one that sits on top of the application. PyUseCase is
such a tool that works for PyGTK applications.

Verifying system behaviour is best done by a tool that compares automati-
cally generated plain text. Organised plain text is easy to update and maintain
and is independent of the system’s internal design. TextTeat is such a tool that
will work for a program written in any language.

9 Appendix: Examples from the VideoStore

9.1 Step by Step: Fixing a Bug in VideoStore

Let’s suppose that the system allows the user to add two movies with the same
name. This isn’t good, so we as customer want to create a test for it. Here’s
what we would do.

1.
2.

3.

4.

5.

6.

Open TextTest’s test creation functionality for the VideoStore application.
Enter ‘DuplicateMovieBug’ as test name, describe problem in description
field. Create test.
Press ‘Record Use-Case’ button. TextTest will then start VideoStore in
record mode, which forwards this mode to PyUseCase. We use the GUI
to enter a movie ‘Star Wars’, add it twice, and then quit.
The test now contains a use-case script generated by PyUseCase. It looks
like this:
set new movie name to Star Wars
add movie
add movie
quit
We now have the chance to edit this script, but it describes what we did and
reproduced the bug, so we don’t need to.
Press ‘Run Test’ button. TextTest now starts VideoStore in replay mode
(using our generated script), and collects VideoStore’s behaviour file. It looks
like this:
‘set new movie name to’ event created with arguments ‘Star Wars’
‘add movie’ event created
Adding new movie ‘Star Wars’. There are now 1 movies,
‘add movie’ event created
Adding new movie ‘Star Wars’. There are now 2 movies.
‘quit’ event created
The ‘event created’ lines are created by PyUseCase when it successfully re-
plays a script event. The ‘Adding new movie’ lines are simple output state-
ments from VideoStore describing what it is doing.

The Video Store Revisited Yet Again 9

7.

8.

We can now edit this as well. System behaviour was wrong, so we do so,
replacing the second ‘Adding new movie’ line with a suitable error message.
Now we’re done. The test is handed over to the developers, who can run it
and will be given failure on the line we edited. They can then fix the problem,
and get VideoStore to send the error message to both the behaviour file and
the screen.

9.2 Step by Step: Adding New Functionality to VideoStore

Let’s suppose that we want to be able to sort the list of movies alphabetically.
This functionality doesn’t yet exist.

1.
2.
3.

4.

5.

6.

7.

8.

9.

10.

Open TextTest’s test creation functionality for the VideoStore application.
Enter ‘SortMovies’ as test name, describe functionality in description field.
Press ‘Record Use-Case’ button as before. TextTest will then start Video-
Store in record mode. We enter two movies ‘Star Wars’ and ‘Die Hard’.
These are in the wrong order, so we want to sort them. But we can’t do that
yet. We quit.
TextTest then shows us the script it has generated. It looks like this:
set new movie name to Star Wars
add movie
set new movie name to Die Hard
add movie
quit
We now have the chance to edit this script. We wanted to do something we
couldn’t, so we add a line sort movies before the quit command.
Press ‘Run Test’. TextTest now starts VideoStore in replay mode, using our
script and collects the behaviour file. It looks like this:
‘enter new movie name’ event created with arguments ‘Star Wars’
‘add movie’ event created
Adding new movie ‘Star Wars’. There are now 1 movies.
‘add movie’ event created
Adding new movie ‘Die Hard’. There are now 2 movies.
ERROR – ‘sort movies’ event not understood.
‘quit’ event created
We can now edit this as well. System behaviour was wrong, so we edit the
file, replacing the ‘ERROR’ line with ‘I’d like to press a sort button here.
It should sort the movie list into alphabetical order’ (or whatever, just to
make a difference appear on this line when the test is run)
Now we’re done. The test is handed over to the developers, who can run it
once again and will be given failure on the line we edited. They can then add
the sort button, and probably a little print-out to the behaviour file saying
what order our beloved movies are in. When they swap order suitably, the
developers return the test to the customer.
The customer can now review what happens. If he is happy that the sys-
tem behaves correctly, and that both user and system actions are correctly
recorded in their respective files, he saves the new behaviour and checks it
in to the acceptance test suite. If not, the process iterates.

10 J. Andersson and G. Bache

References

1.
2.

3.

4.

5.

6.
7.

8.

9.

Beck, K.: Extreme Programming Explained. Addison-Wesley, 1999.
Andersson, J., Bache, G. and Sutton, P.: “XP with Acceptance-Test Driven Devel-
opment: A Rewrite Project for a Resource Optimization System” in Proceedings
of the 4th International Conference on Extreme Programming and Agile Processes
in Software Engineering (XP2003). Italy, 2003.
TextTest is open source and can be downloaded from
http://sourceforge.net/projects/texttest
An entire chapter on writing a Video Store GUI with unit tests is present in Astels,
D.: “Test-Driven Development: A Practical Guide” Prentice Hall, 2003 A discus-
sion of refactoring with the same problem can be found in van Deursen, A. and
Moonen, L.: “The Video Store Revisited - Thoughts on Refactoring and Testing”
in Proceedings of the 3rd International Conference on Extreme Programming and
Flexible Processes in Software Engineering (XP2002). Italy, 2002.
PyGTK is available from http://www.daa.com.au/ james/pygtk/. It comes as stan-
dard with Red Hat Linux versions 8.0 and onwards.
http://www.centerline.com/productline/qcreplay/qcreplay.html
At least 6 record/replay tools for Java can be found at
http://www.junit.org/news/extension/gui/index.htm
The tool ‘Android’ gives a beautiful example of the kind of low-level script you get
from recording a test that does 1 + 2 = 3 in xcalc.
http://www.wildopensource.com/larry-projects/articlel.html
PyUseCase isn’t formally released at time of writing, though it hopefully will be
by the time of XP2004. It is in any case bundled with TextTest as TextTest itself
uses it for its own testing.

Test Driving Custom Fixtures

Rick Mugridge

University of Auckland, New Zealand
r.mugridge@auckland.ac.nz

Abstract. is an automated testing framework, developed by Ward
Cunningham, that is a great way to develop automated customer
tests. Custom fixtures can allow us to express some tests in a more
convenient, expressive and direct form for customers (and ourselves).
The open-ended and generic nature of the framework enables new
custom fixtures to be easily incorporated. We show how to test drive
the development of such custom fixtures using FixtureFixture.

Keywords: Customer testing, tdd,

1 Introduction

uses HTML tables to express data-driven tests. Each test table specifies a
fixture, which defines how the tests in the table are to be interpreted [1]. Three
standard fixtures are provided with ColumnFixture tables are for testing
business rules involving calculations. ActionFixture tables are for testing se-
quences of actions that change the state of the system under test. RowFixture
tables are for testing that collections in the system under test contain the ele-
ments that are expected.

New types of fixtures can allow us to express some tests in a more convenient,
expressive and direct form for customers (and ourselves). For example, the Socket
Acceptance Testing framework (SAT) uses a custom fixture that has been used
to test a chat server [2]. A test may involve several clients interacting with a
server, where the actions of each client is represented in its own column of a
SAT table. This makes it easier to see the impact of the actions of the clients on
the state of the server over time, going down the table.

Clearly, a test driven approach to the development of complex custom fixtures
is desireable. What sort of tests are needed for such fixtures?

When we write tests for applications using the tests in a table pass when
there are no unexpected values and no exceptions are thrown. However, when
we test or define a new type of fixture, we also need to specify what is to happen
when tests don’t pass. We can do this in terms of the markings (colours and
extra information) that we expect in the table report, as provided by

We introduce FixtureFixture, a fixture for testing and test-developing new
types of fixtures for A FixtureFixture table embeds another table within
it in order to test or define it. FixtureFixture was developed test-first, using

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 11–19, 2004.
© Springer-Verlag Berlin Heidelberg 2004

12 R. Mugridge

itself. It has been used to define the standard fixtures and six generic custom
fixtures.

We begin by looking at examples of tables, based onColumnFixture and
RowFixture, and the reports that result from running them in Section 2. In the
next Section, we show FixtureFixture tables that test (or define) some aspects
of these standard fixtures. We then show in Section 4 how FixtureFixture itself
was developed test-first using FixtureFixture tables. We consider some design
issues in Section 5 before concluding.

2 Markings in Table Reports

After running test tables, provides feedback by producing an HTML report.
For example, consider the report in Fig. 1 for a ColumnFixture table. All
but the first two rows of the table are independent calculation tests, where the
plus() value is expected to be the sum of and The first two tests in the
table pass and are marked green. The third test fails and is marked red, along
with the actual value.

Fig. 1. Report of ColumnFixture ta-
ble with last row wrong

Fig. 2. Report of RowFixture table
with an unexpected third row

A RowFixture table checks that the elements of a collection from the system
under test are as expected. A report for such a table marks row cells that have
unexpected values and rows that are “missing”. Any “surplus” rows, that were
unexpected, are added to the reported table. For the example shown in Fig. 2,
the first two rows were expected but a third was also actually present.

3 Testing with FixtureFixture

To automatically test an existing or custom fixture, we need to specify what
markings (colourings and added text and rows) we expect from tests in a table
that uses our new fixture. The obvious way to do this is to use itself.

Test Driving Custom Fixtures 13

A FixtureFixture table (the outer table) encloses another table (the
inner table). All but the first row and first column of the whole table make up
the inner table. For example, the table shown in Fig. 1 is embedded inside the
table reported in Fig. 3. The first (outer) column specifies the markings that we
expect in the resulting report for each of the cells of the corresponding inner
row.

Fig. 3. FixtureFixture table report

The first inner row (ie, the first row of the inner table) in Fig. 3 specifies
the name of the fixture. The second inner row includes the names of the fields
and methods (for the ColumnFixture). We expect these three cells to be left
unmarked (“-”) in the report. The first outer column specifies the expected
markings as “---”, with a “-” for each of the three cells (trailing “-” are unnec-
essary).

For the third inner row, the last cell is expected to be right (“r”) and
to be coloured green. As the other cells in that row remain unmarked, the
expected markings is “-- r”. For the fifth inner row, the last cell is expected
to be wrong (“w”) and to be coloured red. Hence the expected markings is “--w”.

A blank cell in a ColumnFixture table is filled, in the report, by the current
value of the column’s field or method. We need to be able to test this marking.
We use a report row in the FixtureFixture table, which checks the values of
the previous row. For example, in the third inner row of 1, the cells are empty,

14 R. Mugridge

so their values should be added in the report. The report in the fourth inner
row checks that the two cells in the previous (empty) inner row of the report
each have the value “0”, the initial values of and

Similarly, a report is used in the last outer row of the table to check the
markings of that inner row after the fields have been changed. The report
for 1 is shown in Fig. 4.

Fig. 4. Report of Table 1

Finally, we need to specify that we expect extra rows to be inserted into a
reported table. For example, 2 shows a FixtureFixture test for the report of
the table shown in Fig. 2. The markings of the outer cell of the last row of 2
start with “I”. This means that an inner row is expected to be inserted here,
with the given markings (“w”) and the given text (“two surplus” and “1”).

Test Driving Custom Fixtures 15

4 Developing FixtureFixture Itself

These ideas were used to develop FixtureFixture itself, using an inner table
with a fixture with known behaviour. The fixture class used is transparent as
possible; class FixtureUnderTest has actions that correspond directly with the
markings that it makes in a reported table1.

We began with an inner table with fixture FixtureUnderTest, as shown
in 3. The single cell of the inner table contains the action “r”, which means
that the cell itself will be marked as right (green) by FixtureUnderTest. This
corresponds to the expected marking of “r” in the first column.

This fixture class was then extended to handle the other cell markings, for
wrong (“w”), exception (“e”), ignored (“i”) and unmarked (“-”). A table with all
the markings, in various combinations, is shown in 4. We also test that trailing
“-” are not needed.

The code for fixture FixtureUnderTest is very simple and direct. Each action
encodes the markings to be carried out. For example, “rw” codes for the first
cell to have marking right (green) and the second wrong (red). The fixture code
is kept as simple as possible, so it’s quite clear what it does. Given that its role
is rather like a test (in some sense tests and code mirror each other), we avoid
introducing any generality.

4.1 Testing Added Text in Reports

We can now define the handling of extra text in reports, with two tables. In the
fourth row of 5 we use the action reports of FixtureUnderTest to add the
text “reported” to the fourth cell of that row.

1 See [3] for further details.

16 R. Mugridge

We doubly nest FixtureFixture to allow us to test the results of the inner
FixtureFixture. The last row of this table checks that report reports correctly.
The “reported” cell matches but the “no” cell doesn’t. As not all the cells match,
the report cell and the last cell are both expected to be wrong, as shown in the
report in Fig. 5.

Fig. 5. Report of Table 5

Test Driving Custom Fixtures 17

In the fourth row of 6, we test that a cell is marked wrong with an inserted
message. This is carried out with the action wMsg of FixtureUnderTest. The
fifth row then uses report to test the markings. We also test that the report
fails when the message doesn’t match, as in the last row.

4.2 Testing Inserted Rows in Reports

FixtureFixture can test that the contents of rows have been inserted in a
reported table. For example, consider the tests in 7. The action insertTwoRows
inserts two new rows into the report of the inner table after that row; each row
consists of a right cell containing the text “one” and a wrong cell containing the
text “two”. The fourth and fifth row of the overall table in 7 specify that rows
will be added in those positions, with the given markings and text.

Other tests were developed to ensure that an error is given by
FixtureFixture when rows are unexpectedly inserted in the report by the inner
fixture, when the inserted rows contain text that don’t match the actual inserted
rows, and when an expected row insertion doesn’t occur.

4.3 Testing That Problems Are Handled

We also need to test that FixtureFixture correctly handles awkward cases,
such as when a fixture doesn’t exist or it is not specified. For example, 8 tests
that a wrong results when the unknown class UnknownClass is specified as a
fixture in the inner FixtureFixture table.

18 R. Mugridge

5 Design and Other Approaches Considered

Several issues were considered in the design of FixtureFixture:

We need to be able to easily read the tables. We don’t want them cluttered
with unnecessary detail.
We expect each outer test to be right, and to count in fit.Summary. Counts
from inner tables need to be ignored so that we can just check the summary
and/or the runner output to see that the (outer) tests have all passed.
FixtureFixture needs to be sufficient to test most aspects of the standard
fixtures. We don’t want to have to specify the reported value of every cell,
as many are not of interest — we always have to make tradeoffs when we
write tests.
We’re not interested in matching the fine details of the HTML in cells.
We want to work within as it is currently defined (release 2003-9-15).

Several other approaches were considered for FixtureFixture:

A table could be followed by another, special one that defines the fixture tests
instead of using embedding2. But we don’t want to count right, wrong, etc of
the table under test in our overall count, as that means we’d have to manually
check the results. And it may not be so easy to see the correspondence
between the two tables. On the other hand, this approach avoids mixing the
two levels together.
Each row of the table under test could be followed by a testing row with
expected markings. But it’s messy to mix colorings and cell values which
have changed (although two rows could’ve been used).
Instead of having a single cell to encode the expected markings for the inner
row, we could’ve used the same number of cells as in the inner row. But this
would’ve led to bulky tables. And it’s difficult to handle tables with varying
numbers of rows. doesn’t currently allow nested tables, so nesting wasn’t
an option.

6 Summary

The framework is very powerful and open-ended, allowing for a wide range
of fixtures to be used in testing. Custom fixtures can be developed to enable
tests to be expressed in a more convenient, expressive and direct form.
2 This is the approach used with fat, which has somewhat different aims [1]

Test Driving Custom Fixtures 19

tests can be applied well to testing fixtures themselves, by embedding
a table inside a FixtureFixture table. FixtureFixture tests that cells of the
inner table have the correct markings. The marking codes are cryptic, but it
doesn’t take long to get used to them. FixtureFixture can also test, with
report, that a cell has an appropriate value in the generated report and that
appropriate rows have been added.

FixtureFixture has been used to test/define several of the standard fixtures,
as well as to develop and to test FixtureFixture itself [3]. We don’t expect to
use FixtureFixture to test everything about a fixture. For example, we are
unable to directly check that the right exception has been thrown. However, this
is dependent on the programming language being used.

FixtureFixture has proved to be very useful in understanding the behavior
of the existing, standard fixtures of as well as in developing six new generic
custom fixtures.

Acknowledgements. Special thanks to Ward Cunningham for making
publically available, for pointing out problems forFixtureFixture with inserted
rows in reported tables, and for feedback on an earlier version of this paper.

References

1.
2.

3.

For an introduction to see http://fit.c2.com.
Rick Mugridge and Ewan Tempero, “Retrofitting an Acceptance Test Framework
for Clarity”, Agile Development Conference, Salt Lake City, June 2003, pp92-98.
A longer version of this paper, the test tables (for FixtureFixture and the
standard fixtures), and the fixture code are all available at:
www.cs.auckland.ac.nz/~{}rick/fit/FixtureFixture/.

Putting a Motor on the Canoo WebTest Acceptance
Testing Framework

Jennitta Andrea

jennitta@agilecanada.com

Abstract. User acceptance testing is finally getting the attention and tool sup-
port it deserves. It is imperative that acceptance tests follow the best practices
and embody the critical success factors that have been established over the
years for automated unit testing. However, it is often challenging for accep-
tance tests to be repeatable, readable, and maintainable due to the nature of the
tests and the tools currently available for automation. The key contributions
this paper makes to the agile community are: first, it provides concrete exam-
ples of applying test automation patterns to user acceptance testing, and sec-
ondly it provides a description of various extensions to the WebTest acceptance
testing framework that facilitate developing automated acceptance tests ac-
cording to these established best practices.

Keywords: Automated testing, Canoo WebTest, framework extension, test
automation patterns, testing strategy, user acceptance testing

1 Introduction

Years of test first development using automated unit testing tools and frameworks,
like Junit [1], have resulted in a collection of best practices that enable key critical
success factors, namely: automated tests that are repeatable, readable, and maintain-
able [2]. Automated tests create the safety net that enables a team to confidently
evolve a system incrementally, and to be assured that it is production-ready. A team
must be able to efficiently develop tests that they trust, specifically, tests that are free
from side effects, and that perform predictably every time they are executed. Because
the tests encode system requirements, it is important that the tests are more readable
than the system code itself. When there is as much test code as system code, the tests
must be maintainable, so as to continually keep their benefits higher than their costs.

It is imperative that both acceptance tests and unit tests follow best practices and
embody these critical success factors. It is often more challenging for acceptance tests
to accomplish this because of the nature of the tests and the tools available for auto-
mation. Acceptance tests embody real business workflow scenarios, thus all input and
validation occurs as a result of interaction with the user interface, and execution
through all of the layers of the application.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 20–28, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Putting a Motor on the Canoo WebTest Acceptance Testing Framework 21

This paper describes a series of customizations made to the Canoo WebTest [4] ac-
ceptance-testing framework that were implemented during the course of an XP/Scrum
project to develop automated acceptance tests that are repeatable, readable, and
maintainable.

2 Acceptance Testing Strategy

Automated software testing is not simply about tools and techniques for automating
tests. In fact, the choice of tool should be one of the last decisions made when devel-
oping a testing strategy because the tool should enable the overall strategy, rather than
drive it. While this paper is ultimately about a tool, we are obliged to start with the
strategy. Software projects must balance many different, often competing, concerns
when developing a testing strategy. The testing strategy as a whole considers the
significance of each type of testing, including: unit, acceptance, usability, perform-
ance, security, etc. Decisions made about the one type of testing are likely to have an
impact on the choices made about another type. For example, a system with an exten-
sive unit test suite will tend to focus the content of acceptance tests on workflow
concerns rather than on detailed business rule validation.

The team builds their acceptance testing strategy by considering questions like the
following: What is the budget for user acceptance testing? Is the purpose of the test
to specify requirements, to assess quality, or both? Who is responsible for writing the
test specification? Who executes the tests and assesses failure? How are the tests
executed? How often? How are the automated tests kept in sync with the test speci-
fications? What parts of the system does the automated test touch? What techniques
should be used? What tools should be used? The answers to one question are often
inter-dependent on other ones. Some answers may contradict each other, making the
formation of the strategy all the more challenging.

The experience described in this paper is based on a particular project with an accep-
tance testing strategy driven by budgetary concerns. Specification, automation, and
execution of the acceptance tests were allotted an average of twenty hours per week
of a single developer’s time. The remainder of the strategy, including tool selection,
had to facilitate automating as many tests as possible in a short timeframe. Given the
size and complexity of the system, this budget was not sufficient to automate accep-
tance tests for the entire system, so the developer and customer collaborated to define
the smallest possible set of representative tests for the highest priority areas of the
system. The customer did not have time to automate the tests themselves, but re-
viewed the automated tests in order to sign off on them. While automating acceptance
tests was considered late in the project, the system was built unit test-first, ensuring
acceptable test coverage of small-grained business rules. Thus the acceptance tests
were required to focus on overall workflow scenarios, using the user interface in ways
that a real user would. After a limited exploration of various techniques and tools,
including HttpUnit [6], FIT[5], and a custom framework to generate test code from an

22 J. Andrea

excel spreadsheet [10], the Canoo WebTest framework was the tool selected for this
project.

3 Canoo WebTest

Canoo WebTest is a layer on top of HttpUnit, where the tests are specified using
descriptive XML targets (like clickbutton, verifyitle, etc), and executed via Ant [7].
The key characteristics of WebTest that made it a good fit for this project, are: a
scripted approach to testing against the user interface (as opposed to a record-
playback approach [8]); a succinct, high level specification language; readable and
detailed output reports; and the interpreted execution, which made test development
very fluid. The output reports were probably the most important characteristic for
this project; not only do they provide visual clues as to the success/failure of each
individual step, they also include captured screen shots. This facilitates a slow motion
replay of the test, which is used by the customer to verify the correctness of the test,
and can be used to debug the test when necessary.

The development team immediately recognized issues related to weak tool support
for XML development and cross-technology refactoring, especially when contrasted
to the powerful capabilities they exploited when developing Java with Idea [9]. In
addition, the noisy XML syntax within the specifications was deemed to hinder read-
ability. This latter concern was not a showstopper because the customer is able to
review the output reports instead of the XML test specification.

4 Customizing Canoo WebTest

The examples in this section are fragments from a real acceptance test for a system
that is used by hospitals to archive inactive patient records (called volumes). A patient
is identified by a chart number, and may have one or more volumes. A volume is
essentially a file folder that contains treatment details for a patient. If a patient has not
received treatment for five or more years, their volume is considered to be inactive.
Before boxes of inactive volumes are physically sent to an off-site storage location, a
user enters the data associated with each volume into the Volume Archiving System
(VAS). The acceptance test takes the volume and box through their normal life cycle
(volume created, added to box, box moved off site, volume removed from box). It
also demonstrates the following business rules: (a) creating a new volume will create
the associated chart if it doesn’t exist, (b) a box may contain duplicate volume num-
bers, (c) chart numbers are not unique across sites.

This section displays fragments of a single acceptance test, not necessarily in the
order they would appear in a complete test. The entire acceptance test, which is too
large to include in this paper, can be found at [11]. The WebTest extensions described
here have been submitted to [4].

Putting a Motor on the Canoo WebTest Acceptance Testing Framework 23

Critical Success Factor 1: Repeatability

The rhythm of test-first development is: write a test, watch it fail, and then make it
pass by developing the missing system capability or fixing the incorrect behavior [3].
Once the test is complete, it should pass repeatedly, whether it executes by itself or
within a test suite. When a completed test fails, we need to quickly and accurately
pinpoint the cause: did the test uncover a bug in the system, or is the test faulty? We
strive to eliminate time spent debugging tests, especially the nasty situations when
side effects of one test cause a different test to fail (the interacting test smell [2]).
Best practices for achieving repeatability focus on making tests independent. Ideally,
a test should operate on its own unique data set, and should clean up after itself (the
clean slate approach [2]).

The most obvious shortcoming of the WebTest framework is the inability to manage
the test fixture data directly from within the test. By default, one must use mecha-
nisms external to the test to setup the precondition data and remove it when the test
has finished. It is generally possible to setup independent test data for a number of
tests in advance, however, this approach creates the mystery guest test smell [2], and
reduces the readability of the test.

Our solution was to develop various new framework components in Java that enable
creating precondition data directly within the test and cleaning it up when the test
ends1. Example 1 shows the use of the two new Ant tasks: preconditions and
cleanup, which act as bookends to the body of a test. Other custom domain specific
Ant tasks are contained within these wrappers, and are responsible for creating or
deleting a specific type of domain object. To keep the test readable and succinct, the
test specification includes only the attributes of the domain objects that are necessary
for understanding the tests. All other attributes are generated ‘anonymously’ within
the Java implementation of the custom creation/cleanup Ant task.

1 For those familiar with the WebTest framework, the following is a high level summary of
the changes made. Text in bold font are new classes/methods we introduced; text in italic
font are existing framework classes/methods. Precondition Wrapper extends StepContainer,
and contains a sequence of steps of type PreconditionStep (an extension to TestStepSe-
quence). The project specific subclass of PreconditionStep overrides the method doCom-
monPreSetup to perform all of the necessary one-time data base initialization tasks. It then
executes each specific fixture setup step, which creates and populates one or more domain
objects, and registers them as being ready for persistence. The final task is to override do-
CommonPostSetup which causes the objects to be stored using a specific persistence
mechanism. Following this same pattern, we added TearDownWrapper to the framework,
which contains a sequence of steps of type TearDownStep. Modifications were made to the
WebTest framework in order to accommodate these new classes. TestStepSequence recog-
nizes the two new wrappers and process them appropriately. TestSpecificationTask keeps
track of the teardown steps. A finally clause was added to the Engine’s doExecute method to
ensure the teardown steps are executed after a test failure. The final piece is to write custom
fixture setup and cleanup steps for the business objects needed by the test. These steps create
business objects, populate them and register them for persistence.

24 J. Andrea

Example 1. Preconditions and Cleanup

Critical Success Factor 2: Readability

It is crucial that all tests are readable, as they are the definitive reference for the sys-
tem requirements. It is even more imperative for acceptance tests to be readable, be-
cause the customer is responsible for signing off on them and must fully understand
them. A number of best practices help improve readability, namely: write the test
declaratively (focus on what not how); write the test succinctly (include only the
details that are pertinent to understanding the test); and make the test unambiguous
(ideally, two different people with a similar understanding of the business domain
should understand the test in the same way).

WebTest’s steps (e.g. clickbutton, verifytext, etc) and output reporting facilitate de-
veloping readable tests, especially compared to writing raw HttpUnit and only having
the red/green bar for feedback. In practice, we found that because user acceptance
tests capture multi-step workflow, they tend to be fairly long. Even when reviewing
the WebTest output report, the reader quickly becomes lost in a forest of low-level
tactical details related to using the user interface. They must consciously re-construct
the intent of the sequence of steps in order to understand the big picture. A series of
simple adjustments to the framework and the report formatter improved this situation
greatly.

A new attribute, description, was added to the testSpec target (see Example 2). This
free-form text attribute is intended to capture an overall summary of the test and is
displayed at the beginning of the test output.

Another new step container, called group, is used to assemble related steps together
under a higher-level description (see Example 3). The primary purpose of this con-
tainer is to enable the steps to be visually grouped together in the output report, giv-
ing the reader the big picture; steps 13-20 must be performed in order to create a new
volume in VAS.

Putting a Motor on the Canoo WebTest Acceptance Testing Framework 25

Example 2. Description attribute

Example 3. Group step

We also added a simple custom step to the framework that corresponds to the fail()
assertion from junit, called forceTestFailure. This facilitates an active to-do list style
of writing tests that ensures the system will remind us when a test is incomplete rather
than comments in code or notes on scraps of paper.

Critical Success Factor 3: Maintainability

Test first development yields as much (or more) test code than system code, thus we
have to be as concerned (or more) with the maintenance costs of test code as com-
pared to system code. Refactoring is a common practice on agile projects, because the
system continually evolves over time as new features are developed. Acceptance tests
are modified to reflect changes to business rules and screen details. Maintenance costs
can be reduced if the acceptance tests don’t break when UI elements merely change
position on the screen. While development tools greatly assist the maintenance effort
through powerful refactoring features, developers remain responsible for making
design decisions that enable system and test code to be modified efficiently. This
section contains a series of refactorings that were performed on the test specification
fragment shown in Example 3.
A user goal level use case [12], e.g. to create a patient volume, is achieved through a
number of detailed interactions with the user interface (entering text into fields,
clicking buttons, etc). The acceptance test suite contains multiple instances of the
same user goal level use case, so a strategy for code reuse must be devised. The sim-
plest possible thing to try initially was to use XML componentization within the test
specification. The WebTest framework was extended with a new step, storeVariable,

26 J. Andrea

as a simple way to pass parameters to an XML component. Example 4 is the result of
refactoring the original test specification fragment (Example 3) to reference a com-
mon XML component.

Example 4. Test spec with custom XML component reference

The body the original test specification fragment was moved into the createVolume
XML component (see Example 5), with specific values replaced by references to the
stored ‘parameters’.

Example 5. The custom XML component

While this was a simple and workable solution, it falls short of being maintainable.
The same tools cannot be used to refactor XML acceptance testing components and
Java unit tests and system code. The second approach was a natural progression to-
wards this end, namely turn the XML components into custom action steps (i.e., Ant
targets), written in java. Example 6 is the result of refactoring the previous test speci-
fication fragment (Example 4) to reference a custom action step that embodies the
desired behavior. The storeVariable attribute is no longer necessary, as the parame-
ters are passed to the Java implementation via the specified attributes (e.g., boxNum-
ber).

Example 6. Test spec with custom action reference

Putting a Motor on the Canoo WebTest Acceptance Testing Framework 27

The createVolume XML component (see Example 5), is replaced with a custom Java
class (see Example 7), that encodes each detailed step as method calls that are imple-
mented in the CustomActionStep super class.

Example 7. Specific custom action step

The CustomActionStep superclass provides Java access to each of the WebTest steps
(see Example 8 for the implementation of the verifyTitle step). Each method inte-
grates with the WebTest reporting infrastructure, so that the output reports look the
same as they did previously.

Example 8. Generic support for custom action steps

28 J. Andrea

5 Conclusions

The key drivers from this particular project’s acceptance testing strategy that guided
the tool selection decision were: the customer must be able to read the test specifica-
tion in order to sign off on it, the acceptance tests must capture significant system
workflow scenarios and must use the user interface as the primary touch point, and
the tests must be developed as quickly as possible.

After a short and limited tool evaluation period, the Canoo WebTest framework was
deemed the best choice for satisfying these key drivers. Was it the only choice? No,
the list of acceptance testing tools and frameworks is impressive, covering the full
spectrum of techniques. Was it a good choice? Yes, the framework is solid and fea-
ture rich. While it was missing some key capabilities to meet our standards for devel-
oping repeatable, readable, and maintainable acceptance tests, the framework proved
to be easily extended. Was it worth the extra effort? Yes, the introduction of frame-
work support for custom precondition, action, and cleanup steps enabled the team to
develop a domain specific testing language. The elements from this testing language
formed the building blocks for quickly developing user acceptance tests.

Acknowledgements. It’s been my privilege for many years to work with and be
mentored by Gerard Meszaros and Shaun Smith on test automation best practices.
The work customizing Canoo WebTest was made possible with the cooperation,
insights, and participation of: Linda Duhn, Allen Ho, Tom Kuntz, Amy Law, Eric
Liu, Chris Klementis, Brad Marlborough, Jim McDonald, Robert Purdy, Lynne
Ralston, Dave Shellenberg, Brent Sprecher, and Ross Taylor.

References

1.
2.

3.
4.
5.
6.
7.
8.

9.
10.

11.
12.

Junit, http://www.junit.org/index.htm.
Meszaros, Gerard and Shaun Smith “Test Automation Manifesto”, XP Agile Universe
Conference, 2003.
Beck, Kent, Extreme Programming Explained, Addison Wesley, 2001.
WebTest, http://webtest.canoo.com/webtest/manual/WebTestHome.html
FIT, http://fit.c2.com
HttpUnit, http://httpunit.sourceforge.net
Ant, http://ant.apache.org
Meszaros, Gerard, et al al “Agile Regression Testing Using Record & Playback”, XP Agile
Universe Conference, 2003.
Idea, http://www.jetbrains.com/idea/
Andrea, Jennitta, “Generative Acceptance Testing for Difficult-to-Test Situations”,
XP2004 Conference, 2004
http://agilecanada.com/wiki/Wiki.jsp?pages=JennittaAndrea
Cockburn, Alistair, Writing Effective Use Cases, Addison Wesley, 1997.

Generative Acceptance Testing for Difficult-to-Test
Software

Jennitta Andrea

jennitta@agilecanada.com

Abstract. While there are many excellent acceptance testing tools and frame-
works available today, this paper presents an alternative approach, involving
generating code from tests specified in a declarative tabular format within Ex-
cel spreadsheets. While this is a general approach, it is most applicable to dif-
ficult-to-test situations. Two such situations are presented: one involving com-
plex fixture setup, and another involving complex application workflow con-
cerns.

Keywords: Automated testing, code generation, domain specific testing lan-
guage, test automation patterns, testing strategy, user acceptance testing, XML,
XSL

1 Introduction: Acceptance Testing Difficulties

As a result of the agile movement, teams now pay more attention to their testing
practices, and seek out the advantages of automated testing. Acceptance tests1 are
performed to ensure a system has suitably implemented the user’s requirements. The
primary objective of an acceptance test is to ensure the core business rules are imple-
mented correctly in the context of the overall application workflow.

Automated acceptance tests are used in a wide range of situations, motivated by a
variety of different goals. The purpose commonly mentioned in testing literature is to
support custom software development in a test-first manner; the acceptance tests
describe the essence of what is to be developed, and objectively signal when it is
complete [1]. Application integrators use acceptance tests to specify, manage, and
verify outsourced or commercial software components [2]. Acceptance tests are being
created after-the-fact for existing legacy systems to support both ongoing mainte-
nance and application renewal [3].

Due to the nature of acceptance tests, a number of difficulties may be experienced
when automating them that may not be experienced when automating unit tests for
the same system. Direct customer involvement is crucial to the acceptance testing
process. It also raises the bar for the usability of automated testing frameworks to

1 Also known as customer tests, functional tests, system tests, etc.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 29–37, 2004.

© Springer-Verlag Berlin Heidelberg 2004

30 J. Andrea

ensure the customers can read and potentially write the automated test themselves.
There are additional implications for test management, including: maintaining syn-
chronization between the customer test specifications and the automated tests, and
maintaining the tests as the user interface and/or workflow evolve over time. Poor
performance of an automated acceptance test suite is often an issue because the tests
typically operate on the user interface, and involve all of the application layers and
other integrated components. Stubbing out a problematic component is a common
solution to performance problems, but unless the application was originally designed
for testability, selective stubbing is often impossible. Test data management is an-
other area rife with difficulties. Acceptance tests are automated to accelerate and
standardize regression testing. The key to achieving reliable and repeatable regression
tests is the use of unique test-specific data rather than real production data [4]. If the
application has not been designed for testability, it is often difficult to create the test
data, or to control the execution environment in order to create a specific event.

This paper examines how a particular project overcame these types of difficulties, and
developed an innovative acceptance testing strategy: generating the code to automate
acceptance tests that are specified in a declarative tabular format. For the project this
was not just the simplest thing that could possibly work, it was the only thing that
could possibly work.

2 Motivation: Invention through Necessity

We did not set out to create an alternative approach to automating acceptance tests.
Our expectation was that an existing framework (e.g.: FIT [5] HttpUnit [6] jWebUnit
[7] WebTest [8] to name just a few) would be used to automate our tests. As it turned
out, none of these highly capable frameworks was up for the combination of chal-
lenges we faced on project Alpha2.

The first hurdle was the large number of acceptance tests that had to be written in a
very short period of time. For a variety of reasons, acceptance testing was considered
late in the game; in addition, the critical system features being tested did not have
adequate unit test coverage. To compensate for this, and to increase the users confi-
dence in this part of the system, the acceptance test suite was larger than normal to
include coverage of the business rules as well as the overall workflow. We started
with ~100 tests, and expected this number to increase as subsequent releases intro-
duced new features. The strategy for managing the integrity of such a large suite of
acceptance tests was to ensure the test specification created by the business expert
was directly executable. We could not afford the time or potential for error associated
with translating a user specification into an automated test. A number of frameworks
being considered were dropped from the list because coding the tests directly in Java
was out of the question.

2 Not the real name of the project.

Generative Acceptance Testing for Difficult-to-Test Software 31

The core challenges were architecturally rooted, thus much more problematic. Alpha
was part of a family of applications, which together supported a large corporate busi-
ness process. A number of the other related applications supplied portions of the
precondition data referenced in Alpha’s acceptance tests. Due to incomplete applica-
tion integration, and technological and architectural differences between the applica-
tions, creating the precondition data required by the tests was complex and convo-
luted, a common side effect when testability is not a key architectural consideration.
No single framework could work the magic required to dynamically set up the pre-
condition data; we definitely needed to think outside of the box.

3 Overview: Code Generation Approach

An outline of the code generation approach is shown in Fig. 1. The customer defines
their acceptance tests in a tabular format within Excel spreadsheets using a formal
domain specific testing language. An XML representation of the test is created as a
result of running a custom macro within the spreadsheet. Members of the develop-
ment team use XSL to transform the XML test specification into an executable test,
which encodes the detailed steps required to interact with the system under test, using
the syntax and mechanisms required by the target testing framework. An important
result of this is that the front end can drive many different back ends. The XML gen-
erated from the spreadsheet can be manipulated by any number of XSL specifications
to create automated tests based on any of the available frameworks (e.g., Junit,
HttpUnit, jWebUnit.WebTest).

Fig. 1. Code Generation Components

Inspired by FIT, our goal was to provide the customer with a declarative, clean, and
powerful testing language for defining acceptance tests. The customer already fre-
quently used Excel spreadsheets to specify calculated outcomes, so we decided to use
them to document the entire acceptance test. The customer had numerous tests to

32 J. Andrea

write in a short amount of time; human error was minimized wherever possible by
taking advantage of Excel’s cell cross reference and calculation features.

Fig. 2 provides an example acceptance test for a system that is used by hospitals to
archive inactive patient records (called volumes). A patient is identified by a chart
number, and may have one or more volumes. A volume is essentially a file folder that
contains treatment details for a patient. If a patient has not received treatment for five
or more years, their volume is considered to be inactive. Before boxes of inactive
volumes are physically sent to an off-site storage location, a user enters the data asso-
ciated with each volume into the Volume Archiving System (VAS).

This is one of the simplest acceptance tests for VAS, which demonstrates the follow-
ing business rules: (a) adding a new volume will create the associated chart and/or
box if they don’t pre-exist, and (b) volumes for the same chart may be archived in
different boxes.

Fig. 2. Example Excel Spreadsheet Test Specification

This specification is declarative in that it focuses on what, not how; it gives no hint of
the gory details associated with actually executing the test. It is clean because only
the essential concepts are described; we have the assurance that everything else that

Generative Acceptance Testing for Difficult-to-Test Software 33

needs to be taken care of will be. It is powerful because the various table and column
headings form a domain specific testing language that is familiar to the customer.

The body of the test (lines 4-20) is divided into three sections:
Preconditions identify the data that is expected to be in the system prior to run-
ning the test. The table heading (line 5) defines a business object, and the column
headings (line 6) reference attributes of the object. Each row represents a sepa-
rate object (line 7). Many different business objects can be specified in the pre-
conditions section, following the same pattern shown in the example.
Processing refers to workflow, or user goal level use cases [9](line 9), supported
by the system. Each column heading (line 10) represents user input that is re-
quired at some point within the workflow. Workflow is processed sequentially in
the order specified in this section.
Expected Results are described in the last section in terms of the changes made
to the business objects. The appropriate verbs (e.g., created, updated, deleted) are
placed in column 1.

The XML corresponding to the spreadsheet is shown in Fig. 3. A custom macro
within the spreadsheet understands several simple rules about placement and the use
of color within a test specification: fields describing the test start in cell (1,1) and end
at the first yellow line; major sub-sections of the test are found in lines highlighted in
yellow; domain classes and their attributes are found in lines highlighted in grey;
domain objects exist in the uncolored rows. The XML is semantically equivalent to
the excel spreadsheet, but in a different (and noisy) format. The macro generically
handles test specifications from any business domain, supporting any number of do-
main classes and associated attributes.

Fig. 3. Example Generated XML

34 J. Andrea

While this is one of the simplest acceptance tests for VAS, the actual steps required to
carry out the test (either manually or automated) are significantly more complicated.
Automated tests contain the details of the application workflow and proper test data
management, and are typically divided into four sections:

Fixture Setup (lines 4-7): Create a unique volume object with the specified at-
tributes (note, the business logic will also cause the chart and box to be created).
All remaining required attributes are generated as unique, ‘anonymous’ values
[4]. Persist this object in the database.
Exercise System Under Test (lines 9-11): Ensure the objects that will be created
by the test (lines 15 and 20) do not exist prior to running the test. Navigate
through the screens to accomplish the user goal of adding a volume to a box.
The values listed on line 11 are used as inputs as appropriate within this
workflow. For this application, this simple workflow involves logging in, and
navigating through 3 different screens.
Results validation (lines 12-17): Navigate through the application to ensure that:
the objects that should have been created actually exist, the objects that should
have been deleted no longer exist, and the objects that should have been updated
have the new values. Each of these validations involves multi-screen navigation
starting from the main screen.
Fixture teardown (lines 4-7, 12-17): Remove any objects created in the precon-
ditions (line 7). Remove any objects created as a result of exercising the System
Under Test (line 15, 20).

4 Project Alpha: Difficult Fixture Setup

As described in Section 2, the motivation for this code generation approach was to
find a solution to the complicated test fixture setup problem experienced by project
Alpha. Test data creation was a multi-step process performed partially using: Alpha’s
user interface, another application’s user interface, Alpha’s java API, and a series of
carefully hand-written SQL scripts aimed directly at several databases (a simplified
outline is shown in Fig. 4). Multiple XSL code generators were developed to take
information from the XML specification and transform it into a specific step in the
data loading process. The standard acceptance-testing tool for the project was QA
Run [10]. The testing team developed a customized script-based interface to supple-
ment QA Run’s standard record-playback interface.

This is a case where the front end and the back end of the tests are radically different.
Because the data creation process was so complex and time consuming, the code
generated to handle the fixture setup stage pre-loaded all of the data for an entire test
suite while still insuring that each test operated on it’s own unique data set (private
fixture data [4]). The key critical success factor for pre-loading private fixture data is
to follow a naming convention that ensures each test references only its own data.
The test scenario and feature name from the header part of the test specification (lines

Generative Acceptance Testing for Difficult-to-Test Software 35

1-2 of the spreadsheet; line 1 of the XML) were encoded into the test data during the
code-generation process.

Fig. 4. Multiple Targets for Fixture Setup

This turned out to be a remarkably elegant and efficient solution that resolved both
the technical challenges and the usability requirements. The business experts were
able to quickly develop acceptance tests, given the declarative, and domain-oriented
specification language. This approach addressed all of the problems and constraints
related to loading the test data, and did so in an error-free and consist manner. Ulti-
mately, less time was spent automating the large number of acceptance tests using the
code generation approach, as compared to having to hand-code each test from a cus-
tomer specification.

5 Project Bravo: Complex System Workflow

The results from project Alpha were so encouraging, that a second project was imme-
diately sought out to verify the general applicability of the approach. Project Bravo3

also considered acceptance testing late in the game, but was very different from proj-
ect Alpha in a number of ways. First, a disciplined (unit) test-first process was fol-
lowed during application development. As a result, the system was very testable;
none of the fixture setup difficulties experienced by Alpha were experienced on this
project. Because the intricacies of the business rules were well covered by the unit
tests, far fewer acceptance tests were needed as compared to Alpha. The team had
been using HttpUnit to unit-test the user interface, so this was the target tool for the
second code-generation case study (see Fig. 5).

While Bravo did not share the difficulties of Alpha, there were different project char-
acteristics that made this approach compelling as an option. Bravo is very rich in
features, supporting many detailed business workflows. Because the declarative na-
ture of the spreadsheets focuses on the business intent (what), not the detailed steps

3 Not the real name of the project.

36 J. Andrea

Fig. 5. Code Generation for project Bravo

within the workflow (how), the test specifications will remain quite stable while the
actual system evolves over time. In addition, the highly collaborative and fluid design
approach taken by the team results in user interface and workflow details that are not
solidified until relatively late in the sprint. Thus the front end of the tests can be de-
fined early on, and the back end of the tests can be developed later once the details
have been worked out. Furthermore, as the system evolves over time, test mainte-
nance will typically be localized in a small number of XSL components; once the
code for the acceptance tests are re-generated they are all brought up to date.

While this approach worked well the second time, it wasn’t necessarily the best strat-
egy for Bravo. The customer was not responsible for actually writing the tests, so it
was not as crucial to have a user-friendly specification. As a result, the XSL code
generation layer was deemed to be extra overhead, requiring specialized skills and
tools that the team had not needed thus far. Because the number of acceptance tests
automated on Bravo was quite low (in the order of ten to twenty), hand-coding the
tests in a more direct fashion was acceptable. The team ultimately decided to use an
extensively customized WebTest framework [11] for hand-coding the acceptance
tests.

6 Conclusions

While there are many excellent acceptance testing tools and frameworks available
today, this paper presents an alternative approach, involving generating test code
from acceptance tests specified in excel spreadsheets. This approach has been tried on
two substantially different projects, providing insights about its applicability. Al-
though this is a general-purpose approach, it is not a silver bullet. In particular, the
project must weigh the extra cost of developing the code-generation layer against the
resulting benefits. In particular, if there are a manageable number of tests, and an
existing acceptance testing framework can be used directly, then the code-generation
approach would likely introduce unnecessary overhead. Thus, the most basic criterion
for applicability is that the situation is too difficult to test using an existing framework
directly. One or more of the following project characteristics further increase the
appropriateness of this approach:

Generative Acceptance Testing for Difficult-to-Test Software 37

The customer writes the acceptance tests themselves and needs a simple, domain
specific testing language to express the concepts clearly.
Acceptance tests act as requirements and are focused on capturing strategic con-
cepts (e.g., overall business rules and relationships) rather than tactical details
(e.g., application steps to enact the workflow). Decoupling the specification from
the automation makes this separation of concerns possible.
A large number of tests must be automated in a short amount of time. The tests
contain calculations and interrelationships between the data that a spreadsheet
supports well.
The user interface evolves over time, and test maintenance is a concern.

Does the automated acceptance testing world need yet another approach? For a diffi-
cult-to-test project like Alpha, the code generation approach worked exceptionally
well, in a situation where nothing else could have possibly worked.

Acknowledgements. It’s been my privilege for many years to work with and be
mentored by Gerard Meszaros and Shaun Smith on test automation best practices.
The work described in this paper would not have been possible without the courage,
insights, and contributions of members of the Alpha project team: Bryan
Ambrogiano, Kevin Holroyd, and Bud Newman. The work was significantly
improved by the insights and contributions of the Bravo project team: Amy Law,
Robert Purdy, Lynne Ralston, and Ross Taylor.

References

1.
2.
3.

4.

5.
6.
7.
8.
9.
10.
11.

Beck, Kent, Extreme Programming Explained, Addison Wesley, 2001.
Andrea, Jennitta, “An Agile Request For Proposal (RFP) Process”, ADC, 2003
Meszaros, Gerard, et al “Agile Regression Testing Using Record & Playback”, XP Agile
Universe, 2003
Meszaros, Gerard and Shaun Smith, “Test Automation Manifesto”, XP Agile Universe,
2003
FIT, http://fit.c2.com
HttpUnit, http://httpunit.sourceforge.net
jWebUnit, http://jwebunit.sourceforge.net/
WebTest, http://webtest.canoo.com/webtest/manual/WebTestHome.html
Cockburn, Alistair, Writing Effective Use Cases, Addison Wesley, 1997.
QA Run, http://www.compuware.com/products/qacenter/qarun.htm
Andrea, Jennitta, “Putting a Motor on Canoo WebTest Acceptance Testing Framework”,
XP2004 Conference, 2004.

Moomba1 – A Collaborative Environment for Supporting
Distributed Extreme Programming in Global Software

Development

Michael Reeves and Jihan Zhu

Information Environments Program
School of Information Technology and Electrical Engineering

The University of Queensland
Brisbane 4073, Queensland, Australia

m.reeves@uq.edu.au, jihan@itee.uq.edu.au

Abstract. Global Software Development (GSD) is an emerging distributive
software engineering practice, in which a higher communication overhead due
to temporal and geographical separation among developers is traded with gains
in reduced development cost, improved flexibility and mobility for developers,
increased access to skilled resource-pools and convenience of customer
involvements. However, due to its distributive nature, GSD faces many fresh
challenges in aspects relating to project coordination, awareness, collaborative
coding and effective communication. New software engineering methodologies
and processes are required to address these issues. Research has shown that,
with adequate support tools, Distributed Extreme Programming (DXP) - a
distributive variant of an agile methodology – Extreme Programming (XP) can
be both efficient and beneficial to GDS projects. In this paper, we present the
design and realization of a collaborative environment, called “Moomba”, which
assists a distributed team in both instantiation and execution of a DXP process
in GSD projects.

Keywords: eXtreme Programming, CSCW, groupware, distributed teams,
awareness, coordination

1 Introduction

Global Software Development [1] stems from the Software Industry’s desire for
globalisation of business to derive increased market-share and from its’ desire to gain
a competitive edge through outsourcing, subcontracting and forming strategic
partnerships. Rapid advances in computer networks, telecommunication and internet
technologies have made it possible for developers from different geographical
locations and technical specialities to form virtual teams in a distributed setting. This
allows teams to jointly develop the same artefact of software in a collaborative way.
However, GSD represents a radical shift from the way software is engineered
traditionally in a collocated team setting. Many challenges arise due to GSD’s

1 Moomba is an Australian aboriginal word meaning: “let us get together and have fun” which
captures well the synergistic spirit that our collaborative environment endeavours to create.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 38–50, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Moomba – A Collaborative Environment 39

distributive nature, where developers are dispersed at different development sites
across many countries and time zones. Four aspects of software engineering process
are most impacted by the distribution of team members, these include - project
coordination, awareness, collaborative coding and effective communication.

A software development process is needed in a GSD project to coordinate the
activities of the project and govern the project’s lifecycle. The question is then which
software process best lends itself to GSD. In recent years, Extreme Programming
(XP) has proven to be a popular methodology for its’ relatively ‘lightweight’
approach which encompasses many valuable user-centric design principles and
usability values. The XP methodology relies predominately on the development team
working in close proximity, ideally within the same workspace to facilitate tight
communication. To allow XP to be utilized within distributed environments, it is
necessary to introduce communication and awareness support that is closely
comparable to collocated XP practices. Several efforts have been made to apply XP
methodologies to a distributed setting, notably in TUKAN and MILOS [2, 3].

A collaborative environment is essentially any virtual workspace specifically
designed to support communication and awareness to afford a strong sense of
coherency within a group. It should integrate with existing systems used by the
organization, such as document repositories coupled with versioning and
configuration control tools (such as CVS), databases, videoconference facilities and e-
mail systems. This can provide improved communication through use of notifications,
document sharing and an increased understanding of the software process. This will
allow for greater collaboration among team members by unifying people with diverse
skills into a more cohesive unit. The goal of the Moomba collaborative environment
aims at creating an online virtual community by encouraging cooperative teamwork.
Moomba implements a three-tier awareness model based on the model inspired by
Rodden [4]. This model describes the interactions of users with a shared workspace
in terms of a spatial metaphor.

The rest of the paper is organized as follows. Moomba’s three-tier awareness
model for support collaborations in DXP software process is defined and discussed in
section 2. A realization of the three-tier awareness model use as part of our
collaborative development environment is described in section 3. Related work is
reviewed in section 4, followed by conclusions and future work in section 5.

2 Moomba’s Awareness Model

“Workspace awareness is the up-to-the minute knowledge a person requires about
another group member’s interaction with a shared workspace to collaborate
effectively” as defined by Greenberg et al.[5]. People can use this awareness
information to help coordinate their work based on an understanding of the activities
of others. To determine how Moomba supports awareness it is helpful to determine
how different types of awareness can be categorized. According to Greenberg [5],
there are several categories of awareness that must be used to provide effective
collaboration.

40 M. Reeves and J. Zhu

It is essential that the awareness system captures enough information about the
interactions of the users within the workspace, and provides awareness support
through the appropriate notification of events. Careful consideration should be made
to the value or importance each awareness sub-type brings to the system to ensure an
effective and compact awareness model.

2.1 Rodden’s Spatial Awareness Model

Several models have been developed to deliver awareness information without
flooding the user with irrelevant information. A well-known model presented by
Rodden describes the interactions of users with a shared workspace in terms of a
spatial metaphor. Within the spatial model, artifacts are arranged in a three
dimensional space. As users interact with various artifacts, other users may see where
their team members are positioned. The important concepts used by this model are
focus and nimbus as described in [6].

Nimbus describes the location (s) where a user is located in the workspace.
Focus describes the location(s) at which the user may be looking.

TUKAN’s Awareness Model

TUKAN, developed by Schümmer and Schümmer [2], uses this specialized spatial
model with focus and nimbus. The focus includes all objects that are of interest to the
user, while the Nimbus includes all positions in space where the object might
influence other objects. TUKAN automatically arranges the artifacts within the
artifact space according to the following relationships:

Structural relationships like inheritance
Usage relationships such as calling class method
Version relationship between artifacts with the same version

Based on these relationships a semantic distance function can be used to find the
range between two artifacts. A color-coding scheme is used to visualize the distance
to the nearest team member in the nimbus. Thus this information can be used to

Moomba – A Collaborative Environment 41

indicate the presence of users working on related artifacts, which may encourage pair
programming. The same distance can be used to measure possible configuration
conflicts. Potential conflicts between artifacts are represented using a weather
metaphor in TUKAN.

2.2 Moomba’s Three-Tier Awareness Model

The Moomba three-tier awareness model extends TUKAN’s awareness model to
support a greater level of awareness. This particularly includes workspace knowledge
and group-structure awareness needed to support DXP. The collaborative space model
used by TUKAN provides detailed awareness information in relation to the project
artifacts. However, we believe that TUKAN’s awareness model is somewhat passive
when supporting pair-programming, as the awareness model is fundamentally based
on the proximity between two programmers’ foci. It is our belief that a greater level
of support for workspace knowledge and group-structure awareness holds the key to
creating a sense of community among the development team.

Fig. 1. Illustrates Moomba’s three-tier awareness model

Moomba’s three-tire collaboration model can be visualized within cubic space as
illustrated in Fig.1. The cubic space has three planes, each corresponding to a tier of
awareness within the collaborative environment. The top tier represents system
entities that provide social and group-structure awareness. The middle tier captures
awareness information regarding interactions and collaboration performed by users,
while the bottom tier focuses on software artifact interactions. The projection cones in
Fig. 1 represent the interactions and relationships between each tier in the awareness
model.

The model is essentially a means to capture awareness information of interest to
team members. At each tier of awareness, there are many types of the associated
events that need to notify different team members. However, not all events are
relevant to each team member. Different types of events must be handled differently

42 M. Reeves and J. Zhu

by the collaborative mechanisms that support awareness. We have adopted an event
classification system defined by Schlichter et al [6] to categorize these events. In
general, the events are classified into four awareness modes as describe in the
Table 2.

Synchronous awareness is concerned with events that are currently occurring in the
collaborative environment. This is in contrast to asynchronous awareness, where
events have occurred in the past. Coupled and uncoupled awareness is used to
categorize events according to the user’s focus in the workspace. Participants
collaborating on the same artifact and are aware of each other is considered coupled
awareness. While uncoupled awareness is information that is interesting, but not
related to the user’s current focus of work.

2.3 The Process Tier of Awareness

The process tier is used to place team members along with their interactions with
project artifacts into a collaborative context. Process entities are used to form relations
among user entities found within the user tier. Analyzing a user’s responsibilities,
roles, ambitions, self-improvement objectives, XP experiences and skill sets allows
process entities to construct relations detailing a project’s organizational and social
structure. Information collected at this tier is essential for providing users with
knowledge about potential programming partners for current and future collaboration
on the project. Events associated with the process tier include events related to
potential collaborators and requests for interactions. An example of events for the
process tier is illustrated in the Table 3 (not comprehensively listed).

It is important to realize that the events listed in Table 3 do not represent what is
captured by the process entities. What the process entities capture basically consists of
information regarding relations between user entities and the user entity’s relationship
with the artifact-tier.

2.4 The User Tier of Awareness

The User tier is essentially a simplified version of TUKAN’s collaborative space. All
software artifacts evaluated to be of interest or relevant to the user are added to their
focus. Whereas TUKAN arranged artifacts within the artifact space by analyzing the
semantic structure of each class, Moomba uses an artifact’s collaborators, as defined
by the Class, Responsibility and Collaboration (CRC) cards.

Moomba – A Collaborative Environment 43

Awareness information similar to TUKAN is captured at this tier. Moomba
provides information regarding the presence of users as they interact with software
artifacts. Knowing that a user is working on the same or related artifacts can resolve
potential configuration conflicts. When a potential conflict is detected programmers
can work together to resolve the problem. Thus continuous integration can be
achieved while coding. In addition to resolving conflicts, knowing that another user is
sharing the same artifact or an artifact closely related can encourage users to work
collaboratively. Examples of events belonging to the user tier are listed in the
Table 4:

2.5 The Artifact Tier of Awareness

The artifact tier is concerned with capturing events generated when a user modifies a
shared artifact. It is more specificly interested in events limited to the scope of an
artifact. This is how the user level is able to determine potential conflicts and the
presence of potential collaborators. However, the artifact tier is of particular
importance when users are engaged in a pair programming sessions. Examples of
events in the artifact tier are listed in Table 5.

44 M. Reeves and J. Zhu

Moomba’s collaborative editing system is based on the relaxed WYSIWIS (what
you see is what I see) model. This corresponds to the ability of participants to each
work in seperate sections of the document. The model is nesscessary to allow the
document’s participants the freedom to browse its contents, while not disrupting their
pair’s position. For example, while pair programming one user may check the
implementation of method, while their parnter continues to code. Moomba allows two
or more users to remotely collaborate on a shared artifact simultaneously. The shared
artifact is not limited to the project’s source files, so it covers the possibility to create
or modify user stories or tasks collaboratively.

3 A Realization of Moomba’s Collaborative Environment

Moomba’s collaborative environment consists of a set of tools which integrate these
support mechanisms to facilitate the instantiation and execution of a DXP process.
We begin by describing the overall architecture of Moomba. Each of tools will be
discussed in the next section. Examples are then used to illustrate how Moomba’s
tools can be applied for supporting a DXP process.

3.1 Overall Architecture

The overall architecture for Moomba is illustrated in Fig.2. Moomba consists of three
main tools: HyperStackXP – a web portal for project coordination and tracking; a
collaborative server – for coordinating manipulation and management of shared
artefacts; and MCIDE - a collaborative programming environment for pair-
programming in Moomba. In addition, both the web portal and the collaborative
server are integrated with CVS code/document repositories and a user database.

Fig. 2. An illustration of Moomba’s collaborative environment architecture.

Moomba – A Collaborative Environment 45

3.2 Web Portal – HyperStack XP

Moomba offers a flexible, web-based project management web portal - HyperstackXP
to help streamline the project management and planning. Its goal is to support both
coupled and uncoupled asynchronous event notifications. It is essential to keep users
informed of any project changes through indirect communication. Each user’s web
interface is customized to receive notifications or updates based on the user’s
responsibilities within a project. HyperstackXP contains a rich set of functionalities,
although not all features will be described in this paper. A selected few screen shots
demonstrating the functionalities of HyperstackXP are included in Fig.3. The web
portal integrates process execution with a user database to simplify project
management, minimize overhead, and notify requirement changes. It incorporates key
XP practices such as release planning, iterating planning and tracking, and story and
task management.

Tracking Project Overall Status. Hyperstack provides overviews on the current
status of a project by release and iteration. This allows developers the quickly assess
the project’s status. User stories and task requirements are organized into releases and
iterations. In a distributed environment where members frequently change it important
that the system has a good support structure to help new users become familiar with
the project.

Supporting Planning Game. Release Planning lists all the stories that have not been
completed or planned for an iteration. This allows users to group selected stories to be
added to the current or a future iteration. The Iteration display can be used to show
users their tasks and assignments. In most XP projects, task assignment is generally
decided by allowing users to signup for a particular task as soon as it becomes
available. The drawback with this approach is it may be difficult for all users to be
present each time a new task is added. This is especially true with large distributed
projects, where the development team is typically dispersed across many time zones.
Moomba handles this dilemma by maintaining a user’s presence within the system
when the user is offline. The system has the responsibility within the system to ‘act’
on the user’s behalf. For example, Moomba detects that a new task has been added to
system, which requires extra functionality to the applications sound API. Using
information from the user knowledge base and analysing user involved with related
artefacts, the system can notify potential users that a task may be of interest.

Pair-Programming Partner Finder. The Finder is essentially an advanced search
through the user database with the goal being to find a programming partner. The
Finder defines the search criteria based on the requirements or attributes a user may
be interested in. This can then be used to search each user’s profile for pair
compatibility. For example, a user may choose to use the Finder to collaborate with
another user at a particular skill level, coding interest or programming role. This
feature is also helpful for pairing new users to more advanced and experienced users
to balance and develop the XP team.

46 M. Reeves and J. Zhu

User Profile Management System. The user profile management system is a
collection of information relating to each user’s: Programming interests, ambitions,
project goals, XP experience, programming experience, availability, project schedule,
time zone, performance rating given by peers, and completed user stories and tasks.
The user database can help bring together users for pair programming by using
Moomba’s Pair-Programming Finder. The user database is created when a new user
joins the development team and some fields are dynamically updated each time a user
has completed a task. For example, after each successful task completion, the user’s
performance is rated by peers; the user’s XP experience and programming experience
also increase. The manager updates their skills set when a user has successfully
completed a task that requires new skills or has completed a training course.

3.3 Moomba’s Collaborative IDE (MCIDE)

Moomba’s collaborative editor supports all the functionality usually found in today’s
leading development environment. This includes syntax highlighting, code
completion, find/replace, indentation and a symbol finder. Moomba allows two or
more users to remotely collaborate on a shared artifact simultaneously. The shared
artifact is not limited to the project’s source files, but can allow users to create and
modify user stories or tasks collaboratively. The editing is completely unconstrained
and users can insert and delete characters at any location.

The most important feature for supporting text-based collaboration involves
making all participants aware of each other’s changes to a document. Taking this into
account, it is paramount that the input generated by each user be distributed to all
participants, so that consistency among participants is maintained. To further add
awareness, a participant’s contribution to the document can be visualized using a
different background colour to emphasize what they have typed. It is important that
the collaboration be based on the relaxed WYSIWIS model. The main advantage
being participants have the freedom to scroll to any location within the document
without affecting what other participants are doing. However, this freedom can lead
to reduced awareness. Thus there is the requirement to provide appropriate widgets to
allow participants to be aware of each other activities. Moomba features several
widgets to counter the lack of reduced awareness. These widgets are shown in Fig 4.

The functionality of Moomba can also support collaborative debugging of
programs. Each collaboration session allows participants to collaboratively control
program execution, while receiving essential debugging information. Participants
have access to information regarding the call sequence of each thread and its
variables. The editor also allows participants to follow the execution of a program
within the source code. Currently, only the textual output of an executing program can
be shared. For programs, such as applets, only the host will be able to see the output
sent to the screen. Moomba also allows users to execute groups of JUnit tests. The
results of the tests are distributed to all participants within session. Users can move to
the failed test by clicking of the error message listed in the Testing output window.

Moomba – A Collaborative Environment 47

Fig. 3. Screen shots demonstrate (clockwise: project overall progress statistics, user-stories
sorted into iterations, pair-programming partner finder, and the status for a release.

Fig. 4. Moomba’s collaborative features allow participants to editor, build, test and debug a
project collaboratively.

4 Related Works

The term DXP was first used by Kircher et al [7] when they investigated the
possibility of extending the agile methodology XP to distributed software engineering
settings by relaxing the team’s collocation constraint. Their empirical study showed

48 M. Reeves and J. Zhu

that almost all of XP’s key practices can be directly applied in distributed software
development. This is with the exception of the following four XP practices: planning
game, pair-programming, continuous integration and on-site customer. Their solution
to collocation constraint is to use off-shelf groupware (such as Microsoft Net-
meeting, email and chat channels) to provide awareness support to facilitate to
communication, collaboration and coordination in execution of the XP software
process in a distributed setting. Their experience shows that XP principles and
practices can be extended into distributed software developments, provided that there
is adequate awareness support to facilitate efficient communication and collaboration.

TUKAN is a groupware tool developed by Schümmer and Schümmer [2] to
support software development in distributed teams using the DXP methodology.
Since TUKAN has been extensively reviewed in above sections, we will not repeat
here.

MILOS, developed by Maurer and Martel [3], is web-based project coordination
and management tool for supporting the DXP software process. MILOS overcomes
the collocation constraints by providing support for project coordination, information
routing and team communication. MILOS provides the development team with
overviews detailing the current state of all project tasks, stories and development
plans. The system easily allows for accessing the information generated from a task.
This information can be viewed within a standard Web browser. The support for pair-
programming is done by Microsoft Net-meeting.

Baheti et al [8] conducted an empirical investigation to the effectiveness of pair-
programming in distributed teams. This was achieved by comparing the performance
level between a distributed team and a collocated team within an academic
environment. It was suggested that the efficiency of the dispersed teams was
comparable to that of collocated teams, with respect to the productivity (lines of code
per hour) and quality (test subjects’ grades) of the code produced. The results also
showed that the distributed pairs showed a higher level of communication and
collaboration. This result gives incentives for continuing to develop and improve
collaborative tools for distributed pair-programming.

Damian and Eberlein [9] conducted an empirical study of the efficiency of
groupware tools such as Microsoft’s Net-Meeting for supporting requirement
negotiation in a distributed software development environment. The results suggest
that the group performance in requirement negotiations in a face-to-face setting is no
better than in distributed group setting; and collocated negotiators actually manage
conflicts less well than the distributed negotiators. This is because face-to-face
negotiations are usually more emotionally intense. The results appear to confirm
experiences reported in Kircher’s DXP work that used groupware communication
tools such as Microsoft Net-Meeting might not hinder the decision-making ability of a
distributed team.

Starbase CodeWright™ 7.0 [10] is a commercial programming environment.
CodeWright’s most attractive and relevant feature is known as CodeMeeting that
serves the function of a shared editor that allows pair-programming over a distributed
environment. Pairs see the same source code simultaneously and can take turns
writing, editing and commenting the source. CodeWright also features a text chat
feature that drastically speeds up development time, as an external messaging system

Moomba – A Collaborative Environment 49

is not necessary. The awareness support provided by CodeWright is comparable to the
third level as defined in our awareness model.

RECIPE™ (REal-time Collaborative Interactive Programming Environment) [11]
is a prototype for an internet-based real-time collaborative programming environment.
Its goal is to allow physically dispersed programmers to collaboratively design, code,
test, debug, and document the same software source code. The awareness features
supported in RECIPE are comparable to the third level as defined in our awareness
model.

5 Conclusion and Future Work

Workspace knowledge and group-structure awareness in distributed teams is crucial
for facilitating strong collaboration required by distributed teams to practise XP in
GSD projects. While TUKAN’s awareness model provides detailed awareness
information in relation to project artifacts, Moomba’s three-tier awareness model
extends TUKAN’s awareness model to support a greater level of awareness. This
particularly includes workspace knowledge and group-structure awareness which are
vital for seamless collaborations at project coordination and management level.
Moomba’s collaboration environment supports our awareness model by using two
collaboration tools: a web portal – HyperstackXP and a collaborative editor - MCIDE.

In future work, intelligent agent systems will be investigated to automatically
support some of the functionalities in the process tier. For example, match-making
agents will replace the current the finder for searching potential pair-programming
partners. A reputation agent will automatically rank a developer’s performance. The
direct communication in the current system uses Microsoft Net-meeting to provide
video and audio. In the future work, the video and audio conferencing facility will be
fully integrated to the collaborative editor. The usability of Moomba’s collaborative
environment is currently under evaluation at a commercial company. Features and
functionalities in both HyperstackXP Web portal and MCIDE collaborative editor
will be refined according to the usability study report. The final product of Moomba
will be release as open-source software.

References

1.

2.

3.

Damian, D., Workshop on Global Software Development. 2002, Web Conference
Proceedings on “Global Software Development” available at http://www.cis.ohio-
state.edu/~nsridhar/ICSE02/GSD/PDF/summary.pdf.
Schümmer, T. and J. Schümmer. Support for Distributed Teams in eXtreme Programming.
in Proceedings of Second International Conference on eXtreme Programming and Agile
Processes in Software Engineering (XP2001)”,. 2001. Cagliari, Sardinia, Italy: Addison
Wesley, pp. 355-377.
Maurer, F. Support Distributed Extreme Programming. in Proceedings of Extreme
Programming and Agile Methods - XP/Agile Universe 2002, Lecture Notes in Computer
Science. 2002. Chicago, IL, USA: Springer-Verlag Heidelberg, pp. 13 - 22.

50 M. Reeves and J. Zhu

4.

5.

6.

7.

8.

9.

10.
11.

Rodden, T. Population the Application: A Model of Awareness for Cooperative
Applications. in Proceedings of International Conference on Computer Supported
Cooperative Work. 1996, pp. 87-96.
Greenberg, S., C. Gutwin, and A. Cockburn, Using distortion-oriented displays to support
workspace awareness. 1996, Dept of Comp. Science, Univ. of Calgary, Canada.
Schlichter, J., M. Koch, and M. Bürger. Workspace Awareness for Distributed Teams. in
Proceedings of International conference on Coordination Technology for Collaborative
Applications - Organizations, Processes, and Agents, Lecture Notes in Computer Science.
1998. Singapore: Springer Verlag, Berlin, pp. 199-218.
Kircher, M., et al. Distributed eXtreme Programming. in Proceedings of Second
International Conference on eXtreme Programming and Agile Processes in Software
Engineering (XP2001)”,. 2001. Cagliari, Sardinia, Italy: Addison Wesley, pp. pages 66-71.
Baheti, P., et al., Exploring pair programming in distributed object-oriented team projects.
2002, In Web Proceedings of 17th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications - Educator’s Symposium
2002, available at:
http://collaboration.csc.ncsu.edu/laurie/Papers/EdSymDistPPFinalSubmission.pdf.
Damian, D. and A. Eberlein, Groupware Support for Requirements Negotiation in
Distributed Software Development. 2001, Web Conference Proceedings on “Global
Software Development” available at
http://sern.ucalgary.ca/~maurer/icse2001ws/submissions/Damian.pdf.
Borland, Starbase CodeWright, http://www.codewright.com/.
Shen, H. and C. Sun. RECIPE: A Web-based Environment for Supporting Real-time
Collaborative Programming. in Proceedings of IASTED International Conference on
Networks, Parallel and Distributed Processing, and Applications (NPDPA 2002). 2002.
Tsukuba, Japan, pp.

When XP Met Outsourcing

Angela Martin1, Robert Biddle2, and James Noble1

1 Faculty of Information Technology, Victoria University of Wellington
Wellington, New Zealand

{angela, kjx}@mcs.vuw.ac.nz
2 Human-Oriented Technology Laboratory, Carleton University

Ottawa, Canada
robert_biddle@carleton.ca

Abstract. Outsourcing is common for software development, and is the context
for many projects using agile development processes. This paper presents two
case studies concentrating on the customer role in projects using outsourcing
and extreme programming (XP). The studies follow an interpretive approach
based on in-depth interviews, and suggest some tensions between some con-
tractual arrangements in outsourcing, and the XP process. In particular, one
suggests XP worked well in the context of their particular outsourcing ar-
rangements, and the other study suggests difficulty in aligning XP with a dif-
ferent set of outsourcing arrangements.

1 Introduction

Outsourced software development has become commonplace in today’s business
environment [3, 5]. The outsourcing environments of today are complex, involving
multiple organisations for different services: management, development, infrastruc-
ture and integration, to name but a few. Agile development, as it moves into the
mainstream of software development, will come face-to-face with the realities of
these complex outsourcing environments. Outsourcing arrangements typically result
in the XP customer residing in a separate organisation to the development team. Our
research [6, 7], which focuses on the XP customer role, quickly brought to the fore
that outsourcing is an issue facing the XP customer.

In this paper we present two case studies that highlight the practical realities faced
in using XP with complex outsourcing arrangements. In the next section we outline
some of the related work in this area, followed by our research method. The fourth
and fifth sections outline the two cases, while the final section presents our conclu-
sions.

2 Related Work

Members of the agile community have begun to raise some of the issues potentially
associated with outsourcing arrangements and agile development.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 51–59, 2004.

© Springer-Verlag Berlin Heidelberg 2004

52 A. Martin, R. Biddle, and J. Noble

Ambler [1] argues that outsourcing is riskier than it initially appears and organisa-
tions should seriously consider an alternative to outsourcing; that of running a small
internal agile development team. Ambler’s main argument is that the agile alternative
may gain many of the intended cost savings without some of the inherent risks of
outsourcing. So while Ambler does raise the question of whether the organisation
really should be outsourcing, he does not provide detailed advice to the practitioner
on how to effectively work in an outsourced environment.

Poppendieck & Poppendieck [9] take a different tack. Recognising that there is a
perceived barrier to agile development in an outsourcing situation, they have explored
the potential implications of different contracting models. The contracting models
they have reviewed and analysed include fixed-price, time-and-materials, multi-stage,
target-cost, target-schedule and shared-benefit contracts. They conclude that contracts
that allow optional scope are more likely to create effective software development
environments. Since the publication of their book [9], the Poppendiecks have run a
series of workshops [10] at international conferences that are aimed at further evolv-
ing our understanding in this area.

3 Research Method

Information Systems Development (ISD) methodology researchers [2, 8] have ex-
pressed a growing concern that existing ISD methods do not meet the needs of to-
day’s business and software development environments. Studies [8, 7] in this area
have begun to explore practices in natural settings in order to begin to address these
issues. Given this trend, we have used interpretative in-depth case studies to explore
our research questions within their natural setting, software development projects. We
used semi-structured in-depth one-on-one interviews to collect the data for this paper.
Two outsourced projects are explored, in the first we interviewed 5 project partici-
pants and in the second we interviewed 3 project participants. The interviewees, in
both cases, have covered the spectrum of core XP roles including the customer, pro-
grammer, coach and tester. In the second case, the participants moved between roles
over the life of the project. All interviews were taped and later transcribed in detail.
The interviewees were asked to validate both the transcriptions of the interview and
the interpreted findings. We use a number of quotes from the interviews to illustrate
our findings in this paper; names have been avoided or invented to preserve anonym-
ity.

4 Project Endeavour

This section tells the story of Project Endeavour, an outsourced XP project involving:
KiwiCorp, a large New Zealand company, is the customer organisation
DevCorp, a large consultancy, is the development vendor and
BureauCorp, a large software services company, is the infrastructure vendor

When XP Met Outsourcing 53

The data that forms this section was collected in a series of interviews with both Ki-
wiCorp and DevCorp project participants, near the completion of the project [6, 7].

4.1 Case Description

Project Endeavour is seen as a success by both KiwiCorp and DevCorp, and part of
that success was attributed to the use of an agile development method. Project En-
deavour had been attempted by KiwiCorp previously, but each previous attempt was
unsuccessful. In fact, the KiwiCorp customer representative notes that when her man-
ager was handed this project to ‘sort-out’:

“We felt we could probably only do it if we used [DevCorp] ... because
we had such a lot of confidence in them based on previous experience ...
[later in the interview] ... we knew what they were capable of, ... they
could actually deliver what they said they could... a key value of working
with [DevCorp is that] it was a joint effort” – Customer, KiwiCorp

The project was approximately 15 months long, and at its peak the project team
had 11 full-time experienced team members. Initially the project was a traditional
waterfall project and was divided into three phases, planning (deciding what to build),
development (building the application) and implementation (user acceptance testing,
training and roll out). The planning phase focused on gathering requirements using
standard workshop techniques and involved a series of user workshops that were at-
tended by the business users. At the end of the planning phase it was decided to use
XP for the development phase. The requirements gathered during the planning phase
were used as a basis for the XP user stories. The implementation phase was retained as
this approach meshed with the existing practices of KiwiCorp and BureauCorp.

The relationships amongst these three companies, outside of the specific project,
are complex and also worth noting. The items of particular interest are:

KiwiCorp and BureauCorp have a business alliance, they work together to deliver
outsourced services. Each company also delivers services outside of the alliance.
BureauCorp is the outsourced vendor for all KiwiCorp’s internal infrastructure.
BureauCorp and DevCorp both have software development service lines and com-
pete against each other in this area.

Please see the technical report of this research [6] for further information concerning
Project Endeavour.

4.2 Participant Reflection and Discussion

During the course of the interviews, the participants reflected on their experiences
with XP and outsourcing. These reflections are outlined and discussed in this section.

Time and Materials Contract. The project manager from DevCorp reflected on
some of the benefits they encountered working on a time and materials contract,
rather than working on a fixed price arrangement:

“We were very fortunate that we were working on [a] time and materials
contract with [KiwiCorp], if we were working on a fixed price per itera-

54 A. Martin, R. Biddle, and J. Noble

tion ...I would have had to be a lot harder on the client... I would have
to have been a lot more strict about things like getting change signed off
and if circumstances came along [e.g. infrastructure difficulties caused
by BureauCorp] and we lost a day ... I’d have to go back to the client and
say well actually you’ve lost a day ... therefore you need to subtract that
functionality [from this iteration]... I was sort of able to let that ride with
the client ... It didn’t become blindingly obvious to me until I was [dis-
cussing the issue with a manager responsible for a fixed price XP proj-
ect] ... if at the end of the iteration if we had not finished all of the stories
on the wall we would just put them into the next iteration, but [on the
fixed price project] they’ve still got to finish them without getting any
more money” – Project Manager, DevCorp

So a fixed price contract arrangement would result in a changed working relation-
ship between the two companies. In a fixed price arrangement, the vendor needs to
add an overhead to the process to ensure the sorts of issues noted above, would be at
the client’s expense and not the vendors. However, the project manager also noted
some of the limitations of the time and materials approach encountered on this proj-
ect:

“We didn’t establish criteria for [the customer to complete acceptance
testing] this is one of the differences between us [time and materials con-
tract] and a fixed price contract ... if we were working on a fixed price
basis we would have had to put some criteria around a sign-off .. .we’ve
not had to do that but what it does mean is that you don’t get a very quick
turnaround” – Project Manager, DevCorp

The obvious impact of not having agreed delivery dates for acceptance testing was
that (a) the defect stream was unpredictable making it difficult to manage the devel-
opment team’s workload and (b) the feedback from the customer was not immediate
and hence errors in the development team’s understanding remained for a longer
time. Perhaps the not so obvious issues are (a) the customer may not realise that their
actions caused this chain of events that directly impacts the cost of the project and (b)
the customer may not realise that DevCorp team members could interpret the cus-
tomer’s tardiness as a lack of commitment from KiwiCorp, potentially impacting their
own commitment to the project. Although it would be possible to negotiate and agree
delivery dates in this area the lack of a contractual agreement can make it difficult to
enforce these dates. Additionally, it is difficult for a services organisation such as
DevCorp to ‘chastise’ KiwiCorp regarding this behaviour without endangering future
work streams from KiwiCorp.
Multiple Organisations. This project not only had three organisations, but three
organisations approaching the project with very different processes:

“We were happy to step out of XP and work within the processes that
[BureauCorp] dictated for any kind of change or to migrate any software
or to actually have any software installed so we’ve almost had to take the
whole infrastructure thing and stick it out of XP” – Project Manager,
DevCorp

When XP Met Outsourcing 55

All of the interviewees agreed that the effect of multiple organisations involved in the
project, using a mixture of agile and non-agile processes, affected the timeline of the
project, as summed up by this quote:

“I was fully [committed to] the project but I was ... all of these technical
integration issues were just taking up about half the time [and later in the
interview regarding the project delay] the big delay has been in the tech-
nical integration. You know, just getting the application to work on the
software in the various environments” – Customer, KiwiCorp

The term “technical integration issue” was used to refer to all of the issues en-
countered between DevCorp and BureauCorp. The impact of the inter-organisational
issue was that the customer had significantly less time to spend on the requirements
and testing tasks. While the customer understood that this impacted the quality of the
delivered software, the flow-on delay caused by the quality issues appeared to be
eclipsed by the obvious technical integration issues encountered.

The project manager recognised that the relationship between the three organisa-
tions was not a simple one and noted:

“[KiwiCorp] at the end of the day is also a client of [BureauCorp] ... be-
cause of the nature of the relationship they have, [KiwiCorp] haven’t got
any weight to push around, they signed up for these processes and they
have to follow them so there is frustration on both sides of the camp’
– Project Manager, DevCorp

He also reflected on how to improve the situation between the three organisations
next time:

“We need to actually work together to build something that actually
doesn’t hinder the project process ... this is my first time working with
three parties ... and I think sitting down and sorting [the] rules of en-
gagement out at the start would be something ... I would ...in hindsight,
like to have done – Project Manager, DevCorp

Summary. This story focussed on some of the differences between a fixed price and
a time and materials outsourcing contract arrangement on agile development projects,
concluding that there are benefits and limitations to both arrangements. It also high-
lighted the types of issues encountered when multiple organisations are involved in
the project, which appears to be an increasingly common trend. We need to ensure
that agile contracts and approaches are able to work in these complex outsourcing
environments.

5 Project Pinta

This section tells the story of Project Pinta, an outsourced XP project involving:
RCCorp, a large organisation based in Europe, is the customer organisation
ManageCorp, an international management consulting, technology services and
outsourcing company, is the outsourced vendor for all of RCCorp’s IT functions
and plays the role of proxy customer

56 A. Martin, R. Biddle, and J. Noble

FalconCorp, a large international software product company based in the United
States of America, is the development vendor.

The data that forms this section was collected in a series of interviews with Falcon-
Corp project participants.

5.1 Case Description

Project Pinta has not been seen as a success by FalconCorp, and part of the concerns
with the project have been the use of an agile development method. The project has
taken longer than the original schedule, currently more than three times the original
estimate, and has yet to be accepted by the RCCorp. The project can be divided into
two stages, Stage I covers the originally estimated period and Stage II covers the
remaining time. Stage I started out as a typical “death march” project:

“Everyone that was on it said it was doomed for failure [but] we were
going to make it work anyway ” – Customer Proxy, FalconCorp.

The team had less than six months to cover almost 30 functional areas, so manage-
ment quickly scaled the project up to more than 60 people across several XP labs.

Project Pinta is not a typical custom build project, as the intent of this project is to
develop a product that will both meet the needs of RCCorp and become a product
within FalconCorp’s product suite. The labs were structured so that each lab had a
customer representative, two of the labs had product managers from FalconCorp and
two of the labs had business analysts from the European office of ManageCorp. The
ManageCorp analysts had been involved in writing the initial high level requirements
that had been accepted by RCCorp. No representatives from RCCorp were on the
project.

The team quickly established a pace with weekly iterations. At the end of each
week the team produced working software that implemented the prioritised stories. It
quickly became obvious that all of the functionality would not be completed by the
required deadline, despite everyone’s best efforts. However, FalconCorp had com-
mitted to deliver the functionality by this deadline. The unintended outcomes of how
this unwelcome knowledge was handled are outlined below.

In typical software development projects, scope creep must be managed by the
outsourced vendor, particularly in an aggressive fixed price project such as this one.
FalconCorp managed the scope by not exploring exceptions or evolving the require-
ments:

“We had the client on site but we didn’t make use of them in [the] way
that we should [as] we didn ’t want to raise any questions that would lead
to gaps in the requirements that we would ultimately be responsible for ...
and so we built [to the specification] without asking questions ... [our
aim was to build a product that] we could check off and say ... we made
our deadline, we deserve our payment” – Customer Proxy, FalconCorp

In fact, the level of mistrust and organisational self-protection rose to such a level on
this project, that the ManageCorp analysts were removed from the labs:

“There [were] roadblocks that were on both sides [that stopped] real
communication. We had the client over here and I remember the first

When XP Met Outsourcing 57

week that I was here they were talking about kicking one of the [Man-
ageCorp] people out of the labs because they were a spy ...they were
going back and reporting what was going on in the labs... You’d think
that was part of what they were for but, you know, they thought they were
giving a bad impression back to the client ... and so they actually kicked
them out of the labs at one point.” – Customer Proxy, FalconCorp

The result of this environment occurred at the end of Stage I when members of the
team presented the software to RCCorp in Europe:

“It was kind of a sales pitch because they [RCCorp] didn’t really test it.
We [demonstrated how it worked with] some scenarios instead of letting
them just hammer anything, because if you hammered on anything, you
[would] have big huge gaping holes ” – Customer Proxy, FalconCorp

The demonstration to RCCorp went well, so well that FalconCorp laid off over two
thirds of the original staff, as they were now entering “bug-fixing” mode. During the
first two months of Stage II, new project management was appointed in FalconCorp.
These new managers quickly assessed that the project required significantly more
work than “bug-fixing”. The final decision was to treat Stage I as a throw-away pro-
totype and re-write the entire product. The contract was renegotiated and FalconCorp
expect to complete the project in mid 2004.

5.2 Participant Reflection and Discussion

During the course of the interviews, the participants reflected on their experiences
with XP and outsourcing. These reflections are outlined and discussed in this section.

Scope Definition. A non-negotiable area for FalconCorp as part of the contract rene-
gotiation was an up-front requirements gathering and documentation stage. As an
indication of the size of the gaps discussed, one of the documents expanded the initial
requirements document from a 30 page document to a 250 page document.

Schwaber [11] writes that agile development, in that case Scrum, is not a silver
bullet for fixed price contracts. In fixed-price contracts an upfront requirements gath-
ering phase is required to accurately estimate scope. It is interesting that FalconCorp
did not believe Stage I gave them sufficient knowledge and that an additional signifi-
cant up-front requirements activity was commissioned. During the interviews poten-
tial reasons were uncovered, including (a) significant product knowledge was lost
when the majority of the staff from Stage I were laid off and this was compounded
with XP documentation practices and (b) there was a perceived failure of XP by man-
agement and so waterfall processes were seen as ‘safer’ in a contracting arrangement.

Development Process. Stage II of this project has yet to complete but the interview
participants’ are clear that the project is now much closer to a typical waterfall proc-
ess than an XP process. One participant reflected on this change:

“ XP [if you go straight from the book] is useless from my perspective ...
if you have a fixed scope, a fixed date, well ... how well is that spec going
to play in that space – not very, because it relies on the ability to manage
that and to change that and impact that over time as realities come out.

58 A. Martin, R. Biddle, and J. Noble

Whereas with a contractual arrangement, you can’t, you have very little
wiggle room to be able to shift that and manage that and change that,
and so XP finds itself significantly hampered and you have to start shift-
ing it more towards Waterfall over time, because you just had to deal
with the realities of the fact that you must get certain things out in certain
timeframes.” –Development Coach, FalconCorp

It appears XP will end up taking the blame for the problems encountered within
this project in FalconCorp. And while it seems from both of these cases that there are
issues with using XP on fixed price contracts without an upfront requirements gath-
ering and documentation phase, perhaps there is more to this case.

Kern, Willcocks and Heck [4] outline a typical outsourcing issue called the Win-
ner’s Curse that may play a significant role in this case. The Winner’s Curse occurs
where the winning organisation or person has over-estimated the value of the object
being bided on, typically due to inaccurate assumptions made during the bidding
process. Inaccurate assumptions in IT outsourcing can range from the Client Organi-
sation’s political climate causing long turn-around times through to functional scope
complexity, such as the one-line functional bullet item in the original specification
that becomes a complex sub-system over the course of the project. The end-result: the
organisation or person makes a loss or at least no profit on the transaction. The Win-
ner’s Curse is a prevalent issue in IT outsourcing.

In IT Outsourcing the ‘Winning’ organisation will then typically concentrate on
cost-cutting strategies, such as placing inexperienced staff on the project or focussing
on the letter of the contract scope not the spirit, to reduce their loss. The end result for
both parties is a loss situation, as the resulting software is unlikely to meet the client’s
needs. Project Pinta exhibits all of the signs of the Winner’s Curse.

Summary. This story focussed on some of the typical issues faced by companies in
an outsourcing environment. One of the key issues highlighted is the need for an up-
front scope definition phase for fixed price contracts, irrespective of the development
process. The second issue discussed was the Winner’s Curse; that of being the suc-
cessful bidder for a contract that will result in a loss, or very little profit, for the win-
ning vendor. The Winner’s Curse is a prevalent issue in IT outsourcing, irrespective
of the contract type or development process, and significantly impacts the project
environment. Developers who find themselves with the Winner’s Curse should con-
sider carefully what they want from an agile process.

6 Conclusions

We are studying the customer role in agile development, and in this paper we pre-
sented two interpretive case studies where XP was used in projects involving
outsourcing. The studies are based on in-depth interviews with project participants. In
both cases we saw a strong awareness of the interactions between outsourcing ar-
rangements and the XP process. Additionally, we noted that the issues facing out-

When XP Met Outsourcing 59

sourced XP projects include general agile issues, outsourcing issues as well as multi-
organisational issues.

In the first study, we learned that the agility fostered by continual contact between
developers and customer worked well with the contractual arrangements based on
time and materials charging. In the second study, we found a more fixed contractual
basis for the project, and heard about experience that suggests this clashed with the
XP process. In both cases, we saw that the involvement of multiple organisations
required accommodation of the different cultures of the organisations, and presented
challenges in interpreting the XP customer role.

All these findings show us that for XP to embrace change, an organisational and
contractual context is needed that allows change to be embraced without penalty.

References

Ambler, S. Outsourcing Examined. Software Development Journal, April 2003.
Fitzgerald, B. Systems development methodologies: the problem of tenses. Information
technology and people, 13 (3). pp. 174 - 185.
Kern, T. The Gestalt of an Information Technology Outsourcing Relationship: An Ex-
ploratory Analysis. Proceedings of the Eighteenth International Conference on Informa-
tion Systems, Atlanta, Georgia, United States, pp: 37 – 58, 1997.
Kern, Thomas, Leslie P. Willcocks, Eric van Heck, The “Winner’s Curse” in IT
Outsourcing, California Management Review 44, no. 2, p. 47-69, Winter 2002.
Klepper, R & Jones, W. Outsourcing Information Technology, Systems, & Services.
Prentice Hall PTR, 1997.
Martin, A. A case study: exploring the role of customers on eXtreme programming proj-
ects, CS-TR-03-1, School of Computing and Mathematical Sciences, Victoria University
of Wellington, Wellington, 2002.
Martin, A., Noble, J., and Biddle, R. Proceedings of the Fourth International Conference
on eXtreme Programming and Agile Processes in Software Engineering, Giancarlo Succi
(Ed.), Being Jane Malkovich: a Look into the World of an XP Customer. Lecture Notes in
Computer Science 2675, Springer-Verlag. 2003.
Nandhakumar, J. & Avison, D. The fiction of methodological development: a field study
of information systems development. Information Technology & People, 12(2). pp. 176-
191.
Poppendieck, M & Poppendieck, T. Lean Software Development: An Agile Toolkit.
Addison-Wesley, 2003
Poppendieck, M. Poppendieck, T (Eds). Proceedings of the Oopsla Workshop on Agile
Contracts, Anaheim, California, USA, 2003. http://poppendieck.com/.
Schwaber, K. Fixed Price, Fixed Date Contracts at Engage. In Poppendieck, M., Pop-
pendieck, T. (Eds.), Proceedings of the Oopsla Workshop on Agile Contracts, Anaheim,
California, USA, 2003. http://poppendieck.com/.

1
2

3

4

5

6

7

8

9

10

11

Distributed Product Development Using Extreme
Programming

Charles J. Poole

8001 Braddock Road, Springfield, VA 27150
cpoole@suscom-maine.net

Abstract. This paper uses the experience of developing a shrink wrapped soft-
ware product to examine issues related to distributed software development us-
ing agile methodologies. The work is based on the author’s time at IONA
Technologies as a senior manager delivering their Web Services Integration
Platform (WSIP) product suite. It is focused on the issues of distributed devel-
opment using Extreme Programming (XP) by describing the development ef-
fort: its organization, practices, and processes and evaluating, using both quali-
tative and quantitative measures, the success of four of the practices adopted by
the team (distributed stand-ups, cultural exchanges, common source code, and
shared vision). Regardless of the ultimate success or failure of the product and
development effort, the lessons taken from the experience are valuable and have
reinforced many of the observations and experiences reported by others [1,2].

Keywords. Extreme Programming, Agile Methods, Software Development,
Project Management, Distributed Development

1 Introduction

Let’s get this straight right from the beginning. There would probably be very little
argument to the statement that software development works best when the develop-
ment team is co-located. Extreme Programming [3]and its reliance on on-site cus-
tomers, stand-up meetings, pairing, etc (or for that matter any of the other Agile
Methodologies) is best implemented when the teams are co-located. So why set up
distributed development environments? Well, as most are aware circumstances are not
always perfect in the field of software development. Acquisitions, off-shoring, tele-
commuting, the desire to utilize the best available development staff, and open source
are but a few examples of reasons why distributed development exist and will con-
tinue to exist in the foreseeable future. This paper is not an attempt to promote dis-
tributed development rather an attempt to ensure that when you adopt a distributed
development environment, for whatever reason, that you have the tools to be success-
ful. In this case those tools are a set of recommendations based on the experiences of
the author in a highly distributed development environment in which XP represented
the adopted approach to developing a software product.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 60–67, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Distributed Product Development Using Extreme Programming 61

1.1 Development Organization

Early in 2001 IONA Technologies acquired a company in Santa Clara, California that
had developed a suite of Business to Business (B2B) applications, adaptors, and tools.
During the first part of 2001 and through 2002 IONA focused not only on integrating
the new B2B product suite and associated technologies into a new product strategy
and road map but also on bringing the acquired engineering team under its Extreme
Product Development1 engineering umbrella. This meant bringing together efforts
from development sites in California, Massachusetts, Virginia, and Dublin, Ireland to
produce two new product suites. The first was the Application Server Platform (ASP)
and the second was the Web Services Integration Platform (WSIP). The development
effort spanned eight time zones and two countries and at times involved over 130 en-
gineers.

1.2 The Product Suite

It is useful in the context of the rest of the paper to gain some understanding of the
WSIP product and the role that each of the teams played in implementing the new
product suite. The core element of WSIP was developed in Santa Clara. It consisted
of a B2B server and associated gateway and system management tools, a set of busi-
ness process modeling/orchestration and monitoring tools that in addition to support-
ing standards based business process development also supported the creation and in-
tegration of web services into those process flows, and finally a set of business
protocol adaptors. The Santa Clara team was also responsible for integration, pack-
aging, system testing, load and performance testing, and manufacture of master CDs.
The Reston team was responsible for the enterprise integration component and associ-
ated integration adaptors. The Waltham team delivered a web services stack as well as
a set of tools to create, expose, and manage web services. This was bundled in a com-
ponent called XMLBus. Lastly, the Dublin team provided the J2EE application server
from IONA’s ASP product on top of which the WSIP product could be deployed.

Each of the teams from the various locations had previously produced separate
products which now came under the WSIP or ASP heading. Each would need to be
integrated into the new product strategy. In some cases integration was nothing more
than a wrapper around the existing product in others it was a tightly coupled integra-
tion based on various Application Programmer Interfaces (APIs) exposed by the soft-
ware components and in a few instances brand new applications and application
functionality was required to satisfy Product Management requirements.

1.3 The Focus

One of the difficulties in writing this paper was that there is so much to tell about the
experiences of the author while with IONA. Transforming such a large organization
to using agile methods presented many problems and issues and there is the tendency

Extreme Product Development was the umbrella term given to the set of practices and proc-
esses developed internally by the IONA engineering and product management and product
marketing teams. Its foundation was the XP practices used by the engineering teams.

1

62 C.J. Poole

to want to tell it all at once, something not necessarily appropriate in this instance.
So, instead of looking at the broader issues this paper will only examine the develop-
ment of the WSIP product and the four key practices used as part of the distributed
XP effort. It will also focus less on the issues around the development and program-
matic execution of the new product strategy and more on the issues related to creating
an agile development environment in such a distributed product development team. It
is useful to note that the teams in Reston, Dublin, and Waltham were in the process of
or had already adopted XP as their development model prior to the acquisition with
the Dublin team and its full XP implementation at the forefront.

2 Extreme Team Building – Key Practices

This paper is really all about team building and the critical element of communica-
tions in a distributed environment. That is what these four practices represent. Joshua
Kerievsky in Industrial XP (IXP) [4] has encapsulated some of this in IXPs project
community and project chartering practices. Kent Beck focuses considerable attention
to communications and team building in XP. One of the core XP values is communi-
cations reflecting a need for broad, regular, open, and honest communications not just
between developers but also between the customer (real or proxy) and the develop-
ment team. XP strategies also include elements that foster team building. The XP fa-
cilities strategy suggests an open space arrangement that encourages almost constant
communication and situational awareness and the regular planning, visible story
cards, and stand-ups create yet more opportunity for communicated a shared under-
standing of the work and product vision.

However, none of these specifically addresses the issues of distributed develop-
ment efforts. When IONA’s development plan was first laid out, the various imple-
mentation teams identified, and the initial stories were created by Product Manage-
ment, what was left was a disparate group of engineers located all over the globe who
needed to work together in an agile way to create a product. When one is looking at a
collocated team the natural first step is to pull everyone into the same room and have
a kick-off meeting, to recognize face to face for the first time who you’re going to be
working with. You can’t do that as readily or easily when half your team is some-
where else. How do you bring the developers together to work as a team on the new
program, to get them to buy-in to a vision as a team? With XP you have iteration
planning meetings, daily stand-ups (scrum meeting with Scrum [5]. You plan team
activities to improve morale, and create team areas to improve team cohesion and
awareness. What do you do if the team isn’t even on the same continent? How do you
maintain a sense of team with a focus on a common goal and clear and up-to-date un-
derstanding of the development effort and their role in it not just in the beginning of
the project but through out the entire life cycle of project? So some experimenting
was in order. The results are the set of practices or practice extensions identified be-
low.

Distributed Product Development Using Extreme Programming 63

2.1 Cultural Exchange

One of the things that was discovered very early on was the need to create a common
understanding not only of the project and its associated artifacts but also of how
members of the team from different parts of the country or world, worked, thought,
communicated, and in general dealt with the various issues and problems that arose
from the development effort. A Cultural exchange is simple in practice and potentially
expensive in the short term but provides benefits that far out way any perceived short-
comings. The idea is to exchange one or two developers between remote sites for a
few weeks or if possible a few months. The desire is to create a stronger sense of
community between the various team members as well as to improve communications
by locating someone who knows the remote team intimately and can help people
make the right pairings – to talk to the right person.

In putting together the WSIP product it was discovered that the developers in Cali-
fornia were having problems getting the WSIP application suite to deploy quickly on
the IONA application server and were not using it to do component and system level
testing. Instead of being proactive and trying to address the issues with the Dublin
developers they switched to another application server and went on their merry way.
It’s a big problem when your application or product isn’t being tested on your own
application server. So, we found an engineer in Dublin who was willing to relocate to
California for six months and on a regular basis we started sending engineers from
California to Dublin for a couple of weeks at a time. It worked. The Dublin engineer
got to know the California engineers and likewise the California engineers the Dublin
engineers. Each began to understand how the other worked and how to effectively
communicate needs and to work with the other team. The Dublin engineer taught the
California team how to get stories into the Dublin planning game. The California
team was able to demonstrate face to face what the WSIP application suite did and the
Dublin team started showing how it could better use the J2EE architecture. Ultimately
both WSIP and the J2EE application server were improved to the ultimate benefit of
the customer. It didn’t happen over night but within a month or two the sorts of prob-
lems between the Dublin and California developers no longer became an issue. Simi-
lar cultural exchanges occurred between all four of the development sites.

Although not a part of the WSIP project, the practice of a cultural exchange was
also used in an off-shoring effort run by IONA. A team of Indian engineers who were
to take over the maintenance and enhancement of IONA’s old generation CORBA
middleware products came to Dublin in 1999 to learn the product. They worked in
Dublin setting up a duplicate environment in preparation for the movie to India. The
intent was to eventually maintain a regular exchange of engineers and management
once the code was moved. This effort highlighted the differences between engineers
from truly different cultures. Issues such as understanding and dealing with differ-
ences in how authority is perceived between co-workers or between employee and
employer or simply interpreting differences in body language all of which was aided
by promoting a cultural exchange.

One of the other big benefits to the exchanges can be a breakdown in what might
be called the castle complex - teams establishing technical or visionary domains that
they are reluctant to share or to collaborate constructively on. This too can be helped
with cultural exchanges as was demonstrated between the developers in California
and Virginia who through regular exchanges were able to develop a common under-
standing of each other’s domain and to work on creating a viable shared vision and

64 C.J. Poole

architecture for the WSIP B2B and Enterprise Integration adapters: Unfortunately, in
other instances cultural exchanges did not seem to work towards resolving the conflict
as there was a significant disagreement between various arms of product manage-
ment, marketing, and the senior technical leaders over the product direction at the vi-
sionary or strategic level and the allocation of resources to those various visions was a
constant battle.

2.2 Stand-Ups and Wikis

One of the elements of several agile methodologies (both Scrum and XP incorporate a
short daily meeting) is the practice of a daily stand-up. The main focus of such meet-
ings is as a tool for eliminating blockers and to a lesser degree gives each member of
the development team the opportunity to hear what others in the team are working on.
For distributed teams this practice can be quite difficult to follow given the time dif-
ference and the size of the team involved and is a reflection of the loss of communi-
cations bandwidth when using distributed development. The following stand-up prac-
tices were adopted by various elements of the WSIP development team to help
improve this sort of regular communication:

It was found that a daily conference call during the product delivery iteration was
critical to quickly identifying who needed to get together after the meeting to do a
little long distance pairing to resolve pending issues or eliminate blockers.
Stand-ups tended to happen on a daily basis with the co-located team members.
And across sites for some components for which there was a smaller number (less
than 15) of developers. Daily stand ups involving the whole team were not seen as
productive and were never attempted.
To ensure good communications between the various sites, twice weekly stand ups
between remote site team and technical leads and managers were substituted for
the daily stand up. Having a conference call a couple of times a week seemed to
work out best during the normal development iterations.
Wiki pages were used a lot by IONA. Although not used as effectively as they

might have been (no common standards and issues with regular updating) the Wiki
pages added the ability to present a distributed story board that everyone in the or-
ganization could use to see what each development team was doing. Not all teams
used this but where it was used effectively the situational awareness of the developers
seemed to be a step above other teams although never as good as using cards posted
on a wall or cork board. Any electronic white board, messaging, system, or even de-
fect tracking system (e.g. Bugzilla1) could be used just as effectively.

2.3 Shared Vision

How does one work on something if they don’t know what it is and how it satisfies
the customer’s needs, or the business goals and priorities of the company? Here is an
instance of abject failure on the part of the WSIP team. As mentioned in the introduc-
tion, much of this failure is probably attributable to the lack of a common shared vi-
sion by the senior technical leaders, the product management, and the product mar-
keting elements of the team. Their inability to promote the vision they did have in a

Distributed Product Development Using Extreme Programming 65

way that the developers could understand it, buy-in to it, and throw their support be-
hind it also played a part. The result was a group of people moving behind each others
backs to try and push personal as well as site specific objectives with executive man-
agement. It was not a team effort and for all intents and purposes created a degree of
tension that in some instances no amount of extreme anything could over come.

It is critical in developing a shrink wrapped product that those elements of the or-
ganization acting in the role of the customer or customer proxy are prepared to create
the stories and set the priorities in a consistent and clear fashion based on a common
and agreed vision. If there is dissent or differences of opinion you only have a few
options: you can work towards compromise between the dissenting voices, you can let
them fight it out by letting the two visions compete (takes more resources in a re-
source limited environment), or you can simply ask the dissenting voices to toe the
line or leave (sometimes forcing some to leave to better establish a team with a solid
shared vision is more desirable then holding on to a dissatisfied group of people).
Over time IONA did a bit of all of the above as part of its efforts reestablish a consis-
tent vision between the customer proxy and the development team as well as between
the various development teams.

It is very important to get a handle on that vision and market it to the development
team using a simple clear vocabulary. Involve the team in working with the customer
or customer proxy to create the vision. The importance of this is indicated by its in-
clusion in IXP as part of creating a project charter. In a distributed environment it be-
comes even more critical as it is that much harder to gain that shared vision due to
cultural, ideological, and technical differences that seem to be so easily misunder-
stood and misrepresented and are amplified by the remoteness of a team.

2.4 Common Source

Although mentioned last this is one of the first things that a distributed development
team should get right. It includes not only the idea that everyone regardless of loca-
tion has access to a common source base but that they have access to a common set of
automation tools and processes. If you can’t build your entire product down to the
packaging from a common source base and use a common set of automated testing
and production tools then you are going to have a much harder time getting anything
out the door. This is true of any development effort but is even more so when consid-
ering integration across multiple remote sites. Some of the more important elements
of this practice applied to distributed development include:

Use of a multi-site source control system. Anything will do although some are
better than others. Not having it makes code synchronization almost impossible
The source control system is used to support an automated nightly build and inte-
gration capability that includes automated integration and system testing and auto-
matic build and test report generation.
Access to a common build environment. A developer at any site should be able to
easily build and run all of the tests for the purposes of continuous integration test-
ing against their view of the source.
Over time all of the WSIP development sites were able to integrate with IONA’s

common source control system. Additionally, many man months of effort went into
developing automated build and test systems that could be run nightly and kicked off

66 C.J. Poole

with a single command by any developer. Nightly reporting of integration and system
testing results on over a dozen operating system and application server combinations
created an environment in which on a daily basis one was aware of the problems in
the code. As indicated in the table below this effort was rewarded with significant im-
provements in the ability of the team to deliver an integrated tested product.

It is recognized that the above metrics don’t necessarily provide a good quantita-
tive measure of the correlation between common shared access and automation and
the improvements that are presented. However, it is noteworthy that the only opera-
tional changes that occurred in the teams working on building and system testing of
the B2B product was the adoption of the practices and processes described above.
That is to say, they did nothing but work on the automation of all build, test, and inte-
gration systems with in IONA’s common source code repository. Hence the inference
that these practices and process led to the improvements seems correct.

3 Conclusions

It is useful to note that the creation, management, and in hindsight failure, of the new
product strategy had a significant impact on the ability of the engineering team to ef-
fectively adopt XP. This fact has been presented as one of many contributing ele-
ments and is ultimately the focus perhaps for another treatment looking at the devel-
opment of product strategies and program management with agile methods in a multi-
product company. Ultimately the WSIP product suite failed to claim much in the way
of market. It was eventually replaced by other products and strategies. However, the
successes and failures that the WSIP engineering team experienced as a part of the di-
stributed development effort taught some significant lessons. First, IONA no longer
focuses on large widely distributed teams. Whether by economic necessity or product
strategy the engineering group has realigned itself with product business units that are
for the most part co-located or have dependencies between only two development si-
tes. The teams in California and Reston no longer exist and efforts run through those
development offices have been eliminated or moved to one of the other development
teams in Massachusetts or Ireland. Second, the business units themselves have been
used to improve on the vision around each product IONA sells. Although the business
unit does not eliminate the potential for dissent it does increase the probability of buy-
in from the whole team by providing a clearer focus on who the customer is and what

Distributed Product Development Using Extreme Programming 67

their priorities are by elliminating some of the infighting between competing elements
in product managment and marketing.

The lessons of extreme distributed development boiled down in the authors eye’s
to one thing – Communications. Each of the key practices or processes focused on
different modes of communication to bring understanding across a breadth of deve-
lopment issues and concerns. Whether it was to better understand the members of the
team in another location and the culture (development or otherwise) they exist in or
have created, or to having a common view of the source code and daily build and test
processes, or to know what blockers people are experiencing that you can help elle-
viate, or establishing and sharing a common vision in the context of the companies
product strategy and vision (and ultimately reflect the needs of the customer) it all
was about communications. Utimately distributed development with XP is possible if
the lessons of how to effectively communicate are heeded and addressed. It is as
though we are turning the nob up on communications and perhaps in some ways is
even more extreme (e.g. cutural exchanges) than XP originally laid out.

Author. Charles Poole worked with IONA Technologies for four years from 1999
through 2002. He is currently employed by Computational Physics, Inc. as the Senior
Systems Analyst and Architect for a U.S. Department of Defense distributed simula-
tion system. He has continued his focus on promoting Agile Methods through his ef-
forts to integrate Extreme Programming under an Earned Value Management frame-
work

References

Martin Fowler’s web site, http://www.martinfowler.com/articles/agileOffshore.html
Matt Simons, Internationally Agile, Mar 15, 2002, http://www.informit.com
Kent Beck, Extreme Programming Explained, Embrace Change, Addison Wesley, 2000
Industrial XP web site, http://www.industrialxp.org/
Scrum web site, http://www.controlchaos.com
Bugzilla home page, http://www.bugzilla.org

1.
2.
3.
4.
5.
6.

Scaling Continuous Integration

R. Owen Rogers

ThoughtWorks, Inc.
Peek House, 20 Eastcheap
London, United Kingdom

orogers@thoughtworks.com

http://www.thoughtworks.com

Abstract. Of all the Extreme Programming practices, continuous inte-
gration is one of the least controversial – the benefits of an integrated,
streamlined build process is something that software developers immedi-
ately recognise. However, as a project scales up in size and complexity,
continuous integration can become increasingly hard to practice success-
fully. By focussing on the problems associated with a growing project,
this paper describes a variety of strategies for successfully scaling con-
tinuous integration.

1 Continuous Integration

The practice of continuous integration represents a fundamental shift in the
process of building software. It takes integration, commonly an infrequent and
painful exercise, and makes it a simple, core part of a developer’s daily activi-
ties. Integrating continuously makes integration a part of the natural rhythm of
coding, an integral part of the test-code-refactor cycle. Continuous integration
is about progressing steadily forward by taking small steps.

1.1 Integrating Continuously

Integration should happen continuously, and continuously is more often than
you might think. The frequency of integration will vary from project to project,
from developer to developer, and from modification to modification. However,
as a goal and a good rule of thumb, developers should integrate their changes
once every few hours and at least once per day.

Learning how to integrate so frequently requires practice and discipline. Fun-
damentally, an integration can occur at any point when the code compiles and
all the unit tests are passing. The challenge is learning how to write software so
that you never stray too far from this point. If you are testing at the right level
of granularity and are refactoring regularly, then you should never be more than
a few minutes away from this point. This means that you are almost always in
a position where you can launch a new integration.

Deciding when to integrate is all about controlling risk. When making mod-
ifications in a high traffic area of the code base or when conducting broad refac-
torings like class renaming or package reorganisation, there is an elevated risk

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 68–76, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Scaling Continuous Integration 69

of impacting other developers or of having merge conflicts when committing.
The longer that developers go without integrating, the greater the likelihood
of conflicts and the larger the effort required to resolve those conflicts. As the
effort of integration increases exponentially in proportion to the time between
integrations[2], best practices dictate that when making high-risk changes a de-
veloper should start from a clean workspace, focus only on required modifica-
tions, proceed with the smallest logical steps, and then commit at the earliest
opportunity.

A successful integration is a measure of progress. It provides feedback that
the new code runs correctly in the integration environment and successfully
interoperates with the rest of the code base. Code sitting unintegrated in a
developer’s workspace simply does not exist. It is not part of the code base, it
cannot be accessed by other developers or tested by the customer. Only when it
has been successfully integrated is the benefit of the new code realised.

1.2 Continuous Integration Tools

In order to integrate as frequently as possible, the integration process must be
easy to launch. If the integration process requires multiple manual steps then
it is easy to forget steps or make mistakes. Ideally, the integration should be
initiated by invoking a single, simple command. Build tools such as make, Ant,
or NAnt are excellent candidates for scripting the integration process to achieve
this.

Automated integration servers, such as CruiseControl (Java), CruiseCon-
trol.NET(C#) or DamageControl (Ruby), automate the integration process
by monitoring the team’s source control repository directly. Every time a devel-
oper commits a new set of modifications, the server will automatically launch
an integration build to validate the changes. When the build is complete, the
server notifies the developer whether the changes that they committed inte-
grated successfully or not. Effectively, integration becomes as easy as checking
in code. Using an automated integration server not only makes integration easy,
it also guarantees that an integration build will happen. There is no danger of
developers forgetting to validate their changes after checking in.

1.3 Practicing Continuous Integration

Tools play an essential role in practicing continuous integration. Having the
right set of tools is what changes integration from a painful and time-consuming
task into an integral part of the development process. However, with the power
that they bring, it is easy to focus on the tools and lose sight of the fact that
continuous integration is a practice – it is about what people do, not about what
tools they use.

As a project starts to scale, it is easy to be deceived into thinking that the
team is practicing continuous integration just because all of the tools are set up
and running. If developers do not have the discipline to integrate their changes
on a regular basis or to maintain the integration environment in good working

70 R.O. Rogers

order then they are not practicing continuous integration. Full stop. Having all
the right tools does not make any difference. Tools are great facilitators, but
they are only as effective as the discipline of the people involved. Ultimately,
continuous integration is about people and the way that they interact to build
software.

2 Scaling Continuous Integration

As the success of continuous integration depends on the discipline of the team,
it is important to foster an environment where it is easy for the team to be
disciplined. However, as a project scales up in terms of the size of its code base
or in terms of the size of the team, there are several factors that undermine the
discipline of team members, making continuous integration increasingly hard to
practice. Understanding these obstacles and their symptoms is instrumental in
devising strategies to overcome them.

2.1 More Code

As the size of the code base starts to grow, it takes an increasingly long time to
run an integration build. While compilation time does grow with the size of the
code base, for most XP projects, the primary factor influencing the build time
is the increasing number of tests. If not properly managed, the build time can
increase exponentially in proportion to the number of tests executed.

The growing build time means that it takes longer for developers to receive
feedback on the results of their integration. It is not uncommon for integration
builds to rapidly reach 30 minutes to an hour as a product of the expanding
code base. Waiting for the integration to finish before proceeding can amount
to a considerable stretch of unproductive time. A natural reaction is to reduce
the frequency of commits so as to minimise this unproductive time. However,
committing less frequently means that more changes are included in each integra-
tion, which, in turn, increases the likelihood of merge conflicts and, if integration
problems do occur, increases the difficulty of fixing those problems. Reducing the
frequency of commits undermines the benefits of continuous integration.

The growing build time also decreases the window in which a developer can
integrate their changes. It is bad karma to leave work after checking in a build-
breaking change. Doing so means that your teammates are stuck either fixing
your bad code, rolling back your changes, or working around your problems. To
avoid this frustrating and embarrassing situation, the easiest thing to do is to
commit early enough in the day so that if integration problems do arise, they
can be tackled before leaving. However, if you are not ready to commit your
changes before this cut-off point then you need to wait until the next day to do
the commit. In the meantime, the inclination is to start something new. Doing
so, however, only delays and increases the difficulty of the next integration.

The common result is that as the code base grows developers commit less
frequently and the practice of continuous integration starts to break down.

Scaling Continuous Integration 71

2.2 More People

Adding more developers to a project team has two major impacts on the integra-
tion process. First, it increases the rate of code production; this only exacerbates
the problems of a rapidly growing code base as discussed in the previous sec-
tion. Second, it means that more people are dependent on a working build. Any
developer committing code that breaks compilation or causes some tests to fail
has the potential to affect a lot more people.

On a small team, the probability of another developer needing to commit
while the build is broken is relatively small. However, as the team grows in size,
the overall frequency of commits increases. If the build is broken, developers
not working directly on fixing the problem are not permitted to commit their
changes. If they were, it could greatly complicate the problems for the people
engaged in fixing the build, only serving to increase the time that the build is
broken for. Therefore, they are stuck waiting for the build to be fixed.

Rather than wait for the build to be fixed, there is a temptation, whether
out of frustration or from desperation, to ignore the build breakage and check in
anyway. It might seem innocent enough to sneak in a quick change while no one
is looking. However, as the build is already broken, it is very difficult to verify
whether or not the new changes actually work properly (either by doing a local
build in the developer’s workspace or on the integration server). This makes it
easy to use the broken build as an excuse for checking in unverified code, and
risk ending up in a tragedy of the commons situation where a broken build leads
to a free-for-all of frustrated developers dumping in their changes.

If bad code has been committed, every developer that updates their local
workspace will be affected. Normally it is good practice for developers to check
the integration server before updating their workspace to ensure that they can
avoid being affected by a broken build. However, because of the lag caused by the
growing build, there is a window during which developers may unwittingly pick
up the bad code. Pulling down broken code requires figuring how to rollback the
broken code from the local workspace which is a hassle at best and a showstopper
at worst. Either way, it is a very frustrating and time-consuming experience.

A broken build, especially a protracted one, is a serious broken window in the
development process – it undermines productivity and morale. To deal with this
broken window, a common approach is to institute a strict and thorough pre-
commit procedure that will make it as hard as possible for developers to break
the build. The pre-commit procedure typically amounts to requiring developers
to run a full integration build locally on their machine before they are allowed
to commit their changes.

While this approach may be successful at reducing the likelihood of com-
mitting build-breaking code, it has the side effect of greatly increasing the time
required to integrate a set of changes. The increased integration time tends to
drastically reduce the frequency with which developers will integrate their code.
As the goal of continuous integration is to make integrating changes as quick
and easy as possible so that developers will do it all the time, this approach is
clearly an anathema.

72 R.O. Rogers

Fundamentally, it needs to be acceptable to break the build. That’s what
an integration server is there for – to inform developers that the committed
code has integration problems. Introducing a stringent pre-commit procedure
and turning each developer’s workstation into a poor man’s integration server is
not an effective way to deal with integration, and only wastes productivity and
undermines morale.

3 Strategies for Scaling Continuous Integration

As the project grows in size, it is easy to use these obstacles as an excuse for
dismissing continuous integration as a practice only useful to small projects.
This is not the case. By careful attention to when integration starts to become
infrequent and when developers start to suffer integration pain as a result, it
is normally possible to tune the process to ensure that continuous integration
remains feasible. Here are five strategies for successfully scaling continuous inte-
gration:

Establish a maximum build length
Create targeted builds
Write faster unit tests
Smaller teams with local integration servers
Modularise the code base

3.1 Establish a Maximum Build Length

Keeping the build quick is easier said than done. First you need to determine
how quick is quick enough. This requires deciding what an appropriate maximum
build length should be and then coming up with a set of strategies for keeping
it below that threshold.

The question of how quick is quick enough is a product of the requisite
frequency of integration. The frequency with which developers are willing to
integrate their code is proportional to the time and effort that it takes to do so.
This is a common pattern of human behaviour1. If integration takes 20 minutes,
it is unreasonable to expect developers to integrate every hour. This would mean
that they spend 30% of the iteration integrating their code. If the goal is to give
developers the potential to integrate every hour, it is important for integration
to take a small enough proportion of the overall development time so as to be
unnoticeable. If the integration process is quick enough, taking say two minutes
or less, then it can effectively become a background activity that developers can
do whenever they are not typing or getting the code to pass. On many large
projects this is a difficult goal to reach, so there will be a trade-off between a
longer build and a reduced frequency of integration.

The Planning XP book makes this observation with relation to planning [3]. The
amount of time spent planning needs to be proportional to the length of the iteration.
Clearly it makes no sense spending two days planning for a one week iteration.

1

Scaling Continuous Integration 73

Fig. 1. Integration frequency chart.

Conceptually, the relationship between the frequency of integration and the
length of the build is similar to the graph shown in Figure 1. If the build time
is below a certain threshold (two or three minutes), then there is no noticeable
effort involved in integration and it can be done as frequently as required. As the
integration time and effort becomes perceptible, integrations start to become an
interruption to the flow of development and will be scheduled accordingly. This
drastically reduces their frequency. For integrations of 5 to 10 minutes, it still
feasible for developers to integrate several times per day. However, as the build
time increases above this threshold, the time and effort involved in integration
increase rapidly.

On a recent project that I was on, the integration time was 30 to 40 min-
utes and developers were integrating their changes once per week on average.
The build time rose to almost an hour before being reduced again to more sus-
tainable levels. Developers would typically allocate most of one day to do their
integration. Once integrations begin to take this long, there are certain limit-
ing factors that affect the frequency of integration. Factors such as iteration
length set an upper limit on integration frequency (developers need to integrate
successfully at least once per iteration).

Specific build time thresholds and recommendations will vary from project
to project; however, human factors, such as the limits of perceptible time, will
remain constant. Keeping these constants in mind will help you to set thresholds
and targets that are appropriate for your project.

74 R.O. Rogers

3.2 Create Targeted Builds

As the build is a central, regularly scheduled task, it is easy to chuck everything
into it, including the kitchen sink. It is common to end up with a single integra-
tion process that compiles the code, runs the unit tests and the acceptance tests,
builds deployment packages for QA and the customer, validates code coverage,
and checks coding standards amongst other things. Including all of these tasks
in the build is, in general, a good thing because it means that they are running
as regularly as possible and the team can benefit from their feedback. However,
when included in a single serial integration process, these extra tasks can greatly
increase the length of the build. Dividing the build into a set of independent con-
secutive or concurrent processes is an excellent way to prioritise build tasks and
ensure that feedback is given fastest to those that need it most.

When thinking about the contents of the build, it is important to consider the
different parties that rely on the integration build and what their requirements
are. For developers, it is essential to have a code base that can compile and that
passes the unit tests at all times. Creating a separate developer build process
that runs only these tasks minimises the build time and thereby increases the
potential frequency with which developers will integrate their code.

Feedback on the status of the acceptance tests is also important; however,
acceptance tests take substantially longer to run than the unit tests. Deciding
whether or not to include acceptance tests is a trade-off between the overhead
of integration and the stability of the code base. For most development teams,
it is fine to permit acceptance tests to break over the course of the iteration as
long as the team ensures that the tests are all passing prior to the end of the
iteration.

The other parties that rely on the integration process are typically content
with less frequent feedback. QA and the customer often use the build as a means
of acquiring a new copy of the system. However, they typically will pick up a
new version on an infrequent basis – once per day or on-demand. Setting up an
alternate QA/customer build process to package the distributables and run the
acceptance tests is a great way of ensuring that these tasks are run regularly,
yet do not affect the quick developer build.

3.3 Write Faster Unit Tests

Slow tests are typically the main culprit behind a slow build. Separating unit
tests from functional and acceptance tests is key to reducing test execution time.
Developers learning XP are typically new to testing and may not have a clear
idea of the distinction between these different types of tests. Most developers
when they start writing unit tests end up writing a hybrid between unit and
functional tests. This is because when testing a particular class, it is easy to
end up pulling in and testing the entire web of objects that that class depends
on. Without proper testing and design techniques, it is quite common to end
up in a situation where practically every unit test hits the database or some

Scaling Continuous Integration 75

external system. The overhead of redundantly testing through multiple layers of
the system greatly increases the unit test execution time.

Unit tests, when written at the right level of granularity should run extremely
quickly. Thousands of properly decoupled, orthogonal unit tests can execute in a
matter of seconds. However, there is an art to learning how to write unit tests like
this. Getting to this point requires a lot of practice doing test-driven development
and a good understanding of unit testing tools and techniques. Making extensive
use of mock objects[4] and dependency injection[1] are essential techniques for
testing each class as a discrete and independent unit.

It normally takes some time before getting to the point where every devel-
oper can write fast, decoupled unit tests. In the meantime, it is important to
repeatedly refactor slow unit tests to keep the build time down. Most automated
integration servers report a sorted list of test execution times. As the build time
starts to grow, it is good practice to regularly pick the slowest running unit
tests and try to refactor them. If refactoring is not possible, move them into a
designated functional test area.

3.4 Smaller Teams with Local Integration Servers

It needs to be acceptable to break the build. That is, after all, why you use an
integration server. Even negative feedback is good feedback. However, if a large
number of people are affected by a build breakage, it is tempting to think that
breaking the build is a deadly sin to be avoided at all costs. Stopping developers
from breaking the build involves adding overhead to the integration process,
which simply ends up decreasing the frequency with which they will commit
their changes. Instead, it is important to to allow developers to break the build
with relative impunity without adversely impacting their colleagues.

The simplest approach is to organise into small development teams (4-8 de-
velopers per team) and to modularise the code base on a per team basis. This
modularisation introduces a level of isolation between teams. As each team op-
erates predominately within their own area of the code base, they only need to
compile and run the tests for their module. As a result, the build is very quick
to run. If a developer commits modifications that cause the build to break only
the handful of developers on their team relying on the code in their module will
be potentially affected.

Each team can and should set up their own automated integration server.
However, there need not be anything special about an integration server; it
can be run on any box. If developers practice pair programming then half of the
available workstations are sitting idle. There is no reason why a vacant developer
box cannot be turned into an integration server.

3.5 Modularise the Code Base

The primary issue with splitting into smaller teams is that it creates the problem
of cross-team integration. Teams are effectively delaying full system integration
in exchange for a faster, leaner integration process and the productivity benefits

76 R.O. Rogers

associated with it. By delaying the full system integration, teams are poten-
tially building up an integration debt that will be painful to resolve when the
integration finally happens.

To mitigate the pain of cross-team integration, it is important to carefully
consider the way that modularisation is done. Modularisation should minimise
cross-team dependencies. Ideally, teams should be organised along independent
vertical slices of functionality – not in accordance with application layers. Mod-
ularisation along application layers, albeit the typical, traditional approach to
organising software teams is inadvisable because it maximises cross-team depen-
dencies. In a n-tier architecture, any piece of functionality effectively needs to
integrate with each of the modules of the other n teams. This approach also
greatly slows down development as each team depends on all of the other teams
to finish their work before any piece of functionality can be judged complete.

Integration with other teams should be done through published interfaces
and common value objects. This integration can be accomplished either at bi-
nary or source level. Binaries offer the benefit of decreased compilation time
(teams do not need to recompile each other’s source) and provide a controlled,
versioned, releasable unit. However, having the source available helps diagnose
and fix integration problems, and helps ensure consistent coding standards across
teams.

4 Conclusion

The goal of continuous integration is to maximise developer productivity and
minimises integration risk by making integration an easy, natural part of the de-
velopment cycle. It provides the development team with the invaluable feedback
that the code base is continuously in a working, integrated condition. However,
continuous integration is considerably harder to practice on projects with large
code bases and large teams. The strategies proposed in this paper provide guide-
lines for successfully scaling continuous integration to deal with these issues.
Applying these strategies can help ensure that practicing continuous integration
is feasible even for very large projects.

References

Fowler, M.: Inversion of Control Containers and the Dependency Injection pattern.
http://martinfowler.com/articles/injection.html
Fowler, M., Foemmel, M.: Continuous Integration. http://martinfowler.com/
articles/continuouslntegration.html (2001)
Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley (2001)
Mackinnon, T., Freeman, S., Craig, P.: Endo-Testing: Unit Testing with Mock Ob-
jects. Extreme Programming Examined. Addison-Wesley (2001)

1.

2.

3.
4.

Efficient Markets, Efficient Projects,
and Predicting the Future

John Favaro

Consulenza Informatica, Via Gamerra 21,
56123 Pisa, Italy

jfavaro@tin.it

Abstract. Economic concepts have provided valuable sources of insight into
important concepts underlying agile methodologies. The dynamics of capital
markets are understood through the concept of market efficiency; an analogy is
developed to project efficiency for understanding the dynamics of agile proj-
ects. The efficient project concept is then used to motivate the preoccupation of
agile developers with dealing only with available information at any time and
not trying to predict the future. Finally, six lessons of project efficiency are pre-
sented.

Keywords: Economics, efficiency, value, market, project.

1 Introduction

Our highest priority is to satisfy the customer through
early and continuous delivery of valuable software.

– The Agile Manifesto

One of the ways in which agile methods such as Extreme Programming (XP) have
differentiated themselves from other software development methodologies has been
their explicit elevation of economic arguments onto an equal (or greater) footing with
the more familiar technical arguments. Therefore it is perhaps not surprising that
economics and finance have also proven to be a rich source of analogies for explain-
ing the values, principles, and practices of agile methods.

Certainly the most widely disseminated of these has been the analogy of “business
options,” introduced both in the White Book [1] and in other publications [2], where
concepts from option pricing theory are used to support the discussion of flexibility in
agile methods. In another recent example [3], the concept of residual income (or
Economic Profit), commonly used in financial management to monitor usage of
capital resources such as inventory, helped illustrate the notions of “software inven-
tory” and “software in process” currently being promoted in the agile community.

In this paper an analogy is developed between agile project dynamics and the con-
cept of efficient markets from corporate finance.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 77–84, 2004.

© Springer-Verlag Berlin Heidelberg 2004

78 J. Favaro

2 Efficient Markets

The ideas leading up to the theory of efficient markets are over a hundred years old.
Louis Bachelier, in his doctoral thesis [4] in 1900, put forward the proposition that
stock price movements are completely random – an idea considered so preposterous
at the time that it was quickly forgotten. (This was unfortunate, because Bachelier not
only anticipated the next formulation of this proposition by 53 years, he also antici-
pated Albert Einstein’s work by five years in postulating that stock prices follow
Brownian motion. As if that weren’t enough, he also managed to contribute several
key ideas in the field of option pricing.)

Fig. 1. Which is the real chart of stock prices?

In 1953, Kendall performed an extensive study of patterns in stock market prices,
and subsequently reported [5] on the number of patterns he had found: none. To his
own amazement, he had been unable to find evidence of any regularity or cycles. On
the contrary, prices seemed to walk around randomly, as though their direction were
being determined by a simple toss of a coin. This report was also greeted by skepti-
cism, even hostility (especially from those making a living from finding patterns in
stock prices). But this time the conclusions were harder to ignore: time and again it
has proven to be impossible to distinguish between a chart generated entirely by ran-
dom coin tosses and a chart of real stock prices. Three of the four stock price charts in
Fig. 1 were generated for this article from a spreadsheet in which successive up and
down movements were determined randomly. Which is the real chart? (The answer is
given at the end of this article.)

The reason that the randomness of stock price movements was so hard to accept, of
course, is that it seemed to make no sense at all: how can stock price movements be
random when stocks are obviously affected in a very concrete way by profits, losses,
acquisitions, mergers – in short, by significant events of all kinds? The explanation

Efficient Markets, Efficient Projects, and Predicting the Future 79

arrived in the form of the Efficient Market Hypothesis, first proposed formally by
Fama in the mid-1960s [6].

In an efficient market, information travels freely among the large number of intel-
ligent, motivated participants (as Malkiel [7] says, “money attracts brains”). As soon
as any bit of information becomes available, investors pounce upon it, and its impli-
cations are quickly incorporated into the prices of stocks. As a result, the market is
always completely “up-to-date” – it reflects all information that is currently available
to investors.

Most importantly: not only does an efficient market reflect everything that has
happened in the past, it also reflects anything that can currently be said about what
might happen in the future. Legions of investors scrutinize, discuss, and analyze any
new information over and over until every useful conclusion from that information
has been drawn – and also acted upon:

If today’s direction ... does indeed predict tomorrow’s step, then you will act on
it today rather than tomorrow. Thus, if market participants were confident that
the price of any security would double next week ... Why wait? [7]

This is the key insight in understanding the puzzle of random stock price move-
ments. In an efficient market, the incessant activity (motivated by greed and fear) of
investors assures that any information that clearly points the way to the future is acted
upon without delay. Afterwards, only one type of information remains: that which
does not yet exist. Its arrival must come as a genuine surprise. But the timing of unex-
pected new information is by definition unpredictable (as Paulos notes [8], it would
have been extremely strange to have seen a newspaper headline in 1890 exclaiming
“Only 15 years to relativity!”). And therefore, each new step by the stock market is
taken in response to new information whose timing and impact are necessarily un-
known beforehand – a random walk (also called a “drunkard’s walk”).

Today, more than 50 years after Kendall’s report, the degree to which the market is
efficient is a matter of lively ongoing debate, but the essential validity of the Efficient
Market Hypothesis is widely accepted.

3 Efficient Projects

The Efficient Market Hypothesis turns out to provide a very good conceptual frame-
work for gaining insight into the dynamics of agile projects. Working within this
conceptual framework, we now introduce the notion of efficient projects.

Before proceeding, it is worth noting that the word “efficient” is used here more in
the engineering sense of “completely consuming all input” than in the bureaucratic
sense of “well-organized and disciplined” more commonly seen in the software engi-
neering literature today. Another engineering definition of efficiency is “high ratio of
output to input”: A perfectly efficient market quickly and completely consumes in-
formation as it becomes available, converting every bit into investor action. It is this
same goal of perfect efficiency that agile projects strive to attain, the rapid and com-

80 J. Favaro

plete absorption of new information and its immediate conversion into implementa-
tion.

The concept of common knowledge [8] is central to the functioning of efficient
markets. Information is disseminated in such a way that all participants are aware of
it, and moreover, are aware that others are aware of it. As a result, information is not
compartmentalized. Agile projects strive to achieve rapid information dissemination
and a state of common knowledge through a variety of techniques including stand-up
meetings, pair programming, ruthless refactoring, collective ownership, continual re-
estimation of effort and velocity, and the absence of fixed roles that tend to compart-
mentalize information. Rapid and complete information dissemination is coupled with
techniques for rapid conversion into implementation, such as the principle of the
Simplest Design That Could Possibly Work.

We can contrast this with traditional projects that might be called inefficient proj-
ects (in the engineering sense we are using it). At any one time, there is information
that is not common knowledge in the project. On the contrary, information is seg-
mented and compartmentalized. This prevalence of “insider information” is partially a
result of roles such as, for example, a “Chief Architect,” who may act as the sole
custodian of much important information. Moreover, information is generally not
quickly converted into system functionality. At any one time, there is much informa-
tion that is not reflected in the current state of the system – much design, much im-
plementation, much testing is still in the future.

4 Predicting the Future

The notion of efficient projects yields insight into the preoccupation of agile practi-
tioners, so puzzling to many, with not trying to predict the future – expressed, for
example, in the familiar YAGNI (You Aren’t Going to Need It) principle. Many
cannot understand why agile projects do not try to deal with the future; paradoxically,
this arises from the fact that they deal so completely with the past.

In an efficient project, everything to date – requirements, analysis, design, test,
everything implied by the information available – is completely reflected in the im-
plemented system. (This objective is also reflected in the so-called Customer Bill of
Rights [9], where the customer “ . . . can cancel at any time and be left with a useful
working system reflecting investment to date.”).

The less efficient a project, the more the “future is built-in.” It is built in by the de-
sign that is not yet coded, by tests not yet run, by assumptions and claims made for
the future. It is more difficult to change direction because it is predetermined by the
very state of the implemented system that does not reflect all currently available in-
formation.

In contrast, in an efficient project, as in an efficient market, the future literally is
unpredictable – because the past and present have been so completely digested. It is
ready to react to this unpredictable future (for example, a user decision to introduce a
new story). Each new step in an agile project (e.g. an iteration) leads to the rapid

Efficient Markets, Efficient Projects, and Predicting the Future 81

absorption and implementation of new information, leaving behind no assumptions
about the future, in its own form of a random walk.

5 The Six Lessons of Market and Project Efficiency

In their classic text on corporate finance [10], Brealey and Myers presented six “les-
sons” that conveyed succinctly the most important implications of market efficiency.
It is instructive to revisit these lessons now from the perspective of this discussion.
Each lesson is presented and summarized first in its original form for efficient mar-
kets, then in an adapted form for efficient projects. Where appropriate, quotes from
the original presentation in [10] will be utilized.

Lesson 1: No Memory

Efficient markets have no memory. “[In an efficient market] ... the sequence of past
price changes contains no information about future changes.” This is the most funda-
mental message of the Efficient Market Hypothesis: the past does not condition the
future – there are no patterns or cycles implied by past movements.

Efficient projects have no memory. An efficient project likewise strives to not build
the future into the system. By working only for the present, the project builds in only
what is necessary to handle what has happened up to now, so that there are no
mechanisms that condition how new information will be handled. For example, in a
web project, if the system is built to handle, say, 200 users now, there is nothing in
the current implementation (e.g. “hooks”) from which to infer that the system might
be asked to handle 1000 users in the future. The more efficient the project, the more it
will decouple its past from its future, leaving it optimally ready to react to new infor-
mation.

This is much different from an inefficient project, where the past strongly condi-
tions the future, making it difficult to change course – because so much remains to be
done, based upon so many suppositions.

Lesson 2: Trust

Trust market prices. “In an efficient market you can trust prices, for they impound all
available information about the value of each security. To [improve on this], you not
only need to know more than anyone else, but you also need to know more than eve-
ryone else.” Often managers, confident of their superior investing ability, acquire
other companies simply because they think those companies are undervalued. But in
an efficient market, the phenomenon of arbitrage ensures that the values placed on
securities (and therefore companies) by investors quickly converge to the correct
ones: if the available information indicates that a price is too low, investors quickly
take advantage of this and drive the price up; the converse happens when the price is

82 J. Favaro

too high. Even when the price is not correct, it is unbiased: any error is just as likely
to be in one direction as another.

Trust the implemented system. In an efficient project, you can trust the imple-
mented system, because it impounds all available information about what the system
should do. In a phenomenon similar to arbitrage, the principles of the simplest possi-
ble implementation and refactoring place downward pressure on complexity, while
information such as failing tests act to produce upward pressure, resulting in an im-
plementation whose complexity is generally appropriate for the information available.
When you try to second-guess the implementation, you are not only saying that you
can improve on the consolidated wisdom of the project, but that you have a better
idea of where the project is headed next. But since the system impounds all available
information, then even if it is not yet completely right, it is still unbiased: there is no
reason to think that you have a better idea about what the future holds.

Lesson 3: Read the Entrails

Read the market entrails. Since the prices in an efficient market reflect all available
information, it is there that we must go for answers. For example, if the stock price of
a company (e.g. Oracle) is sinking in response to the bidding war it is waging to ac-
quire another company (e.g. Peoplesoft), it is the clearest signal available that inves-
tors are displeased with this initiative. As another example, reading the entrails of
long-term versus short-term interest rates will tell us whether the market thinks that
interest rates are set to rise in the future.

Read the system entrails. “Ask the code,” as the common saying goes. Since the
implementation impounds all available information, it is there that we must go for
answers. When there is a question, then look to how the system is actually imple-
mented and performing – an addition to the suite of tests is invariably the best route.
If the code smells or, for example, if the system seems to be able to get to 90% of
tests passing and can’t move beyond, then the system is sending a strong signal that
something could be fundamentally wrong with the implementation. In an inefficient
project, in contrast, where much important information remains outside the imple-
mentation, the system cannot be reliably interrogated for answers.

Lesson 4: There Are No Illusions

There are no financial illusions. “In an efficient market ... investors are unromanti-
cally concerned with the firm’s cash flows ...” In recent years there have been a
number of cases of “creative accounting,” where reported earnings were manipulated
in order to appear to make them appear higher (think of so-called pro forma earnings
reported by many tech firms). But the incessant scrutiny of investors has invariably
exposed the financial window-dressing and kept the focus on the true cash flows of
the firm (with some infamous exceptions during the years of the dotcom mania – and
even those were eventually exposed).

Efficient Markets, Efficient Projects, and Predicting the Future 83

There are no functional illusions. In an efficient project, customers are unromanti-
cally concerned with the functionality of the system. The unrelenting rhythm of im-
plementation and testing in an efficient project quickly peels off any functional “win-
dow dressing” (perhaps in the form of a colorful and flashy GUI) and keeps the focus
on whether the customer functionality (e.g. handling a particular set of file formats) is
really implemented by the system or not.

Lesson 5: The Do-It Yourself Alternative

“In an efficient market, investors will not pay others for what they can do equally
well themselves.” The transparency of efficient markets reveals the costs and value of
operations undertaken by firms – and consequently a firm must demonstrate to the
investor that it can offer something at a cheaper price than he could have done him-
self. For example, companies that merge or acquire others often try to convince in-
vestors that they have added value by “diversifying.” But the investor can easily and
more cheaply diversify on his own, simply by buying shares in several different com-
panies. There is no reason for him to prefer the generally more costly route offered by
a merger.

In an efficient project, customers will not pay others for what they can do equally
well themselves. Efficient projects are very transparent: the relentless cycle of esti-
mating and re-estimating stories leads to the customer always knowing the cost and
value to him of paying to have a feature implemented within the context of the proj-
ect, down to a relatively fine grain. He will therefore always have the opportunity of
being aware of possibilities to acquire the feature at a cheaper price outside of the
project (say, a COTS or open source tool or component that implements that feature
perfectly) – or to renounce altogether, when the efficient processes in the project
reveal that the cost/value relationship of the feature is not advantageous.

In contrast, in an inefficient project, the implementation is generally not feature-
aligned; as a consequence there is generally little or no opportunity to separate out
and evaluate features that could be provided in a more cost-effective way outside the
project. The customer must simply trust the implementers and hope for the best.

Lesson 6: Seen One, Seen Them All

Seen one stock, seen them all. “Investors don’t buy a stock for its unique qualities;
they buy it because it offers the prospect of a fair return for its risk.” In an efficient
market, stocks are perfectly substitutable for each other: investors don’t care whether
their cash flows are generated by selling cars, computers, or candy.

Seen one implementation, seen them all. In efficient projects, customers don’t buy
features for the unique characteristics of their implementation; they buy them because
they deliver the functionality requested at a fair price, whether it is implemented with
objects or with acorns. Agile methods support this view by being relatively technol-
ogy-neutral: although certain technological categories are recognized to be generally
effective (just as certain market sectors are recognized to be generally profitable),

84 J. Favaro

agile methods focus on delivery of features at the promised cost and consider the
supporting technologies to be essentially substitutable for each other.

6 Conclusions

The notion of efficient markets is central to modern corporate finance: it is the pri-
mary mechanism through which the value of capital assets is determined. The notion
of efficient projects can help agile project managers understand the mechanisms that
lead to the production of software with measurable value. Agile project managers
don’t try to predict the future, because they strive to have projects that completely
impound the past and present. This leaves them free of the baggage of the past and
present, and ready to confront an unpredictable future. Of course, neither markets nor
projects are ever perfectly efficient all of the time – but the concept provides agile
developers a way of understanding what they are trying to achieve.

The upper right-hand chart in Fig. 1 tracks the S&P500 index from 20 November
2002 to 19 November 2003.

References

Beck. K., Extreme Programming Explained: Embrace Change, Addison-Wesley, 1999.
Erdogmus, H. and J.M. Favaro, “Keep your options open: Extreme Programming and the
economics of flexibility,” in Extreme Programming Perspectives, M. Marchesi, G. Succi,
D. Wells and L. Williams, Editors: Addison-Wesley, 2003.
Favaro, J.M., “Value-Based Management and Agile Methods,” Proc. Fourth International
Conference on Extreme Programming and Agile Processes, Genoa, May 2003.
Bachelier, Louis, Théorie de la spéculation, Annales scientifiques de 1’Ecole Normale
Supérieure, 3º série, 17 :21-86, 1900.
Kendall, M.G., “The Analysis of Economic Time Series,” Part I. Prices, Journal of the
Royal Statistical Society 96 (1953), pp. 11-25.
Fama, E. F., “Random Walks in Stock Market Prices,” Financial Analysts Journal, Sep-
tember/October 1965.
Malkiel, B.G., A Random Walk Down Wall Street, W.W. Norton, 1996.
Paulos, J. A., A Mathematician Plays the Stock Market, Basic Books, 2003.
Jeffries, R., et al., Extreme Programming Installed, Addison-Wesley, 2001.
Brealey, R. and S. Myers, Principles of Corporate Finance, McGraw-Hill, 2000.

1.
2.

3.

4.

5.

6.

7.
8.
9.
10.

Agile Principles and Open Source Software
Development: A Theoretical and Empirical

Discussion

Stefan Koch

Vienna University of Economics and BA, Department of Information Business,
Augasse 2-6, A-1190, Vienna, Austria

stefan.koch@wu-wien.ac.at

Abstract. In the last years, two movements have been widely dis-
cussed in the software development community: Agile and open source
development. Both have faced some of the same criticism, and both
claim some of the same benefits. This paper poses the question whether
open source software development is in accordance with agile software
development principles and therefore well within the planning spectrum.
To this end, the general principles of both movements are detailed and
compared, and some empirical data from open source software devel-
opment projects is given on any similarities and dissimilarities uncovered.

Keywords. Software Development, Agile, Open Source, Software Met-
rics, Coordination

1 Introduction

Agile software development has been proposed as a solution to problems resulting
from the turbulent business and technology environment faced by organizations
engaged in software development [8]. Several methods like Extreme Program-
ming (XP) [1], Scrum, Lean Development or Adaptive Software Development
exist that embody the principles of this approach as laid down in the Manifesto
for Agile Software Development. While there is some evidence, mostly based on
singular projects, of positive practical application of these methods, there is a
lively discussion on this topic [2,13]. On the other hand, Boehm in his analysis
[3] sees both the agile and more plan-driven approaches as having a responsible
center, and argues for a risk analysis of a project’s characteristics for determin-
ing the right balance of disciplines in each case [4]. All of these contributions
have not yet ended the ongoing debate, even if some first empirical results on
both use of agile principles and the results in cost, productivity and quality
have already been published [15], and seem an important step towards this end.
There is one point in the discussion that has as yet been largely omitted: Like
agile development, there has been another movement which has received much
attention in the last years: Open source software development. Also in this case
there is considerable debate about benefits and efficiency [11,5,17]. While any

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 85–93, 2004.
© Springer-Verlag Berlin Heidelberg 2004

86 S. Koch

discussion of agile development contains the words cowboy coding, unplanned
and undisciplined hacking or similar terms, from which this movement is seen
as different, the term open source is not mentioned. Many of the same argu-
ments brought to bear against agile development are also faced by open source
development. So, using the planning spectrum introduced by Barry Boehm, the
question is where to place open source development? On the far end with the
hackers or more towards XP and agile methods? In order to facilitate this classi-
fication, this article seeks to compare both methods, and tries to give some first
empirical results on any similarities and dissimilarities. Besides clarifying terms
and classifications, open source projects and their wealth of data [10,12] might
form additional testbeds for agile development methods, and both movements
might learn and benefit from each other.

2 Agile Software Development

Both the business and technology environment continue to change at an increas-
ing pace. In software projects, this leads to more frequent changes during the
life cycle. Therefore the main question is how to better handle these changes,
not stop them by anticipating and including them in the requirements definition,
while still achieving high quality and timeliness. To this end, a group of people
created the Manifesto for Agile Software Development that values individuals
and interactions over processes and tools, working software over comprehensive
documentation, customer collaboration over contract negotiation, responding to
change over following a plan, while explicitly acknowledging the value of the
latter items. Furthermore there is a set of principles giving more details, stress-
ing the importance of quality in design, especially in simplicity, the honesty of
working code, delivered early and continuously, for communication between de-
velopers and sponsors, short feedback loops, the importance of motivated and
competent individuals interacting face to face and welcoming change even late
in the development. There has been a lot of criticism, one of them being that
planning, processes and documentation are essential, and agile development is
an excuse for hackers to do as they like, coding away without planning or design
[13]. Barry Boehm on the other hand sees agile methods as having a responsible
center with a fair amount of planning, and as an important advantage of this
movement to draw hackers away from pure hacking [3]. Another point of criti-
cism is the reliance on individual competency, craftsmanship, working together
in self-organizing teams in intense collaboration including customers [6]. It is
argued that the number of developers possessing excellent technical knowledge
paired with the necessary social skills is naturally limited. Also the possible size
of agile development teams is discussed. While successful projects with up to
250 people are cited [6], others see a limit of 15 to 20 people.

3 Open Source Software Development

Open source (or free) software has generated much interest in the last years, espe-
cially following the rise of Linux and several similar projects like GNU project’s

Agile Principles and Open Source Software Development 87

utilities and libraries, the Perl and Tcl programming languages, and the Apache
Web server. Regarding these examples, the notion that software of considerable
quality can result from this form of development can not be dismissed. Open
source software (using the Open Source Definition) is software under a license
that fulfills several criteria, giving the user more rights than most other terms
of distribution. These include the free redistribution, the inclusion of the source
code, the possibility for modifications and derived works, which must be allowed
to be distributed under the same terms as the original software, and some others.
One example for a license that fits these criteria is the well-known GNU General
Public License (GPL) advocated by the Free Software Foundation, which im-
poses even stricter regulations. While these definitions pertain to the legal terms
of distribution, there is also a distinct form of development associated with open
source software. The guiding principle is that by sharing source code, developers
cooperate under a model of rigorous peer-review and take advantage of “par-
allel debugging” that leads to innovation and rapid advancement in developing
and evolving software products. The best and most widely used description of
this development form is an article by Raymond titled ‘The Cathredal and the
Bazaar’, in which he contrasts the cathredal model of commercial software de-
velopment with the bazaar model of open source using fetchmail as a case study
[14]. In this article, he gives several lessons, which form the guiding principles of
this form of software development. These therefore constitute the counterpart of
the principles behind the agile manifesto and need to be compared with those
and reality in open source projects. The criticism faced by the open source devel-
opment paradigm has several main arguments, the first being that finding and
correcting bugs late in the life cycle during coding incurs very high costs [11], a
point also discussed in the context of agile development [16]. In addition, effort
by people looking for bugs, but not being able to find or fix them, is hidden
by spreading it. The inattendance to analysis, requirements engineering and de-
sign causes additional limitations due to architectural problems, hiding of useful
code, etc. On the other hand it is argued that due to the high modularity of
open source code, which is much more stringently enforced to allow more people
to work in parallel, and because the context of an error is not lost due to fast
release cycles, the costs for fixing bugs in code are not much higher [5].

4 Comparison and Empirical Data

Using several key areas mostly denoted by the principles of agile development
and lessons from Raymond’s description of open source software development,
both movements are compared. Empirical data is used where appropriate to
further emphasize and confirm any similarities and dissimilarities. The data em-
ployed is derived from several empirical analyses including Apache and Mozilla
[12], GNOME [10] and an analysis of Sourceforge, a repository providing free
services like version-control or mailing lists for several thousand hosted open
source projects. The main idea for this empirical research was to use existing
data on the projects available to the public, especially the version control sys-

88 S. Koch

tems that stores every single check-in of a file by a programmer with additional
information like the number of lines-of-code changed, and mailing lists.

4.1 Software Process

Both agile and open source development are no description of a software process
as envisioned by this research area. They consist of a set of principles for a
software project. While agile in contrast to open source development has several
approaches and methods that embody these principles, some of these, e.g. XP, do
not have much more detail on the software process, but also restrict themselves to
general guidelines. On the other hand, several open source projects have devised
elaborate process descriptions, e.g. for release management [9].

4.2 Craftsmanship, Chief Programmers, and Individuals

Agile software development focuses on individual competency and on motivated
individuals (‘Build projects around motivated individuals.’). This attitude is
also described by the term craftsmanship [6], and manifests in pair program-
ming, collective code ownership and mentoring in XP, or chief programmers in
FDD. In open source development, Raymond gives a possible explanation for
the free effort contributed by using the craftsmanship model, in which the pure
artistic satisfaction of designing beautiful software and making it work drives
the developers. Empirical data on open source projects show an interesting dis-
tribution of the effort invested. While a large number of people participate in
the development by giving feedback or testing, a smaller number contributes to
the source code, and an even smaller number is responsible for the vast majority
of the outcome. In the Apache project, while over 3,000 people submitted prob-
lem reports, a core group of 15 programmers out of 400 is responsible for 88%
of the lines-of-code [12]. In the GNOME project, which is much more diverse
containing several sub-projects, the top 15 of 301 programmers added 48% of
the total lines-of-code, while clustering hints at a still smaller 11 person core
programmer group. In total, about 1,900 people participated by showing some
activity on the mailing lists [10]. Analysis of the Sourceforge repository shows
that of more than 12,000 programmers in 8,600 projects, the top 10% are re-
sponsible for about 80% of the total source code. Regarding the distribution in
single projects, all 65 projects with more than 500k lines-of-code added and at
least 5 developers were analyzed. These projects range up to 88 programmers
with a mean of 17 persons per project. In the mean, only the top 20.4% of
the participating programmers (2.8 people) were necessary to reach 80% of the
project’s source code. In open source development, each project therefore seems
to center around a small number of highly competent and motivated individu-
als. These individuals, at least some of them, will need to have the social and
communication skills necessary to bring larger numbers of people to the project,
and hold them there. Open source development can therefore be termed chief
programmer teams, as a large number of supporters center around a small inner
circle of programmers responsible for most part of actual design and coding.

Agile Principles and Open Source Software Development 89

4.3 Team Size

While successful agile projects of up to 250 people are cited [6], most authors see
a size limit at about 15 to 20 persons due to the tightly coordinated teamwork
necessary. Both of these ranges are within the bounds of open source projects.
As demonstrated above, large projects like Apache or GNOME number a few
hundred programmers, but there is empirical evidence for a very small core
team in the range of 10 to 20 persons. In smaller open source projects, these
numbers decrease accordingly, down to one highly motivated developer with a
small team of supporters. The core team seems to have a size of about 5 to
20%, resulting in a group within whom frequent and even personal interactions
are easier. While Boehm in his analysis of agile development correctly remarks
that 49.9999% of the world’s software developers are below average, he concedes
that a project does not necessarily require uniformly high-capability people.
This seems to exactly mirror the situation in open source projects, where highly
capable chief programmers are supported by a larger number of participants.

4.4 Self-Organizing Teams

Agile development stresses the importance of self-organizing teams that are able
to rapidly adjust to changing requirements and new challenges (‘The best ar-
chitectures, requirements, and designs emerge from self-organizing teams.’, ‘At
regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.’). This requires common focus, mutual trust
and respect, and intense collaboration. In open source development, a common
focus is ensured, as all participants voluntarily join and therefore follow the goals,
which might available implicitly in a vision or example like an existing commer-
cial system. In order to efficiently apply the manpower available to the project,
self-organization is strictly necessary. As each participant needs only to do what
he wants, self-selection will lead to each one doing what he does best and most
efficiently. As Raymond writes ‘...open source hackers organize themselves for
maximum productivity by self-selection...’. For the GNOME project it has been
shown that the number of participating programmers in each month, at least un-
til the time of operation, closely follows the efficient manpower distribution pro-
posed for commercial software projects [10]. As there is no central management,
the community of developers really seems to be able to organize itself accord-
ingly. Of course, coordination is still necessary also in this form of project, and
data from the GNOME project shows that the activity on the mailing lists was
strongest during the build-up in active programmers, while declining afterwards
[10]. This hints at some sort of briefing or introduction necessary for newcomers.
If the data of the GNOME project’s source-code versioning system is analyzed,
in the mean only 1.8 programmers are found to work together on a single file,
even larger files are worked on by only a few programmers. This indicates a divi-
sion of labour on a higher level. In the Apache project [12], data on the problem
reports show that this activity is more widely spread than actual programming,
the top 15 people only produced 5% of the total reports, and only three of these
were also among the core programmers. This again hints at a high degree of

90 S. Koch

division of labour, with the tasks that can more easily be performed in parallel
being spread out more than others. In the Sourceforge repository, in the mean 1.2
programmers work an a given file, but as this number might be distorted by the
large number of small projects, analysis of the 65 large projects (more than 500k
lines-of-code, at least 5 developers) was again undertaken. While the number
within this group is slightly higher with 1.5 programmers, it is still rather small
and near the GNOME project, further enhancing the findings given above. In
addition, when the data from the Sourceforge repository is analyzed using text
parsing of the commit log messages by the programmers, distinctive names of
design patterns show up at about 10% of the projects. One of the main benefits
often associated with patterns is improved communication between developers.
In fact, there is a significant positive correlation between the number of partici-
pants in a project and the number of different patterns used. This indicates that
larger teams seem to have an increased need for the improved communication
provided by patterns. As this usage is not prescribed, this can be seen as an
additional example of self-organization for maximizing efficiency.

4.5 Team Co-location

Agile development aims at close, personal contact and collaboration within the
development team (‘The most efficient and effective method of conveying infor-
mation to and within a development team is face-to-face conversation.’), while
open source development is performed by large numbers of developers scattered
throughout the world [7]. While the empirical data given above suggests that
most work is done by a small inner circle of programmers, which could and also
do meet in person sometimes, that the self-organization works remarkably well,
and is enhanced especially by the Internet medium, this difference remains. In
fact, open source software development sees the Internet with all its tools includ-
ing mailing lists, source code versioning, e-mail, maybe even video-conferencing,
as a means for achieving collaboration that is sufficient (‘Provided the develop-
ment coordinator has a medium as least as good as the Internet, and knows how
to lead without coercion, many heads are inevitably better than one.’).

4.6 Customer Interactions

In agile development, the continuos interaction and collaboration with the cus-
tomers is paramount. A short feedback loop is necessary to be able to respond
quickly to new information like changes in the requirements. These principles are
embodied in practices like customer on site in XP. In fact, agile development sees
a development team as spanning organizational boundaries and therefore includ-
ing customers. The same attitude is at the heart of open source development:
Users should join the development community and become co-developers in or-
der to more rapidly improve the software (‘Treating your users as co-developers
is your least-hassle route to rapid code improvement and effective debugging.’,
‘Release early, release often. And listen to your customer.’, ‘The next best thing
to having good ideas is recognizing good ideas from your users. Sometimes the

Agile Principles and Open Source Software Development 91

latter is better.’). Of course, the necessary precondition for this is the availabil-
ity of the source code. Even more so than in XP, there is indeed collective code
ownership. As has been detailed above, in larger open source projects thousands
of people, read users, participate to some degree, not necessarily coding, which
only a minority actively does, but in reporting errors, filing change reports or
claiming additional functionalities and requirements. In the GNOME project,
the nearly 1,900 participants in the mean contributed 10.6 separate postings to
the diverse mailing lists. In the FreeBSD project, 82% of the developers indi-
cated that they received some form of feedback on their code, either as a problem
report or a bugfix performed on the code [9]. Therefore the open source process
is specifically designed to allow customer collaboration, in fact depends on it.

4.7 Early Delivery of Working Code and Feedback

Agile development sees working code as the ‘primary measure of progress’. To
use this measure in the collaboration with customers, and in order to ensure
short feedback cycles, frequent releases of working software are intended (‘De-
liver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.’). These practices increase the moti-
vation for all participants, allow for easier discussion of the current status and
therefore increased chances to uncover necessary changes and efficient possi-
bilities for incorporating them (‘Our highest priority is to satisfy the customer
through early and continuous delivery of valuable software.’). In open source soft-
ware development, frequent releases are also propagated (‘Release early, release
often.’). This has several reasons, including that a larger number of users and
co-developers should test und debug the code, thus faster finding and correcting
any errors (‘Given a large enough beta-tester and co-developer base, almost ev-
ery problem will be characterized quickly and the fix obvious to someone.’). In
order to minimize the lost time spent by participants looking for problems which
have already been found or even solved, everyone needs to be kept at the current
status. This is achieved by releasing new versions even with only a small number
of changes. During the early days of Linux, new releases could occur daily. In
the FreeBSD project, approximately 200 developers have been granted commit
authority, and any change committed by these individuals results in instant cre-
ation of a new release [9]. There is an additional effect of releasing open source
software often: Keeping developers constantly stimulated and rewarded, as they
have new challenges to rise to, and at the same time see the results of their prior
work take shape in the form of improved software. This motivational aspect has
been mentioned by 81% of the FreeBSD developers [9]. These points correspond
remarkably well: Working software is released often to facilitate change, to keep
the effort for rework under control, to ease collaboration with the users and
customers, and as a primary measure of progress.

4.8 Changing Requirements, Good Design, and Simplicity

Closely connected to frequent releases is the attitude of agile development to-
wards change. As release and feedback cycles are short, changes in the require-

92 S. Koch

ments happening anyhow due to the turbulent environment can easily be uncov-
ered, and can more easily be implemented than at the end of the development
(‘Welcome changing requirements, even late in development. Agile processes har-
ness change for the customer’s competitive advantage.’). Incorporating these
changes in addition needs an appropriate design (‘Continuous attention to tech-
nical excellence and good design enhances agility.’). Therefore agile development
stresses the importance of having a simple design that allows for easy changes
(‘Simplicity - the art of maximizing the amount of work not done - is essential.’)
and refactoring. The same is also inherent in open source development. There
is evidence for both the strive for simple designs allowing for change, and also
refactoring, if not actually using this term. Raymond describes how he changed
to a new development base (‘...I’d be throwing away the coding I’d already done
in exchange for a better development base...the first thing I did was reorganize
and simplify...’). It is also evident in the saying ‘Plan to throw one away; you
will, anyhow’, originally by Fred Brooks, adopted by the open source community.
This of course also hints at prototyping and feedback from users. Another em-
bodiment of refactoring can be found in the principles ‘Often, the most striking
and innovative solutions come from realizing that your concept of the problem
was wrong.’ and ‘Good programmers know what to write. Great programmers
know what to rewrite (and reuse).’ from Raymond. The strive for a simple de-
sign is obvious in the saying ‘Perfection (in design) is achieved not when there
is nothing more to add, but rather when there is nothing more to take away.’ As
the data from the Sourceforge repository suggests the usage of design patterns,
these could also be used as a target for refactoring later in the life cycle.

5 Conclusion

As both agile and open source development have been hotly debated, claim some
of the same benefits, and face some identical criticism, a comparison seems a log-
ical step. Using their main principles, we have discussed whether open source
development can be seen as an agile form of development. In several areas, amaz-
ing similarities have been found, for example the emphasis on highly skilled in-
dividuals or ‘craftsmen’ at the center of a self-organizing development team, the
acceptance and embrace of change by using short feedback loops with frequent
releases of working code, and the close integration and collaboration with the
customers and users. For these points, empirical indications were found that at
least partially confirmed the presence of these agile principles in open source
projects. For example, empirical data suggests that an open source project has a
relatively small inner circle of highly skilled and productive developers, around
which a larger number of participants and users cluster in a highly efficient
self-organization. On the other hand, one major difference showed up, the team
co-location and personal contact demanded by agile development, which is not
seen as a precondition in open source development. In addition, while Boehm
and Turner see small product size as agility homeground [4], open source projects
have undoubtedly been able to realize quite large products, with similar com-
ments applying for safety criticality, as quality assurance is often cited as a main

Agile Principles and Open Source Software Development 93

benefit of open source development. Overall, the question whether the ‘hackers’
and ‘cowboy coders’ mentioned by the proponents of agile development and oth-
ers are indeed the open source software developers of the world may therefore
not be so easy to answer as it might seem at first glance. Additional research
into the real workings of both agile and open source projects is in order, both
to compare them to more plan-driven methods and also among each other.

References

Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley,
Reading, Mass. (1999)
Beck, K., Boehm, B.: Agility through Discipline: A Debate. IEEE Computer 36
(2003) 44–46
Boehm, B.: Get Ready for Agile Methods, with Care. IEEE Computer 35 (2002)
64–69
Boehm, B., Turner, R.: Using Risk to Balance Agile and Plan-Driven Methods.
IEEE Computer 36 (2003) 57–66
Bollinger, T., Nelson, R., Self, K.M., Turnbull, S.J.: Open-Source Methods: Peering
through the Clutter. IEEE Software 16 (1999) 8–11
Cockburn, A., Highsmith, J.: Agile Software Development: The People Factor.
IEEE Computer 34 (2001) 131–133
Dempsey, B.J., Weiss, D., Jones, P., Greenberg, J.: Who is an Open Source Software
Developer? Communications of the ACM 45 (2002) 67–72
Highsmith, J., Cockburn, A.: Agile Software Development: The Business of Inno-
vation. IEEE Computer 34 (2001) 120–122
Jorgensen, N.: Putting it All in the Trunk: Incremental Software Sevelopment in
the FreeBSD Open Source Project. Information Systems Journal 11 (2001) 321–
336
Koch, S., Schneider, G.: Effort, Cooperation and Coordination in an Open Source
Software Project: Gnome. Information Systems Journal 12 (2002) 27–42
McConnell, S.: Open-Source Methodology: Ready for Prime Time? IEEE Software
16 (1999) 6–8
Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two Case Studies of Open Source
Software Development: Apache and Mozilla. ACM Transactions on Software En-
gineering and Methodology 11 (2002) 309–346
Rakitin, S.R.: Manifesto Elicits Cynicism. IEEE Computer 34 (2001) 4
Raymond, E.S.: The Cathedral and the Bazaar. O’Reilly, Cambridge, Mass. (1999)
Reifer, D.J.: How Good Are Agile Methods? IEEE Software 19 (2002) 16–18
Williams, L.: The XP Programmer: The Few-Minutes Programmer. IEEE Software
20 (2003) 16–20
Wilson, G.: Is the Open-Source Community Setting a Bad Example? IEEE Soft-
ware 16 (1999) 23–25

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.
14.
15.
16.

17.

XP Lite Considered Harmful?

Ben Aveling

Faculty of Information Technology, UTS, Australia
bena@triode.net.au

Abstract. It is generally prescribed that XP be adopted in full. However, a
review of existing XP adoption case studies suggests that full adoption is
exceptional; most companies adopt XP only partially and they adapt XP to fit
existing practices and philosophies. Drawing on interviews with industry
participants, the paper recommends using XP as a ‘tool kit’ of techniques and
philosophies.

1 Introduction

There is a rapidly growing wealth of case studies of adoption of XP. In the main,
good results are claimed. However, early adoptions can be genuinely but atypically
successful: ,,With small projects carried out by highly motivated zealots, success is a
lot easier to achieve“ (Yourdon 1997, p. 63). Furthermore, most existing studies are
post-hoc assessments of their authors’ adoption of XP.

What is missing is independent comparative studies. This paper draws on the
existing literature and on a series of interviews with practitioners in order to provide a
comparative assessment of multiple instances of the adoption and use of XP. In
particular, the paper looks at adaptations made in the implementation of XP. Beck
and other long-standing proponents of XP believe that partial adoption of XP is
undesirable. This study, however, suggests that full adoption of XP is unusual; most
organisations adopt XP only partially.

2 Methodology

Existing case studies of the adoption of XP were reviewed and the XP practices
followed and omitted were noted, as were comments on the drivers and consequences
thereof. Informed by these results, an interview study was undertaken of four
companies that had adopted or failed to adopt XP. The author has no commercial
relationship with any of the companies reviewed.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 94–103, 2004.

© Springer-Verlag Berlin Heidelberg2004

XP Lite Considered Harmful? 95

3 Literature Review

All case studies reviewed were authored by people reporting their own experiences.
As such, the studies’ authors were highly involved, financially and emotionally. No
case was considered a failure by its author, although many were obviously qualified
successes, at best. One must draw on these results with some caution. For example,
most projects reported adopting Collective Ownership. This could indicate that
Collective Ownership is not difficult to adopt. Alternately, it could indicate that any
project incapable of adopting Collective Ownership is doomed to failure.

Table 1 lists practices identifiably used or omitted in each of the case studies
reviewed. The results show that it is possible to deviate from the XP practices and still
enjoy the benefits of an Agile Methodology. If these cases are typical, it suggests that
partial adoption of XP is more common than full adoption of XP.

The most difficult practices to adopt were Metaphor and the ‘Customer Practices’
of On-Site Customer, Planning Game and Small Releases. The other ‘Developer
practices’ were not generally difficult to adopt. Explanations given for difficulties in
adopting practices broadly fell into one of three categories: 1) insufficient discipline;
2) initial temporary failure to understand the practice; or 3) failure to persuade third
party stakeholders. The first two categories generally resulted in lower but acceptable
productivity. The third category often compromised or prevented various practices,
occasionally led to the cancellation of projects and, in one case, led to retrenchments.

Most of the published cases succeeded without an On-Site Customer,
demonstrating that the practice, while desirable, is not strictly necessary. Several
projects used a proxy customer while others used more traditional methods.

Wells and Buckley (2001) report that their attempt to introduce the Planning Game
resulted in ,,total disaster“. The local culture was that schedules were not driven by
estimates but by desired outcome, allowing for an anticipated overrun. Adding this
hidden multiplier made accurate estimates appear unrealistically high. The resultant
backlash forced the project to revert to conventional scheduling practices. This is
consistent with McBreen (2003): ,,many organisations still seem to think that it is
possible to negotiate estimates.“ Kini and Collins (2003) were more successful but
could not fully implement the Planning Game because the customer felt that bug fixes
were ‘owed’ to them and should not be included in the estimating process. Instead,
two developers were assigned to fixing bugs with a resulting reduction in effort
available for new features. The evidence suggests that customer participation in the
Planning Game, while desirable, is not necessary.

There are sufficient examples of successful projects that do not do Small Releases
to indicate that the practice is not totally necessary. However, omitting Small
Releases precludes using the Planning Game to set scope. Further, Small Releases
may be an important source of discipline in that the practice dictates release-quality
code at all times.

96 B. Aveling

Note: Blank cells are used where it was less than clear if a practice was used or not.

XP Lite Considered Harmful? 97

Metaphor appears to be a useful technique, when a project succeeds in finding a
suitable metaphor. Most projects succeed without finding a metaphor.

Simple Design was not reported as being difficult to adopt, although several
authors reported that it takes time to become adept (eg Lippert et al. 2002, p. 168).

Some level of Automated Testing appears necessary to support Refactoring. The
evidence suggests that a small degree of laxity in automatic testing is not
automatically fatal. For example, Johnson (2000) reports success without Automated
Testing but a dramatic increase in progress after its adoption.

The results do not make clear if Test First development is or is not essential for
Agile Development, but it appears to be significant in producing a Simple Design.

As with Simple Design, Refactoring was not difficult to adopt but was difficult to
do well: ,,It took us a long time to learn how to break down a refactoring ... into as
small chunks as we wanted“ (Lippert et al. 2002, p. 171). Refactoring appears to be
essential for developing and maintaining a Simple Design. It appears unlikely that a
project could omit refactoring and remain Agile.

Pair Programming was universally regarded by authors as beneficial, although
Poole and Huisman found that persuading their engineers of the value of Pair
Programming was ,,one of the hardest things“ in XP (2003, p. 229). Johnson (2002)
reported successfully using a form of virtual pair programming on a project with
developers spread around America. Johnson concluded that the only reason the
project succeeded was because virtual contact was heavily supplemented by regular
face-to-face meetings. Other projects succeeded without Pair Programming. Pair
Programming is clearly not essential but, without Pair Programming, other practices
are less rigorously followed, especially those that require high levels of discipline,
communication, team alignment or technical knowledge.

It is unclear from the cases examined if Collective Ownership could be omitted or
not. The main obstacle to Collective Ownership is the minority of programmers with
an especially strong desire to avoid scrutiny and/or unwillingness to share in
responsibility for the project as a whole.

Continuous Integration demonstrates many benefits and is essential if Refactoring
is to be practised. It does not appear to be contentious or difficult to adopt.

40-Hour week, also known as Sustainable Pace, is probably the most contentious
practice. It is potentially dangerous, career-wise (Johansen et al, 2002). It also appears
to be essential for Agile Development. Without 40-Hour Week, discipline declines,
practices are not followed, mistakes are made and shortcuts are taken (Schuh, 2001;
Kini and Collins, 2003). Something approximating 40-Hour Week appears to be
essential to Extreme Programming. Agile Development appears to require that
developers have the time and peace of mind to reflect critically on what they are and
should be doing.

Coding Standard has many benefits in its own right. It is important if Pair
Programming or Common Ownership is to be practised. It does not appear to be
contentious or difficult to adopt. As with Common Ownership, any developer too
individualistic and opinionated to accept a common Coding Standard is probably a
liability to the team and the project.

98 B. Aveling

It appears that none of the cases studied adopted all 12 of the XP practices. Almost
all were happy with almost all of the practices that they were able to attempt. The XP
practices appear sound, with the possible exception of Metaphor. However, On-Site
Customer appears to be largely unachievable, and Planning Game and Small Releases
appear to be an internal exercise for the majority of projects.

Even allowing for bias in reporting, the main obstacles to XP appear to be
political, not technical. Wells and Buckley (2001, p. 405) reported that introducing
XP practices was successful when and only when the practices could be seen to
address a recognised problem. Greening (2001, p. 28) commented that trying to
persuade the customer to accept full XP would have prevented any XP practices
being adopted.

4 Case Comparison

Interviews were conducted with representatives from four companies that had
adopted XP, or attempted to do so. All interviewees were identified through
attendance at SyXPAC XP user group functions. Company 3 has engaged the services
of Company 4. Otherwise, the companies have no relationship to each other.
Interviews were semi-structured, ranged between 1 and 2 hours and were tape
recorded and transcribed. The interview guide was based on the literature review
discussed above.

4.1 Practices Adopted and Barriers to Adoption

Consistent with the literature review, the companies interviewed did not adopt
Metaphor or the Customer Practices (Planning Game, Small Releases and On-site
Customer) and did adopt the other ‘Developer Practices’, excepting Company 1,
which all but failed to adopt any practices (see Table 2). Customer involvement was,
as the Company 1 interviewee put it, ,,very difficult to get ... It would mean that we
would need to change our relationship with them totally.“ All of the companies
interviewed were happy with the results of the practices they had adopted. None of
the interviewees expressed interest in reverting to a more Waterfall-based
methodology.

Company 2 experimented with On-Site Customers but found that giving customers
direct access to developers led to uncontrollable scope creep for which it was unable
to be renumerated. Using marketing as Proxy Customers proved more successful.
While Companies 3 and 4 did not take issue with the demands Whole Team placed on
developers, Company 3 reported that their business staff found ,,being called on
constantly [was] difficult and disruptive to their work“. In contrast to the more
common Proxy Customer, Companies 3 and 4 agreed that the technical lead would
act as a ‘Proxy Developer’, collecting questions from the other developers and
meeting for one hour a day with the business staff. While successful, even that was ,,a
big cultural shift for the business to apply that sort of time from their business staff“.

XP Lite Considered Harmful? 99

No company used Small Releases for more than testing. Only final versions were
released to the live: ,,There’s a greater organisation and it no longer becomes project
issues, it becomes interfaces with other divisions that stops small releases from
getting as small as they could be“ (Company 4). No company used the Planning
Game although Companies 3 and 4 implemented a modified version, keeping overall
scope fixed while allowing flexibility in the exact implementation of the preset scope.

As a practice, Metaphor engenders more curiosity than compliance. In the words
of an XP consultant from Company 4, ,,I don’t think it’s that people find Metaphor
hard. It’s they’re not quite sure what it means. So that we’re not quite sure what they
should be doing, yet. And I’m probably one of those people.“

Company 1 banned Pair Programming because management did not perceive it as
cost efficient: ,,if I’m only now going to get 4 man hours’ work out of what was
originally 8 man hours, I can’t see the value in that.“ Company 2 felt Pair
Programming was worthwhile only for the initial education of new staff, in part
because it made it hard to review the performance of individual developers.

100 B. Aveling

Companies 3 and 4 had a broader view of the benefits of pairing, believing that it
increases both productivity and ‘survivability’; the ability to survive the loss of
individual developers, something that significantly impacted Company 1: ,,The guy
who’s leaving tomorrow, he is the only one with any training in the middle-ware“.

Adoption of 40-Hour Week, as with Pair Programming, was sometimes blocked by
management perceptions of cost efficiency. However, evidence from Company 1
suggests that excessive schedule pressure may be a false economy: ,,The code is just
Byzantine and brittle. And this is killing us. This is absolutely killing us.“ A driver for
adoption of something approaching 40-Hour Week at Company 2 was staff turnover:
,,We’ve never pushed developers to work ridiculous hours because they leave.“

4.2 Drivers for Adoption

The engineers interviewed held an extremely positive view of XP. They were no less
positive about practices they themselves had not attempted. The managers
interviewed entertained basically positive attitudes towards practices they had
experienced but were less positive, even dismissive, of practices they had not
personally experienced.

Adoption was generally motivated not so much by perceived benefits of XP in
general as by perceived shortcomings in the current methodologies. Company 1 said
that ,,what we have been doing ... didn’t work last time and isn’t working now. XP
couldn’t be worse“, while Company 3 said that ,,in hearing about the solution we
started to understand that it may solve problems that we had. We weren’t actively
looking for a change in methodology.“

4.3 Key Success Factors

The strongest predictor for successful adoption of XP appears to be the competence
with which the existing methodology is executed. Factors that drive success with the
existing methodology tend to have similar impact on any XP adoption effort.
Company 3’s culture featured coalition building, executive intervention and generous
but tightly managed resourcing. Personal leadership and careful use of rewards had
made Company 2 successful. At both companies, the XP adoption effort employed
the same tactics – successfully. Conversely, at Company 1, the very factors XP was
intended to address crippled the attempt to adopt XP: poor communication, excessive
time pressure, a hostile customer, short-termism, a culture of blame and distrust and
above all, a refusal to acknowledge the existence of problems: ,,changing couldn’t be
worse [but] a bit of pressure came on and it all went out the window“.

XP Lite Considered Harmful? 101

5 Recommendations

Extreme Programming is the first popular methodology to view software
development as an exercise in coding rather than an exercise in management. Kent
Beck spends the first 50 pages of his Extreme Programming Explained (2000)
describing the values and principles of Extreme Programming. Arguably, these are
more important than the exact practices: ,,Kent’s most important vision is about ...
changing the way people treat each other and are treated in organisations“ (Highsmith
2002, p. 52). For Beck, XP is an alternative to the ‘Taylorism’ he sees as implicit in
existing methodologies because Taylorism makes ,,no business sense [and] no human
sense“ (Beck 2000, p. 172). Intuitively, XP is humane. The question is, does XP make
business sense?

Waterfall structures software development so as to be manageable using traditional
procurement and management practices. In particular, it attempts to fix scope up-
front. XP determines scope as an ongoing function of the project itself. Unfortunately,
this flexibility proscribes funding models that appear incompatible with current
business practice. In the words of Company 2: ,,it’s nearly impossible, in any size
commercial contract, to not have fixed price, fixed deliverables. It is just not doable.
Nobody will ever agree.“ Even for in-house projects, such as at Company 3, project
approval is almost always contingent on a business case demonstrating that benefits
sufficiently exceed costs. Full XP denies senior management information they
habitually depend upon when assessing the merits of business a case: ,,Arguably
approval processes could be changed to allow anything, if justified but their
management can’t cope with not knowing what the outcome is going to be for a given
spend.“

The evidence of this paper is that businesses are insufficiently motivated by Full
XP to engage in the required change. It has been suggested that an alternative to Full
XP is fully adopting an alternate, less demanding, agile methodology (Cockburn
2002, p. 204). It is sometimes argued that one should adopt an XP practice when it
addresses a felt need without challenging any strongly held norm: ,,We regarded XP
as a toolbox from which we could use practices that addressed concrete, recognisable
problems“ (Lippert et al. 2002).

This author suggests that those wishing to mix-and-match practices begin with an
‘XP Lite’ consisting of 40-Hour Week, Pair Programming, Single Work Site,
Continuous Integration, Simple Design, Test First Programming, Automated Testing,
Coach, Proxy Customer, Refactoring, Coding Standard, Stand-Up Meetings, End of
Iteration Retrospectives and a degree of Collective Ownership.

Although not enumerated amongst Beck’s 12 core practices, Coach, Stand-up
Meetings and Retrospectives appear necessary for developers to acquire an
understanding of XP and to share local knowledge. I have used the term Single Work
Site instead of the more common Whole Team to avoid the inference that the
customer’s presence, however desirable, is essential. Automated testing and test first
programming are often considered to be aspects of a single practice: Testing. My
findings suggest they are distinct, Test First being not so much a testing technique as
a design technique that produces tests as a side effect.

102 B. Aveling

Evidence from the literature review and the interviews shows that the above
practices are not generally politically difficult to implement, perhaps because they are
only visible locally. The exceptions are Single Work Site and 40-Hour Week. Single
Work Site is not contentious but can be unachievable in companies used to open-plan
offices, especially when project teams are not ‘long lived’. 40-Hour Week is both
contentious and highly visible. Sadly, it is essential, if other practices are to be
rigorously followed.

Metaphor may be desirable – there may even be value in an unsuccessful search
for metaphor – but Metaphor is, as yet, too poorly understood to be a core practice.
The Customer Practices of On-Site Customer, Planning Game and Small External
Releases require cooperation from non-developers. The practices are desirable but
neither necessary nor easily achievable. Small Internal Releases and Proxy Customer
are adequate if not ideal substitutes, even though they do not generate ‘customer buy-
in’.

6 Conclusion

Organisational cultures enable or prevent adoption of Full XP. Given the variation in
organisational cultures, it seems impossible that any single methodological solution
could be universally applicable. Experience shows that XP is most often used as a
tool kit of practices, all of which offer value, some of which depend on other
practices and some of which are politically difficult to adopt. This paper has
identified a subset of the XP practices that excludes as many as possible of the
difficult-to-adopt practices while still remaining viable. This ‘XP Lite’ is suggested as
a reasonable starting point for many organisations.

References

Beck, Kent (2000), Extreme Programming Explained, Reading, Mass.: Addison-Wesley.
Cockburn, Alistair (2002), Agile Software Development, Agile Software Development Series,

Boston: Addison-Wesley.
Greening, James (2001), ,,Launching Extreme Programming at a Process Intensive Company“,

IEEE Software, November/December, pp. 27-33.
Highsmith, Jim (2002), Agile Software Development Ecosystems, Agile Software Development

Series, Boston: Addison-Wesley.
Johansen, Kay, Stauffer Ron and Turner Dan (2002), ,,Learning by Doing: Why XP Doesn’t

Sell“, in M. Marchesi et al. (eds), Extreme Programming Perspectives, pp. 411-419.
Johnson, Ralph (2000), ,,Developing the Refactoring Browser“, in G. Succi and M. Marchesi

(eds), Extreme Programming Examined, Boston: Addison-Wesley, p. 323-331.
Johnson, Sue (2002), ,,Talk Isn’t Cheap“, in K. Auer and R. Miller, Extreme Programming

Applied, Boston: Addison-Wesley, pp. 303-4.
Kini, Natraj and Collins, Steve (2003), ,,Lessons Learned from an XP Project“, in Marchesi et

al. (eds), Extreme Programming Perspectives, Boston: Addison-Wesley, pp. 363-373.

XP Lite Considered Harmful? 103

Lippert, Martin, Roock, Stefan and Hening Wolf (2002), Extreme Programming in Action:
Practical Experiences from Real World Projects, Chichester: John Wiley & Sons.

McBreen, Pete (2003), Questioning Extreme Programming, XP Series, Boston: Addison-
Wesley.

Moore, Robert (2001), ,,Evolving to a Lighter Methodology: A Case Study“, pdf available
online at sel.gsfc.nasa.gov/website/sew/2001/Session2R.Moore.pdf

Poole, Charles and Huisman, Jan (2003), ,,Extreme Maintenance“ in M. Marchesi et al. (eds),
Extreme Programming Perspectives, Boston: Addison-Wesley, pp. 215-234.

Schuh, Peter (2001), ,,Recovery, Redemption and Extreme Programming“, IEEE Software,
November/December, pp. 34-41.

Wells, Don and Buckley, Trish (2001), ,,The VCAPS Project: An Example of Transitioning to
XP“ in G. Succi and M. Marchesi (eds), Extreme Programming Examined, Boston:
Addison-Wesley, pp. 399-421.

Yourdon, Edward (1997), Death March, Upper Saddle River: Prentice Hall.
White, Richard (2002), ,,Odyssey“, Unpublished Thesis, University of Technology, Sydney.

Agile Specification-Driven Development

Jonathan S. Ostroff1, David Makalsky1, and Richard F. Paige2

1 Department of Computer Science, York University, Canada.
{jonathan, dm}@cs.yorku.ca

2 Department of Computer Science, University of York, UK
paige@cs.york.ac.uk

Abstract. We present an agile approach to Specification-Driven Development,
which combines features of Test-Driven Development and the plan-based ap-
proach of Design-by-Contract. We argue that both tests and contracts are different
types of specifications, and both are useful and complementary for building high
quality software. We conclude that it is useful for being able to switch between
writing tests and writing contracts, and explain how Specification-Driven Devel-
opment supports this capability.

1 Introduction

Traditional software development methods stress the elicitation and documentation of a
“complete” set of requirements, followed by architectural and high-level design, coding,
inspection and testing. This general approach is sometimes described as plan-driven de-
velopment. Agile methods were a reaction to these traditional “documentation driven,
heavyweight software development processes” [2], focusing on an iterative design pro-
cess with rapid feedback in which code appears early [15].

In this paper, we describe an integrated approach, Specification-Driven Development
(SDD), which combines the best features of the agile Test-Driven Development (TDD)
methodology with the best features of the plan-driven approach of quality-first Design-
by-Contract (DbC) [11]. The emphasis in TDD is the production of executable tests that
act as restricted emergent specifications of collaborative behaviour. DbC emphasises a
concept of contract, which can be represented using constructs such as preconditions,
postconditions, and class invariants for explicitly specifying expected behaviour. At first
glance, TDD and DbC conflict, or, as one authority put it:

If it’s a matter of gut feeling, then mine is that the two approaches, test first
and Design by Contract, are the absolute extreme opposites with no combina-
tion possible or desirable. It’s nice once in a while to see a real irreconcilable
opposition [13].

We attempt to show that not only are TDD and DbC compatible, but that each can
enhance the other. In SDD, both unit tests and contracts are specifications, and there are
advantages to using each type of specification in producing reliable systems. TDD is
superior for capturing complex emergent behaviour (e.g., trace behaviour) that cannot
easily be expressed statically with contracts; DbC is superior for completely specifying

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 104–112, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Agile Specification-Driven Development 105

behaviour. The two approaches are compatible: both TDD and DbC are iterative and are
based on the view that it is important to produce working code as soon as possible.

We make our arguments in the context of the Eiffel language which has DbC built-in.
But, DbC works in other languages such as Java as well [7].

2 Plan-Driven Development

The conventional, systematic plan-driven approach to software development is inherited
from systems engineering. Plan-driven development approaches, such as DbC, stress the
elicitation and documentation of a complete set of requirements, followed by architec-
tural and high-level design. Code and tests often appear at the tail end of the process. The
gap between requirements and code is thus bridged by specifications, which describe
constraints on behaviour shared between the physical world and the system. Iterations
between writing specifications and coding are often encouraged. Incremental approaches
to plan-driven development have been adopted, but all still emphasise documentation
and traceability between requirements, specification, and code.

Plans can be written in a variety of ways, including structured natural language,
UML class and sequence diagrams, and formal methods. There is an associated cost
with applying mathematical techniques; in general, it is much more than testing with the
benefit of obtaining higher quality [3]. The economic reality is that for most software
development, testing and inspections trump formal specifications.

In plan-driven approaches, complete documentation brings with it two main prob-
lems. First, there is the problem of keeping the documentation consistent with changes
in the design and code. And second, there is the sheer volume of documentation that
must be produced. Analysts must document the requirements, designers must create the
design specifications, and programmers must document their code. At each stage, addi-
tional detail must be added as we do not know who will be reading the documentation;
it may therefore be safer to err on the side of caution.

2.1 Design by Contract

DbC is a form of plan-driven development that naturally lends itself to agile development
because of the way in which its documentation is expressed. It also has almost all the
benefits of mathematical methods – and these are formidable for emphasising software
quality first – without the associated cost. Contracts on software are written using pre-
conditions, postconditions and class invariants, providing mathematical specifications.
These contracts are written in the assertion language of the programming language itself,
and are therefore executable; contracts are thus a form of the best kind of documentation,
that which executes with the code, and which is always guaranteed to be consistent with
the code (otherwise an assertion violation would arise at run-time).

Suppose we need to calculate the square root of a real number to four decimal places.
Fig. 1 provides an example illustrating how this might be done using contracts.

There are many benefits to using contracts to document software: contracts are
checked every time the code is executed (and violations are immediately flagged); com-
ponents are self-documenting because the contracts are part the documentation (and

106 J.S. Ostroff, D. Makalsky, and R.F. Paige

Fig. 1. Example of a contract for class MATH

inconsistency between code and contracts is impossible). And The benefits of using
contracts to document software are as follows: contracts provide design rules for main-
taining and modifying the behaviour of components, cf., behavioural subtyping, and a
basis for formal verification.

In [11] Meyer describes the “quality-first” DbC design method. Meyer implements
quality-first DbC using Eiffel and the BON visual modelling language, both of which
support contracts, and for which integrated tool support exists. A brief summary of
quality-first DbC in BON/Eiffel follows.

Write Eiffel code or produce BON diagrams as soon as possible, because then
supporting tools immediately do syntax, type, and consistency checking.
Get the current unit of functionality working before starting the next. Deal with
abnormal cases, e.g., violated preconditions, right away.
Intertwine analysis, design, and implementation.
Always have a working system.
Get cosmetics and style right.

1.

2.

3.
4.
5.

DbC can be seen as an instance of plan-driven development, but unlike some ap-
proaches it does not suffer from the “big design up front” problem, in part because the
plans in DbC are validated code. There are two vague steps in the quality-first DbC
approach: (a) in step (2) we must get the current unit of functionality working, but how
do we progress from informal requirements to a contract or a BON diagram? (b) in step
(4) we are told to constantly compile, execute, and test the system but how the testing is
to be performed is not explained. These two problems can at least partially be alleviated
with the use of TDD techniques.

3 Test-Driven Development

Test Driven Development (TDD) is one of the popular evolving agile methods [1]; it
emphasises testing first as a replacement for up-front design. Like all agile methods,

Agile Specification-Driven Development 107

TDD stresses the development of working code over documentation, models and plans.
The TDD cycle proceeds as follows: (1) write the test first (without worrying if it does not
compile); (2) write enough code to make the test pass; (3) refactor the code to eliminate
redundancies and other design flaws introduced by making the test pass.

A striking aspects of this approach is the idea that the code that is implemented may
not be behaviorally correct: it just has to pass the test. Correctness means passing all the
tests. The test is therefore the specification. Another striking aspect is refactoring as a
replacement for up-front design (sometimes pejoratively called a “big up front design”)
[5]. Testing, with tool support, occurs all the time: before and after refactoring, and
whenever new functionality is implemented.

Tests are a form of specification, typically (though not exclusively) dealing with
normal and expected behaviour. Tests do not provide precise documentation of class
interfaces. Thus, they are useful in capturing traces of valid behaviour for scenarios of
the system, but may miss the big picture, i.e., the architecture and component views.
Thus tests cannot be described as complete requirements. Tests encompass both unit and
regression tests, and also what we call collaborative tests. These latter tests are related
to UML sequence and collaboration diagrams in that they show the messages (method
calls) sent between a number of specific objects within a use case. A good example of a
collaborative test is shown below, in Fig. 2, for a simple banking system. An account is
initialised and withdrawal is made, with the expected result of the account checked for
correctness.

Fig. 2. Collaborative test for banking system

The benefits of TDD are many. For one, the cost of verification is spread across
the development process. The TDD process also provides low-level information about
test failures, on the operation or even statement level, thus making debugging easier.
Experience has shown that designs driven by tests tend to exhibit high cohesion and
loose coupling, perhaps possibly due to the frequent refactoring and the requirement to
keep the design as simple as possible. TDD also allows predictive specification of what
code will do, independent of the existence of the code itself. Finally, the tests produced

108 J.S. Ostroff, D. Makalsky, and R.F. Paige

using TDD provide documentation of the design and the design process. The latter, in
particular, will be essential for any requisite auditing and review.

The limitations of TDD come in part from the incompleteness of tests: requirements
cannot be completely captured by tests in general without enumerating all scenarios.
Further, tests cannot deal with phenomena that are in the environment of the system,
whereas contracts can express constraints on such constructs.

3.1 Collaborative vs. Contractual Specifications

Test-based unit and collaborative specifications are incomplete, because they consider
only specific scenarios. Consider the following unit test, written in Eiffel.

in which we create an unsorted array sa1, execute routine sort, and then assert that
the array is equal to the expected sorted array sa2. The unit test does three things for
us. The test is a precise specification of a unit of functionality (the sort function in the
special case of array <<4, 1, 3>>). The test also drives the design. It induces the
public interface of class SORTABLE_ARRAY with features such as sort. However,

The unit test specifies that array <<4, 1, 3>> must be sorted. But what about tests
for all the other (possibly infinite) arrays of integers?
The unit test does not test arrays of REAL, or arrays of PERSON (say by age). After
all, the class SORTABLE_ARRAY[G] has a generic parameter G.
It is hard to describe preconditions with unit tests. For example, we might want the
sort routine to work only in case there is at least one non-void element in the array.
(We could make the sort routine have no precondition, but that would then force us
to always program defensively [10, p344].)

By contrast, the contractual specification in Fig. 3 is a precise and detailed specifi-
cation of the sorted array. The quantifiers can be expressed using Eiffel’s agent notation.

The generic parameter G of class SORTABLE_ARRAY is constrained to inherit from
COMPARABLE. This allows us to compare any two elements in the array, e.g., the expresion
item(i) <= item(i+1) is legal whether the array holds instances of integers or poeple,
provided the instances are from classes that inherit from COMPARABLE.

Routine sort is specified via preconditions and postconditions. The preconditions
state that there must be at least one non-void element to sort. The unit test did not specify
this, nor is it generally easy for unit tests to specify preconditions. The postcondition
states that the array must be sorted and is unchanged. This postcondition specifies this
property for all possible arrays, holding elements of any type. Again, only an infinite
number of unit tests could capture this property.

Agile Specification-Driven Development 109

Fig. 3. Class SORTABLE_ARRAY

Since contracts and tests are both specifications (the contract being more general),
they can both serve to drive development of the code.

Unit tests can be used to automatically check that the code satisfies its specification
– just run the tests. Can code be checked against the contracts? One approach would
be program verification which provides strong assurance but requires qualitatively more
time and effort than testing. The simpler approach is to turn assertion checking on in the
programming language. But, unit tests will now be required to execute the code so that
contracts can be checked. However, there is a test amplification effect, which we discuss
in the next section.

While contractual specifications are detailed and complete, they have disadvantages.
Consider a class STACK [G] with routines given by push(: G) and pop. While
contracts can fully specify the effects of push and pop individually, they cannot directly
describe the last-in-first-out (LIFO) property of stacks which asserts that

By contrast, the LIFO behaviour can easily be captured using test-based collaborative
specifications.

4 Specification-Driven Development

Clearly there are benefits to plan-driven development based on DbC, and test-driven
development. Choosing between the value offered by the approaches will equally clearly
depend on the project at hand. There are surprising commonalities between TDD and
DbC, particularly: both contracts and tests are specifications; both TDD and DbC seek to
transform requirements to compilable constructs as soon as possible; both TDD and DbC
are lightweight verification methods; both methods are incremental; and both emphasise
quality first in terms of units of functionality. We claim that it is not necessary to choose
between the two approaches a priori, and that there are substantial benefits to using TDD
and DbC together in a project.

Specification-Driven Development (SDD) provides the ability to use TDD and DbC
techniques in the same development. It assumes (a) the availability of a contract-aware

110 J.S. Ostroff, D. Makalsky, and R.F. Paige

programming language (e.g., Eiffel, or Java with a suitable pre-processor), and (b) a
suitable testing framework (e.g., JUnit or ETester). The statechart of Fig. 4 describes
the approach. It does not dictate where to start – it is the developer’s choice whether to
start with TDD or DbC based on project context. However, the emphasis is always on
transforming customer requirements into compilable and executable code.

Fig. 4. SDD: Specification-Driven Development

SDD provides more than TDD or DbC individually, as it eliminates some of the
limitations with each approach. But SDD is more than the sum of TDD and DbC, as
there are synergies between the approaches. In particular, contracts act as test amplifiers.
When writing a contract, it is easy to make mistakes, or write a contract that is simply
too weak and which underconstrains the system. Some of these flaws will be caught
by executing the system; but this is not sufficient in general. Writing tests to exercise
the contracts (i.e., which validate and invalidate each pre- and postcondition) can help
validate the tests, and can also help drive the production of tests.

4.1 Some Observations

SDD can start with writing tests (as illustrated by the left-most state in the statechart), or
with writing contracts. However, there are two reasons to prefer writing unit tests before
contracts:

Closure: A unit test provides a precise description of a unit of functionality and hence
also a clear stopping point – you write just enough clean code to get the test to pass.
Contracts do not provide clear stopping points for units of functionality in quite the
same way, thus allowing for the possibility of unnecessary design.

Agile Specification-Driven Development 111

Collaborative specification friendly: tests can formalize instances of collaborative
specifications more easily than contracts, as illustrated by the last-in-first-out prop-
erty of stacks.

Contracts, of course, can provide precise documentation of the complete behaviour
of code in a way that tests cannot (as illustrated in Fig. 3). Contracts also provide
preconditions; tests cannot document or check for preconditions. Finally, contracts can
supply a qualitative level of assurance for code beyond that of testing in the case of
program verification, and can act as an automatic test amplifier in the case that assertion
checking is turned on.

In summary:

Contracts are good for fleshing out the design while making underlying assumptions
explicit.
Contracts spell out the logical assumptions underlying a design more completely
and concisely than unit tests.
Tests are good for writing collaborative specifications; as such, they are likely to be
more appropriate early in the development process when scenarios are being refined
to executable constructs. Contracts are good for constraining the design to meet the
requirements.

1.

2.

3.

5 Conclusions

We have investigated the compatibility and complementarity of TDD and DbC, in pro-
ducing a new agile approach called Specification-Driven Development. Our conclusion
is that TDD and DbC are complementary technologies and can be used synergistically,
but also to supplement limitations: contracts make design decisions explicit that may
only be implicit in tests; and tests can better capture requirements (such as the LIFO
property on stacks) than contracts.

We are providing tool support for the Eiffel language that allows TDD and DbC to
be used together. This support comes via the ETester framework, documented elsewhere

112 J.S. Ostroff, D. Makalsky, and R.F. Paige

[8]. ETester is specifically designed to make it easy to write unit tests and tests involving
contracts. Additional work on an Eiffel plug-in for Eclipse will also make use of ETester.

Our work has similarities to that of Feldman [4]; his work focused particularly on
the relationship between contracts and refactoring, whereas we have focused on the
assistance that contracts provide to the TDD process. Feldman in particular makes the
point that using contracts can reduce the amount of tests that need to be written because
contracts cover the correctness of methods. We disagree on this point as tests must
still be written to exercise the contracts, and to particularly deal with contracts that
underspecify behaviour. However, we do agree with Feldman’s findings that contracts
work synergistically with refactoring.

Table 1 summarises our conclusions.

References

Beck, K. Test-driven Development: by example, Addison-Wesley, 2003.
Beck, K., A. Cockburn, R. Jeffries, and J. Highsmith. Agile Manifesto
www.agilemanifesto.org/histoty.html. 2001.
Berry, D.M. Formal methods: the very idea — Some thoughts about why they work when
they work. Science of Computer Programming, 42(1): p11–27, 2002.
Feldman, Y. Extreme Design by Contract. In Proc. XP 2003, LNCS, Springer-Verlag, 2003.
Fowler, M. and K. Beck. Refactoring, Addison-Wesley, 1999.
Gamma, E. and K. Beck. JUnit: A cook’s tour. Java Report, p27-38,1999.
Leavens, G.T., K.R.M. Leino, E. Poll, C. Ruby, and B. Jacobs. JML: notations and tools
supporting detailed design in Java. In OOPSLA 2000 Companion, ACM, 2000.
Makalsky, D. ETester Unit Testing Framework. Available at www.cs.yorku.ca/eiffel/etester,
2004.
Martin, R.C. Agile software development, Pearson Education, 2003.
Meyer, B. Object-Oriented Software Construction. Prentice Hall, 1997.
Meyer, B. Practice to Perfect: the Quality-First Model. IEEE Computer 30(5), 1997.
Meyer, B. Towards practical proofs of class correctness. In Proc. ZB 2003, Springer-Verlag,
LNCS 2651, P359-387, 2003.
Meyer, B. Personal communication, June 2003.
Paige, R. and J.S. Ostroff. The Single Model Principle. Journal of Object Oriented Technology,
1(5): 2002.
Williams, L. and A. Cockburn. Agile Software Development: It’s about Feedback. Computer,
36(6): p39-43,2003.

1.
2.

3.

4.
5.
6.
7.

8.

9.
10.
11.
12.

13.
14.

15.

Towards a Proper Integration of Large Refactorings in
Agile Software Development

Martin Lippert

University of Hamburg, Software Engineering Group & it-wps GmbH
Vogt-Kölln-Straße 30

22527 Hamburg, Germany
lippert@acm.org

Abstract. Refactoring is a key element of many agile software development
methods. While most developers associate small design changes with the term
refactoring (as described by Martin Fowler and William F. Opdyke), everyday
development practice in medium- to large-sized projects calls for more than
fine-grained refactorings. Such projects involve more complex refactorings,
running for several hours or days and sometimes consisting of a huge number
of steps. This paper discusses the problems posed by large refactorings and pre-
sents an approach that allows agile teams to integrate large refactorings into
their daily work.

1 Introduction

Refactoring is part of everyday programming practice in agile software development1.
The use of small-scale refactorings such as Rename Method or Extract Interface is
well understood (see [6], [12]), many of them now being directly supported and
automated by an Integrated Development Environment (IDE).

Of greater complexity are refactorings that introduce or remove pattern-like struc-
tures into a software system. The Refactoring to Patterns catalogue by Joshua Keriev-
sky provides an overview and handbook for some of the GoF patterns in [9]. Alur,
Crupi and Malks describe J2EE-oriented pattern refactorings in [4]. Initial prototypes
for automating these refactorings using specialized tools have appeared within the
research community (see [3, 16]).

This paper focuses on refactorings that go beyond these small or pattern-based re-
factorings. In medium- to large-scale projects, we sometimes have refactorings that
cannot be realized by means of a few renames, etc. For example, a refactoring that
restructures the central inheritance hierarchy of a non-small system might affect sev-
eral hundred or several thousand references to these classes. Such a refactoring could
easily take several days or weeks, maybe even months to complete.

This paper focuses on agile software development. Refactoring may also be part of any other
development method.

1

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 113–122, 2004.

© Springer-Verlag Berlin Heidelberg 2004

114 M. Lippert

While the scope and complexity of these refactorings is highly diverse, the term
“large refactoring” has different connotations to different people. We therefore define
some basic terminology before going on to introduce large refactorings and discuss
them in more detail.

1.1 Integration Steps

An important concept in agile software development projects, especially when using
Extreme Programming (see [1], [11]), is the idea of continuous integration. This
means that changes and improvements to the system are realized in small steps. This
paper subsumes all the changes made by one programmer (or pair of programmers)
between two integrations under the term Integration Step.

Integration steps are not allowed to take more than one day each, the guideline for
many agile development methods being to integrate by the end of the day (or throw
the code away). Their duration thus ranges from minutes to hours. Each integration
step must result in a properly running system and is integrated into the team’s com-
mon code base.

Consequently, every task, requirement, feature or user story must be realized by
proceeding in integration steps. Everything has to be done within this framework.

1.2 Small Refactorings

Many refactorings described in [6] can be realized within a single integration step.
Such refactorings are called Small Refactorings in this paper. Examples are Rename
Class (with a proper IDE) or Extract Method.

2 Large Refactorings

Some design changes and improvements cannot be realized completely within a sin-
gle integration step2. Kent Beck and Martin Fowler describe this in their chapter on
Big Refactorings in [6]. To fit these refactorings into the general concept of integra-
tion steps, they have to be split into smaller chunks. This is already a common task
for user stories within Extreme Programming. The same is necessary for big refac-
torings to enable them to be handled within an agile development project3.

It is quite difficult to decide why and when refactoring is big rather than small.
Basing this purely on the number of changes to the system seems inappropriate. Mod-

The reasons why these larger design changes occur even in the presence of merciless refac-
torings are not analyzed in detail in this paper.
We do not discuss the possibility of realizing large refactorings in a separate branch of the
system because the paper’s focus is on integrating large refactorings into everyday develop-
ment practice.

2

3

Towards a Proper Integration of Large Refactorings 115

ern IDEs offer automated refactoring support allowing several hundred places in the
code to be changed in a few seconds. While the impact on the team is most significant
in a big refactoring, it is becoming more and more apparent that big refactorings are
best characterized by the time the team takes to complete them. The term Large Re-
factoring is thus defined to reflect this.

Definition:
Large Refactorings are refactorings that cannot be realized within a single integra-
tion step.

This definition of large refactorings includes refactorings that span only two or three
days. It might be an exaggeration to call them “large” refactorings. The real focus of
this paper is on refactorings that take weeks or months rather than a few days to com-
plete. Nevertheless, many of the problems we have observed with three-month refac-
torings (see below) also occur with refactorings that span only a few days – only on a
much smaller scale. Thus ideas on how to deal with these problems are just as appli-
cable to two- or three-day as they are to three-month refactorings. Of course, the
proposed approach becomes more important, the more time the refactoring takes.

2.1 Why Are Large Refactorings More Problematic than Small Ones?

Large refactorings differ from small ones not only in terms of their size or the time
they take. Beck and Fowler emphasize in [6], for their big refactorings, that it is of
crucial importance that all members of the team are aware of the big refactoring, that
they know where it is going and how it affects their daily work. This is important
because large refactorings have to be split into a number of steps (as discussed
above). Each step of the large refactoring is realized and integrated into the common
source-code repository of the system.

Fig. 1. A large refactoring split into small steps. Each R describes a refactoring step. Time runs
from left to right.

If integrated into the general development process, this is done parallel to other de-
velopers of the team working on the system. The complete integration flow of the
team may look like this:

Fig. 2. A complete integration flow. The steps for the large refactoring and the normal devel-
opment (D) are interlocked.

This situation can cause a number of difficulties, especially if the large refactoring is
complicated and runs for several weeks or months. Frequently observed problems are:

116 M. Lippert

Interim states of large refactorings: Interim states of large refactorings be-
come visible to the team. This means that all developers may be confronted
with changes made to the common code base as a result of the large refactor-
ing. In this case, the system typically contains code parts that follow the new
structure as well as code parts that are not yet adapted to it. By-passes in the
code are often used to make this possible. Such situations – dealing with new
and old parts of the code’s structure – can confuse developers who are not fa-
miliar with the details of the refactoring. In addition, it is hard for the develop-
ers to keep track of all the by-passes and different code states.
Teams get lost: Sometimes teams get lost in large refactorings. This often
happens because the team has to implement a large number of changes over a
lengthy period of time. After several weeks of doing the refactoring alongside
the daily feature development, and faced with hundreds of changes, a huge
number of deprecated methods and different parts of the system following dif-
ferent designs, individual team developers may get confused. Sometimes they
even end up forgetting the main goal of the refactoring, resulting in an unfin-
ished refactoring.
Unfinished refactorings: One risk with large refactorings is that they never
get finished. Developers simply forget to finish the refactoring completely,
perhaps because major parts of the refactoring are finished or other things dis-
tract them. This mostly results in code-structure flaws. Parts of the system con-
form to the new structure, while other parts follow the old one. This situation
can even result in a code structure that is, overall, worse than before the re-
factoring.
More complex planning: A large refactoring is much more difficult to plan
and predict than small refactorings. While a team is doing a large refactoring,
the rest of the system changes, too. Team members implement new features or
do small refactorings at the same time that other team members are working on
the large refactoring. Changes to the system can have an impact on future
large-refactoring steps.

Another important planning issue with large refactorings is that they need to be inte-
grated somehow into the release and/or iteration planning. This is necessary to reserve
development time for the refactoring and to concentrate the work on such bigger
design changes.

2.2 Consequences

Faced with the challenge of more complex design changes, many projects opt for one
of the following alternatives:

They avoid more complex changes to the structure and make do with a bad
system design.

Towards a Proper Integration of Large Refactorings 117

They stop normal system development to concentrate exclusively on the large
refactoring.

Since both alternatives appear unsuitable in agile software development, this paper
analyzes in more detail the issues surrounding large refactorings. The goal is to work
out a way of dealing with large refactorings so as to make them manageable in the
daily development practice of agile projects.

3 Explicit Refactoring Routes

As described earlier, a large refactoring has to be split into a number of smaller steps.
These steps are not chosen randomly. They describe a route from the current to the
desired design. This route is called a Refactoring Route. Its key features are:

A refactoring route subsumes a number of steps that lead from the current to
the desired design.
Each step should be realizable within one or more integration steps.

Following the definition of integration step (see Section 1.1), this means that a large
refactoring has to be split into a number of steps, where

each step results in a running system
each step can be realized in a maximum of one day

This relates directly to the mechanics sections for each refactoring in [6], especially
for big refactorings. But such sections are written generically, e.g.: “Decide which job
is more important and is to be retained in the current hierarchy and which is to be
moved to another hierarchy” from the Tease Apart Inheritance refactoring ([6], pp.
362ff). With a concrete large refactoring, the refactoring route could be described in a
much more concrete and meaningful way for the team using the concrete class names
and concrete concerns of the system.

In Extreme Programming projects, the individual steps for a large refactoring can
be written on separate task cards – enhanced by an overall card describing the large
refactoring as a whole. But experience with large refactorings has shown that this is
often not enough. The above-mentioned problems still remain.

3.1 A Refactoring Plan

This paper proposes enhancing refactoring mechanics and tasks cards for large re-
factorings. Key to this is the concept of an explicit refactoring route written in the
form of a Refactoring Plan.

A refactoring plan consists of a sequence of Refactoring Steps. A refactoring step
is of the same scope as one or multiple integration steps. An example of a refactoring

118 M. Lippert

step is: “Analyze all usages of class A and shift them to usages of class B, where
possible”. Depending on the size of the project, a refactoring step may have to be split
into multiple integration steps or can be done within a single integration step.

The entries of a refactoring plan reflect the concrete system and the route that
makes sense for the large refactoring in the concrete situation. The team thus arranges
the refactoring steps in the order in which they are to be realized.

To track the progress of the large refactoring, each step of a refactoring plan can be
marked as finished, work-in-progress or open. The steps of a refactoring plan can be
rearranged, deleted or adapted, if necessary4.

3.2 Refactoring Plans in Practice

Refactoring plans serve two different purposes. On the one hand, the team can use
refactoring plans to discuss, rethink or replan large refactorings. They are thus vital
elements in the development process. On the other, they allow developers to keep an
eye on the refactoring while developing new features, thus serving as a map and a
reminder.

Typically, a refactoring plan for a concrete large refactoring is drawn up by the
team while discussing what refactoring needs to be done. The plan is initially
sketched out on a sheet of flipchart paper and pinned on the wall to make it visible to
the whole team.

When the team is working on the refactoring, they usually pick the next open step
from the refactoring plan and mark that step as work-in-progress on the paper. Once
they finish the refactoring step, they mark it as finished.

It sometimes happens that the steps in the refactoring plan have to be replaced or
rearranged. In this case, the team or pair doing the refactoring discuss the changes. As
a result, a changed refactoring plan is communicated to the team in the same way the
old refactoring plan was.

3.3 Forms of Refactoring Plans

Refactoring plans can take different forms and be at different stages of expansion.
Three possible variants are:

The Manual Refactoring Plan: One way of dealing with explicit refactoring
plans is a simple, manual approach, using a handwritten plan on a flipchart or
whiteboard visible to all members of the team. This is the simplest form of ex-
plicit refactoring plan, and one that has been successfully used by us in a proj-
ect context.
The Electronic Refactoring Plan: Greater potential for team support is of-
fered by an electronic version of a refactoring plan that is part of the project
source base. A simple and suitable tool can help to integrate refactoring plans

Examples of refactoring plans can be found at [10].4

Towards a Proper Integration of Large Refactorings 119

into the IDE to make them directly and easily visible to all project members
(e.g. via specialized views in the Eclipse Java Tooling, see [5]). The electronic
version makes it easy to modify the plan and facilitates teamwork across dif-
ferent locations (a handwritten plan being more suitable for a single location).
We have also used a wiki page to sketch out and track a refactoring plan. The
downside of electronic refactoring plans is that they do not attract the same
attention as a big poster-size plan on the wall.
Vision – the Connected Refactoring Plan: In addition, electronic refactoring
plans could be connected to the source code to allow navigation from finished
refactoring steps to changed parts of the source code and vice versa. This is
useful to find information on large refactorings, together with the changes they
have introduced into the code. Developers can easily find out whether the
large refactoring has affected the code they are going to work on.
Vision – the Refactoring Map: To make it easier for developers to check
whether their work is affected by a running large refactoring, the idea of a
Refactoring Map emerged. A refactoring map displays the complete system in
a map-like form. The parts of the system affected by changes due to the re-
factoring are marked (e.g. in a particular color). The developer can use the
map to see at a glance if the large refactoring comes close to the part of the
system he is working on.

3.4 Implications of Refactoring Plans

Refactoring plans can change the way developers deal with large refactorings in agile
development projects. The anticipated benefits from using refactoring plans include:

All developers of a team are aware of ongoing large refactorings and can ob-
serve the progress.
Developers can easily see which large refactorings are not yet finished. This
prevents the team from forgetting unfinished large refactorings.
The team can track the progress of a refactoring. This can help to plan the re-
factoring effort required in current and future iterations.
The risk of getting lost within a large refactoring is reduced by the refactoring
plan. Developers can watch the plan while immersing themselves in the re-
factoring. They can check whether the current activity really yields a benefit
for the overall refactoring or not.
Developers can recognize changes and by-passes within the code that are in-
troduced as part of a large refactoring (using the electronic version of a refac-
toring plan).

3.5 Consequences for Project Planning

The discussion of large refactorings reveals that agile development projects need to
pay explicit attention to large refactoring tasks. While small refactorings are part of

120 M. Lippert

everyday programming practice – and thus not a separate project-planning issue –
large refactorings need to be taken into account in the planning process. They must be
scheduled somehow during iteration and release planning as they could easily take up
a large part of an iteration’s development time.

4 Related Work

In [13], Don Roberts and John Brant describe a tool designed to support mass
changes to source code automatically. Basically, they took the source-code transfor-
mation engine of their Smalltalk Refactoring Browser (see [2]) and used it to auto-
matically modify Smalltalk source code following a user-written script-like list of
rules. This rule script is used by the transformation engine to modify the source code.

Unlike us, Roberts and Brant adopt an “all-at-once” approach, in which a large re-
factoring is basically prototyped using their rule engine. If the complete path through
the refactoring is found, they execute the rule-based script for the refactoring in one
step. Their approach completely ignores the communication issues of an agile team.
The team’s developers have to live with situations in which many lines of code
change from one day to the next. In addition, the approach of working on a fixed
version of the system to do the refactoring (or writing the rewriting rules) involves
similar risks to doing the refactoring in a separate branch (merging, major changes to
the head version, etc.). Another drawback of their approach is that writing rules on
top of parse trees can be quite complicated for developers not used to thinking in
terms of parse trees (see [13]).

Nevertheless, using a rewrite engine like the one they propose to realize parts of
large refactorings is a conceivable solution. It would be most powerful for refactoring
steps with simple transformations but a high number of dependencies on these
changes.

Tammo Freese has proposed a way of using Inline Method refactoring to facilitate
API changes within an application (see [7]). His work demonstrates an elegant way to
split API interface changes into smaller steps. This technique could be used to split
large refactorings into smaller steps.

In [8], Tammo Freese describes an approach designed to facilitate what he calls
global refactorings within agile development teams. The basic goal of his work, with
regard to the topic of this paper, is to facilitate automatic refactorings that affect large
parts of the system. He proposes a specialized version-management system that is
aware of refactorings and is therefore able to merge refactoring results automatically.
This approach could be quite useful for developers dealing with large refactorings.
While this paper focuses on a different issue, namely how to integrate large refactor-
ings into the daily work of an agile team, individual steps of a large refactoring could
be supported by a refactoring-aware version-management system.

The concept of a refactoring plan is derived from the work on process patterns for
situated action (see [14], [15]). The authors use process patterns to reify typical work
processes in application domains. Their process patterns replace workflow systems
with a more flexible way to describe common processes and deal with them individu-

Towards a Proper Integration of Large Refactorings 121

ally. Unlike the process patterns, refactoring plans are written for a concrete refac-
toring only. They cannot be reused for similar refactorings and they do not serve as a
template for multiple refactorings.

5 Conclusion

This paper introduces the notion of large refactorings and emphasizes that they are an
important issue in today’s agile software development methods. The main problems
and characteristics of large refactorings are presented and briefly discussed. The pa-
per focuses on the team issues posed when dealing with large refactorings, in contrast
to a formal approach designed to somehow automate large refactorings. The focus,
then, is on the problems faced by agile teams when dealing with large design changes.

The concept of explicit refactoring plans is presented, which are designed to inte-
grate large refactorings into the daily programming work of an agile software devel-
opment team. These plans combine the notions of situated process patterns and task
planning to create a simple and easy-to-use concept. They aim to help teams manage
large refactorings smoothly within an agile development project.

While electronic refactoring plans have yet to be implemented, initial experience
with manual refactoring plans has been gained and shows promise. Nevertheless,
what the paper presents is more a concept for supporting teams dealing with large
refactorings than a proven solution. Further research is needed to verify the suitability
of the presented approach in a larger number of projects.

Acknowledgments. My thanks go to Axel Schmolitzky, Holger Breitling and Marko
Schulz for their comments on draft versions of this paper, and to the other members
of the Software Engineering Group at the University of Hamburg for their comments
and discussions on the topic in general. I would also like to thank Stefan Roock for
his work and feedback on the topic.

I am particularly indebted to the following participants of the OT 2003 Workshop
on Large Refactorings: Peter Marks, Erik Groeneveld, Peter Hammond, Alan Francis,
Ray Farmer, Pascal Van Cauwenberghe, Peter Schrier, Marc Evers, Willem-Jan van
den Ende and Matt Stephenson, as well as to the participants of the OOPSLA 2003
Workshop on Beyond Greenfield Development, especially to Kyle Brown for his
feedback. My very special thanks go to Brian Barry for his comments and the idea of
refactoring maps.

References

Beck, K.: Extreme Programming Explained – Embrace Change, Addison-Wesley (2001)
Brant, J., Roberts, D.: Smalltalk Refactoring Browser.
http://st-www.cs.uiuc.edu/~brant/RefactoringBrowser.

1.
2.

122 M. Lippert

Cinnéide, M. Ó.: Automated Refactoring to Introduce Design Patterns, Proceedings of the
22nd International Conference on Software Engineering, Limerick, Ireland (2000)
Crupi, J., Alur, D., Malks, D.: Core J2EE Patterns: Best Practices and Design Strategies,
Prentice Hall PTR (2001)
Eclipse Project: http://www.eclipse.org
Fowler, M.: Refactoring – Improving the Design of Existing Code, Addison-Wesley
(1999)
Freese, T.: Inline Method Considered Helpful: An Approach to Interface Evolution, in:
Extreme Programming and Agile Processes in Software Engineering, Proceedings of the

International Conference XP 2003, Genova, Italy, LNCS 2675, Springer (2003), 271-
278
Freese, T.: Software Configuration Management for Test-Driven Development, in: Ex-
treme Programming and Agile Processes in Software Engineering, Proceedings of the
International Conference XP 2003, Genova, Italy, LNCS 2675, Springer (2003), 431-432
Kerievsky, J.: Refactoring to Patterns, Addison Wesley (2004)
Lippert, M.: Refactoring-Plans – Examples and Experiences,
http://www.martinlippert.com
Lippert, M., Roock, S., Wolf, H.: Extreme Programming in Action – Experiences from
Real-World Projects, Wiley & Sons (2002)
Opdyke, W. F.: Refactoring Object-Oriented Frameworks. PhD thesis, University of
Illinois at Urbana-Champaign, Dept. of Computer Science (1992) Tech. Report
UIUCDCS-R-92-1759.
Roberts, D., Brant, J.: Tools for Making Impossible Changes, to be published in IEE Pro-
ceedings-Software, Dec. (2003)
Suchman, L.: Plans and Situated Actions. The Problem of Human-Machine Communica-
tion. Cambridge University Press (1987)
Wulf, M., Gryczan, G., Züllighoven, H.: Process Patterns - Supporting Cooperative Work
in the Tools & Materials Approach, Information Systems Research Seminar In Scandina-
via: IRIS 19; proceedings, Lökeberg, Sweden, 10-13 August, 1996. Bo Dahlbom et al.
(eds.). - Gothenburg: Studies in Informatics, Report 8 (1996), pp. 445 – 460
Zannier, C., Maurer, F.: Tool Support for Complex Refactoring to Design Patterns, in:
Extreme Programming and Agile Processes in Software Engineering, Proceedings of the

International Conference XP 2003, Genova, Italy (2003), LNCS 2675, Springer (2003),
123-130

3.

4.

5.
6.

7.

8.

9.
10.

11.

12.

13.

14.

15.

16.

An Agile Approach to a Legacy System

Chris Stevenson1 and Andy Pols2

1 ThoughtWorks Technologies (India) Pvt Ltd.
Diamond District, Airport Road

Bangalore, India
CStevenson@thoughtworks.com

http://www.thoughtworks.com
2 Pols Consulting,

5 Granary House, Hope Sufferance Wharf,
St Marychurch Street, London SE16 4JX, UK

andy@pols.co.uk

http://www.pols.co.uk

Abstract. We describe how a small, successful, self-selected XP team
approached a seemingly intractable problem with panache, flair and im-
modesty. We rewrote a legacy application by delivering new features, a
radically different approach to those previously applied. This proved to
be a low cost, low risk proposition with a very high payoff for success.
Most importantly it provided users with new functionality quickly that
could never have been retrofitted into the legacy system. In the longer
term it may give a migration strategy for replacing the legacy system.

1 Background

InkBlot is a large financial legacy application feeding dozens of other applications
and supporting up to 100 in-house traders on a daily basis. The system was
originally developed in the 1990s and the original team disbanded long ago.
There are many external apps that talk directly to the database.

There are no clean external interfaces, which means that we have no idea
who is connecting to the system and what they are doing in the system. In fact
all external access uses the same well-known username and password.

Business logic is distributed across 1600+ stored procedures, some of which
are 3000+ lines of SQL, and exist in multiple versions. Whenever a stored pro-
cedure was changed, a new version was added because no-one knew who was
using the old version.

There are no primary or foreign keys on the 250+ tables, and triggers are
used to maintain data ‘integrity’. Code was not under source control and written
in a mixture of 4GL, C, SQL and unix shell scripts.

2 Our Evolving Strategy

There had been several previous initiatives to improve the system. The most
recent was an attempt to rewrite a key part of the system in a language that we

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 123–129, 2004.
© Springer-Verlag Berlin Heidelberg 2004

124 C. Stevenson and A. Pols

knew (Java) on the assumption that this would increase understanding of the
system and make it more amenable to refactoring.

This strategy did not work.
With hindsight the reasons for this failure are clear: we were attempting to

change the legacy application itself, therefore we were likely to break it before
we fixed it. Also since we were rewriting what was already legacy code, we were
by definition writing legacy code.

For example if (say) 75% of the code is unused or irrelevant (probably a lower
bound in this legacy application) then working on that proportion of the code
is wasted time. Even worse, since there are bugs in the legacy application that
other parts of the system assume or work around, we would need to reproduce
the bugs in our new code.

The refactoring effort was started as a spike, and morphed into a multi-
month project - it should have been time-boxed to prevent this. Also note that
this approach, even if it could have worked, was slow, demoralising and would
have provided (again by definition) zero benefit to the business.

The drive for the original rewrite came from development management and
developers not business and users. Management drive was to improve reliability
of the system. This was incorrectly interpreted as a mandatory requirement to
rewrite existing code. At one stage we were told specifically ‘no business value
work is allowed’.

When the rewrite failed we decided a new strategy was needed.

Therefore our rule of thumb is: Don’t reproduce legacy code

Next, we got a good customer proxy1 who was able to identify the key prob-
lem in the use of the system by front office staff. The system was being used
as a reporting tool, using stored procedures that would run for up to 5 minutes
before producing a result. This frustrated the users who ended up running the
reports continually, adding to the load on the system.

When we asked the users what they wanted, they had very clear ideas about
what was wrong. Of course none of them mentioned the part of the system we
had been working on – to them it was invisible. If we had persisted on the original
rewrite we would not have solved their problem. The area of the system we were
focussed on was not even the one causing their problem.

Therefore our rule of thumb is: Always ask the users what the problem is

Deciding that our users knew better where they were hurting, our next ap-
proach was driven by user requirements. We wrote a greenfield application to
extract data from the legacy application database and display it to users in a
flexible and timely manner. An already successful team was given the task of

1 Customer proxy: Someone from the development organisation acting as a proxy for
the customer, when an onsite customer is not possible.

An Agile Approach to a Legacy System 125

writing a quick one-week spike to prove that the required data could be extracted
in real time. This gained the trust of our customer proxy and gave the team the
confidence to continue.

This proved to be very easy and ‘How difficult can it be’ became the team’s
motto.

Our approach was low risk in that we didn’t change the legacy application,
and so the potential cost of failure was small. However the payoff for success
was extremely high. The new system obsoletes legacy application functionality
incrementally while delivering regular new features to users.

The new system only extracts the key relevant data from the legacy appli-
cation, ignoring the irrelevant code and database tables, and makes no changes
in the legacy application. This means that the team gains an understanding of
the important parts of the legacy system while ignoring those parts that do not
matter.In fact we use only 10 of the 250+ tables in the legacy application.

Therefore our rule of thumb is: Refactor a legacy application by delivering
new business value

3 How We Built the Team

We started the Greenfield application with a team of two people who had just
successfully completed an unrelated project. They were bored and looking for
something challenging to sink their teeth into. The legacy application team’s
credit bank was at zero, so there was no confidence in their ability to deliver
using this new strategy. The new team believed in the new strategy and lobbied
project management hard to get a chance to try it. The new team was given
permission to start work unofficially to validate the approach.

The first story was to prove to our customer proxy that we could extract
the data in real time, without impacting the performance of the legacy applica-
tion. This proved to be easy, and basic functionality was implemented rapidly,
leading to much more confidence in the approach. As time went on and our and
confidence grew, we raised our heads above the parapet more and more, until
we were able finally to demonstrate the app to our users. Up to that point all
conversations with the users had been theoretical.

Therefore our rule of thumb is: Incrementally build trust - prove that you
can do the hardest part of the system

After the initial spike2, people around the team were infected by their en-
thusiasm, and lobbied to join the team. The team grew to 6 and then fought

Spike: An experiment to explore a possible solution to an unfamiliar problem. So-
called because a spike is “end to end, but very thin”, like driving a spike all the way
through a log.

2

126 C. Stevenson and A. Pols

hard to keep that size. This self-selection meant that the team had a unique
ethos and passion. Since everyone wanted to be there the team was committed
to the success, and members took collective responsibility for the success of the
project.

Therefore our rule of thumb is: Build a small, self-selected team

Unlike some XP teams that we have seen, we did not allocate cards to specific
programmer pairs. Instead the cards were placed on a whiteboard near the team,
and we would take them when we had finished another story. Interestingly even
the boring cards were picked up early, as the team’s pride was at stake.

We initially planned to have one-week iterations, and most of the time that
was fine. Occasionally a piece of work would come along that would block other
avenues of development. When this happened we planned for a short ‘blitz’ to
complete the work as soon as possible. This meant that some of our iterations
turned out to be quite short - some as short as three days. We sometimes finished
all of the work planned for an iteration early, and again in this case we would
have an early planning meeting. We found that variable iterations worked well
and helped us keep the development focused.

Therefore our rule of thumb is: Don’t get hung up on process

We would regularly call each other on bad code or small mistakes. When the
build broke, we would very quickly call out to the culprit. In fact we did not use
automatic integration, because we were integrating ourselves about every 10-15
minutes, and would just shout out if the build had broken.

Team discussions were ego-less but opinionated, and we were all willing to be
wrong. Discussions about the system were very robust, but once we had thrashed
out a solution, the group would invest in the idea. Ideas were always owned by
the group, not individuals.

Single pairs felt very uncomfortable with architectural refactorings that
would affect a large proportion of the code base. So we would spend half an
hour around a whiteboard to thrash out the details, and then the whole team
would work on that refactoring only, until we could commit and move on to
something else. Before the first release we refactored the back end architecture
completely 4 times in this way, approximately once every couple of weeks. This
meant that the architecture stayed flexible and easy to adapt.

Therefore our rule of thumb is: Involve the whole team with larger refactor-
ings so the team can move on as quickly as possible

We built our own culture and rituals as the project progressed. For example
every afternoon about 3pm we would disappear to the local coffee shop for a half
hour. Discussions there were often (but not necessarily) about code problems,

An Agile Approach to a Legacy System 127

but the primary benefit was that it gave the team a known break point, so that
we could maintain a higher pace. Some of our best work happened after these
breaks, as the brainstorming and fresh air gave us more energy.

The team socialised together outside work hours as well. When we released we
went to a local bar for rounds of Flaming Absinthe - a ritual that we occasionally
regretted the next day.

Therefore our rule of thumb is: Effective teams need break points

4 Delivering

There were people who had no confidence in the team’s ability to deliver. Others
feared that failure would reflect on them, or the solution compromise the existing
legacy application. We approached these antibodies in the same way we would
approach a customer - teasing out their fears and requirements and building them
into our process as carded activities. We anticipated these sorts of problems and
brainstormed the expected antibodies and our response to their concerns. All
members of the team were aware of politics surrounding the system and able to
‘sing from a common hymn sheet’.

One particularly effective strategy was ‘don’t say no, say later’. We would
take the fear on board (literally carding it and putting it on the whiteboard) for
a later iteration, by which time we would have proved that it was no longer an
issue, or the initial reason for the request had changed or been forgotten. Fears
could then be prioritised in the same way as any other piece of work.

Therefore our rule of thumb is: Treat politics as a user requirement

Our initial increments were tested using static data loaded into a test
database. We were able to simulate some of functionality of the legacy ap-
plication. However, we did not appreciate the complexity of the real system’s
behaviour until we connected our system to the live database.

We could not rely on our unit tests and simulations because these only re-
produced what we thought the legacy application did, not what was actually
happening. In particular, some external systems that we did not know existed,
were directly manipulating crucial tables in ways we were unaware of.

Within minutes of connecting to the live database we noticed inconsistencies
and bugs that had been in our code for months. This meant that we had to
rethink a large part of the back end of the system. We ran the system with
live data for a month before delivery, and built tools to automatically compare
the results of our system with those produced by the legacy application. These
became our most important integration/user acceptance tests. We did have some
of our own ‘stress tests’ but these were not used for functional testing of the
system.

128 C. Stevenson and A. Pols

After our first release we no longer left the test system connected to live, and
we lost a lot of our reliability. In fact our second release had to be rolled back
as bugs were exposed within minutes of going live. Ironically the main piece of
functionality of this release had been to allow us to record and play back the
events generated by the live system, so that we could improve testing. We had
relearned our lesson - and when we connected our test release to the live system
again, we managed to do a successful release.

Therefore our rule of thumb is: A System that connects to a legacy system
must be tested using live feeds.

Even though we had live data feeds to tease out business rule bugs, we still
had gui bugs that eluded our unit tests. With hindsight we would like to find
ways of introducing robust and flexible acceptance tests much more early in the
process. Gui testing is still an open issue for us. We have been bitten by it on
several occasions, but have yet to find an effective solution.

Three months into the project (around Iteration 12) we showed the system
to key business users and asked them to try it for a while. The system had been
running on live data for a month by this stage. The system was so popular that
we had problems removing access to the system - when we released the final
version, there were still 20 users running the original, some of whom we had not
actually given it to. We had designed the system to automatically deploy new
versions, so the upgrade was not painful.

We never told the users that they must use the new system. Nor did we
remove access to the old system. We relied on making the system so compelling
that there was no reason to use the old. This also meant that we stayed focused
on the users real requirements.

Because we had actually been ‘live’ for a month, the first release was an
anti-climax. The Project Manager of another team commented that he could
not believe we were releasing that week - none of us were staying late and no
one worked weekends. In fact our coffee breaks in the afternoons continued.

Therefore our rule of thumb is: Engage users and they not only won’t they
turn it off, they will fight some of your battles for you.

After delivery of the first release we suffered from a bout of ‘post-delivery de-
pression’. We concentrated on technical infrastructure problems and refactorings
without adding any business value. The team became bored and unmotivated,
and the team lost its spark.

Once we got back on business value, the team’s demeanour lifted and we
sparked again, but we had lost a couple of iterations. A dynamic team like this
needs problems and challenges to remain motivated.

Therefore our rule of thumb is: Keep giving a good team motivated by giving
them new hard problems - don’t waste a good team

An Agile Approach to a Legacy System 129

5 Reflection on the Experiences

The project has now been going for seven months. We gave some users a test
version to try after two months. They continued to use this version for two
months until we delivered the first official release four months into the project.
We are about to deliver the fourth release.

We are still running the new system in parallel with the legacy system. We
are currently adding major new functionality that is missing from the legacy
application and has been an outstanding feature request for some time.

We are also working to enable the new system to operate independently from
the legacy application, so that eventually we can switch off the legacy application.

Our project was initially kicked off as a strategic short-term fix. The organi-
sation was planning a long-term project to replace the legacy system, for delivery
in ‘a couple of years’. Due to the success of our project, this rewrite has now
been put on hold.

The team has been asked by other parts of the business to spike solutions to
hard problems. This enhanced the motivation of the team.

Looking back on our experiences, we find that our “rules of thumb” paid off
well on this project, and we intend to try them out on future projects to see how
well they stand up under different circumstances.

Acknowledgements. The InkBlot team for letting us put our ideas into prac-
tice and for making development of the system a pleasure.

Special thanks to Alistair Cockburn for encouragement and advice; to Martin
Fowler, Joe Walnes, Gregor Hohpe, Tim Bacon for thoughtful feedback; Ben
Authers for de-geeking our prose; and to the London Extreme Tuesday Club
(XTC) for their continuous stream of good ideas and discussions.

Cynical Reengineering

Kristoffer Kvam, Daniel Bakkelund, and Rodin Lie

Telenor, CRM, Business Logic,
{kristoffer.kvam,daniel.bakkelund,rodin.lie}@telenor.com

Abstract. This paper presents a solution for saving large systems
from increasing entropy. The solution is proven on a large middleware
platform giving good results. The method’s objective is to rework the
system so that reengineering investments pays off. Reaching agile prac-
tices is the methods basis. In order to reach the objective the method
cynically relies on measurements to find unwanted characteristics of the
system. Subjective opinions due to ownership and politics are ignored in
the method. An extensive open source tool, the Cosmos Radar, is given
to the community to make these measurements. Various symptoms and
measurements are identified and approaches to solutions are discussed.

Keywords: Reengineering, Refactoring, Software Metrics, Open Source

1 Introduction

1.1 Challenge

One of the major challenges we face in software development are the old systems.
Systems having reached maturity often have a mysterious tendency to produce
highly unexpected errors and maintenance is a pain. Taking inspiration from the
Second Law of Thermodynamics some call this phenomenon increasing system
entropy: In time a system experiences increasing disorder if not explicitly tended
to [1]. This disorder adds unnecessary complexity to the problem domain’s in-
herent complexity, something many organisations experience as their systems
mature. A great deal of time is being spent fixing bugs and testing the fixes
while development of new functionality is costly, risky and likely to introduce
regression errors.

Techniques within the Agile initiatives such as automated acceptance test-
ing, test driven development, continuous integration and refactoring all aim at
preventing systems to end up as described above [2]. This idea works well with
new systems development, but what about all the existing systems?

One alternative is a complete rewrite, but the cost might not pay off the
investment. Rewriting a system is a risky and tricky affair, but not something
we shall venture into in this paper.

The other alterative is to facilitate agile practices by reengineering the old
system. This process is not free of challenges, whereof some of the more obvious
ones are:

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 130–138, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Cynical Reengineering 131

How to get management acceptance?
Where to start?
What to prioritise?
How to reduce risk?

In addition to this you will most likely have very important organizational chal-
lenges, such as the process and culture change needed to establish the agile
practices. These are not in the scope of this paper.

The following presents a solution to the challenges mentioned above (save
the cultural and process related ones). The solution is based on quantitative
measurements to make objective reengineering decisions. As a means of obtain-
ing the measurements a new free open source tool, the Cosmos Radar [6], is
introduced.

1.2 Telenor

Telenor is Norway’s largest telecommunications company with numerous inter-
national interests.

COS is a middleware system designed to give front-end applications a con-
sistent view across multiple back-end systems. There are more than 20 front
end applications serving retail outlets, customer support, large corporate cus-
tomers and internal functions. The back end systems include Sybase and Oracle
databases, network connections and mainframes, all of which are logically inter-
connected through the use of batch jobs, scripts and database stored procedures.

COS has evolved over 5 years into a large system, composed of many sub-
systems. After a period of sustained development the problems were manifold.
The system state corresponded well with the description of increasing entropy
as defined above.

The Pareto project was instigated with solving the problems. The results
presented here rely heavily on the work done during the project.

2 Objectives

A project proposal that sounds like “saving the system from the entropy spiral”
will likely face scepticism from management. The project’s business case must
show that the increased life of the system defends the investment. After all, a
very sensible alternative from a business point of view is to let the system die a
silent death and invest in new development or buying a packaged solution. (In
some cases that will also be the better solution.) The following issues must be
taken into consideration when deciding the reengineering roadmap.

2.1 Reduced Time to Market

Reducing the time from an idea is created to it is put into production is a critical
competitive factor for businesses today. Often the willingness to pay for a change

132 K. Kvam, D. Bakkelund, and R. Lie

is very high but the organizations ability to implement the changes is limited
and time consuming. Hence, reducing the time to production of highly prioritised
changes is often the most important factor for the business.

2.2 Increased Flexibility to Change

Having a flexible system architecture usually means being able to introduce large
changes into the system at low cost and low risk. Flexibility also increases insight
into the systems secrets causing general maintenance costs to decrease. Finding
system bottlenecks and optimising performance will also be much easier once
the systems architecture is flexible.

2.3 Reduced Number of Critical Errors

Developing zero defect software is one of the observed merits of agile practices
such as XP [3]. Unfortunately, this is not the track record of the typical mature
system one faces. Even small changes can have catastrophic effects on the sta-
bility of the system. Since these mature systems often are heavily depended on,
downtimes can amount to painful losses for the business. Consequently, a focus
on this area is usually appreciated by the organisation.

3 The Cynical Reengineering Method

A reengineering project is likely to have a mandate corresponding to the objec-
tives mentioned above. In the targeted system there are probably several causes
to the problems. Below, typical causes are identified and means of measuring
them are presented. Once you have identified the most pressing problems, ways
of attacking them are needed. We give you details on that. An unfortunate prob-
lem with a reengineering project is that you discover so many issues you want
to resolve, but must prioritise the problems that give the greatest benefit for
the company. The Prioritisation section summarises and gives insights into that
issue.

3.1 Metrics

Object oriented metrics [4] can be used to analyse various characteristics of a
system. Unfortunately, in a stand-alone form their value is often limited as a
means for architectural decision-making. Questions like what values are accept-
able for this system, how can they be combined to add more value and what
metrics to emphasize usually arises.

To give true insight you need to see the metrics’ dynamical nature and the
value of combining them to form a more high-level view of the system. You are
interested in how the characteristics of your system changes over time. In this
way you can easily see which aspects of the system that are trending negatively
and consequently where countermeasures are needed - a dynamic view.

Cynical Reengineering 133

Another issue is the particular metric’s value in a reengineering project. Our
experience is that most of the symptoms you search for cannot be found by
the classical metrics. Instead, knowledge of the system must be combined with
various measurements to produce valuable reports. A tool like the Cosmos Radar
can help you with that.

We worked with many different views of the underlying metrics, but ended
up with combining some selected metrics to get at picture of the amount of
redundant code, illegal dependencies and code rot.

3.2 Redundant Code

Problem. As time goes, old code tends to be forgotten. When changes are
done developers forget to (or are not given any time to) clean up the code. Code
may be inaccessible or simply never used. This redundant code decreases the
maintainability of the system. Our experience with redundant code is that the
readability decreases, build cycles go slower and the impression of the system is
more complex than what it inherently is. The last issue is important when con-
sidering system flexibility. Time is spent analysing regression effects and testing
code that is worthless for the business.

Removal of redundant code is one of the easy wins in a reengineering project.
It is among the tasks with the lowest risk that you can do in the code base.

Solution. We use two techniques to find redundant code: static analysis and
statistics from the production environment showing the usage of public access
points into the system. When you start removing public entry points, new rounds
of static code analysis will most likely report large amounts of internal unused
code that can be removed, and so goes the cycle: remove, analyse, remove, anal-
yse. As this process goes on, the code base diminishes and becomes more man-
ageable.

Static analysis of the code base can give valuable insights into the inaccessible
parts of the code such as private methods, fields and inner classes that are never
accessed. In a similar manner, you can also statically find the unused classes in
the system.

Access points typically refer to the publicly available component services of
the system. The largest part of redundant code in the system can be found by
instrumenting all public access points and detecting which are never used in
production (no client applications calling the methods). For a mature system
not being maintained with dedication to the redundant parts, the system will
most likely have a considerable amount of unused code that may be removed.

Being Cynical. Code that is detected as unused through static code analysis
may be removed immediately, but some care should be taken to avoid deleting
classes that are only accessed through mechanisms such as reflection in Java.
When the unused entry points are detected these should be deprecated and
allowed to remain in the system for enough time for the clients to report in wrong

134 K, Kvam, D. Bakkelund, and R. Lie

deprecations (e.g. methods that are used very seldom, but still are important).
In this way you will avoid deleting skin-dead code. Still, our experience is that in
many cases you need to be ruthless. Clients often report that they have references
to the code that you deprecate - references that more often than not originates
in client code that also is unused and redundant. Pushing and involving them a
little extra on code removal may often create gains for both.

3.3 Illegal Dependencies

Problem. Illegal dependencies are dependencies that cause unnecessary en-
tangling of the parts of your system. It is obvious that since there are some
dependencies that are “illegal” there must also be some that are “legal”. The
definition of which are what arises from a defined “ dependency graph”.

A dependency graph contains a set of sub-systems (that make up your sys-
tem) and the legal dependencies between these (making up the edges in the
graph). For each sub-system it says what code belongs to it (e.g. which Java-
packages comprises a specific sub-system). The dependency graph should be a
directed acyclic graph.

Sources for defining this structure might be found in architecture documents
and by doing interviews with system domain experts. Once the work is done you
actually have a declared and measurable definition of the vertical and horizontal
layering of the system. Based on such a graph it is easy to see whether for
example the integration layer framework makes use of customer functionality
(which probably is not desirable).

A particularly unwanted problem area are cyclic dependencies [2]. Cyclic
dependencies in a system appear when one module calls another module which
again directly or indirectly calls the first module. This is a major pain that results
in a plethora of problems that all directly negatively affects the objectives of a
reengineering project.

The immediate result of these cyclic dependencies is code entangling. Differ-
ent subsystems with different responsibility depend on each other. This greatly
increases the risk for regression errors, and the burden of development and test-
ing changes become large. Hence, flexibility to change and the number of critical
errors suffer.

The second problem with cyclic dependencies is that you have to build and
deploy all components for each release. It is not possible to develop, build and
deploy a single module, and bug fixes are risky since they need to be patched into
the system. In sum, such dependencies hinder incremental builds and deployment
into production. The end result of that is slow time to market of prioritised
functionality.

Solution. The advantages gained from removing illegal dependencies between
subsystems are numerous, but as in many other circumstances in life; with great
gain comes high risk. Mature systems are not likely to have automated accep-
tance tests that you can use for regression testing. Unit tests are probably not

Cynical Reengineering 135

used either. Going into details in this area is not the scope of the paper, but
having a clear strategy for both of these testing elements are essential before one
starts to do massive restructuring of the code base.

Once the testing strategy has been developed and proved to work for the
system, one can start removing the illegal dependencies. There are several ways
to remove illegal dependencies and these vary greatly with the nature of the
system. Still, some are probably typical:

The first thing to be done with the illegal dependencies should simply be to
optimise the imports in the system. Redundant imports are not part of the
code base, but are still references. Several tools exist that can automate that
process.
Second, move methods, classes and modules that are placed in the wrong
subsystem. Moves like these often give major results. Of course, one must
give attention to clients and interface changes before moving public API
related modules.
Third, standard refactoring and redesign techniques must be used to remove
the last illegal dependencies. This part is naturally the most risky, but may
result in major gains for the system such as reusable frameworks.

Being Cynical. When working on the third and most complex part, our advice
is to start at the most fundamental and risky element. Having that part separated
out gives confidence, proof of the theory and will probably give the greatest gains
for the organisation. The rest of the subsystems will then be much easier to
separate out. The Cosmos Radar may continually give you the complete picture
of how the system compares to the legal dependency graph. When you are done
the path is clear to implement an incremental build configuration and you have
a highly more flexible and maintainable code base.

3.4 Code Rot

Problem. Developers often associate complexity with spaghetti code. Spaghetti
code comes in many forms but is often caused by illegal dependencies. Hence,
to be precise we define code rot as code with bad smells [5] caused by high
complexity. Attacking this problem has been an extensive area of research, and
today refactoring [5] is a well accepted practice. In light of that, we focus here
on practices for discovering the most immediate problems in a large code base.

Solution. Identifying code rot is a task that depends on the nature of the sys-
tem. Still, some problems are universal, two of these being high method complex-
ity and duplicated (copied and pasted) code. We present our ways of identifying
these, all supported by the Cosmos Radar.

Here we define a method complex if it has a high McCabe metric for Cy-
clomatic Complexity [4]. This metric simply is a count of the number of paths
a call to a method can go. One typically counts each conditional in a method

136 K. Kvam, D. Bakkelund, and R. Lie

and out comes the magic number. Usually one sets the threshold on this to 10.
All methods with a value above 10 should in time be refactored. The reason to
this is that such code has reduced readability and testability. The result is less
maintainable code. The metric can be found by static analysis of the code base.

Copying and slightly modifying code are results of quick wins for the short
term. Such an act results in duplicated code [1]. For maintenance such code
becomes a nightmare, especially if the copying and pasting continues on the
originally copied code.

In our experience measuring copied and pasted code can be done in two ways:

There exists several free tools that can statically analyse the code and find
equal sequences of code in the same code base. Such an approach gives fast
discoveries.
The other method is to group all methods in the code base according to the
method names and cyclomatic complexity. This measurement is a little more
error prone compared to the previous but is often very effective. The theory
is that methods with similar names and cyclomatic complexity have been
copied. It has been our experience that this is usually true for methods with
a CC larger than 10.

Being Cynical. After having done analysis of the code, you want to make a
choice on which parts to focus on. One typically makes a list of code that is overly
conditionally complex and/or copied and pasted. Maybe another code measure-
ment has been crucial for your system, and violating code to this measurement
has also been added to the list. What should you start with?

Prioritise the refactoring based on a very important dimension: Historical
activity on the code base. Luckily, this measurement is easily obtainable from
the source control system. Most of these systems have an API that one can
program against to obtain the maintenance metrics on the code files. If, for
instance, you have a list of classes in your system where code rot is a critical,
prioritise them according to how much source control activity these have been
involved in. The assumption is that the most historically maintained classes will
likely continue to be maintained. Hence, the greatest benefit is achieved if you
refactor and write unit tests on these classes first.

3.5 Prioritisation

When doing a reengineering project, your success is measured. Hence, even
though your heart tells you to attack a certain problem you discover, it is not
necessarily the right thing to do compared to all the other activities that are
lined up. The philosophy should be to attack the problems that give the great-
est benefits to the company on both the long and short term. We have used the
following approach with success:

It is strongly recommended to start by deleting obsolete code since the results
are easy to obtain and it reduces the amount of code for the rest of the tasks
in the project.

Cynical Reengineering 137

After that, attack the illegal dependencies. You will not be able to save the
typical mature and neglected system without having focus on this aspect.
Last, pure code rot removal should be focused on. The risk will be minimized
when you have a clearly defined and followed dependency graph. Further-
more, such work takes an immense effort to produce small results in a large
system. From a project perspective, code-refactoring work usually does not
defend the investment. The proposal is not to neglect code rot. Analyse
the problems as suggested above and produce a prioritised list of the prob-
lems. The list should be attacked as part of continual maintenance after the
reengineering project finishes.

Lack of dedicated maintenance was our reason why the system needed to be
reengineered. We believe no reengineering projects will succeed if this knowledge
is neglected by the organisation. It is time the system starts to continually pay
back its technical debt.

4 Cosmos Radar

The Cosmos Radar is a batch processing application developed as a response to
the Pareto project’s needs. It gets results from more 8 open source projects and
a couple of in house grown projects and presents the results as massive unified
html/svg reports. The architecture is based on java, xml and xsl. Presently it
only supports Java, but there are plans to produce plug ins for other leading
languages. [6] presents the Cosmos Radar in detail.

Although developed as a corporate tool, it has been decided to make it open
source (at the time of writing, the URL has not been established, but it will be
given during the paper presentation). It heavily relies on open source products,
and in this way we can give something back.

Measurements. As default, the Cosmos Radar gives measurements on stan-
dard software metrics such as package metrics and dependencies, code size and
complexity, coding violations and code-style violations.

Data from unit test metrics and code coverage are also integrated, but must
be obtained running the test suites on the system while doing monitoring. We
have also integrated even more measurements such as from source control, per-
formance metrics and SQL procedures. Similar plug ins will be made available
for the public once we have produced a common generic API.

Reports. The Radar is available in two forms. Cosmos Radar Statics gives
reports on the current build of the system. The other form, Cosmos Radar Dy-
namics, includes the time dimension and views the historical and present versions
along the time axis. The Dynamics version relies on a set of two or more Statics
runs of different system releases to work properly.

138 K. Kvam, D. Bakkelund, and R. Lie

5 Conclusion

Based on our experience with reengineering a large component based system,
we have presented a method for attacking such systems in general. The method
is based on software metrics and quantitative measurements. The various symp-
toms and approaches for their resolution have been discussed in relation to the
typical objectives of a reengineering project - objectives with a mandate in a
business case. The methods goal is to get the old system technically ready for
typical agile practices. The results of using the method have been very good. A
future paper will present the hard results.

As a means of performing such reengineering work we have presented the
community a new open source tool, the Cosmos Radar, that has been developed
in parallel with the methodology. The tool is based solely on other open source
projects. It can be used to measure all the various symptoms on a system as
discussed.

Our viewpoint here has only had focus on the system challenges. When adapt-
ing a system to agile practices it is just as important to focus on the human side,
methodology and process. The organization and process involved in maintenance
of such a system needs a major shift in order to take out the potential resulting
from reengineering. One does not want the system to go back to its old sins.

References

Hunt, A., Thomas, D.: Pragmatic Programmer, from Journeyman to Master (2000)
Martin, Robert C.: Agile software development, Principles, Patterns, and Practices
(2002)
Beck, Kent: Extreme Programming Explained: Embrace Change (1999)
Fenton, Norman E., Pfleeger, Shari L. : Software Metrics: A Rigorous and Practical
Approach, Revised. (1998)
Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving
the Design of Existing Code (1999)
Kvam, K., Lie, R., Bakkelund, D.: A Tool for Cynical Reengineering (2004) Pre-
sented at the rOOts 2004 conference

1.
2.

3.
4.

5.

6.

The Characteristics of XP Teams

Hugh Robinson and Helen Sharp

Centre for Empirical Studies of Software Development
The Open University

Walton Hall
Milton Keynes MK7 6AA UK

{h.m.robinson; h.c.sharp}@open.ac.uk

Abstract. What is special about XP teams? Adopting XP involves social
change as well as technical change, but what characterises a successful team?
What happens when a team takes on the 12 practices and four underlying
values? This paper contributes empirical findings that help answer such
questions. We expand on previous work that suggested four characteristics of
an XP team by analysing the data from both the previous study and from a
further study of another mature XP team. While there are clear differences
between the two teams in terms of operating environment, their detailed
implementation of the 12 practices and the team’s overall character, we find that
the four characteristics are present in both teams. The paper describes the
characteristics in detail and discusses how those characteristics are embedded in
the detail of the practices of XP as observed in the two particular settings.

1 Introduction

The practices of XP, as given by Beck [1], are carried out by teams of individuals
working in particular settings. Teams and the characteristics of teams are central to
XP: Beck [1, p35] asserts ‘If members of a team don’t care about each other, XP is
doomed’. Indeed, XP is as much about human values as about technical values.
Interviewing Beck, Highsmith [2] observes that his ‘important vision is about
changing social contracts, changing the way people treat each other and are treated in
organizations’ and quotes Beck’s response to an article that attempted to revise XP: ‘I
was furious that someone would strip out all of the social change and still call it XP.’

But what is special about XP teams? What does a successful XP team look like?
What effect does XP have on a team when the 12 practices and the underlying values
are put into practice? While authors have discussed specific aspects of team
interaction (e.g. [3]) and have reported on XP team activity (e.g. [4]), no reported
work has focussed on the characteristics of mature XP teams. A team’s character is
determined in part by the individuals who are its members and the organisational and
cultural setting within which they operate. However the claim from XP proponents
that successful adoption involves social change suggests that the 12 practices
themselves might sustain and be sustained by a common set of team characteristics
that go beyond the documented practices and values.

This paper is about the characteristics of XP teams and how those characteristics
are sustained by the detail of XP practices. We expand on the results of an earlier

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 139–147, 2004.
© Springer-Verlag Berlin Heidelberg 2004

140 H. Robinson and H. Sharp

empirical study of a mature XP team [5,6] that suggested four characteristics of XP
teams, using an additional empirical study of a second mature XP team operating in
quite a different environment. We first describe our empirical approach and then give
some details of the setting for each of the two studies. We then move to an analysis of
how team characteristics are embedded in the detail of XP practices, and finally
discuss our findings and conclusions.

2 Empirical Approach

Our empirical approach was qualitative and emphasized understanding the reality of
practice. Each team was studied by a researcher for a period of a week, complemented
by follow-up visits to discuss findings. A different researcher was used for each study.
Each week-long study involved the researcher immersing themselves as far as
possible in the day-to-day business of XP development, and actively taking part in
that business where possible. The detail of practice was documented via a range of
means that included contemporaneous field notes, audio recordings of discussions and
meetings, photographs/sketches of the physical layout, copies of various documents
and artefacts, and records of interviews with practitioners.

Our approach was one of observing as far as possible the natural setting of practice
without any form of control, intrusion or experiment. Our analysis sought to
understand the practice we observed in its own terms, minimizing the impact of our
own backgrounds, prejudices and assumptions. We placed emphasis on attending to
the taken-for-granted, accepted and un-remarked aspects of practice, deliberately not
discounting any feature of practice and explicitly considering the totality of practice
with all its ‘messy’ characteristics. This observational and analytic approach is an
ethnographic approach – a rigorous and non-subjective approach from the social
sciences that has been used successfully to study software development (see [7-9] for
example).

In both cases, the start of the study coincided with the start of an iteration and all
12 practices were observed.

3 Teams and Their Settings

3.1 Team A

Team A were part of a small company developing web-based intelligent
advertisements in Java for paying customers. The team has used XP right from start-
up, uses all 12 practices and is mature in its use of XP. At the time of the study, there
were eight developers in the team, one graphic designer and one person who looked
after the infrastructure. Iterations were three weeks long and the only documentation
support tool was a wiki site where the team captured details of each iteration such as
the identifier of the stories planned, those completed, those removed or added, and the
team’s velocity. Stories, indeed anything that was written down, were captured on 4"
by 6" index cards, which were then discarded once they had been used for their
purpose. The company employed four marketing people who determined what was

The Characteristics of XP Teams 141

required in collaboration with clients. Marketing were regarded as being, in effect, the
on-site customer.

Each member of the development team apart from the graphic designer had
experience of traditional software development methods. As a team they had only
ever used XP, and while the membership of the team had expanded and contracted
over its lifetime (two and a half years at the time of the study), the individuals
involved had remained stable.

The setting for the XP team was a long rectangular first-floor office organized so
that it was both open but also had distinct areas. There was an area where pair
programming took place, with desks shaped specifically for programmers to sit two to
a machine. The wall in this area had a notice board devoted to the active story cards.
There were also four ‘to do’ lists on the board headed by a picture of Anton Chekhov
and one of Pavel Chekhov. These lists were checked-off to signal certain events, and
the area was known as the Chekhov Board. This is where stand-ups took place. There
was a separate area for the Planning Game, with tables, chairs and a sofa. Adjacent to
this area was the machine used to release modified and tested code into the main
system. The marketing team was located at one end of the floor; each person had their
own desk. The infrastructure support person and the graphic designer also had their
own area. There was a well-equipped kitchen that was used extensively and it had a
homely and personal feel to it.

3.2 Team B

Team B were part of a company producing software products to support the use of
documents in multi-authored work environments. They have 3,500 accounts
worldwide and over half a million users. Software is produced by two development
teams: one in Capetown, South Africa, and the other in London, UK. We studied the
latter team. They adopted XP in early 2001, as a result of problems with a
conventional, but unstructured, approach. The team adopted all 12 XP practices. At
the time of the study, there were 23 people working in the team, including three
programme managers (who took the role of the on-site customer), two testers, a
technical author, a development team coach (who also managed the development
team and pair programmed) and 16 developers. Within each iteration (which lasted
two weeks), the development team organised itself into sub-teams oriented around the
various software products or related issues. For example, during the week’s study, a
sub-team of a dozen or so individuals (developers, programme managers, testers)
worked on stories in connection with an up-coming release of the company’s most
recent software product.

The team developed software in C++. They used a custom-built computer
documentation tool to record, communicate and progress stories, rather than index
cards. The tool was a significant medium of communication in that it captured the
detail of each story: the estimate, a brief description, the customer acceptance test,
who was working on it, progress through development, integration, pre-quality
assurance testing, etc.

The development team occupied the whole of the first floor in a converted
warehouse. The space was large and open-plan with seven rectangular tabled areas.
Each tabled area had four workstations in twos, back to back, organised for pair
programming. There was considerable space between each tabled area and there were

142 H. Robinson and H. Sharp

also two separate round tables for discussions or small meetings. Adjacent to this
open area was a partitioned conference room. The whole effect was of an open, airy
working environment. On the ground floor was a modern dining area and kitchen with
everything that was needed for making drinks or light snacks.

3.3 Team Differences and Similarities

The main similarity between our two teams is that they had both been using XP
successfully for a number of years at the time of our studies. They both had found and
continued to find difficulties in using XP but were committed to finding solutions to
any problems they encountered. Apart from this, they were different in many ways:
some cultural, some technical, and some operational.

They had two distinct organisational cultures working in different application
domains. Team A was part of a very small company that had only been in existence
for two and a half years, while Team B were in an SME that had been in business for
over seven years. The overall atmosphere for Team B was considerably more intense
and solemn than in Team A. This may have been a result of the differences in pair
programming. When Team A were programming they were focused on their work and
became intense, but they took common breaks, and so there were also times when the
mood lightened. For Team B, however there were no common breaks, and so at any
time of the day there would be pairs programming intensely. The pairs in Team B also
appeared to be different in character, being on the one hand more rigid insofar as
individual pairs often paired for more than one day and sometimes for a whole
iteration, but also more flexible in their approach to coding. This flexibility was
evident by the ease with which a pair might be interrupted, for example growing
easily to be a threesome or indeed a group of people all working on one issue, and if
one of the pair was absent for a while the partner would continue to work alone.

Team A would celebrate their successes, e.g. making a little box on top of the
release machine ‘moo’ whenever a new piece of code was released. Team B however
showed no such celebrations. Even within the pair, it was sometimes difficult for the
observer to be sure that an issue had been settled because this may be signalled by
something as small as a sigh and leaning back in the chair, or by nothing discernible
at all.

Technical differences included the development languages and the software and
support environments they used, while operational differences were evident in the
manner in which they carried out the XP practices, including iterations, stand-ups,
planning game, and organisation of pairing.

In the next section, we will illustrate how the two teams exhibit a set of four
common characteristics. However we shall also note how the detail of practice varies
between them, to underscore that although they are comparable, they are certainly not
the same.

4 Team Characteristics and Their Relationship to Practices

Our earlier study [5,6] suggested that the characteristics of XP teams are that:
both individuals and the team are respected;
both individuals and the team take responsibility;

1.
2.

The Characteristics of XP Teams 143

both individuals and the team actively encourage the preservation of the
quality of working life;
both individuals and the team have faith in their own abilities to achieve
the goals they have set themselves, which is constantly re-validated and
re-affirmed.

3.

4.

In the following we provide an expanded description of these characteristics, and
explain how they are embedded in the detail of XP practices as deployed in the two
settings. This detail has both commonalities across the two teams and differences, and
the explanation is based on observations from our empirical studies.

The first two of our characteristics deal with respect and responsibility. These are
closely related in terms of our analysis and we therefore discuss them together.

4.1 Respect and Responsibility

Respect is Beck’s underlying core value and he describes the importance of members
of the team respecting each other and caring about the project [1, p35]. Our
characteristic includes these two aspects of respect, but also includes some other
aspects. The simple way we have stated the characteristic obscures these different
facets and it is worth unpacking them explicitly before we describe how they manifest
themselves in each team. In our context, respect involves three main parties: the
individual, the team and those outside the team. What we have found is that
individuals within the team respect each other in a variety of ways, individuals within
the team respect the goals and desires of the whole team, the whole team respects
each individual within the team, and those external to the team such as customers
respect the team.

In both teams under study, the individual is respected and takes responsibility in a
variety of ways, which centre around what work they do and how they carry out that
work. Work was not allocated to individuals, with an allotted time in which that work
must be completed, for their passive acceptance. Rather, individuals actively agreed
their responsibilities. Individuals clearly felt that they had the respect of their fellow
team members and were therefore empowered to take on responsibility in this way.

The daily business of pair programming continued this emphasis on an individual’s
respect and responsibility. Within the overall scope of the iteration, pairing was a
process that acknowledged the individual, each person self-electing to work on a
particular piece of the system. This self-election might be on the basis of particular
expertise but equally it might be on the basis of a desire to become more familiar with
a particular area of the code base. Within a pair, the process of programming was
conducted as a conversation between equals with snippets such as ‘I’m not sure about
that. Can we go back and look at ... ?’ being typical. Much effort was expended on
understanding code and it was demonstrably important that this understanding was
shared between the pair. Similarly, the process of writing code was a negotiated
process between two individuals: one perhaps writing code, the other correcting it. In
both teams, no-one dominated the process or monopolized control of the keyboard.
Developers were quite happy to take (and relinquish) responsibility when one of a
pair wanted control of the keyboard following a particular insight.

Respect for the individual permeated the other practices associated with producing
working, released code. There was no sense of frustration or a lack of understanding
of a common purpose. For example, in Team B, testing typically required the tester to

144 H. Robinson and H. Sharp

discuss some issues with the developers. This discussion was not conducted as a
planned, formal meeting but involved the tester initiating the discussion with a casual
interruption of the work of developers. There was no sense of an unwelcome or
irritating interruption: the need to discuss was accepted and welcomed.

Similarly, in both Team A and Team B, the team was respected and took
responsibility. Whilst the individual actively accepted responsibility for work, the
nature and significance of that work was embedded in the team activity of the
Planning Game and the negotiation of what work was to be done and how the team
organized themselves to achieve that work. The Planning Game we observed in Team
A was an unusually (for them) protracted process, for a variety of reasons, but
everyone accepted that it was important that the team took whatever time was needed
to get the iteration off to a good start. Similarly, estimates were discussed and revised
in Team B until consensus was achieved. For both teams, team decisions were
respected and upheld by members of the team and were accepted by customers. For
example, in Team A, the developers’ decision that a technical story took priority was
accepted unquestioningly by the customers.

Team B offered an interesting insight into the relationship between respect and
responsibility. Each sub-team actively agreed responsibility for work and respected
the similar action of the other sub-teams. When we questioned a member of one sub-
team about a crucial release date for a software product that was vital to the
company’s plans the reply was ‘Don’t know: I’m not working on that.’ This does not
show indifference, but trust in the sub-team that was working on that software
product, and focus on the developer’s own responsibilities. It is worth noting that we
found evidence that developers in Team B did not offer trust automatically, since they
displayed a rather more critical attitude to the other XP team based in South Africa.

4.2 Preservation of the Quality of Working Life

Observations of Team A and Team B showed both individuals and the team actively
encouraging the preservation of the quality of working life. This manifested itself
most strongly with the atmosphere of calmness that was prevalent in both teams. The
Planning Game was notable for the absence of adversarial or confrontational
exchanges and for the presence of shared discussion where risks and other factors
were carefully considered. Stand-ups for both teams were opportunities to share and
facilitate achievement as opposed to any monitoring of progress against plan. The
organization of work via pair programming oriented to the quality of working life
insofar as pairing took account of the wishes and needs of individuals as well as the
purpose and priorities of the team.

Both teams adhered to the 40-hour week practice but as a rule around which to
orient working life rather than as a rule to govern working life; working hours were
organised to take account of the individual. Evidence for this included, in Team A, an
acceptance by all when one developer needed to leave early because he had a long
way to travel that night, and in Team B when one of a pair needed to take time away
for a medical appointment. In neither case, did this disrupt the rhythm of the day. The
overall impression from both teams was that of the skillful and accomplished
achievement of a productive, sustainable and enjoyable working life via their shared
responsibility for, and ownership of, the work product, and of control over how the

The Characteristics of XP Teams 145

work was achieved. The end result was to make development sustainable in its human
dimension.

Within this overall context there were clear differences between the two teams,
although both exhibited this characteristic. Team A seemed more overtly concerned
about the quality of working life with a range of activities that contributed explicitly
and implicitly to it. For example, regular and communal breaks were taken in the
morning, afternoon and at lunchtime, particularly during the Planning Game. These
regular breaks were perceived as being important by all members of the team, and one
developer took it upon himself to remind people to take them. Other indications were
the blue stress ball that sat on the Planning Game table, the instigation of ‘gold cards’
(two days a month when a developer could pursue something on his/her own) and the
identification of an ‘exposed pair’ (to protect pairs from customer interrupts).

In contrast, Team B did not have any such activities. For example, meal breaks
were not taken together. Indeed, on one occasion we witnessed a pair who stopped for
lunch with one of the pair going to the ground floor dining area where they ate their
packed lunch, whilst the other continued work as a singleton, reviewing code. Short
breaks for tea, coffee, etc. were usually taken by pairs at the workstation: one or both
of the pair would descend the stairs, make their drinks, and come back up to continue
work. We detected a desire to stay in the immediate area of the workstations even
when an impromptu meeting took place, such as a discussion between a pair, a
customer and a tester. Despite there being two convenient round tables close by the
workstations, such discussions were always carried out around the workstation even
though some participants had to stand. It was clear that this way of working was not
imposed by management since the development coach commented that he wished
developers would take more breaks away from the workstations.

Despite these differences, Team B valued the quality of working life in a similar,
albeit sometimes different, fashion. The discussions took place as and when needed
and there was no sense that they were a distraction. Indeed, they seemed a vital part of
working life and we speculate that they gave a similar rhythm to the day as that of the
regular and communal breaks of Team A. Neither should the situations where a pair
became a singleton be seen as some diminishment in the quality of working life. This
would occur at mealtimes but also at both ends of the day and it was clear from the
way in which a pair discussed this singleton work that it was viewed as a natural
continuation of the main activity of pairing to produce work in which shared pride
could be taken. In addition, the development team coach had an orchestrating and
support role, always being aware of the pulse of the team and actively intervening and
supporting where needed. For example, we observed a particularly intense bout of
pairing which lasted without a break all afternoon. In subsequent conversation it
became abundantly clear that both the team coach and other members of the team had
noticed this and were monitoring it; in the end, the coach intervened to provide the
necessary break and support.

4.3 Faith in Their Own Abilities

In both teams, faith in their own abilities, and the sense of re-validation and re-
affirmation of those abilities flowed through working life: from the agreement of
work in the Planning Game, through the acceptance of tasks in pair-programming
allocation, the reporting of progress in the stand-up, and the desire for creating quality

146 H. Robinson and H. Sharp

code. It is worth emphasising here what is remarkable about XP practices in terms of
creating quality code: faith in the customer to know what is required, faith in the team
to estimate appropriately and faith in two individuals who have self-elected to work
together to produce code. This faith in their own abilities had no sense of heroism or
arrogance; indeed, it had two aspects: both believing that they were capable of
achieving the tasks they set themselves, but also understanding where their limitations
lay. It was a natural part of this process to involve others, maybe to go to the customer
for clarification or to seek out expertise of another developer outside the pair.

So, for example, in Team A the sense of competence and cool belief in their own
abilities did not mean that the team were over-confident – they brought in outside
expertise when faced with a situation they had doubts about. Issues were carefully
discussed and alternatives considered, but once the team had agreed the course of
action, it was carried through with certainty. Their abilities were re-validated and re-
affirmed through feedback from the code (which executes successfully), the customer
(who is happy with the software) and each other (who provide solid support and
encouragement to each other).

4.4 A Fifth Characteristic: Trust

In working through the detail of our observations of XP practices we were forced to
the conclusion that there was a fifth characteristic which pervades the original four:
that of trust. Trust has been identified explicitly as a key attribute of relationships
between customers and the development team (e.g. [10]) but from our detailed
empirical observations, it is also clear that trust is required within the team. Trust is
complementary to the four characteristics discussed above, and is needed in order for
them to flourish throughout the team’s activities.

For example, trust underpins the Planning Game, so that the four characteristics
necessary to enable the active agreement over what work was to be done and what
estimate of resource was required, could be effective. Without trust, the sense of
respect, responsibility, concern for the quality of working life and faith in ability
would not be as strong, and developers would not be sure that their colleagues, nor the
team as a whole, could deliver what they promised.

Similarly, the activity of pair programming depends on a relationship between two
individuals which demands trust, so that they may respect what each brings to the
encounter and have faith in their abilities as a pair and as a singleton. The nature of
the trust relationship here transcends the immediate business of two individuals
pairing and is persistent. It also applies across pairs (and sub-teams), with each pair
trusting the others to do their part, and it extends beyond the detail of the 12 practices,
so that, for example, respect of the need for interruptions shows trust that the
interruption wouldn’t happen unless the interrupter thought it important enough.

5 Discussion

In our previous work, we identified four characteristics of a mature XP team. In this
paper we have deepened our analysis, included a second team, and have introduced a
fifth characteristic: trust. We have found that both of the teams studied show evidence

The Characteristics of XP Teams 147

of having these characteristics, despite being different in nearly all other aspects apart
from their use of XP.

What do we therefore claim? It is tempting to simply say that we have shown that
carrying out the practices of XP gives rise to teams with these characteristics and that
we have uncovered a causal relationship. However, reality is not that simple and we
do not make such a claim. We are mindful of the fact that both the organisations in
which the teams were situated had their own culture and values and, broadly, those
organisations were open and positive in their attitude. It is therefore not a surprise that
the characteristics and values we have described exist in such organisations. Similarly
we do not claim that we have shown all teams carrying out software development in
these organisations will have these characteristics. Rather we suggest that there is a
reflexive relationship between characteristics and practices that is mediated by the
detailed setting in which activity takes place. That is, the practices actively and
continuously sustain and are actively and continuously sustained by the characteristics
we describe and that the detailed setting influences this process.

Acknowledgements. We would like to thank our collaborator companies, Connextra
and Workshare for their support and co-operation during the studies reported here.

References

Beck K. eXtreme Programming Explained: embrace change. In: Beck K, editor. The XP
Series. San Francisco: Addison-Wesley, 2000.
Highsmith J. Agile Software Development Ecosystems. In: Highsmith J, editor. The
Agile Software Development Series. San Francisco: Addison-Wesley, 2002.
Pentecost K. XP and Emotional Intelligence. IT Cutter Journal 2003;16 (2):5-11.
Roodyn N. Dear Diary: the making of an XP team. IT Cutter Journal 2003;16 (2):18-25.
Sharp H, Robinson HM. An ethnography of XP practice. Proceedings of the Joint
Conference on the Empirical Assessment of Software Engineering (EASE) and the
Psychology of Programming Interest Group (PPIG). Keele University, 8-10 April, 2003.
pp. 15-27.
Robinson HM, Sharp H. XP culture: why the twelve practices both are and are not the
most significant thing. Proceedings of the Agile Development Conference. Salt Lake
City, Utah, 25-28 June: IEEE Computer Society Press, 2003. pp. 12-21.
Singer J, Lethbridge T, Vinson N, Anquetil N. An examination of software engineering
work practices. Centre for Advanced Studies Conference (CASCON). Toronto, Ontario,
1997. pp. 1 -15.
Sim SE. Evaluating the Evidence: Lessons from Ethnography. Workshop on Empirical
Studies of Software Maintenance. Oxford, England, 1999.
Robinson HM, Segal J, Sharp H. The case for empirical studies of the practice of
software development. In: Ciolkowski M, editor. Proceedings of the ESEIW Workshop
on Empirical Studies in Software Engineering. Rome Castles, Italy, 29 September, 2003.
pp. 99-108.
Sharp H, Robinson HM. Customer collaboration: challenges and successes in practice
(Technical Exchange session). Agile Development Conference. Salt Lake City, USA,
2003.

[1]

[2]

[3]
[4]
[5]

[6]

[7]

[8]

[9]

[10]

The Oregon Software Development Process

Till Schümmer1 and Robert Slagter2

1 Computer Science Department, FernUniversität in Hagen,
Universitätsstrasse 1, 58084 Hagen, Germany

Till.Schuemmer@fernuni-hagen.de
2 Telematica Instituut, P.O. Box 589, 7500 AN, Enschede, The Netherlands

Robert.Slagter@telin.nl

Abstract. User participation is still a difficult topic in software develop-
ment. Based on the results of the Oregon experiment in construction we
propose a novel development process – the Oregon Software Development
Process. The process focusses on patterns to empower end-users so that
they can make well-informed design decisions and tailor their environ-
ments. The four core principles of the process – participation, piecemeal
growth, patterns, and diagnosis – are discussed and first anecdotal usage
experiences are provided.

1 Introduction

Although many technical problems in software development have been solved
over the last twenty years, we still observe a lack of support for end-user partici-
pation. While most modern software development processes highlight the impor-
tance of considering all different stakeholders, it is still a difficult task to actively
involve the end-user. Especially the knowledge transfer to end-users is difficult.
We therefore propose the adaptation of a design process known in construction
as the Oregon experiment.

This design process combines aspects that are typically left unrelated. To
give an overview, these aspects are:

End-user participation, as it is present in a participatory design approach
[12],

Piecemeal growth in short iterations, which is proposed by most iterative
processes [5], especially the eXtreme Programming methodology [4],

Adaptability that is typically achieved by composing software out of indepen-
dent functional building blocks (software components [15]) that are plugged
into a framework,

Pattern oriented application design, which is represented by design pat-
terns [9], and

End-user tailorability that is proposed by recent literature to handle the
changing needs and personal preferences [11].

This paper first summarizes how the design process worked in the Oregon
experiment. It will then compare the process with the XP methodology as one
representative for agile processes.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 148–156, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The Oregon Software Development Process 149

We will show that aspects from the Oregon process are used in current agile
processes, but that there is still no holistic approach that includes all aspects of
the Oregon experiment. We propose a combination of several up-to-now unre-
lated design activities to fill this gap for end-user centered design. The resulting
development process is denoted as the Oregon Software Development Process.
The paper ends by briefly reporting on experiences with the process in a research
development project.

2 Summary of the Oregon Experiment

The Oregon experiment was based on the vision of the architect Christopher
Alexander, stating that every user of a building or a place should have the
freedom to shape the environment in a way that it suits his needs and personal
preferences. This vision was institutionalized in the planning process of the cam-
pus of the university of Oregon – the Oregon Experiment [2]. The process defines
six basic principles: organic order, participation, piecemeal growth, patterns, di-
agnosis, and coordination. Organic order and coordination – as applied in the
Oregon Experiment – are very specific to the context of town planning. We
therefore concentrate on the remaining four principles, explain their application
in the Oregon experiment, and investigate how to apply them to software de-
velopment. Coordination returns as an important aspect when software design
decisions impact various participants.

Participation ensures that the end-users will be part of the planning process
and therefore participate in shaping their environments. Alexander defines
participation on different levels, ranging from acting as a client for an archi-
tect to actually building their environment. ([2], p. 39)
In the Oregon Experiment, participation led to a very successful campus
design [14]. The university established a user group with students, faculty
members, and staff. The user group decided, which projects should be built
in the next phases. In a refinement phase, special focus groups (users with
specific interests) concentrated on one aspect of the building. In both user
group and focus groups, the prospective users started thinking about the
various parts of the space and how each part should be improved.

Piecemeal growth. By concentrating on one part at a time, one follows the
principle of piecemeal growth. This includes identifying one concrete problem
and finding a solution for this problem.

Patterns. To empower the end-users so that they can find working solutions,
they necessarily need a way of accessing established proven solutions. By
means of patterns, one can describe expert knowledge in the form of rules
of thumb. These rules include a problem description, which highlights a set
of conflicting forces and motivate a proven solution, which helps to resolve
the forces.
In this manner, patterns can serve as an educational resource in the user
group: they make the core of the problem and the solution explicit by ex-
plaining what happens to the inner forces.

150 T. Schümmer and R. Slagter

Additionally, patterns are the essential language applied in the user group:
the patterns (taken from a pattern language [1]) act as a basis to commu-
nicate on a high level of abstraction the key properties of design. Although
patterns are proven solutions, they are not static. Users are encouraged to
enhance, adapt, or correct the patterns. Changed patterns will be incorpo-
rated in the community pattern language, as long as the community agrees
with the adaptation.

Diagnosis is the process of analyzing the existing campus regarding aspects
that work and aspects that do not work. This includes a phase of reflection:
during the use of the environment, users are encouraged to step back and
ask themselves, whether or not the environment serves their needs. If not,
they are asked to mark the deficits and thus state change requests for the
environment. The planning committee uses a map to catalogue all patterns
that are not working (and the places where patterns are working well).

All the mentioned principles are in use at the university of Oregon for nearly
30 years, where new patterns are still brought in by the users.

3 Comparing the Oregon Process with XP

The principles of the Oregon process partially map to the principles of XP [4].
We can observe the following equivalences and differences:

Participation takes place in the planning game of XP and in the principle
of the on-site customer. Compared to the Oregon process, agile processes
argue for a more light-weight integration of the customer (without formal
user groups).

Piecemeal growth corresponds to the principle of small releases. It is implic-
itly present in the principle of simple design. Every change in the environ-
ment should just be as large enough to reach the goal of the small release.

Patterns become more and more common in software development. They can
be considered as a general development technique for developers but they
are not explicitly mentioned in the practices of XP. One could argue that
patterns and simple design are contrasting concepts: Patterns provide proven
solutions to common problems. These solutions are reusable and thus comply
with the counter-example for small releases stated in [4]: “Implenment for
today, design for tomorow” (p. 57).

Diagnosis is the process of adapting the software to changing needs. It is one
of the core assumption that underlies all XP practices: requirements are
changing and the process should be flexible enough to suit the users’ chang-
ing needs. we find the process of diagnosis and repair in the practice of
refactoring.

The core difference between the two processes is the role of patterns. In the
Oregon process, patterns inform the other principles.

The Oregon Software Development Process 151

Participation uses patterns as a common language and as a means for edu-
cating end-users so that they can actually shape their environment as experts
would do. With this respect, patterns bridge the gap in the communication be-
tween end-users and professional software developers. At least for less technical
users, this means that the patterns have to be understandable by non-software
developers. This is often not true for technical design patterns (as collected for
instance in [9]). As we discuss later, we need patterns for end-users that are
closer to the prosaic style of Alexander.

Piecemeal growth always focusses on one pattern at a time. Compared with
story cards in planning games, patterns have the advantage that they explic-
itly name the different interacting forces and the consequences and trade-offs
involved. This empowers the end-user to make more responsible decisions.

Diagnosis is always supported by means of patterns. The patterns indicate
possible problems and help to find out, why a specific part of the environment
does not work. Moreover, patterns provide hints on how to repair the problematic
aspects. Actually, the 72 refactorings in [8] are such patterns that help to improve
the quality of source code – although they focus on the developer.

In summary, the comparison of the Oregon process with XP highlights the
importance of patterns and the need for empowering the end-user to make well-
informed design decisions. To satisfy these needs in an agile process is the goal
of the Oregon Software Development Process proposed in this paper.

4 The Oregon Software Development Process

The Oregon Software Development Process (OSDP) intends to foster end-user
participation, pattern-oriented transfer of design knowledge, piecemeal growth
in form of short iterations, and frequent diagnosis or reflection that leads to an
improved application.

Figure 1 shows the different phases of OSDP. It suggests three different kinds
of iterations, denoted by the three circles. In the following paragraphs, we will
explain the different iterations (numbers refer to the step number in figure 1). In
the actual execution of the OSDP, each iteration may be executed many times.

Throughout all iterations, the users participate and work with a shared soft-
ware pattern language. This language consists of patterns on two levels with dif-
ferent target groups: High-level patterns describe issues and solutions typically
targeted at end-users. Low-level patterns describe issues and solutions typically
targeted at software developers on a more technical level. A large number of low
level patterns and several high level patterns have been collected by the design
patterns community – cf. www.hillside.net.

High-level patterns aim to provide end-users with profound design knowl-
edge. This empowers them to act as a designer and solve some issues, without
having to escalate them to a designer. In cases, where high-level patterns can be
implemented by adding functions (without the need of changing software code),
the end-users can perform these tailoring actions themselves.

152 T. Schümmer and R. Slagter

Fig. 1. The Oregon Software Development Process.

The innermost inceptive iterations comprise the activities of (1) use-case
analysis and (2) the selection of appropriate patterns. First, the users describe
the intended system use with simple use cases. These can be stories (for users,
who are not familiar with formal use-cases) or success scenarios, which describe
the use-case’s story in a more formal but still prosaic way [6].

The use-cases then drive the selection of initial patterns from the software-
patterns catalogue, which serve as starting points for exploring the different
forces in the area. During the inceptive iterations, the end-users will be highly
involved. In most cases, there will be technology experts present to support the
users in writing stories and pointing the users to appropriate sets of patterns.
One result of inceptive iterations is a common pattern language, which then
eases the communication within the design team. The other result is a set of
initial user requirements.

The second set of iterations is made up from (3) the detection of conflicting
forces, (4) a pattern-driven object-oriented design, (5) the implementation of this
design using object-oriented development technologies like frameworks or low-
level components, and (6) functional tests. We call these iterations development
iterations since they form the part of the process, where software engineers
develop the application.

The user first identifies the conflicting forces. Developers will assist the user
in this task, by structuring the discussion. Together with the user, the developer
then looks for low-level design patterns to solve the issue.

The Oregon Software Development Process 153

Developers typically implement a pattern by means of application frameworks
or developer-centered component frameworks. This may involve the development
of new software components. Such components can be built using frameworks
or other base technologies. To ease the implementation, each software-pattern
can have technology recipes that show, how the pattern is implemented with a
specific technology (using the cookbook style that was described in the Assembly
Cookbook pattern [7]).

The result is tested using as much automated tests as possible (note that it
is often better to exchange steps 5 and 6 as it is done in XP’s test first practice).
Steps (3) to (6) require a software developer to be involved. The user still makes
an important contribution to the design because he participates in steps (3) and
(4) and provides test data in step (6).

In the tailoring iteration, end-users use the application for the desired pur-
pose. While using the system, end-users with pattern-based groupware design
knowledge are encouraged to (7) reflect on their activities. This reflection in ac-
tion [13] reveals actions that complicate or hinder the work process. If the users
want to remove these difficulties, they start a tailoring iteration.

They first analyse the forces that are in conflict. High-level groupware pat-
terns (8) help in this process by describing frequently occurring issues, the various
forces and a proven solution in a way that is appropriate for tailoring end-users.
These patterns are typically written fully in a natural language. We have gained
good experiences with patterns that include a concrete usage scenario. Such sce-
narios can be easily understood by the end-users and empower them to learn,
what needs to be changed to solve the pattern’s problem.

The tailoring environment supports the tailoring end-users in the process of
(10) selecting and composing appropriate functions. The prosaic nature of the
stories in the patterns helps the tailor to make a well-informed selection of this
functionality.

Fig. 2. Frequency of iterations during the project.

154 T. Schümmer and R. Slagter

During project life, the different kinds of iterations will be executed in dif-
ferent frequencies as shown in figure 2. It is not intended to prescribe exact
frequencies over time. The frequencies rather evolve over the project life cycle.
At project start, inceptive iterations are the most important iterations. Pro-
totypical development accompanies the gathering of use cases and patterns in
development iterations. While the project evolves, the frequency of development
iterations grows, while inceptive iterations are not as important anymore. Since
the development iterations produce more sophisticated prototypes, users will
start using the system more frequently and reflect on their system use. Thus,
the number of user-triggered tailoring iterations increases towards the end of the
project while the other two kinds of iterations become less important.

4.1 Pattern Structure

We have argued that patterns are the core of the OSDP. The OSDP advocates
to represent patterns in an manner that is appropriate for end users as well as
software designers.

We argue to use an extended Alexandrian pattern form [1]. The pattern name
is followed by other possible names for the pattern (AKA), the intent, and the
context of the pattern. All these sections help the reader to decide, whether or
not the following pattern may fit into his current situation.

Then follows the core of the pattern composed of the problem and the so-
lution statement in bold font separated by a scenario and a symptoms section.
The scenario is a concrete description of a situation where the pattern could be
used, which makes the tension of the problem statement (the conflicting forces)
tangible. The symptoms section helps to identify the need for the pattern by de-
scribing aspects of the situation more abstract again. The section lists observable
forces that are unbalanced before the pattern was applied.

After the solution section, the solution is explained in more detail (partici-
pants, rationale, danger spots, known uses) and indications for further improve-
ment after applying the pattern are provided (in the related patterns section).
The participants section explains the main components or actors that interact
in the pattern and explains how they relate to each other. The rationale section
explains, why the forces are resolved by the pattern. Unfortunately, the applica-
tion of a pattern can in some cases raise new unbalanced forces. These counter
forces are described in the section labelled danger spots.

5 Experiences

The OSDP has been applied in an interdisciplinary development project that ran
for 9 months at the FernUniversität in Hagen. The goal of this project was to
develop a web-based collaborative learning environment for students distributed
throughout Germany. The system is currently in production state. More infor-
mation on the goals and design of the system can be found in [10]. We report

The Oregon Software Development Process 155

on our survey based on informal interviews and observations with the involved
project members.

In the inception phase, we invited students, university teachers, and software
developers to develop scenarios of system use. In addition, we presented a set
of groupware patterns (to be exact, the prosaic stories of these patterns, the
problem statements, and the solutions) to the members of this group. Since the
group members were not aware of the current state of the art of groupware de-
velopment, they appreciated this informative phase. As a result of the inception
phase, the group identified five different learning scenarios that should be sup-
ported by the learning environment. Implicitly, the group members also selected
patterns (they used the pattern names in their description of learning scenarios)
that were considered relevant for the future development iterations.

In the development iterations, the users developed more detailed story cards
together with the software developers. Again, patterns played an important role
here. They served as metaphors for talking about the software system and helped
the users to focus on one aspect at a time for each story card. The developers
implemented the stories with help of the patterns (since the patterns were already
mentioned on the card, the development was quite straight-forward). In parallel
with the development, automated tests were created. Regarding the tests, one
must note that the test coverage decreased in the last third of the project,
since the project schedule was far too optimistic and the developers tended to
neglect writing tests. But, as XP would suggest, this behavior caused even larger
problems by the end of the project and a more complete test coverage is one of
the first tasks for the follow-up project.

After the first development iteration (approx. 2 weeks of development), the
users (teachers) started to use the system. They did functional tests (of the first
prototypes) and requested new functionality (informed by their knowledge of
system design that was based on groupware design patterns). They also started
to reflect on their activities following the principle of diagnosis.

In the early phases of the project, these requests were escalated to the devel-
opers. In the later phases, the users could start to tailor the environment using
the provided mechanisms for tailoring. These mechanisms included the compo-
sition of communication and collaboration technology as well as the tailoring
of collaboration spaces (the creation of a virtual environment for collaborative
learning). In the last third of the project, approx. 300 students started to use
the system. They were asked to participate in development iterations (using the
system itself to report feature requests by means of story cards) and in tailoring
iterations (students were allowed to create their own learning environment).

In all phases of the development, the patterns (and especially the stories
from the patterns) were very helpful for participating users and developers. The
main problem with the patterns was that we did not yet have an comprehensive
pattern catalogue (only few areas of groupware design are described by means
of patterns by now). The other problem was that the system showed errors in
the production phase for those parts that had a low test coverage. This is yet
another indication, how important the test phases are in the process.

156 T. Schümmer and R. Slagter

6 Conclusions

This paper addressed the issue that the involvement of end-users is often still
problematic in software development projects. We proposed a development pro-
cess that heavily involves end-users and fosters the reuse of existing knowledge –
the Oregon Software Development Process, which is based on the results of the
Oregon experiment in construction. It combines the four principles of participa-
tion, piecemeal growth, patterns, and diagnosis.

Patterns play a key role in this process. But to be easily understood by end-
users, they have to be written in a more prosaic way than many technology
oriented patterns. We have gained good experiences with patterns that include
prosaic descriptions of situations, where the problem occurred and of how to ap-
ply the pattern. To increase the usefulness of the process, an extensive catalogue
of such patterns is needed, which is an indication for future work.

References

Alexander, C.; Ishikawa, S.; Silverstein, M.; Jacobson, M.; Fiksdahl-King, I.; An-
gel, S.: “A pattern language”, New York: Oxford University Press, 1977.
Alexander, C.; Silverstein, M.; Angel, S.; Ishikawa, S.; Abrams, D.: “The Oregon
Experiment”, Oxford University Press, 1980.
Alexander, C.: “The timeless way of building”, Oxford University Press, 1979.
Beck, K.: “eXtreme Programming Explained”, Addison Wessley, 1999.
Boehm, B.; Hansen, W. J. (Ed.): “Spiral Development: Experience, Princi-
ples, and Refinements”, Spiral Development Workshop, CMU/SEI-2000-SR-008 -
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00sr008.pdf, 2000.
Cockburn, A.: “Writing Effective Use Cases”, Boston: Addison-Wesley, 2000.
Eskelin, P.: “Assembly Cookbook Pattern”,
http://c2.com/cgi/wiki?AssemblyCookbook: 1999.
Fowler, M.: “Refactoring: Improving the Design of Existing Code”, Addison-
Wesley, 1999.
Gamma, E.; Helm, R.; Johnson, R.; Vlissides, J.: “Design Patterns: Elements of
Reusable Object-Oriented Software”, Reading, MA: Addison-Wesley, 1995.
Haake, J.; Schümmer, T.; Haake, A.; Bourimi, M.; Landgraf, B.: “Supporting
flexible collaborative distance learning in the CURE platform”, Proceedings of
HICSS-37, Hawaii, 2004.
Kahler, H.; Mørch, A.; Stiemerling, O.; Wulf, V.: “Tailorable Systems and Cooper-
ative Work (introduction)”, in: Special Issue of Computer Supported Cooperative
Work, vol. 9, no. 1, 2000.
Muller, M. J.; Kuhn, S.: “Participatory design”, in: Communications of the ACM,
vol. 36, no. 6, 1993, 24-28.
Schön, D.: “The Reflective Practitioner. How Professionals Think in Action”, New
York: Basic Books, 1983.
Snider, J. R.: “User Participation and the Oregon Experiment as Implemented
with the Esslinger Hall Recreation and Fitness Center”,
http://darkwing.uoregon.edu/~jrsnider/esslinger.htm: 1999.
Szyperski, C.: “Component Software: Beyond Object-Oriented Programming”,
Addison-Wesley / ACM Press, 1998.

1.

2.

3.
4.
5.

6.
7.

8.

9.

10.

11.

12.

13.

14.

15.

Roles in Agile Software Development Teams

Yael Dubinsky1 and Orit Hazzan2

1 Department of Computer Science, Technion, Israel
2 Department of Education in Technology & Science, Technion, Israel

Abstract. One of the key elements in describing a software development
method is the roles that are assigned to the members of the software
team. This article describes our experience in assigning roles to students
who are involved in the development of software projects, working in Ex-
treme Programming teams. This experience, which is based on 25 such
projects, teaches us that a personal role for each teammate increases per-
sonal responsibility while maintaining the essence of the software devel-
opment method. In this paper we discuss ways in which different software
development methods address the place of roles in a software develop-
ment team. We also share our experience in refining role specifications
and suggest a way to achieve and measure progress by using the perspec-
tive of the different roles.

1 Introduction

Agile software development methods (SDMs) are composed of several elements,
such as practices, values, roles, techniques, and tools. Different agile SDMs differ
in their role specifications. In fact, one way by which an SDM may emphasize
its main principles is through the roles that it specifies.

In order to achieve personal responsibility of all teammates when guiding Ex-
treme Programming (XP) projects in the academia, we add personal roles to the
original XP roles. By having a personal role, developers are expected to perform
their development tasks as well as the tasks related to their personal role. Thus,
no teammates are merely developers. As it turns out, the two activities have a
mutual positive influence, and consequently, the collaboration between the team
members is enhanced. For example, let us assume that one of the teammates
is a developer who also has the role of the tester (and as such is in charge of
testing activities, such as writing unit tests and guiding other teammates in the
writing of tests). This responsibility leads the teammate to write more tests for
his or her own development tasks. These tests can, in turn, serve as examples
that illustrate to other teammates how unit tests should be written. Another ex-
ample is when a teammate, who is a developer, also has the role of the customer.
On the one hand, telling customer stories leads to an awareness of these stories
when developing ones own tasks; on the other hand, the development work may
inspire the definition of acceptance tests that are to be defined by the customer.
This “changing of hats” is possible as long as everyone is aware of which hat
is appropriate for each situation. In other words, each team member plays two

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 157–165, 2004.
© Springer-Verlag Berlin Heidelberg 2004

158 Y. Dubinsky and O. Hazzan

roles and switches between them according to the situation; other teammates
comprehend these switches and refer to the appropriate hat depending on the
relevant context.

In this paper we elaborate on the roles in a software development team, share
our experience in adding roles and refining role specifications, and suggest a way
to achieve and measure progress by using the perspectives of these different roles.

2 Role Experience

This section describes the evolution of possible XP roles. The description is based
on the experience of guiding the development of XP projects in five different one-
semester courses, in which 25 projects were developed by about 325 students.
Main lessons are highlighted.
Summer 2002 Semester. Our first experience with XP projects was in the
“Projects in Operating Systems” course given by the Department of Computer
Science at the Technion, Israel. The course is a project-based capstone course.
Since the Summer 2002 semester, XP has been implemented in the course on a
regular basis. The students work in groups of twelve, and each group is guided
by an academic coach. Each group has a dedicated equipped Studio (see [4]) for
the project purposes.

In the said semester, four XP projects were developed. Every student of every
team was required to select one special role out of six possible roles - assistant
coach, tracker, tester, on-site customer, release presenter and iteration presenter
- and to fill that role for a period of half a semester. The grading policy took
the personal XP role into consideration; therefore, each student was required
to have a role. In this first semester we decided that the academic coach would
play the role of XP coach and would act as the main on-site customer. The
role of assistant coach was defined as that of the XP coach but was supervised
over by the academic coach. We identified the continuous integration practice as
a technical obstacle, especially in an academic environment in which students
meet only once a week. Accordingly, during the semester, the responsibility of
continuous integration was added to that of the release and iteration presenters.
Lesson 1. A personal role helps to increase teammates’ involvement in and
commitment to the software development process.
Lesson 2. Role performance improves during the second half of the semester
due to the learning that takes place during the first half of the semester.
Winter 2003 Semester. In this semester, the second in which the “Projects
in Operating Systems” course was offered, we continued with 2 projects, using
the same 6 roles used in the Summer 2002 semester. In addition, XP was also
introduced, this semester, into a course dealing with operating systems concepts
and the teaching of such, which was attended by 30 prospective computer science
teachers. The class, working as a single team, developed a single XP project.
Roles were assigned in this case as follows: two students were trackers; two
students were responsible for the different stages of the continuous integration,
and the others were developers.

Roles in Agile Software Development Teams 159

Lesson 3. The academic coach does not have to be the XP coach in order to
evaluate the team’s work. Therefore, the role of XP coach should be given to a
student.
Lesson 4. An XP project can be developed by 30 students, but they will not all
be involved in the actual development process. In addition, those students who
do have specific roles tend to feel that they deserve bonus points for their extra
work.
Spring 2003 Semester. Some changes were made in the roles assigned in the
four projects that were developed in the “Projects in Operating Systems” course.
The number of roles was increased to seven, since there were some groups with
13 students. The roles were: coach, assistant coach, tracker, person in charge of
continuous integration, tester, person in charge of presentations, and person in
charge of documentation. In this semester, the academic coach was no longer
the XP coach. We cancelled the on-site customer student role, assuming that
this role would be the focus of the academic coach. We added a documentation
role that handles the documentation of the development process, as well as the
user’s guide and installation manual. We also separated the topic of continuous
integration from the presentations.
Lesson 5. We realized that we could not do without the on-site customer student
role, but that we could give up the assistant coach role since the role of XP coach
was now played by one of the students. The appropriate steps were taken at the
second release developed later in the semester.

XP was also introduced into two other courses that were held this semester.
The first course was on object-oriented concepts and on the teaching of this topic,
and was attended by 30 prospective computer science teachers. Special roles
were not assigned to the students during this first semester, and the students
developed a single project, working as a single team. Similar to our experience the
semester before, we found that in this way, too, an XP project can be completed,
but again many students were not involved in the actual development process.
The second course into which XP was introduced was a course on software
engineering methods attended by 22 mathematics major students. In this course,
the seven aforementioned roles were assigned, but several roles were performed
by more than one student.
Lesson 6. The upper limit for the group’s size should be about 12 students.
The assignment of personal roles solves the problem of lack of involvement in
the actual project work.
Summer 2003 Semester. During the fourth semester, we had 4 project groups
in the “Projects in Operating Systems” course with no more than 12 students in
each group. It was in this semester that the list of six roles that we then consid-
ered to be an optimal list was reached: coach, tracker, tester, person in charge of
continuous integration, on-site customer, and person in charge of presentations.
The documentation task was added to the role of the team member who was in
charge of presentations.
Winter 2004 Semester. During the fifth semester of the “Projects in Oper-
ating Systems” course we again had four project groups and the same list of

160 Y. Dubinsky and O. Hazzan

six roles was used as in the previous semester. In addition, XP was used in
two other courses. The first of the two dealt with operating systems concepts
and the teaching of such, and was attended by 18 prospective computer science
teachers. The second course was on object-oriented concepts and was attended
by 25 mathematics major students. In both courses, the class was divided into
two project groups of 9 to 13 students each.

Students were asked to offer topics for projects that were related to the course
topics, and then voted on the different subjects until only two subjects remained.
From previous experience we had learned that projects that are developed in the
framework of courses that are not project-based courses should be based on a
single release that is composed of two iterations. Thus, we assigned 13 roles in
the largest group; one role per student for the entire duration of the semester.
The roles were assigned after several meetings, when the students had become
acquainted with each other. Each group was asked to decide on the best way
to assign roles to students. This way, each student had a single role to learn, to
guide the other teammates accordingly, and to support on-going related activities
during the semester.

The roles, on which we will elaborate in the sequel, were coach, tracker, person
in charge of unit testing, person in charge of functional testing, person in charge
of continuous integration, on-site customer, person in charge of presentations,
person in charge of documentation, person in charge of design, person in charge
of code standards and tools, end user, person in charge of installation shield, and
person in charge of code correctness and efficiency.
Lesson 7. In the coming semester (Spring 2004), which will be the sixth
semester in which we will implement XP in the “Projects in Operating Systems”
course, one XP role will be assigned to each student for the entire duration of
the semester. This lesson is observed clearly if we examine the learning curve
of these roles, and is based on the positive experience expressed in the other
courses (see Winter 2004 Semester).
Note: In parallel to the above gradual clarification and refinement of the stu-
dent’s roles, the academic coach role was continuously refined as well during the
last five semesters. We began by assuming the roles of the team coach and the
customer to the academic coach, and underwent several phases through which
the responsibility of this role was transferred to the students. A framework for
coaching XP projects in the university is presented in [3].

3 Roles in XP Teams

In the Appendix1, we describe the roles defined by the different agile software de-
velopment methods [5,1,2]. Clearly all agile SDMs have roles that aim to enhance
communication and produce a better product. Differences among the methods
result mainly from the different emphasis of the SDM itself.

When guiding a software project in the academia, an equal academic load
should be assigned to all students. Therefore, according to the number of stu-

You may contact yael@cs.technion.ac.il for the full version including the appendix.1

Roles in Agile Software Development Teams 161

dents in the project team, some roles are split or, alternatively, several roles are
combined into a single role. Indeed, a relevant question that should be asked now
is how different roles are split or combined. We have found that all of the roles
together should cover as many as possible of those practices that we wish our
students to implement throughout the project development. The importance of
this principle is illustrated by the following example. Teammates may be aware
of the importance of continuous integration and may appreciate working at a
sustainable pace. These practices may, however, be applied properly (in most of
the cases) only if one of the team members actively pushes the team in these
directions. Accordingly, we refer to roles as practice representatives.

In Section 2, we explained the process that led to the formulation of the dif-
ferent roles. In total, we identified 13 roles, which are described and grouped into
four major groups in Table 1. The first is the leading group, which consists of
the coach and tracker. The second is the customer group, which consists of three
roles. This group of roles focuses on providing the customer with the required
product. The third group of roles is the code group, which is composed of five
roles and focuses on those aspects of software development that are directly re-
lated to the design and to the code. The fourth group is the maintenance group,
which comprises three roles and focuses mainly on the external presentation of
the product. In addition to this grouping, some of the roles support the com-
munications between the four groups. For example, the team member who is in
charge of continuous integration is also in charge of communications with the
customer group.

4 Using Roles to Achieve and Measure Progress

This section presents an analysis of data that was gathered in a qualitative re-
search during the five aforementioned semesters. The data were gathered from
videotapes of the meetings of one team in each semester, interviews with stu-
dents and academic coaches, students’ electronic forums and reflections, project
presentations, and the impressions and periodical summaries of the various role
holders. This data helps us illustrate how roles can be used to achieve and mea-
sure the progress of the software project.

The progress is examined from the following three perspectives: endowing XP
values, learning XP practices, and increasing awareness to the human aspects
of software development. Measurement of progress using roles is executed by
examining the adherence to the time schedule and to the customer stories.

We found that the XP values establish a valuable framework for teamwork.
Having a role causes each teammate to become more involved and much more
communicative with other team members. For example, it is not possible to
motivate one’s teammates to write unit tests or to write according to specific
coding standards without extensively communicating with them. Courage is re-
quired in order to take on additional responsibility besides being a developer,
to accomplish the required work and to urge the other teammates to follow
one’s instructions within a specific area of responsibility. Feedback is provided

162 Y. Dubinsky and O. Hazzan

Roles in Agile Software Development Teams 163

to others and received from other’s concerning one’s role and performance. In
turn, this feedback increases communication. When assuming responsibility for
a specific topic related to the development of a software project, one wants it to
be as simple as possible in order to easily establish and maintain it. Simplicity
naturally leads to the assuming of the appropriate scope of one’s responsibility.
Table 2 presents students’ feeling about their roles with respect to XP values.

The need to learn the XP practices leads to an on-going refinement of role
definitions. Students performed their roles while learning the XP practices. Grad-

164 Y. Dubinsky and O. Hazzan

ually, they became practitioners. Following are students’ expressions of their
feelings with respect to their perception of the different XP practices.

Customer: I had to follow and see that during implementation time people
were working according to my stories.

In charge of unit testing: I published two documents that explain the testing
subject. I published a request that teammates send me their planned tests
for each module... I gave a short lecture about software testing...

Coach: I provided the team with the applications and operating systems, I
tried to coordinate and make people move fast...

In charge of documentation: I published a documentation guidelines that
also deals with coding techniques, and checked the team’s code to see if they
played along.

The human aspect of software development is a broad area. In this paper, we
focus on students’ feelings and awareness with respect to their roles, as expressed
by them during the development process. Satisfaction on the part of the students
in being role holders was observed, as well as in being able to obtain a global view
of the project in additional to the accomplishment of specific development tasks.
Most of the students reported that they handled this additional responsibility
well and enjoyed it. Following are students’ expressions of their feelings about
their role handling.

Customer: The role gave me a “real life” feeling, not that we have a predefined
task and we just perform it. This is very real, a customer with requirements,...

In charge of continuous integration: I enjoyed seeing that everything was
integrated...

In charge of unit testing: I didn’t enjoy the role at all ... it caused me a
great deal of nervousness in the past two months...

In charge of documentation: So I wrote the documentation that he was
supposed to write...it didn’t kill me, but I consider it as a personal failure.

Measuring the development progress is usually a complicated task. As it
turns out, by using roles we can obtain information on many of the elements
of the progress of a software project in the form of narratives expressed by role
holders. We used three narrative tools: stand-up meetings, periodical summaries
by roles holders, and role holders’ web expressions and reflections. An analyzed
collection of the narratives information at every stage gives quick glances on the
status of the team, and when looking at them over time, the progress in the
different aspects of the project is revealed. Following are quotes taken from role
holders’ summaries of a specific project. These summaries were written at the
beginning of the project after one week of development and two weeks before
the presentation of the first iteration of the first release.

End user: I worked with the customer. We met with the coach in order to
discuss the graphical interface. We defined each button...

Coach: I met most of the teammates in order to coordinate... I worked with
the tracker on the documentation and publishing of the development tasks...

Roles in Agile Software Development Teams 165

In charge of installation shield: I’m going to search for installation software
and try to learn it for future use.

In charge of unit testing: I learnt about the subject...
In charge of presentations: For now, no actions concerning my role were

required, but there soon will be.

5 Conclusion

It is a well-known fact that software development is a complicated process. In
practice, a very unique kind of teamwork is required in order to accomplish its
many significant elements. This paper raises the question whether each team-
mate in a development team should have one major role in addition to his or
her personal development tasks. It is suggested that when a teammate has a
specific role, his or her personal responsibility and accountability with respect
to that aspect of the software development process represented by the said role,
increase. The total array of roles enables the accomplishment of all practices we
wish to include in the development process and leads to a high involvement of all
teammates in the development process. Although this article presents data anal-
ysis of XP projects conducted in a university setting, we suggest that the above
conclusion need not be limited to the academia, but rather its implementations
for the software industry should be considered as well.

Acknowledgements. This research was supported by Technion V.P.R. Fund
– B. and G. Greenberg Research Fund (Ottawa).

References

Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
2000.
Crispin, L. and House, T.: Testing Extreme Programming. Addison-Wesley 2002.
Dubinsky, Y. and Hazzan, O.: eXtreme Programming as a Framework for Student-
Project Coaching in Computer Science Capstone Courses. Proceedings of the IEEE
Int. Conf. on Software - Science, Technology & Engineering, pp. 53-59, 2003.
Hazzan, O.: The reflective practitioner perspective in software engineering educa-
tion. The Journal of Systems and Software 63(3), pp. 161-171, 2002.
Highsmith, J.: Agile Software developments Ecosystems. Addison-Wesley 2002.

1.

2.
3.

4.

5.

Empirical Analysis on the Satisfaction of IT
Employees Comparing XP Practices with Other

Software Development Methodologies

Katiuscia Mannaro, Marco Melis, and Michele Marchesi

DIEE, Department of Electric and Electrical Engineering, University of Cagliari
Piazza d’Armi,

09123 Cagliari, Italy
{mannaro, marco.melis, michele}@diee.unica.it

http://agile.diee.unica.it

Abstract. Job satisfaction has been studied by economists and psychol-
ogists. We believe this factor is very important in that it influences the
effectiveness of the software development process. This paper reports the
first results of a comparative analytic study on the job satisfaction of de-
velopers that use XP practices and others that do not use XP practices.
By determining the factors that are highly valued by developers, the re-
search can provide insight in currently practised software development
processes, and help make changes that increase their strategic value.

1 Introduction

Extreme Programming (short XP) is a lightweight discipline of software de-
velopment that became very popular in recent years. This paper reports the
comparative results of a research study on job satisfaction of IT employees that
use XP practices in their software development process and IT employees that
do not not use them1.

Many XP projects have been completed but to our knowledge no quantitative
study, to point out the efficiency of this light approach objectively compared to
others Non-XP practices, has been accomplished yet.

Job satisfaction involves any work area and job performance is strictly cor-
related with it. Organizations interested in job satisfaction that identify and
measure the perceptions and opinions of their IT employees, will get a better re-
turn for the same investment on research. Consequently, it is important to study
the effectiveness of software development methodologies from the viewpoint of
developers.

The development of an effective, validated and reliable survey for evaluating
job satisfaction is fundamental to this purpose. In this paper we describe the
rationale and procedures for the developing a survey to assess the job satisfaction

This study is part of MAPS research project (Agile Methodologies for Software
Production) funded by the FIRB research fund (grant nr. RBNE01JRK8) of the
Italian Government (MIUR).

1

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 166–174, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Empirical Analysis on the Satisfaction of IT Employees 167

of IT employees (Section 2 and Section 4); we explain how data are gathered to
support validation and reliability of this survey (Section 3); finally we present
its results (Section 5).

2 Method

At present in the field of software engineering research, there has been great
interest in the explorative type of surveys. Understanding the factors affecting
software development is one of the main goals of empirical software engineering,
and explorative surveys are very useful to this purpose. Since our research in-
terest is the opinions and perceptions of adopted software development method-
ologies, we have carried out an empirical study using a questionnaire, in order
to gather quantitative data about the population of IT employees.

2.1 Web-Based Survey

After a careful study and an analysis of several survey typologies [2], we chose to
perform an on-line Survey, using a commercially available web survey tool: Cre-
ate Survey2. This tool helped us reduce time and development costs in carrying
out the survey. Data can be directly entered by the respondents, avoiding the
tedious error-prone tasks of manual data entry by an operator. A Web-based
survey presents a number of advantages [4] compared to telephone, e-mail or
other traditional techniques. For instance, in traditional paper-based surveys,
questions can be passed over for lack of care, or other reasons. On the contrary,
on-line surveys allow to answer a subsequent question only if the previous one
has been answered. Moreover, we chose a web-based survey also because all the
members of our sample population are daily web-browsers users.

2.2 Structure of the Survey

The research process has been carried out according to the following phases:

Formulation of the problem by establishing study objectives and a research
plan: GQM approach;
Sampling by definition of population characteristics;
Data gathering;
Data processing and data analysis;
Research report.

GQM approach. To structure our research, we followed the Goal-Questions-
Metrics (GQM) approach, the well known paradigm proposed by Victor Basili
[3]. Our purpose in this survey is to understand the feelings and satisfaction of XP
users (XPers) and non-XP users (Non-XPers) about their software development
process. A secondary goal is to evaluate how Non-Xpers consider XP practices

www.createsurvey.com2

168 K. Mannaro, M. Melis, and M. Marchesi

and their possible adoption. The GQM framework of the research is shown in
Table 1.

Once the goals have been defined, a set of questions is used to achieve a
specific goal, while a set of metrics may be associated with every question. We
developed two questionnaires, one for persons using XP practices and one for
those not using XP practices.

3 Data Gathering

In order to avoid biases and ensure greater homogeneity in the answers, the
period of data collection was limited to the Autumn-Winter 2003-2004.

The quantitative survey uses a non-systematic sampling approach. Though a
probability sample was not drawn, the significance of the sample is guaranteed
by the fact that the respondents have been recruited in many and very different
ways, including mailing lists, newsgroups, interpersonal relations, and by self-
recruiting (many developers spontaneously found the questionnaire on our web-
site and decided to answer).

It is impossible to eliminate survey errors completely, but we have taken
special care to avoid obvious errors. A sample survey is subject to four major
sources of error [2]. In this survey we have taken the following steps to obviate
them:

Empirical Analysis on the Satisfaction of IT Employees 169

Coverage Error. We believe coverage error is low, because the analyzed popu-
lation is a population of Internet users. This makes sample bias a non-concern
in this population.

Sampling Error. The web-based survey has been carried out using a sample
of available and volunteer respondents.

Measurement Error. We cannot check the results of inaccurate responses,
because we do not know whether the respondents understood the questions
correctly. However, some questions have very similar goals, and are written
in several ways. So a check was made on the answers to these questions in
order to eliminate incoherent responses.

Non Response Error. Respondents can only go on to the next question after
having answered the previous one.

4 Design of Questionnaire

We have developed 69 questions for XPers and 57 questions for Non-XPers. For
the sake of brevity we cannot report every question. The full questionnaires are
available on our web site.3

Background Questions. We organized the questionnaires in various sections.
This first and last part of the survey include questions about personal data,
providing several data capable of classifying XPers and Non-XPers.

Satisfaction Rating Questions. The second section proposes the questions
about satisfaction which are quite similar in the two questionnaires. Job satisfac-
tion is analyzed by comparing the effects of variables on satisfaction with overt
behaviors. We related some economic variables with subjective variables and we
adopted a scale from 1 to 6, where 1: “I Strongly Disagree” and 6: “I Strongly
Agree”.

A major determinant of our survey is the empirical analysis on job satisfac-
tion. By combining the rating of generic questions with the rating of specific
questions on satisfaction, it is also possible to evaluate the job productivity of
the sample. Some of these questions are: “The adoption of XP practices/the de-
velopment process adopted by my team has favoured a better management of my
time”; “The co-ordination among the team members taking part in the project
work is satisfactory”; “The team developers are highly motivated towards the
present software development method”.

Satisfaction on XP practices Rating Questions. A third section, included
only in the XPers questionnaire, was needed to estimate their level of satisfaction
in the use of XP practices in the project. We adopted a scale from 1 to 5, where
1: “Very Dissatisfied” and 5: “Very Satisfied”. Examples of questions are: “How
satisfied are you with Pair Programming?”, “How satisfied are you with On-site
Customer?”.

http://www.agilexp.org3

170 K. Mannaro, M. Melis, and M. Marchesi

Potential XP User Rating Questions. Finally, we included a fourth sec-
tion only in the Non-XPers questionnaire. These questions help to estimate the
propensity of Non-XPers to use XP practices. We adopted a scale of 1 to 5,
where 1: “Potentially Not at All Desirable” and 5: “Potentially Very Desirable”.
Some of these statements are: “The project is directed by the customer,who is
available to answer questions, set priorities, and determine project requirements
any time”; “Every developer may be free to modify any code”.)

5 Results

Q1: Structure of the Population Sample. The population sample is made
up of 55 XPers and 67 Non-XPers. In this section, we report some significant
results about the answers received. We characterized our sample by studying the
answers to the two questionnaires and the cross-correlations between them.

We found no significant statistical demographic difference between the two
groups in terms of gender (91% male), age (a significant 75% of the respondents
is aged between 26 to 40 years), and level of education (the majority has a
bachelor’s degree). Respondents by country are structured as follows:

XPers: 64% Europe, 24% America, 2% Oceania, 9% Asia, 2% Africa
Non-Xpers: 69% Europe, 20% America, 7% Oceania, 4% Asia.

Fig. 1. Methodologies and Roles of the population sample.

In Fig. 1(a) we report the subdivision of Non-XPers respondents in relation
to the particular software methodology adopted and (Fig. 1(b)) their profes-
sional role. It can be seen that among the Non-XPers respondents, 35% use an
Iterative Incremental process, 9% the more traditional Waterfall process, and 7%
RUP. Eighteen percent use agile methodologies such as Scrum, Feature Driven
Development or other agile customised processes, while 18% of the Non-XPers
declare: “We do not use any specific development process”.

In Fig. 2 we characterize the population sample comparing the role with the
experience gained with software development.

Empirical Analysis on the Satisfaction of IT Employees 171

Fig. 2. Distribution of the population sample in relation to the Experience and the
Role.

Q2: Job/Life Satisfaction and Productivity. The variables representing
personal/familiar sphere, which cause an improvement in life quality, have shown
a significant difference between XPers and Non-XPers (Table 2).

The adoption of XP practices seems to have a significant effect on job quality.
In Table 3 the number of the variables representing job quality are been reduced
to 6 macro areas:

the development process adopted favours the relationships and communica-
tion with colleagues (TC);
the job environment is pleasant and comfortable (JE);
the development process adopted has reduced the amount of perceived stress
(RS);
the development process adopted has significantly increased the team’s work
productivity (P);
the developers are very motivated and have a positive attitude towards the
project (M);
how respondents are willing to adopt the current development process again
(W).

1.

2.
3.

4.

5.

6.

We have defined a Team Productivity Index. Agree/Disagree variables with
statements related to team productivity have been weighted in the following way:

Concentration (10%)
Work Attitude (10%)
Productivity (40%)
Team developers’ high motivation towards current development pro-
cess(10%)
Release Planning (15%)
Time spent to supply the first version of product since the beginning of the
project (15%).

Using this index, we found that 78% of XPers versus 57% of Non-XPers be-
lieve the adoption of the adopted process methodology has increased their team

172 K. Mannaro, M. Melis, and M. Marchesi

productivity. In this connection we can say that the former percentage is very
important and significant in this survey, while the latter is not very significant be-
cause the sample of Non-XPers is very heterogeneous on account of the adopted
methodology.

Q3, Q4: about XP practices. Of the XPers respondents, 85.5% claim that
they have a medium to high knowledge of XP practices. We analyzed their
satisfaction on the 12 XP practices, which were rated on a scale from 6 (Very
satisfied) to 1 (Very dissatisfied). The average values and standard deviations
are reported in Fig. 3(a).

Of XPers respondents, only 22% has had some difficulties adopting XP prac-
tices (see Fig. 4(a)) and 53% did not adopt the Metaphor practice (this re-
sult confirms previous empirical studies [6]) while 65% of those adopting the
Metaphor practice are satisfied with it(Fig. 4(b)). We also found that the same
percentage of XPers respondents (27,3%) do not adopt the Planning Game and
On Site Customer practices. All the remaining XP practices are adopted with
satisfaction by the majority of XPers .

Pair Programming is felt to positively affect job satisfaction and quality:
72,7% claimed that Pair Programming speeds up the overall software develop-
ment process.

We have measured the assessment of some XP elements, from the Non-XPers
viewpoint, which was rated on a scale from 5 (Very desirable) to 1 (Not at all

Empirical Analysis on the Satisfaction of IT Employees 173

Fig. 3. Level of satisfaction of XPers on XP practices and propensity of Non-XPers to
adopt XP practices (Mean and Standard Deviation).

Fig. 4. Difficulties with XP approach.

Fig. 5. “I would like my Company to carry on adopting the present software develop-
ment method”.

desirable). The average values and standard deviations are shown in Fig. 3(b).
We can highlight a positive attitude toward Pair Programming practice.

174 K. Mannaro, M. Melis, and M. Marchesi

6 Conclusions

We have presented some results from an experimental analysis on IT Employ-
ees Satisfaction by comparing XP practices with other software development
methodologies.

It should be noted that the question whether “I would like my Company
to carry on adopting the present software development method”, was answered
with “Agree” by 92% of XPers and 40% of Non-XPers (see Fig. 5). Moreover the
question whether “I think I will adopt our current development process again
in the future”, was answered with “Agree” by 96.4% of XPers and 54.6% of
Non-XPers.

Clearly, there is a very favourable feeling about XP practices, indicating that
they ensure more satisfaction, the job environment is more comfortable and
productivity increases. The tendency of Non-XPers towards XP core practices is
positive and usually they are not very satisfied with their software development
process.

The presented results confirm the validity of XP practices, though for the
sake of brevity we had to present only a subset of the collected data. We are
currently working on processing the whole bunch of answers collected, and on
extending the sample.

Acknowledgements. We thank Elena Sensi for support in job psychology and
special thanks go to Marco Abis and Davide Carboni for help in identifying
contact persons. We finally thank the online respondents who made this work
possible.

References

Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley,
Boston (2000)
Dillman, Don A.: Mail and Internet Survey: The Tailored Design Methode. John
Wiley (eds), New York. (2000)
Basili V.: Applying the Goal/question/metric Paradigm in the Experience Factory.
Software Quality Assurance and Measurement: A Worldwide perspective, Chapter
2, pp 21-44, International Thomson Computer Press (1995)
Dillman, Don A., Phelps, G.,Tortora, R., Swift, K., Kohrell, J., Berck, J. (ed.):
Response Rate and Measurement Differences in Mixed Mode Survey: Using mail,
Telephone, Interactive Voice response and the Internet. Paper available from
http://survey.sesrc.wsu.edu/dillman/papers/ Mixed
Punter,T., Ciolkowsi,M., Freimur,B., John, I. (ed.): Conducting On-Line Survey in
software Engineering. Proceedings of 2003 International Symposium on Empirical
software. IEEE Computer Society, Los Alamitos, California (2003)
Rumpe, B., Schroeder, A.: Quantitative Survey on Extreme Programming Projects.
Proceedings of XP2002 Alghero (Sardinia), May 2002. Available at
http://www.xp2002.org
Succi, G., Marchesi, M.,Pedrycz, W., Williams L.: Preliminary Analysis of the Ef-
fects of Pair Programming on Job Satisfaction. Proceedings of XP2002 Alghero
(Sardinia), May 2002. Available at http://www.xp2002.org

1.

2.

3.

4.

5.

6.

7.

Agile Processes Enhancing User Participation for Small
Providers of Off-the-Shelf Software

Christina Hansson1, Yvonne Dittrich1,2, and Dave Randall3

1Department of Software Engineering and Computer Science, Blekinge Institute of Technol-
ogy, Sweden, {Christina.hansson, yvonne.dittrich}@bth.se

2 IT-University, Copenhagen, Denmark, ydi@itu.dk
3Department of Sociology, Manchester Metropolitan University, United Kingdom,

D.Randall@mmu.ac.uk

Abstract. To survive in today’s competitive software market, software devel-
opers must maintain contact with their customers and users and adopt a flexible
organization which allows response to feedback and the changing requirements
from the use-context. This also requires a software development that enables
change proposals and error reports to be acted upon quickly. The present article
uses a case study of a flexible development practice which so far has proved to
be sustainable and successful to reconsider user involvement and software de-
velopment practices of small software providers from an agile perspective. Im-
plementing an agile process may allow for competitive flexibility without nec-
essarily jeopardizing quality.

Keywords. Agile software development, user participation, qualitative methods

1 Introduction

During a research project focusing on e-government,1 the manager of a one-stop shop
in one of the municipalities involved pointed to a program for booking premises as
the most useful and well-designed system they use. To our surprise, the provider was
not a major company, but a small one, consisting of six people in a small town in
southern Sweden. The company is known as Idavall. They allowed us to study their
software development practice and how they co-operate with their customers and
users; the aim is to improve their product called FRI.
What we observed can be regarded as a user-driven agile software development prac-
tice, although Idavall did not use the term “agile”. The combination of use orientation
and agile software development is a sustainable one: Idavall celebrated its anni-
versary this year and users continue to be satisfied with the product
This article presents the software development practice and user involvement we
observed. We discuss the possibility of small companies implementing agile proc-
esses as a way of involving users and customers in the improvement of their product,

Design of IT in use - supportive technologies for public services (DitA), funded by the
Swedish Agency for Innovation Systems VINNOVA, April 2000 – December 2002. The
project leader is Dr. Sara Eriksén. The partners are five municipalities, two software consul-
tancy firms, a Call Center and researchers at Blekinge Institute of Technology.

1

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 175–183, 2004.
© Springer-Verlag Berlin Heidelberg 2004

176 C. Hansson, Y. Dittrich, and D. Randall

and if this can be done, what methods should be implemented. For small software and
application service providers, the practices observed could provide a starting point for
rethinking their software development processes. This case also provides examples of
how to systematically gather feedback from users and how to make use of the feed-
back in the development process.
The article starts by taking up our research methods and is followed by a discussion of
user participation and agile processes. Section four provides a ‘rich’ description of
Idavall’s practices; this provides the basis for our discussion. We take up what needs
to be taken into account when users play a central role in the development process.
The risks entailed with such a development practice are also discussed. We finish
with a conclusion based on our findings.

2 Research Methods

The research we describe here was mainly based on a pragmatic approach which we
might loosely term ‘ethnographic;’ we used qualitative methods. The latter were
complemented by a quantitative questionnaire.
The fieldwork at Idavall began in January 2002. We visited Idavall regularly during
the spring. Specific methods used included semi-structured and open-ended inter-
views, participatory observations at the company, field notes and analysis of docu-
ments. We also participated in a couple of user meetings and training courses. In the
fall 2003 we returned to Idavall to follow up our previous fieldwork. The question-
naire was prepared in cooperation with Idavall. Most of the questions were of the
multi-choice type and gave additional space for personal comments. Some questions
were so-called open ones which gave space for individual comments. We sent out 787
e-mails and received 121 answers. The purpose of the questionnaire was to support
our qualitative fieldwork and be able to find nuances among the overwhelmingly
positive responses in our earlier interviews with users.
By using multiple ways of collecting data and combining different kinds of methods it
is possible to support one finding with the help of others. It is also possible to find
new information, i.e. to acquire additional information which can complement the
overall picture. This method of evaluation is called triangulation and is a valuable and
widely-used strategy. [14] We validated our impressions from the fieldwork by con-
stantly referring back to, and cross-checking against various informants. This member
checking is also a form of triangulation. [Ibid]

3 User Participation and Agile Processes

Usability and the usefulness of software are still problematic issues for software engi-
neers. One of the reasons is possibly that use qualities are not attributes of the soft-
ware only: they originate in the interaction between software and its use context. Use
practices are not the product of design but are rather responses to the designed soft-
ware. [5,10] As this response cannot be anticipated, constructive measures have been
proposed to promote a useful outcome: participation of users during design and de-

Agile Processes Enhancing User Participation for Small Providers 177

velopment of software [9], co-development of software and work practices, and evo-
lutionary development allowing for feedback [7].
Mainstream software engineering addresses a somewhat different set of concerns. The
aim is to control lead time, development costs, product qualities such as low number
of errors, or certain real-time attributes, as well as the relation between the software
development process and these variables. [1,12] The required control over develop-
ment practices, decision processes and communication results in contradictory rec-
ommendations for the development process and increases the power of the devel-
oper’s organization at the expense of user or customer control. [11]
Agile Software Development facilitates the discussion of user participation in soft-
ware development in a new way. By introducing such concepts as community, amica-
bility, joint decision-making, rapidity of communication, and connections to the inter-
actions of individuals it is possible to facilitate user participation throughout devel-
opment and obtain continuous user feed back. [4] The present article reports on ob-
servations of a software development practice in which the researchers did not make
any direct contributions. We observed a company that combined close contact with
their user community with a software development process that can be described as
agile. The agile development practice allows the developers to react quickly to users
requirements.
With respect to empirical work, agile development provides a different frame for
understanding – and further developing – observed practices. A certain way of devel-
oping software can be regarded as a practice of agile development rather than consti-
tuting a chaotic development process. Such a perspective seems to fit software devel-
oping practices that emphasise usability and user participation. (See also [5].) The
company whose development process is the subject of this article is a good example
of this approach.

4 How Idavall Gets Users Involved

Idavall was founded in 1987. In the early years, the company developed a number of
different programs, but from 1991 they have focused primarily on the booking system
referred to here as FRI. Customers are widely dispersed, mainly in Sweden, but also
in Finland and Norway.
FRI is one of the most frequently used booking systems in Sweden. Its most important
users are the Swedish municipalities; a large number of different municipal admini-
strations use the booking system. The software has a web interface that complements
the basic program. The booking system is responsible for the administration of in-
voices, admission control and subsidies as well as bookings.
Idavall’s avowed objective is to keep contact with the users of its program and to let
their feedback guide future development of the system. By ‘user’ we mean the one
who actually uses the program. When we use the word ‘customer’ we mean those
who have money and the mandate to decide what to buy. Often, the user and the cus-
tomer are not the same person. FRI was designed at the outset for one specific user.
Since then the user community has expanded dramatically. This expansion has not
altered the fundamental business concept employed at Idavall, which is to listen to
users and develop software in a way that continues to keep customers and users satis-

178 C. Hansson, Y. Dittrich, and D. Randall

fied. Gary, one of the employees, expressed his standpoint at a demonstration of FRI
as follows: “The development is driven by our users, not by ourselves”. In pursuance
of this, representatives from Idavall meet their users by means of different kinds of
activities. Following is a description of some of these activities. This description
forms the basis of ensuing discussions.

4.1 User Meetings

Every year about 8 to 10 meetings for users and customers are held throughout Swe-
den, Norway and Finland. The meetings are informal, and their purpose is to dis-
seminate news, discuss further developments, and answer questions about the book-
ing system. For the users, user-meetings provide the opportunity to meet other users
in the same area. User meetings thus offer an opportunity to create networks that
make it easier to make contact with one other and thus co-operate on common ques-
tions or problems. Most of those who participate in user meetings (67%) think they
are a good opportunity to learn new functions and meet other users and representa-
tives from Idavall. Those who do not participate think that they do not need to, or
feel that they do not have the time to attend. Some prefer to have individual teaching
and support. One said “I do not want to listen to other users’ problem; who is inter-
ested in listening to our problems?” Ida vail’s representatives encourage users to pre-
sent proposals for new functionality and report errors. Every user meeting has its
own link on the Idavall web site; participants are presented here as well as proposals,
and failures are documented. This information is valuable to Idavall in the future
development of FRI.

4.2 Support

One of the most important parts of Idavall’s business philosophy is to offer adequate,
friendly and professional support. According to the questionnaire, users think that the
support service provided is very good. The majority think that they always receive
quick and personal help. Explanations of problems are easy to understand. In addi-
tion to the user meetings, user support offers one of the most important ways of
keeping informed about users’ needs, wishes and proposals. Idavall claims that the
objective is to talk to the user in exactly the same way that users normally talk,
avoiding technical jargon. As one respondent said, ‘no one should feel stupid or
crazy when calling Idavall for support’. 86% of those who returned the questionnaire
gave the highest or second highest score to the overall comprehension of the support
service. However, it should also be mentioned that one desire was to have support
service during the lunch break and in the evening. Many users work for associations
and only use the booking-system after office hours. Support is given Monday to Fri-
day between 8 am and 12 am. Everybody answers support calls, even the developers
of the team. This in turn means that the developers receive first-hand feedback about
problems with their product, thereby removing a reporting problem.
A call to the support service is initially generated when a problem arises. However,
during the course of such calls proposals for new functionalities also appear. As a
result, almost every phone call to the support service is logged in a searchable text
database.

Agile Processes Enhancing User Participation for Small Providers 179

4.3 Courses

FRI can easily be tailor-made to specific requirements. How it is used depends on the
customer; a higher level of knowledge is required than for using Microsoft Windows
and Idavall offers courses where the use of different parts of the booking
system is discussed and taught. In the questionnaire, users state that they consider it
important to participate in courses. Besides learning about the booking system, they
suggest they also get to know other users, which in turn makes it easier to share
knowledge, e.g. by calling and asking how other organizations adapt the program to
a specific task. They also like to come to Idavall and meet the developers. ‘It be-
comes easier to call the support service when you know the face of a person’. Those
who do not participate say that courses are too far away or too expensive. About 16%
of those who returned the questionnaire say that they do not have enough time to
take on extra responsibilities. Others remark that they teach each other at their place
of work, or that they learn by doing.

5 Agile Development to Accommodate User Feedback

The development of FRI is an ongoing process. The system is continually being im-
proved to satisfy the ever-evolving needs of users. How do the developers at Idavall
manage to read and take advantage of all the error reports and change proposals sent
in by their users? Despite the absence of a formal development process, the process
can be seen as two different cycles. The faster and smaller on-going development
cycle where errors are corrected and minor improvements continually take place is
highly flexible. In the larger and slower long-term development cycle, major im-
provements take place. These cycles run simultaneously throughout the year.

5.1 Deciding What to Do

Before the implementation of new functionality starts, the proposals from users are
reviewed and informally ranked by staff. Proposals are ranked according to their
quality: Is the change generic? How would it affect other functionality? Is it useful
for many users? How cumbersome would it be to implement the change? Ted, one of
the developers, said that he preferred to implement many smaller improvements as
opposed to one large one because many smaller changes make a lot of people happy.
As every developer also has contact with users and customers, the users’ perspec-
tives are shared by many.

5.2 Daily Ongoing Development Cycle

The focus here is on implementation of users’ proposals, refinement of existing func-
tionalities, improvements in existing parts and correcting errors. Correcting errors has
the highest priority. The code increases continuously since the functionality is grow-
ing. Sometimes code is written twice as a similar functionality is implemented. The
developers must therefore re-factor their code regularly to make it easier to maintain.
Jason tests all new code locally on his computer before he integrates it into the ver-

180 C. Hansson, Y. Dittrich, and D. Randall

sion on the common server. This means that the version on the server is always the
latest tested version.
Programming takes place primarily in the afternoons, when the support service is
closed. It takes between one and five weeks for a new version to be released on the
website. This means that each release is quite small. A ‘What’s new’ description is
published for every version. This allows users to choose for themselves whether or
not to download the most recent version. The system is designed so that not every
change needs to be downloaded and installed. The idea is that every user shall be able
to download and install a new version without the help of a technician. However, the
questionnaire shows that new versions are in most cases installed by a technician; this
is often because FRI is hosted on a server. 28% of the users returning the question-
naire download all versions while 18% only download the compulsory ones. Where
this is the case, it is posted on the website and every user receives an e-mail.

5.3 Long-Term Development Cycle

The last major development took place in 1996, when a module was added that intro-
duced steering number code locks throughout the system. Today, a new 32-bit version
of FRI, which will replace the present 16-bit version, is being developed by Ted. The
development of this new version normally takes place when the daily ongoing devel-
opment cycles are relatively quiet. The new version will offer opportunities to add
several new features. Today it is impossible to implement some of the change propos-
als in the present software due to an outdated implementation technique. The new
version will accommodate the new improvements. The questionnaire shows that there
is a great demand for the new 32-bit version.
A beta-version is already available to pilot-users. These users give feedback on the
new version; this influences the ongoing development. The old version of the soft-
ware will be maintained in parallel to the new version for an indefinite time.

6 Discussion

From a mainstream software engineering perspective the above-described practice
could only be described as unorganized software development without any agreement
on process. The success of the company argues against this perception: 15 years and a
very satisfied and active user community is more than many companies achieve. So
how can we make sense of what we observed? Idavall’s practices are not a conscious
implementation and adaptation of the ideas of the Agile manifesto [4] The company
only came to know about agile processes through us. Applying an agile perspective
[4], however, allows us to see our observations as a practice of agile development,
and to understand how the necessary flexibility to react to user and customer feedback
is achieved in a way that is sustainable for the developers as well as for the business.
Instead of highlighting the shortcomings from a traditional software engineering per-
spective, we can understand how the developers at Idavall make things work and
discuss their way of developing software.

Agile Processes Enhancing User Participation for Small Providers 181

6.1 What Is Needed to Take into Account User Feedback?

The decision as to whether to implement an agile process, and also which one should
be implemented, is left to the discretion of each development organization. However,
to use agile development to implement a user-driven software development process,
additional measures are needed. Below we focus on what we see as the central factors
behind a user-driven agile development process related to Idavall’s way of developing
FRI.
Communication is one of the main values in agile processes [2, 4]. The absence of
communication or inadequate communication can jeopardize a project. Informal
meetings between developers normally take place during the day and take the form of
‘stand-up’ meetings, i.e. people walk in and out of each other’s rooms and discuss
how to solve problems or what to implement next. Spatial arrangements are also im-
portant; Idavall’s lunchroom, which is an open area, is located at the heart of the or-
ganization. A lot of discussions about design issues and problems take place here
during coffee and lunch breaks.
Possibilities for direct communication between developers and users are also impor-
tant. Arranging user meetings and courses around the country is one way to bring
together users from a specific area and Idavall personnel. These activities also stimu-
late co-operation and mutual learning between users. An ongoing process of contri-
butions and discussions in smaller groups would have a fruitful impact on the on-
going development of a system. These smaller groups can be compared to what
Fischer (2001) called Communities of Interests (CoI). A basic challenge faced by the
CoIs is developing a shared understanding of the task at hand. New knowledge is
constructed through discussions and mutual learning. Participation shifts in such cir-
cumstances from designing a system to using and evolving it. User-meetings and
courses are typical activities that bring users together and help to develop such CoIs.
Similar user communities can be observed in the computer game industry. [8] Expert
users receive preview versions of new developments and become involved in design-
ing new features. As the computer gamers feel at ease with electronic communication,
the establishment of a website virtual community seems sufficient [3].
User meetings, user communities and courses are important arenas where developers
and users can discuss problems and future developments. Nonetheless, the support
service is the most valuable and most frequent way of keeping in touch with users
since it is conducted on a daily basis. Such frequent user contact ensures that the
‘right thing’ is developed. It is important that developers man the support service on a
regular basis. They also become aware of shortcomings in the booking system as well
as users’ requirements and needs. Through such frequent contact it is possible to react
quickly and flexibly to new requirements. Close and continuous contact with satisfied
users also stimulates the developers to do a good job.
It is necessary to keep a record of feedback and proposals arising from the support
service, user-meetings and courses. Idavall runs the text database and web site men-
tioned earlier. Rittenbruch et al. [13] discuss their interaction with distributed users.
They used an electronic system where users communicated their requirements, feed-
back and proposals via a web interface. These requirements were integrated into the
design process in the same way as the requirements and proposals from Idavall’s
database and web site were integrated into Idavall’s development process.

182 C. Hansson, Y. Dittrich, and D. Randall

Working close to users requires a technical as well as a social competence. The de-
velopers work flexibly with different kinds of tasks. In addition to development tasks
and support, they also teach and plan courses. Most of them also plan and participate
in user meetings around the country. Their relationship to the users is friendly and
relaxed. They must be able to talk to a technician using technical language and to the
common user in non-technical language.

6.2 The Risks of Such a Development Practice

As proposed above, Idavall’s practices successfully combine user participation with
an agile-like software development process. Users are highly involved in the devel-
opment process, and developers can react quickly to new requirements. But of course,
one can find problems, and the development process has disadvantages and involves
risks as well. These can have a serious impact on the development process and cause
problems. We have identified the following potential problems.
The prioritization process is totally controlled by the developers at Idavall: users are
only able to propose new functionality but have no impact on the prioritization proc-
ess. This is a potential problem since wrong proposals may be implemented.
Relatively few users returned the questionnaire; this may mean that only a few users
might be active users and bother to tell Idavall when problems arise or when new
functionality is required. This means that only certain parts of the user community
participate in the development process in the end and have any impact on the system.
These users may not be typical users and may thus not be representative.
The informality of the development practice and the fact that only six people are em-
ployed at Idavall makes the process highly dependent on the individual person, and
thus vulnerable. Every employee has his or her own specialties and cannot be easily
replaced. It takes a long time to learn how the different parts of a booking system are
built up and how to support them. According to Gary, it takes about one year before
you are able to give FRI support in a proper way and on your own. If someone falls ill
for a long period there would be serious problems.
Program developers at Idavall take care of support, develop the program, teach
courses and participate in user meetings. To implement such a practice one must find
employees who are able to rule out both the technical and social aspects of the work.
It is difficult to find the right person for the job. Gary told us that the last time he had
to find someone to employ it took him more than one year to find the right man.
Despite these potential problems, the case provides an example of how users and
developers can work together on a daily process throughout the project.

7 Conclusions

This article describes a way of developing software where the users have a decisive
impact on the process. Users steer developments in the sense that they give feedback
on an existing program and make proposals for new functionality. Users and develop-
ers meet each other face-to face on a regular basis and in a variety of circumstances.
Users also have a feeling that they are developing FRI in a co-operative way. This is
made possible by a user-driven agile development practice. The agility of the process

Agile Processes Enhancing User Participation for Small Providers 183

makes the development highly flexible and sensitive to the environment in which the
software is used.
Small companies in particular could learn from this way of using agile development
processes as a means of becoming more sensitive to customer and user requirements.
They also could learn how to systematically gather user feedback and make use of it
in the development process. We claim that this method of software development re-
sults in a product that satisfies both customers and users. The software is brought into
line with customers’ and users’ needs.
Agile development provides a framework in which to understand existing software
practices and an orientation for improvement that does not eliminate the flexibility
that is necessary for responding to continuously evolving user requirements.
Combining user participation and agile development processes is our focus for future
research, primarily in the area of computer support for municipalities.

References

Basili, V., Greeen, S.: Software Process Evolution at the SEL, IEEE Software, July
(1994) 58-66
Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley (1999)
Chang, A-M., Kannan, P.K., Whinston, A. B.: Electronic Communities as Intermediaries:
The Issues and Economics. In: Proceedings of the Hawaii International Conference
on System Science, IEEE Computer Society Press, Los Alamitos, CA, (1999)
Cockburn, A.: Agile Software Development. Addison-Wesley, UK (2002)
Dittrich, Y., Eriksén, S., Hansson, C.: PD in the Wild: Evolving Practices of Design in
Use. In: Binder, T., Gregory, J., Wagner, I. (eds): Proceedings of the PDC 2002, Malmö,
Sweden (2002)
Fischer, G.: Communities of Interests: Learning through the Interaction of Multiple
Knowledge Systems. Annual Information System Research Seminar in Scandinavia
(IRIS’24), Ulvik, Norway (2001)
Floyd, C., Reisin, F.M., Schmidt, G.: STEPS to Software Development with Users. In:
Ghezzi, G., McDermid, J.A. (eds.): Software Development and Reality Construction.
Springer Verlag, Berlin (1989) 48-64
Henfridsson, O., Holmstrom, H.: Developing E-commerce in internetworked organiza-
tions: A case of customer involvement throughout the computer gaming value chain, Da-
tabase for Advances in Information Systems 2002 vol.: 33 issue: 4 (2002) 38-50,
Kensing, F., Blomberg, J.: Participatory Design: Issues and Concerns, Computer Sup-
ported Cooperative Work 7, (1998) 167-185
Lehmann, M.: Programs, LifeCycles, and Laws of Software Evolution. In: Proceedings of
the IEEE 68, (1980) 1060-1076
Nørbjerg, J., Kraft, P.: Software Practice is Social Practice. In: Dittrich, Y. Floyd, C.,
Klischewski, R. (eds.): Social thinking – Software practice. MIT Press, Cambridge Mass,
(2002)
Paulk, M C., Curtis, B., Chrissis, M B., Weber, C V.: Capability Maturity Model, Version
1.1., IEEE Software , July (1993) 18-27
Rittenbruch, M., McEvan, G., Ward, N., Mansfiels T., Bartenstein, D.: Extreme Partici-
pation – Moving Extreme Programming Towards Participatory Design. In: Binder, T.,
Gregory, J., Wagner, I. (eds): Proceedings of the PDC 2002, Malmö, Sweden, (2002)

Robson, C.: Real World Research. Blackwell Publishing, (2002)

1.

2.
3.

4.
5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Self-Adaptability of Agile Software Processes:
A Case Study on Post-iteration Workshops

Outi Salo1, Kari Kolehmainen1, Pekka Kyllönen1, Jani Löthman2,
Sanna Salmijärvi2, and Pekka Abrahamsson1

1 VTT Technical Research Centre of Finland,
P.O. Box 1100, FIN-90571 Oulu, Finland

{Outi.Salo; Kari.Kolehmainen; Pekka.Kyllonen;
Pekka.Abrahamsson}@vtt.fi

2 Department of Information Processing Science,
P.O.Box 3000, FIN-90014 University of Oulu, Finland

{Jani.Lothman; Sanna.Salmijarvi}@oulu.fi

Abstract. None of the agile methods are claimed to fit all development
situations. A team should attempt to adapt the methods and practices to fit their
specific needs. For that reason agile principles call for self-reflection on a
regular basis in order to identify where and how to make improvements. While
some systematic approaches on how to execute this self-reflection process
effectively have already been proposed, little empirical evidence currently
exists. This paper reports empirical results based on a study where a project
team conducted a self-reflection process called “post-iteration workshop” in
order to improve and optimize the adopted practices in an XP project. Both
qualitative and quantitative data were collected from four 1-2 hour workshops.
The results show that with less than 4% effort it is possible to hold post-
iteration workshops that significantly help to improve and optimize practices
and enhance the learning and satisfaction of the project team.

1 Introduction

Agile methodologies and principles [see e.g., 1] place emphasis on incremental
software development with short iterations, adaptation to changing requirements,
close communication, self-organizing teams, and simplicity [2]. While all of them are
challenging to implement in practice, relying on self-organizing teams is an ambitious
goal in itself.

Agile proponents have noted that “each situation calls for a different methodology”
[2, p. 184]. Thus, one of the principles behind agile manifesto (www.agilemanifesto.
org/principles.html) suggests that the team should regularly reflect on how to become
more effective, and fine-tune and adjust its behavior accordingly. Cockburn refers to
“the mystery of how to construct a different methodology for each situation without
spending so much time designing the methodology” [2, p. 184]. Some systematic
approaches have been proposed on how to execute this self-reflection process

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 184–193, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Self-Adaptability of Agile Software Processes: A Case Study 185

effectively. Cockburn [2] suggests a methodology-growing technique including a
team reflection workshop after each iteration. Furthermore, Dingsøyr and Hanssen [3]
have suggested a learning mechanism called postmortem reviews to be used as an
extension for agile software development methods. It works towards making good use
of the experiences of project participants at the end of iteration to enhance the
development process. In agile software development, one iteration may last from one
to four weeks [4]. In terms of knowledge management, post mortem reviews could be
described as a method that targets “dynamic interaction that facilitates the
transformation of personal knowledge into organizational knowledge” [5, p. 14]. The
idea of postmortems in software development projects is not a new one. In recent
years different postmortem techniques have been used in traditional software
development approaches [examples 6, 7]. They suggest that each project should
conclude with postmortem review to analyze our shortcomings in order to learn and
improve [7]. Postmortem reviews have been found to be effective as a tool for
organizational learning and productive from the software process improvement (SPI)
point of view [example 8]. However, they are not suitable, as such, to an agile
software development environment since they focus on traditional software
development approaches involving long durations, rich and detailed documentation
and large projects [see example 7].

However, little empirical evidence on using either team reflection workshops or
the lightweight postmortem reviews in agile software development exists. This paper
presents empirical results from a case study (eXpert) where a project adopting
Extreme Programming (XP) method systematically reflected its practices after each
increment in a session that combined elements from both the Cockburn’s team
reflection workshop [2] and the lightweight postmortem review technique suggested
by Dingsøyr and Hanssen [3]. This technique, as presented here, is referred to as a
post-iteration workshop. The case study presented here is the first among an ongoing
series of Agile case studies conducted at the Technical Research Centre of Finland.

This paper is composed as follows. The following section presents the research
design including the method, the research target and settings. The paper continues
with the results, experiences of the post-iterations workshops and conclusions. The
paper concludes with final remarks.

2 Research Design

In this section, the research method, data collection, the post-iteration workshop
technique (i.e., research target), and the research setting are described.

2.1 Research Method and Data Collection

The research method used in this study was action research [9] that can be seen as one
form of case study. The focus is more on what practitioners do rather than what they

186 O. Salo et al.

say they do [10]. The resulting knowledge should guide the practice [11]. In action
research, the modification of reality requires the possibility of researcher intervention
[12]. In the post-iteration workshops the researchers’ acted in the role of a moderator
and participated in the generation of positive and negative findings and enhancing the
process with the project team. However, they did not participate in the actual software
development work, but acted more as a support team for the developers.

Quantitative and qualitative research data was collected on a) effort used on
workshops, b) quantity of findings and c) their content and, d) quantity and e) content
of suggested and actual process enhancements (i.e. action points). Furthermore,
developers maintained diaries to record their negative and positive perceptions on the
process. A final interview was also held for the project team at the end of the project.

2.2 Research Target: Post-iteration Workshop Technique

The research aims to study how a short iterative reflection session is suitable for self-
adapting the practices during an Agile software development project. The existing
reflection techniques (i.e. lightweight postmortem review and team reflection
workshop techniques) were examined beforehand. The aim was to combine and adopt
these techniques in order to attain effective self-adaptability with minimal effort and
high impact. As a result, a post-iteration workshop technique was constructed.

As suggested in the postmortem review technique, the problem-solving
brainstorming method called KJ method [6] was adopted in the post-iteration
workshops. It was used for generating experiences from the project team and
collecting and structuring this data. As a result, the project team generated positive
experiences, i.e. the practices that should remain the same, on post-it notes and placed
them individually for display on a flip chart with clarifying comments. The findings
were then grouped and the groups were labeled to simplify the discussion on the
emerged topic areas. Similarly, the negative findings were placed on display and
grouped in order to identify the problem area. The reason for using KJ for generating
experiences in post-iteration workshops instead of more free discussion, as suggested
by Cockburn [2], was its controllability and effectiveness as a result of strict
procedures.

Both techniques suggested prioritizing the negative findings and analyzing only
the most important ones. However, in post-iteration workshop technique all the
findings were considered to be equally important (whether positive or negative) and
were included in further discussion. Furthermore, the amount of post-it notes was not
limited in any way, as reported to be in the case of the lightweight postmortem review
technique [3]. Moreover, a root cause analysis technique called the Ishikawa diagram
for analyzing the underlying causes, as suggested in lightweight postmortem review
technique, was considered but not included. As an alternative, the Cockburn’s
suggestion of analyzing the negative issues and collecting improvement suggestions
along with discussion was followed using the organized flipchart of negative findings
as a guide.

Self-Adaptability of Agile Software Processes: A Case Study 187

The post-iteration workshops ended with the generation and agreement on the
improvement actions for the next iteration, i.e. list of action points. Finally, the list of
action points from the previous workshop was revised to find out what improvements
had actually taken place and which ones were not implemented for whatever reason.

2.3 Research Setting

The case study was conducted in a software development project (eXpert) where a
team of four developers implemented an intranet application for managing the
research data obtained over years at a Finnish research institute. The project lasted
eight weeks and the size of the resulting product was 10000 lines of code (see more
details in [15]). The development team followed the XP process as suggested by Beck
[4]. The team consisted of experienced university students to confirm comparability
to practitioners in industry as suggested in [13]. The development team worked in a
co-located environment with an on-site customer (a representative of a management
organization), as suggested in XP practices [14].

The project members were novice on using agile software development methods.
They were guided to adopt all the central XP practices including planning game,
small releases, metaphor, simple design, testing practices, refactoring, pair
programming, collective ownership, continuous integration, 40-hour week, on-site
customer, and coding standards [4]. However, the project had the freedom to adapt
the practices based on their experiences from the first iteration onwards. The
decisions concerning process enhancements were to be made in the post-iteration
workshops.

The project team worked a 24-hour week in four days, in other words from Monday
to Thursday. As proposed by the 40-hour week rule, no overtime was recommended.
The possible overtime was compensated in the following iteration. The project
consisted of five iterations during the eight-week period. The first four iterations were
the actual software development iterations and the last one was a corrective iteration.
The first three iterations lasted for two weeks and the last two iterations for one week
each. A post-iteration workshop was held after each of the iterations. Only the first
four workshops are comparable and as a result included in the analysis presented in
this paper. The last workshop can be regarded as post-project workshop that
concentrates on the experiences from the entire project instead of the previous
iteration. It is a valuable part of software process improvement (SPI) in an Agile
organization and will be reported thoroughly in the near future.

3 Case Study Results

In this section, the results of the post-iteration workshops are presented and
interpreted. Each post-iteration workshop concentrated on the experiences gained

188 O. Salo et al.

from the previous iteration. At the end of this section, the perceptions of the project
team are summarized.

3.1 Post-iteration Workshop Findings

Table 1 presents the costs of post-iteration workshops in terms of effort usage. The
data includes the effort of the four software developers. Results show that the effort
spent reduced from iteration to iteration. In other words, the duration of a workshop
went down from over 2.5 hours to less than one hour per session. It should be noted
that due to the shorter duration of the fourth iteration (i.e. one week) the proportion of
effort rises even though the actual effort spent is lower. Also, one factor that
presumably increases the duration of workshop in the eXpert case study is the fact
that the amount of findings was not limited and all of the findings were considered
equally important (i.e., no prioritization).

In Dingsøyr and Hanssen’s [3] study, the effort spent on lightweight postmortem
reviews was around 4.7% and the duration of one workshop was roughly 1.4 hours
per person (calculated from their data). Cockburn [2] estimates a minimal duration
from two to four hours. In this study, the average effort was 3.7% and the average
duration of the workshop was 1.6 hours. The percentual effort spent on post-iteration
workshops may seem somewhat high. However, it should be noted, that in eXpert the
project team worked a 24-hour week which increases the percentual effort proportion
comparing to a “normal” 40-hour week.

Findings of the post-iteration workshops are shown in Figure 1 including positive
and negative issues, and how many improvement actions they were followed by.

The four post-iteration workshops resulted a total of 93 positive and 52 negative
findings. Figure 1 shows the declining trend in both positive and negative findings.
The positive findings decreased from 38 to 11 and negative from 25 to 8 findings per
workshop. Furthermore, the implemented process changes lessened during the
project. This finding is in-line with that of Cockburn [2], who argued that the changes
needed in the process will be much smaller after the second and subsequent
increments.

Self-Adaptability of Agile Software Processes: A Case Study 189

Fig. 1. Number of findings and improvement actions from the post-iteration workshop

However, other factors (than process satisfaction) might also influence the decline
in positive and negative findings. For example, as the team became more accustomed
to the adopted practices, their weaknesses and rewards may have been taken for
granted. Moreover, as the post-iteration workshops were relatively close to each other
(from one to two weeks apart) the team did not find it necessary to repeat the findings
except for the most disrupting ones. However, the repeated positive and negative
findings were recorded also in the subsequent workshops.

Fig. 2. Ratio of positive and negative findings

Figure 2 illustrates how the satisfaction of the project team evolved during the
project by examining the ratio between positive and negative findings. During the
first three iterations, the proportion of positive findings rises from 60% to 73%
indicating increased satisfaction. In the fourth post-iteration workshop the proportion
of positive findings dropped by 15%, while the amount of negative findings remained
the same. The trend of three first iterations suggests that the process actually
improves as a result of post-iteration workshops. However, this analysis is not yet
strong enough to draw any conclusions. Furthermore, the closer examination of

190 O. Salo et al.

research data reveals that the topics causing negative findings became fewer during
the project. The “topics” here refer to the post-it note groupings made according to
the KJ-method to identify the specific problem areas for the findings. The data reveals
that the criticism of the project team focuses on nine topic areas at the beginning of
the project and declines rapidly to only two issues at the end. This analysis again
supports the assumption that the XP process practices had actually self-adapted to the
needs of the project team, i.e. increased their satisfaction for the process.

To explain the growing satisfaction that the data implicates, it should be reported
that all except one suggestion for enhancing the software process practices were
actually implemented. Alone, this power to influence on the daily working practices
is likely to raise the positive atmosphere among the project team. Furthermore, the
rapid and visible effect of the process changes is likely to satisfy the developers. The
spread between the negative findings and process changes can be explained by the
fact that several of the negative findings needed no actions but were rather
misunderstandings or other issues solved by learning through discussion during the
post-iteration workshops.

Table 2 demonstrates the top five positive and negative findings during the entire
project. Interestingly, the top positive finding was the controversial pair programming
practice. It continued to appeal to team members during the entire project.
Noteworthy is also the fact that all of the top five positive topics belong to the
practices of XP. The top negative finding was time tracking. Due to the research
character of the project, the collection of measurement data was heavy and time
tracking detailed. Testing only became a negative issue towards the end of the project
when the motivation of the outside testing group clearly decreased. Code commenting
and time estimating findings generated mostly from the lack of proper standards and
instructions. Test-driven development was found to be difficult as it was the first time
the project team had encountered it and an experienced coach was not available.

Table 3 presents a summary of the improvement suggestions and actions on the top
5 negative issues to provide an overview on what kind of enhancements arose from
the post-iteration workshop in the eXpert case study. The lines in an italic font
indicate suggestions that were not implemented during the project as the others are
the actual action points for the next iteration.

Self-Adaptability of Agile Software Processes: A Case Study 191

3.2 Developer’s Perceptions

The project team felt that the post-iteration workshop technique was an effective and
convenient way to learn because it summarized the previous iteration and forced each
team member to think about its difficulties and negative aspects. This way each
member was able to learn and improve their own actions and pay attention to negative
issues even if they were not always written down as improvement suggestions. In
addition, post-iteration workshops were seen as an efficient and honest way to
improve the process because they actually forced the process to take a better
direction. The project team found it very creative to discuss experiences and solutions
in a group and to criticize the things that were done sloppily or could have been done
better. The issues were brought to light and the improvement actions turned out to be
successful, according to the project members. As an example, pre-release testing was
brought as a new practice to the process and relieved the actual release testing with
customer.

The opinion of the project team was that the post-iteration workshop, as applied in
eXpert, didn’t take too much effort yet still improved the weak aspects of the process
significantly. When the development was done in short cycles the things agreed in
post-iteration workshops stayed clear in the mind and the effects of improvements
were noticeable in the following iterations. All developers were confident that post-
iteration workshop was a way to get better outcome from the development process.
All also favor using this technique in future projects when applicable.

4 Conclusions and Further Work

Agile software development relies on self-organizing teams and the Agile principles
suggest that the team should regularly reflect on how to become more effective, and

192 O. Salo et al.

fine-tune and adjust its behavior accordingly. While some systematic approaches have
been proposed on how to execute this self-reflection process effectively, little
empirical evidence exists as yet. This paper has served for this purpose. Two known
self-reflection approaches were combined and 4 post-iteration workshops were held
on an XP project. The case study presented (eXpert) is the first in an ongoing series
of Agile case studies conducted at the Technical Research Centre of Finland and
provides a baseline for further replications for the progress of the post-iteration
workshop technique.

Based on our experiences, the KJ method (see section 2.2. for details) proved to be
an effective tool in adapting practices in an XP project, as was suggested by Dingsøyr
and Hanssen [3]. The quantitative and qualitative findings from the case study
support the assumption that with less than 4% effort it is possible to hold post-
iteration workshops that concretely help improving and optimizing practices, and
enhance the learning and satisfaction of the project team. The empirical data from the
case study shows that the post-iteration workshops fine-tuned the development
process and increased the project team’s satisfaction. A strong indication of the
benefit of the post-iteration workshop was the positive remarks made by the
developers.

However, this study lacks evaluation of the effects of process improvements on,
for example, the effectiveness of the process or quality of the product. One reason for
this is that the existing project level SPI techniques, including the post-iteration
workshops, lack a detailed procedure for the follow-up of software process
improvement actions, as well as their support with, for example, measurement data.
Furthermore, the existing techniques lack important aspects in enhancing the extensive
learning in the future projects. As a result, the post-iteration workshop technique has
been evolved and is currently being applied for further evaluation in a third XP case
study (bAmbie).

References

P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen, “New directions on agile
methods: A comparative analysis,” presented at International Conference on Software
Engineering (ICSE25), Portland, Oregon, 2003.
A. Cockburn, Agile Software Development. Boston: Addison-Wesley, 2002.
T. Dingsøyr and G. K. Hanssen, “Extending Agile Methods: Postmortem Reviews as
Extended Feedback,” presented at 4th International Workshop on Learning Software
Organizations (LSO’02)), Chicago, Illinois, USA, 2002.
K. Beck, Extreme Programming Explained: Embrace Change: Addison Wesley
Longman, Inc., 2000.
I. Nonaka and H. Takeuchi, The Knowledge-Creating Company, 1995.
R. Scupin, “The KJ Method: A Technique for Analyzing Data Derived from Japanese
Ethnology,” Human Organization, vol. 56, pp. 233-237, 1997.
B. Collier, T. DeMarco, and P. Fearey, “A defined process for project post mortem
review,” IEEE Software, vol. 13, pp. 65-72, 1996.
M. J, Tiedeman, “Post-mortems-methodology and experiences,” IEEE Journal on
Selected Areas in Communications, vol. 8, pp. 176-180, 1990.

[1]

[2]
[3]

[4]

[5]
[6]

[7]

[8]

Self-Adaptability of Agile Software Processes: A Case Study 193

J. B. Cunningham, “Case study principles for different types of cases,” Quality and
quantity, vol. 31, pp. 401-423, 1997.
D. Avison, F. Lau, M. Myers, and P. A. Nielsen, “Action Research,” Communications of
the ACM, vol. 42, pp. 94-97, 1999.
P. Oquist, “The epistemology of action research,” Acta Sociologica, vol. 21, pp. 143-163,
1978.
G. I. Susman and R. D. Evered, “An Assessment of the Scientific Merits of Action
Research,” Administrative Science Quarterly, vol. 23, pp. 582-603, 1978.
M. Höst, B. Regnell, and C. Wohlin, “Using Students as Subjects - A Comparative Study
of Students and Professionals in Lead-Time Impact Assessment,” Empirical Software
Engineering, vol. 5, pp. 201-214, 2000.
K. Beck, “Embracing Change with Extreme Programming,” IEEE Computer, vol. 32, pp.
70-77, 1999.
P. Abrahamsson, “Extreme Programming: First Results from a Controlled Case Study,”
presented at 29th Euromicro Conference, Belek-Antalya, Turkey, 2003.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Enterprise Continuous Integration Using Binary
Dependencies

Mike Roberts

ThoughtWorks, Ltd., Peek House, Eastcheap, London, UK
mroberts@thoughtworks.com

Abstract. Continuous Integration (CI) is a well-established practice which
allows us as developers to experience fewer development conflicts and achieve
rapid feedback on progress. CI by itself though becomes hard to scale as
projects get large or have independent deliverables. Enterprise Continuous
Integration (ECI) is an extension to CI that helps us regain the benefits of CI
when working with separately developed, yet interdependent modules. We
show how to develop an ECI process based upon binary dependencies, giving
examples using existing .NET tools.

Keywords: Continuous integration, scalability, tools and techniques, .NET

1 Continuous Integration – A Review

Kent Beck defines Continuous Integration (CI) by stating ‘No code sits unintegrated
for more than a couple of hours. At the end of every development episode, the code is
integrated with the latest release and all the tests must run at 100%’ [1]

Automated CI [2] takes much of the CI effort away by running an automated
build every time a developer commits a change to version control (see ‘Ubiquitous
Automation’ [3]) Automated CI is implemented by using a dedicated CI build server
tool like CruiseControl [4] or CruiseControl.NET [5].

Both of these processes assume you have a single source tree which is developed
as one advancing ‘code line’ [6].

Unfortunately, there can be scalability issues with this. While describing CI, Kent
Beck states ‘If integration took a couple of hours, it would not be possible to work in
this style ... You also need a reasonably complete test suite that runs in a few minutes’
[1]. For a medium to large sized project (e.g. upwards of 5000 classes) a full build can
take an hour to complete when compilation, unit testing and acceptance testing are
included. This is long enough to significantly break up the development flow of a
project using CI.

There can also be business concerns with forcing a large development effort onto a
single source base with unified build and release timelines. Consider a client/server
application that has a server layer communicating not only with the client GUI but
also with other external applications. The release schedule for those external
applications places requirements on the server code that do not exist for the client
code. Thus, there is a need to decouple the GUI and server development efforts.
However, if the client code needs the server code to compile, the client build must be
able to find and reference the server code for each of its builds. Finally, you may
decide to break up your application into different ‘bounded contexts’[7] when it
makes sense to have semi-independent domain models within your application.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 194–201, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Enterprise Continuous Integration Using Binary Dependencies 195

All of these issues point to the same thing - sometimes the ideal approach of
developing with one tightly bound source tree doesn’t work out and we need to
introduce extra processes to help.

2 Breaking up the Build by Introducing Binary Dependencies

One way to start addressing the above issues is to separate out the source tree into
different modules, each with their own independent build and CI processes. Each
module uses pre-built binary versions of any other modules it depends on.

We’re going to use the client/server decoupling example from section 1 as a
common example thread throughout the rest of this paper. We’ll start resolving it by
applying this binary separation idea.

Assuming the application has a layered architecture [8], its source code should be
easily split into client, server and ‘common’ code. We can decouple the development
of the client and server layers by moving the source that is specific to the client into a
separate module in version control, leaving the common and server code in the
original module (which we call simply the server module from now on.)

The client code requires the server code in order to compile. As a ‘first cut’
implementation to get the client building, we can include a pre-built binary version of
the server module in the client’s version control tree. We also setup separate CI
servers to build each of the 2 modules.

This technique by itself is nothing new, but we now consider how we can extend
Continuous Integration techniques to such separated projects.

3 Enterprise Continuous Integration

By itself, the above separation process has a flaw. With the separated client and server
modules, as soon as a developer commits code to the server module, the client module
is building against an old version of the server code. In other words, the new server
code has not been integrated with the client code. Despite not having a unified build
and source tree, we can still apply the principles of Continuous Integration to the
complete application.

We define Enterprise Continuous Integration (ECI) as the process of integrating
2 separated but dependent source trees whenever code changes in either of the 2 trees.

ECI allows us to continually integrate separated modules as if they were developed
as one module.

3.1 Designing an Enterprise Continuous Integration Process

Reviewing our client/server example:

We have 2 separated modules in version control, one for the client and one for the
server
Each module has its own CI process that builds the contents of version control and
produces a versioned binary distribution

196 M. Roberts

The client source tree includes a built version of the server module

The next step is to add an Enterprise Continuous Integration (ECI) process that will
attempt to build the client module with the latest binary version of the server. This is
in addition to the existing CI process that just builds what is specified by the client’s
build script.

3.1.1 Specifying Dependency Versions
To setup such an ECI process we need a way of varying which version of the server
module the client is to build against. The first step to implementing this is to publish
the built versions (or distributions) of the server module to a file server. It needs a
structured directory layout, including the ability to locate distributions by both version
number, and latest logical tag.

We can now update our client build to fetch a specified version of the server
module from the build server before building, rather than keeping a fixed copy within
the version control tree. The version of the client build script checked into the source
tree would always default to use a last-known-good version of the server that we have
successfully integrated with the client. However, the ECI process overrides the
server version to latest.

We’ll see concrete examples of all of this later on.

3.1.2 When to Integrate
The next question is when do we integrate? With normal CI, we perform an
integration run whenever the source code changes, since that is the only changing
input of our integration process. However, our client build now has a ‘latest server
build’ that can also change, so we should perform an ECI run whenever there is a
change in either the source code we are integrating, or the binary dependencies upon
which the source code depends.

3.1.3 What to Do on a Successful ECI Build
The client’s standard CI build is already responsible for producing a release-ready
distribution and corresponding source label, so what can you usefully do with a
successful ECI build? It’s always good to know when everything is working together,
so marking the client source with an appropriate label is a good practice. You can
automate it so it’s zero effort, and in most modern Source Control systems labeling is
a cheap, and fast, operation.

However, you know that the client build now passes all of its tests against a new
version of the server, so it’s also useful to automatically update the client’s last-
known-good server version so that developers, and future client builds, are up-to-date
with the server version.

3.1.4 What to Do on a Failed ECI Build
There are 2 possible causes of an ECI build break:

The source module (the client module in our example) is internally broken.
There is a discrepancy between the source module and the latest versions of the
dependencies.

Enterprise Continuous Integration Using Binary Dependencies 197

The first of these should also be picked up by standard CI processes. If an ECI
build fails in this way we should check that the standard CI process has failed in the
same way.

Breakages of the second kind are the feedback that ECI provides beyond single-
module CI. There are various reasons why such a situation can have occurred:

A compilation error may indicate a change in the interface of the server module. In
this event, the development team could consider using deprecation cycles to avoid
breaks between modules.
A breaking test could indicate that the client code was relying on ‘accidental
behavior’ of the server code. In this case the client code should be updated.
A breaking test could also expose an untested part of the server code. In this case
the server module would need updating, preferably including a new test that would
simulate how the client code had broken the old code.

3.2 Versioning

So far we have made a few assumptions with respect to versioning:

We do not need to worry about the versions of chained dependencies (e.g. the
dependencies of the server module itself.)
Versions of the server module increase linearly, with no branching of versions.
If the server module is branched, it is always appropriate for the client to build
against the trunk version of the server, rather than against a stable branch.

The first of these is a complicated area beyond the scope of this paper. A solution to it
would allow us to perform binary dependency-based ECI for scenarios where we’d
like any module in a complex dependency tree to cause an integration attempt for all
dependent modules.

The second two points do not require assessment if dependency modules are never
branched, but if they are we have some decisions to make. We’ll have an introductory
look at this area in the rest of this section.

3.2.1 Aside: Continuous Integration and Branching
Extreme Programming steers towards a model of continual release, and source tree
branching is not required in such an ideal model. However, due to business concerns
many agile development projects can’t release to the actual customer at the end of
every iteration (especially if iterations are 1 or 2 weeks long.) Typically a
development team will construct a release branch for fixing any bugs that may appear
in the release, but still be able to carry on continual development on the trunk.

In such a case, it is worth using the same CI process on the release branch that is
used on the trunk, e.g. to use the same automated build, testing, and distribution
techniques. However, if the CI process publishes distributables and performs labeling,
how do we perform CI for both the trunk and the branch in a non-conflicting manner?

A good answer is to do the following:
Use different CI instances for each code line.
Use an appropriate version numbering scheme so that the distributables and
labels produced by each CI instance are distinguishable from each other.

198 M. Roberts

3.2.2 Targeting a Project at a Branched Dependency
In our ongoing example, it may be necessary to target the client code at a branched
version of the server module. When branching the server, we would implement 2
standard CI processes (one for the branch and one for the head.) The branch CI
process should publish a ‘branch-latest’ distributable and the ECI process for the
client module should be updated to use this branch-specific version, rather than the
latest trunk version.

3.2.3 Ranged Versions and Published Interfaces
What we have done above is to create a ranged version. E.g. if the branch of the
server defined the 1.2 version range of the module, we are saying that the client
module should be able to build against 1.2. * (any 1.2 version) of the server.

The server trunk could now be considered the 1.3 version range. The differences
between 1.2 and 1.3 may include an update of the ‘published interface’ [9] of the
module.

4 Example – Implementing Enterprise CI in .NET

Now we have a design for ECI, how do we implement it? For Java and .NET the tools
already exist since we can use standard CI and build applications. In .NET
specifically we can use CruiseControl.NET [4] and NAnt [10]. There are various other
.NET build and CI tools (Draco.NET [11] and Hippo.NET [12] are alternative CI
tools, and MSBuild is an alternative build tool to be released as part of .NET 1.2)

We will follow on with the client / server example and will assume that the client
depends on a ‘1.2’ branch of the server. We use NAnt and CruiseControl.NET as our
build and CI tools.

4.1 Defining the Distribution File Server Directory Structure

We are implementing ECI using binary dependencies, so let’s start off by setting up
our dependency distribution file server structure. Below is a directory tree that would
be created by the 3 individual ‘atomic’ CI instances (1 for the client, 1 for the server’s
1.2 branch, and 1 for the server’s 1.3 trunk).

Enterprise Continuous Integration Using Binary Dependencies 199

4.2 The Client Build Script

We now setup a NAnt build script for the client. NAnt uses targets to define actions to
happen during the build. Our build script needs a target to retrieve dependencies (get-
dependencies), and a main target (all) that makes sure this happens before the rest of
the build occurs. The server-version number is specified in a property, and this can be
overridden by the environment calling the NAnt script. The server-version property
enables us to specify exactly which server distribution file to use.

4.3 The CruiseControl.NET Config File for the ECI Build

Now we can create a CruiseControl.NET instance for our ECI build. We do this by
setting up a configuration file like the following. It has 2 critical sections:
1. A sourcecontrol section which defines where to check for modifications. We look

in 2 locations – on the filesystem to check for server version 1.2 changes and in cvs
to check for client changes.

2. A build section which defines what to build when a change is detected. It runs the
NAnt build tool, and specifies the client project’s build directory and build script
(which configured in the previous section). Importantly it overrides the server-
version property to always use the latest version of the server.

It is the check of the server distribution directory, and the override of the server-
version property that would differentiate this from the client’s normal configuration.

200 M. Roberts

5 Other Solutions

5.1 Continue to Use Atomic Code Lines

Our motivations for Enterprise Continuous Introduction were 2 possible issues that
can occur in medium-large development projects:

Build process too slow
Requirements for separated delivery of different components

The best solution, if possible, may well be not to separate out code lines.
Enterprise Continuous Integration adds extra process to your team and so if (for
example) you could actually shorten your build times by reworking your tests, etc.,
then this would be preferable. We use several techniques for this in ThoughtWorks.
One related technique is to have 2 separate CI builds for one code line: one an
‘express build’ that just runs unit tests to give a basic idea of the success of an
integration; another a longer ‘full’ build that actually runs database processes,
acceptance tests, deployments, etc.

5.2 Enterprise Continuous Integration Using Separated Source Code Lines

A very different approach that some of my colleagues at ThoughtWorks have used
successfully on large teams is to not separate out the project into binary dependencies,
but instead to give different teams separated source areas (either on separated
branches or in separate source control servers.) Each team has its own CI process for
the code they are working on, but there are also ECI processes that attempt to
integrate the entire project’s code (both into and from each team’s code line.)

A similar approach is Gump [13] which tries to build the latest source versions of
various projects against each other.

6 Further Work

We have seen a design and corresponding implementation in .NET for Enterprise
Continuous Integration which will work for many scenarios. However, we have not
addressed the issue of ‘chained dependencies’, and specifically what happens when

Enterprise Continuous Integration Using Binary Dependencies 201

the versions of chained dependencies change. This area requires further work. .NET
supports ranged assembly version specification, so it is possible that this may be of
use in a .NET implementation.

Other areas affecting versioning that are worthy of investigation include:
Is it worth thinking about the difference between build- and run-time
dependencies?
What is a convenient way of expressing versioned dependency requirements in
build scripts and deployment artifacts?
Maven [14] includes some solutions towards these problems. It offers a way for

projects to define their structure and dependencies, and from this definition ‘builds’
the project to produce various artifacts. It also publishes and downloads built projects
using well structured, versioned repositories.

Apart from versioning, we could also address the following:
For projects consisting of lots of separated modules, would it be worth introducing
modules just for the basis of integration?
What tests should we run in an ECI build? Can we optimize the ECI build by only
running specific tests based on which dependencies have changed?

7 Summing Up

Extreme Programming defines a very useful set of practices and values that can be
used throughout agile software development, including the practice of Continuous
Integration. In this paper we have explored one way to solve scalability issues with
Continuous Integration by splitting up a project into several modules, and then using
Enterprise Continuous Integration (implemented with existing tools) to still gain the
feedback that single-project CI provides.

References

1.
2.
3.
4.
5.
6.

7.
8.
9.
10.
11.
12.
13.
14.

Beck, K.: Extreme Programming Explained, Addison Wesley (2000)
Fowler, M., Foemmel, M.,: http://martinfowler.com/articles/continuousIntegration.html
Hunt, A., Thomas, D.: The Pragmatic Programmer, Addison Wesley (1999)
CruiseControl: http://cruisecontrol.sourceforge.net/
CruiseControl.NET: http://ccnet.thoughtworks.net/
Berczuk, S., Appleton, B.: Software Configuration Management Patterns, Addison Wesley
(2003)
Evans, E: Domain-Driven Design, Addison Wesley (2004)
Fowler, M.: Patterns of Enterprise Application Architecture, Addison Wesley (2003)
Fowler, M: http://martinfowler.com/ieeeSoftware/published.pdf
NAnt: http://nant.sourceforge.net/
Draco.NET: http://draconet.sourceforge.net/
Hippo.NET : http://hipponet.sourceforge.net/
Apache Gump : http://jakarta.apache.org/gump/
Apache Maven : http://maven.apache.org/

Agile Project Controlling

Stefan Roock and Henning Wolf

it-wps GmbH, Vogt-Kölln-Str. 30,
22527 Hamburg, Germany

{stefan.roock henning.wolf}@it-wps.de
http://www.it-wps.de

Abstract. Agile methods like eXtreme Programming (XP, cf. [2]) are grass
rooted. They derive from practicioneers and focus on their needs. Therefore,
at the beginning, project controlling was not in the focus of agile methods. The
paper shows how to integrate simple mechanisms for project controlling.
These mechanisms address both developers and management needs.

1 Introduction

Project controlling covers the processes and rules within project management to
ensure that the project goals are met. One key idea of project controlling is to
measure the current state of the project. From this base it is possible to create a
prognosis of the project future. Will the project be able to reach its goals in time on
budget?

Often it is assumed that a complete requirements specification and an architecture
definition is needed to do this kind of project controlling. Every time a requirement
is fulfilled, the project leader can close it. Tracking closed vs. open requirements
gives an idea about

the velocity of the project
the progress of implementation
a prognosis for the deadline

Agile methods claim that in most cases a complete requirements specification is an
illusion. Instead the requirements specification is incomplete, inconsistent and
continuously changing. These moving requirements have lead to the perception that
agile projects are uncontrollable. Since project controlling needs a stable frame for
data a classic requirements specificiation is indeed not suitable for controlling agile
projects. This paper introduces hierarchical decomposition of requirements for
controlling large agile projects.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 202–209, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Agile Project Controlling 203

2 The SCRUM Way

In the SCRUM methodology (cf. [3]) development is scheduled for so called sprints,
each with a duration of 30 days. Programming tasks (stories in XP speak) are
assigned to sprints at the beginning of the sprints. During the sprint the assigned
stories must not change.

On the stable base of the assigned stories tracking is done for each single sprint. A
typical diagram is shown in Figure 1.

Fig. 1. SCRUM Sprint Signature

Based on such diagrams it is possible to control the development during a sprint.
If the prognosis shows that the developers are not able to implement all stories,
stories are removed from the sprint. If the developers work faster than expected,
additional stories are assigned to the sprint.

This kind of tracking is effective for short time frames like the SCRUM sprints.
But it doesn’t scale up to large projects since normally it is impossible to know all
stories of the whole project: The tracking base becomes instable again.

3 Hierarchical Tracking

While it isn’t possible to have a complete set of all stories for medium to large size
projects, it is always possible to have the big picture. Depending on the project size
the big picture could be:

for small projects: the set of all stories
for medium size projects: the set of all features (a feature is a set of stories)

204 S. Roock and H. Wolf

for large projects: the set of all subsystems (a subsystem has a set of features)
The elements of the big picture can be used for project tracking as long as the sets
are stable and small (should be less than 100). Figure 2 shows the possible
subsystems of a large project.
The subsystems are not detailed upfront, but on demand. When the developers start
to work on a subsystem the feature set is specified. Then the developers go on with
detailing features into stories.
The subsystems can be linked via the features to the stories and therefore to the tasks
of the developers. Whenever a story is completed it can be computed how many
stories of the current feature are completed. Knowing the progress of the features
allows us to compute the state of the current subsystem which leads us to the
progress of the whole project.

Fig. 2. Subsystems of a large project

4 Estimation with Effort Points

Counting stories, features and subsystems may be too rough for project controlling.
The efforts needed to implement two stories may vary a lot. The same applies to
features and subsystems. Therefore we use effort points (EP) to weight the
complexity of items. Stories are weighted with story effort points (step), features with
feature effort points (feep) and subsystems with system effort points (syep)1.

The estimation by effort points defines the complexity of items of the same level
(subsystem, feature, story) relative to each other. A subsystem with 3 syep roughly
needs three times the effort of a subsystem with 1 syep. In our it is quite easy to
estimate this relative complexity. After estimating the complexity of the subsystems
of a project we go on estimating the features of a few subsystems and then the stories
of a few features. With simple mathematics we get formulas for transforming syep,
feep and step into each other. Thus we get an estimation of the whole project without
knowing most of the features and stories. Figure 3 shows an example with the
subsystems Customer, Order, Accounting and Production.

1 Using abstract measures is well known from Function Point Analysis (cf. [1]).

Agile Project Controlling 205

Fig. 3. Estimation with effort points

The figure shows that the 3 feep of the feature Edit Customer relate to 5 step (for the
three stories). Therefore 1 feep computes to 5/3=1.67 step. In the subsystem
Customer 2 syep relate to 11 feep, which means that 1 syep computes to 11/2=5.5
feep. In summary 1 syep computes to 5.5*1.67=9.19 step.

When we know how much effort we need to implement a step we can compute
estimated efforts for features, subsystems and the whole project. Assuming 15 person
hours (peh) for a step in the example above we can compute that we need 15 peh *
1.67 = 25 peh per feep and 25 peh * 9.19 = 230 peh per syep. Since the whole
project has 12 syep the complete project effort is 230 peh * 12 = 2,760 peh.

The effort needed to implement a step may vary. The basis for the effort
calculation in the given example are 3 stories with 5 step for just one feature of one
subsystem. We just finished 75 peh of 2,760 peh for the whole project, that
represents just 2%! If we assume 20 instead of 15 peh for a step, our result would be
33% higher (3,671 instead of 2,760 peh). Evidently a brighter basis leads to a better
confidence in our estimation. It is helpful to implement stories of different features
and even different subsystems at the beginning. In many cases knowledge,
conditions, requirements and used technology vary a lot between features and
subsystems. Our first estimations might be fuzzy, but they give an idea about the
dimension of the project. The better our basis, the sharper our estimation becomes.

5 Putting It All Together

Starting up a new project we sketch the big picture. In larger projects we will end up
with a list of subsystems. We identify a few subsystems which we investigate further
for their features. Few of the features are then broken down into stories.

During the initial exploration phase we implement some of the stories to compute
the initial velocity of the team. Based on the computation scheme described above we
give a rough estimation for the whole project.

Agile projects normally don’t implement subsystems and features sequentially.
This would conflict with the idea of short releases. For a usable release one would
need some features of several subsystems. This is similar for most features. In the

206 S. Roock and H. Wolf

beginning the users only need a part of each feature. Therefore we count completed
stories and compute the completion percentage of features and subsystems (see
Figure 4).

Fig. 4. Project completeness in agile projects

SCRUM-like diagrams show us the progress of the project on different levels. An
iteration completion diagram shows progress for the current iteration. For this
diagram type we simply count open step every day. The release completion diagram
shows the progress for the current release. Depending on the length of the release we
count open step or compute open feep. Usually this diagram is updated every week.
The project completion diagram shows the progress on the level of subsystems. It is
updated every week or every few weeks.

In most cases all project participants including customer and all developers get the
information. This is especially necessary in situations where the estimation must lead
to reactions like skipping some of the stories or features. In some cases when our
customers insist of making fixed-price projects we only use the information
internally.

6 Experiences

The concepts described so far have to be adapted to the project situation at hand. We
have made following experiences with the presented practices:

Most business sectors have well established concepts of organising
systems – often oriented at departments. While the relationships between
legacy systems often are tangled, the division into subsystems proved
stable. In most cases it is possible to get a complete list of all subsystems
of the project in short time.
Business analysts and experienced developers mostly have a good
understanding of the complexity of the subsystems. Therefore estimating
the subsystems with system effort points becomes quite easy.

Agile Project Controlling 207

The used levels for hierarchical estimation and tracking have to be
adapted to the project situation. For a lot of projects stories and features
are sufficient and the subsystem concept must not be used.
Some project trackers prefer to track remaining efforts in person days
directly and not in effort points. This is the original SCRUM way of
tracking but leads to instability when the productivity of the team varies.
Estimations based on effort points are not influenced by varying
productivity, estimations based on person days are.

There are limitations to the approach presented in this paper. The following
prerequisites are essential:

You need to create a rather complete and stable list of subsystems for the
project.
You need to be able to measure or estimate the productivity of your team.
If you can’t, your project is still in the exploration phase.

6.1 The Project Beaker Experience

Project Beaker was running several years when we joined in. The main problem of
the project was that nobody really knew the exact project state. The only thing clear
was that once again an important deadline was exceeded.

Although the project wasn’t agile, but had a waterfall-like style, the project
controlling instruments presented in this paper proved useful. We collected all
known open requirements and discovered three types: change requests, use cases and
subsystems. We interpreted change requests as stories and use cases as features.
Then we estimated the efforts with effort points for the three levels and calculated
the remaining effort of the project in effort points.

The fact that the project was active for quite a long made it possible to analyse the
previous productivity. We estimated a representative set of completed change
requests and use cases to compute the needed hours per effort point (result: 11 person
hours per effort point). Based on this analysis of the previous productivity we created
SCRUM-like completion diagrams. While programmers and management had severe
communication problems these diagrams enabled effective communication. The first
time during the project the management saw a visualisation of the project state and
discussions between management and programmers about the future directions of the
project became possible.

Based on the discussions several actions were proposed to get the project back on
the timeline. The idea of introducing new programmers into the team was
controversial: While management assumed a linear growth in productivity the
project team suspected that it would take a very long time for new programmers to
become acquainted with the system. In this complicated situation the completion
diagrams again proved useful. We assessed the effects of introducing new
programmers to the teamusing a worst a best case scenario. Based on these worst and
base case effects of introducing new programmers (and some other actions) we
created new completion diagrams. Figure 5 shows the new completion diagram with

208 S. Roock and H. Wolf

releases R1 to R4. Since each release has its set of stories the remaining efforts
increase after every release.

Obviously the gap between best and worst case increases with time but it became
clear that there was a chance to meet all deadlines. It also became clear that the risk
of failing to meet some or all of the deadlines was high. By-and-by it was possible to
check the assumptions of our prognosis: We included the measured productivity into
the diagram and compared it with the computed best and worst case productivity.
(Side note: Our assumptions were right that the real productivity was in between best
and worse case and it was closer to the best case.)

Fig. 5. Completion Diagram of Project Beaker

6.2 The Project Bear Experience

Project Bear is organized in 2 phases. Currently we stand at the beginning of phase 2
and have just fixed the contract. Phase 1 was a long exploration phase and produced
a lot of prototypes. Phase 2 is a fixed-price project with variable scope. We defined
requirements that are “feature size” and made them part of the contract. During
development the customer may change requirements as long as the sum of feature
points isn’t increased.

Due to the long exploration phase our estimation basis was quite stable. We used
our experiences in finishing features for this customer. The project consists of four
big systems for four different organisational units. Experience tought us, that the
effort to finish a feature is different for each organisational unit. This had a strong
impact on our project estimation.

We started out with a first rough estimation for the project based on the idea of
hierarchical effort points described in chapter 4 above. This only took a few days of

Agile Project Controlling 209

discussions with customers to end up with a dimension of 4,000 person days for the
whole project. Unspecified circumstances led to an arrangement that limited the
effort to 2,800 person days. In discussions between customer and software developers
the feature lists were reworked to give full particulars and better estimations.

The hierarchical tracking is now to be installed to track the project progress.
Hierarchical structures were also necessary to do the iteration and release planning
so that reasonable releases will be delivered to the customer.

Of course we are not certain, if our estimation of extra effort for producing
productive software instead of prototypes is appropriate. Fortunately we made some
experiences with 2 smaller systems we delivered in phase 1 which led to noticable
additions to the effort estimation.

References

1.

2.
3.

Albrecht, A.J..: Measuring application development productivity, in: GUIDE/SHARE:
Proceedings of the IBM Applications Development Symposium. Monteray. 1979.
Beck, K.: Extreme Programming Explained. Addison-Wesley. 1999.
Schwaber, K. , Beedle, M.: Agile Software Development with Scrum. Prentice Hall. 2001.

Leading Fearless Change—Introducing Agile
Approaches and Other New Ideas into Your

Organization

Linda Rising and Mary Lynn Manns

The authors of the forthcoming patterns book on introducing innovation into
organizations present their work in a dialogue about the trials and tribulations
of introducing agile approaches into an organization.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, p. 210, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Automated Generation of Unit Tests for Refactoring

Bartosz Walter and

Institute of Computing Science, University of Technology, Poland
{Bartosz.Walter, Blazej.Pietrzak}@cs.put.poznan.pl

Abstract. The key issue for effective refactoring is to ensure that observable
behavior of the code will not change. Use of regression tests is the suggested
method for verifying this property, but they appear to be not well suited for
applying refactorings. The tests verify the domain-specific code relations, and
often neglect properties important for the given refactoring or check the ones
that actually change. In the paper we present a concept of generic refactoring
tests, which are oriented toward the refactorings rather than the code. They can
be generated automatically, are able to adapt to changes introduced by
refactorings and learn the specifics of the tested code.

Keywords. Refactoring, unit testing, automation

1 Introduction

Software refactoring is a key to agile software maintenance [1]. It not only helps to
find bugs more easily, but, what is more important, to keep it readable and ready for
changes [3]. If applied regularly, it benefits in shorter learning curve and easy
accommodation of possible changes. However, the necessary condition for effective
refactoring is to ensure its correctness. Any modification that may introduce new bugs
to the software is more dangerous than untidy code: it requires additional time wasted
on debugging the formerly working code.

Unit testing [2] is commonly suggested as the primary method of verification for
refactoring. Typical test cases are used to check if domain-specific relations in the
code persist and bug has been re-injected . Refactorings, however, aim at different
goal. Although they have to preserve the software functionality (and the regression
tests as well), but they also introduce new, independent from the business domain
properties that must be satisfied or break some of some existing ones. Effectively,
many of ordinary test cases fail after refactoring, and some other need to be created.
The considerable effort required to adjust the testing suite at every single refactoring
indicates that unit tests are inappropriate for refactoring. There is a need for tests
suited exclusively for refactoring that would fix the deficiencies of unit tests.

In the paper we present a concept of refactoring tests, which are intended to ease
the process of testing the refactorings. These tests are created exclusively for the
refactoring purposes and check the properties specific for the transformation being
applied. In subsequent sections we describe the requirements for them and their
suggested implementation.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 211–214, 2004.
© Springer-Verlag Berlin Heidelberg 2004

212 B. Walter and B. Pietrzak

2 Concept of Refactoring Tests

Unit testing plays an important role in refactoring. It comes from the observation that
the testing suite collected during the everyday development is a powerful tool
preventing from unwanted functional changes[l]. According to the green bar rule [2],
all tests must run every time they are executed, so they act like anchors: protect the
ship (code) from drifting out. Since XP assumes that tests are developed along with
code, refactoring based on them should be relatively inexpensive and error-resistant.

Unfortunately, it is not always the case. The belief is based on an optimistic
assumption that the testing suite is complete and consistent. Actually, it is not the
number of tests that matters; it depends rather on the invariants being tested.

There are a few reasons why ordinary test cases are not well suited for refactoring:
They are developed for the code, and therefore are focused on retaining relations
specific to that code and, consequently, are closely related to it. Refactorings,
however, may require different properties from those in the business area.
The primary use of unit tests is to protect the code from injecting regressive bugs.
In other words, every test remains unchanged and verifies the same invariant
forever. Refactoring, while preserving some code properties, breaks other, and also
break the unit tests. This is misleading for programmers.
Unit tests used for refactoring purposes are assumed to run both before and after
the change is made to verify if a given property still exists. However, in two cases
the tests are legitimate to fail after the code is refactored: either the tested property
is changed or removed, or is expressed now in a way that breaks a test.
Unit tests usually do not change. On the other hand, refactoring enforces changes
in the code (and in tests as well) not only to accommodate simple renames or
replacements, but it may also introduce semantic changes.

These deficiencies show that there is a need for tests suited exclusively for
refactoring, which would overcome some of the limitations mentioned above. The
requirements for the proposed refactoring tests follow:

Refactoring tests should be related to a given refactoring, not to the code. They
represent invariants and properties resulting directly from the transformation.
They are logically independent from the ordinary, domain-oriented test cases,
and are executed only while applying the refactoring. Obviously, the refactoring
tests can be later used for regression testing, but it is not the primary use of them.
However, their interface should be compliant with unit tests. It allows running
all tests in the same environment.
Refactoring tests may change during the transformation. Unit tests are
expected to run regardless from the code changes, and the refactoring tests should
also comply with that rule.

The aim for the refactoring tests is to support the code analysis in verifying
correctness of the source code transformations. Several preconditions for many
refactorings cannot be proved statically, and the gap may be filled by refactoring tests.
Obviously, they only provide support for detecting functional changes, but usually it
appears sufficient for effective programming. Among refactorings provided by
Fowler there are a few that can be verified with a well-known, fixed sets of tests [5].
Refactorings of that group are intended beneficiaries of the proposed refactoring tests.

Automated Generation of Unit Tests for Refactoring 213

3 Test Adaptation Mechanism

Although refactoring tests verify well-known, fixed properties in the code affected by
the transformation, it is still the programmer who is responsible for writing them,
which requires considerable effort.

Fortunately, it can be significantly minimized. A refactoring test actually builds up
on two pillars: (1) a property it verifies and (2) actual code-related data: class names,
methods, interfaces etc. Such generic, code independent tests are called test templates.
Unlike an ordinary test, a test template has to be implemented once only and later can
be reused for generating actual, code-specific tests.

The need for tests adaptation is another issue. As an example, let’s consider
Encapsulate Collection refactoring [3]. It replaces direct access to a collection with
delegate methods provided by the collection owner. After the refactoring is complete,
the destructive methods on the collection are disabled. Instead, newly created
delegating methods become available. A test case for add() method, although
syntactically correct, would therefore fail for the refactored code. To avoid this, the
refactoring tests should seamlessly adapt to the changed interface.

The proposed mechanism assumes that a single refactoring test is actually
composed of two test case sets: pre-tests and post-tests, executed before and after the
change is made, respectively. Since they also can be expressed as test templates, the
doubling the number of tests is meaningless. The subtests are invisible from outside:
the refactoring test implements the Strategy pattern [4] and chooses one of them for
execution, depending on the phase of refactoring.

It is important to notice that the multiplicity of the pre- and post-tests may differ
from 1:1. Coming back to the Encapsulate Collection example, a pre-test for add()
method checks if an object is successfully added to the collection. The refactoring,
however, is expected to disable direct add() calls on collection and produce a new
method addClass() in the owner class, that will take its responsibility. Thus, two post-
tests are required: one for the existing add() method (that should leave collection
unchanged) and another for a newly created method addClass() (which should
succeed).

4 Learning Tests

The test templates are sufficient for generating simple tests. However, some
properties of the tested code that may lead to differences in results of pre- and post-
tests, are related to the specific implementation. They cannot be hardcoded in
templates and must be determined at runtime. To avoid running the software, a new
kind of pre-tests is introduced: the learning tests.

Unlike other pre-tests they are not required to pass. Their sole responsibility is to
learn specific implementations by sampling the code if it behaves in a particular way.
A failure is not an error indication, but a source of information about the code. The
acquired results are used for generating post-tests that better fit the code internals.
Learning tests help to ensure that the post-tests will expect the same behavior as the
one that program presented before the transformation.

214 B. Walter and B. Pietrzak

Again, the add() method in Collection interface will serve as an example. Different
implementations of that interface may vary, and the programmer does not need to
know how particular add() method in the code acts. S/he rather expects the code to
preserve the behavior after the refactoring is complete. To make the post-tests
immune from possible failures at inserting null values, a learning test checks if the
collection accepts nulls. Depending on the result, the post-test considers the failure of
the same operation as an error (if pre-test succeeded) or a success (if it failed before).

The overall algorithm for using the refactoring tests is following:
1.

2.
3.

Programmer generates pre-tests and learning-tests from existing templates for that
transformation. The tests are then executed and their results are stored.

Programmer refactors (manually or automatically) the code.
The post-tests are generated and executed. The results are compared to the pre-tests

footprint and evaluated. Any difference indicates that refactoring was incorrect.

5 Conclusions

The presented concept of refactoring tests has been developed as a plug-in for Eclipse
platform for Encapsulate Collection refactoring. It is a step towards automation of
refactoring in the area that previously was subject to manual-only manipulations.
They are created and executed for the sake of a given refactoring, not for regression
purposes, which makes them different from ordinary unit tests. They exploit the idea
of test templates, which relax the programmer from coding them. Refactoring tests act
like proxies for pre-tests and post-tests, which allow keeping them working regardless
of the changes resulting from a refactoring. And finally, they can learn the program
specific implementation and adapt to its expected behavior. Thanks to these features,
testing the refactorings can be easier and less error-prone.

Acknowledgements. This work has been supported by the Polish State Committee
for Scientific Research as a part of the research grant KBN/91-0824.

References

1.
2.

3.
4.

5.

Beck K.: Extreme Programming Explained. Embrace Change. Addison-Wesley, 2000.
Beck K.: Gamma E.: Test infected: Programmers love writing tests. Java Report, 3(7), 1998,
pp. 51-56.
Fowler M.: Refactoring. Improving the Design of Existing Code. Addison-Wesley, 1999.
Gamma E. et al.: Design Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.
Walter B.: Extending Testability for Automated Refactoring, in: Succi G., Marchesi M.
(Eds.): Extreme Programming and Agile Processes in Software Engineering, Lecture Notes
in Computer Science 2675, Springer Verlag, 2003, pp. 429-430.

XP: Help or Hindrance to Knowledge Management?

Hans Dermot Doran

Starscions,
Im Ahorn 22,

8125 Zollikerberg,
Switzerland.

hans.doran@ibhdoran. com

Abstract. Whereas XP has established itself in the project managers’ repertoire,
there are still many issues concerning the administrative implications
surrounding XP teams and the organisations within which they operate,
Knowledge Management being one of those issues. This paper examines the
interplay between XP and KM principles and seeks to show that while “pure”
XP is incompatible with KM, agile KM can be achieved with few modifications
to the XP process.

1 Introduction

“Software developers possess highly valuable knowledge relating to product
development, the software development process, project management and
technologies” [2].

Arguably, if this were the case then papers like this wouldn’t need to be written
and conferences on the subject mater wouldn’t need to be held. But in technology
organisations, the growth and maintenance of skills in these areas are vital to their
success; the ability to prove that knowledge and skills can be efficiently utilised,
provides a unique selling proposition for investors and customers alike. This allows
management to view the acquisition, realisation and commissioning of development
projects as a strategic exercise, abstracting, if necessary, the value drawn from such a
project from the original projects aims and target industry.

From a project manager’s point of view, XP is the tool of choice to develop
innovative projects, read high-risk high uncertainty, precisely the kind of projects that
are of strategic interest. However XP suffers from the perception of lacking
transparent and definable milestones and other means by which management can;
measure, in their terms, the progress of the project; fulfill their duty of supervision;
have at their disposal enough material to enable founded discussions on what strategic
gain has been achieved by the project results and the manner in which they were
achieved.

The benefits from effective Knowledge Management (KM) are clear, for the
project manager it is a risk reducing resource, for management it is a tool that allows
them to consolidate and articulate their employees specific skills, further enhancing
the value of the company and its position on in the market. Yet, traditional KM

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 215–218, 2004.
© Springer-Verlag Berlin Heidelberg 2004

216 H. Dermot Doran

conjures an image of heavy investment, expensive tools and dedicated staff, as far
removed from the concept of an agile methodology in the operative, and lean
management in the strategic, as one may wish to get. Indeed it is only recently that
experts are beginning to develop KM solutions aimed specifically at the software
development industry rather than simply modifying classic techniques [1].

We shall review some knowledge relevant concepts, examine the intrinsic support,
and its limitations, that XP has for KM and then draw some conclusions.

2 Concepts of Knowledge

It is generally accepted that there are at least two categories of knowledge. Explicit
knowledge, that which can be articulated, written and described, and implicit or tacit
knowledge that hidden quantity, embedded in the singular or collective memory and
infrastructure of the company. The relationship between information and knowledge
can be described by:

“Information becomes knowledge once it is processed in the mind of an individual,
which then becomes information once it is articulated and communicated to others.
The receiver can cognitively process the information so that it is converted back into
tacit knowledge.”[2]

This statement carries several important implications; tacit knowledge can only be
reproducibly stored as information and the quality of tacit knowledge is both
dependant on the quality of information and the cognitive abilities of the receiver. In
other words the provenance plays a part in the quality of knowledge. In contrast,
explicit knowledge has generally undergone the scientific process; its provenance is,
or should be, irrelevant.

Data underlies all information. Data is converted to information by means of any
combination of normative or cognitive analysis, it being important to understand the
distinction and limitations between and of the two.

3 XP and KM

As indicated above, software engineering knowledge spans development
methodologies, product development, technologies and project management. XP blurs
the distinction between a software development methodology and a project
management tool allowing it to be viewed as one. In fact, since XP is a collection of
best practices [4], which are in themselves an articulation of knowledge, XP may be
considered an example of tacit structural knowledge. That is: a collection of best
practices, the peer accepted results of experience structured into a methodology, allow
the initial project management to benefit from this knowledge without having to
actually acquire it. Documented best practices are also examples of tacit structural
knowledge. For example coding conventions that enable the programmer to accelerate
his understanding of a program by structuring the way it looks and is described. It
sounds obvious but lots of programmers learnt the value of coding conventions the

XP: Help or Hindrance to Knowledge Management? 217

hard way. Placing this knowledge in an open document as a collection of
recommendations allows people to benefit from past experience [3] without having to
think about the reasons why certain things are done in a certain way; their work is
structured more efficiently.

The principles behind XP actively encourage its own mutation, enabling the
integration of newly gained process knowledge back into the process, thus
continuously maintaining the structural knowledge.

The primary function of the on-site customer is to contribute to the growth and
utilisation of knowledge concerning the problem domain. This is then captured in the
solution architecture; the residue, in the histographical sense, of the planning game
and assorted other pieces of paper. The KM relevant effect of using XP is to make
implicit much of the problem domain knowledge as the learning-by-doing system
slowly integrates this knowledge into the product. This enables a much higher quality
of problem domain knowledge than achieved by working from a specification but it is
by definition implicit.

The growth and maintenance of technology knowledge, at least that demanded by
the project, is also well supported by XP practices. The test first practice can be
applied to external libraries and frameworks just as easily as to ones own code and the
policy of small iterations allows for efficient forays into unknown territory.

At this point it is clear that XP, if carried out in the intended spirit, strongly
supports implicit knowledge management without placing any extra burden on the
developers. It does require an active management to recognise and guide this
knowledge growth and it must be realised that this knowledge gain is wholly
contained within the scope of the project. There are no intrinsic mechanisms available
to transfer this knowledge to the rest of the organisation. At this point specific KM
measures must be utilised.

One none KM-specific approach is to use the post mortem to determine knowledge
gained, now accepted as another industry best practice [5]. Such a session can be used
to articulate what is considered to be the growth in all forms of relevant knowledge
types. It is not fully suitable for this purpose as a post mortem is an effectively post-
hoc and quasi-canonical summation, which makes objective re-interpretation in the
light of later experience difficult.

A final note on maintenance; the issue of traceability, the ability to link between
requirements and code structures, is not given in an XP project. Taking the line that:
since all solutions are the simplest and that the solution is it’s own documentation,
therefore this is not an issue, is both logically and practically untenable. Logically
because the word simple requires context, and if the context is not known, there is
always a simpler solution. The author experienced the practical failure of this
approach, a product specification had to be created post-hock before maintenance and
feature extension could be achieved with functional consistency regardless of the
state of the code. Whereas maintenance can proceed using XP practices [6,7], there is
a clear need to explicitly interface knowledge gained during development to the
maintenance crew.

218 H. Dermot Doran

4 Conclusion

The XP methodology is a framework, which acts as an a priori knowledge base,
continuously maintained by its use and modification. The knowledge gain is restricted
to the scope of the project. We have shown that XP also acts as a framework within
which problem domain knowledge can be generated and preserved, sometimes of
exceptionally high quality. Like process knowledge, it is largely tacit with salient
items embedded in the program and its architecture. There are question marks over
the quality and usability of knowledge stored in this way.

Likewise, project relevant technology knowledge is facilitated by XP practices, this
knowledge being embedded in the interfaces to this technology and the method of its
implementation.

We have touched on the fact that the ability to articulate unique knowledge can be
important for the development and self-identity of a company or team. We have also
indicated that a re-interpretation of assumptions concerning company knowledge may
be beneficial in the light of later experiences but this process can only be fully
successful if there is original information and data available. This is not given, due to
the lack of proscribed project documentation, so this important process is hindered by
the XP methodology.

In theory, KM can be totally implicit within the scope of a project, since there is no
method to transfer this implicit knowledge intact out of the project scope, some of this
knowledge must be made explicit. As post-mortem is only partially suited to this, it is
recommended that this knowledge be continually articulated during the development
process. There is therefore an urgent need for the XP community to revise its
philosophy on tools and documentation. This echoes the calls by those attempting to
certify XP development teams according to ISO9000 [8].

[9] Discusses some experience on these matters with references to simple tools.

References

1.

2.
3.
4.

5.

6.

7.

8.

9.

Managing Software Engineering Knowledge. (Eds.) Arum A., Jeffry, R., Wohlin, C.,
Handzic, M., Springer Verlag, Berlin Heidelberg 2003.
Preface. Ibid.
Lindvall, M., Rus, I. Knowledge Management for Software Organizations. Ibid
Beck, K., Extreme Programming Explained. Addison-Wesley, Reading, Massachusetts.
2000.
Birk, A. Dingsoyr, T., Stalhane, T., Postmortem: Never Leave a Project without It. IEEE
Software 19:43-45 May/June 2002.
Doran, H.D., XP: Good for Anything other Than Software Development? (Eds.) Marchesi,
M., Succi, G., Proceedings International Conference XP2003. Springer Verlag, Berlin
Heidelberg 2003.
Poole, C. Huismann, J.W., Using Extreme Programming in a Maintenance Environment.
IEEE Software 18:42-51 November/December/2001.
Marchesi, M., Agile Methodologies and Quality Certification. Keynote Speech XP2003.
Genoa. 2003.
Doran, H.D., Poster Session. International Conference on eXtreme Programming and
Agile Processes in Software Engineering XP2004. Garmisch-Partenkirchen. 2004.

Test Driven Development and Software Process
Improvement in China

Kim Man Lui and Keith C.C. Chan

Department of Computing
The Hong Kong Polytechnic University, Hung Hom, Hong Kong

{cskmlui, cskcchan}@comp.polyu.edu.hk

Abstract. Developing areas in China are attracting increasing investment in
manufacturing. This has increased the local demand for software and, conse-
quently, demands on local software teams. Such teams, typically small, inexpe-
rienced and suffer high personnel turnover, often produce defective products.
As software process improvement models are unsuitable for such teams, re-
search was conducted applying a test-driven development (TDD) approach.
TDD quickly improved the overall team performance. Our findings are
applicable in other Asian developing countries.

1 Introduction

Time pressure makes software teams reduce testing cases, or postpone part of them so
that the program can be promptly released. This affects software quality even if the
system is developed by talent programmers. The situation gets worsened if the system
is developed by inexperienced software teams as such team members are generally not
skilled at time estimation or quality assurance, and do not quickly learning from their
mistakes. As China is a world factory, many manufacturing plants are built in devel-
oping areas and they are the source of a strong demand for custom-made commercial
software. Consequently, the number of software teams there has increased exponen-
tially. These teams are local, small, inexperienced and suffer from high staff turnover.
But, the demands of product quality and customer satisfaction require that these teams
improve their software processes. Unfortunately, heavyweight models like CMM may
not be appropriate for software development that uses such small, high turnover soft-
ware teams. Test Driven Development (TDD) [1] casts light onto the software process
improvement for inexperienced software teams .

2 Software Development in Developing Areas in China

In developed cities in China, well-trained and experienced developers are readily
available for software projects. However, China has many developing cities. The
trend in active rural industrialization is that manufacturing plants move from many
more-developed regions to the less developed so as to exploit lower-cost land, labor
and distribution channels. Consequently, numerous small local software teams, either

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 219–222, 2004.

© Springer-Verlag Berlin Heidelberg 2004

220 K.M. Lui and K.C.C. Chan

in-house or software house, have been established to provide system solutions. The
teams composed of local people are very greatly influenced by the local environment.
The gap between less-developed town and well-developed cities is huge in China.
Indeed, the difference is widening because developed cities have advanced them-
selves much faster than developing towns. We summarize the environmental charac-
teristics of developing areas.

Programmers are not good at English, which hinders them from gaining new
technical information on English-language web sites.
There are few books on software methodology available in translation. Most
books are about tools (e.g. Dreamweaver) and computer languages (e.g. Java).
Active industrial developing areas can be within 250 km of the modern cities.
This encourages people to seek opportunities in the nearby developed cities.
There are a number of small computer companies. Their business is mainly on
the hardware side. Generally, 80% of business is to provide hardware support.
IT education is focused on practical tools and computer languages, rather than
on software process engineering, software engineering, etc.

Managing local IT teams in such regions, we encounter a number of different
problems including a lack of experienced programmers and an extremely high per-
sonnel turnover. Often, once inexperienced programmers gain valuable development
experience, they would like to advance their career in developed cities. This leads to
high personnel turnover rates and frequent job handovers [5], Whether the software
teams are in-house or external to a company, they have common properties.

They are not well trained
They are low-cost. Month salaries range from USD 62.5 to USD 312.5.
They have fewer than eight members
They have a high proportion of inexperienced programmers
They have a high turnover of good members
They rarely consider trying new ways of solving old problems
They prefer step-by-step guidance when learning and applying new skills
They are willing to work long hours (as much as 50-55 hrs/wk)
They are willing to accept comments about their mistakes, yet are prone to
repeat the same kind of mistake.

Software process improvement (SPI) models like CMM is not practical for those
software teams because (i) cost cannot be justified as it takes time to train people and
to implement the model, and (ii) for a high turnover small team, a document driven
process does not seem to be a promising approach. Besides, SPI models emphasize
software capability and process maturity, instead of aiming at the problem of how to
manage inexperienced teams developing better software. The SPI models take a top-
down approach, starting at a process level such as project planning, and only later
considering the many lower level tasks. But, for inexperienced programmers, a bot-
tom-up approach could be much more effective. Adopting practices directly related to
programming like automated test cases quickly improves overall team performance
and hence the teams have a better chance of running software projects within budget,
on time and of producing quality work. We intended to adopt TDD to manage
inexperienced teams. From an SPI perspective, TDD enhances visibility and quality.

Test Driven Development and Software Process Improvement in China 221

It is practical as it is driven by a tool (XUnit), not by bureaucratic procedures. TDD
promotes self-discipline. All these contribute to software process improvement in
inexperienced teams. As TDD is a programming model more than an SPI model,
many important process areas are not addressed. However, TDD delivers values to
inexperienced teams and significantly improves system development in a shorter
time, at lower cost and for small high-turnover teams.

3 Test-Driven Development and Software Process Improvement

This section discusses the adoption of TDD by inexperienced software teams in
China. In 2003, we assisted two software teams from two companies in developing
areas in China to implement TDD to improve their system development. The per-
formance of the two teams adopting TDD and the other three non-TDD teams were
compared. We found that TDD greatly improved the following four areas.

(1) Task Estimation: usually, inexperienced people wrongly estimate resources
they need to complete their tasks. In particular, inexperienced programmers tend to
underestimate time and, as a result, they have to cut down on testing. In some extreme
cases they spend very little time on testing their code, with ratios as great as four days
coding to two hours testing. This has a substantial impact on task planning. The
situation greatly improved after the adoption of TDD. The reason is that it is easier to
estimate how long it takes to write unit cases than how long it takes to write a piece of
code. The estimation in their minds is divided into two steps: (i) think of what they
need to write for unit cases and estimate the time, and then (ii) estimate the program-
ming effort. This helps inexperienced teams better estimate the time need to complete
a task. Having the unit test first establishes a specific goal; the programmers can bet-
ter estimate the effort that will be required to write a program to pass the unit test (i.e.
to reach the goal).

(2) Progress Tracking: there is little value in the report of an inexperienced pro-
grammer that his or her team has completed 40% of its coding. There are a number
of reasons for this: (i) the code cannot be executed since it is incomplete; (ii) even if
the 40% of code were completed in four days, that isn’t to say that the remaining 60%
can be completed in the next six days; (iii) the inexperienced programmers are not
sure of how many lines the program will ultimately require, so the 40% is just a
guess; (iv) the report does not include the progress of testing, so even a report of
100% done is not useful as the code still has to be tested.

After the adoption of TDD, the programmers report in a completely different di-
mension. They can report how many unit cases have been written and what function-
ality they have covered. In addition, all written code has been tested and each piece of
code has its corresponding unit test. Now the programmers can provide an objective
assessment of their programming progress. Although this does not tell us how long
the developers will need to complete the program, it does help software managers
oversee their activities. In a word, TDD provides managers with better visibility than
before.

222 K.M. Lui and K.C.C. Chan

(3) Discipline: inexperienced programmers do not follow consistent practices and
even where written guidelines are clearly established, they tend to work in an undisci-
plined way (i.e. their own way). After the adoption of TDD, the ability of inexperi-
enced programmers to conform to standard practice greatly improved. A number of
factors account for this: (i) writing unit tests is just as the same as writing code. TDD
does not require the production of documents or program comments, (ii) XUnit pro-
vides an excellent tool for automating their testing. (iii) Programming activities in
TDD are easily tracked with an XUnit tool. If owing to personal indiscipline or TDD
misinterpretation the developers do not follow the framework, they can be quickly
identified and counseled.

(4) Software Quality: after inexperienced teams have adopted TDD to develop
software, has software quality improved? As the different teams were writing differ-
ent commercial systems it is not possible to analyze defects on the same baseline,
however, we have collected some equally interesting defect-related data. We com-
pared how long programmers took to fix defects reported by users during user accep-
tance testing and production operations. In total, collected 643 defect cases from by
non-TDD teams and 212 defect cases from TDD teams. Further, as Figure 1 illus-
trates, while non-TDD teams were able to fix only 73 % of their defects in one day,
in the same time, TDD teams were to fix 97% of theirs. In short, TDD teams pro-
duced many fewer defects and fixed them much faster.

Fig. 1. Time required fixing defects by two kinds of inexperienced software teams

4 Contributions

This paper contributes to understanding how and why TDD can help small-
inexperienced software teams. TDD – as agile software process improvement – does
indeed improve their work processes. The lesson we learnt in this investigation may
be applicable in developing Asian countries, such as Thailand and Malaysia, which
share many characteristics with less developed areas in China.

References

1.
2.

Beck, K. Test-Driven Development by Example, Addison-Wesley, (2003)
Lui, K.M. and Chan, K.C.C. Inexperienced Software Team and Global Software Team
Edited by Gunasekaran, A., et al, Knowledge and Information Technology Management:
Human and Social Perspectives, Idea Group, Hershey, PA, pp 305-323, (2003)

Project Management and Agile Methodologies:
A Survey

Michela Dall’Agnol, Alberto Sillitti, and Giancarlo Succi

Center for Applied Software Engineering
Free University of Bozen

I-39100 Bolzano, Italy
{mdallagnol, asillitti, succi)@unibz.it

Abstract. This paper examines analogies and differences derived by the adop-
tion of Agile Methodologies (AMs) in a set of software companies from the
point of view of project management techniques. Data come from question-
naires filled in by twenty-one managers. The analysis of these questionnaires
shows that managers using AMs focus on people and process more than the
other managers do. The adoption of AMs seems to be a good starting point for
improving software development and customer satisfactory.

1 Introduction

Surveys covering over 8000 projects [1] indicate that the major sources of software
project failure lies less with shortfalls in formal methods skills and more with short-
falls in skills to deal with stakeholder value propositions.

Five of the top six reasons of failure are related to communications among devel-
opers and customers [2].

The updated Standish Group study, conducted in 2000, identified 10 software suc-
cess factors. The second most important factor is user involvement and the third is
experienced project manager. This means that many projects fail due issues related to
people and project management rather than technical [3].

Several recent studies [4] indicate that project managers are learning how to be-
come more successful at managing IT projects.

The aim of this work is the investigation of the main problems in software devel-
opment and the adopted solutions from the point of view of managers. The investiga-
tion is based on 21 interviews with software managers.

We adopt the Petroski’s views [5]: analyze the causes of failures can do more to
advance knowledge than all the successes in the word.

The main goal is to find out differences and analogies in software management
techniques derived by the adoption of Agile Methodologies (AMs) and their effec-
tiveness in the improvement of the software production.

This paper is organized as follows: section 2 and subsections describe the structure
of the research activity performed; section 3 shows the analysis of the data; finally,
section 4 draws the conclusions.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 223–226, 2004.

© Springer-Verlag Berlin Heidelberg 2004

224 M. Dall’Agnol, A. Sillitti, and G. Succi

2 The Structure of the Investigation

2.1 Design of the Experimentation

This research can be classified as a pre-experimental design, according to classifica-
tion of Campbell and Stanley [6], in particular it is a statistic group comparison.

The study considers two groups of managers: the former using AMs and the latter
not using them. The adoption of AMs is the experimental variable, the effects of
which have been measured. Interviewees have been selected among managers in-
volved in the NAME project (Network for Agile Methodologies Experience) [7] or
other projects of the Center for Applied Software Engineering of the Free University
of Bozen.

The pre-experimental design has two limits. The former deals with the selection:
the two groups could be affected by how the two groups have been selected; in par-
ticular, the involvement in the NAME project could have influenced managers.

The latter limit is the mortality: some differences in groups are due to the lack of
answers to the questionnaire. This limit does not affect the data collection because all
the managers have filled in the questionnaire.

2.2 The Questionnaire

Questionnaires are always subject to loss of information and lack of integrity of the
collected data [8]. A typical solution to these problems is the collection of massive
number of questionnaires [9].

The questionnaire is intended for managers of software companies, whose time
and availability is usually very limited. For this reason, a low number of respondents
was expected.

The questionnaire has been built according to the psychological criteria of Con-
verse and Presser [9] and its soundness has been checked according to the principles
of Marbach [8].

The questionnaire consists of four parts:
1. the first analyzes the interviewee’s status, main problems in software de-

velopment and the adopted solutions;

Project Management and Agile Methodologies: A Survey 225

2.

3.
4.

the second deals with the planning and the organization of the software
development process;
the third evaluates the relationship with the customer;
finally, the fourth assesses the knowledge, the actual use of AMs and the
vantages and disadvantages of their use.

It includes several multi choice questions alternated with some open questions.
Topics included in the questionnaire are listed in Table 1.

3 Analysis of the Result

All the companies interviewed have been exposed to changes in their software pro-
duction process.

The motivations are clear: 43% because of changes in customer requirements,
48% because of technological changes, and 9% because of failure with the previous
software development process.

According to 71% of the managers, delivering software with all functionalities in
time is the main problem in software development. There is no significant correlation
between the main problems in software development and the adoption of AMs in the
software process. A survey, made by the Standish Group on 8000 projects in the
1999, shows the same result: only 26% of the development projects were completed
on time, on budget, and with all the originally specified functionalities.

Most of managers focus on process and people in order to improve the perform-
ance of the company, according to the results of Standish Group [1] and Thomsett
[3].

For the managers that are using AMs, an improvement in the software develop-
ment planning produces also an improvement in the customer satisfaction. This result
is in accordance to the principles of the Agile Methodologies [10]. AMs highlight the
importance of planning and organization in projects.

The adoption of AMs is correlated with the importance of teamwork. The impor-
tance of high individual abilities is negatively correlated with the adoption of AMs
and with the importance of teamwork.

These results are in accordance to Schumpeter’s principles [11]: innovations are
new combinations of existing knowledge and incremental learning. The sharing of
knowledge facilitates the transfer of knowledge within a group and it makes easier the
development of new ideas. These results are also in accordance to the principles of
AMs [10], Thomsett [3], and to the outcomes of the Standish Group [1].

AMs consider teamwork, in particular pair programming, essential in software de-
velopment in order to improve the communication and the transfer of knowledge
within the organization.

Interviewed managers have adopted several solutions to improve developers’
skills, such as continuous training, regular communication, and involvement.

226 M. Dall’Agnol, A. Sillitti, and G. Succi

4 Conclusions and Further Research

This paper is a first analysis of the differences and the analogies derived by the adop-
tion of AMs in twenty-one software companies from the point of view of project
management.

Methods used to improve software are different but most of the managers adopt
solutions focused on people and process. AMs focus on people in a number of differ-
ent ways, this orientation is also confirmed in the collected data.

The correlation between the adoption of AMs and the preference for teamwork
among developers is another good strategy based on people. Teamwork is useful to
improve knowledge transfer, communication and coordination within an organiza-
tion. Knowledge sharing within a group makes easier its transfer and the development
of new ideas.

The analysis presented in this paper is a quite preliminary one and further investi-
gation is required.

Acknowledgements. We would like to thank the interviewed software managers for
their useful help in our research.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]
[11]

J. Johnson, “Turning Chaos into Success”, Software Magazine, Dec. 1999, pp. 30-39,
available at http://www.softwaremag.com/archive/L.cfm?Doc=archive/1999dec/
B.B. Boehm, “Six Reasons for Software Project Failure”, IEEE Software, Sep. 2002, pp.
97.
R. Thomsett, Third Wave Project Management upper Saddle River, Yourdon Press, NY,
1993.
D. Philips The Software Project Manager’s Handbook Principlea that Work at Work,
IEEE Computer Society Press, 1998.
H. Petroski, To Engineer is Human: The Role of Failuer in Successful Design, Vintage
Books of Random House, Inc., New York, 1992.
D. T.Cambell and J. C. Stanley, Experimental and quasi-experimental designs for re-
search, Houghton Mifflin Company, Boston, 1966.
NAME project – website: http://name.case.unibz.it/
G. Marbach, Le Ricerche di Mercato, Utet, Torino, 1996.
J. M. Converse and S. Presser, Survey Questions: Handcrafting the Standardized Ques-
tionnaire, Sage, Beverley Hills, 1986.
K. Beck, Extreme Programming Explained, Addison Wesley, Amsterdam, 2000.
J. Schumpeter, The Theory of Economic Development, MA: Harvard University Press,
Cambridge, (published in 1911; republished in 1968).

Evaluating the Extreme Programming System –
An Empirical Study

Panagiotis Sfetsos1, Lefteris Angelis2, Ioannis Stamelos2, and Georgios L. Bleris2

1 Department of Information Technology, Technological Education Institute,
54101 Thessaloniki, Greece; sfetsos@it.teithe.gr

Department of Informatics, Aristotle University,
54124 Thessaloniki, Greece; {stamelos,lef,bleris}@csd.auth.gr

Abstract. In this paper we discuss an empirical study about the success and dif-
ficulties 15 Greek software companies experienced applying Extreme Pro-
gramming [1] as a holistic system in software development. Based on a generic
XP system including feedback influences and using as a research tool a cause-
effect model including social-technical affecting factors, the study statistically
evaluates XP practices application by the software companies. Data were col-
lected from 30 managers and developers, using the sample survey technique
with questionnaires and interviews, in a time period of six months. Practices
were analysed separately using Descriptive Statistics and as a whole by build-
ing up different models using stepwise Discriminant Analysis. The results have
shown that companies, facing various problems with some practices, prefer to
develop their own tailored XP method and way of working-practices to meet
their requirements.

Keywords. eXtreme Programming System, Cause-effect Model, Feedback,
Empirical Study, stepwise Discriminant Analysis (DA).

1 Introduction

Systems thinking is a discipline for seeing wholes rather than tiny things focusing on
relations and behaviours in complex systems [3]. It was first Beck and Jeffries who
defined XP as a system [1] [2]. The implementation of the XP practices involving
managers, customers and developers, strengthen the properties of the XP system.
Practitioners communicate, interpret, decide and act on the basis of their skills and
experience affecting the feedback control. The most significant properties of a feed-
back system are negative and positive feedback influences. A cause-effect model, on
which a generic XP system builds up, incorporating feedback influences, was devel-
oped and used as our research tool. This model was used in evaluating the practices
along two dimensions: small companies versus large companies and managerial ver-
sus development staff.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 227–230, 2004.

© Springer-Verlag Berlin Heidelberg 2004

2

228 P. Sfetsos et al.

2 The Cause-Effect Model

In this preliminary XP cause-effect model, moreover values and practices, we added a
new aggregated variable-type named “factors” (for details see Appendix A in [5]),
including skills (e.g. Efficiency in programming, Work in team), interactions or hid-
den dependencies between practices, other pre-conditions (in the form of ‘needed
factors’, e.g. Customer collaboration, Partnership relations) and post-conditions (in
form of reflective positive results, e.g. Tacit knowledge transfer, Quick software
development) (see figure 1).

Fig. 1. The structure of the XP cause-effect model

3 Methodology – Data Analysis

The research study has been carried out between September 2002 and February 2003,
investigating fifteen software companies that apply the XP-practices in Northern
Greece. The selected companies, sized from five developers up to 200 developers, are
an active part of the software production industry. Fifteen developers and fifteen
managers were thoroughly interviewed using the sample survey technique with ques-
tionnaires and semi-structured [4] interviews (see Appendix B and C in [5]). Data
analysis was completed in two separated statistical procedures. In the first procedure,
data selected for each practice were analysed separately, using Descriptive Statistics
(DS). DS application includes counts, percentages and various graphic displays (see
Appendix D in [5]). In the second procedure, data were analysed using the stepwise
Discriminant Analysis (DA). DA was used for the 15 responses for each practice

Evaluating the Extreme Programming System – An Empirical Study 229

(separately for managers and developers) in order to find (a) whether there are differ-
ences between the two company groups (large and small) and (b) if there are differ-
ences, which are the variables – questions that can distinguish the two groups.

4 Results

Different opinions have been expressed by the four categories of interviewees about
the importance of certain factors. These factors are reported per practice.

Planning Game. MSC1: organizational issues, facility in software development,
interaction with practice – testing, difficulties with big and complex projects. DSC:
human - cultural and organizational issues. DLC: missing experience.

Pair Programming. MLC: distributed developers, bad working conditions or rela-
tions among staff. MSC: efficiency in modifying code. DSC: develop SW easily, SW
less expensive to develop. DLC: distributed developers.

Testing. MSC: developer collaboration, interaction with refactoring. MLC: interac-
tion with sort release cycles. DLC: system simplicity. DSC: developer collaboration.

Refactoring. MSC: efficiency in using tools, developer collaboration. DSC: effi-
ciency in using tools, interaction with the practice - continuous integration.

Simple Design. MSC - DSC: efficiency in programming, efficiency in modifying,
documentation in distributed developers.

Common Code Ownership. MLC: transfer ideas faster, organizational obstacles in
large companies. MSC: interaction with the practice - testing. DLC: develop soft-
ware easily. DSC: limited access to code.

Continuous Integration. MSC: OOA (drive by analysis), human - cultural factors.
DLC: code quality, develop software easily. DSC: human-cultural factors.

On Site-Customer. MSC: increase experience, interaction with the practice - meta-
phor. MLC: flexibility. DSC: increase experience, kind of the project. DLC: less
expensive software development.

Short Release Cycles. MLC: quick software development, less expensive software
development. MSC: developers efficient in decomposition. DLC: less expensive
software development, problems with big projects. DSC: efficiency in programming.

1 MLC=Managers from Large Companies, MSC=Managers from Small Companies,
DLC=Developers from Large Companies, DSC=Developers from Small Companies.

230 P. Sfetsos et al.

40-Hour Week. MLC - DLC: organizational obstacles. DSC: time-to-market pres-
sure.

Coding Standards. MSC: missing experience, interaction with the practice-
refactoring. DLC: develop software easily.

Metaphor. MSC: develop software easily, manager satisfaction, human-cultural
factors, the practice as is in theory. DLC: transfer ideas faster, missing experience.
DSC: interaction with practice planning game.

5 Evaluation and Conclusions

Results have shown that both small and large companies, facing various problems
with some practices, prefer to develop their own tailored XP method and way of
working. Problems with pair programming concern the kind of project and the distri-
bution of the developers. On-site customers were provided only in big projects lead-
ing companies to invent different and simpler ways to communicate with customers
when it was needed (telephone, internet etc.). Large companies tended to break 40-
hour week and to prevent the involvement of the developers in both common code
ownership and metaphor for different reasons. Small companies strongly demanded
skilled and experienced developers but at the same time they applied 40-hour-week in
a more relaxed time – schedule, if needed. Managers and developers asserted that the
interaction between practices contributed to their success. The lack of a detailed de-
scription for some practices such as simple design, coding standards and metaphor
affect negatively the implementation of the practices. Pairing and testing were found
to be the most significant success factors for the rest of the entire XP system. Finally,
communication and synergy, starting in planning game, are other significant success
factors. This study is an initial attempt, aiming at the characterization of current state-
of-the-practice in one software industry, as a starting point for further research. The
cause-effect model may be seen as the first step towards an XP system dynamics
model, that will be able to simulate and predict XP application.

References

[1]

[2]

[3]

[4]

[5]

Beck, K., Extreme Programming Explained: Embrace Change. Reading, Massachusetts:
Addison-Wesley, (2000).
Jeffries, R., A. Anderson, and C. Hendrickson, Extreme Programming Installed. The XP
Series, ed. K. Beck. Upper Saddle River, NJ: Addison Wesley, (2001).
Senge, P.M. Fifth discipline- The art and practice of the learning organization, Double-
day, New York, USA. (1990).
Taylor, S.J., and Bogdan, R. Introduction to Qualitative Research Methods. New York:
John Wiley and Sons, (1984).
http://sweng.csd.auth.gr/htmls/publications.html

A Comparison of Software Development Process
Experiences

Robert Gittins1, Julian Bass2, and Sian Hope3

1 School of Informatics, University of Wales Bangor, UK.
rgittins@informatics.bangor.ac.uk

2Business Agility UK Ltd, UK
Julian.Bass@business-agility.com

3School of Informatics, University of Wales Bangor UK.
sian@informatics.bangor.ac.uk

1 Introduction

Commercial pressures to produce faster and more dependable software prompt
management initiatives to improve software practices. Technical solutions such as
CASE tools, 4GLs, Interactive Development Environments and more recent modeling
notations and tools have made some contribution. This article concentrates on the
introduction of new development methodologies that are shown to have a positive on
software development practices.

We examine data collected from verbatim transcripts of interviews taken in three
small software development companies; other data from non XP adopting companies
is published elsewhere. The first company consists of four developers and one
manager, using an exploratory prototyping software development process. Both of
the other companies were studied during the adoption of an Extreme Programming
(XP) methodology. We examine the impact of introducing XP on developers and
managers and highlight the factors they stated had influenced their work.

Typical changes that adopting XP brought about were the introduction of pair
programming where by the action of regularly rotating partners spread knowledge
throughout the team. Companies B and C found that communication was improved
by pair programming and pair programming helped develop collective (rather than
individual) code ownership, designed to improve maintainability. Pairing had a mixed
reception from developers; some were encouraged by the way it improved their skills
and gave them support through difficult problems, as well as providing an increased
social interaction, taking them out of isolation. Other developers preferred to work
alone, or had problems harmonising their skills with others. Some experienced
developers saw this practice as a threat to their position and future prospects.

XP Planning Games bring together developers, managers and customers to determine
project release dates and requirements planning through the use of story cards. An
important change that XP provides is the close collaboration with the customer on-

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 231–236, 2004.
© Springer-Verlag Berlin Heidelberg 2004

232 R. Gittins, J. Bass, and S. Hope

site, clarifying requirements stories and making decisions quickly to eliminate
information bottlenecks.

We chose to focus on two categories in this paper; pair programming, and planning
games, to reveal the variation in attitudes of developers and managers in the two
companies adopting XP.

2 A Brief History of XP

Recent evolution of software practices since [1],[3],[11], have brought about a
reaction to bureaucratic and heavyweight methodologies in the form of more
lightweight or flexible methodologies. Trial and error using simplified, lightweight
methodologies brought together various advocates culminating in a manifesto and the
formation of the ‘Agile Alliance’ [5]. Since 2000, lightweight software methodologies
like XP, so called ‘Agile methods’, have emerged as a response to heavily document-
reliant traditional methods, an Agile strategy is designed to reduce the cost change
throughout a project.

XP was developed by Kent Beck [1] and others while actively involved in
commercial OO software development. In this regard, XP is different to many other
approaches in that it is practitioner led. XP is built around four core values;
communication, simplicity, feedback and courage. The XP values are supported by
five principles and twelve practices that rely on small release cycles to achieve early
business value, through small steps that are easily manageable and therefore less
difficult to change. Practitioner led conferences report improvements with Agile
software engineering and there is increased interest from the broader software
engineering community [4] [9].

3 Research Approach

Several research methods and data collection techniques were used in this research.
The choice of data collection methods is determined by the needs of a given research
project and, in particular, by the research questions confronted. Broadly, data
collection techniques can be classified as quantitative and qualitative. These methods
are complementary rather than mutually exclusive approaches. Each set of techniques
has their particular strengths and weaknesses [8]. Quantitative survey techniques were
used, for example, to obtain a frequency count of developer preferences for the
adoption of XP practices. Tape-recorded one-to-one interviews and questionnaires
were conducted to elicit the experiences and views, of developers and their managers.
Open-ended interviews were adopted to understand the world as seen by the
respondents [8]. The approach sought to avoid predetermining imposing views
through prior selection of questionnaire categories. The interview transcripts provide
a wealth of information in which interviewees explain, in their own words, their
perceptions and defend their point of view. When reviewing notes from interviews it
was evident that the spirit of the interview had been lost. Problems with note-taking
during interviews (Opinions succinctly and concisely stated during the interviews are

A Comparison of Software Development Process Experiences 233

inadequately recorded in writing) are avoided using tape-recorded interviews.
Question variation from interview to interview raised some difficulties, when it came
to comparing responses, as it was felt important to refine the interview questions in
response to feedback. The “interview guide” approach [8] consists of a set of issues
outlined in advance for each interview. The cycle was completed when transcripts of
the recorded interviews were carefully compared and correlated during analysis, and
interviewee names were changed to protect confidentiality in subsequent reporting of
the results.

4 Company Profiles

The three companies (A, B and C), presented three distinct approaches to managing
their software development environment, dictated to a large degree by their size,
resources and their adopted approaches to software development. Questions targeted
the software development process, XP practices, and both managerial and behavioural
effectiveness. Company A was a small traditional company without any distinct
development process methodology. Company B was a medium sized rural based
software development company of 9 developers, which included a developer manager
who reported to senior management. Resources were amply provided from the budget
of the multiple projects the company turned over. There were two rounds of
questionnaires and two rounds of interviews conducted six months apart, four
developers missed the second round of questionnaires and four developers missed the
second round of interviews. Company C were a large city based software
development company of 36 developers, one developer manager and two active
senior managers. Resources were plentiful, provided from the prestigious projects.
The recent development methodology adopted was XP, which influenced
environmental changes. Eight Company C team members were interviewed in one
round of interviews and eight developers filled in questionnaires three weeks
following the interview.

5 Pair Programming

The lack of informal day-to-day meetings at Company A was recognised as impeding
communications.
“The water cooler ...where main decisions are made around a water cooler in the
corridor ...that’s not happening!”

Alan, Developer Manager, Company A, Interview, May 00.
The contrast between the nature of communications at company A with no pair
programming activity and team communication difficulties and those of companies B
and C who adopted stand-up meetings, pair programming and planning games was
revealed in the interviews. One developer contrasts her pair programming experience
at Company C with an earlier job.
“I’d much rather be swapping around with different people – its made the whole
process a lot more sociable,whereas if I came to the office four weeks ago
everybody was sitting at their desks ...it was much less social.”

Susan, Developer, Company C, Interview, March 01.

234 R. Gittins, J. Bass, and S. Hope

As soon as pair-programming started it appealed to some developers immediately.
“A few weeks back we started doing pair programming ... I hadn’t had as much fun
in ages!”

Robin, Developer, Company C, Interview, April 01.
The responses of many developers show that the benefits of the technique depended
on the balance of abilities between the paired developers. The technique works most
effectively when there is a harmony of skills and temperament between the paired
developers.
“It’s tedious for the person who has to watch someone who is experienced on a
given subject type-away.”

Robert, Developer, Company B, Questionnaire, January 01
“When two are of roughly the same understanding on subject, language and method,
then pair programming works brilliantly.”

Robert, Developer, Company B, Questionnaire, January 01
“It depends on the task, sometimes it’s absolutely deadly, and sometimes it’s
worthwhile- when you know something about the task and they do, both
contributing.”

Edward, Developer, Company B, Interview, April 01.
Developers also find that social compatibility affects experience with pair
programming.
“There are probably 1 or 2 people I prefer not to pair with, when you’re having a
conversation they’re always trying to get one up on you.”

Albert, Developer,Company C, Interview, March 01.
“... the biggest problem is personality clashes. Generally most people here are very
amenable. ...I have found myself preferring to partner with some people as opposed
to others, just generally because we get on a bit better, and work in a similar way.”

Susan, Developer, Company C, Questionnaire, April 01.
Several of the developers demonstrated that the goal of collective code ownership was
worth the difficulties encountered using the technique.
“ I would prefer to work independently, but I believe that pair programming is
essential to XP as it drives collective code ownership, coding standards, and code
style. ...pair programming helps me learn new things, ... I learn from my partner.”

Robin, Developer, Company C, Questionnaire, April 01.
“It is not a panacea but a very effective method for producing coding.”

Mark, Developer, Company C, Questionnaire, April 01.
“I feel that pair programming can be very taxing at times.”

Mat, Developer, Company B, Questionnaire, October 00.
Less confident or inexperienced developers can be exposed by pair-programming. It
takes courage to adopt the pairing approach when lacking confidence.
“Sometimes you do think - actually I’m not sure what I’m doing and I don’t want to
do it in public!”

Susan, Developer, Company C, Interview, March 01.

6 Planning Games

Planning games are perhaps the key management process of the XP methodology [7]
[2], requirements gathering, strategic planning and manager, developer and customer
communications are used in an iterative process to determine requirements, prioritise

A Comparison of Software Development Process Experiences 235

work and receive customer directives on scope and time through the course of a
simple organisation process. Organisation time wasting figured strongly in the
criticisms voiced by developers.

“We need to be more ruthless about sticking to the agenda. This is especially
important if the meeting has lots of people... since more time is wasted. Meetings are
not effective if there are too many people at the meeting. Time is often wasted if an
individual misunderstands a point or gets confused, or decides to wander off on a
tangent.”

Mat, Developer, Company B, Questionnaire, February 01.
“Planning games seem to take up too much time. It is not clearly defined.”

Robert, Developer, Company B, Questionnaire, October 00.
“I think that the meetings often go into too much detail about tasks. Also tasks
agreed at the meetings do not always relate to the work that is done afterward..”

Mat, Developer, Company B, Questionnaire, October 00.
Managing meetings takes skill and experience otherwise frustration sets in, evident
from a comment by one of the company C developers.
“I find the free-for-all task allocation reminiscent of MacDonalds and thus stressing
because of uncertainty.”

Mark, Developer, Company C, Questionnaire, April 01.

Not surprisingly for such a pivotal activity, planning games presented organisational
problems that frustrated developer activity. Variation in the organisation and
interpretation of planning games rests with the developer manager, how he interprets
the XP practice and then how local factors influence their successful implementation
and evolution.

7 Conclusions

A combination of quantitative and qualitative research methods has been used to
explore development methods used in three companies. Quantitative methods provide
statistical results but shed little light on the underlying explanations for developer
experiences. Qualitative methods, in contrast, seek to provide additional insights
through the detailed analysis of confidential interview transcripts. The interviews
provide a vehicle for developers to explain in their own words the strengths and
weaknesses of the techniques they are using.

Developers expressed enthusiasm for the socially rewarding benefits of several of the
XP practices. Pair programming brought fun back into software development for
some. However, the collaborative nature of agile methods, such as XP, can make it
difficult for experienced developers to gain leadership positions in projects. This lack
of a distinctive architectural role could be seen as undermining the professional
development required for career progression. Pair-programming appears most
effective when both developers are contributing a broadly similar level of expertise.
Pair programming can be advocated for mentoring. A careful approach to coaching is
required to avoid this being reduced to a tedious observation of an expert in
performance of their art [10] [9].

236 R. Gittins, J. Bass, and S. Hope

Clearly, developers are having great difficulty with how and when to add
functionality. The temptation of experienced developers to program flexibility into
their code at an early stage is deeply ingrained. Using flexible architectural
subsystems, such as those advocated by the design patterns [6] community minimizes
risk. Planning games must be facilitated carefully to avoid time wasting. Morale is
adversely affected when considerable periods of time bring little tangible benefits,
from the developer’s perspective.

Based on the evidence presented here, and from studies reported elsewhere [8] the
authors conclude that XP was helpful because it offered the chance of support to
otherwise isolated developers. It improved communications through pair
programming and raised the morale of some developers but concerned some
developers who felt XP undermined their status. XP held the prospect of better
customer relations, which was appreciated by developers. Not everyone bought-in to
simple design and from the evidence of this limited study, it would suggest that this
practice calls for a re-evaluation.

References

[1]
[2]
[3]
[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

Beck.K. ‘Extreme Programming Explained : Embrace Change’: Addison-Wesley, 1999.
Beck, K. & Fowler M. ‘Planning Extreme Programming.’ Addison-Wesley, 2001.
Cockburn, A. ‘Selecting a Projects Methodology.’ IEEE Software 17(4), pp 64-71, 2000.
DeMarco, T. & Boehm B. ‘The Agile Methods Fray’, IEEE Computer, 35(6), pp 90-92,
2002.
Fowler, M. ‘The Agile Manifesto: Where it Came From and Where it May Go.’
http:www.martinfowler.com/articles/agileStory.html.
Gamma, E,. Helm R,. Johnson, R. and Vlissides J. ‘Design Patterns’ Elements of
Reusable Object-Oriented Software.’ AddisonWesley, 2000.
Jeffries, R., Anderson, A. & Hendrickson, C. ‘Extreme Programming Installed.’: The XP
series, Addison-Wesley, 2001.
Patton, M. Q. ‘Qualitative Research & Evaluation Methods.’ SAGE Publications, 2002.
Sharp, H & Robinson H. “An Ethnography of XP Practice.” Proceedings of The Joint
EASE and PPIG Conference, Keele University UK , pp. 15-27, 2003.
Williams, L. A. Kessler R. Cunningham W. & Jeffries R. ‘Strengthening the Case for
Pair Programming.’ IEEE Software, July/Aug 2000.
Williams, L. A. & Kessler R. R. ‘The Effects of Pair Pressure and Learning on Software
Engineering Education.’ Thirteenth Conference on Software Engineering Education &
Training.’ 2000.

Abstract Test Aspect: Testing with AOP

Robert Wenner

Port25 Solutions, Rathaus-Allee 10,
53757 St. Augustin, Germany

robertport25.com

Abstract. This article shows how to use AspectJ to create an
Abstract Test Aspect, that makes sure objects respect their basic
contracts given by base classes or implemented interfaces. The ap-
proach presented is an aspect-oriented alternative to Abstract Test Case.

Keywords: AOP, aspect-oriented programming, AspectJ, Java, unit
testing, Abstract Test Case

1 Basic Object Duties

Design by contract [6] is often mentioned as one of the ‘classic’ fields of aspect-
oriented programming [3]. Aspects help a lot when checking the contract for a
hierarchy of classes, where derived classes have to honor their parent’s contract
according to the Liskov Substitution Principle [4]. This is especially true for such
basic requirements as those inherited from Object.

The Abstract Test Case pattern [2] defines a hierarchy of test cases matching
the hierarchy of classes under test. The Abstract Test Case defines those tests
that all derived classes’ objects must pass.

For demonstration purposes we will look at the equals contract. As doc-
umented in [1] each Object descendant that overwrites equals has to honor
the general equals contract. The equals method must be reflexive, symmetric,
transitive, consistent, and must return false if the given object is null.

2 The Abstract Test Case Way

Using Abstract Test Case, one derives test classes from AbstractEqualsTest for
example, which defines methods like testReflexivity and an abstract method
to obtain an object to check with. Derived tests implement the abstract method
and return an object to be checked with whatever AbstractEqualsTest consid-
ers check-worthy.

This fails for lots of the equals contract tests, because these can not do
their checks with only one object. The transitivity check needs at least three
objects. The abstract test case can define three abstract methods that do provide
three different objects. Alternatively, it can define a method for each check, e.g.
provideSymmetricEqualObjects which may return a collection of objects that

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 237–241, 2004.
© Springer-Verlag Berlin Heidelberg 2004

238 R. Wenner

should pass the equals transitivity check. Unfortunately, this requires the derived
test to fill in lots of blanks, which is almost more work than rewriting the test.
Furthermore, the test setup gets hard to understand.

3 Abstract Test Aspect: An Aspect-Based Approach

3.1 Picking Test Objects

A pointcut is the aspect way of identifying so-called join points in the execution
of a program, e.g. object creation or method calls. For the equals test, the point-
cut picks objects created in regular tests as test objects, and uses an abstract
pointcut, seesInterestingObject, to allow customizing the code. One derives
from the abstract aspect and defines what points in the flow of the program are
considered interesting by implementing the abstract pointcut.

Listing 1.1. Abstract Test Aspect

Associated with the pointcut is an (after returning) advice: code that is
called after the join point is met. It calls an abstract method takeTestObject for
each object obtained at the pointcut. The test code may store it in a collection
or do some tests right away.

Naturally, the equals contract example pointcut considers anything derived
from Object interesting. It picks interesting objects upon their creation. Other
checks may choose other pointcuts, e.g. when a certain method is called.

Multiple pointcuts, each in its own aspect, can exist in one project indepen-
dently from others. They may even be triggered by the same control flow.

Abstract Test Aspect: Testing with AOP 239

3.2 Storing Test Objects

A concrete variant of the abstract takeTestObject method in the equals check
places the object in a vector for later use.

Storing in a vector means storing a reference to the object. The original code,
that created the object, will do something with it, and we end up with a vector
of different objects. This ‘collect all’ approach is likely to obtain a wide range of
objects to test with. Assuming the ‘normal’ tests cover a broad range of possible
objects for the class under test, chances are at least one of the collected objects
will fail a test, if the class does have a problem.

Storing the objects is a little tricky, because JUnit runs tests independent
from each other. The test runner creates a new instance of the test class and
calls the test method on it. Thus the vector for the test objects must be static,
or all tests would have their own vector, which would be lost after the test was
run. The concrete aspect itself is static, too, because AspectJ allows only static
inner aspects, and inside the test class is the best place for it.

3.3 Running the Tests

Once the derived aspect is written, the tests are written in the test suite as usual,
as public void testXyz methods. JUnit collects and runs the tests. If derived
abstract tests go in the end of the suite, other test can provide test objects1.

Coming back to the equals contract testing example, a possible test method
may make sure equals behaves symmetrically. It checks all objects collected in
its vector and throws after the made assertion fails for the first combination of
collected objects. This is fine, because one failure is enough to show there is a
problem with the code under test.

The code in a derived aspect may as well chose to not collect the objects but
rather perform the desired tests right after it got hold of an object. To achieve
this, the derived aspect simply does the test in takeTestObject. This saves the
overhead of storing various objects for later use. Test failures occur faster, for
example, a non-reflexive equals implementation fails with the first instance of
the faulty class, rather than at the end of the suite. If more than one object
is required for a test (e.g. checking equals for symmetry), one can access the
objects collected until now. As above, this is the fastest way to signal a failure.
However, this bends the rule that tests are independent of each other. That test
fails, which creates the second object of the faulty implementation. The test
suite becomes dependent of the order in which tests are run. To be clear on
this: the failure is detected anyway, but its location may vary, if the test cases
are re-arranged. With meaningful failure messages this should not be a problem,
though.

1 Though JUnit does not guarantee the order of test execution, this approach seems
to work fine.

240 R. Wenner

4 Summary

The presented Abstract Test Aspect is similar to the Abstract Test Case that
both make sure that derived / implementing classes follow the extended / im-
plemented behavior. However, the approach is quite different.

Abstract Test Case requires implementing the methods to obtain objects to
test. These objects are collected automatically in the Abstract Test Aspect.

The Abstract Test Aspect is more flexible. Once the pointcut is defined, one
does not have to remember all implemented interfaces in the test suite. If another
interface is added to a class, the pointcut will automatically take the newly found
objects into account. If an interface is removed from a class, the joinpoint will
not be triggered and the test suite for the interface is automatically excluded
from the class’ tests.

A drawback? With the test aspect, it may not always be obvious, that there
is in fact code that does this test. This is common to all advised code. In my
opinion this is just like having methods. You usually do not know in what con-
text (beyond the scope of the object) they are called or who overwrites them.
However, nobody has a problem with this, because methods work independently
from each other. If a method must be called from a special context, it may be
private or protected, or the requirements are documented. The same holds true
for aspects. An aspect should be independent from the code it advises, and no
code should make any assumptions on what aspects may work on it.

Is there a problem with keeping the test objects around longer than the
advised test expects? It shouldn’t. Two possible problems come to mind. First:
relying on the finalize thread in the test, i.e. waiting for the object under test
to do something on being garbage collected. Due to the unpredictable behavior
of the finalize thread, it is no good idea to use it anyway. Second: the object
under test holds scarce resources like file handles or database connections. Well,
usually these will be replaced by (not scarce) mock objects, anyway [5]. And if
you can not allow objects living longer, just move the tests to their own class,
which is not picked by the seesInterestingobject pointcut.

4.1 Conclusion

The test aspects are usable even if the project does not want to use AOP in
production in general. The aspects are isolated and have little coupling with the
code they work on. This makes them easy to use and easy to adopt to different
situations.

References

1.
2.
3.

Anonymous. Java API overview. Sun Developer NEWS, 1(1):10, 11, “Fall” 1996.
Eric George. Abstract test cases. http://c2.com/cgi/wiki?AbstractTestCases.
Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes,
Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet
Aksit and Satoshi Matsuoka, editors, 11th Europeen Conf. Object-Oriented Pro-
gramming, volume 1241 of LNCS, pages 220–242. Springer Verlag, 1997.

Abstract Test Aspect: Testing with AOP 241

4.

5.

6.

Barbara Liskov. Data abstraction and hierarchy. In Proceedings of the ACM Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications, De-
cember 1987.
T. Mackinnon, S. Freeman, and P. Craig. Endotesting: Unit testing with mockob-
jects, 2000.
Bertrand Meyer. Applying design by contract. Computer (IEEE), 25(10):40–51,
1992.

XMI for XP Process Data Interchange

Sandro Pinna and Nicola Serra

Dipartimento di Ingegneria Elettrica ed Elettronica, Universitá di Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy

{pinnasandro, nicola.serra}@diee.unica.it

http://agile.diee.unica.it

Abstract. In this paper1 we present an XML based format for XP
process data collection and interchange. This format is based on a XP
Metamodel that can be easily extended to other agile methodologies. XP
process data conformant to the metamodel are represented in an XML
format according to OMG XMI specification. Our research group has
developed an XP process supporting tool that uses this format to collect
and interchange process data.

1 Introduction

As a research group working in the field of Extreme Programming and Agile
Methodologies, we developed a tool - named XPSwiki - to support an XP
development process [2] . The main purpose of the tool is to track the process
and to collect process data. Thus, it is essential to define a format to save and
represent data. The need to define a specific process data format is also due to
the necessity of making XPSwiki able to communicate with other external tools
or specific development environments (IDEs). In this way, our initial problem
of saving and managing process data turned on the more general problem of
interchanging data among different contexts.

A lot of tools supporting an XP process have been developed in the last years.
Like XPSwiki, the great part of these tools essentially support planning and
requirement gathering activities. For example, they allow to write user stories,
assign them to iterations and track the project advancement by computing useful
metrics. Each tool uses its own standard to store and export process data. As
a consequence, interoperability among different tools is very hard. The need to
support interoperability among tools is not the only reason that lead to the
definition of a unified way to manage data relative to XP and Agile Processes.

There is a growing demand from academic and scientific community for a
standard that easily allows to collect and manage data produced across agile
processes in order to gather experience and knowledge on agile methodologies
to quantitatively assess their effectiveness.

Starting from the above observations, we defined an XML based format for
data interchange.
1 This study is part of MAPS research project (Agile Methodologies for Software

Production, funded by FIRB research fund of MIUR.)

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 242–245, 2004.
© Springer-Verlag Berlin Heidelberg 2004

XMI for XP Process Data Interchange 243

The proposed format is based on the OMG XML Metadata Interchange
(XMI) specification and an XP metamodel defined using the Metamodel
Object Facility (MOF), the OMG language for representing metamodels.

It’s not our purpose to propose a definitive XML standard for data gathering
and interchange. Indeed, it’s our intention to highlight this need and to propose
a possible starting point.

In section 2 we describe XMI and in section 3 the XP Metamodel.

2 XMI

XMI is the OMG standard for mapping a metamodel into a Document Type Def-
inition (DTD), which is in turn the basis to validate XML documents describing
specific instances of the same metamodel. A metamodel describes the abstract
syntax to build and specify a model, that is an instance of the metamodel. A
generic metamodel is typically specified using the Metamodel Object Facility
(MOF), the OMG language for representing metamodels. The MOF Model is
the abstract language for defining MOF metamodels. The MOF Model and the
core of the UML metamodel are close enough in their modeling concepts to allow
UML notation to be used to express MOF-based metamodels. XMI provides two
different sets of rules:

The XML DTD Production Rules for producing XML Document Type Def-
initions (DTDs) starting from a MOF-based metamodel specification.
The XML Document Production Rules for encoding metadata into an XML
compatible format. In practice, XMI defines precise rules for generating XMI
documents starting from an instance of a given metamodel. These rules are
represented in EBNF notation and can be found in the XMI specification.

3 XP Metamodel and Generated XMI DTD

In this section we present our metamodel for XP processes. The metamodel is
not meant to be definitive or exhaustive, indeed it should be considered as a
starting point for future evolution.

This metamodel and the derived XMI DTD are the XPSwiki basis for data
collection and management. The main part of the DTD has been automatically
generated following the OMG XMI specification rules for mapping metamodel
elements into DTD declarations.

The metamodel consists of a set of UML diagrams representing the elements
of a generic XP process and the relationships among them.

The main diagram (fig.1) is the inheritance tree class diagram representing
the core classes of the metamodel and the main attributes of these classes. The
metamodel is based on a root class called XPProcess and all the remaining classes
are children of this class. There are two main subtrees, the first represents the
people involved in the project, the second the elements composing the planning
phase. The diagram is structured in order to be easily extended. Extensibility

244 S. Pinna and N. Serra

Fig. 1. XP Tree

is provided by the class PlanningElement which is the root class of all other
classes representing specific parts of the process (Project, Iteration, Release,
etc.). The addition of new concepts to the metamodel (i.e. Activities, Events,
etc.) is provided by subclassing the PlanningElement class.

3.1 XMI Production Rules

In this section we give an example of a XMI document which represents an in-
stance of the XP Metamodel. We focus our attention on a simple XP Metamodel
instance represented by a Project with an Iteration named Iteration1 and two
Stories named Story1 and Story2. The following code shows the portion of the
XMI file related to the Iteration.

XMI for XP Process Data Interchange 245

4 Conclusions

The definition of a unified format for storing, managing and sharing data derived
from a development process is the starting point to provide a large knowledge
base about agile methodologies. In this paper we have proposed an XML for-
mat supported by XPSwiki, a tool supporting the requirement gathering and
planning activities within an XP process.

Our format is based on the OMG XMI specification, which is the de-facto
standard for metadata interchange. In order to define an XMI based format, we
developed a metamodel describing the main entities of an XP process and the
relationship among them.

The XP metamodel may easily be extended to other Agile Methodologies.
It would be useful to create a task force of both industrial and academic part-

ners to evolve this rough model, and to push it toward a standard specification
proposal.

References

1.

2.

3.
4.
5.

Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley,
Boston (2000)
Pinna, S., Mauri, S., Lorrai, P., Marchesi, M., Serra, N.: XPSwiki: an Agile Tool
Supporting the Planning Game. In: Proceedings of XP2003, Italy, May 25-29, 2003.
Lecture Notes in Computer Science, Vol.2675. Springer-Verlag, Berlin Heidelberg
New York (2003) 215–224
MOF, an adopted standard of the OMG. http://www.omg.org
UML, an adopted standard of the OMG. http://www.omg.org
XMI, an adopted standard of the OMG. http://www.omg.org

Analyzing Pair-Programmer’s Satisfaction with
the Method, the Result, and the Partner

Uuno Puus1, Asko Seeba2, Priit Salumaa3, and Sven Heiberg4

1 Post-graduate student, University of Tartu
Head of Laboratory, Cybernetica

+372 5142594, Uuno.Puus@cyber.ee
2 Post-graduate student, Helsinki University of Technology

Software Development Manager, Cybernetica
+372 5105744, Asko.Seeba@hut.fi

3 MSc student, Software Systems Engineering, RWTH Aachen
+372 55571484, Priit.Salumaa@ut.ee

4 Research Engineer, Cybernetica
+372 5059627, Sven.Heiberg@cyber.ee

Abstract. This paper gives an overview of a programmer satisfaction
survey in pair-programming experiment. The experiment took place at
Institute of Computer Science, University of Tartu (UT), Estonia. The
paper includes the problem statement, description of the questionnaire,
and the survey results.

1 Introduction

Pair-programming is programming technique according to which two program-
mers are working together on the same task at one computer [10]. Pair-program-
ming satisfaction is important aspect discovered in most surveys and experiments
as a reason of success of pair-programmers. In experiments usually the program-
mers were filling the questionnaires about working process and explain theirs sat-
isfaction (or dissatisfaction). This satisfaction shows how the people enjoy work-
ing (paired or non-paired) process. Although in most cases pair-programming
(as working method) was preferred [1], [5], [8], [9], implementing the actual pair-
programming is sometimes difficult. For example one of the obstacles occured in
Norwegian XP projects [6]. It was “the resistance to work together as a pair”.

Authors of current paper analyzed the structure of satisfaction with pair-
programming as a part of pair-programming experiment in University of Tartu.
The main goal of the experiment was to measure, how pair-programming affects
the programmer’s productivity. The result about productivity are described in
[4]. The goal of this paper is to describe the results of the satisfaction survey.
The satisfaction survey objective was to explain more precisely the structure of
satisfaction.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 246–249, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Analyzing Pair-Programmer’s Satisfaction with the Method 247

2 Satisfaction Survey

2.1 Three Types of Satisfaction

Pair-programming satisfaction has different meanings in different investigations.
Usually satisfaction is considered as satisfaction with working method (or-

ganisational aspect). In [10] it is declared that programmers are satisfied with
pair-programming, because pair-programming collaborators keep each other on
the disciplined track. In [7] satisfaction helps “with increased communications
between developers, speed of communication of design changes, and organiza-
tion of meetings”. In [3] satisfaction is also explained as satisfaction with method
(“how satisfied are you with the way you and yours partner worked together on
this assignment?”) and with work (“how you spent your time in this assign-
ment?”).

The second important aspect is satisfaction with result (with program or
assignment). It’s first of all motivational apsect and shows how confident are
the programmers in their solution. So is it declared in [9] and [1]. Increased
confidence in results is giving more satisfaction with pair-programming result.

Satisfaction with partner is not specially surveyed. Some results are described
in [5]. There were discovered no correlation between partner’s gender and sat-
isfaction. “Only men reported significantly higher enjoyment than the women
regardless of whether they partnered with a woman or a man.” Nevertheless
satisfacton with partner is an important social aspect in pair-programming. Dis-
agreeable pair-programming partners may drive all the pair-programming ben-
efits to zero.

So, it is reasonable to distinguish three different types of satisfaction:

satisfaction with method – organisational aspect;
satisfaction with result – motivational aspect;
satisfaction with partner – social aspect.

2.2 Satisfaction Questionnaire and Data Analysis

In addition to analyzing the pair-programming productivity in a pair-program-
ming experiment as described in [4] the programmers satisfaction was also ana-
lyzed in the same experiment. There were two phases with different assignments1.
At end of the each phase programmers (OO Programming course students in
University of Tartu) filled in the satisfaction questionnaire.

The satisfaction questionnaire contains 36 questions. For each type of satis-
faction the positive and negative questions were designed to neutralize the effect
of temptation to answer questions positively. For example a positive question
about satisfaction with partner is “Partner affected my result positively”, and
negative question is “I did’nt communicate much with my partner”.

After Phase1 of the experiment satisfaction questionnaire was filled by 97,
and after Phase2 by 82 students. Total amount of questionnaires analyzed was
176 (data of 3 students was incomplete).
1 Detailed design of the experiment is described in paper [4]

248 U. Puus et al.

Factor analysis [2] was used to analyze the collected data. Factor analysis
is a method of statistics to reduce the number of variables. In our case we try
to reduce the 36 answered questions to 3 types of satisfaction. Factor analysis
divides the questionnaire into three parts according to three types of satisfaction
described above. According to factor analysis the three-types of satisfaction affect
the medium result by 18.4% of total variety of results.

3 Discussion

Average satisfaction with result was statistically significantly different for pair
and non-pair programmers: -0.16 and 0.22 accordingly (the range of types of
satisfaction is from -3.7 to 3.72). It means that, contrary to some other inves-
tigations ([10],[1]), pair-programmers are less satisfied with their result than
non-pair-programmers.

Assignment for Phase 2 of the experiment was more complicated. Average
satisfaction with result was statistically significantly different for Phase 1 and
Phase 2 – 0.27 and -0.35 accordingly. More complicated assignment resulted with
lower satisfaction with result.

Other authors also [3] discovered influence of assignment to the satisfaction.
In this case also the complicated assignment drives to lower satisfaction (in
pair-programming) – the satisfaction was not statistically significantly different
between pair and non-pair programmers.

Satisfaction with partner (non-pair programmers had a partner also, but they
worked at two different computers as an ordinary two person teams) between
pair and non-pair programmers wasn’t statistically significantly different.

Satisfaction with method between pair and non-pair programmers also wasn’t
statistically significantly different. But the complexity of assignments affected
the satisfaction with method similarly as in satisfaction with result. Average
satisfaction with method was 0.051 (for Phase 1) and -0.35 (for Phase 2, more
complex assignment).

4 Conclusions

To analyze the satisfaction in (pair-)programming it is reasonable to have ex-
act imagination what type of satisfactions we consider. In this paper authors
analyzed the satisfaction that consists of three types – satisfaction with result,
satisfaction with partner and satisfaction with method. In other studies [3], [10]
satisfaction with pair-programming usually means satisfaction with method.

Authors of the paper have not found any works analyzing specifically the
satisfaction with partner.

Significant differencies were discovered in satisfaction with result (pair pro-
grammers were less satisfied with result than nonpair-programmers). Satisfaction

2 Answers to negative questions contributed to negative values, and positive questions
contributed to positive values

Analyzing Pair-Programmer’s Satisfaction with the Method 249

with result is usually called as confidence in other works ([5], [10], [3]). If assign-
ments are more complicated the pair-programming method doesn’t give more
satisfaction. It confirms the same result from [5].

5 Future Work

While the satisfaction with result gave us statistically significant results in
this experiment, it is not clear whether the relationship between programming
method and satisfaction with result remains intact when changing complexity of
the assignment. The complexity of the assignment affects the satisfaction with
result, but it is not clear whether the impact differs for different programming
methods.

Acknowledgements. Authors of the paper would like to thank all the people
who helped to reach the point so far and the students of OOP lecture who acted
as the selection.

References

1.

2.
3.

4.

5.

6.

7.

8.

9.

10.

Cockburn, Alistair; Williams, Laurie; “The Costs and Benefits of Pair Program-
ming”, XP2000, 2000.
Gorsuch, R. L. “Factor Analysis”, Hillsdale, New York:Erlbaum, 1983
Hanks, Brian; McDowell, Charlie; “Program Quality with Pair Programming in
CS1”, www.cse.ucsc.edu/ brianh/papers/ ProgQualHanksMcDowell.pdf
Heiberg, Sven; Puus, Uuno; Salumaa Priit; Seeba Asko; “Pair-Programming Effect
on Developers Productivity”; Proceedings XP 2003
McDowell, Charlie; Werner Linda; Bullock, Heather E.; Fernald Julian; “The Im-
pact of Pair Programming on Student Perfomance, Perception and Persistence”,
www.cse.ucsc.edu/ charlie/pubs/icse2003.pdf
Sharifabdi, Kamran; Grot, Claudia; “Team Development and Pair Programming
- tasks and challenges of the XP coach”, www.agilealliance.com/articles/articles/
Sharifabdi-Grot–TeamDevelopmentandPairProgramming.pdf
Succi, Giancarlo; Marchesi, Michele; Pedrycz Witold; Williams Laurie; “Prelimi-
nary Analysis of the Effects of Pair Programming on Job Satisfaction”,
collaboration.csc.ncsu.edu/laurie/Papers/Succi-Pedrycz–
PreliminaryAnalysisoftheEffectsofPairProgramming.pdf
Williams, Laurie; Kessler, R. Robert; “All I Really Need to Know about Pair
Programming I Learned in Kindergarten”, Communications of the ACM, 2000.
Williams, Laurie; Kessler, Robert R.; Cunningham, Ward; Jeffries, Ron; “Strength-
ening the Case for Pair Programming”, IEEE Software, 2000.
Williams, Laurie; “The Collaborative Software Process”, University of Utah, 2000.

Literate Programming to Enhance Agile Methods

Vreda Pieterse, Derrick G. Kourie, and Andrew Boake

Department of Computer Science, University of Pretoria, South-Africa
vpieterse@cs.up.ac.za

Abstract. In this position paper, after explaining the essentials of literate pro-
gramming, we argue that a literate programming style is consistent with the
values espoused by agile software development; and that the application of lit-
erate programming in the context of an agile software development methodol-
ogy is likely to enhance both the quality and lifespan of the final product.

Keywords: Literate Programming, Literate Extreme Programming

1 Literate Programming Essentials

Knuth [1] uses the term “Literate Programming” (LP) to describe his approach to pro-
gram design. Rather than seeing the program as instructions to a computer that in-
clude comments to the reader, it should be seen as an explanation to a human with
corresponding code between “code delimiters” [2]. For a program to be literate it
should have the following attributes:

Literate Quality: An artistic creation that explains the solution to a human by
crisply defining its components and delicately weaving them together. [1]
Psychological Structure: The program is organized in such a way that the reader
is naturally led to an understanding of the decisions that shaped the code. [3]
Integrated Documentation: Documentation of the program is seen as an integral
part of the literate program that is developed around the code.
Table of Contents, Index and Cross References: The document must have a ta-
ble of contents, an index, as well as cross references between related modules
within the program. The automatic generation of this information is important [4].
Pretty Printing: Indentation, font styles text colours etc. should be judiciously ap-
plied to improve the readability and ease of understanding of code.
Verisimilitude: The generation of executable code and the production of the hu-
man readable literate version of the program should be automatically extractable
from the same source document. [5]

The first Literate Programming Environment (LPE) called WEB, was designed by
Knuth [1] in 1984 at the advent of the procedural programming era. WEB used two
processors called TANGLE and WEAVE to convert the original source document re-
spectively into an executable program (which could be executed using a standard Pas-
cal compiler), and into a publishable, human readable program (which was printed
using TEX)

Soon a number of similar LPE’s (such as those shown in table 1) evolved to sup-
port other programming languages or to produce documents using other typesetters.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 250–253, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Literate Programming to Enhance Agile Methods 251

In 1990 van Wyk [5] commented that the general acceptance of LP would not be
possible before a universal LPE could be marketed. In the light of the technology of
the time, most developers accepted this as the death knell of LP. Some valiant sup-
porters of LP however continued to build adaptable LPE’s (such as those shown in ta-
ble 2) that were able to support a variety of programming languages, and to produce
documents in various specified formats.

In the meantime object oriented (OO) development emerged. Commercial inte-
grated development environments (IDEs) supporting OO implemented LP concepts,
albeit without specifically supporting LP. Consequently:

Pretty printing in editors has become a matter of course.
Tools like javadoc in the JDK support integrated documentation and create hyper-
linked documentation with an index and table of contents.
Tools like Rational Rose show different views of program design, supporting psy-
chological ordering of the program components.

2 Justification of Literate Extreme Programming

Coding done in a literate style promotes the values associated with agile methods.

Individuals and interactions over processes and tools: LP is a communication-
oriented programming method [13] and can aid communication better than the pure
source code even though intention revealing.

Working software over comprehensive documentation: LP supports compre-
hensive documentation without wasting time on synchronising documentation with
the code. LP improves the chances of creating working software sooner. [1]
Customer collaboration over contract negotiation. LP provides a more readable
form of the program, facilitating better customer collaboration.

252 V. Pieterse, D.G. Kourie, and A. Boake

Responding to change over following a plan: LP promotes simplicity of design
by insisting on a psychologically friendly structure. Complete up-front analysis,
design and documentation violate the LP concept of integrated documentation.
Thus, LP shares with the agile methods the concern that too much planned up-front
analysis and design limit the ability to respond to change.

Application of LP is likely to improve the product in terms of the following:

Communication: Reenskaug and Skaar [14] experienced improved communica-
tion through written documents while applying LP in practice. XP on the other
hand is designed to enhance verbal communication. These communication modes
can potentially augment one another.

Quality: Many authors have reported improved code quality when applying LP
[2], [6], [15]. While not denying that XP may produce quality code, adding LP to
XP is likely to further enhance the quality.

Documentation: Much has been said about the advantages of having proper
documentation for programs [16], [17], [18] and about the disadvantages of having
documentation that does not match the system. [6], [16], [18]. LP emphasises these
advantages and diminishes likelihood on incurring the disadvantages through better
consistency between code and documentation [19]. When using LP, the XP team
no longer has to minimize documentation to avoid its disadvantages. Instead, they
are enabled to reap the benefits of its advantages.

Added benefits of applying Literate Extreme Programming include the following.

Retention of knowledge: In an XP context, the knowledge about the system re-
sides mostly in the memories of the team members. However, no-one remembers
everything all the time. Information recorded in the literate program remains avail-
able to refresh a team member’s memory when the code is revisited.

Accelerated distribution of knowledge: Using verbal as well as written commu-
nication will improve the quality of the information that programmers retain. Ac-
cess to the documented information can also save time later, because the learning
curve to understand the code will be flattened by the presence of this information.

Newcomer Integration: The improved quality of the code and the enhanced re-
corded documentation will help newcomers to be productive in the team sooner.

Customer confidence: Because the knowledge about the system is recorded in
ways that ensure continuity, the customer will enjoy greater peace of mind.

Outsourcing: Applying XP in outsourced development is generally discouraged.
Adding LP will allow the delivered project to be resumed by a different team. In-
clusion of LP could therefore improve XP’s applicability to outsourced coding.

Scalability: The agile value set and practices are best suited to teams of less than
50 people who are engaged in projects that are not life-critical [20]. We feel that it
will be possible to alleviate concerns about team size, project size and project char-
acter that are often associated with XP, by adding aspects of LP to it.

Literate Programming to Enhance Agile Methods 253

3 Conclusion

We have argued that LP is consistent with and supportive of agile methodologies. The
incorporation of LP into a methodology such as XP will enhance communication and
improve the software quality. We are cognizant of the commonly observed fact that
programmers are not enthusiastic about documentation [18]. Nevertheless, given the
cited evidence that LP improves both quality and communication, it seems worth-
while to pursue an empirical study to build a good LPE and to measure the extent to
which it can find acceptability amongst extreme programmers. Work in this direction
is under way.

References

Knuth D.E. Literate Programming. The Computer Journal, 27 (2) (1984) 97-111
Williams R. FunnelWeb Tutorial Manual. Online:
http://www.ross.net/funnelweb/tutorial/intro_what.html visited 2003/01/05 (2000)
Beck K., Cunningham W. Expanding the Role of Tools in a Literate Programming Envi-
ronment. Presented at CASE’87. Boston Mass. online: http://c2.com/doc/case87.html Vis-
ited: 2003-12-19. (1987)
Denning P.J. Announcing Literate Programming. Communications of the ACM, 30 (7) (Jul
1987) 593
Van Wyk C.J. Literate Programming : An Assessment. In: Literate Programming. Commu-
nications of the ACM, 33 (3) (March 1990) 361-365
Thimbleby HW. Experiences of ‘Literate Programming’ using CWEB. Computer Journal,
29 (3) (June 1986) 201-211
Avenarius A., Oppermann S. FWEB: a literate programming system for Fortran8x,
SIGPAN Notices, 25 (1) (1990) 52-58
Dickey LJ. Literate programming in APL and APLWEB. APL Quote Quad, 23 (4)11.(1993)
Bishop J.M., Gregson K.M. Literate Programming and the LIPED Environment. Structured
Programming. 13 (1) (1992) 23-34.
Levy S. Literate Programming and CWEB. Computer Language, 10 (1) pp 67-70. (1993)
Pieterse V., Bishop JM. Visualization of Programs in Textbooks Online:
http://www.literateprogramming.com/visualze.pdf Visited 2004/01/08 (May 1996)
Ream E.K. Leo Literate Editor with Outlines. online:
http://www.3dtree.com/ev/e/sbooks/leo/sbframetoc_ie.htm visited 2004/03/28, (Dec 2002)
Beck K. Extreme Programming Explained, Addison-Wesley, (1999).
Reenskaug T., Skaar AL. An environment for literate Smalltalk programming. OOPSLA
1989 Proceedings, New Orleans, (1989) 337-345
Lindsay D.C., Thimbleby H. A File Difference Program. In: Literate Programming. Com-
munications of the ACM, 32 (6) (June 1989) 740-755
Kotula, J. Source Code Documentation: An Engineering Deliverable Online:
http://csdl.computer.org/comp/proceedings/tools/2000/0774/00/07740505abs.htm Visited:
2004/01/08 (2000)
Hyman M. Literate C++, Computer Language. 7 (7) (Jul 1990) 67-69
Parnas D. Software Aging. In: Software Fundamentals. Addison-Wesley, (2001)
Shum S., Cook C. AOPS: an abstraction-oriented programming system for literate pro-
gramming. Software Engineering Journal, 8 (3) (May 1993) 113-120
Williams L., Cockburn A. Agile Software Development: It’s about Feedback and Change,
Computer, 36 (6) (June 2003) 39-41

1.
2.

3.

4.

5.

6.

7.

8.
9.

10.
11.

12.

13.
14.

15.

16.

17.
18.
19.

20.

Mockrunner
– Unit Testing of J2EE Applications –

Alwin Ibba

Lebensversicherung von 1871 a.G., Maximiliansplatz 5,
80333 Munich, Germany

alwin.ibba@lv1871.de

Abstract. A fast test – development cycle is absolutely mandatory when devel-
oping applications with agile methodologies. There are different approaches to
overcome the sluggishness of in-container testing. One common technique is
the use of mock objects or of stub objects. Mockrunner is a framework that
simulates J2EE [1] containers. It simplifies unit testing of J2EE based applica-
tions. The application can be tested without changing the original code. Mock-
runner is open source and can be downloaded from [2].

1 Introduction

Applications in the J2EE environment are often remarkable complex systems. They
are usually running on different machines and are separated into multiple tiers. It’s a
really tedious and annoying process to deploy the components to the application
server. Dozens of deployment descriptors have to be provided by the developer to
configure the J2EE environment. There are development tools which support the
development and deployment cycle of J2EE applications but it’s still a lot of work to
do besides the pure development of the business logic.

Testing the different components of a J2EE based application can be really both-
ering. Running the unit tests against an EJB [3] in the container really taxes the de-
velopers patience. This is especially true if there are many EJBs, perhaps with access
to a database.

Besides the poor performance it is a lot of work to setup the test environment. De-
ployment descriptors and test database tables have to be created. This test data has to
be clearly seperated from the production environment.

The main goal of Mockrunner is to provide a test environment for large J2EE ap-
plications without the need of a running application server or a database. Mockrunner
is usually used in conjunction with a simulated EJB container called MockEJB [4]
and can be used to test servlets, servlet filters, custom tags, EJBs and JDBC [5] code.
Furthermore it includes a test framework for Struts [6] and for JMS [7]. Test frame-
works for other J2EE related technologies will be included in future releases, espe-
cially for Java Data Objects JDO [8]. See [1] for a detailed description of the different
J2EE technolgies.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 254–257, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Mockrunner – Unit Testing of J2EE Applications 255

Mockrunner extends JUnit [9] and requires Java 1.3 to run. It supports J2EE 1.3
and Struts 1.1.

2 Architecture

The core of the Mockrunner framework are different test modules. A test module is a
simple Java class that can be used to setup the configuration for the different tests and
it holds the state while running a test method. Usually the state of a test module is
reset in the setUp()method of a JUnit test case. A test module provides verify
methods to test the different conditions. A verify method throws a VerifyFaile-
dException if a test fails.

Mockrunner is providing six test modules at the moment. The ActionTestMod-
ule, ServletTestModule and TagTestModule can be used for testing Struts
actions and forms, servlets, filters and custom tag classes. The JDBCTestModule
simulates a database and can be used to test JDBC code. The EJBTestModule
utilizes MockEJB and is meant for EJB testing. The JMSTestModule is meant for
JMS related tests. Of course the test modules can be combined. For example, the
ServletTestModule can be used in conjunction with the EJBTestModule and
the JDBCTestModule.

Usually a test module is created and used in a JUnit test case. For every test mod-
ule there’s also a TestCaseAdapter. For the ServletTestModule there exists
a ServletTestCaseAdapter for example. The adapters just delegate to the
corresponding modules. In difference the adapter itself is a JUnit test case, so the test
case can simply extend the adapter. Since a Java class is limited to one base class, it’s
obligatory to use the test module approach, if multiple test modules are combined. If
only one module is involved in the test it is easier to extend the corresponding
adapter. Mockrunner handles the creation of the corresponding module in this case.

Mockrunner does not provide a reimplementation of a J2EE container. Functional-
ity that is not necessary for unit tests or a normal application will not be simulated. In
some cases the test modules differ from the real container, if the different behavior is
more suitable for a test environment. In other cases you can switch between real con-
tainer mode and test mode.

Mockrunner generally does not read any deployment descriptors or configuration
files. All necessary setup is done using the Mockrunner API. So it is very easy to test
all elements as reusable components regardless of the settings you use in one or an-
other application.

3 Writing Tests with Mockrunner

J2EE applications are usually separated into three tiers, the web tier, the business tier
and the integration tier. Mockrunner covers all three tiers. The three test modules for

256 A. Ibba

the web tier, namely the ActionTestModule, the ServletTestModule and
the TagTestModule can be used to simulate a web container and the Struts infra-
structure. It is possible to prepare the session, the request and the servlet context, to
execute one Struts action or one servlet and to verify the changes of the request or
session state at the end.

The result of a servlet or tag call usually is an HTML page. The corresponding test
modules are providing the created HTML code in different formats, namely as text, as
an InputReader or as a JDOM [10] or W3C [11] XML document. HTML often
contains mistakes and is not wellformed in general. Mockrunner is using the Ne-
koHTML parser [12] to overcome this issue and is usually able to provide a fixed
XML document that can be used for further testing. For example, the XML document
can be used as an input for an XML test framework.

EJB is the favorite technology for the business tier of a J2EE application. The EJB
part of Mockrunner is based on the open source MockEJB framework. MockEJB
provides a lightweight simulated EJB container with enough functionality for running
EJBs in unit tests. Refer to the project page at [4] for details. MockEJB supports
stateless and stateful session beans as well as message driven beans. Entity beans are
not supported but probably will in future releases.

Mockrunner utilizes MockEJB. The EJBTestModule does not implement much
functionality. Its purpose is to bring Mockrunner and MockEJB together. MockEJB
usually works with a real database. The EJB is executed in a real transaction created
by the application server. Mockrunner implements a simulated database and runs
transactional code inside a simulated transaction. The simulated transaction keeps
track of any commits or rollbacks.

The EJB test environment of Mockrunner manages the transaction and the simu-
lated data source. Furthermore it offers some additional functionality for an easier to
use and more convenient deployment mechanism.

Mockrunner provides two test modules for the integration tier, namely for JDBC
and for JMS. The JMS framework implements all the JMS interfaces and simulates a
message server. Messages can be sent to simulated queues and topics. They are for-
warded to the registered receivers in the same way as with a real message server. The
JMSTestModule can be used to test JMS based code, i.e. code that uses the JMS
interfaces.

The JDBCTestModule simulates a database in order to test JDBC code without
the need of setting up a real database. It implements all the interfaces of JDBC 3.0
and focuses on the functionality that is necessary for unit testing. The simulated envi-
ronment is not a database and it does not execute any SQL statements. It is not able to
store any data persistently. Its only purpose is to test the Java part of JDBC based
applications. If the tests are all green it’s still no guaranty that the application is
working well with a real database. It may be necessary to test the SQL code itself by
running it against a real database.

Mockrunner provides a MockDriver that registers itself for any incoming con-
nection attempt. All database calls are intercepted and answered by the framework.

Mockrunner – Unit Testing of J2EE Applications 257

Since the simulated JDBC environment does not execute SQL code, it’s necessary to
specify the answers the database would provide when receiving different SQL state-
ments. It’s possible to setup MockResultSet objects for test queries and any other
return value a database may provide. It is even possible to tell the mock driver to
throw exceptions when receiving a specified statement. This feature can be used to
test database failures.

The JDBCTestModule keeps track of all executed statements, returned results
and update counts, thrown exceptions and closed connections, statements and result
sets. It manages the transaction and counts commits and rollbacks. It does not matter
if it is a JDBC transaction or JTA [13] transaction.

4 Conclusion

Mockrunner provides an easy way to write unit tests for J2EE based applications. It is
very fast and it does not require to write the application code in a special way that
makes it compatible with the test environment.

References

Sun Microsystems Inc., J2EE, Website, http://java.sun.com/j2ee
Ibba A., Mockrunner Project, Website, http://mockrunner.sourceforge.net
Sun Microsystems Inc., EJB, Website, http://java.sun.com/products/ejb
Ananiev A., MockEJB Project, Website, http://mockejb.sourceforge.net
Sun Microsystems Inc., JDBC, Website, http://java.sun.com/products/jdbc
Apache Software Foundation, Struts, Website, http://jakarta.apache.org/struts
Sun Microsystems Inc., JMS, Website, http://java.sun.com/products/jms
Sun Microsystems Inc., JDO, Website, http://java.sun.com/products/jdo
Beck, K., Gamma, E., JUnit, Website, http://www.junit.org
Hunter J., McLaughlin B., JDOM Project, Website, http://www.jdom.org
World Wide Web Consortium W3C, XML, Website, http://www.w3c.org/XML
Clark A., CyberNeko HTML parser, Website,
http://www.apache.org/~andyc/neko/doc
Sun Microsystems Inc., JTA, Website, http://java.sun.com/j2ee/transactions.html

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

13.

Application of Lean and Agile Principles to Workflow
Management

Barbara Weber1 and Werner Wild2

1 Institute of Computer Science - Quality Engineering Research Group
University of Innsbruck, Technikerstraße 25/7, 6020 Innsbruck, Austria

Barbara.Weber@uibk.ac.at
2EVOLUTION Consulting

Jahnstraße 26, 6020 Innsbruck, Austria
werner.wild@evolution.at

Abstract. Today’s dynamic and uncertain business environment requires quick
reaction to change and frequent deviations from plans. Lean principles and agile
methods address this need and have been successfully applied to software
development. This paper shows how lean development and agile values can be
applied to workflow management, as workflow modeling has strong similarities
to software development. The required adaptability is enabled by the integration
of workflow management and conversational case-based reasoning (CCBR) and
is implemented by the research prototype CBRFlow.

1 Introduction

Workflow management systems (WFMS) are frequently used to control the execution
of business processes and to improve their efficiency and productivity. Today’s
business is characterized by ever-changing requirements and unpredictable
environments (e.g. due to global competition). A WFMS must therefore be flexible at
run-time so that necessary modifications are possible when they arise.

The need for flexibility and adaptability in WFMS is addressed by adaptive
workflow management research (e.g. [1], [2]). Weber [3] proposes an architecture for
such an adaptive WFMS (CBRFlow). CBRFlow, a research prototype, integrates
workflow management and CCBR to foster flexibility and supports an approach to
workflow management which supports many of the principles advocated in lean [4]
and agile software development [5].

2 Adaptive Approach to Workflow Management

CBRFlow [3] builds upon the idea of integrating CCBR and workflow management
to provide the system with learning capabilities and to foster adaptability and
flexibility. Its architecture allows an adaptive approach to workflow management and
supports many of the principles advocated in lean and agile software development.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 258–261, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Application of Lean and Agile Principles to Workflow Management 259

During workflow modeling an initial computerized representation of selected
business processes is created. The control flow between activities is modeled by
business rules. When run-time changes to the workflow model become necessary due
to exceptions or changing requirements, the user annotates the workflow model with
context-specific information in the form of cases. When this process knowledge
becomes well-established, the workflow modeler abstracts these cases to rules, thus
explicitly updating the underlying model (Figure 1). The system and the organization
continuously learn how to better handle new situations as more and more experience
is gained and the knowledge is readily available for reuse.

Fig. 1. CBRFlow’s approach to workflow management

3 Application of Lean Principles to Workflow Management

Eliminate Waste
cost of a complete workflow model often exceeds the potential business value
covering too many details in the workflow model involves the risk of including
rarely needed parts, not yet needed or even unneeded ones, thus creating waste
focusing on core functionality allows to shorten the modeling period and allows for
an earlier productive system

Amplify Learning
business process management deals with wicked problems that cannot be planned in
every detail; the right the first time approach does not work, but the selected
solution has to be continuously improved
WFMS must provide tight feedback loops (model-execute-evaluate cycle) and be
able to handle modifications when they arise (i.e. short iterations); the gained
knowledge can be immediately reused in subsequent workflow instances

Decide as Late as Possible
initial workflow model covers only the details of a business process that provide an
immediate business value
detailed modeling is delayed until the company’s needs are more clearly understood
supporting just-in-time updates to the existing workflow model using the CCBR
sub-system, additional knowledge is added during run-time in form of cases
refactor knowledge encoded in cases into rules when it becomes frequently reused

260 B. Weber and W. Wild

Deliver as Fast as Possible
only core functionality of the most valuable business processes is implemented in
the first iteration to earn value form early on and to get feedback right away
changes and new functionalities are added on demand (i.e. just-in-time)
CBRFlow allows hot deployment of changes to the workflow model and does not
require a restart of running workflow instances.

Empower the Team
workflow modeler creates initial model in close collaboration with affected users
workflow users directly modify the flow of activities by creating or adapting cases
to keep the knowledge available for immediate and later reuse
decision making authority is delegated to the frontline workers and allows them to
improve the way they do their work on their own

Build Integrity in
workflow model must closely reflect the real world business processes
best achieved by close collaboration between workflow modelers and workflow
users during build-time and by allowing modifications during run-time by the user
workflow model is modified and tested directly by the user (customer test)
the workflow modeler should create and run corresponding developer tests
refactor when user acceptance drops (frequent case reuse) or duplication is found

See the Whole
risk of sub-optimization is mitigated by monitoring workflow execution, as users
directly modify the workflow even without a mental picture of the overall workflow
metrics should cover the entire workflow or even the underlying business process

4 Application of Lean Values to Workflow Management

In this section we show how the core values described in the Agile Manifesto [5] can
be applied to workflow management and how they are supported by CBRFlow.

Individuals and Interactions over Processes and Tools
CBRFlow empowers the users to be problem solvers, not just process followers
users are entitled to immediately respond to changes using the integrated CCBR
sub-system without following a complicated or time-consuming process

Working System over Comprehensive Documentation
CBRFlow brings a WFMS up and running fast and fosters learning from there
feed-back from the frontline users is integrated immediately into the system and be
made available instantaneously
knowledge retained in the CCBR sub-system provides a concise documentation for
later refactoring by the workflow modeler

Application of Lean and Agile Principles to Workflow Management 261

Customer Collaboration over Contract Negotiation
initial workflow model is developed in close and informal collaboration between the
workflow modelers and the workflow users as they hold the knowledge of how the
business processes are actually performed in the company
permanent changes to the model are also done in close collaboration between the
workflow modelers and those frontline workers who have entered the cases when
deviating from the predefined workflow model

Responding to Change over Following a Plan
the execution of a predefined model is not strictly enforced
frontline workers can respond to changes immediately by entering a case, thus
implicitly update the workflow model using the CCBR sub-system

5 Conclusions and Further Studies

The research prototype CBRFlow covers many of the lean and agile principles and
values. The application of CCBR to workflow management relaxes the strict
separation between build-time and run-time and supports just-in-time updates to the
workflow model enabling to delay the decision how to model a business process
precisely until the company’s needs are more clearly understood. This immediate
feedback resolves uncertainty, and permits to rapidly incorporate the results of the
learning processes into subsequent workflow executions. Requirements are modeled
when they arise and when their modeling provides a clear business benefit.
Shortening the modeling period allows a sooner productive use of the system and
enables earning business value from early-on.

References

Reichert, M.; Dadam, P.: ADEPTflex – Supporting Dynamic Changes of Workflows
Without Loosing Control. In: Journal of Intelligent Information Systems, Special Issue on
Workflow Management 10 (1998) 2, pp. 93-129.
Luo, Z.; Shet, A.; Kochut, K.; Miller, J.: Exception Handling in Workflow Systems. In:
Applied Intelligence 13 (2000) 2, pp. 125-147.
Weber, B.: Integration of Workflow Management and Case-Based Reasoning: Supporting
Business Process Management through an Adaptive Workflow Management System.
Dissertation, Innsbruck 2003.
Poppendieck, M.; Poppendieck, T.: Lean Software Development: An Agile Toolkit. 1st
edition, Addison Wesley 2003.
The Agile Alliance. Agile Manifesto (2001). Available at http://www.agilemanifesto.org,
visited on December 27, 2003.
Weber, B.; Wild, W.: Agile Approach To Workflow Modeling. To appear in: Tagungsreihe
Modellierung 2004.

1.

2.

3.

4.

5.

6.

Assistance for Supporting XP Test Practices in
a Distributed CSCW Environment

Ibrahim Lokpo1, Michel Babri1, and Gérard Padiou2

1 Institut National Polytechnique Félix Houphouet-Boigny,
Departement of Mathematics and Computer Science,

Yamoussoukro, Côte d’Ivoire, West Africa.
lokpo@hotmail.com,michel_babri@yahoo.fr

2 Ecole Nationale d’Electrotechnique, d’Electronique,
d’Informatique et de Télécommunications,

Institut de Recherche en Informatique de Toulouse (IRIT-CNRS),
Toulouse, France.

padiou@enseeiht.fr

Abstract. One of the main requirements of eXtreme programming
(XP) is to do unit testing be a critical task of the daily development
routine of a programmer. Our work aims at contributing to make
easier the actual practice of this requirement in the framework of
distributed computer-supported cooperative work (CSCW) and in
an education context. The proposed XP test environment is used as
a basic mechanism for structuring the XP process in a distributed
context. As an experimental prototype, we propose a Junit and JML
based unit testing environment as an extension of the BlueJ Interactive
Environment.

Keywords: XP-programming, Unit testing, distributed CSCW.

1 Introduction

XP[Bec00][SM01] aims at providing the software developers with a simple
method that helps producting quickly high quality functionalitie. Since Unit
testing has been included as an important part of XP methodology of software
development, efforts have been made to encourage programmers to actually use
it in their daily development routine[GB98]. Our work aims at contributing to
assist the actual practice of this requirement in a distributed context. In this pa-
per, we describe JUTE, a Junit[Bec01] and JML based unit testing environment
that helps doing XP tests driving developpement and supports public ownership
practices as an extension of the interactive BlueJ environment. Furthermore, the
CVS tool is used to assist the versioning of test results in a distributed context.

In the next section we study the problem of unit testing and distributed
CSCW in the framework of XP programming. Among these problems we choose
to explore the assistance to distributed unit testing considering that unit test-
ing is a basic and essential subject in Extreme Programming. More precisely,

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 262–265, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Assistance for Supporting XP Test Practices 263

we consider the test process as the basic structuring mechanism of deveopment
interactions in a distributed context. In section 3, we focus on the implemen-
tation of such an environment. We describe how it combines assistant tools for
testing, namely JML and Junit, a Java programming environment BlueJ and a
distributed version control system CVS. Each of them provides its functionali-
ties to carry out a distributed unit testing environment in an XP programming
framework. This tool is a first step towards a distributed Java XP programming
tool. In section 4, we outline the current step of our prototype.

2 Distributed XP Programming Based upon Distributed
Unit Testing

Distributed eXtreme Programming (DXP) is eXtreme Programming with a
relaxation on the requirements of physical proximity of the team members
[BM02],[KJCL01]. Several aspects of distributed XP have been tackled through
a lot of research projects. They have proposed differents concepts such as the
notion of virtual team[Mau02], Such approaches aims at providing
a set of CSCW functionnalities in a distributed environment to enforce the close
coupling of programmers. However, such an approach requires powerful under-
lying network resources too. We propose an other approach assuming minimal
connecting resources. This requirement is implied by the context of our experi-
ment : a low bandwidth connection between France and Côte-d’Ivoire. Therefore,
we focus our approach upon a distributed unit testing assistance as a basic step
towards loosely-coupled XP-programming and public ownership practices.

XP programming requires intensive and continuous unit tests [Bec00]. It ap-
pears clearly that software development following XP is driven by test. Fur-
thermore, it has been shown that unit testing is helpful to the other XP
practices[Gas01]. A very simple and useful assistance to unit testing in Java
is provided by the Junit tool[GB98]. However, in a distributed context, it seems
important to insure the gathering of unit tests so that no tests is overlooked.
Therefore, our proposal involves the generation of a test suite including all unit
tests modules in the file hierarchy of the project.

3 A Distributed Java Unit Testing Environment (JUTE)

Junit (http://www.junit.org) is a very popular tool to help programmers for
this purpose in the framework of XP programming. The Junit tool forces both
a strict methodology to write unit tests and a simple way to execute tests se-
quences. The interactive Java environment BlueJ [KQPR03,PKR03] (see also :
http://www.bluej.org) integrates the Junit tool and allows to perform unit tests
associated to different packages in a project.

However, unit tests must be written by programmers. A further assistance
is provided by the JML project. The JML project (Java Modeling Language)
aims at providing a specification language to specify behavior of Java modules.

264 I. Lokpo, M. Babri, and G. Padiou

It combines the approaches of Eiffel and Larch, with some elements of the re-
finement calculus. It involves several tools and, especially, a unit test generator
(jmlunit). This tool generates Junit-like tests skeletons. These skeletons must
be refined to obtain executable test suites. In this approach, basic test cases
are automatically generated from specifications. JML requires a knowledge of
logic-based specification languages to describe safety properties (invariants, pre
and post-conditions).

The integration of this jmlunit tool in the BlueJ environment should provide
a further facility to assist the development of unit tests in an teaching context
for carrying out XP practices. Moreover, in the framework of XP programming,
the unit tests of a whole project have to be launched in a systematic and regular
way. If all the tests succeeds, a new current version of the project can be recorded
and final users will perform acceptance tests upon it.

This task requires to develop a global test suite of all test suites in a project.
We have written a generator to automatically obtain such a global test program.
This program explores the project tree and generates a Java source program
which gathers all test cases in a global test suite. Then, this generated program
is compiled and the junit tool is launched to execute this global test suite.

An important assumption of XP is its continuous refinement process during
software development. As nobody is able to predict exactly what functionality
may be requested in the future, XP tends to produce a now useful software with
possible adjustment when necessary. This flexibility meets that of BlueJ. On the
other hand, CVS provides a means to overcome the colocation restriction the
co-location restriction.

4 Current Work

The Junit package is plugged in the BlueJ environment as a basic but useful
support for handling unit tests. We extend this capability and plug in two further
tools : the Java Modeling Language (JML) and the version control
system CVS (Concurrent version System). The members access the repository
via a secure connection and open their local copy of the project with Bluej. Then,
they are allowed to perform all available operations : update the local copy, test
a module, commit an updated module, etc. Furthermore, the gathering of all
tests in a global suite has been implemented.

The project we are working on is located at Ecole National Supérieure
d”Electrotechnique, d’Electronique, d’Informatique, d’Hydraulique et de
Télécommunication (ENSEEIHT) in Toulouse (France). An other contribut-
ing team is located in Côte d’Ivoire at Institut National Polytechnique Félix
Houphouët-Boigny(INP-HB) in Yamoussoukro.

5 Conclusion

This approach is a challenge with respect to the usual high level of locality
and synchronous communication among XP teams. This requires to evaluate

Assistance for Supporting XP Test Practices 265

its actual feasability without invalidating the main features and pratices of XP
programming. We believe that BlueJ, on one hand and frameworks such as
JML(Java Modelling Language and CVS (Concurrent Version System) on the
other hand, complement each other to improve distributed computer-supported
cooperative work and to overcome the XP co-location constraint without loosing
XP basic features and advantages.

References

Kent Beck. Extreme Programming Explained : Embrace Change. The
XP Series. Addison Wesley Publishing Company, 2000.
Kent Beck. Test-driven Development by example. The Addison Wesley
Signature Series. Addison Wesley Publishing Company, 2001.
S. Bowen and F. Maurer. Designing a Distributed Software Develop-
ment Support System using a peer-to-peer Architecture. In Proceedings
of the Workshop on Cooperative Supports for Distributed Software Engi-
neering Processes. 26th IEEE Annual International Computer Software
and Application Conference (COMPSAC), 2002.
Peter Gassmann. Unit testing in a Java project. In Kent Beck, edi-
tor, Extreme Programming Examined, The XP Series, pages 249–269.
Addison-Wesley Publishing Company, 2001.
Erich Gamma and Kent Beck. Test infected : Programmers love writing
tests. Java Report, 3(7), July 1998.
M. Kircher, P. Jain, A. Corsaro, and D. Levine. Distributed extreme pro-
gramming. In XP2001 - eXtreme Programming and Flexible Processes
in Software Engineering. Villasimius, Sardinia, Italy, May 2001.
M. Kölling, B. Quig, A. Patterson, and J. Rosenberg. The BlueJ system
and its pedagogy. Journal of Computer Science Education, 13(4), Dec
2003.
G. T. Leavens, K. Rustan, M. Leino, E. Poll, C. Ruby, and B. Jacobs.
JML: notations and tools supporting detailed design in java. In OOP-
SLA’00 Companion, pages 105–106, August 2000.
F. Maurer. Supporting distributed extreme programming. In Don Wells
and Laurie A. Williams, editors, XP/Agile Universe 2002, Second XP
Universe and First Agile Universe Conference Chicago, IL, USA, August
4-7, 2002, ProceedingsXP/Agile Universe, volume 2418 of Lecture Notes
in Computer Science, pages 13–22. Springer, 2002.
A. Patterson, M. Kölling, and J. Rosenberg. Introducing Unit Testing
with Bluej. In Proceedings of the 8th conference on Information Tech-
nology in Computer Science Education (ITiCSE 2003), 2003.
Giancardo Succi and Michele Marchesi. Extreme Programming Exam-
ined. The XP Series. Addison Wesley Publishing Company, 2001.
H. Skaf-Molli, P. Molli, G. Oster, Cl. Godart, P. Ray, and F. Rabhi.
Toxic farm: A cooperative management platform for virtual teams and
enterprises. In 5th International Conference on Enterprise Information
Systems ICEIS03. Angers, France, April 2003.

[Bec00]

[Bec01]

[BM02]

[Gas01]

[GB98]

[KJCL01]

[KQPR03]

[Mau02]

[PKR03]

[SM01]

Requirements of an ISO Compliant XP Tool

Marco Melis1, Walter Ambu2, Sandro Pinna1, and Katiuscia Mannaro1

1 Dipartimento di Ingegneria Elettrica ed Elettronica, Universitá di Cagliari,
Piazza d’Armi, 09123 Cagliari, Italy

{marco.melis, pinnasandro, mannaro}@diee.unica.it

http://agile.dies.unica.it
2 Atlantis spa, via San Tommaso d’Aquino, 18

09134 Cagliari, Italy
walterambu@gruppoatlantis.it

http://www.gruppoatlantis.it

Abstract. In the last years, a few studies and experiences have been
published about the compatibility between Extreme Programming and
ISO 9001:2000 certification. The actual problem is not to demonstrate if
it is possible to certificate an XP process but to explain how an XP pro-
cess can maintain its agility in such a context. We think that the use of
an appropriate tool that supports both XP practices and ISO 9000 stan-
dard can simplify this integration process. In this paper we will provide
the essential requirements for a tool supporting such functionalities.

1 Introduction

Recent studies have shown that it is possible to achieve ISO 9001:2000 [3] certi-
fication in organizations using agile methodologies [4]. These studies are mainly
concerned with the demonstration of compatibility between Extreme Program-
ming practices [1] and ISO standard requirements. Furthermore, a few experi-
ences have been presented in support of these ideas [5]1.

In order to achieve certification, ISO 9001 requires the organization to define
specific procedures to establish how each significant activity in their develop-
ment process is conducted. This means that the organization must always be
able to show objective evidence of what is planned, what has been done, how
it was done, the current status of the project and product, and it must be able
to demonstrate the effectiveness of its quality system. The main problem that
arises in practice is that the adoption of these activities could lead to an heavy-
weight process, in contrast with Agile philosophy. The adoption of a certified
quality system is justified only whether it gives an added value to the whole
organization. At the same time, a lot of tools supporting XP processes have
been developed ([5], [6]). These tools mainly support requirements gathering
and planning activities. It is our opinion that the use of such tools can be very
helpful in order to manage software development processes. In this paper we will
1 This study is part of MAPS research project (Agile Methodologies for Software Production)

funded by the FIRB research fund (grant nr. RBNE01JRK8) of the Italian Government (MIUR).

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 266–269, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Requirements of an ISO Compliant XP Tool 267

provide the essential requirements for the development of a tool supporting XP
project management and ISO 9001:2000 certification (section 2).

2 Guidelines for Validation of a XP Tool Supporting ISO
9001:2000 Certification

In this section we intend to give some guidelines helping to define those require-
ments that should be supported by a project management tool (Tool) to support
ISO 9001:2000 certification [3]. From the ISO standard we have extracted those
clauses that are involved in software development for which the Tool can be
useful, giving some clue for its implementation.

ISO normative identifies 5 main process areas:
Quality Management System ([3], sect. 4);
Management Responsibility ([3], sect. 5);
Resource Management ([3], sect. 6);
Product Realization ([3], sect. 7);
Measurement, Analysis and Improvement ([3], sect. 8).

In this section we only present Design and Development area of Product Real-
ization.

2.1 Design and Development [D&D] ([3], 7.3)

Design and Development Planning (7.3.1). “The organization shall plan and
control the design and development of product.”
The Tool shall support the planning of the software development processes, such
as definition of Releases and Iterations. Moreover it should support definition of
relative responsibilities and authorities. In addition, it shall communicate results
regarding these planning activities inside the organization as well as control the
realization of planned activities.
Design and Development Inputs (7.3.2). “Inputs relating to product re-
quirements shall be determined and record maintained... ”
The Tool shall provide for recording these type of inputs and for maintaining
relative records. It should supply information and suggestions gathered in pre-
vious similar projects.
Design and Development Outputs (7.3.3). “The outputs of D&D shall be
provided in a form that enables verification against the D&D input and shall be
approved prior to release.”
The main outputs of a XP development process are the code and its relative
tests (unit and acceptance test). By mean of the Tool, it shall be possible to
automatically verify that output elements are suitable to satisfy input require-
ments: in practice, the Tool should allow the association of each output artifact
with the correspondent input element and relative test. In this way, thanks to
an appropriate interface with a testing application, it will be possible to verify
requirement satisfaction.

268 M. Melis et al.

Design and Development Review (7.3.4). “At suitable stages, systematic
reviews of D&D shall be performed in accordance with planned arrangements.”
In an XP process, iteration meetings are a formal review of design and develop-
ment. The report of this activity and the resulting outputs are records of the qual-
ity management system that shall be integrated in the Tool. Pair-Programming
with refactoring and testing are other forms of design and development reviews.
The Tool shall identify and record outputs of these activities (refactored code,
test reports,...) to document and give evidence of the continuous review done
in an XP environment.
Design and Development Verification (7.3.5).
“Verification shall be performed in accordance with planned arrangements to en-
sure that the D&D outputs have met the D&D inputs requirements. Records of
the results of the verification and any necessary actions shall be maintained.”
In an XP project, design and development verification is continually done be-
cause of continuous integration and testing, but it can be formally executed
in specific moments such as the end of iterations. It consists of verifying the
effectiveness of outputs to satisfy input requirements. It can be mainly done
by means of automatic acceptance tests. The Tool shall allow the execution of
these tests each of which related to the appropriate User Story. Then it shall
record outputs (test report) and identify each User Story correctly implemented
as tested/verified.
Design and Development Validation (7.3.6).
“D&D validation shall be performed ... to ensure that the resulting product is
capable of meeting the requirements for the specified application or intended
use... Records of the results of validation and any necessary actions shall be
maintained.”
D&D validation is a set of activities done by the organization, often with the
customer, aimed to assess that product is compliant with customer requirements
for the foreseen usage. In XP projects, validation is in charge of the customer (or
his delegate). For this reason the Tool shall restrict the permission of modifying
validation state of each entity of the process (User Story, Release,...) to the
customer only (or to his delegate).
Control of Design and Development Changes (7.3.7).
“D&D changes shall be identified and records maintained. The changes shall be
reviewed, verified and validated, as appropriate, and approved before implemen-
tation. The review of the D&D changes shall include evaluation of the effect of
the changes on constituent parts and product already delivered.”
Agile methodologies accept continuous requirement changes. However, these
shall be controlled and each entity/artifact involved in requirement changes shall
be identified. With this aim the Tool can have a fundamental role thanks to its
traceability feature: it can correlate every single User Story with the specific code
and tests. These functionalities could be implemented thanks to the integration
with a Configuration Management application. In this way it is immediate to
find out all those entities involved in changes, identify the level of change then
monitor and control all these activities. After a change the Tool shall re-activate

Requirements of an ISO Compliant XP Tool 269

review, verification and validation processes for each involved entity. Moreover,
it shall provide, by means of apposite distribution list, spreading of information
related to the changes done.

3 Conclusions

Starting from a detailed analysis of ISO 9001:2000 normative we have identified
those clauses that can be automatically supported by a tool. Moreover, for each
of these clauses we have specified a set of requirements that shall be owned by
such an ISO compliant tool.

By analyzing these requirements we can deduce that a lot of them are al-
ready implemented by several existing tools for XP project management. Other
requirements are implemented by specialized applications commonly used in a
XP software development context, such as testing and continuous integration
frameworks.

We can conclude that the main requirement for the Tool we are defining is
the ability to communicate with other existing applications in order to exploit
and integrate their characteristics.

References

Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley,
Boston (2000)
European Committe for Standardization: Quality Management Systems - Funda-
mentals and Vocabulary (ISO 9000:2000). Europeanc Committe for Standardization
(2000)
European Committe for Standardization: Quality Management Systems - Require-
ments (ISO 9001:2000). Europeanc Committe for Standardization (2000)
Nawrocki, J.R., Jasinski, M., Bartosz, W., Wojciechowski, A.: Combining Extreme
Programming with ISO 9000. In: Proceedings of EurAsia-ICT 2002, Iran, October
29-31, 2002. Lecture Notes in Computer Science, Vol.2510. Springer-Verlag, Berlin
Heidelberg New York (2002) 786–794
Wright, G.: Achieving ISO 9001 Certification for an XP Company. In: F. Maurer
and D. Wells (Eds): XP/Agile Universe 2003. Lecture Notes in Computer Science,
Vol. 2753. Springer-Verlag, Berlin Heidelberg New York (2003) 43–50
Pinna, S., Mauri, S., Lorrai, P., Marchesi, M., Serra, N.: XPSwiki: an Agile Tool
Supporting the Planning Game . In: Proceedings of XP2003, Italy, May 25-29, 2003.
Lecture Notes in Computer Science, Vol.2675. Springer-Verlag, Berlin Heidelberg
New York (2003) 215–224

1.

2.

3.

4.

5.

6.

Going Interactive:
Combining Ad-Hoc and Regression Testing

Michael Kölling1 and Andrew Patterson2

1 Mærsk Mc-Kinney Møller Institute, University of Southern Denmark, Denmark
mik@mip.sdu.dk

2 Deakin University, Australia
patto@deakin.edu.au

Abstract. Different kinds of unit testing activities are used in practice. Organ-
ised unit testing (regression testing or test-first activities) are very popular in
commercial practice, while ad-hoc (interactive) testing is popular in small scale
development and teaching situations. These testing styles are usually kept sepa-
rate. This paper introduces a design and implementation of a tool that combines
these testing styles.

1 Introduction

Testing always has been, and in all likelihood always will be, an important part of
software development. Currently one of the most popular tools for supporting unit
testing is JUnit [2].

JUnit is a small and elegant unit testing framework that supports organised regres-
sion testing for application units. It can be used both as a pure regression testing tool,
as well as a test-first tool following the extreme programming methodology.

Ad-hoc testing is the interactive testing process where developers invoke applica-
tion units explicitly, and individually compare execution results to expected results.

BlueJ is an integrated development environment that provides support for interac-
tive execution of selected methods (ad-hoc testing) via a graphical user interface.

The work described in this paper consists of the design and development of a sin-
gle system that combines a unit testing framework with ad-hoc testing functionality.
This system is based on BlueJ and JUnit.

We demonstrate that the result is not only a side-by-side coexistence of ad-hoc
testing and regression testing, but that new functionality emerges through the combi-
nation of the two, which was not previously available in either of the separate sys-
tems.

2 JUnit vs. BlueJ

JUnit has become a de facto standard for implementing unit tests in Java. With JUnit,
programmers implement test classes by extending a JUnit class called TestCase. In

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 270–273, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Going Interactive: Combining Ad-Hoc and Regression Testing 271

this class, they implement test methods, which can later be executed through the
framework. Several assertion methods are available for use in test methods.

JUnit has been extensively described in the literature, so we will, for the remainder
of this paper, assume that the reader is familiar with JUnit.

BlueJ provides support for ad-hoc testing – the interactive calling of individual
methods and explicit inspection of method results.

Using the object interaction mechanism in BlueJ, a user can create the initial setup
of a test phase by instantiating objects interactively and placing them on the object
bench. Methods can then be tested by making a sequence of interactive method calls.
Parameter values can be entered and method results are displayed.

No test harnesses or test drivers are required to execute the methods that have just
been constructed. The call sequence can be created dynamically – the decision about
details of the next call can depend on seeing results of the previous one. However,
this testing is ephemeral. Objects are automatically removed if any change is made to
their class or if the project is closed. More information about BlueJ can be found in
[1, 3].

3 Integrating BlueJ and JUnit

To merge the functionality of BlueJ and JUnit, we have integrated the JUnit frame-
work into the BlueJ environment. Possible interoperations between the two have been
analysed to achieve more than a simple side-by-side co-existence of the two.

3.1 Recognising JUnit Classes

The most fundamental specific JUnit support can be provided by recognising JUnit
test classes as a special kind of class type in the BlueJ environment and treat them dif-
ferently than general classes. These differences may include:

using a distinct visual representation for test classes;
providing specific default source code skeletons;
providing functionality for selective display, which hides test classes temporarily;
association of specific test commands with the test class (see below).

Each of these enhancements can make working with test classes more convenient.

3.2 Executing Test Methods

BlueJ’s test support allows the interactive invocation test methods in various ways:
invoking single test methods, all tests from one class, or all tests in a project.

Single test methods can be executed by selecting them from a pop-up menu. Since
JUnit test cases are individual methods, integration in BlueJ results in these methods
being interactively and individually executable. These test method calls can be recog-
nised as such by the environment, and success or failure be reported in an appropriate
manner. (Using a standard interface like the SwingRunner GUI may not be appropri-
ate to display the result of a single test method.)

272 M. Kölling and A. Patterson

All tests of a single test class may be executed using a specific ,,Test All“ com-
mand provided in the class’s context menu. This function is similar to a standard JU-
nit test run. An interface similar to the standard JUnit SwingRunner may be used to
display results.

All tests in a project can easily be executed by providing a ,,Test All“ function in
the environment (e.g., as a toolbar button) Again, a SwingRunner-style interface may
be used to present results.

3.3 Attached Test Classes

BlueJ presents class diagrams of projects, and interaction is heavily designed around
using contextual menus on classes and objects.

This can be used for a further enhancement: Instead of creating test classes inde-
pendent of other classes, they may be created in direct association with an exiting im-
plementation class. For example, as class’s context menu may have a ‘Create Test
Class’ command, which creates a test class associated with this specific class. This
association is semantic: It signifies that the purpose of the test cases in this test class is
to test the associated class (which we term the reference class). The association can
also be functional: The test class may have a ‘Create Test Stubs’ command, which
automatically creates stubs for all public methods in its reference classes. Lastly, the
association may be visual: We can visually attach the test class to the reference class
in the class diagram to signify this association to the user. Dragging the reference
class in the diagram on screen would automatically move the test class with it.

Attached test classes could be supported in addition to free test classes (those not
attached to a specific class). Free test classes contain tests for multiple reference
classes.

3.4 Recording Interaction and Asserting Test Results

Among of the biggest advantages of ad-hoc testing is that it does not require manual
writing of test drivers and its action sequences can be decided dynamically: seeing the
result of one test can determine the next course of action. One of the biggest advan-
tages of written test drivers is that tests can be replayed multiple times in the future.

Merging BlueJ with JUnit allows us to combine both advantages. We can execute
dynamic interactive tests, while recording the test sequence and automatically writing
JUnit tests cases from that recording. This could be done by providing a ,,Create Test
Method“ command in a test class’s context menu, which starts a recording process
until it is explicitly ended by the user. At that time the recording is transformed into
Java source text and written into the test class as a test method.

We also need to add a mechanism to specify assertions on results during the inter-
active test activity. The existing BlueJ method result dialog can be extended with an
assertion panel, which may be shown only while we are in ,,test recording“ mode.
This assertion panel would

provide the option to attach an assertion to the result;
provide a choice of available assertions; and

Going Interactive: Combining Ad-Hoc and Regression Testing 273

allow us to enter values for the assertion parameter.
Recording test cases interactively is an added functionality to the standard (man-

ual) creation of test methods. Test methods may also be written by hand. In fact, both
techniques could be combined: tests can be recorded first, and later modified by man-
ual edit. There is nothing special about recorded tests: they are transformed to stan-
dard Java source code and can be treated and processed like other test methods.

3.5 Creating Text Fixtures from Interaction Objects

JUnit text fixtures correspond to a set of objects interactively created on the object
bench in manual tests.

This relationship can be exploited to aid the creation of fixtures for test classes: we
can create test fixtures by manually creating and preparing a set of objects, and then
invoking an ,,Object Bench to Test Fixture“ command from the test class’s context
menu. This command can create Java source code in the test class’s setup method that
creates objects identical to those currently on the object bench. This function thus cor-
responds to interactive test fixture creation.

The test fixture/object bench relationship can be exploited the other way around as
well: Existing fixtures (whether created via recordings or manual writing) can be
copied onto the object bench. There, they are available for interactive testing. This
function could be made available to users via a ,,Test Fixture To Object Bench“
command in the test classes context menu.

4 Discussion

The discussion in the previous sections demonstrate that combining JUnit and BlueJ’s
ad-hoc testing mechanism can result in something more than mere co-existence of
two test paradigms. Elements from both test-worlds can be mixed and combined, re-
sulting in a new quality of system interaction that can be useful for both original
tasks: creating regression tests, and ad-hoc testing. Existing interaction styles are not
negatively affected by this. The recording functionality can co-exist with manual test-
first functionality, and code produced by each can indeed co-exist in a single source
file.

All of the functionality described in this paper has been implemented, tested and
made publicly available for free download with BlueJ version 1.3.5 [1].

References

BlueJ - The Interactive Java Environment, web site at www.bluej.org, accessed 03/2004
Gamma, E, Beck, K.: JUnit, website at http://www.junit.org, accessed January 2004
Kölling, M., Quig, B., Patterson, A., Rosenberg, J., The BlueJ system and its pedagogy,
Journal of Computer Science Education, Special issue on Learning and Teaching Object
Technology, Vol 13, No 4, (2003) 249–268

1.
2.
3.

Complete Test Generation for Extreme
Programming

Mike Holcombe1 and Florentin Ipate2

1 Department of Computer Science
University of Sheffield, UK

m.holcombe@dcs.shef.ac.uk
2 IFSoft, Romania
www.ifsoft.ro

fipate@ifsoft.ro

Abstract. Test generation is a key part of the Extreme Programming
approach. This paper describes a very powerful functional testing
method that generates test sets which can detect all possible faults
in a computer program, provided some design for test conditions are
satisfied. The basis for this complete test generation method is the
X-machine, a simple and elegant way of visualising the dynamics of a
program.

Keywords: Functional testing, unit testing, acceptance testing, test set
generation, X-machines

1 Introduction

Testing is a major part of software development and in Extreme Programming
the generation of test cases is a vital part of the initial phases of a project. In this
paper, we present a method for generating test cases that provides a well founded
approach to the problem of detecting all faults. The method is based on the com-
putational modelling with X-machines, a sort of extended finite state machines,
and can be integrated into Extreme Programming in a simple and designer-
friendly way. It is a generalisation of the original X-machine based method [3],
[1] that extends significantly its applicability and simplifies the testing process
[4]. This generalisation is called in what follows the complete X-machine testing
method. As the original method, the complete method assumes that some design
for test conditions are satisfied.

The original X-machine based testing method [3], [1]assumes that the basic
functions of the system are correct. This can be checked by a separate testing
process, an effective way of doing this is to apply a functional method such as
category partition and boundary value analysis. The simplest scenario is when
tried and trusted components are used, for example, functions that take a key-
board input and echo it to a screen or put it in a register or perhaps a function
that accesses a cell in a database table. However, if this is not the case, the
original method will implicitly assume that each basic function can be tested in

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 274–277, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Complete Test Generation for Extreme Programming 275

isolation from the rest of the system. This is not always a realistic assumption
since the implementations of the basic functions are not always distinct units of
code (e.g. subroutines, modules, etc.) that can be separated from the rest of the
system.

The complete testing method removes this condition and allows the testing
of the basic functions to be performed along with the main testing process and
the test cases generated for the basic functions to be integrated into the overall
test cases generated for the entire X-machine.

2 A Simple Example

In order to illustrate the application of the complete testing method we use a
simple customer orders database as described in [2]. We can identify a number
of stories such as: entering customer details, editing customer details, placing
orders, editing orders, etc.. Then we identify from these stories what is prompt-
ing change (inputs), what internal knowledge is needed (memory), what is the
observable result (output) and how the memory changes after the event. From
the diagram (Figure 1) one can see how the basic functions are organised. Each
state, in this example, has associated with it an appropriate screen with buttons,
text fields etc.

Fig. 1. The state transition diagram for the customer orders database

It is straightforward to generate a test set for each basic function using
traditional functional methods such as category-partition and boundary value
analysis. However, many of these functions do not fire in the initial state of the X-
machine, so the context in which they are tested has to be taken into account as
well, e.g. in order to apply the test set for confirmCustomer, one will first have
to click the enter customer button and enter the customer details. Consequently
the testing of a basic function will have to rely on the correctness of the functions
that have been applied to set up the appropriate context, otherwise the testing
results may be affected by the errors introduced earlier by these functions, e.g.
when the test set for confirmCustomer is applied, one must assume that the
correct customers details have been entered and recorded.

276 M. Holcombe and F. Ipate

The solution to this problem is to test the basic functions in the order that
they can be reached in the X-machine diagram. In this case, a basic function

can always be reached by a sequence of other basic functions that have
already been tested (and therefore been shown to be correct). Let us illustrate
the process for our example.

We start with the basic functions that emerge from the initial state, Start.
There are two such function, clickCustomer and clickOrder. Obviously the
sequence the empty sequence, and the test sets

and can be applied straight to the initial state of the
X-machine.

We look now for the states that can be reached from Start by sequences
made up only of the functions clickCustomer and clickOrder. There are
two such states: Customers and Orders; clickCustomer takes the X-machine
from the initial state Start to Customer, while clickOrder takes the X-
machine from Start to Order. There are two functions, enterCustomer and
quitCustomer that emerge from Customer. The sequence that reaches these
functions is = customer _button_clicked, where
customer_button_clicked is the event (or input) corresponding to the click-
ing of the customer button on the start screen, which triggers the function
clickCustomer. In order to test enterCustomer and quitCustomer, this input
will be concatenated with the elements of and re-
spectively. The two functions enterOrder and quitOrder are tested in a similar
manner.

The next states visited will be whose accessed by sequences made of the func-
tions that have already tested (i.e. clickCustomer, clickOrder, enterCustomer,
enterOrder, quitCustomer, quitOrder) and the basic functions that emerge
from those states will be tested. The procedure will continue until all functions
have been reached and tested. It is sufficient to test a basic function only once
even if it appears in the diagram many times, e.g. quitCustomer will not be
tested again when the state Choice1 is reached.

Once the basic functions have been tested and shown to be correct we can
proceed to generate the test set for the whole system. This is done in the following
way. We start at the initial state Start with the initial memory value and the aim
is to visit every state of the X-machine, e.g. in order to visit ConfirmCustomer,
the sequence clickCustomer :: enterCustomer is processed (Here :: means con-
catenation or sequence connector.) When we have reached a state we need to
confirm that it is the correct state and this is done by following more simple
paths from that state until we get outputs that tell us, unambiguously, what the
state was.

Then we repeat the path to that state and check what happens if we try to
apply every basic function from that state, some will succeed but some should
fail. Have the correct ones passed and failed? This is then repeated for every
state. Some example functions sequences are:

clickCustomer :: enterCustomer :: confirmCustomer,

clickCustomer :: enterCustomer :: clickOrder.

Complete Test Generation for Extreme Programming 277

The first test has tried to apply a correct function (i.e. confirmCustomer) from
the state ConfirmCustomer and should pass, the second has tried to apply
an incorrect function (i.e. clickOrder) from that state and should fail. Now,
this test set is not quite what we want since it is based on the set of functions
which we cannot access directly, it needs to be converted to a sequence of inputs.
So we choose suitable inputs that will trigger the correct functions as we trace
through the diagram along the paths of functions, generating sequences of inputs
which are our actual tests. The design for test conditions allow this to happen,
the mathematical details and proof of correctness are in [4]. Thus we have the
following test sequences corresponding to the sequences above:

customer_button_clicked :: customer_details_entered :: confirm_button_clicked,
customer_button_clicked :: customer_details_entered :: orders_button_clicked.

Of course, as this is a high level test set, the input customer_details_entered
represents a more complex series of activities. e.g. entering the customer_name,
customer_address, etc. Since all basic functions have already been tested and
shown to be correct, at this stage the input that triggers a function can be chosen
at random.

The test generation, which is fully automated, will generate all the input
sequences needed to establish whether the implementation is correct, i.e. agrees
with the X-machine model.

3 Conclusions

The use of smart test strategies in XP can provide substantial gains in quality.
This paper is an attempt to explain how one of the most powerful test generation
approaches, the complete X-machine testing method, could be put to use. The
complete testing method generalises a previous X-machine based method by
extending significantly its applicability and simplifying the testing process.

Further work for interfacing the method with XP is, however, needed. Ulti-
mately we need to build smart test tools which interface naturally with the XP
process. The development of such tools is currently in progress. The use of such
tools will be reported in further papers.

References

Holcombe, M. and Ipate, F. 1998. Correct Systems: Building a Business Process
Solution. Springer Verlag: Berlin.
Holcombe, M., Bogdanov, K., Gheorghe, M. 2001. Functional Test Generation for
Extreme Programming Proceedings of XP2001: 109-113.
Ipate, F. and Holcombe M. 1997. An Integration Testing Method That is Proved to
Find all Faults. Intern. J. Computer Math. 63: 159-178.
Ipate, F. 2004 Complete Deterministic Stream X-machine Testing. Formal Asp.
Comput., to appear.

1.

2.

3.

4.

Story Management

Olaf Lewitz

microTOOL GmbH, Voltastr. 5, 13355 Berlin, Germany
Olaf.Lewitz@microTOOL.de

Abstract. Managing stories on cards lacks traceability and disables efficient
management, if your organisation calls for comprehensive requirements stor-
age. We developed and used a tool to track story state changes from ordered to
done to verified. The transparency and traceability of our versioning project
database containing stories, tasks, code, design and all relevant documents
helps to meet the project goals as well as to involve and satisfy the customer.

Keywords. Story, project management, state management of stories, trace-
ability, transparency, customer integration, project database, tool support

1 Motivation and Context

Writing stories on temporary index cards can have its disadvantages. Sometimes, it is
compulsory to have all requirements documented and stored comprehensively. In this
paper I would like to discuss how the management of users requirements and the
integration of the customer in the project can be improved through the use of a
software tool suitable to manage user stories. I’m not just talking about storing the
stories electronically; I mean managing states and dependencies and ensuring full
traceability and transparency for developers, project managers and customers alike.

microTOOL GmbH is a German software development tool manufacturer in
Berlin. We provide developers with tools for modelling software and managing
projects. In one of our development projects, we began using agile methods in 2002.
We started planning in iterations and used story cards, introduced unit tests, continu-
ous integration and small releases. We quickly ran into communication problems with
our stories and devised methods to mitigate them. In this paper, I’ll share our
experiences with emphasis on the tool we developed and used to manage our project.

I’ve been developing software professionally for some fifteen years now, doing
programming, designing, architecting, controlling and project management. In 1999,I
started reading about extreme programming and soon got an opportunity to put theory
into practice when I was put in charge of a big development project in Hamburg,
Germany. The team decided to use extreme programming as a process, to manage the
“scope creep” and to ensure frequent, usable releases of the new product.

I joined microTOOL GmbH as a senior consultant in 2002. My area of responsi-
bility is our process driven project management product, in-Step. As the central part
of the microTOOL Suite, in-Step is the subject of this paper.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 278–281, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Story Management 279

2 Stories Revisited

According to XP, stories are handwritten on index cards. This is revolutionary and it
has its merits:

Index cards are easy to change and manage
They can be put on a table for the planning game
They can be taken by the developer who signs up for the task

This approach is simple and easy. The whole idea behind agile methods is to be
able to change the requirements. If a requirement is written on an index card, it is easy
to write down, easy to change and easy to discard, if necessary. But is this really the
case? Imagine you write an idea onto a card. The idea matures and you change the
text on the card. You take some notes on the back when you talk to someone and gain
new insight. Now you talk to the developers and you find out you need to split the
story into three parts – it can’t be estimated as it is. Where do you put your notes on
the back? What if you need to know later on that those three new stories came from
this one and want to record it?

Some teams record further attributes for the story, like priority or type (require-
ment, bug, idea, documentation). These have to be copied as well. Sometimes,
someone might need the information on a card although they are working on another
one, but someone else is using the card they need. The customer might want to take
an in-depth look at the whole pile – but parts of the pile are sitting on the developers’
desks while they are working on them. As you can see, there are some issues with
cards along with the merits:

Only one person (pair) can have a card at any one time
Text cannot be copied and pasted
Cards can get lost or torn

Of course, some of these things only affect you if you don’t stick to XP as it is
defined – if your stories are discarded once the acceptance test is written, you won’t
have these problems. But what if someone wants to check which new features went
into Release X? And, more important, your organisation or your customer might not
consider acceptance tests to be comprehensive requirements.

3 Always Know Where You Are

Why do we write down user stories? In XP, they fulfill two needs: The need to track
the project’s progress, and the need to capture the customers and users’ requirements.
What does a story need to be useful in these two ways?

To capture the customer’s requirements, the story needs to be written in natural
language and easy to understand.

To enable efficient planning and to track the project’s progress, stories need to be
Estimated on a time scale
Prioritized according to an agreed-upon scale
Treated as an order or contract
Assigned to someone responsible for implementing them
Signed by the customer to acknowledge their acceptance

280 O. Lewitz

Traceable to depending and dependent stories
Stateful; you need to know if the story is ordered, done or tested
Versioned; you’ll want to be able to review the story’s history

This list is not complete; it just touches on the main issues that make you want to
store the stories in a database. In addition to these, you get a few nice features that
make life in your project easier:

All stories are accessible to anyone at anytime
It’s much easier to report the progress of your project
Nothing ever gets lost
You could put your design and code documents into the same database
and interrelate everything
You could store your resources and tasks in that database and have your
project plan generated

Managing a project efficiently means always knowing where you are and where
you want to be in the near future. If we choose to track our projects using small,
simple stories, they need certain attributes in order to help us control the project. The
only way to manage such a project is to make these attributes easily accessible and
traceable in a database.

4 Agile Development at microTOOL – Stories First

Implementing a new process into a running project is certainly no easy task. This is
why we decided to proceed in stages. In the first stage, we replaced big specification
documents with stories and planned their implementation in iterations. The realisation
of continuous integration marked the end of the second phase, which is beyond the
scope of this paper. The length of an iteration started at two months; now it’s down to
three weeks. Our product manager took the customer role and broke down the
required features into estimable stories, with the collaboration of the project manager.
We found out, that planning was most accurate when all stories are roughly the same
size – we try to keep them at or below five workdays. Learning to write those stories
in a simple and concise way took a few iterations.

What was our experience in that phase? First of all, the level of detail and the
quality of specification in our stories surprised us. We had assumed we’d lose some
detail when we replaced detailed specification documents with small stories. The
opposite was true. For a detailed estimate of the effort, the contents of the story need
to be clear and precise. Since we try to keep the effort below five workdays per story,
tasks have to be broken down into small pieces. These small pieces have to be
prioritized by the customer – and for their business value to be assessed, the customer
has to say exactly what he wants. Because the prioritizing process keeps a close and
constant watch on all of the planned stories and these stories are treated like little
contracts between the customer and the team, nothing irrelevant ever makes its way
into any iteration. We build only what is needed, not what someone would like to
have!

Story Management 281

5 Tools and Techniques

We have a database tool to store all of the project data, stories, documents, models,
build scripts and code, just to name the most important items. Everything is versioned
and assigned a state; the possible states depend on the type of document. Stories can
be defined, postponed, rejected, ordered, verified and done. They are ordered by the
customer, assigned to a developer, done and, finally, verified by the customer. Every
developer knows what she has to do; the manager knows who’s doing what at all
times. Planning is story-based, which means stories are assigned to an iteration, to a
developer and the effort is estimated in workdays. The software calculates the amount
of planned effort for an iteration, so we always know how much the team can do in
one iteration. The build job writes the build number into every story assigned to the
current iteration and marked as done. This makes it very easy to identify new features
when a new build has to be tested.
Since the stories have some additional attributes, like category, priority etc., it is very easy to
find out the things you need to know: which bugs were fixed in which iteration; have another
look at ideas rejected in the past few months; look for the stories you originally posted... As we
got used to this systematic approach, further possibilities were built into the system. The stories
got a “documentation flag” to indicate that a story describes a product change that has to be
documented in the help files, such as a new feature. The story form has an additional text field
for the developer to jot down any hints specifically for the documentation team. The better our
process became, the more we improved our tool support.

6 Summary

Where are we now? Planning and controlling became much easier with the new
process. We always know where we stand because our software always shows the
current state of things. Everyone just gets the information they need: The developer
knows what to do next, the customer knows what to test and how many of his stories
are already done or have been verified. Everybody has a good feeling that the project
is delivering a lot of business value.

But this is only part of what we have. We not only defined the process and use it,
we also have a tool environment that ensures it stays that way. Our project tool is the
starting point of work for every project member. The customer writes stories with it,
orders the stories for an iteration and signs them as accepted when they’ve been tested
and verified. The project manager assigns developers to the stories, tracks their
progress and generates project plans and reports. The developers have their To Do
lists and full configuration management integrated into their IDEs. The build manager
relies on the tool to pack our releases. So, we not only have a good process, we also
have a process no one has to think about – that’s what the tool is for!

“Did my story make it into our nightly build today?” I heard our product manager
ask a developer the other day, when they met at the coffee machine. I think this is a
good sign that people have really adopted a new method when they start using its
technical terms in their everyday language.

Conditional Test for JavaBeans Components

Hironori Washizaki1, Yuhki Sakai2, and Yoshiaki Fukazawa3

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430
washizaki@nii.ac.jp,

2 NTT DoCoMo, Inc., 2-11-1 Nagatacho, Chiyoda-ku, Tokyo 100-6150, Japan
3 Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

{yuhki, fukazawa}@fuka.info.waseda.ac.jp

Abstract. We propose a new conditional test suite that supports pre-
conditions, postconditions, and class-invariants for any JavaBeans com-
ponent, without the possibility of heisenbugs.

1 Introduction

Software components can essentially help to make software programs in the
rapid development process including eXtreme Programming (XP)[l]. Since com-
ponents may be used in ways which their developers did not consider, the com-
ponent developers should thoroughly test each component individually. XP ap-
proach relies on frequent unit testing. However, the unit testing is not enough
to ensure the behavioral correctness of software components.

The conditional test is a testing method which tests the logical correctness
conditions of the targeted Object-Oriented (OO) class to ensure the behavioral
correctness of the class [2]. The logical conditions tend to be embedded as as-
sertions in class’s implementation. There are some conventional techniques for
the conditional test; however, conventional techniques cannot be appropriately
applied to components composed of OO classes because of the following two
problems. First problem is the possibility of heisenbugs. None of the conven-
tional techniques guarantee that the methods used in assertion expression do
not change the original program’s state. The program error included in a test
script, which has side effects, is called a “heisenbug”. Second problem is the
inseparability of program source codes and logical conditions.

2 Test Suite for Fine-Grained Components

We propose a new conditional test suite that supports preconditions, postcon-
ditions, and class-invariants for any JavaBeans component[3].

One JavaBeans component is composed of one or more Java classes, and
opens only one Facade class to the public. There are three important features of
any JavaBeans component: property, read method and business method. Prop-
erties are the named attributes, whose values can be read or written by invoking
the read/write methods. Read methods are methods to read the properties’ val-
ues from outside of the component. Business methods are simply normal Java

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 282–283, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Conditional Test for JavaBeans Components 283

methods that can be invoked from outside of the component, except for the
write/read methods. The following code fragment shows an example of a com-
ponent. This component has one readable property named balance with one
read method getBalance. The Facade class is Bank.

To solve the problems associated with conventional techniques, our condi-
tional test technique is based on two concepts: (a) generating a subclass of the
Facade class and (b) using a high degree of component observability.
(a) Our technique realizes the separation of a component’s source codes and
logical conditions by generating a subclass as a direct descendant of the Fa-
cade class of the target component, and embedding the necessary test scripts
into overridden business methods of the subclass. Each test script acquires the
necessary values, executes the original method implemented within the original
Facade class, and tests the given conditions by using our runtime checker.
(b) Our technique realizes the exclusion of heisenbugs by limiting the invokable
methods in conditions to read methods, and using our method inspector for the
read methods. Values that can be specified in conditions are the original/current
values of readable properties and the values of method arguments/return values.

All logical conditions are written in condition files separated from compo-
nents. The following example shows the precondition and postcondition for
Bank’s business method deposit. The precondition specifies that the first argu-
ment value must be greater than zero when invoking deposit. The postcondition
specifies that the value of the readable property (balance) after the method in-
vocation must be equal to the value by which the first argument value is added
to the original property value (@pre.balance).

3 Concluding Remarks

We evaluated the test cost of our technique by testing several components. It
is found that the total time for our technique has been reduced to 40% of that
of conventional techniques. In our technique, component developers and users
can easily and repeatedly change the conditions and execute the conditional test
with high reliability (heisenbug-free) for the components.

References
A. Repenning et al.: Using Components for Rapid Distributed Software Develop-
ment, IEEE Software, Vol.18, No.2 (2001).
S. Siegel: Object-Oriented Software Testing: A Hierarchical Approach, John Wiley
& Sons (1996).
H. Washizaki, Y. Sakai and Y. Fukazawa: A Conditional Test Suite for Fine-Grained
Software Components, Proc. of the 2nd ACIS International Conference on Software
Engineering Research, Management and Applications (2004).

1.

2.

3.

Agile Methods in Software Engineering Education

Christian Bunse1, Raimund L. Feldmann2* , and Jörg Dörr1

1 Fraunhofer IESE, Sauerwiesen 6,
67661 Kaiserslautern, Germany

{Christian.Bunse, Joerg.Doerr}@iese.fraunhofer.de
2 Fraunhofer Center – Maryland, 4321 Hartwick Road, Suite 500,

College Park, MD 20742, USA
rfeldmann@fc-md.umd.edu

Abstract. Agile methods such as extreme programming (XP) are becoming in-
creasingly important for the rapid development of software applications. How-
ever, there is a tradeoff in using agile methods. Often they lack in providing a
systematic guidance (i.e., a sound description of roles, artifacts, and activities),
and thus, require disciplined and experienced developers. Are the promised
benefits of agile methods still valid if they are applied by novice (student) de-
velopers? To gain some experience, we performed a study on teaching students
agile software development with XP. Students performed a small software de-
velopment project at the University of Kaiserslautern to collect some lessons
learned. One result is that although agile approaches are easy to learn and
quickly produce results, they are not the best starting point in training software
development. The quality of the resulting system, at least in our experience,
heavily depends on the discipline of the developers and their background and
experience in software development.

1 Introduction

Today software organizations are under increasing pressure to timely develop their
software systems, which is also reflected by the software-lifecycle models and meth-
ods applied. Agile software development methods become more and more popular
due to their promise to dramatically increase the speed of development.
One such agile software development approach is eXtreme Programming (XP) [2][3]. XP is an
approach to software development which emphasizes a tight cycle between code creation,
testing, and debugging through the principle of ‘lightweight traveling (i.e., code is immediately
integrated into the overall system after creation, and then subjected to serious testing). The
expected benefits of such an approach include the rapid development of minimal systems, early
creation of executable code, and low defect numbers. Despite its undoubted strengths, how-
ever, the XP approach has one major drawback: Lack of guidance. The success of an XP proj-
ect heavily depends on the experience and discipline of the people in the team [13][14][15].
Therefore, detailed guidance is necessary, especially when dealing with novice devel

* Main parts of this work were conducted while the author was employed by the University of
Kaiserslautern, Kaiserslautern, Germany.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 284–293, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Agile Methods in Software Engineering Education 285

opers. Although many books and web representations exist on XP, it is not easy for a
developer or project manager to set-up and run an XP project. One reason for this is
that a concise and precise model of the XP process is often missing [15]. As a conse-
quence, the development team has to define its own (implicit) rules and guidelines
which is quite difficult for developers who do not have experience in software devel-
opment. Thus, one major question remains: Can novice developers (e.g., students)
successfully perform an XP project? This leads also to another, although related,
problem: How can we train students in using XP?

In this paper we give an experience report of a practical course on XP, performed
at the University of Kaiserslautern, Germany. Concerning teaching and training one
might think of using a standard book from the shelf (e.g., [2][3]) to prepare a set of
slides and lecture them to the students. However, XP is designed to be a practice
oriented and lively approach. Thus, a ‘simple’ lecture would miss out the important
practical part. Consequently, we chose a more practice oriented (i.e., programming
and problem oriented) way of teaching XP. In the winter term 2002/2003 we organ-
ized a seminar ‘Agile Software Development - Using XP as part of the official course
program of the department of computer science at the University of Kaiserslautern.
Eleven students participated in this extraordinary kind of seminar. In contrast to ‘tra-
ditional seminars that are more concerned with literature surveys, a small agile soft-
ware development project was conducted by the students. In addition, we used the
process model for XP, proposed in [15], as a limited form of guidance. Some of the
practices of XP, were used during the project so that the students were able to gain
own experience with the XP practices and formulate their own lessons learned. The
students got information on all XP practices, but in the project they mainly used on-
site customer, planning game, pair programming, common ownership, continuous
integration, short increments, acceptance tests, programming standards, simple design
and sometimes unit tests.

The remainder of this paper presents experience gained during the course. Section
2 presents background material on XP and software engineering education at the
University of Kaiserslautern. Section 3 explains our approach on teaching XP. Sec-
tion 4 presents an analysis concerning quality of the system developed during the
course and discusses the effects the application of XP might have had. Section 5 dis-
cusses the subjective opinions and experiences of the participating students and su-
pervisors. Finally, section 6 summarizes the paper and gives some conclusions.

2 Background

2.1 Agile Development and XP

Today, developers are under increasing pressure as organizations seek to gain
competitive advantage from the timely development and deployment of software
products and services. Agile software development [1], comprising many different
methods such as XP [2][3], SCRUM [9], and Crystal [7] was introduced to address
this problem by supporting the early and quick development of working code.

286 C. Bunse, R.L. Feldmann, and J. Dörr

Introduced by Kent Beck in the late 1990’s, XP was and is one of the most popular
methods for software development. As an agile software development methodology,
XP focuses on the principles of communication, simplicity, feedback, and courage.
The goal of XP is to deliver software products within time and cost constraints (i.e.,
the rapid production of an executable system with a minimum of flanking measures,
for instance, modeling, architecture evaluation, or measurement). As an agile ap-
proach, XP views a development project as the responsibility of a small team of
developers, who intensively interact with the user or customer. Thus, in difference to
procedural development strategies like the V-Model, XP uses a number of principles
(e.g., Test Firs) for guidance.

The simplicity and light-weightness of XP makes it an ‘ideal’ candidate to
practically teach students in software development. However, the required discipline
of every developer and the lack of a documented process is a challenge to be
mastered when teaching novices. This is discussed in more detail in the following.

2.2 Software Engineering Education at the University of Kaiserslautern

The department of computer science at the University of Kaiserslautern offers gradu-
ate students different types of exams in computer science (e.g., in applied computer
science, for teaching at college preparatory schools, or a technically oriented exam
with the focus placed on electrical engineering). Common to all exams is the fact that
studies are split up into two parts:

A basic part, guarantees that all students get fundamental insights into the fields of
technical, theoretical, and practical aspects of computer science. Basic Software
Engineering principles (e.g., divide and conquer) are taught. To finish this part
students usually need two years (split into four semesters).
Having successfully passed the exams of the basic part, students start the main
part. Therefore, they have to choose different courses out of a set of lectures, exer-
cises, labs, and seminars. Courses in software engineering or on specific aspects
like requirements engineering, or product line engineering are offered. At the end
of this part (usually five to six semesters) students will write a master thesis.

2.3 Requirements for Seminars at the University of Kaiserslautern

Seminars are an integral part of the main part of the students’ studies. Topics of the
offered seminars vary every semester. Usually, they focus on actual research topics,
such as for instance, XP. All seminars have to fulfill several requirements. The most
important is: Participating students have to learn, how to perform a literature survey
and how to write a (research) paper. It is further required, that each student has to
give a presentation on a topic investigated during the seminar. As a result, seminars
traditionally are organized as follows: Chapters of a book or a set of up-to-date re-
search papers are assigned to each student of the seminar. Based on this reading,
students then have to do a literature survey to find additional material dealing with the
addresses topic. The results are summarized as a survey report and presented to the
other participants at the end of the seminar.

Agile Methods in Software Engineering Education 287

3 Our Teaching Approach

As outlined in the previous section our goals concerning the seminar described here
are twofold. On the one hand, students should learn about agile development and
especially XP. On the other hand, the seminar should allow examining whether XP
can be successfully applied by novice developers, and the impact this has on the
quality of the resulting system1. The following learning goals have been added to the
requirements given by the department of computer science:

Students should experience XP in practice and, thereby, get a feeling for the ad-
vantages and disadvantages of agile methodologies.
Based on practical the experience, students should learn, how to formulate and
document lessons learned.

In addition to the ‘official’ student learning goals additional, refined goals have been
defined, which allow the investigation of novice developers applying XP in more
detail. These goals are:

To capture practical lessons learned in performing agile projects. Since the course
system at the University of Kaiserslautern allows students to take different classes
at different times during the main part of their studies, the students’ degree of expe-
rience can vary at the time they are participating a seminar. This situation comes
close to practice were some staff members will have rudimentarily knowledge
while others are more experienced.
To test a more practice-oriented form of teaching a seminar (i.e., based on the
combination of a tutorial and a practical example in a lab environment).

The novice developer students must be able to compare XP with more traditional
Software Engineering methods. Therefore, only those students who participated at
least one of the lectures ‘Software Engineering I’ or ‘Software Engineering II’, and
thus have a basic knowledge in software development, were allowed to participate.
Concerning student motivation it has to be said that before the seminar started, stu-
dents had the opportunity to choose between a traditional and the extraordinary way
of conducting the seminar. They decided on the extraordinary way, even though this
meant much more effort for them. Hence, the students can be described as highly
motivated.

In order to teach students the basic principles, practices, and techniques of agile
software development with XP, a full-day tutorial has been performed [4]. Further-
more, the students were told to use the book by Kent Beck [2] as an initial reference.
After this introduction the students had to develop a system for planning and record-
ing effort and time needed in a new project.

In order to be as close to practice as possible and to reflect XP’s idea of early and
continuous customer interaction all roles had to be represented. Since one learning

1 To fully evaluate the impact of novices applying XP on system quality a controlled experi-
ment comparing two groups of students (one applying XP and the other applying a more tra-
ditional approach) is needed. This was not the case in the described seminar. We decided to
perform the seminar as a kind of pre-study to gain first experience before investing more ef-
fort for a future controlled experiment.

288 C. Bunse, R.L. Feldmann, and J. Dörr

goal was to teach students in a practice-oriented form, it was decided to assign all XP
roles to students, whereby the supervisors acted as an advisory board. The general
rule being that the team has as much responsibility and freedom as possible. There-
fore, the supervisors monitored the behavior of the students in the team and only
intervened in case of serious problems (e.g., infrastructure problems, misunderstand-
ing of an XP practice, etc., which did not happen too often.

The students had used the practice of on-site customer. Furthermore, the on-site
customer and the developers interacted in the planning game as described in [2]. The
students used pair programming and paired newly each day. The code was commonly
owned and the students continuously integrated their changes to the code several
times a day. In addition they used the practice of short increments, manual (i.e., not
automated) acceptance tests, were issued programming standards, which they adapted
for their needs, and used simple design in the sense that they did not include unneces-
sary code. For unit testing, JUnit 3.7 was used. The developer team had eight mem-
bers. In addition, two students took the role of the on-site customers, and one student
was assigned to the role of a tester and tracker in the sense of XP. As part of their
role, the on-site customers had to analyze the project-planning system, and to deter-
mine the features to be implemented. In addition, the student assigned to the tester
and tracker role was asked to help the on-site customers in writing acceptance tests,
and to track the project status.

The project itself was scheduled and finished within four weeks. Each week the
whole team worked eight hours (in two four-hour slots at different days of the week).
For the development of the system three releases were planned. The first release was
scheduled after two weeks, the other two releases followed after week three and four.
Following the practical part the students were asked to write a report in which they
shortly introduce one practice and then present their personal experience.

4 The Resulting System

The development project was scheduled and finished within four weeks, whereby
three releases were planned in total. The releases were scheduled for weeks two, three
and four, whereby each release had to produce an executable version of the system
which was tested by the on-site customers in form of acceptance tests. Figure 1 shows
a statistics of the passed and failed acceptance tests, which were derived from the user
stories (at least one acceptance test per user story).

For the first release about 35% of the intended acceptance tests failed. This was not
due to a misinterpretation of the on-site customer wishes or incorrect programming.
This high number was due to many not implemented user stories for release one. The
students were behind schedule for release one. It is interesting to see that even though
there were only eight hours (one week) between release one and two, the students
managed to get on schedule again. They managed to double the number of user sto-
ries, even though they had only half the time. There are two reasons for that: first, the
students became more experienced with the agile development methodology. Second,
the user stories for release one were estimated with too low effort because they were

Agile Methods in Software Engineering Education 289

intertwined. It was hard for an inexperienced development team to estimate the user
stories, especially the ones for the basic functionality. For release two and three, the
failed acceptance tests were due to faults in the implementation of the user stories,
i.e., the developers thought, they have implemented the story, but there were some
faults in implementation or misunderstanding of the customer.

Fig. 1. Passed and failed tests

In the end, more user stories have been implemented in the system than originally
planned in the planning game for the complete project. Neither the students, nor the
advisors of the seminar thought that so much functionality could be integrated in such
a small amount of time. It is even more surprising as eight out of eleven students were
inexperienced with programming. To give an impression on the overall size of the
developed tool, the source code contains about 2500 lines of code in 27 classes. Con-
cerning the negative properties of the system, there are two major drawbacks. First,
the system was judged to be hard to maintain by other people than the current team.
Second, the usability of the system is quite bad. The bad maintainability was due to
the fact that the size of the system was small enough that they easily managed to
develop the software with a bad architecture. Little refactoring took place, as the
developers were eager to integrate new user stories. The bad usability of the system is
due to several reasons. First, students were not well trained in usability engineering.
Second, developers sometimes tended to ignore or delay changes concerning com-
ments of the customer regarding usability. This situation would be fatal in a real proj-
ect, as usability is as important as functionality for a customer. More information can
be found in [4] giving data collected by tracker. A software product was created that
exceeded participants expectations, but this functionality-focused development was
at the expense of usability and maintainability.

5 Observations and Opinions

According to our outline of the seminar, the students were asked to formulate their
lessons learned (LL) on practices of XP used in the conducted development project.
The collected LL are based on the students practical experience and their knowledge

290 C. Bunse, R.L. Feldmann, and J. Dörr

of more traditional software development methods, as taught in the prerequisite Soft-
ware Engineering lectures. For documenting the LL, the participants used a given
template (see [4]). Before the students finalized their statements, they came together
and presented their LL to the entire group. Then, for each LL, the group voted if they
had the same or a similar opinion, or not. This simple method was used to clearly
identify whether a LL only reflected a personal (i.e., single and subjective) opinion or
captured the experience of the group. The results of this voting process have been
documented together with the LL and can be found in [4]. Examples are:
LL Example 1:

Name: Guessing of requirements
Situation: During implementation
Symptom: (A) Developers rather guessed requirements, although they could have

asked the on-site customer. This caused rework, and (B) the on-site customers were
disappointed because they felt skated over and not taken seriously.

Diagnosis: The developers were inexperienced in the XP practice of the on-site
customer. They asked the on-site customers seldom, just like they were used to from
other projects.

Reaction: Warnings were given during the standup meetings. However, they
caused no direct reaction at the beginning of the project. After some time, through the
gained experience in the project, the developers learned to use the customer more
effectively.

Recommendation: Explain the advantage of the on-site customer and motivate to
ask.
Based on the results of the voting process, the level of confidence in this LL can be
regarded as high. For part (A) of the LL, all eleven participants expressed their
agreement. For part (B), ten participants agreed and one student chose abstention
from voting. A second LL, that may have influenced the first one, was recorded as:
LL Example 2:

Name: On-site customer in a separate room
Situation: During implementation
Symptom: The communication was not as good as it could have been.

Diagnosis: The on-site customers had their own, separate room.2

Reaction: No possibility to change something because of spatial environment.
Recommendation: Explain to the developers the advantage of an on-site customer

and motivate them to ask. Make sure that on-site customers and developers are lo-
cated as close together as possible.
For this LL the voting results have been recorded as: Agreement: nine / Abstention:
one / Rejection: one. This LL may explain that at the beginning the on-site customers
simply have been forgotten by the developers, since they were working in the next
room and seemed not to be permanently present in person.
Another example for the importance of organizational issues in XP projects is re-
flected by our last example out of the collected LL:

2 Due to space limitations, the onsite customers and the tracker were located in a separate
room next to the lab.

Agile Methods in Software Engineering Education 291

LL Example 3
Name: User stories (organization)
Situation: During complete project
Symptom: (A) All user stories should be copied (i.e., exist two or more times). (B)

Changed, spliced, or new user stories should be presented using color.
Diagnosis: Missing experience of tracker and in organization of XP projects.
Reaction: None in the project.
Recommendation: Use a color code for user stories, to identify changes.

This LL was reported by our tracker. The idea of two sets of user stories is based on
the fact, that the tracker sometimes wanted to work with the user stories (e.g., sort or
reorganize them for tracking purposes), while at the same time the developers wanted
to read them. The voting results for part (A) read as: Agree: ten / Abstent: one / Re-
ject: none. For part (B): Agree: ten / Abstent: none / Reject: one.
A complete list of all collected LL is further available as part of the CeBASE3 [5]
collection on XP/Agile Lessons Learned, available On-line @ [6]. One promising
way is to compare our LL with LL of similar or other XP projects and classes con-
ducted world wide. At the University of Maryland, for instance, Dr. Roseanne Tesori-
ero Tvedt taught an XP class in which LL were gained. A first exchange of our ob-
servations showed interesting results. A similar observation regarding the usage of the
on-site customer (cf. LL Examples 1 and LL Example 2) was made in this particular
XP class at the University of Maryland. Again, students did not use the on-site cus-
tomer intensively. Also the supervisors had some interesting observations:

Observation 1: For an inexperienced team it is hard to give precise estimations
regarding the complexity of a task and the effort needed for it’s realization.
Observation 2: Undisciplined and/or inexperienced development teams tend to
ignore process restrictions and (methodological) requirements.

Of course these observations are not specific to XP projects. However, they issue a
higher risk factor for a project when, as with agile methods, there is already a lack of
guidance. Our observations seem to further strengthen the hypothesis from [12] that
the success of an XP project heavily depends on the experience and discipline of the
people in the team. We want to point out, that all of the stated LL and observations
are based on our own, specific experiences. Therefore, they can not be regarded as
valid. However, the collected LL may be used to trigger a series of empirical studies
to gain more insights into XP and other agile methods.

6 Summary and Conclusions

The recent advent of agile software development and XP has shown the need for
lightweight (i.e., flexible) approaches which allow the rapid development of software
systems. However, lightweight approaches share one fundamental problem: lack of
guidance. Although, often claimed that practices such as ‘Pair Programming’ are an
ideal means for teaching novices, an agile project heavily depends on the discipline

3 Center for Empirically Based Software Engineering

292 C. Bunse, R.L. Feldmann, and J. Dörr

and experience of its developers [11]. Thus, although students can easily learn the
practices of XP, it might be hard for them to successfully apply them.

This paper reports on the experiences made at the University of Kaiserslautern
during a seminar on software development. Students, most of them novice develop-
ers, have been trained in XP and its practices before using them to develop a project-
management system. The analysis of the developed system showed that although it
runs and offers most of the required functionality it is hard to use and not easy to
maintain. This is supported by the subjective experience of the participating students.
They liked the way the system was developed, especially their freedom and responsi-
bility during development. However, all of them believe that in future projects more
attention has to be paid towards the customer concerning required functionality and
usability. Another observation is that without technology experts (e.g., Java or data-
bases) the project might have failed.

Overall the experience made during the practical course showed that agile devel-
opment in form of XP is easy to teach and learn. However, it is not that easy to suc-
cessfully perform an agile development project. The quality of the resulting system, at
least in our experience, heavily depends on the discipline of the developers and their
background and experience in software development [13] [14]. Although, the team
managed to satisfy the customer needs concerning functionality, the quality of the
resulting system concerning maintainability and usability was not satisfactory. Thus,
a general conclusion is that although agile approaches are easy to learn and quickly
produce results, they are not the best starting point in training software development
for achieving high-quality software. Novice developers need the guidance and sup-
port of more predictive approaches in order to obtain the experience and discipline
needed in agile projects. As our experience show novices tend to focus on functional-
ity but tend to neglect other quality attributes such as maintainability or usability. One
reason is missing experience, which can be provided by systematic guidance [13].
Therefore, we believe that software engineering education should focus on traditional
approaches before teaching agile development. Students who first learn about tradi-
tional development can benefit from the experience incorporated in guidelines and
rules [13] [14], and can use that knowledge in later agile projects. Currently, on the
one hand, we plan to continue the seminar on agile development to give students a
chance to learn about XP before working in real projects. On the other hand, we are
planning a controlled experiment in order to compare traditional and agile approaches
concerning novice developers and guidance.

References

Ambler, S.: Agile Software Development. Online @ www.agilemodeling.com, last visited
February 2004
Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley, 1999.
Beck, K., Fowler, M.: Planning Extreme Programming, Addison Wesley, 2001.
Bunse, Ch., Dörr, J., Feldmann, R.L. (eds.): Agile Software Development –Exempli-
fied Using XP. Software Engineering Group, University of Kaiserslautern;
On-line @ http://wwwagse.informatik.uni-kl.de/teaching/seminar/ws2002/results.html.

1.

2.
3.
4.

Agile Methods in Software Engineering Education 293

CeBASE: Center for Empirically Based Software Engineering. Online @
http://www.cebase.org; last visited February 2004.
CeBASE XP Agile Lessons Learned Collection. On-line
@ http://fc-md.umd.edu/agilell/index.asp; last visited February 2004.
Highsmith, J.: Agile Software Development Ecosystems. Addison Wesley, 2002.
Jeffries, R., Anderson, A.: Extreme Programming Installed. Addison Wesley, 2001.
Martin, R., Schwaber, K., Beedle, M.: Agile Software Development wit SCRUM. Prentice
Hall, 2001.
Newkirk, J., Martin, R.C.: Extreme Programming in Practice. Addison Wesley, 2001.
Succi, G., Marchesi, M.: Extreme Programming Examined. Addison Wesley, 2001.
Turk, D, France, R., Rumpe, B.: Limitations of Agile Software Processes. Proceedings of
the 3rd International Conference in Extreme Programming and Flexible Processes in
Software Engineering, May 2002.
Briand,D., Bunse, C.,Daly, J.: A Controlled Experiment for Evaluating Quality Guidelines
on the Maintainabilty of Object-Oriented Design Documents. IEEE Transactions on Soft-
ware Engineering, 27/6, 2001
Briand,D., Bunse, C.,Daly, J.: An Experimental Comparison of the Maintainabilty of
Object-Oriented and Structured Design Documents. Journal of Empirical Software Engi-
neering, 2/3, 1997
Bunse, C., Pleayo, M., Zettel, J.: Out of the Dark: Adaptable Process Models for XP.
Proceedings of the International Conference on eXtreme Programming and Agile Proc-
esses in Software Engineering, Alghero, 2002

5.

6.

7.
8.
9.

10.
11.
12.

13.

14.

15.

Extreme Programming in Curriculum:
Experiences from Academia and Industry

Matthias M. Müller1, Johannes Link2, Roland Sand2, and Guido Malpohl1

1 Universität Karlsruhe, Am Fasanengarten 5, 76131 Karlsruhe
2 andrena objects ag, Albert-Nestler-Straße 9, 76131 Karlsruhe

Abstract. Since the rise of the light weight software processes, the
paradigm on how software should be developed has started to shift. Ag-
ile methods strive to supersede the traditional software process with its
exhausting requirements elicitation at the beginning of a software devel-
opment project, at least for smaller or younger companies.
The software engineering group at the Universität Karlsruhe has ac-
counted for this shift and extended their offer of lectures by an Extreme
Programming lab course held in cooperation with andrena objects ag.

Keywords: Extreme Programming, programming lab course, curricu-
lum, experience report

1 Introduction

In the last thirty years, the inevitable necessity of exhausting requirements elic-
itation combined with an overall design at the beginning of a software devel-
opment project has dominated software development. The exponential growing
defect removal cost curve was the rationale behind this paradigm. However, since
the rise of the light weight software processes, the paradigm on how software
should be developed has started to shift, at least for smaller or younger com-
panies. From this perspective, it is quite natural that students become aware of
other possible software development processes which seek to account for a rapid
changing business environment, and software companies discover the alterna-
tives presented by light weight processes as well. In this changing environment,
curriculum at universities should reflect the new possibilities for software devel-
opment.
Since the summer semester 2000, the software engineering group at the Univer-
sität Karlsruhe has accounted for this change and extended their offer of lectures.
While the new Extreme Programming (XP) lab course initially aimed at get-
ting in touch with the new process, it is now an inherent part of the summer
semesters lectures. The first experiences about this course were reported in [1].
In the last two years since the cooperation with andrena objects ag, the course
settings have changed. The reason for change was the feedback from students and
the views of andrena’s XP professionals. The change with the most impact was
the decision to issue a project week where the students had to work from Monday
to Friday from 9 am to 5 pm instead of the weekly four hours programming

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 294–302, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Extreme Programming in Curriculum 295

sessions scheduled previously. Consequently, the course was cut into halves. In
the first part, introductory sessions presented the basic techniques of XP such
as pair programming, test-driven development [2], refactoring, and the planning
game. Along the way, students got to know supporting tools like JUnit and
CVS. For the second part, the project week, students were divided into equal
sized groups of six members each. Each group had to develop a WWW based
movie theater seat booking system.
While the course settings changed, the students’ preferences and problems con-
cerning the XP practices kept the same. Pair programming was adopted from the
very first session. This experience is consistent with others [3,4]. But, dividing
the work into small increments and implementing them step by step in a test-
driven fashion was difficult. However, the problems diminished over time and at
the end of the course, even test-driven development was seen as a comfortable
way of development by most of the students. Wilson [3] observed the same ef-
fect in his course: after the first difficulties were overcome students appreciated
test-driven development.
The next section describes the programming course in detail. Motivation of the
software engineering group and andrena objects ag for this course is given in
sections 3 and 4, respectively. Section 5 accounts for the experiences.

2 The Programming Course

The course is presented from three different perspectives: the content, the orga-
nization, and the project.

2.1 Content

XP Practices. Introduction of the XP techniques alternated between lectures
and programming sessions. Pair programming was introduced by andrena’s XP
professionals. After motivating the usage of pair programming, they exemplified
pair programming with test-driven development by the development of an ac-
count class. During the presentation, the students got a first notion of how pair
programming works and what development in small increments means. From the
first session on, every programming task had to be solved in pairs with changing
partners for every new task. The following sessions introduced test-driven devel-
opment with JUnit, refactoring, CVS, the planning game, the basics of servlet
programming, and HttpUnit.

Supplemental Techniques. Throughout the course, students used Java to-
gether with the Eclipse development environment. Tomcat was used as web
server. It was managed by the Sysdeo Tomcat plug-in for Eclipse [5]. The choice
for Tomcat was natural as the plug-in provides start, stop, and restart buttons
for ease of use from within Eclipse. In the same manner, JUnit formed the test-
ing framework. The integration of JUnit into Eclipse alleviated the adoption of

296 M.M. Müller et al.

test-driven development as the technical overhead was kept to a minimum. Ver-
sion control was done with CVS. Committing local changes to the CVS server
was synchronized by a CVS token. Each group could choose its token individ-
ually. Finally, Eclipse packaged with Tomcat, JUnit, and CVS did not make it
necessary to leave the development environment during implementation.
Acceptance tests were written using the testing framework FitNesse [6]. The
core of FitNesse is a wiki-server which has to be started in order to use the test
framework. As everybody in the team had to work on the same set of acceptance
tests, a separate acceptance test server was made available for every group to
ensure consistency. Writing acceptance tests was allowed only at the server,
though, every pair could execute them locally on their own computer. Using a
dedicated server for the acceptance tests synchronized different pairs all wanting
to enhance the tests. Although only one pair could work on the acceptance tests
at a time the students did not complain on this bottleneck.

2.2 Organisation

In the summer semester, lectures at the university last for thirteen weeks. The
introductory sessions were issued in the first and the last four weeks of this time
frame. Figure 1 depicts an overview of the course schedule. The time from the

Fig. 1. Course schedule (SW = semester week)

second to the ninth semester week was reserved for a controlled experiment.
Although the students had to participate in the experiment, the experiment did
not add anything to the course topics.
The concluding project week was scheduled one week after the lectures. During
the week, the students had to work from 9 am to 5 pm with about one hour
lunch break. The project week was the largest change in the course settings

Extreme Programming in Curriculum 297

as compared to previous years where the course had a weekly 4 hour schedule.
We established the project week because students startup time in the weekly
meetings to familiarize themselves with the new techniques were large. As a
consequence, students had to less time during the weekly meetings for working
on the scheduled programming tasks. During the project week, startup times
appear only at the beginning of the week and then, they cease to exist.
For the project, the students were divided into three groups of six members each.
The groups were selected according to students own performance ratings which
they had to assess in the subject questionnaire of the experiment. Each group
had its own coach and customer. The roles of the coach and the customer were
taken on by the course organizers. Each organizer coached one group and played
the customer in another group in a round robin fashion.

2.3 Project

Each group had to implement the same project: a theaters online seat book-
ing system. The system should provide a customer and a box office portal. The
groups started with a small skeleton of the seat booking system which imple-
mented basic operations like movie selection and ticket ordering. The skeleton
was provided to alleviate the beginning of the project by giving the students
a basic software architecture to start with. We decided to provide the skeleton
due to our experience in the preceeding year when student teams started from
scratch. Since the students had little or no experience with setting up a web
project it took them almost a day to have the first visible results, i.e. a simple
dynamic web page deployed on the tomcat web-server. This experience left the
students frustrated with what they considered hardly an accomplishment after
a full day of work.
In order to familiarize the teams with the provided skeleton, each group had to
work on the following fixed set of stories during the first day.

Story 1. Logout for theater’s box office.
Story 2. The number of tickets for one order is limited by five tickets.
Story 3. Announcement of new movies and more halls.

The stories had to be divided into smaller tasks. For the first iteration, division of
stories was done by the organizers as well. The following list sketches additional
tasks. These tasks had to be done only once at the beginning of the project.

Task 1. Configuration of work places such that all provided tests run.
Task 2. Configuration of acceptance test server.
Task 3. Reorganizing the code base into two Java packages.

Arrangement of work places is necessary for every project, though, time con-
suming. Thus, configuration of work places and test server has to be recorded.
Task 1 and 2 account for this project set up. During Task 3, the group should
separate implementation concerns of the customer and the box office which were
mixed up in the initial code base and presented some kind of code smell.

298 M.M. Müller et al.

Although the groups got the same skeleton to begin with and the course orga-
nizers agreed on a set of stories, the three projects evolved in different directions
concerning functionality. The different characters of the three projects were not
caused by XP itself but rather by the different priorities and notions the “cus-
tomers” had on the stories.

3 Motivation of Institute

The software engineering group came across XP in the winter of 1999. Initial
literature [7,8] aroused our interest in the new process. Thus, we planned for a
programming course to satisfy our curiosity. Our first aim was to get in touch
with the process and to gather practical experience beyond the guidelines for-
mulated in the literature. We focused on the promises made by XP. However,
we were disenchanted with the process as there were lots of problems nowhere
mentioned so far. The subsequent report [1] summarized our experience.
In the following time, we concentrated on the evaluation of XP. Focused on
XP promises, we started to investigate the central implementation techniques.
In order to achieve reasonable results, a better understanding of parts of the
process and the process as a whole was necessary. We were triggered by the
following questions:

How can these techniques be modeled ?
Where are the pitfalls while evaluating them ?

We started to educate students in XP and its techniques such that we could
use them in experiments. Our results [9,10,11,12] show so far, that XP and its
techniques are far from being the promised silver bullet, though, there are project
settings where XP strengths come into full play and where XP is a reasonable
choice.
Apart from the evaluation issues, the need for coaching experience grew because
acquisition of background knowledge is a mandatory prerequisite for teaching
compulsory lectures. And last but not least, presenting students alternative de-
velopment techniques besides the conventional process is a welcome byproduct.

4 Motivation of Industry

andrena objects ag has been experimenting with XP since 1999 when the first on-
line material became available on the Web. The main motivation for our interest
was XP’s focus on both quality and high flexibility. Some of the XP techniques
were successfully adopted early on in in-house projects: test-driven development
[2], pair programming, simple design, refactoring, continuous integration, short
iterations and stand-up meetings. Other practices could not be realized as easily
due to our customers’ resistance, for example to provide a person who is full-
time dedicated to support the development team. Moreover, we realized that
familiarizing developers with test-driven design took lots of extra training and

Extreme Programming in Curriculum 299

intensive supervision. Another difficulty we hit on was some developers’ initial
unwillingness to pair.
So our motivation to collaborate with the software engineering group was man-
ifold:

We wanted to gain experience in introducing XP to developers new to agile
development practices. Sometimes we have to deal with beginners in Java
or even programming who must be integrated into an XP team. Trying to
teach students about XP and agile development seemed a reasonable way to
practice teaching in a controlled and riskfree environment.
In order to convince our customers’ of doing XP we need enough empirical
data and statistically relevant numbers to support XP’s view of the devel-
opment world. Helping researchers to gain insight into the subtleties and
intricacies of XP is andrena’s way to accelarate the appearance of relevant
studies and publications.
Since andrena objects focuses on high-quality individual software we are in
need of developers who strive for a high standard in their development skills.
Teaching at the University is one way to get to know future employees and
to be visible for graduates looking for a job.
Last but not least, giving lectures and courses about XP is a good means to
“spread the word” and to make students acquainted with agile development.

Eventually, the management board of andrena objects decided to invest in stu-
dent education by allocating two experienced developers to the XP programming
course; so far, there have been no regrets.

5 Experience

Experience is shown from three different viewpoints: students’ experience, soft-
ware engineering group’s experience, and andrena’s experience.

5.1 Student’s Experience

Pair programming was the technique the students’ had the least problems to
adopt to. This may be caused by the nature of the course itself because students
subscribed voluntarily such that only those students took part who were willing
to pair off for development. The “youth” of the students may be another reason
for the fast adoption of pair programming. Most students are not coined by any
software development paradigm. Thus, accepting new rules for implementation
does not conflict with confirmed habits. And finally, pair programming causes a
casual atmosphere on the sometimes boring development process.
When pair programming was the method adopted most easily, test-driven devel-
opment caused the most problems. Breaking down the whole programming task
into small steps was one problem. Implementing the small pieces in a test-first
way was the other. At the beginning of the course the students asked for an idea
on how to divide the problem. Later on, the answers switched over to on how

300 M.M. Müller et al.

this or that can be formulated in a test. But in the end, students felt comfortable
with test-driven development. Work progresses step by step which reduces the
mental task stack to a minimum such that the possibility of forgetting some-
thing is minimized. As a byproduct, automated tests were seen as helpful and
the number of new written test cases was seen as some kind of productivity
measure.
The Planning Game was taught in the fourth introductory session, see Figure 1.
In the mini project part of that session, students had to estimate and implement
small tasks of about five minutes duration each. From this session, they came to
know that effort estimation even for small tasks is difficult. As a result, in the
beginning of the project week, students were uncertain about their story and
task estimates. Another problem for story estimation was lack of overview over
and experience with the code base. However, as the project proceeded estimates
became more and more accurate because analogies to existing stories could be
found.
Another aspect of XP is team software development. Most students do not have
any experience in team software development. Thus, the experience that the own
piece of code depends on the proper implementation of others and that the own
code only runs if others’ code runs as well is an experience most students are not
familiar with. Other experience concern the team feeling. Students were proud
of finishing an iteration with all the assigned stories done. It was seen as success
of the team. And on the other side, no pair was blamed on not concluding its
tasks, even though the customer was unsatisfied with the team’s progress. The
problem was identified later on and the whole team sought for solutions.
Every team was assigned its own acceptance test server. The customer formu-
lated its acceptance test and the team had to implement them. However, writing
acceptance tests with FitNesse is HTML centered. A small change to the HTML
skeleton of the project web sites resulted in a dozens of acceptance tests that had
to be adapted as well, although the functionality has been retained unchanged.
But after two days, the students found a means to modularize the acceptance
tests thereby minimizing the necessary rework from iteration to iteration.

5.2 Institute’s Experience

From a programming course organizer’s point of view, teaching XP is simple:
follow the given rules. However, practice looks different. The subtle discrepancies
between what is written in literature and how it is put into life are challenging.
As a result, there is almost no field which we can identify as the field we got the
most new experience in.
Besides these differences, the way XP handles unit testing is refreshing. Although
students subscribed and participated in a programming course with a strong
emphasis on XP as a development process, they got a keen sense of what can
go wrong within the code. The emphasis on the automated tests widens the
way students look on their own code. However, we do not believe that it is
really necessary to implement the tests first. But for the classroom, test-driven
development is the means for teaching software testing, as it forces students to

Extreme Programming in Curriculum 301

think on how the implementation task can be divided into small and testable
parts.

5.3 andrena object’s Experience

The most valuable effect for andrena was that we – professional developers but no
professional pedagogues – could refine our teaching skills. Especially we learned
that the time it takes to bring an XP newbie up to speed can differ widely,
but most students managed the basic techniques in the end. In contrast to the
institute’s view we are convinced that taking the test-first road has a big advan-
tage. In our experience most developers write less and worse tests when adding
them after the fact. Many even start “forgetting” them completely after a few
iterations. This is mainly a psychological problem: writing tests for functional-
ity that already works is perceived as useless and tedious whereas writing tests
beforehand can be much more of a challenge.
Another point we eventually had to accept is that decent programming knowl-
edge is a must; students who fight with Java syntax cannot focus on the de-
velopment process at all. Luckily, the students’ programming skills were better
on average than what we can usually expect from ”professional developers” in
industry.
Effort estimation is difficult and must be practiced to reach a reasonable accu-
racy. As for standard development tasks the students quickly learned to come
up with realistic numbers. However, as soon as something fundamental changed,
for example a new technology was introduced, estimations were yet again very
inaccurate.
Finally, some XP practices which we had somewhat neglected in our professional
work are well worth the effort. Especially automated acceptance tests can give
the development team much more confidence in what they are doing than fine-
grained unit tests alone.

6 Conclusions

In the summer semester 2004, the Extreme Programming lab course will be
offered for the fifth time. While the first course aimed at acquainting the software
engineering group with the new process, the course is now an inherent part of
the summer semester’s lectures.
The changes in the course settings with the most impact are as follows.

We switched from a course setting with a weekly 4 hour schedule to a course
which is held en bloc to reduce students startup time needed to familiarize
themselves with the new techniques.
A skeleton was provided to alleviate the beginning of the project and to
provide the students with a basic software architecture.

By teaching XP, we made the following experiences:

302 M.M. Müller et al.

Reasonable Java programming skills are a must. Students who struggle with
Java syntax cannot focus on the development process at all.
Pair programming is the technique students’ have the least problems to adopt
to.
Test-driven development causes the most problems. Breaking down the whole
programming task into small steps and implementing the small pieces in a
test-first way is difficult. But in the end, students feel comfortable with it.
Students feel uncertain during story estimation but over time, estimates
become more and more accurate due to the ability of finding analogies to
existing stories.
Most students are unfamiliar with team software development. It is a new
experience that the own piece of code can depend on the proper implemen-
tation of others people’s code.
Teaching XP requires practical experience. An experienced XP practitioner
cannot be replaced by the study of literature.

References

Müller, M., Tichy, W.: Case study: Extreme programming in a university envi-
ronment. In: International Conference on Software Engineering, Toronto, Canada
(2001) 537–544
Link, J.: Unit Testing in Java - How Tests Drive the Code. Morgan Kaufmann
(2003)
Wilson, D.: Teaching xp: A case study. In: XP Universe, Raleigh, NC, USA (2001)
Fenwick, J.: Adapting xp to an academic environment by phasing-in practices. In:
XP/Agile Universe. Volume 2753 of Lecture Notes in Coputer Science., Springer
(2003) 162–171
Sysdeo Formation: Sysdeo eclipse tomcat launcher plugin.
(http://www.sysdeo.com/eclipse/tomcatPlugin.html)
Martin, R., Martin, M.: Fitnesse. http://www.fitnesse.org/ (2003)
Beck, K.: Extreme Programming Explained. Addison Wesley (1999)
Beck, K.: Embracing change with extreme programming. IEEE Computer (1999)
70–77
Müller, M., Padberg, F.: On the economic evaluation of XP projects. In: Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE), Helsinki, Finland (2003) 168–177
Padberg, F., Müller, M.: Analyzing the cost and benefit of pair programming. In:
International Symposium on Software Metrics (Metrics), Sydney, Australia (2003)
166–177
Müller, M., Padberg, F.: About the return on investment of test-driven devel-
opment. In: International Workshop on Economics-Driven Software Engineering
Research (EDSER), Portland, Oregon, USA (2003)
Müller, M., Hagner, O.: Experiment about test-first programming. IEE Proceed-
ings Software 149 (2002) 131–136

1.

2.

3.
4.

5.

6.
7.
8.

9.

10.

11.

12.

Human Aspects of Software Engineering:
The Case of Extreme Programming

Orit Hazzan1 and Jim Tomayko2

1 Department of Education in Technology & Science, Technion, Israel
oritha@tx.technion.ac.il

2 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, U.S.A.
jet@cs.cmu.edu

Abstract. As with to other agile methods, which value ”Individuals
and interactions over processes and tools” (http://agilemanifesto.org/),
Extreme Programming (XP) cares about the interaction among the peo-
ple involved in software development processes. The four XP values and
its twelve practices inspire this feeling as well. Accordingly, and not sur-
prisingly, in a course that we teach about human aspects of software
engineering and in a book that we are writing about the topic [7], we
find it illuminating to highlight human aspects of software engineering
incorporated in XP. This article gathers these illuminations into one
place.

1 Introduction

If you ask a group of software engineers what software engineering is, you would
probably come up with more than one definition, each definition emphasizing
different aspects of the discipline. This phenomenon is reflected also in the def-
initions of software engineering described in the professional literature. Indeed,
software engineering is a multifaceted discipline. The rationale for the course
described in this article stems from the fact that though recently the human as-
pects of software engineering get more and more attention, in our opinion they
do not get yet the attention they deserve.

The beginning of the awareness of the human aspects of software engineering
appeared in Brooks’s book The Mythical Man Month [3]. In the preface to the
20th Anniversary Edition, Brooks writes that he is surprised that The Mythical
Man-Month is popular even after 20 years. Such a statement indicates how diffi-
cult is to apply lessons that had been learnt with respect to software development
to future software development projects. This difficulty may be explained by the
multifaceted nature of the discipline and the uniqueness of software development
processes. The course described in this article addresses this complexity as well.

As has been mentioned above, the importance of the human aspects of soft-
ware engineering becomes acknowledged recently. For example, many failures of
software systems can be explained by human factors. Taking into the consider-
ation the complexity of the topic, the course described in this article focuses on
social and cognitive aspects of software engineering, and addresses topics such

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 303–311, 2004.
© Springer-Verlag Berlin Heidelberg 2004

304 O. Hazzan and J. Tomayko

as teamwork, customer - software-engineer interaction, and learning processes in
software development.

Since the agile approach in general and Extreme Programming (XP) in par-
ticular are about humankind, we find it appropriate to illustrate human aspects
of software engineering by the agile approach in general and XP in particular.
The next two sections describe the rationale for the course and how some of its
main messages are illustrated by XP.

2 Human Aspects of Software Engineering

As it is well known, the more the software world is developed, the more it
is accepted by the software engineering community that the people involved
in software development processes deserve more attention, not the processes
themselves or technology. This fact encapsulates the rationale for the introducing
of the agile approach to software engineering and may explain the relatively rapid
acceptance of the agile approach by software developers. In this spirit, the course
presented in the article attempts to highlight the world of software engineering
from the perspective of the main actors that are involved in software development
processes: the individual, the team, the customer, and the organization. Needless
to say, the code and technology are main actors in this process as well. Indeed,
they are also discussed in the course. However, when code and technology are
addressed, the discussion is conducted from the human perspective.

The course aims at increasing students’ awareness of the various facets of the
human aspects of software engineering. The idea is neither to cover all the avail-
able material about the human aspects of software engineering nor to supply a
full, comprehensive, and exhaustive list of references about the topic. Rather,
the course aims to illustrate the richness and complexity of the human aspects of
software engineering and to increase the learners’ awareness of problems, dilem-
mas, questions, and conflicts that may be raised with respect to the human
aspect of software engineering during the course of software development.

3 Extreme Programming Illuminates Human Aspects of
Software Engineering

In this section we describe how XP serves as an illuminating example for human
related topics that are addressed in the course. Specifically, in what follows we
review the course lesson by lesson, and illustrate how we highlight the human
aspects of software engineering by using XP.
Lesson 1. The Nature of Software Engineering: This introductory lesson
sets the stage for the entire course. Both the agile approach and the heavy-
weight approach to software development are introduced. Yet, the terms (agile
and heavyweight) are not yet introduced at this stage. Alternatively, instead
of describing these two approaches, we tell a story of two software develop-
ers: One works in a software house where development processes are guided by

Human Aspects of Software Engineering 305

the heavyweight approach; the second developer works in a software house that
its software production is guided by the agile approach. Students are asked to
compare the two environments and to formulate their preferred environment for
software development. These two approaches are introduced in the second lesson
of the course.
Lesson 2. Software Engineering Methods: In this lesson different software
development methods are described. Naturally, one of them is XP. In general, it
is explained that agile methods are more tied to the human aspects of software
development. A special attention is given to the meaning of the adjective extreme.

Each of the four XP values and each of the dozen XP practices is examined
from the human perspective. For example, it is discussed with the students how
the value of communication is expressed by the practices pair programming,
metaphor, simple design, on-site customer, the planning game and coding stan-
dard. It is also explained how the ”40-hour week” (or, sustainable pace, or no
extended overtime) is based on the assumption that tired programmers make
more mistakes. It is highlighted that communication subsumes many of the XP
practices. Indeed, this is not surprising since communication is very much a
human characteristic of software engineering.

In addition, roles in XP teams are explained and their contribution to the
software development process is outlined. Sensitive human issues in software
development, such as load balancing among individuals, are highlighted as well.
Lesson 3. Working in Teams: After several central roles in software teams are
described, their implementation by different methods (such as the Personal Soft-
ware Process - PSP) and different team structures (such as hierarchical teams)
are explained. One of the discussed approaches is the agile paradigm. It is ex-
plained that a team using agile processes probably functions better as a demo-
cratic team, since there are no layers in between the manager and the engineers,
and communication, valued by many of the agile processes, is enhanced.

With respect to XP, it is illustrated how the XP practice of collective owner-
ship ensures the democratic approach. Particularly, with respect to XP teams,
the human related topic of small ego that is necessary for any democratic is
emphasized. In addition, it is discussed how the XP practices may increase trust
among team members.
Lesson 4. Software as a Product: This lesson examines the human aspect
of software engineering from the perspective of the customers - the people that
use software products. It focuses on how users and developers deal with defining
software requirements in a way that fulfill customers’ needs. Indeed, the process
of defining customer’s requirements is viewed in this lesson as a process in which
both the customer and the developers participate.

When the topic is illustrated by XP, it is explained that XP advocates that
if a software team wishes to produce the software that the customer needs,
the customer should be able to give the developers on going feedback. For this
purpose the customer should be on-site. In addition, XP outlines a very specific
process (the Planning Game) for defining the customer requirements (here called
’customer stories’).

306 O. Hazzan and J. Tomayko

Lesson 5. Code of Ethics of Software Engineering: In this lesson the
focus is placed on the notion of ethics in general and the Code of Ethics of
Software Engineering1 in particular. The discussion focuses on the main ideas
and the essence of the Code of Ethics of Software Engineering and students
analyze scenarios taken from the software engineering world. The idea is to
guide the students in the formulation of personal ethical behavior. This is a
personal process that each practitioner should go through individually. In this
sense, this lesson is different from the other lessons of the course since it raises
more questions and philosophical dilemmas than it provides answers.

XP is discussed in this lesson by focusing on the practice of test-driven-
development. Since the source of many of the ethical issues in the world of
software engineering stems from the fact that software systems are not tested
properly, it is found illuminating to describe how XP bypasses these ethical
dilemmas by including the test-driven-development practice among its core prac-
tices. Students are asked to learn about the XP way of testing and to explain
how this approach ensures that tests will not be skipped or diminished. It is also
discussed how this approach towards testing may help developers avoid many of
the ethical dilemmas, such as those that deal with how to tell customers that
due to time pressure some tests are skipped.
Lesson 6. International Perspective on Software Engineering: In this
lesson the field of software engineering is examined from an international per-
spective. The focus is placed on the community of software engineers and what
is examined is expanded beyond the team and the organization frameworks.
Specifically, in this lesson the influence of certain events on the global high-tech
economy and the nature of software engineering in several places on the globe are
explored. In addition, the topic of gender and minorities in the hi-tech industry
is discussed.

Since the agile approach in general and XP in particular represent a new
paradigm in the evolution of software development methods, we find it appro-
priate to discuss in this lesson the fitness of XP to different cultures and to
women’s management and communication style.
Lesson 7. Program Comprehension, Code Inspections, and Refactor-
ing: One of the main messages of the course in general and of this lesson in
particular is that the development of software is based on an iterative process
through which the code structure and functionality are improved gradually. It
is discussed that different software development methods deal differently with
these gradual improvements. XP serves in this lesson as a suitable example since
it includes refactoring [4] as one of its twelve core practices.

To connect this topic to the previous lesson (International Perspective on
Software Engineering), it is discussed with the students that in a way similar
to other human beings’ habits, one would refactor or not pending on the cul-
ture one lives in and one’s attitude towards refactoring. Accordingly, for an XP
team, refactoring is one of the method’s practices, it is accepted naturally, it is
part of the development routine and it stops feeling like an overhead activity.

The URL of the code of ethics is http://www.acm.org/constitution/code.html.1

Human Aspects of Software Engineering 307

Furthermore, refactoring is tightly connected to the other XP practices, such as
unit testing and continuous integration.

In addition, it is illustrated how several IDEs (Integrated Devel-
opment Environments) offer Refactoring menus which include actions
such as Extract, Rename, etc. Two such Java IDEs are IntelliJ IDEA
(http://www.intellij.com/idea/) and Eclipse (http://www.eclipse.org/platform).
This inclusion of refactoring in IDEs is a clear sign that refactoring has become
part of the profession of software engineering. At the same time it is highlighted
that though refactoring has so many advantages, there are cases where refactor-
ing should not be carried out. One of these cases is when the code is a mess and
it would be better to start its development from the beginning. In fact, even this
act can be viewed as some form of refactoring.

Lesson 8. Learning Processes in Software Engineering: This lesson is
largely based on [6]. Specifically, together with the students we discuss how a
reflective mode of thinking may be interwoven is software development processes
in general and in XP environments in particular.

The reflective practice perspective was introduced by Sch?n, mainly in the
context of certain kinds of professional fields such as Art and Architecture [8,9].
Generally speaking, the reflective practice perspective guides professional practi-
tioners (such as architects, managers, musicians and others) towards examining
and rethinking their professional creations during and after the accomplishment
of the process of creation. The working assumption is that such a reflection im-
proves both proficiency and performance within such professions. Analysis of
the field of software engineering, the kind of work that software engineers usu-
ally accomplish, and the XP practices, support the adoption of the reflective
practice perspective to software engineering in general and to XP development
environments in particular. Specifically, it is suggested that a reflective mode of
thinking may improve the application of some of the XP practices. In this lesson
this possible contribution is examined.

Specifically, we aim to construct, together with the students, ladders of re-
flection. Ladders of reflection are described by Schön in the following way:

We can [...] introduce another dimension of analysis [for the chain of recipro-
cal actions and reflections that make up the dialogue of student and coach in the
architecture studio]. We can begin with a straightforward map of interventions
and responses, a vertical dimension according to which higher levels of activity
are “meta” to those below. To move “up”, in this sense, is to move from an
activity to reflection on that activity; to move “down” is to move from reflection
to an action that enacts reflection. The levels of action and reflection on action
can be seen as the rungs of a ladder. Climbing up the ladder, one makes what
has happened at the rung below an object of reflection. [9] (p. 114)

The ladder of reflection described in this quote refers mainly to student-tutor
dialogue in the architecture studio. [5] expands the ladder of reflection presented
by Schön to a student-coach dialogue in a software studio and with respect to an
individual work. The idea in both cases is to illustrate how one may increase the

308 O. Hazzan and J. Tomayko

level of abstraction of one’s thinking when reflection is interwoven in software
development processes.

In this lesson we construct ladders of reflection with respect to different soft-
ware development situations in general and with respect to XP-based cases, such
as a pair programming session, a planning game session and a refactoring pro-
cess, in particular. These cases illustrate how a ladder of reflection may promote
one’s comprehension of the relevant development process and may lead to in-
sights that eventually may save time and money. Figure 1 presents one of the
tasks presented in this lesson.

Fig. 1. A Task in the Human Aspects of Software Engineering Course: Construction
of Ladders of Reflection

Lesson 9. Different Perspectives on Software Engineering: In this lesson
we aim to illustrate how the profession of software engineering is shaped and
that different approaches may influence the way it is eventually organized and
established. Among other dual perspectives towards software development we
introduce the agile paradigm vs. the heavyweight approach. Naturally, XP is
mentioned among the other agile methods. It is explained that the agile approach
towards software development has emerged in the last decade as an answer to the
unique and typical problems that characterize software development processes.

In this lesson it is also illustrated how different approaches address failure
and success of software projects. Among other approaches we cite Kent Beck
who refers to the conceptual change towards software project success and failure
that both developers and customers should adopt when they decide to use XP
as their project development method [2]. Indeed, the question of what a suc-
cessful software project means invites many debates. It is emphasized that one
agreement has been reached, though, among the entire community of software
practitioners. They mostly agree that software projects should meet customer’s
needs.

Human Aspects of Software Engineering 309

Lesson 10. Abstraction and Other Heuristics of Software Develop-
ment: This lesson examines different kinds of activities that are carried out
during software development processes that are, in fact, heuristics (or ways of
thinking) that one employs when one performs other activities. One of these
ideas is abstraction.

With respect to XP, the students are asked to review the different XP prac-
tices and identify those practices that guide software developers to think in terms
of different levels of abstraction when appropriate. It is suggested that develop-
ers’ familiarity with the big picture of the developed application may improve
their performance in the development of their specific tasks. One way to achieve
this familiarity with the entire picture of the developed application is by the
Planning Game. Though each developer is responsible for specific tasks, they
all participate in the Planning Game. Their participation in the Planning Game
enables them to become familiar with the entire picture of the developed appli-
cation. In later development stages, when they have to make decisions related to
different parts of the application, this kind knowledge may be useful. The main
message of this part of the lesson is that the ability to think in terms of different
levels of abstraction throughout the development process may contribute to and
support software development processes.

Lesson 11. Characteristics of Software and the Human Aspects of
Software Engineering: This lesson examines software characteristics from the
developers’ perspective and illustrates that even software characteristics that
seem to be connected only to the software itself, cannot be isolated and detached
from the software developers. Specifically, the focus is placed on communication
issues related to programming style. Figure 2 presents sample tasks discussed in
this lesson which are connected to XP.

Fig. 2. Tasks about Characteristics of Software, the Human Aspect of Software Engi-
neering and XP

310 O. Hazzan and J. Tomayko

Lesson 12. The History of Software Engineering: In this lesson the history
of software engineering from its early days in 1968 is outlined. One phase in this
history is the entry of the agile methods in general and of XP in particular to the
software engineering world. The uniqueness of XP - the specification of practices
that implement values - is explained.
Lesson 13. Software Project Estimation and Tracking: It is well known
that many software projects are late and over budget. This lesson explores the
effects of overtime on programmers. In addition, it presents several methods of
estimating and tracking time on task, so that the students will have additional
tools to avoid being part of another late project. One of these tools is The
Planning Game. Its main steps are described and the potential contributions of
its different stages to software project tracking are examined and discussed with
the students. When there is enough time, the Planning Game is played in detail
for one iteration of a specific software tool according to the students’ choice.
Lesson 14. Software as a Business: This lesson is about software as a busi-
ness. It consists of two main parts: a brief account of how software became
profitable, and more recent stories of making money with software. With re-
spect to XP, its explicit attention to returning value to the customer with each
release is highlighted.

4 Conclusion

In this paper we outline how in a course about human aspects of software en-
gineering we use XP as an example of a software development method that
emphasizes human aspects of software engineering. Specifically, we explain how
XP is connected to each topic discussed in the course.

At the end of the semester the students discuss and analyze case studies
related to the human aspect of software engineering. These activities aim to
increase students’ awareness, sensitivity and analysis skills when they participate
in software development environments. The analysis of the case studies is based
on theories that have been learned in the course. Not only students are presented
with case studies. Rather, they are also asked to present case-studies from the
professional literature or from their own experience in software development.
The appearance of XP in these cases is optional. When XP does appear, its
human aspects are highlighted.

References

Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
2000.
Beck, K.: Extreme programming: an interview with Kent Beck. The Cutter Edge.
http://www.cutter.com/research/2002/edge020903.htm, 3 September 2002.
Brooks, P. F.: The Mythical Man Month: Essays on Software Engineering. Addison-
Wesley 1975, revised in 1995.

1.

2.

3.

Human Aspects of Software Engineering 311

Fowler, M.: (with contributions by Kent Beck, John Brant, William Opdyke, Don
Roberts). Refactoring: Improving the Design of Existing Code. Addison-Wesley
2000.
Hazzan, O.: The reflective practitioner perspective in software engineering educa-
tion. The Journal of Systems and Software 63(3), pp. 161-171, 2002.
Hazzan, O. and Tomayko, J.: The reflective practitioner perspective in eXtreme
Programming. Proceedings of the XP Agile Universe 2003, New Orleans, Louisiana,
USA, pp. 51-61, 2003.
Hazzan, O. and Tomayko, J.: (in preparation). Human Aspects of Software Engi-
neering. Charles River Media 2004.
Schön, D. A.: The Reflective Practitioner. BasicBooks 1983.
Schön, D. A.: Educating the Reflective Practitioner: Towards a New Design for
Teaching and Learning in the Profession. San Francisco: Jossey-Bass 1987.

4.

5.

6.

7.

8.
9.

Extreme Programming in a University Project

Roger A. Müller

University of Münster, Leonardo Campus 3, D-48149 Münster
piromu@wi.uni-muenster.de

Abstract. Extreme programming is a light weighted software engineer-
ing process – too lightweighted to handle technically and algorithmically
complex problems? This paper describes the problems encountered
when engineering demanding and complex software systems on the
example of a software engineering project at the University of Münster.

Keywords: Extreme Programming, Experience Report

1 Introduction and Scenario Description

The information system curriculum in the University of Münster contains a
course devoted to a student’s project averaging six month of full time work.
This course is usually taken by a small group of students, which makes it ideally
suited for the use of extreme programming (XP) as a process model.

As it turned out, XP was very useful for the project, but both the project
team and the course’s tutors encountered difficulties with the usage of XP, as
the target system had a high technical and algorithmical complexity, both of
which had impact on several XP practices.

The course was held in the summer term of 2003 at University of Münster,
Germany. The setup of a “student’s project course” is similar to a practical train-
ing course, where students get the chance to employ and test their knowledge
regarding software or information system projects on a self organized basis. The
aim of the presented course was to implement a symbolic Java virtual machine
that can be used for test case generation (see [ML03] for a details). The sought
goal was not a set-up specifically for the seminar, but the seminar was organized
to implement the virtual machine – i.e. a real customer situation existed. Each
of the four participants was a graduate student, all of them had experience in
Java programming but no prior exposure to XP. Thus, before the start of the
project, the students familiarized themselves with XP.

The actual beginning of the course was marked by the planning game for the
first iteration. In the first two and a half weeks the students settled into their new
work environment and familiarized themselves with the technical ideas behind
the project. The second iteration marked the real start of the project. From this
point on most of the story cards were not to be fulfilled on an assiduity basis, but
some research and study on the topic had to be conducted by the students’ team.
For the whole project which lasted for six iterations, the students teamed up for
pair programming. The tutors did not get involved in the actual programming

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 312–315, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Extreme Programming in a University Project 313

process even when a team member was missing due to other commitments.
As noted above the instructors also acted as customers and project managers.
Both fitted really well in the real situation, as the instructors really were the
customers for the project and the tutoring usually performed by an instructor
comes pretty close to the project management and mentoring tasks necessary
for an XP project.

The following paper will present the course set-up, the problems with XP
in this very project will be discussed in detail and the found solutions will be
presented and, finally, summarized.

2 Lessons Learned

2.1 Tool Selection

The project plan, i.e. the iteration management was done electronically using
XP-Web, a tool which simply provides the user with web-version of the story
and task cards. Some other features can be supported by this tool as well, but
only the card management and the metaphor management was used to any
noteworthy extend, and only the story and task card part showed notable effect,
as it offered the following advantages over the usual planning game. On the one
hand the customer could easily follow the progress of the different story cards.
Also, and probably more importantly, he could check the different task cards
that were made up by the students and – as some problems only got clearer
when programming was started – changed over time. On the other hand the
students could check early, what would await them in the next iteration and
prepare themselves for the next iteration period. In fact, the new iteration was
entered into the system on Fridays, so the weekend could be used for considering
the tasks and familiarization. In fact, this proceeding proved invaluable for the
success of the project, as it was firstly employed after the first iteration’s planning
ended nearly disastrous as the students did not know enough about the virtual
machine to discuss it in the needed depth – several little post-meetings had to
do the job.

As a basis for communication a wiki system was selected. As such a system
offers an anarchistic kind of content management, topics can be discussed fitting
to the flat hierarchy in XP projects.

The other software used were JRefactory for refactoring NetBeans as an
IDE with integrated CVS and JUnit support. It was chosen over more complex
CASE-Tools, especially Borland TogetherSoft ControlCenter, as the team was
already familiar with it and performance proved to be much better.

2.2 Simple Design and Iteration Planning

Simple design is the dogma for XP projects. Interestingly, none of the participat-
ing students had any notable problems with that, which is probably because of
the offensive marketing involved for the course as an XP course and the resulting
dedication of the students to XP. Another assumption may lie in the strategy

314 R.A. Müller

used for the planning, i.e. the story cards. As it hopefully had become clear in
the setup description the target program was non trivial in the sense, that the
goal was easily describable but the way to that goal was at best clouded. As a
result, the tutors gave design hints by the formulation of the story cards.

The acceptance tests differed from the usual ones as well. To test (in the sense
of validate) for example, a virtual machine execution engine, a rather specialised
set of tests is necessary. For this project this problem was solved by testing the
program with a set of example code provided for a computer science lecture, as
it was believed to represent most issues involved in programming in a compact
way.

The test suite was continuously upgraded and expanded as the capabilities
of the machine enhanced. Due to its complexity the construction processes for
the suites made up story cards of their own, which seems to be a novel approach
worth further studying.

One best practise of XP turned out to be too strict to handle, at least in a
technical context: it was next to impossible to discard all user stories the team
cannot finish in iteration time. Some user stories are critical not to the current
iteration but to the success of the next. Though one might argue, that such a
story could easily be postponed to a later iteration, this is not always true. If, for
example, one iteration is concerned with programming a virtual machine that
should be used in the next, the virtual machine has to be finished first, whatever
XP says. It proved to be a good practise to start the next iteration with a story
card “finish story cards x to y from the last iteration”, just to make sure the
critical parts of the project are implemented.

As it turned out the XP team had troubles to figure out where to start and
how to plan their iteration. The cause for this was the complexity of the project.
To counter this problem the tutors used the priorities of the task cards as a queue,
which sometimes resulted in priorities differing from the real importance of the
task. However, as the planning usually resulted in very well timed iterations,
this did not turn out to be a problem. The approach of allocating the priorities
to represent an order of the tasks instead of the real priority can be adapted
to other, similar projects as well. However, the abnormal use of the priorities
should be communicated to the project team, as only this ensures that the team
can use the information in a suitable manner.

2.3 Pair Programming, Testing, and Refactoring

The project participants were asked to program in pairs. To underline this re-
quest, the team’s room was only fitted with two computers and a server. The
computers were connected to one monitor and one keyboard each. Despite the
good reception of the pair programming, some parts like coding huge amounts
of analogous coding or GUI implementation were conducted on a single person
basis.

Another point discussed on a regular basis is the exchange of experience
involved in programming in pairs. The participants described their learning curve
in regards to the pair program as steep and later on flattened. From the tutors
point of view, the anxiety usually associated with the more complicated parts of

Extreme Programming in a University Project 315

a project could not be perceived in this case, which might be easily associated
with the pair programming.

Overall the pair programming was received very well, as the programmers
felt more secure with the technically complex task, which kept a continuous
discussion going throughout the whole project.

As with most XP projects JUnit was the natural choice for testing the system
for both acceptance and unit tests. As described above it blended well into the
chosen IDE and was easy to learn and implement. The test-first strategy was
adapted with little problems, and was kept up throughout the project. The team
adapted very early to the kind of testing and it bolstered the confidence in their
project.

3 Related Work and Conclusion

Some related work has been conducted on the usage of XP in a university or
R&D environment. For a pure R&D environment Boutin [Bo00] described the
experiences made in his company when a change of both method and program-
ming language was conducted. Classroom experience for introducing XP was
described in the papers of Astrachan et al. [As02] and Sanders [Sa02]. Holcombe
[Ho02] described a setting with a similar initial starting situation like the project
described in this paper, but the set-up, project execution and the conclusion dif-
fer quite a lot.

To sum up, this paper has shown that XP is suited to deal with complex
software systems. We have shown, that the complexity has to be broken down
by the project manager, to enable the actual project team to estimate complexity
and as simple things as a meaningful order of implementation. This is mostly
because technically complex applications need some research in adavance. If the
reasearch is conducted by a different group than the programmers, as it might
usually be the case, the results learned have to reflect strongly on the project
plan and the planning game, if that means, that the separation of customer and
programmer has to be lifted to a certain extend. At last we discovered that pair
programming takes some of the anxiety usually associated with complexity away
from the team.

References

Astrachan, O. L. et al. Bringing Extreme Programming to the Classroom, in:
Marchesi, M. et al.: XP Perspectives, 2002 (237-250).
K. Boutin. Introducing Extreme Programming in a Research and Develop-
ment Laboratory, in: Succi, G. and M. Marchesi: XP Examined, 2000 (433-
448).
M. Holcombe et al. Teaching XP for Real: Some Initial Observations and
Plans, in: Marchesi, M. et al.: XP Perspectives, 2002 (251-260).
R. Müller, C. Lembeck, and H. Kuchen: GlassTT - a SJVM using Constraint
Solving Techniques for Test Case Generation, TR 102, Univ. of Münster, 2003.
D. Sanders. Extreme Programming and the Software Design Course, in:
Marchesi, M. et al.: XP Perspectives, 2002 (261-272).

[As02]

[Bo00]

[Ho02]

[ML03]

[Sa02]

Agile Methods: The Gap between Theory and Practice

Kieran Conboy

Dept. of Accountancy and Finance,
National University of Ireland,

Galway, Ireland

Abstract. Since the software crisis of the 1960’s, numerous methodologies
have been developed to impose a disciplined process upon software develop-
ment. Today, these methodologies are noted for being unsuccessful and un-
popular due to their increasingly bureaucratic nature. Many researchers and
academics are calling for these heavyweight methodologies to be replaced by
agile methods. However, there is no consensus as to what constitutes an agile
method. An Agile Manifesto was put forward in 2001, but many variations,
such as XP, SCRUM and Crystal exist. Each adheres to some principles of the
Agile Manifesto and disregards others. My research proposes that these princi-
ples lack grounding in theory, and lack a respect for the concept of agility out-
side the field of Information Systems Development (ISD). This study aims to
develop a comprehensive framework of ISD agility, to determine if this frame-
work is adhered to in practice and to determine if such adherence is rewarded.
The framework proposes that it is insufficient to just accept agile methods as
superior to all others. In actual fact, an ISD team have to identify whether they
need to be agile, and to compare this to their agile capabilities before deciding
how agile their eventual method should be. Furthermore this study proposes
that an agile method is not just accepted and used. Rather it may be selected
from a portfolio of methods, it may be constructed from parts of methods, or
indeed it may be the product of the ISD team’s deviation from a different
method altogether. Finally, this study recognises that agility does not simply
come from a method. In actual fact, a cross-disciplinary literature review sug-
gests that it is important to classify sources of agility, which could be the peo-
ple on team, the way they are organised, the technology they use or the external
environment with which they interact. A three phase research method is
adopted, incorporating a set of pilot interviews, a large-scale survey and finally,
a set of case studies. The survey is intended to produce generalisable results
while the case studies are carried out to obtaining much needed qualitative in-
formation in an emerging field where little is currently known.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, p. 316, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Correlating Unit Tests and Methods under Test

Markus Gälli

Software Composition Group
University Bern

gaelli@iam.unibe.ch

Keywords: Unit tests, methods under test, method examples, test scenarios,
traits
Research Questions: What are the relationships between unit tests and be-
tween unit tests and methods under test? What can be gained by making this
relationships explicit? How does the concept of method examples compare with
other possible techniques to relate this entities?
Significant problems and current solutions: (1.) Missing explicit relation-
ships between unit tests and methods under test make it difficult to trace which
features are thoroughly tested and hinder navigability between unit tests and
their methods under test. xUnit uses a naming convention which is brittle when
it comes to renaming the methods and classes under test. (2.) Schuh et al. [1]
introduce the concept of ObjectMother to compose complex test scenarios. (3.)
Failing unit tests are presented randomly and not in a meaningful order. [2]
Definition: A method example tests a single method and returns the resulting
receiver, parameters and potential return value of its method under test.
Approach: Show which kind of relations between unit tests and between unit
tests and method under tests exist. Correlate the unit tests of the base system
of Squeak by decomposing them into method examples. Show, that the single
concept of method examples enables navigation and traceability between unit
tests and methods under test, provides concrete types for the methods under
test, fits well together with traits [3], and allows the composition of complex
unit tests. Compare with other techniques to make this relationships explicit.
Achieved Results: Case studies show that a significant amount of the rela-
tionships between unit tests cover each other when one compares the sets of
signatures of their called messages [2], and that the Squeak base unit tests can
be successfully refactored to method examples.

References

Schuh, P.: Recovery, redemption and Extreme Programming. IEEE Computer 18
(2001) 34–41
Gälli, M., Nierstrasz, O., Wuyts, R.: Partial ordering tests by coverage sets. Tech-
nical Report IAM-03-013, Institut für Informatik, Universität Bern, Switzerland
(2003) Technical Report.
Schärli, N., Ducasse, S., Nierstrasz, O., Black, A.: Traits: Composable units of
behavior. In: Proceedings ECOOP 2003. Volume 2743 of LNCS., Springer Verlag
(2003) 248–274

1.

2.

3.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, p. 317, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Exploring the XP Customer Role – Part II

Angela Martin

Faculty of Information Technology, Victoria University of Wellington
Wellington, New Zealand

angela@mcs.vuw.ac.nz

The Customer is the only non-developer role in eXtreme Programming (XP). Initial
XP literature [1, 2] provided little guidance concerning this role; however Beck &
Fowler did acknowledge the risk associated with the Customer role:

All the best talent and technology and process in the world will fail
when the customer isn’t up to scratch [1, p.17]

Our research [4] is beginning to explore the practicalities of succeeding in the imple-
mentation of the XP Customer role. We have used interpretative in-depth case studies
[3, 4] to explore our research questions within their natural setting; software projects.
We have interviewed a total of 39 people across six projects in New Zealand and the
United States, and in all cases have covered the spectrum of core XP roles. We found
that the customer must shoulder several implicit responsibilities, including liaison
with external project stakeholders, while maintaining the trust of both the develop-
ment team and the wider business. The existing XP Customer practices appear to be
achieving excellent results but they also appear to be unsustainable, and so constitute
a great risk to XP projects, especially in long-term or high-pressure projects. We are
continuing to analyse the data from these cases, as well as collecting data from proj-
ects in England & Europe, to further explore the issues encountered and successful
and unsuccessful coping strategies utilised. The key contribution of our research will
be to describe the essential characteristics and skills required in the customer role, and
to identify the crucial practices and values to carry out the role successfully.

References

Beck, K., & Fowler, M. Planning Extreme Programming: Addison Wesley, 2001.
Farell, C., Narang, R., Kapitan, S. and Webber, H., Towards an effective onsite customer
practice. in Third International Conference on eXtreme Programming and Agile Process in
Software Engineering, (Italy, 2002).
Fitzgerald, B. Systems development methodologies: the problem of tenses. Information
technology and people, 13 (3). pp. 174 – 185.
Martin, A., Noble, J., and Biddle, R. Proceedings of the Fourth International Conference
on eXtreme Programming and Agile Processes in Software Engineering, Giancarlo Succi
(Ed.), Being Jane Malkovich: a Look into the World of an XP Customer. Lecture Notes in
Computer Science 2675, Springer-Verlag. 2003.

1.
2.

3.

4.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, p. 318, 2004.

© Springer-Verlag Berlin Heidelberg 2004

A Selection Framework for Agile Methodologies

E. Mnkandla and B. Dwolatzky

1 Monash University, South Africa, Ernest.Mnkandla@infotech.monash.edu.au
2 University of the Witwatersrand, South Africa, b.dwolatzky@ee.wits.ac.za

1 Introduction

Agile software development methodologies provide a significant improvement on
the control and management of the software development process. Literature
gives evidence of improvement in areas like development of software that meets
the user requirements, delivery of the product on time and within budget. With
the growing number of agile methodologies the selection of a methodology that
is suitable for a particular project becomes a nontrivial issue. This research
work aims at devising a mechanism that can be used by practitioners to select
the most suitable agile methodology for a given software development project.
The literature survey done so far reveals that whilst those who have used agile
methods have made significant benefits, there is a lot of apprehensiveness and
uncertainty about the use of agile methods in the IT industry. This uncertainty
is due to the lack of literature on the representation of agile methods and the
lack of empirical data on the use of agile methods. The literature also shows
that due to these gaps there is also a lack of ways of selecting the appropriate
methodology for a given project.

2 Significant Problems

Agile methodologies not well accepted in the IT industry:
Solution: provide empirical data (through experimentation) on the gains
made by agile methods.
IT professionals do not seem to accept change in their field that easily hence
the delay in accepting software development methods that will bring positive
change.
Solution: Introduce the agile methods in the education system.

1.

2.

3 Proposed Approach

Design a framework for the representation of agile methodologies.
Conduct experiments on the use of some agile methods in teaching and also
use existing data to show that the way developers choose a methodology
depends among other things, on the way they were taught software engi-
neering.

1.
2.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 319–320, 2004.
© Springer-Verlag Berlin Heidelberg 2004

320 E. Mnkandla and B. Dwolatzky

Design a framework for selecting the most appropriate agile method for a
given project based on; the experience of the IT professional, the type and
size of the project, and an algorithm (still to be designed) that suggests the
best methodology given the different parameters that affect the success of
the project.

3.

4 Results Obtained So Far

We have found from a few software development companies in South Africa
that a good number of them do not use any methodology at all in software
development process. They just follow some way that gets things done.

Refactor Our Writings

Joshua Kerievsky

Industrial Logic
joshua@industriallogic.com,
http://industriallogic.com/

Abstract. Getting folks writing papers about useful information is good. How-
ever, a forest of ideas, with no organization, is bad. We would like authors and
groups of authors come together to refactor older, related papers into new, con-
solidated pieces of literature that communicate comprehensive ideas on an im-
portant subject.
We need to encourage ourselves to refactor what we’ve written in order to pro-
duce excellent new pieces of literature.

1 Audience and Benefits

Everyone who is involved with or interested in writing, teaching and learning.

2 Content

The standard “Call for Papers” that gets announced before each of the XP/Agile con-
ferences is good. It gets folks writing papers about useful information – techniques
that have worked well, experiece using a process, etc. It is nice to see people from
around the world contributing such papers to the various XP/Agile conferences.

However, I am now seeing what I saw in the patterns movement: a continuous stream
of papers, with no refactoring of the literature. This is bad. It leads to a forest of ideas,
with no organization and little practical value to a broad community that has not yet
joined the XP/Agile community.

I would like to see authors and groups of authors come together to refactor older,
related papers into new, consolidated pieces of literature that communicate compre-
hensive ideas on an important subject.

An example: At XP 2001, I submitted a paper to the conference called Continuous
Learning. At the conference, I discovered that TimMacinnon? (sp?) had submitted a
related paper. I also met Francesco Crillo (of XpLabs) who had lots of great ideas
(and more important, practical experience) on the subject of Continuous Learning. I

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 321–322, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Refactor Our Writings 322

remarked at the time that the three of us needed to consolidate our ideas to produce a
more comprehensive piece of literature about Continuous Learning. That hasn’t hap-
pened yet, though I am committed to making it happen.

I’d like this idea of refactoring our literature to spread to other authors. I don’t want
the conferences to limit the size of our consolidated papers. We need to encourage
ourselves to refactor what we’ve written in order to produce excellent new pieces of
literature.

The first step is to educate conference organizers about the need to refactor our lit-
erature, so that such an effort can be included as part of any “Call for Papers.” Next,
let’s encourage this effort by suggesting some areas that we feel need to be refactored
and consolidated. For example, I’ve read numerous papers on Teaching XP, Distrib-
uted XP, XP Testing.

3 Presenter

Joshua Kerievsky, a Senior Consultant with Cutter Consortium’s Agile Software
Development & Project Management Practice, began his career as a professional
programmer at a Wall Street bank, where he programmed numerous financial systems
for credit, market, and global risk departments. After a decade at the bank, he
founded Industrial Logic to help companies practice successful software develop-
ment. Kerievsky has programmed and coached on small, large, and distributed XP
projects since XP’s emergence. He recently pioneered Industrial XP, an application of
XP tailored for large organizations. Kerievsky has been an active member of the
patterns community and is presently completing a book entitled Refactoring to Pat-
terns. He can be reached at consulting@cutter.com.

Be Empowered (That’s an Order !)
“Experience the Dynamics and the Paradoxes of

Self-Organizing Teams”

Laurent Bossavit1 and Emmanuel Gaillot2

1Exoftware,
laurent@bossavit.com,
http://bossavit.com/

2Independent,
egaillot@freesurf.fr

Abstract. “The best architectures, requirements, and designs emerge from self-
organizing teams,” argues the Agile Manifesto. Yet the opposite principle is
built into the corporate model of collaboration: “someone has to be boss” –
sometimes to the extent of attempting to mandate self-organization! Self-
organization cannot be decreed from above, but conditions can be created
which favor it; one such condition is that team members have experience with
and can recognize self-organization. Drawing on lessons from the theatre, this
workshop will provide just such an experience, as well as explore the
conditions of self-organization.

1 Audience and Benefits

Participants will ideally have the experience of working in teams, or at least in
groups; or of managing teams of groups.

Participants and presenters will
learn about the conditions under which self-organization can be expected
experience achieving a purpose without the the need for a leader’s direction
generalize and extract insights from their own and each other’s experience
have fun

2 Content and Process

Extreme Programming does not define a “project manager” or a “team lead” role. It
does have a “coach” role, whose responsibilities are to observe how the team is doing
and reflect on that with the team – not to tell anyone what they should do. (Also, the
coach is expected to fade away as the team becomes self-disciplining.) How can
anyone expect a team to work without a boss – or at least a leader ? Yet if we are to
pay more than lip service to the notion of “self-organizing” teams, we must
understand how teams might function without externally imposed organization.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 323–324, 2004.
© Springer-Verlag Berlin Heidelberg 2004

324 L. Bossavit and E. Gaillot

This interactive and experiential workshop is meant as a point of departure for a
collective investigation of self-organized teams in the context of agile projects. Pre-
workshop, up to 20 participants (on a first-come, first-serve basis) will be invited to
sign up and join in an exploratory Wiki conversation at

http://selforganizingteams.com/

During the workshop, we will alternate theatrical exercises, inspired by the
workshops run by director Anne Bogart; open discussion; presentation of some basic
theoretical models; and exploration of regularities in participants’ and presenters’
experiences, leading to patterns, models or other insights applicable to the
management of self-organizing teams. The workshop will run, in outline, as follows:

Entry; informal and structured Q&A
Exercise: soft focus and the Circle
Break
Structured reflection – mental models of ,,team“
Fishbowl discussion – teams and self-organization
Lunch
Theoretical models – presentation & discussion
Exercise: a Sun Salutation (no, Java isn’t involved)
Break
Exercise: a self-organized performance
Structured debriefing & writing up results

09:00-09:30
09:30-10:30
10:30-11:00
11:00-11:30
11:30-12:30
12:30-14:00
14:00-14:30
14:30-15:15
15:15-15:30
15:30-16:15
16:15-17:30

After the workshop, results will be written up on the Wiki and conversation will
continue, yielding results on a collaborative and self-organized basis. Hand-outs will
be provided to guide individual exploration of relevant theoretical material.

3 Presenters

Laurent Bossavit is a developer with over 20 years of coding experience, 10+ of
which on a professional basis. He has held positions from lowly tech writer to lofty
project manager, but was most comfortable as just another coder. Laurent’s new
focus, originally as an employee and now as an external consultant, is on working
with teams and keeping them supplied with the raw materials of change and
effectiveness - clarity of purpose and a constant infusion of fresh ideas. Laurent
stewards (but does not by any stretch manage) several communities in both real and
virtual space, such as the French XP practitioner’s group or the book-lovers’ Wiki
Bookshelved.

Emmanuel Gaillot is a software engineer, working both as an IT consultant and team
facilitator in Paris, France. His areas of expertise and interests include Open Source
Software in Corporate environments, and Extreme Programming. He is also an
experienced designer (sound and light) for theatre and dance, and has adapted the
principles and practices of XP for the theatrical production process.

How to Maintain and Promote Healthy Agile Culture

David Hussman1 and David Puttnan2

david.hussman@sgfco.com,

dputman@exoftware.com

Summary: The workshop’s aim is to raise discussion around the importance of
creating and maintaining healthy culture on agile projects.

Abstract. Though agile development often works well initially, maintaining
and nurturing a healthy culture is key to the success of any agile project. As a
project’s culture is affected by many forces , this challenge is often quite diffi-
cult. Varying skills sets, egos, schedules, and external project dependencies are
just a few issues that must be addressed by those trying to promote or maintain
the cultural health of an agile project. The intent of this workshop is to use
shared experiences to create a list of tools and tactics useful in managing cul-
ture on agile projects.

1 Intended Audience

The ideal candidate would have lead or helped lead one or more agile projects. Can-
didates will need enough experience to write a short position paper which describes
their experience helping to keep an agile project healthy. Candidates must be inter-
ested in sharing and learning about finding cultural smells that affect project cultures
and solutions / tools that may help address the issues. Workshop attendees must not
fear calling out that which has as well as that which has not worked on agile projects.

1.1 Benefits for Attendance

Workshop participants will have the chance to share and discuss successes and strug-
gles as well as issues which may are be covered by the current body of agile writings.
Through discussion in large and small group discussions, the participants should be
able to find a set of common approaches to nurturing agile culture that have been
successful for more than on project, company or culture.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 325–327, 2004.

© Springer-Verlag Berlin Heidelberg 2004

1

2

326 D. Hussman and D. Putman

2 Workshop Overview

Workshop participants will create a collection of cultural smells they have encoun-
tered and capture this information on posters in a story like format. Small and large
group discussion of how these issues affect a project’s culture as well as solutions that
addressed the issues will consume a large portion of the workshop. In an effort to
learn from our mistakes, the group will discuss solutions that failed, and why. To
further the importance of culture, as it relates to the communal nature of agile prac-
tices, the workshop to try to create some tangible output that can be used in the
trenches by agile project leaders and project members.

2.1 Goals

1.
2.

3.

4.

Create a collection of cultural smells associated with agile projects and teams.
Drive out which issues have the least amount of coverage in the agile writings (as
known to the participants).
Create simple discussion vehicles that represent the participant’s experiences,
which can be shared with the agile community.
Further the importance of culture and the way in which it relates to the success of
agile projects (and the growth and adoption of agile practices).

2.2 Workshop Format

Pre Workshop - All participants read each others position papers and create a list of
potential cultural smells.

First Half - Workshop participants discuss cultural smells and create a prioritized list
of story titles for small group discussion. Each participant signs up for a story and
takes this story out into small group discussions where more detail is added to each
story.

Second Half - More story detail will be added as story owners take their story into a
different small group discussion. Entire workshop regroups and story owners present
their story to the group, adding or modifying the story content as per the large group
discussion.

Post Workshop – The stories created during the workshop are posted somewhere at
the conference. The workshop organizers create some publishable document which is
posted on the workshop website and possibly published.

How to Maintain and Promote Healthy Agile Culture 327

3 Organizers

David Hussman - A software geek for 10 years, David has developed in the follow-
ing fields: medical, digital audio, digital biometrics, retail, and educational. Some-
where along the way, David moved toward an odd way of defining, communicating,
and developing software. When someone organized a better version and started call-
ing it XP / Agile, he felt right at home. Motivated to see IT folks succeed and smile,
David has evangelized XP by working as developer, coach, customer, and manager
on XP projects for 3.5 years. When David is not coaching, he is traveling with his
family as often as possible.

David Putman – A music lover, David accidentally purchased a computer in the early
1980s and was immediately stricken by the programming bug. His deep interest and
enthusiasm in the subject then lead to a lecturing position within the now University of
East London (UEL). David also acted as the Officer with the Department of Trade and
Industry working on the “Managing into the 90s” project.
Always a developer at heart, David lives in the Roman city of St Albans in the UK,
with his partner, two step-daughters and the family feline. He has finally achieved his
dream of owning a computerised music-studio - but now doesn’t have the time to use
it due the demands of his job as Senior Mentor at eXoftware.

Contact Information:

David Hussman
p: 011-612-743-4923
e: david.hussman @ sgfco.com

David Putman
p: 353-(0)1-410-0528
e: dputman@exoftware.com

Customer Collaboration
How to Replace Our Old Semi-hostile Habits with Friendship and

Rich Communication
Full Day Workshop

Proposed by: Ole Jepsen

Cap Gemini, Denmark
www.olejepsen.dk (mostly in danish – sorry)

ole.jepsen@capgemini.dk

Phone: +45 39778494

Abstract. Customer collaboration doesn’t just happen because you want it to
happen. There are many challenges that can bring the project into a negotiation
climate rather than the collaboration climate, which works so well. A couple of
examples of challenges are our own old habits – and organizational structures
that support nothing but written contracts and detailed requirement
specifications.

Audience

Project managers and developers, who have substantial experience with user
interaction in development projects. Participants will benefit not only from others
experiences – but also from a structured assessment of their own user interaction
experiences. As an extra bonus they will learn a great technique for exchanging
experiences.
Participants should have a fair amount of project experience, and should have been
working on (or at least be conscious about) the working climate within the project
team.

Benefits of Attending

After the workshop the participants will know some more of the usual challenges you
often need to deal with, when you want to change the usual negotiation-like working-
climate to a more friendly, open, efficient and collaborative working-climate.

Deliverables

The purpose of this workshop is to produce a number of no-nonsense, easy to
implement, strategies for the art of making great customer collaboration happen. The
notes taken during the workshop will – after a little extra writing – be the actual
deliverable.

Process

The process is inspired by the ,,Los Altos Workshop on Software Testing” described
at www.kaner.com/lawst.htm - and goes like this:

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 328–330, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Workshop – ,,Customer Collaboration“ 329

The above process and timescedule is designed for a group of 16 participants.
However, the process will work with any number from 6 to 20 participants. A group
of 4 or 5 participants will work fine as well, but should be limited to a half-day
workshop.

Step
-Welcome and

agenda
-Reflection

-Stories in pairs of
two

-Stories in pairs of
four

-Presentation –
participants
-Break
-Exploring a story -

A

-Lunch
-Exploring a story -
B
-Break
-Exploring a story -
C
-Break
-Exploring a story -
D

Minutes
15

5

10

25

10

10
5

25

20

60
50

15
50

10
50

Remarks
Quick presentation of the purpose and unique
technique for this workshop.
Participants think for themselves, select one
specific experience – one story – they want to
share, and take a few notes.
Each participant tell his story to the other part.
This is timeboxed – 5 minutes for each person.
Each participant tell his story again – in 5
minutes. By telling the same story again, the
story-teller starts reflection – and he gets better
at telling the story.
At the end the group selects the most interesting
story.
A brief presentation-round.

The participants with a selected story tells it to
all participants in the workshop – timeboxed – 5
minutes.

Participants ask questions about the story – to
explore the story for details that are interesting
to them. Strictly questions. No suggestions or
own experiences at this point.
Participants ask more questions, share own
experiences, and suggest actions that could have
been usefull for the story-teller.
During this part the workshop-leader takes notes
on a PC with a projector, so everybody can see.
Notes are about: „what have we learned from the
story and from each other“.

Same as step 7 – but a different story

Same as step 7 – but a different story

Same as step 7 – but a different story

330 O. Jepsen

Experience with Similar Workhops

I have been organizing and facilitating two workshops using the above process:
One workshop was in collaboration with Ward Cunningham at JAOO
Conference in Denmark in September 2003. A significant result of this
workshop was the article „Improving customer developer collaboration“
(www.bestbrains.dk/xpvip-jaoo2003-report.html).
14 people participated in this 7 hour workshop.
An other workshop was in connection with a conference by the Danish
„Teknologisk Institut“. The subject was „Iterative development in fixed
price projects“. 4 participants – 3 hours.

After having tried this workshop process I will never use anything else for the
purpose of exchanging experiences. It works SO well!!!

The subject of this workshop is somewhat similar to the first of the two above
workshops. However - after having conducted the above workshop I have a strong
feeling, that there is so much more challenges and experiences out there, just waiting
to be uncovered and communicated...

Who Am I – Ole Jepsen

Ole Jepsen is a Principal Consultant with Cap Gemini – in the Accelerated Delivery
Center (ADC). The key elements of the ADC is iterative development and intense
collaboration between all parties in every development project. He has 20 years of
project experience from a number of companies in Denmark, mainly banks and
insurance companies, and two years of experience from various companies in
Australia.
He values the substantial person-to-person face-to-face communication as the most
important issue in system development projects.

Founder of „Danish Agile User Group“.

Speaker at conferences like: Danish IT Association / “XP and Agile Software
Development” – IEEE Joint International Requirement Engineering Conference -
JAOO 2002 Conference – CONFEX/XP – JAOO 2003 Conference / „Stop the
requirement war“ – Danish IT Association / „Requirement specifications“, etc.

Author of articles in english: „Time Constrained Requirement Engineering“, „The
project profiler“, „Improving customer developer collaboration“ – and a number of
articles in Danish.

Assessing Agility

Peter Lappo1 and Henry C.T. Andrew2

1Systematic Methods Research Ltd
Greylands House, Mallory Rd, Hove, BN3 6TD, UK

peter.lappo@smr.co.uk,
2 Box River Ltd

Greylands House, Mallory Rd, Hove, BN3 6TD, UK
henry_andrew@yahoo.com

Abstract. A technique is described that uses goals to assess the agility of
software development teams and shows how it can be used with some
examples. The agile assessment can be used to make investment decisions and
process alterations. Value stream mapping is seen as an important technique in
analysing processes.

Keywords. Agile Goals, Assessment Technique, Value Stream Mapping, Net
Benefit, Measuring Agility

1 Introduction

There seems to be a general feeling in the agile community that if you follow all the
practices associated with your chosen method then you are by definition agile. While
this may be true of agile methods such as XP [1] or Scrum [1] which have defined a
set of practices that have emergent properties such that the team becomes agile as a
result of the process. It is still possible to use XP or Scrum without gaining much in
terms of agility.

There is much talk in the agile community of improving the software development
process but most of the improvements are anecdotal. There have been attempts at
measuring and proving the efficacy of agile software development methods versus
traditional methods [3, 4]. These studies have shown that agile methods are at least as
good as traditional methods. There is even some talk of metrics [5, 6] which some
people unfortunately frown upon [7] because of the political connotations, but
nevertheless metrics don’t measure how agile you are. Williams et al [5] proposed an
interesting set of agile metrics, but the metrics defined where not formalised.

This paper defines a technique to assess agility through goals and using some
examples shows how to create agile goals. The technique won’t compare you with
other people, at least not directly, rather it is a means to measure your relative
performance.

1.1 Comparative Studies between Traditional and Agile Methods

Comparative studies [3, 4] between traditional and agile methods are very difficult to
do on a small scale because it is very hard to devise a controlled experiment that
anyone trained in the theory of science can qualify as a valid scientific experiment.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 331–338, 2004.
© Springer-Verlag Berlin Heidelberg 2004

332 P. Lappo and H.C.T. Andrew

The problem is small scale studies are not repeatable primarily due to the human
element.

The repeatability problem only disappears when large numbers of projects are
compared and statistical techniques are used to correlate process features with
outcomes. However, at this moment in time there is not enough data available to
prove that agile methods are better than traditional methods. Although anecdotal
evidence suggests that agile methods are more effective at delivering working
solutions.

1.2 Relative Comparisons

The only practical way of determining whether agile methods actually make a
difference to your software development process is by measuring your own process
and seeing whether agile methods actually make a difference. The question is how to
make the measurements and what to measure. Once these questions have been
answered it is possible to have some clarity about what makes a difference in your
environment.

While it is possible to use the technique proposed in this paper to compare yourself
with other teams it is difficult as often you are not comparing like with like. However,
other peoples performances are useful as a guide to what can be achieved.

1.3 Metrics versus Measurable Goals

There is a large body of work concerning software metrics. Most of this work is
useful for the long term analysis of trends and comparative studies. Metrics are
sometimes used during planning and bidding. However, metrics are not much use for
assessing agility. This paper won’t concern itself much with metrics as it is the belief
of the author that most metrics are measuring artifacts of the process such as lines of
code or code complexity.

Most environments the author has worked in collect some sort of metrics even if it
is only hours spent on project tasks, requirements tested or defect rates. While these
may be useful, especially the last two, the collection of hours on tasks is often a
fantasy of the developer or manipulated by political necessities.

Rather than just gather metrics such as lines of code, code complexity, function
point or quality metrics we need measurements that are related to business needs with
an agile perspective. For instance, while code complexity analysis tells you how
complex your code, it does not give you any idea whether this code is easy to change
in practice and hence having the potential to be agile. You may also have code that is
not complex, but you still may have difficulty being agile because of your process or
because of the attitude or experience of the people working on the project. The point
being that low level measurements of process artifacts don’t necessarily mean
anything at a higher process level.

Using the measurable goals described below it is possible to define a set of goals
for your team that are directly related to agile principles such as frequent delivery of
software. Goals differ from metrics principally in that they attempt to be free from the

Assessing Agility 333

details of the process, so that a goal to be responsive to change, for example, doesn’t
care about metrics like lines of code or code complexity. The other reason to
differentiate goals from metrics is because a goal implies thought about where you
want to be rather than where you are now.

2 Technique for Defining and Achieving Goals

2.1 Goal Setting and Implementation

We simply define a set of measurable goals (see 2.3 below) for the process,
environment, tools and software quality in conjunction with the project stakeholders
(this includes developers). Then we determine what the current state of these goals
are, agree a future value with the project stakeholders, and takes steps to achieve the
agreed values.

The process of achieving the goals should of course be iterative, with regular
reviews on progress and the goals themselves. The cost and benefit of change should
also be considered thereby preventing over or under investment. You may of couse
find that you are sufficiently agile using your current process.

The goals, ideally, should be method agnostic, that is, we shouldn’t define goals in
terms of particular practices used to achieve agility or in terms of the artifacts of the
process as this will stop method innovation and cause a lot of argument about
favourite best practices. But it should be possible to assess a particular practice in
terms of the impact it has on agility. This however, this is beyond the scope of this
paper.

2.2 Techniques for Achieving Goals

Numerous management techniques exist for improving processes, but perhaps the
most interesting one to use at an early stage when you are investigating possible
improvements is value stream mapping [8] as used by the lean community.

Value stream mapping produces a timeline for a complete process and determines
those steps which add value to the process. Subsequent work entails eliminating steps
that don’t add value and eliminating process delays.

For example, the production release process is always an interesting process to
examine. It may have a number steps that cause unreasonable delays which could
easily be eliminated or automated.

2.3 Categorisation of Goals

It is useful to categorise goals to help define them and focus the mind on what goals
are necessary. This paper proposes four categories as follows.

334 P. Lappo and H.C.T. Andrew

Process
Goals associated with the software development process and the process practices
used.

Environment
Goals associated with the environment the process runs in. These are mainly
organisational and people oriented goals.

Tools
Goals associated with the tools used to develop the software.

Software
These are goals associated with the design and quality of the software. How the
software has been designed can have a big impact on agility and of course if the
software is full of bugs or only manual testing is performed then again agility will be
constrained.

2.4 Goal Definition

Goals are defined by the following attributes [9].
Name
Test
Benchmark
Now
Worst
Planned
Net Benefit
Planned Date
Owner
Notes

These are detailed as follows.

Name
This a short name for the goal to make it easy to remember and discuss. It is also used
for cross referencing to other goals. For example, ,,Rate Of Change“. Names are
preferred over numbers as they are easier to remember and have more meaning.
However, some people prefer to use numbers. We don’t care what convention you use
as long as it works.

Test
The goal needs to be measured in some way. This defines the test to measure the goal
and its scale. The test is the most important parts of defining a goal.

Tests should be quantitative when possible, but it is appreciated that some things
are difficult to measure, such as knowledge transfer, so qualitative assessments can be
used.

Assessing Agility 335

For example, ,,Rate Of Change“ could be measured by running a query on your
change management system to determine how many changes have been released to
production over a given period. The scale could be changes per month.

Benchmark
This is an actual measurement taken in the field. It could be data from within your
own organisation but is more likely to be a measure taken from the best organisation
in your line of business. In other words, it is the benchmark to compare yourselves
against. This field is optional as the data may not be available or you have taken the
”lean“ approach [10] which is to strive for perfection and ignore benchmarks.
However, you may find some data which is relevant to your situation.

Now
Now simply states what the current measurement is. For example, for the ,,Rate Of
Change“ goal could be 1 change released per month. This field is optional if data is
unavailable. However, we don’t recommend this because you won’t know if you are
making progress, so a rough guess is better than no data at all.

Worst
It is recognised that some goals may be difficult to achieve so this defines the lowest
expected improvement in the goal. For example, the ,,Rate Of Change“ goal could
have a worst case improvement of 2 changes per month.

Planned
This is the planned level of the goal. For example, the ,,Rate Of Change“ goal could
have a planned value of 20 changes per month.

Planned Date
The planned date defines when you expect to achieve your planned or worst case
goal.

Net Benefit
We’d rather you didn’t implement any change to your organisation unless you have
some idea of the net benefit of the goal. Where net benefit is the potential value of the
goal minus its implementation cost.

Value is a difficult thing to define and measure and even more difficult to predict.
It also dangerous as you may oversell the benefit of a goal and raise expectations too
high. Some goals may have intangible values. In this case simply list the benefits and
costs.

The cost of course is only an estimate as it is difficult to predict what the costs will
be as you may incur unexpected costs. For instance, your new environment may not
be suitable for some people and they may leave, forcing you to replace them and train
their replacements.

You may find that some goals don’t add much value or the cost of achieving the
goal is prohibitive in which case the goal should be dropped. The net benefit serves as
a means of checking whether its worth implementing this goal.

336 P. Lappo and H.C.T. Andrew

While this attribute is optional we recommend you attempt to quantify the benefits
to your organisation. If nothing else it will help you justify what you are trying to
achieve. One surprising result may be that the goal may cost virtually nothing. For
example, implementing a daily build may simply require an entry into a Unix cron
table, which, assuming you have you have the correct environment, may only take 10
minutes to implement.

For example, the ,,Rate Of Change“ goal may bring the following intangible
benefit: Ability to implement changes that previously had to be ignored because they
weren’t of a sufficiently high priority.

Owner
All goals must be owned by someone or if you prefer sponsored by someone,
preferably this person should be in the management team or it could a steering
committee. The owner is responsible for ensuring the goal is achieved but not
necessarily implementing the goal, as this may be carried out by someone else.

Notes
This is simply further notes of explanation which can include a reference to further
information that may be relevant. It is optional.

3 Agile Goals

This paper hasn’t the space available to define a set of goals for a team as goals are
dependent on business objectives and available investment so we shall just present a
few sample goals to give you an idea of how to define them for yourselves.

3.1 Example Goals

If you read the agile manifesto one of its principles is to value working software over
artifacts such as documentation. This leads us directly into the most obvious goals for
your agile team, the Frequent Delivery Of Working Software. Of course your
current process may be incapable of delivering this so you may set yourself another
goal which could be Quick Releases, i.e. the ability to integrate, build and release
your software in a timely manner.

On the environmental front you know key application knowledge is in the heads of
a two or three individuals which is preventing the rest of the team from being
productive, so you define a goal to Share Knowledge. How you do this is irrelevant
to the goal, but some means of measuring is not be.

The tools you use are of course perfect and you are perfectly happy with vi (or so
you think), so you don’t define any tool goals. On the other hand you don’t actually
get your hands dirty with code, but when you hold a review with the project
stakeholders your developers come up with their own goals, namely Refactoring
Support as they know they are steadily creating an unmaintainable mess.

When it comes to the actual software you do know you have trouble, but you are
convinced the QA testers are a bunch of slackers. Surely they didn’t mean four weeks

Assessing Agility 337

to regression test the system for such as small change? Automated Acceptance
Testing seems the only way forward.

3.2 Formalised Goals

Rather than attempt to squeeze all the goals and their attributes on a single table we’ll
just look at a couple.

Name
Test

Benchmark
Now
Worst
Planned
Planned Date
Net Benefit

Owner
Notes

Name
Test

Benchmark
Now
Worst
Planned
Planned Date
Net Benefit

Owner
Notes

Frequent Delivery Of Working Software
Record the date when software is released to pre-production on a
graph and measure the number of working days between each
release measured in frequency in days.
10
90
20
10
June 2004
Each piece of automation will reduce the manual effort in
processing the invoices and provide valuable feedback on how the
users are adapting to the software and whether the software is
meeting business needs. Reducing the delivery cycle to 10 days will
require a large investment in test automation amongst other things.
The expected net benefit is difficult to determine as it depends on
the value of the changes being introduced at each cycle. However, if
the system goes into operation earlier the company will start getting
a return on its investment sooner.
Director of IT
None.

Share Knowledge
Amount of time spent pair programming in minutes per hour pre
day.
unknown
0
30
50
June 2004
The team should be more productive as a whole as less experienced
members won’t have to waste time finding out things for
themselves. Some reduction in key personnel productivity is
expected. The actual net benefit is difficult to quantify.
Team Leader
This is difficult goal to measure and it is possible it should be
divided into sub-goals.

338 P. Lappo and H.C.T. Andrew

4 Conclusion

With a little thought it is possible to define a number of measurable goals which will
help you achieve greater agility, where of course agility is defined by your goals! Any
number of management techniques can be used to achieve your goals with value
stream mapping being particularly useful during analysis.

No longer will you have sleepless nights worrying whether you are doing all the
recommended XP practices in order to be agile (whatever they are at the time). If
your agile goals satisfy the project stakeholders then you are agile. You can of course
look around and see what kind of agility scores your competitors are achieving and
attempt to better them or you could take the lean approach [10] and simply aim to be
the best.

The point is by measuring what you are doing and setting goals for the future you
have an opportunity to achieve those goals. Without objective measurements you are
in the same state as early philosophers that conjectured about our universe. You are
guessing.

References

1.

2.

3.

4.

5.

6.

7.

8.
9.

10.

Kent Beck. Extreme Programming Explained – Embrace Change, Addison-Wesley,
(1999)
Ken Schwaber. The Scrum Development Process (OOPSLA’95 Workshop on Business
Object Design and Implementation (1995)
John Noll and Darren C. Atkinson. Comparing Extreme Programming to Traditional
Development for Student Projects: A Case Study. In Proceedings of the 4th International
Conference of Extreme Programming and Agile Processes in Software Engineering, May
2003.
Francisco Macias, Mike Holcombe, Marian Gheorghe. A Formal Experiment Comparing
Extreme Programming with Traditional Software Construction. In Proceedings of the
Fourth Mexican International Conference on Computer Science September (2003)
L. Williams, G. Succi, M. Stefanovic, M. Marchesi. A Metric Suite for Evaluating the
Effectiveness of an Agile Methodology. In Extreme Programming Perspectives. Addison
Wesley (2003)
William Krebs, Laurie Williams, Lucas Layman. IBM / NC State University XP Study
Metrics. Workshop submission to XP Agile Universe, http://sern.ucalgary.ca/eeap/wp/bk-
position-2003.html (2003)
Tim Bacon, Steering With Numbers. XDay
http://xpday3.xpday.org/slides/SteeringWithNumbers.pdf (2003)
Mike Rother and John Shook, Learning to See. Lean Enterprise Institute (1998)
Tom Gilb. Principles of Software Engineering Management. P133-158, Addison-
Wesley,(1988)
James Womack and Daniel Jones. Lean Thinking: Banish Waste and Create Wealth in
Your Corporation, Revised and Updated, Free Press (2003)

Designing the Ultimate Acceptance Testing
Framework

Sean Hanly1 and Malcolm Sparks2

1 phone: +353 (0)1 4100526, shanly@exoftware.com,www.exoftware.com
2 phone: +353 (0)87 9872004, msparks@exoftware.com,

www.exoftware.com,www.jcoverage.com

Abstract. The purpose of this workshop is to generate a prioritised
set of features and user stories for the “Ultimate Acceptance Testing
Framework”.

1 Introduction

In recent times there has been a noticeable development in the body of knowl-
edge around the concept of “ Automated Acceptance Testing” as described by
Extreme Programming. In particular frameworks have begun to evolve that ad-
dress the needs of automated acceptance-testing. However, most if not all of
these frameworks are in their infancy. The concept behind this workshop is to
draw on participants experience to identify the features of such a framework
were it to be fully mature i.e. the “Ultimate Automated Acceptance Testing
Framework”.

2 Intended Audiance

Candidates should have experience from either of two perspectives. Firstly, in-
volved in the creation of automated acceptance-testing frameworks or secondly,
users or desired users of acceptance-testing frameworks.

Benefits for Attendees

Audience participants will get a chance to see what the current state of the art
is on the automated-acceptance testing front and what direction it is taking.
In addition, participants will get a chance to share in others experience and
see what they see as the required features for an automated acceptance-testing
framework.

3 Workshop Outline

Theme

Presentation of current and desired acceptance-testing requirements with the
desired goal of generating a prioritized list of features.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 339–341, 2004.
© Springer-Verlag Berlin Heidelberg 2004

340 S. Hanly and M. Sparks

Goals

1.

2.

3.

Give an overview of the current state of the art in terms of existing frame-
works
Through an open and critical discussion discuss these and other desired
features
Generate a prioritized list of features that would make up an idealized au-
tomated acceptance testing framework

Proposed Workshop Format

Pre Workshop — Have all participants read each other’s position papers.

Part 1 — Participants will give a 5-minute overview outlining their solutions
or requirements as the case may be. Participants are encouraged to bring along
interactive demos, prototypes etc.

Part 2 — Prom this participants, through an open and critical discussion, will
generate a list of possible features.

Part 3 — Participants will then be allowed to spend an amount of virtual cash
on these features as means of generating a list of prioritized features.
Post Workshop — Publish the prioritized list as a feature request for “The
Ultimate Automated Acceptance Testing Framework”. The rational behind the
decisions will also be published.

4 Participants

The audience will be open to all attendees with an upper limit of 15 participants.
The organizers intend on soliciting participation from a number of people who
have direct experience in this area.

5 Organizers

Sean Hanly: For the last several years, I have focused on promoting software
process improvement in the European software sector through our company eX-
oftware. We specialise in XP/Agile methods and provide bespoke software solu-
tions, and Agile training and mentoring services.

Through my work, I have organised and developed the Irish and UK Agile
SIGs programmes (which typically get about 100 attendees per event and are
run quarterly). I am also an active speaker at these events and am always look-
ing for more interactive ideas for the SIGs. I am also an invited speaker to many
IT events across Ireland and the UK and Europe. Most recently I gave presen-
tations at XP Day Belgium and UK on the subject of “Creating an Automated
Acceptance Testing Framework”.

I have been instrumental in building Agile Alliance Europe, a programme
under the auspicious of the Agile Alliance. The aim is to create a network that

Designing the Ultimate Acceptance Testing Framework 341

spreads Agility throughout Europe, and also acts as a repository for learning. I
have also worked with the DSDM Consortium (UK) on its new release that brings
XP and DSDM together. I am also currently involved with University College
Dublin on a programme that brings together a public/private partnership under
the government’s Higher Education Authority, and will bring Agile thinking to
Irish software developers.

Through my work with eXoftware I have lead transitions, analysed develop-
ment environments and taught hundreds in XP. My previous 15 years of work
experience has been as a Programmer, Team Lead, Technical Architect and Prin-
cipal. I hold a Masters in Information Technology from the National University
of Ireland, Galway.

Malcolm Sparks: Malcolm’s first introduction to computer programming was
on the ZX81 home computer, in 1981. In 1988, Malcolm started Vermin Software
Design, a games label for Atari and Amiga computers. Since then, Malcolm has
worked as a consultant, programmer, systems administrator and Oracle DBA,
innovating solutions for Hoskyns, Cap Gemini, Littlewoods Stores, the Financial
Times and IONA Technologies. As an undergraduate Malcolm won the Lucas
Software Engineering Prize for an in-car navigation aid and received the Pres-
ident’s Award for Innovation in 2002 while at IONA for software packaging
technology. In 1997, Malcolm founded the Manchester Java Users Group and
has spoken at a number of Java and XP related events, including JavaOne. Mal-
colm holds a Bsc(Hons) in Computer Science from the University of Warwick,
and lives with his wife Sonya in Dublin, Ireland.

I was a co-founder of EJBHome, which produced the first publicly avail-
able implementation of the EJB 1.0 specification. More recently I have founded
jcoverage.com, and I am the principal author of the jcoverage software.

More specifically to XP, I was the team lead for IONA’s Xsume technology,
and technical lead for IONA’s software packaging team, which were both run
as XP projects. Consequently, I have had a lot of experience in installing XP
in a large organization, across multiple teams (IONA adopted XP across all its
development teams globally about two years ago).

The XP Customer Role

Steven Fraser1, Angela Martin2, David Hussman3,
Chris Matts4, Mary Poppendieck5, and Linda Rising6

1sdfraser@acm.org
2 angela@mcs.vuw.ac.nz

3david.hussman@sgfco.com
4 cjmatts@thoughtworks.com

5 mary@poppendieck.com
6 risingl@acm.org

Abstract. One of the core XP (eXtreme Programming) practices is that of the
“on-site customer”. In the words of Kent Beck (2000) in his book “eXtreme
Programming Explained” the intent is that a “real customer must sit with the
team, available to answer questions, resolve disputes, and set small-scale pri-
orities” ... “someone who will really use the system when it is in production”.
This panel brings together practitioners and researchers to discuss and offer
wisdom on the challenges and opportunities inherent in the practice.

Steven Fraser (sdfraser@acm.org) – Panel Moderator
Steven Fraser has been interested in the customer perspective in software engineering
since his doctoral research on specification validation and his concern that software
provides a solution to the “right problem” (validation) as contrasted to solving the
“problem right” (verification). Steven Fraser is an independent consultant in Santa
Clara California and serves as the Activities Co-Chair for XP2004. Previous to 2002
Fraser held a variety of diverse software technology program management roles at
Nortel Networks including: Process Architect, Senior Manager (Disruptive Technol-
ogy), Process Engineering Advisor, and Software Reuse Evangelist. In 1994 he spent
a year as a Visiting Scientist at the Software Engineering Institute (SEI) collaborating
with the Application of Software Models project on the development of team-based
domain analysis techniques. Steve is an avid operatunist and videographer.

Angela Martin (angela@mcs.vuw.ac.nz) – Challenges of the XP Customer
At the end of Arthur Miller’s “Death of a Salesman”, the speech that passes for Willy
Loman’s eulogy includes the idea that:

“For a salesman, there is no rock bottom to the life. He don’t put a bolt
to a nut, he don’t tell you the law or give you medicine. He’s a man way
out there in the blue, riding on a smile and a shoeshine.”

An XP customer is in much of the same situation as Miller’s salesman. Customers
don’t write code or refactor it - developers do that; they don’t make the key decisions

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 342–346, 2004.

© Springer-Verlag Berlin Heidelberg 2004

The XP Customer Role 343

about the project - in any large business, rather more important managers will do that;
nor do they tackle the key technical or process problems with the development - the
XP Coach does that. Rather the customer “sells” the requirements of the business to
the development team and then “sells” the products of development back to the busi-
ness. XP practices support the development team in making the technical decisions
that are their responsibility (Spike Solution, Once and Only Once, Merciless Refac-
tor-ing, Do the Simplest Thing That Could Possibly Work). XP includes very few-
practices that actually support the customer in their role - other than prescribing how
they interact with the developers. In our research we have found that while the pre-
scribed interaction appears to be achieving excellent results, it also appears to be
unsustainable, and so constitutes a great risk to XP projects, especially in long or high
pressure projects. The key contribution of our research will be to describe the essen-
tial characteristics and skills required in the customer role, and to identify the crucial
practices and values to carry out the role successfully.

Angela has over ten years of wide ranging information systems experience and has
a firm grounding in all aspects of systems integration and development. She is a PhD
Candidate at Victoria University of Wellington, New Zealand, supervised by James
Noble and Robert Biddle. Her PhD research utilises in-depth case studies of the XP
Customer Role, on a wide range of projects across Australasia, the United States and
Europe.

David Hussman (david.hussman@sgfco.com) – Customer Team Struggles
“If you can find that one person who knows the whole domain, is will-
ing to make quick decisions, and can put up with a room full of nerds,
you are likely to be successful. ” – Kent Beck

This quote from Kent Beck’s “One Team” paper is as strong today as it was when the
paper was released in 2001. Having been both customer and developer, I find the
customer team’s job often requires more courage. To make matters worse, the job
often becomes more difficult as a project’s agility needs grow or the project becomes
successful.

Of the many customer struggles, the “proxy customer syndrome” looms large at
larger organizations. Short example: the customer team cannot respond to developer
requests / questions because they are not empowered to make direction decisions and
their ability to gather information from the real business is too slow. For a few stories,
this is not a problem, but when the number of un-answerable questions grows, it is the
customer team that feels the pressure.

My hope is the agile community avoids replacing the super hero, do-all project
managers of the past with customer team superstars of the future. Instead, coaches,
scrum masters, and other cultural guardians must help customer teams build a collec-
tion of repeatable practices that fit their company’s culture while adding sanity to
their lives. Equal time spent coaching the customer team is often as important as
ensuring that the developers adhere to a set of practices. Coaches must help create
project cultures where customer teams continue to own story prioritization (defining
business value) but the entire team shares tasks which are overloading the customer
team (e.g. is the customer team is struggling with story tests, allow a tester - possibly

344 S. Fraser et al.

working with a developer - to define story tests and perform the story sign off proc-
ess). It takes a village to raise a child (or a project).

David Hussman is co-owner of SGF Software, a U.S. based company that pro-
motes agile practices and provides agile training / coaching. David has worked on
large, mission-critical systems as well as small boutique applications across various
industries for more than a decade. Motivated to help software teams succeed and
smile, David has evangelized agile practices for 4+ years. Recently, he has been
working with large companies starting to use agile practices on a variety of projects.
David has participated and presented at various agile conferences as well as contrib-
uting to the Cutter Consortium Agile Project Advisory Service and similar publica-
tions.

Chris Matts (cjmatts@thoughtworks.com) – Observations of a Business Coach
The business coach role will replace the traditional business analysis role. The busi-
ness coach focuses on learning about a business problem and then coaching the devel-
opment team in domain knowledge and the problem. The business coach coaches the
business so that they can interact with the development team in the most effective
manner. The business coach adopts a “zero documentation” approach to analysis. The
“deliverable” is a developer trained in the business domain and problem rather than
documentation. Traditional analysis tools should be used for learning rather than
documentation or communication. Projects should be set up to deliver business value.
Business value is created by improving or protecting cash flow, profit or return on
investment in alignment with the strategy of the organisation. A project should de-
velop a business value model. The business value should be broken down and refer-
enced on story cards.

Chris Matts is a Business Coach with ThoughtWorks in London where he helps
clients to develop business value models. Prior to joining ThoughtWorks, Chris lead
the Internal Business Analysis Consultancy at Dresdner Kleinwort Wasserstein where
he introduced Pair Analysis. Chris has been a business analyst and project manager
since 1995. He started out his career as a developer. Chris’s has analysis experience
in all aspects of investment banking and specializes in Equity Derivatives and Credit
Derivatives Trading Systems, and Market and Credit Risk Systems. Chris co-
presented the Customer Role session at XP Day 3 in London in December 2003.

Mary Poppendieck (mary@poppendieck.com) – A Line in the Sand?
The role of the customer in XP is cast so that it draws a line in the sand. On the one
side of the line are the developers, who aren’t expected to understand the business,
and on the other side is the customer, upon whose shoulders rests the responsibility for
understanding everything that must be done, the order which things should be done,
and the tests to determine if things were done correctly. The developers are not ex-
pected to understand the domain or question customer decisions, thus making sure that
if any wrong decisions get made, the developers won’t be at fault.

I think XP draws too much of a distinction between developers and the customer
role. XP expects developers to play the role of DBA, user interaction designer, even
tester, but developers are not supposed to take on any work of the customer role. But

The XP Customer Role 345

the customer role is a huge burden for one person, and I think it appropriate that de-
velopers feel responsibility to assist people in the customer role. In particular, I think
it inappropriate to expect customers to write tests.

In my experience, the best software results when the technical team develops a
deep understanding of the domain, rather than working through an intermediary. XP
calls for ‘customer on site,’ so that developers have access to someone playing the
customer role at all times. In my experience we have generally used the practice of
‘developer on site’ instead; the development team works at the site of the real users of
the system. They go to lunch with the people who use their software, understand
what users do for a living, and felt their pain when the system is balky. The success of
a system is determined by the value it brings to end-users and other stakeholders.
This success should be the responsibility of the entire team, not just one individual or
one role.

Mary Poppendieck a Cutter Consortium Consultant, is a seasoned leader in both
operations and new product development with more than 25 years’ of IT experience.
She has led teams implementing lean solutions ranging from enterprise supply chain
management to digital media, and built one of 3M’s first Just-in-Time lean produc-
tion systems. Mary is currently the President of Poppendieck LLC and located in
Minnesota. Her book Lean Software Development: An Agile Toolkit, which brings
lean production techniques to software development, won the Software Development
Productivity Award in 2004.

Linda Rising (risingl@acm.org) – Customers Are Important?
Is there anyone who doesn’t think customers are important? The problem with con-
centrating on one element of an agile approach – such as the role of the customer – is
that everything (ideally) is hooked to everything else. John Muir, the founder of the
Sierra Club said this profound statement! I tend to see the world as full of patterns,
and we know that you never see a pattern in isolation. It should be connected to a
collection or pattern language. Since I’ve written a pattern language for customer
interaction – I think many of those patterns (if not all) would apply in an agile devel-
opment environment, even though they were not expressly written for that setting.
Here are some of those patterns (and others that are in related pattern languages):

It’s a Relationship, Not a Sale: Develop a relationship with the customer. Focus on
this relationship, not the current transaction. Use: Customer Understanding and Trust
Account. Customer Understanding: Learn as much as possible about the customer.
Use: Effective Listening, Timely Response and Meetings Around the Meeting. Trust
Account: Every contact with the customer is a chance to Trust Account. Take advan-
tage of it. Use: Effective Listening, Timely Response and Meetings Around the
Meeting. Effective Listening: Listen to the customer with intent to understand. Use
Personal Integrity, Aware of Boundaries, Customer Relief, and Good Manners.
Beautiful Termination with Satisfaction: When a relationship built on trust has been
established with a customer, you can end agreements without rancor. Timely Re-
sponse: When you receive a request from the customer let the customer know you
received it and how you plan to resolve it. Meetings Around the Meeting: Arrive at
meetings early enough to meet other attendees and spend time socializing. After the

346 S. Fraser et al.

meeting, allow a little time to talk to others with common business interests. Personal
Integrity: Don’t withhold important information from the customer but stay Aware of
Boundaries. Customer Relief: Don’t argue. Try to understand how the customer’s
business is impacted. Don’t try to appease the customer by making promises you can’t
keep. Be Aware of Boundaries and use Good Manners. Aware of Boundaries: Treat
every conversation with the customer as part of a negotiation. Don’t discuss commer-
cial considerations, e.g., price, cost, schedule, and content that aren’t part of your
responsibilities. Use Good Manners. Good Manners: Be polite. Dress appropriately to
meet customer expectations. Show respect for everyone, including competitors. Be
careful in interactions with others in front of the customer.

Linda Rising has a Ph.D. from Arizona State University in the area of object-based
design metrics. Her background includes university teaching experience as well as
work in industry in the areas of telecommunications, avionics, and strategic weapons
systems. She has been working with object technologies since 1983. She is the editor
of “A Patterns Handbook, A Pattern Almanac 2000,” and “Design Patterns in Com-
munications Software”. She has a number of publications including: “The Scrum
Software Development Process for Small Teams,” IEEE Software, July-August 2001,
“Agile Meetings,” STQE, July/August 2002, and “The Role of Product Champion,”
STQE, March 2003. These and other articles are available on her web site:
www.lindarising.org. She is a regular contributor to the DDC-I On-line Newsletter:
ddci.com/news_latest_news_archive.shtml. She has presented a number of tutorials
and workshops at JAOO, OOPSLA, and other conferences. She is currently co-
authoring a book with Mary Lynns: “Fear Less: and Other Patterns for Introducing
New Ideas into Organizations,” scheduled for publication in 2004.

Fishbowl: XP Tools

Joshua Kerievsky1 and Steven Fraser2

1 joshua@industriallogic.com
2 sdfraser@acm.org

Abstract. This session is an opportunity to learn more about the tools that
enable teams to be extreme. Using a “fishbowl format”, participants will
discuss and debate the pros and cons of such tools as Eclipse, IntelliJ and
Visual Studio, NUnit and CSUnit, Continuous Integration and Cruise Control,
FIT and Fitnesse, and more. If you’re looking for practical advice on tools for
XP teams – their selection, usage and whatever improvements are desired --
you’ll enjoy this session.

Joshua Kerievsky (joshua@industriallogic.com) – Fishbowl Moderator
Joshua Kerievsky has been programming professionally since 1987 and is the founder
of Industrial Logic, a company specializing in Extreme Programming (XP). Since
1999, Joshua has been coaching and programming on small, large and distributed XP
projects and teaching XP to people throughout the world. He is the author of numer-
ous XP and patterns-based articles, simulations and games, including the forthcoming
book, “Refactoring to Patterns.”

Steven Fraser (sdfraser@acm.org) – Fishbowl Impresario
Steven Fraser has been involved in the development and deployment of software tools
and processes for more than 15 years. Steven is an independent consultant in Santa
Clara California. Previous to 2002 Steven held a variety of diverse software technol-
ogy program management roles at Nortel Networks including: Process Architect,
Senior Manager (Disruptive Technology), Process Engineering Advisor, and Soft-
ware Reuse Evangelist. In 1994 he spent a year as a Visiting Scientist at the Software
Engineering Institute (SEI) collaborating with the Application of Software Models
project on the development of team-based domain analysis techniques. Steve is an
avid operatunist and videographer.

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, p. 347, 2004.

© Springer-Verlag Berlin Heidelberg 2004

The XP Game

The XP Game is a playful way to understand XP Planning.

Olivier Lafontan1, Ivan Moore2, and Vera Peeters3

1 Egg plc, Pride Park, Riverside Road,
Derby DE99 3GG, England

Olivier.Lafontan@egg.com
2 ThoughtWorks, Peek House, 20 Eastcheap,

London EC3M 1EB, England
ivan@thoughtworks.com

3 Tryx bvba, Colomastraat 28, B-2800 Mechelen, Belgium
vera.peeters@tryx.com

Abstract. The XP Game is a playful way to familiarize the players with some
of the more difficult concepts of the XP Planning Game, like velocity, story es-
timation, yesterday’s weather and the cycle of life. Anyone can participate. The
goal is to make development and business people work together, they both play
both roles. It’s especially useful when a company starts adopting XP.

1 Audience and Benefits of Attending

Anyone can participate. Developers and customers benefit from experiencing both
sides of the planning game. The XP Game explains velocity, in particular, showing
how velocity is not the same as business value. This tutorial demonstrates how you
can quickly learn to make predictable plans.

2 Content Outline

In real life Planning Game, development and business people are sitting on opposite
sides of the table. Both participate, but in different roles. The XP Game makes the
players switch between developer and customer roles, so that they understand each
other’s behaviour very well.

Some of the concepts in the Planning Game are difficult to grasp, for developers and
for customers. What exactly is the meaning and background of stories, iterations,
consequent estimations, velocity, yesterday’s weather, planning game, feedback? The
XP Game is a simulation of the XP Planning Game, which includes the following

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 348–350, 2004.

© Springer-Verlag Berlin Heidelberg 2004

The XP Game 349

phases: story estimation, story prioritization, planning, implementation and feedback.
No knowledge of coding is required.

This XP Game is a practical way to demonstrate how the rules of the XP Planning
Game make up an environment in which it becomes possible to make predictable
plans. After all, the easiest way to get a feeling for the way it works is to experience
it. This tutorial will differ slightly from the XP Game available from
http://www.xp.be/xpgame/download/ with the inclusion of innovations from its use at
Egg.

3 Presenter Resumes

Olivier Lafontan has spent the last six years working in programme/project manage-
ment, specializing on Customer Relationship Management business aspects. He has
alternated roles from both “Technology” and “Business” sides of the fence in compa-
nies such as BT, Lexmark, Unipart and Freesbee. Olivier currently works for Egg plc,
and has been using the XP Game as a tool to aid the Agile transformation Egg has
undertaken.

Ivan Moore works for ThoughtWorks in England, helping people deliver software
using Agile methods. He has a PhD in “Automatic Restructuring of Object-Oriented
Programs”, and has (co)authored papers published at OOPSLA, TOOLS, XP,
XPUniverse conferences, reviewed papers for OOPSLA and TOPLAS and co-edited
a book on Prototype-Based Object-Oriented Programming. He is known for two open
source projects, Jester (a mutation testing tool for JUnit tests) and MockMaker (for
automatically creating Mock Objects).

Vera Peeters is an independent consultant. She runs her own company TRYX. She
has more than 13 years experience in developing software systems, using different
OO languages, such as C++ and Java, and this in high-technological environments.
She has been exploring the eXtreme Programming practices for several years, and she
currently spends most of her time coaching companies in transitioning their way of
working. She focuses on the change from structural to OO development, on OO de-
sign, and on process changes (towards agility). Vera Peeters has presented workshops
at XP2001, XPUniverse, OT2002 and OT2003. She developed the XP Game togelher
with Pascal Van Cauwenberghe, and is the co-organizer of the Belgian XP User
Group Meetings. She’s in the organizing commitee of the Benelux XPDay and the
Javapolis conferences.

350 O. Lafontan, I. Moore, and V. Peeters

4 History of Tutorial

This tutorial has been presented at XP2001 in Sardinia, XPUniverse 2001 in North
Carolina and XPDay03 in London.

5 Examples of Supporting Material

The XP Game materials are available from http://www.xp.be/xpgame/download/

XP and Organizational Change: Lessons from the Field

Diana Larsen1, David Hussman2, Mary Lynn Manns3, David Putman4, and
Linda Rising5

1diana@industriallogic.com
2david.hussman@supergofaster.com

3manns@bulldog.unca.edu
4dputman@exoftware.com

rising1@acm.com

Abstract. As interest in XP continues to spread, the organizational challenges
of adopting a new development method become more apparent. Some say that
the implementation of XP values, principles and practices alone is enough to
successfully navigate a change to XP. Others say that an understanding of
change management concepts from the field of organizational development is
needed. Views vary on whether to employ a change model, and if so, which
change models are best. In this activity panel we use an interactive storytelling
and analysis approach as we pause to consider the implications of XP and or-
ganizational change, through real-life tales from this time in the history of XP’s
migration into the mainstream of software development.

In preparation for the interactive session at the conference, instead of asking for
opinions and positions, I asked four panel participant to send me a story in response
to this request: „Thinking back over all your experiences with introducing XP and
other new ideas/approaches to organizations, whether as a consultant to the change or
a participant in it, what stands out to you as the peak or highlight moment? Why do
you think this particular moment is significant or stands out in your memory? What
conditions were present in the organization? What did other individuals do to contrib-
ute to making it a highlight? What patterns, models or techniques added value, if any?
What is the most important idea or skill you have taken away from that experience?
What about you, as a participant or consultant in the change, added the most value to
the situation? What about the experience have you carried forward into other change
efforts?“

A synthesis of their stories forms the basis of the interactive storytelling and analy-
sis during the activity session. Excerpts from the stories follow.

David Hussman (david.hussman@supergofaster.com)

The Big Company had a history of software project that were large and costly. One
day, one of the IT leaders started an initiative to see what could be accomplished with
smaller teams. A visionary director decided to fund the hiring of an agile coach, who
was to work with two small for a short time. As the director witnessed the success and

J. Eckstein and H. Baumeister (Eds.): XP 2004, LNCS 3092, pp. 351–355, 2004.

© Springer-Verlag Berlin Heidelberg 2004

5

352 D. Larsen et al.

happiness of the small teams, she requested that the coach help with a much larger
and higher visibility project that had been working for one year and had not yet pro-
duced any working code. The project was split across companies, countries, cultures,
and methodologies, and the political landscape was rough. If this was not enough, the
project schedule was so aggressive that several industry leaders told the director that
the project could not succeed.

The coach took in his bag of tricks, with the notion that iterative development
would help imbue quality as well as provide measurable results in short windows.
The development team quickly embraced many agile practices. A second coach was
brought in, and the coaching effort was split between development and customer
coaching. A group of leaders was to meet once per week to discuss progress and
issues, as well as help guide each of the various project teams. Although initial itera-
tions produced working code, happily reviewed by the sponsors, the project culture
was not well. Political struggles were pulling the team in many directions and forcing
many member changes. The coaches’ ability to help steer was waning, frustrating the
coaches, and agile practices gave way to old habits. The testing team was not fully
engaged, and the customer team was struggling to overcome the politics so they could
gather enough information to write meaningful and cohesive stories

The high level of project’s visibility placed the project and the coaches in commu-
nication with a host of leaders from other teams, often defending attacks to the proc-
ess which would crush the existing development practices at the company. Leaders
outside the development space(s) needed to understand the project, but they could not
speak the language of the project. As a key change agent, the coach became the
translator. The unspoken question and concern was simple: ,,will you be done on time
and with what level of quality?“ Using metrics and coaching notes gathered during
the iterations, the coach explained the issues to the director during a review of the
project charter. The biggest concern was that the many forces acting on the team /
project had so disrupted the ability to create a healthy project culture, that there was
not team chemistry. The coach suggested trying to rally the team (and many of its
proponents and critics) around several simple measures of project success, one of
these being project health.

As the project continues, there is not yet an end to this story....

David Hussman - David is co-owner of SGF Software, a U.S. based company that
promotes and practices agile development. Motivated to see IT folks succeed and
smile, He has evangelized agile practices as a developer, coach, customer, and man-
ager for 4 years. He has participated and presented at agile conferences as well as
contributing to the Cutter Consortium Agile Project Advisory Service and similar
publications.

Mary Lynn Manns (manns@bulldog.unca.edu)
I was hired [Dedicated Champion]** to build a patterns repository that captured best
practice in the organization’s software development efforts. At the same time, em-
ployees needed to be informed about patterns and how they might use them in their

XP and Organizational Change: Lessons from the Field 353

projects. I began by seeking advice [Ask for Help] from friends in the larger patterns
community who had some experience introducing patterns into other organizations
[Shoulder to Cry On]. I also began meeting with managers in the organization. Some
managers provided names of people in their groups that could help with the effort
[Respected Techie, Connectors]. However, most managers simply listened politely to
what I had to say. I began to realize that, although it was important to inform these
managers about patterns, a top-down approach was not what would light the fire.

Therefore, I began concentrating on the developers, talking with anyone who would
listen about how patterns could be useful in their work [Personal Touch] Since I was
new to the organization, this was not an easy task because I had to first learn what the
developers did. I had to tell them about my work without interfering with theirs.
When someone said, „Oh, you’re the person who is going to make us use patterns,“ I
realized I had to encourage them to appreciate patterns rather than be suspicious of
them—and of me. After all, I was the ,,new kid on the block.“ I knew it was important
to get them to like me [Evangelist]. I looked for opportunities to talk with people
[Personal Touch]. This was usually during lunch or when I suggested a coffee and
bagel break [Do Food]. In addition, I attended project meetings to hear what the
teams were doing, and often brought patterns materials with me [Plant the Seeds].

After these meetings, some developers would come up to learn more about patterns
[Innovators]. I asked them to help me discover what others were doing, how they
could benefit from patterns, and how I could spread the word throughout the organi-
zation [Ask for Help]. The first significant pattern event for the organization hap-
pened during a monthly ,,tech talk“ scheduled on the topic of patterns [Piggyback]. I
gave an overview of patterns and cited references where they could learn more [Just
Enough]. One of the developers described his use of patterns in a recent project
[Hometown Story]. Approximately thirty employees attended – more than any other
previous ,,tech talk.“ This made me feel that there was interest in patterns and also
helped me identify those who were open to learning more [Innovators, Early Adopt-
ers]....

Dr. Manns is a member of the Department of Management and Accountancy at the
University of North Carolina at Ashville where she teaches courses in management
information systems and management science. Prior to joining the Department of
Management and Accountancy, she was in the Computer Science Department at
UNCA for 18 years. She has taught courses in various programming languages, re-
search methods, analysis and design methodologies, microcomputer applications,
management issues and object-oriented technology. Her areas of research are: intro-
ducing new ideas into organizations, patterns and „pattern mining“, and project retro-
spectives. With Linda Rising, her co-author, Dr. Manns has written: Introducing
Patterns into Organizations, schedule for publication, Spring 2004. ** Pattern names
enclosed in [] can be found at: http://www.cs.unca.edu/~manns/intropatterns.html

354 D. Larsen et al.

David Putman (dputman@exoftware.com)
I was asked to call on the development director of a multinational telecommunica-
tions company. ,,I’d like to discuss our development process with you“, he said.
,,We’ve never had a project that succeeded and I think it’s about time we did some-
thing about it.“

So it was that a few weeks later I sat in his office with a colleague explaining to him
and his senior staff how agile processes, in particular XP, could help alleviate his
situation. There were nods of appreciation and general agreement from around the
room apart from one unhappy looking individual in the corner. ,,You know, you con-
sultants have always got something new to sell“ said the Head of Programme Office,
,,a few years back it was OO and before that it was something else. Next year it will
be something else again. None of it has ever made any difference to us and I seriously
doubt if anything you can offer will make any difference either.“ Aggressive words
from an angry and physically intimidating person. The meeting deteriorated fairly
badly after that and there was little we could do to get it back on track. We left feeling
fairly despondent.

We persisted, though, and later came back to the organisation and did some semi-
nars with their developers, giving them a basic introduction to the XP practices, be-
fore eventually being engaged to run a project for them using XP. I should say though
that our friend, the Head of Programme Office, had especially selected this project for
us. The project manager himself told us that, although it was one of the highest prior-
ity projects they had, it had evaluated to have a less than 3% chance of success. He
had drawn the short straw of managing it because he was on secondment from a dif-
ferent branch of the company. It was a hot potato nobody wanted to handle.

The details of the project are fairly immaterial but, needless to say, we realised that
we would easily hit the target after the first two (two-week) iterations. Five iterations
later we were done but it was the events after we first realised that we would make it
that were the highlight for me. The Head of Programme Office came to me and told
me that he was so pleased that we were able to make the project work and congratu-
lated me on a job well done. Before we were anywhere near finished! He then sur-
prised me even further by asking if I could supply him with some overheads from my
library, as he wanted to do some presentations on the work we were doing to some of
the customers. Later, he attended a two-day XP Customer training workshop I ran and
was one of the most pro-XP people you could hope to have. We used the experiences
gained on that first project as a case study for the rest of the programme office who
received it enthusiastically....

David Putman’s role as a Senior Mentor for the Irish training and mentoring com-
pany, eXoftware, takes him to many software development organisations and he has
acted as an advisor on software development to companies in three continents. His
work continues to give him interesting and practical examples of all kinds of man-
agement and software development issues. He currently writes the “Models and
Methodologies” column for “Application Development Advisor” magazine and has
had articles published in other publications including the Cutter IT Journal. His main

XP and Organizational Change: Lessons from the Field 355

interests are learning organisations, the management of software development proj-
ects and how to make work satisfying to all those involved.

Linda Rising (rising1@acm.com)
I was very enthusiastic about patterns after having attended OOPSLA ’94. I was
talking to everyone in my company about them. I gave a couple of Brown Bags and
passed out copies of articles about patterns to interested persons. Then after one
meeting, a guy in my group said, „Patterns are a good idea but no one knows you.
You have no credibility since you’ve only been with the company a few months. Why
don’t you talk to Randy or Jeff?“ My first reaction was, ,,How could Randy or Jeff
improve my credibility? They don’t know me and they don’t know anything about
patterns.“ But, I stopped by their offices and gave them my ,,elevator speech.“ I
loaned first Randy, then Jeff, my copy of the Design Patterns text and I personally
invited them to the next Brown Bag. I was amazed to see how attendance increased at
the next meeting. I realized that patterns (or whatever) is not about me (or the change
agent). It’s about the new idea. If you’re going to reach others, you need help and you
need help from some special people. In this case, people who can lend credibility to
the idea...

Linda says: I can help your organization get going with patterns. I also do project
retrospectives. My favorite implementation of this important process is to combine it
with patterns writing to capture all those valuable lessons learned. I also do road
shows with Mary Lynn Manns, another patterns expert and retrospectives fan. Mary
Lynn and I have written: Introducing Patterns into Organizations. I have a Ph.D.
from Arizona State University in the area of object-based design metrics. My back-
ground includes university teaching experience as well as work in industry in the
areas of telecommunications, avionics, and strategic weapons systems. I have been
working with object technologies since 1983. I began my interest in patterns while I
was working at AG Communication Systems, where I spent five happy and produc-
tive years. I have presented a number of tutorials and workshops at OOPSLA and
other conferences.

Diana Larsen (diana@industriallogic.com) – Panel Moderator
Diana Larsen is a senior organizational development and change management con-
sultant. Identified as a „benchmark“ consultant by clients and an exceptional facilita-
tor by colleagues, Diana partners with leaders of software development and other
technical groups to strengthen their ability to create and maintain company culture
and performance. She facilitates processes that support and sustain change initiatives,
attain effective team performance and retain organizational learning. As a certified
Scrum master and specialist in the human side of software development, Diana serves
as a coach, consultant and facilitator to directors, program and project managers,
development teams and others. She also has special expertise in using Appreciative
Inquiry approaches, Open Space Technology and other large group processes, as well
as in leading teams through Project Chartering and Retrospectives. A frequent
speaker at software industry conferences, Diana also authors articles on Agile /XP
management, team development and organizational change.

This page intentionally left blank

Author Index

Abrahamsson, Pekka 184
Ambu, Walter 266
Andersson, Johan 1
Andrea, Jennitta 20, 29
Andrew, Henry C.T. 331
Angelis, Lefteris 227
Aveling, Ben 94

Babri, Michel 262
Bache, Geoff 1
Bakkelund, Daniel 130
Bass, Julian 231
Biddle, Robert 51
Bleris, Georgios L. 227
Boake, Andrew 250
Bossavit, Laurent 323
Bunse, Christian 284

Chan, Keith C.C. 219
Conboy, Kieran 316

Dall’Agnol, Michela 223
Dermot Doran, Hans 215
Dittrich, Yvonne 175
Dörr, Jörg 284
Dubinsky, Yael 157
Dwolatzky, Barry 319

Favaro, John 77
Feldmann, Raimund L. 284
Fraser, Steven 342, 347
Fukazawa, Yoshiaki 282

Gälli, Markus 317
Gaillot, Emmanuel 323
Gittins, Robert 231

Hanly, Sean 339
Hansson, Christina 175
Hazzan, Orit 157, 303
Heiberg, Sven 246
Holcombe, Mike 274
Hope, Sian 231
Hussman, David 325, 342,351

Ibba, Alwin 254
Ipate, Florentin 274

Jepsen, Ole 328

Kerievsky, Joshua 321,347
Koch, Stefan 85
Kölling, Michael 270
Kolehmainen, Kari 184
Kourie, Derrick G. 250
Kvam, Kristoffer 130
Kyllönen, Pekka 184

Lafontan, Olivier 348
Lappo, Peter 331
Larsen, Diana 351
Lewitz, Olaf 278
Lie, Rodin 130
Link, Johannes 294
Lippert, Martin 113
Löthman, Jani 184
Lokpo, Ibrahim 262
Lui, Kim Man 219

Makalsky, David 104
Malpohl, Guido 294
Mannaro, Katiuscia 166, 266
Manns, Mary Lynn 210, 351
Marchesi, Michele 166
Martin, Angela 51, 318, 342
Matts, Chris 342
Melis, Marco 166, 266
Mnkandla, Ernest 319
Moore, Ivan 348
Müller, Matthias M. 294
Müller, Roger A. 312
Mugridge, Rick 11

Noble, James 51

Ostroff, Jonathan S. 104

Padiou, Gérard 262
Paige, Richard F. 104
Patterson, Andrew 270
Peeters, Vera 348
Pieterse, Vreda 250

211

358 Author Index

Pinna, Sandro 242, 266
Pols, Andy 123
Poole, Charles J. 60
Poppendieck, Mary 342
Putman, David 325,351
Puus, Uuno 246

Randall, Dave 175
Reeves, Michael 38
Rising, Linda 210, 342, 351
Roberts, Mike 194
Robinson, Hugh 139
Rogers, R. Owen 68
Roock, Stefan 202

Sakai, Yuhki 282
Salmijärvi, Sanna 184
Salo, Outi 184
Salumaa, Priit 246
Sand, Roland 294
Schümmer, Till 148

Seeba, Asko 246
Serra, Nicola 242
Sfetsos, Panagiotis 227
Sharp, Helen 139
Sillitti, Alberto 223
Slagter, Robert 148
Sparks, Malcolm 339
Stamelos, Ioannis 227
Stevenson, Chris 123
Succi, Giancarlo 223

Tomayko, Jim 303

Walter, Bartosz 211
Washizaki, Hironori 282
Weber, Barbara 258
Wenner, Robert 237
Wild, Werner 258
Wolf, Heiming 202

Zhu, Jihan 38

Lecture Notes in Computer Science

For information about Vols. 1–2976

please contact your bookseller or Springer-Verlag

Vol. 3092: J. Eckstein, H. Baumeister (Eds.), Extreme Pro-
gramming and Agile Processes in Software Engineering.
XVI, 358 pages. 2004.

Vol. 3083: W. Emmerich, A.L. Wolf (Eds.), Component
Deployment. X, 249 pages. 2004.

Vol. 3076: D. Buell (Ed.), Algorithmic Number Theory.
XI, 451 pages. 2004.

Vol. 3074: B. Kuijpers, P. Revesz (Eds.), Constraint
Databases and Applications. XII, 181 pages. 2004.

Vol. 3066: S. Tsumoto, J. Komorowski, J. W.
Grzymala-Busse (Eds.), Rough Sets and Current Trends
in Computing. XX, 853 pages. 2004. (Subseries LNAI).

Vol. 3065: A. Lomuscio, D. Nute (Eds.), Deontic Logic.
X, 275 pages. 2004. (Subseries LNAI).

Vol. 3064: D. Bienstock, G. Nemhauser (Eds.), Integer
Programming and Combinatorial Optimization. XI, 445
pages. 2004.

Vol. 3063: A. Llamosí, A. Strohmeier (Eds.), Reliable
Software Technologies - Ada-Europe 2004. XIII, 333
pages. 2004.

Vol. 3062: J.L. Pfaltz, M. Nagl, B. Böhlen(Eds.), Applica-
tions of Graph Transformations with Industrial Relevance.
XV, 500 pages. 2004.

Vol. 3060: A.Y. Tawfik, S.D. Goodwin (Eds.), Advances in
Artificial Intelligence. XIII, 582 pages. 2004. (Subseries
LNAI).

Vol. 3059: C.C. Ribeiro, S.L. Martins (Eds.), Experimental
and Efficient Algorithms. X, 586 pages. 2004.

Vol. 3058: N. Sebe, M.S. Lew, T.S. Huang (Eds.), Com-
puter Vision in Human-Computer Interaction. X, 233
pages. 2004.

Vol. 3056: H. Dai, R. Srikant, C. Zhang (Eds.), Advances in
Knowledge Discovery and Data Mining. XIX, 713 pages.
2004. (Subseries LNAI).

Vol. 3054: I. Crnkovic, J.A. Stafford, H.W. Schmidt, K.
Wallnau (Eds.), Component-Based Software Engineering.
XI, 311 pages. 2004.

Vol. 3053: C. Bussler, J. Davies, D. Fensel, R. Studer
(Eds.), The Semantic Web: Research and Applications.
XIII, 490 pages. 2004.

Vol. 3052: W. Zimmermann, B. Thalheim (Eds.), Abstract
State Machines 2004. Advances in Theory and Practice.
XII, 235 pages. 2004.

Vol. 3051: R. Berghammer, B. Möller, G. Struth (Eds.),
Relational and Kleene-Algebraic Methods in Computer
Science. X, 279 pages. 2004.

Vol. 3047: F. Oquendo, B. Warboys, R. Morrison (Eds.),
Software Architecture. X, 279 pages. 2004.

Vol. 3046: A. Laganà, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications - ICCSA 2004. LIII, 1016 pages. 2004.

Vol. 3045: A. Laganà, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications – ICCSA 2004. LIII, 1040 pages. 2004.

Vol. 3044: A. Laganà, M.L. Gavrilova, V. Kumar, Y. Mun,
C.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications – ICCSA 2004. LIII, 1140 pages. 2004.

Vol. 3043: A. Laganà, M.L. Gavrilova, V. Kumar, Y. Mun,
C.J.K. Tan, O. Gervasi (Eds.), Computational Science and
Its Applications – ICCSA 2004. LIII, 1180 pages. 2004.

Vol. 3042: N. Mitrou, K. Kontovasilis, G.N. Rouskas, I.
Iliadis, L. Merakos (Eds.), NETWORKING 2004, Net-
working Technologies, Services, and Protocols; Perfor-
mance of Computer and Communication Networks; Mo-
bile and Wireless Communications. XXXIII, 1519 pages.
2004,

Vol. 3039: M. Bubak, G.D.v. Albada, P.M. Sloot, J. Don-
garra (Eds.), Computational Science - 2004. LXVI, 1271
pages. 2004.

Vol. 3038: M. Bubak, G.D.v. Albada, P.M. Sloot, J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
1311 pages. 2004.

Vol. 3037: M. Bubak, G.D.v. Albada, P.M. Sloot, J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
745 pages. 2004.

Vol. 3036: M. Bubak, G.D.v. Albada, P.M. Sloot, J. Don-
garra (Eds.), Computational Science - ICCS 2004. LXVI,
713 pages. 2004.

Vol. 3035: M.A. Wimmer (Ed.), Knowledge Management
in Electronic Government. XII, 326 pages. 2004. (Sub-
series LNAI).

Vol. 3034: J. Favela, E. Menasalvas, E. Chávez (Eds.), Ad-
vances in Web Intelligence. XIII, 227 pages. 2004. (Sub-
series LNAI).

Vol. 3033: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.),
Grid and Cooperative Computing. XXXVIII, 1076 pages.
2004.

Vol. 3032: M. Li, X.-H. Sun, Q. Deng, J. Ni (Eds.), Grid
and Cooperative Computing. XXXVII, 1112 pages. 2004.

Vol. 3031: A. Butz, A. Krüger, P. Olivier (Eds.), Smart
Graphics. X, 165 pages. 2004.

Vol. 3030: P. Giorgini, B. Henderson-Sellers, M. Winikoff
(Eds.), Agent-Oriented Information Systems. XIV, 207
pages. 2004. (Subseries LNAI).

Vol. 3029: B. Orchard, C. Yang, M. Ali (Eds.), Innovations
in Applied Artificial Intelligence. XXI, 1272 pages. 2004.
(Subseries LNAI).

Vol. 3028: D. Neuenschwander, Probabilistic and Statis-
tical Methods in Cryptology. X, 158 pages. 2004.

Vol. 3027: C. Cachin, J. Camenisch (Eds.), Advances in
Cryptology - EUROCRYPT 2004. XI, 628 pages. 2004.

Vol. 3026: C. Ramamoorthy, R. Lee, K.W. Lee (Eds.),
Software Engineering Research and Applications. XV,
377 pages. 2004.

Vol. 3025: G. A. Vouros, T. Panayiotopoulos (Eds.), Meth-
ods and Applications of Artificial Intelligence. XV, 546
pages. 2004. (Subseries LNAI).

Vol. 3024: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Vol. 3023: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 611 pages. 2004.

Vol. 3022: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 621 pages. 2004.

Vol. 3021: T. Pajdla, J. Matas (Eds.), Computer Vision -
ECCV 2004. XXVIII, 633 pages. 2004.

Vol. 3019: R. Wyrzykowski, J. Dongarra, M. Paprzycki, J.
Wasniewski (Eds.), Parallel Processing and Applied Math-
ematics. XIX, 1174 pages. 2004.

Vol. 3016: C. Lengauer, D. Batory, C. Consel, M. Odersky
(Eds.), Domain-Specific Program Generation. XII, 325
pages. 2004.

Vol. 3015: C. Barakat, I. Pratt (Eds.), Passive and Active
Network Measurement. XI, 300 pages. 2004.

Vol. 3014: F. van der Linden (Ed.), Software Product-
Family Engineering. IX, 486 pages. 2004.

Vol. 3012: K. Kurumatani, S.-H. Chen, A. Ohuchi (Eds.),
Multi-Agnets for Mass User Support. X, 217 pages. 2004.
(Subseries LNAI).

Vol. 3011: J.-C. Régin, M. Rueher (Eds.), Integration of AI
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. XI, 415 pages. 2004.

Vol. 3010: K.R. Apt, F. Fages, F. Rossi, P. Szeredi, J.
Váncza(Eds.), Recent Advances in Constraints. VIII, 285
pages. 2004. (Subseries LNAI).

Vol. 3009: F. Bomarius, H. Iida (Eds.), Product Focused
Software Process Improvement. XIV, 584 pages. 2004.

Vol. 3008: S. Heuel, Uncertain Projective Geometry.
XVII, 205 pages. 2004.

Vol. 3007: J.X. Yu, X. Lin, H. Lu, Y. Zhang (Eds.), Ad-
vanced Web Technologies and Applications. XXII, 936
pages. 2004.

Vol. 3006: M. Matsui, R. Zuccherato (Eds.), Selected Ar-
eas in Cryptography. XI, 361 pages. 2004.

Vol. 3005: G.R. Raidl, S. Cagnoni, J. Branke, D.W. Corne,
R. Drechsler, Y. Jin, C.G. Johnson, P. Machado, E. Mar-
chiori, F. Rothlauf, G.D. Smith, G. Squillero (Eds.), Ap-
plications of Evolutionary Computing. XVII, 562 pages.
2004.

Vol. 3004: J. Gottlieb, G.R. Raidl (Eds.), Evolution-
ary Computation in Combinatorial Optimization. X, 241
pages. 2004.

Vol. 3003: M. Keijzer, U.-M. O’Reilly, S.M. Lucas, E.
Costa, T. Soule (Eds.), Genetic Programming. XI, 410
pages. 2004.

Vol. 3002: D.L. Hicks (Ed.), Metainformatics. X, 213
pages. 2004.

Vol. 3001: A. Ferscha, F. Mattern (Eds.), Pervasive Com-
puting. XVII, 358 pages. 2004.

Vol. 2999: E.A. Boiten, J. Derrick, G. Smith (Eds.), Inte-
grated Formal Methods. XI, 541 pages. 2004.

Vol. 2998: Y. Kameyama, P.J. Stuckey (Eds.), Functional
and Logic Programming. X, 307 pages. 2004.

Vol. 2997: S. McDonald, J. Tait (Eds.), Advances in Infor-
mation Retrieval. XIII, 427 pages. 2004.

Vol. 2996: V. Diekert, M. Habib (Eds.), STACS 2004. XVI,
658 pages. 2004.

Vol. 2995: C. Jensen, S. Poslad, T. Dimitrakos (Eds.), Trust
Management. XIII, 377 pages. 2004.

Vol. 2994: E. Rahm (Ed.), Data Integration in the Life
Sciences. X, 221 pages. 2004. (Subseries LNBI).

Vol. 2993: R. Alur, G.J. Pappas (Eds.), Hybrid Systems:
Computation and Control. XII, 674 pages. 2004.

Vol. 2992: E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Böhm, E. Ferrari
(Eds.), Advances in Database Technology - EDBT 2004.
XVIII, 877 pages. 2004.

Vol. 2991: R. Alt, A. Frommer, R.B. Kearfott, W. Luther
(Eds.), Numerical Software with Result Verification. X,
315 pages. 2004.

Vol. 2990: J. Leite, A. Omicini, L. Sterling, P. Torroni
(Eds.), Declarative Agent Languages and Techniques. XII,
281 pages. 2004. (Subseries LNAI).

Vol. 2989: S. Graf, L. Mounier (Eds.), Model Checking
Software. X, 309 pages. 2004.

Vol. 2988: K. Jensen, A. Podelski (Eds.), Tools and Algo-
rithms for the Construction and Analysis of Systems. XIV,
608 pages. 2004.

Vol. 2987: I. Walukiewicz (Ed.), Foundations of Software
Science and Computation Structures. XIII, 529 pages.
2004.

Vol. 2986: D. Schmidt (Ed.), Programming Languages and
Systems. XII, 417 pages. 2004,

Vol. 2985: E. Duesterwald (Ed.), Compiler Construction.
X, 313 pages. 2004.

Vol. 2984: M. Wermelinger, T. Margaria-Steffen (Eds.),
Fundamental Approaches to Software Engineering. XII,
389 pages. 2004.

Vol. 2983: S. Istrail, M.S. Waterman, A. Clark (Eds.),
Computational Methods for SNPs and Haplotype Infer-
ence. IX, 153 pages. 2004. (Subseries LNBI).

Vol. 2982: N. Wakamiya, M. Solarski, J. Sterbenz (Eds.),
Active Networks. XI, 308 pages. 2004.

Vol. 2981: C. Müller-Schloer, T. Ungerer, B.Bauer (Eds.),
Organic and Pervasive Computing – ARCS 2004. XI, 339
pages. 2004.

Vol. 2980: A. Blackwell, K. Marriott, A. Shimojima (Eds.),
Diagrammatic Representation and Inference. XV, 448
pages. 2004. (Subseries LNAI).

Vol. 2979: I. Stoica, Stateless Core: A Scalable Approach
for Quality of Service in the Internet. XVI, 219 pages.
2004.

Vol. 2978: R. Groz, R.M. Hierons (Eds.), Testing of Com-
municating Systems. XII, 225 pages. 2004.

Vol. 2977: G. Di Marzo Serugendo, A. Karageorgos, O.F.
Rana, F. Zambonelli (Eds.), Engineering Self-Organising
Systems. X, 299 pages. 2004. (Subseries LNAI).

	Table of Contents
	Acceptance Testing
	The Video Store Revisited Yet Again: Adventures in GUI Acceptance Testing
	Test Driving Custom Fit Fixtures
	Putting a Motor on the Canoo WebTest Acceptance Testing Framework
	Generative Acceptance Testing for Difficult-to-Test Software

	Scalability Issues
	Moomba – A Collaborative Environment for Supporting Distributed Extreme Programming in Global Software Development
	When XP Met Outsourcing
	Distributed Product Development Using Extreme Programming
	Scaling Continuous Integration

	New Insights
	Efficient Markets, Efficient Projects, and Predicting the Future
	Agile Principles and Open Source Software Development: A Theoretical and Empirical Discussion
	XP Lite Considered Harmful?
	Agile Specification-Driven Development

	Refactoring
	Towards a Proper Integration of Large Refactorings in Agile Software Development
	An Agile Approach to a Legacy System
	Cynical Reengineering

	Social Issues
	The Characteristics of XP Teams
	The Oregon Software Development Process
	Roles in Agile Software Development Teams
	Empirical Analysis on the Satisfaction of IT Employees Comparing XP Practices with Other Software Development Methodologies

	Practitioner Reports
	Agile Processes Enhancing User Participation for Small Providers of Off-the-Shelf Software
	Self-Adaptability of Agile Software Processes: A Case Study on Post-iteration Workshops
	Enterprise Continuous Integration Using Binary Dependencies
	Agile Project Controlling

	Invited Talks
	Leading Fearless Change—Introducing Agile Approaches and Other New Ideas into Your Organization

	Posters
	Automated Generation of Unit Tests for Refactoring
	XP: Help or Hindrance to Knowledge Management?
	Test Driven Development and Software Process Improvement in China
	Project Management and Agile Methodologies: A Survey
	Evaluating the Extreme Programming System – An Empirical Study
	A Comparison of Software Development Process Experiences
	Abstract Test Aspect: Testing with AOP
	XMI for XP Process Data Interchange
	Analyzing Pair-Programmer’s Satisfaction with the Method, the Result, and the Partner
	Literate Programming to Enhance Agile Methods

	Demonstrations
	Mockrunner – Unit Testing of J2EE Applications
	Application of Lean and Agile Principles to Workflow Management
	Assistance for Supporting XP Test Practices in a Distributed CSCW Environment
	Requirements of an ISO Compliant XP Tool
	Going Interactive: Combining Ad-Hoc and Regression Testing
	Complete Test Generation for Extreme Programming
	Story Management
	Conditional Test for JavaBeans Components

	Trainers and Educators Track
	Agile Methods in Software Engineering Education
	Extreme Programming in Curriculum: Experiences from Academia and Industry
	Human Aspects of Software Engineering: The Case of Extreme Programming
	Extreme Programming in a University Project

	Ph.D. Symposium
	Agile Methods: The Gap between Theory and Practice
	Correlating Unit Tests and Methods under Test
	Exploring the XP Customer Role – Part II
	A Selection Framework for Agile Methodologies

	Workshops
	Refactor Our Writings
	Be Empowered (That’s an Order !) “Experience the Dynamics and the Paradoxes of Self-Organizing Teams”
	How to Maintain and Promote Healthy Agile Culture
	Customer Collaboration
	Assessing Agility
	Designing the Ultimate Acceptance Testing Framework

	Panels and Activities
	The XP Customer Role
	Fishbowl: XP Tools
	The XP Game
	XP and Organizational Change: Lessons from the Field

	Author Index
	A
	B
	C
	D
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	W
	Z

