
Lecture Notes in Computer Science 2753
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

Frank Maurer Don Wells (Eds.)

Extreme Programming
and Agile Methods –
XP/Agile Universe 2003

Third XP Agile Universe Conference
New Orleans, LA, USA, August 10-13, 2003
Proceedings

1 3

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Frank Maurer
University of Calgary, Department of Computer Science
2500 University Drive NW, Calgary, Alberta, T2N 1N4 Canada
E-mail: maurer@cpsc.ucalgary.ca

Don Wells
4681 Brockham Way, Sterling Heights, MI 48310, USA
E-mail: don@extremeprogramming.org

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliographie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): D.1, D.2, D.3, F.3, K.4.3, K.6

ISSN 0302-9743
ISBN 3-540-40662-X Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin GmbH
Printed on acid-free paper SPIN: 10930663 06/3142 5 4 3 2 1 0

Preface

XP Agile Universe 2003 is the third conference in a series running in North Ame-
rica and attracting participants from all over the world who are interested in the
research, development and application of agile software processes. Agile appro-
aches value people and interaction over processes and tools – moving software
engineering from the process-oriented software development approaches of the
1990s towards people-oriented approaches that we are starting to see more and
more in this decade. Agile approaches stress a holistic view of software develo-
pers as being involved in analysis, design, implementation and testing activities,
while more traditional, tayloristic approaches separate these tasks and assign
them to different “resources.” Tayloristic approaches create knowledge-sharing
problems as information gathered by one person needs to be handed over –
usually in the form of documentation – to the next person in the chain. Agile
approaches reduce the number of hand-offs and, thus, decrease the amount of
required documentation for knowledge sharing.

While deemed a novelty only a few years ago, agile methods are now beco-
ming established in the software industry and are being applied in more and
more application domains. While agile approaches move into the mainstream of
software organizations, we are only now beginning to understand their benefits,
areas of applicability, and also their dangers. This year’s conference will increase
this understanding and provide a better base for industry practitioners as they
assess the effectiveness of agile methods in their environment. Researchers will
use the work presented to create conceptual models of agile approaches that
allow us to find new insights and steer future research.

Submissions to this year’s conference mirror the breadth and the depth of
agile approaches. Thirty-five technical papers were submitted while the con-
ference proceedings now include 17 high-quality contributions (49% acceptance
rate). Every submission was reviewed by at least three program committee mem-
bers. The committee was a mix of industry practitioners and researchers. Papers
submitted by program committee members were refereed separately to ensure
objective feedback. Some papers were shepherded by committee members who
spent quite a bit of effort to helping the authors improve their submissions. Our
special thanks go to these shepherds: Hakan Erdogmus, Tom Kubit and Randy
Miller.

The proceedings consist of six sections that reflect the breadth of the sub-
missions.

The section “Becoming Agile” discusses how agile approaches can be intro-
duced into new environments. The papers deal with extending the scope of agile
methods towards larger and more distributed teams, teams involving multiple
stakeholders, success stories of agile methods, and the boundaries between agile
and more traditional, tayloristic approaches.

VI Preface

The next section, “Agile Methods and Processes,” includes papers on the
rules of and reflections on Extreme Programming, ISO certification while being
agile, and indicators, instead of metrics, that can be used to help agile teams.

The section on “Agile Testing” discusses how test-driven approaches can be
used in the context of database application development and with JNI, how sy-
stem testing as well as user interface testing can be integrated into agile methods,
and contains the test automation manifesto.

While agile approaches value people over tools, most agile teams use some
tools anyway. The section on “Tool Support for Agile Teams” looks into new
developments in this area. It discusses tools for scaling agile methods as well as
for project coordination support. Another paper empirically analyzes distributed
pair programming.

The “Educator Symposium” section includes recent developments on the
introduction of agile methods into academic education. Papers in the section
where peer reviewed by the Educator Symposium committee.

The “Workshop” section contains very brief overviews on the workshops that
will be held at the conference.

No conference can be successful without volunteers who contribute their time
to the endeavor. We want to thank all our program committee members who
reviewed papers and provided valuable feedback to the authors. Specifically, we
would like to thank Brian Button, Grigori Melnik and Don Reifer – all of whom
spent a huge effort in helping to set up the conference program.

While the technical contributions included in this book represent an im-
portant part of the program, no conference is successful without the effective
interaction among its participants, their sharing of knowledge and experience.
To enable this, the program contained specialized workshops, a broad variety of
tutorials, and the open-space sections. All these provided ample opportunity to
interact and bring together experts and beginners in agile methods.
We hope that you enjoyed the conference.

May 2003 Frank Maurer
Don Wells

VII

Conference Committees

Program Committee

Co-chairs: Frank Maurer, Don Wells
Tutorials Chair: Brian Button
Workshops Chair: Grigori Melnik
Panels Chair: Ken Schwaber
Educators Symposium Chair: Don Reifer
Open Space Chair: Ann Anderson
BOF Coordinators: Bill Wake

Program Committee Members:

Scott Ambler
Ann Anderson
Dave Astels
Ken Auer
Mike Beedle
Barry Boehm
Jim Coplien
Ward Cunningham
Aldo Dagnino
Noopur Davis
Armin Eberlein
Jutta Eckstein
Hakan Erdogmus
Michael Feathers
Steve Fraser
John Grundy

Jim Highsmith
Chet Hendrickson
Scott Henniger
Andy Hunt
Ron Jeffries
Bil Kleb
Tom Kubit
Manfred Lange
Tim Mackinnon
Michele Marchesi
Brian Marick
Robert C. Martin
Pete McBreen
Todd Medlin
Steve Mellor
Gerard Meszaros

Grandville Miller
Don Reifer
Linda Rising
Ken Schwaber
Forest Schull
Jeff Sutherland
Dave Thomas
(Pragmatic
Programmer)
Dave Thomas (Bedarra)
Jim Tomayko
Arie Van Bennekum
Chris Wege
Frank Westphal
Laurie Williams
William Wood

Educator Symposium Committee

James Caristi
David West

Ed Gehringer
Rick Mercer

J. Fernando Naveda
Joe Bergin

Organization Committee

Chair: Angelique Martin
Student Volunteers Chair: Rick Mercer
Sponsors/Exhibits Chair: Lance Welter
Marketing, Communications Chair: Stanley Jordan
Website Master: Micah Martin

VIII

Conference Sponsors and Partners

XP Agile Universe would like to thank the following:

Galaxy Class Sponsors:
Object Mentor, Inc.
Microsoft
RADSoft

Star Class Sponsors:
RoleModel Software
Agile Logic Nola Computer Services

Satellite Class Sponsors:
Tek Systems

Media Partners:
Agile Alliance
Cutter Consortium
Software Development Magazine
Louisiana Technology Council

Conference Committees

Program Committee

Co-chairs: Frank Maurer, Don Wells
Tutorials Chair: Brian Button
Workshops Chair: Grigori Melnik
Panels Chair: Ken Schwaber
Educators Symposium Chair: Don Reifer
Open Space Chair: Ann Anderson
BOF Coordinators: Bill Wake

Program Committee Members:

Scott Ambler
Ann Anderson
Dave Astels
Ken Auer
Mike Beedle
Barry Boehm
Jim Coplien
Ward Cunningham
Aldo Dagnino
Noopur Davis
Armin Eberlein
Jutta Eckstein
Hakan Erdogmus
Michael Feathers
Steve Fraser
John Grundy

Jim Highsmith
Chet Hendrickson
Scott Henniger
Andy Hunt
Ron Jeffries
Bil Kleb
Tom Kubit
Manfred Lange
Tim Mackinnon
Michele Marchesi
Brian Marick
Robert C. Martin
Pete McBreen
Todd Medlin
Steve Mellor
Gerard Meszaros

Grandville Miller
Don Reifer
Linda Rising
Ken Schwaber
Forest Schull
Jeff Sutherland
Dave Thomas
(Pragmatic
Programmer)
Dave Thomas (Bedarra)
Jim Tomayko
Arie VanBennekum
Chris Wege
Frank Westphal
Laurie Williams
William Wood

Educator Symposium Committee

James Caristi
David West

Ed Gehringer
Rick Mercer

J. Fernando Naveda
Joe Bergin

Organization Committee

Chair: Angelique Martin
Student Volunteers Chair: Rick Mercer
Sponsors/Exhibits Chair: Lance Welter
Marketing, Communications Chair: Stanley Jordan
Website Master: Micah Martin

VIII

Conference Sponsors and Partners

XP Agile Universe would like to thank the following:

Galaxy Class Sponsors:
Object Mentor, Inc.
Microsoft
RADSoft

Star Class Sponsors:
RoleModel Software
Agile Logic Nola Computer Services

Satellite Class Sponsors:
Tek Systems

Media Partners:
Agile Alliance
Cutter Consortium
Software Development Magazine
Louisiana Technology Council

Table of Contents

Becoming Agile

Rebalancing Your Organization’s Agility and Discipline 1
Barry Boehm, Richard Turner

Extreme Programming: Growing a Team Horizontally 9
Carla Fredrick

Agile Planning with a Multi-customer, Multi-project,
Multi-discipline Team . 18

Karl Scotland

A Tail of Two Projects: How ‘Agile’ Methods Succeeded after ‘Traditional’
Methods Had Failed in a Critical System-Development Project 25

Robert Bedoll

Agile Methods and Processes

The Rules of the Game . 35
Ken Auer, Erik Meade, Gareth Reeves

Achieving ISO 9001 Certification for an XP Company 43
Graham Wright

The Reflective Practitioner Perspective in eXtreme Programming 51
Orit Hazzan, Jim Tomayko

Graph Theoretical Indicators and Refactoring . 62
J Adrian Zimmer

Agile Testing

The Test Automation Manifesto . 73
Gerard Meszaros, Shaun M. Smith, Jennitta Andrea

Test-Driven Database Development: A Practical Guide 82
Rong Ou

A Testing Checklist for Database Programs: Managing Risk in an
Agile Environment . 91

Rolf Nelson

JNI Testing . 96
Robert Wenner

X Table of Contents

Agile Regression Testing Using Record and Playback 111
Gerard Meszaros, Ralph Bohnet, Jennitta Andrea

Make Haste, Not Waste: Automated System Testing 120
Carl Erickson, Ralph Palmer, David Crosby, Michael Marsiglia,
Micah Alles

Tool Support for Agile Teams

Virtual Teaming: Experiments and Experiences with Distributed
Pair Programming . 129

David Stotts, Laurie Williams, Nachiappan Nagappan,
Prashant Baheti, Dennis Jen, Anne Jackson

Issues in Scaling Agile Using an Architecture-Centric Approach:
A Tool-Based Solution . 142

Kris Read, Frank Maurer

Developing a Tool Supporting XP Process . 151
Sandro Pinna, Paolo Lorrai, Michele Marchesi, Nicola Serra

Educator Symposiums

XP Agile Universe Educators Symposium Overview 161
Donald J. Reifer

Adapting XP to an Academic Environment by Phasing-In Practices 162
James B. Fenwick, Jr.

Introducing Agile Methods in Learning Environments:
Lessons Learned . 172

Grigori Melnik, Frank Maurer

Pair Learning: With an Eye Toward Future Success 185
Nachiappan Nagappan, Laurie Williams, Eric Wiebe, Carol Miller,
Suzanne Balik, Miriam Ferzli, Julie Petlick

Adaptations for Teaching Software Development with
Extreme Programming: An Experience Report . 199

Michael Wainer

Workshops

Workshops at XP/Agile Universe 2003 Introduction 208
Grigori Melnik

Workshop on Agile Development for Embedded Software Development . . . 209
James Grenning, Ward Cunningham, Dave Thomas

Table of Contents XI

Workshop on How to Maintain and Promote Healthy Agile Culture 210
David Hussman, Michael Feathers

2nd International Workshop on Empirical Evaluation of Agile Methods
(“The Data Workshop”) . 211

Grigori Melnik, Laurie Williams, Adam Geras

Exploring Programmer Tests . 212
J.B. Rainsberger, Ron Jeffries, Rick Mugridge

XPFest . 213
Ward Cunningham, Adam Williams, Brian Marick, Rob Mee,
Roy Miller

Author Index . 215

Preface

XP Agile Universe 2003 is the third conference in a series running in North Ame-
rica and attracting participants from all over the world who are interested in the
research, development and application of agile software processes. Agile appro-
aches value people and interaction over processes and tools – moving software
engineering from the process-oriented software development approaches of the
1990s towards people-oriented approaches that we are starting to see more and
more in this decade. Agile approaches stress a holistic view of software develo-
pers as being involved in analysis, design, implementation and testing activities,
while more traditional, tayloristic approaches separate these tasks and assign
them to different “resources.” Tayloristic approaches create knowledge-sharing
problems as information gathered by one person needs to be handed over –
usually in the form of documentation – to the next person in the chain. Agile
approaches reduce the number of hand-offs and, thus, decrease the amount of
required documentation for knowledge sharing.

While deemed a novelty only a few years ago, agile methods are now beco-
ming established in the software industry and are being applied in more and
more application domains. While agile approaches move into the mainstream of
software organizations, we are only now beginning to understand their benefits,
areas of applicability, and also their dangers. This year’s conference will increase
this understanding and provide a better base for industry practitioners as they
assess the effectiveness of agile methods in their environment. Researchers will
use the work presented to create conceptual models of agile approaches that
allow us to find new insights and steer future research.

Submissions to this year’s conference mirror the breadth and the depth of
agile approaches. Thirty-five technical papers were submitted while the con-
ference proceedings now include 17 high-quality contributions (49% acceptance
rate). Every submission was reviewed by at least three program committee mem-
bers. The committee was a mix of industry practitioners and researchers. Papers
submitted by program committee members were refereed separately to ensure
objective feedback. Some papers were shepherded by committee members who
spent quite a bit of effort to helping the authors improve their submissions. Our
special thanks go to these shepherds: Hakan Erdogmus, Tom Kubit and Randy
Miller.

The proceedings consist of six sections that reflect the breadth of the sub-
missions.

The section “Becoming Agile” discusses how agile approaches can be intro-
duced into new environments. The papers deal with extending the scope of agile
methods towards larger and more distributed teams, teams involving multiple
stakeholders, success stories of agile methods, and the boundaries between agile
and more traditional, tayloristic approaches.

VI Preface

The next section, “Agile Methods and Processes,” includes papers on the
rules of and reflections on Extreme Programming, ISO certification while being
agile, and indicators, instead of metrics, that can be used to help agile teams.

The section on “Agile Testing” discusses how test-driven approaches can be
used in the context of database application development and with JNI, how sy-
stem testing as well as user interface testing can be integrated into agile methods,
and contains the test automation manifesto.

While agile approaches value people over tools, most agile teams use some
tools anyway. The section on “Tool Support for Agile Teams” looks into new
developments in this area. It discusses tools for scaling agile methods as well as
for project coordination support. Another paper empirically analyzes distributed
pair programming.

The “Educator Symposium” section includes recent developments on the
introduction of agile methods into academic education. Papers in the section
where peer reviewed by the Educator Symposium committee.

The “Workshop” section contains very brief overviews on the workshops that
will be held at the conference.

No conference can be successful without volunteers who contribute their time
to the endeavor. We want to thank all our program committee members who
reviewed papers and provided valuable feedback to the authors. Specifically, we
would like to thank Brian Button, Grigori Melnik and Don Reifer – all of whom
spent a huge effort in helping to set up the conference program.

While the technical contributions included in this book represent an im-
portant part of the program, no conference is successful without the effective
interaction among its participants, their sharing of knowledge and experience.
To enable this, the program contained specialized workshops, a broad variety of
tutorials, and the open-space sections. All these provided ample opportunity to
interact and bring together experts and beginners in agile methods.
We hope that you enjoyed the conference.

May 2003 Frank Maurer
Don Wells

VII

Conference Committees

Program Committee

Co-chairs: Frank Maurer, Don Wells
Tutorials Chair: Brian Button
Workshops Chair: Grigori Melnik
Panels Chair: Ken Schwaber
Educators Symposium Chair: Don Reifer
Open Space Chair: Ann Anderson
BOF Coordinators: Bill Wake

Program Committee Members:

Scott Ambler
Ann Anderson
Dave Astels
Ken Auer
Mike Beedle
Barry Boehm
Jim Coplien
Ward Cunningham
Aldo Dagnino
Noopur Davis
Armin Eberlein
Jutta Eckstein
Hakan Erdogmus
Michael Feathers
Steve Fraser
John Grundy

Jim Highsmith
Chet Hendrickson
Scott Henniger
Andy Hunt
Ron Jeffries
Bil Kleb
Tom Kubit
Manfred Lange
Tim Mackinnon
Michele Marchesi
Brian Marick
Robert C. Martin
Pete McBreen
Todd Medlin
Steve Mellor
Gerard Meszaros

Grandville Miller
Don Reifer
Linda Rising
Ken Schwaber
Forest Schull
Jeff Sutherland
Dave Thomas
(Pragmatic
Programmer)
Dave Thomas (Bedarra)
Jim Tomayko
Arie Van Bennekum
Chris Wege
Frank Westphal
Laurie Williams
William Wood

Educator Symposium Committee

James Caristi
David West

Ed Gehringer
Rick Mercer

J. Fernando Naveda
Joe Bergin

Organization Committee

Chair: Angelique Martin
Student Volunteers Chair: Rick Mercer
Sponsors/Exhibits Chair: Lance Welter
Marketing, Communications Chair: Stanley Jordan
Website Master: Micah Martin

VIII

Conference Sponsors and Partners

XP Agile Universe would like to thank the following:

Galaxy Class Sponsors:
Object Mentor, Inc.
Microsoft
RADSoft

Star Class Sponsors:
RoleModel Software
Agile Logic Nola Computer Services

Satellite Class Sponsors:
Tek Systems

Media Partners:
Agile Alliance
Cutter Consortium
Software Development Magazine
Louisiana Technology Council

Conference Committees

Program Committee

Co-chairs: Frank Maurer, Don Wells
Tutorials Chair: Brian Button
Workshops Chair: Grigori Melnik
Panels Chair: Ken Schwaber
Educators Symposium Chair: Don Reifer
Open Space Chair: Ann Anderson
BOF Coordinators: Bill Wake

Program Committee Members:

Scott Ambler
Ann Anderson
Dave Astels
Ken Auer
Mike Beedle
Barry Boehm
Jim Coplien
Ward Cunningham
Aldo Dagnino
Noopur Davis
Armin Eberlein
Jutta Eckstein
Hakan Erdogmus
Michael Feathers
Steve Fraser
John Grundy

Jim Highsmith
Chet Hendrickson
Scott Henniger
Andy Hunt
Ron Jeffries
Bil Kleb
Tom Kubit
Manfred Lange
Tim Mackinnon
Michele Marchesi
Brian Marick
Robert C. Martin
Pete McBreen
Todd Medlin
Steve Mellor
Gerard Meszaros

Grandville Miller
Don Reifer
Linda Rising
Ken Schwaber
Forest Schull
Jeff Sutherland
Dave Thomas
(Pragmatic
Programmer)
Dave Thomas (Bedarra)
Jim Tomayko
Arie VanBennekum
Chris Wege
Frank Westphal
Laurie Williams
William Wood

Educator Symposium Committee

James Caristi
David West

Ed Gehringer
Rick Mercer

J. Fernando Naveda
Joe Bergin

Organization Committee

Chair: Angelique Martin
Student Volunteers Chair: Rick Mercer
Sponsors/Exhibits Chair: Lance Welter
Marketing, Communications Chair: Stanley Jordan
Website Master: Micah Martin

VIII

Conference Sponsors and Partners

XP Agile Universe would like to thank the following:

Galaxy Class Sponsors:
Object Mentor, Inc.
Microsoft
RADSoft

Star Class Sponsors:
RoleModel Software
Agile Logic Nola Computer Services

Satellite Class Sponsors:
Tek Systems

Media Partners:
Agile Alliance
Cutter Consortium
Software Development Magazine
Louisiana Technology Council

Table of Contents

Becoming Agile

Rebalancing Your Organization’s Agility and Discipline 1
Barry Boehm, Richard Turner

Extreme Programming: Growing a Team Horizontally 9
Carla Fredrick

Agile Planning with a Multi-customer, Multi-project,
Multi-discipline Team . 18

Karl Scotland

A Tail of Two Projects: How ‘Agile’ Methods Succeeded after ‘Traditional’
Methods Had Failed in a Critical System-Development Project 25

Robert Bedoll

Agile Methods and Processes

The Rules of the Game . 35
Ken Auer, Erik Meade, Gareth Reeves

Achieving ISO 9001 Certification for an XP Company 43
Graham Wright

The Reflective Practitioner Perspective in eXtreme Programming 51
Orit Hazzan, Jim Tomayko

Graph Theoretical Indicators and Refactoring . 62
J Adrian Zimmer

Agile Testing

The Test Automation Manifesto . 73
Gerard Meszaros, Shaun M. Smith, Jennitta Andrea

Test-Driven Database Development: A Practical Guide 82
Rong Ou

A Testing Checklist for Database Programs: Managing Risk in an
Agile Environment . 91

Rolf Nelson

JNI Testing . 96
Robert Wenner

X Table of Contents

Agile Regression Testing Using Record and Playback 111
Gerard Meszaros, Ralph Bohnet, Jennitta Andrea

Make Haste, Not Waste: Automated System Testing 120
Carl Erickson, Ralph Palmer, David Crosby, Michael Marsiglia,
Micah Alles

Tool Support for Agile Teams

Virtual Teaming: Experiments and Experiences with Distributed
Pair Programming . 129

David Stotts, Laurie Williams, Nachiappan Nagappan,
Prashant Baheti, Dennis Jen, Anne Jackson

Issues in Scaling Agile Using an Architecture-Centric Approach:
A Tool-Based Solution . 142

Kris Read, Frank Maurer

Developing a Tool Supporting XP Process . 151
Sandro Pinna, Paolo Lorrai, Michele Marchesi, Nicola Serra

Educator Symposiums

XP Agile Universe Educators Symposium Overview 161
Donald J. Reifer

Adapting XP to an Academic Environment by Phasing-In Practices 162
James B. Fenwick, Jr.

Introducing Agile Methods in Learning Environments:
Lessons Learned . 172

Grigori Melnik, Frank Maurer

Pair Learning: With an Eye Toward Future Success 185
Nachiappan Nagappan, Laurie Williams, Eric Wiebe, Carol Miller,
Suzanne Balik, Miriam Ferzli, Julie Petlick

Adaptations for Teaching Software Development with
Extreme Programming: An Experience Report . 199

Michael Wainer

Workshops

Workshops at XP/Agile Universe 2003 Introduction 208
Grigori Melnik

Workshop on Agile Development for Embedded Software Development . . . 209
James Grenning, Ward Cunningham, Dave Thomas

Table of Contents XI

Workshop on How to Maintain and Promote Healthy Agile Culture 210
David Hussman, Michael Feathers

2nd International Workshop on Empirical Evaluation of Agile Methods
(“The Data Workshop”) . 211

Grigori Melnik, Laurie Williams, Adam Geras

Exploring Programmer Tests . 212
J.B. Rainsberger, Ron Jeffries, Rick Mugridge

XPFest . 213
Ward Cunningham, Adam Williams, Brian Marick, Rob Mee,
Roy Miller

Author Index . 215

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 1–8, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Rebalancing Your Organization’s Agility and Discipline

Barry Boehm1 and Richard Turner2

1 University of Southern California
Los Angeles, CA 90089-0781

boehm@usc.edu
2 The George Washington University

Washington, DC, 20052
Rich.Turner@osd.mail

Abstract. In these days of rapid change, many organizations find that their
current balance between using agile and disciplined methods is not what it
should be. (We realize that “disciplined” is not the opposite of “agile,” but it is
our working label here for methods relying more on explicit documented
knowledge than on tacit interpersonal knowledge). In a forthcoming book [1],
we have analyzed many organizations’ experiences with agile and disciplined
methods, and have elaborated our previous characterization [2] of the “home
grounds” in which agile and disciplined methods have been most successful.
This analysis has enabled us to determine five critical decision factors that
organizations and projects can use to determine whether they are in either the
agile or disciplined home grounds, or somewhere in between. These five
decision factors are size, criticality, personnel, dynamism, and culture. In this
paper, we set the context by characterizing the agile and disciplined home
grounds. We then define the five decision factors and their rating scales;
provide a stepwise approach for assessing your organization’s or project’s
location in the decision space and developing a strategy for rebalancing its
agility and discipline; and illustrate its use with a representative organizational
example.

1 The Home Grounds for Agile and Disciplined Methods

Table 1 summarizes what we have characterized as the “home grounds” for agile and
disciplined methods – the sets of conditions under which they are most likely to
succeed. The more a particular project’s conditions differ from the home ground
conditions, the more risk there is in using one approach in its pure form and the more
valuable it is to blend in some of the complementary practices from the opposite
method.

Most of the entries in Table 1 are self-explanatory, but the concept of “Cockburn
levels” of development personnel deserves further explanation. Alistair Cockburn has
addressed levels of skill and understanding required for performing various method-
related functions, such as using, tailoring, adapting or revising a method. Drawing on
the three levels of understanding in Aikido (Shu-Ha-Ri), he has identified three levels
of software method understanding that help sort out what various levels of people can
be expected to do within a given method framework [3].

2 B. Boehm and R. Turner

Table 1. Agile and Disciplined Method Home Grounds

Characteristics Agile Disciplined
Application
Primary Goals Rapid value; responding to change Predictability, stability, high

assurance
Size Smaller teams and projects Larger teams and projects
Environment Turbulent; high change; project-

focused
Stable; low-change;
project/organization focused

Management
Customer
Relations

Dedicated on-site customers;
focused on prioritized increments

As-needed customer
interactions; focused on contract
provisions

Planning and
Control

Internalized plans; qualitative
control

Documented plans, quantitative
control

Communications Tacit interpersonal knowledge Explicit documented knowledge
Technical
Requirements Prioritized informal stories and test

cases; undergoing unforseeable
change

Formalized project, capability,
interface, quality, forseeable
evolution requirements

Development Simple design; short increment;
refactoring assumed inexpensive

Extensive design; longer
increments; refactoring assumed
expensive

Test Executable test cases define
requirements, testing

Documented test plans and
procedures

Personnel
Customers Dedicated, collocated CRACK*

performers
CRACK* performers, not
always collocated

Developers At least 30% full-time Cockburn
level 2 and 3 experts; no Level 1B
or -1 personnel**

50% Cockburn Level 2 and 3s
early; 10% throughout; 30%
Level 1B’s workable; no Level -
1s**

Culture Comfort and empowerment via
many degrees of freedom (thriving
on chaos)

Comfort and empowerment via
framework of policies and
procedures (thriving on order)

* Collaborative, Representative, Authorized, Committed, Knowledgable
** These numbers will particularly vary with the complexity of the application

We have found these levels extremely helpful in creating a rating scale for our

Personnel decision factor. We have taken the liberty here to split his Level 1 to
address some distinctions between agile and disciplined methods, and to add an
additional level to address the problem of method-disrupters. Our version is provided
in Table 2.

Level -1 people should be rapidly identified and reassigned to work other than
performing on either agile or disciplined teams.

Level 1B people are average, less-experienced, hard-working developers. They can
function well in performing straightforward software development in a stable
situation. But they are likely to slow down an agile team trying to cope with rapid
change, particularly if they form a majority of the team. They can form a well-
performing majority of a stable, well-structured disciplined team.

Rebalancing Your Organization’s Agility and Discipline 3

Table 2. Levels of Software Method Understanding and Use (After Cockburn)

Level Characteristics
3 Able to revise a method (break its rules) to fit an unprecedented new situation
2 Able to tailor a method to fit a precedented new situation
1A With training, able to perform discretionary method steps (e.g., sizing stories to fit

increments, composing patterns, compound refactoring, complex COTS
integration). With experience can become Level 2.

1B With training, able to perform procedural method steps (e.g. coding a simple
method, simple refactoring, following coding standards and CM procedures,
running tests). With experience can master some Level 1A skills.

-1 May have technical skills, but unable or unwilling to collaborate or follow shared
methods.

Level 1A people can function well on agile or disciplined teams if there are enough

Level 2 people to guide them. When agilists refer to being able to succeed on agile
teams with ratios of 5 Level 1 people per Level 2 person, they are generally referring
to Level 1A people.

Level 2 people can function well in managing a small, precedented agile or
disciplined project but need the guidance of Level 3 people on a large or
unprecedented project. Some Level 2s have the capability to become Level 3s with
experience. Some do not.

2 The Five Critical Decision Factors

Now that we have a common understanding of home grounds and personnel
capability, we can develop our balancing criteria. Table 3 describes five major
decision factors involved in determining the relative suitability of agile or disciplined
methods in a particular project situation. These factors are the project’s size,
criticality, dynamism, personnel, and culture factors. A project which is a good fit to
agile or disciplined for four of the factors, but not the fifth, is a project in need of risk
assessment and likely some mix of agile and disciplined methods.

The five factors are summarized graphically in Figure 1. Of the five axes in the
polar graph, Size and Criticality are similar to the factors used in Cockburn to
distinguish between the lighter-weight Crystal methods (toward the center of the
graph) and heavier-weight Crystal methods (toward the periphery). The Culture axis
reflects the reality that agile methods will succeed better in a culture that “thrives on
chaos” than one that “thrives on order,” and vice versa.

The other two axes are asymmetrical in that both agile and disciplined methods are

likely to succeed at one end, and only one of them is likely to succeed at the other.
For Dynamism, agile methods are at home with both high and low rates of change, but
disciplined methods prefer low rates of change.

The Personnel scale refers to the extended Cockburn method skill rating scale
discussed earlier, and places it in a framework relative to the complexity of the
application. This captures the situation where one might be Level 2 in an organization
developing simple application but Level 1A in an organization developing highly-
complex applications. Here the asymmetry is that while disciplined methods can work

4 B. Boehm and R. Turner

well with both high and low skill levels, agile methods require a richer mix of higher-
level skills [4].

Table 3. The Five Critical Agility/Discipline Decision Factors

Factor Agility Considerations Discipline Considerations
Size Well-matched to small products and

teams. Reliance on tacit knowledge
limits scalability.

Methods evolved to handle large
products and teams. Hard to tailor
down to small projects.

Criticality Untested on safety-critical products.
Potential difficultiies with simple design
and lack of documentation.

Methods evolved to handle highly
critical products. Hard to tailor
down to low-criticality products.

Dynamis
m

Simple design and continuous
refactoring are excellent for highly
dynamic environments, but a source of
potentially expensive rework for highly
stable environments.

Detailed plans and Big Design Up
Front excellent for highly stable
environment, but a source of
expensive rework for highly
dynamic environments.

Personnel Requires continuous presence of a
critical mass of scarce Cockburn Level 2
or 3 experts. Risky to use non-agile
Level 1B people.

Needs a critical mass of scarce
Cockburn Level 2 and 3 experts
during project definition, but can
work with fewer later in the
project—unless the environment
is highly dynamic. Can usually
accommodate some Level 1B
people.

Culture Thrives in a culture where people feel
comfortable and empowered by having
many degrees of freedom.

Thrives in a culture where people
feel comfortable and empowered
by having their roles defined by
clear policies and procedures.

For example, a disciplined project with 15% Level 2 and 3 people and 40% Level

1B people would initially use more than 15% Level 2 and 3 people to plan the project,
but reduce the number thereafter. An agile project would have everybody working
full-time, and the 15% Level 2 and 3s would be swamped trying to mentor the 40%
Level 1Bs and the remaining Level 1As while trying to get their own work done as
well.

By rating a project along each of the five axes, you can visibly evaluate its home-
ground relationships. If all the ratings are near the center, you are in agile method
territory. If they are at the periphery, you will best succeed with a disciplined
approach. If you are mostly in one or the other, you need to treat the exceptions as
sources of risk and devise risk management approaches to address them.

3 A Stepwise Approach for Balancing Agility and Discipline

The steps below provide a simple recipe for balancing agility and discipline. Be sure,
however, that you perform them in consultation with your key stakeholders.
1. Use Figure 1 to assess where your projects currently are with respect to the 5 key

axes. If you have different organizations with different profiles, make separate
assessments. Also, assess the likely changes in your organization’s profile over

Rebalancing Your Organization’s Agility and Discipline 5

the next 5 years. Key stakeholders to consult include your users, customers,
developers, suppliers, and strategic partners. Key future trends to consider
include:

• the increased pace of change and need for agility;
• the increased concern with software dependability and need for

discipline;
• your ability to satisfy your stakeholders’ evolving value propositions,

and to keep up with your toughest competitors;
• the increasing gap between supply and demand for Cockburn Level 2

and 3 people;
• your ability to cope with existing and emerging technical challenges

such as COTS integration, evolving Internet and Web capabilities,
distributed and mobile operations, agent coordination, and multi-mode
virtual collaboration.

Fig. 1. Dimensions Affecting Method Selection

2. If your assessments show you comfortably in the agile or disciplined home
ground now and in the future, your best strategy is to embark on a continuous
improvement effort to become the best you can at agility or discipline. To start
such an effort, the best next steps are:

a. Convene a representative working group of key stakeholders to assess
alternative agile or disciplined improvement approaches and recommend
an approach that best fits your situation.

Personnel

Dynamism
(% Requirements-change/month)

Culture
(% thriving on chaos vs. order)

Size
(# of personnel)

Criticality
(Loss due to impact of defects)

50
30

10
5

1

90

70

50

30

10

3

10

30

100

300

35

30

25

20

15

Essential
Funds Discretionary

Funds Comfort

Single
Life

Many
Lives

(% Level 1B) (% Level 2&3)

0

10

20

30

40

Agile

Disciplined

6 B. Boehm and R. Turner

b. Identify a reasonably tractable project, staffed with capable and
enthusiastic people, to be trained in using the approach, to apply it, and
to develop a plan for both dealing with problems encountered and for
extending the approach across the organization.

c. Execute the plan for extending the approach, always including
evaluation and feedback into continuous improvement during and after
each project.

3. If your Figure 1 assessments leave you mostly in the agile or disciplined home
grounds, but with some anomalies, treat the anomalies as risk factors to be added
to the charters of the groups performing steps 2a-c. Examples of potential
anomalies are:

a. Operating mostly in a disciplined home ground, but in an increasingly
dynamic marketplace.

b. Operating with agile fix-it-later developers with a growing, increasingly
enterprise-integrated and dependability-oriented user base.

c. Finding that your technical people are successfully adapting to
dynamism, but that your contract management people are not.

The first two anomalies can be addressed via risk assessment and managerial
techniques. The third would involve a more specialized approach to change
management in the contracting organization, but done with their collaboration
and the support of upper management.

If you have several organizations and several profiles, it is best to prioritize
your approach to work on those you believe are most important and likely to
achieve early successes. An exception is if there are projects in crisis that need,
and are receptive to, significant help and redirection.

4. If your Figure 1 assessments leave you with a highly mixed agility-discipline
profile, you need to develop an incremental mixed strategy to take you from your
current situation to the one you have chosen as a goal. For example, suppose that
your organization primarily does 50-person, essential-funds critical projects with
a mix of 20% Level 2 and 3 and 30% Level 1B personnel, with dynamism rapidly
increasing from 5%/month to 10%/month, a culture only 30% oriented toward
thriving on chaos, and a corporate steady-state goal to do all software internally.
This profile is shown in Figure 2.

In this case, you would like to function internally like the successful
ThoughtWorks discipline-extended XP lease management application team
described in [5, 6, 7]. If your staffing profile had 30% Level 2 and 3 and 10%
Level 1B people and your culture was 70% toward thriving on chaos, then you
could apply their recommended processes and succeed internally. Unfortunately,
your current staffing profile and culture make this infeasible.

One option for you would be to start on a long-term internal effort to upgrade
your staff and change your culture. But a quicker and less risky approach to
rebalance your agility and discipline would be to enter a strategic partnership
with an agile methods company to serve as near-term trainers, co-developers, and
mentors for your staff. This would expedite an initiative to bring as many of your
Level 1A people up to Level 2 as possible, and to bring as many of your Level
1B people up to Level 1A, at least in some niche area. The agile methods
company people could also serve as change agents in making your organizational
culture more thrive-on-chaos oriented.

Rebalancing Your Organization’s Agility and Discipline 7

In other cases, you might be a growing pure-agile company with a need to add
more discipline to accommodate larger and more critical products. You could
employ a similar strategy with a disciplined services company to rapidly
rebalance your operations, staff profile, and culture.

5. Your organization should complement whatever agile/disciplined balancing
options it pursues with sustained effort to improve your staff capabilities, value-
oriented capabilities, and communication capabilities. It is also important to track
your progress with respect to your plans and apply corrective action whenever
new opportunities come up. A good checklist for staff capabilities is the People
CMM [8]. A good starting point for value-oriented capabilities is Value-Based
Software Engineering [9, 10]. A good mechanism for tracking multi-criteria,
multi-initiative programs is the Balanced Scorecard technique [11].

Fig. 2. Sample Highly-mixed Profile

4 Summary

We have defined a set of criteria and a process for using them to help organizations
plan how to balance their agility and discipline. By looking at the current profile and
comparing it with the desired profile, a gap analysis can show the critical areas where
the organization needs to change. An illustrative example provides some specific
guidance on how to apply the process.

Personnel

Dynamism
(% Requirements-change/month)

Culture
(% thriving on chaos vs. order)

Size
(# of personnel)

Criticality
(Loss due to impact of defects)

50
30

10
5

1

90

70

50

30

10

3

10

30

100

300

35

30

25

20

15

Essential
Funds Discretionary

Funds Comfort

Single
Life

Many
Lives

(% Level 1B) (% Level 2&3)

0

10

20

30

40

8 B. Boehm and R. Turner

Biographies

Barry Boehm is the TRW Professor of Software Engineering at USC, and Director of
its Center for Software Engineering. He is a Fellow of the ACM, AIAA, IEEE, and
INCOSE, and a member of the National Academy of Engineering.

Richard Turner is an Adjunct Professor of Engineering Management at The George
Washington University, and Deputy Director for Science and Technology of the
Department of Defense Software Intensive Systems Office.

References

1. B. Boehm and R. Turner, Balancing Agility and Discipline: A Guide for the Perplexed,
Addison Wesley, 2003 (to appear).

2. B. Boehm, “Get Ready for Agile Methods, With Care,” IEEE Computer, January 2002, pp.
64–69.

3. A. Cockburn, Agile Software Development, Addison Wesley, 2002.
4. J. Highsmith, Agile Software Development Ecosystems, Addison Wesley, 2002.
5. A. Elssamadisy and G. Schalliol, “Recognizing and Responding to ‘Bad Smells’ in

Extreme Programming,” Proceedings, ICSE 2002, pp. 617–622.
6. A. Elssamadisy, “XP on a large Project: A Developer’s View,” in Extreme Programming

Perspectives (Marchesi et al. ed.), Addison Wesley, 2003, pp. 387–397.
7. G. Schalliol, “Challenges for Analysts on a Large XP Project,” in Extreme Programming

Perspectives (Marchesi et al. ed.), Addison Wesley, 2003, pp. 375–385
8. B. Curtis, W. Hefley, and S. Miller, The People Capability Maturity Model, Addison

Wesley, 2002.
9. B. Boehm, “Value-Based Software Engineering,” ACM Software Engineering Notes,

March, 2003.
10. B. Boehm and L. Huang, “Value-Based Software Engineering: A Case Study,” IEEE

Computer, March 2003, pp. 21–29.
11. R. Kaplan and D. Norton, The Balanced Scorecard: Translating Strategy into Action,

Harvard Business School Press, 1996.

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 9–17, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Extreme Programming: Growing a Team Horizontally

Carla Fredrick

Retek Inc.
950 Nicollet Mall

Minneapolis, MN 55403
612-587-2278

Carla.Fredrick@retek.com

Abstract. There is a great deal of skepticism surrounding whether or not the
Extreme Programming (XP) methodology has the potential to work for large-
scale projects. This paper highlights two software development projects that
used XP. The projects were similar but the implementation, decision-making
and functional requirements varied considerably. This paper documents the
advantages and disadvantages of XP experienced in these projects, highlights
how the process regarding team growth evolved and matured, and discusses the
lessons learned.

Keywords: extreme programming, XP, developers, hard fast rules,
requirements, horizontal, vertical, Junit tests, stories, shunted tests, lurk,
velocity, refactoring, persistence requirements, customer team

1 The First Project

The project team had two main objectives: 1) to make the client happy with a quality
product that fulfilled their requirements and 2) to pilot XP as a methodology that can
be implemented company-wide. To satisfy these objectives, developers were
dedicated to learning, analyzing, and changing the way we did things. We began with
strict procedural rules and stuck with them long enough determine whether or not they
were effective. When the team had questions, we consulted XP books and websites to
find potential solutions.

The first project had two clients with similar functionality in mind, but with
different requirements and business needs. We were given the challenge of building a
base product that would work for both of these clients. A couple of the main
differences between the two sets of requirements were: one had a custom database,
the other did not; one required minimal hits to the database, the other wanted real-
time accuracy. These are significant differences, but there were enough functional
similarities that some basic foundation code could be written first and used for both.

Some initial decisions were made regarding how to approach the different
databases and how to structure the code. One decision was to use Jakarta Struts and
JavaServer Pages™ for the user interface and to use a serialized database and mock
data to simulate a database until further persistence requirements were gathered from
both clients. These decisions allowed the team to be oriented horizontally along the
J2EE tiers of the application. Instead of coding a functional area vertically – from user
interface to database – we looked at the code of a specific tier, or layer. The J2EE 3-

10 C. Fredrick

tier architecture includes the user interface tier, the business logic or service tier, and
the database tier) [4][5]. Looking at the code this way allowed us to be able to focus
efforts on making similar code reusable and to implement patterns, or reusable
solutions to recurring problems [7].

1.1 Growing the Team

We needed to add developers to the team to handle the number of stories, or scenario-
based requirements, that were being introduced to the labs. There is a natural
slowdown in a project when new people are added. New developers are not familiar
with how things work and as prescribed by XP, they are required to pair with another
team member. With pairing, not only does the new team member have a learning
curve, but also someone else is slowed down in the process. However, there are
benefits to this training. With hands-on learning and one-on-one coaching, most new
people learn more quickly and accurately. Additionally, a new team member will ask
basic questions that may constructively challenge the way things are currently being
done.

We alleviated some of the time that a new developer might take from the lab by
first having them “lurk” for an iteration. While lurking, they could ask questions,
watch pairs work, and poke around in the code, but not do any actual work. This way,
when they started pairing with developers, they have some familiarity with the code.
This proved to be an effective way to get people started in the lab with less impact on
the current velocity, or how fast the team can program. [3]

How efficiently a lab writes code is directly related to the number of developers in
the lab. Velocity for a lab tends to top out at ten developers. It is thereby suggested
that a way to scale a team past ten is to break a team into two labs (five developers
each) and grow each lab up to ten developers [1]. We decided to create a new lab that
would be in charge of just database work. There were many reasons for this. One was
because of the already explicit and consistent interface that evolved from the
serialized database. Another reason was that we had two clients and needed twice as
many specific database accessors. Thirdly, the data access layer could take on the
performance requirements.

1.2 Integrating the Development

Our first attempt was to have a separate group that was closed off from development
in the lab. The initial lab was a good size and had good chemistry so nobody was
taken from this lab to staff the new lab. This approach did not alleviate any work from
the development team. Though, the Java developers were not required to write SQL,
they now had to communicate every requirement change to the new team. There was
too much room for error, so some adjustments were made. Developers from the initial
lab were moved into the new database lab. So the new lab had both SQL-fluent
people and Java-fluent people where neither was fluent in the other’s skill set. By
pairing, we hoped that each other’s strengths would pull the code in a positive
direction. In theory, this is a great idea because as time went on, the SQL people
would learn Java and the Java people would learn more SQL. In the reality of our

Extreme Programming: Growing a Team Horizontally 11

project, the two groups did not mesh well. Because of this, and a need for additional
help on gathering requirements, people were shuffled once more. The database lab
then consisted of all Java developers from the original lab. The SQL people would
help when needed to writing SQL but would work more on gathering requirements.
They also worked on testing the application. Because they had knowledge of how the
database worked, they were the right people to look at the application to make sure it
was selecting and updating data correctly.

The interface between the service layer and the database layer became a contract
that was crucial to maintaining good, reusable code. The interface forced all of the
business requirements to be housed within the service layer, so both clients could use
the service code and plug into different data access layers. If any logic were allowed
into the database layer, it would have to be implemented twice, once for each client.

Separating the code also meant separating the tests. Tests that go against the
database take longer than tests that use serialized data. So, by separating the labs, the
service lab benefited by saving a few minutes every time the tests were run. Similarly,
the service lab would not be affected when the database was down for maintenance,
updates or table changes. The separation also gave all developers more physical space
in the lab and more importantly, it relieved some of the responsibilities from each lab.
Nobody in the service lab would have to worry about which tables to call, where
performance would be a problem, or which Java patterns to follow for the database
layer any more. Likewise, those tasks became the sole responsibility of the database
lab. This also means there is less to teach a new developer coming into the lab, so
they will become acclimated sooner.

It was a hard and fast physical and procedural separation between the labs and the
code. At the end of each business day, the service layer would package their code and
pass it to the database lab. The database team would not have access to modify the
packaged code at all. The following morning, the first task of the day for the database
lab was to resolve all of the conflicts the new code brought to the database code.
These conflicts were typically brought on by a change in the interface between the
tiers or layers. The service layer made the change and now the database code would
have to support it. The stories introduced by the client were complete once the
database layer finished implementing the code to support this interface. Upon a
story’s completion, the service code and database code were deployed to a testing
environment. The testers would test the application from front to back and report any
bugs in the system. The bug would be tracked down and resolved in the appropriate
lab.

Once this process was in place, things worked quite efficiently. Getting to that
point, however, was not a simple task. Each day the labs would write code that would
need to be synched up with the other lab the next day. To accomplish this, we wrote
scripts that would help integrate the two repositories of code.

1.3 Managing Client Needs

As development continued the two clients’ needs were drifting farther and farther
apart. With two clients, two sets of business requirements, two schedules, and
additional resources needed to fulfill demand from two clients, another new lab was
needed. This new lab was considered custom to a single client and worked on an

12 C. Fredrick

additional functional area that was not required by the other client. The new lab
however, still needed the changes that the initial lab was doing. To accommodate this,
the service lab continued to package code for the database team, the database team
would continue to package code for the testing team, but in addition they would
deploy the code to the custom team who would add functionality to the “base” code.

The process was both good and bad. Because the base service lab was the driving
force, they controlled everything and the other, more subsequent labs, could not
change the object modeling that the base lab was creating. The service lab benefited
because they did not care what the other labs were doing. The database lab and
custom lab, however, sometimes needed a change to happen in the service layer but
they didn’t have access. They would have to request it of the service lab. For people
that were used to being able to go in and make the changes they needed, this took
some getting used to. But, it was clear that the only way to make the code service
three different labs’ objectives was to have one lab responsible. The custom lab was
invisible to the base lab. This allowed the vertical separation to occur. In this case,
where the new functional area needed to remain completely separate from the rest of
the code, vertical separation makes sense. The custom lab was able to release the
product to the client without impacting the base lab. When the base lab’s work started
winding down, it made sense to combine the database and service/UI labs back into
one lab. The support people joined the single lab, to get a feel for how things are
done, help with the last iterations of work and to be comfortable taking over.

At our largest, we were 36 developers strong (6 of which were dedicated
performance people), with a customer and testing team of 15 members. Looking back,
the project was a success. There were a lot of growing pains, but overall we made
good decisions and at the end of the project, we had the process down and surprised
ourselves at the velocity we were able to achieve. But most importantly, the clients
were happy.

2 The Second Project

A new and bigger XP project had been underway for many months when our first
project came to an end. Their approach was different than ours because they had
different base requirements and a staff of 65. Only a handful of team members were
experienced Java developers and even fewer had XP experience. Their initial
approach started with four full labs that shared a common code repository. “Coaches”
would float between labs in an attempt to spread knowledge and to keep things
uniform. The practices of XP were heavily customized to resemble more traditional
methodologies; for example, pairing was optional, code was owned, and testing was
minimal.

The four labs were divided by functional area and each lab worked vertically. The
lab environment allowed for good communication for functional requirements but
little was discussed from a technical perspective. The requirements were maintained
within the lab but were not documented. Since everyone was in one room, the
communication could flow freely; however, with requirements traveling by word-of-
mouth, there was more room for error and inconsistency between technical
implementation and requirements among labs. Additionally, since requirements were
not documented, they started changing.

Extreme Programming: Growing a Team Horizontally 13

When five of us from the first project joined this project, it had been significantly
reduced in size (down to one lab of about 12). Things were not going well and the
client was not happy. The development team was using a variation of XP and all
communication had broken down. Because each team member was working
vertically, there was little communication between team members. New development
had completely stopped, and the team was focused on fixing bugs. The code was
difficult to read because it was a conglomeration of many different coding styles. No
rules had been enforced, so people had their user interface call the database, others
coded everything in a service class, and yet another wrote numerous classes that were
all identical with the exception of the title. Nobody seemed to talk to anybody else to
see if they could share code. If an existing object didn’t quite fit their needs, they
created a new one, or at times, changed the one that already existed, not bothering to
see if the change broke any body else’s code.

2.1 A New Lab

We joined the team by pairing with people, trying to get them to follow some of the
practices we found worthwhile from the previous project. It took us some time to get
our bearings and start making actual changes to the methodology, though. The first
step was to understand how willing the team was to change what they had been doing
for almost a year. There was definite support for change, but there was fear too.
People had grown comfortable in their silos of knowledge and were not necessarily
willing to let someone else touch what they had worked so hard on. In some
circumstances, people felt threatened when their decisions were questioned and
alternative approaches were suggested. However, the desire for change eventually
outweighed the fears and frustrations. With the push from management, we broke the
team into two labs, a database lab and a service/UI lab. We made pairing and test first
programming mandatory practices, and we tried to implement patterns within layers.

The biggest challenge was that the team did not have a hard separation between the
three layers of architecture. On the first project, the serialized database that made a
lab separation relatively easy to make. Building a serialized database is easy when
you start that way. However, when a year of development has not been serialized, it is
not feasible to retrofit this approach. The decision was made to use the FIAT (Factory
Interface Adaptor Test) Pattern. A pattern internally developed to “test in isolation”
(based of ObjectMentor’s Shunting pattern [8]). This refactoring was one that could
be done incrementally. Refactoring is a process of changing a software system in such
a way that it does not alter the external behavior of the code, yet improves its internal
structure [2]. When a functional area was being worked on, it would be refactored to
use the new test pattern instead of calling the database. If any old tests existed in the
area, they were recycled so that business requirements would not be lost.

The first project made a decisive separation in the code from the beginning. The
process of creating a packaged bundle of code from the service lab to the database lab
required a significant deal of overhead and maintaining completely separate code
repositories was deemed unnecessarily strict. So instead, the labs separated into
different rooms and the team reached an understanding that database people could
modify only database classes and nobody from the service/UI layer is allowed to
touch those classes. Within a couple of months, the database lab had refactored and

14 C. Fredrick

reworked the code to a state where additional work could be tasked out and completed
very efficiently. In fact, they were so efficient that they kept running out of work.

2.2 Additional Changes

The bulk of the work that needed to be completed was split between the UI and the
service areas. Since management continued to push more and more developers onto
the team, it made sense to split the service and UI into separate labs. The labs could
be broken up even further because there were two separate user interfaces being
developed. Because the database lab continued to be ahead of the game and sitting
idle from time to time, we decided to combine the service and database labs.

All of the change created additional problems. With many new faces and work
being cranked out at a pace faster than people were used to, stories were being
completed with missing requirements. Tasks were divvied out and people completed
them, but pieces were missing and not realized until the front end was in place and the
application could be tested from front to back. The story would then look complete
with lots of bugs when actually there were entire pieces of functionality missing.

Two processes were introduced to correct this. First a “design team” was defined.
This team consisted of the coaches from each lab. The design team is in charge of
tasking out the stories before they came into the lab and they would help track them
throughout development, similar to the “Team Coordination Layer” described by Ron
Crocker [6]. Any problems implementing the design would have to go through the
design team so that appropriate changes could be cascaded throughout the related
tasks and repercussions could be caught upfront and not as bugs later. Secondly,
cached data was introduced as a way to mock out the database side and test things out
fully through the service layer. This more front to back testing would assure that
significant things were not left out.

The process changes that have been implemented have helped grow the team to 40
developers and has enabled the team to post increasingly higher and higher velocity
each iteration. Changes are continually being made to try to produce the correct mix
to assure fast, quality production of code. A lot of process changes have enabled this
project to turn itself around. There are sure to be even more changes.

3 Lessons Learned

Between the two projects, we can see what worked well and what did not. It is our
goal to minimize mistakes in the future and use our experience to create a model of
XP that can scale and be successfully applied to many more projects. Most of the
people that were involved in both projects believe that XP is a good approach to
software development and hope to continue on projects that work in this fashion. To
do so we need to improve the process with the lessons we have learned.

Extreme Programming: Growing a Team Horizontally 15

3.1 Lesson 1: Horizontal Separation Is Faster

Separating labs horizontally creates better code and faster development than
separating the labs vertically. When developers code vertically, the team is weaker.
They become functional exerts. They are the only people who know that area and they
feel a strong connection to the code. The XP principle of “collective code ownership”
tends to be violated.

Additionally, if one group works solely on a functional area, good architecture and
code re-use are sacrificed. Working on a single functional area encourages greater
code complexity. If instead, the group works across all functional areas but focuses on
the user interface layer, all developers in that group will have exposure to each
functional area. Additionally all functional areas will look alike. It will be easier for
developers to come up to speed on a new area, because that area will feel just like
everything else. For example, all of the data access classes are written by one group of
people. Therefore, database specific utilities and patterns are created and used
throughout the code. This creates great uniformity in each layer, which make it easier
to read and implement new functionality.

Another plus when separating by architectural layers is that the scope is smaller per
layer and there are fewer patterns to understand. New developers can be productive
sooner. There is also an inherent division of skills between layers. Some developers’
strengths lie in object modeling, others in database and others in the user interface.
These skills can be harnessed and utilized when the project is separated this way.

Creating strict layers also gives the benefit of code reuse and flexibility. If we have
a requirement to have the application run against a different database, we can rewrite
the database layer with minimal effect on the rest of the application. Similarly, if a
more lightweight user interface is desired, we have the flexibility to change the UI
with little impact to the rest of the application.

3.2 Lesson 2: Pairing Works

When the team is not dedicated to pairing, the benefit of reuse, clean code, self-
documented code, and thorough Junit tests is lost. It is important to remember that the
principle of pairing came about because XP takes good software development
practices to the extreme. Code review creates good code therefore constant reviewing
(pairing) will create better code [3]. If this practice is dropped, even partially, the old
methodology of formal code reviews does not take its place. So no code review is
done and bad code more easily slips through the cracks.

Pairing enables a natural knowledge transfer. It is rewarding when someone comes
into our lab and asks who can answer a question about a certain functional area. We
all can. When code is written this way, even the most complex business problems can
be easily figured out. Additionally, pairing leads to less code ownership. Code
ownership makes people defensive – people take it personally when someone
suggests their code does not work. When developers are less connected to the code,
they are willing to admit when something could be improved. When code is written
well, the entire lab can take pride in knowing they’ve created something that is easy
to use and works well.

16 C. Fredrick

3.3 Lesson 3: Hard and Fast Rules Are Good

On the first project we implemented a practice that we called the “3 times” rule [2]. If
a change did not fit into a pattern quite right, we noted it as an exceptional case,
talked about it, and worked it into the pattern. The second time we came across
something that did not fit, we again, continued using the pattern. The third time
however, is reason to refactor. By this time it was clear what the exceptional cases
were and we had three examples to use as we worked on the change in the pattern.
The “3 times” rule gave our patterns and decisions a chance, while not ruling out the
possibility of change. Additionally, after having used the patterns, the team has a
clearer picture of the benefits and shortfalls of the pattern.

Strict rules prevent teams from letting their code fall down a “slippery slope”. The
second project experienced this by not enforcing pairing. There were many rules
outlined for the team, but because pairing was optional, developers became functional
experts with a high level of code ownership. Moreover, since many of the developers
were not experienced Java or XP developers, they were unable to follow the rest of
the rules outlined for the project without a pair.

3.4 Lesson 4: Design Team Promotes Connectivity within between Labs

XP labs have shown best the productivity in labs that have no more than 12-15
developers. A lab works as a single unit and communication between the team
members needs to be complete and thorough. When a group gets too large,
communication falls apart. Having a team of people that help organize the design and
the tasks helps regulate the work getting done and creates a point person to which
concerns and problems can be raised. This point person works within the design team
to make forward moving decisions. Since all of the design decisions are made by a
small group of people, they are made uniformly and with every layer in mind.

4 Conclusion

Our first project grew organically with XP in mind. It separated labs horizontally
when they got too big. The developers were dedicated to pairing and following all of
the rules of XP. The first project was successful. The second project, started with a
larger team that was separated into labs by vertical slices. Pairing was optional and
the other rules were not enforced. The second project is currently implementing a
more true XP methodology into the project and shifting the vertical focus to a
horizontal one. The project is trying to get on the XP course but it is still suffering
from the mistakes made by going too fast without solid rules or utilizing downtime to
make the process more efficient.

XP is an evolving methodology. It has the potential to become the methodology of
the software industry. One of the only things holding it back is the question of
whether or not it can scale. We are currently gathering data with regards to if and how
it can scale to a sizable project. Hopefully this paper will serve as a tool that others
can use to prove its ability to do so.

Extreme Programming: Growing a Team Horizontally 17

5 Information and Questions

For more information or comments about the paper or the FIAT pattern, contact
Carla.Fredrick@retek.com.

Acknowledgements. This paper reflects the work and efforts of everyone involved on
the projects. Additional contributions by Tani Kalweit, Tom Cox, Marc Carlson, and
Chris Fredrick.

References

1. Beck, K., Fowler, M. Planning Extreme Programming (2000), 118.
2. Beck, K. Extreme Programming Explained:Embrace Change (2000), 21. 90
3. Bond, M. SamsTeach Yourself J2EE in 21 Days. (2002), 16.
4. Broemmer, D., J2EE Best Practices (2003), 11.
5. Crocker, Ron. “The 5 Reasons XP Can’t Scale and What to do About Them.” XP

Conference May 20–23, 2001 Villasimius, Italy.
6. Fowler, M., et al. Refactoring Improving the Design of Existing Code (xvi, 58).
7. Grand, M. Patterns in Java: Volume 2 (1999), 1.
8. Meade, E., Website: http://www.objectmentor.com

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 18–24, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Agile Planning with a Multi-customer, Multi-project,
Multi-discipline Team

Karl Scotland

Development Team Leader, BBC Interactive
karl.scotland@bbc.co.uk

Abstract. Most XP literature refers to teams that work on a single project, over
a number of months, for a single customer using a narrow range of technical
disciplines. This paper describes the agile planning techniques used by a team
that works on multiple projects, for multiple customers, using a wide range of
multiple disciplines. The techniques described were inspired by the agile prac-
tices of XP and Scrum. A small case study of a project shows how the team is
able to collaborate with their customers to deliver maximum value under tight
conditions.

Keywords: Agile, XP, Scrum, Planning, Releases, Iterations, Stories, Wiki,
Interactive TV.

1 Introduction

The development team is a small group, currently seven strong, developing enhanced
TV (eTV) services for the BBC. The range of deliverables includes content entry
tools, content transformation processes, and Set Top Box (STB) applications. Services
are required to be compatible for broadcast in the UK on the digital satellite (DSat)
platform, and the digital terrestrial (DTT) platform.

1.1 Projects

The team works on a large number of very short projects, typically of a couple of
weeks in length. This means that the workload is unavoidably chaotic. The short time-
frame of each project means priorities must be robustly managed both within projects
and across them. In addition, there is little opportunity to get into a rhythm during a
project. The solution is to treat all projects as a single ongoing project.

A further complication is that the team works in a domain in which they have little
control over milestone dates. Some projects have absolutely immovable delivery
dates, such as a major sporting event like Wimbledon, while other projects have un-
known delivery dates, due to the nature of channel scheduling. In either case, they
must always be in a position to deliver something that is acceptable to broadcast. On
the DSat platform, services are also required to be tested by the platform operator.
Testing slots are limited, and must be booked eight weeks in advance, adding a fur-
ther constraint to planning.

Agile Planning with a Multi-customer, Multi-project, Multi-discipline Team 19

1.2 Customers

The large number of projects worked on naturally means that the team deals with a
variety of different customers. The majority of these customers are internal producers
- the people with editorial responsibility for creating the services. They are currently
located on the same floor as the technical team, and are hence always easily accessi-
ble.

Graphics designers and operational support engineers, and the technical team itself
are also considered to be customers on occasions, with requests for particular design
and navigation, deployment or strategic implementations. To manage the numerous
producers all vying for technical resource, a creative director is responsible for priori-
tizing work, and ensuring that the producers speak with one voice. This is a role com-
parable to the King in Ron Jeffries’ Petition the King metaphor [1].

Increasingly, the team is working with producers from other divisions within the
BBC, located at other sites. On order to manage the decrease in accessibility, an inter-
nal producer is usually appointed to be a ‘proxy’, representing the main producer, and
to provide a local point of contact. The main producer is also encouraged to be on-site
as often as is necessary to keep the communications and feedback as high as possible,
and to enable them to learn the complexities of the domain where appropriate.

1.3 Disciplines

The interactive TV domain requires the team to use a wide range of skills. These are
predominantly:
• OpenTV – an object oriented C based API used for DSat
• MHEG5 – best described as a cross between a markup language and assembly lan-

guage used for DTT
• Perl – used for content processing and transformation.
• HTML and related web languages – used for simple content entry and publishing

tools.
• C++ - used for more complex content entry and publishing tools.

This diverse range of skills, some of which are very specialized, means that maxi-
mizing the teams productivity can be challenging. There is a danger of being too de-
pendant on gurus, causing a bottleneck in development and a truck-factor1 of one. As
well as using agile planning techniques to manage this, other XP [2] practices such as
pair programming and open workspace are used in order to be able to deliver flexible
amounts of software across the different disciplines.

2 Release Planning

Release planning takes place three or four times a year as the culmination of commis-
sioning rounds. This is a process through which the various divisions of the BBC can
submit proposals for services that they would like the team to build. Over the course

1 The number of team members who have to be hit by a truck before the project is in crisis.

20 K. Scotland

of a day at most, these proposals are whittled down into a simple, high level, long
term plan, which is put together in Excel. This plan allows the blocking out of weeks
of work to different projects based on the project proposal, without worrying too
much about the fine details of the projects.

In order to help make the high level plan as accurate as possible, without any de-
tailed information, the work is split into three streams, based on a stream for each pair
of developers, and projects are split into the three primary disciplines; DTT, DSat and
Content. So a project which requires work across all three disciplines will use all three
streams, and hence the whole team, whereas a project which only requires work in
one discipline will only use one stream, and can be planned concurrently with another
project.

The high level plan is also a useful place to make a note of any key dates, such a
transmission, or test, along with other small pieces of work.

Fig. 1. Example Long Term (Release) Plan

The long term plan is reviewed against the actual progress at the start of weekly it-
erations, and a project’s scope may be adjusted in order to keep it on track, or the time
allocated to a project may be adjusted in order to allow the necessary functionality to
be completed. In the latter case, it is very easy to see the impact of a project slipping,
because subsequent projects must also moved and adjusted in order to ensure all the
work still fits in.

Agile Planning with a Multi-customer, Multi-project, Multi-discipline Team 21

3 Iteration Planning

A ‘provisional’ line on the long term plan marks the point up until which the team has
planned projects in more detail. As each project approaches its planned build time, it
is broken down into stories, and each story is estimated using a simple scale of 1 to 5,
representing its relative size. A 1 point story would be something small, simple and
low risk, such as configuration work, and a 5 point story would be something large,
difficult and high risk such as a use of complex new technology.

The team has tracked its velocity by recording the total number of points for stories
completed during the weekly iterations, and charting in Excel the moving average
trend of the average points completed over the last 4 weeks. The velocity trend is used
as a guide to how many stories can be planned into the available time.

While some on the XP mailing list [3] have recommended against charting a veloc-
ity average, as opposed to a strict use of Yesterday’s Weather, the team’s experience
is that such short iterations lead to an unstable velocity, as shown in Fig. 2. While a
review of stories and estimates should lead to an improvement in estimation and
minimize this effect, the use of a trend provides the more stable indication of velocity
which is essential for accurate future iteration planning, while still allowing the rapid
feedback of one week iterations. It can also be seen that the trend line in Fig. 2 still
shows a decrease in velocity, highlighting a possible problem with the process some-
where.

4 Tracking

Once projects have been broken down into user stories, estimated by the technical
team, and prioritized into iterations with the producers, their progress is tracked using
a wiki [4]. A simple hierarchical structure is used, with an overall projects page,
which links to page for each project, each of which links to a page for each discipline
(DSat, DTT or Content), which finally link to a page for each story. Where stories are
duplicated across the different disciplines, a common page is shared.

eTV Velocity

0

5

10

15

20

25

30

35

40

45

09
-S

ep
-0

2

16
-S

ep
-0

2

23
-S

ep
-0

2

30
-S

ep
-0

2

07
-O

ct-
02

14
-O

ct-
02

21
-O

ct-
02

28
-O

ct-
02

04
-N

ov
-0

2

11
-N

ov
-0

2

18
-N

ov
-0

2

25
-N

ov
-0

2

02
-D

ec
-0

2

09
-D

ec
-0

2

16
-D

ec
-0

2

23
-D

ec
-0

2

30
-D

ec
-0

2

06
-J

an
-0

3

13
-J

an
-0

3

20
-J

an
-0

3

27
-J

an
-0

3

03
-F

eb
-0

3

10
-F

eb
-0

3

17
-F

eb
-0

3

24
-F

eb
-0

3

03
-M

ar
-0

3

10
-M

ar
-0

3

17
-M

ar
-0

3

24
-M

ar
-0

3

31
-M

ar
-0

3

07
-A

pr
-0

3

14
-A

pr
-0

3

21
-A

pr
-0

3

28
-A

pr
-0

3

05
-M

ay
-0

3

Week Commencing

P
oi

n
ts

 C
o

m
p

le
te

d

Series1

4 Wk Trend

Fig. 2. Velocity Chart

22 K. Scotland

Fig. 3. Wiki structure

Fig. 4. Wiki Iterations Page

Figure 3 shows this structure for a project “My Example”. It also includes a sepa-
rate page that is used for the iteration plan. This page, an example of which is in fig-
ure 4, groups the links to the story pages according to which weekly iteration they
have been planned into.

The wiki allows details and decisions about the projects and their stories to be eas-
ily documented. As the weeks progress, the various pages can be quickly updated to
reflect current status, and they are easily available for viewing by the whole team.

Each week, that iteration’s story cards are also put up on the wall to highlight the
current work, and to provide a focus for regular stand-up meetings. These are not al-

Agile Planning with a Multi-customer, Multi-project, Multi-discipline Team 23

ways every day, in the same location, (and chairs are allowed), and are therefore not
as strict as Scrum [5] advocates. However, they facilitate the necessary level of com-
munication to track progress on a daily basis.

5 Example

A recent project had been allocated two of the three streams for five weeks in the long
term plan. The team’s velocity at the time was 17.5, so to simplify the numbers it was
rounded up to 18. This meant that within a weekly iteration, each of the three streams
could represent six points of work. Therefore, two streams over five weeks repre-
sented 60 (2 x 5 x 6) points. Over the course of a few days the editorial proposition
was discussed with the producer, and stories were written and then estimated. When
the actual planning began, the total number of stories was 114, adding up to 228
points, which was significantly over budget!

The first task was to cut down the proposition to include only those stories that
were absolutely essential. In other words, if they weren’t included, the service would
not be worth launching. This reduced the points total to around 120 – still double
what we had time for.

The next step was to discuss the possibility of having extra time with the creative
director. He identified two small projects which were very low priority, and could be
dropped completely, freeing up a further stream for two weeks i.e. 12 (1 x 2 x 6)
points. This increased the budget to 72 – still lower than required.

At this point the situation seemed pretty hopeless, and it was obvious that some-
thing drastic was going to have to be done. After a short break for lunch, the producer
was able to come up with a simplified proposition, for which new stories were quickly
written and estimated. This resulted in a new total of 31 stories, totaling 63 points,
giving some room to play with as the project progressed. It was decided that this was
enough to begin development with, and progress would be monitored before deciding
on possible extra stories.

Over the course of the project a number of further new stories came out, as func-
tionality was completed and the producer reviewed and tested the developing service.
Some of these were prioritized and implemented, while others could not be com-
pleted. Some of the original stories were also reprioritized and implemented. The final
delivery consisted of 45 stories, totaling 84 points.

Table 1. Summary of project stories

 Implemented Not Implemented

Original 35 (72 points) 79 (156 points)

New 10 (12 points) 5 (10 points)

While these numbers are inherently crude due to granularity of the story points,
they give a good indication of by how much the final project was reduced from the
original aspiration. Within a very short space of time, the group was able to negotiate
a plan that was satisfactory to everyone. It was realistic and achievable by the techni-

24 K. Scotland

cal team, and met the editorial needs of the producer. In fact, the final service con-
tained more functionality than originally planned, and the producer was extremely
happy with the service. In an email to the team, the creative director said, “It’s the
best. It’s absolutely fantastic!”

The planning process was not easy, (it was very intense), but the unanimous con-
sensus was that it was better to go through the pain at the start of the project when it
could be controlled and minimized rather than the end.

6 Conclusion

The team is able to manage the various complexities of multiple customers, projects
and disciplines by working in a way which allows them to treat the work as if there
were only a single customer, project and discipline. Thus they work on a single pool
of stories which are shared by all the different customers, projects and disciplines.

The practices allow the editorial team to juggle all the projects, prioritizing and
balancing the scope of each to maximize value for the business. At the same time, in-
dividual producers are allowed the freedom to fine-tune their propositions, either be-
cause of resource or time constraints or because they have changed their mind.

In general, the process is “barely sufficient” [6], and the plans are seen as “hy-
potheses to be tested rather than predictions to be realized” [7] so they are constantly
adjusted to reflect reality.

Acknowledgements. Thanks to everyone involved in the eTV team at the BBC for
being willing to adopt agile practices. Thanks also to Humphrey Lau and everyone
else who has reviewed this paper.

Biography

Karl has been developing Interactive TV services for the BBC since October 1999,
and has led the eTV technical team since May 2002. He has been promoting agile
methods since discovered XP in late 2000.

References

1. Beck, K.: Extreme Programming Explained. Addison-Wesley, 2000.
2. Jeffries, R.: Petition the King, http://www.xprogramming.com/xpmag/PetitionTheKing.htm
3. Extreme Programming Yahoo Group. http://groups.yahoo.com/group/extremeprogramming/
4. Leuf, B. and Cunningham, W.: The Wiki Way. Addison-Wesley, 2001.
5. Beedle, M. and Schwaber, K.: Agile Software Development with Scrum. Prentice Hall,

2001.
6. Cockburn, A.: Agile Software Development: Software Through People. Addison-Wesley,

2002.
7. Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley, 2002.

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 25–34, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A Tail of Two Projects: How ‘Agile’ Methods Succeeded
after ‘Traditional’ Methods Had Failed in a Critical

System-Development Project

Robert Bedoll

The Boeing Company, Renton, Washington
robert.f.bedoll@boeing.com

Abstract. This paper will contrast two software development projects – both
addressing exactly the same problem – in the Boeing Commercial Airplane
Company Electrical design organization. The first project used a traditional
‘heavy-weight’ software development methodology, invested 60 man-years,
and failed. The second project used a agile development approach, invested four
man-years, and continues to be dramatically successful. Both projects addressed
a paradigm-shift in the business process used to design and integrate electrical
wiring in Boeing airplanes. This paper presents a recipe for success for an agile
project in a non-agile world. It covers specific real-world lessons learned, and
discusses the circumstances under which agile methods can be exceptionally
effective and successful. It also points out where agile is not effective, or where
the agile advantage can become a disadvantage.

1 The Environment

The Boeing Commercial Airplane Company (BCA) is a division of The Boeing
Company. BCA produces the Boeing family of airplanes: the narrow body 737 and
757, and the wide body 747, 767, and 777. BCA employs 78,000 people, of whom
about 10,000 are engineers. BCA Information Services is a 5,000-employee group
within BCA that provides software in support of the engineering and manufacturing
of Boeing airplanes. Within that group, my organization develops and supports
software specifically for the Electrical Wiring Engineering organizations.

1.1 Software Development within BCA

In the early 1990s, the BCA IS division standardized on a software development
methodology called P-Plus, which it purchased from DMR System, Inc. P+ is a
‘heavyweight’ development methodology; it calls for six development phases
(Opportunity Evaluation, Preliminary Analysis, System Analysis, Functional Design,
Construction, Implementation) with up to 108 different document deliverables. To
support this process, Boeing trained and developed an infrastructure of P+ coaches;
major projects were each assigned a P+ coach, whose job was to guide the
development team through the P+ process and ensure that the proper deliverables
were produced.

26 R. Bedoll

1.2 The Engineering Problem – Airplane Wiring

In 1995, a project was begun in BCA to develop a new generation of software to
support the design and manufacturing of airplane wiring. Although designing and
tracking wiring for an airplane seems on the face of it to be a relatively straight-
forward process, in reality it can be a task of daunting complexity due to the sheer
volume of wiring, the amount of variability between airplanes, and the manufacturing
cycle. A small plane like a 757 will have over 50,000 wires, grouped into about 900
wire bundles, connecting about 12,000 pieces of equipment. Because of the number of
different options available for an airplane, the different requirements of each airline,
and the difficulties in coordinating thousands of different suppliers, each and every
airplane has different wiring and connectors – sometimes slightly different,
sometimes dramatically different. Hence there is a group of about 1000 engineers
whose sole job is to engineer and reengineer the electrical equipment and wiring for
each and every airplane – and the build rate can be up to 2 airplanes per day.

Also in 1995, Boeing launched a major computing initiative designed to reinvent
the way airplanes were specified and manufactured. The program was named DCAC,
for Define and Control Airplane Configuration. Its central tenant was that an airplane
could be designed and configured using ‘options’, much like a car, where air-
conditioning and four-wheel drive are options that, once specified, automatically pull
in a pre-designed set of parts and wiring. (Of course, a car might have two dozen
options, where an airplane has two thousand options).

2 The ‘Heavy-Weight Development’ Story

In 1996, my organization launched a project to design and develop a software system
that would bring the notion of option driven design to Electrical Wiring and
Equipment. The basic concept was simple and straightforward – every wire on an
airplane model would be assigned an option expression (such as ‘Option A and
Option B and not Option C). When an airline ordered an airplane, a list of several
hundred options would be assembled and fed into the program. The option expression
for each wire would be evaluated against the customer option list, and the program
would determine what wires were required, group them into bundles, and upload the
whole collection to the existing IMS-based WIRS system, which tracks airplane
wiring for engineering and manufacturing.

2.1 The Project

Although no business process yet existed to support this, a full-scale development
project was started, with a staff of 20 (architects, programmers, DBAs, designers). A
standard three-tier architecture was chosen: an Oracle database backend (running on
Sequents), application server code written in C++ and Motif (running on HP servers),
and the desktops running X-windows. The traditional P+ methodology was followed.
Dozens of documents, and thousands of pages, were produced, reviewed, and
approved by the customer. User Interface designs were captured in documents that
often ran into a hundred pages for one screen.

A Tail of Two Projects 27

The development cycle went something like this:
Requirements definition (1 month) -> Design (3 months) -> Coding (4 months) ->
Functional testing (2 months) -> Start over with the next release.

By the time the release got through functional testing, it had been ten months since
the original requirements definition started; by that time the users had changed their
mind about what they wanted the system to do, and so the process started over again,
without even getting into real end-user testing.

After persisting in this cycle for three years (about 8 releases, with overlap between
releases), the customer finally deemed that there was enough functionality to begin
end-user testing. User testing went on for 2 months, at the end of which the users
declared that both the software system and the business process were unusable. At
that point, after investing sixty man-years, the project was essentially scrapped.

The project life cycle looked like this:
Start -> Develop for 3 years -> Test by end-users for 2 months -> Scrap it.

2.2 Lessons Learned

There are a number of lessons that are learned from such an activity. Although they
appear somewhat obvious, they bear repeating:

• Unproven Business Process:
Massive development efforts based on an unproven business process are a waste
of time, effort, and money.

• One-Year Development Cycles:
A process that requires close to a year between the start of the requirements
definition and the emergence of finished code is almost certain to be ‘overtaken
by events’. No matter how carefully the original analysis is done, or how detailed
the requirements documents are, or how many approval signatures are obtained, it
is still the case that after a year has passed, many of the assumptions on which the
original analysis were based have changed, or the user champions or management
has moved on, or something else has changed to significantly alter the original
requirements.

• Paper Documents:
Paper documents are a terrible way to get customer buy-off on complex GUI
designs. If the documents are not detailed, the user gets insufficient feel for how
the application will work. If the documents sufficiently detailed, the customers
will not make it past the first few pages before their eyes glaze over. Getting
customer ‘approval’ will give you ‘contractual’ protection – you can always tell
the user that you built what they approved – but it will not force them to accept a
system that they think is unusable.

• Traditional Development Tools:
C++ and Motif, even with GUI-design toolkits, are too complex and cumbersome
to provide rapid customer feedback on new designs. Once a paper design was
finished, approved, and turned over to a programmer, it would often take them
one to two months to produce a working version of that design. Only then could a
customer representative actually play with the design and determine if it was

28 R. Bedoll

workable (and this was often six months after the requirements activity started).
Naturally, this led to a lot of design rework and revision, and caused the
development and testing cycle to draw out even more.

• Delayed End-User Testing:
Our customers did not want to let the end users test the software until at least
80% of the final required functionality was there. Because of this, we did six
major releases, almost three years of work, before end-users were allowed to sit-
down with the software and test it against business processes. It wasn’t until that
time that the end-users declared that the system, and the processes, were
unworkable.

3 The Next Attempt

Two years later, in early 2000, the 757 airplane model decided to take another try at
doing ‘design-by-option’. This time, the approach was slightly different. The goal was
to take as much of the wiring in the airplane as possible, and make it ‘standard’,
which meant it would be on every 757, regardless of the customer. The reduction in
variability would save a tremendous amount of engineering and manufacturing time.
Wiring that couldn’t be declared standard would be assigned to an option or option
expression. Wiring would then be moved between wire bundles to create as many
standard, non-changing wire bundles as possible, and to isolate all changes to a small
number of highly variable bundles. The involved organizations were 757 Wire Design
and 757 Wire Install, together about 60 engineers. The challenges to achieving this
were significant:

• Engineering Challenge:
Wire Design and Wire Install had to evaluate 50,000 wires, determine which
were stable and which varied (and why), and assign these wires to 800 new wire
bundles. At the same time, they were modifying the wiring so that most of it
could be used on either the short or the long versions of the 757.

• Schedule Challenge:
Because of delivery commitments to customers, 757 was given a schedule of only
about 5 months, significantly less time than would normally be required.

• Business Process Challenge:
Since this activity had never been done before, the engineering business process
was uncertain, fluid, and untried.

3.1 The IS Challenge

The legacy IMS-based system that supported the engineering and manufacturing of
wiring could not be modified to accommodate the additional information required, so
our organization was asked to come up with a tool to support this effort. IS faced
challenges similar to Wire Design and Wire Install:

A Tail of Two Projects 29

• Schedule:
A computing tool had to be ready for 757 to begin using within two months.

• Budget:
Budget was only available for 2 – 3 persons.

• Process and Tool Evolution:
Because the business process was uncertain, the tool had to be able to evolve to
match the evolving process.

• Production Use:
The 757 engineers would be using the tool for actual production airplane design
work from day 1 – there would be no 2-month ‘system test’.

3.2 The IS Requirements

The tool requirements looked something like this:

• A database-driven tool that would allow 757 to view, analyze, classify, and
modify all 50,000 wires and 15,000 equipments on a 757.

• Accessible to sixty engineers in multiple organizations, in multiple geographic
locations, on multiple platforms (PCs and Unix workstations).

• A modern GUI.
• Sophisticated features for

• Managing wiring content by option expressions (e.g. option A or B and
not C)

• Splitting wiring bundles into multiple bundles
• Making mass changes and alterations
• Support for internal ‘releases’ to indicate that a design was ‘complete’.
• Reports comparable to those generated by the current legacy IMS system

(about 20 reports)
• Ability to initialize the tool from data in the legacy system
• Ability to upload finished data back into the legacy system

4 Our Agile Approach

Based on the failure of the traditional approach with the previous project, it was
obvious that the same approach would not work for this problem. The same customer
problems existed that had led to previous failure, most notably a fluid and evolving
business process (uncertain requirements). Furthermore, neither the schedule nor the
budget would support a traditional approach. Therefore, we decided to try an
‘experimental’ agile approach to determine its viability for a real production problem.
We adopted the following principles:
• Rapid prototyping of designs, with immediate customer feedback
• Continuous involvement of the customer

30 R. Bedoll

• Weekly production releases: Follow our standard development cycle
(requirements – design – code – test – release) but compress it from formal
releases every three months to formal releases every week.

• Start simple and keep it simple
• Evolve the tool to follow the evolving business process
• Provide a one to three week cycle time for new feature introduction
• Maintain a small development team
• Produce abbreviated versions of our standard design documents. Let the

prototyping drive the design documentation.
• Retain our SEI (Software Engineering Institute) Level 2 rating.

4.1 Implementation

We implemented those principles as follows:

Rapid Prototyping: After spending several months using Microsoft Access and
Visual Basic to do prototypes, we chose them as our prototyping and development
tool. Even though we were primarily an Oracle, Java, and C++ shop, we found that
new features could be prototyped in Access in less than a day, and we could get user
feedback on actual working code within 2 – 3 days, dramatically faster than using any
other language or tool.

Continuous Customer Involvement: We had a full-time customer liaison, who
spend half his time with the end users and half with the development team. We did
weekly user training and weekly user and management reviews. This was helped by
the fact that the customer really needed the tool – there was no way for them to do the
job they were being asked to do, in the timeframe they were given, without a
computing tool.

Weekly Formal Releases: Because we are an SEI Level 2 organization, we needed to
continue to follow our formal, documented processes. We did this by compressing
and overlapping all steps in the process, with minimal emphasis on formal approval
signatures. We documented this compressed process in a separate development
process document for this project. Each release was limited to a small, incremental
increase in functionality. We tried to stay one step ahead of the business process, and
implement features just as they were needed. (Typical features would be specific
reports, the addition of new database attributes, or advanced capabilities for changing
an attribute like wire gauge across a group of wires). This lead to ‘just-in-time’
training, and ‘just-in-time’ feature introduction. Complex features were introduced
incrementally.

Start Simple. Keep it Simple: We started with only a simple data structure (less than
two dozen data tables) and less than 1000 lines of VB. We quickly – and relentlessly
– evolved the application, but never made it more complex than it needed to be to
support the current business process.

Evolve the Tool to Follow the Business Process: Each week we added functionality
to support the evolving process. When the process changed, we changed the tool.

A Tail of Two Projects 31

Because we took small steps, the amount of rework (throw-away and redo) was
limited.

Small Development Team: We limited the team to three developers and one half-
time tester. This reduced the documentation requirement and allowed us to be nimble.

Prototype Drives the Design Documentation: Rather than do elaborate written GUI
designs, which take weeks or months, we did one or two-day prototypes, reviewed
them with the customer, and let them dictate the finished design.

4.2 The Customer Results

Our development activity began in earnest in August of 2000 (when funding was
finally approved). End users began using the tool in mid-September, after only about
6 week. Usage grew to about sixty users (24 simultaneous users) by February 2001.

While the tool evolved and grew, the users were using it to redesign the wiring on
the 757. They did all their redesign using the tool, making about 80% of the airplane
wiring standard on every airplane, and determining what airplane minor-model or
customer option controlled the rest of the wiring. They then used the tool to configure
the wiring for a new airplane, and uploaded the wiring of the entire airplane to the
legacy IMS-based WIRS system, which feeds the data to manufacturing. Since then,
the customer has used the tool to design and release wiring for several new minor
model designs and four new customers.

In the 18 months of use, we have had no unplanned downtime, outages, or database
failures.

Because we were able to work closely with the customer and respond rapidly to
their changing requirements, and because the tool proved to be so stable, the customer
confidence and satisfaction remained high. Customer management says they could not
have succeeded without the tool.

We are now expanding usage of the tool to other Boeing airplane models (the 767,
777, and 767 Tanker).

4.3 The Tool Results

The Tool Evolution:
• The Tool began production on a shared file server in September 2000, with about

six users. Written entirely in Microsoft ACCESS, it had only about 24 tables and
1000 lines of Visual Basic, but it was enough to get the users started.

• The tool steadily grew to sixty tables and 45,000 lines of Visual Basic over the
course of a year. It had about sixty different users, with a peak user load of about
24.

• After a year, in September 2001, the ACCESS database was moved from a file
server to an SQL Server backend. This was done to improve performance under
heavy user load. The tool itself – the font-end – remained in ACCESS and VB.
Currently the tool consists of 88 tables and 60,000 lines of VB.

32 R. Bedoll

• The tool was interfaced to the legacy IMS-based systems for wiring configuration
control, and for sending data to manufacturing. (The interface consists of
database feeds and 3270 emulation).

• The Development team has remained at two to three developers and a half-time
tester.

• By 2003 the tool had grown to over 100,000 lines of VB, with a VISIO graphics
engine. The tool is in use by 5 different wire design organizations within Boeing.

• The amazing thing is that we have yet to encounter a significant Access, VB, or
SQL Server problem. (Though using an SQL Server backend does slow
development of new features, and adds some unpleasant challenges).

5 Ingredients for Success

Evolving a tool while the customer is using it for production work, and releasing new
features on a weekly basis, is a lot like building a car while driving it down the road at
60 mph. And yet, the whole process was highly successful – this goes dramatically
against the established doctrine that development projects for critical production
systems requires years of careful planning, meticulous design documentation and
review, and many months of rigorous user testing. (Having been in this business for
over thirty years, had I not been there myself I would have said it could not be done!)
So a good question is, why can we do this now when we couldn’t do it in the past?

5.1 Key Factors

Complete, Dedicated and Willing Involvement of the ‘Customer’ and End Users.
Our customer liaison spent half his time with us, and half with the end users. This
kept the development team and the customers completely in sync. It also maintained
customer confidence on those occasions when we missed feature delivery dates.

Users Were Eager for Tools. Given the engineering tasks and schedule, and the
existing legacy systems, the users needed the tools, so there was very strong customer
‘pull’. This also meant that the users would temporarily put up with features that were
not completely polished and ‘complete’.

Robust and Solid Development and Prototyping Tools. ACCESS proved extremely
fast for prototyping and debugging, and amazingly solid for production use (much to
our surprise). For experienced and productive programmers, ACCESS/VB
development proved almost 10 times faster than C++/Motif, and twice as fast as Java.

Rapid Cycle Time, Small Weekly Steps, and Immediate Feedback. ACCESS and
VB allowed us to do things extremely quickly. For example, new reports and screens
were prototyped, demonstrated, reviewed, revised and released within 1-2 weeks.

Simplicity. A small development team allowed us to focus on the customer, and kept
process and communication concerns to a minimum. A small user community let us
interact directly and constantly with the end users, and prevented us from being pulled
in too many different directions. It also allowed us to release features which where not

A Tail of Two Projects 33

completely polished – the users would accept interim capabilities. A single airplane
model focus removed worries about having to deal with huge amounts of data, and
kept the problem within the technical capabilities of ACCESS. (As opposed to our
production Oracle database, which mirrors much of the data on the legacy IMS WIRS
system, and contains over 100 million rows of data).

5.2 The Limitations

There are limitations to what a project like this can achieve, and a ‘rapid’
development project can quickly turn into a ‘retarded’ development project if all the
right conditions do not remain.

Customer Involvement – As soon as customer involvement drops off (or our
customer liaison becomes too busy with other assignments), then rework increases
significantly because the development team goes down a wrong path for too long
before it gets a course correction.

Customer Need – As soon as the customer is not completely dependent on the tool,
then their threshold for tolerating incomplete features decreases dramatically.

Scalability – Once the user community outgrows the technical capability of the tool,
then significant rework is necessary to more to a more capable environment. We were
fortunately able to move the database backend to SQL Server, which provided a much
more scalable environment than ACCESS alone, and allowed us to preserve most of
the rapid development features of ACCESS as a front end. However, it took us
several months to move to SQL Server, and development and debugging is neither as
easy nor as fast as an all-ACCESS environment.

Complexity – Some features just cannot be done simply, and some require changes
throughout the application. (For example, when we added ‘configuration control and
management’ to wiring, the development cycle was four months, including a one-
month production freeze while we merged the constantly-changing production code
with the long-term development code).

5.3 Some Interesting Social-Political Issues

A successful agile project uncovers some very interesting ‘people’ issues.

ACCESS and VB as Toys. ACCESS and VB are seen by our C++ and Java
programmers as toys – not worthy of professional programmers. Several of our Java
programmers refused an assignment on this project, even though it had great customer
support, because they saw VB programming as being sent back to the minor leagues.
The reality is that it often is much easier to do things in VB and ACCESS, and for an
experienced programmer this translates directly into greatly increased productivity.

Customer Expectations. Since ACCESS and VB allowed us to give the users
significant features with a very rapid cycle time, their expectations have been raised,
and they now expect all features to be delivered immediately – and cheaply. Of
course, this is not always possible.

34 R. Bedoll

Customer View of IS. Many of our engineering organizations like to avoid dealing
with IS because of our formal and protracted development cycles. By being able to
respond to problems as quickly as engineering users, while at the same time applying
traditional professional programming processes – like configuration control and
formal testing and release cycles – we are moving this tool in areas that have shunned
our tools in the past.

6 Summary – Real–World Success vs. Real-World Failure

Contrasting the two development activities gives this brief summary of the differences
between success and failure.

Business Process:
Success: The tool evolves incrementally, along with the business process.
Failure: The process is build after the tool is done, or the tool is created to an
imagined business process.

Customer Involvement:
Success: Daily contact and hands-on evaluation of new-feature code by the end
users within days of requirements definition.
Failure: Monthly paper-design reviews, and hands-on feature evaluation by the end
users nine months after requirements.

Simplicity and Focus:
Success: A single group of sixty users; a single airplane program with a small set
of airplanes.
Failure: 2000 users, all five airplane programs with all airplanes past, present, and
future (several thousand planes).

Development Tools and Processes:
Success: ACCESS, Visual Basic, lean development processes (but still a formal
testing and release process)
Failure: C++, Motif, heavy-weight, paper-intensive development processes.

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 35–42, 2003.
© Springer-Verlag Berlin Heidelberg 2003

The Rules of the Game

Ken Auer1, Erik Meade2, and Gareth Reeves3

1 RoleModel Software, Inc.
5004 Rossmore Dr.

Fuquay-Varina, NC 27526 USA
+1 919 557 6352

ken.auer@rolemodelsoftware.com
2 Object Mentor, Inc.

565 Lakeview Parkway, Suite 135.
Vernon Hills, IL 60061-5757 USA

+1 847 573 1565
emeade@objectmentor.com

3 CSS LCC
175 West Jackson, Suite 400

Chicago, IL 60604, USA
+1 312 542 8520

reevesg@pobox.com

Abstract. This paper examines using rules to define Extreme Programming
(XP) as its values do not differentiate it from other Agile processes, and its prac-
tices are the path to XP.

1 Introduction

We will boldly assert the following truths:
• XP’s values make it Agile.
• XP’s practices do not define XP.

So, if it’s not the practices, what defines Extreme Programming (XP)?
We will briefly support these two assertions and then present a further assertion: XP is
defined by it’s rules. Finally, we present and discuss those rules.

2 XP & Values

We can say XP is an agile process because it shares the values defined in the Agile
Manifesto (http://www.agilealliance.org):

• Communication - Individuals and interactions over processes and tools
• Simplicity - Working software over comprehensive documentation
• Feedback - Customer collaboration over contract negotiation
• Courage - Responding to change over following a plan

36 K. Auer, E. Meade, and G. Reeves

XP’s values are the Agile Alliance values. SCRUM’s values are Agile Alliance val-
ues. XP and SCRUM share the same values, but what makes them different?

3 Defining XP

Defining XP by the practices has at least two problems.
Some practices are fuzzy in definition. For example, one team’s definition of having

a ’Customer on site’ can be vastly different from another’s. To complicate matters even
further, we have seen that it is possible for a team to be doing all of the XP practices
and yet still not be extreme. They can check off all of the practices, but they miss the
point of why they are doing them and have had no real social change in their environ-
ment. (We’ll elaborate more on this in our example at the end of section 6, “Bending
the Rules”).

Another problem with this approach is it's commonly understood you can be doing
XP without doing all of the practices. This was reinforced at XP Universe 2001 when
Kent Beck drew the analogy that practices are etudes. For those who are not familiar
with etude:

é·tude
a short musical composition for a solo instrument intended to develop a point of tech-
nique or to display the performer’s skill, but often played for its artistic merit

In this paradigm, the etudes (or practices) become the path to XP, they are not what
defines XP.

Many have suggested some practices are more important than others. Others have
proposed additional practices. If XP were defined by it's practices it is not clear when
something is or is not XP. If the list of official practices change, does something go
from being XP to not XP?

4 What about Rules?

What makes Baseball, Baseball (and not Basketball)?
It's not the values that make it baseball. You can have different values that motivate

you to play baseball. Ken values the intricacies of the game that can be leveraged by
an otherwise inferior athlete to beat his opponent. Ken's 5-year old son, Caleb, values
the fun of running around the bases. Their values are different. It's still baseball.

You can execute the practices almost perfectly like major-leaguers or poorly like
Caleb, who is still working on hitting the ball and knowing where/when to run. The
execution of practices can be vastly different. It's still baseball.

What is it that defines baseball? The rules.
Sometimes, rules clearly suggest a practice. A rule such as "You must arrive safely

at first base before being put out" would imply the practice of running to first base
after hitting the ball. Some rules offer wider constraints and suggest a variety of
strategies and/or practices for "playing better".

The Rules of the Game 37

We tend to think of Software Development as comparable to a game, as per Alistair
Cockburn’s premise[1]. So, the argument being put forth is that we should not define
XP merely by its values or its practices. We should define XP by its rules. Once the
rules are defined many of the practices used on XP projects would be suggested, while
still leaving room for a variety of strategies or practices that help us "play better".

5 The Rules of XP

So what are the Rules of XP? One of the main reasons the three authors have come
together from different organization is to validate that the rules apply across a variety
of organizations. Each of our organizations has different ways in which we apply these
rules. Each of us has been involved in multiple XP projects whose implementations of
XP have varied. Lastly, each of us has seen projects which attempted to do XP but fell
short in one way or another.

We’ve chosen to categorize the rules of XP in two parts: The Rules of Engagement
and the Rules of Play.

In baseball, the Rules of Engagement could be thought of as those that define the
size of the field, the size of each team, an inning, the number of innings, etc. The
game can’t begin without the Rules of Engagement. These rules are prominent when a
contest is arranged and begun, but they are also present throughout the contest. How-
ever, due to the intensity of the Rules of Play during the playing of the game the Rules
of Engagement become less prominent. Without them, you don’t have an identifiable
game. But they don’t really define the minute-by-minute activities, only a framework
under which those activities take place.

The Rules of Play happen within the Rules of Engagement. Together, they define
the minute-by-minute activities. During a game, the Rules of Engagement can often
seem a distant thought. The Rules of Play in baseball include "pitcher pitches a ball
toward home plate while batter is in the batter’s box...", and all the other rules deter-
mine what legally happens once the pitch is set in motion, a runner is on base, etc.
When a batter is having a ball coming at him at 90+ miles per hour, he is not giving
much thought to the number of innings in a game or what inning he is currently in. If
the pitch goes by him, he takes a step back and ponders those things the Rules of En-
gagement define. He steps back into the batter’s box and a subset of the Rules of Play
take over his mind.

So, in XP, we have the following Rules of Engagement:
E1. An XP team consists of a group of people dedicated to the production of a

software product. This product may or may not be a piece of a larger product.
There can be many roles on this team, but there must be at least a customer
and a developer role.

E2. The customer must set and continuously adjusts the objectives and priorities
based on estimates and other information provided by the developers or other
members of the team. Objectives are defined in terms of what not how.

38 K. Auer, E. Meade, and G. Reeves

E3. The customer is always available and supplies information on demand to as-
sist developers in forming estimates or supplying desired deliverables. The
customer is an integral part of the team.

E4. At any point, any member of the team must be able to measure the team’s
progress towards the customer’s objectives.

E5. The team must act as an Effective Social Network, this means:

1. Honest communication leading to continuous learning[2].

2. Minimal degrees of separation from what is needed by the team to make
progress and the people/resources that can meet those needs.

3. Alignment of authority and responsibility.

E6. Timeboxing is used to identify segments of development effort and each
segment is no more than one month in duration.

As we’ve developed these rules and have become familiar with other Agile proc-
esses, it seems that these rules may be very similar to those of other Agile processes.
We certainly do not believe we can assert this with authority, but we suspect they are
at least similar. However, whatever similarities they might possess in their Rules of
Engagement, XP seems to differentiate itself from other Agile processes in its Rules
of Play. The Rules of Play are simple, they happen within the Rules of Engagement:

P1. Work produced must be continuously validated through testing.

P2. Write unit tests first (before coding), Program in pairs (if there is more than
one developer on the team), and refactor code to meet Coding Rules (P3)
while working on current customer priorities.

P3. All code written for potential use in the software product must:

1. Pass all the unit tests (or not make any unit tests fail)

2. Clearly express every concept

3. Contains no duplication

4. Contains no superfluous parts

P4. Collective Ownership. Everybody has the authority and at least two people
have the understanding necessary to do any task.

It is these Rules of Play, which make XP fundamentally different than other Agile
processes. In fact, if we could name the whole process over, we would call it "Extreme
Software Development" and following the Rules of Play would be called "Extreme
Programming". (Then the development team could be Extreme Programming even if
the Rules of Engagement were not followed... which evidently appears to happen often
in the industry. Extreme Software Development would not occur until both sets of
Rules were followed).

The Rules of the Game 39

6 Bending the Rules

The rules listed above are the summarized version of the complete rules of XP. The
details of each of the rules are left out because this paper is meant to make a point
about the necessity of rules in general, and these rules in particular, not to be an ex-
haustive rulebook.

That said, some rules have more flexibility than others.
In baseball, you can bend the rules a little, and still arguably be playing baseball.

When Ken plays with his kids there are less than the regulation number of players and
he only gets one out per half-inning and they get three. It’s not "official" baseball. It is
actually a better game given the context. Get rid of the baseball, the bat, or the bases,
and it’s NOT baseball at all... not even "unofficial" baseball. The points at which it
goes from "official" baseball to "unofficial" baseball to "not" baseball is somewhat
fuzzy and could certainly be argued. However, it should be clear that when the context
of the game permits all the rules to be used, they should be. And when they can’t be, it
is certainly not "official" and something is lost.

By bending the rules, something can also be gained. In the context of Ken playing
with his kids, trying to play by all the rules would make the game uninteresting to the
kids. By bending the rules, they are engaged. As they grow, the real rules can be given
to them and they can grow in appreciation of them.

Given some context, some form of "unofficial XP" might be the right thing to do.
Often, however, adjustments can be made within the rules that may be "unorthodox"
while still "official XP". In baseball, you can legally play with five infielders and two
outfielders or, you might temporarily have a pitcher switch to the outfield.

We’ve tried to define the rules in a manner that identifies which rules are the most
flexible. For example:

Timeboxing (E6)
Timeboxing is important for providing feedback and also for forcing key decisions.
One, two, and three weeks have been vehemently argued by experienced XPers as the
ideal size of an iteration. Often these arguments are strongest given the constraints of
the environment in which one is working. There have been known cases where devel-
opers used short (e.g. one or two week) "internal iterations" and longer (e.g. four
weeks or three months) "external iterations" to publish results to an audience wider
than the team. However, we find it hard to imagine a situation where it was not vital to
have internal iterations of a month or less. Go over that, and you may still be doing
"unofficial" XP. Get rid of the idea of iterations altogether, and you’re doing some-
thing else.

Continuous Validation through Testing (P1)
The best way to do this is certainly to have automated tests and keep them in a state
such that they can be run very quickly. This is a practice that eXPerts do very well
most of the time. However, there might be environments and teams where, for at least
a period of time, it is difficult to achieve this level of excellence. "Automated Tests" is
a practice that is a "fundamental strategy" to XP. Without it, you probably won’t exe-
cute XP as well. This is somewhat analogous to the strategies and practices that ex-

40 K. Auer, E. Meade, and G. Reeves

perienced baseball players treat as second nature such as where they are positioned in
the field to maximize their potential to limit progress by their opponents. An inexperi-
enced ballplayer might miss these things or at least execute them poorly in spite of
having a good coach, but would still be playing the game of baseball. Even the most
experienced ballplayer might occasionally come up against a situation he’s never seen
before and won’t know "the best thing to do".

Measuring Progress toward Objectives (E4)
Again, the best way to do this is to have the customer write acceptance tests that can
be run automatically regularly (e.g. nightly) and whenever desired. Early in a project,
it is often difficult to do, and there may be certain types of requirements or contexts in
which it makes sense to do some of this measurement manually or less often. But, if
the customer can’t identify what’s done and what’s not, you’re not even doing "unoffi-
cial" XP.

Other rules, worded in order to keep them succinct, might need their points of
flexibility made more explicit. For example:

Customer Sets and Adjust Priority (E2)
In reality it is not always possible and sometimes not even logical to have a single
customer set the priorities and define the objective of the system in detail. Usually this
takes a team of people. At times, there may be people who have to wear both a "cus-
tomer" hat due to their subject matter expertise as well as a "developer" hat. As long
as the "hats" are made explicit, this would be an acceptable bending of the rule. If a
manager who "knows the business" sets and adjusts priorities, you may be doing "un-
official XP". If the developers do it, you are doing something else.

Test-First Programming in Pairs (P2)
We’ve yet to hear of a great answer as to how to do test-first for certain types of user
interface development. If no one on the team can figure out a useful test for some
subset of the code, you can probably identify it as an exception. If you program in
pairs but have a bunch of exceptions that encourage code to be written by individuals
at times, you have stepped over the line to "unofficial XP". If not writing the test first
becomes the rule rather than exception, you are playing a different game!

Other rules, though a bit vague, just don’t have much room to bend. For example,
the team MUST act as an Effective Social Network (E5). RoleModel recently had a
client that was doing virtually all of the practices of XP (they weren’t doing all of them
well, but they were doing them). We would assert that they were not doing XP, but not
because of their sometimes poor execution of the practices. The fundamental issue
was that they were not acting as an Effective Social Network:

1. They did not have open, honest communication between management, the
customer(s), and the development team or even within the development team.

2. There were often dictates made by management that got in the way of pro-
gress (e.g. you must use Lotus Notes for project tracking even though "off the
shelf" Notes didn’t provide the capabilities needed. Of course, you cannot use
Notes until you’ve attended an official training class on it. There was a long
waiting list for the class and it might take months until one could actually at-

The Rules of the Game 41

tend. And contractors were not going to be given such a class. No Notes Pro-
grammer was made available to the team at first and, when they eventually
were, they had limited availability and had to clear everything they were
asked to do through some third party).

3. Some people, namely "contractors", were second-class citizens. If "employ-
ees" didn’t like something the contractors suggested, they would make deci-
sions without them and then dictate the way things were going to be done.
The fact that the coach was a contractor made it very difficult for him to ac-
tually coach.

4. Meetings with people from the customer team had to be scheduled. A lot of
time was spent by the developers talking about how to spin the discussion
with the customer to make the developers look like they’ve thought it all
through. Often this discussion included debate whether they should even ex-
pose any uncertainty to the customer.

7 Conclusions

There have been many discussions over what exactly defines XP over the past several
years. There have been presentations and articles written about experiences with XP
that have gotten XPers in a huff because the authors/presenters "clearly didn’t under-
stand what XP was". Most published attempts at defining XP have discussed its values
and practices and often include a disclaimer that you can do XP without doing all of
the practices. Since its listed values read somewhat like "motherhood and apple pie",
they have fallen far short of defining XP. Its changing list of practices as well as the
statements about moving beyond the practices and discussion of "less essential" prac-
tices has made it difficult to identify what XP really is. This has left a real void be-
cause shared definitions are important in order to have effective communication be it
critical or instructional.

Once a game is defined by its rules, the rules seldom change significantly. How-
ever, players learn effective strategies and constantly refine their execution of those
strategies. New strategies are often being explored. The most effective ones eventually
become commonplace... until a better strategy is discovered.

Ken possesses a copy of a small book entitled "Official Baseball Rules"[3]. It ex-
haustively defines the game of Baseball. Until this paper was written, there has been
no real source for the equivalent definition of XP. When we look at the Rules of XP, it
is much easier to identify what XP is than trying to define it by the 12, 13, or 19 prac-
tices (+/- 2 that are "less essential").

However, the Rules only tell you enough to play the game - not enough to play it
effectively.

Ken also possesses a copy of "The Complete Book of Baseball Strategy"[4]. It pro-
vides a list of 169 "Stratagems" (practices?) many of which are generally applicable as
well as some that are specific to people in different roles (First Baseman, Pitcher,

42 K. Auer, E. Meade, and G. Reeves

Coach, etc.). It also provides a series of drills (the equivalent of etudes?) that "drill"
the stratagems into players. Of course, even though the title includes the word "Com-
plete", there are certainly useful stratagems that can be found (either explicitly or by
reading between the lines of the experiences of others) in other books and resources.
We would suggest that the majority of the XP literature to date has provided the moral
equivalent of basic (the practices) and situational stratagems to help their readers exe-
cute better. There are more stratagems to be explored.

Now that we’ve got that cleared up, let’s play ball!

Acknowledgements. This paper was inspired by a rash of e-mail discussions among
several others including Kent Beck, Alistair Cockburn, Ward Cunningham, Jim
Highsmith, Ron Jeffries, "Pragmatic" Dave Thomas, and Don Wells to whom credit is
due for both their contributions of ideas and getting Ken’s thoughts out of his head and
into writing. Thanks are also due to the other participants at the OOPSLA 2001
Workshop "Refining the Practices of eXtreme Programming" who provided much
input based on discussions of Ken’s original position paper to this workshop.

References

1. Alistair Cockburn, Agile Software Development. Addison-Wesley Pub Co, 2001
2. Joshua Kerievsky, Continuous Learning. On-line at

http://www.industriallogic.com/xp/ContinuousLearning.pdf
3. Official Baseball Rules. The Sporting News, 1986
4. Hal Wolf, The Complete Book of Baseball Strategy. Exposition Press, 1974

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 43–50, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Achieving ISO 9001 Certification for an XP Company

Graham Wright

Development Team Coach
Workshare

20 Fashion Street
London, E1 6PX

(44) 020 7539 1361
graham.wright@workshare.com

Abstract. It is generally assumed that certification such as ISO 9001 is
incompatible with Agile Development Methods, particularly eXtreme
Programming. However it is possible to achieve certification in a manner that is
compatible with XP and does not reduce agility. The key to this is making the
documentation, process monitoring and audit trail required for certification a
natural output of the development process rather than an artificial product
created purely to satisfy those requirements. This paper describes the successful
certification of an XP company.

1 Introduction

The company described in this paper, Workshare [1], adopted XP in February 2001.
The company produces document content management and collaboration software.
Currently five products have been released, built around a common code base. The
development environment differs from that of many XP shops in a number of ways
including a reliance on C++ and COM, a high GUI content within its products and a
large development team. During the past two years the XP process has been tailored
to manage this large team. This has resulted in the concept of the “virtual white
board” which in turn became central to achieving ISO 9001:2000 TickIT [2, 3]
certification. For brevity this is subsequently referred to as ISO 9001

The company began preparing for certification in March 2002 and was
recommended for certification following a successful audit in February 2003. This
recommendation was confirmed during April 2003. A key feature of achieving this
was that the documentation, process monitoring and audit trail required for
certification was already place within the company as a result of the earlier efforts
required to manage a large engineering team producing multiple products.

We believe that we are amongst the first, if not the first, company using XP for all
its development to gain ISO 9001 certification.

2 ISO 9001 Requirements

ISO 9001 requires companies to set up quality management systems to “monitor,
measure and continually improve their business processes” [3]. Guidance for applying
ISO 9001 requirements to the software industry are contained the TickIT guide [3].

44 G. Wright

TickIT arose from the recognition that the process for software development and
maintenance is different than that of most other industrial products. The desire to
devise an ISO registration scheme for software resulted in TickIT being formulated
by IT professionals in the United Kingdom. The objectives of TickIT are as follows:

- To ensure the ISO standard is applied appropriately to software
- To ensure consistency of certification with the IT Industry
- To enable mutual recognition of registration across the IT industry.
The TickIT guide tends to state more of how to implement an ISO 9001 system,

while the standard states what must be done.
In practice certification requires a company to formulate a quality policy and manual,
institute a quality management system and maintain sufficient records to prove that
the processes within the company are quality driven, measured and reviewed, and that
there is a continual improvement in those processes.

3 Some Common Misconceptions

There are a number of misconceptions concerning ISO 9001 and the XP process.
Firstly it is commonly assumed that gaining certification is merely a matter of

following any documented process; secondly many in the XP community believe the
level of documentation required for certification contradicts core XP principles and is
inherently non-agile; thirdly it is not understood that certification is for the entire
company and not just for the development process within that company.

The first misconception is due to the fact that earlier versions of the ISO standard
did emphasise the documentation of procedures over the quality of those procedures.
However the current standard is based on quality within a process: “ISO 9001:2000 is
intensively process-orientated and requires an organisation to identify, manage and
continually improve all processes” [3, page F1].

This emphasis on process leads to the second misconception that certification
standards such as ISO are incompatible with Agile Methods such as XP, either
because the standard specifies a process that can not be followed using XP or because
proving that the process is being monitored and improved places such an overhead on
that process that it ceases to be agile.

Although ISO 9001 “does not define a particular life cycle model” [3, page F2] it
does reference the model described in ISO/IEC 12207 [4], which is essentially a high
level description of the old waterfall process in its V-model form. However other
methodologies can map their processes to this reference model. This has already been
done for DSDM, the most process heavy of the Agile methodologies [5]. The key
factor is not the process but the ability to demonstrate that this process can meet the
ISO 9001 objectives of managing and improving quality. There is nothing explicit or
implicit in XP that precludes this. Indeed it can be agued that the change in emphasis
within the ISO standard from documentation to process favours those methods such
as XP that have a clear set of practices. However in order to maintain agility it is
essential that demonstrating quality and improvement in the process relies on natural
outputs from XP rather than on artefacts created purely for the certification audit.

Finally although this paper describes ISO certification as it relates to XP it is
important to realise that certification applies to the entire company and is based on all
the procedures within that company not just to the software development process. So
for instance XP starts with a customer story but certification would also depend on the

Achieving ISO 9001 Certification for an XP Company 45

quality of processes leading to the inception of that story, not solely on the quality of
the implementation of that story. For Workshare, being a commercial software house,
this involves all the processes involved in managing external customer issues and
feature requests as well as the formulation of high-level business strategy.

4 Managing a Large Team

Since Workshare adopted XP we have attempted to do things “by the book” and not
deviate from any of the core practices. However because of the size of the team (30
programmers, 11 customers / product managers, 11 QA in our London office with a
smaller team in South Africa) and the multiple products we have expanded our
integration, testing and management procedures.

As in a standard XP shop developers run all the unit tests on their machine before
copying changed files to an integration machine. The tests are run again before
checking into the source repository, the results of which are also recorded in a central
database. The files changed for each story are recorded, initially manually on
integration sheets but now also in a central database. Builds are produced twice a day
on separate machines and a second set of tests is run on the output. These functional
tests consist of tests that take too long to run during integration or that involve gross
or round trip behaviour. QA run their own sets of tests; acceptance tests are run when
the story is first integrated, acceptance and regression tests are run on the output of
the build machines.

We found a collection of story cards did not give sufficient information to manage
the engineering process. Our solution was Bluesky, a browser based application
acting as a virtual white board containing story cards. This is an electronic copy of all
the information contained in the story cards together with additional information such
as;

How far each story and task has progressed,
Initial and subsequent estimates for the story and tasks,
The product and build containing the integrated story,
Confirmation that the customer has seen the completed story,
Results from QA, both of the initial integration and from the final build.

The data contained in the Bluesky and auxiliary databases, together with the
integration sheets, provided the information required by the ISO 9001 auditor to
verify our compliance with the processes detailed in the engineering quality manual.

5 Bluesky – A Virtual White Board

Fig. 1. Bluesky, Top-level view summarising progress of each story

46 G. Wright

Fig. 2. Bluesky, Individual story card including acceptance tests

Fig. 3. Bluesky, QA test results are included with story card

Achieving ISO 9001 Certification for an XP Company 47

Fig. 4. Bluesky, Task list is contained at the end of story card

6 Achieving ISO 9001 Certification

Workshare began preparing for ISO 9001 in March 2002 and was recommended for
certification in February 2003. The company was required to appoint a process
compliance manager and produce a company wide quality manual together with
individual quality manuals for each department within the company. The company’s
quality policy explicitly stated our “commitment to developing high quality software
applications is demonstrated by our adoption of innovative, agile methodologies”.

In achieving certification no changes were made to our existing XP practices.
We documented our existing processes in the engineering departments quality

manual and collected existing data from the databases described above to provide
both key performance indicators and the basis for measuring improvements to those
processes. The effort required for certification was that of preparing this
documentation, a task undertaken by the our company’s management, and had
minimal impact on the day-to-day activities of the XP team.

Our existing data enabled the process to be tracked from initial presentation of a
story, through the implementation of that story, to the verification that the
implementation met customer requirements and resulted in no regression within the
system as a whole. This fulfils the ISO 9001 requirement of monitoring and
measuring the process. The same data also provides a target for enhancing quality, for
instance by increasing the number of new tests associated with each task, improving
the accuracy of story and task estimates or reducing the number of failures detected in
QA. This fulfils the ISO 9001 requirement of continual improvement in the process.

Although for smaller XP teams the process at Workshare may appear overly
formalised there are no reasons why less formal processes preclude certification. All
XP development is story based and the sum of these stories forms the requirements
specification for the system. All XP teams are test driven, auditors love tests and the
recording of those tests provides the basis for verification that customer requirements
have been met. All XP teams are based on pair programming which enhances quality
through continuous code review. Continuous integration reduces the possibility of
regression in a system. Any XP team is maximising the quality provided to its
customers. All certification requires is the auditing of the benefits XP brings to
software development.

7 Mapping XP to ISO 9001:2000

As described above achieving certification requires all the process in the company to
comply with the standard. The development process itself must comply with section
7.3 of the ISO 9001:2000 standard [2], “Design and development”. This ISO standard

48 G. Wright

is terse and the good practice that meets this standard is detailed in the TickIT guide
[3] of which Part F, Section 5 “Software quality management system requirements –
primary life cycle processes” impacts directly on the day-to-day practice of XP.

Although the standard does not explicitly define a particular life cycle most
compliance auditors will think in terms of, and the TickIT guide is implicitly
structured in the form of the, waterfall model. However the guide also contains best
practice for prototyping and iterative development, which provides a starting point for
mapping XP practices to the standard.

Table 1. Examples of the mapping of ISO 90001 requirements to XP practices

ISO 9001 XP
7.3.2 Design and development inputs
Inputs relating to product requirements
shall be determined and records maintained.
These inputs shall include functional and
performance requirements …

Requirements are specified in customer
stories and acceptance tests.

7.3.3 Design and development
outputs
The outputs of design and development
shall be provided in a form that enables
verification against design and development
input and shall be approved prior to release.

Test first design both specifies design and
verifies the implementation of that design.
Tests are preserved forever and their results
recorded.
Release is dependent upon all the tests in the
system running successfully.

7.3.4 Design and development review
At suitable stages, systematic reviews of
design and development shall be performed
in accordance with planned arrangements.

Pair programming is continuous code review.
Short iterations enable the customer to
continual review functionality as it is
developed.

7.3.5 Design and development
verification
Verification shall be performed in
accordance with planned arrangements to
ensure that the design and development
outputs have met the design and
development input requirements. Records
of the results any necessary actions shall be
maintained.

Acceptance tests detail customer
requirements.
“Acceptance tests allow the customer to
know when the system works and tell the
programmers what needs to be done” [6].
The success or failure of these tests is
recorded.
The verification by the customer that the
story meets their requirements is recorded
(“customer seen”).

7.3.7 Control of design and
development changes
Design and development changes shall be
identified and records maintained.

XP expects requirements and therefore
design and implementation to change
throughout a project.
These changes are recorded in the stories
contained in each iteration.

Achieving ISO 9001 Certification for an XP Company 49

However it must be emphasised that mapping the XP, or any other Agile, process
to more commonly understood lifecycles is not the prime requirement for gaining
certification. Rather it is necessary to prove that the process is monitored, measured
and continually improved. The examples below are provided to show that nothing
explicit or implicit in the XP practices are incompatible with the ISO 9001 view of the
software lifecycle.

Table 2. Examples of the mapping of TickIT primary life cycle process to XP practices

TickIT XP
5.2 Supply
Good practice is evident if records show
that customer requirements are reviewed
prior to commitment.

The fact that the customer has seen and
approved the story prior to integration is
recorded. The customer is in the same room
as the developers and always available to
discuss requirements.

Good practice involves agreeing customer
expectations and involvement in the
project.

The planning game ensures that the agreed
functionality is delivered to customer at the
end of the iteration.

5.3 Development
Good practice involves having a clearly
defined and documented life cycle.

XP clearly defines a set of practices that
covers design, implementation and testing.

Good practice is evident if the eventual
product is not rejected because some
requirements were not identified.

Iteration planning ensures requirements are
added incrementally and as agreed between
customer and developers.

Good practice is evident if there is an
agreed and controlled software
requirements document, model, prototype
or database.

Customer stories and acceptance tests fully
define the software requirements.

Good practice involves defining applicable
standards and conventions for software
coding, documentation and testing.

A core XP practice is the coding standard.
Test first design makes testing central to XP.
Unit tests document the behaviour of the
system.

Good practice involves preparing test plans
and developing appropriate test data for
each software component and combination.

Test first design means the tests always
precede the implementation of any software.

Good practice involves having procedures
and guidelines for system integration and
testing.

Continuous integration with all test running
on the integration machine avoids integration
failures.

6.4 Verification
Good practice involves ensuring code is
testable, understandable and maintainable
and conforms to relevant programming
standards.

Pair programming is a continuous code
review.
Refactoring continuously improves
maintainability.
By definition test first design means code is
testable.

50 G. Wright

8 Fulfilling More Stringent Certification Requirements

For certain sectors software, and the companies producing that software, must meet
more stringent requirements than those of ISO 9001. For instance the pharmaceutical
industry requires GAMP4 guidelines [7] to be followed. These differ from ISO 9001,
amongst other factors, in requiring a more rigorous audit trail from customer
requirements to changes in the code base. Again this is nothing inherent in XP that
prevents such traceability. GAMP4 has stricter requirements regarding specification
documentation and standard operating procedures but concedes that “there are
acceptable methods other than those described in this guide that are capable of
achieving the objective of adequately validated automated systems” [7, page 14]. To
this end Workshare works with each client on a case-to- case basis to demonstrate that
XP can be such a method when combined with ISO 9001 certification.

9 Conclusions

Formal certification is a requirement for certain types of software or for sales into
areas such as the pharmaceutical industry. There is nothing inherent in XP that
prevents companies from meeting certification standards such as ISO 9001. There is
nothing inherent in the audit requirements of such standards that reduce the agility of
those companies. The key factor in successful certification without a negative impact
on agility is to base quality management on the natural outputs of the development
process rather than on artefacts produced solely for audit purposes. The additional
overhead for certification was that of producing the various quality manuals detailing
our existing process. This was a management task and had little impact on the day-to-
day work of the development team.

References

1. Workshare, http://www.workshare.com.
2. ANSI/ISO/ASQ Q9001–2000, American Society for Quality, Milwaukee (2000).
3. The TickIT Guide, British Standards Institute, London (2001).
4. IEEE/EIA 12270, Institute of Electrical and Electronic Engineers, New York (1998).
5. DSDM and TickIT, British Standards Institute and the DSDM Consortium, London (2001).
6. Jeffries, R., Anderson, A. and Hendrickson, C.: Extreme Programming Installed, Addison

Wesley, Boston (2001) 31.
7. The Good Automated Manufacturing Practice (GAMP) Guide for Validation of Automated

Systems in Pharmaceutical Manufacture, ISPE, Tampa (2001).

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 51–61, 2003.
© Springer-Verlag Berlin Heidelberg 2003

The Reflective Practitioner Perspective in eXtreme
Programming

Orit Hazzan1 and Jim Tomayko2

1 Department of Education in Technology and Science, Technion – IIT
Haifa 32000, Israel

oritha@tx.technion.ac.il
2 School of Computer Science, Carnegie Mellon University

Pittsburgh, PA, U.S.A.
jet@cs.cmu.edu

Abstract. This paper examines ways by which a reflective mode of thinking
may improve eXtreme Programming (XP) practices. It describes the reflective
practitioner perspective and suggests specific ways in which such an approach
may be interwoven into XP practices. Specifically, the focus is placed on the
construction of ladders of reflection. These ladders illustrate how one may
increase the level of abstraction of his/her thinking when reflection is
interwoven in the process of software development, and how such an
experience may promote one’s comprehension of the relevant development
process.

Keywords: reflection, extreme programming, reflective practice, software
engineering.

1 Introduction

This essay suggests adding a reflective practice (RP) perspective to eXtreme
Programming (XP). Based on Donald Schön’s work with educating professionals, it is
suggested that as a reflective practitioner one may improve the performance of the XP
practices. Generally speaking, the RP perspective, first introduced by Donald Schön
[11, 12], guides professional practitioners (such as architects, managers, musicians
and others) towards examining and rethinking their professional creations during and
after the accomplishment of the process of creation. The working assumption is that
such a reflection improves both proficiency and performance within such professions.
Analysis of the field of Software Engineering (SE) and the kind of work that software
engineers usually accomplish in general [10], and the XP practices in particular,
support the adoption of the RP perspective to SE in general and to XP in particular.
Specifically, it is suggested that a reflective mode of thinking may improve the
application of some of the XP practices. This paper examines this possible
contribution.

We present the main ideas behind the RP perspective, discuss the potential
contribution of the RP perspective to XP, and, based on this analysis, suggest
directions for future research.

52 O. Hazzan and J. Tomayko

2 Reflective Practice1

The two main books which present the Reflective Practice (RP) perspective are The
Reflective Practitioner [11] and Educating the Reflective Practitioner [12]. While the
first book presents professions for which reflective thinking is (or should be) inherent
in, such as architecture and management, the second book focuses on how to educate
students of such professions to be reflective practitioners. In this section we establish
the rational for implementing the RP perspective to SE in general and to XP in
particular.

In the two books mentioned above, Schön analyses the added advantages one may
obtain from continuously examining one’s practice and one’s thinking about his/her
practice. With respect to science and engineering, Schön says that “[b]etween 1963
and 1982 … [i]ncreasingly we have become aware of the importance to actual
practice of phenomena – complexity, uncertainty, instability, uniqueness, and value-
conflict”. ([11], p. 39). At that time, the Computer Science community observed a
similar phenomenon with respect to developing software systems (Cf. the “Software
Crisis” terminology introduced in 1968 at the NATO Conference in Garmish,
Germany). Many at the conference recognized that software development should be
guided by a professional-systematic approach. The mental complexity involved in
developing software projects was acknowledged, and, as a result, there was
tremendous awareness of the impossibility of managing software systems without
systematic (engineering oriented) methods. However, though the complex nature of
the profession of software development was known at the time when Schön wrote his
books, he did not discuss the application of the RP perspective with respect to SE.
Yet, the relevance of RP to SE in general and to XP in particular, is illustrated by the
following three quotes taken from Schön’s work.

The Subjects of Reflection:

When a practitioner reflects in and on his practice, the possible objects
of his reflection are as varied as the kinds of phenomena before him and
the systems of knowing-in-practice which he brings to them. He may
reflect on the tacit norms and appreciations which underlie a judgment,
or on the strategies and theories implicit in a pattern of behavior. He
may reflect on the feeling for a situation which has led him to adopt a
particular course of action, on the way in which he has framed the
problem he is trying to solve, or on the role he has constructed for
himself within a larger institutional context. ([11], p. 62)

Laying out the topics which are possible subjects for reflection in SE, we may start
with the actual creations (the software systems), going through a reflection on the way
algorithms are developed and used in software systems, and moving on to skill-related
topics such as development approaches, topics related to human-computer interaction,
aspects of software development methodologies, ways of thinking, etc. In fact, it
seems that we might end up with a rich object collection that can be subjects of
thought. It might be the result of the fact that “[m]any of the things we make with
software today are more complex than most buildings and, as in building design,

1 This section is largely based on Hazzan ([5]).

The Reflective Practitioner Perspective in eXtreme Programming 53

software design embraces many aspects: function, safety, human interface,
ergonomics, graphics, algorithms, data structure, program structure, protocol, and
application interface, among others.” [14]. If we limit the discussion to XP practices,
we may suggest the following objects for reflection: the way unit-tests are developed,
how a specific simple design was determined, how a specific path of refactoring
emerged, etc.

Listening to the Code:

In the designer’s conversation with the material of his design, he can
never make a move which has only the effects intended for it. His
materials are continually talking back to him, causing him to apprehend
unanticipated problems and potentials. As he appreciates such new and
unexpected phenomena, he also evaluates the moves that have created
them. ([11], p. 100-101)

The analogy to SE with respect to this topic seems to be trivial [10]. When one
develops a software system, one actually is in an ongoing conversation with the
creation. In fact, several aspects of software systems are shaped in an ongoing
interaction with the computer as a mediator that reflects to the software developer
how far away s/he is from what s/he wants to achieve. In other words, the computer is
the medium through which a software constructor talks to his/her creation – the
software system. Within the XP framework, this kind of interaction with the material
is especially dominant in the process of unit-testing and in refactoring processes that
interweave on-going testing.

The Ladder of Reflection:

We can […] introduce another dimension of analysis [for the chain of
reciprocal actions and reflections that make up the dialogue of student
and coach in the architecture studio]. We can begin with a
straightforward map of interventions and responses, a vertical dimension
according to which higher levels of activity are “meta” to those below.
To move “up”, in this sense, is to move from an activity to reflection on
that activity; to move “down” is to move from reflection to an action that
enacts reflection. The levels of action and reflection on action can be
seen as the rungs of a ladder. Climbing up the ladder, one makes what
has happened at the rung below an object of reflection. ([12], p.114)

The ladder of reflection described in this quote refers to student-tutor dialogue in the
architecture studio. Hazzan ([5]) expands the ladder of reflection presented by Schön
to a student-coach dialogue in a software studio and with respect to an individual
work. The idea in both cases is to illustrate how one may increase the level of
abstraction of one’s thinking when reflection is interwoven in software development.
In the continuation of this paper a ladder of reflection is presented with respect to a
pair programming session, a planning game session and a refactoring process. These
cases illustrate how a ladder of reflection may promote one’s comprehension of the
relevant development process and may lead to insights that eventually may save time
and money.

54 O. Hazzan and J. Tomayko

3 Reflective Practice in eXtreme Programming Practices Card

This section illustrates how a RP perspective may support and improve the
application of the XP practices. First we explain the fitness of RP to XP. Then, the
potential contribution of the RP perspective to each of the XP practices is examined.

It seems that a RP approach fits very well to XP, since XP emphasizes learning
through reflection processes. For example, the estimation of the team’s velocity is
improved from project to project based on a reflective process; when a pair is engaged
in a pair programming session, the navigator reflects on the drivers’ coding. Thus, it
seems that one of the implicit XP guidelines is reflection. Still, as far as we know, it is
not outlined inherently in the practices themselves. Similarly to some of the XP
practices, RP is not explicitly directed to code production but in the long term it may
improve code production and quality. As XP incorporates activities that are not
directly oriented to code production, yet may improve code development processes,
we suggest that the RP perspective may be integrated naturally in XP.

This work follows other publications that emphasize the importance of reflection
and retrospective in the context of software development in general and with respect
to agile methods in particular (such as [6] and [2] respectively). We propose that our
contribution is in the introduction of a reflective perspective into each of the XP
practices by the construction of ladders of reflection that guide software developers to
think on higher levels of abstraction.

In the discussion that follows, the XP practices are gathered in three groups,
according to the subject they focus on: the team, the customer and the code. We do
not claim that each practice focuses only on one of these three subjects. However, it
seems that each of the XP practices influences significantly one subject out of these
three.

Team Customer Code
Pair programming *
40-hour week
Collective ownership
Metaphor

Customer on-site
Planning game *
Small releases

Testing
Continuous integration
Coding standards
Refactoring *
Simple design

The role of the RP perspective is discussed in depth only with respect to one
practice in each group (marked with *). That is, the focus is placed on pair
programming, planning game, and refactoring. Specifically, in order to illustrate the
potential contribution of a RP approach to software development that is guided by
XP, we demonstrate a ladder of reflection for these three practices. We hope that,
where possible, this illustration clarifies how the RP perspective may benefit the other
practices in each category.

In the description that follows, it is assumed that readers are familiar with the XP
practices [1].

3.1 Team

It seems that the RP perspective fits well to parts of this group of practices. The
rationale behind this assumption is that a reflective mode of thinking improves the

The Reflective Practitioner Perspective in eXtreme Programming 55

comprehension of one’s own thinking as well as of others’ ways of thinking. As
software development in general, and software development guided by XP in
particular, are based on team interaction, it is reasonable to assume that the more one
is aware of mental processes and ways of thinking (of oneself or of the others), the
more the teamwork is improved. In what follows the focus is placed on pair
programming. The contribution of the RP perspective to the other XP practices that
focus on the team is described briefly.

Pair Programming: This practice is one of the more discussed XP practices (cf.
[15]). This practice should be applied firmly. In other words, “[a]ll production code is
written with two programmers at one machine”. [1]. Benefits of this practice are
presented in many research reports (cf. [9, 13]).

This practice specifies that any piece of code should be written by two developers,
each of whom has a different role: the one with the keyboard and the mouse thinks
about the best way to implement a specific task; the other partner thinks more
strategically. As the two individuals in the pair think at different levels of abstraction,
the same task is thought about at two different levels of abstraction at the same time.

In what follows we illustrates how a reflective mode of thinking may be introduced
into the practice of pair programming. The illustration is based on the construction of
a ladder of reflection during a pair programming session (see Table 1). The idea is to
illustrate how a pair of programmers may increase the abstraction level of its thinking
when reflection is interwoven within the process of software development.

Table 1. A ladder of reflection: The case of pair programming

Ladder rungs Pair dialogue

Designing [a process of reflection-
in-action]

A: Did we consider all the exceptions?

Description of designing [it takes
the form of description with:
appreciations, advice, criticism,
etc.]

B: Good question. Let’s think about the best
way to search for exceptions. I’m trying to
understand what to think about when I’m
looking for potential exceptions.

Reflection on description of
designing [reflection on the
meaning the other has constructed
for a description he or she has
given]

A: I think that this is not such a simple task.
I have never thought about such systematic
ways to look for exceptions. OK. Let’s give
it some thought. [Working on formulating a
systematic way for finding exceptions]

Reflection on reflection on
description of designing [the
parties to the dialogue reflect on
the dialogue itself]

B: Now that we have developed a
systematic way for finding exceptions, I
think we must analyze these strategies and
reflect on the path that led us to finding
these guidelines.

A: Yes, this may improve our ability to
solve problems of a similar nature in the
future.

56 O. Hazzan and J. Tomayko

Looking at the various rows of Table 1, one may find that the subjects of reflection
on each rung are objects of different levels of abstraction: While detailed elements are
the focus on the first rung, ways of thinking are at the center of attention on the fourth
rung.

Sustainable Pace: A reflective mode of thinking can be interwoven even in this
simple-for-implementation XP practice. The working framework that this practice
establishes enables one to detach oneself from the details involved in software
development and, if one wishes, to reflect on what had happened during the day,
without being swamped with details for long hours every day.

Collective Ownership: As the code is accessible to more minds, programmers must
examine code that is written by others. Thus, they have to reflect and consider what
reasons lead to specific decisions that their friends took while programming. In
addition, when reviewing code that others wrote, developers may improve their
understanding of their own code and its interface to the rest of the code.

Metaphor: The common use of metaphors is to bridge between a known domain and
an unfamiliar domain. While thinking about an appropriate metaphor, developers
must expand their perspective and analysis of the developed application. It is
suggested that a RP perspective may improve developers’ performance in looking for
an appropriate metaphor.

3.2 Customer

The literature is full of evidence of crises in software development processes. In many
cases these crises result from some misunderstanding or other between clients and
software developers. In other words, the client's needs and requirements are
misunderstood, and as a result, the software system does not satisfy customer’s needs.
The following data illustrate this phenomenon: “Three quarters of all large software
products delivered to the customer are failures that are either not used at all, or do not
meet the customer’s requirements.” [8]. Thus, addressing customers’ ways of thinking
is fundamental from the SE point of view. We suggest that a reflective mode of
thinking like the one suggested by the RP perspective, may improve one’s ability to
understand the conceptions held by others in general and customer’s needs in
particular. The idea is that two processes occur simultaneously: A person improves
his/her thinking about his/her mental processes; as the latter takes place, the person’s
understanding of his/her interaction with the environment is improved.

On-Site Customer: In the case of software development that is guided by XP, the
customer is part of the development environment. As the customer is on-site for
answering questions, it is suggested that when both customer and developers are
guided by a reflective mode of thinking, developers, as well as customers, may
improve their understanding of the developed application. This can happen, for
example, when after some issue is clarified, the customer and the developers will
reflect on their current understanding of the application vs. the one that preceded it.

Planning Game: One of the significant advantages of the planning game is that both
the customer and the entire team participate in it, and thus all know the development

The Reflective Practitioner Perspective in eXtreme Programming 57

process. Furthermore, guidelines that lead to decisions with respect to a specific
release or iteration are clear to all. We take advantage of this fact and show how the
fact that the customer and team define together the next release/iteration makes it
possible to introduce a reflective mode of thinking. Table 2 presents a ladder of
reflection which illustrates how this might happen.

As can be observed, the customer improves her understanding throughout the
planning game scenario described in Table 2. In fact, she got her insight only when
she was asked to reflect about similar situations in the past in which she needed
similar features. It is not argued that hadn’t she asked to reflect on past experiences
she would not have recalled such cases. However, it is plausible to assume that this
insight would have arrived later (maybe only after an inappropriate feature would
have been developed). As can be observed, the team also improved its communal
understanding with respect to decision-making processes and guidance of customers
in describing their needs. The contribution of such lessons to software development
processes is clear.

Small Releases: Beck [1] tells us to “[p]ut a simple system into production quickly,
then release new versions on a very short cycle.“ Such an experiment invites a
reflective mode of thinking very naturally. In fact, the small releases are introduced to
let developers re-examine their progress in small cycles. We suggest that the use of a
RP perspective on those small releases may even strengthen the risk management that
results from keeping the releases small. Specifically, we suggest that the question to
be answered usually - “Does this release carry us toward the eventual goals of the
project?” - can be answered more easily by a RP approach.

3.3 Code

Based on arguments that address architectural creations, it is suggested that the
reflective perspective may improve the application of those XP practices that concern
with the code: testing, refactoring, simple design, continuous integration and coding
standards. In this argument the code is viewed as the analogical object to the
architectural creation, for which the RP perspective has been developed originally.
Thus, as a RP perspective may improve the creation of the architectural creations, it is
suggested that the application of a RP perspective in those XP practices that deal with
the code, may improve the code. Specifically, if a reflective mode of thinking is
interwoven into each of these practices, the team may improve the code it produces
and the result would be a code that is more correct, more readable and easier for
future maintenance.

Refactoring: In our opinion, as this practice is so similar to process of re-design in
the case of architectural creation, it may be largely benefited from the RP perspective.
Table 3 illustrates a ladder of reflection in the case of refactoring. The dialogue here
is conducted during a refactoring session in which a pair of programmers changes a
procedural design to an object oriented design (cf. [3]).

We expand the discussion of the application of a RP in refactoring by quoting Kent
(in [3]): “[Refactoring] is like a new kind of relationship with your program. When

58 O. Hazzan and J. Tomayko

Table 2. A ladder of reflection: A planning game session

Ladder rungs A conversation during a planning game session
Designing [a process of
reflection-in-action]

Customer: In fact, I want this feature to behave this way
[moves her hands to illustrate].
Developer 1: Can you think about a similar feature you
needed before?

Description of designing
[it takes the form of
description with: appre-
ciations, advice, criticism,
etc.]

Customer: What do you mean? Would you like me to think
about a similar case in the past in which I wanted a similar
feature? Interesting. I have never been asked to do something
like this before. But yes, I can think about a situation in the
past when we needed a new system for our inventory
management. I wanted the application to have this feature and
only when we received the system I realized that, in fact,
what we need is something else, more … [illustrates with her
hands]. Let’s call it B. Wow! Does that mean that we should
not have at all the feature I described before?

Reflection on description
of designing [reflection on
the meaning the other has
constructed for a descrip-
tion he or she has given]

Developer 2: We do not know. We can check the two options.
But, can you please recall, what, in the case you just
mentioned, led you at the end to realize that what you need is
B, and why you didn’t (or couldn’t) realize this before, I
mean, before you got the system and started working with it.
Customer: Truly, the problem was that we did not consider
the full setting in which the system would work. I think that
we should consider the same issue now, before I make the
final decision.
[The customer and the developers think about the way the
application will be used, focusing on the specific
considerations that were neglected in the customer’s previous
experience. At the end they decided about a third option that
should be applied for these specific circumstances.]

Reflection on reflection on
description of designing
[the parties to the dialogue
reflect on the dialogue
itself]

Customer: It’s amazing. I must trace with you the full path we
went through together.
[The customer and developers dedicate the next 15 minutes
for this purpose].
Customer: I do not want even to think about the catastrophe
that could have happened if you develop one of the first two
options we talked about. I must learn the lesson. First of all,
I’d like to apologize for my resistance to take part in the
planning game. I must confess that only now I understand
how I should manage the all business with the new
application.
Tracker: I think we also learnt something from this
experience. First, we should not be afraid to ask our
customers difficult questions and to insist on getting answers.
Second, the specific circumstances you introduced us to may
be useful in our future projects. Finally, we should remember
that before making final decisions and moving on, sometimes
it is worth checking whether we consider all options. I believe
that eventually, even if we stay with the first option, this
would not be considered a waste of time.

The Reflective Practitioner Perspective in eXtreme Programming 59

Table 3. A ladder of reflection: A refactoring session

Ladder rungs A dialogue during a refactoring session

Designing [a process of
reflection-in-action]

Developers 1: We were told that the system was originally
developed by a procedural approach. Right?
Developer 2: Yes.
Developer 1: And we should change it to OO.
Developer 2: Ya.
Developer 1: I heard about Fowler’s book that explains very
precisely how to do it.
[Worked according to Fowler’s book ([3]) and changed the
design. All the tests passed.]

Description of designing
[it takes the form of
description with:
appreciations, advice,
criticism, etc.]

Developer 2: Let’s think what we have done.
Developer 1: Why? We already did it and all the tests passed.
Developer 2: Yes, but we should get something out of all this
work, beyond the code. Some wisdom that will help us in
future development. I’m sure that there is some wisdom in
such processes that is beyond the actual change of the code.
Developer 1: OK. Let’s try to identify the moment when each
of us realized what we are doing; I mean, when we really
understand what the purpose of all this change is.

Reflection on description
of designing [reflection on
the meaning the other has
constructed for a de-
scription he or she has
given]

Developer 1: If I have to indicate the moment I understood
why all this work is worth something, I would say that it was
the moment I realized that there are methods different than set
or get methods. When we started typing public Boolean
isFull I got it.
Developer 2: So, can we decide that in the future, before we
start working on a task of this kind, we will check first
whether there are methods different than set and get? You
know what, let’s try it for what Joe just asked me to check.
[Checked and realized that in this case it would not be worth
to dedicate the 5 hours needed for such a change. Moved to
their next task].

Reflection on reflection on
description of designing
[the parties to the dialogue
reflect on the dialogue
itself]

Developer 1: Let’s adopt it as our habit-of-mind when such
tasks come up. I think that if we had known this lesson before
we started all this stuff, we could improve our work and make
it more productive, not to mention all the hours that we could
save.

you really understand refactoring, the design of the system is as fluid and plastic and
moldable to you as the individual characters in a source code file. You can feel the
whole design at once. You can see how it might flex and change – a little this way and
this is possible, a little that way and that is possible.” (p. 410). This quote is chosen as
its spirit is similar to the way artists talk about their creation process. Possible
conclusion would be that if refactoring is similar to one aspect of artistic creation
processes, and if the later find the RP approach helpful, software developers may
introduce a RP perspective into development processes in general and into refactoring
sessions in particular. Needless to say that many computer scientists view software
development like art. From reasons of space limitation we quote here only Knuth who
says, with respect to the artistic nature of programming, that “[t]he process of
preparing programs for a digital computer is especially attractive because it not only

60 O. Hazzan and J. Tomayko

can be economically and scientifically rewarding, it can also be an aesthetic
experience much like composing poetry or music. ([7], p. V).

Testing: Beck defines the practice of testing as follows: “Programmers continually
write unit tests, which must run flawlessly for development to continue. Customers
write tests demonstrating that features are finished.” We add and say: “Reflect on how
you test and on what you learn from it and improve your understanding of testing
processes“.

Simple Design: Rasmusson ([9]) says that “[i]f simplicity is the destination,
refactoring is the vehicle for getting us there.” Based on the above illustration, it is
clear how a RP approach may support this practice. In fact, the source of RP is in
examining design processes. Specifically, a reflective mode of thinking may improve
developers’ understanding of what simple design consists of.

Continuous Integration: If one reflects of the integration process, his or her
understanding of the code may be improved. Again, similarly to the case of Small
Releases, a reflection on the continuing goals of the project helps determine how
close integration is to the completion of the software.

Coding Standards: The RP perspective in this case may be expressed by the way a
team chooses/develops its coding standard. After all, according to the XP’s attitude of
"they're just rules", “[t]hey are the rules that the team embraces” (look at Jeffries’s
essays “They're just rules!”, http://www.xprogramming.com/Practices/justrule.htm).
The coding standards can be formulated based on a reflective process in which the
team establishes the standards that fit its own communication style. After these
conventions are set, a reflection may be helpful in cases where a particular convention
seems not to achieve its targets: a reflective mode of thinking may help in
understanding the source of this mismatch.

4 Conclusion

In this article we suggest to add the practice of reflection to XP practices. It is argued
that a reflective mode of thinking may improve software developers’ understanding of
their own (and their teammates) ways of thinking and, as a result, they may improve
both the way they develop software and their understanding of the development
environment. In our opinion, a reflective mode of thinking is especially suited to the
community of XP since XP encourages collective knowledge which, in one way or
another, forces software developers to understand the other person’s ways of thinking.
Such a reflective mode of thinking may also solve such problems as the following,
suggested by Glass ([4]) in the context of the industry/academia communication
chasm: “Industrial people tend to reinvent the same ad hoc wheel they invented last
year, and not even remove any of the flat spots”. (p. 13). It is suggested that
practitioners’ reflection on the way they solve problems (when conducted on a regular
basis) may help in real-life situations.

The focus in this paper is placed of constructing ladders of reflection and on how
they may improve software development processes. Our suggestion is to explore
specific ways (or maybe even, procedure) for making reflection an integral part of XP

The Reflective Practitioner Perspective in eXtreme Programming 61

both in the industry and in the academia. In the academia a reflective practice
perspective can be integrated naturally into software engineering programs which
include students’ software projects that are developed by XP. It is suggested to add
activities which induce students to reflect on the way they develop software systems.
Within the scope of students’ projects, such tasks can be offered to students in
different activities such as design, coding, and testing.

References

1. Beck, K. (2000). Extreme Programming Explained: Embrace Change. Addison-Wesley.
2. Cockburn, A. (2001). Agile Software Development, Addison-Wesley.
3. Fowler, M., Beck, B. (Contributor), Brant, J. (Contributor), Opdyke, W. and Roberts,

D. (2002). Refactoring: Improving the Design of Existing Code, Addison-Wesley.
4. Glass, R. L. (1997). Revisiting the industry/academe communication chasm,

Communication of the ACM 40(7), pp. 11–13.
5. Hazzan, O. (2002). The reflective practitioner perspective in software engineering

education, The Journal of Systems and Software, 63(3), pp. 161–171.
6. Kerth, N. L. (2001). Project Retrospectives: A Handbook for Team Reviews, Dorset

House.
7. Knuth, D. E. (1969, 2nd Printing). The Art of Computer Programming. Addison-Wesley.
8. Mullet, D. (July, 1999). The Software Crisis, Benchmarks Online - a monthly publication

of Academic Computing Services, a division of the University of North Texas Computing
Center 2(7), http://www.unt.edu/benchmarks/archives/1999/july99/crisis.htm.

9. Rasmusson, J. (2002). Strategies for introducing XP to new client sites, Proceedings of the
XP/Agile Universe 2002, LNCS 2418, pp. 45–51.

10. Schön, D. A. interviewed by John Bennent (1996). Reflective conversation with materials.
Terry Winograd, Bringing Design to Software, Addison-Wesley, pp. 171–184.

11. Schön, D. A. (1983). The Reflective Practitioner, BasicBooks.
12. Schön, D. (1987). Educating the Reflective Practitioner: Towards a New Design for

Teaching and Learning in The Profession, San Francisco: Jossey-Bass.
13. Shukla, A. and Williams, L. (2002). Adapting Extreme Programming for a core software

engineering course, Proceedings of Conference of Software Engineering Education and
Training - CSEE&T 2002, pp. 184–191.

14. Singer, A. (1994). Towards a definition of software design, Design+Software - The ASD
Newsletter, http://www-pcd.stanford.edu/asd/info/articles/definition.html.

15. Williams, L. A., Kessler, R. R. (2000). All I really need to know about pair programming
I learned in the kindergarten. Communications of the ACM 43 (5), pp. 108–114.

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 62–72, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Graph Theoretical Indicators and Refactoring

J Adrian Zimmer

azimmer@ossm.edu

Abstract. Metrics of software quality grow stale after a while and there is
always a need for new ones. Graph theory can be a fruitful source. We discuss
how. Before that we discuss what metrics do and we suggest the word
“indicator” better describes that function than the word “metric”.

Keywords: software metrics, indicators, graph theory, circuits, XP, extreme
programming, refactoring, restructuring, quality assurance, object-oriented
design, ood, coupling, cohesion, management, software engineering, software
maintenance, software quality, UML

1 Introduction

Kent Beck calls metrics “the basic XP management tool” [4]. Managers want metrics
so they can make objective assessments of software quality or programmer
performance. Programmers are not fond of them because they never measure quality
or work done with much precision. Both managers and programmers know that the
more a manager uses a metric, the more the desire for good numbers will distort the
outcome. As Beck says, “Metrics tend to go stale over time.” [5]. A stale metric
should be retired for a while in favor of a fresh one. This implies a continuing need
for new metrics.

This paper concerns metrics of software quality created with graph theoretical
models. Graph theoretical models have long been a source of quality metrics. See, for
example, [17]. Four models are described here. Each of them is capable of providing
multiple metrics but only in the case of the most familiar model is that done here.

It cannot be overemphasized that we are not searching for silver bullets. The very
word “metric” implies something that is probably beyond our reach. “Indicator” is a
better word. Indicators can point to places where there may be potential problems;
they cannot be relied on to measure the extent to which a problem exists. When an
indicator shows a better value for software artifact A than it does for software artifact
B, there is reason to look at B to see if it is deficient but there is not reason to
conclude that A’s quality has been proven to be better.

Some purposes to which indicators have been put are:
• To find places in a software system that may benefit from refactoring.
• To encourage programmers to watch out for certain kinds of complexity.
• To help determine whether a software system is of sufficient quality to be

considered “finished”.
This list is not meant to be exhaustive. It is meant to be limited to usages in which an
indicator points to a potential problem as opposed to usages in which an indicator is
supposed to identify a real problem.

Graph Theoretical Indicators and Refactoring 63

Although indicators (hyped as metrics) have been available for decades, our
understanding of them is pretty much in its infancy. One influential paper of the 90’s
[6], for example, offers some empirical justification that is little more than showing
the indicators can be calculated on real software and, then, speculating on what the
results might mean. Since the speculation is done in terms of the viewpoints
supporting the indicators, not much is added by doing it.

With or without empirical justification, we need plenty of indicators so that
managers who are using indicators now can switch indicators when their staffs
become too good at playing the numbers game with the current indicators. This paper
suggests some plausible new indicators and explains the use of graph theory for the
nonspecialist. As compared with the indicators in [6], the rationales for these
indicators are oriented less towards existing and potential reuse and more towards
readability, complexity, and cohesiveness.

I am not advocating that empirical research on indicators be dropped. There have
been research designs in the past that seem to provide real information about what
works. For example, one can say “My indicator says version A has better quality than
version B of this program. I will test this by setting programmers to simple
maintenance tasks on both versions and see how they do.” This approach raises its
own experimental design issues as well as some issues of how well we can measure
maintenance productivity. However, even if these issues are not completely solved,
this approach provides better evidence of the effectiveness of an indicator (or at least
of a suite of indicators) than simply discussing what the indicator has said in terms of
prior expectations for its use.

Today, some protection against the inaccuracy of indicators may be had by
employing a suite of indicators in the hope that they will tend to cancel out each
other’s errors. For now, our best defense against the misuse of indicators seems to be
to educate practitioners in the thinking behind them.

1.1 A Subjective Note on Refactoring

My first reaction to a seemingly intractable bug has always been “this code is too
complicated”. Since I am not particularly good at debugging, I have spent more time
refactoring than most. For me, rewriting code to achieve simplicity removes bugs.

I tend to be concerned with one rather ambiguous kind of simplicity: the number of
different concepts I have to juggle at once. When I have to juggle too many concepts
it raises a too many eggs warning for me.

This too many eggs warning is related to a concept described in the fifties by a
psychologist, G. A. Miller in a paper titled “The Magic Number Seven Plus or Minus
Two” [18]. Miller made a strong case that the human mind has difficulty keeping
track of over approximately seven qualitatively different things at one time. Papers on
classical software engineering picked this idea up as evidence of what we all know:
the more concepts a programmer has to juggle at once, the more something is likely to
fall and make a mess.

Deciding that there are too many eggs to juggle at once is quite subjective. What
counts as an egg? What does “at once” mean when applied to an activity that takes
hours or sometimes much longer? I do not always know the answers to these
questions but, even so. the too many eggs concept helps me to refactor in a positive
direction.

64 J A. Zimmer

When not concerned with juggling eggs, I tend to be concerned with classes (or
before that with modules). Following Constantine, Stevens, and Myers [7], I want
classes to have tight cohesion and loose coupling.

In “Restructuring for Style” [21], I replaced the concepts of cohesion and coupling
with a less subjective concept of data cobweb. That notion is revisited below in the
section titled “Data Cobweb Graph”.

A data cobweb was said to exist between any two objects that were referenced in
the same statement. To achieve a refactoring of an example program, I searched for
sets of objects that could be organized into a single instance class, which I called an
“object-module”. I started with a kind of protoclass whose state had lots of data
cobwebs within it and few data cobwebs connecting it the rest of the program state.

 Another way I tried to ensure cohesiveness was to guide my refactoring not only
by data cobwebs but also by my ability to write simple invariants for the protoclass’s
state. This goal has worked very well for me from time to time. It is not discussed
further in this paper. The techniques of this paper are not suitable for working with
invariants.

“Restructuring for Style” showed, by example, how data cobwebs and clean
invariants could be used to refactor a program by creating a protoclass and then a
single instance class. The example program had been analyzed previously in the
literature [3] with a proof of correctness. As evidence that the refactored program was
easier to understand than the original, I pointed out a small bug that the proof of
correctness had missed.

1.2 Fowler’s Guidelines for Refactoring

In his book Refactoring, Improving the Design of Code [10], Martin Fowler lists lots
of refactoring techniques. To help readers know when to refactor, one chapter,
cowritten with Kent Beck, lists some warnings of code problems called bad smells
[11]. A couple of these smells are mentioned here because they help explain some of
this paper’s indicators.

One smell comes from class data members that are insufficiently related to each
other. Fowler and Beck say that data comes in clumps and that insufficiently clumped
data members are a warning that a class is not sufficiently cohesive. Clumping can be
detected [12] by “deleting one of the data values” and asking whether “the others
make any sense?” If the remaining data values still make sense, the data is not
clumped.

Data clumping, like data cobwebs, is a concept to help discover cohesiveness. Data
clumping looks at the semantics of a program and data cobwebs look at the structure
of a program.

A second smell is that of feature envy [13]. Feature envy exists when there is “a
method that seems more interested in a class other than the one it actually is in.” He
suggests that such a method is envious of the features in another class. This envy is
evidenced structurally when the envious method call a lot of methods of the class it is
envious of. The method call graph, defined below, can help discover some cases of
feature envy.

A final smell of interest here is what Fowler and Beck call a data class [14]. “Such
classes are dumb data holders and are almost certainly being manipulated in far too
much detail by other classes.” The manipulating classes, of course, show feature

Graph Theoretical Indicators and Refactoring 65

envy. Another function of the data cobwebs graph will be seen to help discover data
classes and thus some more cases of feature envy.

2 Some Graph Theoretical Models and Quality Indicators

Four graph theoretical models of source code are presented here. The first is over a
quarter of a century old. The second is just a UML diagram that shows a dependency
relationship between classes. Graphical models three and four seem to be new.

2.1 Control Flow Graph

In the oldest of these graphical models, nodes are program statements and a node v is
joined to a node u by an edge incase it is possible for control to flow from v to u. This
graph is directed. Call it a control flow graph. Declarative statements are not nodes.

As an example, here is some code in which the statements have been given labels.

A for I in range(0,len(V)-1):
B IMAX = 0
C for J in range(I+1,len(V)):
D if V[IMAX] < V[J]:
E IMAX = J
F swap(V,I,IMAX)

and here is its control flow graph.

Forgetting the directions on the edges of a control flow graph permits something
called the cyclomatic number to be calculated. The cyclomatic number is the number
of nodes minus the number of edges plus the number of connected components. In a
program with just one entry point and no dead code there will be just one connected
component. The cyclomatic number in the above example is 3. Roughly speaking, the
cyclomatic number counts the number of loops and conditional statements you have
in your code.1

The cyclomatic number is a traditional measure of complexity. Smaller values
indicate a less complicated control flow. If you can accomplish a task with less
complexity, your code is assumed to have higher quality.

1 There is a bit more: cyclomatic numbers are the size of a basis of a vector space whose

minimally dependent sets are isomorphic to circuits in the graph. This vector space
interpretation seems to imply that the cyclomatic number helps describe the complexity of
loops in a program’s control flow. This conclusion is not particularly true because to get to
the vector space the control flow graph had to have the directions on its edges forgotten.

66 J A. Zimmer

2.2 Class Uses Graph

Our second graphical model is the class uses graph. The class uses graph arises
directly from UML’s dependency relationship [15]. Nodes are classes. An edge joins
a node v to a node u in case v depends on u. “Depends” is defined as “changes to one
element [class] may cause changes to the other”. The uses graph is directed.

The example shown above is a UML class dependency graph taken from the BlueJ
IDE which was loaded with a teaching example that comes with the book Objects
First with Java [2] by the creators of BlueJ. To create an example of a directed circuit
in a class uses graph, an arrow has been added from Location to SimulatorView. This
arrow made the design look less clean. That was intentional.

 The design does not use inheritance because it is the first of two examples
showing the advantage of abstract superclasses. In the second example, an abstract
Animal class is created and made the superclass of Fox and Rabbit. See the section on
“Inheritance” below for a discussion on what effect the inclusion of an Animal class
could have on the class uses graph.

You can imagine for yourself what the class uses graph for this example looks like.
Simply replace the class boxes with node circles and fill in the dotted lines to become
graph edges.

A programmer who is working on a class C must keep in mind all the classes on
which C depends. This number is C’s out-degree in the class uses graph. When this
out-degree gets too large, we have a warning of too many eggs to juggle while
thinking about C.

The class context indicator is the largest out-degree in the class uses graph. For this
example, it is 4 because the Simulator class has out-degree 4 and no other class has a
larger out-degree.

Software systems are easier to understand and describe when they can be
partitioned into layers. Done right, layering helps to limit the number of eggs one
must juggle at one time. It also enables some parts of systems to be built before
others.

Graph Theoretical Indicators and Refactoring 67

The virtues of layering hold not only for software systems but also for the class
hierarchies of software systems. If a class depends on another, which itself depends
on another, and so on and if the original class is reached again in this dependency
chairn, then the classes involved cannot go into different layers.

Such circular dependencies are called directed circuits. In object-oriented designs,
directed circuits seem inevitable. Too many, however, is not a good thing. Graph
theory has a concept for a set of nodes such that any two of them can be found in a
circuit. The nodes make up a strongly connected component.

 In the example above, the part of the graph inside the box on the right is the
largest strongly connected component of the graph. Each node not in the box is a
strongly connected component of its own.

The entanglement indicator is the maximum number of classes in a strongly
connected component of the class uses graph. Large values of the entanglement
indicator indicate too many classes are entangled.

The entanglement indicator for the Fox and Rabbit example is 4. Before I changed
the class structure, there were no directed circuits and so each strongly connected
component had size 1. A class uses graph with an entanglement indictor of 1 is a tree
which is the best possible structure as far as this indicator is concerned.

Although the class uses graph is nothing new, the entanglement indicator seems to
be. One of the points of this paper is that any investment in a tool to create a graphical
model can be amortized over multiple indicators.

2.3 Data Cobweb Graph

The data cobweb graph was mentioned above. In this paper, its nodes are data fields
in a single class. Two nodes are joined by an edge if a method of the class references
of both of them. The resulting graph is undirected.

Consider the following code:

class DataClass {
 private int a;
 private int b;
 public int getA() { return a; }
 public int getB() { return b; }
 public int setA(x) { a = x; }
 public int setB(x) { b = x; }
}

Since no method references both a and b, the data cobweb graph looks like this:

Given any class C, the shortest path between data fields u and v in the data cobweb
graph of C represents the least number of methods of C which must be invoked before
a change can propagate from one of u and v to the other. 2

2 Well, at least, the least number of methods within that class. If a smaller number of methods is

possible outside the class, we may still question the cohesiveness of the class itself.

68 J A. Zimmer

The cobweb length indicator is the length of the longest shortest path in the data
cobweb graph. The higher the cobweb length indicator is, the more you have two data
fields that are not clumped together. For the example shown above, the cobweb length
is infinity which is as bad as it gets. This happens for what Fowler and Beck call the
data class smell.

2.4 Method Call Graph

A fourth graph theoretical model is the method call graph. Its nodes are methods. The
methods are partitioned by the classes they belong to. An edge joins a method u to a
method v incase u and v are not in the same class and u calls v. The resulting graph is
directed.

Consider this code:

class Student {
 public void f() {}
 public void g() {}
 public void h() {}
}

class History {
 public void act(Student s) { s.f(); s.g(); s.h(); }
}

class English {
 public void act(Student s) { s.h(); }
}

The method call graph for this code is:

The method call graph has enough information to help ferret out some cases of feature
envy. Making use of this information provides an example of how indicators are
constrained by the fact that graphical models only view structural information.

Notice that the method History.act() calls a lot of methods from a different class
Student. That might be due to feature envy and it might be because Student was
designed to have its methods called a lot. The class DataClass above was designed to
have its methods called a lot and that was a bad thing. It is not always a bad thing. A
vector class, for example, is designed to have its methods called a lot and that is a
good thing.

Graph Theoretical Indicators and Refactoring 69

Thus the simple application of the method call graph can be expected to cry
“feature envy” too often. We can fix this by considering more structure but at the
expense of letting some instances of feature envy escape our scrutiny.

The additional structure we want to look at is the way other methods use the class
whose features might be the subject of envy: instead of merely looking at the fact that
History.act() calls lots of methods of Student, we will also consider the fact that no
other class calls all those methods. This means History.act() is delving into what
every other class considers to be Student’s business. The reason is likely to be feature
envy.

More precisely, the feature envy indicator of a software system is the highest
feature envy number for any method u and class D where u does not belong to D. The
feature envy number for u and D is found by looking at all the edges from u to
methods of D and counting those which are incident only to u.

In the example system, the highest feature number of 2 is found for the method
History.act() and the class Student. To see why this feature number is 2 notice that
methods Student.f() and Student.g() are called only by History.act().

3 Making It Work

The indicators given in the previous section can all be calculated from their various
graphs. The graphs themselves, however, can only be created under certain
assumptions.

Necessary assumptions include things like no function creating functions, no
pointers, nothing like Java’s reflection, etc. Static type checking for everything except
subtypes seems to be necessary as well. However that may be, parsing code and
creating graphical models is beyond the scope of this paper. One source of
information is [16] which describes the Borland tool set. The indicators which that
tool set will calculate are based largely on the indicators described in [6] but they do
include the cyclomatic number as well.

As for calculating the indicators of this paper from their various graphical models,
it is easy to count nodes, edges, and out-degrees. Two of the indicators involve more.
The entanglement indicator requires that a strongly connected component be found.
See [1] for a method to do that. The cobweb length indicator requires that all the
shortest paths of the cobweb graph be found. See [8] for a method to do that.

3.1 Inheritance

Indicators concerning the quality of the inheritance hierarchy were not considered for
this paper. The reason for discussing inheritance is merely to improve the usefulness
of the class uses graph and the method call graph.

Consider again the Fox and Rabbit example given with the class uses graph above.
If an abstract Animal class is introduced in such a way that the Fox and Rabbit classes
are derived from it, I suggest that the nodes for Fox and Rabbit should disappear and a
node for Animal be put in their place. My reasoning is that the Animal base class is an
abstract paradigm that is implemented by derived classes. The base class could be

70 J A. Zimmer

considered the end and the derived classes the means. The class uses graph does not
need to represent the means.

Any hierarchy that exists for subtyping could be treated the same way. Structurally,
such a hierarchy might defined as a flat single-inheritance hierarchy having an
abstract base class and having no new public methods added in any of the derived
classes. When found, such a hierarchy would be replaced by its base class.

In another situation, the roles are reversed. Consider a base class that exists solely
so that some code can be reused. In this case, it is the derived class that is the end and
the base class that is the means. Such a hierarchy exists for reuse and could be defined
structurally as a flat single-inheritance hierarchy having a concrete base class and at
least one new public method in each derived class.

For reuse hierarchies, I suggest the base class be omitted from the class uses graph
and the derived classes kept. Again, what is being kept represents the end purpose of
the inheritance hierarchy.

For hierarchies that follow neither pattern, all classes would appear in the class
uses graph. Since the class uses graph only has one kind of edge, there would be no
special edges for inheritance, instead an ordinary edge would be drawn from each
derived class to any of its base classes.

The same approach could be used for the method call graph but in that case the
purpose is just to remove some classes from the node set. No new edges would added.

3.2 The Human Factor

Here is an example that shows the kinds of things that can go awry when relying
solely on structural considerations:

class Buttn extends JButton {
 public Buttn(String Label) {
 super(Label);
 addActionListener(new ButtnAction());
 }
}

class ButtnAction implements ActionListener {
 public void actionPerformed (ActionEvent E){
 // code here unlikely to involve Buttn
 }
}

JButton and ActionListener belong to the Swing library and so would not appear in
our class uses diagram. Are there in-house classes that should be treated like library
classes? Which ones today? Which ones tomorrow? A human has to be around to
decide.

There is a UML dependency relationship from the Buttn class to the ButtnAction
class. This seems backwards. Buttn doesn’t really need ButtnAction; it performs a
service for ButtnAction.

Twenty years ago, D.L. Parnas defined a “uses” relationship between two software
entities u and v by saying v uses u in case v needs a correct execution of u to
complete the task described in its specification [19]. Parnas’s uses relationship would
have the arrow going in the right direction.

Graph Theoretical Indicators and Refactoring 71

But Parnas’s uses relationship has to be determined by a human, a computer is
unlikely to get it right.

The distinction between subtype and reuse class hierarchies made in the previous
section has a neat structural characterization. But, again, that characterization is
unlikely to always work. A human could do better.

There will always be subtleties that cannot be caught with by considering program
structure. Some of them could be handled rather easily with a little human input—
probably in a class’s documentation.

By planning for such input, we can start adding nonstructural considerations to our
indicators. If we are careful about how we permit human input, we ought to gain in
accuracy what we loose in objectivity. Human inaccuracy can be partially corrected
for in the usual way through automated sanity checks.

4 Conclusion

The main points of this paper are that graph theory can be used to create indicators of
software quality, that the method emphasizes structure and cannot cover everything
associated with quality, and that humans need to be involved with the interpretation of
these indicators and, possibly, also with the creation of particular graphical models.

Four kinds of graphical model have been described: the control flow graph, the
class uses graph, the data cobweb graph, and the method call graph. The latter two are
new. The indicators derived from these models have had as their rationale the
discovery of complexity, as in the cyclomatic number, the class context indicator, and
the entanglement indicator, or in class cohesiveness, as in the cobweb length indicator
and the feature envy indicator. The entanglement, cobweb length, and feature envy
indicators are new and have not yet been used to help evaluate any software.

An educational analogy provides a more positive ending. Our educational system
relies on tests in spite of evidence that tests do not measure what we want them to
measure. Tests are used because we need to measure educational progress and tests
are our only tools for doing so. Software quality indicators can be viewed in much the
same way. If you do look at them that way, you will always be looking for new ones.
You will also will never use them to drive your refactoring efforts. That would be like
teaching to a particular test. You can get good scores that way but you do not get
good results.

Afterword

Coupling is an important topic that is largely ignored in this paper. Mostly that is due
to space and time considerations. Note that there is a wealth of information about
coupling in the class uses and method call graphs. One might, for example, count all
the edges going one direction between two partitions of a method call graph. This
count would give the cardinality of a set M of all methods belonging to one class and
called by another. A large number would bear looking into. So would a large number
of data types appearing as parameters or return values of the methods in M.

72 J A. Zimmer

Biography

Trained as a Ph.D. graph theorist, the author has worked, taught, and published in the
areas of computer science, software development, and software maintenance for over
a quarter century. For all of the nineties, he was a member of the editorial board of
Wiley’s Journal of Software Maintenance: Research and Practice. Currently he
teaches college-level computer science to gifted high school students at a boarding
school in Oklahoma. He loves it.

Dr. Zimmer can be found at www.ossm.edu/~azimmer and at the Oklahoma
School of Science and Mathematics, 1141 N. Lincoln Blvd., Oklahoma City, OK
73104

References

1. Baase, Sara, Computer Algorithms, Addison-Wesley (1988) ISBN 0-201-06035-3 pp 184–
190

2. Barnes, D. J. and Kølling, M., Objects First with Java, Prentice Hall (2003) pp 256–270
(See also www.BlueJ.org .)

3. Basili, V. and Mills, H., “Understanding and documenting programs”, IEEE Trans. On
Soft. Eng., Vol. SE-8, IEEE Computer Society (1982) pp 270–83

4. Beck, Kent, Extreme Programming, Embrace Change, Addison-Wesley, ISBN 0–201–
61641–6, p 72

5. ibid, p 73
6. Chidamber, S. R. and Kemerer, C. F., “A Metrics Suite for Object Oriented Design”, IEEE

Trans. on Soft. Eng., Vol. 20, IEEE Computer Society (1994) pp 476–493
7. Constantine, L. Stevens, W. and Myers, G., “Structured Design” IBM Systems Journal

Vol 13 (1974) 115–139
8. Cormen, T., Leiserson, C., and Rivest, R., Introduction to Algorithms, 2nd ed, (2001) MIT

Press/McGraw Hill ISBN 0–262–03293–7 pp 629–640
9. ibid, pp 488–493
10. Fowler, Martin, Refactoring, Improving the Design of Code, Addison-Wesley (2000),

ISBN 0-201–48567–2
11. ibid, pp 75–78
12. ibid, p 81
13. ibid, p 80
14. ibid, p 86
15. Fowler, M. and Scott, K., UML Distilled, Addison-Wesley (1999) p 108
16. Gronback, R.C., “Software Remodeling: Improving Design and Implementation Quality”,

Borland White Paper,
 www.borland.com/products/white_papers/pdf/tgr_softwareremodeling.pdf
17. McCabe, T.J., "A Complexity Masure", IEEE Transactions on Software Engineering,

Vol 2. (1976) pp 308–320.
18. Miller, G. A., "The Magic Number Seven, Plus or Minus Two: Some Limits on Our

Capacity for Processing Information", The Psychological Review, Vol 63 (1956) pp 81–97
19. Parnas, D. L., "Designing Software for the Ease of Extension and Contraction", IEEE

Transactions on Software Engineering Vol 5, (1979) pp 270–283.
20. Woodfield, S.N., Dunsmore, H.E., and Shan, V.V., “The Effect of Modularization and

Comments on Program Comprehension” , Proc. of 5th Conf. on Soft. Eng, IEEE Comp.
Soc. 1981, pp 215–223

21. Zimmer, J Adrian, "Restructuring for Style", Software Practice and Experience, Vol 20,
Wiley (1990) pp 365–389

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 73–81, 2003.
© Springer-Verlag Berlin Heidelberg 2003

The Test Automation Manifesto

Gerard Meszaros1, Shaun M. Smith2, and Jennitta Andrea1

1 ClearStream Consulting Inc., 3710 250 5th Avenue SW,
Calgary, Alberta, Canada T2P 3H7
gerard.meszaros@acm.org,
jennitta@clrstream.com
http://www.clrstream.com

2 Sandbox Systems Inc., 1550 770 8th Avenue SW,
Calgary, Alberta, Canada T2P 3R5
shaun@agilecanada.com

http://www.sandboxsystems.com

Abstract. Two key aspects of eXtreme Programming are automated testing and
frequent refactoring. But is refactoring the best way to arrive at a set of tests that
are both sufficient and maintainable? This paper builds on previously cataloged
test smells, classifies these smells into two broad categories and introduces prin-
ciples (or goals) for test automation. It also provides the start of a generative
pattern language that helps guide the construction of automated tests that should
not require extensive refactoring.

1 Introduction

Much has been written about the need for automated unit and acceptance tests as part
of agile software development. But writing good test code is hard and maintaining
obtuse test code is even harder. Since test code is optional (not shipped to customers),
there is a strong temptation to give up testing when the tests becomes difficult or ex-
pensive to maintain. Once you have given up on the principle of “keep the bar green to
keep the code clean”, much of the value of the automated tests is lost.

Over a series of projects we have faced a number of challenges to automated test-
ing. The cost of writing and maintaining test suites has been a particular challenge,
especially on projects with hundreds of tests. Fortunately, necessity is the mother of
invention and we, and others, have developed a number of solutions to address these
challenges. We have also gone on to introspect about these solutions to ask ourselves
why they are good solutions and what is the underlying test automation principle that
they uphold? We called these collected principles The Test Automation Manifesto.
We believe that adherence to the principles of the Manifesto will result in automated
tests that are easier to write, read, and maintain.

74 G. Meszaros, S.M. Smith, and J. Andrea

1.1 History

On our first test-first project, we encountered a number of problems: the cost of updat-
ing existing tests was beginning to become a major component of the overall cost to
implement a new feature, the cost of writing automated tests for new features was
increasing, and the effort required to run the test suite was growing. Changes to the
software under test’s (SUT) API would impact dozens of tests. For example, adding a
parameter to a class constructor would mean revisiting every test that created an in-
stance of that class. We found that as tests were developed for more complex require-
ments, the effort to setup and teardown test fixtures was becoming greater than the
effort to exercise and verify the new behavior. And we found that we could no longer
just press the “run” button to run the test suite; we would have to truncate all the tables
in the database before we could run a test suite because a previous run had not cleaned
up after itself. Test automation, which had seemed so simple at the beginning, was
becoming a burden. We still enjoyed the benefits of automated testing, but the invest-
ment cost was increasing. We had to find ways to reduce the cost while producing the
valuable return we wanted.

1.2 Economics of Test Automation

Of course there will always be a cost to building and maintaining an automated test
suite. Ardent test automation advocates will argue that it is worth spending more to
have the ability to change the software later. This “pay me now so you don’t have to
pay me later argument” doesn’t go very far in a tough economic climate. And the
argument that the quality improvement is worth the extra cost doesn’t go very far in
these days of “just good enough” software quality.

Saved Effort

Time

Increased
Effort due to
Automation

Reduced
EffortInitial

Effort

Test
Automation
Effort

Software
Development
Effort

Fig. 1. The Effect of Test Automation on Software Development

The goal should be to make the decision to do test automation a “no-brainer” by en-
suring that it does not increase the cost of software development. This means that the

The Test Automation Manifesto 75

additional cost of building and maintaining automated tests must be offset by savings
through reduced manual unit testing and debugging/troubleshooting as well as the
remediation cost of the defects that would have gone undetected.

2 Bad Smells in Test Code

At XP2001, van Deursen et al [8] introduced a number of “bad smells” that occur
specifically in test code. They recommend a set of refactorings that can be applied to
the tests to remove them. Many of our initial problems with test automation involved
those smells as well a number of others that we identified and developed solutions for.
We have also discovered that there are at least two different kinds of test automation
smells: “code smells” that must be recognized when looking at code, and “behavior
smells” that manifest themselves when you least expect. The latter are much harder to
ignore because tests are usually failing as you try to integrate your code and you must
unearth the problems before you can “make the bar green”.

2.1 Bad Smells – Code

Code smells are the “classic” bad smells as first described by Fowler in [3]. These
smells need to be recognized by the test automater as they maintain the test code. Most
of the smells introduced by Fowler are code smells. Code smells typically affect main-
tenance cost of tests but they may also be early warnings signs of behavior smells to
follow.

Hard Coded Test Data – Lots of “Magic Numbers” or Strings used when creating
objects which is likely to result in an Unrepeatable Test.

Test Code Duplication [8] – The same code sequences appear many times in many
tests. More code to modify when something changes (causes Fragile Tests)

Mystery Guest [8] – When a test uses external resources such as a file containing
test data, it becomes hard to tell what the test is really verifying. These tests often have
a “lopsided” feel to them (either setup or verification of outcome is external to test).

Complex Test Code – Too much test code or Conditional Test Logic. Hard to verify
correctness; more likely to have bugs in the tests

Can’t See the Forest for the Trees – So much test code that it obscures what the test
is verifying. The tests do not act as a specification because they take too long to under-
stand.

Conditional Test Logic – Tests containing conditional logic (IF statements or
loops). How do you verify that the conditional logic is correct? Does it always test the
same thing? Do you have “untested” test code?

Complex Undo Logic – Complex fixture teardown code increases the likelihood of
leaving the test environment corrupted by not cleaning up correctly. This results in
“data leaks” that may later cause this or other tests to fail for no apparent reason.

76 G. Meszaros, S.M. Smith, and J. Andrea

2.2 Bad Smells – Behavior

Behavior smells are smells you encounter while running tests.
Fragile Tests – Every time you change the SUT, tests won’t compile or they fail.

You need to modify lots of tests to get things “green” again. This greatly increases the
cost of maintaining the system. Contributing code smells include Test Code Duplica-
tion and Hard Coded Test Data.

Fragile Fixture – Tests start failing when a shared fixture is modified (e.g., new re-
cords are put into the database). This is because the tests are making assumptions
about the contents of the shared fixture. A contributing code smell is Mystery Guest.

Interdependent Tests – When one test fails, a number of other tests fail for no ap-
parent reason because they depend on a previously run test’s side effects. Tests cannot
be run alone and are hard to maintain.

Unrepeatable Tests – Tests can’t be run repeatedly without manual intervention.
This is caused by tests not cleaning up after themselves and preventing themselves or
other tests from running again. The root cause is typically Hard-coded Test Data.

Test Run War [8] – Seemingly random, transient test failures. Only occurs when
several people are testing simultaneously. This is caused by parallel test runs (execut-
ing the same tests) interacting with each other through a shared test fixture. A com-
mon root cause is Hard-coded Test Data.

2.3 The Trouble with Refactoring of Tests

In [8], the authors provided suggested refactorings for each of the bad smells. When
we refactor production code, we rely on our automated tests to discover any problems
introduced by the refactorings. But when we refactor our tests, what will alert us to
broken tests? If a test fails when it used to pass, we can be certain that we have broken
the test, but is “no news, good news”? Unfortunately not!

Tests are themselves inherently hard to test in an automated way. The only feasible
way to test the tests is to see them fail when the SUT is known to contain defects that
should cause the test failure. This can be accomplished manually either by writing the
tests before the code they test (and they should fail) or by introducing defects into the
SUT after the tests are written. While this may be a reasonable expense when first
writing tests, to do so every time we refactor tests would be prohibitively expensive
and would act as a significant barrier to refactoring of tests. Tools such as Jester [6]
may help in this process but the output requires manual inspection and interpretation.

2.4 Beyond the Refactoring of Smells

We believe there is an alternative to all this test refactoring. Many of the smells can be
detected very early in test automation or avoided entirely. Rather than asking what
refactoring you should apply to remove a smell, we prefer to ask what principle is

The Test Automation Manifesto 77

being violated when the smell is present and what can we do to prevent such viola-
tions.

Note that we are not advocating “big up-front design” of the tests. As consultants,
we have seen many examples of testing frameworks built in anticipation of testing
needs – needs that may or may not be real. These frameworks usually end up causing
more problems than they solve. What we are advocating is thoughtful application of
test automation patterns that we have found help us avoid the smells. The patterns all
support a small set of test automation principles that are being violated when the vari-
ous smells are present. We propose these principles and patterns as a “Test Automa-
tion Manifesto”.

3 The Test Automation Manifesto

Based on many years of experience building and maintaining automated unit and ac-
ceptance tests, we propose the following “Test Automation Manifesto”.

Automated tests should be:

Concise – As simple as possible and no simpler.
Self Checking – Test reports its own results; needs no human interpretation.
Repeatable – Test can be run many times in a row without human intervention.
Robust – Test produces same result now and forever. Tests are not affected by
changes in the external environment.
Sufficient – Tests verify all the requirements of the software being tested.
Necessary – Everything in each test contributes to the specification of desired behav-
ior.
Clear – Every statement is easy to understand.
Efficient – Tests run in a reasonable amount of time.
Specific – Each test failure points to a specific piece of broken functionality; unit test
failures provide “defect triangulation”.
Independent – Each test can be run by itself or in a suite with an arbitrary set of other
tests in any order.
Maintainable – Tests should be easy to understand and modify and extend.
Traceable – To and from the code it tests and to and from the requirements.

4 Test Automation Patterns

Refactoring to eliminate smells is a good way to remove a problem once it has been
created. “Generative” test automation patterns can be used to guide test automaters in
avoiding the problems in the first place. In our experience, the following patterns can
help ensure that automated tests comply with the principles espoused in The Test
Automation Manifesto.

78 G. Meszaros, S.M. Smith, and J. Andrea

4.1 Readability Patterns

Readability patterns support the Manifesto principles of Concise, Necessary, Clear,
Specific and Maintainable.

Tests as Specification
A test should visibly tie the expected outcome to the conditions that should cause it. It
should be obvious in each test exactly what behavior it is specifying.

Single Glance Readable
A quick read of a test should be enough to understand what it tests. The test should fit
in a single pane of a window without scrolling.

Intent Revealing Fixture
The part of the test that describes the test fixture (the pre-conditions of the test) should
focus on what’s relevant to this specific test. Anything irrelevant is hidden (encapsu-
lated). This avoids the introduction of objects and values that have no direct bearing
on the condition being tested. Well-named Finder Methods or Anonymous Creation
Methods are an effective ways to do this.

Finder Methods
When reusing objects in a shared fixture use clearly-named Finder Methods in your
test rather than using hard-coded object keys. This makes it easy to understand why
the test is using specific objects and avoids the Mystery Guest smell.

Outcome Describing Verification Logic
The verification part of the test should make it very clear what the expect outcome
should be. No “reading between the lines” should be required.

Single Condition Test
Tests should verify a single test condition (a single scenario or requirement). This
makes them much easier to understand and maintain. They also make it easier to or-
ganize the tests in a way that makes it obvious which conditions are covered and
which ones remain to be tested. Single condition tests also contribute to Defect Trian-
gulation.

Declarative Style
All parts of the test should describe what is (fixture) or should be (expected results),
rather than provide a recipe for how to create/verify it. Use of an Expected Object is
one way to do this for expected results.

4.2 Robustness Patterns

Robustness patterns support the Manifesto principles of Self Checking, Repeatable,
Independent and Maintainable.

The Test Automation Manifesto 79

Independent Tests
Each test is self-contained and makes no assumptions about which other tests have run
before it or will run after it.

Clean Slate Fixture
Each test sets up everything it depends on. This avoids depending on other tests, either
on purpose or accidentally, and ensures that all objects are in a well understood state.

Anonymous Creation Methods
Tests use common utility methods to create unique objects for each test and test run.
Only the attributes of interest to the test are passed as “constructor” arguments. This
ensures tests are repeatable and robust. It also prevents Test Run Wars since each
instance of this test will create its own, unique objects so it cannot “collide” with itself
when run from multiple clients simultaneously. These methods reduce the cost of
writing tests by providing reusable building blocks which can be quickly assembled
into new tests.

Automated Test Cleanup
Automated Test Cleanup replaces hand-coded teardown methods with the automatic
destruction of test fixtures (objects, database data, files, etc.). Using this technique, the
authors have not written a teardown method in almost three years. Automated cleanup
eliminates complex and un-testable logic in a test’s fixture teardown code and avoids
test environment corruption by ensuring all fixtures are deleted. Automated Test
Cleanup also greatly reduces the cost of writing tests by completely eliminating the
most error-prone and certainly the most tedious work.

SUT API Encapsulation
Reduces maintenance cost by isolating tests from unimportant changes to SUT API.
Helps make test more readable by focusing on what is important.

4.3 Reuse Patterns

Reuse patterns support the Manifesto principles of Concise, Clear, and Maintainable.

Reuse through Test Building Blocks
Tests reuse common logic by invoking common building block methods rather than by
inheriting and overriding. This facilitates Single Glance Readable tests.

Anonymous Creation Method
Reusable and testable fixture setup logic (see Robustness Patterns).

Custom Assertions
Custom assertions are reusable object comparison logic that implements “test-specific
equality”. These are refactored using Extract Method when the same set of assertions
appears in two or more tests. It simplifies the tests greatly yet avoids polluting produc-
tion code with non-production object comparisons, which may need to vary from test
to test anyway. Non-trivial custom assertions (e.g., comparing XML documents) can

80 G. Meszaros, S.M. Smith, and J. Andrea

and should be tested with unit tests of their own. This reduces the amount of
un-testable code in tests.

Parameterized Test
To apply the same test logic in a number of circumstances, write a test that takes a
parameter that is used to determine which pair of inputs/expected-outputs to use. Ei-
ther write a set of individual tests that just delegate to the Parameterized Test, or use a
single Data-driven Test Suite that contains the values to be tested.

Templated Framework Tests
When testing framework plug-ins where every plug-in needs to be tested the same
basic way, create a Parameterized Test that implements Template Method [4] that
calls plug-in-specific logic to setup the fixture and verify the outcome. Use a Param-
eterized Test to tell the Framework Test which plug-in to test.

Data-Driven Test Suite
When you have a large number of tests that require the same logic but different data,
consider creating a data-driven test suite that reads the data and calls the appropriate
Parameterized Tests. This allows tests to be created without programming each indi-
vidual test case. The FIT framework [2] is a good example of this style of testing.

4.4 Other Patterns

Round-Trip Test
Avoid over-specification (and Fragile Tests) by testing inputs and outputs at same
“black box” interface.

Pass-Thru Test
Verify the interactions of the SUT with other software when these interactions are part
of the design requirements. Use “stubs” or “mock objects” [5] to play the role of the
other software so that you can verify the interactions.

Stub Out Slow
Replace any slow component that is depended upon with a test stub. For example, stub
out a database to speed up tests by orders of magnitude [7].

Stub Out Dependencies Beyond Control
Anything beyond your direct control should be stubbed out so it doesn’t cause unex-
pected results or delays.

5 Conclusion

Over a series of projects we have learned not only to ruthlessly refactor our production
code to keep it clean, but we have also learned to do the same with test code. But the
principles of test code refactoring are not the same as those for production code refac-
toring.

The Test Automation Manifesto 81

The Test Automation Manifesto defines the principles that underlie highly effective
tests. All test code refactoring activities should improve the alignment with these prin-
ciples. Does a refactoring improve robustness? Does it make it more concise or clear?
If not, it is probably the wrong refactoring.

When first writing a test, the Manifesto acts as a checklist of the qualities that lead
to tests that are less likely to need refactoring. We have found that applying the gen-
erative test automation patterns leads us to produce clear, maintainable, robust auto-
mated tests that are much less likely to require refactoring to add these qualities after
the fact.

References

1. Appleton, B.: Generative Patterns. Available on-line at
http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html#GenerativePatterns.

2. Cunningham, W.: FIT: Functional Integrated Test. Available on-line at http://fit.c2.com
3. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley (1999)
4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley (1995)
5. Mackinnon, T., Freeman, S., Craig, P.: Endo-Testing: Unit Testing with Mock Objects. In:

The First International Conference on eXtreme Programming and Agile Processes in Soft-
ware Engineering (2000), Collected In: Succi, G., Marchesi, M., (eds.): Extreme Program-
ming Examined. Addison-Wesley (2001)

6. Moore, I.: Jester – A JUnit Test Tester. In: The Second International Conference on eXtreme
Programming and Agile Processes in Software Engineering (2001)

7. Smith, S.M., Meszaros, G.: Increasing the Effectiveness of Automated Testing. In: The
Second International Conference on eXtreme Programming and Agile Processes in Software
Engineering (2001), Collected in: Marchesi, M., Succi, G., Wells, D., Williams, L. (eds.):
Extreme Programming Perspectives. Addison-Wesley (2002)

8. van Deursen, A., Moonen, L., van den Bergh, A., Kok, G.: Refactoring Test Code. In: The
Second International Conference on eXtreme Programming and Agile Processes in Software
Engineering (2001)

Test-Driven Database Development: A Practical
Guide

Rong Ou

Sabre Airline Solutions
1 East Kirkwood Blvd. MD 7340

Southlake, TX 76092 USA
rong.ou@sabre.com

Abstract. Test-Driven Development (TDD) is one of the core program-
ming practices of XP. However, developing database access code test-
driven is often difficult, if not impossible. This paper presents a practical
solution to this problem, making use of local development databases for
testing and Open Source tools for schema migration and test data man-
agement. The examples are outlined in Java, but the basic ideas and
principles are widely applicable to different languages and platforms.

1 Introduction

Test-Driven Development (TDD) [1] is one of the core programming practices
of XP [2]. However, a large amount of the enterprise software development to-
day centers around relational databases. This presents a challenge for enterprise
developers who wish to adopt or are currently practicing XP: database access
code is difficult to test in isolation.

Traditionally there are two approaches to this problem:

Don’t Test. Or more precisely, don’t test too much. Since testing against a
shared development database can be slow and error-prone, “the basic rule
is to go to the actual database as infrequently as possible, consonant with
safety, so that the tests run as rapidly as possible” [3]. This sounds like the
Chinese proverb “fasting for fear of choking”. If we can make the database
tests run as fast as normal tests, as we will demonstrate in this paper, there
is no need to abide by this rule.

Mock Objects. With this approach, database access objects (for example,
JDBC connections and statements) are replaced “with dummy implementa-
tions that both emulate real functionality and enforce assertions about the
behavior of our code” [4]. A typical test case looks like this [5]:

public class TestMaililingList extends TestCaseMo {
public void testAddNewMember() throws SQLException {
mockConnection.setExpectedPrepareStatementString(

MailingList.INSERTION_SQL);
mockStatement.addExpectedSetParameters(

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 82–90, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Test-Driven Database Development: A Practical Guide 83

new Object[] {EMAIL, NAME});
mockStatement.setExpectedExecuteCalls(1);
mockStatement.setExpectedCloseCalls(1);

mailingList.addMember(mockConnection, EMAIL, NAME);

mockStatement.verify();
mockConnection.verify();

}
[...]

}

It is apparent that we have to know exactly what the production code looks
like before we can write the test, which goes against TDD. Perhaps more
importantly, we are not even testing the thing that is most likely to break:
the SQL strings. This violates the XP rule of testing “everything that could
possibly break”.

A different approach to this problem is needed.

2 An Example

Before we go into too much theorizing, let us first look at an example.
We are given a project to develop a security module for an application. The

data has to reside in the database. The first story is to develop the login function,
where we look up a user given a user name. For simplicity’s sake, there is no
password involved.

During our exploration phase, we have decided to use Hibernate [6] as our
Object Relational (O/R) mapping tool. An O/R mapping tool is not absolutely
necessary, but we will see in a moment why it saves us a lot of trouble. We
have also decided to use the HSQL Database Engine (HSQLDB) [7] as our local
development database [8], even though our deployment database will be Oracle.
In addition, we will use Dbunit [9] to manage test data, XDoclet [10] to generate
mapping files, and Apache Ant [11] to manage the build process.

With that out of the way, let us start working on the login story.

1. Write a test. We start with a plain old JUnit [12] test case:

public class LoginTest extends TestCase {
public void testLogin() throws Exception {
User user = Login.login("user");
assertNotNull(user);

}
}

2. Make it compile. To make the test compile, we create two empty classes:

84 R. Ou

public class Login {
public static User login(String userName) {
return null;

}
}

public class User { }

3. Run test. Fail. Of course, we could return an empty User object to make
the test pass. Since we know what we are doing, let’s skip that step.

4. Write mapping class. We add more code to the User class:

/**
* @hibernate.class table="USER_INFO"
*/
public class User {
private Long userId;
private String userName;

/**
* @hibernate.id generator-class="hilo" column="USER_ID"
*/
public Long getUserId() {
return userId;

}

/**
* @hibernate.property column="USER_NAME"
*/
public String getUserName() {
return userName;

}
}

This is saying: we want the User class to be persistent, mapped to a database
table USER_INFO. It has an object identifier (OID) which is mapped to
a surrogate key USER_ID [13]. The userName attribute is mapped to the
USER_NAME column.

5. Generate mapping file. We run the hibernate.doclet ant task (see Ap-
pendix A) to generate the O/R mapping file User.hbm.xml.

6. Export schema. This is the magical ingredient that makes using an O/R
mapping tool worthwhile. Simply running an Ant target (export.schema,
see Appendix A) generates a new database schema from the mapping files
in seconds.

7. Create test data in XML. This is the last bit we have to do for the test.
Create an UserInfo.xml file:

Test-Driven Database Development: A Practical Guide 85

<?xml version="1.0">
<dataset>

<USER_INFO USER_ID="1" USER_NAME="user"/>
</dataset>

and we can change our test case to extend DatabaseTestCase from Dbunit:

public class LoginTest extends DatabaseTestCase {
protected IDataSet getDataSet() throws Exception {
return new FlatXmlDataSet(getClass().

getResourceAsStream("UserInfo.xml"));
}
[...]

}

8. Implement login function. We finally get to do the real code:

public class Login {
public static User login(String userName) {
try {
// get a session

Iterator iterator = session.iterate(
"from user in class " + User.class.getName() +
" where user.userName = ’" + userName + "’");

if (iterator.hasNext()) {
return (User) iterator.next();

}
} catch (HibernateException e) {
// handle exception

}
return null;

}
}

9. Run test. Pass.

This approach is a little bit more involved than vanilla TDD, but not by too
much, considering the fact that we created a database from scratch in the process.

3 Lessons Learned

As with any complex subject, a simple example does not do it justice. In our
real world project, using a similar approach, we were able to reduce the running
time of our test suite (560 tests), from over an hour by hitting a shared Oracle
database, to about 70 seconds by hitting a local HSQLDB instance. It takes
about 20 seconds to rebuild the local HSQLDB instance from scratch.

To reiterate, the components that made this approach possible:

86 R. Ou

– Local development database. This is a must for two reasons. One is
to make tests run faster; the other is to provide the isolation needed so
that running tests and test failures are localized. Any database can be used
for this, from MySQL to PostgreSQL to Oracle, and it doesn’t have to be
the same database as the deployment database. HSQLDB is a good choice
because it is very lightweight and maintenance free.

– O/R mapping tool. A good O/R mapping tool provides a database en-
capsulation layer to remedy the “Object-Relational Impedance Mismatch”,
and tool support to automate schema migration. In theory it is not abso-
lutely necessary, but it surely makes our life a lot easier (see Sect. 4 for
alternatives).

– Test data management. Even though we normally don’t need a lot of
test data, it’s still a pain to manually insert and delete them. By external-
izing them into XML files, we gain the capability to reuse the data in other
situations (for example, acceptance tests).

From our experience, we also found further optimizations to this approach:

– Write an AllTests suite. This can be accomplished in a generic manner
by searching through a package hierarchy to add any class that ends with
Test. The reason for this is to avoid unnecessarily invoking the JVM multiple
times.

– Share a database connection for testing. Even though we are testing
against a local database, repeatedly opening and closing database connec-
tions can still add as much as 50% overhead. The solution for this is to write
a base test case class that returns a static connection which can be reused
by Dbunit.

– CleanDbTest. If we rely solely on Dbunit to load and delete test data,
there is no need to worry about leftover data. But we might also need to test
data creation and unintentionally leave some data behind. One way to guard
against this is to write a CleanDbTest, which is both a JUnit TestDecorator
and TestListener that verifies the database is clean after each test is run.
We only need to run CleanDbTest periodically to verify the integrity of the
whole test suite; if the cost is acceptable, the verification can be added to
the tearDown method in the base test class.

4 Variations

The example given lives in an ideal world: we start from a clean slate, there is
no legacy code, no legacy database. The real world is a lot messier. Let us look
at some variations to the basic scheme.

4.1 New Projects with Existing Database Schema

For most projects, a legacy database is already in place and cannot be changed
(at least not substantially). The techniques outlined in this paper can still be

Test-Driven Database Development: A Practical Guide 87

applied. Most O/R mapping tools (Hibernate included) have utilities to reverse
engineer an existing database schema into Java classes and mapping files. There
are also Open Source tools specialized in this category, for example, Middlegen
[14], which has a Graphical User Interface (GUI) to allow easy manipulation of
names, data types, relationships, and cardinalities etc.

Working with an existing database schema does have its drawbacks. For ex-
ample, the tables may not be using surrogate keys. Composite keys with business
meanings are harder to handle in O/R mapping tools and not all tools fully sup-
port them, so this is a critical factor to consider when selecting a tool.

4.2 Existing Code Base

Even if an existing code base is only doing straight JDBC calls, it might still be
worthwhile to go through the exercise of mapping an existing database schema
to Java classes. We gain better understanding of the data model, and get the
capability to migrate schema to the local development databases for free.

If that is not an option, there are tools out there to do schema migration
between databases. HSQLDB has a Transfer Tool to transfer data from any
JDBC data source to another, but it seems to be more geared towards data
management than development. Perhaps an in-house tool can be developed, or
a commercial vendor can be considered.

4.3 Acceptance Tests and Integration Tests

This paper mainly deals with developer-written unit tests. Acceptance tests and
integration tests are best ran against a shared integration database, to make
sure schema changes haven’t slipped through, and problems with database id-
iosyncracies are caught at an early stage.

The test data created for unit testing, in the form of external XML files, can
be used for both acceptance testing and integration testing.

5 Limitations

There are certain limitations of this approach that might impact the decision to
adopt it.

5.1 Stored Procedures and Triggers

Since we are using a different database from the target deployment database to
do unit testing, it is difficult to test stored procedures and triggers, for these are
highly vendor specific.

On the other hand, if the goal is to achieve database vendor independence,
testing on different databases is a good way to reach that goal.

88 R. Ou

5.2 Database Idiosyncracies

Even though there are ANSI SQL standards, almost all database vendors either
add extensions or only implement a subset of the standards. If we want to make
use of a feature that is in the target deployment database but not in our chosen
unit testing database, we have to either test that feature against the integration
database, or bear the cost of creating and maintaining a private instance of the
target database.

In practice we found that using a tool like Hibernate to encapsulate the
database access layer makes it much easier to test locally with a low footprint
database like HSQLDB, because the tool takes away the job of database abstrac-
tion.

6 Conclusion

We have found that testing against local development databases and making
good use of existing Open Source tools enables us to develop database access
code faster, more naturally, and with more confidence. In the grand scheme of
things, it is also an enabling factor to facilitate evolving the database design
along with the code [15].

Acknowledgements. I would like to thank the following reviewers and col-
leagues for their contributions to this paper: Frank Luo, BK Adarsh, Deepa
Chopra, Damon Hougland, Zheng Lin, Philipp Meier.

Author Biography

Rong Ou is a Principle Software Architect at Sabre Airline Solutions, where he
develops and architects enterprise software solutions for the airline industry. He
has been in the software industry for eight years, playing the role of developer,
architect, OO mentor and XP coach. Currently he is a member of one of the
largest XP teams in the industry, with over 200 people in the development orga-
nization. He has a BA in Physics from Peking University and a MS in CS from
The University of Texas at Austin.

References

1. Beck, K.: Test-Driven Development: By Example. Addison Wesley Professional
(2002).

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley
(2000).

3. Jeffries, R., Anderson, A., Hendrickson, C.: Extreme Programming Installed.
Addison-Wesley (2001).

4. Mackinnon, T., Freeman, S., Craig, P.: Endo-Testing: Unit Testing with Mock
Objects. Extreme Programming Examined. Addison-Wesley (2001) 287–301

Test-Driven Database Development: A Practical Guide 89

5. Freeman, S.: Developing JDBC Applications Test-First. On-line paper available at
http://www.mockobjects.com/papers/jdbc_testfirst.html.

6. Hibernate. Relational Persistence For Idiomatic Java. Project is available on-line
at http://hibernate.sourceforge.net.

7. HSQLDB. Lightweight 100% Java SQL Database Engine. Project is available on-
line at http://hsqldb.sourceforge.net.

8. Dallaway, R.: Unit Testing Database Code. On-line paper and related discussion
at http://www.dallaway.com/acad/dbunit.html.

9. The Dbunit Database Testing Framework. http://dbunit.sourceforge.net.
10. XDoclet: Attribute-Oriented Programming. http://xdoclet.sourceforge.net.
11. Apache Ant is a Java-based build tool. http://ant.apache.org.
12. JUnit is a regression testing framework. http://www.junit.org.
13. Ambler, S.: Mapping Objects To Relational Databases. On-line paper available at

http://www.ambysoft.com/mappingObjects.pdf.
14. Middlegen. http://boss.bekk.no/boss/middlegen.
15. Fowler, M., Sadalage, P.: Evolutionary Database Design. On-line paper available

at http://www.martinfowler.com/articles/evodb.html.

A Appendix: Sample Build File

<project name="tddd" default="main" basedir=".">
<property name="build.dir" location="${basedir}/build"/>
<property name="build.classes" location="${build.dir}/classes"/>
<property name="lib.dir" location="${basedir}/lib"/>
<property name="src.dir" location="${basedir}/src"/>
<path id="class.path">
<pathelement location="${build.classes}"/>
<fileset dir="${lib.dir}" includes="*.jar"/>

</path>

<target name="hibernate.doclet"
description="Runs XDoclet to generate the mapping files">

<taskdef name="hibernatedoclet" classpathref="class.path"
classname="xdoclet.modules.hibernate.HibernateDocletTask"/>

<hibernatedoclet destdir="${build.classes}">
<fileset dir="${src.dir}">

<include name="**/*.java"/>
</fileset>
<hibernate/>

</hibernatedoclet>
</target>

<target name="export.schema"
description="Exports schema to database">

<taskdef name="schemaexport" classpathref="class.path"
classname="net.sf.hibernate.tool.hbm2ddl.SchemaExportTask"/>

90 R. Ou

<schemaexport
properties="${build.classes}/hibernate.properties"
quiet="no" text="no" drop="no"
output="${build.dir}/schema-export.sql">

<fileset dir="${build.classes}">
<include name="**/*.hbm.xml"/>

</fileset>
</schemaexport>

</target>

[...]

</project>

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 91–95, 2003.
© Springer-Verlag Berlin Heidelberg 2003

A Testing Checklist for Database Programs: Managing
Risk in an Agile Environment

Rolf Nelson

nelson@quoininc.com

Abstract. Quoin Inc. has been using agile testing methodologies, such as
continuous integration and unit testing, in its development of SQL-based Java
software since 1998. Based on that experience, we present a checklist
containing twenty-six database-related items to consider when testing such
software. The checklist is annotated with examples of good and bad
development and testing practices. While this paper targets projects that use
both SQL and Java, most of the checklist items are applicable to any database
transactions in any language. Managers and developers can use this checklist as
a starting point for discussion of what types of tests to require for their
particular project, especially when operating in an agile environment such as
XP. Referring to the checklist will enable the project to develop more robust
code with less effort.

Keywords: Agile, XP, SQL, Java, testing

1 Introduction

Continuous Integration and Unit Testing are two XP (Extreme Programming)
practices. Generic checklists exist as starting points to help managers and developers
think about what types of tests are appropriate and necessary for their own particular
project. This paper should be used as a supplement to such an existing generic
checklist, to add additional items that are common to many projects that manipulate
databases. The target audience for this paper is managers and developers on projects
that use Java and SQL who would like to produce robust code more efficiently;
however, most of the items on the checklist can be applied to any database project.

The checklist is based on Quoin’s experience with using agile development
practices to develop robust Java code that makes SQL calls against databases,
especially large, shared, mission-critical databases. Not all items will apply to all
projects.

2 How to Use This Checklist

This checklist contains twenty-five questions to consider asking when planning a test
suite for your units. A unit can be as small as a single object method call, or as large
as the entire end-to-end program. Agile testing requires acknowledging that no test
suite is perfect, and being aware of what is being tested and what is being ignored.

92 R. Nelson

This checklist is not meant to be an authoritative guide for every database project;
instead, the checklist is a set of suggestions to bear in mind when discussing what
degree of test coverage is optimal for the project at hand.

Ideally, you would want the answer to each question below to be “verified as NO,”
either because an automated test suite verifies that the answer is no, or because the
way the architecture is designed logically implies that the answer is no. However,
since 100% test coverage is generally unrealistic, most projects will want to prioritize.
For example, many projects will not care whether all SQL statement objects have
been properly closed after use. In addition, some questions will be irrelevant to
certain projects. For example, if a single-threaded program is going to be the only
process accessing the database during its run, there is no need to ensure that the
transactional logic correctly prevents race conditions. Some test items, such as testing
whether SQL statements are malformed, require access to an actual database; a
system such as ObjectMother[1] could be used to set up and tear down such tests.
Other test items, such as exception handling and testing whether connections are
properly closed, would require use of Mock Objects. [2]

For example, in an agile development environment such as Quoin’s, the checklist
can be referred to for inspiration periodically throughout the whole iteration lifecycle,
starting when unit tests are being written prior to code development, and periodically
during the continuous integration and QA that runs parallel to code development.
Certainly we have never been in a situation where a client demanded that every item
on the list had to be tested. Testing in the real world will always be incomplete; as
with other business decisions, the final arbiter is what will bring the most value for
the least cost to the project.

Some questions are annotated with an example of a good “best practice” and, for
contrast, a bad practice.

3 Normal Test Coverage

This section discusses how well tests cover normal program execution, without
necessarily taking into account exceptions or error-handling.

• Are any SQL statements malformed?
• Are any database connections ever left open after unit execution?
• Are any SQL statement objects ever left open after unit execution?

Performance can be affected by many factors, including hardware, database size,
DBMS version, and load produced by concurrent processes. Nonetheless, trying to
forecast production performance is important in some environments:

• Will the unit be unacceptably slow when run against the production database?
• Will the unit be unacceptably slow when run against the production database in x

years, due to projected growth in the size of the production database?

• Does date processing fail on boundary conditions?
• Good: programs function normally on every day of the year.
• Bad: program breaks on January 30 because it believes that a month from today

is February 30.

A Testing Checklist for Database Programs 93

• Does the unit fail if floating-point arithmetic is imprecise?
• Good: program takes into account that a floating-point number subtracted from

itself may not yield exactly zero.
• Bad: program intermittently fails because of dependency on exact floating-point

arithmetic.

• Is the unit susceptible to race conditions?
• Good: although testing for all possible race conditions is impossible, test suite

does, through load testing or through the artificial introduction of delays, test
that the transaction logic is basically correct in the face of concurrent access.

• Bad: test suite ignores the possibility of race conditions.

• Do business invariants get violated by unit execution?

When querying for data, does the unit:
• Return one or more rows that should, by the correct business logic, not be returned

(false positives)?
• Fail to return one or more rows that should, by the correct business logic, be

returned (false negatives)?
• Incorrectly return duplicate data?
• Return data in an incorrect order?

4 Error Handling

This section discusses how gracefully units deal with exceptions and errors. Mock
objects are particularly helpful in generating errors that would be hard to consistently
reproduce when testing against a real database.

• Do SQL errors inappropriately propagate in raw form to the top level?
• Good: SQL exceptions are converted to more user-friendly exceptions that

contain or log the original SQL exception trace for the convenience of
debuggers.

• Bad: SQL exceptions are displayed verbatim and without context, confusing the
user.

• Does the unit fail to rollback gracefully if the program fails halfway through?
• Good: the program rolls back from all failures, even those late in the process
• Bad: on failure, the program leaves half the data tables filled in and the other

half empty, in violation of the desired business logic.

• Does the unit fail gracefully if database schema has been unexpectedly changed?
• Good: program produces a user-friendly error message.
• Bad: program assumes missing column is meant to be null, and continues

processing.

• Does the unit fail gracefully if expected data is not present?
• Good: program produces a user-friendly error message.
• Bad: program throws a mysterious NullPointerException.

94 R. Nelson

• Does the unit notice if data is unexpectedly duplicated?
• Good: program throws a “business invariant exception” if a query for a single

database row unexpectedly returns multiple rows.
• Bad: program merely picks the first row returned and continues processing

without any warnings.

5 Test Hygiene

Obviously writing test suites for your test suites is unnecessary for most projects. It is
likely that the testers will answer these questions through inspection and knowledge
of their own test suites.

• Is test code too similar to the unit code, so that the test code is likely to fail in
exactly the same way as the unit code?
• Good: test code follows a different algorithm from the program code.
• Bad: test code tests the program code by using the exact same query as the

program code, and then checking for differences.

If each test suite creates its own database from scratch and populates the data it needs,
ignore this section. Otherwise, if the tester must share the test database with other
processes:

• Do tests fail to clean up after themselves?

• Do tests rely on test database preconditions that may not necessarily be true in the
future?
• Good: test suite populates, then cleans up, any data it needs.
• Bad: test suite hardwires in certain values that currently happen to be present in

the shared test database.

• Do any tests have race conditions with themselves?
• Good: two testers can run the same test suite simultaneously on a shared test

database.
• Bad: test relies on hardwired values that will conflict with other testers

simultaneously running the same test.

• Do any tests have race conditions with other likely tests?
• Good: shared set of rules and reservation of id’s ensures that independently-

developed test suites will not conflict with each other when run on the shared
test database.

• Bad: test suite developers have no agreed-upon set of rules, and do not
communicate with one another.

6 Miscellaneous Quality Issues

Portability between DBMS systems is increasingly important. While writing
standards-compliant SQL statement does not guarantee that the system will work with

A Testing Checklist for Database Programs 95

every DBMS, it does increase the likelihood that the project is not relying on
proprietary vendor-specific extensions.

• Are database operations written in non-standard SQL, and therefore likely to fail
when run on other database systems?

• Does the unit fail when deployed with other database systems?
• Good: system has been successfully tested with multiple popular DBMS’s.
• Bad: system has only been tested with one DBMS.

All files necessary for the success of the project, from source code files to Ant build
files to SQL scripts, should be clear and transparent, both to the current development
team and to future maintainers.

• Is the SQL poorly documented or incomprehensible?
• Good: developers understand that SQL statements should be commented and

understandable, just as source code should be commented and understandable.
• Bad: developers believe that only files ending in *.java need to be maintainable.

7 Conclusion

Adding SQL or other database functionality is essential to the success of many
projects, but adds additional risks that need to be controlled. In addition to the many
considerations for a normal project, this paper has presented some additional items to
consider for database testing. Remember that the testing process is a probabilistic
guess, or a bet, on what types of errors are most likely to undermine the success of the
project. Choosing wisely what areas of the project to test, and being aware of what
areas were deemed too unimportant to spend limited resources on testing, can allow
the project risks to be successfully managed.

Author

Rolf Nelson (SM Harvard, BA Dartmouth) is a Senior Software Engineer for Quoin
Inc. In addition to seven years of software development experience, he has worked as
a project manager for the World Wide Web Consortium.

References

[1] Schuh, P., Punke, S.: ObjectMother: Easing Test Object Creation in XP. In: XP Universe,
2001. <http://www.xpuniverse.com/2001/pdfs/Testing03.pdf>

[2] Freeman, S. Developing JDBC Applications Test-First. Current February 23, 2003.
<http://www.mockobjects.com/papers/jdbc_testfirst.html>

JNI Testing

Robert Wenner

Port25 Solutions,
Rathaus-Allee 10,

53757 St. Augustin, Germany
robert@port25.com

Abstract. Testing Java Native Interface (JNI) code is a complex un-
dertaking with many pitfalls. This paper shows how to test Java code
that calls C / C++ code. The design presented uses mock objects on
both sides of the JNI layer to achieve a clean, reusable test design. It
shows that the benefits of being able to test all JNI code will outweigh
the extra effort in defining mock objects on both sides.

1 JNI Testing Basics

Unit testing takes on a new dimension when you have to test two different code
environments: Java code and native code called from Java through the JNI.
This paper shows the development of an example Recipient class (someone
that email can be sent to) and how to unit test the corresponding JNI layer.
Recipient is a Java interface to a native C++ library.

1.1 Brief JNI Basics

JNI development is always split in two parts: the Java part that defines and calls
some native methods and the native (that is C or C++) part that implements
these methods [1][2]. The javah tool is used to generate the native method
names from the Java package and class information. The native JNI part will
usually map these generated names to the real native methods. Figure 1 shows
the general modules overview.

Besides function name mapping, the native JNI code usually translates er-
ror codes to exceptions, performs data type conversions, and maps from native
structures to Java classes (as required).

1.2 Test Scope

The tasks mentioned in the previous section define the test scope. The JNI test
is not supposed to test the underlying native code, for example by passing an
invalid email address. The native code has its own tests somewhere else. In JNI
testing the test scope is the JNI itself: the conversion from and to native code, the
error handling, etc. In figure 1 the code under test consists of the two modules
in the center, the JNI parts.

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 96–110, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

JNI Testing 97

Fig. 1. Modules overview

JNI testing is important because many compile-time checks are transfered to
runtime. The C / C++ compiler can not check whether a Java package, class or
member exists. It can not perform type checking. Neither can the Java compiler
check whether native functions are defined or even called correctly. A problem
with any of these will result in an exception or even crash the virtual machine.

A common approach for unit testing is to mock all objects the code un-
der test interacts with [3]. As seen in figure 1 the code under test consists of
the Java JNI code (Recipient.java) and the native (that is C++) JNI code
(Recipient.cpp). This leaves the native library to be mocked.

1.3 First Try

Assume Recipient takes an email address as an argument to its constructor.
The Java code is supposed to pass this argument to the C++ code telling it
to create a new native Recipient. The Java JNI code calls a native (C++)
method which hands the given argument to the native library. The test must
then determine whether it was passed correctly. Argument passing is tested by
checking whether the native code receives the expected argument value supplied
from the Java side. Listing 1.1 shows the JUnit test.

For testing purposes the native library is replaced with a dummy library.
The dummy test code checks the arguments passed and if they differ from what
was expected, the test fails1. The library function for creating a new Recipient
(named makeNewRecipient) is likely to have a way to indicate an error. In C
this is traditionally a return code (and / or possibly setting errno). In C++
an exception is thrown. The native JNI part is responsible for mapping the
return code to a Java exception. A possible mock library function may look like
listing 1.2.

1 To make sure the dummy library is used instead of the real life library the Makefile
may set the $LD LIBRARY PATH on Unix or copy the dummy library to the current
directory on Windows.

98 R. Wenner

Listing 1.1. Simple test case

public class FirstRecipientTest extends TestCase {
public FirstRecipientTest(String name) {

super(name);
}

public void testConstructor () {
// dummy library throws if given address != me@here.com
Recipient rcpt = new Recipient("me@here.com");

}
}

Listing 1.2. Simple native mock

int makeNewRecipient(const char* address) {
if (strcmp(address , "me@here.com") != 0) {

return BAD_ARGUMENT;
}
return OK;

}

2 It’s Ugly

The test case is in fact separated into two parts of code: the JUnit test case
in Java and the mock code in C++. While writing (or maintaining tests) the
programmer has keep Java and C++ synchronized.

2.1 Argument Abuse

To make things more realistic2 let’s look at a more sophisticated test. The native
library offers a bunch of possible failures from the constructor call (malformed
email address, out of memory, handling Java null argument values, etc.) and
the tests should check that each error code gets translated to an appropriate
exception. Therefore we need a way to tell the mock library which error it should
simulate.

Creating a new mock library for each test case is obviously no option. One
choice is to place the hint on what to do, possibly by using some magic number,
in one of the arguments passed in (i.e. overload an argument for configuring
the mock library). Does this sound ugly? It is ugly. Just imagine the big if
or switch block in the mock library that would be necessary to determine the
course of action the test should take.

Another drawback the programmer faces writing a new test in this manner
is switching between native code and the test case to look for argument values
2 read ‘harder’

JNI Testing 99

that don’t have a special meaning yet. Finally, the approach completely breaks
down for testing methods that don’t take arguments.

2.2 Errors, Not Failures

Even if the problems mentioned above could be overcome, there is another flaw
with this approach: tests will result in errors, not in failures. One can not have an
assertEquals in the native code which compares the expected and the supplied
address and produce a helpful failure message. If the native code detects (or
simulates) an error the test will fail with an error. Neither the Java nor the
native JNI code knows about unit testing (nor should they).

Changing the code under test for testing purposes is even uglier. A ‘test
mode’ flag would merge the dummy library with the code under test. It then
becomes confusing as to whether this flag is only for testing or for real behavior.
Furthermore, future developers are likely to be confused by the test flag and
may try to use it inappropriately to work around problems.

2.3 Setters and Getters

Another approach would be to define a setReturnValue function in the mock
library for each native function the native code under test may call. The test
case would call this setter during test setup and hand it a return value which
the dummy function would pass to its next caller.

There would also need to be one getter function in the mock library for
each argument of each mocked function. It would return the last argument value
passed to its corresponding mock library function and make it available to the
test case. Right before tear down the test case then would check whether argu-
ments got passed correctly.

The biggest drawback with setters and getters is the difficulty in dealing with
complex calls. A complex call is a method call in Java that results in more than
one native function call. Complex calls occur in object creation if allocation
and initialization are done by different functions. Error handling is a another
example: an error code determines the type of exception to be thrown and the
detail message is obtained from another function. The test author must be aware
of all these details. If any of the functions involved is called more than once the
getter is required to keep history values (return value stack and arguments lists)
and the code gets even harder to write.

3 Bringing Together What Belongs Together

It would be easier if mock code and the test case were in one place. Since testing
is done from Java, the JUnit test case would be the optimal place for the mock
code.

100 R. Wenner

3.1 Calling Home

Unfortunately the ‘we are in test mode now’ information is lost when the Java
test code calls the Java JNI code. The mock library needs to communicate with
the Java object that made the call (the test case). As described previously,
modifying the code under test is a bad idea, however, the mock library can
easily be modified—its only purpose is testing, anyway.

Fig. 2. Modules overview with registering test code

Figure 2 shows the updated modules overview. During test setup the test
code calls a native register function in the mock library. This function stores
a pointer to the Java object and redirects all calls back to the Java object.
Redirection is done with usual JNI method calls and the mock library is now a
‘redirecting’ mock library.

The test code in Java now looks like listing 1.3. The test data (address) is now
a constant – one chance less for typos. Notice that the Java test code and the
mock code representing the callback routines are located together. This makes
the test case easier to understand and maintain.

The mock library now redirects calls back to the test case. It supplies the
register method and performs the callback to the Java test case (see listing 1.4).

Without going into too many JNI details, here is a brief explanation of how
this all works. The register method stores a pointer to the native object for
which it was called (the test case object). During execution of the call to the
constructor, the mock library ensures a Java object is registered before perform-
ing the callback. If registration was successful, the mock library looks up the
object’s constructor method and calls it, passing it the address argument. If
any of these calls fails the JNI throws an exception in Java and the problem gets
reported as an error in JUnit. See [1] or [2] for details.

The mock library uses NewGlobalRef for the test case object. This is neces-
sary to tell the garbage collector not to move the test case in memory, since the
native code holds a pointer to it. This lock should be released after the test is

JNI Testing 101

Listing 1.3. Test case with mock

public class RecipientTest extends TestCase {
static {

System.loadLibrary("DummyLibrary");
}

public RecipientTest(String name) {
super(name);

}

private native void register ();
private static final String theAddress = "me@here.com";
private static int OK = 0; // see C++ code

public void testConstructor () {
register ();
Recipient rcpt = new Recipient(theAddress);

}

public int constructor(String address) {
assertEquals("Wrong address", theAddress , address);
return OK;

}
}

complete. Therefore, an unregister method is defined. It is called during the
tear down process of the test (see listing 1.5).

3.2 More Test Cases

The test case presented in listing 1.2 still has a problem. How should differ-
ent errors that can occur in the constructor be tested? After all, there can be
only one method called ‘constructor’ in the test case. A switch statement in
the constructor method would work, but there is a better solution: a dummy
object.

The constructor method is in fact a method that simulates native code.
Defining a DummyNativeRecipient object is straightforward:

The test code now does not define the callback method constructor itself
but uses an anonymous inner class called DummyNativeRecipient as shown in
listing 1.7. Figure 3 shows the control flow from Java to C++ and back again.

The register and unregister calls can be moved to the dummy class or
the test setUp / tearDown methods to make sure they are called. However, using
unregister in a finalize method is not a good idea since the test methods in
the test case would be dependant on each other. Imagine this scenario: the first
test completes and its mock object should be unregistered in finalize. The next
test starts and registers with the mock library. Now the garbage collector runs.

102 R. Wenner

Listing 1.4. JNI callback code in C++

#include "RecipientTest.h"
#include "Recipient.hpp"

static JNIEnv * environment = 0;
static jobject mockNativeRecipient = 0;

JNIEXPORT void
JNICALL Java_RecipientTest_register
(JNIEnv * env, jobject mockObject) {

mockNativeRecipient = env-> NewGlobalRef(mockObject);
environment = env;

}

int
makeNewRecipient(const char* address) {

if (environment == 0 || mockNativeRecipient == 0) {
return OK;

}
jclass mockRecipientClass = environment -> GetObjectClass

(mockNativeRecipient);
if (mockRecipientClass == 0) {

return OK;
}
char * signature = "(Ljava/lang/String ;)I";
jmethodID methodId = environment -> GetMethodID

(mockRecipientClass , "constructor", signature);
if (methodId == 0) {

return OK;
}
jstring javaAddress = environment -> NewStringUTF(address);
return environment -> CallIntMethod

(mockNativeRecipient , methodId , javaAddress);
}

Listing 1.5. JNI unregister function

JNIEXPORT void
JNICALL Java_RecipientTest_unregister(JNIEnv * env, jobject) {

if (environment != 0 && mockNativeRecipient != 0) {
environment -> DeleteGlobalRef(mockNativeRecipient);

}
mockNativeRecipient = 0;
environment = 0;

}

JNI Testing 103

Listing 1.6. Java mock recipient class

public class DummyNativeRecipient {
public native void register ();
public native void unregister ();

public int constructor(String name) {
return 0; // ok (taken from C++ code)

}
}

Listing 1.7. Test case with anonymous inner dummy class

public class DummyRecipientTest extends TestCase {
static {

System.loadLibrary("DummyLibrary");
}

public DummyRecipientTest(String name) {
super(name);

}

private static final String theAddress = "me@here.com";

public void testConstructor () {
DummyNativeRecipient dummy = new DummyNativeRecipient () {

public int constructor(String address) {
assertEquals("Wrong address", theAddress , address);
return 0; // ok (taken from C++ code)
}

};
dummy.register ();
Recipient rcpt = new Recipient(theAddress);
dummy.unregister ();

}
}

It calls unregister for the first test case. finalize calls unregister and the
mock library discards the stored pointers—to the second test case. That second
test case mysteriously fails because it doesn’t get called from the mock library.
Depending on when the garbage collector decides to finish the mock object a
test may pass or it may not get called back. This kind of sporadically failing test
is very difficult to track down.

104 R. Wenner

Fig. 3. Call scheme with dummy code

3.3 Mocking Everything

When writing real test cases, it is likely that a test will need more than one
dummy method. The MockNativeRecipient can implement all method call-
backs and provide default behavior. For example, it would usually signal ok and
maybe do some sanity checking. The test cases create their specialized mocks
and override the methods they want to test.

One problem still remains with these test cases. We need to make sure the
mock code is called. This may not always be obvious, especially when simulating
errors. The linker may easily grab the wrong version of the library. For some
tests it may be interesting to see how often or in what particular order the
mocked methods are called. Fortunately the mock object can track that too (see
listing 1.8).

At the end of the test the mock can tell how often the constructor has been
called. There can even be an additional check in the tearDown method to see if
any mock methods have been called. Listing 1.9 shows this for constructor calls
and can easily be extended to count whatever is necessary during the test run.

Other mock member variables can track that particular methods have been
called. Each method called could append its name to a String member or col-
lection. Mock methods could fail upon detecting methods called in the wrong
order.

Listing 1.10 shows a complete test class. The native dummy library code and
the MockNativeRecipient used are represented in listing 1.4 and 1.8 respec-
tively. The test determines whether the error condition is correctly propagated
from C++ to Java. The mock recipient returns an error code. The native JNI
code must convert the error code to an IllegalArgumentException. If the test
case catches that exception in an attempt to create the Recipient, the test was
successful.

JNI Testing 105

Listing 1.8. Counting method calls

public class MockNativeRecipient {
static {

System.loadLibrary("DummyLibrary");
}

public native void register ();
public native void unregister ();

private final static int OK = 0;

public int called;

public MockNativeRecipient () {
register ();
called = 0;

}

public int constructor(String address) {
called ++;
return OK;

}
}

Listing 1.9. Checking mock calls

public void tearDown () {
if (mock != null) {

assertTrue("Mock not called", mock.called > 0);
mock.unregister ();
mock = null;

}
}

4 The Hard Work

Up to now there were simple data types (except for String), a 1:1 relationship
between Java methods and C functions, and the need for only one Java object
mocked at any given time.

4.1 More than One

The presented mock approach fails if there is more than one Recipient to be
mocked at any one time. The mock library can hold only the pointer to one Java
Recipient. Registering another one will overwrite and thus lose the first one.

Recall that the scope of these tests is the JNI layer. The Recipient test
itself will not need to deal with multiple objects because it is the class being

106 R. Wenner

Listing 1.10. Test case for error handling of a bad email address

public class CheckingMockRecipientTest extends TestCase {
public CheckingMockRecipientTest(String name) {

super(name);
}

private MockNativeRecipient mock = null;

public void testSimulateMalformedEmailAddress () {
final int badArgument = 123;
MockNativeRecipient mock = new MockNativeRecipient () {

public int constructor(String address) {
super.constructor(address);
return badArgument;

}
};
try {

Recipient rcpt = new Recipient("whatever");
fail("mock code should have rejected the address");

}
catch (IllegalArgumentException expected) {}

}

public void tearDown () {
if (mock != null) {

assertTrue("Mock not called", mock.called > 0);
mock.unregister ();
mock = null;

}
}

}

tested. What about a Message test that deals with multiple recipients? If the
test is against an addRecipient method which adds Recipients sequentially,
then the test call to the JNI layer only needs to deal with one object at a time. If
the method takes a collection of Recipients, the test checks whether the native
code extracts the recipients from the collection. It makes no difference how many
Recipients are in the collection. (In fact it would be even more interesting to
pass an empty collection than one with multiple Recipients.) Testing how the
native implementation handles multiple Recipients is outside of the scope of
JNI testing.

So, most of the time there is no need for more than one object. If there is
truly a need for mocking multiple instances of the same class, a context member
can be used. It allows an arbitrary number of mocked objects at any time.

The idea is that each Java object holds a pointer to its native part and
the native library has a way to obtain this pointer. Since Java does not have

JNI Testing 107

pointer variables a long member is used. In the register method the native
code creates a struct (or class) with whatever it needs to associate with the Java
object. Usually this is the JNIEnv* and the jobject itself, but the mock code
may decide to look up often needed methods and cache their method ids, too.
Since this new allocated pointer would be lost after returning from register
the pointer is stored in Java (in the long member). Each time the native code
is passed a Java object it retrieves the long value from Java, interprets it as a
void* and gets what it stored on registration.

This approach is not only useful in testing but whenever Java and C++
objects correspond and the C++ part keeps state information. Since the JNI is
a C interface there is no information for which C++ object the call was made.
Storing a pointer to the C++ object is a way to keep the connection between
Java and the C++ object. When testing such code the MockNativeXyz base
class’ methods can make sure the passed pointer is correct.

To use the context member, Java code and native code must exchange the
long / pointer member somehow. There are two approaches:

1. Passing the pointer in each call as first argument. To hide this implementa-
tion detail all native methods are private and have a public wrapper method
(passPointerToNativePart in listing 1.11). Since the calls pass through the
library under test (which does not know about the mocking) this approach
is not usable in JNI testing.

2. Making the native code grab the pointer. This incurs the overhead of three
additional JNI calls to find the member variable in Java and retrieve its
value (see listing 1.12).

The first approach (passing the pointer) needs no further JNI call in C to
obtain the passed value. The second approach (the native code retrieving the
pointer) needs three JNI calls (lookup the class id of the Java object, lookup
the member, and finally access it). The pointer retrieving approach also leads to
a higher coupling between Java and the native part. The native part relies on
the pointer member being named ‘pointerToNativePart’ and being of type long.
Unfortunately these assumptions can not be checked at compile-time. A typo
here results in a NoSuchFieldError thrown upon execution of the code. That
said, and given the fact that JNI calls are somewhat slow, the first approach is
highly recommended for “real” native code.

As with listing 1.12 the context member is initialized by the native code
when the native object is allocated, for example an init method returns the
long value to store. The native code may as well access the member directly, the
idea is the same as with retrieving the pointer.

As mentioned above the JNI part isn’t aware of the mock library and thus
the pointer can not be passed through it. Therefore in JNI testing the mock
library must retrieve the pointer from the native object it has registered with.

108 R. Wenner

Listing 1.11. Pointer passing

public class SomeJniClass {
static {

System.loadLibrary("DummyLibrary");
}

private transient long pointerToNativePart;

public SomeJniClass () {
pointerToNativePart = 0;

}

public long passPointerToNativePart () {
return passPointerToNativePart(pointerToNativePart);

}

private native long passPointerToNativePart(long pointer);
public native long grabPointer ();

}

Listing 1.12. Retrieving the pointer

void*
retrievePointer(JNIEnv * environment , jobject javaObject) {

jclass javaClass = environment -> GetObjectClass(javaObject);
if (javaClass == 0) {

return 0;
}
jfieldID fieldId = environment -> GetFieldID

(javaClass , "pointerToNativePart", "J");
if (fieldId == 0) {

return 0;
}
return (void *) environment ->

GetLongField(javaObject , fieldId);
}

4.2 Native Cleanup

Sometimes one needs to test whether native resources are freed correctly (e.g.
for file handles or connections held by native code). A destructor would take
care of that in C++ but Java only has a finalize method. A test like listing 1.13
tries to make sure the native resources are freed.

This test is somewhat fragile, however. It relies on the garbage collector
finishing its work within the sleep interval. It works on my machine and with
my Java VM, but on other platforms the sleep interval may have to be longer
or the code may not even work at all. It may be necessary to call the garbage

JNI Testing 109

Listing 1.13. Test freeing native resources

public void testFreesNativeResources ()
throws InterruptedException {

MockNativeRecipient mock = new MockNativeRecipient () {
public void freeResources(long nativeObject) {

called ++;
}

};
mock.register ();
Recipient rcpt = new Recipient(theAddress);
rcpt = null;
System.gc();
Thread.sleep (200);
assertTrue("Mock not called", mock.called > 0);

}

collector in the beginning of this test as well to make sure no mock object from
a previous test interferes with the current test.

Note that the corresponding mock code must not access the registered mock
object’s JNIEnv (i.e. the pointer to the JNI environment / virtual machine).
The JNI doesn’t allow exchanging it between threads, and the garbage collector
runs in its own thread. The details of obtaining a pointer to the correct VM are
beyond the scope of this paper.

4.3 Troubleshooting

JNI testing is cumbersome because many compile-time checks (like checking
method calls, arguments, and return values) are postponed until run time. The
JNI code will produce a linker error or an exception at runtime. This section
provides some tips for avoiding common problems due to these facts.

Fortunately, JDK 1.4 has a -XcheckJni switch to java. If a JNI problem is
encountered the VM will print a meaningful warning and exit gracefully instead
of core-dumping.

If the native code cannot call the mock code, the JNI layer will throw a
ClassNotFoundException or a NoSuchMethodError and the test will fail with
that error.

What if the native code does not call the mock code? To have the compiler
catch typos add a call to the overridden method in the mock class, for example
call super.init() in the anonymous inner MockNativeRecipient’s overridden
init method. If a method still isn’t called compare native mock library and the
javah generated header files. Make sure the argument types and return values
are correct. Also ensure the native mock call back to Java uses the proper corre-
sponding callXyzMethod function? If init returns boolean and the native mock
library attempts to call it using anything different from callBooleanMethod, it
will fail silently.

110 R. Wenner

Also make sure all non-void native methods do return a value. Methods are
found by the linker (as usual in C) only by name, not by arguments or return
value. If the return statement is missing the Java code gets something strange.
A Perl script that does a comparison of generated header and implemented
functions comes in handy here.

If exceptions are used in the mock code the native code must be able to
handle them. If the mock code has thrown (e.g. an assert... failed)

If an exception is pending (e.g. an assert... failed), the native JNI code
must return immediately to Java without doing anything else [2]. During testing,
the native code could recognize the situation as an error signaled by the mock
library (due to the exception it did not get the expected return value). Thus it
may decide to pass the error code to Java and throw, too. This will crash the
VM with a segmentation violation. Therefore always check whether an exception
is pending before throwing in native code—even if the real native library can
never throw an exception in Java.

5 Summary

JNI code is not easy to write or test. It has almost no compile-time checks, and
problems with argument conversions, method calls, or member access are likely
to crash an application. In the author’s opinion no JNI layer is thin enough to
go untested.

This article has shown how to keep test code and mock code in one place
(in Java), making it understandable and maintainable. The presented native
mock keeps tests flexible and straight-forward. There is no need to change the
production code for testing.

The overhead of creating the mock library and the Java mock classes is easily
outweighed by the benefits of having comprehensive tests across the JNI layer.

References

1. Gordon, R., McClellan, A: Essential JNI: Java Native Interface. Prentice-Hall, 1998
2. Liang, S.: Java Native Interface: Programmer’s Guide and Specification. Addison-

Wesley, 1999
3. Mackinnon, T., Freeman, S., Craig, P.: EndoTesting: Unit Testing with Mock Ob-

jects. eXtreme Programming and Flexible Processes in Software Engineering -
XP2000, May 2000

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 111–119, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Agile Regression Testing Using Record and Playback

Gerard Meszaros, Ralph Bohnet, and Jennitta Andrea

ClearStream Consulting
Suite 3710, 205 Fifth Ave SW

Calgary, AB
T2P 2V7 Canada

gerard.meszaros@acm.org
{ralph,jennitta}@clrstream.com

Abstract. There are times when it is not practical to hand-script automated tests
for an existing system before one starts to modify it. In these circumstances, the
use of “record & playback” testing may be a viable alternative to hand-writing
all the tests. This paper describes experiences using this approach and
summarizes key learnings applicable to other projects.

1 Introduction

Scripting tests by hand as required by JUnit [1] or it’s XUnit [2] siblings is hard work
and requires special skills to write tests. Writing functional (or acceptance) tests using
JUnit is particularly hard because of all the data requirements. One possible
alternative is the FIT frameworks [3] but these still require someone to develop utility
code to act as “glue” between the testing framework and the system under test (SUT).
Each of these approaches requires that the system provide an interface by which the
tests can be conducted.

1.1 Catch-22 of XUnit-Based Testing

On several recent agile projects, we found ourselves needing to modify an existing
system that had no automated tests. In one case, the manual retest effort was expected
to involve several person-years of effort and many months of elapsed time. Hand-
scripting JUnit (or equivalent) tests was considered too difficult because the systems
were not designed for testability. (e.g. business logic embedded in the UI; no access to
an application API; no means of controlling all the test setup (such as “stubbing”)).
Refactoring the system for testability so that tests could be written was considered too
risky without having automated regression testing to verify that the refactoring had
not introduced problems. And even if we had done it, we were concerned that we
could not hand-script all the necessary tests, complete with their expected outcomes,
in the time and resource budget available to us.

112 G. Meszaros, R. Bohnet, and J. Andrea

1.2 Looking for Alternatives to XUnit

This led us to investigate all possible alternatives to XUnit style testing. Most of this
effort focused on “record & playback” (R&PB) styles of test creation, an approach
that involved recording functional tests on the system before we made the changes
and regression testing the refactored system by playing back these tests. The tests
verified the overall functionality of the system and, in particular, much of the business
logic it contained. Once the tests were recorded and verified (successfully played back
on the original system), we could then start refactoring the system to improve its
design. We felt that this would allow us to quickly record a number of tests that we
could play back at will. Since we had an existing version of the system to use as a
“gold standard”, we could leave the effort of defining the expected outcomes to the
record and playback framework.

This paper describes the options we considered, their advantages and
disadvantages and how we ended up regression testing the system. The work also lead
to an understanding of where R&PB can be used in a more general context than the
specific projects with which we were dealing.

2 Issues with R&PB Test Automation

R&PB style testing predates XUnit-style testing by many decades. Test automation
folklore is rich with horror stories of failed attempts to automate testing. This paper
describes critical success factors for making this style of testing work, what to avoid,
and best practices in R&PB test automation.

The “robot user” approach to test automation had received enough bad publicity in
past attempts at test automation that we found it to be a hard “sell”. We had to
convince our sponsors that “this time it would be different” because we understood
the limitations of the approach and that we had a way to avoid the pitfalls.

2.1 The “Fragile Test” Problem

Test automation using commercial R&PB or “robot user” tools has a bad reputation
amongst early users of these tools. Tests automated using this approach often fail for
seemingly trivial reasons. It is important to understand the limitations of this approach
to testing to avoid falling victim to the common pitfalls. These include Behavior
Sensitivity, Interface Sensitivity, Data Sensitivity and Context Sensitivity.

Behavior Sensitivity
If the behavior of the system is changed (e.g. the requirements are changed and the
system is modified to meet the new requirements), any tests that exercise the modified
functionality will most likely fail when replayed. This is a basic reality of testing
regardless of the test automation approach used.

Interface Sensitivity
Commercial R&PB (“robot user”) test tools [4] typically interact with the system via
the user interface. Even minor changes to the interface can cause tests to fail even
though a human user would say the test should still pass. This is partly what gave test
automation tools a bad name in the past decade.

Agile Regression Testing Using Record and Playback 113

Data Sensitivity
All tests assume some starting point; these are often called the “pre-conditions” or
“before picture” of the test. Most commonly, this is defined in terms of data that is
already in the system. If the data changes, the tests may fail unless great effort has
been expended to make the tests insensitive to the data being used. More recent
versions of the test automation tools provide mechanisms that can be used to make
tests less sensitive. This has added a lot of complexity to these tools and, as a result,
they often fail to live up to their promises. This has likely contributed to the bad
reputation they have received.

Context Sensitivity
The behavior of the system may be affected by the state of things outside the system.
This could include the states of devices (e.g. printers, servers) other applications, or
even the system clock. E.g. the time and/or date of test.

2.2 Agile Project Issues

There are other issues with R&PB testing that are specific to an agile project
environment (especially eXtreme Programming.)

Not Test-First
Many agilists (especially advocates of eXtreme Programming) would argue that
R&PB test automation completely undermines the notion of automating acceptance
tests before the functionality is built because it requires the SUT to exist before the
tests can be recorded.

3 Understanding Test Automation Choices

As part of our analysis of the choices available to us, we came up with a way of
classifying the approaches to test automation. This helped us better understand why
certain approaches worked better in some circumstances than others.

3.1 Approaches to Test Automation

Classifying Approaches to Test Automation
There is more than one way to automate tests. The approaches can be classified using
a 3 dimensional grid. The three dimensions are:
− Granularity of SUT. The SUT can be a single unit (module, class or even method),

a component, or the entire system.
− Test Creation Approach. The two main options are “Record & Playback” (R&PB)

and hand-scripted tests. 1
− Test Interface. The two main options are testing via the user interface or testing via

an internal software interface or API.

1 There is a third approach: the generation of tests from semi-formal requirements specification.

However, the authors do not feel qualified to comment on the relative merits of this approach.
A sample paper can be seen in [5]

114 G. Meszaros, R. Bohnet, and J. Andrea

Fig. 1. The three dimensions of test automation

3.2 Common Combinations

While there are 2x2x3 possible combinations, it is possible to understand the primary
differences between the approaches by looking at the front face of the cube. Some of
the 2x2 combinations are applicable to all levels of granularity while others are
primarily used for system testing.

Hand-Scripted Quadrants
The upper right quadrant of the front face of the cube is “modern XUnit”. It involves
hand-scripting tests that exercise the system at all 3 levels of granularity (system,
component or unit) via internal interfaces. A good example of this is unit tests
automated using JUnit.

A variation on “modern XUnit” is “Scripted UI Tests” with the most common
examples being the use of JfcUnit [6], HttpUnit [7] or similar tools to hand-script tests
using the user interface. (It is also possible to hand-script tests using commercial
“Robot User” tools.) These would fit into the bottom right quadrant. Where the entire
system is being tested, this would be at the system test level of granularity. They
could also be used to test just the user interface component of the system (or possibly
even some UI units such as custom widgets) but this would require stubbing out the
actual system behind the UI.

Record & Playback Quadrants
The bottom left quadrant is “Robot User” This involves recording tests that interact
with the system via the User Interface and is the approach employed by most
commercial test automation tools. It applies primarily to System testing. This
approach is primarily focused on testing the entire system, but like “scripted UI
Tests”, could be applied to the UI components or units if the rest of the system can be
stubbed out.

The top left quadrant is not well populated with commercial tools but is a feasible
option when building R&PB into the application itself. It involves creating a record &
playback API somewhere behind the user interface. This is then used to record
everything that affects the system state into a file that can later be used for input.

Agile Regression Testing Using Record and Playback 115

Fig. 2. The four test automation quadrants

4 Implementing R&PB Test Automation

Record and Playback test automation can be implemented using either commercial
tools or by building a record and playback capability into the application.

4.1 Using Commercial R&PB Tools

Commercial R&PB testing tools can be used in several ways. Most commonly, they
are used to test an entire system including the business logic and the presentation
logic.

Testing User Interface Behavior
Testing of user interfaces is one area in which commercial “robot user” tools can be
used to good effect. The key is to make the system deterministic enough from a
business logic perspective so that the UI tests can focus on verifying UI behavior
without having to deal with variations in behavior caused by differences in the context
(data, time/date, etc.)

This can be done in two ways:
1. Define a set of test data that can be frozen for the life of the tests. You may

need to stub out any interfaces to other systems (or components such as the
system clock) to ensure complete determinism.

2. Configure the user interface component to use a dummy version of the
business logic component of the application . This “mock application” can
be programmed (hard-coded or data driven) to return canned answers to
requests. This ensures complete determinism of the “business logic” and
allows the tests to focus on changes in UI behavior in response to the canned
responses that are returned.

Testing Business Logic
This is probably the weakest usage of R&PB test automation even though many
improvements have been made in the way commercial R&PB tools record tests.
Either the “hand-scripted via API” or FIT approach would likely be a better long-term
option.

116 G. Meszaros, R. Bohnet, and J. Andrea

If you do choose to use “robot users” to test the business logic, make sure you
freeze the test data to eliminate a very common source of false test failures. Also,
ensure that the application user interface is stable and that the functionality is not
going to change between when you record the tests and when you plan to re-run them.

4.2 Building R&PB into an Application

Commercial “robot user” tools are not the only way to do R&PB style test
automation. Depending on the architecture of the system under test, there are several
ways to build R&PB right into the application. This is the way we chose to automate
the functional tests on several recent projects.

The main advantage of this approach is that it can be applied to any system
regardless of the technology of the user interface. It is also more robust than most
commercial robot user tools because one source of potential failures – loss of
synchronization between the test tool process and the SUT process – is eliminated by
virtue of R&PB being built into the application. In effect, it moves the test automation
approach from the lower left quadrant (“robot user”) to the upper left quadrant
(“R&PB via API”).

R&PB Decorator between UI and Service Facade
Where the system consists of a cleanly separated UI component and a business logic
component accessed via a service façade, the system can be configured to place a
Recording Decorator between the two components. It records each request passed into
the service component and the response that came back. A leading candidate file
format for recording the interactions is XML.

Playback is accomplished by building a test driver that calls the service facade with
the recorded requests and compares the actual responses with the previously recorded
responses. It is quite simple to build a test driver that reads the XML containing the
sets of <request> and <expectedresponse> elements. The user interface
component is often omitted during test playback but in some cases it may be present
so that test progress can be monitored.

A component container (such as an EJB application server) is well positioned to
provide the capability to record the requests being passed to the managed component.
Too bad that most do not yet provide this capability.

Building R&PB into the UI of the Application
If the application is not cleanly separated into a User Interface component and a
service façade component, it may be possible to build the R&PB capability right into
the User Interface. (See Figure 4) This is most cost-effective when it can done by
building R&PB into a generic driver so that one doesn’t need to sprinkle R&PB hooks
throughout the system.

Example 1: A servlet-based application
We used a Transform View [8] architecture in which a servlet calls business methods
on a service façade and then invokes an XLS transform on the returned XML. We
placed recording hooks into the servlet to record the user’s request (URL plus
parameters), resulting XML and the resulting HTML after XLST transformation. A
test menu was added to the UI to allow recording to be turned on and off.

Agile Regression Testing Using Record and Playback 117

Fig. 3. Record and Playback using a Recording Decorator

Test execution (playback) was done by building a very simple JUnit test that
submitted the recorded URLs using HttpUnit and compared the returned HTML with
the recorded HTML. To avoid the messiness of manually locating differences
between the two HTML strings, we wrote a custom assertion (a special version of
AssertEquals) that would diagnose the problem and report the location where the two
strings differed.

We were also able to easily build unit tests for our XSL transforms by passing the
recorded XML and the XSL to the transforming and comparing the resulting HTML
with the previously recorded HTML.

Example 2: A project re-engineering a “safety-involved” system
The system contains complex business rules that were not fully understood by the
business. We needed to verify that the re-engineered system implemented the rules
correctly. Unfortunately, the user interface was tightly coupled to the rules logic so it
was not possible to use scripted tests via an API. We placed R&PB hooks into the
generic screen I/O utilities whenever possible but we also needed to place hooks in a
number of other places in the UI code. By recording on the old system and playing
back on the new, we were able to quickly identify any differences in system behavior.

4.3 Test-First Development with R&PB

While at first glance, the title of this section may appear to be an oxymoron, it is
possible to build playback tests before the system is built. As long as the form of the
recorded interaction is human readable, it can also be human writable. (This is one of
the key advantages of using XML for recording the interactions.)

Many of the commercial “robot user” tools do record the interactions in a human
readable form. Some generate completely proprietary test scripting languages while
others record tests in “standard” scripting languages such as VbScript or JavaScript.
You can record a few tests using the tool of choice to see how certain types of
interactions are done. Then you can start scripting tests based on what you have
learned. One key advantage of doing this is that you can make sure the tests are less
sensitive by using the “right” approach (e.g. using the title of a dialog box rather than
the ID.)

118 G. Meszaros, R. Bohnet, and J. Andrea

The FIT approach to testing is an example of how a test might be “pre-recorded”.
The FIT framework could be modified to generate scripts that are runnable in your
robot user tool, thus moving the effort of understanding how to interact with the
system into test code generation framework.

When recording tests as XML, consider creating XSL style sheets that can
transform the XML into HTML FIT tables. This would make the tests easier to read
(no XML) and allow users to run the tests easily from a website.

4.4 Critical Success Factors

So, assuming you have decided to give robot user testing tools a second chance, what
features do you need to look for in the testing tool? And what techniques do you need
to apply to system development and test automation to be successful?

Designing the System for Context Independence
You must be able to configure the system with a known starting point consisting of
both data and the system date.

Tool Provides Means to Initialize System
Tests must be able start up the system with the known starting point.

Functionality Stability
R&PB testing can only be used to good effect when a significant portion of the
applications functionality is expected to be unaffected by the next release. Any tests
that encounter modified functionality must be rerecorded as the functionality is
verified manually.

User Interface Insensitivity
It must be possible to record tests in a way that changes to the UI that do not affect the
business logic do not cause tests to fail. (There may be other tests recorded that verify
that the UI behavior has not changed and these will need to be sensitive to this kind of
change.)

Separation of Tests for UI and Business Logic
All tests that verify business logic should be recorded in a UI insensitive way. A
separate set of tests (either manual or automated) should be used to verify the UI has
not changed. It can be useful to have different sets of tests with different sensitivity as
these can be used to do “defect triangulation” (narrowing down where the defect is
located.)

Limited Lifetime
Recognize that robot user tests will have a limited lifetime. They will not survive
certain kinds of changes to the user interface or the business logic inside the system.
Have a strategy for managing the tests that allows you to identify the those tests that
will be impacted and which would need to be either discarded, rerecorded or
superceded by newly scripted tests. One good way of doing this is to cross-reference
the tests with the requirements by using a test management tool such as Test Director.

Agile Regression Testing Using Record and Playback 119

5 Applicability

Record and Playback testing should be considered when:
− You need to refactor a legacy system to make it amenable to XUnit-style hand-

scripted tests and you feel it is to risky to do so without having regression tests.
− You cannot afford the time or cost of hand-scripting tests
− You do not have the programming skills required to hand-script the tests.
Record and Playback testing should be avoided when:
− You cannot fix the behavior of the system by freezing/snapshot the data on which

the system will operate.
− The behavior of the system is expected to change significantly between when the

tests can be recorded and when they will be played back.
− If you want to use the automated tests as a specification and there is no existing

system that can be used for recording the tests.

6 Conclusion

Sometimes, R&PB testing is your only viable option given various project constraints.
E.g. When dealing with legacy systems that do not have automated tests, Record &
Playback style testing is a cost effective way to create regression tests that can be used
to verify that design changes to the system do not introduce defects.

R&PB testing tools and techniques have matured significantly over the years and
can now avoid many of the potential pitfalls when used properly.

When commercial R&PB test automation tools are unavailable, too costly, or too
undependable, it is feasible to build the R&PB capability right into the system under
test.

Acknowledgements. We would like to thank the many clients who gave us the
opportunities to gain the experiences described in this paper.

References

1. JUnit testing framework: http://JUnit.org
2. XUnit family of testing frameworks: http://www.xprogramming.com/software.htm
3. Cunningham, Ward. FIT: Functional Integrated Test. http://fit.c2.com.
4. Mercury Interactive’s WinRunner functional testing tool:

http://www-svca.mercuryinteractive.com/products
5. Ammann, Paul, Paul E. Black, Model Checkers in Software Testing

http://xsun.sdct.itl.nist.gov/~black/Papers/ir6777.pdf
6. JfcUnit, A testing framework for Java Swing user interface: http://JUnit.org
7. HttpUnit, A testing frameworks for HTML user interfaces: http://JUnit.org
8. Fowler, Martin. Patterns of Enterprise Application Architectures, Addison-Wesley (2002)

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 120–128, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Make Haste, Not Waste: Automated System Testing

Carl Erickson1,3, Ralph Palmer2, David Crosby1,
Michael Marsiglia1, and Micah Alles1

1
Atomic Object LLC, 419 Norwood Ave SE Suite 190, Grand Rapids MI 49506

{carl,david,mike,micah}@atomicobject.com
http://atomicobject.com/

2
Burke Porter Machinery, 730 Plymouth NE, Grand Rapids MI 49505

Ralph.Palmer@bepco.com
http://www.bepco.com/

3
Department of Information Technology, Uppsala University, Uppsala, Sweden

carle@docs.uu.se

Abstract. Haste (High-level Automated System Test Environment) represents
an approach to system testing that is philosophically consistent with standard
XP unit testing practices. Test code runs in the same address space as the
application under test, allowing for ready examination of application state. The
fundamental Haste abstractions of Story, Step, and StoryBook provide a
framework to implement system tests. Utility classes simplify test development.
In addition to acting as XP acceptance tests, Haste tests aid source maintenance
and extension, and can play an important role in a release process. This paper
describes the elements of Haste, our experience with using it to test a complex
Java Swing application, and the perspective of the client for whom the
application was developed. Haste is available under an open source license.

Keywords: System, acceptance, automation, GUI, testing, Haste.

1 System Testing

System tests validate the soundness and behavior of the application from the user’s
perspective [1]. In an XP project, system tests serve as acceptance tests. In this role
they measure progress on a project, and provide a form of customer acceptance of the
delivered application [10]. Ideally, they are written by the customers themselves. In
practice, system tests must often be translated by a programmer from an elaborated
customer story into testing code. A lightweight automation framework for system
tests can extend the benefits of XP unit testing to a higher level, supporting test first
development for system tests, and decreasing the difficulty of writing system tests.

There appears to be an emerging consensus on the use of system testing in XP
projects [9]. Consistent with this view, we use system tests for four purposes:

• regression testing for code development and maintenance
• customer communication and specification
• customer project progress gauge and buyoff
• quality control element of the release process

Make Haste, Not Waste: Automated System Testing 121

System testing requires exercising an application via its user interface. Without
automation, system tests cannot play the same role in XP development that unit and
integration tests play, and the four uses identified above for system tests would not be
practical. System tests are distinct from unit and integration tests in that they validate
the functionality of the application as a whole, rather than a single method, object or
component. Test assertions need to be made about the state of the application as a
whole, which in turn may be represented by the state of many unrelated objects.
Passing a system test means every step in a potentially lengthy process was executed
correctly.

Several toolkits have been created for automating system tests of web applications.
Examples include HttpUnit [2], Avignon [3], Canoo WebTest [12], and jWebUnit [4].
To our knowledge, no general purpose application system testing framework,
analogous to JUnit for unit testing, exists. While it is in fact built on JUnit, Haste was
designed for general purpose system testing and reflects the distinct needs of system
testing. Haste has been used for system testing web applications and Java Swing
applications.

1.1 Automated GUI Testing

Creating automated system tests for applications with graphical user interfaces can be
difficult. The rising popularity of automated unit testing seems to have inspired the
creation of several GUI test toolkit projects. JFCUnit [5] has a tool class called
JFCTestHelper for examining the state of the graphical environment, as well as
massaging the event stream to programmatically manipulate components. Tests are
coordinated with JUnit. Jemmy [6] is a library for automating Java GUI applications.
It has an advanced abstraction tree for finding, examining and manipulating specific
graphical components.

Abbot [7] is a very well developed extension to java.awt.Robot. An operator
class is used to manipulate particular types of components via native events generated
with Robot. For system testing, scenarios are recorded, assertions added, and scripts
executed to create a test. Marathon [8] lets the tester record, edit and execute GUI
tests via an embedded Python interface. The resulting Python code is very easy to
understand and hence readable by the customer. Abbot and Marathon have as a goal
the automation of system tests, and not simply the automation of GUI component
tests. The difference between them and Haste is that they use the script recording
approach to organizing system tests, where as Haste offers a programmatic
framework for testing.

In our experience, the best toolkit to use for programmatically manipulating Java
GUI components depends on the component. Haste lets the tester mix and match GUI
component manipulation objects by hiding this implementation detail behind a
common interface. Haste also includes a rudimentary toolkit for GUI component
manipulation.

2 The Haste Environment

We call Haste an environment because it is less than a standalone tool and more than
a testing approach. Haste consists of a framework for system testing, analogous to

122 C. Erickson et al.

JUnit, useful design patterns, a toolkit for GUI automation, and utility classes to
support automated system tests in an XP environment. The concepts in Haste are
language independent; the first implementation of Haste is in Java.

Haste was created to extend our test-first development environment and testing
style into the realm of system tests. The goal was to have a continuum of test suites
from unit tests through system tests. Consistency across testing levels encourages the
practice of programmers and testers working closely together, or in the case of small
scale teams, having programmers do test-first development.

The most important design decision we made for Haste was to execute test code in
the same address space as the application under test. This allowed for an internal,
programmatic form of testing, rather than an external, scripted approach. This
approach saves time and avoids the difficulty of exposing an application’s state via an
external interface [9]. System testing with Haste is philosophically similar to unit and
integration testing, and hence in keeping with standard XP testing practice.

Haste has three main elements. The testing framework element consists of three
key abstractions and several utility classes. The second element is a pattern for
exposing the internal state of objects for making test assertions. We call this a
Narcitecture. The Haste framework and Narcitecture are used for testing all types of
applications. Testing applications with graphical user interfaces is possible with the
third element of Haste: Pilots and Droid. Pilot interfaces simplify and standardize
access to complex GUI components. A Pilot hides the actual GUI manipulation object
used. The Droid class allows programmatic execution of an application via the
generation of native input events. Droid is not required for Haste tests, and it may be
replaced by other utilities for programmatically manipulating graphical components.

2.1 Haste Abstractions

The key abstractions of the Haste testing framework are the Story, Step, and
StoryBook. The class relationships for these abstractions are illustrated in Figure 1.

Story. A Story corresponds to a test of a user story. Each Story consists of a set of
ordered steps. Steps make JUnit assertions, and the failure of any assertion causes the
execution of the Story to stop and be reported as a failure. Story differs from the JUnit
TestCase upon which it is built in two important ways. First, the individual test steps
are executed in a well-defined and intentional order, unlike test methods in a
TestCase. Second, failure of any step causes failure of the Story. A Story stops
executing at the first failure of a Step. The interface for Story is shown below:

public abstract class Story extends junit.framework.TestCase{
 protected abstract List steps();
 protected abstract boolean storySetUp() throws Throwable;
 protected abstract void storyTearDown() throws Throwable;
}

Step. A Step is a relatively small, independent action within a Story. Steps are
implemented as classes. This allows for easy sharing of common test steps between
user stories. A Step consists of Java statements and JUnit assertions that exercise and
validate some aspect of the application under test. For graphical applications, Pilots
allow the code for Steps to be easily read and to correlate clearly with a user story

Make Haste, Not Waste: Automated System Testing 123

elaboration. Step classes that are not shared between stories are typically implemented
as Java inner classes. The interface for Step is shown below:
public abstract class Step extends junit.framework.Assert {

 public abstract void runStep() throws Throwable;
}

StoryBook. A StoryBook contains a collection of Story and/or StoryBook objects,
and is used to organize and group story tests. Story test objects are run by a utility
class called the JVMStoryRunner. This class allows each Story in a StoryBook to
execute with a new instance of the application under test in its own private Java
virtual machine. We find that the run-time penalty for this approach is more than
made up for by eliminating potentially difficult-to-debug Story interaction due to
indeterminate application state when a Story executes. The interface for StoryBook is
shown below:

public abstract class StoryBook extends
 junit.framework.TestSuite {

 public void addStory(Story s) {}
 public void addStoryBook(StoryBook b) {}
 protected abstract void stories();
}

Fig. 1. Class diagram of key abstractions in Haste system test framework

2.2 Narcitecture

Unit and integration testing generally involves manipulating an object via its interface
and making assertions about the state of the object to detect failures. In Java, access to
the internal state of an object is easily gained by placing the test class in the same
package with the class under test. In C++ the friend modifier is used for the same
effect. System tests are naturally higher-level tests than unit or integration tests, and
therefore assertions need to be made on multiple objects. The state of the application,
rather than simply the state of a single object, needs to be evaluated in a system test.

A Java class can be a member of only a single package, limiting the use of package
level access to grant a test Story access to the internal state of the application. Our
convention is to place stories in packages designed only for logically grouping stories.
The Haste Narcitecture was created to solve the problem of getting access to the
internal state of the application.

A Narcitecture is a set of classes created for a particular application that make the
internal state of the application available to Story objects. A narc class is created to
reveal the internal state of a particular source class. Narc classes live in a parallel

124 C. Erickson et al.

package hierarchy to the application’s source classes, just like unit test classes when
using JUnit. The narc exploits its package level access to a source class and makes
that state available to the Story via a public interface. Narc classes can be
automatically created via reflection with the NarcGenerator utility.

2.3 Pilots and Droid

Pilot interfaces wrap the complex behavior of GUI components into simpler interfaces
that, together with a specific GUI manipulation toolkit, allow for test step classes to
be written at a more abstract level. Complex GUI components such as combo boxes,
menu trees, and file dialogs require multiple actions to do something which is
conceptually simple from the user story elaboration perspective. In addition, these
types of components are often platform dependent, behaving quite differently between
different Java look-and-feels or operating systems. An Abstract Factory pattern is
used for constructing Pilot objects. The Pilot factory insures that all Pilot objects used
in a test suite are consistent with the look-and-feel or platform being tested.

Each Pilot has a one-to-one relationship with a particular class of GUI component.
Pilot methods are implemented by an object from a particular GUI testing toolkit.
That object manipulates the underlying GUI component to achieve the action desired
in the user story elaboration. For example, the following snippet of user story

 ... the user selects a file to load...

corresponds to test step code using a JComboBoxPilot Pilot as follows:
 PilotFactory factory = PilotFactory.getNewFactory();
 JcomboBoxPilot boxPilot =
 factory.createJComboBoxPilot(fileChooser);
 boxPilot.setEventDelay(50);
 boxPilot.clickItem(1);

The clickItem() method is approximately 40 lines of code using a Droid to
manipulate the fileChooser combo box. The complexity wrapped by the Pilot
makes the test step simpler.

The Haste Pilot interfaces decouple system test code from any specific GUI testing
toolkit. Haste includes a utility class, Droid, which extends java.awt.Robot. Robot
was created to automate GUI testing. Robot is used to generate native system input
events such as mouse clicks and keyboard strokes. Droid also allows for control over
event timing, and for synchronization of events on the Java event queue. By driving
the GUI programmatically, Droid isolates the test code from the detailed appearance
of the interface. Droid is similar in approach to JFCUnit [5] and Abbot [7].

An illustrative subset of Droid’s interface is shown below. Droid offers a higher-
level, more convenient interface for manipulating GUI components. For example,
Robot provides keyPress(int code) and mouseMove(int x, int y), while
Droid builds on these to allow for typing a string or clicking a component.

public void typeString(String s);
public void clickComponent(Component c);
public void typeKeyShift(int k);
public static void waitOnEventQueue();

Make Haste, Not Waste: Automated System Testing 125

3 Example and Experience

Atomic Object develops custom software using XP practices. The first use of Haste
was for a contract project for Burke E. Porter Machinery. We were contracted to
implement the client side of a next generation, customer configurable, dynamic
vehicle test (DVT) machine.

3.1 CCRT Application

Burke Porter DVTs perform the final evaluation of new vehicles at the end of an
automotive assembly line, and are deployed throughout the world. The DVT has a
real-time server implemented in C++ on QNX, and a platform independent, heavily
multithreaded, fully internationalized Java client driving dual video displays.

With the lone exception of acceptance testing, development of the CCRT client
application was done following standard XP practices. The CCRT application unit
and integration test suite consists of 1,980 test methods for a source tree of 206
classes. The difficulty of automating acceptance tests for a complex application with a
graphical user interface stalled us on this XP practice. Facing the first field
deployment of the CCRT application in the summer of 2002, we decided we could
delay no longer and needed to solve this thorny problem. Haste was born of this need.

Nine months into the project and ready for the deployment of the version 1.0 beta
of the application, the customer selected the most vital functionality from among the
approximately 80 story cards in the project and we created system tests with Haste.
From that time forward we adopted a concurrent development strategy for system
tests. As of February 2003, the CCRT acceptance test suite consists of 24 story tests.
The time to develop each Story has ranged from 30 minutes to 8 hours (pair-time).

3.2 Restricted Configuration Story

An example Story from the CCRT application involves operation of the application’s
configuration panel. The story card reads as follows:

 The configuration panel will only be accessible to users with sufficient privileges.
 Users will authenticate themselves via a login and password.

The elaboration of this story involved more details concerning special subpanels of
configuration, a multi-level access control scheme, what should happen for non-
authorized users, automatic de-authentication, etc. The Story class created for this
user story was called StoryRestrictedConfiguration1. The StoryBook named
ConfigurationStories contains several related stories:

public class ConfigurationStories extends StoryBook {
 protected void stories() {
 addStory(new StoryRestrictedConfiguration());
 …

 }

1 Atomic Object uses a convention of naming all stories by the beginning word Story, and all

test steps that are shared between stories with the beginning word Step. Haste does not
enforce this convention.

126 C. Erickson et al.

The Story consists of the following steps in a total of 300 lines of Java, including
comments:

public class StoryRestrictedConfiguration extends Story {
 Droid r2d2;
 protected boolean storySetUp() throws Throwable {
 r2d2 = new Droid();
 r2d2.setAutoDelay(50);
 return true;
 }
 protected void storyTearDown() throws Throwable {
 new StepStopApp().runStep();
 }
 protected List steps() {
 List steps = new ArrayList();
 // app starts with known preferences file
 steps.add(new StepRestoreRtcProperties());
 // shared step for starting the application
 steps.add(new StepStartApp());
 // user enters the configuration screen
 steps.add(new SelectConfig());
 // non-authenticated user is denied access
 steps.add(new NotLoggedIn());
 // authenticated user is allowed access
 steps.add(new LoggedIn());
 // only special user can access user config panel
 steps.add(new AccessUserAdmin());
 // confirm auto logout when the user leaves
 steps.add(new AutoLogout());

 return steps;
 }
}

The source code for the AccessUserAdmin test Step is shown below:

class AccessUserAdmin extends Step {

public void runStep() throws Throwable {
 String usersButton = “users”;
 Controller controller = Main.controller;

 ConfigurationManager configManager =
 controller.getGUIManager().getConfigurationManager();
 ConfigurationManagerNarc configNarc =
 new ConfigurationManagerNarc(configManager);
 String currentButton =
 configNarc.getSelectedButton();

 assertTrue("Should not already be in 'users'",
 !usersButton.equals(currentButton));

 // enter configuration panel by clicking users button
 // login dialog should display with focus

Make Haste, Not Waste: Automated System Testing 127

 configNarc.clickConfigButton(usersButton);

 assertTrue("Users panel visible but not authenticated",
 ! configNarc.getSelectedPanel().isVisible());
 assertTrue("Users button should be selected",
 usersButton.equals(configNarc.getSelectedButton()));

 // login with the standard login and password
 r2d2.typeString("bogus\tbogus\t ");

 assertTrue("Authenticated but users panel is not visible",
 configNarc.getSelectedPanel().isVisible());
}

}

3.3 Customer Perspective

Burke E. Porter Machinery specializes in embedded real-time vehicle test software
designed to verify quality and performance capability of state-of-the-art advanced
vehicle systems. This specialty of testing vehicle engine control units, power train
components and subsystems during the OEM design and verification phases demands
total flexibility and short iterative design cycles. We employ rapid control prototyping
(RCP) or the practice of testing control software with a real system as our standard
development approach to solve this challenge. When we looked for a partner to
implement the GUI for our new real time system, initially we chose Atomic Object
due to their utilization of XP and in particular, User Stories. We are in a niche
business and a big concern of ours was the time required to bring an outside
contractor up to speed on the requirements for our application. The User Story
approach allowed us to quickly transfer our design concept to Atomic Object and
avoid the effort of compiling a static specification doomed to become “shelfware”.

We quickly learned that the User Story approach was just one of the benefits to
Atomic Object’s approach. Since we were able to communicate our design concept in
discrete User Stories, we were able to prioritize and receive them according to
individual or User Story unique deadlines. The Haste Story tests were initially seen
more as a method to ensure a minimum level of quality of a component in isolation. It
was incorrectly seen as a type of sorting process where “bad” components were
stopped prior to release. We realized, however, that we were taking delivery not of
just components but of working sub-systems. As Story tests validated each additional
feature, our trust and acceptance of the software grew allowing us to confidently
integrate it with our real time code and not introduce bugs.

Rapid, confident iteration had many benefits for us. As embedded programming
specialists, the value add we deliver to our customers is in the “black box”.
Traditionally, this is developed first and the user interface is developed second. This
often creates the situation where the end user has to be a software engineer to
understand the true state of the system. With working GUI sub-systems however, we
were able to get customer feedback very early on allowing us to judge customer
satisfaction and mitigate risk. Poorly understood customer requirements, desires,
usability or even potential feature enhancements that could or would not have even
been conceived of were made obvious by these early builds. This allowed us to adapt
to these issues and take appropriate action without threat to schedule.

128 C. Erickson et al.

Lastly, the XP development process with Haste story tests provided us with a sales
tool at the earliest possible point in the software development cycle. The ability to
show working systems of any size is a valuable tool to demonstrate that our solutions
are real and not vaporware.

4 Conclusion

Haste was built and first used in the middle of an 18 month XP project. For the CCRT
application, Haste system tests satisfied the need for quality assurance in a release
process, for customer buyoff, and for code maintenance via regression testing. During
the release of the final 1.0 version of the application, the only bug reported in the field
occurred in a related application for which no system tests had been written. We
believe that the obvious system tests would have detected this bug. Haste is now used
in our test-first development fashion, with system test development an integral part of
working on new user stories.

Haste is available under the LGPL license. The home on the web for Haste is
http://atomicobject.com/haste. The Haste project is maintained on Source
Forge, and includes source code, test code, documentation, and sample applications.

Acknowledgements. Large projects and good ideas are rarely the sole work of the
authors of a paper. We would like to acknowledge and thank the other team members
of Atomic Object, namely Bill Bereza, Karlin Fox, Jeff Martin, Chris TenHarmsel,
and Daniel Estrada for hard work and good ideas along the way. Burke Porter
engineers, particularly the CCRT core team of Kevin Hykin, Tim Bochenek, and
Brian Meinke also played an important role in the development of Haste. Paul
Jorgensen made insightful comments on an early draft of the paper. Reviewer
comments were helpful and much appreciated.

References

1. Jorgensen, P.: Software Testing, A Craftsman’s Approach, 2nd Edition. CRC Press (2002)
2. Gold, R.: HTTPUnit: http://httpunit.sourceforge.net/
3. Kitiyakara, N.: Acceptance Testing HTML, Extreme Programming and Agile Methods –

XP/Agile Universe 2002, Wells, D., Williams, L., Editors (2002)
4. jWebUnit: http://jwebunit.sourceforge.net/
5. JFCUnit: http://jfcunit.sourceforge.net/
6. Jemmy: http://jemmy.netbeans.org/
7. Abbot: http://abbot.sourceforge.net/
8. Marathon: http://marathonman.sourceforge.net/
9. Marick, B., Pettichord, B.: Workshop on agile acceptance tests, XP Universe 2002,

Chicago IL, http://www.pettichord.com/agile_workshop.html
10. Beck, K.: Extreme Programming Explained, Addison Wesley (2000)
11. Canoo WebTest: http://webtest.canoo.com/webtest

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 129–141, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Virtual Teaming: Experiments and Experiences with
Distributed Pair Programming

David Stotts1, Laurie Williams2, Nachiappan Nagappan2,
Prashant Baheti2, Dennis Jen1, and Anne Jackson2

1Dept. of Computer Science, University of North Carolina, Chapel Hill, NC 27599
{stotts,dsjen}@cs.unc.edu

2Dept. of Computer Science, North Carolina State University, Raleigh, NC 27695
{lawilli3,nnagapp,ppbaheti,amjackso}@unity.ncsu.edu

Abstract. Pair programming is a practice in which two programmers work
together at one computer, collaborating on the same design, algorithm, code or
test. Previous studies have shown that pair programmers produce higher quality
code in essentially the same amount of time as solo programmers. Additional
benefits include increased job satisfaction, improved team communication, and
efficient tacit knowledge sharing. However, it may not always be possible for
all team members to be collocated due to the rise in teleworking and
geographically distributed teams. This paper analyzes the results of two
distributed pair programming case studies done at UNC Chapel Hill and at NC
State University. Participants used readily available off-the-shelf applications
for collaborative software development. The results indicate that software
development collaboratively “over the wire” is feasible, effective, and pleasant
for the participants; distributed development is better done as synchronous pairs
than as individuals who integrate; and distributed pairs maintain many of the
advantages of collocated pairs.

1 Introduction

Distributed team projects are becoming more common in the software industry. The
power of distributed development can increase an organization’s opportunities to win
new work by opening up a broader skill and product knowledge base, coupled with a
deeper pool of potential employees [12]. Major corporations have launched global
teams with the expectation that technology will make virtual collocation a feasible
alternative [15]. Additionally, distance education (DE) has also come into prominence
in recent years. Team projects in DE computer science courses call for distributed
development. These teams need to communicate and work effectively and
productively. Through the vehicle of groupware, team members can communicate
with each other and complete their projects even when they are remotely located or
when they work at incompatible hours.

Previous research [14,20] has indicated that pair programming is better than
individual programming in a co-located environment. Do these results also apply to
distributed pairs? It has been established that distance matters [15]; face-to-face pair
programmers will most likely outperform distributed pair programmers in terms of
sheer productivity. However, the inevitability of distributed work in industry and

130 D. Stotts et al.

education calls for research in determining how to make this type of work most
effective. Additionally, Extreme Programming (XP) [3] usually has co-located pairs
working in front of the same workstation, a limitation that ostensibly hinders use of
XP for distributed development of software.

This paper discusses results of our research on distributed pair programming
(dPP). By dPP we mean that two members of the team (which may consist solely of
these two people) synchronously collaborate on the same design or code from
different locations. This means that both must view a copy of the same screen, and at
least one of them should have the capability to change the contents on the screen. To
be able to do this, they require technological support for sharing desktops and verbal
conversation, and perhaps even video conferencing capabilities.

Our first dPP experiments have been previously reported [1,2]. This paper gives
results of two other case studies done jointly between grad students1 at the University
of North Carolina at Chapel Hill (UNC-CH) and grad students at North Carolina State
University (NCSU) in the spring and fall of 2002. Section 2 gives background work
on virtual teams, a summary of prior dPP results, and a description of the technical
infrastructure to support dPP. Sections 3 and 4 discuss the details of the two case
studies. Section 5 outlines the lessons extracted from the experiments. General
observations, limitations, and conclusions are presented in Section 6.

2 Background and Related Work

2.1 Virtual Teaming

Our studies involve a specific form of virtual team. In general, a virtual team can be
defined as a group of people who work together towards a common goal but operate
across time, distance, culture and organizational boundaries [8]. The members of a
virtual team may be located at different work sites, or they may travel frequently and
need to rely upon communication technologies to share information, collaborate, and
coordinate their work efforts. As the business environment becomes more global and
businesses are increasingly in search of more creative ways to reduce operating costs,
the concept of virtual teams is of paramount importance [7]. In the context of this
paper, the common goal of the virtual team is the development of software.

Virtual teams are also used in education. Distributed learning, or distance
education, is experiencing explosive growth. “Online learning is already a $2 billion
business; Gerald Odening, an analyst with Chase Bank, predicts that the figure will
rise by 35% a year, reaching $9 billion by 2005” [17]. Programming students have
benefited from this growth. Virtual teaming is a boon for distance education as it
allows geographically remote students to participate in team projects.

Organizing and managing virtual teams is a topic of ongoing research. From our
earlier studies and experiences comparing co-located solo programmers with co-

1 The validity or generalizability of empirical studies with students is sometimes questioned

because student projects do not deal with issues of size or scale, as is realistic in industry.
Several research studies have indicated, however, that student test-beds represent ideal
environments for empirical software engineering, providing sufficient realism while allowing
for controlled observation of important project parameters [6,11].

Virtual Teaming: Experiments and Experiences with Distributed Pair Programming 131

located pair programmers [1,2], we surmise significant benefits for virtual teams that
use dPP. Operating via dPP may help establish team trust and create a “virtual culture
[13]“. When programmers pair with each other, and especially when the pairs rotate
among the group, they get a chance to get to know many on their team more
personally. This familiarity helps to break down many communication barriers. Team
members find each other much more approachable. As a result, they will struggle with
questions or lack of information for less time before asking the right person a
question. The rotation of team members also gives each student a broader
understanding of the project through observing the work of each new partner.
Additionally, they feel better about their jobs because they know their teammates on a
more personal level. In short, better communication between team members leads to
increased confidence levels and more effective time usage. A primary consideration,
then, in virtual teaming (and so dPP) is good support for communication [10].

2.2 Prior Distributed Pair Programming Results

In the Fall 2001 semester a structured experiment was conducted in a graduate class,
Object-Oriented Languages and Systems, taught by Dr Edward Gehringer at NCSU
[1,2]. This course introduces students to object technology and covers object-oriented
analysis and design, Smalltalk, and Java. This course has a five-week team project
that was used for our experiment. A total of 132 students took this course, including
32 distance education students. For the team project, the students were divided into
teams of two to four students and worked as collocated teams, collocated team with
pair programming, distributed teams, and distributed team with pairs.

The results of this experiment show that distributed teams had a slightly greater
productivity as compared to collocated teams but the difference was not statistically
significant. Also the distributed teams outperformed the collocated teams in terms of
software quality measured by the average grade obtained by the group in the project.
Again, the difference was not statistically significant. Anecdotally, the co-located
pairs outperformed the co-located non-pair teams, and the distributed pairs
outperformed the distributed non-pairs.

Another area under study is the communication among team members. We
measured this with an exit survey. The distributed pairs reported the best
communication, followed by the collocated (pair and non-pair) teams. This is
consistent with earlier findings on the benefits of pairing on team communication
[18,20].

2.3 Technical Infrastructure Considerations for dPP

For collaborating over the Internet, we chose COTS solutions that are affordable,
readily available, and easy to learn and use. One goal of our work has been to see how
effective dPP can be with a simple, non-custom setup. Table 1 lists the programs and
technologies used at various times and in various combinations during our two case
studies and our previous experiments.

132 D. Stotts et al.

Table 1. Programs and technologies used in our studies

���������	
 ��
���������
 ��������
����

�����

NetMeeting Program Sharing, Whiteboard,
Text Messaging, Voice
Communication

We continued to refer to
the whiteboard stored on
NetMeeting.

pcAnywhere Desktop Sharing Some firewall issues.
WS FTP File Transfer
TextPad Text Editing
Notepad Text Editing
Crimson Editor Text Editing Color codes JSP files.
Visio Diagram Creating Software Used to create our web

flow diagram.
Yahoo
Messenger

Text messaging, File Transfer,
Voice Communication

We initially used this, but
stopped; MSN
Messenger can start
NetMeeting, while
having the features of
Yahoo Messenger.

MSN Messenger Text messaging, File Transfer,
Voice Communication, Start
NetMeeting

WinZip Zip and Unzip Files
HomeSite HTML Editor Used to write the meeting

minutes.
CVS File Repository and Management It was too difficult to set

up and seemed
unnecessary.

Tomcat Server Allowed us to view JSP.
Internet Information and Communication

Medium

Group Web Site Web Site Used to store meeting
minutes and project
documents

Internet
Explorer

Web Browser

Netscape Web Browser
Email Text Communication/File Transfer
Putty Shell
Eclipse Integrated development

environments (IDE)
We tested the Sangum
plug-in for dPP.

Virtual Teaming: Experiments and Experiences with Distributed Pair Programming 133

We have developed systems with dPP infrastructures based on both NetMeetingTM
(Microsoft) and pcAnywhere (Symantec). Some pairs have preferred one, some the
other; we have recorded the various reasons given for the preferences. Both programs,
though, share important functions and characteristics needed for dPP:

������� ���	��
� ����
����
������� ����
���� �
��� ����������
����
��������
����
�����������
����������
���
���������
����
������
��
�����

In addition, these capabilities are needed (or desirable) for dPP:

���
�����������
������
�������������������
NetMeeting provides them integrally; but pcAnywhere requires third-party programs
that are then shared with the desktop. Finally, �
��� may have uses in dPP; this is a
point for further research.

3 Spring 2002 Comparative Study

In Spring 2002, eight graduate students (four at NCSU, four at UNC-CH) participated
in a five-week dPP/dXP experiment. We formed four distributed pairs, each having
one student at UNC and one at NCSU. About 30 miles separates these locations so
there was no face-to-face contact within a group, and all communication was done via
the Internet connection between the campuses.
 Two of the groups worked as virtual synchronous pairs (utilizing dPP); we refer here
to them as “dPP pairs”. The remaining two worked as more traditional virtual teams
(no pair programming); we refer to them as distributed, non-paired teams, or “dNP
teams”. Allocation of students to groups was done randomly without regard to
preferences. All four groups had to conform to the 13 XP practices (except the two
dNP teams did not practice pair programming). Each group worked independently on
a card game, so four separate versions of the same game were produced. The dPP
pairs first tried pcAnywhere for desktop sharing, but they had trouble passing through
each other’s firewalls as they worked from different universities. Ultimately, they
chose NetMeeting for development, but Yahoo Messenger was favored over MSN
Messenger for voice communication. The dNP teams wrote their code independently
and e-mailed it back and forth. All four groups had a common storage area where they
could upload their code after modifications and view the other programmer’s code.
Programming was done in Java, and JUnit2 testing was used for all projects.

The results reported here came from analysis of programmer feedback and project
output throughout the experiment. The number of test cases passed is the metric used
for program quality. Since all groups developed the same product, the productivity
measure is mean total time for development; this frees the analysis from typical
concerns with lines of code measures.

Figure 1 shows that the dNP teams took a greater amount of time (in days)
compared to the dPP pairs. The dNP teams spent considerable time coordinating their
activities and integrating their code. Whenever a question arose, they took more time
to clear it due to the limitations of communication. The dPP pair members made
“appointments” with each other for virtual collaboration sessions; the partners always

2 See http://www.junit.org/ .

134 D. Stotts et al.

kept their commitments to these appointments and made significant progress during
each session. Conversely, the dNP team members often delayed progress because they
felt they were “too busy to work on the project right now”. Ultimately, this caused a
significant delay in project completion; one dNP team never finished the project to
completion. This supports earlier findings that pairs put a positive form of “pair
pressure” on each other [5,18-20]. One can easily see a parallel between the student
work ethic effects of pair programming and similar effects among professional
industrial programmers.

Fig. 1. Development Time (days)

Fig. 2. Unit tests written and passed

Since programming was in Java, the groups wrote unit test cases using JUnit.
Figure 2 shows the average number of test cases that were written and passed in JUnit
testing. DPP pairs wrote just over 60 tests, whereas dNP teams wrote just under 40
tests. XP requires test-driven development (TDD), meaning programmers write unit
test cases prior to implementing code [4]. In general, we consider that groups writing
more unit test cases have better tested code than groups writing fewer test cases.

Virtual Teaming: Experiments and Experiences with Distributed Pair Programming 135

Particularly with TDD, writing more test cases is associated with producing better
structured code that is more likely to ultimately pass acceptance tests [9].
 Figure 2 shows that dPP pairs wrote 70% more unit test cases than the dNP teams.
Since the dPP pairs were working synchronously, they could concurrently decide on
the flow of the code and on the test cases that could be implemented. These pairs
never needed to integrate their code because they worked on the entire project
together. The dNP teams needed to separately and specifically integrate their
individual efforts. At times, they could not write as many test cases to fully test the
integration of newly written code because their partner’s code was not yet in the code
base. Other significant factors include pair pressure and pair brainstorming [18]. Pairs
are more likely to write a thorough set of test cases because they are continually
“watching over” each other and can brainstorm more test cases by putting their
brainpower together.

Fig. 3. Acceptance tests Passed

All four groups were required to record their user stories and the acceptance tests
they performed for the software using Bryce3, a Web-based software-process analysis
system used to manage projects and to record development metrics. The results of
these measures are shown in Figure 3. These results were obtained by running the
code against a fixed set of 15 test cases determined before the experiment. Both the
dPP pairs satisfied all the test cases. One dNP team satisfied 12 test cases, and the
other did not complete the project. The sample size is too small to do a statistically
significant analysis of the data.

The developers were also required to give feedback about their overall
development experience and their team communication. The allowed response range
was very good, good, fair and poor. As shown in Table 2, the dPP pairs reported a
better experience. The main reason for this was that dNP team 2 was not able to
complete the project on time due to lack of coordination between the members.
Moreover, dNP team 1 experienced difficulties when there was a difference in
understanding of the architectural model that took almost two days to rectify. From

3 See http://bryce.csc.ncsu.edu

136 D. Stotts et al.

this case study we can say we have further suggestive evidence that the synchronous
paired teams performed better than the non-paired teams.

Table 2. Qualitative Feedback

�����
 ������	
��
������
����

��
�������

�������������

�����
����
�������

dPP pair 1 Very good Very good

dPP pair 2 Very good Very good

dNP team 1 Good Good

dNP team 2 Poor Poor

4 Fall 2002 Case Study

The second case study we have completed was done in the fall of 2002. We created
one pair, distributed with one grad student at UNC and the other from NCSU. The
NCSU student worked from a home office, connected to the Internet via cable
modem. The UNC programmer used a campus office with a 100-megabit Internet
connection. Unlike the prior comparative study, in this development there was no
face-to-face meeting to start the project. Email was used for initial contacts and team
organization. Four meetings online were needed over the course of the first three
weeks to try various technologies and settle on a collection of tools that worked well
for the computing environment the pair members had. Table 3 summarizes the
computing environments used by each programmer.

Table 3. Computing Platforms used by the pair members

���
���	
 ������
�	����
 ����
�	����

Net Connection Internet II backbone, UNC

office
Cable modem, home
office

Communications Headset Speakers and microphone
Operating Sys Windows2000 Windows 98
Ram 128 MB 384 MB
Processor Speed 400 MHZ 933 MHZ

The pair sessions were divided into two main segments: infrastructure tests, and
development. The first few pair sessions were technology tests, spent trying various
combinations of dPP support programs for effectiveness and to establish their
preferences. The pair settled on MSN Messenger for voice communication and
pcAnywhere for screen sharing. The first session after that was used to code a simple
magic square program as a “development shake down”, in which the pair became
accustomed to the behavior patterns needed to produce working code in the dPP
environment they chose. Once their dPP environment was established, the remaining

Virtual Teaming: Experiments and Experiences with Distributed Pair Programming 137

sessions comprised the measured development. Each development session had six
activity blocks:

1. Each person logs onto MSN Messenger.
2. One of the pair would request a voice communication.
3. Start pcAnywhere (UNC as remote, NCSU as host)
4. Pair programming
5. Discussion about what to do in the next meeting and confirm next day to

meet.
6. Post meeting minutes to website.

The pair produced a tool to support future XP projects: a pair matcher that takes
factors such as experience, personality type, and preferences into account to try to
form pairs that are likely to be effective. This project ended up as a set of about 20
Java server pages with a web interface. The pair spent a total of 37.25 hours in
development from 9/19/02 to 11/25/02, using 18 online sessions averaging 2.07 hours
each. The longest session was 3.25 hours, and the shortest was 0.75 hours. Minutes
and observations were kept of all meetings; they can be reviewed online at the project
web site http://www.cs.unc.edu/~dsjen/pair/ along with user stories for the program
and an architecture diagram of the system they produced.

4.1 Observations on the dPP Technical Infrastructure

The software used fir dPP must compensate as much as possible for the lack of
physical contact between team members. The team in this study decided that
pcAnywhere best emulated the co-located environment (the prior study participants
used NetMeeting). Alternate environments, such as NetMeeting and Eclipse with a
pair programming plug-in4, also allowed the sharing of programs, but the methods for
doing so were deemed less effective for the pair. The following are technical
problems observed with the dPP infrastructure:

• Inability to copy and paste from one computer to another. The person connecting
to the other’s desktop was not able to copy and paste from his own desktop,
which would have been a convenient feature.

• In NetMeeting, mouse locus behavior prevented use of a PC when the other pair
member was driving.

• NetMeeting exhibited graphics problems drawing cursors that pcAnywhere
solved.

• Network-based voice communication occasionally would break up, making
hearing one’s partner very difficult.

• One partner was using speakers instead of a headset, producing an audible echo
in the headset of the partner (who would hear himself talking with a delay).
Initially the partner found this distracting, and spoke slowly and haltingly to
compensate. However, he reported becoming used to it, could ignore it, and even
expected it as an indication of a live connection.

• When using pcAnywhere, transferring control to another is much easier.

4 See http://www.industriallogic.com/software/sangam.html

138 D. Stotts et al.

• Remote machine should have a screen size slightly larger than the host machine;
this allows the window showing the host PC to fit entirely on the remote,
requiring no scroll bars.

• There was some lag in mouse motion and editor scrolling; however, it was
minimal, easily adapted to, and not noticeable after a few initial sessions.

5 Lessons Learned

These new studies, and our earlier ones, have allowed us to gathered some
observations we think characterize effective virtual team development of software
with dPP using an inexpensive, COTS, easy to learn/use technical environment. These
lessons include:

�� At least one, but perhaps periodic, face-to-face meeting is beneficial. In the
comparative study, the students used one such meeting to get to know each other
and to brainstorm their initial system architecture.

�� The developers have been found to work better when they strike a good rapport
with their partner at a personal level. Groups in the beginning exchanged URLs
to their personal Web homepages so that one developer could learn about the
other.

�� Using a tool that allows for the distributed teams to quickly switch between a
design view, such as a class diagram, and a code view is beneficial. The
TogetherSoft Control Center5 has this capability.

�� Distributed pair programmers absolutely must be willing to speak while they
work. They must explain what they are doing as they are doing it or the navigator
quickly gets lost. Programmers who are not willing to speak almost continuously
should probably not try to work this way.

�� Beyond the necessary basics (screen sharing, audio communications, file
transfer), the appropriate technical infrastructure for dPP appears to vary with
individual tastes; some teams were forced to one product or another by specific
computing platform issues (firewalls, communication speeds), but overall
different teams ended up selecting different combinations of NetMeeting,
pcAnywhere, MSN Messenger, and Yahoo Messenger. All combinations worked
effectively once the programmers were happy.

�� Screen sharing programs used in dPP alleviate potential file duplication, data
coherence and consistency problems that could occur with integrating forms of
virtual teaming; one member of the pair is always the host and work is always off
one project base.

5.1 Advantages of dPP over Co-located PP

In exit interviews, the participants noted they had benefited from many of the
previously observed advantages of co-located pair programming, such as pair
learning, pair pressure, two-brains better than one, etc. Our studies indicate that

5 See http://togethersoft.com

Virtual Teaming: Experiments and Experiences with Distributed Pair Programming 139

distribution does not destroy or hinder these co-located PP advantages. In addition,
distributed PP has these advantages over co-located PP:

• Visibility is improved over collocated pair programming at a single PC/monitor,
since each dPP participant has a screen.

�� The navigating dPP participant can use the PC to search the Web for resources
�� No office changing or travel is needed to meet one’s partner; work on other

projects can continue until dPP appointment time.
�� Although not tested, meetings are possible when on trips, out of town, etc.
�� Pairs are forced to keep electronic copies and records of our work and ideas. For

example, instead of drawing on a physical whiteboard, the participants used
NetMeeting’s whiteboard. This ensured they would be able to go back and look
at earlier plans.

�� Pair members are less likely to start conversations off topic; meetings are almost
completely focused on the task. The computer is the medium for all exchanges,
and participants can’t turn away from their computers and chat one-on-one.

5.2 Disadvantages of dPP Compared to Co-located PP

The study participants observed these disadvantages of dPP over co-located PP:

• Users can’t point, making it difficult to describe where a problem is; line number
naming helps, but it takes a noticeable amount of time for the other to find the
line number.

• A problem with one computer forces both to stop working; this theoretically
doubles the MTTF over using a single computer (as in co-located PP)

• Pair members can’t see facial expressions; Webcams are too small, too limited in
frame rate, and too expensive in bandwidth consumption to help here.

• Passers-by often don’t know a programmer is in a dPP session, and will enter an
office and begin a conversation; a specific sign must be used to tell this if one
does not want a shut door.

• There was a learning curve with dPP that is not present in co-located PP.
• Lack of physical proximity means large amounts of time spent on verbal

explanations that could rapidly be resolved by a visual diagrams; although
NetMeeting has a whiteboard, it is cumbersome to use and does not adequately
solve this problem.

6 Conclusions and Future Work

Our experiments support these conclusions about the efficacy of distributed pair
programming:

• Pair programming in virtual teams is a feasible way of developing software.
• Our earlier work found that dPP programs were equal in quality to those

produced both by co-located pairs and by teams not synchronously paired; these
new studies continue to uphold this as well, in that dPP pairs produced better
programs than dNP teams.

140 D. Stotts et al.

• Effective collaborative software development is possible with a few simple, non-
custom, widely-available tools (screen sharing, Internet-based audio
communications)

• Feedback from the participants indicates that synchronous pairing (pair
programming) engenders better teamwork and communication within a virtual
distributed team.

• Distributed pairs maintain many of the benefits (pair pressure, pair learning, two
brains) seen in co-located pairs

The studies have some limitations, which we seek to get beyond with further
experiments. We are currently studying the following dPP and dXP issues and
questions:

Sample size. We plan to repeat these case studies to build up a larger base of results.

Teams vs. pairs. We plan to run larger dPP efforts requiring more than a single pair
per team.

Whiteboard, pointing, and facial expressions. As in earlier experiments, we continue
to see pairs needing better capabilities for indicating areas of interest (“pointing”) and
whiteboard use. While NetMeeting has a built-in whiteboard, the participants found it
limited and awkward to use, and we suspect all software whiteboard programs will be
the same. The problem is size, and using wrist muscles to do drawing (not natural).
The participants also indicated a desire to see facial expressions, but Webcam’s were
ineffective for the reasons cited above.
 To investigate these problems we are doing follow-on experiments with a video-
enhanced dPP environment [16]. The environment uses 2 PCs: one with the screen
sharing infrastructure used here, and the other projecting a full screen image of the
partner on a wall to the side of the programmer, in arm’s reach. We have a whiteboard
digitizer on this projection surface. Pair members can easily shift off video, then reach
out and draw normally (with virtual ink); the drawings are shared and are projected at
the partner’s site. A button push restores video.�

No “chit chat”. We had one programmer make an interesting comment about the
technical infrastructure and the fact that it is not as “seamless and glitchless as face-
to-face conversation.” This participant had developed several programs using co-
located pair programming in a class at UNC. He then participated in one of the dPP
developments. When asked to compare the experiences, he noted that in co-located
pair programming he and his partner has spent a fair amount of time “chit chatting”
and that this was not possible (or did not happen to near the same degree) in the dPP
infrastructure. This comment could be taken to mean the dPP infrastructure provides a
decreased capability for human, team-building interactions; his implication, however,
was that the dPP infrastructure oddly enough increased productivity by offering
slightly less fluid interactions. He suggested that the communications mechanisms,
while adequate and effective for code development, were not smooth enough to
encourage extraneous talking. We find this an interesting point for further
investigation.

Virtual Teaming: Experiments and Experiences with Distributed Pair Programming 141

Acknowledgements. We gratefully acknowledge Intel for providing Webcam
equipment, Symantec for providing pcAnywhere software, and IBM for donating PC
equipment in support of our experiments. We would also like to recognize NCSU
graduate student Vinay Ramachandran for developing the Bryce tool for recording
project metrics. Our research was also partially supported by the US Environmental
Protection Agency under grant # R82-795901–3.

References

[1] Baheti, P., Gehringer, E., and Stotts, D., "Exploring the Efficacy of Distributed Pair
Programming," Proceedings Extreme Programming/Agile Universe, Chicago, IL, 2002.

[2] Baheti, P., Williams, L., Gehringer, E., and Stotts, D., "Exploring Pair Programming in
Distributed Object-Oriented Team Projects," Proceedings OOPSLA Educator’s Syposium,
Seattle, WA, 2002.

[3] Beck, K., Extreme Programming Explained: Embrace Change. Reading, Massachusetts:
Addison-Wesley, 2000.

[4] Beck, K., Test Driven Development -- by Example. Boston: Addison Wesley, 2003.
[5] Cockburn, A. and Williams, L., "The Costs and Benefits of Pair Programming," in

Extreme Programming Examined, G. Succi and M. Marchesi, Eds. Boston, MA: Addison
Wesley, 2001, pp. 223–248.

[6] Dutoit, A. H., Bruegge, Bernd, "Communication Metrics for Software Development,"
IEEE Transactions on Software Engineering, pp. 615–628, 1998.

[7] Foley, S. P., "The Boundless Team: Virtual Teaming," Seminar in Industrial and
Engineering Systems, Master of Science in Technology (MST) Graduate Program,
Northern Kentucky University MST 660, July 24, 2000.

[8] George, B. and Mansour, Y. M., "A Multidisciplinary Virtual Team," Proceedings
Systemics, Cybernetics and Informatics (SCI) 2002, 2002.

[9] George, B. and Williams, L., "An Initial Investigation of Test-Driven Development in
Industry," Proceedings ACM Symposium on Applied Computing, Melbourne, FL, 2003.

[10] Gould, D., "Leading Virtual Teams," Leader Values (Electronic),
http://www.leader-values.com/Guests/Gould.htm, July 9, 2000.

[11] Humphrey, W. S., A Discipline for Software Engineering. Reading, Massachusetts:
Addison Wesley Longman, Inc, 1995.

[12] McMahon, P. E., "Distributed Development: Insights, Challenges, and Solutions,"
CrossTalk, pp. http://www.stsc.hill.af.mil/CrossTalk/2001/nov/mcmahon.asp, 2001.

[13] McMahon, P. E., Virtual Project Management: Software Solutions for Today and the
Future. Boca Raton: St. Lucie Press, 2001.

[14] Nosek, J. T., "The Case for Collaborative Programming," in Communications of the ACM,
vol. March 1998, 1998, pp. 105–108.

[15] Olson, G. M. and Olson, J. S., "Distance Matters," Proceedings Human Computer
Interaction, 2000.

[16] Stotts, D., Smith, J., and Williams, L. A., "A Video-Enhanced Environment for
Distributed Extreme Programming," Department of Computer Science. Univ. of North
Carolina at Chapel Hill, Chapel Hill, NC TR–02–009, March 1, 2002.

[17] Traub, J., "This Campus is Being Simulated," in The New York Times Magazine, 2000,
pp. 88–93+.

[18] Williams, L. and Kessler, R., Pair Programming Illuminated. Reading, Massachusetts:
Addison Wesley, 2003.

[19] Williams, L., Kessler, R., Cunningham, W., and Jeffries, R., "Strengthening the Case for
Pair-Programming," in IEEE Software, vol. 17, 2000, pp. 19–25.

[20] Williams, L. A., "The Collaborative Software Process PhD Dissertation," in Department
of Computer Science. Salt Lake City, UT: University of Utah, 2000.

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 142–150, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Issues in Scaling Agile Using an Architecture-Centric
Approach: A Tool-Based Solution

Kris Read and Frank Maurer

University of Calgary, Department of Computer Science
{readk,maurer}@cpsc.ucalgary.ca

Abstract. Agile software development processes are best applied to small
teams on small to medium sized projects. Scaling agile methodologies is
desired in order to bring the benefits of agile to larger, more complex projects.
One way to scale agile methods is via an architecture-centric approach, in
which a project is divided into smaller modules on which sub teams can use
agile effectively. However, a problem with architecture-centric modifications to
agile methods is the introduction of non-agile elements, for instance up-front
design and integration difficulties. These issues are discussed and a tool-based
solution is presented facilitating the adoption of the architecture-centric agile
approach.

Keywords: Agile Methods, Scaling, CruiseControl, Continuous Integration,
Test Driven Design, Automated Testing

1 Introduction

Martin Fowler likes to say, “Scaling agile methods is the last thing you want to do.1”
At the Canadian Workshop on Scaling Agile Processes this generated quite a stir, but
it turns out that he meant it literally. The idea is that one should examine every other
alternative first, and consider scaling as a last resort. Nonetheless there is a need to
scale agile methods. Large projects are out there, projects for which a small team is
not ideally suited. If a team needs to deliver a lot of functionality but also has a lot of
time, the team size can be quite small. Likewise the team can be small if it has not
much time but can reduce the scope of the project. However, to deliver a lot of
functionality in a short amount of time, the business solution is to add more people.
Scaling a software development project would traditionally be accomplished through
heavyweight processes and stacks of documentation. But it is desirable to reduce the
project overhead in order to maximize productivity, and so the question becomes
“How do we scale Agile Methods?” To improve the scalability of agile software
processes, one solution is to follow a divide and conquer strategy based on
architecture.

An architecture-centric strategy is nothing new – Ken Schwaber advocates using
the first iteration of an agile project to have a smaller team define the project
architecture, and then proposes multi-team coordination through a “Scrum of Scrums”

1 Keynote address, Canadian Workshop on Scaling Agile Methods, 2003.

http://can.cpsc.ucalgary.ca/ws2003

Issues in Scaling Agile Using an Architecture-Centric Approach 143

for the remainder of iterations. If the project is initially broken down into smaller
modules, each module can be built using an agile approach. This plan enables the
application of proven agile methodologies using small cohesive teams at a module
level. Following this strategy may also enable distributed software development in an
agile way. Agile depends upon co-located teams for close communication, but if a
project were properly divided each sub-team could independently follow an agile
process. In addition, if organizations are interested in exploiting the commonalities
between its products or systems, an architecture-centric strategy may improve code
re-use through the definition of modules. However, there is in fact an intrinsic
contradiction between agile software development and the practice of separating a
project into modules. By adopting such a strategy, will our process remain agile?
Common sense says that there will be several incompatibilities between agile
processes and the architecture-centric approach. These incompatibilities include up-
front design, team inter-communication and module integration. This paper proposes
that these problems of architecture-centric agile software development can be
overcome through innovative tool support.

2 Concept

We sometimes assume that a comprehensive document is necessary for architecture-
centric development, or that every team needs to know precisely how their product
depends upon products developed elsewhere in order to construct it. This approach,
however, is the antithesis of the maxim “Responding to Change over Following a
Plan” stated in the Agile Manifesto2. Up-front planning can still be done in an agile
way, so long as we stay focused on doing only what is required. In fact, agile projects
normally have some overhead when user stories are gathered and prioritized,
development tools chosen, environments configured, and so forth. Defining the
system architecture can be included as one of the aforementioned startup costs, if the
architecture is defined in a quick, lightweight manner that is flexible to change. The
best way to assist agile developers with quickly generating such a definition is to
provide a simple tool that they themselves can understand and work with.

In an ideal world, modules would work flawlessly with one another, and there
would be no integration problems. Anyone who has tried integration knows that this
is rarely the case. The interfaces between modules are problematic; even if these
interfaces are well documented, it is possible that over time requirements changes or
lack of communication between parties will result in incompatibilities. Without
knowledge of exactly how outputs are going to be used, there is no guarantee that
developers will be able to deliver them as expected. To address this issue, one can
apply the same concept of continuous integration already utilized by agile teams.

“An important part of any software development process is getting
reliable builds of the software. Despite it's importance, we are often
surprised when this isn't done. We stress a fully automated and
reproducible build, including testing, that runs many times a day. This

2 Agile Alliance, Manifesto Website http://www.agilemanifesto.org

144 K. Read and F. Maurer

allows each developer to integrate daily thus reducing integration
problems.” 3

In an architecture-centric agile environment, it is not enough to simply perform an
automated build and test whenever there is a change to the system. Because each
module is assuming that its fellow modules will be constructed according to the
architecture, tests based on the same (possibly incorrect) assumptions do not indicate
the health of the system. When Jack is developing a module, it does the project little
good if Jack also writes tests for his interface. Jack may be very well aware of what
functionality he is providing, but likely has no knowledge of the functionality that
other modules are expecting him to provide. It is thus very probable that Jill’s
module, which uses the module written by Jack, will have some specific need Jack
knows nothing about. Conventional continuous integration should still be done for
each module, but there must also be a higher level of continuous integration to ensure
compatibility between modules even before they are implemented. It is therefore
desirable to extend the concept of continuous integration such that some kind of
quality assurance and verification of the interfaces is performed automatically with
each build. The key to this continuous integration at the module level is getting the
tests right.

The most effective arrangement would be for Jill to act as a customer for Jack at
the module level. Jill will write tests for the functionality that she expects from Jack,
and for her to do this before Jack writes his actual code. Jill doesn’t need to test Jack’s
entire interface, just the features that she herself will be using. Thinking of testing
before doing the development is not exclusive to agile; the “V-model” adaptation of
waterfall4 is one of the simplest examples of this, when you plan ahead to use your
design documents and specification documents to verify your product. Agile
processes can replace the “V-model” comparison of functional specifications to code
with automated unit tests; this new concept can replace comparing an architecture
specification to developed interfaces. The idea of API consumers writing tests is
similar to that already discussed by Newkirk5 for doing test first design of third party
software. Newkirk asserts that in addition to writing tests before writing code, you
should write tests before using code written by others. However in this case, the third
party software itself may not have been written yet. You are tailoring the tests as
much to your own requirements as to the functionality that will finally be provided.

This extension of “test first” design could have quite a few benefits. Any problems
in the existing architecture would be uncovered early on in the iteration by test
authors. Incompatible tests or conflicting tests will reveal problems in the architecture
before more effort is wasted. Following this plan would enable an evolution of the
system architecture; just as doing test first design for regular code helps you think and
plan ahead better, so will doing test first design for module interfaces let you look
ahead and construct your architecture. This evolution of the architecture should also
involve actual customer representatives, who can make decisions about the entire
deliverable system if conflicts or questions of priority arise. If a change in
requirements influences the system architecture, new tests that verify the new
functionality or structure can be added. The continuous integration software can

3 http://cruisecontrol.sourceforge.net
4 Daich, G: Software Test Technologies Report. 1994
5 Newkirk, J.: A Light in a Dark Place: Test-driven Development of 3rd Party Packages. 2002

Issues in Scaling Agile Using an Architecture-Centric Approach 145

facilitate this by notifying affected teams when changes are made. Changing the
architecture drastically is potentially a source of difficulty, but to address this we can
recall how refactoring handles changes to code. Changing a small amount of code can
sometimes have sweeping effects, but now and again we need to evaluate the cost-
benefit tradeoff and make a decision. If our general strategy is to make changes little
by little, and keep the architecture healthy, then flexibility is not necessarily lost.
Teams will not only have access to the architecture definition describing the modules,
but also to a set of tests representing the functionality that they need to implement;
they can use these tests both as a knowledge sharing mechanism and as a contract
between modules. Jack knows he is finished when all of Jill’s tests pass. Likewise, Jill
knows Jack’s code will integrate with her own when the tests she provided are
successfully run by Jack. In essence, the author of a test becomes a customer for the
module developer. A hierarchy of customers is formed, with one or more actual on-
site customers at the top. The real customers speak with some of the teams, who then
define user stories and tests related to the child components. At each level the
developers have their own product backlog of user stories defined by the customers
with whom they interact. These user stories are complimented by the automated tests.

Fig. 1. Each team will do test first design for the portions of other modules’ interfaces that they
use. In this example, two modules depend on Interface B and one depends on Interface A. This
means that three test suites will be written before development

In summary, architecture-centric software development can be combined with agile
software development processes while retaining the spirit of agile by following these
guidelines:

1. Design the module architecture in a quick and lightweight way
2. Provide the architecture in a format that is flexible to change
3. Require test first design at the interface level

146 K. Read and F. Maurer

4. Tests are written by module users not module providers
5. Test authors act as customers for dependant modules

(in addition to real on-site customers)
6. Module teams define their own product backlog of user stories
7. Do continuous integration of the module based system

3 The Tool: COACH-IT

At the University of Calgary work is being done on a lightweight architecture
planning and continuous integration tool for agile processes. COACH-IT, the
Component Oriented Agile Collaborative Handler of Integration and Testing, is an
effort to develop tool support for scaling agile practices using an architecture-centric
approach. The sequence executed by COACH-IT is as follows:

1. Users define an architecture using the COACH-IT input web application
2. Multiple repositories are monitored for code changes in each module
3. When a change is detected the module and related modules are downloaded
4. The modules are deployed and tests are run to ensure interface compatibility
5. Teams are notified directly of any problems via electronic mail
6. The “health” of the system is available to the teams via a web page

COACH-IT combines and extends existing continuous integration technologies in
order to provide an end-to-end solution for module definition and testing. The
following diagram shows the interaction of COACH-IT technologies:

Fig. 2. Above is a conceptual drawing of how COACH-IT works. The tool has three main
functions: Architecture Definition, Continuous Integration and Developer Feedback. Note:
superscript references in Section 3 refer to entities in Fig. 2

Issues in Scaling Agile Using an Architecture-Centric Approach 147

The COACH-IT Input Web Application has been designed to assist agile
practitioners with managing architecture definitions. In an agile project the focus is on
producing value for the customer, and the architecture definition itself is not a
deliverable. Using the COACH-IT tool any developer can quickly define a set of
modules and assign JUnit tests to the interfaces between those modules, thus
minimizing design overhead. A web application*1 provides a simple to use, self-
documenting interface with which most developers are already familiar. The same
application can also load and edit current or previous architecture definitions;
architecture definitions in an agile project are likely to change. Although even the
minimum necessary ADL can become complex, a web interface hides this complexity
and lets the developer concentrate on delivering something real.

The core of COACH-IT is the Architecture Definition Language file (ADL file)2 .
This file is a minimalist representation of the modules, interfaces and relationships in
the system. Defined within this file are module names and (optionally)
descriptions/annotations, module repository locations, module file locations, module
interfaces, module team contact information (e-mail), module relationships
(unidirectional), relationship test associations, test repository locations, test file
locations and test contact information (e-mail). Only these few items are required as
user input to create a simple architecture for continuous integration. The ADL file is
stored as XML, which makes it both extensible and flexible. Moreover, XML is easily
formatted for human viewing and is familiar to many developers. Finally, COACH-IT
uses XML as its document format so that it can be integrated with existing and future
tools that use XML as input and output. The core technologies underlying COACH-IT
(ANT and CruiseControl) both rely heavily on XML, and therefore using XSL to
generate required files makes sense. A sample COACH-IT ADL and the latest schema
are available on the COACH-IT home page, but are not included here.

COACH-IT determines when modules are changed using a modified version of the
CruiseControl continuous integration tool4. The primary modification made to
CruiseControl allows the monitoring of multiple repositories, which are then
monitored individually according to custom settings and schedules. Each team is thus
able to configure their own repository to suit their unique needs5. Input to the
CruiseControl monitor is via an XML file generated from the ADL using an XSL
script3. The CruiseControl configuration file follows the standard CruiseControl
format but allows multiple project definitions (one for each module). More
information on CruiseControl is available at (http://crusecontrol.sourceforge.net).
When COACH-IT detects a changed module it calls an ANT build file to perform the
integration and testing6. This ANT file is likewise generated via the ADL file using
XSL. Each component will have one ANT file that will download the module and any
other dependant modules, deploy them on the application server7 and run the suite(s)
of associated JUnit tests8. Because these ANT files are generated using XSL scripts it
is simple to add additional ANT tasks if required; for more information about ANT
visit the Apache ANT page at (http://ant.apache.org).

COACH-IT is also able to directly notify teams and individual developers via
electronic mail. In the event of a test failure or other change in system health,
COACH-IT can be configured to notify any and all involved parties, such as the
authors responsible for the test, the authors of the involved modules, the developers
who last committed, the team leaders, or the entire teams of the failed components.

* 1 … 10 References to entities in Figure 2.

148 K. Read and F. Maurer

This direct notification is a key component to why continuous integration is effective.
Alistair Cockburn has defined the concept of “information radiators” as anything that
will “increase team communication without unnecessary disruption” (Cockburn,
2003). The goal of COACH-IT is partly to act as such a radiator, providing as much
information as possible through everyday channels.

Fig. 3. Health of the system can be viewed for components, interfaces and relationships.
Initially a brief summary is shown, more detail is available by clicking on the links

Output from the CruiseControl monitor is also in standard CruiseControl XML
format9. In fact, each module creates its own logs compatible with the standard
CruiseControl web application. However, COACH-IT also includes a custom web
application based partially on CruiseControl that summarizes the results of tests
across the entire architecture10. Details and contact information are provided for each
test in the event of a failure. There is also a history feature that allows the user to
browse through past tests and system states interactively.

4 State of Implementation

COACH-IT is being developed using JAVA, XSL and XML technologies, builds on
CruiseControl and Apache ANT, and runs on a free, open-source platform. At the
present time COACH-IT is able to monitor multiple J2EE components in multiple
repositories, downloading, deploying and testing them as required. Our ADL file
definition is stable and can be verified against an XML schema. Furthermore, the
COACH-IT web interface allows simple interactive editing and creation of ADL files
as well as an overall display of system health. COACH-IT is at the stage where it can
be self-hosted. In fact, COACH-IT has been designed in a modular way and is
therefore quite suitable for development using the previously discussed approach. If
you would like to see a demo of the system, or download it for your own use, please
contact the authors.

Issues in Scaling Agile Using an Architecture-Centric Approach 149

5 Future Work

Future work on COACH-IT first includes further refinements to the output web-
application with the goal of constantly giving teams as much information as possible
about their own component as well as the entire system. The COACH-IT system also
needs to be generalized in such a way as to be applicable to non-J2EE projects.
Conceptually, COACH-IT can easily be integrated with existing visual modeling
(UML) tools through our XML based architecture definition. Conversion allowing
users of popular industry modeling tools to directly import their component structures
into COACH-IT is on the horizon. We would also like to integrate COACH-IT with
MASE, a tool to support agile planning and estimation developed at the University of
Calgary. MASE will facilitate developer and team communication in a non-intrusive
manner.

A study of projects developed using an architecture-centric agile process with tool
support is in the planning stages. This study will be collecting data to evaluate the
productivity and/or satisfaction of teams using COACH-IT under the described
methodology. In the future COACH-IT should also be compared with other tools used
to keep track of the state of a system under development, and possibly incorporate
some of the compatible features of these systems.

6 Conclusion and Potential Problems

The architecture-centric strategy is still open to some criticism. Yes, there will be
some overhead in maintaining the architecture definition, even if this overhead is
lessened through tool support. However, there is always a minimal amount of
documentation necessary to help the developers do their work. To quote to Kent
Beck, “Contrary to the claims of some of XP's detractors you do in fact invest time
modeling when taking an XP approach, but only when you have no other choice.
Sometimes it is significantly more productive for a developer to draw some bubbles
and lines … than it is simply start hacking out code” (Beck, 2000). This approach was
also designed with an object-oriented refactoring environment in mind, and so may
not be applicable to other project types. Moreover, A team management process, like
Scrum, is essential when working on a large or distributed agile project. COACH-IT,
and the concepts proposed above, are meant to compliment existing agile processes.
Lastly, there is an element of trust involved, as in many agile practices. COACH-IT
does not restrict individuals from changing the architecture or tests at whim. Although
this attitude may work well for some teams, there is no solid data to defend it yet. The
concept and tool will undoubtedly be improved with experience, but by combining
lightweight planning with an architecture-centric design strategy we hope to get the
most benefit without compromising the spirit or practices of agile methods.

Acknowledgements. The COACH-IT Software is based heavily upon the
CruiseControl Continuous Integration Toolkit and Apache Ant. Credit should also go
to xADL, an XML-based ADL developed by the Institute for Software Research at

150 K. Read and F. Maurer

the University of California, Irvine. The COACH-IT ADL is based roughly on the
concepts and methods of xADL.

Work on implementing COACH-IT has involved the efforts of graduate students in
a Distributed Software Engineering course (CPSC601.85) at the University of Calgary
and the University of Alberta. In alphabetical order: Yichuan Cao, Amy Law, Tracy
Li, Zhizhong Li, Anny Lin, Bill Luthi, Kris Read, Lance Titchkosky, Eileen Wang,
and Fakui Wang.

References

1. Agile Alliance Home Page. Web, 2003. http://www.agilealliance.com
2. Ambler, S.: Agile Modeling: Effective Practices for Extreme Programming and the

Unified Process. John Wiley & Sons, February, 2002
3. Beck, K.: eXtreme Programming Explained. Addison Wesley, 2000
4. Canadian Invited Workshop on Scaling XP/Agile Methods. Proceedings, 2003.

http://can.cpsc.ucalgary.ca/ws2003/
5. COACH-IT Home Page. Web, 2003 http://pages.cpsc.ucalgary.ca/~readk/COACH-IT
6. Cockburn, A.: Crystal Clear: A Human-Powered Methodology for Small Teams. Draft,

2003. http://members.aol.com/acockburn/
7. CruiseControl Home Page. Web, 2003. http://cruisecontrol.sourceforge.net
8. Fowler, M.: Continuous Integration. Web, 2003

http://www.martinfowler.com/articles/continuousIntegration.html
9. Daich, G., Price, G., Ragland, B., Dawood, M.: Software Test Technologies Report.

Software Technology Support Center, Hill Air Force Base, Utah. 1994
10. Newkirk, J.: A Light in a Dark Place: Test-driven Development of 3rd Party Packages. XP

Agile Universe, 2002
11. Schwaber, K.: Agile Software Development with SCRUM. Prentice Hall, 2001
12. xADL Home Page. Web, 2003. http://www.isr.uci.edu/projects/xarchuci/

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 151–160, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Developing a Tool Supporting XP Process

Sandro Pinna, Paolo Lorrai, Michele Marchesi, and Nicola Serra

Dipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari
Piazza d’Armi, 09123 Cagliari, Italy

{pinnasandro,plorrai,michele,nicola.serra}@diee.unica.it

Abstract. We present the development of XPSwiki, a tool supporting the XP
practices for requirement gathering and project management – user stories and
the Planning Game. XPSwiki has been developed in Smalltalk using Squeak
Swiki technology, and is accessed through the Internet in a user friendly, agile
way. It keeps track of multiple projects, each with its releases, iterations, user
stories, acceptance tests, and tasks. XPSwiki allows project tracking, and auto-
mates documentation generation and metrics collection. It is presently in use in
real software development environments.

1 Introduction

Software development methodologies are usually equipped with automated tools that
support the methodology, often helping its learning and adoption. Sometimes, the
methodology is developed with the aim of selling the tool. More often, a successful
methodology encourages firms to develop tools, in the hope of being able to make use
of its popularity.

Extreme Programming (XP) is a very successful, recent methodology for software
development [1]. XP developers heavily use tools supporting coding activities such as
testing, refactoring, and continuous integration. X-Unit [2], the Refactoring Browser
[3], and Cruise Control [4] are, respectively, examples of tools automating these ac-
tivities.

As regards project planning and tracking on the other hand, XP strives to be agile
and lightweight, and does not encourage the production of documentation different
from the code itself. The main tools used for these activities are index cards, white-
boards, and flipcharts, which are visible to everyone and act as “information radia-
tors” [5]. These tools are very effective as they are easy to use and maximize commu-
nication. For this reason, XP does not advocate the use of automated tools supporting
the development process. While not explicitly forbidding their use, there is a strong
message that “real XPers” use index cards, direct communication, and the code itself
to drive and document a project.

However, many organizations are accustomed to using automated tools aiding pro-
ject management and would welcome the availability of such tools. In others, man-
agement is often scared of a methodology that does not prescribe keeping written
documents to track project advancement and who is in charge of what. An automated
support tool could also be a powerful learning tool for beginners, who are facilitated
by the structure it enforces. Moreover, when developers wishing to use XP practices

152 S. Pinna et al.

are distributed and communicate through the Internet, they need a tool to coordinate
the team.

For these reasons, a number of tools supporting the XP process, or part of it, have
been proposed. Among them, we may quote AutoTracker [6], Milos-ASE [7], Xplan-
ner [8], XPCGI [9], XPWeb [10], Twiki XP Tracker [11], Iterate [12], XPPlanIt [13],
and VersionOne [14].

Some of these, namely AutoTracker, XPCGI, XPWeb, and Twiki XP Tracker, are
implemented using plug-ins or scripts at the top of existing servers enabling informa-
tion exchange on the Web. Others are based on specifically developed servers, usually
with Java technology. All these tools are Web-based, and make use of standard Inter-
net browsers, possibly equipped with tool plug-ins.

The level of support of these tools to XP requirement gathering and planning game
varies, but all support recording and estimating user stories, assigning them to itera-
tions, tracking project advancement, and adjusting project velocity.

In this paper, we present the development of another automated tool, called
XPSwiki, supporting requirement gathering using user stories, and the Planning Game
(PG) for project planning. XPSwiki has been developed using XP practices, gathering
its requirements with user stories and using the PG and short iterations for its devel-
opment. The following are the unique characteristics of XPSwiki compared to exist-
ing tools:

− XPSwiki is implemented in Smalltalk language, and has a full object-oriented
data structure, allowing it to be extended easily;

− it keeps track of project changes through a versioning system;
− it allows the production of written documentation on project advancement, to

comply with the ISO 9000 quality certification manual of a software firm;
− it allows to gather process statistics, including historical, and sends them to a

metrics-gathering Web Service;
− it is intended to be used after discussions and agreement with software firms,

and each installation is properly adapted to the firm’s needs.

XPSwiki is accessed through a Web browser and, like some of the referred tools,
makes use of Wiki technology [15]. A Wiki is a tool for exchanging information on
the Internet. Fundamentally, it is an open Website, where users can freely navigate
through pages, add new pages, modify existing pages, and search pages by keywords.

Swiki is the Squeak implementation of a Wiki. It also enables to add structure to
given pages, defining input forms for them. In this way, in a Swiki one can have both
pages constrained to a given structure, that are used to hold structured information,
and free-format pages, freely added to existing pages, like Post-it notes. The overall
approach is very agile and user-friendly.

We focus our presentation on the requirements an automated tool must have to
support the PG, and on the technology used to implement them. Section 2 presents the
XP practices supported by the tool, together with their domain analysis. Section 3
deals with the requirements of a second-generation tool supporting the XP process.
Section 4 presents the object structure of XPSwiki and its implementation. Section 5
presents some highlights of its use.

Developing a Tool Supporting XP Process 153

2 How XP Gathers Requirements and Manages the Development

In XP, requirements are gathered through user stories, which are short descriptions of
interaction scenarios with the system that can be developed within one iteration. Each
user story is written by the customer on an index card to make her/him be concise.
User stories need not be complete, since they are an opportunity for later conversa-
tions with the customer [16]. Moreover, they are the units that drive the entire system
development.

User stories are complemented with acceptance tests to check whether the story has
been implemented correctly or not. Each acceptance test is written in turn on an index
card. While there is usually a 1:1 relationship between user stories and acceptance
tests, some stories may have zero, or more than one acceptance test, and some ATs
may refer to more than one story.

The developers estimate the time to complete each story, assigning each story a
number of “story points”. The customer prioritizes and alters the stories, negotiating
with developers, and deciding in the end which stories are allotted to each iteration.
Acceptance tests are estimated and allotted as user stories. Usually, they should be
implemented in the same iteration as the related stories.

System development is performed through releases. A new release is usually made
available every 2-4 months, and is a major advancement compared to the previous
one. Each release is made up of short iterations of 2-3 weeks.

Every iteration has a number of story points that can be implemented in its course,
the so-called “project velocity”. The customer decides which user stories and accep-
tance tests will be implemented in each iteration, with the constraint that the sum of
their story points must be smaller, or equal to, the project velocity.

During the iteration, the developers write the tasks needed to implement each user
story and acceptance test on index cards. Each developer freely accepts the responsi-
bility of one or more tasks, and implements it in pair with another developer.

After each iteration, the number of story points actually implemented is recom-
puted, and the resulting figure is the project velocity for the next iteration. The cus-
tomer is allowed to change the stories to be implemented in each iteration, depending
on the stories and tests actually implemented, and on the changes in project velocity
and requirements.

The key entities of the XP Planning Game exhibit a well-built tree structure:

− a project is made up of releases;
− a release is made up of iterations;
− an iteration implements user stories and acceptance tests that are related to each

other;
− user stories and acceptance tests are made up of tasks;
− a team is made up of developers;
− a developer accepts responsibility of one or more tasks and usually pair-

programs them with one or more developers.

Moreover, each task has one and only one responsible developer, while zero or
more team members may pair-program the task together with the developer in charge.

154 S. Pinna et al.

3 Defining the Requirements of the Tool

Starting from the description of the XP process presented in section 2, the next step
was to study and devise the requirements of a tool supporting the PG. The following
are the main non-functional requirements needed to produce a tool that can be used
not only in an academic, but also in an industrial environment:

− agility – the tool must be easy to use and easy to adapt and reconfigure;
− Web-based – the tool must be accessed through standard Web browsers;
− interoperability – the tool should be easily interfaced with other development

tools;
− modularity and extensibility;
− open-source – the tool should be developed using an open-source environment.

The requirements of being Web-based and agile point to the use of Wiki technol-

ogy referred to in section 1.
The requirement of being open-source, portable, modular, and extensible lead to

the use of the Smalltalk language, which is still unrivaled as regards rapid develop-
ment of modular and high-quality software. The chosen open-source implementation
was Squeak [17], that can be used on several operating systems (Windows, Linux,
Mac-OS, many Unixes), and has complete access to its source. Squeak comes
equipped with a Wiki server, called Swiki.

Swiki is very powerful, and stores its pages in an XML repository, thus increasing
the system’s interoperability. Moreover, it enables to add structure to given Wiki
pages, defining input forms and output structures for them. In this way, in a Swiki one
can have both pages constrained to a given structure, which are used to hold struc-
tured information, and free-format pages that are freely added to existing pages, like
Post-it notes, which can also contain uploaded documents.

These characteristics match our requirements very well, since the Web pages that
hold the information related to the entities previously discussed (projects, releases,
iterations, and so on) must be well structured, in order to perform computations on the
project status. On the other hand, the capability of freely linking pages to the struc-
tured ones when necessary increases the agility and flexibility of the tool.

The functional requirements of the tool were given by the two of us that have more
experience in XP development, in the form of 35 initial user stories and 27 acceptance
tests.

XPSwiki supports:

− Team and team members’ definition.
− Creation of a new project.
− Project release and iteration definition.
− User stories definition, estimation, and assignment to iterations.
− Acceptance tests definition, estimation, assignment to iterations, and relation-

ships with user stories.
− Decomposition of stories and tests in tasks.
− Assignment of tasks to developers and task estimation, including pair program-

ming on the task.

Developing a Tool Supporting XP Process 155

− Tracking of advancement and integrity computation at project, release, iteration,
user story, acceptance test, and task level. This can also be made for a past date,
ignoring subsequent modifications to the project.

− Pretty printing in RTF format of advancement reports at iteration, story and task
level, and of acceptance test completion.

− Process metrics and statistics collection, including time-dependent process ad-
vancement.

4 The Implementation of XPSwiki

The presented tool was implemented following XP practices, and was developed with
the aid of two students performing their master’s thesis. Since we are not a program-
ming team, being heavily involved in academic activities, we were only able to follow
some XP practices. We were not able to use pair programming, metaphor, or refactor-
ing consistently. Acceptance testing was applied, but since XPSwiki is Web-based, it
had the problem of testing Internet applications. This kind of testing was thus mainly
hand-based rather than automated.

The first version of XPSwiki was implemented using the native data structure of
Swiki pages. In this implementation, the information relevant to the PG entities intro-
duced in section 2 was simply held in the corresponding pages, and the relationships
between them (for instance, the relationship between an iteration and the user stories
implemented during the iteration) were recorded using the Wiki hyperlinks between
pages. This allowed a quick development, but the data structure was clearly inflexible
and not suitable to complex queries nor to ease further extensions.

This version however was invaluable in obtaining feedback from our internal cus-
tomers. It was also installed on the site of one of our industrial partners, who evalu-
ated it and gave us a number of suggestions on how to improve the tool.

In the second version of the development, we decided to implement a full object-
oriented data structure holding all project data. An initial analysis, taking into account
the experience and suggestions gathered, yielded the UML class diagram [18] shown
in figure 1.

In this diagram, we introduced abstract class “Process Entity” providing data
common to every entity, such as name, description, and number of story points. We
also introduced the abstract class “Development Unit”, superclass of both User Story
and Acceptance Test, generalizing their property of being decomposed in Tasks. An-
other key element is class “Work Unit”, which represents the work made by one de-
veloper, or by a pair, on a given task during one day. We were expressly asked this
information by our industrial partner, who wished to track the daily work of its pro-
grammer pairs. This class also allows to track the code developed during the work.
We expressed this information with the attribute “code”, which should be considered
an entry point in the configuration management system holding the code.

The object model was implemented in Squeak. Each relevant object shown here is
linked with the corresponding Swiki page, and has the capability of storing and re-
trieving its data into and out of this page. In this way, the computations are made di-
rectly on a modular object structure, easing their implementation and extensions,

156 S. Pinna et al.

while permanent data storage maintains the advantages of existing XML implementa-
tion.

The present version of XPSwiki has been implemented using this object model.
The project has been tracked from the beginning using the earliest version of the tool.
At present the project consists of 25 system classes and 25 test classes. It cooperates
with 20 Squeak Swiki classes, including the classes holding page information in an
XML repository.

It is worth noting that Swiki system logs all the changes to its pages. If needed,
these changes, or a snapshot of the project status at a given time, can easily be re-
trieved from the logs that act as a configuration management tool.

The present status of the project has just completed its third release. XPSwiki is be-
ing used for internal purposes, and has been installed on the site of an industrial part-
ner of ours. Almost all the requirements listed at the end of section 3 have been im-
plemented, at least partially, while the last two (pretty printing of reports and metric
collection) are the main goals of release 4. The project URL, where information can
be found and where it will be possible in the future to download the tool, is:
www.agilexp.org/xpswiki.

Fig. 1. UML class diagram showing the object data structure of XPSwiki.

Developing a Tool Supporting XP Process 157

5 Using an XPSwiki

A detailed description of XPSwiki usage has been reported elsewhere [19]. The start-
ing page of an XPSwiki presents a list of all current projects. Clicking on one of them
brings to the home page of the project (figure 2). In the upper part are the links to
pages showing its team members, releases, iterations, user stories, tasks, and accep-
tance tests. The lower part shows the completion status of the project and the average
team velocity at a glance.

The various pages holding the project process entities show a table with a list of
various team members, releases, iterations, etc., respectively, with indications of their
status, present velocity, possible problems and inconsistencies. Clicking on the entity
name gives access to its page.

The pages of the higher-level entities of figure 1, also hold a list of their lower-
level entities. In this way, releases show their iterations, iterations show their stories,
and so on.

All these pages can be edited using their forms. The forms are configured through
a Swiki administration tool, the Swiki Browser, and/or by direct interaction at admin-
istrator’s level with the Swiki itself. This clearly separates interface from object
model, allowing to increase the productivity and quality of the produced system. Fig.
3 shows the edit form of an User Story.

Fig. 2. The starting page of a project allowing access to its entities and showing the project
completion status and average team velocity.

Figure 4 shows the page of a task. On this page, one can record in an appropriate
track table the number of hours the person responsible for a task actually devoted to
it. From the analysis of the data inserted in the track table, the system automatically
calculates the points done for each task.

158 S. Pinna et al.

Starting from the points done for tasks, the system computes the points done for
user stories, iterations and releases; it then compares them with the estimated points
and calculates the points left.

These data are shown graphically and are very useful to track the project advance-
ment and perform the necessary corrective action. In this phase, the use of XPSwiki
turns out to be of great importance, as it allows to discover anomalous situations in
good time and simulate corrective action.

Fig. 3. The form allowing to edit a task.

As an example, by modifying the estimated points of one or more stories, the sys-
tem automatically recomputes the load of all iterations and signals if the new values
exceed the iteration capacity. In this case, the customer could bring the load back to
acceptable values moving one or more stories from one iteration to another.

6 Results and Conclusions

We have presented the design and implementation of XPSwiki, a tool supporting the
XP planning game. The tool is presently being used by our team, and by a partner
software house in Sardinia, that uses it mainly to track Java development projects. We
are actively gathering feedback on the tool from our partner, and are about to install
the tool with other software firms. The goal is to add to XPSwiki the features needed
for a fruitful and effective use in industrial environments.

Developing a Tool Supporting XP Process 159

Fig. 4. The page of a task, showing task status and data. In the bottom of the page there is the
track table of the task, recording the actual work performed daily on the task.

The present XPSwiki version allows project tracking and estimation. According
also to our partner’s report, the tool has the following advantages:

− it has been very useful for XP developers starting to learn the PG, since they

were forced to use it;
− it helps keep track of project activities, keeping management satisfied, and ulti-

mately contributing to the adoption of XP in firms.

The next version, already in development, will be provided with the process met-

rics collection capability. It will enable us to gather data on XP projects continuously
during their life in an unobtrusive way. At given time intervals and/or upon comple-
tion of task, story, or iteration, these data will be sent through the Internet to a server
devoted to metrics collection. In this way, we hope to be in a position to collect many
real world data on software development, with the aim of proving (or disproving) the
effectiveness of XP quantitatively.

Other future work on the tool will be entirely driven by our partners’ needs. These
include the following:

− Adding the capability to produce written documentation on project advance-
ment, to comply with the ISO 9000 quality certification;

− Interface with CVS configuration management system to associate with each
task the code actually written every day.

160 S. Pinna et al.

− Interface with popular development environments, such as Eclipse, and with
project management tools like Microsoft Project.

− Extending the tool to support other well-defined agile processes, such as
SCRUM and Feature Driven Development.

Acknowledgements. This research is part of the project “Agile methodologies for
software development – validation, modelling, impact on firm organization, their use
for distributed development and for the development of open source software”,
funded by the Italian Ministry of University and Scientific Research, Fund for
Investment in Basic Research (FIRB), project nr. RBNE01JRK8.

We gratefully acknowledge the contribution of Giovanni Corriga and Simone
Mauri, whose Master’s Theses were centred on developing XPSwiki.

References

1. Beck, K.: Extreme Programming Explained. Addison-Wesley Boston (1999).
2. Beck, K., Gamma, E.: JUnit: A Cook’s Tour. Java Report, May (1999)
3. Johnson, R.: Developing the Refactoring Browser. In: Succi, G., Marchesi, M. (eds.): Ex-

treme Programming Examined. Addison-Wesley Boston (2001).
4. Cruise Control, http://cruisecontrol.sourceforge.net.
5. Cockburn, A.: Agile Software Development. Addison-Wesley Boston (2002).
6. Auer, K., AutoTracker, Position Paper for OOPSLA 2000 Workshop: “Refining the Prac-

tices of Extreme Programming”, online at
http://www.rolemodelsoftware.com/moreAboutUs/publications/autoTracker.php

7. Maurer, F.: Supporting Distributed Extreme Programming, in Extreme Programming and
Agile Methods, D. Wells, L.A. Williams (Eds.), Proceedings of XP/Agile Universe 2002,
Chicago, IL, USA, August 4-7, 2002. Lecture Notes in Computer Science 2418 Springer
(2002).

8. XPlanner, http://www.xplanner.org.
9. XPCGI, http://xpcgi.sourceforge.net.
10. XPWeb, http://xpweb.sourceforge.net.
11. Twiki XP Tracker, http://twiki.org/cgi-bin/view/Plugins/XpTrackerPlugin.
12. Iterate, http://www.diamond-sky.com/products/iterate.
13. König, D., Cunningham, G.: eXtreme Programming (XP) – What is it?, online at:

http://www.xpplanit.com/article.pdf.
14. VersionOne, http://www.versionone.net.
15. Bo, L. Cunningham, W: The Wiki Way. Addison-Wesley Boston (2001).
16. Jeffries, R., Anderson, A., Hendrickson, C.: Extreme Programming Installed, Addison-

Wesley Boston (2001).
17. Gudzial, M.: Squeak: Object-Oriented Design with Multimedia Applications, Prentice

Hall Upper Saddle River (2001).
18. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Ad-

dison-Wesley Boston (1999).
19. Pinna, S., Mauri S., Lorrai P., Marchesi M., Serra N.: XPSwiki: an Agile Tool Supporting

the Planning Game, in Extreme Programming and Agile Processes in Software Engineer-
ing, M. Marchesi, G. Succi (Eds.), Proceedings of XP2003, Genoa, Italy, May 25-29,
2003. Lecture Notes in Computer Science 2675 Springer (2003).

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, p. 161, 2003.
© Springer-Verlag Berlin Heidelberg 2003

XP Agile Universe Educators Symposium Overview

Donald J. Reifer, President

Reifer Consultants, Inc.
P. O. Box 4046

Torrance, CA 90510
d.reifer@ieee.org

The Educators’ Symposium brings educators together to share their experiences
teaching agile methods. During the symposium, participants will be encouraged to
discuss how they are incorporating XP and agile methods into their curriculum,
courses and organizational training plans. Educators and trainers will hopefully
network together to swap ideas and exchange course materials during the meeting.
 In the conference call, we encouraged educators to submit research and experience
papers. Selection for the symposium was based on clarity, originality, educational
merit, and most importantly, on relevance to XP and agile method educators and
trainers. We accepted the following four papers because they best met these criteria:

1. Introducing Agile Methods in Learning Environments: Lessons Learned –
This paper by Melnik of Southern Alberta Institute of Technology and Maurer of
University of Calgary summarizes the experience of introducing agile methods into
four different academic programs (Diploma, Applied Bachelor’s, Bachelor’s and
Master’s) in two institutions during two years.

2. Adapting XP to an Academic Environment by Phasing-in Practices – This
paper by Fenwick of Appalachian State University reports the experience gained
using a scaled-down version of Extreme Programming developed for an academic
environment.

3. Pair Learning: With an Eye Toward Future Success – This paper by Nagappan,
Williams, Wiebe, Miller, Balik, Ferzli and Petlick of North Carolina State
University reports the results of an experiment conducted over a period of a year
and one half to assess the efficacy of pair programming within an introductory
programming course.

4. Adaptations for Teaching Software Development with Extreme Program-
ming: An Experience Report – This paper by Wainer of Southern Illinois
University summarizes experience teaching a Software Design and Development
course that used a development methodology based on Extreme Programming.

We were pleased that Joshua Kerievsky of Industrial Logic agreed to kick off the
Symposium. His experience developing, coaching and teaching using Extreme
Programming provides him with the background needed to challenge Symposium
participants to do a better job in satisfying the demands of industry for graduates.

Adapting XP to an Academic Environment by
Phasing-In Practices

James B. Fenwick, Jr.

Department of Computer Science
Appalachian State University,

Boone, NC 28608, USA
jbf@cs.appstate.edu

Abstract. Extreme Programming (XP) is an agile software devel-
opment methodology that was originally devised for application in
an industrial setting. This report presents our experience using an
approach to “scale-down” XP so that it can be successfully employed
in an academic setting; specifically, an upper-level software engineering
course. The approach avoids overburdening students by using a series
of projects that phase-in some experience with nearly all of the XP
practices.

Keywords: Extreme Programming, XP, Teaching XP

1 Introduction

Appalachian State University is a mid-sized, comprehensive university offering
a B.S. in computer science that requires a senior-level course in software engi-
neering. This course is charged with introducing students to the motivations for
a disciplined approach to software development; specifically, to improve the late,
over-budget, and faulty condition of many software products. Additionally, the
course strives to give students a practical experience applying this disciplined
approach. Thus, our students learn about:

– life-cycle, process models such as waterfall, spiral, and the Unified Software
Development Process (USDP);

– process improvement models (e.g., CMM);
– non execution-based testing strategies, testing criteria (utility, robustness,

etc.), and execution-based testing strategies (e.g., black/white box);
– project management issues, including estimation and metrics;
– UML modeling notation;
– UML software models, including use-case, class, dynamic (state diagrams),

interaction (sequence and collaboration diagrams);
– design patterns;
– CASE tool experience (e.g., Together, Rose, ArgoUML);
– working in large teams.

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 162–171, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Adapting XP to an Academic Environment by Phasing-In Practices 163

Unfortunately, the implementation of an introductory course such as this is
immediately in a tension with its goals because the payoff of adopting a dis-
ciplined approach to software development best occurs when the scope of the
project is large and complex enough to require it. (As I say in the first class,
“You don’t need to engineer the ’Hello World’ program.”) As has been observed
by others [1,13,5,10], it is fundamentally impossible to duplicate an industrial
software engineering environment in an academic setting. Some of the more
prominent disparities include:

– Students are earning academic credit and not their livelihood (although both
provide motivation, financial support of yourself and your family is a much
stronger motivator than a final grade in a single course in a few months).

– Students will normally spend only 3-4 hours in class and 5-6 hours outside
class per week on a software engineering course (compared with 40+ hours
per week in industry).

– It is often difficult for student team members to meet outside of scheduled
class hours (compared with the accessibility of coworkers in industry).

– The instructor usually plays the role of client, user, and system expert (com-
pared with industry where these are separate entities).

– Students are constantly switching focus between a variety of academic ac-
tivities in the course of a single day (compared with the focus on a single
project in industry).

– The size and scope of the projects are in no way comparable.
– The availability of expertise in the problem domain is in no way comparable.

Educators have attempted a number of approaches to address the problems
facing software engineering education. Some curricula have moved the intro-
ductory software engineering course earlier in the curriculum, typically into the
sophomore year, but this jeopardizes the assimilation of the material by students
who may lack sufficient software development maturity. Some schools have cre-
ated a software engineering sequence in which the introductory course resembles
the course described above and the second course then attempts a larger, or
capstone, project. Dovetailing with this project course idea is the use of “real”
projects from “real” clients. While the goal of a larger project is commendable,
even these “real” projects are not usually real. In addition, because the instruc-
tor’s control of these projects is greatly diminished, there can be a number of
pedagogical problems associated with this approach. The “real” client’s inter-
est and/or ability to participate can wane or disappear. The location of some
schools will make finding suitable “real” projects difficult. Having experienced
some of these problems in recent course offerings, we conclude that the software
engineering project needs to be more tightly controlled in order to guarantee
each student the opportunity to practice and master crucial development skills.

The confluence of this ongoing struggle against the obstacles presented by this
course and a recent, personal acceptance of the efficacy of Extreme Programming
(XP) lead to a desire to use XP as the guiding methodology for this senior-
level introduction to software engineering course. However, the methodology as
presented by Beck and others [3,2] targets (as it should) the industrial setting.

164 J.B. Fenwick

Due to the differences between the industrial setting and the academic setting,
as set forth above, XP as a viable, usable methodology was questioned. Indeed
while many are questioning the ability of XP to scale up [7,2], this is requiring
XP to scale down. After some consideration, we decided to try. It was felt that
XP is an intuitive methodology that plays to the strengths of our students. Also,
XP highly values communication, which includes (in our opinion) being able to
express more abstract thoughts using the graphical, UML models. XP simply
doesn’t demand that complete, or near-complete, artifacts persist. Lastly, XP is
a disciplined approach to software development.

The remainder of this paper details the pedagogical issues caused by the
decision to try XP in our C++-based, senior-level software engineering course
consisting of 25 students. The following section presents related work of others
incorporating XP into their classrooms. Section 3 spells out the approach we
used. The paper concludes with anecdotal evidence and reflections.

2 Related Work

Other educators have reported adaptations of XP to an academic setting. One
way to classify these adaptations is the level of the course. Several researchers and
educators report using, or considering using, XP in lower level, programming-
proficiency courses (e.g., CS1 and CS2) [1,9,8,11]. Adapting XP to this level of
the curriculum tends to focus on the practice of pair programming. Qualita-
tive support of the benefits of pair programming in the introductory course is
provided in [11]. The practice of test-first development is also being viewed as
valuable and doable at this level. In addition, [1] as also had success with smaller
release schedules and controlled refactorings in the early courses.

The other classification is upper-level students that already have developed
some form of personal process and programming proficiency. In a study of the
perceptions of agile processes, Melnik [8] reports that graduate students were
slightly less positive in the perceived value of pair programming and test-first
design. This may be due to satisfaction with their already established personal
process, suggesting it may take more work to convert upper-level students. Wil-
son [13] reports using most of the XP practices in an upper level elective course
that used a single, large project approach. This approach is an interesting one,
but did experience some difficulties with adhering to the small release practice
primarily due to size and scope of the project. Wilson also indicates that ef-
fective coaching is not easy. This is exacerbated if the course does not include
a scheduled lab time. [5] reports a partial adoption of the XP practices in an
upper level software design course. This partial adoption is their adaptation to
the academic setting. One practice they did not adopt was estimating. While in
agreement that student estimates are inaccurate, we believe strongly that the
academic setting is precisely the time for them to begin developing this skill. In-
dustry suffers from late software because of problems with estimating duration.
Our phased-in approach using multiple projects and short release schedules gives
them important feedback. The key to any success with student estimates is to

Adapting XP to an Academic Environment by Phasing-In Practices 165

break tasks down into small enough pieces, which is a good exercise in abstrac-
tion and refinement. Williams and Kessler [12] report on the value of the pair
programming practice in upper level courses. Williams and Upchurch [10] focus
on the efficacy of using XP practices in the software engineering course. They
conclude that most of the practices are adaptable, but such a course still needs to
introduce concepts and skills from more traditional methodologies, particularly
modeling skills.

3 Approach

The journey to adopt XP in the required, senior-level software engineering class
began with a number of concerns:

– Where in the already full semester can new material on XP be added? The
methodology has a better chance of acceptance if the variables, values, prin-
ciples, and steering metaphor [3] are discussed in advance.

– How will student assessment need to change, if at all?
– How to avoid overloading students too fast with new tools and practices?
– How to use enough XP practices to get their synergistic benefits?
– Will students make the time necessary for pair programming to succeed?

The method of resolving these concerns resembled a swinging pendulum. It began
with goals and objectives then swung over to student assessment then back again
and repeated a few more times. The result was a workable syllabus using a
“phased-in approach.” While not perfect, some courage and “course steering”
was still necessary, it was good enough to begin.

From a student assessment perspective, the project component of the course
grade increased from 25-30% for a single, “large” project to 50% for three
“phased” projects as described below. The tests component increased slightly
due to adding a test on XP that ensures understanding of the values, principles,
and practices of XP. (The other tests focus on traditional process and UML
modeling.) We eliminated quizzes and homeworks, allocating this time to the
projects. A significant portion (about 25%) of the final, summative examination
will consist of a demo/walkthrough of the final project that will include some
presentation of the finished design using UML. In lieu of delivering a product
to a real client, this mild form of “peer pressure” served as a powerful motiva-
tor. Demos of the earlier project were also given, although there was no grade
associated with this.

The cornerstone of adopting XP into the course is the phased-in approach of
the projects. Three projects were decided upon ranging in scope from small to
medium to large. Each project adds XP practices while retaining and building
upon the practices from the preceding project.

3.1 The Small Project

This project, worth 10% of the course grade, had students implement a matrix
abstract data type (ADT). Clearly, this project is not difficult, which was pre-
cisely the goal. We wished students to gain confidence in their abilities and with

166 J.B. Fenwick

XP. In addition to the standard addition/multiplication (with scalars and ma-
trices) operations, slightly more complicated operations involving inverses were
requested.

The XP practice of pair programming was required. For this small project,
each team consisted of a single pair. Although this team size is small, it simplified
scheduling. Getting students to find time to work together is often cited as
a problem in adopting XP in an academic setting [13,8,9]. Any knowledge of
external, outside class, relationships was used. For example, two students known
to be close friends were paired together.

The XP practice of testing first, using CppUnit in our case, was required.
This practice is also cited as proving to be quite difficult for students to accept
and adopt [8,5]. However, developing tests for an ADT is rather straightforward.
Building on one class session devoted to a test-first coding of a complex number
ADT, this small matrix ADT project allowed students to gain confidence in
writing (relatively simple) tests first.

Another requirement was the use of CVS to manage source code that was
now defined to include the tests. Most of the students were not accustomed to
using this tool. While such a tool is not necessary for a single pair, it moved the
time to learn this tool from a later, more complex, project into the small project
where it was more manageable.

There was only one iteration/release, which lasted two weeks, so there was
no planning or estimating. These practices were phased in later.

3.2 The Medium Project

This project, worth 15% of the course grade, had students implement a single-
user library system. The instructor acted as the customer. (Actually this can
be real as most instructors have accumulated a personal library of textbooks,
journals, etc. that they freely loan out to people.) Indeed, this functioned nicely
as the metaphor. As the customer, the instructor provided a half-dozen or so
stories such as: add a book, check out a book, check in a book, report of checked
out books, modify book/borrower information, report of all books. At this point
in the project, only books are considered.

In addition to requiring pair programming, two pairs were joined together to
make teams of four (one team of six was necessary). The teams were instructed
that they can pair with anyone, but must work with more than one other person
in order to spread knowledge throughout the entire team. Again, any knowl-
edge of external relationships was used in joining pairs. The goal here was to
leverage anything and everything to assist students in scheduling time with one
another. Along with the additional team members, the practice of collective code
ownership was employed.

Writing comprehensive unit tests using CppUnit was again required for the
medium project. Conceiving of the tests was more difficult because the opera-
tions/methods were less independent than in the matrix ADT project, but we
can build on the confidence gained then.

Adapting XP to an Academic Environment by Phasing-In Practices 167

A number of new practices were introduced in the medium project, some with
more focus than others. The practice of a metaphor was introduced. The system
is relatively small so the metaphor’s usefulness is marginal, but we’ve introduced
the practice and so can build on it later. In terms of acceptance testing, the
customer-accepted interface was a simple ASCII menu-type interface. This allows
automated acceptance testing through redirection and file comparison or expect
[6] scripts.

The medium project used two iterations/releases (each about 1.5 weeks in
duration). These iterations were very short, but gave us practice playing the
planning game. The customer provided the stories, which were themselves quite
small. (Indeed this whole project might be a single story in industry.) In terms
of estimating, each iteration was given 20 “story points.” This figure was arrived
at by assuming each person on the four person team could contribute five hours
to the project in a week. Knowing that students’ estimating skills would be
weak, some margin for error was thereby included. The students were required
to determine tasks and estimate them in story points (or halves of points). Then
the team played the planning game with the customer (instructor).

Related to estimating is the 40-hour week practice, which in an academic
setting is more accurately called the 10-hour week practice [13]. This is related to
estimating because some students, in order to get an A, will underbid an estimate
to ensure all stories are implemented. Then they willingly work overtime to get
everything done. The key here is to promote “No death marches.” Students need
extra convincing that grades are determined more by playing the planning game
effectively. While some were initially amiss that another group could get the
same grade for doing less, it was stressed repeatedly that the team’s success is
dependent on the customer being happy. Ultimately, these students just want
their A and give up worrying about what others get. At the other extreme, the
XP-willing customer must be technically savvy enough not to be misled by a
team looking for an easy way out. This team overestimates tasks in an attempt
to implement less.

Continuous integration was added as a practice. The use of the CVS tool
proved invaluable. We agree with Wilson’s findings [13] that this practice is
actually easier in an academic setting because the students work in more frequent
but shorter blocks of time. The practice of integrating before leaving caused
continuous integration to happen.

The practice of a “highly available” customer was included. In an academic
setting, even the team is not really on-site since the whole team will rarely be
together. The key was to be as available as possible. In addition to very busy
office hours, email mailing lists proved helpful.

Refactoring was subtly introduced. While the term had been defined in lec-
ture by this point, there was no active practice of it. However, a major refac-
toring was necessary in iteration two when several new stories were given to the
team. First, periodicals were added as an element of the library. This caused a
need for using inheritance. Second, a “history report” detailing every borrowing
transaction (item, borrower, dates checked out and in) caused design changes.

168 J.B. Fenwick

Typically, students just have a single checked out field in the book object. This
simple design must be reconsidered in light of the new story.

3.3 The Large Project

The remainder of the term was intended to be devoted to a two or three iteration
large project, worth half of the overall project grade or 25%. In actuality, we used
a single iteration spanning five weeks. The teams were again increased by joining
together medium project teams. All prior practices remained, and while no new
practices were employed, several were “turned up a few notches.” Refactorings [4]
were more common as the larger system evolved. Having gained some estimating
experience, tracking of estimates was more feasible now. We continued to stress
the 10-hour week practice.

The project had students implement an integrated restaurant system consist-
ing of waitress stations to place/modify orders, print bills, close out orders, etc.
Also included are a kitchen station to view orders and indicate when orders are
prepared, and a menu creation system for the chef. Other possible subsystems
include an “accounting” system to collect daily/weekly/monthly sales informa-
tion, waitress tip data, etc.; and a hostess system to aid in reservations and
seating.

3.4 Project Miscellany

Because student teams are not together as much as in industry, we felt that we
needed to foster an increased level of communication when we were all together,
which was class time. So, the beginning of each class was dedicated for a stand-
up meeting. This was a highly successful strategy. It only took 5-10 minutes
and was also fun as the instructor/coach/customer actually stood on the desk
in order to be seen easily by everyone. One time when we didn’t actually stand
up, the “meeting” dragged on for 20 minutes.

In terms of project assessment, the small project grade was influenced heavily
by the unit tests and effective use of CVS. The medium project was influenced
heavily by how well the team defined, managed, and delivered a release (iter-
ation). The large project also focused on the releases but also on the overall
design (i.e., level of refactoring).

Enthusiasm is part of an XP-friendly environment, but the physical aspect
plays a part too. Our classrooms and labs became decorated with posterboards
extolling the virtues of XP. We were even allowed to rearrange the stations in
the public computer lab to be more amenable to collaborative work.

4 Results

One iteration of this adaptation of XP to a senior-level software engineering
course is complete and there are a number of informal items of feedback. We
conducted the student survey presented in Melnik [8] after completion of the

Adapting XP to an Academic Environment by Phasing-In Practices 169

medium project. Overall, the responses concur with Melnik. Most students see
the value in XP and enjoy pair programming. Regarding the test-first develop-
ment questions, our students were slightly less agreeable than Melnik’s. Most see
the value but find it difficult to do consistently. Some see debugging test code as
unproductive. Johnson and Caristi [5] attempted to observe the usefulness of the
metaphor by asking for a one sentence description. We also posed this question
in our survey and found that nearly all responses restated the metaphor. While
this can be partly because the first two projects are not large, we are encouraged
nonetheless.

More anecdotal feedback concerning the effectiveness of the phased-in
projects approach, of using XP in an academic setting and as “lessons learned”
are also given.

Communication is one of the XP values, and we’ve never had a class commu-
nicate more. There was more communication everywhere: among the students
(due to pair programming), with the customer, and with the coach. We received
comments from several colleagues about how many students were in and around
the office. We routinely got stopped in the halls.

Overall, pair programming was successful. We concur with the observations
of others that while some people take a little longer to adjust, most people grow
to enjoy it. We believe our approach of keeping pairs together helps achieve this.
One student confided that he normally chose to work alone even if given the
opportunity to collaborate and was hesitant about being forced to pair, but he
truly enjoyed the experience and felt significantly more productive when pairing.
However, pairing of people with widely different abilities was problematic. The
less capable person does not seem to gain confidence working with a “peer” who
is more advanced; the more capable person feels completely hamstrung. A more
careful matching of abilities might be warranted.

While keeping pairs together between the small and medium projects did have
some benefit, it also tended to prevent pairing with other people. We needed to
require that pairs break up and switch off.

We think using three distinct projects helped students keep the designs simple
because they were less likely to try to anticipate additional stories. Also, it
prevented merging pairs from having to merge different code bases from the
earlier project when they weren’t on the same team. However, it had a negative
effect on the usefulness of testing. We’d like students to experience how a test
written early gets broken (and discovered) by a change later. Using a single
project broken into three, increasingly complex parts could be a solution.

While the small and medium projects were sized appropriately to build con-
fidence in most of our students, some of the best students wanted to be “maver-
icks” [2]. In an academic setting it can be more difficult to discover this behavior,
particularly in the absence of a dedicated lab session.

The 10-hour week practice was hard for some students to accept. Some stu-
dents want to sink a lot of time into a project to get everything done and get a
good grade. These students struggled with adhering to the planning game.

170 J.B. Fenwick

Teams tended to estimate tasks together which caused the estimates to be
skewed by the more dominant (and proficient) members. Then when someone
else worked on a task they didn’t meet the estimate. We needed to require
individual estimates first, then using these the team could agree upon a single
estimate.

Students enjoyed the XP notion of sharing control of the project scope vari-
able. Much of the communication with the customer was about scope. Again,
the customer must be technically savvy enough not to be duped, but we consider
this type of customer-developer communication a good thing. Most of this type
of communication wasn’t been about lessening scope, but rather about choosing
between alternatives. Students liked negotiating for a fancier user interface, or
some additional reports they felt might be useful, or even against some features
they found confusing. Yet, giving student teams a part in negotiating scope can
be tricky. In the small project, several groups changed the scope near midnight
the morning before it was due to accommodate what they were actually going to
get accomplished. A stern reminder that changing scope is a two-way negotiation
seemed to correct this.

Looking back over seating charts, several pairs adjusted where they sat during
class to be nearer other members of their team.

Colleagues have mentioned to us that talk of XP cross-pollinated into their
project courses through students in this class. So, at least some students applied
some of the practices on their own in other classes.

Time for lectures on XP came from decreasing (although not eliminating)
the coverage depth of some topics presented in class. Students were instructed
the first day that they must become more engaged in their own learning process
through active reading of the textbook material on these topics. Then, rather
than lecturing on the contents of a chapter for a week, a list of highlights of
important content is presented followed by a one to two session discussion of the
chapter content.

5 Conclusion

Upon reflection, we feel that the transition to XP in our senior-level software en-
gineering course was a success. As others have observed, there are fundamental
differences between an academic and an industrial software engineering environ-
ment. We adapted the XP methodology to accommodate these differences. We
avoided overburdening students with too many new practices by using a series
of projects that increase in complexity and phasing in new practices with new
projects.

Adapting XP to an Academic Environment by Phasing-In Practices 171

References

1. Owen Astrachan, Robert C. Duvall, and Eugene Wallingford. Bringing Extreme
Programming to the Classroom. In XP Universe, Raleigh, NC, USA, July 2001.

2. Ken Auer and Roy Miller. Extreme Programming Applied: Playing To Win. The
XP Series. Addison-Wesley, 2002.

3. Kent Beck. Extreme Programming Explained: Embrace Change. The XP Series.
Addison-Wesley, 2000.

4. Martin Fowler. Refactoring. Addison-Wesley, 1999.
5. David H. Johnson and James Caristi. Extreme Programming and the Software

Design Course. In XP Universe, Raleigh, NC, USA, July 2001.
6. Don Libes. Exploring Expect: A Tcl-Based Toolkit for Automating Interactive Pro-

grams. O’Reilly and Associates, 1995.
7. Pete McBreen. Questioning Extreme Programming. The XP Series. Addison-

Wesley, 2003.
8. Grigori Melnik and Frank Maurer. Perceptions of Agile Practices: A Student

Survey. In XP Universe, Chicago, IL, USA, August 2002.
9. Dean Sanders. Student Perceptions of the Suitability of Extreme and Pair Pro-

gramming. In XP Universe, Raleigh, NC, USA, July 2001.
10. Laurie Williams and Richard Upchurch. Extreme Programming for Software En-

gineering Education? In 2001 Frontiers in Education, Reno, NV, USA, October
2001.

11. Laurie Williams, Eric Wiebe, Kai Yang, Miriam Ferzli, and Carol Miller. In Sup-
port of Pair Programming in the Introductory Computer Science Course. Computer
Science Education, September 2002.

12. Laurie A. Williams and Robert R. Kessler. Experimenting with Industry’s “Pair
Programming” Model in the Computer Science Classroom. Computer Science
Education, March 2001.

13. Dwight Wilson. Teaching XP: A Case Study. In XP Universe, Raleigh, NC, USA,
July 2001.

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 172–184, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Introducing Agile Methods in Learning Environments:
Lessons Learned

Grigori Melnik1 and Frank Maurer2

1 Department of Information and Communications Technologies
Southern Alberta Institute of Technology (SAIT)

Calgary, Canada
grigori.melnik@sait.ca

2 Department of Computer Science
University of Calgary

Calgary, Canada
maurer@cpsc.ucalgary.ca

Abstract. This paper describes the experiences of introducing agile methods in
four different academic programs (Diploma, Applied Bachelor’s, Bachelor’s
and Master’s) in two institutions during two academic years. It contains sugges-
tions and techniques for bringing agile methods into curriculum. Based on
overwhelmingly positive students’ experiences this report should encourage
other academics that are considering introducing agile methods in their software
engineering courses.

1 Introduction

Agile methods are here. They are here to stay. As the Editor-in-Chief of Gartner
Dataquest Research Group points out in her report “Business pressure on software
development companies to be agile and adaptable has never been greater”[1]. Grow-
ing number of software development teams are successfully applying various agile
methods in the real-world projects. How are academic institutions responding to this
new wind in the software development industry?

Presently, there is a number of strong cases supporting agile practices in software
engineering and computer science curricula. Williams, Kessler and Upchurch [2, 3,
11] have been evaluating pair programming for several years. The results of a recent
formal experiment at North Carolina State University [4] indicated that students who
practice pair programming perform better on programming projects and are more
likely to succeed. Bevan, Werner and McDowell [17] discuss implementation issues
of pair programming into freshman programming class at University of California at
Santa Cruz and provide guidelines. We are aware of the successful effort of Dubinsky
and Hazzan of integrating eXtreme Programming (XP) in the advanced Operating
Systems Project course at Technion – Israel Institute of Technology [18]. Johnson and
Caristi simulated the practices of XP in a Software Design upper level course at Val-
paraiso University [5]. The student responses and observations agree that the XP-like
process resulted in good team communication and a broader knowledge of the project
as a whole. They further conclude that “an XP based approach has merit in the con-

Introducing Agile Methods in Learning Environments: Lessons Learned 173

text of the Software Design class”. Astrachan, Duval and Wallingford report on the
success of adopting and adapting principles of XP (and other agile methodologies) in
classroom teaching at Duke University and University of Northern Iowa [7]. Keenan
also agrees with this and supports his opinion with the study of the Dundalk Institute
of Technology student attitudes, which were mostly positive [8]. Holcombe, Gheor-
ghe, and Macias introduced XP into fourth year term project, in which students run
their own software house and carry out real projects for real business clients. “The
[agile] philosophy has been adopted with much enthusiasm and seems to have deliv-
ered in a variety of contexts, including maintenance and new projects” [9]. Wilson re-
ports on the success of a project-oriented course using XP at the John Hopkins Uni-
versity [10]. At the end the students built a significant piece of software. The
instructor and the students agree that “the course was an enjoyable experience”.

Certainly, not all innovations turn out to be completely successful. Sanders reports
that the majority of senior students in software engineering class at Northwest Mis-
souri State University were opposed to using XP, but those in an introductory pro-
gramming course favored pair programming [6]. Lappo observed a group of Master’s
students at Brighton University who were taught XP and applied their knowledge to a
12-week project [12]. Despite the fact that the project did not go as well as planned,
Lappo points out that “teaching XP should be relatively easy in a university environ-
ment”. He also insists that it is important that “students come away with an under-
standing of why XP works”, which “does not come easily as it requires plenty of
practice and experience against which to compare XP”. Lappo concludes “Practice is
easy to organise, but experience is harder to obtain”.

We have been introducing agile methods in software engineering courses since fall
2001. Perceptions of broad student body on eXtreme programming in general and its
individual practices were studied. Preliminary results [14] are now strengthened with
additional two semesters of data and the overall perceptions are consistently positive
across four semesters and four different programs.

2 Why Teach Agile Methods?

Thanks to changing requirements and technology, software changes are a fact of life.
Gartner Research vice-president and research director Jim Duggan says for these
kinds of projects to be successful team members need a combination of allegiance and
intelligence. “The other half of the equation is that they have to have the training,
skills, tools, and processes in place that actually make the change able to hap-
pen”[15]. Academic departments responsible for the development of competent soft-
ware engineers are faced with this challenge. Back in 1997, Mead, Carter and Lutz in
The State of Software Engineering Education and Training emphasized the fact that
“many industry organization bemoan that new hires are not prepared to practice soft-
ware engineering” [19]. In his talk at OOPSLA 2000 Educators’ Symposium entitled
“Educating for Change” Kent Beck focused on the importance of teaching collabora-
tion skills, which is often underestimated and therefore ousted by teaching technical
skills [16]. We believe in the broad approach: academic institutions should teach agile
and traditional software engineering and prepare students to adapt to whatever modus
operandi their future employers/teams use. The ‘breadth’ is the keyword and it is im-
portant to expose students to all different methodologies. We should also train them in

174 G. Melnik and F. Maurer

how to adapt to changes. Of course, the faculty must be able and willing to redesign
and implement curricula that not only emphasize the technical aspects of computer
science, but also focuses on the practices and craftsmanship of software engineering.

Nowadays, the industry needs people who are flexible and agile. This means we,
the faculty, must also “embrace the change” and must start educating students for this
change.

3 Courses and Student Populations

Students of four different levels of computer science programs from the Southern Al-
berta Institute of Technology (SAIT) and the University of Calgary were exposed to
agile methods. All individuals were knowledgeable about programming. Data was
collected partially during and partially at end of the semester in which agile practices
were introduced. In total, 102 students took part in the study (Table 1). Detailed pro-
gram and course descriptions for the three programs we have been observing since
fall 2001 are provided in the previous paper on student perceptions [14]. In addition,
during the last two semesters we have been introducing agile methods to the senior
undergraduate course, which we describe in more detail here.

In most courses we selectively adopted test-driven development, simple design,
continuous integration, refactoring, pair programming and collective code ownership.

We studied 2nd year students of the Computer Technology Diploma program at
SAIT majoring in Information Systems who were enrolled in the Data Abstraction
and Algorithms course taught using Java as the primary language. We also studied 22
students of the Bachelor of Applied Information Systems program (BAI1) who were
enrolled in the elective Internet Software Techniques course.

The senior undergraduate course on Web-Based Systems2 was taught by the second
author in the fall 2002 and by the first author in the winter 2003. The course includes
comprehensive hands-on software development assignments (which are done in teams
of 5-6 students). Students are encouraged to use pair programming, but there is no
way to enforce it in the off-class time (yet student responses speak for themselves –
see further in Section 5). The final exam consists of developing a small Web-based
system and is done online – the students must deliver clean code that works.

We also studied students enrolled in a graduate course Agile Software Processes3
as part of their M.Sc. program. Thirteen of the 23 students enrolled in the course had
several years of software development experience (most as developers but partially
also as team leads and project managers). The course is not required for completion of
the M.Sc. degree.4 At least two of the students had prior industrial experience with XP
practices. The course discussed and applied agile software development methods. In
the course assignment, the students were split up into two groups of 6-11 students and
either developed a small Web-based system or extended an existing research proto-

1 http://www.sait.ca/academic/information/programs/bai.htm
2 http://sern.cpsc.ucalgary.ca/courses/SENG/513/F2002 and …/W2003
3 http://sern.cpsc.ucalgary.ca/courses/SENG/609.24/F2002/
4 Hence, students taking this course are interested in agile methods. Most of them had a positive

bias while one student expressed some reservation on XP at the beginning of the course.

Introducing Agile Methods in Learning Environments: Lessons Learned 175

type. The teams were strongly encouraged to use all XP practices. Each team deliv-
ered three releases of their system over 12 weeks (one release every 4 weeks).

We would also like to point out that students do not work on a single course full
time. We estimate that on average a student spends about 5-7h/week on the course as-
signment5. Hence, the effort going into a release is approximately about 20 hours per
student (which is much lower than in XP or any other agile method).

4 Student Perceptions Study Overview

The intent of our descriptive study is to see what the perceptions of students of agile
practices are and how they vary (if at all) depending on the programs they are enrolled
in. The study focuses on agile engineering practices that are coming from XP6. Con-
cretely, we are interested in perceptions on XP in general and three XP practices that
we used in our classes in particular: pair programming, project planning using the
planning game, and test-driven development. The subjects of the study are students on
various levels of experience as described in the previous section (starting from stu-
dents in the second year of their higher education up to M.Sc. graduate students who
often had several years of experience in software development).

We developed a 20-question survey with both open-ended questions assessing per-
ceptions of the agile practices and gathering suggestions on how courses can be im-
proved and quantitative questions (on a 5 point Likert summated scale, 1 “strongly
disagree” to 5”strongly agree”). These two approaches complemented each other and
provided both the depth and the width of coverage on the topic.

 When looking at the students’ experiences, we asked a number of questions:
− Did the students enjoy agile practices?
− What worked for them?
− What problems did they encounter?
− Whether they would use agile practices in the future (if allowed) or not?
− What were their impressions of the test-driven development?
− How did XP improve their learning?

The survey was anonymous and was executed on the Web. Informal interviews and
discussions were also conducted during the course of the semester to get some infor-
mal feedback on other aspects of XP that were used in the courses (continuous inte-
gration, collective code ownership, refactoring, coding standards). The use of a mix of
qualitative and quantitative research methods provided an opportunity to gain a better
understanding of the factors that impact students’ and developers’ experiences in XP.

It should be mentioned that the study performed is not intended to be a complete
formal qualitative investigation.

5 This estimate is based on time sheets over 10 weeks from one of the UofC groups.
6 We are using “agile practices” to make clear that we did not use the full set of XP practices in

our study.

176 G. Melnik and F. Maurer

5 Empirical Data

Considering the relative simplicity of analyses undertaken, the conclusions we report
are descriptive statistics only.

Table 1. Summary of Respondents by Academic Programs

Academic program Semester(s) # of invitations sent
out

of respon-
dents

Response
rate

College-level Diploma
(2 years)

Fall 2001,
Winter 2002

41 22 54%

Winter 2002 22 15 68% College-level Post-Diploma
Applied Bachelor’s Degree
(2+2 years)

Fall 2002 18 10 56%

Fall 2002 55 19 35% University-level Under-
graduate
(4 years)

Winter 2003 62 19 31%

Winter 2002 12 9 75% University-level Graduate
(4+2 years) Fall 2002 11 8 73%

Total, All Programs 221 102 46%

Figure 1 (answers shown by the academic program with SAIT programs combined7)
illustrates that the overwhelming majority of all respondents (84%) either believe or
strongly believe that using XP improves the productivity of small teams (mean=3.94;
SD=0.97). 85% of students (mean=4.08; SD=0.82) suggested that XP improves the
quality of code and 72% of all respondents (mean=3.77; SD=0.94) would recommend
to the company they work for or will be working in the future, to use XP. Figure 2
shows the cumulative results on all non-open ended questions of the survey. The up-
dated results are consistent with the original results reported in [14], which are over-
whelmingly positive. This holds for XP in general and for individual practices. It also
holds across all level of students (with M.Sc. students slightly less optimistic).

6 Lessons Learned

This is a reflection of authors based on two years of instruction of various software
engineering courses using certain agile practices. It is about the effect of agile meth-
ods on the way we teach and students learn as we have experienced it.

7 Because the results of the survey for SAIT in fall 2001 were not differentiated by the program,

but contained the answers of students of both diploma and applied degree programs.

Introducing Agile Methods in Learning Environments: Lessons Learned 177

2 4
1

24

16
5

2

25

5

11

5

1
0

1

0

0

10

20

30

40

50

60

Disagree Disagree Agree Agree

Strongly Somewhat Not Applicable Somewhat Strongly

�����������	��
��
�
�������������	���
��������������	����������

�����

0 1 3

26

17

4
4

22

7

9

6

1
0

0

2

0

10

20

30

40

50

60

Disagree Disagree Agree Agree

Strongly Somewhat Not Applicable Somewhat Strongly

�����������	��
��
�
�������������	���
���
�����	����
��������

1
4 4

25

134
10

19

4

9

3

1

3

2

0

0

10

20

30

40

50

60

Disagree Disagree Agree Agree

Strongly Somewhat Not Applicable Somewhat Strongly

��������
�������������
�������������
��
������

� ���	����
������������ �!���
�
��"

���
��

� ���	����
������������ ����������
�
��"

���
��

� "#�$ �%�������&�#�������%������"

���
��

Fig. 1. Extreme Programming Perceptions Distributed by Academic Programs.

6.1 XP in General

In our opinion it is more difficult to make XP work in the academic environment then
in the industrial. This is simply because of scheduling problems (impossible to collo-
cate students every day) and the amount of time a student can spend on the project per
week (impossible to get them to work on the project every day). The logistic of the
process is trickier. Both authors saw it over and over again in all four programs.

Overall, the feedback on XP and the productivity of small teams was positive:

��“I believe that XP helps get more work done in less time and is very effective for
small groups as it allows for the group members not to get stuck for extended pe-
riods of time.”

��“Focus on results. Focus on small, fast deliverables. Focus on communication.
Focus on minimalization. Focus on teamwork. I love it.”

��“As with any technique, practice and experience lead to easier and repeatable
results. What I like about XP is the managing of fast paced, chaotic project
situations which is standard for real-world work.”

��“It's the most interesting way of doing development!”

When asked to comment on the quality of code that XP teams produce, 85% of the
respondents agreed that XP improves the quality:

178 G. Melnik and F. Maurer

Q17. Test-driven development

improves software quality
Q16. Test-driven development

speeds up the testing
process

Q15. Test-driven development
helped to improve
software design

Q14. My team used test-
driven development for
our course assignment

Q12. Progress tracking works

well following XP
practices.

Q11. Using the planning
game makes the team
more adaptive to
changing requirements.

Q10. I’m confident with my
estimates on user stories

Q8. If allowed by my

company,
I will use pair
programming in the
future.

Q7. I believe that pair
programming improves
software quality

Q6. I believe that pair
programming speeds up
the development process.

Q5. I personally like pair
programming.

Q3. I would recommend to my

company to use XP
Q2. I believe that using XP

improves the quality of
the code.

Q1. I believe that using XP
improves the productivity
of small teams.
�

25%

29%

20%

28%

22%

25%

26%

5%

3%

5%

18%

16%

22%

26%

59%

56%

52%

48%

47%

61%

46%

42%

43%

55%

42%

50%

53%

55%

3%

9%

17%

6%

10%

7%

14%

15%

38%

22%

14%

16%

10%

9%

10%

5%

10%

12%

18%

4%

11%

35%

12%

12%

18%

14%

11%

6%

3%

1%

2%

6%

4%

3%

3%

3%

3%

6%

9%

5%

5%

4%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100

Strongly Agree Somewhat Agree Not Applicable Somewhat Disagree Strongly Disagree

Fig. 2. Cumulative Answers of Students from All Programs.

• “Generally by using XP the quality tends to be better as there are not as much
wasted functionality implemented and what is implemented, is implemented in a
superior fashion to what otherwise would be done.”

• “Quality is built into the process (not a supporting concept but a core
concept).”

• “Since everyone is sharing the code, everyone is constantly improving it and
testing it.”

Several students indicated that XP is not a silver bullet: “even in XP, the code
quality is still highly dependent on the quality of the people writing it.” This brings us
back to the notion of “superior people” discussed by DeMarco and Boehm [20].

This is not only about people’s technical abilities, it is also about something Bach
refers to as “heroism”. He defines a hero in business and engineering as “someone

Introducing Agile Methods in Learning Environments: Lessons Learned 179

who takes initiative to solve ambiguous problems” [21]. There is no way to teach
“heroism”, but to encourage it.

We could clearly see how much the success of a group would depend on the
presence of heroic software people. In student teams, we observed that having one or
two exceptional developers would result in great deliverables even if no one else was
contributing. Of course, this should be different in the way industrial teams work.

A true XP team (ideally) holds steady development pace and should have no spikes
in delivering business value to the customer. In a student XP team, there are many
spikes, normally associated with the approaching assignment deadline. The analysis
of the course site visit logs (during winter 2003 semester), clearly showed the spiky
nature of student involvement with the project when two days before the due date, the
number of visits to the Assignments Web page would double or in some cases even
triple. This is easily explained, considering the fact that students are not working on
one project. Normally, they have to balance among at least five different projects
assigned in different courses. Thus, students always work on the most urgent one. It
was not exactly the case with the graduate students as a large part of them were part-
time students, working full-time in the industry and they would only take one course
at a time. However, they still had to do a similar balancing act between their day jobs
and the course. Generally, agile practices oppose project interruptions for any reason.
Scrum tells you that while sprint is running, there must be no interruptions. Even a
CEO of the company cannot come in and pull out a member of the team to do an
urgent job or a demo. But an instructor of another course can. Usually, students serve
five masters at the same time.

We would like to emphasize another important dissimilarity between real-world
and academic agile projects. In the industry, the agile projects are normally of the
“Flexible Scope-Fixed Time” nature, while our academic projects are always “Fixed
Scope-Flexible Time”. Academic projects break the timebox and are being evaluated
against a given fixed scope. There is no such thing as a timebox for a student. If in the
industry we have a pretty strong assurance that developers do not break the timebox,
we cannot control how much time a student spends to complete the assignment
(except during the exams – which are not considered to be a good representation of
the real world development projects). Students are not being “paid” (evaluated) based
on timesheets. One student may spend twice as much time as another one to do the
assignment. It may depend on the amount of self-learning the assignment requires.
How do you timebox learning?

If we use flexible scope projects, the problem remains: how do we evaluate
students working on a flexible scope project?

In all our courses (except for CT Diploma Program at SAIT) we had emergent
requirements. We would normally fix the requirements for a given iteration at the
planning meeting (as recommended by XP, Scrum and other agile processes) but
students were made aware that requirements may change (and they did) in the next
iteration.

When asked what worked for their team and what did not, students indicated the
value of good communication, responsible software engineering practices, “many
eyeballs effect” for catching bugs, and expertise sharing in a pair/team. Several
initially skeptical students acknowledged that it worked better than what they thought
it would be. Many students reiterated the concern from the previous year about
limited communication due to scheduling issues:

180 G. Melnik and F. Maurer

�� “It was very difficult to have the constant communication needed for XP. Be-
cause we all have other commitments, communication was weak within our
group. As well, the less committed group members were allowed to ride along
with the stronger group members who completed the majority of the work.”

In fact several studies (see [22], for example) identify a number of human issues in
communications, technology, teamwork and political factors that significantly influ-
ence implementation and evolution of XP into a small software development team. As
one of the students exclaimed: “XP is about the t3am sk1llz!” [team skills].

6.2 Practice-Specific and Implementation Lessons

Teach Software Testing Techniques Early on in the Program. The first author had
an opportunity to revise the curriculum of the software engineering stream at SAIT.
The main change that occurred was moving the course on Software Testing and Main-
tenance to the first semester. It turned out to be an extremely good decision, as stu-
dents were taught unit testing, test-driven development, continuous integration, refac-
toring, responsible software engineering practices early on in the program. As a result,
students were better equipped for the programming courses in the following semes-
ters.

Reinforce Version Control and Test-Driven Development. We have implemented
earlier deadlines for test suites, and gave a large percentage of the assignment grade to
the tests. We also restricted the submission of the working projects to electronic sub-
mission of source code, tests and build scripts via cvs only. The students were in-
formed about the “clean code that works” policy – the project that does not compile
gets zero. It may have been seen a bit harsh from the very beginning, but as they were
explained the values of agile methods (one of which is working software), we had no
projects that would not compile. Students were encouraged to comment out the por-
tions of the code that did not pass the tests with the marker “DIRTY” and an explana-
tion of why it is incomplete and what they have tried to do to make it work.

Although only 60% of respondents used test-driven development, a large popula-
tion believes that test-driven development helps to improve software design
(mean=3.58, SD=1.14) and speeds up the testing process (mean=3.75, SD=1.14). Our
evidence shows that even though students did not absorb the concept of test-driven
development as enthusiastically as other practices, they do realize the importance of
testing and see the benefits of finding bugs at the early stage of application design.

Encourage Electronic Communication in the Off-Class Time. Using telephone,
NetMeeting or asynchronous private forums for communication can partially resolve
scheduling conflicts. In one case, a group had over 100 messages in their private fo-
rum, although majority of groups would not utilize forums at all. In addition to regu-
lar office hours, the first author established online office hours, checking for messages
and responding to them immediately. Furthermore, students were encouraged to post
their problems, interesting findings and links to the forum and to respond to other stu-
dents’ inquiries. Often the solution to a problem of one team was found by another
team and posted before the instructor had a chance to read it.

Introducing Agile Methods in Learning Environments: Lessons Learned 181

Direct Students to Improve Their English and Communication Skills. Normally,
there is a department available on campus that provides such training to students. We
also encouraged students to attend something like a toastmaster or public speaking
class to gain the confidence of communicating freely. In our observations, we have
noticed that more reserved students preferred to use electronic means to communicate
with the group – likely because there was no time pressure to prepare the answer.

No Policing during Development. Peer pressure is strong enough motivator. The
most efficient way to check whether students really worked on the projects is to give
them a hands-on comprehensive online exam, where by the end of a three-hour block,
they are required to produce a piece of working functionality. We have given hands-
on exams to the students at SAIT and UofC and it turned out to be extremely effective
to detect those who did not contribute much. The exams were of the open-book type,
students were allowed to bring their past code with them and to use online reference
resources. In addition to disabling certain ports, students were monitored during the
exam to make sure that no instant messaging or file transfer would occur.

Establish Ground Rules. Certain rules were established by the instructor (such as
accepted responsibility, collective code ownership, incremental change, simplicity,
YAGNI, naming and coding conventions, all tests must pass before integration, and
trust other people’s code). We also advised students not to get emotionally attached to
the code. Students were invited to suggest other rules for their peers that would help
to create the best learning/production environment (try to solve the problem by your-
self first, then ask for help; share new/interesting stuff with the group; be enthusiastic;
be polite; no whining; no lame excuses).

Get a “Home Base”. This worked extremely well at SAIT, where a dedicated soft-
ware engineering lab was used for the specialization courses. Students felt like it was
their own development area. They were allowed to post any stories, questions, solu-
tions on the walls. Off-class access to the lab was arranged (including during evenings
and weekends). Every student was given an electronic key for the room. We realize
that this may not be possible in every academic environment, but providing students
with a permanent working area for the duration of the course definitely helps.

Schedule Lab Time. The graduate course of UofC was originally offered as a quarter
course with no scheduled lab sessions. After running it twice, it seems to be beneficial
to have lab time scheduled to do at least the planning meetings together.

Do “Green-Field Development” (if Possible). We had experienced starting a course
with an existing system that needed to be extended by students. The system was not
originally developed in the agile way. This resulted in missing test drivers and some
problems with refactoring and integrating the new functionality without breaking ex-
isting parts. In addition, understanding the existing system was already quite a task by
itself and took away time from working on the new functionality.

Get a Responsive, Knowledgeable and Committed Customer or Become One.
When an instructor performs the role of a customer, it is important to allot enough
time for interacting with the teams outside of the classroom. The second author recalls
his experience with graduate projects and the fact that he simply did not have enough
time to work with the teams off-class. As a result during the final demo, the cus-
tomer/instructor discovered the teams implemented some features incorrectly. An al-

182 G. Melnik and F. Maurer

ternative solution may be to form a surrogate On-site Customer that consists of the
instructor and the teaching assistants.

The first author has an experience of doing the project together with the BAI
software engineering students and performing the role of the team leader/master. An
outside client was recruited. Even though, the customer was not part of the
development team, he was available via email and the online forum and responded to
the questions within one day. Students initially met the customer for a project kickoff.
They also demonstrated working components of the system to him every month. We
consider this to be very useful as they actually saw the immediate reaction of the
customer.

Discourage “Assumptions Disease”. Agile methods encourage developers to avoid
making assumptions based on partial knowledge and to get the customer answer the
questions instead. Initially, students were informed of this rule and became very
active interacting with the customer (both online and face-to-face). Interestingly, the
analysis of the forum postings shows, what we call, The Customer Abandonment
Syndrome – when, later during the semester students actually started making
assumptions about the projects and requirements (often even without consulting with
the rest of the team) instead of clarifying those with the customer. Several times
during the semester the instructor had to remind the students not to make such
assumptions.

Use Known Technology. If the project is chosen such that the students know the
basic technology, it gives them a good boost. Otherwise, we have seen the loss of
productivity and inability to do accurate estimates. Indeed, it is extremely hard to
estimate how long it will take someone to learn new techniques.

Ask Students to Submit Their Estimates. This can be done on paper or
electronically. The estimates must be submitted before the actual release date
(assignment due date). This encourages students to think about their tasks, track their
time and become better in estimating.

Encourage Responsible Software Engineering Practices. Students must learn how
to take responsibility for themselves and their projects. In all courses, students were
allowed to self-organize (form their own groups, choose a leader/master, agree on
tasks to complete). When choosing a task, they made a commitment to ensure that it
would be done right. Also, responsible software engineering practices mean that
known bugs have to be fixed. Because of the nature of the course, the assignments
built up one on another. If TAs discovered certain problems with the assignment
submitted, it was an absolute must for the team to fix those problems in the
submission of the next assignment.

7 Summary and Future Work

Our experiences introducing agile methods in the computer science curricula show
that students are very enthusiastic about core agile practices. Our initial findings [14]
that there are no significant differences in the perceptions of students of various levels
of educational programs and experiences, were reconfirmed with additional data. The

Introducing Agile Methods in Learning Environments: Lessons Learned 183

graduate students (whose majority has several years of experience) are – overall – a
bit more cautious then the rest of the sampling. Overall, our results indicate that a
broad range of students (although not everyone) accepts and likes agile practices. And
this is in our opinion a prerequisite for their widespread adoption in industry.

In this paper, we are not trying to generalize the findings to the industrial setting.
We provide a snapshot of some aspects of perceptions of agile practices and also
share some thoughts that may help other faculty to introduce agile methods in their
courses.

We hope that the observations made will provoke discussion and future studies on
a wider selection of students and practitioners and would like to invite any interested
parties (both academic and industrial) to take part in such studies.

Acknowledgements. The authors would like to thank all students from the University
of Calgary and SAIT who participated in the study and provided us with their
thoughtful responses. This work was partially sponsored by NSERC, ASERC, and the
University of Calgary.

References

1. Correia, J. Recommendation for the Software Industry During Hard Times. Gartner
Dataquest Report, June 6, 2002.

2. Williams, L., Kessler, R. Experimenting with Industry’s “Pair-Programming” Model in the
Computer Science Classroom. Journal on Computer Science Education, March 2001.

3. Williams, L., Kessler, R., Cunningham, W., Jeffries, R. Strengthening the Case for Pair
Programming. IEEE Software, Vol. 17, July/August 2000, pp.19–25.

4. Williams, L., Wiebe, E., Yang, K., Ferzli, M., Miller, C. In Support of Pair Programming
in the Introductory Computer Science Course. Computer Science Education, September
2002.

5. Johnson, D., Caristi, J. Extreme Programming and the Software Design Course. Proc. XP
Universe 2001, July 23–25, 2001, Raleigh, NC, USA.

6. Sanders, D. Student Perceptions of the Suitability of Extreme and Pair Programming. In
Extreme Programming Perspectives, Addison Wesley, 2002, Ch.23.

7. Astrachan, O., Duvall, R., Wallingford, E. Bringing Extreme Programming to the
Classroom. In Extreme Programming Perspectives, Addison Wesley, 2002, Ch.21.

8. Keenan, F. Teaching and Learning XP.
http://www.agilealliance.org/articles/articles/FrankKeenan-TeachingAndLearningXP.pdf

9. Holcombe, M., Gheorghe, M., Macias, F. Teaching XP for Real: Some Initial
Observations and Plans. Proc. XP2001 Conference, Sardinia, Cagliari, Villasimius, Italy,
May 20–23, 2001.

10. Wilson, D. Teaching XP: A Case Study.
http://www.aanpo.org/articles/articles/TeachingXP.pdf

11. Williams, L., Upchurh, R. In Support of Student-Pair Programming. Proc. SIGCSE
Conference on Computer Science Education, February 21–25, 2001, Charlotte, NC, USA.

12. Lappo, P. No Pain, No XP Observations on Teaching and Mentoring Extreme
Programming to University Students. Proc. XP2002 Conference, May 26–29, 2002,
Alghero, Sardinia, Italy.

13. Williams, L., Upchurch, R. Extreme Programming for Software Engineering Education.
Proc. 31st ASEE/IEEE Frontiers in Education 2001 Conference, Oct. 10–13, 2001, Reno,
NV, USA.

184 G. Melnik and F. Maurer

14. Melnik, G., Maurer., F. Perceptions of Agile Practices: A Student Survey. Proc. XP/Agile
Universe 2002, Lecture Notes in Computer Science, Vol. 2418, Springer Verlag, pp.241–
250.

15. Copeland, L. Extreme Programming. ComputerWorld, December 03, 2001.
16. Eckstein, J. Educators’ Symposium Summary. Proc. ACM OOPSLA Conference 2001,

October 14–18, 2001, Tampa Bay, FL, USA.
17. Bevan, J., Werner, L., McDowell, C. Guidelines for the Use of Pair Programming in a

Freshman Programming Class. Proc. of the 15th Conference on Software Engineering
Education and Training, February, 25–27, 2002, Covington, KY, USA: IEEE Computer
Society Press, pp.100–107.

18. Dubinsky, Y., Hazzan, O. Agile-Training of XP-Supervising Group: A Case Study of a
Project-Based Course. Proc. Workshop on Empirical Evaluation of Agile Processes,
August 7, 2002, Chicago, IL, USA
http://sern.ucalgary.ca/eeap/wp/Dubinsky&Hazzan_Position%20Paper.pdf

19. Mead, N., Carter, D., Lutz., M. The State of Software Engineering Education and
Training, IEEE Software, Vol. 14, no. 6, p.24.

20. DeMarco, T., Boehm, B. The Agile Methods Fray. IEEE Computer, Vol. 35, no. 6, pp.90–
92.

21. Bach, J. Enough about Process: What We Need are Heroes. IEEE Software, Vol. 12, no. 2,
pp.96–98.

22. Gittins, R., Hope, S. A Study of Human Solutions in eXtreme Programming. In Kadoda,
G. (Ed) Proc. 13th Workshop of the Psychology of Programming Interest Group (ed. G.
Kadoda), 2001, Bournemouth, UK, pp.41–51.

23. Johnson, D., Sutton, P., Harris, N. Extreme Programming Requires Extremely Effective
Communication: Teaching Effective Communication Skills to Students in an IT Degree.
Proc. 18th ASCILITE 2001, December 9–12, 2001, Melbourne, Australia, pp. 81–84.

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 185–198, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Pair Learning: With an Eye Toward Future Success

Nachiappan Nagappan1 , Laurie Williams1, Eric Wiebe2, Carol Miller1,
Suzanne Balik1, Miriam Ferzli2, and Julie Petlick2

1 Department of Computer Science, North Carolina State University, Raleigh, NC 27695
{nnagapp,lawilli3,miller,spbalik}@unity.ncsu.edu

2 Department of Math, Science and Technology Education, North Carolina State University,
Raleigh, NC 27695

{wiebe,mgferzli,jdhinson}@unity.ncsu.edu

Abstract. Pair programming is a practice in which two programmers work
collaboratively at one computer on the same design, algorithm, or code. Prior
research indicates that pair programmers produce higher quality code in
essentially half the time taken by solo programmers. Pair programming is
becoming increasingly popular in industry and in university curricula. An
experiment was run at North Carolina State University over a period of one and
a half years to assess the efficacy of pair programming as an alternative
educational technique in an introductory programming course. We found that
the retention rate of the students in the introductory programming courses is
equal to or better than that of the students in the solo programming courses.
Most students show a positive attitude towards collaborative programming, and
students in paired classes continue to be successful in subsequent programming
classes that require solo programming. Pair programming also leads to a
reduced workload for the course staff in terms of grading, questions answered
and teaching effort.

1 Introduction

In industry, software developers generally spend 30% of their time working alone,
50% of their time working with one other person, and 20% of their time working with
two or more people [6]. However, most often in an academic environment,
programmers must learn to program alone, and collaboration is considered cheating.
This time spent working alone unfortunately conflicts with a student’s future
professional life in which collaboration is both encouraged and required. In addition,
studies show that cooperative and collaborative pedagogies are beneficial for students
[11, 12].

Research results [5, 17, 20] indicate that pair programmers produce higher quality
code in about half the time when compared with solo programmers. These research
results are based on experiments held at the University of Utah in a senior-level
Software Engineering course. The focus of that research was the affordability of the
practice of pair programming and the ability of the practice to yield higher quality
code without significant increases in time/cost. However, the researchers observed
educational benefits for the student pair programmers. These benefits included
superior results on graded assignments, increased satisfaction, reduced frustration

186 N. Nagappan et al.

from the students, increased confidence from the students on their project results, and
reduced workload for the teaching staff.

These observations inspired further research directed at the use of pair
programming in educating Computer Science students. Educators at the University of
California-Santa Cruz (UCSC) [4, 8] and North Carolina State University (NCSU)
[10, 18, 19] have reported on the use of collaborative pair programming in
introductory undergraduate programming courses. The experiments were specifically
designed to assess the efficacy of pair programming in an introductory Computer
Science course. These researchers have found that pair programming improved the
retention rates of the students. We have continued these studies and report our
findings in this paper.

In our experiment, specifically aimed at the effects of pair programming on
beginning students, we have examined the following four hypotheses related to the
introductory course:

H1. An equal or higher percentage of students in paired labs will complete the class
with a grade of C or better when compared with solo programmers.
H2. Students in paired labs will have a positive attitude towards collaborative
programming settings.
H3. Doing pair programming in an introductory Computer Science course does not
hamper students’ performance in future solo programming courses.
H4. Student participation in pair programming will lead to a reduced workload for the
course staff in terms of grading, questions answered, and teaching effort when
compared with the course staff of solo sections.

In subsequent sections of this paper we provide background on this experiment and
give detailed analysis of the results. Section 2 gives an overview of the previous
research done in pair programming. Section 3 describes the experiment carried out at
North Carolina State University. Section 4 and Section 5 present the quantitative and
qualitative results. Section 6 outlines the conclusions and future work.

2 Pair Programming

Pair programming [16] refers to the practice whereby two programmers work together
at one computer, collaborating on the same algorithm, code, or test. The pair is made
up of the driver, who actively types at the computer or records a design; and the
navigator, who watches the work of the driver and attentively identifies problems and
makes suggestions. Both are also continuous brainstorming partners.

Pair programming has been practiced for a long time [16], yet only recently has
much research been done on its effectiveness. One of the major factors responsible for
the growth in popularity of the practice is an emerging software development
methodology called Extreme Programming (XP) [3]. XP was designed for the
development of small- to medium-size projects. This highly collaborative
methodology reduces initial planning stages for projects and places more emphasis on
customer-centric activities, adapting to their ever-changing requirements. Planning is
done incrementally throughout the development cycle. XP utilizes the pair
programming practice for all production code.

Pair Learning: With an Eye Toward Future Success 187

Research at UCSC has reported positive results in studies involving pair
programming with students [4, 8]. Their studies indicate that pair programming
helped increase the retention rate of students who might have otherwise dropped out
of the course. They also indicate that pair programming students produce better
quality code and perform comparably on exams when compared to solo programming
students [9]. In addition, research done at UCSC on pairing protocol issues provide
several recommendations, such as pairing students with other students within the
same section; pairing students with other students with similar skill level, and having
a coding standard [4]. Finally, research done at UCSC on a large sample of students
(555 students) indicates that pairing bolsters the course completion and pass rates and
leads to higher persistence of students in a computer related major [9]. Furthermore,
students show a positive attitude towards pair programming [9].

Research done at the University of Wales [13] indicates that students with lower
self-confidence enjoy pair programming the most. Students with a higher skill level
report the least satisfaction when they pair program with students of lesser skill level.
The researchers also found some initial evidence that students produce their best work
when they are paired with a partner of equal skill and confidence level.

The research studies discussed so far involve collocated pair programmers.
Additional research was done at NCSU concerning distributed pair programming,
whereby the programmers are not physically collocated. An experiment was run in a
graduate-level Computer Science course, Object Oriented (OO) Languages and
Systems. The focus of this experiment was the performance of collocated and
distributed, pair and solo programmers. The initial results indicate that distributed pair
programming is a feasible technique for OO development [2]. Though there were no
statistically significant results, there were three initial indications from the study. The
quality of code written by the distributed pairs was comparable to collocated pairs and
distributed non-pairs. There were similar productivity results (measured by the lines
of code) among the collocated and distributed pairs [2]. Finally, the results also
indicated that distributed pair programming fosters teamwork and communication
within a virtual team.

3 Experiment

A structured empirical study was run at NCSU for three semesters (Fall 2001, Spring
2002 and Fall 2002). For these research studies, we chose an introductory
programming course, Introduction to Computing – Java (CSC116). The following
factors led to the choice of this course:

The course is an introductory programming course that is required of all Computer
Science (CSC) majors. CSC 116 is also offered as a service course for students from
other departments and for lifelong education students.

The course has compulsory closed labs, which allow for the controlled use and
observation of pair programming. Closed labs are excellent for controlled use of pair
programming [4]. The instructor or teaching assistant can ensure that people are,
indeed, working in pairs at one computer. He or she can also monitor that the roles of
driver and navigator are rotated periodically.

The course is taught with two 50-minute lectures and one three-hour lab each
week. Students attend labs in groups of 24 with others in their own lecture section.

188 N. Nagappan et al.

The lab period is run as a closed lab where students are given weekly assignments to
complete during the allotted time. Lab assignments are “completion” assignments
whereby students fill in the body of methods in a skeleton of the program prepared by
the instructor. Student grades are based on two midterm exams, one final exam, lab
assignments, and programming projects that are completed outside of the closed lab.
The programming projects are generative, that is, the students start the project from
scratch without any structure imposed by the instructor. Most students are from the
College of Engineering and are either freshmen or sophomores. However, students of
all undergraduate and graduate levels may take the course.

Our study is specifically aimed at the effects of pair programming on beginning
students. Therefore, we analysed the results of the freshmen and sophomores only.
We eliminated the lifelong education students, juniors, seniors, and graduate students
from the study. We also only analysed the data from students who took the course for
a grade, concluding that students who audited the class or took it for credit only were
not as motivated to excel as other students.

The Fall 2001 experiment was run in two sections of the course; the same
instructor taught both sections. Additionally, the midterm exams and the final exam
were identical. One section had traditional, solo programming labs. In the other
section, students were required to complete their lab assignments by participating in
the pair programming practice. When students enrolled for the class, they had no
knowledge of the experiment or if their section would have paired or solo labs. In the
pair programming labs, students were randomly assigned partners based on a web-
based computer program; pair assignments were not based on student preferences.
Students worked with the same partner for two to three weeks. If a student’s partner
did not show up for a particular lab, after ten minutes, the student was assigned to
another partner. If there were an odd number of students, three students worked
together; no one worked alone.

In the Spring 2002 the same experiment was carried out on a much larger scale due
to the increased sample size available during the semester. Two instructors handled
the CSC 116 (CS1) course. The fall 2002 semester also employed the same model of
operation of classes as in the previous semesters, with two instructors teaching the
course. Also, in the spring semester of 2002, we analyzed the performance of students
in the follow-on class (CS2) who had pair programmed in CS1 the previous fall
semester. Similarly, we analyzed the performance of Fall 2002 CS2 students who has
taken CS1 in Spring 202

The course also included programming projects that require work outside of the
closed lab. In Fall 2001, we gave the students in both sections the option of working
alone or in pairs for these projects. We modified this in Spring 2002 where only
students who attained a score of 70% or better on the exams could opt to pair. At that
time, we felt those who did not attain a score of 70% or above should not work with a
pair on the project lest they rely too heavily on their partner to produce the project.
Most students who were eligible to pair chose to pair program on projects. However,
the instructors now feel that the 70% eligibility might be unfair to the students, and
this practice was discontinued starting in Fall 2002. At this time, we began to assign
mandatory partners; students worked on projects with the same partner assigned in
labs.

Pair Learning: With an Eye Toward Future Success 189

4 Quantitative Results

We analyzed the quantitative data semester by semester because different instructors
with different course presentation styles and different exam/project content handled
the course across the three semesters. In the spring 2002 semester, we had two
instructors each handling a solo and paired class and a large sample size. Therefore,
the results are presented by instructor for Spring 2002.

4.1 Academic Equivalence

4.1.1 Prior Programming Experience
We wanted to determine if we had academic equivalence in our experimental groups.
We assessed academic equivalence in two ways: a programming assessment (which is
reflective of their prior programming experience) and the students’ SAT-M scores
(which are reflective of the students’ mathematical ability). All students took a
programming assessment questionnaire at the beginning of the semester. The
questionnaire contained some very basic questions on programming. The main
purpose of the assessment was to examine the differences in the programming
background the students had before they took the course. This analysis helped us
determine whether any section had more knowledge about programming compared to
other sections before the start of the course. This assessment did not carry any weight
in the grading of the course. There were eight questions in the questionnaire that
covered the areas of computer arithmetic, operator precedence, selection, iteration,
nested loops, arrays, encapsulation, and functions. The programming assessment was
evaluated out of a total score of eight points. We tested the statistical significance of
the difference in programming assessment scores by using a t-test. Table 1 shows our
observations across the Fall 2001, Spring 2002, and fall 2002 semesters.

The hypotheses for the t-test are as follows:

H0: There is no significant difference between the two sections in terms of prior
programming knowledge.
H1: There is a significant difference between the two sections in terms of prior
programming knowledge.

If we get statistically significant results (p < .05), we accept the alternative
hypotheses (H1) else we accept the null hypotheses (H0). Hence from the t-test results
in Table 1, the two sections were equivalent in terms of their programming
assessment scores for the fall 2001 semester only. Hence we further examine the
students SAT-M scores to study their academic equivalence.

4.1.2 Math Skills
We use the students’ SAT-M scores to form the basis of our math skill analysis. We
use a one-way ANOVA test to analyze the variance between the SAT-M scores of
thepaired and solo sections to investigate the academic equivalence of the two groups
with respect to their math skills. As shown in Table 2, the ANOVA between SAT-M
scores yielded statistically significant results (p < .05) in the fall semester 2001. The
mean SAT-M scores are essentially equivalent across the other two semesters.

190 N. Nagappan et al.

Table 1. Programming Assessment Score

Semester Paired
Mean

Paired Std
Dev

Solo
Mean

Solo Std
Dev

Stat.
Significance

Fall 2001 2.69 2.22 1.77 1.62 No,
t=1.807,
p<0.080

Spring
2002

2.05 2.05 1.62 1.61 Yes,
t=3.51,
p<0.0006

Fall 2002 2.55 1.81 1.64 1.61 Yes,
t=2.08,
p<0.0389

Table 2. SAT-M scores and statistical significance results

Semester Paired
Mean

Solo
Mean

Statistically Significant

Fall 2001 662.10 625.43 Yes
(F=5.19,p<0.018)

Spring 2002 634.88 640.25 No
(F=1.101,p<0.416)

Fall 2002 639.12 640.15 No
(F=1.088,p<0.395)

The statistical results in the spring 2002 and fall 2002 semesters were rejected at a

very high level of confidence. We consider the level of academic equivalence in our
analysis.

4.2 Success Rates

Historically, beginning Computer Science classes have a low success rate, often cited
informally as about 50% nationally. Success rate is defined as students who get a C or
above in the course. We chose C because it is the minimum grade required in a course
to satisfy further course prerequisites. We evaluated whether pair programming could
help improve the success rate of beginning students in an introductory programming
course. To test the statistical significance of the difference in success rates, we
performed a chi-square test. The chi-square test is designed to test for independence
between two categorical variables [1].

The hypotheses for the chi-square test are as follows:

H0: There is a statistical independence between the method of programming (solo and
paired) and the success rates in the class.
H1: There exists a statistical dependence between the method of programming (solo
and paired) and the success rates in the class.

Pair Learning: With an Eye Toward Future Success 191

A statistically significant result (p < 0.05) indicates that pair programming
impacted the student final grades. These success rates along with the results of the
chi-square test are summarized below in Table 3.

Table 3. Success Rate

Semester-
Section

C and
above (# of
students)

Below C
(# of
students)

Success
Rate

Statistically
Significance

Fall 20011-
Paired

30 14 68.18%

Fall 2001- Solo 31 38 44.93%

Yes
2= 5.849,

p< 0.016

Spring 2002-
Paired (Inst 1)

54 28 65.85 %

Spring 2002-
Solo (Inst 1)

50 26 65.79 %

No
2= 0.000,

p< 0.993

Spring 2002-
Paired (Inst 2)

113 85 57.07 %

Spring 2002-
Solo (Inst 2)

15 11 57.69 %

No
2= 0.004,

p< 0.952

Fall 2002-
Paired

47 8 85.45 %

Fall 2002-Solo 72 38 65.45 %

Yes
2= 7.292,

p< 0.007

Hence, from the results obtained over the past three semesters we see the final

course grades obtained by students working in pairs is equal or better than those
working solo in two of the three semesters. Thus, two out of three semesters validate
our first hypotheses that, an equal or higher percentage of studentsin the paired labs
will complete the class with a grade of C or better compared to solo programmers
(H1).

Instructor 2 from Spring 2002 handled the Fall 2002 paired class. She attributed the
increase in success rate from 57.07% in Spring 2002 to 85.45% in Fall 2002 to the
following factors: a new textbook was introduced which was easier to understand
from the students viewpoint; daily in-class exercises were done along with a partner;
required attendance in class worth 5% of the overall grade, and written homework
exercise from the book that urged the students to read the textbook.

4.3 Attitude towards Pair Programming

At the end of the semester, along with their course and instructor evaluations, students
were given an optional attitude survey [15]. Using the survey, we tried to determine
the students’ attitudes towards pair programming. The entire survey had 63 questions.
We discuss the results of only one of these questions in this paper: If you are in a

1 The Fall 2001 semester results have previously been reported in [10, 18, 19, 21] .

192 N. Nagappan et al.

paired section this semester, will you choose a paired section course in the next
semester, given there is a paired section? This survey data was collected in the spring
2002 and fall 2002 semesters from students in the paired section. Students in the solo
section would not have had an informed opinion on this question. Table 4 shows that
in the spring 2002 semester the majority of the students (approximately 80%) did not
express a preference for a solo section in future. Over 84% of the Fall 2002 students
did not express a preference for a solo section in future.

Table 4. Attitude survey Results (Spring 2002-Fall 2002)

Number of Respondents
(Semester)

Yes I don’t care No

207 (Spring 2002) 124 (59.9 %) 41 (19.8 %) 42 (20.2%)
71 (Fall 2002) 46 (64.7%) 14 (19.7 %) 11 (15.4%)

Results from Table 4 support our initial hypotheses that students in paired labs

have a positive attitude towards collaborative programming settings (H2). A
limitation of these findings is that some of these students might not have had solo
programming experience, and hence their choice might have been biased towards pair
programming. Similar to research results [13], we surmise that the 20% of students in
the spring 2002 semester and the 15% of students in the fall 2002 semester who did
not want to work in a future pair programming section might have had a higher skill
level and would not have liked being “slowed” down by their partner. We will
investigate this hypothesis further, as outlined in section 6.

4.4 Performance of Paired Students in Solo Programming Courses in Future
Semesters

Some instructors may be concerned that in courses employing pair programming,
several students get a “free ride” by passing on the entire workload to their partner
and do not learn the course material. We partially addressed this problem by having
students submit feedback on their partners via an effective peer evaluation system
called the Peer Evaluation Tool (PET2). These evaluations formed a part of the
grading structure, and the instructor could then judge what action needed to be taken
upon identification of the problems.

To show that students who pair programmed perform satisfactorily in future
programming courses and that pair programming was not detrimental to students who
program in solo courses in the future, we examined students in CS1 and the follow-on
class CS2. All CSC majors are required to take these courses, and CS1 is a
prerequisite for taking CS2. Almost all CSC majors take CS2 the following semester
after taking CS1. CS2 is “Programming Concepts – Java”. During the time of this
reported study, CS2 was not taught with students programming in pairs. All students
had to work alone, and collaboration of any form was considered cheating.

2 http://pairprogramming.csc.ncsu.edu/pairlearning/testing/mystudentlogin.jsp

Pair Learning: With an Eye Toward Future Success 193

4.4.1 Fall 2001-Spring 2002 Semesters
First, we analyzed students who took CS1 in Fall 2001 and CS2 in Spring 2002. We
obtained the results shown in Table 5. In this table, “Paired” refers to the students in
the paired section and “Solo” refers to students who worked solo in CS1 in the fall
semester. In CS2, all students worked alone.

Table 5. Performance in CS2 (Spring ’02) of students in CS1 (Fall ’01)

Section Percentage of
A’s, B’s in CS2

Percentage of C’s,
D’s, F in CS2

Paired in CS1 (N=33) 69.70% (23/33) 30.30% (10/33)

Solo in CS1 (N=29) 44.82% (13/29) 55.18% (16/29)

From Table 5, more students who paired in CS1 earned a grade of A or B. In order

to statistically quantify these results, we run a chi-square test with the following
hypotheses.

H0: Performance in future programming courses are independent of programming
technique employed the previous semester.
H1: Performance in future programming courses are dependent of programming
technique employed the previous semester.

The results were statistically significant, (2=3.921 (p < 0.048)) indicating that the
performance in future programming courses is impacted by the technique employed in
the previous semester.

Analyzing further, a student is said to be in a variant Group S if his/her CS2 final
grades are more than one third of a grade below their CS1 grades. For example, if a
student got an A in CS1 and B+ in CS2 then he or she would be placed in Group S.
This same student would not belong to group S if he or she got an A in CS1 but got an
A- in CS2. Table 6 summarizes these results. Only six students (21.42%) who were
paired in CS1 performed worse in CS2 compared to 12 students (46.15%) in the solo
class of CS1 in CS2.

Table 6. Students in Group S

Section Group S Variant group S’s
performance rate

Paired (N=28)3 6 21.42 %

Solo (N=26)4 12 46.15 %

3 Five students were dropped from the analysis, thereby reducing the sample size to 29. Two of

them decided to drop the course and three of them took CS2 for credit only.
4 Three students were dropped from the analysis thereby reducing the sample size to 26 as they

took CS2 for credit only.

194 N. Nagappan et al.

4.4.2 Spring 2002-Fall 2002 Semester
In the fall 2002 semester we obtained the following results as shown in Table 7.
Students who had programmed solo in the previous semester performed much better
than students who pair programmed. A chi-square test resulted in statistically
significant results (2=3.934, (p<0.047), thereby revealing that there was a
dependence relationship between the student performance and the technique of
programming employed the previous semester. However, it must be noted that the
percentage of students earning an A or B was higher than for either of the groups the
prior semester (see Table 5).

Table 7. Performance in CS2 (Fall ’02) of students in CS1 (Spring ’02)

Section A’s, B’s in CS2
(# of students)

C’s, D’s, F in CS2
(# of students)

Paired in CS1 (N=91) 71.43% (65/91) 28.57% (26/91)

Solo in CS1 (N=66) 85.25% (52/61) 14.75% (9/61)

Table 8 shows that approximately 26% of the students who were paired did worse

in CS2 than CS1; almost 30% of the students who worked alone did worse in CS2
than CS1. Comparatively in the previous semester only 21.42% of the paired students
did worse is CS2 relative to CS1.

Table 8. Students in Group S

Section Group S Variant group S’s
performance rate

Paired (N=91) 24 26.37 %

Solo (N=61) 18 29.50 %

Based on the results listed above, we can say that pair programming is not

detrimental to a student’s performance in future programming courses done in solo.
Hence we conclude that pair programming in an introductory Computer Science
course does not hamper students’ performance in future solo programming courses.
(H3).

5 Qualitative Results

Qualitative results in CSC 116 [7] were obtained by observing the CSC 116
laboratory sessions. These observations were followed up with further focus groups
with the students (drawn from the entire student sample) and the Lab Instructors
(LIs). Additionally, in the fall 2002 semester, we quantified some of our in-class
observations. These results are presented in the following section.

Pair Learning: With an Eye Toward Future Success 195

5.1 Students

Students expressed a preference for being able to ask their partners questions
immediately as problems arise rather than having to wait for an LI to answer them.
Having someone there while working on problems seemed to help students clarify
ideas, pick up on minor errors, and work on understanding conceptual knowledge.

In solo labs, most of the students had to wait for 10-30 minutes to get their
questions answered, and sometimes they would not be able to get their questions
answered because the LIs would be busy answering other students’ questions. These
students would give up and continue working, ignoring their mistakes for the time
being. Comparatively, since the pairs were self-sufficient, lab instructors had more
time to get around to needy students than in the unpaired sections. Paired students
who needed help found it easy to get help from the LI and had little down time [18].

In the focus groups, students described "partner compatibility" as the number one
problem to address in paired labs. We intend to address this compatibility issue in the
following semesters. We have already carried out some compatibility research in the
NCSU undergraduate Software Engineering course. We will use these results to better
understand "partner compatibility." Despite their frustrations with compatibility
issues, students expressed their understanding that pair programming would help them
in future professional work environments where people are often randomly matched
to collaborate on programming projects.

Additionally, observations were made in nine paired lab sections and seven solo
lab sections [14]. Students raised their hands when they had a question. When many
students need questions answered, those students waiting would often give up, leaving
them with unresolved problems. These are referred to as ‘Give Ups’ in Table 9. As
shown in Table 9, the paired lab averaged a little over one ‘Give Up’ every lab, while
the solo labs averaged almost two and an half times more than the paired lab. This
demonstrates that students are better served by the LIs in paired labs.

Table 9. ‘Give Ups’ statistics for Fall 2002 [14]

Section No. of ‘Give ups’
Mean

No. of ‘Give Ups’
Standard Deviation

Paired 1.14 0.90
Solo 3.17 2.56

5.2 Lab Instructors

One benefit of pair programming is that grading is reduced by a factor of two for
projects and labs. Additionally, in solo lab sections, the LIs were often overwhelmed
with questions. LIs often spent a minimum of five minutes and a maximum of 20
minutes with each student. Most of the students had basic questions regarding the
syntax, function passing and compilation errors. [7]

In the focus groups, the LIs also felt that the quality of questions asked by the
students in the paired class were indicative of higher-order learning when compared
with those of students in the solo programming class. Students in the solo
programming class were always asking basic questions, for example, regarding the

196 N. Nagappan et al.

syntax. Paired students, spent more time discussing advanced issues with their LIs
[18] For example, students in paired labs would ask the LIs how to improve their
algorithm or how to apply it to another scenario. Finally LIs observed that paired
students’ efforts and willingness to learn seemed to surpass their “traditional”
counterparts. The solo lab students needed to be taught every step of the way.

To illustrate, we report results of counting the average number of questions asked
in nine paired lab sections and seven solo lab sections [14]. Students in the solo
programming class asked more questions and the standard deviation also is very large,
which indicates that the number of questions was widely variable between labs (see
Table 10). By looking at the mean number of questions we can say that the LIs had
less questions to answer in the paired labs, which ensures that the response time of the
LIs to student questions was better in the paired labs.

Table 10. Statistics of questions asked (Fall 2002) [14]

Section Total Questions
Mean

Total Questions
Standard Deviation

Paired 43.11 7.47
Solo 56.14 30.68

Thus from the above evidence results we can conclude that student participation in

pair programming will lead to a reduced workload in terms of grading, questions
answered, and teaching effort for the course staff when compared with the teaching
staff for students who worked solo (H4). This thus validates our initial hypotheses.

6 Conclusions and Future Work

Our study provides strong results of the following findings:
• An equal or higher percentage of pair programming students completed the

CS1 class with a grade of C or better when compared with solo
programmers.

• Students in paired labs have a positive attitude towards collaborative
programming settings.

• Students pair programming in an introductory Computer Science course does
not hamper students’ performance in future solo programming courses..

• Student participation in pair programming will lead to a reduced workload in
terms of grading, questions answered, and teaching effort for the course staff
when compared with the teaching staff for students who worked solo.

We will continue the experiment in the year 2003 and use the data to further
validate our claims. Also we will further investigate pair compatibility by using
personality tests like the Myers-Briggs personality test and using the skill level of
students to match pairs. Already, a trial experiment has been run in the spring
semester 2002 in the undergraduate Software Engineering class at NCSU to match
students according to personality profiles and skill level. We will obtain similar
results in the CSC 116 course. We will gather results for minority and female students
to obtain meaningful results for these important groups.

Pair Learning: With an Eye Toward Future Success 197

Acknowledgements. We would like to thank the members of the Software
Engineering reading group at NCSU for their valuable comments while reviewing this
paper. We would also like to thank Dr. Matt Stallmann of the Computer Science
Department, NCSU for providing us with access to the grades of the CS2 course in
Spring 2002. The National Science Foundation Grant DUE CCLI 0088178 provided
funding for the research in this pair programming experiment.

References

[1] Agresti, A. and Finlay, B., Statistical Methods for the Social Sciences: Dellen Publishing
Company, Collier Macmillan Publishers, Macmillan, Inc., 1986.

[2] Baheti, P., Williams, L., Gehringer, E., and Stotts, D., "Exploring Pair Programming in
Distributed Object-Oriented Team Projects," Proceedings OOPSLA Educator’s Syposium,
Seattle, WA, 2002.

[3] Beck, K., Extreme Programming Explained: Embrace Change. Reading, Massachusetts:
Addison-Wesley, 2000.

[4] Bevan, J., Werner, L., and McDowell, C., "Guidelines for the User of Pair Programming
in a Freshman Programming Class," Proceedings Conference on Software Engineering
Education and Training, Kentucky, 2002.

[5] Cockburn, A. and Williams, L., "The Costs and Benefits of Pair Programming,"
Proceedings eXtreme Programming and Flexible Processes in Software Engineering --
XP2000, Cagliari, Sardinia, Italy, 2000.

[6] DeMarco, T. and Lister, T., Peopleware. New York: Dorset House Publishers, 1977.
[7] Ferzli, M., Wiebe, E., and Williams, L., "Paired Programming Project: Focus Groups with

Teaching Assistants and Students," North Carolina State University, Raleigh, NC CSC
TR-2002-16, 2002.

[8] McDowell, C., Werner, L., Bullock, H., and Fernald, J., "The Effect of Pair Programming
on Performance in an Introductory Programming Course," Proceedings ACM Special
Interest Group of Computer Science Educators, Kentucky, 2002.

[9] McDowell, C., Werner, L., Bullock, H., and Fernald, J., "The Impact of Pair
Programming on Student Performance of Computer Science Related Majors,"
Proceedings submitted to the International Conference on Software Engineering 2003,
Portland, Oregon, 2003.

[10] Nagappan, N., Williams, L., Miriam Ferzli, Yang, K., Wiebe, E., Miller, C., and Balik, S.,
"Improving the CS1 Experience with Pair Programming," Proceedings SIGCSE 2003,
2003.

[11] Slavin, R., Using Student Team Learning. Boston: The Center for Social Organization of
Schools, The Johns Hopkins University, 1980.

[12] Slavin, R., Cooperative Learning: Theory, Research and Practice. New Jersey: Prentice
Hall, 1990.

[13] Thomas, L., Ratcliffe, M., and Robertson, A., "Code Warriors and Code-a-Phobes: A
study in attitude and pair programming," Proceedings SIGCSE, Reno, NV, 2003.

[14] Weibe, E., Williams, L. A., Petlick, J., Nagappan, N., Balik, S., Miller, C., and Ferzli, M.,
"Pair Programming in Introductory Programming Labs," Proceedings Submitted to
American Society for Engineering Education Annual Conference and Exposition 2003,
2003.

[15] Weibe, E., Williams, L. A., Yang, K., and Miller, C., "Computer Science Attitude
Survey," North Carolina State University, Raleigh, NC CSC TR-2003-01, 2003.

[16] Williams, L. and Kessler, R., Pair Programming Illuminated. Reading, Massachusetts:
Addison Wesley, 2003.

[17] Williams, L., Kessler, R., Cunningham, W., and Jeffries, R., "Strengthening the Case for
Pair-Programming," in IEEE Software, vol. 17, 2000, pp. 19–25.

198 N. Nagappan et al.

[18] Williams, L., Wiebe, E., Yang, K., Ferzli, M., and Miller, C., "In Support of Pair
Programming in the Introductory Computer Science Course," Computer Science
Education, vol. September, 2002.

[19] Williams, L., Yang, K., Wiebe, E., Ferzli, M., and Miller, C., "Pair Programming in an
Introductory Computer Science Course: Initial Results and Recommendations,"
Proceedings OOPSLA Educator’s Symposium, Seattle, WA, 2002.

[20] Williams, L. A., "The Collaborative Software Process PhD Dissertation," in Department
of Computer Science. Salt Lake City, UT: University of Utah, 2000.

[21] Yang, K., "Masters Thesis: Pair learning in undergraduate computer science education,"
in Computer Science. Raleigh, NC: North Carolina State University, 2002.

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, pp. 199–207, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Adaptations for Teaching Software Development with
Extreme Programming: An Experience Report

Michael Wainer

Department of Computer Science
Southern Illinois University

Carbondale, IL 62901
wainer@cs.siu.edu

Abstract. Extreme Programming (XP) and other Agile Methods are gaining
increasing attention for their ability to successfully deliver quality software on
time and on budget. These methods embrace the human aspects of software
development placing special value on communication and work environment.
This paper explores the experience of teaching a three credit hour Software
Design and Development course using a development methodology based upon
Extreme Programming. Overall, Extreme Programming appears to be a good fit
to the academic setting with some adjustments. Adaptations are suggested for
both Extreme Programming and the typical class structure to improve the
match.

1 Introduction

Our software design and development course is taught at the senior/graduate level. An
important goal of the course is to give students experience in developing software in a
group environment. Other goals are to give them more practice with Object-Oriented
programming and to get them acquainted with key practices and terminologies of
software development such as UML notations and common software patterns. A key
desire is to teach as much of the material as possible through project experiences: a
“learn by doing” approach.

The principles and values advanced in Extreme Programming and other Agile
methods, directly consider the human aspects of software development [1,2,3,4,5].
These include the work environment, the work load and the time allocated to work.
Our hypothesis is that these factors are worth considering in a similar way as we go
about teaching software design and development within the context of a Computer
Science program. This is not to say that these factors weren’t considered in the
absence of Extreme Programming but what is interesting here is the contrast between
considerations derived from best practices for software development versus those
which arise from course and curriculum concerns.

Certainly a case can be made for introducing various supportive practices used in
Extreme Programming such as pair programming [6,7] and test driven development
[8] in various places throughout the Computer Science curriculum. This is not the
case described here and since students have had no prior introduction to Extreme
Programming practices, some of these practices strike them as rather odd. Students

200 M. Wainer

taking this course are comfortable with programming and have had some experience
using an object oriented language (usually C++ but not Java).

Because of the “learn by doing” approach to teaching this course, project work
incorporating best practices was considered essential. A light weight methodology
such as Extreme Programming, has an advantage in that it focuses more on activities
rather than on products. The goal of the course is in imparting knowledge and
experience to the students rather than producing process artifacts. The activity
oriented approach lets us begin very quickly with meaningful experiences rather than
incur a significant learning curve in teaching artifact notations and the use of
document production software. The issue of selecting, obtaining, and learning such
software as part of course preparations is also minimized. Finally, Extreme
Programming seems to be gaining more and more acceptance with an increasing
number of books and articles describing its various aspects and regarding it as a
serious software development methodology.

There were also concerns about adopting Extreme Programming methodology. The
methodology considers the human aspect of how professionals come together to pro-
duce software. How does it map to students who are most likely not as skilled as pro-
fessional developers and who lack the maturity, time, and work environment that their
professional counterparts have? Extreme Programming relies on having very
participative customers available for frequent communication with the developers.
Where can suitable customers be found and what happens to the course if the
customers don’t live up to their commitments?

1.1 Relationship to Previous Work

The author recently became aware of other project oriented Software Design and
Development courses which endeavour to use Extreme Programming as their model
process [9, 10]. While we share many similar experiences, it is informative to
consider the various constraints and approaches taken by each of these courses. The
instructional approach described here differs from the other two in at least the
following ways. Instead of the instructor acting as the primary customer we work with
an outside customer who is easily accessible to our students. Our course must
introduce our students to a language and development environment which they are not
familiar with (We use Java which is also used by [9, 10] but from their papers, we
infer that their students are already familiar with that language). Rather than devote
the entire semester to one project we use a practice project in addition to the customer
project. In order to begin the development experience very early, we apply XP
principles to teaching Java, the development tools, and the XP process.

2 Course Description

Planning this course faces the dilemma of many computer science courses; by the
time we cover all the material necessary to do an interesting project, there isn’t
enough time left to actually do the project. Two principles of Extreme Programming
are useful here: 1. Keep it simple; 2. Iterate. Taken together it means that we can
introduce enough of a concept to allow us to be productive when we need it. If the

Adaptations for Teaching Software Development with Extreme Programming 201

topic is needed in more detail later, a future iteration can be used to develop it further.
Iterations such as this may also help students better understand the simple concepts
and then see how more advanced solutions solve problems that arise as the situations
become more complicated (For example, students are happy to learn about a source
code control system after having had a few weeks of frustration trying to figure out
how to share code using only disks or e-mails.)

The course has used multiple textbooks and many handouts. Since most of our stu-
dents are not familiar with Java, a text is chosen which reviews the language and
demonstrates usage of the class libraries. A text which discusses more general ideas
about Software Development, UML and software patterns is also desirable. Another
book is selected to explain Extreme Programming and provide some guidance and
examples in that regard. Most recently [2, 11] were used as texts for this course.

The initial goal of the course is to make everyone comfortable with the
development environment and the basics of Java. An introduction to software
development and Extreme Programming is presented first. An extensive lab exercise
(a guided tutorial demonstrating the IDE and other development tools along with the
ideas of the Model-View-Controller paradigm (MVC) and Test First Development) is
usually given in the second week. Presently we use the Netbeans IDE[12] along with
ANT[13] and JUnit[14]. Lectures reinforce the MVC and introduce Java and elements
of Java class and interface design. Based upon their backgrounds and scores on an
assessment exam, students are grouped into teams of three or four and introduced to a
starter project.

The starter project is designed to acquaint the students with Java and the
development environment as they become familiar with their team-mates. Currently
the project used during this practice period is an image based memory game. During
this phase we also discuss Extreme Programming practices which students are
expected to incorporate into their work activities. The project is presented as a
collection of initial stories with the instructor acting as the customer. Lectures focus
on topics of immediate use to the groups including Extreme Programming practices
such as: use of metaphor, one simple solution for conceptualizing the system, keep it
simple (YAGNI - You Ain’t Gonna Need It), Coding Spikes, Test First Development,
Refactoring, Pair Programming, Coding to a Standard, Collective Code Ownership,
Iterative Development, and working with the customer.

The MVC paradigm is exploited to allow Java coding to start immediately even
though students are not familiar with the Java class libraries. The initial code is very
straightforward in its use of language features since teams begin by focusing on the
model. Test first development is also stressed. Java Swing code needed to create
View/ Controllers supporting graphical user interfaces (GUIs) is introduced after
model testing and coding is well underway. Handouts demonstrating coding,
including testing ideas and refactoring is often presented using a simple MVC
examples which parallels their first project.

Approximately half of the 16 week semester will be over as students work through
their practice experience. During this time they should have become comfortable with
Java, the development tools and working together using Extreme Programming prac-
tices. During the end of this period, discussion begins to turn towards ideas of project
planning in preparation for the customer-based project.

The second part of the class focuses on working with the customer to develop
software for their needs using a methodology based upon Extreme Programming. We
have been fortunate to have a cooperative on-campus customer for our projects. The

202 M. Wainer

class meets with the customer story tellers for an initial meeting explaining the
customer’s desires. Contact information is exchanged and follow-up meetings are
arranged. The customers encourage our students to call or drop by anytime they have
a question and we invite the customer to visit our class during lab times or for special
presentations.

Iteration and release dates are announced shortly after the project is introduced.
Students use their experience working together on their practice project to help form
estimates for their customer project. Work for the customer project is distributed
among the entire class. The original groups are maintained but as the project
progresses students often need to communicate with classmates not in their original
group.

Lectures are used to provide guidance, smooth over rough spots, and to generate
discussion about issues which arise. Additional software engineering topics are
brought up when there are no pressing needs concerning the project. These topics
include UML notations and software patterns. The instructor may also introduce other
project stories. For instance, requiring documentation which may include some UML
diagrams and Javadoc files.

3 Extreme Programming: Difficulties and Adjustments in
Applying It to the Classroom

We base our development methodology on Extreme Programming but there are
aspects of Extreme Programming that are adjusted to better fit the constraints of the
course. Our primary goal is to teach students about software design and development
and to give them related hands-on experiences. Producing good software is a pleasant
side-effect but not the overwhelming concern. We make sure that our customers
understand that. Additional differences between our academic environment and a
production environment include experience, hours available and work space available.
Similar observations have also been made by others [9, 10].

3.1 Development Team Experience

Many of our students have not had large group projects before. While most students
seem to adjust well and enjoy working as a team, there is a settling in period. As
everyone starts at the same time, there are no senior members to show the new people
the ropes. We strive to create an environment where everyone feels a sense of mutual
benefit and responsibility to their team. Rigid positions within groups are not
assigned. Groups are sometimes asked to provide someone to act in various Extreme
Programming roles (tracker, facilitator) for phases of the project.

Most significantly, because of the general lack of experience, groups do not have
anyone to fulfill the role of Coach. The instructor and teaching assistant provide
additional guidance acting as floating pseudo members of the groups. Students are
assigned to groups by the instructor to balance the diversity of skills and backgrounds
among the class. The diversity among the groups seems to work well by allowing
students to participate in many aspects of development as well as becoming their
group’s “specialist” in one or more areas.

Adaptations for Teaching Software Development with Extreme Programming 203

Ambiguity which arises in determining what users want, how best to accomplish
tasks, and specifically what to do next, are essential components of this course.
Students are accustomed to more structured assignments and often have difficulty in
using their time wisely. They have little experience with class libraries and often have
difficulty in utilizing documentation effectively. The Java class libraries and
development tools provide a rich environment which unfortunately can also yield
many false leads, distractions and frustrations.

The instructor works with development teams and the customer to try to determine
what features of the class libraries will be useful to complete needed tasks. Often
examples are presented as “code spikes” to help lead the class down a productive
path. Examples concerning UML notation and software patterns are often directly
related to the project to aid development and make the topics more concrete to the
students.

Communication, perhaps unsurprisedly, turns out to be a big issue throughout the
class. Students are often too apprehensive in asking other group members, the instruc-
tor and the customers about details and concerns necessary to resolve items. Some
times this is due to timidity but other times to the thought that “it doesn’t matter” or to
not even considering that there might be another way to do something. Communica-
tion is also hampered by the limited number of hours in a day that the group can
spend with each other and the lack of a permanent workspace.

3.2 Limits of Time

Students are taking this course at the same time they are taking other upper-level or
graduate courses. The credit hours available to this course (3) are the same as the
other courses. Students often have additional job and family responsibilities. One
commonly held rule-of thumb is that students should spend approximately 3 hours
outside of class for every hour of lecture. By this rule, the students have 9 hours a
week, some of which must be devoted to individual study rather than development
work. The time available with group members is spread out through the week and
often only on the order of an hour or two at a time. This obviously leads to a less than
desirable workflow.

The lack of time together as a group undoubtedly lengthens the time it takes for the
groups to gel. We arrange time for a short group meeting during almost every lecture
period to assist in group communications. The lack of time, specifically together as a
group, makes it much more difficult to do pair programming. We strongly encourage
every student to gain experience in pair programming but find it impractical to make
pair programming a requirement for all “production code”. This is a violation of
Extreme Programming practice which, in the absence of a strict enforcement measure,
we have to make do with. Code reviews are discussed in class as another technique
that can be used to reduce code defects.

Development teams use their experience during the first project to help them form
estimates for later work. The quantity of work in a story point most be adjusted to be
far less than an ideal 40 hour week. Groups, and then the class as a whole, come to an
understanding of what a story point for our class should be. It will likely be on the
order of an hour or some fraction of a day.

Extreme Programming scales nicely in this regard as we can still provide a budget
of story points to our customers, calculate a velocity etc. A hierarchical story

204 M. Wainer

allocation scheme is used. Stories are allocated to teams rather than individuals.
Within teams, stories are broken into tasks which are distributed amongst the team
members.

3.3 Absence of a Permanent Workspace

Our groups have no permanent workspace available to them. We are able to reserve a
lab for two one hour sessions per week. The lab is open many additional hours during
the week but is in use by many other students. Setting up meeting times outside of
class is often problematic for groups due to other scheduled activities. This is also a
complication when trying to set up meetings with customers. Students and customers
can communicate and share work over the internet. CVS [15] (a source code control
system) is used by groups to share work remotely and in the lab.

4 Teaching Software Development: Adjustments to Better Fit
Extreme Programming

The course format, inherited over the years, is a 3 credit hour course. Until several
years ago this was scheduled as 3 hours of lecture only. A schedule change was made
to allow for an additional hour per week to make scheduling group meetings easier.
Our adaptation for Extreme Programming has been to meet for two hours of lecture
and two hours of lab time per week. Only during those two hours do we have reserved
lab space. Each group is assigned an area within the lab. Hopefully this provides some
feeling of a home area. Lab and lecture time slots are each 50 minutes so class meets
four days a week. Time is provided on lecture days for short group meetings. It is rea-
sonable to assume that we may be able to increase lab time slightly within our own
labs in the near future. Longer term adaptations we hope to consider as we pursue a
more ideal place and format for an XP Software Development course within our cur-
riculum follow.

Ideally, we could provide our development teams with 24 hour access to a suitable
work area which would be theirs throughout the duration of the course. This would be
much like the arrangement of studio space provided to architecture students. Unfortu-
nately, this is not realistic for our department or many others.

Being more adaptable about space requirements can yield more options. If each
student had access to a wireless notebook a wider range of physical locations for team
meetings would exist. We hope to make some notebooks available for checkout as a
partial step in this direction.

Even if suitable space for group meetings were always available, finding time slots
when all group members can meet may still be a problem. Most students have many
other demands on their time and coordinating with team members is extremely diffi-
cult unless the times are part of the scheduled class meeting times. Increasing sched-
uled hours requires a rebalancing of other degree requirements. Indeed, seniors in
architecture can have 6 credit hour courses which are scheduled for 18 or more
contact hours. Using the same multiplier gives us 9 contact hours for a 3 credit hour
course. Distributing those hours over 3 or 4 days may be a viable way of increasing
team development time.

Adaptations for Teaching Software Development with Extreme Programming 205

We want to keep in mind XP’s practice of “working at a sustainable pace” and not
overload the students. If increased time demands are placed on students they should
get credit for those hours. Some possibilities for finding additional credit hours to bet-
ter support a more substantial and realistic development experience follow. Of course,
these suggestions would require significant considerations and discussions before
most departments would be able to implement them.

For Masters students, give the option of a Software Development Track rather than
a thesis. Offer a 6 credit hour, 12 to 18 contact hour intensive software development
course. This would be taught much like a studio course and would require a studio-
like space for the class to meet and accomplish project work. For undergraduates,
offer a variation on the standard computer science degree requiring a software
development studio course along with appropriate adjustments in other requirements
and electives. Alternatively, coordinate the material from several courses (i.e.
Software Development, Human Computer Interaction, Database etc.) to be taught
jointly as a merged capstone course where lab work is combined into a large software
development lab with a large number of contact hours scheduled.

5 Impressions of Teaching Software Development Using Extreme
Programming

Overall impressions of teaching software development with Extreme Programming
are very good. This assessment is based upon the instructor’s perception as well as
student evaluations. Many of the XP practices adapt well both from the perspective of
providing learning experiences for the students and also for the flexibility provided to
the instructor. Starting simply and using iterations to make adjustments works well for
steering the course presentation. The emphasis on communication helps make it easier
to determine problem areas. Test first development helps students to create software
with less bugs and gives many small “wins” during development as they see their
tests pass. Team work, especially pair programming and shared code ownership helps
student also learn from each other.

Many of these benefits might occur within other software courses which offer
significant team projects. XP lets the class start the development process faster since
the up-front planning is minimized. Since we communicate less formally, we don’t
have to wait until more formal types of documentation are introduced (UML diagrams
and diagramming tools). UML and other topics such as software patterns can be
introduced later as the project is underway. As a project gets more complex the
students begin to see better how these other topics are useful and have a more
personal basis of reference and stronger motivation for learning.

Finding a good project for a software development course can be very challenging.
Using XP also places higher requirements on customer participation as compared to
other methodologies. The risk of bad project selection, or customers who fail to com-
mit the necessary time must be kept in mind. Using XP counters this risk by using
iterations and continuous design rather than lots of up front planning. If necessary,
significant changes to the project can be made; while not originally planned, this
would highlight a valuable strength of the XP methodology.

While we use XP as our model methodology, we only approximate its ideal form.
Given the current lack of scheduled group meeting times, it is very unlikely that our

206 M. Wainer

development groups actually use pair programming for all production code. The lack
of time also results in fewer iterations than would be desirable and less refactoring.
The general success of XP encourages us to seek out a way to expand the contact
hours scheduled for the course. We can also achieve the effect of more time if
students come to their senior year already having been exposed to practices such as
pair programming and test first development. Pushing these practices down into
lower-level courses seems to be a fruitful path to explore.

6 Summary

Teaching software design and development using a methodology based upon Extreme
Programming is certainly viable and has many positive points. Others [9, 10] have
also come to this favorable conclusion. Extreme Programming allows students to very
quickly begin a development experience that increases their knowledge of program-
ming, incorporates best practices in software development, and builds communication
and team work skills.

Adjustments must be made to the traditional software development course format
when using XP as the basis for a “learn by doing” course. In our case we switched the
format to two hours of lecture and two hours of lab spread out over four days each
week. The course is very much oriented around the experience of building software.
Lectures are sensitive to the current needs of the students in lab. Lectures are used to
provide examples (code spikes, UML diagrams, software patterns) in a way which
teaches a concept and also leads the students towards concepts they need to solve
their project development problems.

A shortage of time and lack of a permanent workspace affects how we try to imple-
ment XP. The notion of story points is scaled down to something on the order of an
hour or so. This must be accounted for in the selection of suitable projects. Our devel-
oper groups begin with three or four students. During the final project, the class as a
whole merges into one larger group (from the three or four original groups) increasing
the number of story points available to the customer.

More time and access to more appropriate space would certainly better support pair
programming, a practice which students now experience to only a limited degree.
Communications both amongst the student developers and the customers would also
be enhanced. Even so, students learn a great deal by working in groups especially
about communication. The course forces them to deal with resolving ambiguity and
uncertainty and allows them to feel the consequences of failures to do so.

The experience using XP so far has been positive and the promise for better results
in the future are very hopeful. Introducing changes to the course format to support a
more studio-like experience to increase the time and improve the work environment
should be explored. Even minor changes can make significant improvements. Support
for major changes should grow as XP proves that it is not a fad. As this happens, we
should see more best practices from XP incorporated throughout the computer science
curriculum. Additional courses such as “Test Driven Development” and “Advanced
XP Software Development” are also possibilities (both would help to mix in more
experienced students into project workgroups).

Adaptations for Teaching Software Development with Extreme Programming 207

References

[1] Cockburn, Alistair: Agile Software Development, Addison-Wesley (2002)
[2] Astels, David, Miller, Granville, Novak, Miroslav: A Practical Guide to eXtreme

Programming, Prentice Hall PTR (2002)
[3] Beck, Kent, Extreme Programming Explained, Addison-Wesley (2000)
[4] Beck, Kent, Fowler, Martin: Planning Extreme Programming, Addison-Wesley (2001)
[5] wiki: ExtremeProgrammingCorePractices, http://c2.com/cgi/

wiki?ExtremeProgrammingCorePractices (2003)
[6] Williams, Lauire, Upchurch, Richard: In Support of Student Pair-Programming, SIGCSE

‘01 Proceedings, SIGCSE Bulletin, Vol 33, No. 1, pp327–331 (2001)
[7] Williams, Lauire, Kessler, Robert: Pair-Programming Illuminated, Addison-Wesley

(2003)
[8] Beck, Kent: Test-Driven Development by Example, Addison-Wesley (2003)
[9] Wilson, Dwight: Teaching XP: A Case Study, 2001 XP Universe Conference Papers,

http://www.xpuniverse.com/pastXpu (2001)
[10] Johnson, D., Caristi, J.:Extreme Programming and the Software Design Course, 2001 XP

Universe Conference Papers, http:// www.xpuniverse.com/ pastXpu (2001)
[11] Jia, Xiaoping: Object-Oriented Software Development Using Java, 2nd Ed., Addison-

Wesley (2003)
[12] netbeans.org: http://www.netbeans.org/ (2003)
[13] ant.apache.org: http://ant.apache.org/ (2003)
[14] junit.org: http://junit.org/index.htm (2003)
[15] cvshome.org: http://www.cvshome.org/ (2003)

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, p. 208, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Workshops at XP/Agile Universe 2003
Introduction

Grigori Melnik, Workshops Chair

University of Calgary
melnik@cpsc.ucalgary.ca

The goal of the workshops is to provide a forum to engage in discussions that aim to
advance the state of agile software development methods. This year’s workshops have
two major themes. One is looking at agile methods from the perspective of creating a
business value (The Data Workshop, How to Maintain and Promote Healthy Agile
Culture, Agile Best Practices for Embedded Software Development). The other theme
is the practice of agile software development which is represented by two workshops
that will engage the participants in a variety of interactive activities and in actual
software development (Exploring Programmer Tests and XPFest).

The workshop on Empirical Evaluation of Agile Processes (Grigori Melnik, Adam
Geras, Laurie Williams) (blessed as “The Data Workshop” by Ron Jeffries) drew
much interest of both academia and industry at the last year’s conference. It generated
a worthy debate on the notion of “business value”. The intent this year is to explore it
further.

The workshop on How to Maintain and Promote Healthy Agile Culture (David
Hussman, Michael Feathers) indirectly addresses the issues that effect the business
value created by agile teams, as it looks into the dynamics of agile teams and how to
sustain them in the long run. Agile team integration into other cultures with poten-
tially conflicting agendas and operational modes is an equally important topic of dis-
cussion.

The modern convergence of telecommunication, electronics and information tech-
nologies poses a great deal of new challenges to embedded systems development. Ag-
ile Best Practices for Embedded Software Development (James Grenning,
Ward Cunningham, Dave Thomas) focuses on the issues of applying agile methods
effectively to embedded software development.

Most participants from the past XPFests prized the hands-on experience provided
by the workshop. During this one and a half day practicum, participants will work on
a live project with a real customer. The practicum’s result should be “clean code that
works.” Whether you are a beginner and would like to get a taste of XP or an experi-
enced XPer, XPFest will allow you to learn from recognized mentors (Adam Wil-
liams, Brian Marick, Rob Mee, Roy Miller, Ward Cunningham), share ideas and have
fun. Observers are also welcomed.

Exploring Programmer Tests Workshop (J.R. Rainsberger, Ron Jeffries, Rick
Mugridge) focuses on test-driven development. It invites the enthusiasts to advance
the art of writing programmer tests through shared experience, practical advice and
new techniques.

Overall, all workshops will provide insight into future research directions and con-
tribute to a better collective understanding of agility and wider adoption of agile
methods.

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, p. 209, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Workshop on Agile Development for Embedded Software
Development

Organizers
James Grenning

grenning@objectmentor.com

Ward Cunningham
ward@c2.com

Dave Thomas
dave@bedarra.com

Summary

Embedded software development suffers from many of the same problems of tradi-
tional non-embedded software. In addition embedded software has other difficulties
and complexities over traditional software development, such as limited resources,
critical timing constraints, late integration with target hardware and separate environ-
ments for development and target execution.

This workshop is looking to bring together developers, managers and customers
with experience in embedded software that have used traditional or agile approaches
for specifying, testing and developing embedded software. We are also interested in
position papers that discuss perceived challenges that must be addressed by Agile
methods so they can be effectively applied in embedded software development teams.
We are interested in practices used by embedded systems developers to effectively
develop embedded software iteratively, on-time, with high quality.

Goals

• Share experience and best practices used in the development of embedded software
• Identify embedded development issues and agile approaches to dealing with those

issues
• Share experience in practices that have low overhead and contribute to successful

product delivery

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, p. 210, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Workshop on How to Maintain and Promote Healthy
Agile Culture

Organizers
David Hussman

david.hussman@sgfco.com

Michael Feathers
mfeathers@objectmentor.com

Summary

Though XP often works well initially, creating, maintaining, and nurturing a healthy
XP environment is key to the success of any XP project. This challenge is often quite
difficult as a project’s culture is affected by many forces; project size, project dura-
tion, varying skills sets, egos, schedules, and external project dependencies are just a
few issues that must be addressed when accessing and maintaining the health of an
XP project.

Goals

• Further the importance of culture and the way in which it relates to the success of
agile projects (and the growth and adoption of agile practices).

• Create a forum to identify common cultural issues associated with agile projects
• Create a collection of project health measurements and potential solutions
• Correlate the workshop findings into a publishable document

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, p. 211, 2003.
© Springer-Verlag Berlin Heidelberg 2003

2nd International Workshop on Empirical Evaluation of
Agile Methods (“The Data Workshop”)

Organizers
Grigori Melnik, University of Calgary

melnik@cpsc.ucalgary.ca

Laurie Williams, North Carolina State University
williams@csc.ncsu.edu

Adam Geras, University of Calgary
ageras@ucalgary.ca

Imagine the benefits of knowing that an XP project expends more effort
understanding software requirements than does a team using a typical traditional, or
waterfall approach. Imagine the benefits of being able to predict that for this
particular combination of customer, product, and project team, agile modeling is
going to benefit the team more than a strict XP implementation.

As compared to last year, agile methods are increasingly closer to the mainstream.
This means that more organizations require support and more detailed understanding
of how agile methods will affect their development teams. In addition, these
organizations want to assess the customer value that the teams deliver through agile
practices. This workshop builds on the success of the 1st Workshop on Empirical
Evaluation of Agile Methods at XP/Agile Universe 2002 in Chicago.

The main goal of the workshop this year is to explore, through measurement, the
meaning and indicators of business value delivered by agile teams. This also means 1)
providing input for software engineering decision support; 2) determining the
situations when applying agile methods would be beneficial; 3) raising awareness and
visibility of the competitive advantage of agile teams; and 4) planning and budgeting
for a software development effort that involve agile methods. The intent is to bring
together practitioners and academics who are interested in discussing the current state
of ongoing empirical research efforts in agile methods.

Examples of the thematic questions that the workshop participants will discuss:
• What empirical results already exist?
• What key areas/aspects of agile methods should we be studying empirically?
• How do we measure business value delivered per unit time?
• What existing software measures and processes satisfy our data requirements?
• What is the process of collecting empirical data?
• How one remains agile while collecting data?
• Who will use the measurement results? For what purpose?

Exploring Programmer Tests

J.B. Rainsberger1, Ron Jeffries2, and Rick Mugridge3

1 Diaspar Software Services
jbr@diasparsoftware.com
2 www.XProgramming.com
ronjeffries@acm.org

3 University of Auckland, NZ
r.mugridge@auckland.ac.nz

Abstract. This workshop focusses on Programmer Tests as defined in Test-Driven
Development and the XP literature. Such tests are written by programmers to
drive the development of software, demonstrate step-by-step progress towards the
completion of a task and provide a safety net for refactoring. We explore specific
strategies and techniques that participants can apply in their work in addition to
considering the "big picture" of testing.

1 Introduction

The spotlight on XP in 2002 and 2003 has been on testing. This began with XP/Agile
Universe 2002, where one of the unofficial themes was "Where do Testers Fit in to XP?"

As programmers get better at test driving their code from the inside, skilled testers
can spend more time bringing their knowledge and experience to bear on driving out
obscure defects. Our interest is in exploring how programmers can improve software
development and the quality of the code they deliver to skilled testers.

2 Workshop

The goal of the workshop is to advance the art of writing programmer tests through the
sharing of experience, practical advice and techniques.

Enthusiasts and practitioners of test-oriented programming are invited to participate
to explore issues related to programmers writing tests. Participants will share their ex-
periences and learn through multiple group discussions on the topics that interest them
most.

Possible topics include:

– The role of Programmer Tests
– Programmer Testing Strategies. Eg, selecting the next test in TDD.
– Programmer Testing Techniques. Eg, introducing tests to legacy code.
– Programmer Testing Tools and Frameworks. Eg, XUnit extensions and Fit.
– The role of testers in XP
– Programmer Tests for “non-functional” concerns: execution speed, response time,

security, scalability, memory footprint, logging, etc.
– Let’s write some tests!

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, p. 212, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

F. Maurer and D. Wells (Eds.): XP/Agile Universe 2003, LNCS 2753, p. 213, 2003.
© Springer-Verlag Berlin Heidelberg 2003

XPFest

Organizers
Ward Cunningham
ward@c2.com

Adam Williams
awilliams@rolemodelsoftware.com

Brian Marick
marick@testing.com

Rob Mee
robmee@ieee.org

Roy Miller
rmiller@rolemodelsoft.com

Summary

The two previous XP/Agile Universe conferences have included an XPFest, where
XP practitioners and people new to XP could experience using all the practices. This
tradition is continued.

This year’s XPFest is similar to the ones in previous years. We will still use and
explore all the practices. But our primary goal this year is to focus more on customer
testing. Customer testing is a challenge for most teams, partially due to lack of under-
standing, partially due to lack of tools. We hope to help participants with both.

Goals

• Give those who have never tried eXtreme Programming in its entirety a chance to
do just that

• Help practitioners understand customer testing and use it effectively
• Explore “the simplest customer testing tool that could possibly work” (FIT)

Author Index

Alles, Micah 120
Andrea, Jennitta 73, 111
Auer, Ken 35

Baheti, Prashant 129
Balik, Suzanne 185
Bedoll, Robert 25
Boehm, Barry 1
Bohnet, Ralph 111

Crosby, David 120
Cunningham, Ward 209, 213

Erickson, Carl 120

Feathers, Michael 210
Fenwick, James B. Jr. 162
Ferzli, Miriam 185
Fredrick, Carla 9

Geras, Adam 211
Grenning, James 209

Hazzan, Orit 51
Hussman, David 210

Jackson, Anne 129
Jeffries, Ron 212
Jen, Dennis 129

Lorrai, Paolo 151

Marchesi, Michele 151
Marick, Brian 213
Marsiglia, Michael 120
Maurer, Frank 142, 172
Meade, Erik 35
Mee, Rob 213

Melnik, Grigori 172, 208, 211
Meszaros, Gerard 73, 111
Miller, Carol 185
Miller, Roy 213
Mugridge, Rick 212

Nagappan, Nachiappan 129, 185
Nelson, Rolf 91

Ou, Rong 82

Palmer, Ralph 120
Petlick, Julie 185
Pinna, Sandro 151

Rainsberger, J.B. 212
Read, Kris 142
Reeves, Gareth 35
Reifer, Donald J. 161

Scotland, Karl 18
Serra, Nicola 151
Smith, Shaun M. 73
Stotts, David 129

Thomas, Dave 209
Tomayko, Jim 51
Turner, Richard 1

Wainer, Michael 199
Wenner, Robert 96
Wiebe, Eric 185
Williams, Adam 213
Williams, Laurie 129, 185, 211
Wright, Graham 43

Zimmer, J Adrian 62

	Front matter
	Chapter 1
	The Home Grounds for Agile and Disciplined Methods
	The Five Critical Decision Factors
	A Stepwise Approach for Balancing Agility and Discipline
	Summary
	Biographies

	Chapter 2
	The First Project
	Growing the Team
	Integrating the Development
	Managing Client Needs

	The Second Project
	A New Lab
	Additional Changes

	Lessons Learned
	Lesson 1: Horizontal Separation Is Faster
	Lesson 2: Pairing Works
	Lesson 3: Hard and Fast Rules Are Good
	Lesson 4: Design Team Promotes Connectivity within between Labs

	Conclusion
	Information and Questions

	Chapter 3
	Introduction
	Projects
	Customers
	Disciplines

	Release Planning
	Iteration Planning
	Tracking
	Example
	Conclusion
	Biography

	Chapter 4
	The Environment
	Software Development within BCA
	The Engineering Problem – Airplane Wiring

	The ‘Heavy-Weight Development’ Story
	The Project
	Lessons Learned

	The Next Attempt
	The IS Challenge
	The IS Requirements

	Our Agile Approach
	Implementation
	The Customer Results
	The Tool Results

	Ingredients for Success
	Key Factors
	The Limitations
	Some Interesting Social-Political Issues

	Summary – Real–World Success vs. Real-World Failure

	Chapter 5
	Introduction
	XP & Values
	Defining XP
	What about Rules?
	The Rules of XP
	Bending the Rules
	Conclusions

	Chapter 6
	Introduction
	ISO 9001 Requirements
	Some Common Misconceptions
	Managing a Large Team
	Bluesky – A Virtual White Board
	Achieving ISO 9001 Certification
	Mapping XP to ISO 9001:2000
	Fulfilling More Stringent Certification Requirements
	Conclusions

	Chapter 7
	Introduction
	Reflective Practice
	Reflective Practice in eXtreme Programming Practices Card
	Team
	Customer
	Code

	Conclusion

	Chapter 8
	Introduction
	A Subjective Note on Refactoring
	Fowler’s Guidelines for Refactoring

	Some Graph Theoretical Models and Quality Indicators
	Control Flow Graph
	Class Uses Graph
	Data Cobweb Graph
	Method Call Graph

	Making It Work
	Inheritance
	The Human Factor

	Conclusion
	Afterword
	Biography

	Chapter 9
	Introduction
	History
	Economics of Test Automation

	Bad Smells in Test Code
	Bad Smells – Code
	Bad Smells – Behavior
	The Trouble with Refactoring of Tests
	Beyond the Refactoring of Smells

	The Test Automation Manifesto
	Test Automation Patterns
	Readability Patterns
	Robustness Patterns
	Reuse Patterns
	Other Patterns

	Conclusion

	Chapter 10
	Introduction
	An Example
	Lessons Learned
	Variations
	New Projects with Existing Database Schema
	Existing Code Base
	Acceptance Tests and Integration Tests

	Limitations
	Stored Procedures and Triggers
	Database Idiosyncracies

	Conclusion
	Appendix: Sample Build File

	Chapter 11
	Introduction
	How to Use This Checklist
	Normal Test Coverage
	Error Handling
	Test Hygiene
	Miscellaneous Quality Issues
	Conclusion

	Chapter 12
	JNI Testing Basics
	Brief JNI Basics
	Test Scope
	First Try

	It's Ugly
	Argument Abuse
	Errors, Not Failures
	Setters and Getters

	Bringing Together What Belongs Together
	Calling Home
	More Test Cases
	Mocking Everything

	The Hard Work
	More than One
	Native Cleanup
	Troubleshooting

	Summary

	Chapter 13
	Introduction
	Catch-22 of XUnit-Based Testing
	Looking for Alternatives to XUnit

	Issues with R&PB Test Automation
	The “Fragile Test” Problem
	Agile Project Issues

	Understanding Test Automation Choices
	Approaches to Test Automation
	Common Combinations

	Implementing R&PB Test Automation
	Using Commercial R&PB Tools
	Building R&PB into an Application
	Test-First Development with R&PB
	Critical Success Factors

	Applicability
	Conclusion

	Chapter 14
	System Testing
	Automated GUI Testing

	The Haste Environment
	Haste Abstractions
	Narcitecture
	Pilots and Droid

	Example and Experience
	CCRT Application
	Restricted Configuration Story
	Customer Perspective

	Conclusion

	Chapter 15
	Introduction
	Background and Related Work
	Virtual Teaming
	Prior Distributed Pair Programming Results
	Technical Infrastructure Considerations for dPP

	Spring 2002 Comparative Study
	Fall 2002 Case Study
	Observations on the dPP Technical Infrastructure

	Lessons Learned
	Advantages of dPP over Co-located PP
	Disadvantages of dPP Compared to Co-located PP

	Conclusions and Future Work

	Chapter 16
	Introduction
	Concept
	The Tool:COACH-IT
	State of Implementation
	Future Work
	Conclusion and Potential Problems

	Chapter 17
	Introduction
	How XP Gathers Requirements and Manages the Development
	Defining the Requirements of the Tool
	The Implementation of XPSwiki
	Using an XPSwiki
	Results and Conclusions

	Chapter 18
	Chapter 19
	Introduction
	Related Work
	Approach
	The Small Project
	The Medium Project
	The Large Project
	Project Miscellany

	Results
	Conclusion

	Chapter 20
	Introduction
	Why Teach Agile Methods?
	Courses and Student Populations
	Student Perceptions Study Overview
	Empirical Data
	Lessons Learned
	XP in General
	Practice-Specific and Implementation Lessons

	Summary and Future Work

	Chapter 21
	Introduction
	Pair Programming
	Experiment
	Quantitative Results
	Academic Equivalence
	Success Rates
	Attitude towards Pair Programming
	Performance of Paired Students in Solo Programming Courses in Future Semesters

	Qualitative Results
	Students
	Lab Instructors

	Conclusions and Future Work
	Students
	Lab Instructors
	Conclusions and Future Work

	Chapter 22
	Introduction
	Relationship to Previous Work

	Course Description
	Extreme Programming: Difficulties and Adjustments in Applying It to the Classroom
	Development Team Experience
	Limits of Time
	Absence of a Permanent Workspace

	Teaching Software Development: Adjustments to Better Fit Extreme Programming
	Impressions of Teaching Software Development Using Extreme Programming
	Summary

	Chapter 23
	Chapter 24
	Summary
	Goals

	Chapter 25
	Summary
	Goals

	Chapter 26
	Chapter 27
	Introduction
	Workshop

	Chapter 28
	Summary
	Goals

	Back matter

