

Lecture Notes in Computer Science 3134
Commenced Publication in 1973

Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

This page intentionally left blank

Carmen Zannier Hakan Erdogmus
Lowell Lindstrom (Eds.)

Extreme Programming
and Agile Methods –
XP/Agile Universe 2004

4th Conference on Extreme Programming and Agile Methods
Calgary, Canada, August 15-18, 2004
Proceedings

Springer

http://www.springerlink.com

eBook ISBN: 3-540-27777-3

Print ISBN: 3-540-22839-X

©2005 Springer Science + Business Media, Inc.

Print ©2004 Springer-Verlag

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: http://ebooks.springerlink.com

and the Springer Global Website Online at: http://www.springeronline.com

Berlin Heidelberg

http://ebooks.springerlink.com
http://www.springeronline.com

Preface

It was 1999 when Extreme Programming Explained was first published, making this
year’s event arguably the fifth anniversary of the birth of the XP/Agile movement in
software development. Our fourth conference reflected the evolution and the learning
that have occurred in these exciting five years as agile practices have become part of
the mainstream in software development. These pages are the proceedings of XP Agile
Universe 2004, held in beautiful Calgary, gateway to the Canadian Rockies, in Alberta,
Canada.

Evident in the conference is the fact that our learning is still in its early stages. While
at times overlooked, adaptation has been a core principle of agile software development
since the earliest literature on the subject. The conference and these proceedings rein-
force that principle. Although some organizations are able to practice agile methods in
the near-pure form, most are not, reflecting just how radically innovative these methods
are to this day. Any innovation must coexist with an existing environment and agile soft-
ware development is no different. There are numerous challenges confronting IT and
software development organizations today, with many solutions pitched by a cadre of
advocates. Be it CMM, offshoring, outsourcing, security, or one of many other current
topics in the industry, teams using or transitioning to Extreme Programming and other
agile practices must integrate with the rest of the organization in order to succeed. The
papers here offer some of the latest experiences that teams are having in those efforts.

XP Agile Universe 2004 consisted of workshops, tutorials, papers, panels, the Open
Space session, the Educators’ Symposium, keynotes, educational games and industry
presentations. This wide range of activities was intended to provide an engaging expe-
rience for industry practitioners, leading consultants, researchers, academics, and stu-
dents. Feedback from the 2003 conference was used to adjust the content to better suit
the needs of the attendees. The sessions at the conference were selected through the
dedicated work of the Track Chairs and the Program Committee, to whom we are ex-
tremely grateful. Their names are listed in the pages that follow and the contributions
of these individuals to the experience of the attendees of the conference cannot be over-
stated. Over 100 submissions were received to the various activities, with roughly half
accepted into the conference. Each submission was reviewed by at least 3 members of
the Program Committee, with an average of just under 5 reviewers per submission. The
accepted papers are presented in their entirety in these proceedings. Summaries of the
workshops and tutorials are presented as a reference for those who attended the confer-
ence. The results of the Open Space session can be accessed via the conference website
at xpuniverse.com or agileuniverse.com.

The invited speakers to the conference were Christopher Avery, Robert Biddle,
Eric Evans, Alejandro Goyen, Craig Larman, Brian Marick, Robert C. Martin, Mary
Poppendieck, and Herb Sutter. These speakers represent the breadth and depth of the
conference in terms of three main threads: technical practices; business and project
management; and teamwork.

VI Preface

The tutorials and workshops continued the trend beyond the programming trenches,
focusing primarily on requirements, project management, and acceptance-testing tech-
niques, with some introductory sessions for attendees new to extreme programming and
agile practices. The conference also continued its history with hands-on programming
events which allowed attendees to join projects that ran throughout the conference using
the tools and practices common on agile teams.

In these proceedings, one can find a rich set of papers reflective of the experiences
of leading practitioners. Eighteen technical and research papers, experience reports,
and educators’ symposium papers were accepted out of a total of 45 submissions, rep-
resenting an acceptance rate of 40%. A number of papers provide advanced discussion
on tools and techniques for testing and the trend towards combining the requirements,
testing, and specification activities. Three papers discuss methods for better understand-
ing and expressing the customer or user needs in an agile way. For readers who are
confronted with many of the challenges faced by today’s environment, such as secu-
rity concerns, CMM auditing, and offshore development teams, there are representative
papers describing the use of agile development techniques in those environments.

We are deeply indebted to the organizing committee and the conference sponsors
for providing the infrastructure for making the conference happen. The content of the
conference and these proceedings would not have been possible without the submis-
sions and all of the effort that goes into them. For those courageous enough to submit
their work to the conference, we thank and salute you. But mostly, we thank the at-
tendees, for supporting the conference, giving it its positive energy, and making it the
magical gathering that it has become.

August 2004 Lowell Lindstrom and Hakan Erdogmus

Program Chairs

Hakan Erdogmus National Research Council Canada
Lowell Lindstrom Object Mentor

Track Chairs

Tutorials
Workshops

Panels, Short Activities
Educators’ Symposium
Open Space, Birds-of-a-Feather

Educators’ Symposium Committee

Rick Mercer
Joe Bergin
Robert Biddle
Jim Caristi
Jutta Eckstein
James Grenning
Diana Larsen
Grigori Melnik
Rick Mugridge
Daniel Steinberg
Eugene Wallingford

University of Arizona
Pace University
Carleton University
Valparaiso University
Independent Consultant
Object Mentor
Industrial Logic
University of Calgary
University of Auckland
O’Reilly Networks
University of Northern Iowa

Brian Button, Agile Solutions Group
Dave Astels, ThoughtWorks, Inc.
Grigori Melnik, University of Calgary
Mike Cohn, Mountain Goat Software
Rick Mercer, University of Arizona
Ann Anderson, First Data Corporation
William Wake, Independent Consultant

Organizing Committee

General Chair
Conference Coordinator
Calgary Coordinator
Social Fun Committee
Sponsorship and Exhibits
Web Master
Community Liaisons

Academic Liaison
Proceedings Coordinator
On-site Logistics
Information Coordinators

Lance Welter, Object Mentor
Jennifer Goodsen, RADsoft
Janet Gregory, Wireless Matrix
John Goodsen, RADsoft
Lance Welter, Object Mentor
Micah Martin, Object Mentor
US – Alex Viggio
Canada – Shaun Smith
Frank Maurer, University of Calgary
Carmen Zannier, University of Calgary
Janet Gregory, Wireless Matrix
Talisha Jefferson, Object Mentor
Susan Rosso, Object Mentor

VIII Organization

Open Space and Birds-of-a-Feather Committee

Ann Anderson
Lisa Crispin
J.B. Rainsberger
William Wake

First Data Corporation
Fast401k
Diaspar Software Services
Independent Consultant

Program Committee

Ann Anderson
Jennitta Andrea
Ken Auer
Mike Beedle
Robert Biddle
Jim Coplien
Alain Desilets
Dwight Deugo
Armin Eberlein
Jutta Eckstein
Alejandro Goyen
John Favaro
Steve Fraser
John Grundy
John Goodsen
Philip Johnson
Brian Hanks
Chet Hendrickson
Michael Hill
Paul Hodgetts
Andy Hunt
Ron Jeffries
Bil Kleb
Jykri Kontio
Philippe Kruchten
Tom Kubit
Manfred Lange
Diana Larsen
Jim Leask
Tim Mackinnon
Brian Marick
Robert C. Martin
Frank Maurer
Pete McBreen
Todd Medlin

First Data Corporation
Clearstream Consulting
Role Model Software
e-Architects Inc.
Carleton University
Vrije Universiteit Brussel
National Research Council Canada
Carleton University
American University of Sharjah
Independent Consultant
Microsoft
Consulenza Informatica
Independent Consultant
University of Auckland
RADSoft
University of Hawaii
University of California
HendricksonXP
Independent Consultant
Agile Logic
The Pragmatic Programmers
XPProgramming
NASA
Helsinki University of Technology
University of British Columbia
Gene Codes Forensics
Independent Consultant
Industrial Logic
Sybase
Connextra
Testing Foundations
Object Mentor
University of Calgary
Software Craftsmanship
SAS Institute

Grigori Melnik
Steve Mellor
Granville Miller
Maurizio Morisio
Rick Mugridge
Gary Pollice
Linda Rising
Ken Schwaber
David Stotts
Shaun Smith
Oryal Tanir
Dave Thomas
Dave Thomas
Jim Tomayko
Marco Torchiano
David Trowdridge
Jay Turpin
William Wake
Don Wells
Frank Westphal
Laurie Williams
William Wood

University of Calgary
Project Technology
Borland
Politecnico di Torino
University of Auckland
Worcester Polytechnic Institute
Independent Consultant
Agile Alliance
University of North Carolina
Sandbox Systems
Bell Canada
The Pragmatic Programmer
Bedarra Research Labs
Carnegie Mellon University
Politecnico di Torino
Microsoft
Intel
Independent Consultant
ExtremeProgramming.org
Independent Consultant
North Carolina State University
NASA

Organization IX

Sponsoring Institutions

Galaxy Class

Star Class

Satellite Class

Media Partners

Object Mentor
Microsoft
ThoughtWorks, Inc.
Valtech Technologies, Inc.
ClearStream Consulting, Inc.
Rally Software Development
BrightSpot Consulting
VersionOne
RADSoft
Software Development Magazine
DevTown Station
Integration Developer News
Java Developer’s Journal
Better Software Magazine
Linux Journal
Cutter Consortium

This page intentionally left blank

Table of Contents

Papers

Testing and Integration

1

13

22

32

43

50

60

73

81

92

105

Combining Formal Specifications with Test Driven Development
Hubert Baumeister

Long Build Trouble Shooting Guide
Jonathan Rasmusson

Acceptance Testing vs. Unit Testing: A Developer’s Perspective
R. Owen Rogers

The Role of Process Measurement in Test-Driven Development
Yihong Wang and Hakan Erdogmus

Acceptance Test Driven Planning (Experience Paper)
Richard J. Watt and David Leigh-Fellows

Managing Requirements and Usability

An Agile Customer-Centered Method: Rapid Contextual Design
Hugh Beyer, Karen Holtzblatt, and Lisa Baker

Suitability of FIT User Acceptance Tests
for Specifying Functional Requirements: Developer Perspective

Grigori Melnik, Kris Read, and Frank Maurer

Using Storyotypes to Split Bloated XP Stories
Gerard Meszaros

Pair Programming

Distributed Pair Programming: An Empirical Study
Brian F. Hanks

Support for Distributed Pair Programming in the Transparent Video Facetop
David Stotts, Jason McC. Smith, and Karl Gyllstrom

Foundations of Agility

Toward a Conceptual Framework of Agile Methods
Kieran Conboy and Brian Fitzgerald

XII Table of Contents

Process Adaptations

117

129

139

147

155

164

175

183

184

186

188

190

192

194

Security Engineering and eXtreme Programming: An Impossible Marriage?
Jaana Wäyrynen, Marine Bodén, and Gustav Boström

An Agile CMM (Experience Paper)
Erik Bos and Christ Vriens

Adapting Extreme Programming to Research, Development
and Production Environments (Experience Paper)

Gil Broza

Outsourcing and Offshoring with Agility: A Case Study (Experience Paper)
Clifton Kussmaul, Roger Jack, and Barry Sponsler

User Story Methodology Adaptations for Projects Non-traditional
in Scope and Customer GUI Contributions (Experience Paper)

Denise M. Woit

Educators’ Symposium

Agile CS1 Labs: eXtreme Programming Practices
in an Introductory Programming Course

Dawn McKinney, Julie Froeseth, Jason Robertson, Leo F. Denton,

and David Ensminger

A Case Study in the Use of Extreme Programming in an Academic Environment
Mary Beth Smrtic and Georges Grinstein

Workshop Summaries

Workshops: Research Close to the Action
Dave Astels and Grigori Melnik

Who Should Write Acceptance Tests?
Christian Sepulveda, Brian Marick, Rick Mugridge, and David Hussman

Getting Leaders On-Board
Pollyanna Pixton and Mary Poppendieck

Third International Workshop on Empirical Evaluation of Agile Methods
(“The Data Workshop”)

Grigori Melnik and Khaled El Emam

How to Maintain and Promote Healthy Agile Culture
David Hussman

UI Design as Part of an Agile Process
Mike Kuniavsky and William Pietri

Agile Development for Embedded Software
James Grenning, Johan Peeters, and Carsten Behring

Table of Contents XIII

196

198

200

201

202

203

204

205

206

208

209

210

212

213

Refactoring Our Writings
Joshua Kerievsky

Agile Tests as Documentation
Jonathan Kohl and Brian Marick

Fit Fest
Robert C. Martin and Micah Martin

Panels

Agile Project Management
Moderator: Frank Maurer

Panelists: Mike Cohn, Mike Griffiths, Jim Highsmith, Ken Schwaber,

and Philippe Kruchten

Agile Methods for Safety-Critical Software Development
Moderator: Kelly Weyrauch

Panelists: Mary Poppendieck, Ron Morsicato, Nancy Van Schooenderwoert,

and Bill Pyritz

Is XP Still Relevant?
Moderator: Pete McBreen

Panelists: Dave Astels, Janet Gregory, Daniel H. Steinberg, Lisa Crispin,

Jim Highsmith, and Robert C. Martin

Tutorials

Introduction to Tutorials
Brian Button

Agile Requirements: Tailoring the Functional Requirements
Specification Process to Improve Agility

Jennitta Andrea and Gerard Meszaros

Advanced Fit Lab
Rick Mugridge

Effective User Stories
Mike Cohn

Outsourcing and Offshoring with Agility
Clifton Kussmaul

Traditional and Agile Project Management: A Practical Mapping
Mike Griffiths

The Agile/XP Team Primer: Exploring Self-organizing Teams
Diana Larsen

Coaching Agile Software Teams
William C. Wake and Ron Jeffries

XIV Table of Contents

214

215

217

218

219

221

222

224

226

227

228

229

230

231

232

233

Getting the Software You Need:
A Practical Approach for Testers and the Customer Team

Lisa Crispin

First Encounter with Agile Methods
Frank Maurer and Grigori Melnik

Working Effectively with Legacy Code
Michael C. Feathers

The Art of Acceptance Testing
Micah Martin

Agile Planning, Tracking, and Project Management Boot Camp
Paul Hodgetts

Tutorial: Agile Project Management – Reliable Innovation
Jim Highsmith

XP for a Day
James Grenning and Micah Martin

Scripting Web Tests
Brett Pettichord, Brian Marick, Paul Rogers, and Jonathan Kohl

Interaction Design Meets Agility:
Practicing Usage Centered Design on Agile Development Projects

Jeff Patton

Agile Implementations, Agile Impediments, and Agile Management
Ken Schwaber

The Lean Maturity Measure Assessment and Implementation
Mary Poppendieck

Agile Databases
Pramod Sadalage

Transitioning to XP
Michael Hill

Large Scale Agile Software Development
Ron Crocker

Refactoring to Patterns
Joshua Kerievsky

Author Index

Combining Formal Specifications

with Test Driven Development*

Hubert Baumeister

Institut für Informatik
Ludwig-Maximilians-Universität München

Oettingenstr. 67, D-80538 München, Germany
baumeist@informatik.uni-muenchen.de

Abstract. In the context of test driven development, tests specify the behavior
of a program before the code that implements it, is actually written. In addition,
they are used as main source of documentation in XP projects, together with the
program code. However, tests alone describe the properties of a program only in
terms of examples and thus are not sufficient to completely describe the behavior
of a program. In contrast, formal specifications allow to generalize these example
properties to more general properties, which leads to a more complete description
of the behavior of a program. Specifications add another main artifact to XP in
addition to the already existent ones, i.e. code and tests. The interaction between
these three artifacts further improves the quality of both software and documen-
tation. The goal of this paper is to show that it is possible, with appropriate tool
support, to combine formal specifications with test driven development without
loosing the agility of test driven development.

1 Introduction

Extreme Programming advocates test driven development where tests are used to spec-
ify the behavior of a program before the program code is actually written. Together
with using the simplest design possible and intention revealing program code, tests are
additionally used as a documentation of the program. However, tests are not sufficient
to completely define the behavior of a program because they are only able to test prop-
erties of a program by example and do not allow to state general properties. The latter
can be achieved using formal specifications, e.g. using Meyer’s design by contract [21].

As an example we consider the function primes, that computes for a given natural
number a list containing all prime numbers up to and including Tests can only
be written for special arguments of the primes function, e.g. that primes (2) should
produce the list with the number 2 as its only element, and that primes(1553) is
supposed to yield the list of prime numbers from 2 up to 1533. Actually, a program that
behaves correctly w.r.t. these tests could have the set of prime numbers hard coded for
these particular inputs and return arbitrary lists for all other arguments. One solution is
to move from tests to specifications, which allow to generalize the tested properties. For
example, the behavior of primes would be expressed by a formal specification stating
that the result of the function primes(n) contains exactly the prime numbers from 2
up to for all natural numbers

* This research has been partially sponsored by the EC 5th Framework project AGILE: Archi-
tectures for Mobility (IST-2001-32747)

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 1–12, 2004.

© Springer-Verlag Berlin Heidelberg 2004

2 Hubert Baumeister

This example shows that formal specifications provide a more complete view on the
behavior of programs than tests alone. However, while it is easy to run tests to check
that a program complies with the tests, the task of showing that a program satisfies a
given specification is in general more complex. To at least validate a program w.r.t. a
specification, one can use the specification to generate run-time assertions and use these
to check that the program behaves correctly.

The study of formal methods for program specification and verification has a long
history. Hoare and Floyd pioneered the development of formal methods in the 1960s by
introducing the Hoare calculus for proving program correctness as well as the notions
of pre-/postconditions, invariants, and assertions [13,10]. Their ideas were gradually
developed into fully fledged formal methods geared towards industrial software engi-
neering, e.g. the Vienna Development Method (VDM) developed at IBM [17], Z [23],
the Java Modeling Language (JML) [19] and, more recently, the Object Constraint Lan-
guage (OCL) [25] – which again originated at IBM – used to specify contraints on ob-
jects in UML diagrams. For an overview of formal methods and their applications refer
to the WWW virtual library on formal methods [5].

An important use of formal specifications is the documentation of program behavior
without making reference to an implementation. This is often needed for frameworks
and libraries, where the source code is not available in most cases and the behavior is
only informally described. In general, the documentation provided by a formal speci-
fication is both more precise and more concise compared to the implementation code
because the implementation only describes the algorithm used by a method and not
what it achieves. Not only the literature on formals methods, but also in the literature
on the pragmatics of programming, e.g. [15, 20], recommends to make explicit the as-
sumptions on the code using specifications because this improves the software quality.

The goal of this paper is to show that it is possible, with appropriate tool support, to
combine formal specifications with test driven development without loosing the agility
of the latter. This is done by using the tests, that drive the development of the code,
also to drive the development of the formal specification. By generating runtime asser-
tions from the specification it is possible to check for inconsistencies between code,
specifications, and tests. Each of the three artifacts improves the quality of the other
two, yielding better code quality and better program documentation in the form of a
validated formal specification of the program.

Our method is exemplified by using the primes example with Java as the program-
ming language, JUnit1 as the testing framework, and the Java Modeling Language
(JML) [19] for the formulation of class invariants and pre- and postconditions for meth-
ods. We use JML since JML specifications are easily understood by programmers, and
because it comes with a runtime assertion checker, [6], which allows to check invariants
and pre- and postconditions of methods at runtime.

2 Formal Specifications and Tests

As with test driven development, in our proposed methodology, tests are written before
the code. Either now or after several iterations of test and code development, the prop-

1 www.junit.org

Combining Formal Specifications with Test Driven Development 3

erties that underly the tests are generalized into formal JML-specifications. We then
generate assertions from these specifications using the JML runtime assertion checker.
The invariants and pre- and postconditions are finally validated during test runs. Any
inconsistency between code, tests, and formal specification will result in an exception.
This leads to additional confidence in the code, the tests, and the specification. Making
the specification underlying a set of tests explicit may reveal that some tests are still
missing. On the other hand, an exception thrown by the assertion checker is the result
of an error either in the code or in the specification. The method we propose has 5 steps:

1.
2.
3.
4.
5.

Write the test
Implement the code
Refactor the code
Generalize the tests to a specification, and
Refactor the specification

Each of the steps is performed as needed, therefore not all the steps need to appear in
each iteration of our method.

2.1 Example

We continue the primes examples, introduced in Section 1, with Java as implementa-
tion language and the JUnit test framework. The goal is to implement a static member
function primes(int n) in class Primes that returns a list containing an integer
object if, and only if it is a prime number in the range from 2 up to and including
The sequence of tests used in this paper follows closely that of Beck and Newkirk [3],
which uses the primes function as an example for refactoring.

Step 1: Write the test. A first test for the primes function is to assert that primes (0)
returns the empty list.

Step 2: Implement the code. The obvious implementation just returns the empty list.

Step 3: Refactor the code. Since the above code does not suggest any refactorings, we
omit the code refactoring step.

Step 4: Generalize the tests to a specification. The following JML specification states
that if is 0 then the result should be the empty list.

4 Hubert Baumeister

The precondition is n == 0 and is given by the requires clause, and the postcon-
dition is \result.isEmpty() and is given by the ensures clause. The keyword
\result represents the result of the method. The keywords publicbehavior in-
dicate that the following is a public specification for the method primes(int n).
Note that the precondition n == 0 makes it obvious that we are not yet done with
specifying and implementing the primes method as we want our method to work also
with other inputs than 0.

Using the JML assertion generator, assertions for the pre- and postconditions of the
JML specification are generated and integrated in the class file of class Primes. Now the
tests are run again and a JML exception is thrown if a precondition or a postcondition
is violated.

Step 5: Refactor the specification. In the next step we generalize the precondition to

This generalization step shows that a test is missing, i.e., primes(1).isEmpty().
However, we choose not to add a new test because this new test would not fail and thus
does not force us to change existing code [2].

This finishes the first iteration of our method. Since we are not done with the im-
plementation of the primes method, we proceed with the next iteration of writing tests,
code, and specifications.

Step 1: Write the test. The next test case tests that primes (2) returns the list that
contains as its only element an integer object with value 2.

Step 2: Implement the code. The following implementation validates this test:

Step 4: Generalize the tests to a specification. The corresponding specification looks as
follows.

Combining Formal Specifications with Test Driven Development 5

We use the also keyword to add a new pre- and postcondition specification to an
existent one. In this case, either n <= 1 is true, then \result.isEmpty() has to
be true, or n == 2 is true and then

has to hold. In the above case, both preconditions are disjoint; however, if both precon-
ditions are satisfied, then both postconditions also have to hold. As in the first iteration,
running the tests with generated assertions for the JML specification yields no error.

Step 1: Write the test. After having dealt with the simple cases, we now deal with more
complex situations: we write a test that ensures that all the prime numbers from 2 to
1000 are contained in the result of primes(1000).

The boolean function isPrime(int i) is an auxiliary function that returns true
if the argument is a prime number and false otherwise. It is given by the following
specification, which directly reflects the definition of prime numbers.

The expression \forall var-decl; range-pred; pred; asserts that for all
values of the variables occurring in var - decl which satisfy range - pred, the predi-
cate pred has to hold. The range predicate range - pred and the predicate pred may
contain boolean expressions which in turn may contain Java methods of type boolean
which do not modify the state (called pure methods in JML). Logical equivalence is
written<==>.

An implementation satisfying the specification of isPrime is the following (vali-
dated using the method presented in this paper):

6 Hubert Baumeister

Step 2: Implement the code. The simplest implementation that passes testLots1 just
returns a list with integer objects representing the integers from 2 to

Step 4: Generalize the tests to a specification. Instead of writing a specification for a
fixed number (in our case 1000), we directly express the desired property for arbitrary
integers

In the above, the symbol ==> denotes logical implication.
Looking at the specification we see that the implementation of the primes function

is not yet complete. We have checked that all prime numbers occur in the result of
primes(n),but not that each number in the result of primes(n)is a prime number.
Therefore, we need an additional test.

Step 1: Write the test.

Step 2: Implement the code. This test forces us to implement a more sophisticated
primes function. In our example, we use the sieve of Eratosthenes to compute prime
numbers. The idea is to remove all numbers in the list from 2 to which are dividable
by some number occurringbefore The following is a possible implementation:

Combining Formal Specifications with Test Driven Development 7

Step 4: Generalize the tests to a specification. Again, the correspondingpart of the spec-
ification allows to abstract from the number 1000 to an arbitrary integer Accordingly,
our specification expresses that each element in the result is a prime number.

After generating the assertions into the Primes class-file and running all the tests, we
see that no pre-/postcondition pair is violated.

Step 5: Refactor the specification. In contrast to Beck [1], who argues that tests should
not be refactored, we want to refactor specifications because we want to use specifica-
tions also as program documentation. The result of the refactoring yields a more concise
specification as several pre- and postcondition pairs can be eliminated: We can delete
all those pairs that are logical consequences of other, remaining pre/post pairs.

8 Hubert Baumeister

By running the JUnit tests instrumented with the corresponding run-time assertions
generated from the JML specifications, we can be certain that we have not produced a
specification that conflicts with the code. However, we have over-simplified the specifi-
cation. This is not detectable by the tests. In this case the specification does not ensures
that primes(0).isEmpty() holds, as the list containing new Integer(2) is in com-
pliance with the specification. Considering this case reveals a missing assertion in the
specification and the tests: primes(n) may contain prime numbers greater than It
is questionable if we should modify the tests as with the above implementation the tests
would not reveal a failure. Modifying the tests would therefore be in violation of the
principle that test should only be written if they fail first [2]. On the other hand, it would
make sense to include this condition in testLot2 to document this condition. In any
case, the condition needs to be added to the JML specification.

The result of the presented process is a set of tests, code, and a specification which
ensure that the code implements the desired behavior, which is documented by the
specification. We can now use this specification of primes to describe its behavior
without making reference to all the test cases and/or the code. Note that the resulting
primes specification is both much shorter and much easier to understand than the tests
and the code alone.

2.2 Advantages of Using Specifications

The advantage of specifications is that they provide an additional view on the software
which complements the test and implementation view. While the test view describes the
properties of a software in terms of examples, specifications distill specific examples
into more general properties. The description of the behavior of a program using a
formal specification is more abstract than the tests and the implementation (which, in
addition, is not always available) and more precise than an informal textual description.
A precise description of the behavior of a program which is given independently from
its implementation is important, e.g., in the documentation of libraries or frameworks.

When the behavior of a program is given formally, that is, in computer understand-
able form, it is easy to derive properties of programs from the specification or to use the
specification to generate black-box tests that can be used by a quality assurance team
either automatically or at least semi-automatically. In contrast to tests written by the
developer during test driven development, the generated tests are not biased by the pro-
grammer who has written the code. Furthermore, we can also use these specifications
as input to tools which allow to verify that the code implements the specifications is
actually correct, as we will demonstrate below.

Combining Formal Specifications with Test Driven Development 9

One problem with test driven development is that it is possible to write non-tested
code. This risk is minimized by the XP practices. With pair programming, four eyes are
looking at the code, and a rule of thumb with test driven development is that each line of
the production code has to be justified by tests. Our method poses a similar problem: it
may happen that a specification, consisting of class invariants, pre- and postconditions,
is not strong enough to logically imply the tests. That is, a specification might not
express everything that is covered by the tests. The programmers who design the tests
and the specification therefore have to make sure that the tests are actually implied
by the specification. This is usually done by instantiating the abstract specification to
concrete examples. E.g. the test that primes(2) returns the list with 2 as its only
element can be obtained by instantiating with 2 in our last specification of the primes
method. On the other hand, the specification may be too strong, that is, it could impose
stronger conditions than the tests. This case usually leads to failed assertions, i.e. a
violated pre-/postconditions or invariant, in the present or a later iteration.

2.3 Validation vs. Verification

The basic idea of the presented method is to annotate code with assertions generated
from a specification. During test runs, inconsistencies between tests, specification, and
code are detected, in which case an exception is thrown. Note, that this method is only
able to increase the confidence in the correctness of the code and the specification, but
does not guarantee that the code satisfies the specification. As with tests, this method
helps finding bugs but does not prove the absence of errors. Still, it leads to more com-
plete specifications and more correct code compared to just separating the process of
writing the specification and of implementing the code. In addition, our method can be
accompanied with other tools, for example ESC/Java [9] for extended static type check-
ing using a sublanguage of JML, and Krakatoa [7] and the LOOP tool [24] for verifying
that the implementation meets its specification (cf. [16] for a more complete overview
of available tools for Java). Of course the effort to prove code correct with these tools
is considerably higher than the effort of validating the specification.

3 Conclusion

The method in this paper describes a practical way of combining formal specifications
with test driven development which is geared towards XP. There are already several
approaches (cf. [12,8,11]) combining XP and design by contract. These approaches try
to replace tests by formal specifications by considering tests as special kinds of spec-
ifications. The problem with these approaches is that they need some means to either
prove the code correct with respect to the specification (which requires a considerable
effort), or to generate test cases from the specification. In our method, the test cases
are designed in the usual way within test driven development. This accounts for the
observation that it is easier to start with concrete examples and scenarios first and then
generalize the examples into specifications in a second step. In addition, we get a third
view, the specification view, on the software that complements the implementation and
the test view. Our method hence improves the quality of all three views. A similar line

10 Hubert Baumeister

of reasoning to the one presented here has been independently developed by Ostroff et
al. in the context of Eiffel [22].

For applications where security is relevant the specification view helps, on the one
hand, to develop more complete test suites than one usually gets with test driven de-
velopment. For example, one can generate tests from the specification and the code
(white-box and black-box tests), e.g. [4]. This is because the test generation strives for
a complete set of tests while the goal of tests in test driven development is to drive the
process of writing the program code. On the other hand, the specification view is a pre-
requisite for proving programs correct. This has been done, for example, in the context
of smart cards using the JavaCard API and JML, e.g. [14].

The presented method was used in the EU-project AGILE2 to develop a multi-user
dungeon (MUD) game played by several players using their mobile phones. Players can
interact with each other when they are in the same virtual room. They can, for example,
trade objects, fight, or talk. Writing the specification revealed bugs in the code that were
not detected by just using the tests alone and also helped to find new tests because the
specification provides a more abstract view on the methods to be implemented. Vice
versa, the use of tests showed that often the first attempt on writing a specification fails,
usually because some specific cases are omitted.

The presentation of our method in this paper uses Java as the programming language
and the Java Modeling Language (JML) as the specification language. However, the
method is not restricted to the use of JML, Java, or even design by contract. In the
MUD game, for example, the Hugo model-checker [18] was used in addition to JML
to verify liveness and safety properties, e.g., that the protocol for trading objects among
players is deadlock free and that both players agree on the outcome of a trade (i.e.
successful or not successful).

Note that it does not always warrant the effort to maintain a specification view on
the code. One has to balance the quality of the software with the work of maintaining
the specification view. In situations where a concise and precise documentation of the
behavior of a program independent from the code is needed, or where an improved
software quality is needed, e.g. in applications where security is critical, the gain is
worth the effort.

Acknowledgments

I would like to thank Hakan Erdogmus, Alexander Knapp, Dirk Pattinson, and the
anonymous referees for helpful comments on earlier versions of this paper.

References

1.
2.
3.

K. Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley, 1999.
K. Beck. Test Driven Development: By Example. Addison-Wesley, 2002.
K. Beck and J. Newkirk. Baby steps, safely. article.
PDF at groups.yahoo.com/group/testdrivendevelopment/files, February 2002.

2 Architectures for Mobility; www.pst.ifi.lmu.de/projekte/agile

Combining Formal Specifications with Test Driven Development 11

4.

5.

6.

7.

8.

9.

R. V. Binder. Testing Object-Oriented Systems: Models, Patterns, and Tools. Addison-
Wesley, 2000.
J. Bowen. The World Wide Web virtual library: Formal methods. www.afm.sbu.ac.uk,

2004.
Y. Cheon and G. T. Leavens. A runtime assertion checker for the Java Modeling Language
(JML). In H. R. Arabnia and Y. Mun, editors, International Conference on Software Engi-

neering Research and Practice (SERP’02), pages 322–328. CSREA Press, Las Vegas, 2002.
E. Contejean, J. Duprat, J.-C. Filiâtre, C. Marché, C. Paulin-Mohring, and X. Urbain. The
Krakatoa tool for JML/Java program verification. Available at krakatoa.lri.fr, October 2002.
Y. A. Feldman. Extreme design by contract. In Extreme Programming and Agile Processes

in Software Engineering, 4th International Conference, XP 2003, Genova, Italy, May 2003,

volume 2675 of LNCS, pages 261–270. Springer, 2003.
C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for Java. In Proceedings of the 2002 ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI), volume 37, pages 234–245. ACM,
2002.
R. W. Floyd. Toward interactive design of correct programs. In C. V. Freiman, J. E. Grif-
fith, and J. L. Rosenfeld, editors, Information Processing 71, Proceedings of IFIP Congress

71, Volume 1 - Foundations and Systems, Ljubljana, Yugoslavia, August 23-28, pages 7–10.
North-Holland, 1972.
H. Heinecke and C. Noack. Integrating extreme programming and contracts. In K. Beck,
M. Marchesi, and G. Succi, editors, 2nd International Conference on Extreme Programming

and Flexible Processes in Software Engineering, XP 2001, May 20–23, 2001, Villasimius,

Sardinia, Italy, pages 24–27, 2001.
A. Herranz and J. J. Moreno-Navarro. Formal extreme (and extremely formal) program-
ming. In Extreme Programming and Agile Processes in Software Engineering, 4th Interna-

tional Conference, XP 2003, Genova, Italy, May 2003, volume 2675 of LNCS, pages 88–98.
Springer, 2003.
C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the

ACM, 12(10):576–583, October 1969.
E. Hubbers, M. Oostdijk, and E. Poll. Implementing a formally verifiable security protocol
in Java Card. In Proc. of SPC’2003, 1st International Conference on Security in Pervasive

Computing, Boppard, Germany, March 12-14, 2003, 2003.
A. Hunt and D. Thomas. The Pragmatic Programmer. Addison–Wesley, 2000.
B. Jacobs, J. Kiniry, and M. Warmer. Java program verification challenges. In F. S. d. Boer,
M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Formal Methods for Components and

Objects, 1st International Symposium, FMCO 2002, The Netherlands, November 5–8, 2002,

Revised Lectures, volume 2852 of LNCS, pages 202–219, 2003.
C. B. Jones. Systematic Software Development Using VDM. Prentice Hall international series
in computer science. Prentice Hall, New York, 2nd edition, 1990.
A. Knapp, S. Merz, and C. Rauh. Model checking timed UML state machines and collabo-
rations. In W. Damm and E. R. Olderog, editors, Proc. 7th Inernational Symposium Formal

Techniques in Real-Time and Fault Tolerant Systems, volume 2469 of LNCS, pages 395–416.
Springer, Berlin, 2002.
G. T. Leavens, A. L. Baker, and C. Ruby. JML: a notation for detailed design. In H. Kilov,
B. Rumpe, and I. Simmonds, editors, Behavioral Specifications for Businesses and Systems,

chapter 12, pages 175–188. Kluwer, 1999.
S. McConnell. Code Complete. Microsoft Press, 1993.
B. Meyer. Object-Oriented Software Construction. Prentice-Hall, Upper Saddle River, New
Jersey, 1997.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.
21.

12 Hubert Baumeister

22.

23.

24.

25.

J. Ostroff, D. Makalsky, and R. Paige. Agile specification-driven development. In Extreme

Programming and Agile Processes in Software Engineering, 5th International Conference,

XP 2004, Garmisch-Partenkirchen, Germany, June 2004, volume 3092 of LNCS. Springer,
2004.
J. M. Spivey. The Z Notation: A Reference Manual. International series in computer science.
Prentice Hall, New York, 2nd edition, 1992.
J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In T. Margaria and
W. Yi, editors, Tools and Algorithms for the Construction and Analysis of Systems, volume
2031 of LNCS, pages 299–312. Springer, Berlin, 2001.
J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with UML.

Addison-Wesley, 1st edition, 1998.

Long Build Trouble Shooting Guide

Jonathan Rasmusson

ThoughtWorks Canada Corporation, Ave SW, floor
Calgary, Alberta, Canada T2R 0B4

jrasmusson@thoughtworks.com

Abstract. Excessively long build times severely reduce a team’s ability to ap-
ply the XP practice of Continuous Integration. Long build times have a severe
impact on team morale, productivity, and project ROI. With the application of
techniques described in this Long Build Trouble Shooting Guide, teams will be
able to keep their builds from exceeding 10 minutes in length. By keeping
builds short, teams will be able to minimize the cost of integration, thereby free-
ing them to focus on other critical project areas.

1 Introduction

1.1 Why Long Builds Are Problematic

Feedback is a wonderful thing. There is a certain feeling of satisfaction and joy that
comes in software development when we are able to make changes to a system and
receive immediate feedback as to whether our change left the system in a better state
than we found it. That’s great feedback.

In fact, we are so addicted to feedback that anytime something increases the
amount of time it takes us to receive feedback, we feel pain.

Long builds are painful because they decrease the speed at which we obtain feed-
back. We do not like the state of uncertainty - not knowing if our changes have been
successfully integrated into the system.

Further, integration becomes more difficult the longer developers code without
merging their changes. Integrating changes early and often, helps minimize the oppor-
tunity and impact of multiple parties working on a common code base.

Allowing the feedback duration to grow unchecked eventually impacts the team
productivity. Instead of working on new features, a long build process forces develop-
ers to idly wait while the build runs. Or they go on and start adding new functionality
to code that may not have yet already been checked in (thus further increasing the
amount of integration to be done later).

One might suggest that there are many other things that developers could be doing
while their build is running (helping others, catching up on email, surfing the web, or
think about upcoming problems).

While this sounds good in theory, I find this does not happen in practice. Writing
quality code is a thought intensive process. Every time a developer is distracted or
pulled out of their problem domain, it takes a considerable period of time before they
can return to their previous level of productivity. Anything that takes time away from
coding and receiving rapid feedback from the system is counter productive.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 13–21, 2004.
© Springer-Verlag Berlin Heidelberg 2004

14 Jonathan Rasmusson

Another consequence of long builds is that developers may be tempted to take
shortcuts. For instance, they may skip running the build locally before checking in –
confident that their changes will not break the system. Or they may skip running all
the tests and only check the compilation before checking in their changes.

Finally, the cumulative effect of long build times can have a negative effect on
team morale. Nothing is more demoralizing then waiting an hour for your build to
complete, only to find in the minute that you forgot to uncomment a section of
code critical to your bug fix. Fixing small incremental changes on long running builds
can consume the better part of a team’s day. Conversely, a solid, repeatable, fast build
can give a team great confidence and speed.

All these negatives ultimately affect the project’s bottom line and have a direct im-
pact on the project’s Return-On-Investment (ROI).

2 Background

2.1 Build/Continuous Integration Defined

Continuous Integration (CI) is the act of continuously integrating and merging peo-
ple’s code together into one common source repository. This is usually done with a
fully automated build and test process that allows the team to test their software many
times a day.

A core part of CI is compiling and executing of all the project code and their corre-
sponding tests – or what we commonly refer to as the build. For the purposes of this
article we will define a successful build as one whereby:

All the latest sources are checked out of the configuration management system
Every file is compiled from scratch
The resulting object files are linked and appropriately packaged
The system is started and a suite of tests are run against the system (all tests must
pass 100%)
All of these steps pass without error or human intervention

(http://www.martinfowler.com/articles/continuousIntegration.html)
The build is also the tools and artifacts used to actually do what we just described

above. Because we are big fans of automated builds, we usually have an automated
process running our builds (like CruiseControl) which execute our build scripts (Ant
for J2EE or NAnt for .NET) and report back to us if there were any problems.

Before checking in any changes, developers are expected to run the build scripts
against their local versions of the code. If the build passes, they are free to integrate
their changes into the main repository.

2.2 How Long Is Long?

So what constitutes a long build? For my colleagues who build digital switches in the
telecom industry, it is not unheard of for some builds to take days. Fortunately how-
ever, most applications we deal with at ThoughtWorks are not of this size. They are
usually complex enterprise business applications – usually written in Sun Microsys-
tem’s J2EE or Micosoft .NET platform. Using these technologies, I have seen builds
that run anywhere from a couple of minutes to a couple of hours.

Long Build Trouble Shooting Guide 15

Depending on the size of the project, teams will often have various stages of
builds. A full system rebuild may include a complete re-building of the code base,
execution of unit and acceptance tests, a database rebuild, and deployment to a remote
server. A developer build may consist of rebuilding the code base, and execution of
all unit tests.

When I say that all builds can be kept under 10 minutes in duration, I am referring
to the build developers perform before checking in. This usually includes a complete
recompile, and execution of all tests (unit tests at a minimum and potentially accep-
tance tests depending on how long they take to run). This would not include tasks that
are not typically performed on a continuous basis (like a full system database rebuild).

Ten minutes is about all I can take before I begin to feel like I am being unproduc-
tive. In the early stages of the project, the build will often be much shorter (less than a
minute). This is a real sweet spot because now team members can confidently make
very small changes and check-in multiple times per hour.

2.3 About the Trouble Shooting Guide

The principle that drove much of the discovery of the long build issues could best be
described as high level profiling. When we profile a build, we measure how long
certain build tasks take, and then investigate why they take so long. For those sections
that do take a long time we have two options: make the operations themselves faster
or do them less often.

From my experience, the number one culprit of long running builds is the accumu-
lation of long running automated tests. Working for a company that puts a strong
emphasis on automated testing, projects with hundreds (sometimes thousands) of unit
and acceptance tests are not uncommon. Initially I did not find this to be a great con-
cern as I would much rather have too many automated tests then none at all. Over
time however, the impact of long running builds became too great to ignore.

It is with this focus on automated tests that much of the trouble shooting guide con-
tent is directed.

3 The Long Build Trouble Shooting Guide

Below is the summarized form of the Long Build Trouble Shooting Guide. Root
causes of long running builds are listed on the left, with one or more potential solu-
tions listed on the right.

16 Jonathan Rasmusson

The following section summarizes the root causes of long running builds and their
respective solutions.

Running a long build on slow hardware does not aid the team in achieving con-
tinuous integration nirvana. Acquire faster hardware explains how improving your
computer hardware can deliver great bang for the buck.

Applying the 80/20 rule, we can greatly improve our build time by focusing on the
longest running tests first. Re-visit original intent of the test looks at how tackling
these few troublesome tests first can go a long way to rapidly lowering our build
times.

Periodically when writing tests the team will inadvertently write them at the wrong
architectural layer. Write tests at the proper architectural layer discusses the impor-
tance of ensuring tests are written at the appropriate architectural layer and the impact
not following this rule can have on our builds.

A distributed remote call across the network to another computer can be several
orders of magnitude greater than a local one. When we have many unit tests that make
distributed calls, a large portion of our build time is spent communicating across the
network to other machines. Stubs and mocks show us how, in some circumstances, it
is desirable for us to make the network disappear and more directly focus on the
original intent of our test.

Large code bases may be a fact of life, but that should not automatically translate
into long running builds. Break application into sub domains describes how large
code bases may be broken into smaller independent ones. Run tests in parallel de-
scribes how running groups of unit tests simultaneously can save build time. Serialize
the check-in process does not actually reduce our build time, but it can prove handy
when the consequences of breaking the build are too great to chance.

3.1 Acquire Faster Hardware

Taking advantage of Moore’s Law can be the fastest way of reducing your build time.
Because of the importance in getting rapid integration feedback, make the build box
run on the fastest machine you can obtain. Newer computers with faster CPU’s and
disk IO can have drastically reduce your build time with little relative upfront invest-
ment. While this will not solve all your problems, minutes can be rapidly shaved off
the build time with very little effort.

The other aspect of hardware to consider with long running builds is the network.
Many projects have saved considerable build times by simply moving their build
boxes closer to their source code repositories. This can have a particularly significant
impact if you have a large code base as the time it takes to download the code from
the repository will be much less.

3.2 Re-visit Original Intent of Test

When profiling long running tests, any test that consumed an abnormal amount of
memory or network resources was one that garnered further investigation. Sometimes
we found the test was simply poorly written in the first place. One test I remember in
particular created a large collection of objects which were used in testing an overrid-
den equals method on an object. When reviewing the intent of the test, it quickly
became apparent that the test could be met with the same degree of confidence by

Long Build Trouble Shooting Guide 17

using a much smaller collection. Re-writing this test alone shaved three minutes off of
our one and a half hour build. A small but crucial first step was taken.

In other cases, the test itself had become redundant and obsolete. Two people were
not pairing and wrote similar looking tests in different sections of the application. One
could argue the root cause of this problem was more related to team communication
and a longer build time was an indirect result. While true, redundant and non-essential
tests still need to be removed.

Whatever the reason, the point is to revisit the test and determine how we can fix
the problem that is causing the test to be long running in the first place.

3.3 Write Tests at Proper Architectural Layer

Unit tests play an invaluable role on all our projects. As developers, we unit test eve-
rything our software does. As the application grows, and more tested functionality is
added, we begin to accumulate a large number of tests.

Because we also have demanding customers that want proof the system is working,
we also write customer or acceptance tests. These tests are different from unit tests
(which are at the class method level). Customer tests are written at a higher level.
They test the system as a whole, and give our customers confidence that the system is
doing what it needs to do in terms they understand.

What can sometimes occur when aggressively testing our applications is that the
line between a unit test and a customer test can begin to blur. In other words, we will
sometimes accidentally write customer tests where a unit test would have been more
appropriate.

The consequence of writing tests at a higher level than necessary is two fold. First,
we lose valuable feedback at the unit level when something in our code breaks. In
other words, it takes longer for us to isolate the source of the problem because we
have more code to search through. Second, the customer tests typically take longer to
run than their unit test equivalent. This is due to the fact that there is more code to
execute (often making use of expensive network resources unnecessarily).

I was once on a project that had the most wonderful GUI testing framework. You
would start the application, hit the record button on the GUI tester, and it would pro-
ceed to record all the button clicks and mouse events the user performed while using
the application. Further, the framework allowed testers to make assertions about
things they would like to see on the screen – like the color of a given widget, or the
visibility of a given dialog. This framework was easy to use and made writing cus-
tomer tests very simple and convenient.

This testing framework’s greatest asset (its ease of use) was also its greatest liabil-
ity. Developers stopped writing unit tests for their code because it was easier to use
the GUI tester and record what they wanted to see happen on screen.

After a couple months of this, the team started to notice the build time was steadily
creeping upwards. It turns out that the accumulation of all these GUI tests was having
a very significant impact on the build time (each GUI test required restarting the ap-
plication in a clean state). Our once light quick build was now exceeding an hour in
duration.

When we write customer tests where a unit test would have been more appropriate,
we are not writing tests at the appropriate architectural layer. For instance, we should
avoid writing persistence tests in the presentation and domain layer. Put persistence

18 Jonathan Rasmusson

tests where they belong – in the persistence layer. This does not mean that we never
write tests that span architectural layers. It just means that we do not want the bulk of
these tests outside the level they are directed towards. Having a nicely layered archi-
tecture and writing focused tests at these layers goes a long way to producing a qual-
ity product while helping us keep our build time in check.

3.4 Network Intensive Tests

As Martin Fowler aptly reminds us, the first thing he recommends to clients who are
building distributed applications is not to build distributed applications. Martin lists a
variety of reasons for this, but the most important for the purposes of long build times
is performance.

In the earlier stages of a project, when there are few tests that include network
calls, the impact of calling a remote process on another machine (i.e. a database
query) is relatively small. Indeed many small projects can quite regularly include
network calls in their unit tests with impunity and not notice a significant impact on
build times.

Large projects however, can not afford this luxury. There eventually comes a point
on a large project where the impact of the unit tests chatting with remote services does
begin to negatively affect the team’s ability to continuously integrate.

If you are curious about how much of your build time is spent talking to network
services fire up your favorite profiling tool and note which classes your build is
spending most of its time in.

For those of you building J2EE applications, you may be surprised how much time
is actually spent in java.io.Socket. On one project we discovered we spent as much as
94% of our unit test build time in this single class. This highlighted for us where most
of our build time was being spent – chatting with the database across the network.

So what types of options do we have to minimize our network calls? Firstly, we
can ensure that our tests are written at the appropriate architectural layer as discussed
previously. Secondly, we can begin looking for ways to minimize the number of dis-
tributed network calls.

For example, a feature supported by platforms like .NET (and its respective data-
base framework ADO.NET) is the ability to work with disconnected DataSets.
ADO.NET allows us to store what looks like the result set from a database call locally
on disk. This way when testing our code, we can load locally saved DataSets instead
of making a remote call and fetching a new one.

With techniques like locally stored DataSets, we are avoiding the network by cach-
ing test data and results locally. Developers have been doing this for some time, al-
though now it is nice to see the languages and frameworks providing native support
for these features.

Other options include setting up databases locally on each developer’s machine –
thus eliminating the network call outright. If vendor specific database features are not
included in the application, teams have also had success running fast in-memory data-
bases locally and running the full production type database on their build boxes.

The rule of thumb with distributed network calls is to minimize them. I am not ad-
vocating not writing tests that communicate with databases and other remote services.
When in doubt, write the test and worry about the build time later. For many smaller
projects this will not even be an issue. For larger projects however, the importance of

Long Build Trouble Shooting Guide 19

a layered architecture with properly focused tests minimizing network calls becomes
critical in keeping the build time reasonable.

3.5 Stubs and Mocks

Periodically, we are forced to use objects not directly related to the things we want to
test. If these objects are expensive to create, their accumulated use will have a nega-
tive impact on our build time. Stubs and mocks objects can help us keep our tests
focused and not necessarily rely on these expensive objects.

For the purposes of this article, I will define a stub as an object that stands in place
of the real object for testing convenience (i.e. a database connection stub or message
queue stub). Mocks are often used in a similar context to stubs, and there is often
confusion between the two terms. One definition of a mock object is one that records
state as it is being used in place of the real domain object. Testers can then query the
mock and make various assertions regarding its state [Freeman].

While I have used mocks in the past, I have found stubs are more useful when re-
moving external dependencies from my tests (which is my primary motivation when
tackling long builds) and will hence forth focus on stubs.

One useful place for a stub is when the application needs to remove a problematic
dependency on a service during testing. My colleague David Rice gives a nice exam-
ple of a pattern solving this problem called Service Stub [Fowler]. In this pattern,
David describes the frustration developers feel when writing tests against enterprise
systems that are slow, problematic and unreliable. To remove the dependency, David
recommends creating a Separated Interface [Fowler] so developers can have one
implementation that calls the real service and one that is only a stub. Developers can
switch between the two declaratively using a pattern like Plugin [Fowler].

Once the tests are no longer dependent on the service, continuous integration can
proceed much more reliably, and the build time is reduced. The advantage of a lay-
ered architecture is that inserting stubbed out interfaces like this is relatively easy.
Developers are not sitting around waiting for the external services beyond their con-
trol to come back on-line and they can avoid putting short term hacks into the code to
work as temporary work a rounds.

3.6 Break Application into Sub-domains

One way of turning long running builds into faster ones is to reduce the size of the
code base. This can be done by trying to see if there are any sub-systems, or shared
kernels as Eric Evans calls them, that can be extracted from the main code base and
made their own [Evans].

Not only does breaking large code bases into smaller pieces promote component
reuse and module design, it reduces the amount of code and tests that need to be exe-
cuted for the module under change.

Before breaking up a code base into shared domains, teams must ensure their code
base is receptive to this type of extraction. Basic OO practices like encapsulation,
high cohesion and loose coupling come into play here. Classes must also be correctly
packaged, and not have any unnecessary external dependencies. See Bob Martin’s
paper on how to apply the Dependency Inversion Principle (DIP) for advice on how to
structure your class packing and namespaces [Martin].

20 Jonathan Rasmusson

Before attempting to break the code into sub-domains, teams must also ask them-
selves if a shared kernel in sub-domain even exists. If a kernel is forced where one
does not exist, teams will find working with the code base cumbersome and awkward
– largely because they will find themselves constantly needing to make changes to
both code bases.

When faced with a large code base, consider breaking it into smaller pieces. If exe-
cuted correctly, you may be able to reduce the build time and improve the design of
your application simultaneously.

3.7 Run Tests in Parallel

If long running unit tests are the sole cause of a team’s long running build, running
the tests in parallel may save the team build time. This technique involves breaking
the unit tests up and running them concurrently with other unit tests.

I have seen some teams modify their builds so that all the tests run concurrently in
separate threads on the same build box (they were fortunate enough to have access to
a Sun E10K). Those who have access to less powerful machines may opt to break up
the tests and run them on multiple build boxes concurrently.

While breaking up the build along these lines is a reasonable start for reducing the
build time, this technique will only take you so far. If you still have loads of devel-
opment, and the project is not near completion, I strongly recommend teams look at
the root cause of why their builds are taking so long, and apply solutions described
within this paper and others.

3.8 Serialize the Check-in Process

Sometimes despite our best efforts, at the end of the day we still have builds that take
longer than we would like. There is nothing worse than trying to make a high pressure
deadline and not being able to check-in your code because the build is broken. Not
only are you prevented from checking in your code, but everyone else on the team
with changes is also held up.

One way of minimizing the chances of breaking the build and avoiding all integra-
tion conflicts, is to serialize the check-in process. By serialize I mean only one party
checks in code at a time. This is different from the more normal free flowing practice
whereby any developer can optimistically check-in as soon as they have run the build
locally and all tests pass. By strictly controlling the manner in which team members
can check-in code, we greatly reduce the possibility of the build breaking.

Note this technique does nothing to reduce our build time. Instead, it manages the
impact of the long build time on the team by ensuring the build never breaks.

A list or queue is usually sufficient to keep track of who is next in line to check-in
in. One team I worked with had a token they passed around indicating who had check-
in in privileges. As soon as “Billy Bass” the singing fish broke into a rousing rendi-
tion of “Don’t Worry Be Happy” you knew that someone had just successfully inte-
grated their changes in to the system and the token was passed to the next in line.

While I am not a big fan of check-in serialization, it can serve as a stop gap until a
more permanent solution can be applied to fixing the root cause - the long running
build itself. Slowly applying some of the techniques described earlier can eventually
bring long running builds down to more reasonable levels. Each team will have to ask

Long Build Trouble Shooting Guide 21

themselves if the loss of time due to serializing the check-in in process, outweighs the
loss of time spent fixing broken builds.

4 Summary

Long build times prevent teams from receiving the timely feedback and should be
avoided at all costs. While projects with large code bases are usually more susceptible
to long builds, small projects can be negatively affected if they are not vigilant. Builds
exceeding ten minutes in length must be monitored closely. By focusing on those
areas of the build that take the longest (usually automated tests) and applying tech-
niques described herein, long builds can be brought down to more manageable times.

Acknowledgements

This article would not have been possible without the help and support of many peo-
ple. I would like to thank Owen Rogers, Jason Yip, Brad Marlborough, Joe Walnes,
Martin Fowler, Kerry Todyruik, and Tannis Rasmusson.

About the Author

Jonathan Rasmusson is a Computer Engineer with ThoughtWorks Canada. He enjoys
building enterprise applications, and searching for better ways to write software. Ar-
eas of interest include Agile development methodologies and exploring the very hu-
man side of software development. He received a BS in Electrical Engineering and a
MS in Computer Engineering from the University of Alberta, Canada. Jonathan Ras-
musson can be reached at ThoughtWorks, Ave SW, floor, Calgary, Al-
berta, Canada T2R 0B4; jrasmusson@thoughtworks.com

References

1.
2.
3.

4.

5.

E. Evans, Domain Driven Design, Addison-Wesley, 2003.
M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley, 2003.
S. Freeman, T. Mackinnon, P. Craig, Endo-Testing : Unit Testing with Mock Objects, Ex-
treme Programming Examined, Addison-Wesley, 2001.
R. Martin, Agile Software Development – Principles, Patterns and Practices, Prentice
Hall, 2003.
http://c2.com/cgi/wiki?MooresLaw

Acceptance Testing vs. Unit Testing:

A Developer’s Perspective

R. Owen Rogers

ThoughtWorks Technologies (India) Pvt Ltd.
Diamond District, Airport Road

Bangalore, India
orogers@thoughtworks.com

http://www.thoughtworks.com

Abstract. Acceptance testing is one of the most important XP practices and yet
it is often neglected or perceived as “too hard”. But what if acceptance tests were
like unit tests? This paper provides distilled practical advice in a context familiar
to XP developers describing how you can start getting acceptance test-infected
on your project.

1 Introduction

Extreme Programming is one of the few software development methodologies that
speaks directly to the developer. It provides a comprehensive set of best development
practices and a framework for implementing them. As a result, it is often developers
that push for the introduction of XP into their workplace.

Many of the best practices advocated by Extreme Programming, such as test-driven
development, refactoring, and continuous integration can be practiced by individual
developers – even if the whole team or the team managers have not bought into the idea
of XP. Because these practices bring direct, tangible benefit to the developers that apply
them, they are often the first things to be implemented within a budding XP team.

However other XP practices, such as small releases, user stories, and acceptance
testing are typically harder to get going because they require buy-in and participation
from people in a variety of roles both inside and outside of the team. These practices
tend to require team members to fundamentally change the way that they work, the
roles they play and how they interact with the team. Acceptance testing is especially
challenging because of the size and the scope of its impact on all members of the team
(to say nothing of the technical challenges it presents).

As a result, acceptance testing is something that is often neglected on an XP project.
It is perceived as just being too hard to get right. However, leaving it out is often to the
detriment of the team. The goal of this paper therefore is to offer guidance on how to
get acceptance testing going on your project. By drawing comparisons with unit testing,
this paper seeks to provide a context that should be familiar to developers, the typical
champions of XP on a project team. The differences between these two techniques are
illuminating and the implications of those differences provide considerable insight into
what acceptance tests are and how they can be implemented on your team.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 22–31, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Acceptance Testing vs. Unit Testing: A Developer’s Perspective 23

2 So, What Are Acceptance Tests?

Acceptance testing, although one of the core XP practices, is subject to a lot of con-
fusion and there are a variety of different interpretations circulating as to exactly what
acceptance tests are and are not[1]. So, to be clear on what I mean by acceptance tests,
I will use the following simple definition:

Acceptance tests are tests owned and defined by the customer to verify that a
story is complete and correct.

To underscore the central role of the customer in defining these tests, acceptance
tests are also known as customer tests[8]. As such, acceptance tests are a key mecha-
nism for verifying that the system functions in accordance with the customer’s expec-
tations. They increase the overall confidence of the team that the system continues to
operate correctly as it grows and evolves. If the acceptance tests are automated then
they can be an excellent means of performing regression testing.

Although primarily perceived as a means of verification, acceptance tests are, equally,
if not more importantly, an effective medium of communication. They play a central role
in structuring conversation between the customer and the developers. The acceptance
tests become a manifestation of the team’s common domain language. As programmers
are charged with the task of making the tests pass as the primary criterion for assess-
ing a story’s completion, acceptance tests ensure an ongoing dialog with the customer
for clarification and refinement of the requirements. The acceptance tests become an
absolute, indisputable metric for assessing a story’s “done-ness”.

With standard requirements documents, it is all too easy for the developer to give
them a quick five-minute once-over and assume that the requirements are understood
(despite the fact that the analyst may have spent hours writing them up). Acceptance
tests, however, cannot be dismissed so easily. They ensure that holes in the program-
mer’s tacit knowledge show up pretty quickly. Conversely, they tend to expose flaws in
the customer’s thinking as well. With a written document, it is easy for the customer to
be vague around requirements that they have not fully thought through or do not have a
clear design for. The process of designing the tests is can be instrumental in helping the
customer think through the requirements. The acceptance tests also end up becoming
documentation for the system being built[2]. However, unlike standard documentation,
acceptance tests are always kept in sync with the system because as soon as a test no
longer accurately reflects the system, the test will break and it is the priority of the team
to fix it.

If the acceptance tests are written prior to the iteration planning game, they provide
a host of additional benefits. For one, they simplify and improve the accuracy of esti-
mation as the programmers have a clearer idea of what they are expected to implement
(they can also more easily factor in the time spent getting the acceptance tests to pass).
As the tests are more granular than the stories (there will typically be more than one
test per story covering both positive and negative cases), they provide a good guide for
determining how to split large stories. To ensure that negative test cases are considered,
the customer can benefit from having assistance from QA in writing the tests; and the
team as a whole benefits from having QA feedback early in the process.

24 R. Owen Rogers

3 Acceptance Tests Are Kind of Like Unit Tests, Right?

If you remove the customer from the equation and let the developers write the tests
themselves, it is easy to make the inference that acceptance tests are just another type
of functional test. After all, the customer could just dictate the requirements to the
developer, and the developer could go off and write the tests on the customer’s behalf1.

As such, if the programmers are writing the tests, could they not be built using a
xUnit framework? It is a tool that the programmers are already familiar with for writing
unit tests. It’s free and doesn’t require the overhead of some heavyweight, regression
testing tool. After all, like unit tests, acceptance tests need to be automated using en-
coded assertions to verify expected results. Acceptance tests need to set up and tear
down the environment before and after every test, which is functionality that could be
easily represented in a unit test fixture. And like unit tests, much of the power of accep-
tance tests derives from writing the tests first, prior to implementation. So, given these
similarities, what’s the difference anyway?

3.1 Difference: Customers Don’t Code

First and foremost, acceptance tests are written by the customer. Acceptance tests are a
key deliverable from the customer to the team. As such, they need to be written in a lan-
guage that the customer can easily understand. So, what kind of language is appropriate
for writing acceptance tests?

As developers, we are accustomed to writing tests directly using a pre-existing pro-
gramming language. For unit tests, this is invariably the same programming language
that we use to develop the software. However, programming languages are generally not
well understood by the customer – nor are they necessarily the best means of express-
ing requirements. For the customer to feel comfortable writing and taking ownership
of the tests (it is hard enough as it is just convincing the customer that writing tests is
something that they should do in the first place), the testing language should not require
much of a learning curve.

Natural language is typically the customer’s default preference. In addition to being
familiar to both the customer and the team, natural language is extremely flexible and
expressive. However, the same shortcomings that make natural language inappropriate
for software development also make it unsuitable for writing acceptance tests:

Natural language is too vague – it lacks the precision and clarity required for defin-
ing tests.
Natural language is too verbose – it requires a lot of words to express simple things.
The complex grammar that structures written communication is largely unneces-
sary for testing.

What is required instead is a requirements definition language that combines the
comfort and flexibility of natural language with the structure and precision of a context-
free grammar[6]. This language should be developed collaboratively by the customer

1 Incidentally, this is a common acceptance testing anti-pattern known as “Lunatics Running the
Asylum” [9].

Acceptance Testing vs. Unit Testing: A Developer’s Perspective 25

in concert with the rest of the team and should be a manifestation of the team’s domain
knowledge. Designing such a language sounds like a daunting task; however, it is not
as hard as you might think.

The easiest thing to do is to let the language start simple and to allow the customer
to grow and evolve it over time. However, it is essential that the language is not dictated
to the customer2. For the customer to feel ownership over it, she should build it herself,
with the consensus of the team. The basic considerations for the language are that it
should be:

Simple enough to be easily understood
Generic enough to capture requirements
Abstract enough to be maintainable

The last consideration regarding abstraction can be accomplished by ensuring that
the language is couched in the vocabulary of the domain. It should be free of implemen-
tation details, focusing only on the business requirements. To demonstrate what such a
requirements definition language could look like, here are two sample acceptance tests.
The first test is a simple step-based acceptance test for the authentication pages in a web
application:

Open: Login Page
Enter username: Owen
Enter password:password
Click: Login
Verify page: Login Failed Page

Here is part of a more advanced table-based acceptance test for a back-end leasing
application:

Action
Navigate
Enter
Check
Check
Check

Target
Create Quote
Agreement
Pay off Quote Date
Payoff Quote Income Method
Billto -Name

Value

DFL-1
01/04/2004
Implicit
ORG1

There are a few things to note from these acceptance tests. First, they are easily read-
able and understandable by someone with no technical knowledge but with a reasonably
good understanding of the domain and of the application being built. The grammar and
structure of the tests is extremely simple. Each line corresponds to a single action or
verification, and there are no looping constructs or conditionals or extra syntax for the
customer to have to understand. Second, the tests are constructed from a set of simple,

There is usually a temptation amongst QA and developers to use pre-existing scripting lan-
guages as the basis for the requirements definition language. However, this tends to be a mis-
take [9], as scripting languages are far more complex than is required. This complexity only
serves to overwhelm the customer and undermine her sense of ownership of the testing lan-
guage.

2

26 R. Owen Rogers

reusable keywords that can be recombined in different ways with different parameters
to produce new tests. Third, the tests are largely abstracted from the implementation, so
they aren’t vulnerable to superficial changes in the user interface.

Customers are often accustomed to playing the role of an analyst and are familiar
with writing detailed requirements documents. These documents are usually a good
place to start identifying potential acceptance tests. Most requirements documents have
a section that lists the success criteria for a story. For developers, these criteria are
almost always the most useful part of the document because they clearly explain what
needs to be done and how to know whether it has been done correctly. These criteria
also come the closest to representing potential acceptance tests. Using existing artefacts
as the basis for defining acceptance tests is a great way to reassure the customer that
writing tests is not that different than what they currently do. In fact, the customer
can do less work because the rest of the requirements document can be replaced by
conversation.

While getting started with writing acceptance tests can be intimidating, presenting
some example acceptance tests is a great way to demonstrate how simple it can be3. Get
your customer excited about the idea, start small, try it out and evolve it as you go.

3.2 Difference: ATs Need an Implementation

As unit tests are implemented in the same programming language as the application
under test, they can call directly into the code that they are testing. A unit test can
instantiate the class under test, invoke methods on it and validate its responses. The
compiler or interpreter that comes with the language implementation handles the task
of converting your test code into a format that can be executed in your unit test runner.

Acceptance tests, on the other hand, don’t do anything on their own. They are simply
an abstract specification of what needs to be done. In order for the tests to interact with
the system and verify its behaviour, some code needs to be written to handle this. Hence,
there is a separation between the definition of an acceptance test and its implementation.
The customer writes the acceptance test definition, but the implementation will need to
be written by developers or by QA.

In the example acceptance tests shown above, each of the keywords in the tests
needs to map onto some code that actually acts on the application. The simplest ap-
proach is to have each keyword map directly onto a method in an acceptance test fixture
class. The parameters modifying the keyword in the test definition map onto the param-
eters passed into the fixture method. Figure 1 demonstrates how this mapping could
work.

Notice that there needs to be some sort of interpreter in between the test definition
and its implementation. This interpreter is responsible for parsing each line in the test
definition and invoking the corresponding method in the test implementation using the
specified parameters. Building a custom interpreter is not as difficult as it might seem.
The Pragmatic Programmer provides some excellent examples showingjust how simple
this can be[10].

For more sample acceptance tests, take a look at documentation for FIT[4] or at the C2
Wiki [1].

3

Acceptance Testing vs. Unit Testing: A Developer’s Perspective 27

Fig. 1. Mapping an acceptance test definition onto its implementation.

There are also some generic acceptance testing frameworks, like FIT[4] or FAT[3],
that can handle this mapping for you. FIT is designed to map generic table-based test
definitions onto java classes, whereas FAT is designed more for procedural tests and
supports .NET test implementations.

3.3 Difference: Customers Don’t Use an IDE

As developers, we are generally accustomed to a specialised environment for devel-
oping software. This environment enables us to easily perform common programming
tasks such as editing, compiling, and debugging source code. This same IDE can also
be used for composing our unit tests.

Customers, however, don’t use an IDE. Now while you can teach them to use an
IDE, which is something that I have tried on a previous project4, it is advisable to
enable customers to use a tool that they are familiar with (such as Word or Excel or
a text editor) or that is easily accessible to them (such as a Wiki or web application).
Ideally it should be possible to not only write, but also save and execute tests from
within this environment. The customer should be capable of going in and editing or
executing any of the existing tests on her own at any point. As such, it may require
developing a VBA plug-in for integration with Microsoft Office applications or some
small form- or web-based application to help the customer out with these tasks.

As an alternative to using customer tools like Word or Excel, there are a few generic
acceptance testing environments that provide this basic functionality. The best known
frameworks are FIT and FitNesse[5] that both use a Wiki interface for the customer
to enter and execute the tests. These tend to work well for most acceptance testing re-
quirements, especially if the team is already using a Wiki as its information repository;
however they provide relatively little assistance in helping the customer to write and
manage their tests. JAccept[7] by RoleModel Software provides a Swing UI to help the

After pairing with the customer for a few iterations to write acceptance test definitions directly
in C#, the customer announced that it didn’t look so hard and decided to start doing it herself.
The problem, as we discovered, with this approach was that after defining the acceptance tests,
the customer would never look at them again and wouldn’t be able to edit them as they were
in compiled code. The customer also had no direct way of running the tests.

4

28 R. Owen Rogers

customer create and execute tests. FAT, which is a bit like FIT, provides a basic web
interface for test creation and execution. All of these tools are quite simple, so they are
relatively easy for the customer to learn to use; however, this simplicity means that it is
generally more laborious for the customer to define and maintain the tests than if they
were using a full-blown IDE.

3.4 Difference: ATs Don’t Go Quietly

The purpose of writing unit tests is to verify that the unit operates in accordance with
the developer’s expectations. As developers can see both the test and the code it is test-
ing, it is easy for them to verify that the test and the code are doing the right thing. All
verification of expected behaviour should be captured in code through assertions state-
ments. As a result, unit tests should run silently; there should be no visible output when
executing the tests, unless a test happens to fail. Including output from successfully
executing tests is unnecessary and it distracts attention away from failing tests.

Acceptance tests, on the other hand, are a black box to the customer. The customer
has no direct way of verifying that the acceptance test has been implemented in ac-
cordance with their expectations. The implementation could be doing nothing for all
the customer knows. As the purpose of acceptance testing is to instil confidence in the
customer that the system is implemented correctly, the acceptance testing framework
needs to provide a way for the person running the test to see what is going on. This may
involve displaying a browser window or the application user interface showing the test
navigating through the test scenario. If the acceptance tests do not test at the level of the
UI, then some form of log data is required for the customer to follow what is going on.

Another simpler approach for instilling confidence is to encourage the customer to
regularly throw “spanners” into the works[9]. A spanner is deliberately erroneous test
data. Recommend that the customer should periodically modify implemented accep-
tance tests with faulty data and verify that the system fails in the way they expect.

3.5 Difference: Failing ATs Are OK

Integrated unit tests must always be in a passing state. This is a key requirement for XP
teams and a fundamental part of the continuous integration process. If there are failing
unit tests, it is of primary importance for the team to fix them as quickly as possible.

Acceptance tests, like unit tests, should be written and executed before starting any
implementation. However, while unit tests will typically go from red to green in a few
minutes, acceptance tests might not reach a passing state a few days. Failing acceptance
tests must not be a barrier to integration if the team is to be able to integrate continu-
ously. Hence, over the course of the iteration, there will be some integrated partially-
implemented acceptance tests. The key goal for the team is to ensure that all acceptance
tests are passing by the end of the iteration. If all acceptance tests are not passing by
iteration end, it means that there are some stories that are still incomplete.

As some acceptance tests failures are legitimate, it is important to be able to distin-
guish which of the tests are failing because their story hasn’t been fully implemented
and which failing tests signal genuine problems. A typical strategy for dealing with this
is to create a facility that enables you to mark which tests are complete and ready to

Acceptance Testing vs. Unit Testing: A Developer’s Perspective 29

be released. It is insufficient to just skip the incomplete acceptance tests, as showing
the results of these tests is still important for the customer so that she can track the
progress of development. However, these failures need to be clearly distinguished from
real failures.

3.6 Difference: ATs Have Serious Side Effects

Unit tests are designed to be simple. Each unit test typically tests a single simple interac-
tion with the class under test. This simplicity is necessary when practicing Test-Driven
Development (TDD) both to drive the design of the code and to ensure that it is fully
tested. Unit tests also are designed to be orthogonal by testing each unit in isolation.
This means that problems in a particular unit will cause only the tests associated with
that unit to fail. This helps in quickly identifying the cause of the failure and in main-
taining the tests.

Acceptance tests, on the other hand, are written at the level of a story. Each test
describes a particular scenario in which a user interacts with the system and defines how
the system should respond. As they are written at such a high-level, acceptance tests
tend to be end-to-end. They test the interaction of the different layers in the system and
that the system correctly interoperates with its external dependencies. This means that
acceptance tests require the external systems to be accessible and operating correctly.

Because of these external dependencies, acceptance tests can require considerable
work to set up the environment properly before test execution and then clean it up when
the test is done. For unit tests, the set up and tear down methods in a test fixture are
primarily a vehicle for code reuse between the tests, and are generally quite simple.
However, for acceptance tests, the set up and tear down code can be very complex and
may need to be shared across multiple acceptance test fixtures.

This dependency on external systems can also create concurrency issues when run-
ning the tests simultaneously on different machines. For some dependencies, such as
databases, concurrency issues can be avoided by ensuring that every developer work-
station (and the integration server) has separate, local copies of the external systems.
However, for any external system outside of the control of the development team, such
as legacy systems or third party web services, this can be a serious bottleneck. If con-
currency becomes a problem, some sort of token system may be required to allow syn-
chronised access to external systems.

Because of their coarse granularity, there tends to be a lot of overlap between dif-
ferent acceptance tests. This overlap means that failures in one part of the system can
cause a slew of tests to break. Going through and diagnosing the problem can be diffi-
cult, especially as acceptance tests are usually slow to run and the problems may have
percolated up through many layers in the system. One common problem that we have
faced is failures due to unreliable external systems. Instead of trying to look through
a host of failed acceptance test to determine the cause of the failure, try writing some
very fine grained integration tests that test the interface to the external system directly.
These will immediately tell you if the external system is up and working properly, and
if not, where exactly the problem is.

This overlap between acceptance tests can cause maintenance problems as well.
Changes to the functionality in one part of the system could require updating a large

30 R. Owen Rogers

number of tests. Identifying which tests to update and verifying their correctness can be
quite an arduous task. The easiest way around this problem is to apply the same prin-
ciples that we use as programmers and extract that duplication into a single, common
place. This typically involves discussing the duplication with the customer and agreeing
to add some new keyword to the language that represents the encapsulated test code (a
common initial target is ‘Login’). The customer may request some facility to see what
test steps are encapsulated by the new keyword.

The overlap between acceptance tests is necessitated by the fact that areas of func-
tionality within the system cannot be accessed directly. It is often necessary to pass
through numerous intermediary screens setting up data along the way. Redundantly
testing this functionality through the user interface of the application can be extremely
slow. Providing hooks into the application that can invoke this functionality directly can
greatly increase the speed and simplify the maintenance of complex acceptance tests.

4 Conclusion

By exploring the differences between unit testing and acceptance testing, I have iden-
tified some of the key features of acceptance tests and provided some practical advice
for getting started with acceptance testing on your project:

Communicate the importance of acceptance testing to your team, focussing on con-
vincing your customer;
Work with the customer to investigate potential sources of acceptance tests in your
environment and begin to work towards defining a common domain language for
defining requirements;
Help the customer to write a couple of simple acceptance tests for new stories and
try implementing them as you write the story;
Investigate available acceptance testing frameworks like FIT or FAT or spike build-
ing your own framework;
Discuss with the customer the best environment for them to use to write and execute
the tests and develop a tool;
Integrate the acceptance tests into your build process, but keep them in a separate
test package so that if they fail, they won’t break your build.

The greatest hurdle to acceptance testing is getting started, but by following the
steps above you too can become acceptance test-infected.

Acknowledgements

Thanks go out to Rob Styles, who helped me assemble this material for the original
presentation at XPDay in London (Dec. 2003), and to all the people who reviewed this
paper and gave me feedback.

Acceptance Testing vs. Unit Testing: A Developer’s Perspective 31

References

1.
2.

3.
4.
5.
6.
7.
8.

9.

10.

Various authors. http://c2.com/cgi/wiki?AcceptanceTest.

Auer, K, Miller, R. Extreme Programming Applied: Playing To Win. Addison-Wesley.
(2002)
FAT Acceptance Testing Framework. http://sourceforge.net/projects/fat/.

FIT Acceptance Testing Framework. http://fit.c2.com/.

FitNesse Acceptance Testing Framework. http://www.fitnesse.org/.

Fowler, M. TestingLanguage. http://martinfowler.com/bliki/TestingLanguage.html.

JAccept. http://www.roywmiller.com/papers/acceptanceTesting.htm

Jeffries, R. What is Extreme Programming.
http://www.xprogramming.com/xpmag/whatisXP.htm.

Hanly, S. BuildYourOwnAcceptanceTestFramework. Presentation from XPDay (London)
http://www.xpday.net/scripts/view.pl/Xpday2003/Program. (2003)
Hunt, A., Thomas, D. The Pragmatic Programmer: From Journeyman to Master. Addison-
Wesley (2000)

The Role of Process Measurement

in Test-Driven Development

Yihong Wang and Hakan Erdogmus

Software Engineering Group, Institute for Information Technology,
National Research Council of Canada

Montreal Road, Building M50, Ottawa, Ontario, Canada K1A 0R6
{hakan.erdogmus,yihong.wang}@nrc-cnrc.gc.ca

Abstract. Test-Driven Development (TDD) is a coding technique in which pro-
grammers write unit tests before writing or revising production code. We pre-
sent a process measurement approach for TDD that relies on the analysis of
fine-grained data collected during coding activities. This data is mined to pro-
duce abstractions regarding programmers’ work patterns. Programmers, instruc-
tors, and coaches receive concrete feedback by visualizing these abstractions.
Process measurement has the potential to accelerate the learning of TDD, en-
hance its effectiveness, aid in its empirical evaluation, and support project track-
ing.

1 Introduction

Test-Driven Development (TDD) [1-3] is a coding technique that relies on writing
tests before implementation. The tests are written by the programmer using a unit
testing framework such as JUnit [4]. Unit tests are incrementally added and all tests
are periodically executed. Consequently, the program is regression tested as it is being
developed.

This paper presents an unobtrusive approach for improving the effectiveness of
TDD based on an analysis of programmers’ coding and testing activities. First, we
formalize the TDD process as a sequence of programming cycles, called a cycle trace.

Cycle traces are visualized in different ways to obtain high-level information about the
work patterns of programmers. This information in turn supports personal process
improvement, education, empirical evaluation, and project tracking.

A single programming cycle involves writing unit tests and production code, and
ends with a successful execution of tests. The formalization of a programming cycle
allows a high-level representation of the programmer’s coding and testing activities to
be extracted from a record of low-level actions. These actions are captured using a
third-party tool [5] that is integrated into the development environment. The logged
actions track tool usage (JUnit) and changes to project resources; they are time-
stamped and augmented with basic code metrics. Once the cycle trace is extracted in
tabular form, further abstractions are produced that zoom in on different aspects of the
process followed by the programmer. These abstractions are presented as charts,
which are visualized and interpreted.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 32–42, 2004.

© Springer-Verlag Berlin Heidelberg 2004

The Role of Process Measurement in Test-Driven Development 33

Section 2 elaborates on the motivation of the work. Section 3 presents the approach.
Section 4 presents the tabular representation of a cycle trace and discusses the inter-
pretation of various charts derived from this representation. Finally, Section 5 presents
conclusions and discusses future work.

2 Motivation

Inevitably, programmers with different experience levels, preferences, reasoning proc-
esses, and established work patterns will apply TDD in different ways. With meaning-
ful feedback, programmers can correlate any changes in productivity and code quality
with the way the technique is being applied. In turn, the awareness of the process fol-
lowed helps programmers discover rhythms and patterns that work best in a given
context. In addition, process data can provide useful insight regarding the status of the
project, both in terms of progress and in terms of product quality. Johnson et al. [6]
stress the importance of process measurement in personal process improvement and
project tracking, but not specifically in the context of TDD.

Concrete, measurement-based feedback is also important from a pedagogical point
of view. Although students who are exposed to TDD find it useful [7, 8] and obtain
better productivity scores [8] and course grades [9], many students find TDD counter-
intuitive [10] and a majority find it more difficult to apply compared to conventional
programming. In addition, students with higher skill ratings are able to leverage TDD
better, and achieve more dramatic productivity improvements compared to students
with lower skill ratings [8]. These findings imply that TDD may initially appear coun-
terintuitive to novices and the effective application of this technique demands both
discipline and mastery. Therefore, coaches and instructors can take advantage of proc-
ess measurement to teach TDD to newcomers and to advance the skill level of veter-
ans.

Discrepancies in empirical findings [8, 9, 11-14] [12] constitute a significant
impediment to drawing generalized conclusions, and consequently, the findings
remain valid only in the contexts in which they were produced. While several factors
may account for the discrepancies (such as differences in populations, experiment
tasks, teaching methods and materials, the technique with which TDD is compared),
all of the studies mentioned suffer from a common pitfall of empirical software
engineering: process conformance [8]. Process conformance is a threat to construct
validity [15] related to the ability and willingness of subjects to follow a prescribed
process. How do we know that the subjects apply TDD in the same way, or in the
manner expected, both within and across studies? Although it is impossible to address
process conformance in a fully objective manner, measurement should reduce the
construct threat that it poses. Researchers often rely on self-assessment through
questionnaires to gauge process conformance. Measurement can complement self-
assessment by allowing the comparison of the subjects’ process measures with
idealized patterns. In addition, measurement is useful in assessing maturation
(achievement of sufficient experience in the investigated technique), which is a
concern in TDD studies: productivity and quality measures taken will be more
meaningful and valid if the subjects gain reasonable mastery beforehand. Therefore

34 Yihong Wang and Hakan Erdogmus

reasonable mastery beforehand. Therefore process measurement can play an important
role in empirical evaluation, in terms of both enhancing the validity of the results and
facilitating the comparison and aggregation of findings from multiple studies.

3 Approach

This section explains the process measurement approach taken. Section 3.1 formalizes
the TDD process in terms of a cycle trace. Section 3.2 defines the high-level architec-
ture for data collection and analysis of our prototype implementation. This architecture
relies on a third-party tool for data collection. Section 3.3 explains how to mine the
process data collected to recognize cycle traces.

3.1 Formalization of TDD Process

We represent the TDD process as a sequence of programming cycles, called a cycle

trace. Each programming cycle in turn is composed of more elementary blocks repre-
senting three distinct types of activities. A TestCode block is defined as a contiguous
sequence of coding activities that involves only writing or revising tests. A TestCode
block is typically followed by a ProductionCode block, which is a contiguous se-
quence of activities that involves only writing or revising production code. The Test-
Code-ProductionCode sub-cycle can be repeated several times, but usually a Produc-
tionCode block is immediately followed by the execution of a series of tests. A
contiguous sequence of test executions is a TestExecution block. A TestExecution
block that is (100%) successful (represented by a green bar in JUnit) indicates the end
of a programming cycle. An unsuccessful, or failing, TestExecution block (repre-
sented by a red bar in JUnit) marks the end of a sub-cycle, which we call a CycleEle-
ment. Thus, a single programming cycle is composed of several CycleElements, the
last of which ends with a successful TestExecution block.

Formally, a cycle trace is defined by the following regular expressions:

Here differentiates between failing and successful TestExecution
blocks and CycleElements. Note that the regular expressions describe a generic proc-
ess that is not strictly TDD-compliant. For example, they recognize variant cycles
where the programmer writes the tests after the production code. Such non-compliant
cycles should be occasionally expected in TDD, but they are normally not persistent if
TDD is faithfully applied. The regular expression pattern also recognizes more legiti-
mate variants such as pure refactoring [16] cycles during which the programmer does
not add new functionality, but improves the design by typically revising the test code
or the production code. Whereas the cycle trace of a faithful TDD programmer will
contain a large number of short cycles, the traditional programmer who follows a

The Role of Process Measurement in Test-Driven Development 35

waterfall-like process will have a cycle trace that contains a fewer number of long
cycles.

The formalization assumes that unproductive or dead-end cycles always conclude
with the restoration of a former stable state of the code. In a stable state, all tests must
run 100% successfully. Once a stable state is achieved, the programmer verifies this
condition, thereby delimiting an unproductive or dead-end cycle with a successful
TestExecution block.

3.2 Architecture for Data Collection and Analysis

To recognize cycle traces, we need to collect fine-grained data regarding the pro-
grammer’s coding and testing activities. For this purpose we chose Hackystat [5, 17],
a lightweight tool available from the University of Hawaii’s Collaborative Software
Development Laboratory. Hackystat client sensors are available for several develop-
ment environments including Eclipse [18]. Once the sensors are installed and config-
ured on the programmer’s computer, they work transparently in the background to
collect the data. The Hackystat sensor periodically sends the locally cached data to a
Hackystat server, where it is stored permanently and can be retrieved on demand in
XML form.

To generate a representation of the cycle trace for a given time period, the client
runs the analysis tool locally. The analysis tool downloads the associated logged data
from the Hackystat server and generates an Excel spreadsheet containing a tabular
representation of the client’s cycle trace as well as the associated charts.

3.3 Mining Hackystat Data

Hackystat sensors collect multiple types of data from the client. We take advantage of
the data types Activity, UnitTest and FileMetric. Hackystat logs changes to project
artifacts in Activity data. Unit test executions are logged in UnitTest data along with
the test results. FileMetric data contain static structural metrics on project artifacts.

Figure 1 shows how Hackystat data is aggregated to recognize programming cycles.
The blocks that make up the cycles (TestCode, ProductionCode and TestExecution
Block) are composed of a set of related cycle entries, where each cycle entry has a
duration (Active Time) and an associated project artifact (Active File). For TestCode
and ProductionCode blocks, the project artifact is obtained by cross-referencing the
test case names recorded in the Hackystat UnitTest data with the file names recorded
in the Hackystat Activity data. The project artifacts (i.e., test classes) of a TestExecu-
tion block are obtained from UnitTest data alone. The duration of the cycle entry is
estimated using Hackystat timestamps. When no Hackystat entries are logged for a
project artifact for a certain period of time (e.g., two minutes), the excess time is re-
corded as “Idle Time,” which is excluded from “Active Time” to account for interrup-
tions.

“T/P Ratio” tracks the amount of test code produced relative to the amount of
production code. This metric is calculated using the UnitTest and FileMetric data.
Since a cycle entry may affect the size of a project artifact, T/P Ratio is recomputed at
the end of each cycle based on the timestamp of the last modification from the

36 Yihong Wang and Hakan Erdogmus

of each cycle based on the timestamp of the last modification from the FileMetric

data.
The number of tests attempted and the number of tests passed from UnitTest data

together identify successful and failing test executions.

Fig. 1. Recognizing programming cycles using Hackystat data types.

Aggregation of cycle entries into blocks proceeds in a bottom-up fashion. Since test
executions delimit CycleElements, TestExecution blocks are formed first using Activ-

ity and UnitTest data types. If there is no Activity entry whose timestamp is between
the timestamps of two UnitTest entries, then the two UnitTest entries are grouped into
one TestExecution block; otherwise, they belong to different TestExecution blocks.
Once the TestExecution blocks are identified, remaining activities can be grouped into
ProductionCode and TestCode blocks by comparing their timestamps with the delimit-
ing timestamps of the TestExecution blocks. Finally CycleElements and Cycles are
constructed based on the sequencing of the blocks. The output of this procedure is
illustrated in the next section.

4 Analysis of Cycle Traces

In this section, we present the output of our prototype analysis tool for Eclipse [18],
called TestFirstGauge. We also show with several examples how the output can be
interpreted to support personal process improvement, learning, process conformance,
and project tracking. The data used in the examples are collected during various pro-
gramming tasks from an experienced programmer who was learning TDD. Section 4.1
explains the tabular representation of a cycle trace generated by the tool. Section 4.2
illustrates the analysis of cycle time and T/P Ratio using two different charts. Finally,
section 4.3 discusses testing effort analysis.

4.1 TDD Report

Figure 2 illustrates the cycle trace report generated by the TDD analysis tool.

The Role of Process Measurement in Test-Driven Development 37

Fig. 2. Sample TDD report.

The first column shows the cycle number. The second column gives the type of the
cycle entry, which depends on the block to which the cycle entry belongs. (The entries
labeled “JUnit Run” belong to TestExecution blocks.) The third column lists the pro-
ject artifacts associated with each cycle entry. For JUnit runs (TestExecution blocks),
the numbers of tests attempted and passed are given in the next column. The column
labeled “Active Time” gives the duration of the cycle entry (excluding idle time). Last
column provides the (cumulative) ratio of test code to production code. The total dura-
tion of each cycle is indicated in the row “Cycle Total”. Whereas Cycle 19 is a TDD
cycle, Cycle 100 is a non-TDD cycle because it begins with a ProductionCode rather
than a TestCode block.

4.2 Cycle Time and T/P Ratio Analysis

Figure 3 shows an example of the cycle active time chart. We can use this chart to
support learning, assess process conformance and support project tracking.

Ideally, with faithful application of TDD, the chart should have short cycles of
comparable length, representing a steady progress. Cycles from 40 to 100 are typical
and conform to the ideal pattern. The spikes towards the beginning (long cycles) are
possibly due to the initial TDD learning curve. The spikes towards the end correspond
to integration-related tasks during which TDD was not applicable.

With regard to project tracking, persistent long cycles could be indicative of design
complexities, which make adding new functionality difficult. Such patterns can be
used to identify opportunities for refactoring to improve the design.

Figure 4 depicts the cycle pattern associated with another programming task. The
x-axis denotes cumulative cycle time measured in minutes. Long cycles now appear as
large gaps between consecutive vertical bars, each of which marks the beginning of a
new cycle. In the middle section, the programmer performs a series of large refactor-

38 Yihong Wang and Hakan Erdogmus

ings. Towards the end, a steadier pattern is gradually reached as evidenced by increas-
ingly tightly spaced vertical bars. The height of each bar indicates the ratio of test
code to production code (T/P Ratio) at the end of the associated cycle. We see that
during the refactoring activity, the T/P Ratio increased: the programmer added more
tests most likely to better support the design changes. Towards the end, the T/P Ratio
gradually reverted back to its previous level.

Fig. 3. Cycle Active Time.

Fig. 4. Cycle Pattern with T/P Ratio.

The Role of Process Measurement in Test-Driven Development 39

4.3 Testing Effort Analysis

Analysis of testing effort is particularly useful for project tracking.
Figure 5 shows historical test code effort (bottom bars) relative to production code

effort (top bars) as a function of cycle number. Test execution time is excluded from
this analysis. Two explanations are possible for the absence of testing activity in the
middle section of the chart. The first explanation is that the programmer could have
neglected testing. In this case the chart can be used to look up the production code
classes associated with the middle cycles in the TDD report to identify sections of the
code as the focus of subsequent coverage analysis. The second explanation is that the
middle section corresponds to refactoring activities during which no tests were added
or modified. Again the TDD report can be analyzed further to verify this hypothesis.

Fig. 5. Testing effort.

4.4 Cycle Time Distribution

Beck states [2] (page 83) that his JUnit usage (minutes between successive JUnit runs)
has a particular U-shaped distribution. However, how often JUnit is run provides little
information about how quickly a TDD programmer completes a programming task
within a single cycle and how fine-grained the tasks are themselves. To gauge their
speed and the granularity of the incremental process followed, TDD programmers
should be more interested in the distribution of the duration of the programming cycles
than the distribution of time between successive JUnit runs.

Figure 6 illustrates the cycle time distribution for a typical TDD session. The chart
has been produced after the programmer has acquired experience with TDD. As ex-
pected with proper application of TDD, smaller cycles exhibit a higher frequency than
larger cycles. As the mastery of TDD increases, the programmer should get better at
task decomposition and follow an increasingly finer incremental process. Conse-
quently, the head of the distribution should get fatter while the tail thins out.

40 Yihong Wang and Hakan Erdogmus

Fig. 6. Cycle time distribution.

5 Conclusions

Measurement supports process improvement not only at project and organizational
levels, but also at a personal level. We presented an approach based on process meas-
urement to support Test-Driven Development, an incremental coding technique that
demands discipline. The goal of the approach is to:

increase the mastery of TDD by providing concrete visual feedback to program-
mers regarding their past work patterns and rate of progress,
facilitate teaching by allowing coaches to demonstrate target patterns and identify
slippages,
aid in project tracking by identifying sections of code that are candidates for closer
scrutiny, and
improve empirical evaluation by controlling process conformance.

At the centre of the approach is the concept of a programming cycle, which leads to
the formalization of the process underlying TDD. A tool then extracts traces of such
cycles from programmers’ activity logs, and produces various time-series charts that
are easy to interpret. We provided examples of how to interpret a subset of these
charts. The tool generates additional charts that were not discussed in this paper.

Our prototype tool works with Eclipse, JUnit, Microsoft Excel and Hackystat. The
tool is freely available under GPL upon contacting the authors.

Although the espoused benefits of our TDD process measurement approach in re-
search settings are well founded, its impact on education and personal process im-
provement is speculative at this point. Future efforts will focus on further improve-
ments to the tool and on the evaluation of the approach in different settings. Work is
already under way. The tool will be tested in an industrial case study of TDD and in
future replications of the TDD experiment mentioned in [8]. Regarding additional
analysis capabilities, we have made progress in two fronts: incorporation of test cover-

The Role of Process Measurement in Test-Driven Development 41

age information into cycle traces using a commercial tool and automatic recognition of
refactoring cycles.

Acknowledgments

Maurizio Morisio’s relentless obsession with process conformance and Marco
Torchiano’s arguments were instrumental in convincing the authors of the usefulness
of an automatic measurement approach for TDD. Discussions with Philip Johnson led
to the development of a mockup for the TestFirstGauge tool. Alain Desilets, Joel Mar-
tin, and Janice Singer gave valuable feedback on an early version of the tool. The IIT
Software Engineering Group members provided comments to improve the readability
of the paper.

References

1.

2.
3.
4.
5.

6.

7.

8.

9.

10.

11.

12.

D. Astels, G. Miller, and M. Novak, A Practical Guide to Extreme Programming. Upper
Saddle River, NJ: Prentice Hall, 2002.
K. Beck, Test-Driven Development: by Example: Addison Wesley, 2003.
K. Beck, “Aim, fire (test-first coding),” IEEE Software, vol. 18, pp. 87-89, 2001.
JUnit.org, www.junit.org.

P. M. Johnson, H. Kou, J. M. Agustin, Q. Zhang, A. Kagawa, and Takuya Yamashita,
“Practical automated process and product metric collection and analysis in a classroom set-
ting: Lessons learned from Hackystat-UH,” University of Hawaii, Collaborative Software
Development Laboratory, Technical Report (submitted to 2004 International Symposium
on Empirical Software Engineering) csdl2-03-12, December 2003.
P. M. Johnson, H. Kou, J. Agustin, C. Chan, C. Moore, J. Miglani, S. Zhen, and W. E. J.
Doane, “Beyond the personal software process: metrics collection and analysis for the dif-
ferently disciplined,” presented at 25th International Conference on Software Engineering
(ICSE 2003), Portland (OR), USA, 2003.
M. M. Müller and W. F. Tichy, “Case study: Extreme Programming in a university envi-
ronment,” presented at International Conference on Software Engineering (ICSE), Toronto,
Canada, 2001.
H. Erdogmus, M. Morisio, and M. Torchiano, “A Controlled Experiment on the Effective-
ness of Test-Driven Development,” Submitted for publication, 2004.
S. H. Edwards, “Using test-driven development in the classroom: Providing students with
concrete feedback on performance,” presented at Proceedings of the International Confer-
ence on Education and Information Systems: Technologies and Applications (EISTA’03),
August 2003.
M. Morisio and M. Torchiano, “Perception of XP Practices in a University Environment,”
Dipartimento di Informatica e Automatica, Politecnico di Torino, Technical Report 2003.
B. George and L. Williams, “An Initial Investigation of Test Driven Development in In-
dustry,” presented at ACM Symposium on Applied Computing, Melbourne, Florida, 2003.
L. Williams, E. M. Maximilien, and M. Vouk, “Test-Driven Development as a Defect-
Reduction Practice,” presented at 14th Internation Symposium on Software Reliability
Engineering (ISSRE ’03), 2003.

42 Yihong Wang and Hakan Erdogmus

13.

14.

15.

16.
17.
18.

M. M. Müller and O. Hagner, “Experiment about Test-First Programming,” presented at
Empirical Assessment in Software Engineering (EASE), Keele, UK, 2002.
M. Long, “A Meta Analysis of the Quality and Productivity Benefits of Pair Programming
and Test Driven Design,” Christopher Newport University, 2003
C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslen, Experimen-

tation in Software Engineering: An Introduction: Kluwer Academic Publishers, 2000.
M. Fowler, UML Distilled: Addison Wesley, 2000.
“Hackystat,” http://csdl.ics.hawaii.edu/Tools/Hackystat/
“Eclipse Platform Technical Overview,” Object Technology International, 2003,
http://www.eclipse.org/whitepapers/eclipse-overview.pdf

Acceptance Test Driven Planning

Richard J. Watt1 and David Leigh-Fellows2

1 ThoughtWorks, UK
rwatt@thoughtworks.com

2 Egg, UK
David.Fellows@Egg.com

Abstract. The experience of XP planning for many is not a successful one. We
have found that by making acceptance tests not only central to the definition of
a story but central to our process itself, they can be used to drive the entire de-
velopment. This paper describes an adaptation, or evolution to XP style plan-
ning based around acceptance testing which takes the existing planning prac-
tices (with some additions) and organises them in a way that we believe can
lead to better planning and more predictable results.

1 Introduction: How Do We Know When We Are Done?

One of the defining questions for a development team is “do we know when they are
done?”. The question sounds simple but too often the answer is not as obvious as it
should be. Acceptance tests are an effective way of expressing requirements in a way
that provides an unambiguous answer to this question. As others have found, writing
acceptance test definitions before coding begins on an iteration has both obvious and
more subtle benefits. Given these benefits, why is it not more common for acceptance
tests to be written before iteration planning begins? What are the obstacles and how
can they be overcome? We have sought to find answers to these questions in the last
year and in doing so have developed an adaptation of XP style iteration planning that
has some key benefits over the traditional approach.

2 Iteration Planning: A Typical Experience

Our experience of iteration planning was perhaps typical. As a team fully signed up to
the agile cause, we all agreed that this approach to planning was better than anything
else we had tried. We also agreed that in our shared experience the process had never
been wholly successful. Maybe we were doing something wrong but the more people
we spoke to the more we realised our experience of planning was at least not uncom-
mon.

As an illustration of our plight, below is a description of a typical iteration plan-
ning session:

We gathered all interested parties into a room which for us meant 10 developers,
our customer, our QA engineers, an interaction designer, our project manager, itera-
tion manager and coach – all empowered to contribute to the planning process.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 43–49, 2004.
© Springer-Verlag Berlin Heidelberg 2004

44 Richard J. Watt and David Leigh-Fellows

Our customer would describe each of the stories in turn. The developers would ask
questions and discuss solutions before producing a list of tasks for each story and an
updated estimate of the effort it would take to implement the story. Unfortunately, this
process of discussion often took a long time and was once described by our customer
as feeling more like a “techno babble” session than a planning one. From the develop-
ers’ perspective, it was very difficult to produce confident estimates when the cus-
tomer could not provide the information they needed in the meeting - this resulted in
best-guess estimates on the incomplete information available. Even though our cus-
tomer tried to consider all of the likely angles they couldn’t anticipate all of the ques-
tions that were going to be asked during the session. What seemed like a sensible
approach to start with did not feel so good after a few painful, marathon planning
meetings. The team was starting to lose confidence in the process.

The real pain came when we measured our velocity at the end of the iteration and
discovered the discrepancy between what we had signed up for and what we had
achieved. There are, of course, many reasons why a team could have a poorer than
expected velocity but once we had investigated further we discovered that the main
issue was that we hadn’t identified a complete set of tasks for each story. We could all
see that the developers were working really hard and the results produced were good
but in hindsight it was if they had started a 400m race but didn’t know where the
finishing line was and just kept going round the track. Our understanding of the work
was incomplete, which meant it was unclear when we were done. This also meant
everyone was very tired and nobody was very happy - we knew we had to do some-
thing.

3 Getting Our Stories Straight

One of the biggest problems we had in our planning sessions was that our customer
felt that no matter what they did to prepare there were still many questions they could
not answer without time for further analysis and/or investigation. Our solution was
simple: a day or two before the end of the iteration the customer would sit down with
the QA engineer and a developer to begin the process of writing acceptance tests for
the upcoming stories, or in our terms, “Getting our Stories Straight”. In short, we still
ended up asking the same questions but by doing this activity before the planning
session we were able to find more answers earlier and thus be better prepared for
when we did gather the full team into a room. This is not a return to “big up front
analysis” but an acknowledgement that as we approach the end of an iteration we
already have a good idea of what is going to be completed in this iteration and the
customer has a good idea of what stories they want to include in the next.

Our principal aim at this stage was simply to better prepare the customer for our
planning session so that developers could get more of the answers they needed at the
time they needed them, but we soon discovered there were many more benefits:

Are our tests any good? Writing acceptance tests is a skill, our QA engineer helps
our customer make sure the acceptance criteria specify the expected behavior and
external quality[1]. One of our developers is on hand to make sure that there is no
technical reason why the functionality required to pass the acceptance tests cannot
be implemented. If we liken this to UML use cases, a story becomes the title of the
use case and the acceptance tests become the use case itself detailing the main suc-
cess scenario, alternate and error scenarios. [2].

Acceptance Test Driven Planning 45

Are our stories too big? One of the positive side-effects of this process is that it
often highlights if a story is likely to be too big for the development team to esti-
mate before we even get to the planning session. The simple correlation between
the size and number of acceptance tests and the size of the story has proven to be a
reliable predictive indicator.

The chance to improve our estimates: For a story that appears too large we may
choose at this stage to break it into two or more smaller stories. In our experience,
smaller stories are easier to estimate accurately. We strive to have stories that can
be ideally completed in 1 to 3 days.

Customer requirements vs. QA requirements: The testing interests of our QA
engineer may go beyond what is needed to define the requirements for the story,
but over time we have found that the difference is much smaller than we expected.

The last point is an important one. Using acceptance tests as our “single source of
truth” means the needs of both the customer and the QA function are served by a
single artefact. We would later see how the same acceptance tests could be used to
improve our task breakdown and estimates. The key to these additional benefits was
our decision to choose acceptance tests as our focal point for all planning and devel-
opment activities – it is perhaps too easy to think of acceptance testing as merely as a
form of black box testing and miss their greater significance as a multi-use form of
requirements specification.

With our stories “straight” the next thing to improve was how we ran our planning
sessions.

4 The Planning Workshop

In Acceptance Test Driven Planning the typical XP planning session is refactored into
something we call the Planning Workshop. The objectives remain the same as the XP
planning session (updates to our story estimates with a clearer picture of their depend-
encies), but we find the quality of the information provided is much improved.

The Planning Workshop is split into two phases, “Task Identification” and “Present
and Challenge”.

4.1 Task Identification

As a result of us “Getting Our Stories Straight” we now have a set of candidate stories
for the next iteration, their acceptance tests, some existing high level estimates and a
vague understanding of what dependencies exist between stories.

The Planning Workshop begins with the customer presenting the candidate stories
to the rest of the team - each story is described along with its acceptance tests. The
developers then group themselves into triples and each mini team signs up to a subset
of the stories for further analysis. We organise ourselves into triples because we’ve
found that 3 is the optimum number of people to have in a mini team; we find that 3
people are able to fit around a pair station and the fact that we have an odd number
always results in a mediator in case of disagreement. Once each candidate story has a
triple assigned we move into the phase designed to drive out the tasks required to pass
the acceptance tests. Each triple heads back to a workstation and pulls up the accep-

46 Richard J. Watt and David Leigh-Fellows

tance tests for their candidate stories. The customer and QA float between the triples
answering any questions that may arise to make sure that everyone is clear on what is
required in the story. At this stage the existing acceptance tests may be altered or
(more rarely) added to.

It is useful and illustrative to consider what we did before and the reasons which
led us to this process of task identification. In previous iterations, it became obvious
to us that there was a discrepancy between the tasks identified for a story and the
actual work that was required to complete a story. It was common to find a developer
saying that they had finished the tasks for a story and now only had the acceptance
tests to implement. The problem was that that it took the same time to implement the
acceptance tests as it had taken them to complete the tasks. Their original task break-
down, with all the best intentions, was incomplete. We quickly found that by using
the acceptance tests as the focus of the task identification exercise we were able to
produce a list of tasks which was much more representative of the work that we
would need to do to complete a given story. With the increase in confidence we
gained from a more structured approach to task identification, we also found our es-
timates improved too.

4.2 Present and Challenge

The next phase of our planning workshop is called “Present and Challenge”. The idea
is that each triple presents their solution for a given story back to the rest of the team,
and the rest of the team are then given the opportunity to challenge the list of tasks to
see if we can refine the task list and the estimates given. This works well on two lev-
els as it is a useful tool for exploring (at a high level) the proposed solution with the
whole team present, whilst also acting as a double-check to ensure we have consid-
ered all of the tasks.

In addition, this process gives the team members an opportunity to practice their
presentation and debating skills. We have also found it can be useful in establishing
team rapport – the sessions are designed to be challenging and we manage them care-
fully to avoid challenge turning into conflict.

5 Putting It All Together

We have spoken specifically about “Getting Our Stories Straight” and “The Planning
Workshop”, but where do these activities fit into the bigger picture?

In a two week iteration we are now able to limit the impact of planning activities
down to a single day for nearly all of our developers.

The morning marks the end of the existing iteration and begins with a show-and-
tell session to allow interested (and paying) parties to come along and see what the
team has achieved in the iteration. There are usually few surprises here as the cus-
tomer and QA will have seen each story as it was completed during the iteration, but
it is a useful opportunity for the team to appreciate all that has been achieved. We
then follow this with a short retrospective [3] where we discuss those things that went
well, not so well, things that still puzzle us and any actions we need to take to im-
prove.

Acceptance Test Driven Planning 47

Fig. 1. ATDD Timeline

An optional addition to the morning programme is a technical retrospective that we
have used on occasion when there have been significant changes to the code base
which not all members of the team have been directly involved in. This of course is a
“smell” of sorts but, regardless, is often a useful way to get everyone back on the
same page before we begin the next iteration. After a break for lunch, a new iteration
begins and we are in the “Planning Workshop” for most of the afternoon.

A “Big Up Front Thinking” session at the end of the day is also optional but is
sometimes used by the team to draw broad brush impressions (class and simple inter-
action diagrams mostly) of how the code might evolve for the set of stories we are
just about to begin working on. Big up front design? Not really. It is just a way to
share ideas and get clear in people’s minds current ideas on where we might go next.

The planning part of our process is time-boxed and now takes 2-3 hours as com-
pared to our previous and much less effective 6-8 hour marathon session.

The day is over and it is time to go home and look forward to another iteration.

6 Conclusion

The 12 practices of XP can broadly be seen to fall into either one of two camps: plan-
ning or development type activities. The familiar mantra of test-code-refactor, com-
bined with continuous integration and source control has given us a development
environment with all the right ingredients and a fairly prescriptive recipe on how they
should be practiced. The writings on planning are less prescriptive in how they should
be practiced, especially for those used to more traditional heavyweight planning proc-
esses. In our experience development rather than planning practices are given more
attention and yet successful planning is often more difficult to achieve.

This paper describes an adaptation, or evolution to XP style planning based around
acceptance testing which takes the existing planning practices (with some additions)
and organises them in a way which we believe can lead to better planning and more

48 Richard J. Watt and David Leigh-Fellows

predictable results. In developing the process, we have aimed, at every juncture, to
find the least amount of work we could do and still make informed, quality decisions.
Experience has taught us that this balance point is not easily found.

Over time we have recognised that this form of planning appears to have a ‘Goldi-
locks’ like quality – any more process and we feel the overhead, and any less and the
process begins to fail. We do, of course, continue to look for ways in which we can
improve the process but after many months and many projects, the balance we have
found by planning and driving the development in this simple way feels “just right”.

Biographies of the Authors

Richard Watt: Richard is a coach and developer working with ThoughtWorks in the
UK. In the last three years Richard has spent a large part of his time coaching and
mentoring teams in XP and other Agile development methods. Richard has over 10
years experience of commercial software development and has been a practitioner
(and passionate advocate) of XP since late ’99.

David Leigh-Fellows: David Leigh-Fellows is an Agile coach and Iteration manager.
He has run half a dozen XP software projects since he came across Kent Beck three
years ago. Dave has 12 years experience of commercial software development and
enjoys helping teams realize their true potential by helping them find their own way.

Acknowledgements

To Owen Rogers and Ivan Moore for their contribution to the early development of
some of the ideas presented in the paper; for being smart; and being great fun to work
with.

To Alan Francis, Areiel Wolanow, and Ally Stokes for their constructive feedback in
the earlier drafts; to Rachel Davies, Alex Howson, and Stuart Blair for their time and
support in helping get the paper into a fit and proper state as the deadline loomed.

To Mary Poppendieck for her valued feedback and the ongoing support of our ideas.

And finally, to my colleague Rebecca Parsons for her hard work and encouragement
in helping us make sure our work was best represented.

Bibliography

1.
2.

3.

4.

5.

Roy Miller, Acceptance Testing, http://www.xpuniverse.com/2001/pdfs/Testing05.pdf
Johan Andersson, Geoff Bache, Peter Sutton. XP with Acceptance-Test Driven Develop-
ment: A rewrite project for a resource optimization system.
http://www.carmen.se/research_development/articles/ctrt0302.pdf
Lisa Crispin, Tip House, Testing Extreme Programming. Addison Weseley; 2002;
ISBN 0321113551
Kent Beck, Martin Fowler, Planning Extreme Programming, p88. Addison Wesley, 2001;
ISBN 0201710919.
Kent Beck, Test-Driven Development. By Example. Addison Wesley, 2003;
ISBN 0321146530.

Acceptance Test Driven Planning 49

References

1.

2.

3.

Lisa Crispin Senior Consultant Boldtech Systems Denver, CO USA 1.303.722.7964,
lisa.crispin@att.net, Is Quality Negotiable?,
www.xpuniverse.com/2001/pdfs/Special02.pdf
Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley, 2000;
ISBN 0201702258
Norm Keith, Project Retrospectives: A Handbook for Team Reviews, Dorset House
Publishing Co, 2001; ISBN 0932633447

An Agile Customer-Centered Method:
Rapid Contextual Design

Hugh Beyer1, Karen Holtzblatt1, and Lisa Baker2

1 InContext Enterprises, Inc., 2352 Main St., Suite 302, Concord, MA 01742 USA
{beyer,karen}@incent.com

2 LANDesk Software, Inc., 698 West 10000 South, Suite 500, South Jordan, Utah 84095 USA
lisa.baker@landesk.com

Abstract. Agile methods have proven their worth in keeping a development
team focused on producing high-quality code quickly. But these methods gen-
erally have little to say about how to incorporate user-centered design tech-
niques. Also the question has been raised whether agile methods can scale up to
larger systems design. In this paper we show how one user-centered design
method, Contextual Design (CD), forms a natural fit with agile methods and re-
count our experience with such combined projects.

1 Introduction

Agile software development methods [1, 2, 3] propose a new approach to the old
problem of quickly developing reliable software that meets users’ needs. But their
strong focus on improving the engineering process neglects questions about how other
disciplines fit in, and how agile methods fit in with the larger organization. The role
of interaction design, user interface design, and usability in an agile team is unclear. It
is also unclear how well the approaches work with larger teams and projects [4, 5].

At one level there should be no problem – the developers of agile processes are
very clear that developers should work closely with their customers [1]. Customer
orientation is built into the basic method. Rather than provide complex techniques for
requirements elicitation or user research, agile approaches make customers part of the
release planning and iterative development process. But customer-centered design
provides a range of techniques for focusing on the needs of users and customers as the
central concern. How do these techniques of fit with the agile approach? Do they
apply before agile methods start – or are these techniques are superceded by continual
customer contact throughout the project? How exactly is this relationship reconciled?

Furthermore, customer-centered design assumes that initial research, design, and
planning happens at the start of the project. This may well look to agile practitioners
like “big design up front” – a bad thing in the agile programming rule book. To rec-
oncile these different world-views we, along with people such as Constantine [6] and
Kane [7], are incorporating customer-centered design and usability techniques into
our agile development efforts. This requires some adjustment to these techniques.

In this paper we analyze the underlying assumptions of agile methods from the
point of view of classic user-centered design. Each of these assumptions presents a
process challenge, and agile methods incorporate ways to solve them. But the chal-
lenges themselves are not new. In developing Contextual Design (CD), our customer-

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 50–59, 2004.
© Springer-Verlag Berlin Heidelberg 2004

An Agile Customer-Centered Method: Rapid Contextual Design 51

centered systems definition method [8], we encountered many of the same issues – as,
indeed, any practitioner must. While working with teams committed to XP as a devel-
opment methodology, we have adapted our approach to a quick-turnaround, short-
development-lifecycle project. This has given us some insight into strengths and
weaknesses of both approaches. In this paper, we will show how integrating the ap-
proaches fill the gaps in agile methods for both fast-turnaround iterative projects as
well as the large-scale, high-impact, enterprise projects. We will describe our experi-
ence with such an integrated approach, which we call Rapid CD.

1.1 Contextual Design as a Customer-Centered Design Approach

Customer-centered or user-centered methods encompass a broad class of techniques
that define systems by building an in-depth understanding of the people who will be
supported by them. We make a distinction between the user and the customer; the
user is the individual who interacts with the system being designed directly. They use
it to accomplish their job. But “customer” is a larger term – a customer may be a user
or may depend on the output of the system, prepare input for a system, decide on the
need for a system, or approve the purchase of a system. A customer, as the Total
Quality people say, is anyone standing between you and a sale – or between you and
acceptance of your system in practice. Understanding the users is key to getting the
design right – but understanding the other customers of the system may be key to
getting it accepted.

CD is a well-respected customer-centered design method that has been around for
over 10 years. It provides techniques covering the entire front end of systems design,
from figuring out who your users are and how they work through designing the de-
tailed user interface and functionality of the system. CD has been used on very large
scale projects – defining complex business processes, corporate web sites, and portals
– on software tools, and on small, self-contained parts of many products and systems.

CD in its classic (non-agile) form is as follows:

Contextual inquiry. Field interviews with customers in their work places while they
work, observing and inquiring into the structure of their own work practice. This
ensures that the team captures the real business practice and daily activities of the
people the system is to support, not just the self-reported practice or official policies..

Interpretation sessions and work modeling. Team discussions in which the events
of the interview are retold, key points (affinity notes) are captured, and models repre-
senting the customer‘s work practice are drawn (including as-is sequences of tasks).
This disciplined, detailed debriefing allows the team to share the findings, build a
common understanding of the customer, and capture all the data relevant to the pro-
ject in a form that will drive the design.

Consolidation and affinity building. The data from individual customers is consoli-
dated to show a larger picture of the work of the targeted population. The affinity
notes from all customers are brought together into an affinity diagram, a hierarchical
representation of the issues labeled to reflect customer needs. Work models are con-
solidated, showing the common work patterns and strategies across all customers –
the “as-is” work process.

52 Hugh Beyer, Karen Holtzblatt, and Lisa Baker

Visioning. Together, the team reviews the models and invents how the system will
streamline and transform the work people do. This is captured as a hand-drawn sketch
on flip chart paper. This vision represents the big picture of what the system could do
to address the full work practice. It can subsequently be broken down into coherent
subsets so that the vision can be implemented over a series of releases. Alternatively,
in a smaller project the team may simply brainstorm solutions.

Storyboarding. The new design for work tasks are sketched out using pictures and
text in a series of hand-drawn cells. A storyboard includes manual practices, initial UI
concepts, business rules, and automation assumptions. This becomes the “to-be” work
model.

User Environment Design (UED). A single representation of the system showing all
functions and how they are organized into coherent places in the system to support
user intent. The UED is built from the storyboards. This ensures a large system is
coherent and fits the work. It provides a basis for prioritization and rational segmenta-
tion of the system.

Paper prototypes and mock-up interviews. User interfaces are designed on paper
and tested with the system‘s actual users, first in rough form and then with more de-
tail. This ensures the basic system function and structure work for the users, and that
the basic UI concept is sound.

A Contextual Design project exploits just those CD techniques needed for the project
at hand. (Rapid CD uses just a few of them.) But each technique exists to solve a
particular problem in managing a development project, just as the techniques of agile
methods do.

1.2 Experience with Contextual Design and Agile Methods

Two of the authors are from InContext, a company specializing in customer-centered
design. The third is from LANDesk, which provides integrated solutions for manag-
ing systems. When we came together to collaborate on a development project, our
challenge was to make agile methods work with a strong customer focus. LANDesk is
committed to XP as a development method, so all our customer inquiry and design
work had to be reconciled with this way of doing development. Our success in creat-
ing an effective methodology has resulted in the following perspective on agile meth-
ods.

Agile methods seem to be based on what we will call axioms – principles or as-
sumptions that are almost self-evident. Some of these axioms have been listed explic-
itly in the literature [1]; others have not, perhaps because they seem so obvious. Each
axiom presents a challenge to the traditional development process, and agile methods
propose a solution to each that makes sense from the engineering perspective. (As
Alan Cooper said, these methods seem to have been created by engineering to defend
itself from the failings of the parent organization [9].)

But the community of customer-centered researchers and practitioners have been
dealing with variations of these issues for years [10, 11, 12, 13]. What is the cus-
tomer-centered design perspective on these problems? Here is a discussion of these
axioms and our experience with customer-centered design alters our approach to the
issues:

An Agile Customer-Centered Method: Rapid Contextual Design 53

Axiom 1: Separate Design from Engineering. Much of the distinctiveness (and
much of the value) of agile methods comes from the clear separation of re-
sponsibilities they bring to the development process. Developers write code and
design the implementation of systems – that is what they are good at. They are not
good at understanding how people work, creating effective and intuitive user
interfaces, or making an interface usable.

The great strength of agile methods is that they focus the engineers on doing what
engineers do best. The weakness of agile methods is that they give little guidance in
figuring out what to tell the engineers to do. This is the job of the customer role,
whether played by the actual customer or a surrogate, but how is the customer to ac-
complish it?

In particular, how is the customer to answer questions such as:
What is the scope of the system? What problem will it solve, and what tasks will it

affect? Will these tasks be streamlined through the introduction of technology or re-
placed entirely by automated system? What will the overall effect on the business be?
For an XP team to begin developing User Stories, these questions must already have
been answered.

These design questions fall into the domain traditionally known as “systems analy-
sis” or “requirements analysis” and are not covered by agile methods at all. In prac-
tice, some organizations have product marketing scope out the product release accord-
ing to business and marketing needs; then they hand off a high-level overview of the
user stories to engineering.

CD provides Contextual Inquiry, work modeling, consolidation and affinity build-
ing, and visioning to bring customers and developers together and make the customer
needs explicit.

What should the basic function and structure of the system be? Someone must de-
cide how a system will be structured to support user tasks, how functions will be
grouped into coherent user interfaces to support coherent parts of a task, and what
those functions do. There is no good support for these design activities in traditional
programming methodologies – even the word “design” is reserved for the design of
the internal structure of the system. But to the user, the user interface is the system.

The new concepts of “user experience architecture” and “user interaction” have
been coined to cover these activities. Agile methods do not provide specific tech-
niques to address them. Instead, agile methods send each completed iteration off to
designated customers so engineering can receive feedback earlier in the process. En-
gineering then cleans up and fixes the UI afterward based on user feedback. (The XP
saying is: the earlier you get it to the customer, the earlier you can fix it.)

In CD, we define overall structure and basic function using Storyboards and User
Environment Design. These define exactly the level of structure needed to provide
coherent and effective User Stories.

What is the user interface? Screen layout, button labels, tree views, drag and drop,
hyperlinks, pulldown menus, etc. must be assembled into coherent, pleasing, and
transparent screens that support the user’s work in the new system.

This is classic user interface (UI) design, and it is the orphan child of software de-
velopment methodologies. Is it design? Is it analysis? Does a requirements specifica-
tion include the UI or does it not? There is no consistent practice.

Regardless of where UI design is situated organizationally, a successful agile de-
velopment project depends on the skill being available, even if a team does not explic-

54 Hugh Beyer, Karen Holtzblatt, and Lisa Baker

itly assign such a role. Because the UI is the interface between the user and the sys-
tem’s function, the only way to test the system is through the UI. Effective UI design
is a prerequisite for agile methods to work, but the methodology provides no separate
focus or testing. In our own past XP agile projects, we have included user interface
mockups as part of the story definition and acceptance testing criteria for the iteration.
But this practice is incomplete because it focuses on individual stories and does not
create an explicit, cohesive view of the product and work practice.

CD recognizes and staffs UI design as a separate discipline – which fits the agile
approach of focusing developers on code. The UED (when needed) or vision provides
requirements for UI design and the paper mockups permit the UI to be considered and
tested on its own, independent of the developer’s underlying implementation.

Taken together, these elements of CD dovetail with agile processes to ensure that
what the customer representatives communicate is what the customers actually need.
These processes support the thinking and design needed for the release planning and
User Stories to be effective.

Axiom 2: Make the User the Expert. Agile and customer-centered approaches agree
in recognizing the user as the final authority and only arbiter of what makes a good
system. But how to make this voice heard? The agile approach is to put the customer
on the team, and if there are multiple customers, assign one as the representative who
makes all choices. [3, p. 68] But there are some drawbacks to this approach:

People cannot articulate their own work practice. When asked what they do, peo-
ple give their impression of what they do – which may or may not be accurate [10,
14]. In one example from our own experience, system managers told our project team
that most of their job was troubleshooting. Later field interviews revealed that in fact,
they spent most of their time doing simple tasks such as installs and user manage-
ment.

So it is not sufficient to put a customer on the team and asking them to explain how
they do things and what they need – or worse, how others do things and what others
need. This is likely to lead to an incomplete understanding of the work practice and
consequently, a system that does not work for its users.

A “representative ” user never is. No one person can embody all the customers of a
real enterprise system. All the stakeholders in the system – direct users, secondary
users, management, upstream and downstream roles in the process – must also be
considered. The divide between the users, who are focused on doing the work, and the
other customers of the system may be quite wide.

Furthermore, the more the “representative” customer becomes part of the engineer-
ing organization, the less useful they are as a user surrogate. They learn too much
about the technology and they become invested in the team’s thinking. They become
more empathetic to the engineer’s challenges and less connected to the challenges
they faced in their previous job. We have made our users members of our XP teams,
and have found that they are just too nice to us. They become so understanding of the
difficulties the development team faces that their feedback simply is not tough
enough.

Customers are not designers, any more than engineers are. They know where their
shoes pinch but not what the technical possibilities are, and they cannot easily envi-
sion what a future work practice might be. Consider the “make it fit” feature that first
appeared in WordPerfect – the users were asking for a faster print preview. Only

An Agile Customer-Centered Method: Rapid Contextual Design 55

through on-site interviews did the design team discover they were using print preview
to squeeze their documents onto a page. An experienced person’s work is habitual and
automatic, which makes it hard to envision a new and different world supported by an
unknown technology.

If the customer representative cannot accurately communicate customer needs, the
project will fail no matter how well development does their end of the work. Cus-
tomer-centered design makes the customer a powerful and accurate voice on the team.
CD gives the team a way to understand all their customers and users. CD says: if you
want to learn about the customer’s work, apprentice yourself to your customers. Don’t
ask them to talk about their work out of context. Go to their workplace and watch
what they do, discussing it with them. Represent their voice in the data and design to
the data.

Axiom 3: Keep Up-Front Planning to a Minimum. Agile methods distrust up-front
planning intensely. Business needs change, the business climate changes, or the
customer discovers they did not really understand what they needed after all. So agile
methods view time invested in up-front planning as probable time wasted. Up-front
planning is kept short, relatively informal, and focused on just the next release –
which is also short.

CD takes a different tack towards the relationship between requirements and plans,
because of its different starting point:

Work practice changes very little over time. The initial focus in CD is on under-
standing customer work practice, as opposed to defining a particular system. The
work patterns, strategies, and intents discovered during this phase are fundamental to
how people work and change little over time or across a wide range of users. It is
feature implementations or underlying technology that changes rapidly. After devel-
oping a full set of CD models to represent a user population, we find those models are
still useful years later. We return to them when starting new projects serving the same
population. These models are more accurate and robust than the voice of a single
customer representative who has not made a formal study of the work. Compared to
hiring an on-site user, the CD models are useful longer and over time cost signifi-
cantly less.

A solid understanding of the user leads to speed. Once the work practice of the
user is understood, you can rapidly iterate the design and implementation. The data
drives the current release, suggests the focus for the next, and provides a base under-
standing for each iteration. On our XP teams, velocity slows each time the engineers
come upon a new storyline. They churn, questioning the basis of the user require-
ments and the details (or lack thereof) included in the story definitions.

‘Minimum planning’ depends on project scope. A small, quick-iteration project
only needs a small amount of planning. We have completed field studies of 5-8 users,
quickly consolidated and brainstormed solutions, all within a week or two. This small
CD investment is enough for a fast-turnaround release and makes the user presence on
the project unnecessary. But a large project introducing disruptive technology will
require much more up-front data gathering and planning and will need more time to
budget resources and market priorities. Bankston’s concept of an “architectural spike”
[15] is a useful way to think about this more detailed planning – just as you might
devote an iteration to solving an implementation problem, devote an iteration to re-
quirements definition.

56 Hugh Beyer, Karen Holtzblatt, and Lisa Baker

So the CD philosophy is: Do only the planning you need to do; use team-based, high-
communication processes to drive quickly to a common understanding of the problem
and the solution; and create only the artifacts you need for the next step of design.

Axiom 4: Work in Quick Iterations. The classic design methodologies are frequ-
ently criticized for lacking prompt feedback – a two-year project would typically get
its first real customer feedback a year and a half into it, when it first went to field test.
At this point, it was far too late to discover that the project should have been
addressing a different problem, or that it was addressing the right problem the wrong
way. Any user feedback was thrown onto the feature pile for the next release. To
compensate for this, agile methods prescribe rapid iterations in development (we plan
3-week iterations in our XP projects) and short release cycles. Each iteration is
developed through test-first development – write the test, then write the code to
satisfy it.

But creating code – no matter how fast it is created – only to rework it later is
wasteful. Instead, CD pushes both these ideas earlier in the process: begin the itera-
tions and start testing even before coding begins.

Test and iterate the spec before code. XP’s “Developer’s Bill of Rights” states:
“You have the right to know what is needed, with clear declarations of priority in the
form of detailed requirements and specifications.” But the specification will never be
correct unless it is tested with users to ensure it fits their real – as opposed to espoused
– needs.

But how can a user test a specification? Few people can foresee the impact of a
proposed system change merely by hearing such a change described. Instead, CD uses
paper mockups to present a proposed new system to its users as though it were real.
Users can work through their own actual work problems in the paper system, with the
designer manipulating it to show the system’s responses. When problems arise, user
and designer change the system together, immediately, to better fit the user’s work
practice. Rough paper mockups are sufficient to show that the right system, the right
structure, and the right functions are being defined.

Test and iterate the UI before code. Once the basic system has been proved, paper
mockups can be refined to represent the proposed user interface. This ensures the
basic UI concept is suitable before the team starts iterating it in code.

Test and iterate in code when needed. Once the spec and basic UI are in place, ag-
ile development’s short iterations become the central driver for testing. Each iteration
is a working version of the system, albeit with limited functionality. These iterations
can be used to test the final UI and actual behavior of the system with customers to
ensure low-level usability concerns are identified and dealt with early.

Testing iterations with customers as they are completed and using the results to re-
fine the team’s direction is good. But there’s no reason to wait until after code is cut.
CD makes the fast iteration and course-correction part of the specification process
itself.

2 Building a New Process: Rapid CD

The above discussion suggests how a customer-centered design approach such as CD
can coexist with agile methods – indeed, how the two complement each other so well

An Agile Customer-Centered Method: Rapid Contextual Design 57

that they form a very strong combination. Rapid CD [16] is a fast, effective, cus-
tomer-centered way to design a product when quick turnaround is desired.

Here is an overview of the process, step by step, with typical time estimates for
each step. This is essentially the process we have used for several versions of our own
shipping commercial systems. (Different projects have been able to do more or less of
the idealized process outlined below.) We assume that the customer role will be
played by customer representatives working with a team of at least two UI designers.
This brings design ability, knowledge of what the technology can do, and knowledge
of what makes a good user interface to the “customer” side of the project.

1.

2.

3.

4.

5.

6.

7.

8.

Set project focus. Determine the complexity of the project and the level of
innovation required. Identify the 1 or 2 key customer roles this product release
will support and plan customer visits. (½ day for discussions, but expect 2-3
weeks to set up visits from a standing start. Once you have relationships and
organizational expertise, it is easier.)
Contextual inquiry with potential customers. Gather data from at least 3 peo-
ple in each role. In a week, a team can do 8 interviews with people from 4 or-
ganizations and interpret that data, producing affinity notes and sequence models
(as-is tasks). Ideally, this is done in a cross-functional team of UI people, market-
ing, and developers. In practice, we find that developers are usually finishing up
their previous project and we bring them up to speed later. (1 week)
Build an affinity showing the scope of issues from all customers, and sequence
models (task models) showing how specific tasks to be supported by the project
are now done. This is a representation of the “as-is” customer work practice. (3 to
4 days)
Introduce the larger team (including the full development team) to the cus-
tomer roles and customer data. Summarize key findings, then walk the team
through the affinity to allow the team members to comprehend the customer envi-
ronment. Ask each team member to note questions and design ideas.
Identify issues. Key team members determine what issues will be addressed by
the project (typically product marketing, development leads, and human factors
participate in this). Collect issues from the affinity, choosing the most critical is-
sues that can be addressed within the project scope. Brainstorm ideas of how to
better support the work. Record and save big ideas for future high-impact pro-
jects. (2 days)
Build User Stories in response to these issues. User Stories are guided by the se-
quence models and show how the system will resolve the issues.
Run the Planning Game with the User Stories. Use conceptual diagrams and
high level UI mockups to facilitate team communication. Without a completed UI
the team can’t know exactly how difficult implementation will be, but within the
context of an organization the team can know the typical complexity of the UI’s
they define, so they can supply a rough estimate. Organize the User Stories into
Iterations, groups of stories that deliver coherent subsets of function. Prioritize
and eliminate stories as necessary to meet resource budget for the release. (We
always save some budget for additional user stories that will reveal themselves
once we begin getting user feedback.)
Design detailed user interfaces to support the User Stories in the first Iteration.
UI design is its own discipline – don’t mix it with the implementation work of
coding the User Story. (1-2 days)

58 Hugh Beyer, Karen Holtzblatt, and Lisa Baker

9.

10.

11.

Test UIs with users in paper with mock-up interviews. User Stories are a fairly
fine-grained definition of system functionality; many User Stories can be covered
in a single paper prototype test. Test these UIs with 3 to 4 users and use the re-
sults to refine the design. Do a second round of tests with a more detailed UI if
you have the time and resources. A third round of testing will happen with live
code. (2 weeks for both rounds)
Deliver to development. Provide the User Stories and completed UIs to the de-
velopment team for implementation. With detailed UIs, developers can very ac-
curately cost their work for the iteration. In addition, testing can incorporate UI
mockups into their acceptance tests, providing development with a clear end
point to their task.
Continue iterations in parallel. During implementation of the first Iteration, the
UI team develops the UIs for the second Iteration’s User Stories and tests them
with users in 2 rounds of paper before the code for the first Iteration is complete.
When the code for the first Iteration is completed, the UI team gives developers
the next set of stories and UIs and the developers start on the second Iteration.
Meanwhile, the UI team designs the UIs for the third iteration and tests them with
users in paper. Simultaneously, if desired, they test the running code of the first
iteration with users to get quick feedback on the actual product. (Our projects
have done this with customers every second or third iteration.)
At the end of the second iteration, the UI team gives the User Stories and UI de-
signs for the third iteration to the development team and the testing feedback is
incorporated into the plan. This process repeats until the release is done.
If user testing suggests changes to future User Stories, the changes are made and
the work estimate for those stories changed if necessary. When user feedback in-
dicates you must change work the team has already done, plan additional User
Stories and schedule them in as needed. (Be aware this will happen as the system
comes alive and low-level issues reveal themselves. Be careful not to schedule
yourself too tight in your initial resourcing. The team will need to save some of
its resource budget to accommodate these additional stories.)

This plan assumes a separate UI design team exists that will work out the details of
the interface within the context of the User Stories. In practice, UI design is usually a
separate skill held by different people on the team. Our experience is that this sort of
handoff – once the developers have come to recognize the value of the skill – is very
easy. (In fact, once developers figure out how much time and effort the UI designers
save them, the developers are prone to complain that the UI designers haven’t told
them enough about what to do and have left them with too many choices.) We also
find it promotes better understanding to have developers accompany the UI designer
on some user tests.

For highly complex or highly innovative projects, a more traditional CD process
can be used to determine customer needs and system requirements. In such a process,
the full set of CD customer work models represents the complete “as-is” work prac-
tice to ensure the existing process is really understood. The CD vision is used to syn-
thesize a coherent design response to the work problem.

The UED model becomes the key representation of the behavior of the new sys-
tem. It shows all the parts of the system and all the function, to maintain the coher-
ence of the system as a whole. It also shows how the system can be broken into co-
herent chunks for implementation. Each of these chunks becomes input to an agile

An Agile Customer-Centered Method: Rapid Contextual Design 59

team – the release planning and user stories are oriented towards delivering that chunk
and the UED keeps the work of the multiple teams in sync.

3 Conclusion

Agile methods address the difficulties of development in real organization by putting
practices in place to make engineering effective. But these practices depend on a cor-
rect and complete understanding of customer needs – of what the system is to do and
how it is to be structured to support the customer organization. Agile techniques in
general do not try to address the question of how this understanding is generated and
communicated to the team.

Customer-centered design techniques do address exactly this question. In our pro-
jects, we have found that we can draw on both disciplines to support agile teams that
work from an in-depth understanding of their customers. We have used that experi-
ence to define the process outlined above. This process incorporates the customer
voice and provides room for UI and user interaction design as part of the agile proc-
ess. It also suggests how significantly large projects could be addressed in an agile
manner.

References

1.

2.
3.

4.

5.

6.

7.

8.

9.

10.

11.
12.
13.

14.
15.

16.

K. Beck, Extreme Programming Explained: Embrace Change. San Francisco: Addison-
Wesley, 2000.
A. Cockburn, , Agile Software Development, Addison Wesley, Reading, MA, 2002.
J. Highsmith, Adaptive Software Development: A Collaborative Approach to Managing
Complex Systems. New York: Dorset House, 2000.
B. Boehm and R. Turner, “Observations on Balancing Discipline and Agility” presented at
Agile Development Conference 2003, Salt Lake City, Utah, and archived at
http://agiledevelopmentconference.com/2003/files/P4Paper.pdf
J. Grenning, Using XP in a Big Process Company, article at
http://www.agilealliance.com/articles/articles/XPInABigProcessCompany.pdf
L. Constantine, “Process Agility and Software Usability: Toward Lightweight Usage-
Centered Design,” in ForUse Conference Proceedings, 2003.
D. Kane, “Finding a Place for Discount Usability Engineering in Agile Development:
Throwing Down the Gauntlet,” at the Agile Development Conference 2003, as archived at
http://agiledevelopmentconference.com/2003/files/P5Paper.pdf
H. Beyer and K. Holtzblatt, Contextual Design: Defining Customer-Centered Systems,

Morgan Kaufmann Publishers Inc., San Francisco (1997).
A. Cooper, as reported by E. Nelson in Extreme Programming vs. Interaction Design at
FTPOnline: article at http://www.fawcette.com/interviews/beck_cooper/default.asp
J. Whiteside, J. Bennett, and K. Holtzblatt, “Usability Engineering: Our Experience and
Evolution,” Handbook of Human Computer Interaction, M. Helander (Ed.). New York:
North Holland, 1988.
L. Suchman, Plans and Situated Actions, Cambridge University Press, Cambridge, 1989.
T. Winograd, Bringing Design to Software, ACM Press, NY, NY, 1996.
P. Seaton and T. Stewart, “Evolving Task Oriented Systems,” Human Factors in Comput-

ing Systems CHI ’92 Conference Proceedings, May 1992, Monterey, California.
M. Polanyi, The Tacit Dimension, Routledge and Kegan Paul, 1967.
A. Bankston, Usability and User Interface Design in XP, article at
http://www.ccpace.com/resources/documents/UsabilityinXP.pdf
K. Holtzblatt, Rapid CD, Morgan Kaufmann Publishers Inc., San Francisco (forthcoming).

Suitability of FIT User Acceptance Tests

for Specifying Functional Requirements:

Developer Perspective

Grigori Melnik, Kris Read, and Frank Maurer

Department of Computer Science, University of Calgary
Calgary, Canada

{melnik,readk,maurer}@cpsc.ucalgary.ca

Abstract. The paper outlines an experiment conducted in two different aca-
demic environments, in which FIT tests were used as a functional requirements
specification. Common challenges for functional requirements specifications
are identified, and a comparison is made between how well prose and FIT user
acceptance tests are suited to overcoming these challenges from the developer’s
perspective. Experimental data and participant feedback are examined to evalu-
ate whether developers can use requirements in the form of FIT tests to create a
design and implementation.

1 Introduction

It is common knowledge that two thirds of all software projects today fail (either by
being terminated, going overtime, going over-budget, or because they deliver only
partial functionality). Ambiguous or incomplete software requirements along with
poor quality control are two of the biggest contributors to these failures [7].

Despite the fact that quality control is a major cause of project failure, it is still of-
ten overlooked by project teams. Eighty-three percent of organizations’ software de-
velopers don’t like to test code [2]. One of the reasons is simply a lack of time to per-
form diligent and proper testing, which is frequently the result of inadequate planning
and time overruns in other activities. When testing is performed, often it is done at the
level of unit tests by the development and/or testing team. However, the goals and
mentality of testers may not entirely correspond with those of the customer. Accep-
tance tests are needed to ensure customer satisfaction with the final product. Accep-
tance tests also serve as regression tests, to ensure that previously working functional-
ity continues to behave as expected. These tests are often created based on a
requirements specification, and serve to verify that contractual obligations are met.
This creates a dependency between the requirements specification and acceptance test
suite, a dependency that may involve a great deal of overhead. Changes to one side
necessitate changes to the other, and effort is needed to ensure that the written re-
quirements correspond precisely to the expected test results (and vice versa). More-
over, this dependency means that problems in the requirements specification will
directly impact quality control.

It is estimated that 85 percent of the defects in developed software originate in the
requirements [9, 1]. “Irrespective of the format chosen for representing requirements,

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 60–72, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Suitability of FIT User Acceptance Tests for Specifying Functional Requirements 61

the success of a product strongly depends upon the degree to which the desired sys-
tem is properly described” [8]. Most software requirements are not specified using
formal languages, but instead are written as some form of business requirement
document. Normally such documents are written using natural languages and pictures.
There are several “sins” to avoid when specifying requirements, some of which are
listed by Meyer1 [6]. The first such sin is noise, which manifests as information not
relevant to the problem, or a repetition of existing information phrased in different
ways. Noise may also be the reversal or shading of previously specified statements.
Such inconsistencies between requirements make up 13 percent of requirements prob-
lems [4]. A second hazard is silence, in which important aspects of the problem are
simply not mentioned. Omitted requirements account for 29 percent of all require-
ments errors [4]. Over-specification can happen when aspects of the solution are men-
tioned as part of the problem description. Requirements describe what is to be done
but not how they are implemented [3]. Wishful thinking is when prose describes a
problem to which a realistic solution would be difficult or impossible to find. Ambigu-

ity is common when natural languages allow for more than one meaning for a given
word or phrase. Often this is problematic when jargon includes terms otherwise famil-
iar to the other party [6]. Prose is also prone to reader subjectivity since each person
has a unique perspective (based on their cultural background, language, personal
experience, etc). Forward references mention aspects of a problem not yet mentioned,
and cause confusion in larger documents. Oversized documents are difficult to under-
stand, use and maintain. Customer uncertainty appears when an inability to express
specific needs results in an inclusion of vague descriptions. This, in turn, leads to
developers making assumptions about “fuzzy” requirements: it has been estimated
that incorrect assumptions account for 49 percent of requirements problems [4]. Mak-
ing requirements understandable to the customer and verifiable by the developer
might lead to the creation of multiple representations of the same requirements. Pre-
serving more than one document can then lead to maintenance, translation and syn-
chronization problems. Requirements are sometimes lost, especially non-functional
requirements, when the use of tools for requirements capture only supports a strictly
defined format or template. Lastly, requirements documents are often poor when
written with little to no user involvement, instead being compiled by requirements
solicitors, business analysts, domain experts or even developers [7].

This paper examines the suitability of FIT as a format for communicating func-
tional requirements to the developer, and explores whether this format helps mitigate
the “sins” listed above. In this context, we define “suitability” as the degree to which
the functional requirements are found to be unambiguous, verifiable, consistent, and
usable by developers for designing and implementing the system.

There are possibly other desirable properties of requirements. For example, from
the customer’s perspective, the ease of specifying and understanding the requirements
by all stakeholders is important. However our paper focuses only on those properties
listed above.

1 Meyer’s classification is well known; we have added some additional difficulties to the
traditional “seven sins”. Meyer’s classification has been frequently referenced (see pp.232-
233 in [8] for example)

62 Grigori Melnik, Kris Read, and Frank Maurer

2 Acceptance Testing with FIT

By definition, acceptance tests assess whether a feature is working from the cus-
tomer’s perspective. Acceptance tests are different from unit tests in that the later are
modeled and written by the developer, while the former is at least modeled and possi-
bly even written by the customer. Acceptance tests can be specified in many ways,
from prose-based user stories to formal languages. Because the execution of accep-
tance tests is time consuming and costly, it is highly desirable to automate this proc-
ess. Automating acceptance tests gives an objective answer when functional require-
ments are fulfilled. At the same time, making the requirements too formal alienates
the user, as in the case of definition using formal languages.

FIT was named from the thesaurus entry for “acceptable”. The goal of FIT is an
acceptance test that an ordinary person can read and write2. To this end, FIT tests
come in two parts: tests are defined using ordinary tables (usually, written by cus-
tomer representatives, see Fig. 1 and Fig. 2, left side), and later fit fixtures are written
to execute code using the data from table cells (implemented by the developers, see
Fig. 1 and Fig. 2, right side). By abstracting the definition of the test from the logic
that runs it, FIT opens up authorship of new tests to anyone who has knowledge of the
business domain.

Fig. 1. Sample FIT table and ColumnFixture in Java. Excerpt from fit.c2.com

FIT tables can be created using common business tools, and can be included in any
type of document (HTML, MS Word, MS Excel, etc). This idea is taken one step
further by FitNesse3, a Web-based collaborative testing and documentation tool de-
signed around FIT. FitNesse provides a very simple way for teams to collaboratively
create documents, specify tests, and even run those tests through a Wiki Web site. The
FitNesse wiki4 allows anyone to contribute content to the website without knowledge
of HTML or programming technologies.

We leave it to a future experiment to show whether or not FIT tests can be easily read or
written by customers. The present experiment focuses on whether developers can use func-
tional requirements for their purposes when specified as FIT acceptance tests
http://www.fitnesse.org and http://fit.c2.com
http://wiki.org/wiki.cgi?WhatIsWiki

2

3

4

Suitability of FIT User Acceptance Tests for Specifying Functional Requirements 63

Fig. 2. Simple FIT table and ActionFixture in Java. Excerpt from fit.c2.com

Although acceptance tests are often written based on user requirements, we see that
with FIT it is not necessary to create a written requirements document before creating
an acceptance test. FIT tests are a tabular representation of customer expectations that
can be understood by human beings. All that is needed to write a FIT table is a cus-
tomer expectation and the ability to precisely and unambiguously write it down. In
this way they are very similar to written functional requirements5. If the expectations
themselves adequately explain the requirements for a feature, can be defined by the
customer, and can be read by the developer, there may be some redundancy between
the expression of those expectations and the written system requirements. Conse-
quently, it may be possible to eliminate or reduce the size of prose requirements defi-
nitions. An added advantage to increased reliance on acceptance tests may be an in-
crease in test coverage, since acceptance testing would both be mandatory and defined
early in the project life cycle. To this end an experiment has been designed to evaluate
the understandability of FIT acceptance tests for functional requirements specifica-
tion.

3 Instrument

The goal of our experiment was to determine the suitability of using FIT tests as the
functional part of a requirements specification. A project was conceived to develop an
online document review system (DRS). This system allows users to submit, edit,
review and manage professional documents (articles, reports, code, graphics artifacts
etc.) called submission objects (so). These features are selectively available to three
types of users: Authors, Reviewers and Administrators. More specifically, administra-
tors can create repositories with properties such as: title of the repository, location of
the repository, allowed file formats, time intervals, submission categories, review

5 http://c2.com/doc/xpu02/workshop.html

64 Grigori Melnik, Kris Read, and Frank Maurer

criteria and designated reviewers for each item. Administrators can also create new
repositories based on existing ones. Authors have the ability to submit and update
multiple documents with data including title, authors, affiliations, category, keywords,
abstract, contact information and bios, file format, and access permissions. Reviewers
can list submissions assigned to them, and refine these results based on document
properties. Individual documents can be reviewed and ranked, with recommendations
(accept, accept with changes, reject, etc) and comments. Forms can be submitted
incomplete (as drafts) and finished at a later time.

For the present, subjects were required to work on only a partial implementation
concentrating on the submission and review tasks (Fig. 3). The only information pro-
vided in terms of project requirements was:

1.
2.
3.

An outline of the system no more detailed than that given in this section.
A subset of functional requirements to be implemented (Fig. 3).
A suite of FIT tests (Fig. 4)

Fig. 3. Assignment specification snapshot6

Requirements in the FIT Test Suite of-our experiment can be described generally
as sorting and filtering tasks for a sample XML repository. Our provided suite ini-
tially consisted of 39 test cases and 657 assertions. In addition to developing the code
necessary to pass these acceptance tests, participants were required to extend the ex-
isting suite to cover any additional sorting or filtering features associated with their
model. An example FIT Test finding a document by exact match of author name, with
results sorted by title in descending order is shown in Fig. 5.

Participants were given two weeks (unsupervised) to implement these features us-
ing XML, XSLT, Java and the Java API for XML Processing (JAXP). A common
online experience base7 was set up and all students could utilize and contribute to this

http://mase.cpsc.ucalgary .ca/EB/Wiki.jsp?page=SENG513w04AssignmentOne
http://mase.cpsc.ucalgary.ca/EB/

6

7

Suitability of FIT User Acceptance Tests for Specifying Functional Requirements 65

knowledge repository. An iteration planning tool and source code management sys-
tem were available to all teams if desired.

Fig. 4. Partial FIT Test Suite. The suite contains test cases and can be executed. For example,
the test FindByAuthorUnsorted results in an unsorted list of items matching an author name

We hypothesized that:

A)

B)

C)

D)

E)

FIT acceptance tests describe a customer requirement such that a developer can
implement the feature(s) for that requirement.
Developers with no previous FIT experience will quickly be able to learn how to
use FIT given the time provided.
100% of developers will create code that passes 100% of customer provided tests.

More than 50% of the requirements for which no tests were given will be imple-
mented and tested.

100% of implemented requirements will have corresponding FIT tests.

4 Sampling

Students of computer science programs from the University of Calgary and the
Southern Alberta Institute of Technology (SAIT) participated in the experiment. All
individuals were knowledgeable about programming and testing, however, no indi-
viduals had any advance knowledge of FIT or FitNesse (based on a verbal poll).

Twenty five (25) senior undergraduate University of Calgary students were en-
rolled in the course Web-Based Systems

8
, which introduces the concepts and tech-

niques of building Web-based enterprise solutions and includes comprehensive hands-
on software development assignments. Seventeen (17) students from the Bachelor of
Applied Information Systems program were enrolled in a similar course, Internet

Software Techniques
9
, at SAIT. The material from both courses was presented consis-

http://mase.cpsc.ucalgary.ca/seng513/W2004/
http://mase.cpsc.ucalgary.ca/apse504/W2004/

8

9

66 Grigori Melnik, Kris Read, and Frank Maurer

tently by the same instructor in approximately the same time frame. This experiment
spans only the first of six assignments involving the construction of a document re-
view system.

Fig. 5. A sample FIT test (after execution)

Students were encouraged to work on programming assignments following the
principles and the practices of extreme programming, including test-first design, col-
lective code ownership, short iterations, continuous integration, and pair program-
ming.

The University of Calgary teams consisted of 4 to 5 members, and additional help
was available twice a week from two teaching assistants. SAIT teams had 3 mem-
bers10 each; however they did not have access to additional help outside of classroom
lectures. In total, there were 12 teams and a total of 42 students.

SAIT teams had fewer members so that we would have an equal number of teams at each
location.

10

Suitability of FIT User Acceptance Tests for Specifying Functional Requirements 67

5 Observations

Our first hypothesis was that FIT acceptance tests describe a customer requirement
such that a developer can implement the feature(s) for that requirement. Our experi-
ment provided strong evidence that customer requirements provided using good ac-
ceptance tests can in fact be fulfilled successfully. On average (mean) 82% of cus-
tomer-provided tests passed in the submitted assignments (SD=35%), and that number
increases to 90% if we only consider the 10 teams who actually made attempts to
implement the required FIT tests (SD=24%)11 (Fig. 6). Informal student feedback
about the practicality of FIT acceptance tests to define functional requirements also
supports our first and second hypotheses. Students generally commented that the FIT
tests were an acceptable form of assignment specification12. Teams had between 1 and
1.5 weeks to master FIT in addition to implementing the necessary functionality (de-
pending on if they were from SAIT or the University of Calgary).

Fig. 6. Customer test statistics by teams

Seventy-three percent (73%) of all groups managed to satisfy 100% of customer
requirements. Although this refutes our second hypothesis, our overall statistics are
nonetheless encouraging. Those teams who did not manage to satisfy all acceptance
tests also fell well below the average (46%) for the number of requirements attempted
in their delivered product (Fig. 7).

Fig. 7. Percentage of attempted requirements. An attempt is any code delivered that we evalu-
ate as contributing to the implementation of desired functionality

Unfortunately, no teams were able to implement and test at least 50% of the addi-
tional requirements we had expected. Those requirements defined loosely in prose but
given no initial FIT tests were largely neglected both in terms of implementation and
test coverage (Fig. 8). This disproves our hypothesis that 100% of implemented re-
quirements would have corresponding FIT tests. Although many teams implemented

One team’s data was removed from analysis because of a lack of participation from team
members. One other team (included) delivered code but did not provide FIT fixtures.
It should be noted that an academic assignment is not the same as a real-world requirements
specification.

11

12

68 Grigori Melnik, Kris Read, and Frank Maurer

requirements for which we had provided no customer acceptance tests, on average
only 13% of those new features were tested (SD=13%). Those teams who did deliver
larger test suites (for example, team 2 returned 403% more tests than we provided)
mostly opted to expand existing tests rather than creatively testing their new features.

Fig. 8. Additional features and tests statistics

Customers do not always consider exceptional cases when designing acceptance
tests, and therefore acceptance tests must be evaluated for completeness. Even in our
own scenario, all tests specified were positive tests; tests confirmed what the system
should do with valid input, but did not explore what the system should do with invalid
entries. For example, one test specified in our suite verified the results of a search by
file type (.doc, .pdf, etc.). This test was written using lowercase file types, and no-
where was it explicitly indicated that uppercase or capitalized types be permitted
(.DOC, .Pdf, etc). As a result, 100% of teams wrote code that was case sensitive, and
100% of tests failed when given uppercase input.

6 Conclusions

Our hypotheses (A and B) that FIT tests describing customer requirements can be
easily understood and implemented by a developer with little background on this
framework were substantiated by the evidence gathered in this experiment. Consider-
ing the short period of time allotted, we can conclude from the high rate of teams who
delivered FIT tests (90%) that the learning curve for reading and implementing FIT
tests is not prohibitively steep, even for relatively inexperienced developers.

Conversely, our hypotheses that 100% of participants would create code that
passed 100% of customer provided tests (C), that more than 50% of the requirements
for which no tests were given would be tested (D), and that 100% of implemented
requirements would have corresponding FIT tests (E) were not supported. In our opin-

Suitability of FIT User Acceptance Tests for Specifying Functional Requirements 69

ion, the fact that more SAIT teams failed to deliver 100% of customer tests can be
attributed to the slightly shorter time frame and the lack of practical guidance from
TA’s. Given more time and advice we believe that a higher rate of customer satisfac-
tion can be achieved. The lack of tests for new features added by teams may, in our
opinion, be accredited to the time limitations placed on students, the lack of motiva-
tion to deliver additional tests, and the lower emphasis given to testing in the past
academic experiences of these students13. At the very least, our observation that fea-
ture areas with fewer provided FIT tests were more likely to be incomplete supports
the idea that FIT format functional requirements are of some benefit.

The fact that a well defined test suite was provided by the customer up front may
have instilled a false sense of security in terms of test coverage. The moment the pro-
vided test suite passed, it is possible that students assumed the assignment was com-
plete. This may be extrapolated to industry projects: development teams could be
prone to assuming their code is well tested if it passes all customer tests. It should be
noted that writing FIT tests is simplified but not simple; to write a comprehensive
suite of tests, some knowledge and experience in both testing and software engineer-
ing is desirable (for example, a QA engineer could work closely with the customer). It
is vital that supplementary testing be performed, both through unit testing and addi-
tional acceptance testing. The role of quality assurance specialists will be significant
even on teams with strong customer and developer testing participation. Often dia-
bolical thinking and knowledge of specific testing techniques such as equivalence
partitioning and boundary value analysis are required to design a comprehensive test
suite.

From the outcome of our five hypotheses, along with our own observations and
feedback from the subjects, we can suggest how FIT acceptance tests perform as a
specification of functional requirements in relation to the criteria stated in our intro-
duction. We believe that noise is greatly reduced when using FIT tests to represent
requirements. Irrelevant information is more difficult to include in well structured
tables than in prose documents. Also, tests which shade or contradict previous tests
are easily uncovered at the time of execution (although there is no automatic process
to do so). Acceptance tests can be used as regression tests after they have passed in
order to prevent problems associated with possible noise. We discovered that silence
is not well addressed by the FIT framework, and may even become a more serious
problem. This was well demonstrated by the failure of our teams to test at least 50%
of the requirements for which no tests were given. Our example of case-sensitive
document types also clearly demonstrates how a lack of explicit tests can lead to as-
sumptions and a lack of clarifications. Prose documents may be obviously vague, and
by this obviousness incite additional communication. Over-specification is not a prob-
lem since FIT tests do not allow any room for embedded solutions in the tests them-
selves. FIT tables are only representations of customer expectations, and the fixtures
become the agents of the solutions. Although it can be argued that specifying an Ac-
tionFixture describes a sequence of actions (and therefore a solution), when writing
FIT tables these actions should be based on business operations and not code-level
events. Wishful thinking is largely eliminated by FIT, since defining tests requires that

Despite the fact that the importance of testing was repeatedly emphasized, students are not
accustomed to writing test code. Students were aware that the majority of marks were not be-
ing assigned based on new tests.

13

70 Grigori Melnik, Kris Read, and Frank Maurer

the customer think about the problem and make very specific decisions about expecta-
tions.

Fig. 9. Evaluation of FIT for requirements specification. Check marks indicate that FIT effec-
tively addresses the issue (although it could be only partial)

Ambiguity may still be a problem when defining requirements using FIT tests if
keywords or fields are defined in multiple places or if these identifiers are open to
multiple interpretations. However, FIT diminishes ambiguity simply because it uses
fewer words to define each requirement. Forward references and oversized docu-

ments may still be an issue if large numbers of tests are present and not organized into
meaningful test suites. In our experiment, the majority of groups categorized their
own tests without any instruction to do so. Reader subjectivity is greatly reduced by
FIT tests. Tables are specified using a format defined by the framework (ActionFix-

ture, ColumFixture, etc). As long as tests return their expected results when executed,
the developer or customer knows that the corresponding requirement was correctly
interpreted regardless of the terminology used. Customer uncertainty may manifest as
the previously mentioned problem of silence, but it is impossible for a defined FIT
test not to have a certain outcome. FIT tests are executable, verifiable and easily read-
able by the customer and developer, and therefore there is no need for multiple repre-

sentations of requirements. All necessary representations have effectively merged into
a suite of tables. Requirements gathering tools can be problematic when they limit the
types of requirements that can be captured. FIT is no exception; it can be difficult to
write some requirements as FIT tests, and it is often necessary to extend the existing
set of fixtures, or to utilize prose for defining non-functional requirements and making
clarifications. However, FIT tests can be embedded in prose documents or defined
through a collaborative wiki such as FitNesse, and this may help overcome the limita-
tions of FIT tables.

In addressing the characteristics of suitability (as defined in Introduction), our find-
ings demonstrate that FIT tests as functional requirements specifications are in fact
unambiguous, verifiable, and usable (from the developer’s perspective). However,
insufficient evidence was gathered to infer consistency between FIT tests.

Although our results did not match all of our expectations, valuable lessons were
learned from the data gathered. When requirements are specified as tests, there is still
no guarantee that the requirements will be completed on-time and on-budget. Time
constraints, unexpected problems, lack of motivation and poor planning can still result
in only some requirements being delivered. As with any type of requirements elicita-

Suitability of FIT User Acceptance Tests for Specifying Functional Requirements 71

tion, it is vital that the customer is closely involved in the process. FIT tests can be
executed by the customer or in front of the customer, and customers can quickly
evaluate project progress based on a green (pass) or red (fail) condition. In conclu-
sion, our study provides only initial evidence of the suitability of FIT tests for specify-
ing functional requirements. This evidence directly supports the understandability of
this type of functional requirements specification by developers. There are both ad-
vantages and disadvantages to adopting FIT for this purpose, and the best solution is
probably some combination of both prose-based and FIT-based specifications.

7 Validity

This paper provides only initial evidence supporting the use of FIT tests to communi-
cate functional requirements to developers. There are several possible threats to the
validity of this experiment that should be reduced through future experiments. One
such threat is the limitation of our experiment to a purely academic environment.
Although we spanned two different academic institutions, industry participants would
be more relevant. Another threat is our small sample size, which can be increased
through repeated experiments in future semesters. Moreover, all of the FIT tests pro-
vided in this experiment were written by expert researchers, which would not be the
case in an industrial setting. Although this was an academic assignment, it was not
conducted in a controlled environment. Students worked in teams on their own time
without proper invigilation.

8 Future Work

This experiment is the first in a series of six FIT-related experiments planned for the
next eight months. Given more time and advice, we believe, that a higher rate of cus-
tomer satisfaction can be achieved. This will be investigated using the same teams as
the experiment continues this semester. All insights gained from the analysis of our
observations will be verified and validated with additional trials on the current teams
as well as new trials with a new sampling of subjects.

An upcoming experiment will have the subjects refactor current tests to adapt to
new and changing requirements. In addition, there will be increased emphasis on
more complete, negative testing. In a third experiment, subjects will be asked to spec-
ify a suite of FIT requirements for a remote team at a different institution.

An experiment with industry practitioners is part of our ongoing research. It will
test the understandability of functional requirements specified as FIT tables. We in-
vite any interested party to contact the authors for further discussion. FIT training, on-
site or off-site, will be provided free of charge.

Acknowledgements

We would like to thank all participants from the University of Calgary and SAIT who
participated in this study and provided us with their valuable feedback. This ongoing
research is partially sponsored by NSERC and iCore.

72 Grigori Melnik, Kris Read, and Frank Maurer

References

1.

2.

3.

4.

5.

6.
7.

8.

9.

Ben-Menachem, M., Marliss, G. Software Quality: Producing Practical, Consistent Soft-

ware, International Thomson Publishing, London, UK, 1997.
CenterLine Software, Inc. A Survey of 240 Fortune 1,000 companies in North America
and Europe, Cambridge, MA, 1996. Online
http://www.computerworld.com/news/1997/story/0,11280,17522,00.html. Last accessed
February 29, 2004.
Davis, A. Software Requirements Revision Objects, Functions, & States, Prentice Hall
PTR, Englewood Cliffs, NJ, 1994.
Hooks, I., Farry, K. Customer-Centered Products: Creating Successful Products Through

Smart Requirements Management. American Management Association, New York, NY,
2001.
Jones, C. Patterns of Software Systems Failure and Success. International Thompson Com-
puter Press, Boston, MA, 1996.
Meyer, B. On Formalism in Specifications. IEEE Software, 2(1):6–26, 1985.
The CHAOS Chronicles. The Standish Group International, West Yarmouth, MA. Online
http://www1.standishgroup.com//chaos/intro2.php. Last accessed January 20, 2004.
Van Vliet, H. Software Engineering: Principles and Practice, 2/e, John Wiley & Sons,
Chichester, UK, 2000.
Young, R. Effective Requirements Practices, Addison-Wesley, Boston, MA, 2001.

Using Storyotypes to Split Bloated XP Stories

Gerard Meszaros

ClearStream Consulting Inc.,
3710– 205 – Avenue S.W.

Calgary, Alberta Canada T2P 2V7
gerard@clrstream.com

Abstract. An ideal XP project is composed of stories defined by the customer
that are of the right size and focus to plan and manage according to XP princi-
ples and practices. A story that is too large creates a variety of problems: it
might not fit into a single iteration; there are a large number of tasks that must
be coordinated; it can be too large to test adequately at the story/functional
level; too much non-essential functionality is bundled early in development
causing essential functionality to be deferred. Teams new to XP find managing
the size of stories especially challenging because they lack the experience re-
quired to simplify and breakdown large stories. This experience report describes
four heuristics (storyotypes) we have used on our XP projects to successfully
manage the size of stories.

1 Introduction

At ClearStream Consulting, we have helped many clients learn how to apply eXtreme
Programming (XP) on their projects. A common problem they face is getting the right
granularity for their stories; most projects start off with “bloated stories” that later
need to be split into smaller stories.

Teams that have experience using “use cases” find it particularly difficult because
use cases can have many scenarios. These scenarios can vary greatly in business value
and should not be included in a single “use case story”.

To help these clients learn how to structure their stories, we have come up with a
set of four “storyotypes”. We ask them to identify which storyotypes a particular
story-candidate exhibits and if it exhibits more than one, we have them discuss the
value of splitting the story into smaller stories, ideally one for each storyotype.

The focus of this paper is to share our experiences with managing the size of sto-
ries within XP projects. We start by describing the problems in managing the story
size. We then describe the four storyotypes we have encountered on information sys-
tem projects and how they are used to mitigate these problems.

1.1 The Problem with Stories

To understand the problems that are generally experienced with story granularity, a
quick review of the XP concept of a story is helpful. Stories were first described in [1]
& [2]. The customer is responsible for defining the functionality of the system in short
“stories” of one or two sentences. Each story should describe functionality that has

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 73–80, 2004.
© Springer-Verlag Berlin Heidelberg 2004

74 Gerard Meszaros

real business value to the customer. From a planning perspective, the story is the unit
of prioritization, scheduling, and progress tracking that is visible to the customer.

An XP project has frequent small releases, each of which contains a number of
time-boxed iterations. Release planning involves scheduling one or more stories in a
particular release, based on the priority and size of the story. The entire story must be
finished within the release for which it is scheduled otherwise no value is delivered to
the customer. A large story creates problems in three areas: Release Planning, Task
Coordination, and Story Testing.

1.2 Release Planning

The first problem that large stories create for an XP team is in release planning. The
larger the stories, the fewer will fit into a release. (Larger stories are also harder to
estimate.) This gives the customer less flexibility to pick and choose what gets done.
Too much functionality bundled into a single story will often squeeze out other
equally important core functionality from early releases thus delaying a meaningful
demo unnecessarily. If the stories remain too large throughout the project essential
core functionality may be squeezed out (differed indefinitely), because the earlier
bloated stories contained non-essential functionality that consumed development
resources.

1.3 Task Coordination

Task coordination is the second area in which problems can arise. A large story either
generates a larger number of tasks or larger tasks. We have found the integration of
these tasks can be problematic.

Our XP projects typically do not require micro-management of tasks to the extent
that detailed grouping and dependencies of the tasks do not have to be worked out as
long as the stories are kept reasonably small. With larger stories, extra overhead must
be incurred to orchestrate the sequencing of cohesive tasks to ensure that the team
makes progress towards a common sub-goal at any one point in time within the itera-
tion.

1.4 Story Testing

The third problem experienced is that the granularity of the story testing is too large.
The customer is responsible for specifying and signing off on customer tests. As a
story becomes larger, there must be more extensive testing to deal with all the interac-
tions of the functionality. These interactions are difficult for customers to test all at
once. We have found the completeness of customer tests drops as the number of tests
needed by a story exceeds 10 tests. Smaller stories tend to have more complete testing
than larger stories.

2 Using Storyotypes to Split Stories

Splitting of stories is described [1] & [2] as one of the basic techniques of managing
scope on XP projects. A story should meet the following criteria:

Using Storyotypes to Split Bloated XP Stories 75

Each story should describe functionality that has real business value to the cus-
tomer.

The stories should not have any value if they are further subdivided.

The functionality described in a single story should have the same importance to
the customer. That is, the relative priority should be the same.

The functionality should have the same level of certainty. That is, if some func-
tionality is completely understood and some needs to be discussed in more detail
with the business, there should be at least two different stories because one is
ready to be built now and the other is not.

Further guidelines are provided for the “bootstrap story” (the first story built; a
special case on every project) in [3].

These guidelines help newcomers to XP, but they don’t help them figure out how
to make a story the right size. Those coming from a use case world have a tendency to
want to use the functionality described by a use case as the basis for their stories. But
use cases are the wrong granularity for stories. They are both too big and too small at
the same time.

Use Cases Are Too Small. Many use cases cannot be tested independently of other
functionality. That is, while they might be executed independently, the results cannot
be verified without using some other use case to inspect the state of the system. Or,
the use case may depend on some other use case to set up the state of the system be-
fore it can be exercised.

Use Cases Are Too Big. While there are many definitions of what constitutes a use
case, most definitions agree that it includes all the possible ways a user can achieve
some goal or desired outcome. Typically, a use case has several or many scenarios.
Some of these scenarios are used very often (the “happy path” scenario and a few
others) while others may be pathological cases that occur so rarely that it is not worth
automating them. That is, they provide insufficient “business value” to justify the
investment to automate them through software.

Usage Scenarios Are Better but Not Enough. Use cases typically consist of several
or many scenarios (the “alternate paths” through the use case) that describe how the
use cases works with various prior states of the system. Each scenario can be consid-
ered a candidate for a separate story so that it can be prioritized independently of the
other scenarios. To address the “Use cases are Too Small” problem, they often need
to be combined with scenarios of other use cases to make a truly testable story. And
even scenarios can be too big to build in a single release.

2.1 Four Storyotypes

To make it easier for new XP teams to come up with the right story granularity, we
have devised the following four “Storyotypes” (short for “story stereotypes”.) These
Storyotypes are used to characterize each story and provide a means to split a “bloated
story” into smaller but still valuable pieces. While the following Storyotypes descrip-
tions frequently refer to use cases, these Storyotypes can be applied to any story
whether they are more like a use case like or a larger XP story. Use cases just happen
to be the best understood and most broadly used form of prose-based requirements
capture so they form a good point of reference for these Storyotypes descriptions.

76 Gerard Meszaros

Storyotype: New Functionality. This storyotype describes new functionality that is
fairly independent of functionality previously described in other stories. In the use
case world, these stories could be characterized as the happy path of one use case or
several interrelated use cases. If several use cases, the use cases must be co-dependent
(like chickens and eggs): it would be difficult to test one without the other. A com-
mon example is the CRUDing (Create, Read, Update and Delete) of a business entity;
it would be very difficult to update an entity that has not yet been created and it would
be difficult to verify the update was successful without being able to read it. So, the
create, update and read of a basic business entity might be grouped into a single “ba-
sic functionality” story.

The use case functionality included in this story should be restricted to a single sce-
nario, with no conditional processing. The other storyotypes describe additional func-
tionality related to (extensions of) this basic new functionality.

If a user interface is required as part of this story, the user interface should be “the
simplest UI that could possibly work”. That is, the most basic windows, fields, but-
tons, or menu items required to provide the functionality. Anything else related to the
UI belongs in the UI Enhancement storyotype.

Storyotype: Variation of Existing Functionality. Stories with this storyotype de-
scribe a variation of functionality introduced in another story (most commonly, in a
New Functionality story.) This can involve one or more extensions or exceptions (as
described in [4]). This is the kind of story that introduces conditional logic into the
software as each of these variations typically involves checking some condition and
executing a different path when the condition is true.

When a Variation story involves several use cases, they will typically be the same
use cases as described in the New Functionality story that the Variation story extends.

User interface work related to this storyotype should be restricted to the addition of
any data field to the screens required to enter or view data used to make the decisions.

Storyotype: New Business Rule. New Business Rule stories (often called “input
validation” or “edit checks”) extend New Functionality and Variation stories with
additional constraints that need to be enforced by the software. This kind of story
introduces conditional logic into the software in the form of guard clauses or asser-
tions as each of these variations typically involves checking some condition and rais-
ing some sort of error condition when the condition is true. Any user interface work
included in this storyotype should be restricted to whatever is needed to communicate
the error condition to the user and the means for them to rectify the problem.

Storyotype: User Interface Enhancement. User interface design and development is
a complex discipline that can quickly become a major “time sink” if not managed
well. It is one of the areas ripest for scope creep and the most fruitful for adjusting
scope to match available resources. As such, it is very worthwhile explicitly separat-
ing the stories that relate to developing complex user interfaces from those that de-
velop the underlying business functionality.

Stories with this storyotype should focus on a specific form of enhancement of the
user interface and should not include any business functionality. If there are several
“dimensions” of interface improvement required (e.g. drag&drop, multi-selection list
boxes and voice recognition,) each should have a separate story or stories to enable
the customer to chose the functionality they need most without dragging in other bits
of less important (to them) functionality.

Using Storyotypes to Split Bloated XP Stories 77

2.2 Refactoring Stories Based on Storyotypes

Having identified the Storyotypes occurring in each story, we can make conscious
decisions to split the stories into single storyotype stories or leave multiple Storyo-
types in some stories. There is a cost to having too many (and therefore too small)
stories; combining them into larger stories results in fewer stories to estimate and
keep track of.

We rarely find it useful to combine stories with different Storyotypes. The main ex-
ception to this is when the single-storyotype stories are so small as to only require a
single task to build them. This occurs most frequently during the bug-fixing or minor
enhancements phase of a project.

We do find it useful to combine two stories with the same storyotype (e.g. two
Business Rule stories) as it can be pretty arbitrary whether we call them a single story
or several. Again, the size of the stories is a key determinant; we don’t want the re-
sulting story to be too large to be completed in a single iteration and we don’t want to
force the customer to “pay for” work they might not want just because it is lumped in
with other functionality in the same story.

2.3 Managing User Interface Enhancement Stories

The style of the user interface is a “cross-cutting concern” that spans the different
kinds of functionality provided by the system. Changes to the style of the user inter-
face can involve visiting a lot of software. The key challenge when building User
Interface Enhancement stories is to avoid excessive revisitation of each part of the
user interface in successive attempts to build a highly usable user interface. It may
take several (e.g. 3 or 4) tries to find a user interface metaphor that the users are
happy with. Without careful management of the process, we may have to apply each
User Interface Enhancement story to every part of the application’s user interface as
we learn what the customer really wants.

We have found the most effective strategy is to build the system with a simple UI
initially and to do some UI enhancement stories targeted on a particular part of the
system. This provides a way to get feedback on the UI technology and style without
making a massive investment in the UI for the entire system. Once the users are
happy with the UI in the pilot area of the system, the same UI paradigm can be ap-
plied to the rest of the system (typically in later iterations or releases). This can
greatly reduce the churning of the UI code those results if the UI evolution involves
the entire system. (This is one area where it really is worthwhile avoiding rework by
using Options Thinking [4] to delay the bulk of the work until the high impact deci-
sions have been made.)

3 A Caveat on Combining Stories

Regardless of the Storyotypes involved, we would only choose to merge two or more
stories when they have identical business value and the level of specification certainty
is the same. We also want to be sure that the value/certainty won’t change before we
build them. This is an excellent argument for “early splitting; late merging”!

78 Gerard Meszaros

4 Example

Consider an application that prepares invoices for various customers of a service. To
show the applicability of storyotypes regardless of the approach used to come up with
the stories, we will provide both a “use case” and a “bloated story” description of the
functionality requested for the application. The intention is not that one would first
generate the “bloated story” description from the use cases but rather that either could
act as the starting point for the refactoring exercise.

4.1 Use Cases Example

The system includes a number of use cases including: Maintain Customer, Maintain
Billing Cycle, Generate Invoices and Send Invoices. The Maintain XXX use cases
include the ability to create, modify and either delete or obsolete the corresponding
business concept as appropriate.

Use case “Generate Invoices” is used to produce the actual invoices that can then
be viewed, regenerated, finalized and sent. Invoices may contain charges based on
simple subscription (e.g. monthly charges), usage (e.g. so much per unit) and manual
charges (special cases). It can be used to generate the invoices for all customers or
only selected customers.

The user would like to be able to select the customer using a multi-selection list, by
pressing a button to add the customer to the list of invoices to be generated or by
dragging and dropping the customers onto the list of invoices to be generated. They
would also like the system to remember the last group of customers used. And the
system should not allow generating an invoice for a customer who has not yet been
approved by the sales manager.

Use case “View Invoice” allows the user to see the list of available invoices and to
select one for viewing in more detail.

Use case “Finalize Invoice” is used to “lock down” the invoice so that it cannot be
regenerated. An invoice cannot be sent to the customer until it is finalized.

4.2 Bloated Stories Example

A team that is not familiar with use cases may have come up with the following sto-
ries for the same functionality.

Story 1: Invoice Generation. Generate an invoice consisting of a single subscription
charge for one or all customer. View the resulting invoice. The user can select the
customers whose invoices are to be generated using a multi-selection list box or using
Add/Remove buttons to move the customers from the All Customers pane to the Se-
lected Customers pane. The system should remember the last set of customers for
whom an invoice was generated. An invoice cannot be generated for a customer until
the sales manager has approved them. An invoice cannot be generated for a customer
until all mandatory data elements have been provided. These include name, contact
information (mailing address, phone #), title, and company name. Customers can be
created with as little as just a name but they cannot be invoiced.

Story 2: Send Invoice to Customer. When the user is satisfied with the invoice for a
customer, they may finalize it and then send it to the customer. Once finalized, the
invoice cannot be regenerated or modified in any way.

Using Storyotypes to Split Bloated XP Stories 79

Story 3: Usage-Based Charges. Generate an invoice that includes usage-based
charges. The usage data is read in from a flat file and the usage rate can be set via a
user interface. Generate the invoice and view it to verify the rate is being applied
correctly. View the resulting invoice.

4.3 Characterizing the Bloated Stories Using Storyotypes

Consider a story that describes the process of generating an invoice. This “use case
story” includes many Storyotypes:

Generating the invoice for all customers is an example of the New Functionality
storyotype. Generating them for a subset of customers is an example of the Variation
of Functionality storyotype.

Because there are three different UI metaphors being described, we can infer that
there are at least two candidates for UI Enhancement stories.

4.4 Splitting the Story Based on Storyotypes

Now that we’ve identified the various Storyotypes, we can refactor the story into the
following single-storyotype stories:
New Functionality: Generate a very simple invoice consisting of a single subscrip-
tion charge for the customer. View the resulting invoice. Note: This is an example of
a “bootstrap story” as described in [3].
New Functionality: Finalize and Send an invoice to a customer.
Variation: Generate an invoice that includes usage-based charges. The usage data is
read in from a flat file and the usage is charged at a rate of $1 per unit of usage. View
the resulting invoice.
Variation: The usage rate can be set via a user interface. Generate the invoice and
view it to verify the rate is being applied correctly.
Variation: Use a multi-selection list box of customers to select the customers whose
invoices are to be generated.
Variation: Remember the last set of customers for whom an invoice was generated.
UI Enhancement: Select the customers for whom to generate the invoices (or final-
ize the invoice) using a simple dual list box with add/remove buttons UI metaphor.
Business Rule: An invoice cannot be sent to a customer until it has been finalized.
Business Rule: An invoice that has been finalized cannot be regenerated or modified
in any way.
Business Rule: An invoice cannot be generated for a customer until the sales man-
ager has approved them. This also requires a simple UI to approve the customer
(probably described in the Maintain Customer use case.)
Business Rule: An invoice cannot be generated for a customer until all mandatory
data elements have been provided. These include name, contact information (mailing
address, phone #), title, and company name. Customers can be created with as little as
just a name but they cannot be invoiced.
Business Rule: Only the sales manager can approve the customer. This implies some
kind of login capability so that the system can be aware of who is using the system.
Authentication (that is, security) could be another story.

80 Gerard Meszaros

4.5 Combining Stories Based on Storyotypes

Now, we can make conscious decisions to keep each instance of a storyotype in a
separate story or to merge two (or more, but not recommended) storyotypes into a
single story. In our example, we will choose to treat the two business rules related to
when an invoice can be generated as a single story (that still has a single storyotype).
We might call this story “Invoice Generation Business Rules”.

We would only choose to merge them when we know their business value and cer-
tainty is the same and we are sure that they won’t change. For example, we could
choose to include both subscription charges and usage charges in the same invoice
generation story. We would do this knowing the consequences of having done so
rather than out of ignorance.

5 Conclusions

The story is the foundation for describing, planning, and managing an XP project.
Getting the granularity of the stories right is crucial for making the release planning
game function efficiently. The four storyotypes we present here are a useful tool for
understanding the size and complexity of the stories planning regardless of whether
the stories are based on use cases or are bloated for other reasons. They give the neo-
phyte XP team a set of heuristics they can use when making decisions about the how
to refactor stories while doing release planning. These storyotypes came from our
experiences using XP while building enterprise information systems; teams working
in other problem domains may find it useful to identify storyotypes specific to their
domain.

Acknowledgements

The author would like to thank all the ClearStream colleagues who shared their ex-
periences and insights in managing stories on a variety of XP projects and especially
Ted O’Grady who encouraged me and gave me valuable feedback on early drafts.

References

Beck, Kent. Extreme Programming Explained: Embrace Change, Addison-Wesley, 2000;
ISBN 201-61641-6.
Beck, Kent. Martin Fowler, Planning Extreme Programming, Addison-Wesley, 2001;
ISBN 0-201-71091-9.
Andrea, Jennitta. Managing the Bootstrap Story in an XP Project, in Proceedings of
XP2001, 2001.
Cockburn, Alistair. Writing Effective Use Cases, Addison-Wesley, 2001; ISBN 0-201-
70225-8.
Poppendieck, Mary and Tom. Lean Software Development, An Agile Toolkit, Addison-
Wesley, 2003; ISBN 0-321-15078-3.

1.

2.

3.

4.

5.

Distributed Pair Programming: An Empirical Study

Brian F. Hanks

School of Engineering
University of California, Santa Cruz

brianh@soe.ucsc.edu

Abstract. Pair programming provides many benefits, both to the programmers
and to the product that they develop. However, pair programming is limited to
those situations in which the developers can collocate, preventing its benefits
from being enjoyed by the widest possible audience. A software tool that al-
lowed the pair to work from separate locations would address this limitation.
This paper presents some initial results from a distributed pair programming
experiment in which students in an introductory programming class used such a
tool. Student perceptions of distributed pair programming are also discussed.

1 Introduction

Pair programming [1] transforms what has traditionally been a solitary activity into a
cooperative effort. In pair programming, two software developers share a single com-
puter monitor and keyboard. One of the developers, called the driver, controls the
computer keyboard and mouse. The driver is responsible for entering software design,
source code, and test cases. The second developer, called the navigator, examines the
driver’s work, offering advice, suggesting corrections, and assisting with design deci-
sions. The developers switch roles at regular intervals. Although role switching is an
informal process, a typical interval is 20 minutes.

Initial studies suggest that two programmers working together in the pair pro-
gramming style produce code with fewer errors, with only a slight increase in total
programmer time [2]. In addition, programmers who pair report improved mentoring
[2], increased confidence in their solutions [3, 4], and increased job satisfaction [2, 5].

At the university level, pair programming has been used in computer science
courses as a teaching tool [3, 4]. McDowell et al. [4] found that allowing students to
pair in an introductory programming course resulted in a greater percentage of stu-
dents completing the course. These students also were more likely than non-pairing
students to select computer science related majors within one year of completing the
course. Compared with students who work alone, students who pair are more likely to
turn in solutions to their programming assignments, and these solutions are of higher
quality [6, 7].

One major drawback of pair programming is that both members of the pair must be
collocated. Although research has shown that collocated work has significant advan-
tages over work by distributed teams [8], there are many factors motivating distrib-
uted work. More workers are telecommuting, and many organizations have offices in
multiple locations, resulting in geographically dispersed project teams.

This trend towards distributed teams conflicts with the collocation requirement of
pair programming. By removing the collocation requirement, the benefits of pair

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 81–91, 2004.
© Springer-Verlag Berlin Heidelberg 2004

82 Brian F. Hanks

programming could by enjoyed by a wider audience. A tool that supports distributed
pair programming, in which the driver and navigator pair from separate locations,
would remove this impediment to the adoption of pair programming. I have devel-
oped such a tool, and have conducted a controlled experiment to evaluate its effec-
tiveness.

2 Related Work

Schumer and Schumer [9] and Maurer [10] have conducted research in this area that
suggests that distributed pair programming (DPP) can work. However, their research
was more focused on distributed XP, and provides only anecdotal evidence that DPP
is effective. No quantitative results are provided and no comparison is made between
distributed and collocated pair programming.

More recent work by Baheti et al. [11] suggests that distributed pairing can be as
effective as collocated pairing. Students who virtually paired using Microsoft’s Net-
Meeting performed similarly to collocated pairs in terms of the grades they received
on their project. Because student pairs worked on separate, self-selected projects di-
rect comparison of their performance is difficult.

Canfora et al. [12] studied virtual pairing by having students use a screen sharing
application along with a text-based chat application. No audio channel was provided
to the students. They found that distributed pairs tended to stop cooperating and began
to work as two solo programmers. Based on these results, they made some sugges-
tions for features that should be supported in a distributed pair programming tool.
However, these suggestions may not be valid because the distributed pairs in this
study did not have a method of speaking with each other.

Stotts et al. [13] provides further evidence of the potential success of distributed
pairing. They describe an on-going series of experiments and case studies in which
students virtually paired. Although distributed pairs successfully completed their
programming assignments, they complained of their inability to point or gesture. As
Stotts observed, “pairs need better capabilities for indicating areas of interest”.

While this research provides compelling evidence that DPP can be effective, it
seems clear that a tool that supported the needs of the distributed pair would enhance
DPP. The next sections describe such a tool, an experiment that I conducted to evalu-
ate its effectiveness, and some initial experimental results and user experiences.

3 VNC for Pair Programming

The tool described here is based on the open source screen sharing application Virtual
Network Computing (VNC) [14]. VNC allows a user’s desktop to be replicated onto
multiple computers (in particular, two in the case of pair programming). Application
output is displayed on both computers, while keyboard and mouse input from either
computer is sent to the applications.

I decided to use a screen sharing approach in the development of this tool, instead
of developing collaboration-aware distributed pair programming development tools.
This choice was motivated by the fact that screen sharing applications allow single
user applications to be shared by multiple users without modification [15]. I believe
that this is especially important for complex tasks such as software development.

Distributed Pair Programming: An Empirical Study 83

Software developers use a large set of tools in their work, such as compilers, editors,
debuggers, and testing tools. It is critical for a distributed pair of developers to be able
to use their preferred development tools, and the screen sharing approach supports
this requirement.

While VNC can be used as-is for DPP, it is not ideal for this. Both users have ac-
tive keyboards and mice. If both partners use the keyboard simultaneously, their key-
strokes are interlaced into an unintelligible stream. There is also only one cursor,
which makes it difficult for the navigator to point at areas of the screen. [13]

I have modified VNC to provide a second cursor that can be controlled by the
navigator. This cursor is displayed when the navigator presses the F8 key to enter
‘gesture mode’. In gesture mode, a second cursor (in the form of a red hand with a
pointing index finger) is added to the user interface. The navigator’s mouse controls
the movements of this cursor, while the driver retains control of the standard cursor.
While the navigator is in gesture mode, keyboard and mouse button events are ig-
nored, and mouse movement events are used to control the position of the gesturing
cursor.

Fig. 1. Gesturing Mode

This second cursor allows the navigator to point at areas of the screen without af-
fecting the driver’s state. Figure 1 shows a portion of the driver’s desktop while the

84 Brian F. Hanks

navigator is gesturing. In this figure, the driver is typing in an editor window while
the navigator is pointing at the previous line where there is a missing semicolon.

While many synchronous groupware applications provide a separate cursor for
each user [16], my approach differs from the typical one in that the cursor is transient
and only present when the navigator requests it. A benefit of this approach is that the
navigator’s intent is clear to the driver, because the second cursor only appears when
the navigator wants to gesture. A continuously present second cursor would not be as
noticeable to the driver, and gesturing might not be as readily observed.

The shape of the cursor also plays a role in its usability [17]. In an earlier version
of this tool the gesturing cursor was arrow-shaped. It was changed to its current hand
shape based on early user feedback.

In addition to frequent gesturing, collocated pair programmers converse regularly
during a pairing session [1]. It is essential for partners in a distributed pair to be able
to speak with each other. One obvious solution is for the partners to use telephones.
However, in the experiment described in this paper, the students who participated did
not have always have access to telephones. Instead, they used a voice-over-IP applica-
tion (such as AOL Instant Messenger) and computer headsets to converse. This also
allowed them to use the chat window of AIM to transmit items that are difficult to
convey verbally, such as URLs, long path names, and complex method names.

4 The Experiment

In the fall 2003 quarter, 76 students in two sections of an introductory programming
course at the Santa Cruz campus of the University of California volunteered to par-
ticipate in an experiment to evaluate distributed pair programming. All students in
these sections pair programmed, even if they were not experimental volunteers. Stu-
dents were not paid to participate in the experiment.

Potential volunteers were told that I was studying a new tool to support pair pro-
gramming, but they were not given any details regarding the tool. In particular, they
were not told that the tool would allow them to work from separate locations.

Separate instructors taught these two classes. Although the courses covered the
same material, the programming assignments and exams were different. The number
of programming assignments also differed between the two sections – one section had
five graded assignments while the other had seven. The author was the instructor of
the section with seven assignments, which is identified as section 2 in the discussion
that follows.

Volunteer pairs were randomly assigned to one of two groups. One group was al-
lowed to pair program using the tool described here, while the second group paired
while collocated. The pairs in the tool group were allowed to use the tool as much or
as little as they wanted. They could still pair while collocated if it was convenient for
them, such as immediately before or after class.

Although allowing students in the tool group to pair while collocated was not ideal
from an experimental viewpoint, it is important to remember that the experiment was
being conducted in a classroom setting. Because of this, it would not have been ethi-
cal to force the students in one group to act in a way that might have negatively im-
pacted their classroom performance.

Students in both groups initially worked on their programming assignments while
collocated, so that they could establish good working relationships with their partners

Distributed Pair Programming: An Empirical Study 85

before attempting distributed pairing. One reason for this is the pair jelling factor
noted by Williams [3], which indicates that students have to learn to pair. Student
pairs became more effective in comparison to individuals after they had completed
their first assignment. A second reason for having students work together before at-
tempting distributed pairing is that I believe that they are more likely to have estab-
lished a cooperative relationship. This is substantiated by Rocco’s [18] findings that
individuals who had prior face-to-face interaction were more likely to cooperate in a
distributed game than those who had never met. Stotts et al. [13] also noted that face-
to-face meetings helped distributed pairs work effectively.

After this initial period of collocated work, the pairs in the tool group were in-
structed in its use. Computer headsets were loaned to these students. These students
were allowed to pair while using the tool on the remainder of their programming
assignments. The students in the control group continued to pair while collocated.

Student volunteers filled out surveys at the beginning and end of the experiment.
These surveys contained questions about the students’ demographic data, experience,
and opinions about pair programming. The students in the tool group were asked
additional questions about their experience using the tool.

The volunteers also answered a few questions (using a form on a web site) when
they turned in their programming assignments. Each student was asked how much
time they spent driving, navigating, and working alone, how confident they were in
their solution to the assignment, and how satisfied they were with their working rela-
tionship with their partner on the assignment.

5 Experimental Results

To be successful in an academic setting, a tool must not have a negative impact on
student performance. One measure of student performance is the final exam. Another
measure is the students’ confidence, as this directly influences their success in com-
puter science courses.

It is also important to measure user satisfaction with the distributed pairing proc-
ess. Subjects were asked to rate the utility of the gesturing feature, and comment on
what they liked and disliked about distributed pairing.

5.1 Final Exam Performance

Of the 76 students who volunteered for the experiment, 72 took the final exam. This
was an individual, in-class, written exam with a variety of question types. Students
were expected to understand and create short programs, methods, or classes. Table 1
shows the final exam scores for these students. Because the students in the two sec-
tions did not take the same final exam, the results for the two sections cannot be com-
pared directly. The categories in the table are (1) All: all student volunteers as a
group, (2) Non Tool Group: the collocated students, (3) Tool Group: the students who
were allowed to use the tool, and (4) Tool Users: those students in the tool group who
actually used the tool. As shown in the table, students in the collocated and distributed
groups performed equally on the final exam. Distributed pairing did not negatively
affect student performance on the final exam.

86 Brian F. Hanks

Curiously, those students in the Tool Group who actually used the tool on their
homework assignments performed better on the final exam, although this difference is
not statistically significant. A possible explanation for this difference is that higher
performing students are more likely to make the effort to try a new software tool.

5.2 Confidence

When they turned in their programming assignments, each student was asked to re-
spond to the following question: “On a scale from 0 (not at all confident) to 100 (very
confident), how confident are you in your solution to this assignment?”. Table 2
shows the mean values of the responses and associated statistical significance for the
students in the two sections of the class.

In section 1, students in the tool group began using the tool on their third pro-
gramming assignment. In section 2, they began using the tool on the fourth assign-
ment. There were no statistically significant differences in student confidence in ei-
ther section on any of the programming assignments, either before or after the
students began using the tool.

5.3 Gesturing

To evaluate the effectiveness of the gesturing feature in enabling DPP, the students
who used the tool were asked to indicate their level of agreement with the statement,

Distributed Pair Programming: An Empirical Study 87

“The gesturing feature was very useful to me.” The response was given on a 7 point
Likert scale, where 1 meant “strongly disagree”, 4 meant “neutral”, and 7 meant
“strongly agree”.

Figure 2 shows the students’ responses. The mean response was 5.47. Although one
student disagreed with the statement and two were neutral, the other 14 were in
agreement. These results are encouraging, and indicate that the gesturing feature aids
the distributed pairing process.

Fig. 2. Gesturing Feature was Useful to Me

6 Student Experiences with the Tool

To gain more understanding of the benefits and drawbacks of DPP, students were
asked what they liked and disliked about using the tool. I was also interested in learn-
ing why some students in the tool group chose not to use it.

6.1 Student Likes

Students gave a variety of answers to the question, “What did you like about the dis-
tributed pair programming tool?”. Many of the responses addressed convenience and
effective use of time. A representative sample of these responses includes:

“Well, besides it allowing us to work in the comforts of our own homes without
ever getting out of our chairs, it also helped to overcome some schedule conflicts,
and the time that would have been wasted just walking to the other person’s com-
puter was instead turned into productive programming time!”
“You don’t have to go all the way to a computer lab to pair program.”
“It made pair programming very easy and convenient. We didn’t have to meet on
campus or at each other’s houses so we could always pair program w/out the effort
of getting together. I think the class would have required a lot more time w/out the
tool.”

88 Brian F. Hanks

Another set of responses addressed student satisfaction with the tool itself. These
responses indicated that the students felt that the tool was an effective way for them to
pair program without having to physically meet. Responses of this type include:

“If we didn’t meet in person, this combined with AIM almost perfectly emulated
working side by side. We could work on it any time and take long breaks.”
“The pair programming tool allowed us to work together from two different places.
The pointing function of the program also made it easier to point out errors and not
accidentally type while my partner was typing.”

An interesting group of responses came from students who used the tool while col-
located. These students found that using the tool improved the pairing process even
when they weren’t separated. In fact, some of these students never used the tool from
separate locations, but still found it valuable. Comments from this group of students
includes:

“I like the flexibility it offers in case two partners can’t meet and work together. I
liked being able to work on separate terminals while working side by side in the
lab.”
“Easier than sharing computer”
“Being able to switch driver/navigator easily”

These students felt that the typical physical setup in the campus computing labs
made role switching difficult. These labs are set up for solo work, and it is sometimes
difficult to get two chairs in front of one workstation. The limited desk space also
makes moving the keyboard and mouse difficult, and hinders the role switching proc-
ess. The tool eliminated these problems, and allowed the students to use any campus
computing lab as if it were a pair programming lab.

One particularly interesting comment was made by a female student, who said,
“The tool was useful at night when we couldn’t work in the lab together because we
live on opposite sides of campus.” This comment suggests that some students may
feel uncomfortable on campus at night, and that tools such as this would allow them
to work in a safe environment.

6.2 Student Dislikes

Students were also asked what they disliked about the distributed pairing tool. Many
of the comments had to do with problems with the computing environment, such as
poor quality audio, or the lack of a Macintosh version of the tool.

Some students seemed to feel disconnected from their partner while distributed.
Typical comments from these students include:

“Communication with the partner is still awkward”
“The tool was difficult to use when we were programming something we had never
programmed before – for instance, when we first used arrays.”
“We sometimes wrote over each other’s work and sometimes presenting things in
person kept each others’ interest.”
“AIM is not a good way to communicate, even with the headsets. Sometimes it is
difficult to explain something through the air.”

Distributed Pair Programming: An Empirical Study 89

One particularly interesting comment came from a student who felt that distributed
pairing was antisocial:

“Discourages human contact. One of the things I like best about pair programming
is that the two people are physically in the same place together, talking and inter-
acting face-to-face. This helps foster community and social interaction. The tool
makes face-to-face contact unnecessary, and this can encourage a retreat into the
“ lone-wolf ” mode, an aspect that troubles me”

6.3 Reasons for Not Using the Tool

The students in the tool group did not have to use it, and some of them chose not to. I
asked these students the question, “Why didn’t you use the distributed pairing tool?”.

One common reason for not using the tool was that they didn’t find it necessary.
Many of the pairs found it easy to physically meet with their partner, and therefore
did not see any reason to use the tool. Comments from these students included:

“We never had any need to. It was easier to meet in person.”
“Because we were able to find time together working on it at one person’s place”
“It was not necessary for us. It was very easy for us to meet in lab and talk face to
face”

Some students found it challenging to get the program running. They had to start
up a server application, connect with the partner using AIM, and then run the VNC
client. Comments from these students include:

“Too many programs to do a simple thing.”
“It was a hassle trying to get the program up and running than just simply meeting
up with your partner at the lab. ”

It is clear that some students dont see any need for distributed pairing. It was easy
for them to meet with their partner, and they were happy to do so.

The tool may have helped some of the other students in the tool group who did not
use it. These students gave up in their attempts to use the tool because it was not easy
enough for them to set up. It is important to remember that these students are not
necessarily experienced computer users, and the steps required to establish a distrib-
uted pair programming session may have been too complex. This suggests that more
work needs to be done to make the tool simpler to setup.

7 Concluding Remarks

Although previous research has shown that DPP is possible, none of this research
investigated tools specifically designed to support distributed pairing. This paper
describes a tool that was developed specifically to support distributed pairing, and
reports results showing that students who used the tool performed as well as collo-
cated students, had similar levels of confidence, and found the tool beneficial.

Students in the control and experimental groups performed equally well on the fi-
nal exam. Although it is not statistically significant, students who used the tool per-
formed better on the exam than the students in the control group. Students in both
experimental groups were also equally confident in their programming solutions.

90 Brian F. Hanks

Students agreed that the gesturing feature was useful to them. Further research is
needed to verify the usefulness of the gesturing feature by comparing the performance
of pairs using this tool with that of pairs using VNC without the gesturing feature.

This paper discusses student performance in terms of final exam scores. This is not
the best measure of pair programming performance, for a couple of reasons. First, the
final exam is an individual effort. Second, it measures student understanding of the
course material, but does not directly measure programming ability. The students’
grades on their programming assignments would provide a better indication of the
impact of distributed pair programming on student performance. This analysis re-
mains to be done.

The results reported here may not generalize to other populations. The experimen-
tal subjects were students who were learning to program; therefore, these results may
not be applicable to DPP with experienced software developers. Similarly, the ex-
perimental subjects were allowed to establish working relationships with their part-
ners before using the tool, and those in the tool group were also allowed to pair while
collocated. The results reported here may not apply to those situations where partners
are not able to physically meet before or while pairing.

As noted earlier, there are many situations where collocated pair programming
cannot be done. The availability of an effective DPP tool would allow the benefits of
pair programming to be enjoyed by a larger audience. Although much work remains
to be done to develop a commercial grade tool, the results presented here show that
such a tool can facilitate distributed pairing.

Acknowledgements

This research is supported by National Science Foundation grant DUE-0341276.
Plantronics, Inc. also supported this research by generously donating computer head-
sets. Any opinions, findings, and conclusions or recommendations expressed in this
paper are those of the author and do not necessarily reflect the views of the National
Science Foundation or those of Plantronics.

References

Laurie Williams and Robert Kessler. Pair Programming Illuminated. Addison-Wesley,
2002.
Alistair Cockburn and Laurie Williams. The costs and benefits of pair programming. In
Giancarlo Succi and Michele Marchesi, editors, Extreme Programming Examined, pages
223 - 247. Addison-Wesley, 2001.
Laurie A. Williams. Strengthening the case for pair programming. IEEE Software,

17(4): 19 - 25, July/August 2000.
Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. The impact of pair
programming on student performance, perception and persistence. In Proceedings of the
International Conference on Software Engineering (ICSE 2003), pages 602 - 607, May 3 -
10, 2003.
John T. Nosek. The case for collaborative programming. Communications of the ACM,

41(3):105-108, March 1998.

1.

2.

3.

4.

5.

Distributed Pair Programming: An Empirical Study 91

Charlie McDowell, Brian Hanks, and LindaWerner. Experimenting with pair program-
ming in the classroom. In Proceedings of the 8th Annual Conference on Innovation and

Technology in Computer Science Education, 2003.
Brian Hanks and Charlie McDowell. Program quality with pair programming in CS1. To
appear in Proceedings of the ninth annual conference on innovation and technology in

computer science education (ITiCSE), June 28 - 30, 2004.
Judith Olson, Stephanie Teasley, Lisa Covi, and Gary Olson. The (currently) unique ad-
vantages of collocated work. In Pamela Hinds and Sara Kiesler, editors, Distributed Work,

pages 113-135. The MIT Press, 2002.
Till Schummer and Jan Schummer. Support for distributed teams in extreme program-
ming. In Giancarlo Succi and Michele Marchesi, editors, Extreme Programming Exam-

ined, pages 355-378. Addison-Wesley, 2001.
Frank Maurer. Supporting distributed extreme programming. In Extreme Programming

and Agile Methods - XP/Agile Universe 2002, number 2418 in LNCS, pages 13-22.
Springer, 2002.
Prashant Baheti, Edward Gehringer, and David Stotts. Exploring the efficacy of distributed
pair programming. In Extreme Programming and Agile Methods - XP/Agile Universe

2002, number 2418 in LNCS, pages 208-220. Springer, 2002.
Gerardo Canfora, Aniello Cimitile, and Corrado Aaron Visaggio. Lessons learned about
distributed pair programming: What are the knowledge needs to address? In Proceedings
of the Twelfth IEEE International Workshops on Enabling Technologies: Infrastructure

for Collaborative Enterprises (WETICE03), pages 314-319, 2003.
David Stotts, Laurie Williams, Nachiappan Nagappan, Preshant Baheti, Dennis Jen, and
Anne Jackson. Virtual teaming: Experiments and experiences with distributed pair pro-
gramming. In Extreme Programming and Agile Methods - XP/Agile Universe 2003, num-
ber 2753 in LNCS, pages 129-141. Springer, 2003.
Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hopper. Vir-
tual network computing. IEEE Internet Computing, 2(l):33-38, January-February 1998.
Saul Greenberg. Sharing views and interactions with single-user applications. ACM

SIGOIS Bulletin, 11(2-3):227-237, April 1990.
Stephen Hayne, Mark Pendergast, and Saul Greenberg. Gesturing through cursors: Imple-
menting multiple pointers in group support systems. In Proceedings of the 26th Hawaii In-

ternational Conference on System Science, volume 4, pages 4-12, 1993
Saul Greenberg, Carl Gutwin, and Mark Roseman. Semantic telepointers for groupware.
In Proceedings of the 6th Australian Conference on Computer-Human Interaction, pages
54-61, 1996.
Elena Rocco. Trust breaks down in electronic contexts but can be repaired by some initial
face-to-face contact. In Proceedings of CHI 98, pages 496-502, 1998.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Support for Distributed Pair Programming

in the Transparent Video Facetop

David Stotts, Jason McC. Smith, and Karl Gyllstrom

Dept. of Computer Science, Univ. of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175 USA

{stotts,smithja,gyllstro}@cs.unc.edu

Abstract. The Transparent Video Facetop is a novel user interface concept that
supports not only single-user interactions with a PC, but also close pair collabo-
rations, such as that found in collaborative Web browsing, remote medicine,
and in distributed pair programming. In this paper we discuss the use of a novel
video-based UI called the Facetop [16] for solving several problems reported to
us by teams doing distributed pair programming. Specifically, the Facetop al-
lows a distributed pair to recapture some the facial expressions and face-to-face
communications contact lost in earlier distributed sessions. It also allows mem-
bers of a distributed pair to point conveniently, quickly, and naturally to their
shared work, in the same manner (manually) that they do when seated side-by-
side. Our results enhance the ability of organizations to do effective XP-style
agile development with distributed teams.

1 Distributed Pair Programming

Previous research [17,19] has indicated that pair programming is better than individ-
ual programming in a co-located environment. Do these results also apply to distrib-
uted pairs? It has been established that distance matters [18]; face-to-face pair pro-
grammers will most likely outperform distributed pair programmers in terms of sheer
productivity. However, the inevitability of distributed work in industry and education
calls for research in determining how to make this type of work most effective. Addi-
tionally, Extreme Programming (XP) [1,2] usually has co-located pairs working in
front of the same workstation, a limitation that ostensibly hinders use of XP for dis-
tributed development of software.

We have been investigating a video-enhanced programming environment for the
past year for use in distributed Pair Programming and distributed Extreme Program-
ming (dPP/dXP) [1,2]. Pair programming is a software engineering technique where
two programmers sit at one PC to develop code. One types (“drives”) while the other
reviews and assists (“navigates”); roles swap frequently. The benefits of pair pro-
gramming are well known in co-located situations [3]; we have been exploring if they
remain in distributed contexts [6,7,15].

Video was one issue discussed at a workshop on distributed pair programming at
XP/AU 2002. This workshop was attended by over 30 people, many of whom had
tried some form of distributed pair programming and were working on tools to im-
prove the effectiveness of such activities. The consensus on video was that “web
cam” style video – small image and low frame rate – was of little value in enhancing
communications or sense of presence in a distributed pairing. However, it was felt

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 92–104, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Support for Distributed Pair Programming in the Transparent Video Facetop 93

that video, if large enough and real enough was of potential value and worth further
research. We have been doing that research since that time.

2 The Facetop Basics

The transparent video Facetop [16] is a novel enhancement of the traditional WIMP
user interface, so nearly ubiquitous on today’s computers. In the Facetop, the user
sees him/her self as a “ghostly” image apparently behind the desktop, looking back at
the icons and windows from the back. Instead of a traditional desktop, we see a
“face” top. This self-image is used for visual feedback and communications both to
the user as well as to collaborators; it is also used for desktop/application control and
manipulation via a fingertip-driven “virtual mouse”.

Fig. 1. Facetop physical setup, with iBot video camera

Figure 1 shows the physical setup for a computer with a Facetop being displayed
on a monitor. Note the video camera sitting on top the LCD panel pointing back at the
user; in our current work we use a $100 Sony iBot, giving us an image that is 640 x
480 pixels of 24-bit color, captured 30 frames per second. The Facetop video window
shows the PC user sitting at his/her workspace; we reverse the image horizontally so
that when the user moves a hand, say, to the left, the image of the hand mirrors this
movement on the screen. In software, and using a high-performance 3D-graphics
video card, we make the video window semi-transparent and composite it with the
desktop image itself.

Once we have the full screen video with transparent image compositing we get the
illusion of the user watching the desktop from behind. Mirroring means if the user
physically points to an icon on the desktop, the Facetop image points to the icon as
well (with proper spatial calibration of the camera and user locations). Using image
analysis techniques we then track the user’s fingertip in the backing window, and
optionally drive the mouse from this tracker. Figure 2 shows this finger tracking (the
desktop image is more transparent and the user face more opaque to emphasize the
tracking). The user can then manipulate the desktop of a projected computer, for ex-
ample, from his seat while successfully communicating the areas of interest on the
screen to others watching the projection.

94 David Stotts, Jason McC. Smith, and Karl Gyllstrom

2.1 Transparency Combined with User Self-view

The Facetop combines and extends work from several different domains of computing
research. Gesture-based computer controls have existed for a while, for example. The
Facetop, however, is unique among these for two reasons. The first is transparency:
the Facetop blends the traditional desktop with a video stream of the user, mirrored
and made semi-transparent. The second is the video cues the user image gives: the
user is in the desktop, as live background wallpaper, rather than making detached
gestures apart from the image of the desktop. These video cues have proven very
effective at giving fine and intuitive control of the cursor to the user in various tasks
and applications we have experimented with.

Fig. 2. Facetop finger tracking (low user transparency)

We allow the user to dynamically control the transparency level of the Facetop
window, altering it from fully opaque (all user face, a communications tool) to fully
transparent (all desktop) during execution for varying useful effects. Figure 3 shows
the near extremes.

3 Dual-Head Collaborative Facetop

Though the previous presentation has been in the context of a single-user PC inter-
face, an equally interesting domain of application for the Facetop is in collaborative
systems – specifically in systems for supporting synchronous paired tasks. We have
been investigating a two-head Facetop for the past year for use in distributed Pair
Programming (dPP). This investigation is an extension of earlier studies we con-
ducted to see if distributed pairs could pair program effectively communicating over
the Internet [6,7,15].

In our previous dPP experiments, programmers worked as a pair using COTS
software, including pcAnywhere (Symantec) and Yahoo messenger (for voice com-
munications). The pcAnywhere shared desktop allows the two programmers effec-
tively to work on a single host computer; each seeing exactly what the other sees, as
they would sitting side-by-side at the host PC. Our experiments found that program-
mers working in this dPP environment were as effective as co-located pairs. In post-
trial interviews, teams consistently told us 3 things:

Support for Distributed Pair Programming in the Transparent Video Facetop 95

They missed facial expressions and the sense of presence
They wanted a way to point at the shared work they were discussing via audio
They wanted a whiteboard for drawing and design work

Fig. 3. Varying user transparency, from mostly user showing to mostly desktop showing

The Facetop provides potential solutions to each of these problems, via its video
capabilities. Video was provided to the pairs in our previous dPP experiments; we
gave each team “web cams” that generate small images at low frame rates. Each team
turned off the video almost immediately, finding that the small, nearly still, images
gave no useful information, but did consume considerable bandwidth. Maximal
bandwidth was needed for fast update of the pcAnywhere shared desktop.

The video capabilities in Facetop are very different, however. The image is large,
and frame rates run from 15 to 30 fps, showing facial details and fine motor move-
ments of the fingers and lips. The video image is also tightly and seamlessly inte-
grated with The shared workspace via transparency, thereby eliminating the “dual”

96 David Stotts, Jason McC. Smith, and Karl Gyllstrom

nature of video teleconferencing solutions. Users do not have to switch their attention
from desktop, to video, back to desktop.

For the dual-user Facetop, we have built a setup that has both video streams (each
collaborator) superimposed on a shared desktop, illustrated for a projected environ-
ment in Figures 4 and 5. Each user sits slightly to the right so that the two heads are
on different sides of the frame when the two streams are composited. In this “knitted
together” joint image, we sit each user against a neutral background to control the
possible added visual confusion of the dual Facetop image.

Collaborating users continue, as before, to communicate audibly while using the
Facetop via an Internet chat tool like Yahoo messenger. The primary advantage the
Facetop gives over other approaches is the close coupling of communications capa-
bilities with examination of the content. Each user can see where the other points in
the shared workspace; they can also use the Facetop as a direct video conferencing
tool (by varying the transparency level to fade the desktop image) without changing
applications or interrupting the work activities.

Fig. 4. Dual-head Facetop for collaborative browsing

Fig. 5. Varying levels of transparency in dual-head Facetop

3.1 System Features and Functions

The following sections briefly discuss a collection of features and functions of our
current Facetop implementation.

Support for Distributed Pair Programming in the Transparent Video Facetop 97

Multiple varying transparency levels. In the dual-head Facetop, each user has
transparency level controls that are independent of the settings chosen by the partner.
A user can set the level (from opaque to transparent) of each video image separately
(self and partner image), as well as level of the desktop (see Figure 5). In this way,
each user can get different communications effects. If both user images are set to
highly visible, and the desktop set low, the Facetop is a form of video conferencing
system. Bring the desktop up to visible and the unique integration of user image with
shared work happens, allowing pointing and discussion. Some users may wish not to
see themselves and have only the partner image visible on the desktop; they can still
effectively point by finger tracking and watching the mouse pointer.

Chalk passing. Passing locus of control among collaborators in a shared application
is an important issue, called floor control, or chalk passing. The user who has “the
chalk” is the one who drives the mouse and click on links when Web browsing.

Our tracker algorithm has a loss recovery mode that produces an interesting chalk
passing behavior in the dual-user Facetop. When tracking, if the user moves the finger
faster than the tracker can track, we detect that it is “lost” by noticing no data for
processing in several consecutive frames. When this happens, the algorithm stops
tracking in a local neighborhood and does an entire image scan; this is too computa-
tionally expensive to do each frame, but works well for the occasional frame. In this
full-frame search, the tracker acquires and moves to the largest fingertip object it
finds.

With two users, this means that chalk passing happens simply by the user with the
mouse hiding (dropping, moving off screen) the finger. This “loses” the tracker and
starts the full screen search algorithm. The mouse pointer immediately jumps to the
other user’s fingertip and “parks” in a corner until there is one.

Monitor or projector. The Facetop as a concept works fine on a PC with any display
technology -- a monitor, a projector, an immersive device -- but its unique aspects are
most pronounced and most effective in a projected environment. When projected, it is
natural to point with hand and finger at the projected image on a wall, especially
when several people in a room are viewing the projection.

Finger tracking on/off. One interesting feature in the Facetop is finger tracking. This
function can be turned on or off and used as needed. Even if the user chooses not to
use finger tracking, the Facetop has great value as a pure communication tool via
finger pointing and facial expressions, especially in collaborative applications like
dPP. However, tracking and mouse control does add some interesting and useful ca-
pabilities for users that wish to use them.

Figure 2 illustrates the tracking in a view of the Facetop when the user is fully
opaque, showing the user and none of the underlying desktop or whiteboard. The
highlighted box around the finger is the region the tracker operates in, and in this
view we show the actual data bits being examined (a debugging mode that can be
toggled on and off). As the user moved the hand around in view of the camera, the
tracker constantly finds the center of mass off the fingertip and reports an <x,y> co-
ordinate location for each frame.

In the Facetop, the user’s fingertip functions as a mouse driver, so applications like
browsers can be controlled with finger motions rather than the mouse. The tracker
provides the <x,y> location information for moving the mouse; the more difficult

98 David Stotts, Jason McC. Smith, and Karl Gyllstrom

problem is designing and implementing gestures that can serve as mouse clicks,
drags, etc.

Fingertip mouse click activation. The Facetop tracker gives us mouse-pointer loca-
tion and causes mouse motion, but the harder issue is how to click the mouse. The
method we currently use is occlusion of the fingertip. When the mouse pointer has
been positioned, the user makes a pinching fist of sorts, hiding the fingertip in the
hand or between the other fingertips. The tracker notes the loss of the tip, and begins a
timer. If the tip reappears (user raises the finger) in a ½ second, a single-click mouse
event is generated at the mouse pointer location. If the tip remains hidden for between
½ and 1 second, a double-click event is generated. User studies (discussed in a later
section) have so far shown that this motion is not hard to learn and even master. It is
sufficient to open/close windows, drag them, resize them, select links in Web brows-
ers, and even position the mouse between characters in documents.

Another interaction method we have implemented is voice commands. This is es-
pecially useful in rapidly altering the transparency level of the various Facetop cam-
era images, as well as for hands-free mouse clicking where useful.

Video auto on/off. Another technique we use for managing visual clutter is to have
the Facetop tracker recognize when the fingertip enters the video frame. When the
fingertip enters, the user camera image is composited in. When the tip leaves, the user
fades and the desktop remains. This is modal and can be turned on and off. It is espe-
cially useful for doing presentations in Web browsers and PowerPoint.

4 Initial User Evaluations

Controlled user evaluations are still ongoing, but we have some usability results to
report from our first experiments. To date we have had 15 users try the basic Facetop
to determine if live background video is a viable, usable concept as an interface for
manipulating the PC environment. We set up the Facetop up in a room with white
walls so that there would not be a busy background to add visual clutter to the screen
image.

As might be expected, arm fatigue is a problem for continuous use of the fingertip-
based mouse feature. For browsing a hypertext, this is not a major issue, as much time
is spent reading vs. actually manipulating the screen. Users drop their arm during
these quiescent periods, and then raise it to point when ready to navigate more. The
video image on-screen gives the visual cues needed for nearly instant positioning of
the mouse pointer directly where needed.

Another problem reported by several users is visual clutter. Most users adapted
quickly and comfortably to the moving image as background “wallpaper”; transpar-
ency was set at different levels by different users, and there did not seem to be a pre-
ferred level of mixing of desktop with user-image other than to say that both were
visible. The human eye/brain is able to pay attention (or ignore) the face or the desk-
top respectively, depending on the cognitive task – depending on whether the user
wants to read the screen contents or to communicate (in the two-head version).

Users were queried specifically as to visual clutter or confusion. A few objected,
but most found the adjustability of transparency fine-grained enough to get to a level
where they were not distracted or hindered in using the desktop.

Support for Distributed Pair Programming in the Transparent Video Facetop 99

We also created a networked tic-tac-toe game for usability trials of the dual head
version and had 11 pairs of users try it. The users were a class of 8-grade students
who came to the department for research demonstrations. Five of the users took less
that 5 minutes to become facile with the interface, learning to move and click the
mouse well enough to Web browse. All users were able to successfully play the game
(which involves clicking on GUI buttons) in the 30 minute time-frame of the trials.

4.1 Distributed Pair Programming Trials

We had five of the pairs involved in past dPP experiments (with audio and shared
desktop only) try the Facetop environment for small pair programming “shakedown”
tasks. Since all had tried the earlier environments, the trials were designed to see if the
“video made large” features in Facetop overcame the lack of pointing ability and lack
of facial expressions reported by these teams before (the lack of whiteboard they
reported is still being investigated, and is discussed in the next section).

All teams were quite comfortable using the Facetop, and did not consider visual
complexity or clutter an issue. We suspect this is due to concentration on program-
ming focusing the attention on the various text windows of the desktop. All dPP
teams were able to complete small programs with no problems.

They also reported setting varying levels of user image transparency to suit per-
sonal taste. Given that the video images can be completely faded out, leaving nothing
but desktop, the current Facetop is “no worse” than our previous audio-only environ-
ments. However, no teams chose to completely fade out the video and use audio only.
All teams left the user images visible to some extent and did use the video to point to
code being discussed.

In post-trial interviews, the overall impression was that Facetop was an interesting
improvement over the audio-only dPP environment used before. Each team was asked
“if you were to do a longer dPP development, would you prefer to use Facetop or the
original audio-only environment?” All teams expressed a preference for Facetop.

These simple usability trials do not reveal if the preference for Facetop was emo-
tional or qualitative only, or if the added video and sense of presence increases pro-
grammer effectiveness. We find these early usability trials compelling enough,
though, to start larger, controlled experiments to see if Facetop can have an impact on
quantitative aspects of software, such as design quality or error counts.

5 Further Distributed Pair Programming Investigations

Our studies have found that adding large, fast video via the Facetop to a dPP envi-
ronment enhances the qualitative experience of the programmers. Our investigations
are continuing; we are gathering quantitative data on productivity and product quality
in follow-on trials. Current work is in two areas: whiteboard support, and universal
access for impaired programmers.

5.1 Dual Camera Facetop for Whiteboard

One of the items noted earlier as wanted by dPP teams in past experiments was access
to a good whiteboard. To solve this problem, we have a version of Facetop that works
with two Firewire video cameras per workstation. In addition to the normal Facetop

100 David Stotts, Jason McC. Smith, and Karl Gyllstrom

user camera, a second camera is situated to the side of the user and faces a white-
board. The user sits near enough to the board to be able to comfortably reach out from
the seat and draw on the whiteboard. This layout is shown in figure 6. Facetop takes
both camera streams (user face and whiteboard) and composites them into the video
stream that is laid semi-transparent on the desktop. As in the normal Facetop, the user
face stream is mirrored (reversed horizontally) so that pointing is meaningful to the
user. The whiteboard video image is not mirrored, so that words written on the board
remain readable when composited into the Facetop video.

Fig. 6. Schematic of two-camera Facetop for whiteboard

Since the whiteboard is neutral in appearance, compositing it into the Facetop im-
age doesn’t really alter the appearance over the traditional Facetop. When words or
drawings are written on the whiteboard, they appear to “float” within the
room/background of the user. Figure 7 shows this compositing of both video streams.
By varying transparency levels of each camera, users can see whiteboard only, or
whiteboard composited with their images. Key-press commands in Facetop allow
instant swapping between whiteboard image and user image. User’s hands show up as
drawing is done, so each sees what the other is drawing.

5.2 Universal Access for Impaired Programmers

We are also investigating the use of the collaborative Facetop in providing access to
pair programming, and other synchronous paired collaborations, for people with audio
and visual impairments. For programmers with audio impairments, we are experi-
menting with the Facetop video being used for support of signing and lip reading
during pair programming. Programmers with audio impairments can do side-by-side
pair programming with current technology, but they cannot participate in dPP using
the audio-only environments we first experimented with.

Support for Distributed Pair Programming in the Transparent Video Facetop 101

For programmers with visual impairments, we are developing audio cues that will
provide information about the state of a collaboration. Currently individual program-
mers with visual impairments use a screen reader like JAWS [20] for navigating a PC
screen. Our extensions will function similarly, but will have to not only communicate
screen information, but partner activity information as well.

Fig. 7. Whiteboard image composited into the Facetop user image

6 System Structure and Performance

Our single-user Facetop is implemented on a Macintosh platform. Our collaborative
Facetop is also Mac-based but runs on a peer-to-peer gigabit network between two
machines, to get the very high bandwidth we need for 30 fps video stream exchange.
Current experimental versions are built for best-effort use of the switched Internet
give about 18 frames a second. This is usable for dPP, but we need better for univer-
sal access and hearing-impaired signing.

A Macintosh implementation has several advantages. The desktop is rendered in
OpenGL, making its image and contents not private data structures of the OS, but
rather available to all applications for manipulation or enhancement. We also use
dual-processor platforms, so that one processor can handle tracking issues and other
Facetop-specific loads, while leaving a processor free to support the collaborative
work, such as pair programming. Video processing is handled mostly on the graphics
card.

Our implementation is beautifully simple, and potentially ubiquitous due to its
modest equipment needs. Facetop uses a $100 Sony iBot camera, and runs with excel-
lent efficiency on an Apple Powerbook, even when processing 30 video frames a
second. No supplemental electronics are needed for wearing on the hand or head for
tracking or gesture detection. Facetop is minimally invasive on the user’s normal
mode computer use.

102 David Stotts, Jason McC. Smith, and Karl Gyllstrom

The current prototype was generated with a Macintosh G4 with a high-end graph-
ics card to perform the image transparency. It is implemented on MacOS X 10.2 by
taking advantage of the standard Quartz Extreme rendering and composition engine.
QE renders every window as a traditional 2D bitmap, but then converts these to
OpenGL textures. By handing these textures to a standard 3D graphics card, it allows
the highly optimized hardware in the 3D pipeline to handle the compositing of the
images with varying transparency, resulting in extremely high frame rates for any
type of image data, including video blended with the user interface.

The video application, with tracking capabilities, is run in a standard MacOS win-
dow, set to full screen size. Using OpenGL, setting the alpha channel level of the
window to something under 0.5 (near-transparency) gives the faint user image we
need.

Some of our experiments have been run with the two Power Mac’s connected via
peer-to-peer gigabit network. In this configuration, we get a full 30 frames per second
video data exchange in each direction. This is possible due to the high network
speeds, and due to our passing only the 640 x 480 camera image. Image scaling to
screen size is handled locally on each machine after the 2 video signals and the desk-
top are composited into one image.

7 Related Prior Research

7.1 Pointing in Collaborative Applications

Several systems have dealt with the issue of two users needing to provide focus
(point) at different, or independent locations on a shared screen. The common solu-
tion is to provide two mouse pointers and let each user control his/her own independ-
ently. Use of two mouse pointers is central to a dPP tool being developed by Hanks
[21]. This is fundamentally different from using a human device (fingers) to point as
in Facetop.

7.2 Collaborative Systems, Distributed Workgroups

One major use for the Facetop is in collaborative systems. There have been far too
many systems built for graphical support of collaboration to list in this short paper.
Most have concentrated on synthetic, generated graphics. ClearBoard [4] is one sys-
tem that is especially applicable to our research. ClearBoard was a non-co-located
collaboration support system that allowed two users to appear to sit face to face, and
see the shared work between them. The ClearBoard experiments showed that face-to-
face visibility enhanced the effectiveness of collaboration. However, the workstations
required were expensive and used custom-built hardware. One of the advantages of
the Facetop is its use of cheap and ubiquitous equipment.

One last project we use results from is BellCore’s VideoWindow project [5]. In this
experiment, two rooms in different buildings at BellCore (coffee lounges) were outfit-
ted with video cameras and wall-sized projections. In essence, an image of one lounge
was sent to the other and projected on the back wall, giving the illusion in each room
of a double-size coffee lounge. The researchers discovered that many users found the
setup to be very natural for human communication, due to its size. Two people, one in

Support for Distributed Pair Programming in the Transparent Video Facetop 103

each room, would approach the wall to converse, standing a distance from the wall
that approximated the distance they would stand from each other in face-to-face con-
versations. The conclusion: Video, when made large, was an effective and convincing

communication tool. We have leveraged this finding in creating the dual-head Facetop
that we use for synchronous, collaborative Web browsing.

7.3 Transparency, UI, Video, and Gestures

Many prior research projects have experimented with aspects of what we have unified
in the Facetop. Several researchers have made systems that have transparent tools,
windows, pop-ups, sliders, widgets that allow see-thru access to information below;
these are primarily used for program interface components [8,11]. Many systems have
some user embodiment and representation in them (avatars), especially in distributed
virtual environments like [10], but these tend to be generated graphics and not live
video. Giving your PC “eyes” is a growing concept, as is illustrated by this 2001
seminar at MIT [12]. A system being developed in Japan [9] uses hand activities as
signals to programs; the system uses silhouettes to make recognition easier and faster.
Our ideas for fingertip gesture control in the Facetop are related to the many efforts
under way to recognize pen gestures and other ink-based applications; the Tablet PC
based on Windows with ink is now commercially available from several manufactur-
ers. They are also related to efforts in the past to recognize human facial features and
motions.

The work most closely related to our Facetop video analysis is from the image-
processing lab of Tony Lindberg in Sweden. Researchers there have developed track-
ing algorithms for capturing hand motions rapidly via camera input, and have devel-
oped demonstrations of using tracked hand motions to interact with a PC [13,14]. One
application shows a user turning on lights, changing TV channels, and opening a PC
application using various hand gestures while seated in front of a PC. Another ex-
periment shows careful tracking of a hand as it display one, two, and three fingers,
and scales larger and smaller. A third experiment uses hand gestures in front of a
camera to drive the mouse cursor in a paint program. The missing concept in
Lindberg’s work (and in other hand-gesture work), one that we are exploiting for
Facetop, is the immersion of the user into the PC environment to give video cues and
feedback for control.

Acknowledgements

This work was partially supported by a grant from the U.S. Environmental Protection
Agency, # R82-795901-3. It does not represent the official views or opinions of the
granting agency.

References

1. Beck, K., Extreme Programming Explained, Addison-Wesley, 2000.
2. Wells, J. D., “Extreme Programming: A Gentle Introduction,” 2001, available on-line at

http://www.extremeprogramming.org/

104 David Stotts, Jason McC. Smith, and Karl Gyllstrom

3.

4.

5.

6.

7.

8.

9.

A. Cockburn and L. Williams, “The Costs and Benefits of Pair Programming,” eXtreme

Programming and Flexible Processes in Software Engineering -- XP2000, Cagliari, Sar-
dinia, Italy, 2000.
H. Ishii, M. Kobayashi, and J. Grudin, “Integration of inter-personal space and shared
workspace: ClearBoard design and experiments,” Proc. of ACM Conf. on Computer Sup-

ported Cooperative Work, Toronto, 1992, pp. 33-42.
R. S. Fish, R. E. Kraut, and B. L. Chalfonte, “The VideoWindow System in Informal
Communications,” Proc. of ACM Conf. on Computer Supported Cooperative Work, Los
Angeles, 1990, pp. 1-11.
P.Baheti, L.Williams, E.Gehringer, and D.Stotts, “Exploring the Efficacy of Distributed
Pair Programming,” XP Universe 2002, Chicago, August 4-7, 2002; Lecture Notes in
Computer Science 2418 (Springer), pp. 208-220.
P.Baheti, L.Williams, E.Gehringer, D.Stotts, “Exploring Pair Programming in Distributed
Object-Oriented Team Projects,” Educator’s Workshop, OOPSLA 2002, Seattle, Nov. 4-8,
2002, accepted to appear.
Eric A. Bier, Ken Fishkin, Ken Pier, Maureen C. Stone, “A Taxonomy of See-Through
Tools: The Video, Xerox PARC, Proc. of CHI ’95,
http://www.acm.org/sigchi/chi95/Electronic/documnts/videos/eab1bdy.htm
T. Nishi, Y. Sato, H. Koike, “SnapLink: Interactive Object Registration and Recognition
for Augmented Desk Interface,” Proc. of IFIP Conf. on HCI (Interact 2001), pp. 240-246,
July 2001.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.
21.

Steve Benford, John Bowers, Lennart E. Fahlén, Chris Greenhalgh and Dave Snowdon,
“User Embodiment in Collaborative Virtual Environments,”, Proc. of CHI ’95,
http://www.acm.org/sigchi/chi95/Electronic/documnts/papers/sdb_bdy.htm
Beverly L. Harrison, Hiroshi Ishii, Kim J. Vicente, and William A. S. Buxton, “Transpar-
ent Layered User Interfaces: An Evaluation of a Display Design to Enhance Focused and
Divided Attention,” Proc. of CHI ’95,
http ://ww w. acm. org/sigchi/chi95/Electronic/documnts/papers/blh_bdy. htm
Vision Interface Seminar, Fall 2001, MIT, http://www.ai.mit.edu/~trevor/6.892/
Bretzner, L., and T. Lindberg, “Use Your Hand as a 3-D Mouse, or, Relative Orientation
from Extended Sequences of Sparse Point and Line Correspondences Using the Affine
Trifocal Tensor,” Proc. of the European Conf. on Computer Vision, (H. Burkhardt and

B. Neumann, eds.), vol. 1406 of Lecture Notes in Computer Science, (Freiburg, Germany),
pp. 141--157, Springer Verlag, Berlin, June 1998.
Laptev, I., and T. Lindberg, “Tracking of multi-state hand models using particle filtering
and a hierarchy of multi-scale image features,” Proc. of the IEEE Workshop on Scale-
space and Morphology, Vancouver, Canada, in Springer-Verlag LNCS 2106 (M. kerck-
hove, ed.), July 2001, pp. 63-74.
Stotts, D., L. Wiliams, et al., “Virtual Teaming: Experiments and Experiences with Dis-
tributed Pair Programming,” TR03-003, Dept. of Computer Science, Univ. of North Caro-
lina at Chapel Hill, March 1, 2003.
Stotts, D., J. McC. Smith, and D. Jen, “The Vis-a-Vid Transparent Video FaceTop,” UIST
’03, Vancouver, Nov. 3-6, 2004, pp. 57-58.
Nosek, J.T., “The Case for Collaborative Programming,” Communications of the ACM,

March 1998, pp. 105-108.
Olson, G.M., and J.S. Olson, “Distance Matters,” Human-Computer Interaction, vol. 15,
2000, pp. 139-179.
Williams, L., “The Collaborative Software Process,” Ph.D. dissertation, Dept. of Com-
puter Science, Univ. of Utah, Salt Lake City, UT, 2000.
JAWS, Windows screen reader, Freedom Scientific, http://www.freedomscientific.com/
Hanks, B.,“ Distributed Pair Programming: An Empirical Study” XP/Agile Universe, Aug.
2004, Calgary, to appear.

Toward a Conceptual Framework of Agile Methods

Kieran Conboy1 and Brian Fitzgerald2

1 Dept. of Accountancy and Finance, National University of Ireland, Galway, Ireland
kieran.conboy@nuigalway.ie

2 Dept. of Computer Science and Information Systems, University of Limerick,
Limerick, Ireland

brian.fitzgerald@ul.ie

Abstract. Since the software crisis of the 1960’s, numerous methodologies
have been developed to impose a disciplined process upon software develop-
ment. It is now widely accepted that these methodologies are unsuccessful and
unpopular due to their increasingly bureaucratic nature. Many researchers and
practitioners are calling for these heavyweight methodologies to be replaced by
agile methods. The Agile Manifesto was put forward in 2001, and several
method instantiations, such as XP, SCRUM and Crystal exist. Each adheres to
some principles of the Agile Manifesto and disregards others. This paper con-
ducts a review of the literature on agility across many disciplines, in order to
reach an all-encompassing notion of what agility is. This paper aims to develop
a comprehensive framework of software development agility, through a thor-
ough review of agility across many disciplines. We then elaborate and evaluate
the framework in a software development context, through a review of software
related research over the last 30 years.

1 Introduction

The formation of the Agile Alliance in 2001 and the publication of the Agile Mani-
festo [25] formally introduced agility to the field of software development (SD).
Those involved sought to “restore credibility to the word method” [25]. The Agile
Manifesto conveyed an industry-led vision for a profound shift in the SD paradigm,
through 12 principles:

Satisfy the customer through early and continuous delivery of valuable software
Sustainable development is promoted, facilitating indefinite development
Simplicity is essential
Welcome changing requirements, even late in development
Deliver working software frequently
Working software is the primary measure of progress
Continuous attention to technical excellence
Business people and developers must work together daily
Face-to-face communication is the best method of conveying information
The team regularly reflects on how to become more productive and efficient
The best work emerges from self-organising teams
Build projects around motivated individuals

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 105–116, 2004.
© Springer-Verlag Berlin Heidelberg 2004

106 Kieran Conboy and Brian Fitzgerald

The Agile Manifesto and its principles represent quite pioneering work in coalesc-
ing and extending the critique of formalised software methods over the past decade or
so (e.g [3, 22, 23] and have been well received by practitioners and academics.

2 Shortcomings of the Study of Agility in SD

There is no universally accepted definition of an agile method in the field of Informa-
tion Systems Development (SD). Cockburn [13] even dismisses the existence of an
agile method altogether, claiming that it is something that developers can only aspire
to, and only hindsight can determine whether an agile method was actually adhered
to.

Because there is no universal definition or framework of what agility is, there are
many methods currently in use which are all categorised as agile by those that use
these methods. Each of these focus on some of the principles of the agile manifesto,
often at the expense of other principles. Given that such vague and diverse interpreta-
tions exist, it is impossible to reach any conclusions on agile methods and their use.

Agility is not a concept unique to software development. Indeed it first appeared in
the mainstream business literature in 1991, when a group of researchers at the Iacocca
Institute in Lehigh University introduced the term “agile manufacturing” [40]. The
industry-based report aimed to provide the USA with a weapon to regain its pre-
eminence in manufacturing, and described the emerging agile principles being
adopted by US, European and Japanese firms as being the way forward. Since then
manufacturing companies across many industries have gained a competitive advan-
tage from such an agile philosophy [9].

However, a review of the agile manufacturing literature indicates that even now, 12
years later, those who study agile manufacturing are having the same problems as
those studying agile methods in SD. There are many diverse and often contradicting
definitions of agile manufacturing, and consideration is not given to the differences
between industries and organisations [9].

Therefore, the search for a definitive, all-encompassing concept of agility is not to
be found simply through an examination of agility in other fields. Rather it is to be
found through an examination of the underlying concepts of agility, namely flexibility
and leanness [60, 63] which have much older origins. For example, lean thinking can
be traced back to the Toyota Production System in the 1950s with its focus on the
reduction and elimination of waste [52], the production of the Spitfire airplane in
World War 2 [10]and even as far back as the automotive industry in 1915 [18].

3 Research Method

The objective of this paper is to develop a comprehensive conceptual framework of
SD agility that can be applied to any SD project, enabling the true level of its agility
to be established. This objective is achieved through a four step research process:

A literature review on the concepts of flexibility and leanness, and their relation-
ship with agility, is carried out. This review includes research on agility across
manufacturing, finance, management, labour and marketing among others, in order
to appreciate the multi-disciplinary nature and evolution of these concepts.

Toward a Conceptual Framework of Agile Methods 107

A clear definition of each term, based on the literature review, is proposed. Due to
the broad nature of each of these terms, and to the diverse interpretations of these
terms that exists, these definitions are constructed and adjusted in an incremental
manner.
The definitions of flexibility and leanness are then merged to form an initial work-
ing definition of agility. This initial definition is then subsequently refined in the
light of further relevant research on the relationship between agility and the flexi-
bility and leanness concepts. A conceptual framework of agility is then put for-
ward, using this refined definition as a base. Given the diversity of the literature,
the researchers sought to ensure that the framework represents agility in its most
general sense.
The final stage was to apply the framework to an SD context. This was done
through a review of the 30 odd years of general SD literature, to extract any poli-
cies, actions or behaviours of SD teams which would be classified within this
framework. The review had to be more inclusive than just agile methods per se as
these did not appear until the late 1990s, although SD practitioners have been ap-
plying agile principles for much longer, even if they did not know it.

4 Towards a Framework of Agility for SD

4.1 Flexibility

Flexibility is often interpreted as per its simple dictionary definition as simply:

“the ability to adapt to change”.

However, the body of research on the definition of flexibility indicates such an inter-
pretation is too simple.

Firstly, the word “embrace” is a better reflection of flexibility than “adapt to”.
Hashimoto et al [34, 35] refer to robustness or resilience as a component of flexibil-
ity. Robustness or resilience is the ability to endure all transitions caused by change,
or the degree of change tolerated before deterioration in performance occurs without

any corrective action ([34, 35]. This concept indicates that in order to be truly flexi-
ble, an entity must not only be able to adapt to change by taking steps, but must also
be able to embrace change by taking none. Also, the literature makes a distinction
between defensive and offensive strategies [28]. This raises the issue that, when
change occurs, not only can an entity attempt to return to its original state, but it can
take advantage of the change to place itself in a better position. The term “adapt to”
implies that an entity is homeostatic, and that its only objective in the face of change
will be to return to its original state. “Embrace” implies that the entity may not only
try to return to its original state but may capitalise on the change and improve on its
position. As well as using flexibility to anticipate uncertainty, it can also be used
proactively to permit a company to positively impact its environment [26]. This con-
cept argues that proactive steps may “not just anticipate change, but may create it”
[55]. The words “adapt to” implies that change is the driving force and the entity’s
actions are as a result of that force. “Embrace” signifies a two-way process where the
entity not only reacts to change but can also influence it.

There is a difference between proactive and reactive flexibility [28] also known as
initiative versus response [30]. This concept recognises the fact that an entity is not

108 Kieran Conboy and Brian Fitzgerald

helpless while waiting for change to occur and that steps can be taken in advance of
change as well as in response to it. The simple example of periodic inspection and
preventative maintenance of equipment is a proactive approach to combating machine
failure, as opposed to repair and replacement of equipment after failure, which is a
reactive one [26].

It is important to note that an entity itself is not flexible. Rather, an entity obtains
this flexibility through the various sub-systems, resources, and activities that comprise
that entity. For example Correa’s [14] opinion is that “an organisation is only as flexi-
ble as its people”.

The literature also highlights a distinction between internal and external flexibility.
This dimension of flexibility is defined as “the area in which the flexibility is created”
[28]. It reflects the fact that an entity may not be a closed system. Rather it may inter-
act with other systems in its environment and may be able to use these interactions to
handle change. Goudswaard & de Nanteuil [31] illustrate this concept through labour
flexibility referring to internal flexibility as the ability of an organisation to vary em-
ployee’s duties, working hours or salaries, while external flexibility refers to the abil-
ity of an organisation to draw resources through subcontractors, short-term contracts
or temp agencies.

Much of the literature indicates time as a primary measure of flexibility [20, 33,
64]. Golden & Powell [28] describe the temporal dimension of flexibility as the
“length of time it takes for an organisation to respond to environmental change” or to
“adapt within a given time frame”. Furthermore, as change may arise due to environ-
mental influences the temporal dimension must incorporate the length of time taken
for an entity to recognise that change has occurred, to decide on what action to take,
and to carry out that action. As time is such a central criterion to evaluating and
measuring an entity’s flexibility, it is imperative that it is referred to in the definition.
However, careful wording is required, since speed alone should not be taken as a
measure of success. Volberda [66] compares time taken to adapt to change against the
variety of that change, acknowledging the fact that rapid response to familiar change
is not necessarily better than a slow response to large, strategic change.

This research proposes the following refined definition of flexibility which reflects
the robust, proactive, reactive and temporal dimensions of flexibility

“the ability of an entity to proactively, reactively or inherently em-
brace change in a timely manner, through its internal components
and its relationships with its environment.”

4.2 Agility v. Flexibility

Lindbergh [45] and Sharafi & Zhang [60] indicate that agility is made up of two com-
ponents. The first is flexibility, but it shares equal prominence with the second, which
is speed. Essentially, an organisation must be able to “respond flexibly” and “respond
speedily” [6]. Terms such as “speed” [62], “quick” ([17, 32, 44, 70], “rapid” [38] and
“fast” [71] occur in most definitions of agility. This reference to speed was discussed
within the context of flexibility. However, as research on the definition of agility has
placed such emphasis on rapidity, it merits an adjustment to the definition before it
can be applied to the term agile.

Another distinction between agility and flexibility is the assumption that change is
continuous and embracing it is an ongoing activity. This assumption was laid down in

Toward a Conceptual Framework of Agile Methods 109

the key contribution of Goldman, Nagel & Preiss [30], where they described agility in
general terms as “a continual readiness to change”. The flexibility literature, and
therefore the definition as it stands, makes no reference to continual change as op-
posed to a once off change.

For some, agile means to apply the concepts of flexibility throughout different
parts of the organisation, and not to a specific part such as manufacturing or produc-
tion processes [42]. This has led to the coining of terms such as “agile supply chains”
[11], “agile decision support systems” [39], and “agile workforce” [65]. However,
some suggest that agility is flexibility with an “organisational orientation” [11], in that
it is applied collectively throughout the enterprise [30, 57]. This notion would be in
line with Golman & Nagel’s [29] “agile enterprise”, Nagel & Dove’s [49] opinion
that agility must be viewed in a “business-wide context”, and that of Gunasekaran et
al [32] which states that agility is “not a series of techniques but a fundamental man-
agement philosophy”.

Our definition of flexibility can be amended to reflect these differences, and can
therefore be said to subsume the flexible component of agility. The modified defini-
tion now reads as:

“the continual readiness of an entity to rapidly or inherently, proactively
or reactively, embrace change, through its collective components or its
relationships with its environment”.

4.3 Leanness

Unlike the concept of flexibility, the notion of leanness is relatively straight-forward.
It is “the elimination of waste” [51, 52, 68] and “doing more with less” [63].

Different authors have conflicting opinions regarding the benefits and drawbacks
of using a lean approach. However, there is a general consensus that such an approach
broadly consists of the following principles [51, 52, 63, 68]

Utilisation of all resources is maximised, and no unnecessary resources are main-
tained.
Simplicity of tasks, information flow and information processes is maximised.
A product or activity should pass through the necessary components of an entity
and the components of its partners in a single flow.
A high level of quality must be maintained through defect prevention not correc-
tion. A “root cause” approach is taken to problem solving to maximise added
value.

The proposed definition of leanness is:

“the maximisation of simplicity, quality and economy”

4.4 Agility v. Leanness

Some believe that although agility exhibits similar traits to leanness in terms of sim-
plicity and quality, the literature has identified one major difference in terms of econ-
omy [69]. Ultimate leanness is to eliminate all waste. Agility requires waste to be
eliminated, but only to the extent where its ability to respond to change is not hin-
dered. As this does not remove the need to be economical, only lower its priority, it is
important that the definition of agility is modified to incorporate all elements of lean-

110 Kieran Conboy and Brian Fitzgerald

ness, which was defined above as “the maximisation of simplicity, quality and econ-
omy”.

4.5 Proposed Definition of Agility

After consideration of the literature on flexibility and leanness and, after accounting
for the differences between these concepts and the concepts of agility, the final defini-
tion of agility in this study is:

“the continual readiness of an entity to rapidly or inherently, proactively
or reactively, embrace change, through high quality, simplistic, economi-
cal components and relationships with its environment”.

5 Conceptual Framework of Agility

This framework is a descriptive formulation of the agility process. It draws upon a
framework of manufacturing agility proposed by Zhang & Sharifi [72] However, it is
greatly modified to ensure it corresponds with the definition of agility proposed ear-
lier. The main components of the framework are discussed next.

Fig. 1. A Conceptual Framework of Agility

5.1 Agility Drivers

Competition refers to the nature and behaviour of the collective organisations who
strive for superiority in SD, and how such nature and behaviour drives an SD team to
be agile. Examples include the increase in software customisation and Commercial-
Off-The-Shelf (COTS) software applications which “carve days or weeks from a
development schedule” [12] These developments are part of a larger trend known as
the “industrialisation of IS development” [2]. Paulk recognises that the SD team in

Toward a Conceptual Framework of Agile Methods 111

question also fits within this banner, stating that change can come from an internal
“push” within the team, or an external “pull” from its competitors [54].

Customers refer to the nature and behaviour of the client, and how such nature and
behaviour drives an SD team to be agile. The “faster metabolism of business today”
[58] means that user needs are constantly evolving and form a “moving target” for
developers [15]. Even if we could assume that the business remains unchanged, the
client typically does not know the complete requirements in advance, causing back-
tracking as these requirements are slowly discovered [3, 8, 53].

Changes in technology may require the SD team to be sufficiently agile to embrace
that change. Technology can refer to any software, hardware, method or technique
used or developed by the team. For example, many authors assert that developers
have struggled to cope with the introduction of the internet, multimedia and hyperme-
dia, and the technologies that accompany them [19, 46, 48, 56]. Such changes forces
the team to decide if they are innovators (techies), early adopters (visionaries), early
majority (pragmatists), late majority (conservatives), or laggards (skeptics) [47, 54].

Social factors is a catch-all term to refer to any agility driver in the general SD en-
vironment that cannot be attributed to competitors, customers or technology. Exam-
ples include:

•

•

•

the growing importance of quality standards in the IS development field, such as
the Capability Maturity Model (CMM) and ISO certification, and the emergence of
these standards as “conditions of trade”[21].
the growing number of system users, exemplified by the Internet where the users
are the global population.
The growing importance of legal issues, exemplified by the Internet, where
information on a website must comply with the regulations of many countries.

5.2 Agility Strategy

This part of the framework indicates that it is pointless to argue whether agile meth-
ods are superior to traditional methods. They are only better when the need to be agile
and the capability of being agile coexist. The team must make an assessment of their
agile needs and capabilities before assuming that an agile method is the way to go.
The need for such an assessment has already been appreciated by the mainstream IS
literature and two general schools of thought exist. Firstly, contingency factors re-
search state that no single method is appropriate for every situation, and that an ap-
propriate method should be selected from a portfolio of methods, depending on the
specific characteristics of the development context. [16, 24, 50, 61]. Secondly,
method engineering is an approach that requires methods to be developed or “engi-
neered” to meet a particular IS development’s needs, instead of selecting a method
solely from an available library according to contingencies [7, 43].

5.3 Agility Capabilities

Competency refers to the SD team’s ability to carry out the functions necessary the
development of a successful system. If a team cannot carry out the fundamental ac-
tivities related to SD, then it is irrelevant if they can carry them out quickly, proac-
tively or economically for example.

112 Kieran Conboy and Brian Fitzgerald

Proaction refers to any action taken by an SD team in advance of change. Prototy-
ing, for example, is used to elicit the “real” [67] requirements as soon as possible,
mitigating the amount and impact of future requirement changes [5],

Reaction refers to any action taken by an SD team after change has occured, in or-
der to reduce the impact or increase the benefit from that change. Changing design
documentation, rewriting code and retesting in response to requirement changes are
the simplest forms of reaction to change in the SD context.

Quickness refers to the speed of an SD team’s proactions or reactions. Robustness

is the team’s inherent ability to endure change, or rather when the time needed to take
action is zero.

Economy is the ability to eliminate waste through the minimisation of code and the
avoidance of “documentation mountain ranges” [37]. It also refers to the maximum
utilisation of developers and optimal development procedures. This is reflected in
Level 5 of the CMM which requires that the documented, defined and institutional-
ised procedures required for ISO 9000 are in place, and that the software organisation
is now ready to optimise its processes [41].

Quality refers to the ability to achieve high standards in terms of the software and
supporting documentation produced, and also to the abilities of the SD team. Quite
often, the focus is on the quality of the code, but documentation quality is ignored,
resulting in high quality code being developed on the basis of low quality documenta-
tion that contains numerous anomalies [27]. Within the construct of quality, and more
specifically Total Quality Management (TQM), lies the poka-yoke philosophy, which
states that it is not enough to fix bugs when they occur, but to identify the root cause
of the problem [59].

Simplicity refers to the straightforwardness of the software as well as the simplicity
of the methods and techniques used to produce it.

5.4 Agility Providers

The organisation as a provider of agility refers to the structure of the development
team and its decision-making process.

People refers to the persons who comprise the SD team and can provide agility by
being highly skilled to allow role swapping, being able to see the big picture, and
having a disposition to learning and change. However, the main constraint on soft-
ware organisations is the availability of such people [1].

Technology such as automated code analysis and testing products can enhance an
SD team’s agility. Using automated products allow the new program to be retested
quickly and thoroughly, whereas without such products a late change could result in a
full phase of manual regression testing, delaying the project significantly [4, 36].
Also, CASE tools such as document control systems allow document changes to be
made quickly and efficiently [37].

The external environment refers to any individual or organisation outside the SD
team, including the client, the users and any vendors or third party suppliers.

6 Conclusions

Those who favour agile methods in SD have put forward many success stories to
support their claims that agile methods are good, while any other method is not. This

Toward a Conceptual Framework of Agile Methods 113

paper concludes that there is no consensus as to what constitutes an agile method,
either in academia or in industry. Furthermore, the older, so called pre-agile method-
ologies exhibited many traits of agility.

A review of the literature indicates that an SD team that wishes to be truly agile
must consider a lot more than they do at the moment. There are numerous capabilities
that must be assessed and utilised, including competency, proaction, reaction, robust-
ness, quickness, economy, quality and simplicity. Also they must ensure they examine
all possible sources of these capabilities, namely the people on the team, the way they
are organised, the hardware and software they use, and finally the clients, users and
vendors that they interact with.

A further conclusion is that there is a fundamental problem with automatically de-
claring agile methods to be superior. There is a strong argument for assessing an SD
team’s need to be agile, and comparing that need to the capabilities that team has for
being agile. In simple terms, if you don’t need to be agile, or if you can’t be agile,
then don’t be agile.

References

1.

2.

3.

4.

5.

6.

7.

8.
9.

10.

11.

12.

13.

14.

Baker, S.; McWilliams, G.; Kripalani, M., (1997) The Global Search for Brainpower.

Business Week, 1997. August 4: p. 46-50.
Bansler, J.; Havn, E., (1994) Information Systems Development With Generic Systems, in
Proceedings of the Second European Conference on Information Systems, W. Baets, Edi-
tor. 1994, Nijenrode University Press: Breukelen. p. 707-718.
Baskerville, R.; Travis, J.; Truex, D., (1992) Systems without method: the impact of new
technologies on information systems development projects., in The Impact of Computer

Supported Technologies on Information Systems Development, K. Kendall, J. DeGross,
and K. Lyytinen, Editors. 1992, Elsevier Science Publishers: North Holland. p. 241-269.
Bennett, P. A., (1994) Software Development for the Channel Tunnel: A Summary. High
Integrity Systems, 1994. 1(2): p. 213-220.
Berrisford, T.; Wetherbe, J., (1979) Heuristic development: A redesign of systems design.

MIS Quarterly, 1979. March: p. 11-19.
Breu, K.; Hemingway, C.; Strathern, M., (2001) Workforce agility: the new employee

strategy for the knowledge economy. Journal of Information Technology, 2001. 17: p. 21-
31.
Brinkkemper, S., (1996) Method engineering: Engineering of information systems devel-

opment methods and tools. Information and Software Technology, 1996. 38: p. 275-280.
Brown, P., (1985) Managing Software Development. Datamation, 1985(April): p. 133-136.
Burgess, T., (1994) Making the Leap to Agility: Defining and Achieving Agile Manufac-

turing through Business Process Redesign and Business Network Redesign. International
Journal of Operations and Production Management., 1994. 14(11): p. 23-34.
Childerhouse, P.; Disney, S.; Towill, D., (2000) Speeding Up the Progress Curve Towards
Effective Supply Chain Management. International Journal of Supply Chain Management,
2000. 5(3): p. 176-186.
Christopher, M., (2000) The agile supply chin: competing in volatile markets. Industrial
Marketing Management, 2000. 29(1): p. 37-44.
Clapp, J.; Taub, A., (1998) A Management Guide to Software Maintenance in COTS-

Based Systems. 1998, Electronic Systems Center, MP 98B0000069.
Cockburn, A., (2002) Agile Software Development Joins the “Would-Be” Crowd. Cutter IT
Journal, 2002. Vol. 15(1): p. 6-12.
Correa, H., (1994) The Flexibility of Technological and Human Resources in Automotive

Manufacturing. Journal of Integrated Manufacturing Systems, 1994. 5(1): p. 33-40.

114 Kieran Conboy and Brian Fitzgerald

15.

16.

17.

18.

19.

Davis, A. M., (1988) A Comparison of Techniques for the Specification of External System

Behavior. Communications of the ACM., 1988. 31(9).
Davis, G. B., (1982) Strategies for information requirements determination. IBM Systems
Journal, 1982. 21(1): p. 4-30.
De Vor, R.; Mills, J., (1995) Agile Manufacturing. American Society of Mechanical Engi-
neers, MED, 1995. 2(2): p. 977.
Drucker, P., (1995) The Information That Executives Truly Need. Harvard Business Re-
view, 1995. Jan/Feb.
Enguix, C. F.; Davis, J. G. (1999) Filling the Gap: New Models for Systematic Page-based
Web Application Development and Maintenance, in Proceedings of International Work-
shop on Web Engineering ’99 (at WWW8). 1999. Toronto, Canada.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Eppink, D., (1978) Managing the Unforeseen: A Study of Flexibility. 1978, Vrije Univer-
siteit.: Amsterdam.
Ferguson, J.; Sheard, S., (1998) Leveraging Your CMM Efforts for IEEE/EIA 12207. IEEE
Software, 1998. 15(5): p. 23-28.
Fitzgerald, B., (1996) Formalised systems development methodologies: a critical perspec-
tive. Information Systems Journal, 1996. 6(1): p. 3-23.
Fitzgerald, B., (1994) The systems development dilemma: whether to adopt formalised sys-
tems development methodologies or not?, in Proceedings of the Second European Confer-
ence on Information Systems, W. Baets, Editor. 1994, Nijenrode University Press: Hol-
land, p. 691-706.
Fitzgerald, B.; Russo, N.; Stolterman, E., (2002) Information Systems Development:
Methods in Action. 2002, London: McGraw-Hill.
Fowler, M.; Highsmith, J., (2001) The Agile Manifesto. Software Development, 2001. Au-

gust.
Gerwin, D., (1993) Manufacturing Flexibility: A Strategic Perspective. Management
Science, 1993. 39(4): p. 395-410.
Gilb, T., (1988) Principles of Software Engineering Management. 1988, Wokingham: Ad-
dison-Wesley.
Golden, W.; Powell, P., (2000) Towards a Definition of Flexibility: In Search of the Holy

Grail? Omega, 2000. 28(2000): p. 373-384.
Goldman, S.; Nagel, R., (1993) Management, technology and agility: the emergence of a
new era in manufacturing. International Journal of Technology Management, 1993.
8(1/2): p. 18-38.
Goldman, S.; Nagel, R.; Preiss, K., (1995) Agile Competitors and Virtual Organisations.
Strategies for Enriching the Customer. 1995, New York, NY.: Von Nostrand Reinhold.
Goudswaard, A.; de Nanteuil, M., (2000) Flexibility and Working Conditions: a qualita-
tive and comparative study in seven EU Member States. 2000, European Foundation for
Living and Working Conditions, EF0007.
Gunasekaran, A.; Tirtiroglou, E.; Wolstencroft, V., (2002) An Investigation into the appli-
cation of agile manufacturing in an aerospace company. Elsevier, Technovation, 2002.
22: p. 405-415.
Gustavsson, S., (1984) Flexibility and Productivity in Complex Production Processes. In-
ternational Journal of Production Research, 1984. 22(5): p. 801 - 808.
Hashimoto, T., (1980) Robustness, Reliability, Resilience and Vulnerability Criteria for
Planning. 1980, Cornell University.
Hashimoto, T.; Loucks, D.; Stedinger, J., (1982) Robustness of Water Resources Systems.

Water Resources Research, 1982. 18(1): p. 21 - 26.
Hayes, R. H.; Wheelwright, S. C.; Clark, K. B., (1988) Dynamic Manufacturing. 1988,
New York.: The Free Press.
Holloway, S., (1989) Methodology Handbook for Information Managers. 1989, Aldershot:
Gower Technical.

Toward a Conceptual Framework of Agile Methods 115

38.

39.

40.

41.

42.

43.

Hong, M.; Payander, S.; Gruver, W., (1996) Modelling and Analysis of flexible fixturing
systems for agile manufacturing. Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, 1996. 2: p. 1231-1236.
Huang, C., (1999) An agile approach to logical network analysis in decision support sys-

tems. Decision Support Systems, 1999. 25(1): p. 53-70.
Institute, I., (1991) 21st Century Manufacturing Enterprise Strategy, An Industry-led

View. Iacocca Institute, 1991.1.
Kapoor, R., (1994) Getting ISO 9000 for a Software Organization. 1994, New Delhi, In-
dia: BPB Publications.
Katayama, H.; Bennet, D., (1999) Agility, adaptability and leanness: a comparison of con-
cepts and a study of practice. International Journal of Production Economics, 1999.
62(1/2): p. 43-51.
Kumar, K.; Welke, R. J., (1992) Methodology engineering: a proposal for situation-
specific methodology construction., in Challenges and Strategies for Research in Systems
Development, W. Cotterman and J. Senn, Editors. 1992, John Wiley & Sons Ltd. p. 257-
269.

44.

45.

46.

47.

48.

49.

50.

51.

Kusak, A.; He, D., (1997) Design for agile assembly: an operational perspective. Interna-
tional Journal of Production Research, 1997. 35(1): p. 157-178.
Lindbergh, P., (1990) Strategic manufacturing management: a proactive approach. Inter-
national Journal of Operations and Production Management, 1990. 10(2): p. 94-106.
Lowe, D.; Hall, W., (1999) Hypermedia & the Web / An Engineering Approach. 1999,
Chichester: Wiley.
Moore, G. A., (1991) Crossing the Chasm: Marketing and Selling High-Tech Products to
Mainstream Customers,. 1991, New York: HarperCollins Publishers.
Murugesan, S.; Deshpande, Y. (1999) Preface to ICSE’99 Workshop on Web Engineering.
in Proceedings of International Conference on Software Engineering (ICSE’99). 1999. Los
Angeles, California.
Nagel, R.; Dove, R., (1991) 21st Century Manufacturing. Enterprise Strategy. 1991,
Iacocca Institute, Lehigh University Bethlehem, PA.
Naumann, J.; Davis, G.; McKeen, J., (1980) Determining information requirements: A
contingency method for selection of a requirements assurance strategy. The Journal of
Systems and Software, 1980. 1: p. 273-281.
Naylor, J.; Naim, M.; Berry, D., (1999) Leagility: Integrating the Lean and Agile Manu-
facturing Paradigm in the Total Supply Chain. Engineering Costs and Production Eco-
nomics, 1999. 62: p. 107-118.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Ohno, T., (1988) The Toyota Production System: Beyond Large Scale Production. 1988,
Portland, OR: Productivity Press,
Parnas, D. L.; Clements, P. C., (1986) A Rational Design Process: How and Why to Fake

It. IEEE Transactions on Software Engineering., 1986. 12(2): p. 251-257.
Paulk, M., (1999) Structured Approaches to Managing Change. Crosstalk: The Journal of
Defense Software Engineering, 1999. 12(11): p. 4-7.
Piore, M., (1989) Corporate Reform in American Manufacturing and the Challenge to
Economic Reform. 1989: Mimeo, Massachusetts Institute of Technology.
Powell, T. A.; Jones, D. L.; Cutts, D. C., (1998) Web Site Engineering /Beyond Web Page
Design. 1998, Upper Saddle River, NJ: Prentice-Hall.
Preiss, K.; Goldman, S.; Nagel, R., (1996) Cooperate to compete: building agile business
relationships. 1996, New York: Vn Nostrand Reinhold.
Rockart, J.; De Long, D., (1988) Executive Support Systems. 1988, Homewood, Illinois.:
Dow Jones-Irwin.
Schulmeyer, G.; McManus, J., eds. Total Quality Management for Software. 1993, Van
Nostrand Reinhold: New York.
Sharafi, H.; Zhang, Z., (1999) A method for achieving agility in manufacturing organisa-

tions: an introduction. International Journal of Production Economics, 1999. 62(1/2): p. 7-
22.

116 Kieran Conboy and Brian Fitzgerald

61.

62.

63.

64.

65.

66.

67.

68.

69.
70.

71.

72.

Sullivan, C. H., (1985) Systems Planning in the Information Age. Sloan Business Review,
1985. 26(2): p. 3-11.
Tan, B., (1998) Agile Manufacturing and Management of Variability. International Trans-
actions on Operational Research, 1998. 5(5): p. 375-388.
Towill, D.; Christopher, M., (2002) The Supply Chain Strategy Conundrum: To Be Lean

Or Agile or To Be Lean and Agile. International Journal of Logistics: Research and Appli-
cations, 2002. 5(3).
Upton, D. M., (1995) Flexibility as Process Mobility: The Management of Plant Capabili-
ties for Quick Response Manufacturing. Journal of Operations Management, 1995.
12(205-224).
Van Oyen, M.; Gel, E.; Hopp, W., (2001) Performance opportunity for workforce agility

in collaborative and non-collaborative work systems. IEEE Transactions, 2001. 33(9): p.
761-77.
Volberda, H., (1998) Building the Flexible Firm: How to Remain Competitive. 1998, New
York: Oxford University Press.
Vonk, R., (1990) Prototying: The Effective Use of CASE Technology. 1990, London: Pren-
tice-Hall.
Womack, J.; Jones, D.; Roos, D., (1990) The Machine That Changed the World. 1990,
New York: Rawson Associates.
Young, K., et al., (2001) Agile Control Systems. In: Proc Instn Mech Engrs, 2001. 215(D).
Yusuf, Y.; Sarhadi, M.; Gunasekaran, A., (1999) Agile manufacturing: the drivers, con-

cepts and attributes. International Journal of Production Economics, 1999. 62(1): p. 23-32.
Zain, M.; Kassim, N.; Mokhtar, E., (2002) Use of IT nd IS for organisational agility in

Malaysian firms. Singapore Management Review, 2002. 25(1).
Zhang, Z.; Sharifi, H., (2000) A Methodology for Achieving Agility in Manufacturing Or-

ganisations. International Journal of Operations and Production Management, 2000. 20(4):
p. 496-512.

Security Engineering and eXtreme Programming:
An Impossible Marriage?

Jaana Wäyrynen3, Marine Bodén1, and Gustav Boström2

1 Communications Security Lab, Ericsson Research,
Torshamnsgatan 23, SE-164 80 Stockholm, Sweden

marine.boden@ericsson.com
2 Department of Applied IT, Electrum 213, 16440 Kista, Sweden

gusbo@kth.se
3 Department of Computer and Systems Science,

Stockholm University/Royal Institute of Technology, Forum 100, SE-164 40 Kista, Sweden
jaana@dsv.su.se

Abstract. Agile methods, such as eXtreme Programming (XP), have been criti-
cised for being inadequate for the development of secure software. In this pa-
per, we analyse XP from a security engineering standpoint, to assess to what ex-
tent the method can be used for development of security critical software. This
is done by analysing XP in the light of two security engineering standards; the
Systems Security Engineering-Capability Maturity Model (SSE-CMM) and the
Common Criteria (CC). The result is that XP is more aligned with security en-
gineering than one might think at first. However, XP also needs to be tailored to
better support and to more explicitly deal with security engineering issues. Tai-
loring XP for secure software development, without removing the agility that is
the trademark of agile methods, may be a solution that would make XP more
compatible with current security engineering practices.

1 Introduction

A question concerning Agile software development that repeatedly has been illumi-
nated is the applicability of agile methods such as eXtreme Programming (XP). In
particular, questions about the suitability of these methods to particular development
environments and application domains, are often recurring in the field, addressed for
example by Lindvall et al [13] and Turk et al [24].

In the security engineering community, one of the major criticisms against XP, is
that it is not suitable for secure software development since the method does not ex-
plicitly specify activities for producing the documentation needed for such projects,
such as design documentation and detailed interface specifications [25]. Furthermore,
coupled with the lack of documentation, is the question of proof of compliance with
accepted software engineering standards [23], and consequently, also XP’s compli-
ance with accepted security engineering standards. Proponents, on the other hand,
claim that XP is both beneficial and compatible with security engineering.

The claims made by XP proponents and critics certainly lead to questions about the
applicability of agile methods. Work has been done in the field, for example by Viega
and McGraw [25] and Shore [20]. Boehm [5], Bishop [4], McBreen [14], Paulk [17]
are among those, who argue that the de-emphasis on design documentation and archi-
tecture is a risky endeavour in contexts where security is important. Viega and
McGraw [25], underline the importance of a solid specification. The more formal and

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 117–128, 2004.
© Springer-Verlag Berlin Heidelberg 2004

118 Jaana Wäyrynen, Marine Bodén, and Gustav Boström

clear a specification, the better the resulting system. They mean that XP does not
fulfil these criteria, and even go as far as saying that XP probably has a negative im-
pact on software security.

On the contrary, Amey and Chapman [2], Murro et al. [16] and Shore [20], have
found that many of the XP practices comply with practices in building secure soft-
ware. Based on the experience from two case studies, Amey and Chapman [2] report
on a comparison on static and dynamic verification as control mechanisms in devel-
opment. Their conclusion is that many of the XP practices are extensively known and
applied in the development of secure software. Murro et al. [16], assess the introduc-
tion of XP in a company that builds complex portals with strict security requirements
in the Internet development domain. They find that XP is a robust and flexible method
that has improved their way of working and producing effectively. These experiences
are also supported by Shore [20], who reports on the successful experiences of using
XP in a security critical project, where a traditional approach previously had failed to
implement the required security features.

The results presented, although only a selection of the works in the field, represent
the nature of research that involves building secure software with XP. Indeed, these
are all important contributions that build up the knowledge and experience base on
XP’s compliance with security engineering. More importantly, however, is that there
is no work that has produced a structured approach to analyse XP from a strict secu-
rity engineering perspective. This indicates that there is a need for a more thorough
investigation. Analysing XP from a security engineering perspective, more elabo-
rately and comprehensively than previously, would greatly enhance the understanding
of XP’s suitability for secure software development.

In this paper, we provide a first attempt at such an investigation by looking at secu-
rity engineering standards, and by analysing how XP deals with the security engineer-
ing activities and requirements stated in these standards. The Systems Security Engi-
neering Capability Maturity Model, SSE-CMM, [22] is taken as a starting point for
analysing the XP software development process. As a complement, we also look at
what the Common Criteria, CC, [7] requires from a software development process.
Thus, by analysing XP from a security engineering perspective we aim to provide
valuable input for a better understanding of how the two fields relate. While we do
this from the standpoint of security engineering, it could also be possible to instead
analyse security engineering from an agile point of view, but that would be another
paper.

The paper begins with an overview of the nature of security engineering and secu-
rity practices and a brief overview of XP, respectively. This is followed by a descrip-
tion of the problems in security engineering in general, to illuminate other relevant
aspects that further motivate why this research has been undertaken. We then discuss
the results of an analysis of XP from a security engineering perspective, based on the
SSE-CMM and the CC. The paper concludes with a presentation of an idea for a more
secure XP process, which is complemented with a short, concluding discussion and
suggestions of further work.

2 The Nature of Security Engineering

In order to analyse XP from a security engineering standpoint, it is necessary to have
an idea of what security engineering is. Unfortunately, a generally accepted definition

Security Engineering and eXtreme Programming: An Impossible Marriage? 119

does not exist. There are, however, activities that are generally included in security
engineering. The Systems Security Engineering Capability Maturity Model, suggests
the following list of activities to be generally accepted [22]:

1.
2.
3.
4.

5.

6.

Identify the organisational security risks
Define the security needs to counter identified risks
Transform the security needs into activities
Establish confidence and trustworthiness in correctness and effectiveness in a
system
Determine that operational impacts due to residual security vulnerabilities in a
system or it’s operation are tolerable (acceptable risks)
Integrate the efforts of all engineering disciplines and specialities into a combined
understanding of the trustworthiness of a system

We have chosen to group these activities in two general categories, i.e. Specify se-
curity needs and Assurance. These categories also cover the specific security activi-
ties in the two security standards that are used in the analysis.

2.1 Specifying Security Needs

The identification of risks and what is needed to prevent the risk will result in a defi-
nition of the security needs of a system. For example, the risk that anyone can login to
a system over the Internet, defines the security need to have strong authentication.

The specification of security needs includes risk management, i.e. the process of
assessing and quantifying risk, and establishing an acceptable level of risk for an
organisation. To achieve this goal, it is important to be proactive and to identify po-
tential security risks in the system’s environment. This is to counteract the very com-
mon standard of fixing broken software today, which is the penetrate-and-patch ap-
proach, i.e. software is patched after it has been compromised [15] (To security
engineers, the XP practice of refactoring can seem very similar to penetrate-and-
patch). To build secure software, it is necessary to think about future threats and what
effects they can have on the system. To avoid having to fix problems after the soft-
ware is delivered, there is a need to get these issues right from the start.

2.2 Assurance

Assurance is defined as the degree of confidence that security needs are satisfied [19].
For a system to be classified as secure, it is necessary to present an assurance argu-
ment, i.e. a structured and supported statement of how one can be sure that security
needs have been satisfied. This argument should be supported by assurance evidence,
such as test results, documented code reviews and appraisals by security engineers.

In security engineering, an important part of the work consists of gathering and
analysing such evidence. It is important to note here, that test results are not enough to
ensure that a system is secure. Tests can only show that the system passed the test, not
that it is safe against all future attacks. Consequently, testing needs to be comple-
mented with other activities, such as code reviews, design reviews and formal verifi-
cation. Even with additional techniques, hundred percent security cannot be achieved,
but the level of confidence is higher.

120 Jaana Wäyrynen, Marine Bodén, and Gustav Boström

2.3 Security Standards – The SSE-CMM and the Common Criteria

Security standards are often used to help and to certify companies developing secure
systems. The Common Criteria [7] is one of the most referenced standards. The Se-
cure Systems Engineering Capability Maturity Model [22] is another common secu-
rity standard.

The Secure Systems Engineering Capability Maturity Model is designed as a tool
for measuring an organisation’s capability to develop secure systems. The process
areas (PA) in SSE-CMM are useful as a checklist when analysing software develop-

ple, PA05.02 Identify System Security Vulnerabilities, is a base practice defined in
PA05, Assess Vulnerability. The SSE-CMM also follows other CMM’s in that it
provides a framework for specifying to what degree an organisation performs these
PAs, i.e. the maturity level [22]. The SSE-CMM specifies twenty-two process areas
for process improvement. A table that defines the PAs of immediate interest for this
work is provided in the analysis section of this paper.

The Common Criteria can be described as a language for expressing security re-
quirements on a system and its development process. These requirements represent
two requirement types, i.e. functional requirements and assurance requirements, re-
spectively.

Functional requirements in CC are used as a standard requirements repository. The
requirements can be combined, adapted and may be extended to form a specification
of the total security requirements of a system. These requirements together with
documentation regarding threats, risks and the system’s environment are gathered in a
document called the security target (a security target actually contains a lot more, but
will not be described in detail here). This document serves as a requirement specifica-
tion for security concerns.

The assurance requirements put demands on an organisation’s software develop-
ment process and specify the activities that are needed to reach the CC’s different
Evaluation Assurance Levels (EAL). There are seven assurance levels in CC, where
EAL 1 is the lowest assurance level, and EAL 7 is the highest. Table 1, presents the
seven EALs and their objectives.

Each EAL consist of a common set of assurance classes which are the same for
each assurance level, with the only difference that the requirements escalate with
higher levels. The objective is to evaluate to what extent the development process
involves testing, design and verification of a system or product, and whether this done

ment methods, such as XP, from a security engineering perspective. The SSE-CMM
consists of a number of base practices that are organised in process areas. For exam-

Security Engineering and eXtreme Programming: An Impossible Marriage? 121

in a functional, structural and/or formal manner. The EALs are therefore useful as a
complement to the SSE-CMM process areas, when analysing the extent to which a
development process fulfils prescribed security activities to assure that the security
needs are met.

3 Agile Software Development and XP

The subject for the analysis in this paper is XP. Therefore, a brief overview of agile
software development methods and XP is provided in this section.

There are a number of existing agile software development methods, where the
most known methods are eXtreme Programming (XP), Feature Driven Development
(FDD), Adaptive Software Development (ASD), Scrum, Crystal and Dynamic Sys-
tems Development Method (DSDM) [1]. Since XP is the agile method that is most
widely used [8], we have chosen to base the analysis on XP, as a representative of the
group of agile software development methods.

XP is based on a pragmatic approach, and the fundamental idea is to simplify the
development of software. However, simplifying the development of software is not to
be compared with a simple method. On the contrary, to get the full benefits of XP is a
demanding challenge for the project team.

The cornerstones of XP are a set of tightly interconnected practices, principles and
values. These depend on each other to form a whole that is greater than its parts. The
individual XP practices will not be presented in detail, but we refer to Beck [3] and
Jeffries et al. [12] when any specific XP concepts are used in the paper. However, in
brief XP emphasizes customer involvement and promotes teamwork, which is realised
through the value of constant communication with the customer and within the team.
Design is simple. YAGNI (You Aren’t Going to Need It) [3], a philosophy of XP,
symbolizes the idea of simplicity as it emphasizes working only on known require-
ments and to implement only what you actually need in the present situation. The
reason is to avoid overdesigning a system in a vain attempt to anticipate future re-
quirement changes [18]. XP emphasizes rapid feedback through mechanisms, such as
continuous testing of the system. Frequent deliveries are also important to enable the
customer to directly evaluate and approve the results, before releasing the system
[11].

XP is, in general, most effective in the context of small teams, small to middle-
sized projects and chaotic development environments with rapidly changing require-
ments. This is accomplished by structuring the software development process into
short iterations, preferably two-week iterations, where an iteration focuses on timely
delivery of working code and other artefacts that provide value to the customer.

4 Why XP for Secure Software Development?

In today’s competitive market, the demand on producing software in Internet time
challenges the traditional ways to develop software. From a security engineering per-
spective, this calls for immediate attention also on the security issues, putting pressure
on the prevailing ways of developing secure software.

In this respect, traditional problems within security engineering need to be consid-
ered, to better understand why this research has been initiated. Firstly, security engi-

122 Jaana Wäyrynen, Marine Bodén, and Gustav Boström

neering, for example the Common Criteria [7], represent time and resource consum-
ing processes. CCs predecessors where designed mainly for military use [4] with
extensive documentation requirements, which has lead to difficulties with keeping
documentation up-to-date. CC inherited these requirements. Secondly, a sub-aspect of
the documentation requirements is that it is often argued that (security) documentation
activities should start in an early phase of the development process [25] [10]. In real-
ity, however, it may be a waste of time and money to try to write (security) documen-
tation when you are dealing with a “moving target”, i.e. the security solution of the
software is due to constant changes, and hence, keeping the documentation up-to-date
will be a resource-consuming task.

These issues need to be illuminated and put in a wider perspective. As Viega and
McGraw [25] argue, the demand on producing software in Internet time is the enemy
of software security. The question is, how can this external business demand on
speeding up software development be tackled, while at the same time satisfying soft-
ware security requirements?

We believe that there is a need for agility also in secure software development. As-
suming that market-driven forces will continue to put pressure on software develop-
ment, XP certainly is an important alternative to take into consideration. There may
be weaknesses in XP, but XP is not the only software development method that does
not completely comply with the strict formalism prescribed by security engineering
standards. Rather, the problems within security engineering mirror some of the inher-
ent problems with traditional software development methods.

By shedding light on the benefits of XP together with the good practices of security
engineering, such as prevention and risk management, will allow a better understand-
ing of XP and security engineering. Therefore, we argue that a structured analysis of
XP from a security engineering perspective is needed, and that it is an important effort
to gain understanding of how the two fields relate, to build up a compatible process,
that satisfies requirements from both camps. In the following, we will discuss the
results of our first step towards this goal.

5 Analysis of XP from a Security Engineering Perspective

We have chosen to focus the analysis in this article on the SSE-CMM, since it has a
clear focus on process improvement in security engineering, whereas CC is more
focused on the requirements activities in security engineering. The reason why we
have chosen to analyse XP from the perspective of two security standards is to get a
better coverage of the security area, and to complement the SSE-CMM with CC as-
pects, such as assurance requirements.

Since the SSE-CMM is designed as a tool for measuring an organisation’s capabil-
ity to develop secure systems, it necessarily covers a larger domain than relevant for
this analysis. For example, it specifies a number of PAs that describe project man-
agement and organisational practices, which are not specific to security engineering.
Therefore, only ten PAs are used, as presented in Table 2. Consequently, we will
focus the analysis on these topics and complement with relevant CC requirements.
Furthermore, since there is no one-to-one mapping between SSE-CMM and CC, we
have chosen to group relevant process areas and assurance requirements in two gen-
eral security categories, i.e. Specify security needs and Assurance, that serve as the
starting point for the analysis.

Security Engineering and eXtreme Programming: An Impossible Marriage? 123

We analyse XP as a whole method from a security engineering perspective. How-
ever, individual XP practices are discussed when specifically addressing any of the
security activities included in this presentation.

5.1 Specify Security Needs

The goal of specifying security needs is to assess the security risk and to define the
security features needed to establish an acceptable level of risk. Both CC and SSE-
CMM require that a risk assessment is done. This is the prevailing view in the secu-
rity engineering camp, and several authors argue that security is not possible to add as
an afterthought [4] [21] [25], but has to be built in and specified from the start.

It is clear the XP does not provide out of the box process support for this area. In
the XP community there is a debate around so called motherhood stories, i.e. a state-
ment of the systems non-functional requirements [26]. However, there seems to be no
consensus on whether motherhood stories are helpful or just confusing. One problem
is that they cannot easily be broken down into testable and estimable tasks. This is a
general problem with non-functional requirements. The CC is very useful in address-
ing this problem since it provides help in breaking down a general statement such as:
“The system needs to protect sensitive information”, into separate, more concrete
requirements. The SSE-CMM also outlines process support for this area. In our point
of view, without this process support security requirements could easily be forgotten,
or be specified on a too abstract level to be effective. Another general problem that is
especially difficult with non-functional requirements is that you need to dig for them.
Users are mainly focused on functional requirements, therefore expertise is needed to
help them with this task.

Recently, XP proponents are saying that the practice of an on-site customer should
refer to a customer team, rather than just one person [14]. If a security engineer is
present on the XP team, he or she could initiate a risk assessment activity together
with the customer, and it could be his or her role to specify the security needs based
on the results of the risk assessment [26].

Assessing the impact of security risks, as specified SSE-CMM’s PA 02, is nor-
mally not an activity performed in standard XP either. Again, if a security engineer is
present on the team, he could co-operate with the customer to do this.

124 Jaana Wäyrynen, Marine Bodén, and Gustav Boström

5.2 Assurance

The goal of building an assurance argument is to clearly convey that security needs
have been met. Traditionally, in for example the CC, this means producing large
quantities of documents and performing and documenting reviews of various kinds.
The higher the assurance levels, the higher the documentation requirements. This is in
conflict with the de-emphasis of documentation in XP. This does not mean that
documentation is eliminated in XP. If documentation is needed, i.e. such documenta-
tion that the project team deems critical for it’s work, documentation is simply added
as an user story and transformed to an engineering task in the iteration plan. However,
from a security perspective, assurance documentation is in many respects of outmost
importance, even though it may not feel important for the developers. Therefore, an
XP project would either need to adapt and produce assurance evidence during devel-
opment, or provide an alternative way of conveying that the security requirements
have been met.

The first alternative is a possibility, but it is hard to fit with XP practices and may
reduce agility. This, however, poses other problems. If security problems in the code
or design are found, and refactoring is necessary it would mean that a lot of documen-
tation has to be re-done. The second alternative, providing an alternative way of pro-
viding an assurance argument, is another possibility. In this respect, it could be argued
that the emphasis on automated test suites in XP, provides an assurance argument if
the tests also include security testing. Pair programming can also be seen as an assur-
ance activity, since one of its purposes is to remove the need for code reviews. The
inherent, and generally healthy, conservatism in the security industry will, however,
be a big obstacle. Abandoning the reliance on documentation and reviews, often done
by a third party, is a big step.

The assessment of vulnerabilities of a system is another security engineering activ-
ity that involves checking if any flaws have been introduced during the development
[7], and to assure that security needs have been met. This needs to be done throughout
the life cycle of the system. Although XP doesn’t specify this explicitly, the purpose
of this activity is in a way taken into account by the XP practices of simple design,
pair programming, test-driven development, refactoring, collective ownership and
coding standards.

The practice of simple design will make the software easy to evaluate from a secu-
rity perspective. Complex systems with many interactions are difficult to analyse and
understand, which will have an impact on other security areas. Many interactions may
introduce flaws, which in turn will make the vulnerability assessment more difficult.

Extra care is needed, however, to make the other practices effective for assessing
vulnerabilities. Developers need to be knowledgeable about vulnerabilities, for exam-
ple, buffer overflows and SQL-injection. Otherwise, they will not notice problems
when pair programming for example. If a security engineer is present in the team, he
or she should be active through pair programming with developers to spread knowl-
edge about vulnerabilities.

As a complement to the implicit code review in pair programming, automated tests
could also be run at compile time, to check that developers are not inserting vulner-
abilities in the code [2] [25]. The construction and monitoring of these compiler modi-
fications would be a natural role for the team’s security engineer.

Security Engineering and eXtreme Programming: An Impossible Marriage? 125

To a limited extent test-driven development could also help in assessing vulner-
abilities, but tests are not sufficient since tests cannot assure that all problems have
been removed [4].

Collective ownership and coding standards enable more people to scrutinize all
parts of the system for vulnerabilities, which also is facilitated by the XP practices of
simple design and refactoring that help keeping the code under control.

It is clear that providing an assurance argument will be a challenge to an XP-
project. Modifications to the process are necessary, and it is unclear whether these
modifications, such as more documentation, will be a good fit with the XP process
[17]. This is, on the other hand, dependent on what level of assurance is required. The
lower levels of assurance, such as EAL 1 and 2 in the Common Criteria, mainly rely
on thorough testing which is included in XP, whereas the higher EALs require formal
verification, which is not included in XP to the extent that security engineers argue
for.

5.3 Summary

The SSE-CMM document suggests that a chart should be produced outlining the
process areas (PA) that are covered within an organisation. Such a chart is also useful
to summarise this analysis. Table 3, (although, it does not specify the maturity level)
concludes if the PA is covered in XP.

The table shows that XP lacks security engineering support in many areas, espe-
cially in areas that concern Specifying security needs and Assurance. In the analysis
of XP’s compliance with the requirements stated in the CC, we found that XP clearly
could fulfil EAL 2, although CC requires additional documentation. Although we
need to be very careful in our statements about XP’s compliance with the EALs in
CC, it could be argued that the executable tests provide this documentation. The
analysis also showed that XP covers parts of the assurance requirements stated in the
EAL 3 and EAL 4. In particular, test-driven development allows both functional and

126 Jaana Wäyrynen, Marine Bodén, and Gustav Boström

structural tests. However, XP lacks both semi-formal and formal design and verifica-
tion documentation as stated in the assurance requirements of EAL 5, EAL 6 and
EAL 7.

6 Conclusion

The analysis of XP from a SSE-CMM and CC perspective shows that XP lacks sev-
eral activities that should be present in secure software development. More specifi-
cally, the following issues need better process support:

1.
2.
3.
4.

Specifying security requirements
Proactively deal with security concerns through the assessment of security risks
Building an assurance argument
Reliance on testing for verification

The easy way to address these issues would be to add more steps to the XP process
and increase the demand for documentation. This would, however, reduce the benefits
of using XP. A better approach would be to modify XP in an agile way. We propose
an idea for a modified XP to better deal with the requirements in the development of
secure software:

1.

2.

3.

4.

Include a security engineer in the project team. The tasks of the security engineer
would consist of:

a) Assessing security risk together with the on-site customer
b) On the basis of the assessed risks, propose security related user stories
c) Pair programming with the development team to ensure correct implementa-

tion of security, and to spread security thinking in the project team

Document the security engineer’s pair programming activities to ensure coverage,
and complement with further reviews if necessary to help build an assurance ar-
gument

As a preparation before a security review, document the security architecture in
order to provide an assurance argument

Complement pair programming with static verification and automatic policy
enforcement if possible

This idea is derived from the results of an analysis of how XP deals with the secu-
rity activities and requirements stated in the Systems Security Engineering-Capability
Maturity Model and the Common Criteria. The proposed idea combines the use of XP
and the aforementioned security standards, to better ensure that the security require-
ments are dealt with in the development of secure software. More specifically, this
idea features the role of a security engineer to be included in the project team, to
spread knowledge and awareness about security issues, as well as to coach both de-
velopers and customers in the development of secure software in an XP project. The
role of the security engineer could be compared to the role of testers in XP teams. For
example, Rasmussen [18] discusses lessons learned from introducing XP in a soft-
ware development project at a North American energy company, where the tester
became a valuable team member that greatly contributed to the project’s overall suc-
cess. In his article, Rasmussen [18] concludes that better results will be achieved
when testers are made a core part of the team, since they can aid customers in defin-

Security Engineering and eXtreme Programming: An Impossible Marriage? 127

ing and automating acceptance tests, as well as play the role of an analyst and flush
out hidden requirements and assumptions. This is also supported by Crispin and
House [9], who have done interesting work on the role that testers play on XP pro-
jects, and which we believe also could be contributed to the role of an security engi-
neer on XP projects.

Essentially, XP and security engineering both aim at the same thing, i.e. helping
development teams to do the right things in critical development environments and
should not be in conflict with each other. With this idea, we also propose that agility
can be maintained, and at the same time support the goals and practices of security
engineering.

7 Further Work

This paper, although based on the authors experiences is mainly a theoretical analysis.
Empirical data would be of value for assessing the results and premises.

We believe that there is a need for agility in security engineering. XP is a minimal-
ist, highly disciplined software development method, that when used appropriately,
has a proven capability to produce planned results in a timely manner. Therefore, an
interesting next step, would be to move towards agile security engineering. Tradi-
tional security engineering should be inspired by the agile values to constructively,
efficiently and effectively deal with changing requirements and new market demands.

Secure software development is a large domain. Our effort is by no means compre-
hensive, nor exhaustive. What we have presented are some of the most evident con-
cepts that we want to expose in this first round of analysis. Both the SSE-CMM and
the CC specify many more requirements of how to deal with security issues, than
have been illuminated in this analysis. Moreover, the analysis in this paper is limited
to the development of commercial off-the-shelf software (COTS), such as ERP-
systems (Enterprise Resource Planning) and e-commerce applications. Real-time
software applications and safety critical applications present further challenges, and
are therefore out of scope of this paper.

Acknowledgments

The authors would like to thank Bil Kleb and Erik Lundh for their useful feedback.

References

1.
2.

3.
4.
5.
6.
7.

Agile Alliance, Agile Alliance.www.agilealliance.com. Accessed in February 2004.
Amey P., and Chapman R., Static Verification and Extreme Programming. Proceedings of
the ACM SIGAda Annual International Conference, 2003.
Beck K., Extreme Programming Explained: Embrace Change. Addison-Wesley, 2000.
Bishop M., Computer Security: Art and Science. Addison-Wesley, 2003.
Boehm B., Get Ready for Agile Methods, with Care. IEEE Computer, Vol. 35 (1), 2002.
Boehm B. and Turner R., Balancing Agility and Discipline, Addison-Wesley, 2004.
CC, ISO 15408 Common Criteria for Information Technology Security Evaluation Ver-
sion 2.1, August 1999.

128 Jaana Wäyrynen, Marine Bodén, and Gustav Boström

8.

9.
10.

11.

12.

13.

14.
15.

16.

17.

18.
19.

20.
21.

22.

23.

24.

25.

26.

Charette R., The Decision is in: Agile versus Heavy Methodologies. Agile development
and Project Management, Cutter Consortium, Vol. 2 (19),
www.cutter.com/freestuff/epmu0119.html. Accessed in February 2004.
Crispin L. and House T., Testing Extreme Programming. Addison-Wesley, 2002 .
Evertsson U., Örthberg U., Yngström L., Integrating Security into Systems Development.
Proceedings of IFIP TC11 Eighteenth International Conference on Information Security,
2003.
Extreme Programming, Extreme Programming: A Gentle Introduction.
www.extremeprogramming.org. Accessed in January 2004.
Jeffries R., Anderson A., Hendrickson C., Extreme Programming Installed. Addison-
Wesley, 2001.
Lindvall M., et al., Empirical Findings in Agile Methods, www.cebase.org, 2002. Ac-
cessed in March 2003.
McBreen, P., Questioning eXtreme Programming. Addison-Wesley, 2003.
McGraw G., On Bricks and Walls: Why Building Secure Software is Hard. Computers &
Security Vol. 21 (3), pp 229-238, 2002.
Murro O., Deias R., Mugheddo G., Assessing XP at a European Internet Company. IEEE
Software Vol. 20 (3), 2003.
Paulk M., Extreme Programming from a CMM Perspective. IEEE Software, Vol. 18 (6),
2001.
Rasmussen J., Introducing XP into Greenfield Projects. IEEE Software Vol. 20 (3), 2003.
RFC 2828, Internet Security Glossary. www.ietf.org/rfc/rfc2828.txt?number=2828. Ac-
cessed in February 2004.
Shore J., Continuous Design. IEEE Software, Vol. 21 (1), 2004.
Siponen, M., An Analysis of the Recent IS Security Development Approaches: Descrip-
tive and Prescriptive Implications. Information Security Management – Global Challenges
in the Next Millennium, Idea Group, 2001.
SSE-CMM, Systems Security Engineering Capability Maturity Model, Model Description
Document Version 3.0. www.sse-cmm.org/model/ssecmmv2final.pdf. Accessed in Janu-
ary 2004.
Theunissen Morkel W.H. et al., Standards and Agile Software Development. Proceedings
of SAICSIT, pp 178-188, 2003.
Turk D., France R., Rumpe B., Limitations of Agile Software Development. Third Interna-
tional Conference on eXtreme Programming and Agile Processes in Software Engineering,
2002.
Viega J. and McGraw G., Building Secure Software: How to Avoid Security Problems the
Right Way. Addison-Wesley, 2002
Yahoo Groups, Yahoo Groups/ExtremeProgramming.
http://groups.yahoo.com/group/extrermeprogramming/message/90285. Accessed in April
2004

An Agile CMM

Erik Bos and Christ Vriens

Philips Research,
Prof. Holstlaan 4 (WAA01), 5656 AA Eindhoven, The Netherlands

{Erik.Bos,Christ.Vriens}@philips.com
http://www.research.philips.com

Abstract. This paper describes the process for developing software in a highly
volatile environment. The process is based on eXtreme Programming (XP) and
Scrum, to combine engineering practices with management directives based on
the Capability Maturity Model (CMM) Level 2. In December 2003 our de-
partment, Software Engineering Services (SES), was successfully certified for
CMM Level 2. The assessors were especially impressed with the transparent,
easily accessible and uniform project information. We describe which XP and
Scrum practices we apply in the different Key Process Areas (KPA) of CMM
and which activities were added. Also, the result of the assessment and recom-
mendations of the assessors are listed.

1 Introduction

CMM [1] gives guidelines for developing quality software in the context of large pro-
jects and organizations. Following CMM involves documenting and reviewing; docu-
menting requirements, decisions, meetings, risks, plans and effort spent on software
development.

XP and Scrum [2,3] focus on a less bureaucratic way of developing quality soft-
ware by focusing on good engineering practices and a human centered process.

At first glance these two approaches seem far apart.
Our department has existed since mid 2000 and currently consists of 8 permanent

staff members and 20 experienced software contractors. We develop software in small
teams: two to six software engineers sometimes joined by researchers and led by a
team leader. The team leader acts as an XP coach/ScrumMaster, making sure the de-
fined way of working is followed. Due to the size and the self-organizing character of
the teams, the team leader also contributes by developing software. The projects (both
prototypes and products1) are characterized by fixed time of delivery (e.g. an exhibi-
tion or a demonstration), short time frame (2-6 months), and vague, minimal and
changing requirements. The projects need to quickly show whether ideas of research-
ers are technically and commercially feasible. If so, the results are transferred to the
Philips product divisions to form the basis of a new product. This calls for quality code
and adequate documentation for users of the software outside of the team. A combina-

tion of good engineering practices and good enough documentation would be ideal.

1 Example: the Audio Fingerprinting project delivered a solution for music recognition com-
bined with related music content delivery for mobile phones and was developed using our
Agile process. See www.contentidentification.philips.com

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 129–138, 2004.

© Springer-Verlag Berlin Heidelberg 2004

130 Erik Bos and Christ Vriens

Our approach was to take the best of CMM and the agile methodologies and com-
bine them. We strived for CMM certification to benchmark our Software Engineering
Services (SES) department and get recognition of the rest of Philips as a professional
software development organization, which makes it easier to transfer our deliverables
to the product divisions.

An independent CMM assessment validated the software development process in
December 2003. Several references were found comparing and combining XP and
CMM [4,5,6], but no references were found of actual assessments being performed on
departments running Agile projects.

In the following sections the KPAs2 are listed and we show which agile practices
we’ve incorporated in which KPAs. We also describe the results of the assessment and
the recommendations of the assessors.

2 Requirements Management

In SES, software is developed in iterations of a calendar month. For shorter projects
(e.g. 3 month projects) or projects where the requirements can change within a month,
an iteration length of two weeks is used. At the beginning of the iterations, an iteration
meeting takes place with the whole team of developers and the (onsite) customer,
usually a researcher. The customer describes the requirements. We enter them in a
user story database. We developed this database to allow easy access to the user sto-
ries and to have an overview of which user stories are scheduled for which iteration
(see figure 1).

Next, the team and the customer discuss Problem Reports (PR) and Change Re-
quests (CR), which were entered in the bug database during system testing. The cus-
tomer determines which PRs and CRs need to be solved in this iteration. They are then
estimated and entered as user stories.

At the end of the meeting the user stories are prioritized and assigned to an itera-
tion. The number of user stories assigned depends on the velocity3 in the previous
iteration and on the availability of the developers in the coming iteration. This makes
the amount of work, which can be delivered in the iteration, repeatable (CMM
Level 2: The Repeatable Level).

At the end of the iteration, the user stories are demonstrated to the customer and are
either accepted or rejected.

3 Project Planning

The user stories are split-up into tasks, which are estimated by the whole team. The
planning game is comparable with the Delphi method [3], which is referenced in [1,
page 78] as a suitable way to determine estimates.

2

3
For a full description of the KPAs see reference [1].
Velocity is defined as: the amount of work finished in the last completed iteration. See [2] for
a more elaborate explanation of its usage.

An Agile CMM 131

Fig. 1. Part of Web page showing the user stories and tasks for a particular iteration together
with their initial and current estimations and currently spent effort

Usually there are just enough user stories provided by the customer to fill two itera-
tions, so planning ahead for more than two months is not necessary. Some of the pro-
jects require a release planning, which is made by spreading the user stories over the
next iterations, based on the velocity of the last, completed iteration and the availabil-
ity of the developers. The release plan is extracted from the iteration deliverables.
These deliverables are written down in the Project Management Plan (PMP), based on
our only document template containing the documented procedure the CMM requires.
The PMP is agreed upon by all involved persons and stored in the project archive.

4 Project Tracking

Every day the software engineers update the task(s) they worked on by entering the
spent hours and a new estimation for the task. So the project planning is accurate on a
day-to-day basis. Remaining tasks are discussed in the stand-up or Scrum meeting
every morning.

XP and Scrum only care about the new estimates for the tasks at hand. In the CMM
this is also valued, since the engineers themselves are responsible for their estimations
and may update them. Project Tracking in CMM also asks for keeping track of the
hours spent, so we can see if our estimates were correct and learn from the historical
data we build up this way.

132 Erik Bos and Christ Vriens

From the data entered we draw an inverted burn-down chart, shown in figure 2.

Fig. 2. Burn-down chart showing amount of planned work (in days), unallocated time and the
amount of work feasible to deliver in the 4-week iterations

The horizontal axis at the top of the chart shows the month and starting day of the
weeks. At the bottom of the chart the week numbers are listed. The iterations in this
project are 4 weeks long. The chart shows for each day the remaining planned effort in
the corresponding iteration in ideal engineering days. The following situations can be
distinguished (all present in the chart in figure 2):

The planned effort equals the possible effort as calculated from the velocity of the
previous iteration, which is indicated by columns that are complete horizontally
hatched
Less effort is planned than calculated from the velocity; this difference is indicated
by the vertically hatched part at the end of the column
More effort is planned than calculated; this difference is indicated by the black
areas at the end of the column

The day on which the chart is drawn is indicated by a one-day wide bar from the top to
the bottom of the chart (here between week 16 and 17). In the remainder of the current
iteration (week 17 and 18), the black area indicates the amount of work to be com-
pleted on each particular day in order to be able to “burn-down” the planned effort. In
the future iteration ranging from week 18 to 22, no work is planned in yet, This is
indicated because all columns are vertically hatched and their height indicates the
amount of effort that could be planned based on the velocity of the last completed
iteration.

Everybody interested in the progress of the project (customers, senior management
and the engineers themselves) have access to the project information (as required by
the CMM).

An Agile CMM 133

5 Configuration Management

Most of our projects use a CVS archive to store the source code and documentation.
Bigger projects have an automatic, continuous build and test script running. Next to
that, the projects have a stress test exercising the application(s) to trap e.g. multi-
threading issues in the code. Although we assign a configuration manager, a consistent
archive is the team’s responsibility. When the build fails, for any reason, it’s a first
priority to get it fixed again. This alleviates the burden normally put on the configura-
tion manager: the software developers integrate only code in the archive that doesn’t
crash the system.

Documents (e.g. overview documents or API descriptions) have a promotion status
(draft, proposal, accepted) and are also stored in the project archive. The task of the
configuration manager is to tag the archive at the end of the iteration and describe, in a
change log or in the iteration meeting minutes, which new functionality is contained in
the tag.

6 Quality Assurance

CMM defines that Quality Assurance needs to be performed by an independent QA
group. We implemented this by assigning the team leader of one project as the QA
Officer for another project (lead by a colleague team leader), thereby guaranteeing
independence of the QA officers. The QA group consists of all so-assigned QA offi-
cers.

Every month, the QA officer assesses the project and checks if the agreed way of
working (e.g. XP practices) is followed. His report is sent to the whole team, the cus-
tomer and to senior management and is stored in the project archive. Senior manage-
ment is involved when major non-compliances are not resolved in time and if escala-
tion is necessary.

The QA officer also facilitates the retrospective [7] on the projects. The results of
the retrospective are stored in the project archive.

Every month the team leader writes a status report. It lists the risks identified on the
project and their mitigation. It also, briefly, lists the accomplishments and difficulties
encountered on the project. This report is sent to the whole team, the customer and
senior management and stored in the project archive.

7 Subcontract Management

Since we don’t subcontract projects, this KPA was neither implemented, nor assessed
by the assessors.

8 Customer Satisfaction

The CMM, like the Agile methods, highly values the satisfaction of the customer. To
measure this we ask our customers to fill in an enquiry.

134 Erik Bos and Christ Vriens

Fig. 3. Results of the latest Customer Satisfaction survey on a scale of 0 to 10 (higher is better)

The results show that most customers are highly satisfied about our way of work-
ing. In one project the customer was not satisfied. His complaint was that he couldn’t
see the end of the project from progress forms and wanted detailed specifications and
project schedules. After escalation to senior management, it was decided not to con-
tinue our Agile way of working on this project. This is exactly the way a problem like
this should be handled according to the CMM.

9 Staff Satisfaction

The CMM and the Agile methods require motivated people. To measure the motiva-
tion we have a survey filled in by SES staff to express their satisfaction about the way
of working and other issues not related to the project.
Large deviations are discussed with the staff members and usually result in actions to
alleviate issues4.

10 Training

The CMM requires people to be trained. Most of the experienced software engineers
have no experience working in an Agile manner. Most are trained in big processes and
making large designs upfront. To get all software engineers on the same XP knowl-
edge level, we regularly organize XP Immersions on-site. Customers are invited to
join this course. This makes it very efficient to set up Agile teams. We described the
way of working in a (very thin, 2 pages) ‘Life Cycle Description’. It briefly describes
XP and Scrum and contains references to the standard Agile books.

4 One remark was that no bonding was felt by the contractors with the SES department, be-
cause most of the contacts are on a project base. This resulted in a monthly lunch meeting
with a technical lecture.

An Agile CMM 135

Fig. 4. Results of the latest Staff Satisfaction survey on a scale of 0 to 10 (higher is better)

11 CMM Assessment Results

In December 2003, a team of two Philips Certified CMM assessors evaluated SES.
They conducted 21 interviews with managers, project leaders, customers and software
engineers.

The following strong points were identified:

Good process deployment approach has led to a disciplined ‘Way-of-Working’.
The web-site is a major asset in transparency of processes and projects, and de-
ployment of the defined ‘Way-of-Working’.
Staff expresses pride on the ‘Way-of-Working’.
Effective guidance by SES of new customers in introducing the ‘Way-of-Work-
ing’.
Good process focus! The Way-of-Working is continuously being enhanced.

Attention points are:

The process policy is not explicitly described (e.g. do’s and don’ts because of
XP).
Reviews with overall project management are not applicable in most cases. Where
it is applicable it is not done.
Reviews by senior management have little attention for the effectiveness of the
process execution.
There are few measurements on the process currently in place.
There is a great potential in the data already collected.

136 Erik Bos and Christ Vriens

11.1 Requirements Management

Observation. Acceptance criteria are sometimes not explicitly defined.
Good practice. Frequent communication with the customer about requirements and
their implementation, resulting in very good mutual understanding of the require-
ments.

11.2 Software Project Planning

Observations. Sizes of work products are not estimated.
Good practice. Highly detailed Work Breakdown Structure (WBS). Unfortunately the
estimates are not supported by use of historical data (which are largely available).
Remarks. Management of critical computer resources is generally not applicable due
to the nature of the projects. Project plan review by senior management could have
more attention for feasibility of the results agreed.

11.3 Software Project Tracking and Oversight

Observations. Sizes of work products are not tracked.
Good practices. Use of burn-down charts. Daily recording of effort spent. High fre-
quent interaction on progress.
Remark. Except for effort tracking, it is difficult to see what the status of the project
is (e.g. status-overview of deliverables).

11.4 Software Quality Assurance

Observations. The involvement of the QA officer in the preparation of the PMP can
be improved (e.g. to share his experience). No structured independent check on the
activities of the QA officers.
Remark. The QA-role can have higher impact by more presence in the project (e.g.
by visiting stand-up and iteration meetings).

11.5 Software Configuration Management

Observations. No standard CM reporting in place. Baseline audits introduced only
recently. Checklist used is still draft.
Good practices. Continuous builds using automated unit tests and logging of build
and test results.
Remark. Planning and definition of baselines could be improved.

11.6 Conclusions of the Assessment

SES has defined and implemented an elegant way to reach the goals of Software
CMM Level 2. The XP process with CMM ‘flavor’ is adequate, given the nature and
sizes of the projects.

An Agile CMM 137

11.7 Recommendations

Take your right to say ‘no’: don’t work with customers who don’t play their roles as
required by the process.

Upgrade PMP to ask more attention for identification and handling of dependencies
and dealing with open source software.

Define an explicit approach with respect to measurements:

Choose, do, analyze, and modify according to gained insight
Impressive collection of historical data is excellent basis to derive and use metrics

Examine other (Philips) coding standards to upgrade the SES standards (addressing
language-specific do’s and don’ts).
Consider improving project status reporting (e.g., status of deliverables, earned-value
charts).

Behave like a learning organization:

Analyze retrospectives over projects to derive trends at organizational level
Classify historical data, and use historical data in estimating future projects
Tailor processes based on good practices encountered in projects meeting speci-
fied criteria
Transfer what has been learned in one project to other projects

The score on the KPAs for CMM level 2 are depicted in the figure below.

Fig. 5. Scoring of the Level 2 KPAs for the SES department. For CMM level 2 certification all
KPAs must be scored higher than 80%

12 Conclusion

This paper showed that, while working Agile, with a little extra effort, also a CMM
Level 2 certification could be obtained. The CMM level 2 KPAs and an Agile way of

138 Erik Bos and Christ Vriens

working overlap, because both focus on basic project management. The focus on peo-
ple in Agile and the organizational focus of CMM are nicely complementary.

It is shown that it’s not necessary to define thick procedures or write piles of docu-
mentation to ‘prove’ you are working on CMM Level 2. As Watts Humphrey states in
the preface of [1]: you need to look at what people are actually doing.

Acknowledgements

Thanks to Hans Naus, Vincent Ronteltap, Wim van de Goor, Mike Cohn and Wilko
van Asseldonk for reviewing this article.

References

1.

2.

3.

4.

5.

6.

7.

M.C. Paulk et.al.: The Capability maturity Model: Guidelines for Improving the Software
Process, Addison-Wesley, Reading MA (1995).
K. Beck: Extreme Programming Explained: Embrace Change, Addison-Wesley, Boston
(2000).
K. Schwaber, Mike Beedle: Agile Software Development with Scrum, Prentice Hall, Up-
per Saddle River, NJ (2002).
M.C. Paulk, Extreme Programming from a CMM Perspective, in IEEE Software, vol. 18,
no. 6, pp. 19-26(2001).
J.R. Nawrocki et.al.: Comparison of CMM Level 2 and eXtreme Programming, in Pro-
ceedings of ECSQ 2002, pp. 288-297 (2002).
F. Paulisch, A. Volker, Agility – Based on a Mature Foundation, Proc. Software Engineer-
ing Process Group Conference – SEPG 2002 (2002).
Norman L. Kerth: Project Retrospectives, Dorset House (2001).

Adapting Extreme Programming

to Research, Development and Production Environments

Gil Broza

545 Douglas Ave.
Toronto, ON M5M 1H7 Canada
gilbroza@hotmail.com

Abstract. Affinium Pharmaceuticals engages in early-stage pharmaceutical
R&D and molecular biology production processes for internal and external pro-
grams. This business requires significant informatics support in terms of small-
and large-scale software, tool integration and data management. Obtaining suit-
able software is difficult due to customer diversity, rapidly evolving unique
needs, vendor offering and high costs. Adapting the XP approach and practices
for this situation, Affinium’s Informatics group has successfully developed in-
house software that has kept up with the science. I describe notable accom-
plishments, and lessons learned along the way. I propose that a small in-house
group of domain-aware developers, using a customized version of XP, would
achieve better results than external providers, despite limited access to re-
sources. In closing, I suggest that this structure and methodology are generally
applicable to dynamic research, development and production environments.

1 Introduction

Affinium Pharmaceuticals is a structure-guided drug company focused on the discov-
ery of novel anti-infective medicines. Its undertakings thus encompass scientific re-
search, development and production. The drug discovery world is navigated using
high-throughput processes for protein production, structure determination, synthesis
of chemical matter and myriad assays for drug viability. R&D is responsible for rap-
idly obtaining drug candidates via proprietary automation, workflows and protocols.

Drug discovery is an extremely expensive and time-consuming pursuit. On aver-
age, developing a novel drug costs over US$800-million and takes 15-years from
initial research to marketed product [5]. To stay ahead and reach the market faster –
and make the most of patent protection – companies must constantly innovate. Affin-
ium’s chosen path is that of utilizing molecular structure, through structural biology,
computational chemistry, cheminformatics and bioinformatics. These pursuits are
well known for the sheer volume of data they produce and manipulate. Sometimes
reaching terabytes per month, this data may yield immense benefits when mined.

Affinium’s line of business requires diverse software for lab and data management,
maintaining and accessing scientific databases, streamlining workflow, and operating
and integrating instruments. Software is purchased from vendors, outsourced to con-
sultants, or built internally. In the next section I discuss the downsides of purchasing
commercial software, and several of the difficulties around planning and engineering
useful, affordable solutions, whether done internally or outsourced. I then show how
the Informatics group at Affinium has adapted XP to address these problems in build-
ing our own software or integrating software.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 139–146, 2004.
© Springer-Verlag Berlin Heidelberg 2004

140 Gil Broza

2 The Problem: Obtaining Appropriate Software

The dynamic nature of the industry poses challenges however a company acquires its
software. Systems, which cost a lot of time, money and effort to obtain and integrate,
often lose out to innovation and the fast pace of scientific discovery and automation
advancement. New business initiatives, or changing priorities in a difficult economic
landscape, may trigger obsolescence even faster. Gentler changes, such as new busi-
ness collaborations or discovery programs, often introduce or modify requirements.

There exist several established vendors of informatics software for biotechnology
and pharmaceuticals, but companies in these fields need to do more than choose
among them. Given the highly diverse nature of activities in drug discovery, few
vendors provide solutions that span the entire spectrum. Some needs are so special
that no commercial product addresses them effectively. Lastly, vendors may not be
quick, cheap or still around to respond to the changing nature of the business (e.g.
[4]).

Data and process integration are vital to a company’s scientific advancement re-
gardless of its size or age. Data is produced and processes are developed in highly
specialized departments of different disciplines, such as molecular biology, structural
biology and computational chemistry. However, comprehensive data analysis and
streamlined discovery operations require integration, posing serious challenges for
software development. Achieving useful integration, whether between vendors’ prod-
ucts or custom-built products, is time-consuming and expensive. Cost/benefit analyses
lead many companies to opt for a mixed strategy.

A significant downside to eschewing vendors is that a desired system may take
many months to enter production. Meanwhile, a lot of money is spent (and a lot more
if the project is outsourced), and the requirements mutate. Unformatted or unstruc-
tured ‘legacy data’ piles up, which is difficult to use and later import. The scientist
customers are often content getting by on their own, for instance by downloading free
tools, writing Perl scripts and using Microsoft Excel. Thus, spending money to build
software or database systems requires serious justification.

Developer skill-sets are another concern for companies building their own soft-
ware. The subject matter is difficult to master due to its scientific breadth and speci-
ficity, so experts in both software engineering and biology or chemistry are few. Yet,
successful developers must have a fairly good exposure to it in order to be conversant
with their customers. In my experience, “regular” software developers often find that
little of the subject matter strikes close to home for them, unlike financial or telecom
systems, for instance. On the other hand, biologists and chemists with programming
training often do not have enough experience in building large-scale systems.

3 Our Solution

The Informatics group at Affinium provides internal software development, bioinfor-
matics and cheminformatics services. Unlike the biotech / pharma industry’s tendency
to outsource substantially [8], Affinium keeps a small contingent of full-time employ-
ees. The benefits have been lower costs and higher quality, greater user satisfaction
with the group’s products and availability, and overall better alignment with the com-
pany’s goals. In line with industry practice [8], the group comprises 5 to 10 percent of
the company’s workforce.

Adapting Extreme Programming 141

Half of us have advanced biology degrees and programming training; the others
have advanced computer science degrees, and learned basic molecular biology and
chemistry on the job. The group’s members have diverse software industry experi-
ence. Its manager (the author) is also the software architect; it is small enough for one
person to manage this combination of roles. Overall, our makeup meets our needs.

Informatics always needs to address multiple projects, some of which have multi-
ple customers. Affinium’s ever-evolving drug discovery programs and collaborations
require software of varying magnitude, which can be broken down into large-scale
and small-scale development. This fuzzy distinction is made along the lines of dura-
tion, technology and maintenance. Small-scale development requires a single person
for up to two months – for instance, writing scripts, software integration and small
database development. Small-scale work is always done by Informatics members.

When large-scale software is needed, we compare building to buying-configuring-
integrating. We take into account timelines, budgets, risk, vendor offering, and our
skill-set and past experience. We have often found that scientific programs are better
bought, whereas data and process management applications are better built, whether
from scratch or using existing frameworks and third-party tools.

3.1 Extreme Programming at Affinium

Our methodology has crystallized slowly since the group’s formation two years ago.
In the first few months it combined Waterfall and XP [1] ideas: frequent releases,
automated testing, no over-providing, constant communication and feedback. Later,
we gravitated toward more rigorous XP through learning from the industry and our
own trial and error. The present adaptation, as it applies to mid- and large-scale de-
velopment, is similar to the 19 practices described by Miller [7], combined with a new
one, “architect”. We also apply it to small-scale development, only with much less
emphasis on automated testing, pairing and continuous integration. The next section
outlines our methodology, broken down using the categories presented in [7].

Joint Customer – Developer – Management Practices. As previously mentioned,
we undertake a large number of projects for numerous customer groups. To be fair
and agile in allocating our resources, we build our products iteratively. For new pro-
jects we use the Minimal Working Version technique: we plan iterations that culmi-
nate in a quick, good enough, usable 1.0 release, and dedicate part of our resources to
its development. When the work is accepted, remaining stories and maintenance work
return to the project pool. The projects are rescheduled every two to four months to
keep up with business changes. At any one time, we work on three projects at most.
Ideally, each developer works on a single project during an iteration, completing other
obligations between iterations.

The group works in an open environment with individual stations and low parti-
tions, which we constantly talk over. It affords minimal privacy without hampering
paired work or impromptu (“stand-up”) meetings of any number of people. Our cus-
tomers do not sit with us: the scientists are in the lab and their managers are in cubi-
cles or offices. Nevertheless, they are never more than a minute’s walk away.

The practice of retrospectives is relatively new to us. We have held only a few so
far, most of them internal to our team. They helped us to air implicit disagreements
and to express reasons for actions.

142 Gil Broza

Developer Practices. We design and write our code with an automated-testing mind-
set, although sometimes we do not actually program all the tests. Typically, we code
unit tests, but verify integration and acceptance manually. When deciding between
automated and manual testing we weigh considerations of maintenance, schedule,
difficulty, risk and available tools against ‘just enough’ manual testing. We determine
the coverage and depth of either kind of testing by the modules’ operational profile, as
well as schedule and risk. At the end of every release, we spend a couple of days on
manual testing and bug-fix verifications. We delay releases when quality is at stake,
e.g. data reliability, usability and severe bugs. We track all defects, fixed or not, in a
central database.

The group follows an “architect” practice (not mentioned in [7]). While the devel-
opers take part in every product’s entire life-cycle, some tasks are centralized in the
hands of the architect. Similarly to Fowler’s “Architectus Oryzus” [6], he is responsi-
ble for the vision and overall design of Informatics products, tracking design deci-
sions, constraints and prospective development. He evaluates feature and change
requests in light of existing and suggested designs. When competing alternatives are
considered, he makes the final decision. He pairs with and mentors developers, re-
views code, writes and enforces coding standards, and oversees high-impact refactor-
ing (involving several modules). We find this centralization to balance collective
ownership and the downsides of the “simplest thing that could possibly work” ap-
proach. For more on the thinking underlying this role, and how it scales, see [2].

We believe in collective ownership balanced by “disciplined action” [3]: one never
introduces major changes without consulting first and notifying after. The reverse also
holds: every necessary task will be undertaken by someone, like it or not. Anyone can
improve or modify the code, but they must first consider code reuse and alternative
designs with the architect, and check with the manager whether the schedule allows
doing it then or later. Useful suggestions, designs and refactoring tasks, which are not
undertaken immediately, are tracked for later consideration.

We work in pairs on all high-risk activities, such as product upgrades and live data
manipulation. The developers often pair with the architect for requirements analysis,
design and maintenance work, but only in some situations do they pair for coding and
debugging. We feel that the architect and collective ownership practices, and our
almost daily show-and-tell meetings, more than make up for lessened pairing.

We continuously refactor and integrate code, tests, data and documentation. We
practice YAGNI (“You Aren’t Going to Need It”) by focusing on high-priority stories
and doing just enough on them. However, being cognizant of the company’s needs,
we can make some educated guesses regarding their future manifestation. Therefore,
we always sketch initial design ideas for suggested features, refactoring and post-
poned fixes for major defects. These drafts are kept in mind when designing for a
given release. Some unscheduled items never get done; some take long to be imple-
mented, and may then be redesigned. All in all, our systems have undergone minimal
course corrections.

Management Practices. Given our multi-project, multi-customer situation, develop-
ment projects are scheduled by a single person, the group manager. On one hand, he
works with the customer groups on plans and priorities of maintenance and emerging
projects; on the other, he plans iterations with the developers. The plans take into
account the sustainable pace (“40-hour week”) practice, which the entire group feels
strongly about.

Adapting Extreme Programming 143

Informatics members answer only to the manager, no matter what project they
work on; the group has never been part of the company’s matrix structure. The man-
ager is accountable for the group’s accomplishments and performance. He keeps its
members informed through collective and individual feedback, including periodic
performance reviews, and he presents goals and progress updates to senior manage-
ment.

Customer Practices. Software updates are rolled out typically every four to eight
weeks. Each includes new and upgraded features, a planned set of bug fixes, needed
refactoring and automated tests, and limited but sufficient manual testing. When a
particular release targets a single customer group, they often plan it; in multiple-
customer scenarios the development group plans the releases, as [9] advises. Despite
their proximity, users’ exposure to new features may require a few weeks, so we nor-
mally plan two or three releases ahead. Later releases are planned shallowly, and
adjusted in due time.

The input to release planning includes the big-feature customers’ decisions about
story scope, the bug-fix and usability customers’ priorities, and our assessment of
performance and stability. Our analysis of cost, risk and quality shapes the final plan
(for instance, known defects may remain despite acceptance.) With less-involved
customers, Informatics members with biology background serve as “customer prox-
ies”.

We walk our customers through our designs, intermediate solutions and pre-release
solutions. Similarly to the planning situation (and as per [9]), a single customer tests
acceptance, whereas in multiple-customer situations, we do the testing.

4 How Our Methodology Has Worked for Us

Overall, Informatics customers are pleased: the software we deliver fulfils their needs.
It is deployed when still useful – keeping up with new drug discovery functions – and
important updates are rolled out rapidly. In this section I analyze successful aspects,
problems and lessons we have learned from applying our methodology.

Many of the successes and lessons described below arose from our largest software
undertaking, ProteoTrack™. It is a proteomics Lab Information Management System
(LIMS), whose 1.0 alpha was developed by a consultancy using the Waterfall meth-
odology. Two years ago the product was brought in-house, and Informatics has been
applying the described methodology for its development and maintenance ever since.

4.1 Successful Aspects

The approach of providing a Minimal Working Version using iterations, and repriori-
tizing further work, has been very successful whether for new applications, new major
features, software integration or database development. Our customers have generally
enjoyed receiving a usable product early, which included the functionality they
needed. Although unused to small-functionality iterations, they quickly realized the
benefits. For instance, early automation of data acquisition reduced manual labor, and
properly devised data repositories made reporting simpler. Rapidly developed small
increments indeed promoted timely feedback and enabled us to adjust to changing

144 Gil Broza

priorities ([1]). They also made for a gentler learning curve for our users, facilitating
training and communication.

All group members, who have previously worked in small or large ‘mainstream’
environments, report higher satisfaction with our approach. Specifically, not having to
follow slow, rigid processes, avoiding unnecessary work, and seeing all their work in
use have been terrific motivators. They also report feeling more productive despite
pairing and refactoring considerably, and working little overtime. Metrics we col-
lected confirm that per developer, we have produced more features, fixes, Java classes
and lines of code while being responsible for (“collectively owning”) a proportionally
larger codebase. These metrics also indicate an almost constant pace.

It is worth noting that the group chose this Agile approach when the rest of the
company, predominantly biologists and engineers, were set up as a matrix and follow-
ing traditional goal-setting and project management practices. However, we are not at
odds with anyone, as our accomplishments have justified our ‘unorthodox’ approach.

4.2 Difficulties and Lessons Learned

One prominent difficulty we have had is defining the actual customer. Both Informat-
ics and the scientists needed time to shift from the “programmers vs. users” approach
to XP’s collaboration between providers and customers, and the shift is not complete
yet. When 20 people will use a new feature, should the “customer” be just one of
them? Selected four people? Their team leaders? We have tried to identify one or two
representatives from each functional group, but this approach backfired several times
due to disagreements or lack of participation. We have looked to leaders, people with
a strong sense of product ownership, but very few felt confident enough to make deci-
sions that affect other people. This insecurity was exacerbated when the company was
formally organized in a matrix-management structure, which distanced people with
otherwise similar needs (and made holding retrospectives with them more difficult.)
The Informatics group is thus often left to make decisions it is not qualified to make.

With heavyweight methodologies, developers are often committed to a single pro-
ject for months on end. However with a short-iterations approach, the developers can
bring several projects to a partial yet useful state. One problem is managing these
multiple projects, each with its frequent releases, priorities and customers. Another is
saying “no” to people when the load becomes too high. Lastly, a deployed partial
project requires technical support, and occasional manual tweaking for yet-unsup-
ported behavior. With more and more projects in this state, releases stretch longer and
resources are spread thin.

We have tried to develop a common vocabulary with our user base, reinforcing it
at meetings and training sessions. This approach has not been entirely successful, but
the weakness of our common vocabulary has not impeded progress.

Several authors have written about retrofitting software projects to XP. Having to
develop and maintain a Waterfall-style, no-tests alpha version, we have observed that
non-trivial feature changes often merit a complete module rewrite rather than refactor-
ing and retrofitting automated tests. We have applied both approaches to numerous
modules, and the quality and productivity achieved by rewriting, especially by pairs,
were often superior.

Adapting Extreme Programming 145

5 In-House Development or Paid Consultants?

The benefits and disadvantages of engaging permanent employees vs. contractors are
well known. This paper encourages the factoring of methodology into the equation, as
more and more companies do these days. The many advantages of XP, as described
above, hold whether the group is internal or external. However, our experience sug-
gests that R&D environments, in which software needs vary and evolve rapidly,
would do best to form in-house development groups who adopt or adapt XP. Signifi-
cant gains include:

Agility in resource allocation. XP’s short cycles allow speedier redirection of re-
sources when priorities change. Contractors would normally tackle a single project at
a time, and charge a penalty if the project was stopped.

Smoother process and data integration. An organization often undertakes several
software-related projects, which mutate over time to address changing needs and
priorities. It can mitigate the impact of integration, maintenance and business evolu-
tion by centralizing architectural planning in the hands of a single, internal entity.

Deeper understanding. Most R&D environments are unique. Keen knowledge of
an organization’s proprietary technology, various projects and processes is vital for
focused, useful products. The customer can document and advise only so much; this
knowledge is best found in internal groups who grow with the organization. Pair pro-
gramming, collective ownership and architectural discipline help pass it on.

More architectural options. As XP encourages, we focused our efforts on the most
commonly used features. We relied on manual intervention for infrequent activities,
where development would give little return on investment. This approach would have
been untenable had we paid someone else to write our software.

6 Conclusion

An innovative, scientific pursuit like structure-guided drug discovery has challenging
needs for software whether the organization buys, outsources or builds it. Affinium
uses a mixed buy-build strategy, the “build” part fully undertaken by the Informatics
group, which resides outside the company’s matrix structure and bases its processes
on XP. By frequently reprioritizing our project pool, we have been able to deliver
timely, useful products and keep up with new discovery functions and needs. Incre-
mental delivery has proven vital for early feedback, adjustment to changing needs,
and motivation. Automated testing has been a blessing in the absence of testers. Just-
enough design and refactoring have been critical for quick turn-around. It has not all
been roses, however; we struggle with defining customers and their involvement, and
it is difficult to manage multiple short-span, frequent-release projects.

I think the Affinium environment is reflective of other small companies who have
scientific, research, development or production operations. Although our software
must model the business – biology, chemistry and pharmacology in our case – it is no
different to produce than other software. Its design and process must still consider
usability, performance, developer and user interactions, maintenance, schedules and
planning, and ultimately, value to the customer. I therefore suggest that XP can be
customized to suit such environments, as our two-year-old case exemplifies. I propose
further that an internal, organic team is in the company’s best interest, providing a
more cohesive software experience than outsourced projects.

146 Gil Broza

Acknowledgments

I would like to thank all members of Affinium Informatics, past and present, for tak-
ing on this adventure together. We learn something new every day!

References

1.
2.

3.
4.

5.

6.

7.

8.

9.

Beck, K.: “eXtreme Programming explained”, Addison-Wesley, 2000
Broza, G.: Position paper for the “Experience Exchange” workshop at XP2003, online at
http://www.frankwestphal.de/xp2003/GilBroza.html
Collins, J.: “Good to Great”, HarperCollins, 2001
Davies, K.: “The Demise of DoubleTwist”, online at http://www.bio-itworld.com/archive/
050702/survivor_sidebar_252.html
DiMasi, J.A. and related Tufts research, online at
http://www.novartis.at/download/news/tufts/Tufts-PhRMA backgrounder.pdf
Fowler, M.: “Who Needs an Architect?”, online at
http://www.martinfowler.com/ieeeSoftware/whoNeedsArchitect.pdf
Miller, R.: “Demystifying Extreme Programming: “XP distilled” revisited”, online at
http://www-106.ibm.com/developerworks/java/library/j-xp0813
U.S. Department of Commerce, “A Survey of the Use of Biotechnology in U.S. Industry”,
online at http://www.technology.gov/reports/Biotechnology/CD120a_0310.pdf
Wallace, N., Bailey, P., Ashworth, N.: “Managing XP with Multiple or Remote Custom-
ers”, online at http://www.agilealliance.org/articles/articles/Wallace-Bailey--
ManagingXPwithMultipleorRemoteCustomers.pdf

Outsourcing and Offshoring with Agility: A Case Study

Clifton Kussmaul1, Roger Jack1, and Barry Sponsler2

1Elegance Technologies, Inc.
1721 Green Valley Rd, Havertown, PA 19083, USA
{ckussmaul,rjack}@elegancetech.com

http://www.elegancetech.com
2EXTOL International, Inc.

474 North Centre St, Pottsville, PA 17901, USA
bsponsler@extol.com
http://www.extol.com

Abstract. We describe techniques and lessons learned from using agile meth-
odologies with distributed teams, specifically outsourced and offshore devel-
opment teams. Such teams often need to contend with multiple organizational
boundaries, differences in time zone, language, and culture, and other commu-
nication challenges. First, we present concepts and issues in outsourcing and
offshoring. Second, we describe a case study involving continually changing
requirements, outsourcing, offshoring, and a method inspired by SCRUM and
FDD. Third, we review key lessons learned, and conclude with a summary.

1 Introduction

Agile approaches to software development share a particular set of values [6], [11]:

Individuals and interactions over processes and tools.
Working software over comprehensive documentation.
Customer collaboration over contract negotiation.
Responding to change over following a plan.

Although agile methodologies usually assume that all team members are in one lo-
cation, they have also been adapted to include distributed teams [17].

This paper describes techniques and lessons learned from using agile methodolo-
gies with outsourcing and offshoring. We begin with background on outsourcing and
offshoring. We then describe an ongoing relationship in which Elegance Technolo-
gies, Inc. (ET) provides software product development services to EXTOL Interna-
tional, Inc. Next, we present lessons we have learned that can help other projects with
distributed teams. These lessons are summarized in our conclusions.

1.1 Outsourcing and Offshoring

Outsourcing is the use of external companies to perform services, rather than using
internal staff. According to a 2003 survey of CIOs, 70% of companies outsource some
IT function or application [5]. Offshoring is the use of staff in other countries, and is
often associated with India, China, and the former Soviet Union. Forrester Research
estimates that 277,000 computer jobs and a similar number of management and opera-
tions jobs in the United States will move offshore by 2010 [10].

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 147–154, 2004.
© Springer-Verlag Berlin Heidelberg 2004

148 Clifton Kussmaul, Roger Jack, and Barry Sponsler

Outsourcing is done for several reasons [5]:

To reduce costs. This is the most commonly cited (59.8%) advantage of offshoring,
although 73.5% of CIOs feel it is overrated as a cost-cutting strategy [5]. Hourly
rates in countries like India and China can be less than 10% of those in the US [9],
but IT organizations typically save 15%-25% during the first year and up to 40%
by the third year [7].
To access specialized skills or facilities. These resources may be expensive or
unavailable locally, or may only be needed occasionally.
To be able to increase or decrease the people or other resources on a project.
To increase development speed and reduce time to market.

A useful framework [12] analyzes outsourcing relationships along two dimensions.
Dependence is the degree to which ownership and control is transferred to the out-
sourcing partner. Strategic impact is the degree to which the outsourcing relationship
affects competitive positioning and long-term strategy. As a relationship increases in
either of these dimensions, collaboration becomes more critical.

2 Case Study

EXTOL International, Inc. is a privately funded software product company based in
the mid-Atlantic region, with roughly $10M in annual revenue. Most employees work
in a development and operations center, or a sales and marketing office, though there
are several other offices across the US. Over the last several years, EXTOL has in-
vested significant resources to develop EXTOL Business Integrator (EBI), a powerful
and flexible data processing engine, with a strong development team, and an exten-
sive feature roadmap. Thus, EBI is a strategic asset for EXTOL and EXTOL plans to
keep most core EBI activities in-house.

To allow customers to use EBI’s capabilities without first becoming expert users,
EXTOL plans to develop a series of user-friendly, domain-specific front ends, begin-
ning with one for UCCnet, a global, internet-based electronic commerce service [20].
However, these front ends present several challenges:

They are often developed in response to external market conditions which are hard
to predict and difficult to coordinate, and the number and intensity of these devel-
opment efforts will vary over time.
They may require intensive domain analysis phases, and are targeted at business
users, not technical users. Diverting EXTOL’s existing architects and designers to
work on the front ends would adversely affect EBI.
Cash flow must be monitored closely, since EXTOL is already supporting a sig-
nificant development effort.
EBI is under active development, and new capabilities are added regularly.
The external standards are still evolving, in some cases. For example, several
months into the project the UCCnet specification migrated from DTD to XSD.
Time to market is critical, and system requirements may change frequently in re-
sponse to customers and competitors.

Thus, EXTOL decided to outsource development of the UCCnet application to
Elegance Technologies, Inc. (ET), which develops software products and provides
software product development services, including managing offshore teams.

Outsourcing and Offshoring with Agility: A Case Study 149

The outsourcing relationship began with one ET consultant working on an hourly
basis, and spending several days a week onsite at EXTOL. The consultant studied the
UCCnet application domain, analyzed requirements, developed a high-level design
and a list of potential features, and supported development of an in-house proof-of-
concept and demo. Based on the confidence and trust developed through these initial
deliverables, EXTOL decided to outsource most of the UCCnet application develop-
ment to ET.

2.1 Methodology

Our methodology is inspired by SCRUM and Feature-Driven Development (FDD). In
SCRUM [16], a product backlog contains all potential product features, including
customer functionality and technology features. A sprint is a 30 day development
period. A sprint backlog is a subset of the product backlog to be implemented in a
given sprint. A sprint goal defines the business purpose of a sprint, and is used to help
decide whether specific features must be deferred or changed. During a sprint, daily
15 minute meetings are used to inform and coordinate the team. In FDD [13], a team
begins by developing an overall system model. The team then generates a list of fea-
tures, and plans the features. Finally, the team bundles sets of features into packages
for design and construction. Thus, SCRUM emphasizes project management, and
FDD emphasizes a design process.

Early in the project, we developed an initial feature list (or product backlog) and
the overall product architecture (or system model). Ongoing development involves a
team of 2-3 onshore staff and 5-10 offshore staff, working in time-boxed sprints of 4-
6 weeks. Before each sprint, we develop and sign a formal proposal that identifies the
major milestones, the sprint feature list, and a price range. During each sprint we
implement sets of features. At the end of each sprint, ET determines the final price
based on actual effort and the scope of work completed. This allows us to be more
responsive to uncertainty and requests for change.

During a sprint, we use several coordination techniques:

Both teams use a shared mailing list to archive all communication.
At the end of their respective work days, each team sends a status email to the list,
describing significant changes, current problems, and any questions.
There are also daily meetings to review status and address major problems that are
preventing the project from moving forward. They are usually late afternoon in In-
dia and early morning in the US, but sometimes early morning in India and late
evening in the US. These meetings are usually via instant messaging and last
around 15 minutes, though they occasionally run as long as 30 minutes and some-
times involve phone and/or web conferencing.
A CVS repository stores all requirements, designs, source code, and related docu-
ments. The code is kept in a working state at all times, with any exceptions noted
in the status email, so that we can see real progress. In effect, we have daily code
deliveries between the offshore and onshore teams.

Onshore staff focus on analysis, high-level design, and coordination with EXTOL,
but are also involved in the low level implementation and testing. For example, on-
shore staff may develop GUI mockups or framework code to be completed offshore.

150 Clifton Kussmaul, Roger Jack, and Barry Sponsler

A top priority for the onshore staff is to resolve any open issues from the daily meet-
ing, so that the offshore team can continue work the next day. Offshore staff focus on
low-level design, implementation, and testing, but are also involved in analysis and
design, and review all design documents and proposals.

Effective collaboration is probably the most important element in the success of
this project, which involves customers, EXTOL’s sales and marketing group,
EXTOL’s development team, ET’s onshore team, and the offshore team. Establishing
trust over these multiple boundaries takes continual effort and attention.

3 Lessons Learned

We hope that other projects involving outsourcing, offshoring, or other distributed
teams can benefit from lessons we have learned, including the following:

Avoid projects that are too small to amortize the overhead required for a effective
distributed team. Very small projects are best done by local teams, unless an offshore
team already has direct experience. On the other hand, it is often best to start with a
small offshore team and add people over time as the project grows.

Keep research, architecture, and requirements analysis close to the customer.
For example, during the first few sprints the onshore team developed a core architec-
ture and set of practices to serve as guidelines, particularly as the offshore team
evolves and becomes more familiar with the project and application domain. As the
project and team grew, ET’s onshore staff became less involved in coding, and more
involved in planning, reviews, and other coordination to serve as a bridge between the
offshore team and EXTOL.

Key documents help to bootstrap the project by establishing a common framework
for stakeholders spread across multiple US and foreign time zones. We depend on:

The master feature list – every completed, scheduled, or envisioned feature.
A detailed data model and data dictionary are key interfaces between teams and
components, including the interface to the EBI software engine.
Requirements and designs for subsystems in the current or next sprint. These
documents are usually discarded (i.e. not maintained) after the corresponding fea-
tures are developed and tested.
A list of tasks and related information for the current sprint.

This supports Brooks’ documentary hypothesis: “a small number of documents be-
come the critical pivots around which every project’s management revolves” [4].
Thus, we try to minimize the use of unnecessary or throwaway documents. For exam-
ple, our GUI reviews use real screens with incomplete functionality, rather than
dummy screens that might change when implemented.

Minimizing requirement changes during a sprint is even more important with a
distributed team, since it can be more difficult to agree on the scope, monitor the
implementation, and ensure that nothing is forgotten. Often, it is feasible to defer
changes until the next sprint, which is usually just a few weeks away. If changes are
necessary, we may compensate by reducing other functionality or slightly extending
the schedule.

Outsourcing and Offshoring with Agility: A Case Study 151

As the project matures we have allowed the sprints to become longer, in part to re-
duce the testing and documentation overhead for each delivery. However, we spend
more time debating the scope of each sprint, so we may need to revisit these issues.

Careful coordination enables us to respond quickly to necessary changes, which can
provide a competitive advantage. For example, by focusing on activities such as
analysis, customer interaction, and testing, at the end of the day the onshore team can
send requirements to the offshore team, and have the resulting changes implemented
the next morning. This round-the-clock cycle can be very effective. Because each
team is eager to start work when the other finishes for the day, this approach also
discourages excessive overtime, which can lead to burnout and other problems.

Early and frequent delivery of working software is especially important, for sev-
eral reasons. It gives the client frequent opportunities to review the project status and
make appropriate changes, which is especially important for user interfaces. It serves
to build confidence and trust among people who have not worked together previously.
Furthermore, it provides an effective communication mechanism between all stake-
holders. These benefits are essential in the UCCnet project environment.

Planning is still important, although it takes less time than many outsourced pro-
jects. For example, we must monitor costs, and balance short-term priorities against
the need for a sustainable level of staffing. Since each sprint is a separate proposal
and contract, during each sprint we spend time planning the next one.

Ease participants into relationships with remote teams, and try to arrange regular
and extended visits between locations. For example, several members of the offshore
team have worked in the US. ET’s onshore staff have all spent time in India, and
typically spend at least one day a week onsite at EXTOL. We also arrange occasional
teleconferences (usually for training) between EXTOL, the onshore team, and the
offshore team.

Focus on the win-win aspects of the project to minimize the potential disruption
caused by contractual relationships between the distinct organizations involved. For
example, the proposal for each sprint specifies a price range to accommodate incom-
plete and changing requirements, and to avoid having to write complete requirements
before the sprint can start. We are fortunate in that many key personnel at EXTOL
and ET have been both producers and consumers of software services, and thus un-
derstand the issues from both perspectives.

Effective communication and interaction are particularly important in outsourcing
and offshoring, where staff can be spread across multiple locations, time zones, and
cultures. It can be difficult to determine and maintain the appropriate level of com-
munication. Working to develop effective communication early in the project makes
it easier for the team to grow as needed. Synchronous communication, such as face-
to-face meetings, online chats, teleconferences, and web conferences, is ideal for
quick status meetings, brainstorming sessions, and reviews. Asynchronous communi-
cation, such as email, discussion forums, and shared documents, provides a persistent
record of discussions and decisions, and don’t require participants to be available at
the same time. We employ all of these techniques regularly.

Be sensitive to cultural differences, especially between organizations and between
regions or countries, including differences in how people interact with each other and

152 Clifton Kussmaul, Roger Jack, and Barry Sponsler

resolve problems. This is especially true for outsourcing and offshoring. For example,
some cultures place more value on centralized, top-down control, and may view direct
questions as a challenge to authority.

Furthermore, many offshore development centers, particularly in India, have in-
vested heavily in the Software Capability Maturity Model (SW-CMM®) [14], which
defines five levels of increasing process maturity; offshore companies represent
roughly 74% of CMM-4 organizations and roughly 84% of CMM-5 organizations
[19]. When teams and managers are accustomed to disciplined processes and rela-
tively static requirements, it can be quite difficult to convince them to explore other
approaches. (Note that there is growing recognition that both agile and disciplined
approaches have advantages, and that often a carefully designed combination of the
two can be very effective [2],[3],[15].)

Concentrate on the organizational interfaces when defining processes, rather than
trying to define all of the processes for everyone involved in the project. Defining
processes for an outsourcing or offshoring project can be particularly challenging,
since it may require coordination between different organizational cultures. It is quite
feasible, and sometimes preferable, for teams to use different methodologies that
reflect different cultures and requirements.

Use tools to work smarter, not harder. For example, early on we recognized that we
could use a code generator for much of the access code for a database with several
hundred tables. We also use JUnit and IBM Rational XDE Tester (formerly RobotJ)
to support unit testing and regression testing of the user interface.

4 Conclusions

To quote DeMarco and Lister, “The major problems of our work are not so much
technological as sociological in nature.” [8] (original emphasis). In this paper, we
have identified ways in which outsourcing and offshoring can utilize agile approaches
to address these sociological problems. Key lessons learned include:

Avoid projects that are too small to amortize overhead.
Keep research, architecture, and requirements analysis close to the customer.
Use a few key documents to provide a common framework.
Minimize requirement changes during a sprint.
Coordinate carefully to allow distributed teams to respond quickly to changes.
Deliver working software early and often to build confidence and trust.
Recognize that planning is still important.
Ease participants into relationships with remote teams, and arrange face to face
contact whenever feasible.
Focus on win-win aspects to minimize potential disruptions.
Provide appropriate tools and infrastructure for effective communication.
Be aware of and sensitive to cultural differences.
Focus on the interfaces between teams and organizations, and recognize the poten-
tial value of different processes in different locations.
Work smarter, not harder, by using appropriate tools.

Outsourcing and Offshoring with Agility: A Case Study 153

We expect outsourcing and offshoring to continue growing. We hope the lessons
described above can help other organizations to work more effectively and efficiently.

Acknowledgements

We gratefully acknowledge the support, advice, and encouragement we have received
from our customers and colleagues, both onshore and offshore.

Author Biographies

Clif Kussmaul is CTO of Elegance Technologies, Inc. He is also Assistant Professor
of Computer Science at Muhlenberg College, where he delivers introductory courses
through capstone projects to traditional and non-traditional students. Previously, he
spent two years working with CMM5 development centers at NeST Technologies. He
has a PhD in CS from the University of California, Davis, and is the author or co-
author of over thirty publications and conference presentations.

Roger Jack is President of Elegance Technologies, Inc. He has experience in project
management, and creating reliable and robust architectures. He is the former Vice
President of U.S. Software Operations for NeST Technologies, where he managed
many offshore projects. He has an MBA from Duke University’s Fuqua School of
Business, and an MS in Computer Science from Villanova University.

Barry Sponsler is Director of Development for EXTOL International, Inc., where he
oversees development, documentation, quality assurance, and outsourcing relation-
ships. In over 20 years in the IT industry, he has managed diverse development teams
for legacy applications (e.g. AS/400), multiplatform applications using Java, a large
data center with operations and programming staff, and ERP and Y2K projects for
Fortune 500 companies.

References

1.

2.

3.

4.
5.

6.
7.
8.
9.

10.

11.

Agile Alliance. Manifesto for Agile Software Development.
http://www.agilemanifesto.org (2001)
Anderson, D. Agile Management for Software Engineering: Applying the Theory of Con-
straints for Business Results. Prentice Hall PTR (2004)
Boehm, B., Turner, R. Balancing Agility and Discipline: A Guide for the Perplexed. Addi-
son Wesley (2003)
Brooks, F. The Mythical Man-Month. Addison Wesley (1995)
CIO Insight. Research: Outsourcing: How Well Are You Managing Your Partners?
1(33):75-85 (November, 2003)
Cockburn, A. Agile Software Development. Addison Wesley (2003)
Davison, D. Top 10 Risks of Offshore Outsourcing. META Group (Nov 2003)
DeMarco, T., Lister, T. Peopleware: Productive Projects and Teams. Dorset House (1999)
Dignan, L. Leaping, then Looking. Baseline 1(22):17-29 (September 2003)
Engardio, P., Bernstein, A., Kripalani, M. The New Global Job Shift. Business Week
(February 3, 2003)
Highsmith, J. Agile Software Development Ecosystems. Addison Wesley (2002)

154 Clifton Kussmaul, Roger Jack, and Barry Sponsler

12.

13.

14.

15.

16.

17.
18.
19.

20.

Kishore, R., Rao, H.R., Nam, K., Rajagopalan, S., Chaudhury, A. A Relationship Perspec-
tive on IT Outsourcing. Communication of the ACM 46(12):87-92 (2003)
Palmer, S. R., Felsing, J. M. A Practical Guide to Feature-Driven Development. Prentice
Hall PTR (2002)
Paulk, M., Weber, C., Curtis, B., Chrissis, M.B., et al. The Capability Maturity Model:
Guidelines for Improving the Software Process. Addison Wesley (1994)
Paulk, M. Extreme Programming from a CMM Perspective. IEEE Software 18(6):19-26
(2001)
Schwaber, K., Beedle, M. Agile Software Development with SCRUM. Prentice Hall
(2001)
Simons, M. Internationally Agile. InformIT (March 15, 2002)
Software Development. Offshore by the Numbers. 12(1):39-41 (Jan 2004)
Software Engineering Institute. Process Maturity Profile: Software CMM® - CBA IPI and
SPA Appraisal Results. (2003)
UCCnet. http://www.uccnet.org (2004)

User Story Methodology Adaptations

for Projects Non-traditional in Scope

and Customer GUI Contributions*

Denise M. Woit

School of Computer Science
Ryerson University

Toronto, Ontario Canada M5B 2K3
dwoit@scs.ryerson.ca

Abstract. Our project, which was non-traditional in scope and in customer in-
volvement in GUI design, benefited from modification of the standard XP story
development and maintenance process. We support these findings with data
amassed over three years of such a project. We present the evolution of our
augmented process, in accordance with the principles of XP. We present data
comparing our use of the standard story process against our modified process,
and identify properties of our project which render it a candidate for the alterna-
tive process. We hope our results can aid other XP planners in determining if
their projects would benefit from such modified methodology, and if so, provide
guidance in determining appropriate modifications.

1 Introduction

We were challenged with the task of effective management of user stories in a unique
eXtreme Programming (XP) environment. We employed the simplicity rule to solve
problems, as they arose, regarding user stories, and produced an on-line story envi-
ronment that is web-accessible, OS-independent, easily used by programmers and
non-programmers alike, with complex searching capabilities. Our story environment
was influenced by several properties of our project: First, we are Linux-developers,
experienced in combining existing utilities to solve problems in a divide-and-conquer
strategy. Secondly, our project is large, with an extraordinary amount of dependency-
laden stories. Third, our customer has exacting GUI requirements, which require ex-
plicit and precise articulation in order to provide low-risk estimations. Finally, our
project’s success is determined fundamentally by its GUI, and thus, the customer’s
view of product correctness is largely based on the correspondence of its GUI with his
vision. Our stories themselves are atypical in a number of ways. They are numerous,
approaching 800 over the 3 year data collection period; they naturally fall into a hier-
archical organizational structure largely mirroring the product structure; they are GUI-
intensive, with over 500 images currently residing in stories, as discussed in Section 2;
and they exhibit a high degree of artifact-level dependence, as discussed in Section 4.

* Supported in part by Natural Sciences and Engineering Research Council of Canada (NSERC).

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 155–163, 2004.

© Springer-Verlag Berlin Heidelberg 2004

156 Denise M. Woit

We discuss how these properties provide challenges to management of user stories
in our environment. We outline our emergent story environment, resulting from solv-
ing each challenge as it arose, employing the principles of XP to the best of our abili-
ties. We present data collected over a three year period to support our belief that this
modified story environment is instrumental in the success of our project. Finally, we
compare our environment with others reported in the literature, and provide guidance
to other XP planners in determining the appropriateness and usefulness of any such
methodology modifications in their environments.

2 The GUI Challenges

Our project commenced in early 2000 with a newly assembled team of experienced
Linux developers embarking upon our first XP project. We practiced the suggested
standard process. Stories were about 3 sentences written on standard index-cards, and
served as a starting point for discussions with developers [1,3,4]. We followed the
sound advice: “you should try to keep stories focused on user needs and benefits as
opposed to specifying GUI layouts” [9]. Thus, GUI was not precisely specified, but
generally agreed upon in conversations among developers and customer during plan-
ning and implementation. The uniqueness of our project immediately posed several
complications.

We experienced customer dissatisfaction with the developed GUI, and, thus, dissat-
isfaction with the product, as the customer appeared to rate product correctness almost
exclusively by its GUI. Advice from those more experienced with XP, including our
XP consultant, was that when customers are dissatisfied with the work, they may fo-
cus on the GUI because they lack the terminology and experience necessary to identify
the true underlying cause of their discontent. We increased communication with the
customer, and carefully explored this possibility. We discovered that this customer
truly considered the GUI paramount to the success of the project. The customer’s goal
was to develop the product for sale/lease to third parties, and he considered the GUI a
significant factor in his product’s competitive edge over other products with similar
functionality. Primed with this knowledge, we began to implement more extensive
customer/developer collaborations during implementation. However, this approach
produced unsatisfactory results because as more details about GUI became evident
during development, implementation time increased significantly over that estimated;
it became apparent that simple initial stories with subsequent verbal collaboration
were inadequate to provide low-risk estimations of the customer’s intended product.
This problem was a direct result of the GUI-intensive nature of our product, its posi-
tioning in the marketplace, and our customer’s GUI-oriented definitions of product
correctness and project success. As the customer had very precise ideas about GUI
design, often down to the pixel, and as this design significantly influenced estimations,
he began including precise, detailed GUI with stories to affect more reliable estima-
tions and project planning, creating the designs with imaging tools. GUI images were
then printed and physically attached to story cards. One such customer-produced, GUI
attachment is presented in Figure 1.

User Story Methodology Adaptations 157

Fig. 1. Sample GUI attachment. Note that all gifs included were pre-created by customer/
graphic artist prior to meeting with developers. See Fig. 2 for story.

Our stories were relatively unchanged, except for the addition of GUI-based notes,
and customer/developer conversations remained necessary before and during imple-
mentation for more precise details [4]. However, conversations between customer and
developers usually resulted in modifications to the GUI. The XP values of “feedback”
and “communication” allowed us to quickly ascertain the following: The extent of the
GUI detail imposed by the customer made it necessary to record agreed upon modifi-
cations for developer referral, but manual modifications to the original printed image
artifacts proved unsatisfactory, because iterative modifications often resulted in cards
that were extremely difficult to understand, often manifesting in incorrect implementa-
tion from the customer’s perspective. Also, it was challenging to keep modifications to
GUI attachments consistent with story cards; necessary, as both story text and GUI
were referred to during implementation. In keeping with the “simplicity” value, the
customer began maintaining both stories and GUI together electronically, with editing

158 Denise M. Woit

and re-printing facilities solving our consistency and modification problems. Our
process was modified to incorporate electronic stories, but this remained in keeping
with standard process, as, although it is not encouraged, electronic story environments
are acceptable [3]. Fig 2 contains the electronic story associated with the GUI of
Fig. 1: Image and text work together to describe the customer’s vision of this “contact
card” functionality and its GUI.

During the first iterations of our project, maintaining stories electronically began in
response to challenges relating to the GUI-intensive nature of the product, our cus-
tomer’s exacting GUI requirements, and the reliance of our project success upon our
customer’s GUI design.

Fig. 2. GUI Story for Sample GUI attachment of Fig. 1. The story is at the level of detail re-
quired in order to produce low-risk GUI estimates for our particular customer. This story re-
quired 2 developer days to implement.

3 Sharing and Consistency Challenges

During release and iteration planning meetings, a single story card was shared among
15 or more individuals. The need for continual re-examination of the story card was
exacerbated by the extensive amount of GUI contained therein, which, as noted above,
was necessary in order to produce relatively low-risk estimations. The simple solution
of multiple printouts proved unsatisfactory because of versioning and reference issues.
The solution of viewing stories electronically was judged best. We maintained and
referred to stories using html. This platform-independent format was necessary be-
cause stories were maintained and referenced in Linux, Windows, and Macintosh
environments. The customer could employ an html editor to create and maintain sto-
ries, and could export his GUI images to gif format for story integration. By itera-

User Story Methodology Adaptations 159

tion 3, this scheme was implemented and used successfully. All participants preferred
the electronic story environment.

4 The Scalability Challenge

The need for effective organization, display and management of stories grew propor-
tionally with their number.

4.1 Views

Our electronic story environment evolved based on customer and developer feedback.
Our final environment allowed the display of stories by hierarchical grouping, and by
iteration. Story links were displayed in colors representing their status, for example,
finished, pending, defunct, etc. We believe that the feedback we received during use of
the on-line story environment was likely typical of other XP users, as ideas of display-
ing stories by iterations, and expanding stories from links, are common to other online
story repositories, for example, [10,12].

4.2 Dependencies

We experience tremendous dependencies among stories, as a result of the magnitude
of our project, its extreme GUI component, and our customer’s exacting GUI stan-
dards. It is important to note that our notion of dependencies is not restricted to the
temporal ones described in [1,3], for which the order of implementation of stories
affects their estimates. Our dependencies are among the story artifacts themselves. For
example, one story may describe some GUI in terms of how it differs from GUI pre-
sented in another story. One story may use terminology that was defined in another
story. The dependencies are not with the code itself, they are among the story artifacts.
Numerous such dependencies exist in our product--over 700 during the three years of
analyzed data.

Our extant dependencies are consistent with reports of other large [6], and other
GUI-intensive [7], projects. Schalliol [6] reports that the dependencies among stories
necessitated the review and rewriting of story cards on a continuous basis, to the ex-
tent that a full-time analyst was assigned to developing and managing story cards with
the customer. He reports an inadequacy in project testing is directly attributable to the
fact that the list of story cards by itself did not include any built-in guide to interac-
tions among past and present cards (dependencies). The dependency problem was not
resolved on that project; however Schalliol suggests other large projects use a “heav-
ier” methodology for stories, to ensure that the cards are managed, updated, and or-
dered well. Our story environment can be considered such a “heavier” methodology.
Because our environment is in place, we, unlike Schalliol, are able to directly include
dependencies among stories, using simple hyperlinking capabilities. The problem of
identifying these dependencies, however, is more challenging, as outlined below.

The identification of dependencies is a labour-intensive undertaking which must be
carried out when writing stories. Our data shows that dependencies in a story must be

160 Denise M. Woit

identified before the story is released to developer meetings, as our dependencies af-
fect both estimates and meeting durations. If not already identified and considered,
dependencies must be explored and uncovered during developer meetings; unnoticed
dependencies accounted for an unexpected increase in development time of approxi-
mately 20% per dependency, according to data collected in the first iterations of the
project. Meeting duration is significantly increased by dependency detection, with the
same data showing that meetings in which developers detected dependencies during
conversations with the customer were significantly longer than those for which de-
pendencies were already considered pre-meeting, with the former spanning several
days, on occasion, and the latter usually spanning half of one day. Our on-line story
environment was invaluable in helping identify dependencies because we were able to
employ complex searching. Each dependency was either found through searching, or,
if identified without searching, was subsequently verified through searching. Because
stories resided in plain text files, the full arsenal of Linux utilities were at our disposal,
including regular expressions, grep, find, sort, etc. For our non-Linux, non-program-
mer customer, the simplest solution to the searching problem was to employ browser
search facilities. For this, we added another story view which loaded the entire story
repository as one file into the browser for global searches. Both the story view, and the
Linux utilities were used successfully to identify dependencies. Had our 800 stories
been available only on hard-copy story cards, it would have been impossible to iden-
tify and verify the necessary dependencies. Based on collected data relating to meeting
durations, estimate increases, and dependencies, we expect that the success of our
project would have been compromised had our story environment not facilitated the
inclusion of dependencies, and their identification through complex searching.

5 Change-Management and Consistency

Initially, all personnel could modify stories. However, this resulted in conflict often
enough that a more formal process was implemented. Conflict arose when developer
and customer discussions were interpreted differently by developer than by customer.
Our attempts at resolving this problem by increased communication were not entirely
successful, and we began recording any story changes within the story to mitigate
these misunderstandings. However, this did not resolve the problem, because when
one party modified the story to reflect their understanding of the agreed upon modifi-
cations, often the other party later disagreed with this interpretation. This is obviously
a problem with our attainment of the values of feedback and communication, and
although we put effort into it, we were unable to make good headway without inclu-
sion of additional process, as follows: Changes to stories could be made by anyone
during a planning meeting, where both parties could view the result, but only by the
customer afterward. If a developer disagreed, or if the change altered the given esti-
mation, the developer would alert the customer, and they would continue communica-
tion. This process appeared to work well for two years. However, feedback at the start
of the third year was that although developers were happy with this arrangement, they
wished the opportunity to attach their own notes to the stories regarding clarifications,
conversations with the customer, implementation decisions, etc. The customer also

User Story Methodology Adaptations 161

wished the opportunity to create additional notes rather than being restricted to ex-
pressing additions via modification of the original story. We facilitated this by includ-
ing a “notes” hyperlink in each story which targeted another html file corresponding to
that story. Developers could not edit a story, but they could edit its notes. A basic
tenant of XP is that written notes may be added to story cards; therefore, regardless of
how stories are maintained, it is important to include, in basic process, the facility to
maintain notes. We had originally overlooked this, but discovered, by experience, its
importance.

6 User Story Environment

In this section we discuss generalizations of our experiences, and related work.

6.1 Generalization

The augmentation of the XP story creation and modification process was important to
the success of our project. As reported in Sections 4 and 5, our modified process miti-
gated issues of scalability, dependency and change management, all of which arose in
our project because of its GUI intensive nature, its scope, and its intended positioning
in the marketplace as a product with a “sexier” GUI than competitors. Our modified
process facilitated the extensive communication between development and manage-
ment required to successfully implement the required GUI.

We believe our process modifications can be generalized to other projects facing
similar challenges – XP projects with any of the following properties: uncommonly
great scope; a high level of artifact dependency; an unusually high level of change
management; a large, complex GUI component, with project success depending on
correct and complete GUI from the customer’s perspective. In such projects, we expect
our process modifications will be important to project success, as they were for our
project, because they work to mitigate problems arising from the above properties. For
example, for projects of unusually great scope, our experience agrees with other re-
search showing that some heavier process is required to manage, update and organize
stories [6], and our process is fitting in this situation. Projects exhibiting artifact de-
pendencies, such as ours and that of [6], were found to require methods for depend-
ency identification and cross-referencing, and again, our process is applicable. It has
been our experience, and has been suggested by others [7], that projects with exten-
sive GUI will benefit from appropriate process modification to facilitate communica-
tion, and again, our modifications are appropriate.

Our augmentations to the story creation and maintenance process can be applied to
other projects with the properties mentioned above by incorporating some or all of the
following guidelines into process: ·

Employ an electronic story management process, to facilitate the following points.
Use a means of managing, organizing, cross-referencing and ordering stories
Implement a means of electronically searching stories to identify artifact dependen-
cies, and maintain an efficient scheme for cross-referencing such dependencies.

162 Denise M. Woit

Allow GUI specifications to be seamlessly incorporated into stories, using an ap-
proach that facilitates change management.

It is important to note that we provide appropriate process modifications, but we do
not advocate specific implementation strategies. For example, our experience shows
that incorporating electronic dependency identification and cross-referencing is a vital
adaptation; however, we do not advocate a specific means of implementing this, such
as html, Linux search utilities and hyperlinks, because implementation should depend
on the skill-set of the personnel involved and the given project environment.

6.2 Related Work

We began development in 2000, when very little tool support existed for XP develop-
ment. At that time, our on-line story environment was developed in-house, of neces-
sity. However, more recently, several XP CASE tools have emerged, for example
[8,10-14], and we have evaluated a number of these to determine if they can provide
additional or improved functionality in our environment.

In our situation, the CASE tools appear a weighty solution in that they incorporate
extensive functionality related to planning, tracking, implementation, etc. For our
needs, a simple online story environment, with complex searching capabilities, is
sufficient. Additionally, it is our experience that most of the functionality included in
these CASE tools would be superfluous in our environment, as feedback pertaining to
our current planning and tracking processes suggest they are completely satisfactory.
It would seem at odds with the “simplicity” and “you won’t need it” values of XP to
install and maintain a tool for which most of its functionality will go unused, and is
unnecessary, in the given environment.

Some tools, such as [12,13], appear to restrict functionality to the story/planning
level, thus reducing unnecessary functionality (with respect to our environment.)
However, we note that complex searching capabilities are crucial in our domain, and
the ability to compose existing Linux utilities invaluable. As noted above, we believe
that without such facilities, our project would not have succeeded. None of these
story/planning tools contain adequate searching and retrieval for our project, and this
point alone renders them ineffectual in our environment.

7 Conclusions

We have described our augmentations to the story management methodology, which
were derived using XP principles, in accordance with our unique project properties:
non-traditional project scope, extensive and exacting customer GUI requirements,
numerous artifact dependencies, and our reliance on GUI for project success. We
compared our modified story process against the standard process, using data collected
from our project over a three year period, and showed our modifications essential to
project success. It is important to note that we are not presenting another story tool and
advocating its wide-spread adoption. We outline a process of story management which
we believe is applicable to projects with the given properties. We have reported our
realization of this process, subject to our particular expertise and experience; however,

User Story Methodology Adaptations 163

we expect that if similar process were adopted for other qualifying projects, realiza-
tions or tools would emerge based on the extant skill-set of that team, and could differ
from ours. We hope our results may provide guidance to other XP planners in deter-
mining if their project would benefit from similar process modification, and if so,
guidance in determining the extent to which modification is necessary, and guidance
relating to modification realization.

It is worth noting that the same customer and part of the team have undertaken a
smaller, non-GUI-intensive, in-house project for which the standard XP process was
employed successfully: stories comprising a few sentences written on cards were suf-
ficient; acceptance tests focused on functionality, etc. The customer, while unim-
pressed with the GUI, was satisfied with the results, as in this case correct functional-
ity was the goal. Having employed both the standard and our modified processes
successfully, we remain confident that our modifications were essential to the success
of our GUI-intensive project. Our process modifications took the form of story envi-
ronment augmentation. However, is possible that the GUI, scope, and dependency
issues could be addressed to some degree by augmenting the standard XP process
with the addition of various other artifacts, such as use-cases, workflow diagrams, etc.
We had initially rejected the use of such ancillary artifacts because we believed they
were incompatible with the stated XP practices, a common belief [5]. However, in
future projects we hope to explore this approach and compare it with that of our proc-
ess modification.

References

1.
2.
3.
4.

5.
6.

7.

8.

9.
10.
11.
12.
13.

14.

Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, 2000.
Beck, K.: Extreme Programming Immersion. Scotts Valley, CA. March 2000.
Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley, 2001.
Jeffries, R., Anderson, A., Hendrickson, C.: Extreme Programming Installed. Addison-
Wesley,2001.
Succi, G., Marchesi, M.: Extreme Programming Examined. Addison-Wesley, 2001.
Schalliol, G.: “Challenges for Analysts on a large XP Project”, in Proc. XP Universe, Ra-
leigh, North Carolina, July 23-25, 2001.
Wallace, D., Raggett, I., Aufgang, F.: Extreme Programming for Web Projects. Addison-
Wesley, 2003.
Marurer, F.: “Supporting Distributed Extreme Programming”, in Lecture Notes in Com-
puter Science, Volume 2418/2002, Springer-Verlag Heidelberg, 2003. pp. 13-22.
User Stories: http://www.extremeprogramming.org/rules/userstories.html
Xplanner: http://www.xplanner.org/
Xpcgi: http://www.xpcgi.sourceforge.net/
Iterate: http://www.diamond-sky.com/products/iterate/
Pinna, S., Mauri, S., Lorrai, P., Corriga, C.: “PSwiki: An agile tool supporting the planning
game”, in Lecture Notes in Computer Science, Volume 2675/2003, Springer-Verlag Hei-
delberg, 2003. pp. 104-113.
Auer, K.: “Autotracker”, in Refining the practices of XP, workshop in ACM SIGPLAN
Conference on object-oriented programming systems, languages and applications
(OOPSLA 2002), Seattle, Washington, Nov. 4-8, 2002.

Agile CS1 Labs: eXtreme Programming Practices

in an Introductory Programming Course

Dawn McKinney, Julie Froeseth, Jason Robertson,
Leo F. Denton, and David Ensminger

School of Computer and Information Sciences,
University of South Alabama,

Mobile, AL 36688
{dmckinney,jrobertson,ldenton}@usouthal.edu,

jf301@jaguar1.usouthal.edu, densminger@sbcglobal.net

Abstract. Many students begin to form their software development habits in in-
troductory programming courses. Although problem-solving strategies and other
good practices are taught at the introductory level, early experiences in pro-
gramming tend to involve small assignments and so students do not always see
the benefits and value of good software engineering practices. Consequently,
they develop habits which are hard to break later when faced with significant
problems where good practices are essential for success. Furthermore, students
report that typical CS1 lab experiences tend to be unsatisfactory and even irrele-
vant. In order to give the students early meaningful experiences in developing
good habits using a software engineering methodology which fits the limited
time-constraints of the academic environment, eXtreme Programming (XP) was
employed for the lab portion of a second semester CS1 course. This paper de-
scribes how XP practices were incorporated into a semester-long project where
classes met once a week in a closed lab. Specific affective objectives were also
introduced which were measured quantitatively and qualitatively. This paper de-
scribes our methodology, assessment, results, and plans for improvement.

1 Introduction

This paper describes a research effort that measures the benefits of incorporating eX-
treme Programming (XP) practices into an introductory programming course. We will
discuss our environment, our rationale, our use of the XP practices in a semester-long
closed-lab project, the results of quantitative and qualitative assessment of the ap-
proach, the benefits we found with this approach, and specifically what we intend to
do to improve our efforts in Spring 2004.

1.1 The Authors

Two of the authors, Dawn McKinney and Leo Denton, have been interested in XP for
a couple of years. During 2001, these two instructors had mentored a senior project
team and introduced some of the XP practices to that team. After attending the
XP/Agile Universe 2003 conference, McKinney decided to include XP practices in the

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 164–174, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Agile CS1 Labs: eXtreme Programming Practices 165

second semester of the CS1 lab in Fall 2003. Authors, Julie Froeseth and Jason
Robertson, the lab assistants for the course, became interested in the XP aspect of the
lab and led the research effort. Denton led the quantitative assessment effort and as-
sisted in qualitative observation. The fifth author, David Ensminger, a qualitative
researcher, led the qualitative assessment of the experience. After learning from the
fall experience, all five are involved in an improved version of the agile CS1 labs
during Spring 2004.

1.2 Our Environment

The University of South Alabama is a medium-sized state university. The School of
Computer and Information Sciences offers a bachelors degree in Computer and Infor-
mation Sciences (CIS) which has three choices of specializations: Computer Science,
Information Systems, and Information Technology. The school also offers masters
degrees in Computer Science and Information Systems. The two-semester introduc-
tory programming sequence (CS1), are foundation courses for all specializations in the
undergraduate degree program. In these courses, students learn problem-solving skills
and develop programs in Java. The first semester focuses on the basics of problem
solving and programming. The second semester gives the students experiences solving
more complex problems involving a greater degree of abstraction and the programs
are object-oriented. This study was performed with the second semester course. Our
CS1 courses meet for three 50-minute sessions and one 75-minute closed-lab session.
Traditionally, our CS1 labs have consisted of small coding assignments that are com-
pleted by students individually and turned in at the end of the lab period or finished for
homework. These assignments have ranged from simple “type-and-run” exercises to
very short programming assignments. This approach is designed to reinforce course
concepts and to provide hands-on practice.

1.3 Rationale for Choosing XP

According to our surveys and informal interviews, for some students the traditional lab
experience is a satisfying learning environment, while for others this lab format is
associated with drudgery, busy work, and is viewed as a waste of time. Other students
have commented that the labs are boring or even irrelevant. Furthermore, students
rarely see the value of good software development practices, such as testing, since the
assignments are so small and short term. In an effort to address these concerns, to
enliven the lab experience, and to make the lab a more valuable endeavor for students,
we decided to use XP methodologies to guide the development of a semester-long
project. During the fall semester of 2003, XP teams were formed.

Some “real world” aspects were incorporated into the lab in order to give students a
sense of relevance. We also focused on affective growth in the following areas: com-
munication, cooperation, work ethic, adaptability, and commitment. These characteris-
tics are in the National Association of Colleges and Employers’ (NACE) top-ten list of
characteristics wanted in college graduates [1]. Denton and McKinney have been
incorporating affective objectives into the CS1 courses over the past three years [4, 5,

166 Dawn McKinney et al.

17]. The affective objectives of the course included the promotion of professional
practices to help students focus on good team experiences. The students had several
opportunities, including exam questions, to list and briefly describe examples of these
practices. At the end of the semester, students evaluated how each team member per-
formed regarding these practices. To help the students form good habits early, they
were given a brief introduction to the various models of software engineering. A soft-
ware engineering model was needed for the lab that would be flexible enough to in-
corporate changes into the project as the students learned new concepts throughout the
semester. The model also needed to give the students ample time for actual coding,
encourage cooperative learning, as well as other skills, and promote the specific affec-
tive objectives of the course. An agile methodology, like XP, seemed well-suited to
meet these needs.

2 CS1 Agile Labs

The lab component of the course consists of a weekly 75-minute hands-on session.
Since the school has a laptop policy, students are required to have their laptops not
only for the lab session, but also for the other three 50-minute lecture sessions. The
closed-lab provides an environment where students can experience the synergy of the
team. Other academics have reported problems with students meeting out of class to
pair program and the difficulty getting the entire team together due to scheduling con-
flicts [18, 28]. Some of our success is likely attributable to this closed-lab aspect.

2.1 The Teams

We formed teams with the seven-plus-or-minus-two plan. This worked well since
some students do not remain in the course throughout the whole semester so that even
if two or three students were not present, the team still had four or five members. The
teams were self-forming and chose their team names. There was a noticeable “team
spirit.” One problem, however, was that the strong programmers tended to end up on
the same team, leaving other teams with weaker skills. These early experiences in
teamwork are beneficial in that the students learn to cooperate and work with other
programmers. More precisely, they incorporate “ego-less working” [24], something
which is further emphasized by the collective code ownership resulting from XP prac-
tices like pair programming. The instructor, McKinney, played both the role of cus-
tomer and project manager/coach. The lab assistants, Froeseth and Robertson, helped
resolve programming and technical issues but were not members of the teams.

2.2 The Project

The same project was implemented by all teams. Each team was independent and had
different ways of approaching the project, but being in the same room, ideas and other
resources were often shared between teams. The project was an actual endeavor that
the instructor of the class was interested in developing. The instructor had been using a

Agile CS1 Labs: eXtreme Programming Practices 167

manual system to log nutrition information. A paper database, a small notebook, and a
calculator were used. The customer, who was the instructor, wanted a system devel-
oped in Java to calculate BMR (Base Metabolic Rate) and keep track of the number of
calories, fat, protein, and carbohydrates allowed for each day by subtracting each time
a food was recorded. One of the reasons this project was chosen is that research shows
a deviation between what students are exposed to in the classroom and what is ex-
pected of them by the industry [11]. Even though students at this level may not be
ready to team up with real world companies yet, we believe they will benefit from
producing something they know is worthwhile for an actual customer, even if it is
their instructor. Furthermore, students usually solve problems in a way that is oriented
towards a static solution, but the industry needs developers who are oriented towards
what customers want which is more dynamic and evolving [19]. This was further
supported by XP’s emphasis on the customer.

2.3 XP Practices

We made an attempt to expose students to all of the XP practices: the planning game,
small releases, metaphor, simple design, testing, refactoring, pair programming, col-
lective ownership, continuous integration, sustainable pace, on-site customer, coding
standards, and stand-up meetings [3, 8, 13, 26]. The XP Practices were posted during
lab sessions so that the students were reminded of the practices while working in the
lab at opportune times. Hand-outs were provided and students were made aware of XP
web sites. Many students became interested and communicated with the instructor
about their discoveries, concerns, comments, and suggestions regarding XP practices.

Planning game. About every fourth lab session was devoted to the planning game.
Because the semester is about fifteen weeks and to have time for exams and holidays,
we planned for three iterations. The customer wrote user stories which were broken
down into tasks and estimated by the developers. As was suggested [3], cards were
used and after estimation the customer prioritized the stories. Students estimated sto-
ries in terms of minutes which were summed from the individual tasks that made up
the stories. Since our unit of “ideal time” [3], was a minute, an iteration could be
planned based on a total of 150 minutes, or two 75-minute lab sessions.

Small releases. Our stories were small and so the iterations could encompass two or
three lab periods, and this is why the estimation had to be in minutes. We did not ad-
here strictly to the iteration schedule which caused some frustration and a lack of a
sense of completion on the part of the students. It was planned that at the end of each
iteration, the team would demonstrate the project to the customer and the other teams
in the class. After the demonstration, a new planning game would start for the next
iteration.

Metaphor. Communication between customer and programmers was constant since
the instructor was the customer and always present. An understanding of the project
was maintained by this consistent communication. The concept of our chosen project
was easy to understand for all members of the team.

168 Dawn McKinney et al.

Simple design. Since the stories were so small, it was important to keep the students
focused on the specific tasks. Sometimes students would try to incorporate features
that they thought would be “cool” and the customer/project manager would step in to
keep them on track.

Testing. The focus on testing and quality was a priority. In addition to being a central
element in XP, it is highly valued in the industry, but often overlooked in program-
ming courses and industry [7]. We did not have much success with this practice, be-
cause the students would test after writing the code as they did in their first semester
programming experience and we did not use an automated testing program.

Refactoring. Because of the collective code ownership practice and the rotating of
pairs, some design and coding improvements were made. However, due to the time
limitations and the programming inexperience of the students, we were not able to
focus on this. Students at this level rarely get to the level of refactoring since they are
struggling to “make things work” and tend to think they are “done” once this is ac-
complished.

Pair programming. Students recorded on the back of task cards their pair experiences
including driver, co-pilot, date, and start/stop times. This helped make sure each pair
rotated between driver and co-pilot and with other members of the team which was an
important goal [26]. The recording of the times helped for making comparisons be-
tween actual times on task and estimates. There were, however, a few observed occa-
sions when the pairs were not well-matched, but since the pairs rotated, this was not a
real problem.

Collective code ownership. Members of the team had access to the code at all times
since the latest version was kept on a server and was available for downloading to
each machine for each lab session. Pair programming contributed to the adoption of
this practice.

Continuous integration. At the end of each lab, all code that was tested was uploaded
to a server to be downloaded for the next lab. Students were instructed to upload code
only when it was tested and working.

Sustainable pace. We did not allow the students to work on the project outside of the
lab; we used the lab time as the “40-hour work week” and told them “no overtime.” It
was interesting how many times students asked if they could please work on the pro-
ject outside of lab. We could easily see the students enjoying the experience. Occa-
sionally a team member would “cheat,” but most of the time students appreciated the
freedom to do other work and to leave the project for next lab session. This practice
seemed to lessen stress, but some students reported dissatisfaction with the week-long
break in time between labs.

On-site customer. The instructor played both roles of customer and project man-
ager/coach, which was an advantage since the customer was always present but a
disadvantage since it was difficult for the instructor to play two roles. The instructor
wore a necklace-style name-tag with “customer” written on one side and “project

Agile CS1 Labs: eXtreme Programming Practices 169

manager” on the other and would flip it to whatever role she was playing at the mo-
ment. We also emphasized the importance of the customer as part of the team and this
concept showed up in exam questions.

Coding standards. As in most academic settings, coding standards are required in our
CS1 course. Consequently, these standards were already in place and had been prac-
ticed during the first semester of the course. Still, not all students followed all stan-
dards. Individual programming assignments, which were separate from the lab, re-
quired the use of these coding standards.

Stand-up meetings. We adopted the practice of stand-up meetings. We had no idea
how well these would work for students. While “standing up” students cannot easily
access the keyboard of their computers and so they must pay attention. Our stand-up
meetings were fun. The students seemed to like the idea and they really were an effi-
cient way of communicating what was happening in the teams and the problems they
were having [3]. Each person was required to speak. Knowing this was coming, stu-
dents seemed to make sure they each were making significant contributions to the
team so they could have something to say. Stand-up meetings occurred as needed, but
typically were scheduled for the beginning and the ending of the lab session. These
meetings rarely lasted more than a few minutes and included the entire class.

3 Assessment

Several assessment instruments, qualitative and quantitative, were used to measure the
value of this agile lab approach. The authors can be contacted for more information
about the instruments. For this study, data was collected from course grades, qualita-
tive student surveys, lab observation, and Likert-based pretests and posttests that
measured student interest, belonging, value, perceived competence, pressure, and
effort as independent factors. We collected lots of data and found the process to be a
bit tedious. The authors came up with the possibility of requiring a weekly student lab
journal for the spring semester to assist in some of the evaluation and feedback.

3.1 Quantitative Measures

Our pretest and posttest data indicated that student interest, belonging, value, per-
ceived competence, lack of pressure, effort, and belonging each correlated signifi-
cantly and positively with course grade. This confirms our earlier studies [4, 17].
Though not identical to this lab’s affective priorities: communication, cooperation,
work ethic, adaptability, and commitment, the tested affective factors do share sub-
stantial overlap with these affective priorities (e.g. effort and work ethic). The major-
ity of the students indicated that these factors increased for them over the course of the
semester. The reasons students gave for these increases and sometimes decreases form
the basis of our qualitative assessment.

170 Dawn McKinney et al.

3.2 Qualitative Measures

In order to gain an understanding of the students’ XP lab experiences, students were
asked to anonymously provide a written description of their experience during the
semester. A phenomenological approach was taken to interpreting the comments and
description provided by the students.

Student satisfaction. The great majority of student comments indicated satisfaction
with XP lab experience. Most students described the lab experience as positive with
many using the words fun and enjoyable in their comments:

“My CIS 121 lab experience was very enjoyable”

“I enjoyed lab very much because I learned from my peers more about teamwork
and programming.”

Student dissatisfaction. A minority of students identified several problems with their
XP lab experiences:

“I had a small problem with pair programming due to a vast difference in ability
(could have been desire) to write code. It seemed that a few team members actually
wrote while others watched.” (not balanced pairing)

“There isn’t enough time in the lab to complete the assigned tasks.” (sense of com-
pletion)

Real world. The student’s satisfaction with the agile lab comes mostly from what is
described as “real world” experience. Students reported that the software development
process used in the agile lab simulated how they would work once they were em-
ployed in a computer science related field. Sixty-three percent (63%) of the students
used the “real world” analogy to describe what occurred in the in the agile lab experi-
ence:

“Certainly CIS 121 reflects how I will work in real world.”

“Teamwork was awesome. Everybody truly gave a great effort. The assignment
was fun because it was an actual program that could be used in the real world. I
learned a lot more than just programming because it was truly a team that followed
real world protocol. I learned that pair programming is way better! I learned com-
munication skills and dealing with the customer and issues you run into with what a
customer wants and what you think they want.”

Teamwork. The “real world” experience reported by students comes from several
variables that the students were exposed to as part of the lab. The most prominently
described variable was the teamwork or group work. Many students (i.e. 66 %) de-
scribed teamwork as significant part of the agile lab experience:

“I think our CIS 121 lab will prepare us more for a real future. Learning how to
deal with completely different people and work with them in a group.”

“The lab focused on communication and cooperation with other students. The lab
was very helpful because it introduced the concept of team projects. The team pro-
ject concept is very important in today in computer industry. Employers in today’s
job market (Computer/IT) require team (group) project experience.”

Agile CS1 Labs: eXtreme Programming Practices 171

Cooperative learning. The teamwork environment contributed to a cooperative learn-
ing environment where students were able to share information and learn from one
another. The cooperative learning included the sharing of coding skills, conceptual
knowledge, and problem-solving strategies.

“It was a ton of fun working with this team. It is hard to say what and how much
was learned. When I wasn’t “driving” I felt somewhat useless, but it was a good
way to see how others approach a problem and help them see things they missed.”

“It is a nice experience to work with different backgrounds because they bring dif-
ferent views and ideas.”

Professional skills. Besides the development of teamworking skills, students reported
that the agile lab experience helped them develop other skills that would benefit them
professionally. Students realized that to be successful in this experience they needed to
become flexible and adaptable. Cooperation and communication were skills that were
essential to the success of their group. Students describe the need to be committed and
a good work ethic as part of the other skills developed from the experience. Some
students even made leaps in their self-awareness:

“The lab implemented many skills that are priceless. These skills included team-
work, compatibility, commitment, etc. I learned how to better work with others and
use my time more wisely.”

“Not being a traditional student, I don’t know the five factors were influenced
greatly. However, I definitely had to change from telling someone to do something
to working together to get it done.”

Clear goals and objectives. Another variable contributing to the student’s satisfaction
came from the assignment to build the product. Students described the project and
small iterations or objectives that lead to the project goal. Having clear goals and ob-
jectives for each lab and that these objectives were related to a project goal contributed
to a feeling of accomplishment from students who reported the goals and objectives as
part of what made the class satisfying.

“I enjoyed the lab assignment because it was very cool trying to achieve so many
goals in such a short period of time. It was a challenge.”

“The lab assignment was challenging and interesting. A clear objective could be
recognized and worked toward.”

Development of new skills. By emphasizing the XP process of product development
the labs were able to approximate the “real world experience.” In order to be success-
ful in this environment, students had to develop more than just computer coding skills.
They had to develop team skills, communication skills, organizational skills, learn to
be adaptive, learn to cooperate and share information. The need to focus on these new
skills and the group work enhanced the level of satisfaction that the students received
from the XP lab experience:

“It took me a few labs to start to understand how to work within the group but the
skills I’ve started learning will stay with me. As a matter of fact, I’ve already used
the more team oriented mind set at my job and it has made things better for me.”

172 Dawn McKinney et al.

“Huge increase in my understanding of programming concepts. XP in labs initially
seemed awkward and inefficient, but we now communicate better.”

3.3 Classroom Observations

Below are comments from the observers (Denton and Ensminger) along with the cor-
responding affective objectives of the lab. These observations also illustrate the real-
world, team-oriented, and professional character of the labs.

“Interaction among the teams and within the teams was positive; students treated
each other with respect and courtesy. I also observed students laughing when they
made errors. They seem to be at ease with each other and willing to accept feed-
back openly from their paired members and members on the team. Teams joked
openly with each other and appeared to be having fun while they worked.” (com-

munication)

“Students congratulated each other when achievements were made.”
“Pairs worked together to clean up the code.” (cooperation)

“The class seems to work well when faced with change. They appeared to quickly
size up the problems and then look for solutions. I observed this not only with the
whole team but also in the working pairs. The close interaction and ‘team spirit’
seems to allow the groups to quickly work together to adapt to the changes they en-
countered.” (adaptability)

“The most telling observation was the fact that both groups did not need to be
prompted to get to work. They began to get organized as team members arrived and
then immediately began discussing the project and working on tasks without any
prompting from the instructor. They seemed to regulate themselves and guide their
own workflow. Additionally, students worked steadily for the entire lab period.”
(work-ethic)

“The students were so ‘in the flow’ that they ‘self-started’ and barely even noticed
the observers.” (commitment)

4 Reflections and Conclusion

This paper describes the incorporation of eXtreme Programming (XP) practices into
an introductory programming course. Benefits and drawbacks of this approach were
identified. Anticipated improvements stemming from identified problems include: (1)
the instructor should not, if possible, play the role of both project manager and cus-
tomer (this has also been identified by others who have tried this approach [22, 23,
26]), (2) student journals should be used to provide a mechanism for students to moni-
tor their progress and to receive instructor feedback, (3) stricter adherence to the itera-
tion schedule is needed in order to give students a better sense of project completion,
and (4) test-driven development needs to be automated using a tool like JUnit [10] and
needs to be understood and valued by students [8, 9, 20, 23]. Progress based on these

Agile CS1 Labs: eXtreme Programming Practices 173

changes has already been noticed during the first several weeks of the follow-up
Spring semester. Realized benefits from pair-programming and other XP practices
included confidence building, “pair pressure,” a sense of belonging (a key factor in
retention studies [12, 25, 27]), shared euphoria (evidenced by high fives and other
expressions), working code, higher course relevance, self-regulated learning, and co-
operative learning. Qualitative analysis indicates that this experience helped establish
a sense of satisfaction and promoted the development of professional skills, such as
communication, work-ethic, commitment, cooperation, and adaptability. Course com-
pletion rates also increased though we cannot directly attribute this to the agile lab
experience. In conclusion, it is clear that eXtreme Programming practices can be suc-
cessfully integrated into the laboratory experience of students in their second semester
of programming with beneficial effects.

References

1.

2.
3.
4.

5.

6.

7.

8.

9.

10.

11.

12.
13.

ACM/IEEE Computing Curricula 2001, Computer Science Volume, Chapter 10: Profes-
sional Practice.
Available at http://www.acm.org/sigcse/cc2001/cs-professional-practice.html
Beck, Kent. Test-Driven Development by Example. Addison-Wesley. 2003.
Beck, Kent and Fowler, Martin. Planning Extreme Programming, Addison-Wesley, 2001.
Denton, Leo F., Dawn McKinney, and Michael V. Doran. Promoting Student Achievement
With Integrated Affective Objectives, Proceedings of the 2003 American Society for Engi-
neering Education Annual Conference & Exposition, Nashville, Tennessee, USA (2003).
Available at http://www.asee.org/conferences/caps/document/2003-2391_Final.pdf or at
http://www.cis.usouthal.edu/~mckinney/ASEE3530.htm
Denton, Leo F., Michael V. Doran, and Dawn McKinney. Integrated Use of Bloom and
Maslow for Instructional Success in Technical and Scientific Fields, In the Proceedings of
the 2002 American Society for Engineering Education Annual Conference & Exposition,
Montreal, Canada (2002).
Available at http://www.asee.org/conferences/caps/document/2002-675_Paper.pdf
or at http://www.cis.usouthal.edu/~mckinney/
Fenwick, James B., Jr. Adapting XP to an Academic Environment by Phasing –In Prac-
tices. Extreme Programming and Agile Methods – XP/Agile Universe 2003, Third XP Ag-
ile Universe Conference, New Orleans, LA.
Haddad, Hisham. Post-Graduate Assessment of CS Students: Experience and Position Pa-
per. The Journal of Computing in Small Colleges, December 2002 pp 189 – 197.
Jeffries, Ron, Ann Anderson, and Chet Hendrickson. Extreme Programming Installed. Ad-
dison – Wesley. 2001.
Johnson, David H. and James Caristi. Extreme Programming and the Software Design
Course. in Extreme Programming Perspectives, Addison-Wesley, 2003.
JUnit Testing Framework, http//JUnit.org
Kock, Ned, and Camille Auspitz and Brad King. Web-Supported Course Partnerships:
Bringing Industry and Academia Together. Communications of the ACM, September
2003.
Light, Richard. Making the Most of College. Harvard University Press, 2001.
Martin, Robert C. Agile Software Development: Principles, Patterns, and Practices. Pren-
tice Hall. 2003.

174 Dawn McKinney et al.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

McDowell, Charlie, Brian Hanks, and Linda Werner, Experimenting with Pair Program-
ming in the Classroom, ITiCSE’03, June 30-July 2, 2003, Thessaloniki, Greece, pp. 60-64.
McDowell, Charlie, Linda Werner, Heather Bullock, and Julian Fernald. The Effects of
Pair Programming in an Introductory Programming Course. Proceedings of the 33rd
SIGCSE technical symposium on Computer science education, 2002, Cincinnati, KY.
McDowell, Charlie, Linda Werner, Heather Bullock, and Julian Fernald. The impact of
pair programming on student performance, perception and persistence. Proceedings of the
25th international conference on Software engineering, 2003, Portland, OR.
McKinney, Dawn, and Denton, Leo F., Houston, we have a problem: there’s a leak in the
CS1 affective oxygen tank, Proceedings of the 35th SISCSE Technical Symposium On
Computer Science Education, March 2004, Norfolk, VA.
Melnik, Grigori, and Frank Mauer. Introducing Agile Methods in Learning Environments:
Lessons Learned. Extreme Programming and Agile Methods – XP/Agile Universe 2003,
Third XP Agile Universe Conference, New Orleans, LA.
Mitchell, William. Information Technology Education, One State’s Experience. Journal of
Computing in Small Colleges (17, 4), March 2002 pp. 123-132.
Müller, Matthias M., and Walter F. Tichy. Case Study: Extreme Programming in a Univer-
sity Environment. Proceedings of the 23rd international conference on Software engineer-
ing, 2001, Toronto, Ontario, Canada.
Nagappan, Nachiappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang, Carol
Miller, and Suzanne Balik. Improving the CS1 experience with pair programming. Pro-
ceedings of the 34th SIGCSE technical symposium on Computer science education, 2003,
Reno, NV.
Noll, John and Darren C. Atkinson. Comparing Extreme Programming to Traditional De-
velopment for Student Projects: A Case Study. Proceedings of the 4th International Con-
ference on eXtreme Programming and Agile Processes in Software Engineering, May
2003.
Noll, John. Some Observations of Extreme Programming for Student Projects. Workshop
on Empirical Evaluation of Agile Processes (EEAP 2002). August, 2002.
Schneider, Jean-Guy, Lorraine Johnston. eXtreme Programming at Universities – An Edu-
cational Perspective. Proceedings of the 25th international conference on Software
engineering, 2003, Portland, OR.
Seymour, Elaine, and Nancy M. Hewitt. Talking About Leaving: Why Undergraduates
Leave the Sciences. Westview Press, 1997.
Steinberg, Daniel H., and Daniel W. Palmer. Extreme Software Engineering: A Hands-on
Approach. Prentice-Hall, Inc., 2004.
Tinto, Vincent. Leaving College: Rethinking the Causes and Cures of Student Attrition.
Second Edition, The University of Chicago Press, 1993.
Wainer, Michael. Adaptations for Teaching Software Development with Extreme Pro-
gramming: An Experience Report. Extreme Programming and Agile Methods – XP/Agile
Universe 2003, Third XP Agile Universe Conference, New Orleans, LA.
Williams, Laurie and R.L. Upchurch. In Support of Student Pair-Programming, Proceed-
ings of the 32nd SIGCSE Technical Symposium of Computer Science Education, Febru-
ary, 2001, Charlotte, NC, pp. 327-331.).

A Case Study in the Use of Extreme Programming
in an Academic Environment

Mary Beth Smrtic and Georges Grinstein

University of Massachusetts, Lowell
The Institute for Visualization and Perception Research

One University Avenue
Lowell, Massachusetts 01854
msmrtic@cs.uml.edu

Abstract. A group of graduate students working in a lab in a university have
more distractions than a typical software development group in industry. With
more distractions and fewer hours on site does it still make sense to use Ex-
treme Programming (XP) in the development of software? Here we discuss our
experience using XP in an academic environment in which the members of the
development group have different schedules and other projects. We found that
pair programming was an efficient and effective way to learn and share knowl-
edge, and that unit testing and just-in-time design helped us get to an early,
though scaled down release. Our interpretation of pair programming felt limited
and awkward at first until we realized that we could and should spend time in-
dependently learning and researching the tasks in addition to the work we do in
pairs.

1 Introduction

The environment of graduate students in a lab in a university differs from the business
environment mostly in the schedules and work habits of the students. Most of the
graduate students on this project are not working full time on software development;
during the semesters when they have classes and other projects to focus on they are in
the lab about 20 hours per week as opposed to the typical 40+ hours in business. They
typically do a higher percentage of their work outside the lab since the normal behav-
ior for a student is to go to classes, then do most of their studying and homework
individually somewhere else, at home or in a quiet spot in the library, as opposed to
the business environment where most of one’s work is usually done in the office. Do
Extreme Programming (XP) practices hinder or help the development of software in
this environment? Here we discuss our experience using Extreme Programming in
this environment and explore which practices worked well for us and what problems
we encountered.

2 The Institute for Visualization
and Perception Research at UMass Lowell

In September, 2003 a group of 6 graduate students of varying levels of experience
began a new development project, with more joining in as the academic year pro-

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 175–182, 2004.
© Springer-Verlag Berlin Heidelberg 2004

176 Mary Beth Smrtic and Georges Grinstein

gressed. None of us had any experience with Agile programming methodologies. We
began with a description of a desired system and the goal of releasing the software to
a graduate Computer Science information visualization class in the beginning of No-
vember so that the students could use it for their final projects for the class; any later
than that and the students would not have enough time to use it. The class knew that
they were using software under development, so its quality and scope were a bit more
flexible than the time requirement. At a bare minimum the software needed a quality
and scope that allowed the students to do their projects.

The name of the software toolkit we developed is the Universal Visualization Plat-
form (UVP). The students in the visualization class would each program a different
visualization which should easily plug into the framework allowing the students to
focus on the programming of their visualization. We began by defining the product,
choosing an IDE, learning XP, getting Java, JUnit, the IDE and source code control
installed. We were all new to XP and thought that everything had to be done in pairs.
Although we all have different schedules with classes and other projects, we are each
in the lab for at least 20 hours a week. We each have our own desk and computer, but
the lab is set up to allow us to easily share a workspace for pairing and all the devel-
opers are in the same room. With all the pairs collaborating we were able to easily get
everything in place and running. By September 9, we were ready to begin writing
software. We use JUnit for our unit tests. Our goal was to never check code into the
repository unless all the unit tests passed. Our compile and test running was always
very fast which helped meet this goal. We did, however, still think that following XP
meant we were supposed to do everything in pairs. Most of us had different ways of
learning the system and found it somewhat frustrating to learn as a pair. Our largest
complaint about XP was that it was hard to think while pairing. At one point, we were
trying to solve a simple problem, specifically; mapping points onto a scatterplot, but
had different ways of thinking about the problem and couldn’t jointly solve it. We
took a short break to think about the problem and then came back with a solution. In
October, we had the opportunity to visit some experienced XP practitioners at Hewlett
Packard. They were surprised that we tried to pair all the time. They spend 4 hours a
day independently and 4 hours pairing. This gives them time to fully understand a
problem before they sit down and code it as a pair. Doing this earlier would have
saved us some time and frustration. We now try to spend as much time on our own as
we do pairing. On our own, we research the problem and do “spikes”; this is writing
software independently that does not get checked into the repository and is purely for
researching and exploring alternative ways to solve a problem. By the time we get
together to pair, we have already considered the problem and have a better under-
standing of possible solutions.

3 Keep It as Simple as Possible

“Edward Tufte [1] has an exercise for graphic designers – design a graph however you
want. Then erase as long as you don’t remove any information. Whatever is left when
you can’t erase any more is the right design for the graph. Simple design is like this –
take out any design element that you can.” [2] To keep our design and code as simple
as possible, we remove anything that is not absolutely essential.

We started work on the “simplest thing that could possibly work.” We agreed that
the simplest possible first internal release would have a skeleton of the framework

A Case Study in the Use of Extreme Programming in an Academic Environment 177

with an abstract Tool class, a control manager, a link manager to hold the list of tools,
a data manager to hold a list of datasets, and a simple data reader tool. Three of us
worked on the skeleton of the framework, a control manager, a link manager. Two of
us worked on the first data reader tool. We paired to create a simple Comma Sepa-
rated Variable (CSV) reader. We wrote a unit test in JUnit that opened a simple data
set that would not stress the abilities of the reader. We ran it and watched it fail. At
this point we found pair programming to be surprisingly fun and felt productive. Each
group was learning from each other and figuring things out together. In a pair, we
were about twice as likely to already know the answer to each question that came up
saving the time of having to look it up.

4 Low Barriers to Knowledge Sharing

Our experience with individual programming is that we would not often ask questions
while working. Even if in the same room with another programmer, we would not
interrupt every time we wondered if they knew the answer to the question that we
were about to go in search of. While pair programming we can constantly ask any
question that comes to mind, or share knowledge even when the other person does not
know to ask. One of the developers at Hewlett Packard had an interesting anecdote.
He had visited another HP office to teach them XP. He was not familiar with their
development environment, but paired with one person in the morning and another in
the afternoon. While pairing with the second person, he mentioned that there was a
keyboard shortcut to what the developer had just done. The developer was surprised
and asked “how did you know that?” It was because he had paired with the other
developer in the morning. With no pair programming, the knowledge was effectively
hoarded and not shared within the group.

5 Shared Knowledge; More Flexible Team

One day the first author was in the lab, feverishly writing a paper that was due the
next day. Someone came in to discuss some software she had written. She valued his
input and did not want to discourage him. Another student in the lab who had paired
with her was just as familiar with the code, and easily stepped into the conversation
allowing her to quietly slip back to her paper.

The lead developer on this project, one of the full time developers, is occasionally
needed for other projects, distracting him from this one. We found that pairing helped
the rest of us understand the software that he had written and we were able to con-
tinue in his absence. If he had gone off and written his part of the software independ-
ently, we would be stuck when he was unavailable. There was one point when we
needed to add linking (highlighting related data in multiple visualizations) to the pro-
ject. The students in the class, for their final project, had to analyze a dataset using
multiple visualizations. They needed to be able to make selections in their visualiza-
tion with the selected data highlighted in the other visualizations. The lead developer,
who began the semester with the vision of how this would happen, was unavailable to
make this happen in time for the students’ final project. He had written the supporting
structures but the actual linking code had not yet been written. We decided one Mon-
day afternoon that this really needed to be available that day so that we could release

178 Mary Beth Smrtic and Georges Grinstein

it to the students for that evening’s class, not an unusual scenario on the commercial
side for demonstrations. We had been thinking about it over the weekend but had
limited time to get it in. We got a simple version of it working to present in class that
evening. Had the lead developer not been pairing with us all along and gone off and
written the supporting structures independently, we probably could not have pulled it
off so quickly without him doing it himself. By investing all along in shared knowl-
edge, we gain extra flexibility and are not so limited by any one person’s schedule.
Code and design reviews do not give as intimate an understanding of the software as
pair programming and continuous integration and unit tests. If he had simply told us
about what he had done, or if we had critiqued it in a review, we would not have un-
derstood it as well or as quickly.

6 Code Clarity

We found it helpful to have two opinions on the clarity of the software. There were
times when one of us would say “I don’t understand what you’re doing there.” The
other person would then try it a different way, “is that better?” Something that seemed
very clear to one of us is not necessarily clear to the other. If we both agree that it’s
clear, it’s much more likely to actually be understood by the next person who looks at
it. Clarity can mean different things to different people and without pair program-
ming, sometimes code gets in that is only clear to one person. With pair program-
ming, if the vote is tied, we pull in a third as a tie breaker. That greatly increases the
likelihood that the code will be clear to other developers that use it.

7 “The Ultimate in Defect Removal Efficiency” [3]

If individual programming is an individual sport, pair programming is a team sport.
Pair programming has been referred to as “constant code review” [3] but in place of
one or more people critiquing another person’s work, we were building it together as
a team. I remember pointing to the screen and saying, “Wait, we could get a null
pointer exception here.” If the driver is focused on the solution to the problem they
may not be thinking about the surrounding issues. The person watching can catch the
little things that the driver might miss.

8 Design Disagreements

Did it slow us down to have two people making every little decision? We agreed
surprisingly often and when we didn’t agree, the solution tended to become clear
quickly. We often found ourselves handing over the keyboard and saying “show me
what you mean” or “here, I’ll show you what I mean.” Some code is written, one of
us would point to it and say, “See, that’s what I meant,” or “oh, you’re right, that
doesn’t work.” Abstract discussions quickly become resolved. In waterfall model
design sessions, discussions are more abstract and can take a long time; code is a
great way to communicate with another developer.

Two of the developers on our team had a common discussion about whether a crea-
tor function should return a reference to the object that it created. Who owns the new
object, its creator, or the method that called the creator? In this case, the object that

A Case Study in the Use of Extreme Programming in an Academic Environment 179

did the creation kept track of its objects, so you could argue that it should keep the
object and not return a reference to it. You could also argue that the caller wanted to
create it, so should be able to act on the new object. This type of discussion is typical
of large design phases. Under XP, if a discussion is taking too much time, the inter-
ested parties try it to see which way works better. They eventually came to an agree-
ment, but perhaps they could have written some code to try it both ways to see which
works better instead of the long abstract discussion they had multiple times.

9 Test Driven Development

Although not all the developers like to work this way, the first author found writing
the unit test before the code helped clarify the API of the class being created. We
often changed the API after the code was written, and modified the test to cover what
was learned during the development of that class, but this was still a helpful starting
point.

Using the unit tests for testing is indispensable. Any testing done that is not cov-
ered in the unit test is nearly useless. Non-automated testing done on the software
today tells you only that the bug is not there today; it says nothing about whether the
bug will be there when you ship your software. Putting the tests into unit tests ensures
that that bug is not there today and it won’t be there when the code ships. We have no
problem with coding to the test. If you write software units that are easy to test, they
will also be easy to use.

10 Keep the Bar Green

In general the software that was checked into source code was working so that the
other group was not slowed down. When checked in code was not working, we had
no problem interrupting the other team since this is considered the highest priority. As
we neared the end of October, the time of a key release, the pressure increased and
some of our practices were stretched a bit. Since there was still work to be done, some
of it was done from home. Being in an academic environment, working from home is
something that happens often. Some code was checked in from off site that was not
paired and erroneous. Two other developers had come into the lab that weekend to try
to get work done for the Monday release and spent half of the day trying to get around
the problem. When they reached the other developer on the phone, they were able to
work with him to solve the problem, but some time and frustration was spent that may
have been avoided; perhaps by pairing over the phone and making sure that all the
unit tests ran successfully.

11 Continuous Integration

Past projects in the lab sometimes had integration issues. Our approach then was to do
waterfall style projects with large up-front designs that led often to problems due to
integration issues. It’s easy in an academic setting for the programmers to go off and
write a large amount of code that may not work well with the rest of the software. In
this environment the developers are not in the lab full time, and long hours of work
from home is the accepted work style, which makes this problem even more likely.

180 Mary Beth Smrtic and Georges Grinstein

Our group made some mistakes, but pair programming forced a very high level of
communication on us. There were moments when the code failed, but with constant
integration, we quickly knew when there were miscommunications between different
parts of the software and we were generally able to fix them immediately.

12 Refactoring

“If it stinks, change it” (Kent Beck’s Grandma on child rearing). The developers that
we talked to at Hewlett Packard hold weekly refactoring lunches. If there is a part of
the code that doesn’t feel right to someone or they just have a sense that it is not clear
or isn’t right or is difficult to change, they say it “stinks” and they change it. One
person picks a section of smelly code and over lunch, they refactor. To me this was a
huge departure from the days of big unmanageable legacy code. Remember Y2K?
There were legacy systems that people were afraid to change. The systems were so
unmanageable that no one was sure whether a date change would crash them. We can
now embrace change. We have the tools and the desire to keep the code maintainable.
We can study the code and “smell” it and maintain our understanding of it. We even
have the confidence to make changes just so that the code can improve. A favorite
quote from the developers at HP was “We never spend a whole day fixing a bug. We
almost always know how to fix it as soon as we hear about it. If not, it almost always
takes less than an hour.” By holding refactoring lunches, they invest in the maintain-
ability of their code as well as the shared group understanding of it. How is that dif-
ferent from code reviews? No one is in the position of defending what they did and
why. It is more of a team effort, working together with the common goal of making
improvements where possible.

13 Our First Release to the Class

On November 3, we presented our first release to the students in the class. It had all
four of the minimum first release features, and one of our desired features (an applica-
tion using the framework so that the students did not have to write their own applica-
tion.) In class on November 24, we presented linking of visualizations. At this point,
we had all four required first release features and two of the nine desired features. At
each point of our development, we discussed what could be done on time and what
could wait; this was the most that we could complete given the limited amount of
time. There is still much that could be added to the software, but its scope, quality and
time were such that the students in the class were able to use it for their projects.

14 Conclusions

In our design discussions at the beginning of the project, much time was spent dis-
cussing features such as undo/redo and session management. Had we used traditional
waterfall development, we would have tried to think of everything during the design
phase and the undo/redo and session management would have been an integral part of
the design. Perhaps during the scheduling phase we would have seen that including it
would have led to a later release, too late to use in this semester’s class. But, we
wouldn’t have been able to do the scheduling until we had done some design, so we

A Case Study in the Use of Extreme Programming in an Academic Environment 181

would have at least invested that much more time in it, including the increased
amount of design complexity. Would the session management feature have ended up
on the cutting room floor, or would we have guessed wrong that we could get it in this
semester? If we had been off in our estimation, it would have resulted in a failure to
release this semester. Since we used XP, we did just-in-time design [2]; we got in our
highest priority features first and were able to have a limited scope, first release more
quickly. “We are not content to imagine that everything that you can think of will be
done by a given date. Neither should you be. Instead, the XP process lets the team
predict, more and more accurately, how much work can be done in any given time
period. Using this information, you manage project scope – choosing what to do now
and what to defer until later – to ensure successful delivery.” [4]

An aspect of waterfall method that we find riskier is that you may have a false
sense of the current state of the project with respect to the schedule, since the integra-
tion and debugging phases are the most difficult to predict. In XP, we have frequent
releases, so our integration and debugging issues are resolved early and often.

It is very tempting to check in code that has not been paired. It happened in this
project. One developer commented that she didn’t think that XP led to a faster release.
It may feel slower, but one study [3] showed that pair programming was 14% slower
than individual programming, but resulted in higher quality and fewer bugs. This
study is interesting, because you would expect pair programming to be 100% slower
since there are 100% more programmers per task. The knowledge sharing does speed
things up and code development is faster as one becomes more knowledgeable. This
study was a short term study, so perhaps on a large scale project where bug fixing and
integration take much more time (more than 2/3s of the total time?) the net result may
be that pair programming results in fewer bugs and fewer integration issues and thus
less time. Pair programming may result in more time in the development phase but
much less time in solving the less predictable integration and debugging phases.

The aspect of Extreme Programming that was most valuable to us was that pair
programming was a great way to learn. We were able to generate code quickly while
learning and sharing knowledge. As we learn more, we can work faster. Our tools and
our unit tests give us confidence in the code, which is applicable in any environment.
We had a sense of teamwork and were able to distribute work as needed which is
important in our distracting environment. The development was able to continue even
in the occasional absence of some of the developers and will be able to continue after
graduation. The lesson to work some of the time independently researching the tasks
and some in pairs writing the software, made a big difference in the effectiveness of
pairing. Just-in-time design gave us a simple, easily understood design to begin with
and made the difference in our ability to reach our initial release date goal. Our final
release was not perfect, but we were able to prioritize time, cost, quality and scope to
meet the goals of our project as we progressed.

Pair programming is not new in academia. Most faculty participating in large re-
search projects did program in groups (second author: and it was fun). The growth of
software engineering practices and the complexity of the software life cycle (begin-
ning with the OS 360) have led to more tools, planning, design, management, and
individual programming and especially individual accountability. Extreme program-
ming is offering a more formal way to get back to those early and successful days of
prototyping and developing software.

182 Mary Beth Smrtic and Georges Grinstein

Acknowledgements

Many thanks to Kevin Yu and Asim Jalis at Hewlett Packard for their generous sharing of their
Extreme Programming expertise. Thanks to Alex Gee, Howie Goodell, Hongli Li, Min Yu,
Urska Cvek and the rest of the software development team.

Biographies of Authors

Mary Beth Smrtic is a graduate student studying Biomedical Engineering and Bio-
technology with a Bioinformatics specialty. She is a research assistant in the Institute
for Visualization and Perception Research lab in the Computer Science department at
the University of Massachusetts in Lowell, Massachusetts. Her research interests
include emergent properties of complex systems, scale-free networks and interactive
visual data mining, particularly of biochemical pathways and gene expression data.
She has a bachelor’s degree in Computer Science from the State University of New
York in Potsdam, New York. She has 15 years of experience as a professional soft-
ware engineer. Her experience includes software development at a small pharmaceu-
tical company, a very large software development company, a semiconductor manu-
facturing company and several software development startups.

Georges Grinstein is Professor of Computer Science at the University of Massachu-
setts Lowell, Director of its Institute for Visualization and Perception Research, and
of its Center for Biomolecular and Medical Informatics. His research interests are
broad and include computer graphics, visualization, data mining, virtual environ-
ments, and user interfaces with the emphasis on the modeling, visualization, and
analysis of complex information systems, most often biomedical in nature. He re-
ceived his Ph.D. in Mathematics from the University of Rochester in 1978.

He has over 30 years in academia with extensive private consulting, over 100 research
grants, products in use nationally and internationally, several patents, numerous pub-
lications in journals and conferences, and has been the organizer or chair of national
and international conferences and workshops in Computer Graphics, in Visualization,
and in Data Mining (co-chair IEEE Visualization Conferences, program committee
AAAI conferences in Knowledge Discovery and Databases, co-chair IEEE Work-
shops on the Integration of Databases and Visualization, co-chair IEEE and AAAI
Workshops on the Integration of Data Mining and Visualization, co-chair ACM
workshop on the Psychological and Cognitive Issues in the Visualization of Data, and
co-chair SPIE Visual Data and Exploration and Analysis Conferences.)

He is on the editorial boards of several journals in Computer Graphics and Data Min-
ing, has been a member of ANSI and ISO, a NATO Expert, and a technology consult-
ant for various government agencies.

References

1.
2.
3.

4.

Tufte, E.: The Visual Display of Quantitative Information, Graphics Press (1992)
Beck, K.: Extreme Programming Explained. Addison-Wesley (2000)
Williams, L., Upchurch R.: In support of student pair-programming. In Proceedings of the
thirty-second SIGCSE technical symposium on Computer Science Education. (2001)
Jefferies, R., Extreme Programming Installed, Addison-Wesley (2000)

Workshops: Research Close to the Action

Dave Astels1 and Grigori Melnik2

1 ThoughtWorks, Inc., Chicago, Illinois, USA
david@thoughtworks.com

2 University of Calgary, Calgary, Alberta, Canada
melnik@cpsc.ucalgary.ca

Every year agile methods get closer to the mainstream. One of the signs of this grow-
ing maturity is the popularity of agile conferences and workshops. In particular,
workshops are considered by many as important forums to engage both researchers
and practitioners in interactive, face-to-face discussions that advance the state of agile
software development methods and practices and to coordinate future research direc-
tions. This linkage between the worlds of practice and research is not new – XP/Agile
Universe has always had workshops in its program. This year, with the greatest num-
ber of workshops at XP/Agile Universe and European XP conferences ever (8), it
seems that we have reached out to the widest range of communities yet: managers and
coaches, empiricists and economists, embedded software developers and UI design-
ers, testers and technical writers.

The Program Committee received fifteen (15) workshop proposals, each of which
was thoroughly reviewed by at least three members and further discussed at the gen-
eral acceptance meeting. Eight (8) workshops were selected based on their topic sig-
nificance, merit, potential to attract attendees, and organizers’ experience. All selected
workshops were facilitated by industry and research experts and drew considerable
interest and participation from conference attendees. In addition to the workshops that
have become traditional (The Data Workshop, How to Maintain and Promote Healthy
Agile Culture, and Agile Development for Embedded Software Series), several new
initiatives were launched. In particular, organizational considerations for using agile
methods and their benefits from a managerial perspective were debated in the Getting
Leaders on Board workshop. The community embraced the workshops on Who

Should Write Acceptance Tests and Agile Tests as Documentation which explored the
balance between the customer, the developer, and the tester in authoring acceptance
tests and leveraging tests as useful documentation. Fresh perspectives on user inter-
face design and agile methods were given at the UI Design as Part of an Agile Proc-
ess workshop. The Refactoring Our Writings initiative brought together authors to
decide on how various pieces of literature on important subjects can be consolidated
and improved.

Overall, XP/Agile Universe workshops examined a multitude of comprehensive is-
sues and contributed to the emerging maturity of agile methods. On behalf the Pro-
gram Committee, we would like to thank workshop facilitators (Carsten Behring,
Khaled El Emam, David Hussman, James Grenning, Joshua Kerievsky, Jonathan
Kohl, Mike Kuniavsky, Brian Marick, Grigori Melnik, Rick Mugridge, Johan Peeters,
William Pietri, Pollyanna Pixton, Mary Poppendieck, and Christian Sepulveda) and
all participants for their outstanding effort, energy and spirit.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 183, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Who Should Write Acceptance Tests?

Christian Sepulveda1, Brian Marick2, Rick Mugridge3, and David Hussman4

1 Covexus, San Francisco, CA USA
cs@covexus.com

2 Testing Foundations, USA
marick@testing.com

3 University of Auckland, Auckland, New Zealand
r.mugridge@auckland.ac.nz

4 SGF Software Co., 3010 Hennepin Ave South,Minneapolis, Minnesota 55408-2614, USA
david.hussman@sgfco.com

1 Workshop Overview

Within Extreme Programming, the customer provides acceptance tests and the devel-
opers implement the system such that it satisfies the acceptance tests. There are
frameworks such as FIT that are intended to empower the customer to write and exe-
cute acceptance tests. How effective is this in practice? When and why?

Though few would dispute the customer must be involved in creating acceptance
tests, should this solely be the customer’s responsibility? Perhaps there are examples
that the customer omitted, which once discovered by a developer, are invaluable.
Therefore, shouldn’t developers be encouraged to also write acceptance tests? If so,
why not include testers on XP projects; they are skilled in designing tests.

We aren’t trying to change XP. But testers are being integrated into many XP pro-
jects and since acceptance tests are a significant driving force in XP, the manner in
which testers contribute to acceptance tests should be considered.

For the inexperienced XP customer, it can be hard to define acceptance tests. It
would help many actual projects to explore guidelines to support the customer in this
important activity.

2 Workshop Goals

This workshop explored the balance between the customer, the developer and the
tester in authoring acceptance tests.

Specifically we discussed:

Project examples where only the customer wrote the acceptance tests, stories where
developers contributed and experiences where testers were involved
Examples and ideas for the collaboration process among the customer, developer
and tester in envisioning, defining and implementing acceptance tests
Examples and suggestions of educating the customer regarding acceptance testing
Limitations and risks of each role in the authoring of acceptance tests
Guidelines and contextual factors that influence the balance among the roles for
acceptance testing

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 184–185, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Who Should Write Acceptance Tests? 185

3 Workshop Organizers

Christian Sepulveda was co-founder of the GaiaCom Corporation, a New York
based consulting and outsourcing software development firm. He’s been an independ-
ent consultant for the last four years, focusing on mentoring and leading software
teams. He’s worked in a diverse set of industries, from finance to fashion, on both
commercial shrink-wrapped software and internal IT applications. He is a Certified
Scrum Master and Extreme Programming coach that has led over thirty successful
projects.

Brian Marick has been a programmer, team lead, and tester since 1981 and an inde-
pendent consultant since 1992. He was one of the authors of the Manifesto for Agile
Software Development, is the current vice-chair of the board of the Agile Alliance,
and is an editor for Better Software magazine. His evolving approach to agile testing
emphasizes using tests as examples that provoke programmers into writing the right
code, a close cooperation between the overlapping roles of Tester and Programmer,
and exploiting the similarities between exploratory testing and agile design.

David Hussman is co-owner of SGF Software, a U.S. based company that promotes
and practices agile development. Motivated to see IT folks succeed and smile, He has
evangelized agile practices as a developer, coach, customer, and manager for 4 years.
He has participated and presented at agile conferences as well as contributing to the
Cutter Consortium Agile Project Advisory Service and similar publications.

Rick Mugridge is in the Department of Computer Science at the University of Auck-
land, New Zealand. He teaches XP and TDD practices and runs XP projects. He is a
regular consultant to the local software industry and is currently completing a book on
FIT with Ward Cunningham.

Getting Leaders On-Board

Pollyanna Pixton1 and Mary Poppendieck2

1 Evolutionary Systems, 1115 South 900 East, Salt Lake City, Utah 84105, USA
ppixton@evolutionarysystems.com
http: //evolutionarysystems.net

2 Poppendieck.LLC, 7666 Carnelian Lane, Eden Prairie, MN 55346, USA
mary@poppendieck.com

http://www.poppendieck.com

Abstract. How can we convince managers, leaders and decision makers to use
agile? This question has been asked again and again, by developers, team leads,
and project managers. Together, in this interactive workshop, we discussed or-
ganizational considerations for using agile methods as well as evaluated the
benefits they bring from a management perspective.

1 Summary

The first question on the table was: “How can we convince managers, leaders and
decision makers to use agile?” This question has been asked again and again, by de-
velopers, team leads, and project managers. The group discussed organizational con-
siderations for using agile methods and evaluated the benefits they bring from a man-
agement perspective.

The second question was: “Once the decision is made, what do managers, leaders
and decision makers need as they begin to use agile in their organizations?”

This half-day interactive workshop first addressed how to decide if agile will pro-
vide sufficient business value and then discussed each phase of bringing agile on
board and what leaders can do to assist the transition and support the agile users.
Communication techniques between users and leaders, what process indicators to look
for and which ones to discard, and how to understand what role leadership plays in
providing agile users what they need for success are some of the topics that were
covered.

2 Inside the Workshop

At the beginning of this half-day workshop, each participant was asked to make a
statement about their ideas on the subject and lead a discussion around the point of
view they presented. Next came a brainstorming session on how agile methods differ
from traditional development methods. After this, the group discussed how corporate
leaders assess and evaluate methods within their companies, the assessment criteria
they use, and ways to frame how these criteria can be met in agile terms.

The group identified what the developers need from leaders when using agile for
various agile methods, and how to frame the needs from leaders so they can hear
them, depending on how corporate leaders assess and evaluate success within their
companies.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 186–187, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Getting Leaders On-Board 187

The group identified where leadership may become uncomfortable in the process
of adapting agile and how to assist them in supporting the development team. Finally,
the group discussed how teams might begin to use agile without direct permission
from leaders and managers.

3 Results

Results of the workshop are posted at:
http://www.evolutionarysystems.net/xp2004.html.

4 Workshop Organizers

Pollyanna Pixton has been consulting with businesses in the implementation and
deployment of strategies and concepts that improve their organization since she
founded Evolutionary Systems in 1996. She views a business as a system, sees the
‘big picture’ and analyzes how, why and where the company can be strengthened to
improve productivity, increase efficiency, expand profitability and reach key corpo-
rate goals.

She brings 30 years of global executive and managerial experience for business
and information technology ventures. She built the Swiss Electronic Stock Exchange,
developed control systems for electrical power plants throughout the world, and con-
verted technologies for merging financial institutions. Her background includes e-
commerce, real-time applications, positioning systems, and computational research.

Ms Pixton’s education includes a Master’s degree in Computer Science, three years
of graduate studies in Theoretical Physics and a Bachelor’s degree in Mathematics.
She serves on the 2004 Agile Development Conference Organizing Committee and as
a guest lecturer at the university level, she discusses ethics in business, organizational
development and leadership.

Mary Poppendieck is a Senior Consultant with Cutter Consortium’s Agile Software
Development and Project Management Practice. She has been in the information
technology industry for 25 years. She has managed solutions for companies in several
disciplines, including supply chain management, manufacturing systems, and digital
media. As a seasoned leader in both operations and new product development, she
provides a business perspective to software development problems. Lean develop-
ment is just one of Poppendieck’s areas of expertise. She first encountered the Toyota
Production System, which later became known as Lean Production, as Information
Systems Manager in a video tape manufacturing plant.

She implemented one of the first just-in-time systems in 3M, resulting in dramatic
improvements in the plant’s performance. Poppendieck’s team leadership skills are
legendary at 3M, where new product development is a core competency. One team
commercialized a graphics interface controller three times faster than normal. Another
team not only developed an image database system in partnership with a start-up
company, but also set a new international standard for image formats. Poppendieck, a
popular writer and speaker, is the author of Lean Software Development: An Agile
Toolkit and Managing Director of AgileAlliance.

Third International Workshop
on Empirical Evaluation of Agile Methods

(“The Data Workshop”)

Grigori Melnik1 and Khaled El Emam2

1 Department of Computer Science, University of Calgary
2500 University Dr. N.W., Calgary, Alberta, T2N 1N4, Canada

melnik@cpsc.ucalgary.ca
2 National Research Council, Institute for Information Technology

M-50, Montreal Rd, Ottawa, Ontario, K1A 0R6, Canada
khaled.el - emam@nrc - cnrc.gc.ca

Abstract. The workshop brought together academics and industry practitioners
to share the results of ongoing empirical research in agile software methods and
to discuss the needs and prospects of future studies. It encouraged further coop-
eration with a view to promoting better-informed decision making.

1 Workshop Overview

This workshop builds on the success of the two previous workshops on empirical
evaluation of agile methods at XP/Agile Universe conferences in 2002 and 2003. As
compared to the last two years, agile methods are increasingly closer to the main-
stream. However, the chasm between early successes of agile visionaries and the
mainstream acceptance still exists. What is needed to cross this chasm? More organi-
zations require support and better understanding of how agile methods affect the peo-
ple, the flow and the value they deliver. This understanding must be based not only on
anecdotes, hearsay or war stories but objective studies and detailed analyses.

Continuing with the last year’s theme of the business value delivered by agile
teams, the goals of this year workshop were:

1.
2.
3.

4.

to explore, through measurement, the indicators of business value;
to assess the achievement of quality goals of agile software development projects;
to determine the sweet spots – the situations when applying agile methods would
be beneficial;
to provide input for software engineering decision support about specific aspects
of agile methods and underlying practices.

Researchers and practitioners came together to discuss the current state of ongoing
empirical research in agile methods: common problems, challenges, possible solutions
and the options for synthesizing and disseminating the empirical results.

2 Issues

The following thematic questions were addressed:

What key areas/aspects of agile methods should be studied empirically?
How to measure business value delivered per unit time?

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 188–189, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Third International Workshop on Empirical Evaluation of Agile Methods 189

What existing software measures and processes satisfy our data requirements?
What kinds of experiments are necessary?
How to obtain realistic results (students vs. developers as subjects)?
How one remains agile while collecting data?
Who will use the measurement results? For what purpose?

The participants discussed an initiative to create an empirical experience base of
agile projects which will include both successes and failures. They provided some
initial ideas on which project attributes may be useful to collect.

3 Results

Additional information, post-workshop discussions, and information about the past
and future workshops are available online at: http://sern.ucalgary.ca/EEAP.

4 Workshop Organizers

Grigori Melnik is an Instructor at the University of Calgary and a Lead Instructor at
the Southern Alberta Institute of Technology (SAIT) responsible for curriculum de-
velopment and delivery of several key senior software engineering disciplines. Grig-
ori is a Ph.D. candidate with the Department of Computer Science of University of
Calgary. His primary research area is empirical evaluation of capability of agile
methods. Other areas include e-business software development, distributed software
engineering, design patterns and e-learning. Grigori has also been involved in devel-
oping Web-based enterprise systems. More recently he’s served as a founding co-
moderator of Calgary Agile Methods User Group (CAMUG) and a coordinator of The
Canadian Agile Network (CAN) – Le Réseau Agile Canadien (RAC).

Khaled El Emam is a Senior Research Officer at the National Research Council
where he is the technical lead of the Software Quality Laboratory. In another capacity,
he is a Senior Consultant with Cutter Consortium’s Agile Software Development &
Project Management Practice and Risk Management Intelligence Network. Dr. El
Emam has been involved with software quality for more than a decade, performing
advanced research and consulting, and holds a number of positions in research and
industry. He is a visiting professor at the Center for Global eHealth Innovation at the
University of Toronto (University Health Network).

How to Maintain and Promote Healthy Agile Culture

David Hussman

SGF Software Co., 3010 Hennepin Ave South
Minneapolis, Minnesota 55408-2614
david.hussman@sgfco.com

Abstract. Though agile development often works well initially, maintaining and
nurturing a healthy culture is key to the success of any agile project. As a pro-
ject’s culture is affected by many forces, this challenge is often quite difficult.
Varying skills sets, egos, schedules, and external project dependencies are just a
few issues that must be addressed by those trying to promote or maintain the
cultural health of an agile project. The intent of this workshop was to use shared
experiences to create a list of tools and tactics useful in managing culture on ag-
ile projects.

1 Intended Audience

The ideal candidate had lead or helped lead one or more agile projects. Candidates
needed experience to write a short position paper which described their experience
helping to keep an agile project healthy. Candidates were expected to be interested in
sharing and learning about finding cultural smells that affected project cultures and
solutions / tools that helped address the issues. Workshop attendees were asked to call
out that which worked as well as that which did not work on agile projects.

1.1 Benefits for Attendance

Workshop participants had the chance to share and discuss successes and struggles as
well as issues which may not have been covered by the current body of agile writings.
Through discussion in large and small group discussions, the participants were to find
a set of common approaches to nurturing agile culture that had been successful for
more than on project, company or culture.

2 Workshop Overview

Workshop participants created a collection of cultural smells they had encountered and
captured this information on posters in a story like format. Small and large group
discussion of how these issues affected a project’s culture as well as solutions that
addressed the issues consumed a large portion of the workshop. In an effort to learn
from past mistakes, the group discussed solutions that failed, and why. To further the
importance of culture, as it relates to the communal nature of agile practices, the
workshop tried to create some tangible output that could be used in the trenches by
agile project leaders and project members.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 190–191, 2004.

© Springer-Verlag Berlin Heidelberg 2004

How to Maintain and Promote Healthy Agile Culture 191

2.1 Goals

1.
2.

3.

4.

Create a collection of cultural smells associated with agile projects and teams.
Drive out which issues have the least amount of coverage in the agile writings (as
known to the participants).
Create simple discussion vehicles that represent the participant’s experiences,
which can be shared with the agile community.
Further the importance of culture and the way in which it relates to the success of
agile projects (and the growth and adoption of agile practices).

2.2 Workshop Format

Pre Workshop. All participants read each others position papers and created a list of
potential cultural smells.

First Half. Workshop participants discussed cultural smells and created a prioritized
list of story titles for small group discussion. Each participant signed up for a story and
took this story out into small group discussions where more detail was added to each
story.

Second Half. More story detail was added as story owners took their story into a dif-
ferent small group discussion. Entire workshop regrouped and story owners presented
their story to the group, adding or modifying the story content as per the large group
discussion.

Post Workshop. The stories created during the workshop were posted somewhere at
the conference. The workshop organizers created some publishable document which
was posted on the workshop website and possibly published.

3 Workshop Organizers

David Hussman. A software geek for 10 years, David has developed in the following
fields: medical, digital audio, digital biometrics, retail, and educational. Somewhere
along the way, David moved toward an odd way of defining, communicating, and
developing software. When someone organized a better version and started calling it
XP / Agile, he felt right at home. Motivated to see IT folks succeed and smile, David
has evangelized XP by working as developer, coach, customer, and manager on XP
projects for 3.5 years. When David is not coaching, he is traveling with his family as
often as possible.

Rick Mugridge. Rick Mugridge is in the Department of Computer Science at the
University of Auckland, New Zeeland. He teaches XP and TDD practices and runs XP
projects. He is a regular consultant to the local software industry and is currently com-
pleting a book on FIT with Ward Cunningham. Contact information:
r.mugridge@auckland.ac.nz

UI Design as Part of an Agile Process

Mike Kuniavsky1 and William Pietri2

1 Adaptive Path, San Francisco, California, USA
mikek@adaptivepath.com

2 Scissor, San Francisco, California, USA
william@scissor.com

Abstract. The workshop brought UI designers and agile developers together to
discuss issues and share experiences in order to understand how agile develop-
ment and UI design, both iterative processes, can work together. As part of the
workshop the UI for a sample project was designed.

1 The Need

There has always been some tension between user interface designers and program-
mers. Whether it’s caused by cultural differences (pony tails vs. black turtlenecks) or
differences in procedure, comfortably working together has been difficult. It’s a gulf
that has created a lot of bad software and bad UIs.

This does not have to be. Good user interface design is not a linear process. As an
iterative process, it consists of repeated cycles of investigation into people’s abilities,
expectations and needs coupled with the creation of designs. This can work well as
part of an agile development process, but few teams have tried it, so it’s still relatively
unknown among both the designers and the coders.

2 Workshop Goals

To remedy this, this half-day workshop brought UI designers and agile developers
together to discuss issues and share experiences. To focus and stimulate the discus-
sion, most of the time was devoted to iteratively designing a user interface for a sam-
ple project, chorewheel.com. The goal was not only to produce something that would
work from a technical standpoint and have a good user experience, but – more impor-
tantly – to use it as an opportunity to rapidly develop the processes by which designers
and programmers can communicate and collaborate.

3 Workshop Organizers

Mike Kuniavsky is a founding partner of Adaptive Path, a San Francisco-based user
experience consulting company. He is the author of “Observing the User Experience:
A Practitioner’s Guide to User Research” (ISBN: 1558609237) and has been designing

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 192–193, 2004.

© Springer-Verlag Berlin Heidelberg 2004

UI Design as Part of an Agile Process 193

user interfaces for commercial software and Web products since 1991. His clients
include Wired Digital, National Public Radio, Crayola, CTB/McGraw-Hill, Scient,
PacBell, Overture Services, Sony and id Software.

William Pietri is a consultant, author, and software developer. He has both used and
consulted on agile development methods since 2000. His clients range from large
organizations, including Bank of America, eBay, and the State of Michigan, to small
internet startups, including Bianca.com, 4Charity.com, and Shopping.com.

Agile Development for Embedded Software

James Grenning1, Johan Peeters2, and Carsten Behring3

1 Object Mentor, Inc, 501 North Riverside, Suite 206, Gurnee, IL 60031, USA
grenning@objectmentor.com

2 Predikherenberg 35, 3010 Leuven, Belgium
yo@johanpeeters.com

3 Am Jungbrunnen 13, 444369 Dortmund, Germany
carsten@carstenbehring.com

Abstract. This workshop brought together developers, managers and customers
with experience in embedded software that had used traditional or agile ap-
proaches for specifying, testing and developing embedded software. The par-
ticipants have discussed challenges that must be addressed by agile methods so
they can be effectively applied in embedded software development teams.

1 Summary

Embedded software development suffers from many of the same problems of tradi-
tional non-embedded software. In addition embedded software has other difficulties
and complexities over traditional software development, such as limited resources,
critical timing constraints, late integration with target hardware and separate environ-
ments for development and target execution. This workshop brought together develop-
ers, managers and customers with experience in embedded software that have used
traditional or agile approaches for specifying, testing and developing embedded soft-
ware. Participants gained both insight into current best practices and an understanding
of how the craft can be improved.

2 Goals

Share experience and best practices used in the development of embedded software;
Identify embedded development issues and agile approaches to dealing with those
issues;
Share experience in practices that have low overhead and contribute to successful
product delivery.

3 Content Outline

Discussion topics included:

Planning techniques
Variable scope control
Simulation and test

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 194–195, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Agile Development for Embedded Software 195

Test driven development
Hardware independence
Testing for performance
Testing for load
On-target testing
Off-target testing
Concurrency patterns
Evolutionary design
Managing resource constraints
Safety critical systems requirements
Progress before hardware
Large teams
Small teams
Distributed teams
Building strategies
Minimizing the deployment effort
Continuous integration

4 Workshop Organizers

James Grenning is the Director of Consulting at Object Mentor, Inc. He has been
professionally developing software since 1978. His is experienced in embedded and
non-embedded software development, management, consulting, mentoring and train-
ing. He is currently practicing and coaching Agile software development techniques,
Extreme Programming, Object Oriented Design and Programming.

Johan Peeters is an independent software architect whose main current interest is
pervasive computing. He serves both large companies such as Philips and Banksys as
well as small startups. In the past few years he has worked on remote controls, pay-
ment terminals, vehicle telematics and home automation.

Carsten Behring is an independent software developer who relies on agile develop-
ment techniques. He has worked on several projects for major clients like Philips and
Atos Origin and also for startup companies. He has a solid background in Java server
technologies such as J2EE. He incorporates agile practices to facilitate his projects.

Refactoring Our Writings

Joshua Kerievsky

Industrial Logic, Inc., 2583 Cedar, Berkeley, CA, 94708-1931, USA
joshua@industriallogic.com

Abstract. Getting folks writing papers about useful information is good. How-
ever, a forest of ideas, with no organization, is bad. We would like authors and
groups of authors to come together to refactor older, related papers into new,
consolidated pieces of literature that communicate comprehensive ideas on an
important subject. In this workshop, we began identifying agile community’s
most important subjects and which papers could be merged and refactored to
produce excellent new pieces of literature for each subject.

1 Audience

Everyone involved with or interested in writing, teaching and learning.

2 Content

The standard “Call for Papers” that gets announced before each of the XP/Agile con-
ferences is good. It gets folks writing papers about useful information – techniques
that have worked well, experience using a process, etc. It is nice to see people from
around the world contributing such papers to the various XP/Agile conferences.

However, we are now seeing something that often occurs in communities like ours:
a continuous stream of conference papers, with no refactoring of the literature. This is
bad. It leads to a forest of ideas, with no organization and little practical value to a
broad community that has not yet joined the XP/Agile community. I would like to see
authors and groups of authors come together to refactor older, related papers into new,
consolidated pieces of literature that communicate comprehensive ideas on an impor-
tant subject.

We need to encourage ourselves to refactor what we’ve written in order to produce
excellent new pieces of literature.

3 Goals

Help produce consolidated pieces of literature on important subject
Stem the tide of duplication in our writings
Improve on the important ideas that may now be a bit dated

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 196–197, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Refactoring Our Writings 197

4 Workshop Organizer

Joshua Kerievsky is the founder of Industrial Logic, a company that specializes in
Extreme Programming. He began his career as a professional programmer at a Wall
Street bank, where he programmed numerous financial systems for credit, market, and
global risk departments. After a decade at the bank, he founded Industrial Logic in
1995 to help companies practice successful software development. Kerievsky has
programmed and coached on small, large, and distributed XP projects since XP’s
emergence. He recently pioneered Industrial XP, an application of XP tailored for
large organizations. Kerievsky is presently completing a book entitled Refactoring to
Patterns. He can be reached at joshua@industriallogic.com.

Agile Tests as Documentation

Jonathan Kohl1 and Brian Marick2

1 Kohl Consulting Services Calgary, Canada
jonathan@kohl.ca

2 Testing Foundations, USA
marick@testing.com

Abstract. Agile processes tend to minimize documentation. As the Agile Mani-
festo states, working software is preferred over comprehensive documentation.
In the course of developing working software, tests are natural byproducts.
What useful project documentation is already captured in these tests, and how
do we leverage it? The concept of tests as documentation has been under-
discussed in the community, and this workshop has attempted to facilitate that
discussion.

1 Workshop Summary

It is increasingly popular to consider tests as documentation. For example, if you want
to know how to use an API, you can look at its tests. If you’re curious about the de-
tails of what a product feature does, you can look at its tests. But how well do tests
work as documentation? Furthermore, what are the tricks of the trade? How do you
make tests better documentation? What are good examples to study? We proposed to
study actual tests (those developed by testers, customer tests and programmer tests).

The goals of this workshop were to identify the strengths and weaknesses of the
documentation in the tests and to facilitate discussion on what tests worked well as
project documentation and why. Through discussion, we attempted to answer some of
these questions: How are tests like requirements, and how are they different? How
can tests capture or transmit the tacit knowledge of project experts? How can tests aid
the project conversation? How are they used differently by people on the project and
by the people who come after?

From the answers to these questions, we suggested areas that need further study in
the community and encouraged research and paper publication in related topics.

2 Workshop Organizers

Jonathan Kohl develops and applies Agile techniques on live testing projects, focus-
ing on workable, effective techniques for tester and developer collaboration. His ex-
perience in test development spans business (acceptance), tester (manual and auto-
mated), and developer (automated unit) tests. He is a software quality professional at
WestJet Airlines, and has recently published an article in Better Software magazine
on Pair Testing with developers.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 198–199, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Agile Tests as Documentation 199

Brian Marick consults on Agile Testing. He was one of the authors of the Manifesto
for Agile Software Development and is vice-chair of the Agile Alliance board. His
experience moderating or co-moderating workshops includes a series of test patterns
workshops http://www.testing.com/test-patterns/index.html, a highly successful work-
shop on acceptance testing at XP/Agile Universe 2002 http://www.pettichord.com/
agile_workshop.html, OOPSLA workshops on software archeology http://www.visi-
bleworkings.com/archeology/ and constructing software to outlive its creators http://
visibleworkings.com/built-for-life/, and the recent University of Illinois Master of
Fine Arts in Software trial run http://wiki.cs.uiuc.edu/MFA.

Fit Fest

Robert C. Martin and Micah Martin

ObjectMentor
{unclebob,micah}@objectmentor.com

1 Workshop Summary

Fit Fest 2003 was a blast. Dozens of developers participated in the development and
testing of the unique SDPS project. Tests were specified, code was developed, some
tests passed, and some tests failed.

Some tests failed? Yeah, but that’s ok because we got to code and work with a
large variety of bright people who all share the same passion.

Fit Fest 2004 should prove even more fun. Be sure to stop by. Plug your laptop in,
grab a pair, and join the team.

The goals of the workshop are to have fun an learn from each other about, among
other things, Acceptance Testing. Fit Fest will be held most of the week.

2 Workshop Organizers

Robert C. Martin has been a software professional since 1970. He is CEO, president,
and founder of Object Mentor Inc., a firm of highly experienced software profession-
als that offers process improvement consulting, object-oriented software design con-
sulting, training, and development services to major corporations around the world.

Micah Martin is a software developer from Object Mentor who has been practicing
Extreme Programming since 1999. He has been involved in a variety of XP projects
and teaches a range of public courses from Object Oriented Design to Extreme Pro-
gramming. As lead developer of the FitNesse testing tool, it is his goal to help make
Acceptance Testing a more attainable goal for the industry.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 200, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Agile Project Management

Moderator:

Frank Maurer

University of Calgary
maurer@cpsc.ucalgary.ca

Panelists:

Mike Cohn1, Mike Griffiths2, Jim Highsmith3,
Ken Schwaber4, and Philippe Kruchten5

1 Fast401k
mike.cohn@computer.org

2 Quadrus
mikeg@quadrus. com

3 Cutter Consortium
jim@j imhighsmith.com

4 ADM
ken.schwaber@verizon.net

5 University of British Columbia
kruchten@ieee.org

Abstract. Introducing agile practices into software organizations impacts how
projects are planned, coordinated and tracked. In this panel, we discussed com-
monalities and differences between agile project management and more tradi-
tional ideas. Topics discussed included:

What works, what doesn’t in an agile context?
What kind of company culture is required for agile project management to
flourish?
How can we transition to an agile approach?
What obstacles will be encountered?
How can they be overcome?
When are more traditional approaches more appropriate?

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 201, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Agile Methods for Safety-Critical Software Development

Moderator:

Kelly Weyrauch

Medtronic, Inc.
kelly.weyrauch@medtronic.com

Panelists:

Mary Poppendieck1, Ron Morsicato2, Nancy Van Schooenderwoert2, and Bill Pyritz3

1 Poppendieck, LLC
mary@poppendieck.com

2XP-Embedded
{ronm,nancyv}@xp-embedded.com

3 Lucent Technologies
pyritz@lucent.com

Abstract. What might have been a question of whether agile methods can be
used in the safety-critical world is now becoming a question of how agile meth-
ods can be used in the safety-critical world. This panel covered some of the
myths, worries, solutions, and experiences of agile development of safety-
critical software. Among others, this panel addressed the following questions:

What benefits of agile methods apply to the safety-critical world?
What barriers must be overcome?
What changes or additions to agile methods are needed to make agile work?
Are there concerns from regulatory agencies?

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 202, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Is XP Still Relevant?

Moderator:

Pete McBreen

Software Craftsmanship, Inc.
pete@mcbreen.ab.ca

Panelists:

Dave Astels1, Janet Gregory2, Daniel H. Steinberg3, Lisa Crispin4,
Jim Highsmith5, and Robert C. Martin6

1 Adaption Software
david@adaptionsoft.com

2 Wireless-Matrix
janet_gregory@shaw.ca

3 Editor-in-Chief, Java.Net
daniel@oreilly.com

4Fast401k, Inc.
lisa.crispin@att.net

5 Jim Highsmith
jim@jimhighsmith.com

6 ObjectMentor
unclebob@objectmentor.com

Abstract. First publicized in 1998 as the new methodology that developers ac-
tually liked using, the time has come to look deeper into the XP phenomenon.
At the height of the dot-com craze, the hype surrounding XP was amazing, and
to judge by the publicity, everyone wanted to use XP. Now in the post dotcom
era, the time has now come to ask whether XP is still relevant.
Initially it seemed that XP was widely applicable, but that was before XP had
any real competition. As soon as the Agile Alliance publicized the existence of
alternate agile methods, many teams that were initially attracted to XP found
more appropriate alternatives.
The overall effect of all of this has been that XP has ceased to be the centre of
attention and as a result the number of projects adopting XP is arguably declin-
ing. So although many projects now adopt an agile approach, few new projects
are choosing to adopt XP unless there is a strong, local development commu-
nity that supports XP.
This panel addressed written questions from the floor. To start the discussion,
appropriate questions were planted in the audience and additional questions
were taken from there. Discussion started with these two questions:

Now that Kent, Ron and Ward have had their moment of fame, is it time to
move on?
Do we need to develop XP 2.0?

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 203, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Introduction to Tutorials

Brian Button

Principal Consultant
Agile Solutions Group

St. Louis, MO

The tutorial program at Xp/Agile Universe is privileged to bring together experts and
students in software project management, development, and methodologies. About 20
different tutorials were offered where students were able to interact directly with ex-
perts in their chosen fields.

This year’s conference offered tutorials aimed at different skill and experience lev-
els. The offerings were evenly split between introductory presentations, such as over-
views of agile methods, and more expert tutorials focusing on technical, hands-on,
coding topics. Attendance at the introductory tutorials has consistently high each year
of this conference, and this year was no exception. This bodes well for agile accep-
tance, as these tutorials see new faces each year.

All activities and roles in a project lifecycle were represented well this year. We
had several tutorials teaching how to gather initial requirements and turn them into
viable, practical user stories, and turn these user stories into customer tests. For the
first year, we had everal tutorials focused exclusively on effectively managing agile
teams. DBAs and developers were offered many choices, including several opportuni-
ties to write code alongside their peers, and software testers had the opportunity to
learn how to use different open-source frameworks to improve their ability to lead the
development effort through their customer tests.

The tutorial program this year succeeded in bringing together acknowledged ex-
perts and willing students in an environment that allowed them to work together and
share information. Both student and expert learned, which is the point of any tutorial.

C. Zannier et al. (Eds.): XT/Agile Universe 2004, LNCS 3134, p. 204, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Agile Requirements: Tailoring the Functional
Requirements Specification Process to Improve Agility

Jennitta Andrea and Gerard Meszaros

{jennitta,Gerard}@clrstream.com

1 Tutorial Overview

Consulting led a mixed group of industrial folk and people from academia on a lively
half-day romp through the world of agile requirements techniques. The session was
light on slide presentation and heavy on active participatory learning. The day started
off with a group project where the participants got to experience first hand some of
the frustrations of typical requirements gathering techniques. During the debrief that
followed, the participants shared their feelings of frustration and how the experience
resembled their work place. The debrief was followed by a half-hour presentation on
six techniques that can be used to make the requirements process more agile. It con-
cluded with some brainstorming on how the process could be made agile and respon-
sive to change.

After a break for refreshments, the participants repeated the project applying many
of the agility techniques. This was followed by another debrief where the participants
bubbled with the exhilaration of being able to work in an environment that was both
more productive and more fun yet required fewer resources. Once again, they shared
their emotions and learnings with the rest of the group. Ideas about how to apply
some of the techniques to the workplace were then discussed and participants made
concrete action plans for what they would do to make their workplace more agile.
Everyone left re-energized about work and eager to change their workplace.

2 Tutorial Organizers

Jennitta Andrea has been a senior consultant with ClearStream Consulting since
1994 and has been a practitioner of XP and Scrum on over ten projects. Jennitta’s
professional experience spans a variety of roles: agile process coach, requirements
analyst, developer, customer quality advocate, instructor, and retrospective facilitator.
Jennitta has published and presented at a variety of venues, with an emphasis on proc-
ess adaptation and automated acceptance testing (see www.agilecanada.com/wiki/
Wiki.jsp?page=JennittaAndrea). Jennitta is an industrial trainer (2-day Automated
Testing course; 3-day Agile Requirements course/workshop), and delivers simulation-
based conference tutorials (Agile Re-quirements; Facilitating Effective Project Retro-
spectives).

Gerard Meszaros is Chief Scientist at ClearStream Consulting, where he leads teams
applying agile software development techniques (such as eXtreme Programming) to
help ClearStream’s clients achieve faster and higher quality application development.
He has presented successful tutorials at the past four OOPSLAs and has presented
papers on automated testing and developing object oriented software frameworks at
past XP and OOPSLA conferences.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 205, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Advanced Fit Lab

Rick Mugridge

University of Auckland, New Zealand
r.mugridge@auckland.ac.nz

1 Introduction

tables are for communicating what is needed from a system as well as for automat-
ically testing that the system performs as expected. Test tables need to clearly express
such intent. is very general purpose and open-ended, easy to extend with custom
fixtures for expressing different sorts of tests.

This advanced tutorial explored the use of in software development in some
depth. Attendees learned how to make better use of in their software development.
We covered advanced topics in including table design and the development of
custom fixtures and runners.

2 Content Outline

We covered the following topics:

Brief summary of the three families of fixtures (calculate, action and list; and the
initial fixtures) and how works.
Managing interactions between fixtures.
Managing suites of tests with Fitnesse.

New general-purpose fixtures in the three families (CalculateFixture;
StepFixture and DoFixture; SubsetFixture, ArrayFixture and
EntryFixture).
Testing user interfaces.

table design; orthogonality, redundancy, evolution.
tables and legacy systems.

The architecture of
Developing custom, general-purpose fixtures using Test Driven Development.
Developing custom runners for handling other test data formats.
Stress and other forms of testing.

for Programmer Tests and non-testing tasks.

There was some time for hand-on experimentation with as participants brought
laptops.

3 Tutorial Organizer

Rick Mugridge is a co-author of a book on Fit with Ward Cunningham, Fit for Software
Development, published by Addison-Wesley.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 206–207, 2004.

© Springer-Verlag Berlin Heidelberg 2004

Advanced Fit Lab 207

Rick has worked in the software industry for many years, including in embedded
systems. He has considerable experience with Fit, testing, test driven development and
general agile techniques. He has been consulting to industry and teaching software en-
gineering students in Fit, testing, XP and a range of other software areas. He presented
eight papers on testing, test driven development and user interfaces at various confer-
ences in 2003.

Effective User Stories

Mike Cohn

mike.cohn@computer.org

1 Tutorial Overview

The technique of capturing requirements as user stories is one of the most broadly
applicable techniques introduced by Extreme Programming. User Stories are an effec-
tive approach on all time-constrained projects. In this tutorial we looked at how to
identify and write user stories, how to be sure we’re focused on our most important
users’ needs, how to estimate stories, how to use stories for release and iteration plan-
ning, and the role of stories in the ongoing management of the project.

Tutorial participants, who included programmers, testers, managers and even cus-
tomers and analysts on agile projects::

learned why user stories represent a better approach to requirements than use cases,
IEEE 830, or scenarios;
learned valuable tips for writing great user stories;
practiced user role modeling and learned how it improves the use of user stories;
improved their estimation skills and learned new techniques for the early estima-
tion with stories; and,
learned how to build a sufficiently accurate release plan even with preliminary
story estimates.

2 Tutorial Organizer

Mike Cohn is the VP of Engineering for Fast401k, the leading provider of online
401 (k) plans. Mike has over 20 years of experience in various facets of software de-
velopment, particularly C++ and Java programming and project management. Mike is
the author of User Stories Applied for Agile Software Development as well as four
books on Java and C++ programming. Mike is a founding member of the Agile Alli-
ance, serves on its Board of Directors and runs the Articles program. Mike is the au-
thor of numerous articles that have appeared in IEEE Computer, Software Test and
Quality Engineering, Better Software, Agile Times, and C++ Users’ Journal. Mike is
a Certified ScrumMaster and a member of the IEEE Computer Society and the ACM.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 208, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Outsourcing and Offshoring with Agility

Clifton Kussmaul

ckussmaul@elegancetech.com

1 Tutorial Overview

This tutorial discussed techniques for and lessons learned from using and adapting
agile methodologies with distributed teams, specifically outsourced and offshore
development teams. With such teams, we are likely to encounter organizational
boundaries, language and cultural differences, and other communication challenges.
This tutorial was based on successful projects involving such teams.

First, we discussed participants’ backgrounds and key questions, and presented an
overview of recurring themes. Second, we described key ideas and issues in outsourc-
ing and offshoring, including different project types and methodologies. Third, we
presented a case study in which agile techniques were used. Fourth, we discussed a
set of lessons learned, and the tradeoffs that must be considered. We concluded with a
discussion of recurring themes and future trends.

Participants learned how to decide when to use agile techniques with distributed
teams, and how to manage such teams more effectively. We used presentations, dis-
cussion, and small group activities, and emphasized recurring themes and a series of
checklists.

2 Tutorial Organizer

Clif Kussmaul is the CTO of Elegance Technologies, Inc., which develops software
products and provides software product development services, including managing
offshore development teams. He has worked with distributed teams on a variety of
projects including program translation, ticket tracking, business operating systems,
and B2B data exchange. Clif is also an Assistant Professor of CS at Muhlenberg Col-
lege, where he delivers introductory courses through capstone projects to traditional
and non-traditional students. Previously, he spent two years working with CMM-5
development centers at NeST Technologies. Clif has a PhD in CS from the University
of California, Davis, and is the author or co-author of over thirty publications and
conference presentations. Please contact Clif at ckussmaul@elegancetech.com or
www.elegancetech.com

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 209, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Traditional and Agile Project Management:
A Practical Mapping

Mike Griffiths

mikeg@quadrus.com

1 Tutorial Overview

Agile methods often appear to clash with traditional views on project management.
During the tutorial, Mike guided the attendees through the practical steps of finding
common ground and bridging the common opposing views.

The tutorial started by illustrating how some advocates of agile methods dismiss
aspects of traditional project management as fatally flawed and not workable on to-
day’s modern software projects. Then the opposing view was explored, citing that
many members of the project management community believe agile techniques are
based more on speculation and an aversion to process, than established best practices.

The tutorial focused on the problem of this polarization of views and because the
adoption of each approach is increasing, how conflicts are set to rise. While there is
much publicity around the increased adoption of agile methods, this growth is being
exceeded by the uptake of formal project management approaches as outlined by the
Project Management Institute. Fueled by organizational pressures to tighten project
monitoring and individual goals for project management certification, the growth of
formal project management uptake exceeds 20% per annum. With the inevitability of
increased interaction between agile and traditional groups, simply dismissing the
opposing view as inappropriate becomes more an exercise in burying-your-head-in-
the-sand than resolving the real issues arising on today’s projects.

The tutorial showed how both traditional project management practices and agile
techniques are based on sound management theory. It focused on recognizing the
frequent areas of dispute and presented practical steps to link agile techniques to tradi-
tional project management.

2 Tutorial Organizer

Mike is a full time project manager and trainer for Quadrus Development Inc and
holds PRINCE2 and PMP project management certifications, along with ScrumMas-
ter and DSDM Practitioner agile certifications. Prior to joining to Quadrus, Mike
worked for IBM Global Services in the UK, and in 1994 was involved in the creation
of DSDM.

Since then, Mike has continued to be active in the agile community and co-
authored the DSDM White Paper on “Combining Agile Techniques with Formal
Project Management” and parts of DSDM 4.2 manual. He is an Agile Times Newslet-
ter editor and frequent contributor to agile and project management forums.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 210–211, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Traditional and Agile Project Management: A Practical Mapping 211

Having worked on DSDM, Scrum and XP projects for the last 10 years in various
coach and project manager positions Mike draws from a wealth of good, and more
valuably, bad project experiences to learn from. This tutorial will bring relief to both
coaches struggling to integrate agile with corporate PM standards and project manag-
ers looking for order in goal seeking approaches.

The Agile/XP Team Primer:

Exploring Self-organizing Teams

Diana Larsen

dlarsen@futureworksconsulting.com

1 Tutorial Overview

What does it mean when the gurus say Agile/XP development teams are self-
organizing? If a team is truly self-organizing, can we layoff all the managers? How do
the roles of team members and managers change when teams are Agile? What can
teams and leaders of teams expect when working with Agile/XP teams on the way to
self-organization?

In this session managers, team leaders, coaches and team members learned the in-
dicators of team development, how to track a team’s progress toward self-
organization, how to recognize the signs that their team might be stuck and how to
choose strategies to move the Agile/XP team from the impasse into higher productiv-
ity, satisfaction and success.

We all have worked on development teams where the behavior of other team
members was incomprehensible, the path to effective Agile/XP self-organized teams
seemed blocked or vague, or any one of a number of other problems made us feel as
though being a part of the team was not worthwhile. Sometimes, we concluded the
best answer might be to disband the team and start over.

During the tutorial, presenter and participants shared our stories of challenging
teams and challenging situations that face teams and learned strategies and tactics for
getting, and keeping, a team on track for continued development toward high per-
formance. We learned ways for managers, coaches and team leaders to intervene with
sensitivity and creativity in the team dynamics, so project teams can stay on the path
to success.

2 Tutorial Organizer

Diana Larsen is an IXP coach and consultant with Industrial Logic. For more than 10
years, Diana has worked with clients in the software industry to create and maintain
company culture and performance, helping to build workplaces that develop and dig-
nify people while achieving business results. As a specialist in the “I” of Industrial XP
(www.industrialxp.org), Diana serves as a coach, consultant and facilitator to senior
and middle managers, development teams and others. She facilitates processes that
support and sustain change initiatives, attain effective team performance and retain
organizational learning. Diana is a certified Scrum Master, a frequent speaker at XP
conferences and authors articles on XP management and organizational change.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 212, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Coaching Agile Software Teams

William C. Wake and Ron Jeffries

{William.Wake,RonJeffries}@acm.org

1 Tutorial Overview

It’s difficult to start a new process, but a coach can make this easier. But coaching isn’t
important only for those with the title “coach”; it’s something the whole team can do
at various times.

We discussed several aspects of coaching. Coaching can inspire, helping others
down a path the coach has already visited. Coaching can act as a mirror, showing a
team where it’s done well and places where it hasn’t lived up to its potential. Coaching
can make it safe for people to practice important skills such as test-driven develop-
ment, refactoring, or asking for help.

One key skill is observing. A coach can watch how people work together, and can
model and encourage effective teamwork. We practiced through an exercise where
people observed pairs folding origami.

The structure of a room affects the way people work together. We analyzed a num-
ber of rooms, assessing how well the layout supports key team interactions.

Feedback is also important. Big Visible Charts are one way to provide rich data for
a team to think about. We described a number of charts, and worked through an ex-
ample of their use.

Regular retrospectives also provide feedback. We described a basic “Worked Well/
Do Differently” format and several others.

The class closed with some Q&A time, where we could explore coaching issues of
interest to the group.

2 Tutorial Organizers

William C. Wake is an independent software coach, consultant, and teacher. He’s the
author of the Refactoring Workbook and Extreme Programming Explored, and the
inventor of the XP Programmer’s Cube. He can be reached at William.Wake@acm.
org or www.xp123.com

Ron Jeffries has been developing software since 1961, when he accidentally got a
summer job at Strategic Air Command HQ, and they accidentally gave him a
FORTRAN manual. He and his teams have built operating systems, language compil-
ers, relational and set-theoretic database systems, manufacturing control, and applica-
tions software, producing about a half-billion dollars in revenue, and he wonders why
he didn’t get any of it. For the past few years he has been learning, applying, and
teaching the Extreme Programming discipline. Ron is the author of Adventures in C#,
and the senior author of Extreme Programming Installed. Ron is an independent con-
sultant and proprietor of the www.XProgramming.com web site.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 213, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Getting the Software You Need: A Practical Approach
for Testers and the Customer Team

Lisa Crispin

lisa.crispin@att.net

1 Tutorial Overview

The tutorial brought together testers, business analysts, project managers, business
managers and even a few programmers to discuss and practice skills that help an agile
team deliver what its customers – the business experts, and/or the actual customers of
the business – require.

Participants explored the different roles taken on by members of an agile team, and
how each adds value. They discussed potential solutions to missing an important role
or skill on the team. For example, what if you don’t have a usability expert but appli-
cation usability is key? Through group exercises, based on creating a hypothetical toy
buying guide application, teams formed in the tutorial explored ways to better com-
municate and define requirements. They looked at ways of flushing out hidden as-
sumptions, demonstrating priorities, and figuring out the actual progress made by the
development team.

Acceptance testing was a major subject of the tutorial. The exercises helped to de-
termine when more detail is needed in tests. One tough concept for participants was
how to define the minimum success criteria. Exercises helped develop estimation and
planning skills for agile projects. The tutorial looked at ways the customer team can
improve its technical understanding. One of the most valuable exercises was how the
development team can leverage the business domain knowledge of the “customer”
team members.

The tutorial ended with a reflective retrospective, looking at how this practice
helps the entire agile development team improve its effectiveness each iteration. The
tutorial emphasis was on practical skills. Participants felt they had new tools they
could take back to their jobs to apply.

2 Tutorial Organizer

Lisa Crispin is the co-author, with Tip House, of Testing Extreme Programming
(Addison-Wesley, 2002). She has worked as a tester on agile (and not-so-agile) teams
since 2000, using Extreme Programming and Scrum practices. She has more than 10
years experience in the testing and quality assurance area. She has presented tutorials
and workshops on agile testing at Agile Development Conference 2003, all three
XP/Agile Universe conferences, STAR West, Software Test Automation Conference,
Quality Week in both the U.S. and Europe, XP Days in Zurich, and for local quality
assurance user groups since 2000. Her articles on agile testing have appeared in pub-
lications such as STQE Magazine, Methods and Tools and Novatica. Her papers
“Testing in the Fast Lane: Acceptance Test Automation in an Extreme Programming
Environment” and “Is Quality Negotiable?” are included in Extreme Programming
Perspectives (Addison-Wesley, 2002).

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 214, 2004.
© Springer-Verlag Berlin Heidelberg 2004

First Encounter with Agile Methods

Frank Maurer and Grigori Melnik

Department of Computer Science, University of Calgary
2500 University Dr. N.W., Calgary, Alberta, T2N 1N4, Canada

{maurer,melnik}@cpsc.ucalgary.ca

Abstract. A fleet of emerging agile methods of software development (with
eXtreme Programming and Scrum being the most broadly used) are both gain-
ing popularity and generating lots of controversy. Real-world examples argue
for and against agile methods. This tutorial provided an overview of agile
methods, their common practices and differences, and also the reasons why they
may work with some empirical evidence being presented. In order to better un-
derstand some of the practices participants were engaged into a number of in-
teractive exercises.

1 Tutorial Overview

This high level overview tutorial provided the necessary background to understand
how agile teams were trying to solve the issues in modern software development with
the focus on presenting facts (with perceptions, bias, and market-speak laid aside). A
concise history of agile methods was presented. A detailed comparison of agile meth-
ods vs. Tayloristic methods was given. This was followed by a brief examination of
the main practices of individual methods (including eXtreme Programming, Scrum,
Agile Modeling, DSDM, Crystal, FDD, Lean Programming). The facilitators’ vision
on where agile methods belong on the innovation adoption curve was presented. In
order to highlight agile methods strengths and limitations, some existing empirical
evidence was presented and analyzed. The participants were engaged in a discussion
of the question of what was needed for agile methods to cross the chasm of the inno-
vation adoption curve and move into the mainstream of software development.

Among other topics, the tutorial addressed the issues of knowledge sharing (in ag-
ile and Tayloristic teams), project management, and social aspects and implications of
agile methods. The facilitators focused on value and people to help software devel-
opment teams achieve higher velocity and deliver superior value to the customers.

This one-day tutorial included several engaging and thought-provoking exercises
that were designed to help the participants better understand agile practices. A number
of industry cases (both successes and failures) were also be presented.

Additional information and post-tutorial discussions are available online at http://
ebe.cpsc.ucalgary.ca/ebe/Wiki.jsp?page=FirstEncounterWithAgileMethodsTutorial

2 Tutorial Organizers

Frank Maurer is a Professor and an Associate Head of the Department of Computer
Science at the University of Calgary. His research interests are agile software meth-

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 215–216, 2004.
© Springer-Verlag Berlin Heidelberg 2004

216 Frank Maurer and Grigori Melnik

odologies, e-Business software engineering, Web engineering, globally distributed
software development, experience and knowledge management. He is a member of
Agile Alliance and a Certified Scrum Master. He is also a founding member of The
Canadian Agile Network (CAN) - Le Réseau Agile Canadien (RAC) and a founding
member of the board of the Calgary Agile Methods User Group. Frank Maurer also
was a Program Co-chair for XP Agile Universe 2003, Workshops Chair for XP Agile
Universe 2002 and is on the Program Committee of XP Agile Universe 2004. He is
also a Member of the Editorial Board of the IEEE Internet Computing magazine.

Grigori Melnik is an Instructor at the University of Calgary and a Lead Instructor at
the Southern Alberta Institute of Technology (SAIT) responsible for curriculum de-
velopment and delivery of several key senior software engineering disciplines. Grig-
ori is a Ph.D. candidate with the Department of Computer Science of University of
Calgary. His primary research area is empirical evaluation of capability of agile
methods. Other areas include e-business software development, distributed software
engineering, design patterns and e-learning. Grigori has also been involved in devel-
oping Web-based enterprise systems. More recently he’s served as a founding co-
moderator of Calgary Agile Methods User Group (CAMUG) and a coordinator of The
Canadian Agile Network (CAN) - Le Réseau Agile Canadien (RAC).

Working Effectively with Legacy Code

Michael C. Feathers

mfeathers@objectmentor.com

1 Tutorial Overview

Test Driven Development and Refactoring are powerful tools in the XP/Agile arsenal.
With them you can add new code to systems and make existing code more maintain-
able. However, changing systems without having tests in place can be hazardous. This
tutorial presented a collection of dependency breaking and test writing techniques that
can be used to get existing code safely under test for refactoring and enhancement.
These techniques were used in conjunction with Test Driven Development to breathe
new life into large existing code bases. Attendees did all of this and more including:

Introduction / Testing as a Programmer’s tool
Working with and without Refactoring Tools
Breaking Dependencies – Sensing and Separation
Breaking Hidden/Manifest Dependencies
Java Exercise
Seam Identification
UML based exercise
Writing Characterization Tests
Java Exercise
Reasoning about Effects / Identifying Test Points
Large Method Strategies
Java Exercise
Architectural Ramifications

2 Tutorial Organizer

Michael Feathers has been involved in the XP/Agile community since is inception.
While designing biomedical instrumentation software in the late 1990s, he met sev-
eral of the members of the Chrysler C3 team at a conference and was persuaded by
them to try XP practices. Subsequently, he joined Object Mentor where he has spent
most of his time transitioning teams to XP.

Michael first became interested in legacy code problems when he noticed he was
starting to do the same things over and over again to help teams gain traction in their
existing code bases when they start to transition to XP. Since then he has concentrated
on discovering and refining more techniques to solve these problems.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 217, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The Art of Acceptance Testing

Micah Martin

micah@objectmentor.com

1 Tutorial Overview

If you have never worked with Acceptance Tests (AT) before or struggled with them
in the past then this tutorial would have been great for you. We covered a range of
topics regarding ATs to familiarize everyone with the concept of ATs but most of the
time in this tutorial was spent actually writing ATs. Acceptance Testing is not a spec-
tator sport so anyone expecting to sit back and relax in this tutorial was in for quite an
awakening. We learned the right way to write ATs; by writing them.

Becoming effective at writing ATs requires two skills. One is knowing the tools
and techniques and we touched on these topics. Perhaps more important than the
technical aspect is having the Acceptance Testing State of Mind. You should have
learn what this means and why it is important.

FitNesse was the medium used to create ATs. All attendees brought a laptop with
FitNesse installed. fitnesse.org This required that the Java Runtime Environment 1.4+
was also installed.

After taking this tutorial you were definitely prepared for Advanced FIT Lab by
Rick Mugridge.

2 Tutorial Organizer

Micah Martin is a software developer from Object Mentor who has been practicing
Extreme Programming since 1999. He has been involved in a variety of XP projects
and teaches a range of public courses from Object Oriented Design to Extreme Pro-
gramming. As lead developer of the FitNesse testing tool, it is his goal to help make
Acceptance Testing a more attainable goal for the industry.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 218, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Agile Planning, Tracking,
and Project Management Boot Camp

Paul Hodgetts

phodgetts@agilelogic.com

1 Tutorial Overview

At the heart of agile processes are the iterative cycles that provide the core rhythm of
every project. Effective planning, tracking, and project management strategies and
practices form the essential process framework that provides the feedback, learning,
and steering that drive the project forward. While much has been written on these
topics, there is no substitute for actual experience with the practices.

In this intensive tutorial, attendees gained direct, hands-on experience with the it-
erative and incremental cycles that drive an agile project. Through carefully designed
exercises simulating actual project situations, participants practiced a wide variety of
planning, tracking, metric, retrospective, and project management techniques from
popular agile processes including XP, Scrum, and DSDM. The attendees gained per-
sonal knowledge and insights into the crucial rhythm of an agile project, enabling
them to apply these insights to their own project situations.

The exercises, arranged as a series of simulated project iterations, covered a com-
prehensive range of practices, including:

Preparing releases and iterations – story development, analysis, breakdowns, and
estimating.
Conducting effective planning sessions – story prioritization, staging releases,
velocity projections, task breakdowns and work sign-ups.
Fine-grained steering using daily stand-up meetings and scrums.
Evaluating story, iteration, and release completion using acceptance criteria and
testing.
Managing iteration and release milestones, frequent production deployments and
release deliverables.
Tracking and reporting strategies, practices, and tools.
Using metrics and retrospectives to effectively diagnose a project and initiate evo-
lutionary improvements.

2 Tutorial Overview

Paul Hodgetts helps teams adopt and improve their agile development processes. As
CEO and principal consultant of Agile Logic, a professional services company focus-
ing on agile processes and enterprise technologies, he provides consulting, mentoring,
and training to a wide variety of clients. Paul has more than 21 years of experience in

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 219–220, 2004.
© Springer-Verlag Berlin Heidelberg 2004

220 Paul Hodgetts

all aspects of software development from in-the-trenches coding to technical project
management, on a wide variety of projects from embedded real time control to dis-
tributed internet business applications. His recent focus has been on the integration of
executive management, marketing, project management and quality assurance into an
overall agile development process. Paul has served as a coach, mentor, and team
member of agile development teams for more than five years. Paul is a published
author (Extreme Programming Perspectives), a member of the Extreme Programming
and Java/J2EE advisory boards at California State University Fullerton, and a pre-
senter at conferences including XP Agile Universe and JavaOne.

Tutorial:
Agile Project Management – Reliable Innovation

Jim Highsmith

jim@jimhighsmith.com

1 Tutorial Overview

Symyx boasts that their process enables scientists to discover new materials at 100
times the speed and 1% of the cost of traditional research. Drug companies rapidly
generate millions of compounds and then test them using ultra-speedy mass spec-
trometers. Alias Sketchbook Pro a graphics software package was completely planned
and developed in two-week iterations.

From materials to drugs to software, companies are relentlessly driving the cost of
change out of their product development processes in order foster innovation. These
projects are the realm of Agile Project Management (APM) which operates under a
philosophy of Envision and Explore rather than Plan and Do.

The APM tutorial focused on quick starts, iterative exploration, delivering cus-
tomer value, low-cost change, frequent feedback, and intense collaboration. The tuto-
rial discussed projects in which: new, risky technologies are incorporated; require-
ments are volatile and evolve; time-to-market is critical; and high quality must be
maintained.

The APM presentation included core agile principles, a project management
framework, and specific practices. The framework phases were: Envision – determin-
ing the product vision and project scope; Speculate – developing a feature-based re-
lease, milestone, and iteration plan; Explore – delivering tested features; Adapt –
reviewing the delivered results and adapting; Close – concluding the project.

2 Tutorial Organizer

Jim Highsmith is Director, Agile Project Management Practice at Cutter Consortium.
He is the author of “Agile Project Management: Creating Innovative Products”, Addi-
son Wesley 2004; “Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems”, Dorset House 2000, and, “Agile Software Develop-
ment Ecosystems”, Addison Wesley 2002. Jim is a recognized leader in the agile
project management and software development movement. He has published dozens
of articles including “The Agile Manifesto,” co-authored with Martin Fowler, in the
August 2001 issue of Software Development). Jim has worked with organizations
worldwide to help them adapt to the accelerated pace of development in increasingly
complex, uncertain environments.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 221, 2004.
© Springer-Verlag Berlin Heidelberg 2004

XP for a Day

James Grenning and Micah Martin

{grenning,micah}@objectmentor.com

1 Tutorial Overview

The day starts amidst the buzz of attendees hooking their laptops up to their team’s
network and showing that they have the installed and completed the preparation work.
To make XP for a day run smoothly, attendees were required to download an initial
exercise and get the green bar from JUnit. Once their unit tests were running, atten-
dees would run the FitNesse acceptance tests and note that one of the test pages for
Hunt the Wumpus was reporting an acceptance test error. Prior to the first iteration,
attendees made the test failing tests pass marking the beginning of an enjoyable day
of XP.

All gathered around the planning table to review the stories for the latest release of
Hunt the Wumpus. Teams made a guess at their velocity and an iteration was planned.
The teams began work on their deliverables.

There was some chaos as people got to know each other and divide up the work.
Programmers were writing unit tests and acceptance tests. The coaches found some
non test driven code and had to delete it. That was a popular move. Half way through
the first iteration teams had not yet completed half their work. The instructors, with
their coach’s hats on, suggested the teams talk to their customer and renegotiate the
scope. They were all bullish and decided to press on and not bother their customer.
“We’ll catch up.” they said, or “We’re 80% done”. The room became more animated
as the clock ran down. A few that had their work done sat smugly waiting for the final
bell. When the iteration ended there were a lot of 85% done stories. Unfortunately,
85% done is 100% not done. The instructors, now with their customer hats in place,
were disappointed.

After lunch we reflected on the experience and discussed how the teams should
have handled some of the situation encountered.

Our second planning game broadened the scope and looked out a few iterations.
This time the team was a bit more realistic and chooses less work. This iteration went
more smoothly. The teams already knew better how to work together. One team was
finishing early, the other negotiated mid-way through the iteration for less work.
Teams proudly delivered almost all their stories with acceptance tests.

After the final iteration we shared success stories and lessons learned.

2 Tutorial Organizers

James Grenning is the Director of Consulting at Object Mentor, Inc. He has been
professionally developing software since 1978. His is experienced in embedded and

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 222–223, 2004.
© Springer-Verlag Berlin Heidelberg 2004

XP for a Day 223

non-embedded software development, management, consulting, mentoring and train-
ing. He is currently practicing and coaching Agile software development techniques,
Extreme Programming, Object Oriented Design and Programming. James has been
published in IEEE software and the C++ report. He participated in the creation of the
Manifesto for Agile Software Development.

Micah Martin is a software developer from Object Mentor who has been practicing
Extreme Programming since 1999. He has been involved in a variety of XP projects
and teaches a range of public courses from Object Oriented Design to Extreme Pro-
gramming. As lead developer of the FitNesse testing tool, it is his goal to help make
Acceptance Testing a more attainable goal for the industry.

Scripting Web Tests

Brett Pettichord, Brian Marick, Paul Rogers, and Jonathan Kohl

bret@pettichord.com, marick@testing.com,
paul.rogers@shaw.ca, jkohl@telusplanet.net

1 Tutorial Overview

Students in this tutorial learned how to write automated customer tests for a web-
based application. They used an open-source tool kit to create tests that drive a web
browser. Most completed a suite of multiple tests by the conclusion of the tutorial.
This hands-on tutorial used open-source software installed on student-provided lap-
tops. Students learned to write these tests using the Ruby scripting language and the
Web Testing with Ruby toolkit, available at http://rubyforge.org/projects/wtr/. A
timeclock application was used as the target of the tests.

The tool kit consists of a library to make it convenient to access the COM interface
to Internet Explorer, including it’s document object mode. Similar methods could be
used by any language the provides access to COM (which is to say: most languages).
Students also made extensive use of the interactive Ruby interface, which facilitates
learning and exploration. (Similar interactive features are also part of the Python and
Tcl languages.)

The hands-on learning experience allowed students to focus on the issues of great-
est personal interest. Many appreciated being able to continue to experiment with and
review the class exercises after the completion of the tutorial. The tutorial instructors
are contributors to the tool kit and have used it in testing commercial software devel-
oped by agile teams.

2 Tutorial Organizers

Bret Pettichord helps teams improve their software testing and test automation. His
software testing philosophy is context-driven, focusing on good relations with devel-
opers and agile methods that get results with a minimum of overhead. Bret co-
authored, with Cem Kaner and James Bach, Lessons Learned in Software Testing, a
Jolt Award finalist. He is host and founder of the Austin Workshop on Test Automa-
tion. He also writes for Software Testing and Quality Engineering magazine and
Stickyminds.com. His ideas about homebrew automation, agile testing and testability
have been featured in Application Development Trends and The Rational Edge.
Based in Austin, Texas, Bret is principal of Pettichord Consulting LLC, and consults
for leading software companies across North America and speaks at conferences
world-wide.

Brian Marick is an independent consultant specializing in testing on agile projects
(www.testing.com). He is an author of the Manifesto for Agile Software Development
and has been a programmer, team lead, and tester since 1981. His evolving approach

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, pp. 224–225, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Scripting Web Tests 225

to agile testing emphasizes using tests as examples that motivate programmers before
the code is written, a close cooperation (and overlap) between testers and program-
mers, and exploiting the similarities between exploratory testing and agile design. For
more about his approach, see his blog; in particular, scan down the right side for “Ag-
ile Testing Directions”.

Paul Rogers is a professional software tester specializing in test automation in a vari-
ety of languages. He uses Ruby extensively as a testing tool in various testing pro-
jects, from embedded firmware applications to web applications. He has written a
controller in Ruby for testing applications with Internet Explorer, and contributes to
the open source WTR project for testing web applications. He is a software tester at
Wireless Matrix in Calgary, Alberta.

Jonathan Kohl develops and applies Agile techniques on live testing projects, focus-
ing on workable, effective techniques for tester and developer collaboration. He uses
Web Testing with Ruby as an automated testing tool for web application projects. He
is a software testing consultant with Kohl Consulting Services in Calgary, Alberta,
and has written about pair testing with developers in Better Software magazine.

Interaction Design Meets Agility:
Practicing Usage Centered Design

on Agile Development Projects

Jeff Patton

jpatton@acm.org

1 Tutorial Overview

This tutorial discussed using interaction design techniques, specifically Constantine &
Lockwood’s Usage-Centered Design, throughout an agile software development
process. Tutorial participants learned by participating in a process miniature: a time
compressed agile project design and planning session.

After introducing and discussing the business problem, participants divided into
teams and began by building a user role model from user roles brainstormed onto 3x5
cards. The role model gives visual representation of the people using the software and
their goals. Participants annotated the model describing clusters of user roles, rela-
tionships roles have with each other, and marking highest priority, or “focal” roles.

Using the role model as reference, tasks users might perform to meet their goals
are easily brainstormed. Using already written task cards, participants constructed and
annotated a task model. Annotations on the task model indicate task dependencies,
process flow, and focal tasks. Clusters of tasks were annotated to indicate the exis-
tence of an interaction context: a distinct place in the software where like-tasks are
performed.

Finally, task cards were again used to create a model of the business process from
which a release plan is easily derived. The release plan focuses on delivering, as early
as possible, the simplest complete working system – a system span.

During this tutorial, participants moved a software project from an idea, through
design, to an incremental development plan. The tutorial gave further guidelines on
using the created models throughout the remainder of the project as well as applying
other interaction design techniques during agile style development.

2 Tutorial Organizer

Jeff Patton has, for nearly ten years coached and developed software with top-notch
teams on a wide variety of projects from on-line aircraft parts ordering to rules-based
pricing engines. He has successfully helped to design, develop, and deploy software
now in use by thousands. Although he prides himself in specializing in nothing, Jeff
has placed emphasis on the study and practice of OO design and development, agile
development methodologies and Extreme Programming, user-interface design, and
interaction design.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 226, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Agile Implementations, Agile Impediments,
and Agile Management

Ken Schwaber

ken.schwaber@verizon.net

1 Tutorial Overview

We can read about Agile processes in books and articles. However, the management
of projects using an Agile process represents a significant shift for both the project
team and the organization as a whole. The shift internal to the team occurs as the
project manager teaches the customer how to drive the project iteration by iteration to
maximize ROI. The other internal shift as the team realizes that self-management
means exactly that - the team has to figure out how to manage its own work cross-
functionally. Even more difficult is helping the team and organization overcome the
bad habits they had acquired prior to implementing the agile process - waterfall think-
ing, command-and-control management, and abusive, opaque relationships.

I wanted for attendees of this session was how to:

Understand the Agile approach to managing projects and products, including
complex, mission critical, large projects
Bid and contract for systems development work in a fixed price, fixed date
environment using Agile project management processes;
Use Extreme Programming wrapped by Scrum to scale to multi-team projects or
enterprise wide-implementation for multiple projects;
Solve the customer involvement problem by having customer drive the project to
maximize ROI;
Solve the morale issue within engineering organizations by letting them, the
people who do the work, manage themselves while they work cross-
functionally;
Solve issue of product quality incrementally;
Generate more frequent and focused product releases;
Enjoy developing software.

2 Tutorial Organizer

Ken Schwaber will teach the course. He is one of developers of Scrum and has for-
malized it into an Agile process. He implemented and used Scrum extensively to help
projects succeed and organizations compete over the last ten years, from small to
large, from software products to networking products, from commercial to internal
software projects. He employs Scrum for project management practices and Extreme
Programming for engineering practices. He is active in the Agile Alliance. He can be
reached at ken.schwaber@verizon.net. The Scrum web site maintained by his com-
pany is at www.controlchaos.com. He is currently co-Chairman of the Board of the
Agile Alliance.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 227, 2004.
© Springer-Verlag Berlin Heidelberg 2004

The Lean Maturity Measure Assessment
and Implementation

Mary Poppendieck

mary@poppendieck.com

1 Tutorial Overview

This tutorial started out by proposing a new measurement for gauging the maturity of
a software organization: the average cycle time from customer request to filling that
request. This measurement was supported by examples from many industries, and
then a discussion ensued about when, exactly, the measurement should start, when it
should stop. Whenever the start and stop point are, it is important that the measure-
ment encourage rapid, repeatable, reliable delivery of real customer value.

The tutorial went on to present assessment techniques for the current state of a
software development organization. The first assessment tool was a map of current
value stream and the current decision-making process in an organization. The second
assessment tool was an evaluation of disciplines such as coding standards, code con-
trol, build processes, automated testing, etc. Groups were formed, and each group
worked on the assessments.

A final assessment tool was used to evaluate team membership and representation
of various functions on typical software development teams. Various approaches to
team composition and leadership were discussed in the groups.

The tutorial went on to present the idea of a Kaizen event, which is frequently used
in lean manufacturing. It discussed how such an event could be modified to address
software development problems at the organizational level. Groups developed a list of
“do’s” and “don’ts” for Kaizen events.

2 Tutorial Organizers

Mary Poppendieck, a Cutter Consortium Consultant and Managing Director of the
Agile Alliance, is a seasoned leader in both operations and new product development
with more than 25 years’ of IT experience. She has led teams implementing solutions
ranging from enterprise supply chain management to digital media, and built one of
3M’s first Just-in-Time lean production systems. Mary is the President of Pop-
pendieck LLC. And co-author of the book Lean Software Development: An Agile
Toolkit, which brings lean production techniques to software development.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 228, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Agile Databases

Pramod Sadalage

pramod@thoughtworks.net

1 Tutorial Overview

The past few years we have seen the rise of agile methodologies. One of the most
important aspects of agile methodologies is iterative design. Many people have ques-
tioned whether iterative design can be applied to applications with a large database
component, it is always considered that application developers can work in iterative
fashion while database design cannot be done in iterative fashion, hence the database
is the bottleneck for the team and the database cannot be agile.

At ThoughtWorks we have developed a number of techniques to integrate the da-
tabase world into the application world and provide a seamless way for developers,
QA, analysts, client and dba’s to work in an iterative fashion so that the team can be
more productive. These techniques include making database part of the Continuous
Integration cycle, allowing everyone to have their own database. Deploying any build
anywhere anytime, having automated tests for the database, make db build an ANT
task, using code generation etc.

These techniques not only worked during development, but also helped us to de-
ploy into existing production systems with automated migration effort. For years the
norm for object developers was to work in an evolutionary manner but for database
developers to work in a more serial manner, now the two groups can work in the same
manner and thus be more productive as a team.

2 Tutorial Organizer

Pramod Sadalage works as a Data Architect and Lead DBA at ThoughtWorks, Inc, a
leading custom e-business application and platform development firm. He works on
large J2EE custom dev applications, which use XP, an agile methodology that has not
been sufficiently discussed in the context of databases. While on these projects, he
pioneered the practices and processes of Agility in the database.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 229, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Transitioning to XP

Michael Hill

uly@mindspring.com

1 Tutorial Overview

The primary target in this session was the transitioner, those folks from management
and/or development who have been anticipating the challenge of bringing their teams
into eXtreme Programming. If you are/were currently seeking to be a catalyst for
change in your group, then you were ready for this tutorial.

Here’s a recap of the activities that took place:

Basic Transition Concepts
Transition is Flipping The Cube
Who is a transitioner?
Where are we going?

II. Preparing For Transition
Closing The XP Sale
Rigging The Environment
Preparing The People

III. Surviving the Chaos of Transition
How Far Have We Come?
Mastering The Cooperation Challenge
Mastering The Technical Challenge

IV. Imperfect Worlds
Sneaking XP under the Door
Working w/Heavy-Process Partners
Partial Adoptions That Really Work
Verticalizing Requirements Documents

V. Open Season On XP Transitions

The final hour of this session was devoted to the questions and answers that the at-
tendees offered. Real challenges from real teams was the order of the day.

2 Tutorial Organizer

Michael Hill has been transitioning teams to XP for six years, against a background
of twenty+ years as an independent contractor. He has worked with dozens of differ-
ent projects and platforms. He is presently at work on a book on Transitioning to XP.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 230, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Large Scale Agile Software Development

Ron Crocker

ron@roncrocker.com

1 Tutorial Overview

All of this XP and Agile Methods hype is wonderful, but how can people who work
on large-scale projects (where large-scale means projects are those with more than
100 people and are longer than 1 year duration) take advantage of the benefits in qual-
ity, efficiency, and time promised by the hype? That question was answered in this
tutorial. We had the chance to discuss a proven approach enabling agile collaboration
among teams on large projects. This tutorial covered:

Why large projects ARE indeed different
Why existing agile methods (XP, Scrum, ...) are insufficient to deal with large
projects
A set of agile practices enabling agile multi-team collaboration
My experiences using the practices

The ideal attendee was the practitioner, a software or process engineer in develop-
ment leadership role or with influence on such a person. They were familiar with
developing large systems and the attendant difficulties.

The goals were to:

Convince you that agile practices can apply to large-scale software projects.
Describe a set of practices that allow large-scale software projects to be agile.
Enable you to convince your management and peers that agile can work for these
projects, using my experiences and the materials from this presentation.

2 Tutorial Organizer

Ron Crocker is a Fellow of the Technical Staff in the Network and Advanced Tech-
nologies group of Motorola’s Global Telecom Solutions Sector, where he has pio-
neered the application of advanced software technologies and processes in the devel-
opment of next-generation cellular telecommunications systems. Ron was the lead
architect and developerof a 3rd generation cellular system implementation, developed
using >150 engineers from >5 countries, all done in an agile way and achieving out-
standing results. He is the author of the forthcoming Addison-Wesley book Large-
Scale Agile Software Development, which may be available by the conference. This
presentation forms the basis for the book, and serves as a guide for convincing the
skeptical that wonderful successes can occur in large-scale projects.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 231, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Refactoring to Patterns

Joshua Kerievsky

Joshua@industriallogic.com

1 Tutorial Overview

This tutorial, which has been steadily maturing at conferences since 2000, examined
how to combine the art of refactoring with the practice of designing with patterns.
Attendees learned how to do pattern-based refactoring by combining low-level refac-
torings. They also learned which code smells indicate the need for pattern-based
refactorings, which patterns are commonly refactored to, towards or away from, and
how automated tools help us refactor. The tutorial concluded with an overview of the
27 refactorings from the book, Refactoring to Patterns.

What I wanted for attendees was the following:

Understand how refactoring and patterns go together
Learn when to refactor to, towards or away from a pattern
Learn how to combine low-level refactorings into higher-level refactorings
Study the smells that often indicate the need for a pattern-based refactoring

Here are some of the goals that were met:

The principles and practices of patterns-based refactoring
Common smells that suggest patterns-based refactorings
When we refactor to, towards or away from patterns
Examination of several real-world pattern-based refactorings
How automated tools help us refactor

This session was intended for the experienced object-oriented developers. Some
experience with refactoring, patterns and test-driven development was encouraged.
Examples were in Java.

2 Tutorial Organizer

Joshua Kerievsky is the founder of Industrial Logic, a company that specializes in
Extreme Programming. He began his career as a professional programmer at a Wall
Street bank, where he programmed numerous financial systems for credit, market, and
global risk departments. After a decade at the bank, he founded Industrial Logic in
1995 to help companies practice successful software development. Kerievsky has
programmed and coached on small, large, and distributed XP projects since XP’s
emergence. He recently pioneered Industrial XP, an application of XP tailored for
large organizations. Kerievsky has written XP articles in Extreme Programming Ex-
amined and Extreme Programming Perspectives, and has recently authored the book
Refactoring to Patterns.

C. Zannier et al. (Eds.): XP/Agile Universe 2004, LNCS 3134, p. 232, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Author Index

Andrea, Jennitta 205
Astels, Dave 183, 203

Baker, Lisa 50
Baumeister, Hubert 1
Behring, Carsten 194
Beyer, Hugh 50
Bodén, Marine 117
Bos, Erik 129
Boström, Gustav 117
Broza, Gil 139
Button, Brian 204

Cohn, Mike 201, 208
Conboy, Kieran 105
Crispin, Lisa 203, 214
Crocker, Ron 231

Denton, Leo F. 164

El Emam, Khaled 188
Ensminger, David 164
Erdogmus, Hakan 32

Feathers, Michael C. 217
Fitzgerald, Brian 105
Froeseth, Julie 164

Gregory, Janet 203
Grenning, James 194, 222
Griffiths, Mike 201,210
Grinstein, Georges 175
Gyllstrom, Karl 92

Hanks, Brian F. 81
Highsmith, Jim 201, 203, 221
Hill, Michael 230
Hodgetts, Paul 219
Holtzblatt, Karen 50
Hussman, David 184, 190

Jack, Roger 147
Jeffries, Ron 213

Kerievsky, Joshua 196, 232
Kohl, Jonathan 198, 224
Kruchten, Philippe 201
Kuniavsky, Mike 192

Kussmaul, Clifton 147, 209

Larsen, Diana 212
Leigh-Fellows, David 43

Marick, Brian 184,198,224
Martin, Micah 200, 218, 222
Martin, Robert C. 200, 203
Maurer, Frank 60, 201, 215
McBreen, Pete 203
McKinney, Dawn 164
Melnik, Grigori 60,183, 188, 215
Meszaros, Gerard 73, 205
Morsicato, Ron 202
Mugridge, Rick 184, 206

Patton, Jeff 226
Peeters, Johan 194
Pettichord, Brett 224
Pietri, William 192
Pixton, Pollyanna 186
Poppendieck, Mary 186, 202, 228
Pyritz, Bill 202

Rasmusson, Jonathan 13
Read, Kris 60
Robertson, Jason 164
Rogers, Paul 224
Rogers, R. Owen 22

Sadalage, Pramod 229
Schwaber, Ken 201, 227
Sepulveda, Christian 184
Smith, Jason McC. 92
Smrtic, Mary Beth 175
Sponsler, Barry 147
Steinberg, Daniel H. 203
Stotts, David 92

Van Schooenderwoert, Nancy 202
Vriens, Christ 129

Wake, William C. 213
Wang, Yihong 32
Watt, Richard J. 43
Wäyrynen, Jaana 117
Weyrauch, Kelly 202
Woit, Denise M. 155

