
Orit Hazzan and Yael Dubinsky

Agile Software
Engineering

1 3

Orit Hazzan, BSc, MSc, PhD, MBA Yael Dubinsky, BSc, MSc, PhD

Department of Education in Technology Department of Computer Science

and Science Technion – Israel Institute

Technion – Israel Institute of Technology of Technology

Haifa, Israel Haifa, Israel

Series editor

Ian Mackie, �Ecole Polytechnique, France and University of Sussex, UK

Advisory board

Samson Abramsky, University of Oxford, UK

Chris Hankin, Imperial College London, UK

Dexter Kozen, Cornell University, USA

Andrew Pitts, University of Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Denmark

Steven Skiena, Stony Brook University, USA

Iain Stewart, University of Durham, UK

David Zhang, The Hong Kong Polytechnic University, Hong Kong

Undergraduate Topics in Computer Science ISSN 1863-7310
ISBN: 978-1-84800-198-5 e-ISBN: 978-1-84800-199-2
DOI: 10.1007/978-1-84800-199-2

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008933449

Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted

under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or

transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the

case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing

Agency. Enquiries concerning reproduction outside those terms should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a

specific statement, that such names are exempt from the relevant laws and regulations and therefore free for

general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information

contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that

may be made.

Printed on acid-free paper

Springer ScienceþBusiness Media

springer.com

Preface

Overview and Goals

The agile approach for software development has been applied more and more

extensively since the mid nineties of the 20th century. Though there are only about

ten years of accumulated experience using the agile approach, it is currently

conceived as one of the mainstream approaches for software development.

This book presents a complete software engineering course from the agile

angle. Our intention is to present the agile approach in a holistic and comprehen-

sive learning environment that fits both industry and academia and inspires the

spirit of agile software development.

Agile software engineering is reviewed in this book through the following three

perspectives:

l The Human perspective, which includes cognitive and social aspects, and

refers to learning and interpersonal processes between teammates, customers,

and management.

l The Organizational perspective, which includes managerial and cultural

aspects, and refers to software project management and control.

l The Technological perspective, which includes practical and technical aspects,

and refers to design, testing, and coding, as well as to integration, delivery, and

maintenance of software products.

Specifically, we explain and analyze how the explicit attention that agile

software development gives these perspectives and their interconnections, helps

it cope with the challenges of software projects. This multifaceted perspective on

software development processes is reflected in this book, among other ways, by

the chapter titles, which specify dimensions of software development projects

such as quality, time, abstraction, and management, rather than specific project

stages, phases, or practices.

To share with the readers this multifaceted perspective, we use the Human,

Organizational, and Technical (HOT) scale for
HOT

software development approaches.

For example, when we refer to teamwork or abstraction levels, we emphasize the

Human perspective; when software management issues are addressed, the

Organizational perspective is emphasized; similarly,
HOT

when the actual perfor-

mance of test-driven development is described, the Technological aspect is

highlighted. When the HOT? sign appears, the readers are invited to suggest

their own HOT perspective.

Agile software development values these
HOT

three perspectives. Therefore, in

many cases, more than one perspective is illuminated by the agile approach with

respect to a specific topic. Yet even when more than one perspective is significant

with respect to a specific topic, we discuss from time to time only one or two main

perspective(s), and the readers are invited to complete the picture.

The book is based on the authors’ comprehensive experience of teaching and

implementing agile software development over the past six years. A course on

agile software engineering has been shaped during these years, in an iterative

process that was accompanied by an ongoing research project. This course is

presented in this book. In parallel to the course creation and shaping process, the

agile approach has emerged and spread, becoming one of the worldwide main-

stream approaches for software project management.

Organization and Features

This textbook guides a fourteen-week/session course on software engineering

from the agile perspective and can be used on a weekly basis. It is intended for

all who practice, research, teach, and learn software development both in

academia and industry. It discusses how agile teams live and function in software

development environments, how they achieve their goals, and how they act

professionally in their environments. Specifically, the themes presented in the

book, such as teamwork, time, quality, learning, trust, and culture, are reviewed

from human, organizational, and technological perspectives, at the individual,

team, and organizational levels, and are illustrated with case studies taken from

industry and academia.

The fourteen chapters of the book are organized in three iterations. This

structure enables us to revisit the various subjects several times during the course,

viii Preface

as well as to guide the development of a one-release software product. Table 1

presents the book’s structure book and the topic of each chapter.

Each chapter includes a theoretical approach to a specific topic, a section that

refers to the given topic in learning environments, and a variety of questions and

tasks for further elaboration.

The Academic Community

This book on agile software engineering can be used by instructors, academic

coaches, and students as a textbook during a fourteen-week semester, either for

the commonly titled ‘‘Introduction to Software Engineering’’ course or the ‘‘Soft-

ware Engineering Methods’’ course.

The course is based on two main components that progress in parallel and are

closely correlated with each other. The first component is theoretical and can be

used in the lecture hall or the class; the second is software project development

guided by the agile approach that takes place in a physical learning environment

that we call a studio or lab.

This book is written for the entire course community---students, instructors,

and academic coaches. Students are the learners who become familiar with the

agile approach both from a theoretical perspective (in the lectures) and from a

practical perspective (in the studio). Instructors are the teachers of the course’s

theoretical ideas, who usually teach in a class or in a lecture hall; yet, interactive

teaching and active learning can be facilitated in this setting as well. The aca-

demic coaches are the practitioners who guide the software project development

Table 1. Book structure

Iteration Chapter # Topic

I 1 Introduction to Agile Software Development

2 Teamwork

3 Customers and Users

4 Time

5 Measures

6 Quality

7 Learning

II 8 Abstraction

9 Trust

10 Globalization

11 Reflection

III 12 Change

13 Leadership

14 Delivery and Cyclicality

Preface ix

in the studio (we elaborate on this role in Chapter 1, Introduction to Agile

Software Engineering).

The positive results of agile software projects, as elaborated throughout the

various chapters of the book, are not the only motive for this course, which

presents the field of software engineering from the agile perspective. There are

three additional characteristics of the course, which are especially relevant when

it is taught in academia.

First, the agile approach was developed by practitioners working in the soft-

ware industry, and has become mainstream in that industry. Therefore, it makes

sense to articulate its nature and main concepts to prospective software engineers

in the framework of a course that deals with software engineering.

Second, teaching a software engineering course within the framework of agile

software development emphasizes a comprehensive image of the field. This is

because agile software development explicitly addresses human, organizational,

and technological aspects of the software development process with respect to all

players participating in that process. Thus, the agile approach serves as an

opportunity to draw this comprehensive and complex picture of the field.

Third, according to the Software Engineering 2004 Curriculum, developed by

the IEEE Computer Society and the Association for Computing Machinery Joint

Task Force (see http://sites.computer.org/ccse/SE2004Volume.pdf), software

engineering students should acquire additional skills beyond the technical

and scientific ones. One illustrative example is teamwork-related skills. Since

teamwork is one of the basic ideas of agile software development, it is only natural

to integrate teamwork-oriented skills in the teaching and learning process of

software engineering from the agile perspective. Furthermore, since it is natural

to teach agile software development in a teamwork-oriented environment, there is

no need to introduce the topic of teamwork artificially; rather, a teamwork-based

learning environment can be used to teach this topic. This element is emphasized

mainly, but not only, in the studio element of the course.

Suggested Uses in an Academic Environment

Each chapter presents a full week of the course: two weekly lecture hours and a

four-hour weekly studio meeting. The first part of each chapter includes contents

suitable to be presented in the lecture. This part usually presents material beyond

what it is possible to teach in a two-hour lecture. Therefore, it is advisable not to

try to deliver all the content in two hours; rather, we suggest selecting from each

chapter the most relevant topics to be discussed with each particular class of

students. It is also advisable to encourage in the lectures some active learning

elements, as is suggested in the various chapters. The second part of each chapter

x Preface

addresses the teaching and learning of the chapter topic. It presents teaching and

learning principles and the activities conducted in the studio each week.

As preparation for the next week’s lectures and studio meeting, instructors

and academic coaches can ask the students to read the relevant chapter and to

work on selected activities presented throughout the body of each chapter. The

students’ preparation for the lecture will also partially solve the time limitation

problem of addressing all the ideas presented.

Finally, though the book presents a full fourteen-week semester course, which

consists of two weekly lecture hours and four-hour weekly studio meetings, it is

possible to teach only one component of the course. The material provided in this

book enables each instructor/academic coach to make the needed adjustments.

The Industrial Community

Since agile development has become one of the mainstream approaches for mana-

ging software projects, more and more software organizations of different sizes and

types ask themselves whether the agile approach fits them. Even when it is found

that agile software development is relevant for a given organization, questions such

as the following are usually asked: How can we manage a transition to the agile

software development process? How can our organization cope with the changes

required for such a transition? How can we teach agile software development to all

the software practitioners and all the other software project’s stakeholders?

This book, when used in an industrial setting, aims to answer these and other

relevant questions which software organizations face when dealing with the

transition to agile software development. For example, in Chapter 12, Change,

we discuss how to initiate a transition process to agile software development in an

organization. When the organization has already transitioned to agile software

development, the book can also be used for answering questions related to the

actual implementation of agile software development in the organization. For

example, in Chapter 2, Teamwork, we discuss how teams can be formed to exploit

their potential, to avoid conflicts, and to solve dilemmas.

Suggested Uses in an Industrial Environment

This book can be used in industrial settings by coaches of software teams, soft-

ware team leaders, and facilitators of agile software development workshops, both

for the teaching and learning of agile software development, as well as for its

implementation. The book can also be used by interested software practitioners

who are not necessarily within a formal teaching framework.

Preface xi

We propose two ways to use the book in industrial environments.

First, the book can be used for a course which is based on 14 sessions. This

course format fits for organizations that wish to expand their members’ profes-

sional knowledge by becoming familiar with agile software development, without

necessarily implementing the agile approach. If the course also contains the

development of a software project using the agile approach, which in academia

takes place in the studio, a new software system should be developed for learning

process purposes, with respect to which the different activities are facilitated. The

development of a new software project should be undertaken whether the course is

taught to a real team or to a group of people from different teams or organization.

In the case of a real team, the development of another project than the team’s real

project will enable the team not to confuse their current work habits with agile

practices.

Second, for organizations which wish to start implementing agile software

development right away or in the near future, we suggest that the agile approach

be taught first in a short format of a two-day workshop to a team that has been

carefully selected to start the transition to agile software development within the

organization. Chapter 12, Change, elaborates on such a transition process,

explains the motivation and rationale for this intense workshop format, and

outlines the workshop schedule. After the team members have participated in

that workshop, and when the team starts implementing agile software develop-

ment with its real project, the book can be used for clarifications and elaborations.

In both cases, as well as in other learning environments in industry, the teaching

and learning principles presented in the book can naturally be applied.

Acknowledgments

We would like to thank all the practitioners, researchers, students, and mangers,

both in academia and in the software industry, who during the past six years

shared with us their professional knowledge, experience, thoughts, and feelings

with respect to agile software development. They all contributed to our under-

standing of the nature of agile software engineering and fostered our shaping of

the approach presented in this book.

xii Preface

Contents

1. Introduction to Agile Software Development 1
1.1 Overview . 1
1.2 Objectives . 2
1.3 Study Questions . 2
1.4 Three Perspectives on Software Engineering 3
1.5 The Agile Manifesto . 4

1.5.1 Individuals and Interactions over Processes and Tools. . 5
1.5.2 Working Software over Comprehensive Documentation 6
1.5.3 Customer Collaboration over Contract Negotiation. . . . 7
1.5.4 Responding to Change over Following a Plan 7

1.6 Application of Agile Software Development 8
1.7 Data About Agile Software Development 13
1.8 Agile Software Development in Learning Environments 15

1.8.1 University Course Structure . 15
1.8.2 Teaching and Learning Principles. 15
1.8.3 The Studio Environment. 17
1.8.4 The Academic Coach Role . 18
1.8.5 Overview of the Studio Meetings 19
1.8.6 Launching the Project Development in the Studio 20

1.9 Summary and Reflective Questions . 23
1.10 Summary. 24

References . 24

2. Teamwork . 25
2.1 Overview . 25
2.2 Objectives . 26
2.3 Study Questions . 26
2.4 A Role Scheme in Agile Teams . 27

2.4.1 Remarks on the Implementation of the Role Scheme . . . 31
2.4.2 Human Perspective on the Role Scheme 32
2.4.3 Using the Role Scheme to Scale Agile Projects 34

2.5 Dilemmas in Teamwork . 34
2.6 Teamwork in Learning Environments . 36

2.6.1 Teaching and Learning Principles. 36
2.6.2 Role Activities . 37
2.6.3 Student Evaluation . 40

2.7 Concluding Reflective Questions . 42
2.8 Summary. 42

References . 42

3. Customers and Users . 45
3.1 Overview . 45
3.2 Objectives . 47
3.3 Study Questions . 47
3.4 The Customer . 48

3.4.1 Customer Role . 48
3.4.2 Customer Collaboration . 54

3.5 The User . 55
3.5.1 Combining UCD with Agile Development 57

3.6 Customers and Users in Learning Environments 61
3.6.1 Teaching and Learning Principles. 61
3.6.2 Customer Stories . 62
3.6.3 Case Studies of Metaphor Use. 62

3.7 Summary and Reflective Questions . 67
3.8 Summary. 68

References . 68

4. Time . 71
4.1 Overview . 71
4.2 Objectives . 72
4.3 Study Questions . 72
4.4 Time-Related Problems in Software Projects. 73

4.4.1 List of Time-Related Problems of Software Projects . . . 74
4.4.2 Case Study 4.1. Software Organizational Survey

from the Time Perspective . 75
4.5 Tightness of Software Development Methods 77
4.6 Sustainable Pace . 79

4.6.1 Case Study 4.2. An Iteration Timetable
of an Agile Team . 80

4.7 Time Management of Agile Projects . 81
4.7.1 Time Measurements . 81
4.7.2 Prioritizing Development Tasks 83

4.8 Time in Learning Environments. 86
4.8.1 The Planning Activity. 86
4.8.2 Teaching and Learning Principles. 88
4.8.3 Students’ Reflections on Time-Related Issues. 89
4.8.4 The Academic Coach’s Perspective. 89

xiv Contents

4.9 Summary and Reflective Questions . 90
4.10 Summary. 91

References . 91

5. Measures . 93
5.1 Overview . 93
5.2 Objectives . 95
5.3 Study Questions . 95
5.4 Why Are Measures Needed? . 95
5.5 Who Decides What Is Measured?. 96
5.6 What Should Be Measured? . 97
5.7 When Are Measures Taken?. 98
5.8 How Are Measures Taken? . 98
5.9 Who Takes the Measures? . 99
5.10 How Are Measures Used? . 99
5.11 Case Study 5.1. Monitoring a Large-Scale Project

by Measures . 100
5.11.1 Measure Definition . 100
5.11.2 Measure Illustration. 102

5.12 Measures in Learning Environments . 108
5.12.1 Teaching and Learning Principles 108
5.12.2 Measurement Activities . 109
5.12.3 Case Study 5.2. Role-Related Measures 111

5.13 Summary and Reflective Questions . 114
5.14 Summary. 114

References . 114

6. Quality . 115
6.1 Overview . 115
6.2 Objectives . 116
6.3 Study Questions . 117
6.4 The Agile Approach to Quality Assurance. 117

6.4.1 Process Quality . 119
6.4.2 Product Quality. 120

6.5 Test-Driven Development. 121
6.5.1 How Does TDD Help Overcome Some of the Problems

Inherent in Testing? . 122
6.5.2 Case Study 6.1. TDD Steps. 124
6.5.3 Case Study 6.2. Reflection on TDD 125

6.6 Measured TDD . 127
6.7 Quality in Learning Environments. 128

6.7.1 Case Study 6.3. Size and Complexity Measures 128

Contents xv

6.7.2 Case Study 6.4. Illustrating Measured TDD. 130
6.7.3 Teaching and Learning Principles|The Case

of Quality. 136
6.8 Summary and Reflective Questions . 137
6.9 Summary. 137

References . 138

7. Learning . 139
7.1 Overview . 139
7.2 Objectives . 140
7.3 Study Questions . 140
7.4 How Does Agile Software Development Support

Learning Processes? . 141
7.4.1 Agile Software Development from the Constructivist

Perspective. 141
7.4.2 The Role of Short Releases and Iterations in Learning

Processes . 142
7.5 Learning in Learning Environments. 144

7.5.1 Gradual Learning Process of Agile Software
Engineering . 145

7.5.2 Learning and Teaching Principle 146
7.5.3 The Studio Meeting|End of the First Iteration 147
7.5.4 Intermediate Course Review and Reflection 147

7.6 Summary and Reflective Questions . 152
7.7 Summary. 152

References . 152

8. Abstraction . 155
8.1 Overview . 155
8.2 Objectives . 156
8.3 Study Questions . 157
8.4 Abstraction Levels in Agile Software Development 158

8.4.1 Roles in Agile Teams . 158
8.4.2 Case Study 8.1. Abstraction During Iteration

Planning . 159
8.4.3 The Stand-Up Meeting . 161
8.4.4 Design and Refactoring . 162

8.5 Abstraction in Learning Environments 164
8.5.1 Teaching and Learning Principles. 165
8.5.2 Case Study 8.2. RefactoringActivity. 166

8.6 Summary and Reflective Questions . 169
8.7 Summary. 170

References . 170

xvi Contents

9. Trust . 171
9.1 Overview . 171
9.2 Objectives . 172
9.3 Study Questions . 172
9.4 Software Intangibility and Process Transparency 173
9.5 Game Theory Perspective in Software Development. 175
9.6 Ethics in Agile Teams . 179
9.7 Diversity . 183
9.8 Trust in Learning Environments . 186

9.8.1 Teaching and Learning Principle 186
9.9 Summary and Reflective Questions . 187
9.10 Summary. 188

References . 188

10. Globalization . 189
10.1 Overview . 190
10.2 Objectives . 190
10.3 Study Questions . 191
10.4 The Agile Approach in Global Software Development 191

10.4.1 Communication in Distributed Agile Teams 192
10.4.2 Planning in Distributed Agile Projects 193
10.4.3 Case Study 10.1. Tracking Agile Distributed

Projects . 193
10.4.4 Reflective Processes in Agile Distributed Teams 194
10.4.5 Organizational Culture and Agile Distributed

Teams . 195
10.5 Application of Agile Principles in Non-Software Projects 196

10.5.1 Case Study 10.2. Book Writing 196
10.6 Globalization in Learning Environments 197

10.6.1 Teaching and Learning Principles 197
10.6.2 An Agile Perspective on the Book/Course

Structure . 198
10.6.3 Case Study 10.3. Follow-the-Sun with Agile

Development . 199
10.7 Summary and Reflective Questions . 201
10.8 Summary. 202

References . 202

11. Reflection . 205
11.1 Overview . 205
11.2 Objectives . 206
11.3 Study Questions . 206
11.4 Case Study 11.1. Reflection on Learning in Agile

Software Development . 207

Contents xvii

11.5 Reflective Practitioner Perspective . 208
11.6 Retrospective . 210

11.6.1 The Retrospective Facilitator . 211
11.6.2 Case Study 11.2. Guidelines for a Retrospective

Session . 212
11.6.3 Application of Agile Practices in Retrospective

Sessions . 213
11.6.4 End of the Release Retrospective 215

11.7 Reflection in Learning Environments . 219
11.8 Summary and Reflective Questions . 219
11.9 Summary. 220

References . 220

12. Change . 223
12.1 Overview . 223
12.2 Objectives . 224
12.3 Study Questions . 225
12.4 A Conceptual Framework for Change Introduction 225

12.4.1 Changes in Software Requirements 227
12.4.2 Organizational Changes . 230

12.5 Transition to an Agile Software Development Environment . . . 234
12.5.1 Organizational Survey . 235
12.5.2 Case Study 12.1. A Report of an Organizational

Survey . 237
12.5.3 Case Study 12.2. Applying an Agile Process

to a Transition Process . 241
12.6 Change in Learning Environments . 244

12.6.1 Introducing the Teaching of Agile Software
Development . 244

12.6.2 Two-Day Workshop . 245
12.6.3 Two-Day Workshop Format for a Team of Academic

Coaches . 250
12.7 Summary and Reflective Questions . 251
12.8 Summary. 252

References . 252

13. Leadership . 253
13.1 Overview . 253
13.2 Objectives . 255
13.3 Study Questions . 255
13.4 Leaders . 256

13.4.1 Leadership Styles . 257
13.4.2 Case Study 13.1. The Agile Change Leader 258

13.5 Coaches . 264

xviii Contents

13.6 Leadership in Learning Environments . 264
13.6.1 Teaching and Learning Principles 265
13.6.2 Case Study 13.2. A Coaching Framework. 265

13.7 Summary and Reflective Questions . 273
13.8 Summary. 273

References . 273

14. Delivery and Cyclicality. 275
14.1 Overview . 275
14.2 Objectives . 276
14.3 Study Questions . 276
14.4 Delivery. 277

14.4.1 Towards the End of the Release 277
14.4.2 Release Celebration . 278
14.4.3 Reflective Session Between Releases 280

14.5 Cyclicality . 287
14.6 Delivery and Cyclicality in Learning Environments 288

14.6.1 The Delivery in the Studio . 288
14.6.2 Teaching and Learning Principles 290

14.7 Summary and Reflective Questions . 291
14.8 Summary. 291

References . 292

Epilogue . 293

Index . 295

Contents xix

1
Introduction to Agile Software

Development

Abstract

What is agile software development? Why is an agile perspective on software

engineering needed? What are the main characteristics of agile software develop-

ment? What can be achieved by agile software development processes? Does agile

software development form a pleasant and professional software development

environment? These are the main questions addressed in this introductory chap-

ter of the book. After reading this chapter, not only will you gain some insights

about agile software development in general, you will also understand the nature

of agile software development and be able to clarify how it establishes a profes-

sional software development environment in which software engineers are able to

express their skills and, at the same time, to produce quality software products. In

the section that deals with the learning of agile software development, we launch

the development of a software project, describe the studio as the development

workplace, and explain the development schedule. The ideas presented in this

chapter are further elaborated in the following chapters of the book.

1.1 Overview

This chapter introduces you to the world of agile software development. It does so

by discussing the main ideas that form the basis for the agile approach and the

main characteristics of agile software development. Data about agile projects are

also presented and explained.

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 1, � Springer-Verlag London Limited 2008

In general, agile software development offers a professional approach to soft-

ware development that encompasses human, organizational, and technological

aspects of software development processes.
HOT Specifically, the main ideas of agile software development are first introduced

by describing the Agile Manifesto and its implementations, and second by pre-

senting specific agile practices that enable agile teams to accomplish their devel-

opment task with high quality. This background enables us to explain the data we

present with respect to agile processes and products.

In the part of this chapter that deals with learning agile software development,

we launch the software development project that accompanies the entire book.

We describe the studio as the development workplace in academia and present the

development schedule.

This introductory chapter forms the basis for the understanding of the follow-

ing chapters of the book.

1.2 Objectives

l Readers will become familiar with the concept of software development

methods.

l Readers will become familiar with the concept of agile software engineering.

l Readers will understand the nature of the agile software development process.

l Readers will gain some practical notion of agile software engineering.

l Readers will get an overview of the subject taught in the book.

1.3 Study Questions

1. Based on your current experience in software development, specify the main

problems which you face in this process. Compare your experience with the

literature on software projects.

2. Describe the practices, processes, and guidelines that characterize your soft-

ware development.

3. Read the Agile Manifesto at http://www.agilemanifesto.org/. What can be

learned from this website about the agile software development movement?

About the people who initiated it? About the process itself? About the agile

software development environment?

2 1. Introduction

4. When did the agile approach emerge? What was the background of its emer-

gence and evolution?

5. What are the three main characteristics of agile software development? In

what ways does agile software development differ from other software devel-

opment approaches?

1.4 Three Perspectives on Software Engineering

Software engineering is the profession that applies scientific knowledge to the

construction of software products needed by customers. The scientific knowledge

in the case of software engineering comprises mathematics, computer science and

the specific domain that the developed software deals with. In order to achieve

their goals, software developers should possess professional knowledge and know

how to apply it. Different approaches to software engineering exist; this book

focuses on how the agile approach is applied.

One of the basic tools that developers need in order to accomplish their task is

a well defined engineering process described by a software development method.

A software development method is a set of activities and practices, as well as roles

and norms of behavior, derived from a set of professional aims, which are carried

out in a logical and specified order.

A software development method should address not only the technological

aspects, but also the work environment and the professional framework. Accord-

ingly, agile software engineering is reviewed in this book from the following three

perspectives:

l The Human
HOT

perspective, which includes cognitive and social aspects, and

refers to learning and interpersonal (teammates, customers, management)

processes.

l The Organizational
HOT

perspective, which includes managerial and cultural

aspects, and refers to the workspace and issues that extend beyond the team.

l The Technological
HOT

perspective, which includes practical and technical aspects,

and refers to how-to and code-related issues.

Specifically, we explain how the attention that agile software development

gives these aspects helps cope with the challenges of software projects. To high-

light this multifaceted perspective of the agile approach, we introduce the

Human, Organizational, and Technical (HOT) analysis scale for software develop-

ment. See Figure 1.1 for a schematic view of the HOT analysis framework.

1.4 Three Perspectives on Software Engineering 3

Tasks

1. With respect to each of the aspects mentioned above|human, organizational,

and technological|mention at least two topics related to software engineering

that in your opinion belong in that category.

2. Describe the development process you used for the last software project you

worked on. Analyze the process benefits and pitfalls according to the HOT

scale.

1.5 The Agile Manifesto

Figure 1.2 presents the Agile Manifesto. It was formulated by seventeen software

developers who gathered in February 2001 in the Wasatch Mountains of Utah to

try to find common ground for their perceptions of the software development

process and to formulate the common elements of what some of them had already

implemented in their different software organizations. The outcome of that meet-

ing was the Agile Manifesto, which presents an alternative approach to the

Software
Engineering

Organizational
perspective

Technological
perspectiveHuman

perspective

Figure 1.1 The HOT analysis framework for software engineering.

4 1. Introduction

software development process that had been applied during the past forty years,

from the early stages of the development of complex software systems.

The mere formulation of the Agile Manifesto implies that though there are

agreed upon common principles and ideas, they can be applied differently by

specific development methods. Indeed, the Agile Manifesto is applied by different

agile methods, such as Extreme Programming, SCRUM, DSDM, Adaptive Soft-

ware Development, Crystal, Feature-Driven Development, and others.

In what follows we examine the Agile Manifesto.

Task

If you are familiar with at least one agile method, during the following explanation

of the Agile Manifesto, analyze how it is applied by the agile method with which

you are familiar.

1.5.1 Individuals and Interactions over Processes and Tools

This principle encourages us to focus on the individuals
HOT

involved in the development

process, rather than on the process and/or the tools. Specifically, this principle

encourages software developers to give high priority to the people who participate

in the development process, as well as to their interaction and communication when

they develop, interact, think, discuss, and make decisions with respect to different

issues related to the software development process and environment. In other words,

according to this principle, one of the first considerations that should be taken into

account when a decision related to the development process is made, is the influence of

the decision’s outcome on the people who are part of the development environment as

well as on their relationships and communications.

We are uncovering better ways of developing

software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on

the right, we value the items on the left more.

Figure 1.2 Manifesto for agile software development.

1.5 The Agile Manifesto 5

For example, instead of investing effort in the maintenance of a development

method by using state-of-the-art hard-to-use tools with difficult-to-follow procedures

that result in a useless output, that effort should be channeled to the construction of

a development environment that enables each of the participants (teammates,

customers, management) to understand the development process, to become part

of it, to contribute to it, and to collaborate with all the other project stakeholders.

1.5.2 Working Software over Comprehensive Documentation

This principle affirms that the main goal of software projects
HOT

is to produce quality

software products. This idea has three main implications.

First, agile software development focuses on the development itself and the

creation of only those documents that are needed for the development process.

Some of these essential documents, depending on their characteristics and useful-

ness, may be posted on the wall of the agile collaborative workspace so that they

will be accessible to all the project stakeholders all the time.

Second, agile software development processes start the product’s actual devel-

opment (that is, coding) as soon as possible, in order to get some sense of the

developed product. This early development enables both the teammates and the

customers to improve their understanding of the developed product and to

proceed with the development process on a safer ground.

Third, from the customers’ perspective, this principle helps ensure that custo-

mers get a bugless high quality system that meets their requirements. This, of course,

has direct implication for the quality-related activities that agile teams perform.

As can be seen, this principle supports the first principle of the Agile Manifesto

by binding the people who participate in the development process with the actual

development process. Such a connection inspires a culture in which software

quality is one of the main values.

The importance of this principle is highlighted when its implications are com-

pared with those of development processes which postpone either the development

stage (sometimes for several years) or quality-related activities (mainly testing). In

the first case, the fact that production starts only after a lot of documentation has

been produced (which presumably, though not in practice, includes all the custo-

mer requirements), neglects the reality that software development is characterized

by many changes and is based on a gradual learning process. As a result, in many

cases, development that prepares in advance a lot of documentation without

starting the actual development, cannot provide the customer the needed system;

therefore, inconsistency exists between the project documentation and the

actual product. In the second case, the postponement of quality-related activities

leads to a situation in which the practitioners involved in the development process

6 1. Introduction

cannot cope successfully with the complexity of testing, either from a cognitive or a

managerial perspective (see also Chapter 6, Quality).

1.5.3 Customer Collaboration over Contract Negotiation

This principle changes the perception of the customer’s role
HOT

in software develop-

ment. It encourages agile software developers to base their work on ongoing and

daily contact with the customer. Such a close contact enables customers to cope

successfully with the changes that characterize software projects.

Human interrelationships, mainly between customer and management, are

emphasized by this principle of the manifesto. These interrelations in turn have

direct implications on the development team, which should employ specific prac-

tices to ensure this kind of relationship and communication. Such practices, when

employed on a daily basis, directly influence the culture of agile organizations.

This principle also points to a conceptual change with respect to the nature

and formulation of software product contracts.

Thus, by dealing with contract- and communication-related issues aimed at

ensuring that the customer gets the desired product, this principle of the Agile

Manifesto further supports the second principle of the Agile Manifesto.

1.5.4 Responding to Change over Following a Plan

This principle encourages agile software developers to establish
HOT

a process that

copes successfully with changes introduced during development, without com-

promising the high quality of the developed product. The rationale for this

principle is the recognition that customers cannot predict a priori all their

requirements; therefore, a process should be established in which the require-

ments as gradually understood by the customer can be shared with the team-

mates. Accordingly, agile software development allows the introduction of

changes in the developed product which have emerged from an improved under-

standing of the software requirements, without necessarily increasing the cost of

development. This process is explained mainly in Chapter 3, Customers and

Users, and Chapter 4, Time.

Tasks

1. Based on your personal experience with software development, for each

principle of the Agile Manifesto suggest a situation that shows how that

principle may influence actual software development processes and

environments.

1.5 The Agile Manifesto 7

2. Discuss the connections among the four principles of the Agile Manifesto.

Specifically, address how each principle supports and is supported by the

other principles.

3. Specify how the HOT perspectives are expressed in each of the four principles

of the Agile Manifesto and in the Manifesto as a whole.

1.6 Application of Agile Software Development

Based on common understandings encapsulated by the Agile Manifesto, the agile

approach is applied by several development methods, each one implementing the

main ideas of the agile approach according to its priorities, preferences, and

perceptions of what a software development method should look like.

In this section we introduce several of the basic practices of agile software

development that most of the agile methods apply to some degree. The term

practice means a specific activity that its application supports the principle(s) of

the development approach.

Task

While reading the following practice descriptions, for each of them:

l Analyze it from the HOT perspectives.

l Explain how it is derived from the Agile Manifesto.

Whole team. The practice of Whole Team means that the development

team (including all developers and the customer) should communicate in a face-

to-face fashion as much as possible. The practice is applied in several ways.

First, the development team is located in a collaborative workspace|a space

which supports and facilitates communication. Second, all team members partici-

pate in all the product presentations to the customer, hear the customer’s require-

ments, and are active in the actual planning process (see Chapter 3, Customers and

Users). Third, participants that traditionally belong to separate teams (e.g.,

testers and designers), are integrated into the development team and process.

In the Whole Team concept each team member has an additional role besides

that of developer (see Chapter 2, Teamwork). The rationale for this role distribu-

tion is that one person, usually the team leader, no matter how skilled he or she is,

cannot handle in a professional manner all of the essential and complex respon-

sibilities involved in software development. The distribution of responsibilities in

the form of roles helps to control and manage these responsibilities. In addition,

8 1. Introduction

this scheme ensures that all team members are involved in all parts of the

developed software, each from his or her role perspective.

Each day, during the development hours (see Chapter 4, Time),
HOT?

the team is

located in one space; in addition, each team member has a private space for

personal tasks and professional tasks that need to be carried out individually.

The walls of the development workspace serve as a communication means, con-

stituting an informative and collaborative workspace. The information posted on

the walls includes, among other relevant items, the status of the personal tasks

that belong to the current iteration and the measures taken. Thus, all the project

stakeholders can be updated at a glance at any time about the project’s progress.

In addition, the entire team holds daily stand-up meetings, which usually take

place in the morning. In these meetings, each team member presents in two or

three sentences the status of his or her development tasks and what he or she plans

to do during the day to come, with respect to both the development tasks and the

personal role.

Short releases. Agile software development processes are based on short

releases of about two months, divided into short iterations of one or two weeks,

during which the scope of what is to be developed in that iteration is not changed.

At the end of each iteration the software is presented to the customer and the

customer provides feedback to the team and sets the development requirements

for the next iteration.

The detailed plan of each short iteration is carried out during a
HOT?

full day|a

Business Day|which is specifically allocated for this purpose at the beginning of

each iteration (see Chapter 3, Customers and Users). In the Business Day all the

project stakeholders participate|customer, team members, users, management

representatives, representatives of related projects, and so on. The Business Day

includes three main parts: a presentation of what was developed in the previous

iteration, along with any relevant measures taken; a short reflective session in

which the development process performed so far is analyzed and lessons are

learnt; and the actual planning of the next iteration. At the end of the Business

Day, a balanced workload is ensured among all team members.

The nature of the activities that take place during the Business Day, and the

fact that a Business Day takes place every week or two, enables all the project

stakeholders to construct their knowledge related to the development product

and process gradually, based on what they see, hear, and perform during each

iteration. Specifically, during this process, the teammates improve their under-

standing of what should be developed, mainly because they hear the requirements

directly from the customer during the planning session.

Time estimations. In agile software development two important practices

are performed with respect to time estimation. First, the teammate who is in

charge of the development of a specific task also estimates the time needed for its

1.6 Application of Agile Software Development 9

development; this practice increases the team member’s responsibility and com-

mitment to the project. Second, development tasks are formulated in a way that

allows
HOT?

their time estimation to be set in hour resolution. This fact is important

because the greater a development task is, the harder it is to estimate its devel-

opment time, and vise versa: the smaller the time segment estimated, the more

accurate its estimation is. Consequently, the development pace can be planned

more precisely. This encourages a culture in which plans can be set and followed in

such a way that deadlines should not be postponed.

From the team perspective, since time estimations are performed during the

Business Day with full team attendance, all teammates know what each team

member has committed to in terms of development tasks and time estimations.

This fact increases the project’s transparency, and consequently, the teammate’s

responsibility to perform well. Also, the load balance that is ensured among all

team members further reinforces the trust and communication among them.

Measures. In order to navigate the development process so that a high

quality product is produced, agile software development processes are accompa-

nied by various measures about which all the project stakeholders decide accord-

ing to their needs. The importance attributed to these measures is expressed,

among other means, by a special role|that of tracker|assigned to one team

member, who is in charge of the measures.

Measures enable the team to improve the development process,
HOT?

and conse-

quently, the developed software. Measures also convey the message that the

development process should be monitored and that this monitoring should be

transparent to all participating developers. Chapter 5, Measures, further elabo-

rates on this practice.

Customer collaboration. Agile software development methods encourage

the customer to become part of the development process. The goal is to get

ongoing feedback from the customers and to proceed according to their needs.

This avoids the need for speculation, which may lead to incorrect working

assumptions.

This practice implies that in agile software development all
HOT?

team members

have access to the customer during the entire development process. This direct

communication channel increases both individual interactions and the chances

that the software requirements are communicated correctly. Consequently, it

helps the teammates to cope successfully with the system development process:

first, there is no need to speculate about the customer’s needs; second, the over-

head of introducing change at later stages is reduced significantly. The practice of

customer collaboration is elaborated in Chapter 3, Customers and Users.

Test-driven development. Test-driven software development encourages

developers to build automatic unit and acceptance tests.

10 1. Introduction

Unit tests are written prior to code writing in a gradual process: each step

starts with writing a specific test case followed by adding a small functionality

that lets the test be successful. This implies that thought must be given to the

development task before actual coding starts. It also helps control the develop-

ment process by clarifying what has been developed and tested so far.

Acceptance tests, which are defined by the customer and outline
HOT?

how each

functionality should be tested, clarify the requirements for the teammates and

lead to the development of a product that meets the customers’ needs.

An automatic testing process makes it possible to run tests effortlessly at any

stage of the development process, and to verify by regression tests that no

previous development was damaged as a result of new developments.

Thus, in agile software development, both unit and acceptance tests are inte-

grated within the development process itself, instituted by the teammate who

developed the code, and are not transferred to the responsibility of the quality

assurance department at a later stage. Consequently, the shift of responsibility to

another department, in most cases the quality assurance department, is eliminated.

Such a process reflects a culture in which quality is highlighted; it also clarifies

who is in charge of the testing of each developed unit. Chapter 6, Quality, further

elaborates on this practice.

Pair programming. This practice means that each code is developed by two

teammates who sit together in front of a computer and in an interactive, com-

munication-based process work on a specific development task (Williams et al.

2000). It is important to note that even though the development is carried out in

pairs, there is personal responsibility for each development task.

During pair programming it is harder to be distracted, and
HOT?

hence pairs tend to

remain focused on the development task. In addition, each task is characterized

by two levels of abstraction: that of the driver|the one who works with the

keyboard and thus thinks on a lower level of abstraction, and that of the naviga-

tor|the mate who can think about the development task on a higher level of

abstraction.

The application of this practice implies that all team members will become

familiar with all parts of the developed software and improve their comprehension

of the entire project. This fact encourages a culture that is characterized by

knowledge sharing.

Refactoring. The practice of refactoring encourages teammates to improve

code readability without adding functionality. The mere inclusion of refactoring

in agile software development acknowledges
HOT?

that one cannot, a priori, predict all

development details; it therefore legitimates time dedicated to improving soft-

ware readability without pressure to move on to the next developmental task. The

application of this practice reduces cognitive complexity. Refactoring is further

discussed in Chapter 8, Abstraction.

1.6 Application of Agile Software Development 11

Additional agile practices. This, of course, is not the entire story. Addi-

tional agile practices exist that support agile software development. Some of them

are reviewed later in the book.

Tasks

1. For each of the above agile practices, suggest how it might have influenced a

software project in which you have participated.

2. Based on the above description of the basic agile practices, fill in the following

Table 1.1 by explaining how each agile practice supports each of the Agile

Manifesto principles.

3. Based on the above description of the basic agile practices, fill in the following

Table 1.2by explaining how each agile practice supports each of the HOT

perspectives on agile software development. If possible, refer also to sub-

aspects.

Table 1.1 Practices to support the Agile Manifesto

Agile
Principle I

Agile
Principle II

Agile
Principle III

Agile
Principle IV

Whole team

Short releases

Time estimations

Measures

Customer collaboration

Test-driven development

Pair programming

Refactoring

Table 1.2 Practices according to the HOT scale

Human: cognitive
and social aspect

Organizational:
managerial and cultural
aspect

Technological:
practical and technical
aspect

Whole team

Short releases

Time estimations

Measures

Customer
collaboration

Test-driven
development

Pair
programming

Refactoring

12 1. Introduction

1.7 Data About Agile Software Development

Data indicate that agile software projects cope successfully with the common

problems of software projects. For example, in the ‘‘State of Agile Development’’

survey1 conducted by VersionOne and the Agile Alliance in 2007, 60% of the

respondents estimated a 25% or greater improvement in time-to-market, and 86%

of the respondents estimated a 10% or greater improvement in time-to-market.

55% of the respondents reported a 25% or greater improvement in productivity,

and 87% of the respondents reported a 10% or greater improvement in produc-

tivity. 55% of the respondents reported a 25% or greater reduction in software

defects, and 86% of the respondents reported a 10% or greater reduction in

software defects.

Tasks

1. Compare these data with the data related to other software development

approaches.

2. How can these data about agile software development be explained by the

agile practices previously presented?

The data about the reduction in time to market are now explained based on

the different agile practices discussed in the previous section.

Code is easier to work with. It is easier to work with code developed
HOTthrough an agile process mainly due to the test-driven development, pair pro-

gramming, and refactoring practices. These agile practices demonstrate that

since software development is a complex process, early investment in the code

quality results in code that is easier to work with in later stages.

Task

Explain how test-driven development, pair programming, and refactoring ease

code development processes.

Development is manageable and controlled. Due to the short itera-

tions/releases practice, in each iteration only a small portion of the development

tasks are dealt with, estimated, and developed. As has been mentioned before, this

1 Agile Development: Results Delivered: http://www.versionone.net/pdf/AgileDevelopment
ResultsDelivered.pdf

1.7 Data About Agile Software Development 13

fact eases the time estimation and development processes. Since the estimation of

small software chunks is more accurate and is made in hour resolution, it is easier

to observe whether the development pace is kept or whether an adjustment

should be made in the project plan.

The customer’s needs are met. Since the customer is involved in the

project development for the entire process and shares with the development

team his or her vision during the entire process, only what he or she articulates

and needs is developed. Thus, the extra effort and time teammates sometimes

invest in developing what they just suppose to be the customer’s needs, without

having a way to verify that this is indeed what is requested by the customer, are

saved and put entirely into fulfilling and developing the customer’s actual

requirements.

In addition, as part of the customer’s role, he or she defines acceptance tests

which aim at verifying that what the customer wants to be developed is really

developed. Thus, once again, any divergence from what the customers ask for is

detected earlier in the development process and efforts that could have been

dedicated for useless functionality are saved and channeled towards useful

purposes.

Production increment. Since the process of software development
HOT

is a hard

task, and in many cases involves solving difficult problems, developers might be

distracted by external factors which are not directly related to the development

process. Since agile teams employ the pair programming practice, each teammate

in the pair helps the other stay focused, and together they can cope with the

challenges they encounter.

Knowledge sharing. Due to pair programming and collaborative work-

space, as well other practices that agile methods employ, knowledge sharing is

fostered in agile software development environments in general and among agile

team members in particular. Knowledge sharing is of course very useful for the

development process itself. It has benefits also when one team member leaves the

team. In such a case, because of ongoing knowledge sharing, the development

process can continue, without having to invest time in relearning the knowledge

that the teammate who leaves has acquired over the years.

Tasks

1. What other agile practices foster knowledge sharing in agile teams?

2. Describe a scenario taken from a software project which illustrates how each

of the above factors reduces the time-to-market of software products devel-

oped by agile software development teams.

14 1. Introduction

1.8 Agile Software Development in Learning
Environments

1.8.1 University Course Structure

This book presents a fourteen-week course on software engineering from the agile

perspective. The course consists of two weekly lecture-hours and four weekly

studio-hours. The lectures aim at addressing the relevant topics from a more

theoretical yet active-based perspective. All the students registered for the course

attend the same lecture. In the studio, students are split into teams of ten to

twelve students, and each team develops a software project by an agile process,

supervised by an academic coach (we elaborate on this role later in this chapter).

This course structure provides a pedagogical opportunity to develop a soft-

ware product through an agile process as well as to enhance communication

among the students and between the students and the lecturer. For example,

when a specific topic is presented in the lecture, students can share and reflect on

the different experiences gained in each studio with respect to that topic; this

reflection is heard by all the students, the academic coaches, and the instructor.

Inspired by the agile approach that supports learning processes (see Chapter 7,

Learning), both the lecture series and the studio series are composed of three

iterations. With respect to the lectures, this course structure implies that after the

students gain a fundamental understanding of some idea, new topics are pre-

sented and some topics are re-reviewed based on this understanding. In the

studio, the course structure establishes an iteration-based software development

process. Table 1.3 presents the course structure.

1.8.2 Teaching and Learning Principles

In the chapters of this book we present teaching and learning principles. These

principles are presented as pedagogical guidelines for the teaching of any software

development approach and can be applied in both academic and industrial set-

tings. For each teaching and learning principle, we elaborate its general pedago-

gical merit and how it is implemented when the agile approach is taught. In the

Table 1.3 The course structure

Week # Lectures Studio meetings

1{7 Lectures: Iteration I Studio: Iteration I

8{11 Lectures: Iteration II Studio: Iteration II

12{14 Lectures: Iteration III Studio: Iteration III

1.8 Agile Software Development in Learning Environments 15

last chapter of the book, Chapter 14, Delivery and Cyclicality, we summarize all

the principles in one table.

Additional details about these principles can be found in Hazzan and

Dubinsky (2003, 2006, 2007).

In this section we present two principles.

1.8.2.1 Teaching and Learning Principle1: Inspire
the Software Development Approach

This is a meta-principle that integrates several of the principles described later on

and, at the same time, is supported by them. It suggests inspiring the software

development approach that is taught instead of lecturing about it.

The application of this principle is expressed mainly by active learning, on

which the next principle elaborates. In addition, it is reflected in the teaching

environment. More specifically, active learning-based lessons should take place at

a site that enables the actual performance of the software development approach.

Accordingly, the studio meetings of the course, in which the students develop a

software product using an agile process, take place in computer labs that reflect

an agile software development environment and include a large table for the

planning sessions, computers arranged for pair programming, and flipcharts or

whiteboards to elicit communication processes and to establish a collaborative

workspace.

1.8.2.2 Teaching and Learning Principle 2: Let the Learners
Experience the Software Development Approach

This principle is derived directly from the previous one. In fact, both principles

stem from the importance attributed to the learners’ experimental basis, which is

essential in the learning of complex concepts. This assertion is in line with the

constructivist perspective on learning, whose origins are rooted in Jean Piaget’s

studies. According to the constructivist approach, learners construct new knowl-

edge by rearranging and refining their existing knowledge (Davis et al. 1990;

Smith et al. 1993). In this process, mental structures are developed in steps, each

step elaborating on the preceding ones. Chapter 7, Learning, further elaborates on

this concept.

Accordingly, since a software development approach is a complex concept, its

gradual learning process should be based on the learner’s experience. One way to

support and to enhance such a gradual mental learning process is to adopt an

active learning teaching approach, according to which learners are active to the

16 1. Introduction

extent that enables a reflective process (see Teaching and Learning Principle 4 in

Chapter 7). In addition, the course structure is iterative. This allows learners to

revisit the taught concepts several times during the course and to refine their

understanding of the topics comprising the software development approach.

1.8.3 The Studio Environment

The studio is a learning environment in which an intensive student-student and

student-academic coach interaction leads the software development process

(Kuhn 1998, Tomayko 1996, Hazzan 2002).

The studio is the basic learning method used in architecture schools and has

been central to architectural training for most of the twentieth century. In the

architectural studio, a group of students meet their academic coach three times

each week. Such an intensive schedule puts pressure on the students and, as a

result, they devote themselves to the art of design: students learn the skills, the

professional language, and the discipline’s ways of thinking. In addition, the

studio is the place where the students reveal their personalities and can express

their professional skills. Moreover, this learning environment exposes students to

different kinds of social interactions, such as working on team projects, contribut-

ing to class discussions, and presenting their products in front of their classmates.

Based on the suitability of the studio approach to architecture education, it is

suggested applying this teaching approach to other disciplines, mainly to profes-

sions in which design considerations are inherent, there is more than one approach

to a given problem, and a solution to a given problem is usually not unique. It

seems clear that software engineering fits perfectly with the adoption of the studio

as a learning environment.

With respect to the context of this book, we now answer the question of how

the studio concept can be applied when software development methods in general,

and agile software development in particular, are taught.

First, since the studio should reflect an agile software development environ-

ment (see Teaching and Learning Principle 1, presented above), it should serve as

a project development center. Accordingly, each studio should include computers

for the development itself and a table in the middle of the studio for planning

sessions and other activities. In order to promote pair programming, the number

of computers in each studio should be equal to half the number of students in each

studio plus one integration machine. Thus, students naturally begin program-

ming in pairs. On the walls there are whiteboards that reflect the project status,

presenting project stories, measures, and additional material (e.g., the roles in the

team). Such a learning environment supports a teamwork-based development

1.8 Agile Software Development in Learning Environments 17

process and delivers a clear and coherent message to the students about what is

expected from them.

Second, as far as the desire to teach agile software engineering in an environ-

ment that resembles, as much as possible, real software development environ-

ments is concerned, a university course framework sometimes requires

adjustment. This is mainly because students take other courses in parallel and

cannot dedicate the entire week to their work on the development of the course

software project. Thus, for example, the weekly studio meetings are supported by

electronic communications.

Third, since reflection is encouraged by agile software development, reflection

questions are presented to the students after each studio meeting and can be

submitted through an online course management tool. In these reflections, stu-

dents should be encouraged to express not only positive ideas, but also negative

feelings and suggestions for improvement.

Throughout the studio meeting descriptions in this book, additional details

about the nature of the studio are added. Additional details about the course

structure in general and the studio environment in particular are presented in

Dubinsky and Hazzan (2005).

1.8.4 The Academic Coach Role

Each team of students is guided by an academic coach who is in charge of the

project management (but not of the project development), as well as of the

student evaluation.

The academic coach supervises the development project and acts as the

academic customer of the product as well as the academic coach of the team.

As the academic customer, the academic coach sets requirements from the aca-

demic point of view and, if needed, changes them accordingly as the development

project progresses. The academic coach also ensures the students’ smooth devel-

opment of their tasks and the performance of their personal roles. The academic

coach interaction with the student team consists of keeping the course schedule

while reflecting on the project’s progress briefly in the weekly studio meetings,

evaluating the students’ performance as a team and as individuals, and taking

care of the administrative infrastructure.

When there are several student teams, the academic coaches form a coaching

team. It is recommended that the coaching team meet every week (if possible,

with the course instructor) after or before the meeting with the students.

General decisions about the studio component should be made jointly by all

the coaching team members as much as possible, leaving each academic coach the

18 1. Introduction

freedom to adjust the particular studio he or she guides to his or her pedagogical

and professional beliefs.

When a new academic coach joins the coaching team, he or she is trained by

participating in all the semester sessions of one or more of the other academic

coaches.

When a team of academic coaches experiences the studio environment for the

first time, a transformation in their conception of the teaching and learning

process is required. For example, academic coaches are physically present in

most of the studio meetings, alongside the students, during the actual software

development process. In addition, a different grading scheme (see Chapter 2,

Teamwork) requires the academic coaches to assess skills and products that

traditionally are not evaluated.

In order to ease the academic coaches’ adaptation to the new coaching

environment, it is recommended that students in the first semester of the transi-

tion be offered projects that have already been developed in previous semesters,

and that the scale of such projects be adjusted to team sizes of ten to twelve

students. This way the academic coaches can focus on the new coaching environ-

ment without being distracted by technical issues. In the following semesters,

when the coaching team feels more comfortable with the new framework, new

topics for projects can be introduced.

In Chapter 12, Change, we describe a two-day workshop which aims at

presenting the main ideas of agile software development in a condensed format.

It is explained how this format can be adjusted for the training of a team of

academic coaches. In Chapter 13, Leadership, we present an academic coaching

framework.

Task

Envision a studio organization in which a team of about ten students develops a

software project by an agile process. Explain each of your decisions. What values

did you attempt to convey with this organization? How would you implement

them?

1.8.5 Overview of the Studio Meetings

The studio enables a kind of real-world work environment with some adaptations

to academia. During the fourteen studio meetings, a software project is developed

in an agile process, which is composed of three iterations. Each project is worked

on by a team of ten to twelve students, guided by an academic coach. If possible, it

1.8 Agile Software Development in Learning Environments 19

is preferable to provide each team its own studio, equipped with furniture,

computers, and whiteboards.

The different agile practices are introduced gradually so that, on the one hand,

they do not overwhelm the students; but on the other hand, they do indeed

address all aspects of agile software development. In addition, practices that

require high cognitive awareness (such as refactoring and test-driven develop-

ment) are revisited several times during the semester. In this way, students can

come to an understanding of these practices in stages, based on their current and

updated experience gained in the process of project development. This is consis-

tent with the constructivism perspective, which ascribes a significant role in

learning processes to the student’s experience (see Teaching and Learning Prin-

ciple 2, above, and Chapter 7, Learning).

The first iteration deals with the topic of the project and with software

engineering issues. It enables the students to study related issues. In this iteration,

the team’s spirit and atmosphere are created. This aspect gets high importance,

especially in academia, since the team members are usually not familiar with each

other prior to this course. With respect to the development itself, the purpose of

the first iteration is to produce an outline for the project so as to enable additions

and improvements during the second and third iterations.

By the time of the second iteration, the learners are more relaxed and more

familiar with the development method and with their teammates, and most of

them invest the effort to increase and improve their project outcomes. Most of the

meetings are dedicated to development activities. Features and improvements are

added to the project in this, as in this and the third iteration.

In order to achieve the main goals of the studio, attendance at studio meetings

is mandatory, and it is important to arrive on time.

During later stages of the course the students gradually become more familiar

with the details of the studio and the activities that take place in it.

1.8.6 Launching the Project Development
in the Studio

The main objective of the first studio meeting is to let the students become

familiar with the studio as the development environment. For this purpose, the

course structure and the studio work environment are introduced, teams are

formed, the project subjects to be developed by the students are presented and

distributed among the teams, the development schedule is explained, and the

students meet the customer(s).

20 1. Introduction

1.8.6.1 Project Description

Each of the project subjects is described to the students in one paragraph and the

lecturer then elaborates on them, giving additional details and answering stu-

dents’ questions. The customer(s) is introduced and the required collaboration

with the customer is emphasized.

Examples of project descriptions are presented in Table 1.4. As can be seen,

the project descriptions are very general and do not include many details. This is

done on purpose, to let the readers experience project descriptions the way

customers sometimes provide them in the early stages of the development process,

when they are not sure what their specific requirements are. Such general descrip-

tions, however, serve as a good opportunity to ask the customer clarification

questions in order to improve the teammates’ understanding of the project to be

developed.

Tasks

1. Read the project descriptions presented in Table 1.4. For each, present three

questions that you would ask a customer who presents the description.

2. Select a software system. Try to present it in three or four sentences in a

similar manner to the ones presented in Table 1.4. Propose at least three

questions that, in your opinion, a teammate may ask when presented with

your description.

Table 1.4 Examples of one-paragraph project descriptions

Subject Description

A web-based survey
system

In this project we will develop a web-based survey system. On the one
hand, the system enables the surveyor to define the survey questions,
to determine how the questions are processed, and to view the
results. On the other hand, the system should enable the people who
respond to the survey to fill it in

A virtual machine In this project we will develop a virtual machine (VM). A VM is an
abstract machine that enables the running of a code. The VM
enables parallel running of many threads. Its main components are
the memory manager, the executable engine, and the thread package
manager. In this project, we will also develop a VM GUI for end users

A traffic control
system

In this project we will develop a traffic control system. It enables one to
observe the main crossroads in a defined area and to change the
traffic light length accordingly. It also includes several control
patterns so that inspectors are able to make fast decisions during
rush hours

1.8 Agile Software Development in Learning Environments 21

1.8.6.2 Team Forming

After the project descriptions are presented, teams are formed based on the

students’ preferences, diversity considerations, and course resources. Figure 1.3

presents an example of a form that can be used for this purpose. One form is filled

out by two or three students, thus enabling each student to select one or two other

students with whom they wish to be on a team. At the same time, however, in

order to let the students become familiar with other course participants, and in

this way to expose themselves to new perspectives and people and to educate

them to be open to diverse teams, the number of students that each student can

choose to be on the same team with is limited to one or two.

<University, Department>

<Course name>

Forming Software Teams

Two or three students who wish to belong to one team are re-
quested to fill in the following form:

Student’s
name

Student’s ID Department
or Faculty

Electronic mail

Project priorities

First priority: ______________________________________

Second priority: ____________________________________

Third priority: ______________________________________

Figure 1.3 Form for creating teams.

22 1. Introduction

After the students fill in these forms, student teams should be created taking

into consideration their preferences with respect to teammates and project sub-

ject, team diversity in order to make sure that teams will not be too homogeneous,

and other issues which are relevant for specific course conditions and the teaching

staff’s pedagogical preferences.

Task

If you had to select one or two students to be in your development team, what

would be your considerations?

1.9 Summary and Reflective Questions

1. What are your expectations from the course? Refer both to the lectures and to

the studio components of the course.

2. What topics would you expect to learn in the course? Refer both to the

lectures and to the studio components of the course.

3. What skills would you expect to acquire in the course? Refer both to the

lectures and to the studio components of the course.

4. Explore several agile methods presented at the Agile Alliance website: http://

www.agilealliance.org/library. What are their main characteristics? In what

ways are they similar? In what ways are they different? How does each of

them apply and reflect the Agile Manifesto?

5. From your review of the Agile Alliance website, what can you learn about the

agile software development community?

6. Brooks, in his famous article ‘‘No Silver Bullet,’’ published in April 1987 in

Computer magazine, argued that ‘‘there is no single development, in either

technology or in management technique, that by itself promises even one

order-of-magnitude improvement in productivity, in reliability, in simpli-

city.’’ How does this perspective relate to agile software development?

7. What other approaches to software development exit? In what ways are they

similar to agile software development? In what ways do they differ from agile

software development?

1.9 Summary and Reflective Questions 23

1.10 Summary

This chapter aims at inspiring the spirit of agile software development. It outlines

the Agile Manifesto and explains how it is applied by agile software development

methods. Several agile practices are also sketched in this chapter; most of them

will be elaborated in the next chapters of the book, when we explore the different

facets of agile software development, such as quality, time, learning, and manage-

ment. In addition, this chapter describes the studio and outlines the main activ-

ities carried out in the first studio meeting. These activities aim at forming teams

and establishing the physical conditions for the actual software project develop-

ment to be launched in the next meeting.

References

Davis RB, Maher CA, Noddings N (1990) Constructivist views on the teaching and learning of
mathematics. J Res Math Educ Monograph Number 4, The National Council of Teachers of
Mathematics, Inc.

Dubinsky Y, Hazzan O (2005) A Framework for teaching software development methods.
Comput Sci Educ 15(4):275{296

Hazzan O (2002) The reflective practitioner perspective in software engineering education. J
Syst Software 63(3):161{171

Hazzan O, Dubinsky Y (2003) Teaching a software development methodology: the case of
extreme programming. In: Proceedings of the 16th international conference on software
engineering education and training, Madrid, Spain, pp 176{184

Hazzan O, Dubinsky Y (2006) Teaching framework for software development methods. Poster
presented at the ICSE Educator’s Track, Proceedings of ICSE (International Conference of
Software Engineering), Shanghai, China, pp 703{706

Hazzan O, Dubinsky Y (2007) Teaching agile software development quality assurance. In:
Stamelos I, Sfetsos P (eds) The agile software development quality assurance book. Idea
Group Inc., pp 171{184

Kuhn S (1998) The software design studio: an exploration. IEEE Software 15(2):65{71
Smith JP, diSessa AA, Roschelle J (1993) Misconceptions reconceived: a constructivist

analysis of knowledge in transition. J Learn Sci 3:115{163
Tomayko JE (1996) Carnegie-Mellon’s software development studio: a five-year retrospective.

SEI conference on software engineering education http://www.contrib.andrew.cmu.edu/
usr/emile/studio/coach.htm.

Williams L, Kessler R, Cunningham W, Jeffries R (2000) Strengthening the case for pair-
programming. IEEE Software (July/August) 17:19{25

24 1. Introduction

2
Teamwork

Abstract

This chapter presents one of the basic elements of software projects|teamwork. It

addresses how to build teams in a way that promotes team members’ accountability

and responsibility, and that fosters communication between teammates. One of the

basic ways to start team building is by assigning roles to the team members. For this

purpose a role scheme is presented in this chapter, according to which each team

member is in charge of a specific managerial aspect of the development process, such

as design and continuous integration, in addition to his or her development tasks.

Teamwork is not always a simple process, and sometimes it raises dilemmas and

conflicts between team members. This aspect of teamwork is not neglected in agile

teams, and when a conflict emerges, it is addressed openly by all the team members.

In the section that deals with teamwork in learning environments, it is illustrated how

the role scheme and the discussion about dilemmas in teamwork provide an evalua-

tion framework for software projects developed by student teams in academia.

2.1 Overview

This chapter focuses on teams|one of the main and most influential factors of

software projects’ success. Consequently, it is
HOT

highly appreciated and supported

by agile software development methods.

One practice which is highlighted in this chapter is applying a role scheme,

according to which each team member has an additional role in the team in

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 2, � Springer-Verlag London Limited 2008

addition to being a software developer. This role scheme fosters the interconnec-

tions and dependencies between the members of agile teams and enhances

creativity, responsibility, accountability, diversity, and measure collection.

Further, this role scheme shows that each team member can contribute to soft-

ware development on the team level, beyond his or her individual contribution,

and that the mutual contributions of the individuals in the team create a whole

which is greater than the sum of its parts.

To highlight the importance attributed to teamwork in agile software devel-

opment environments, this chapter also presents a set of activities that deal with

roles, which may form the needed atmosphere for agile teamwork.

In addition, we discuss potential dilemmas in teamwork and how agile devel-

opment may help cope with such dilemmas. Specifically, we examine how to

satisfy the individual needs of each team member and, at the same time, achieve

the needed contributions to the team’s work.

Based on this examination, an evaluation scheme for student software pro-

jects, developed in teams, is presented in the section of this chapter that deals with

teamwork in learning environments. This evaluation scheme takes into considera-

tion the various conflicts that may arise.

2.2 Objectives

l Readers will become familiar with the characteristics of software teams in agile

software development environments.

l Readers will learn how to allocate roles to members of agile teams and how to exploit

the benefits of role assignment at the individual, team, and organization levels.

l Readers will discuss dilemmas in teamwork and understand how agile teams

can overcome them.

l Readers will get a sense of how agile team spirit can be achieved, empowered,

and maintained.

l Readers will gain basic skills to exploit the strength of agile teams.

2.3 Study Questions

1. Find definitions for the concepts of team and teamwork. Discuss the defini-

tions’ relevance for software teams.

2. What is the purpose of teams? Why are teams needed?

26 2. Teamwork

3. As a software team member, how would you like to feel in your team? What

values would you like to pursue? What practices would you want to see in your

team development environment to provide an atmosphere that fits you?

4. What roles do you have in your life? How do you manage to perform them all?

Describe two personal scenarios in which a conflict emerged from the need to

play different roles and explain how the conflicts were solved.

5. Why should roles be assigned to software team members? What roles would

you assign to your team members?

6. Look through the literature for different approaches to role assignments in

software teams in general and in agile software teams in particular. Compare

these approaches: What ideas do they share? How do they differ from each

other? What are the specific characteristics and responsibilities of each role

holder in the team?

7. Discuss at least three problems which software teams face. Suggest ways to

solve these problems.

8. Suggest dilemmas which software team members might face. Suggest ways to

solve these problems. Suggest agile principles and practices that can support

such cases.

2.4 A Role Scheme in Agile Teams

According to Humphrey (2000), a team consists of at least two people who are

working towards a common goal/objective/mission, in which each person has

been assigned a specific role to perform and in which a completion of the mission

requires some form of dependency among team members (p. 19). In the case of a

software project, a team is a group of individuals who have gathered to produce a

software product.

In software projects teams are needed for the accomplishment of the complex

task of software development. It is however, not a trivial task to mange software

teamwork. This is partially because software development is about an intangible

product, one that cannot be seen, smelled, or touched, and therefore, the devel-

opment status and the exact responsibilities are not always clear.

The unique situation of software development can be approached in different

ways. We will start with role assignment, which is one way by which agile soft-

ware development methods attempt to overcome the typical challenges of soft-

ware projects. Role assignment means that each team member has an additional

role besides that of developer.

2.4 A Role Scheme in Agile Teams 27

The assignment of roles serves as a means for splitting the responsibility for

project management and progress among all the
HOT?

team members. The rationale for

this stems from the fact that one person (or a small number of developers) cannot

manage the entire richness and complexity involved in software development

projects. When the responsibility is split among all teammates, each aspect of

the process is treated by one teammate, and each teammate feels a personal

responsibility for that specific aspect. Both the software project as a whole and

each of the individual team members benefit from this kind of organization.

Table 2.1 presents a role scheme for an agile software team, which expands

and integrates the role schemes suggested by the different agile methods. It is

based on the idea that the responsibility for the software’s progress and success

should be transferred to and distributed among all teammates (Dubinsky and

Hazzan 2004, 2006).

There are four groups of roles.

The first is the leading group, which consists of the coach, tracker, and

methodologist. It is important to note that the tracker and methodologist in

this group, as well as the other role holders, do not reduce the significance of the

project leader/coach. To the contrary|as it turns out, the role scheme improves

the project leader’s position and provides him or her a better way to assess and

lead the development process.

The second is the customer group, which consists of the user evaluator,

customer, and acceptance tester. If the project has a real customer, the roles in

the customer group should be conceived of as a bridge between the real customer

and the team. If the project does not have a real customer, these role holders play a

real customer.

The third group is the code group, which is composed of four roles: designer,

unit tester, continuous integrator, and code reviewer. This group of roles focuses

on those aspects of software development that are directly related to the coding

activity.

The fourth group is the maintenance group, which comprises three roles:

presenter, documenter, and installer, and focuses mainly on the product’s exter-

nal presentation and documentation.

As can be seen, the different roles address different aspects of the development

process (leadership, customer, code, and maintenance), and together they encom-

pass all the aspects of a standard software development process.

Holding a role, and thus being in charge of a specific aspect of the development

process, does not mean that the role holder performs all the activities related to his or

her particular role; instead, it implies that each role holder must ensure that the

specific aspect for which he or she is responsible will be carried out properly by all

team members. Since this idea applies to all team members, the project management

is split among all team members and, at the same time, is covered by all of them.

28 2. Teamwork

Table 2.1 Roles in an agile software team (Reprinted from Journal of System Architecture, 52,
Dubinsky Y, Hazzan O. Using a role scheme to derive software project quality, 693{699,
Copyright (2006), with permission from Elsevier. Also, with kind permission of Springer Science
and Business Media.)

Group of
roles Role Description

Leading
group

Coach Coordinates and solves group problems, leads and guides
development sessions

Tracker Measures the group progress by measures as defined by the
team, the customer, and the organization; manages the
workspace boards; manages the team diary/collective
memory. See also Chapter 5, Measures

Methodologist Makes sure that the team works according to the defined
development process, answers questions related to the
methodology, looks for solutions to problems related to
the methodology

Customer
group

User
evaluator

Performs an ongoing user evaluation of the product (collects
and processes feedback received from real end users),
holds a user centric approach, serves as the user interface
designer. See also Chapter 3, Customers and Users

Customer If the project doesn’t have a real customer: tells customer
stories, makes decisions pertaining to each iteration,
provides feedback, defines acceptance tests. See also
Chapter 3, Customers and Users

Acceptance
tester

Defines (with the customer) and develops acceptance tests,
inspires a test-driven development process. See also
Chapter 6, Quality

Code group Designer Maintains current design, works to simplify design, searches
for refactoring tasks and ensures their proper execution.
See also Chapter 8, Abstraction

Unit tester Establishes an automated test suite, guides and supports
others in the development of unit tests, guides a test-
driven development process. See also Chapter 6, Quality

Continuous
integrator

Establishes the integration environment; publishes and
encourages rules pertaining to the addition of new code,
including testing issues

Code reviewer Maintains source control, establishes and refines coding
standards, guides and manages the team’s pair
programming

Maintenance
group

Presenter Plans and organizes iteration/release presentations, demos,
and roles; measures presentations

Documenter Plans and organizes the project documentation: process
documentation, user’s guide, and installation
instructions

Installer Plans and ensures the development of an automated
installation kit, maintains the collaborative workspace
infrastructure

2.4 A Role Scheme in Agile Teams 29

For example, let us assume that one of the teammates is a developer who also has

the role of unit tester. As the unit tester, this team member is in charge of all the unit

testing activities of the entire project, and of guiding other teammates in the develop-

ment of their unit tests. But this does not paint the entire picture: let’s look at this team

member from the perspective of being a developer. As a developer, this team member

should write quality unit tests for his or her own development tasks. As the person who

is specialized in unit testing, it makes sense that she or he will write quality tests, which

can in turn serve as examples for the other teammates of how unit tests should be

written. In addition, as a developer, this team member is guided with respect to other

aspects of the development process by team members who hold the other roles. This

scenario shows how the two hats of each team member|a role holder and a devel-

oper|are interconnected and contribute to the development process, improve the

software quality, and reinforce the team members’ communication.

Task

In a way similar to the analysis presented above with respect to the unit tester

role, analyze at least three additional roles from Table 2.1.

The cumulative impact of all the roles increases the team members’ commitment

to the project. In order to carry out a role successfully, each team member must gain a

global view of the developed software and to be involved in all parts of the applica-

tion, in addition to carrying out his or her personal development tasks. If a team

member has a limited view and is aware only of his or her tasks, he or she will not be

able to perform the personal role properly. The need to accomplish the personal role

satisfactorily actually increases one’s involvement and accountability, as well as the

commitment to the development process, and leads one to become familiar with all

the software parts. Consequently, communication and knowledge sharing, which are

vital for software development, are once again increased among team members.

In general, in having a personal role, the team members are expected to perform their

development tasks as well as the tasks related to their personal role. Thus, no teammate

is merely a developer. The two activities have a mutual positive influence, and conse-

quently the collaboration and communication between the team members is enhanced

and the agile team’s spirit is maintained. Further, the dual functionality of each team

member increases the transparency of both the software process and the product. The

process becomes more transparent because it is clear who is in charge of each of its

aspects; the product becomes more transparent because each team member is familiar

with all the product components and aspects, at least with respect to his or her role.

This perspective is different from the approach in which each role holder is

responsible for the entire implementation of the aspect of which he or she is in charge,

while the other team members do not perform it at all (e.g., the documenter is the

30 2. Teamwork

only team member who is involved in documentation activities). While this approach

may lead other team members to reduce their responsibility with respect to that

activity, the role scheme described above just inspires the opposite: a strong inter-

connection exists between the teammates. One team member cannot properly per-

form all the tasks involved in a software project, even with respect to only one aspect

of the development process; cooperation between teammates is essential in order to

accomplish the development process properly and on time. Further, since the role

scheme clarifies the exact responsibilities of each team member, team members are

committed to each other by ensuring that all of them are able to perform their roles in

the best way. All these messages delivered by the role scheme increase the team

members’ involvement and commitment to the project and to the team.

To sum up: Roles are important for the establishment and maintenance of agile

teams. A clear role scheme inspires an agile spirit and contributes both to the indivi-

duals, to the team, and to the project’s success. Further, the role scheme spreads the

leadership and management of the software project among all the team members. It

lets the developers know that not all the responsibility is carried by one person.

2.4.1 Remarks on the Implementation of the Role Scheme

l The set of roles that a software development method includes in its role

scheme reflects the values that a software development method attempts

to inspire. Therefore, the role scheme that a software development method

defines is one of the key elements of the method. Indeed, different agile

methods suggest different role schemes that support their values and con-

ception of software development processes.

l In addition to the role definitions presented in Table 2.1, several roles also

support communication between the four groups. For example, the installer

is also in charge of communication with the code group.

l At the first stages of the development process, or when the team is estab-

lished, the role holders should learn their roles and establish a procedure that

will enable them to perform their role properly. In the next stages of the agile

project, role holders should maintain the spirit and the actual performance of

the aspect that their role focuses on.

l When teams consist of fewer than twelve developers, several roles can be

unified and assigned to one team member. There are different ways to unify

roles, and each has its own advantages. In each case, however, the entire list

of roles should be assigned and performed by all team members.

2.4 A Role Scheme in Agile Teams 31

l The team can choose whether each of its members will specialize in one role for

a long period of time or, alternatively, whether the roles will rotate among the

team members. The exact way by which it is done in practice should be set by

each team according to the team members’ preferences. For example, it can

be decided that roles are reassigned at the beginning of each release.

l Such a team organization eases project management, since it is clear who is in

charge of what aspect of the development project, what aspect should be treated

by whom, and who should be approached when a specific problem, which

belongs to a specific aspect of the development process, arises. Even in cases

when there are role overlaps, they will not interrupt the process. Sometimes

they can even foster project development. One example is when the unit tester

and the acceptance tester work together to introduce test-driven development.

Tasks

1. How does the role scheme reflect the HOT perspectives of agile methods?

2. Predict what attitudes and feelings such a role scheme might raise in agile

software teams.

3. What information does each role holder need in order to perform his or her

role successfully?

4. In what ways does the role scheme relate to the Agile Manifesto?

5. Describe how each of the Agile Manifesto principles is supported by the role

scheme.

6. What benefits does role rotation have?

7. Suggest a mechanism for role rotation in agile teams. What are its benefits?

What are its pitfalls?

2.4.2 Human Perspective on the Role Scheme

Social Aspect

HOT
l A personal role increases teammates’ involvement, communication, account-

ability, responsibility, and commitment to the software development process

and to their team.

l Team members wish to have a specific role in addition to their development

tasks in order to increase their influence and involvement in the project

management.

32 2. Teamwork

Cognitive Aspect

l Since each team member approaches the product from one specific perspec-

tive, each can focus on this one specific aspect without being distracted by

the multifaceted nature of software product development. In other words, on

the global level, the role definition encourages each team member to treat the

software product from one perspective. Consequently, each gradually

improves his or her understanding about that aspect.

l The role scheme supports the thinking of the development process on multiple

levels of abstraction (see Chapter 8, Abstraction). Since abstraction is a key

component of software development, every mechanism that supports team mem-

bers’ thinking in terms of different levels of abstraction should be enhanced. On

the one hand, each team member sees his or her development task on a relatively

low level of abstraction; and on the other hand, the personal role of each team

member enables each of them to gain a global overview of the developed system

on a higher level of abstraction. Agile methods support thinking at different levels

of abstraction in additional ways, such as short releases (see Chapter 3, Customers

and Users) and refactoring (see Chapter 8, Abstraction).

l The role scheme enhances knowledge distribution, since each team member

specializes in one domain and shares his or her knowledge with the other

team members. In addition, since the role scheme leads to knowledge

distribution, no harm happens when one team member leaves the team.

Indeed, he or she has gained expertise in his or her role; at the same time,

however, parts of this knowledge have already been spread. Thus, if a team

member leaves the team, the other team members have a reasonable amount

of knowledge to continue with respect to that role.

l The role scheme supports the individual’s professional development. Team

members perform their roles and improve their role performance while learning

the practice that their role represents. In turn, they become experts in the

specific aspect of software development on which their personal role focuses. In

addition, when a team member feels that he or she has exhausted one role’s

contribution to his or her professional development and wishes to hold another

role in the team, as has already been mentioned, role rotation can take place.

Tasks

1. To each of the ideas presented in the human perspective on the role scheme,

add its organizational and technological view.

2. Analyze the role scheme from the organizational and the technological

perspectives.

2.4 A Role Scheme in Agile Teams 33

2.4.3 Using the Role Scheme to Scale Agile Projects

The role scheme also supports the scaling up of agile
HOT

projects. Suppose we have

five agile teams as part of one software project, and each of them applies the role

scheme. In this setting, weekly role meetings are set for each role, in which all the

role holders from all the teams participate. For example, a weekly meeting of all

testers of the project takes place; a biweekly meeting of all the integrators takes

place, etc. It is recommended that these role meetings be scheduled at the same

time, in order not to collide with the development sessions of the project teams. In

these meetings project-wide issues are discussed, so that the project management

proceeds in one direction.

The use of the role scheme for scaling up purposes also enhances knowledge

distribution. On the individual level, each team member has the opportunity to

communicate with other developers, beyond his or her team, to present the

knowledge his or her team has gained so far with respect to a given role, and to

serve as a bridge between the team and the organization with respect to that

aspect of development of which she or he is in charge. On the team level, each team

may benefit also from the wisdom and experience gained by other teams. For

example, the team representatives may bring into the role meetings a problem

which their team faces, and ask the other role representatives whether their

experience can contribute to a solution. Such a dialogue creates a knowledge

infrastructure for the development process from which all teams can benefit. On

the organization level, and based on the individual and team levels, knowledge is

distributed, managed, and maintained.

The role scheme also supports measures related to the project’s progress

(see Chapter 5, Measures). The measures and policies that should be applied by

all the teams enable the project’s management to know on an ongoing basis the

project’s status, progress, and quality. Based on this information, management

monitors and controls the project’s progress.

2.5 Dilemmas in Teamwork

One of the problems that can arise with respect to teamwork is the question of

how to allocate incentives, rewards, and bonuses among team members.

This question is relevant with respect to many professionals and kinds of

institutions. However, reward allocation in software engineering is important

mainly, but not only, because teamwork is essential in software development.

As a result, conflicts between the required cooperation on the one hand, and one’s

desire to excel as an individual on the other, may intensify. The discussion is

34 2. Teamwork

especially relevant with respect to agile teams since teamwork is one of the basic

working assumptions of agile software development, and team members are asked

to cooperate, share information, and exchange ongoing feedback with the other

players in the development environment.

Task

This task is based on Hazzan (2003). It aims at elevating the developers’ aware-

ness to these potential conflicts and to encourage discussing them openly. This

approach is in agreement with the first principle of the Agile Manifesto: indivi-

duals and interactions over processes and tools.

Perform the task presented in Figure 2.1 with your team.

Step 1 of the task focuses on the individual’s preferences; step 2 examines how

team members face possible conflicts between their own preferences and the

preferences of the other team members. Thus, in the case of new teams, this

activity also fosters the team members’ acquaintance with each other.

The discussion that takes place at step 3 focuses on the team preferences at the

individual and at the team level. This discussion can be promoted by the following

reflective questions.

Step 1: Individual work

You are a member of a software development team. Your team is told that if the project it is

working on is successfully completed on time, the team will receive a bonus. Five options for bonus

allocation are outlined below. Please explain how each option might influence team cooperation,

and select the option you prefer.

Personal Bonus
(% of the total

bonus)

Team Bonus
(% of the total

bonus)

How this option may
influence teammates’

cooperation

A 100 0

B 80 20

C 50 50

D 20 80

E 0 100

Step 2: Teamwork (to be facilitated with the development team)

Each team decides on one option that all team members, as a group, prefer.

Step 3: All teams discussion

Discuss with all the teams the processes that took place in the above two steps.

Figure 2.1 Bonus allocation activity [#2003 ACM, Inc.].

2.5 Dilemmas in Teamwork 35

Reflective Questions

1. What were your considerations when choosing your personal option for bonus

allocation?

2. Did you face conflicts while working on this task individually (Step 1)? What

was their source? How did you overcome these conflicts?

3. Did you face conflicts while working on this task with your team (Step 2)?

What was their source? How did you overcome these conflicts?

4. What questions, emotions, and dilemmas with respect to software teams were

raised during individual and team work?

5. Predict what considerations would cause developers to prefer a different

option for bonus allocation than yours.

6. What characterized the discussion in your team about the agreed upon option

for bonus allocation? How did the team agree about the preferred option?

2.6 Teamwork in Learning Environments

The studio meeting this week focuses on activities related to the introduction of

the role scheme, the role assignment, and the grading policy that is used for the

evaluation of the students’ work. The details appear in the continuation of this

section.

2.6.1 Teaching and Learning Principles

The following teaching and learning principle deals with the role scheme. (In our

list of teaching and learning principles presented in Chapter 14, Delivery and

Cyclicality, this is principle number 7.)

Teaching and Learning Principle 7: Assign Roles to Team
Members.

According to this principle, each team member has both an individual role, chosen

by the member from a given list (for example, coach, unit tester, acceptance tester,

code reviewer, etc.), and development tasks for which he or she is responsible.

36 2. Teamwork

Such a role scheme does not imply that each role holder carries out all

activities related to the domain for which he or she is responsible; rather, each

role holder makes sure that the activities related to hir or her domain are

accomplished satisfactorily by all team members. Accordingly, the assignment

of roles helps divide the responsibility for project progress and management

among all team members.

The rationale for this principle is that one person (or a small number of team

members) cannot be responsible for the entire richness and complexity involved in

software development. When the responsibility is divided among all team mem-

bers, each aspect of the entire process is addressed by one team member, and at

the same time each team member feels personal responsibility for that specific

aspect. Both the project itself and the team members benefit from this arrange-

ment. Furthermore, the need to perform one’s role successfully actually forces all

the team members to be involved in, and to become familiar with, all parts of the

developed application. Consequently, knowledge sharing, communication, and

involvement are enhanced among team members.

2.6.2 Role Activities

We present the actual application of the role scheme through three kinds of

activities. The first kind deals with the role assignments. Second, activities that

maintain the role performances on a daily basis are described. Third, an activity

that aims at improving the role performances is presented. The activities can be

performed in both academic and industrial settings.

2.6.2.1 Role Assignment Activities

The first two activities introduce the role scheme to the team members. If the

activities are carried out in an industrial setting, they should be facilitated when

the agile team is established, in order to let the team members feel the interconnec-

tion among themselves, and their mutual responsibility as an agile software devel-

opment team. The other activities should be facilitated as development proceeds.

Figure 2.2 describes the first activity related to role assignment. It focuses on

the creation of one agreed upon role list.

Since in this studio meeting the academic coach sits together with ten to

twelve students who do not know each other but will soon start working together

on many tasks related to software development, this activity initiates the stu-

dents’ relationships as teammates.

2.6 Teamwork in Learning Environments 37

In industry, this activity signals the beginning of a change in the team

structure with respect to personal responsibilities. It can be facilitated when the

team is first introduced to agile software development, as part of a workshop that

the team attends (see Chapter 12, Change) or at the beginning of the implemen-

tation phase of agile software development.

In both cases, Activity 1 improves the team members’ acquaintance of and

familiarity with their teammates.

Activity 2 (Figure 2.3) describes the role distribution.

In academia, the full set of roles is determined for the entire semester. This full

implementation is needed for the evaluation process, presented later in this

chapter, which is based on the fact that all students have the same load.

Also, according to the role scheme presented in this chapter, the students are

responsible for the software’s progress and success. Therefore, it is important to

note that the academic coach should not be the team coach, and that the role of

coach should be given to one of the students. The academic coach is in charge of

Time: In academia: second meeting; in industry: following the previous activity.

Discussion (10 minutes): In your opinion, how should we assign roles to teammates?

Task description (20 minutes): Distribute the roles among the teammates. At the end of the task

suggest a list of role-teammate pairs.

Discussion (15minutes): Discuss what portion of your time you should dedicate to the performance

of your personal role and what portion should be devoted to the accomplishment of your devel-

opment tasks?

Reflection (after the second meeting in academia; during a team discussion in industry):

- Express your opinion about the process of role assignment in your team.

- Howdo you conceive of your role?What input would you expect to get from your teammateswith

respect to your role?

Figure 2.3 Activity 2: role distribution (Reprinted from Journal of System
Architecture, 52, Dubinsky Y, Hazzan O. Using a role scheme to derive software

project quality, 693{699, Copyright (2006), with permission from Elsevier.).

Time: In academia: second meeting; in industry: when an agile method starts to be implemented.

Task description: You are going to develop a software product as a team.Write down the roles that

in your opinion should be performed as part of your project.

Individual work (10 minutes): Students/developers write down their lists.

Team discussion (20minutes): Students/developers discuss their suggestions, trying to generate one

agreed upon list.

For students: Students are asked to prepare a prioritized list of roles they would prefer to perform

during the semester.

Summary: The academic coach/agile facilitator presents the role scheme (Table 2.1).

Figure 2.2 Activity 1: role list generation (Reprinted from Journal of System
Architecture, 52, Dubinsky Y, Hazzan O. Using a role scheme to derive software

project quality, 693{699, Copyright (2006), with permission from Elsevier.).

38 2. Teamwork

project evaluation and control from the academic perspective, but does not lead

the actual development process. This perspective gives the academic coach a

better way to assess the development process and the teammates’ work by

means of the grading policy, presented later in this section, that supports the

role scheme and is based on both an individual component and a team component.

In an industrial setting, the role scheme should be applied in a gradual fashion. It

is recommended that the team decide with what roles they would prefer to start the

agile implementation phase. The team chooses several roles to start with, and team

members volunteer to carry out these roles. It is recommended that the team start at

least with the roles of coach, tracker, and unit tester, and gradually add roles

according to the team preferences, needs, and adjustment to the agile process.

The actual role assignment itself has a direct influence on team communica-

tion. For example, in an industrial setting, it opens new horizons to team mem-

bers: they are exposed to new facets of their teammates of which they were not

aware, even though they may have worked together for many years.

This activity also influences and enhances learning. For example, team mem-

bers may suggest that roles should be assigned not according to what is appealing,

but rather according to what area one is not skilled in. In this way, in order to

perform their role properly team members will have to communicate about the

various aspects of their role with other teammates who are more knowledgeable.

Thus the team members will learn new topics.

2.6.2.2 Role Maintenance Activities

The activities in this part are performed on a regular (daily, weekly, iteration)

basis. In academia this enables the academic coach to be aware of the project’s

progress and to improve the students’ work assessment; in industry it enables the

entire team to be aware of the project status.

Stand-up meeting: Stand-up meetings take place every day in industry, and

on a weekly basis in academia. It can be decided that some portion of the brief

personal report (one or two sentences) be dedicated to the personal role. Each

team member reports about his or her role performance and about his or her

expectations from teammates with respect to personal roles.

Presentations to customers: The following task fits for an academic setting;

when appropriate, it can be adjusted for an industrial setting. Specifically, each

presentation to the customer consists of two parts. In the first part, the development

tasks of the iteration are presented; in the second part, each student briefly presents

how he or she improves product quality by the accomplishment of his or her role.

The preparation for these presentations takes place one week before the presenta-

tion of each iteration to the customer. The students can discuss what the presentation

should contain, how much time will be dedicated for each part, and how the personal

2.6 Teamwork in Learning Environments 39

roles will be presented. Since students usually do not have previous experience in

presenting software products, they will benefit a lot from this activity.

Feedback after presentations: In academia, there are three presentations

to the customer during the semester: at the seventh, eleventh, and fourteenth (the

last) meetings (see Chapter 1, Introduction to Agile Software Development, for a

semester schedule). After each presentation two reflective activities are carried

out: the first is a feedback session that takes place with the all team members; the

second is a personal reflection that encourages the students to evaluate their work

in the last iteration. As part of this reflection, students are requested to evaluate

their role performance as well as to grade it.

2.6.2.3 Role Improvement Activity

The following activity can be requested by the academic coach periodically when she

or he observes that it is needed. Such a need occurs mainly in cases when the academic

coach feels that some roles are not being performed properly. The students are asked

to summarize their role activities, to publish their summaries in the electronic forum,

and to provide feedback to the summaries presented by the other team members.

2.6.3 Student Evaluation

One outcome of the team discussions that take place in the bonus allocation

activity (Figure 2.1) is an agreement that each individual’s contribution should

be considered on the basis of his or her personal accomplishments (no matter how

the team performs), as well as the team performance.

Accordingly, in an academic setting, if the course is accompanied by a software

development project, we propose to make the project evaluation of each student be

based on a personal evaluation (independently of how the team performs), and on

an evaluation of the team performance. In order to promote teamwork as well as

personal contributions to the project, the two components should be balanced in

some way. For this purpose, the students’ evaluation is composed of two parts: one

the personal component and one the team component. The evaluation of the

individual role performance is used for the personal evaluation.

The proposed evaluation scheme, presented in Table 2.2, applies these conclusions.

It is composed of an individual component (35%) and a team component (65%); the

team component is identical for all members of the team. The main criterion of the

individual component of the grading scheme is the personal performance of the student

(50%) as well as his or her personal role (25%). The main criterion of the group

component is the presentation of the customer stories as well as the time estimations

given by the students at each of the three development iterations.

40 2. Teamwork

This student evaluation scheme shows that both teamwork and individual con-

tribution count. Accordingly, it is assumed that on the one hand, students will be

encouraged to contribute to their team’s work, and that on the other hand, those

wishing to excel will have the opportunity to improve their grade through the personal

component. Consequently, the personal responsibility of each student is increased.

The grading policy presented in Table 2.2 also fosters gradual improvement. This

is accomplished by the main parts of each grade component. In the group component,

60% of the grade is achieved by meeting the customer requirements according to the

students’ own estimations. The first iteration (out of the three iterations) receives the

lowest portion (even though it lasts half a semester), thus demonstrating that this

iteration is dedicated to learning about the environment, the teammates, the method,

and the project. In the individual component, about 75% of the grade is achieved by

presence and reflection, for specific exercises, and for performing the personal role.

These parts are also characterized by gradual learning. Students are more open to

give feedback as the semester proceeds, and role performance is improved after the

learning iteration, which is the first iteration of the semester.

Tasks

1. In your opinion, should different kinds of teams be evaluated in different

ways?

2. Should teams be formed of students with similar preferences, with different

preferences, or according to a specific combination of preferences, with respect

to bonus allocation? What considerations should guide each of these options?

3. In what ways is bonus allocation similar to course grading? In what ways is it

different?

Table 2.2 Grading policy

Individual component (35%) Group component (65%)

50%| 60%|

3 Weekly reflection Answer the customer stories and
meeting the schedule according to
the group time estimations:

3 Pair programming experience

3 (10%) for iteration 1
3 Test-Driven-Development exercise

3 Weekly presence

3 (25%) for iteration 225%|

Performance of a personal role: 3 (25%) for iteration 3

3 Actual implementation 25%|

3 Further development and enhancement Project documentation

25%| 15%|

Personal evaluation of the academic coach Group evaluation by the academic
coach

2.6 Teamwork in Learning Environments 41

2.7 Concluding Reflective Questions

1. What were your considerations when choosing a personal role? Why?

2. What were your teammates’ considerations when choosing a personal role?

Why, in your opinion, were these their considerations?

3. How will you accomplish your role successfully?

4. What are the three main goals of agile software teams?

5. In your opinion, what are the three most important characteristics of agile

software teams? How do these characteristics enable them to achieve their

goals successfully (Question 4)?

6. In Chapter 9, Trust, we will meet two ideas related to agile teamwork:

diversity and ethics. If you are familiar with these concepts, suggest connec-

tions between them and the way agile teams are built and function.

2.8 Summary

This chapter introduces the first steps of agile teams by establishing their struc-

ture and some of their development habits and processes. This is done by assign-

ing personal roles to team members, which on a personal level improves their

understanding of the developed product, and on the team level improves the

process and product quality. The role scheme that guides the role assignment

achieves these goals by defining personal roles and cross-project roles; that is, each

role holder is responsible for the management of a specific aspect throughout the

entire project.

This chapter also introduces dilemmas in agile teamwork and how they can be

addressed. In the spirit of the Agile Manifesto, dilemmas and conflicts associated

with teamwork should be discussed openly by all team members, and a solution that

meets the needs of the individuals as well as the entire team should be established.

This idea has been illustrated by an evaluation scheme for student projects.

References

Dubinsky Y, Hazzan O (2004) Roles in agile software development teams. 5th international
conference on extreme programming and agile processes in software engineering. Garmisch-
Partenkirchen, Germany, pp 157{165

42 2. Teamwork

Dubinsky Y, Hazzan O (2006) Using a role scheme to derive software project quality. J Syst
Architect 52 (11): 693{699

Hazzan O (2003) Computer science students’ conception of the relationship between reward
(grade) and cooperation. 8th annual conference on innovation and technology in computer
science education (ITiCSE 2003), Thessaloniki, Greece, pp 178{182

Humphrey W (2000) Introduction to the team software process. Addison-Wesley, Reading, MA

References 43

3
Customers and Users

Abstract

Customers have a key role is agile software development processes. The Agile

Manifesto statement ‘‘customer collaboration over contract negotiation’’ expli-

citly suggests alternative work relationships with the customer, in which the

customer is part of the team, rather than an entity with whom team members

and management argue about what should be developed and when, and what

should not be developed at all. This chapter describes the customer role in agile

development environments and how to enhance communication with the custo-

mer. In many cases, the customer also represents the user group and is expected to

evaluate the software product from the user perspective. This, however, turns out

to be an ineffective mechanism in many cases. Accordingly, this chapter also

describes the users’ role and presents a mechanism to increase their involvement

and feedback during the development process. Specifically, data obtained from

user evaluations is used to refine the user interface design, to increase product

usability, and, consequently, to increase product quality.

3.1 Overview

This chapter presents the perspective of the customers and users for whom the

software product is developed.

The agile approach to software development emphasizes ‘‘individuals and

interactions’’ in the process of software development (See the Agile Manifesto in

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 3, � Springer-Verlag London Limited 2008

Chapter 1, Introduction to Agile Software Development). When software developers

are asked who these individuals are, most of them would probably mention different

roles like system analysts, developers, and testers. The agile approach increases

the awareness of additional essential roles in the development environment|for

example, the customer, who is one of the most important project stakeholders. The

users, at the same time, are somehow wrongly neglected. A common misconception is

that the customer represents all users. In this chapter these two roles are distinguished

and the customer and user roles are described by addressing their main responsibilities

in agile software development.

The customer. The customer’s position and role in the software develop-

ment environment is one of the main changes that the agile approach introduced

into the process in general and into team
HOT

members’ conception of the customer

role in particular. This customer position in agile software development is central.

It is based on ongoing communication between the customer and the team

members, both with respect to the requirements, as well as with respect to the

way testing is performed and how the suitability of the developed product to the

customer’s needs is achieved. This communication is established in several ways.

Among other things, we focus in this chapter on the practice of planning and on

the concept of a common language; both foster customer-teammate communica-

tion and bridge the gap (if one exists) between the customer’s and the teammates’

worldviews. As it turns out, the customer role is not only supported by several

practices, but also fosters characteristics of agile software development, such as

information sharing. One of the main ideas delivered in the customer section of

this chapter is that the agile approach supports the customer role and enables the

required collaboration needed for the production of high quality products.

The user. While the customer is one of the few people who either actually pays

for the software development or has other kinds of interests in the development

process, in the context of most software projects, the users form the main clients.

This is where the world of agile software development meets the world of human

computer interaction (HCI). HCI adds the user perspective to agile software

development by its offering of user evaluation methods and by its implications

for the software design and development processes (Dix et al. 2004, Hwong et al.

2004, McInerney and Maurer 2005, Norman 2006, Rogers et al. 2002).

In other software development approaches, when user-centric techniques are

used, the system is refined according to user evaluations, mainly during the design

phase. In agile environments, the design is shaped during the entire development

process and no specific upfront phase is set for this purpose. Accordingly, ques-

tions such as the following are raised when HCI approaches are addressed in agile

software development environments: How can user-centric techniques be imple-

mented in agile software development? How can the two worlds|HCI and agile

software development|be merged?

46 3. Customers and Users

One of the main ideas delivered in the user section of this chapter is the combina-

tion of and the mutual connections and contributions
HOT

between agile development

and HCI. Specifically, on the one hand, the user evaluation is fostered by the agile

process; on the other hand, the product development benefits from keeping the

software design updated according to the ongoing user evaluation.

3.2 Objectives

l Readers will get acquainted with the customer and user roles and

responsibilities.

l Readers will become familiar with the notions of customer collaboration and

user-centric development.

l Readers will learn about specific practices that enable customer collaboration.

l Readers will learn about user evaluation activities.

l Readers will get acquainted with how agile software development supports the

customers’ and the users’ involvement in decision making processes as well as

in design and evaluation activities.

3.3 Study Questions

1. Search for and present quantitative and qualitative data about the customers’

role and position in software development.

2. What is customer collaboration and how can it be achieved?

3. In your opinion, what should be the customer’s duties?

4. In your opinion, what should be the customer’s privileges?

5. What mechanisms does the agile approach provide to assist and support

customer collaboration and user involvement?

6. Would you like to serve as a customer of a software product? Why?

7. Search for project descriptions, not necessarily software engineering projects,

with high user involvement. What are their main benefits? What are their

main drawbacks?

8. What is a user-centric approach? Why should users be involved in software

development?

3.3 Study Questions 47

3.4 The Customer

3.4.1 Customer Role

Let us speculate what the consequences would be of the following interactions in

software development environments.

Software teams tend to declare that customers do not know what they need.

System analysts, as well as developers, feel the urge to explain to customers their

(the customers’) requirements. Such interactions occur during the development

process and cause an ongoing negotiation of the software requirements. Usually,

this negotiation is not pleasant and accompanied with harsh feelings on both

sides. Customers feel that they are not authorized to decide what the require-

ments are. In some cases, customers feel that they should either fight for what

they wish to get, or just give up and compromise. Developers feel that customers

are not certain with respect to their requirements, and therefore believe that they

can decide about the requirements.

Not surprisingly, in many such cases (in about 75% of big software projects),

the customers do not use the software at all, or alternatively, need to compromise

with what they get (Mullet 1999). In addition, software projects fail to accomplish

on-time delivery. For example, according to the Standish Group Chaos Report

(Standish 1994), ‘‘over one-third [of projects] . . . experienced time overruns of

200{300%. The average overrun is 222% of the original time estimate. For large

companies, the average is 230%; for medium companies, the average is 202%; and

for small companies, the average is 239%.’’

The conception of the customer role in agile software development is different.

It is significantly extended and receives a new interpretation. This is not limited

to merely listening to the customer; rather, it also implies that the customer’s

decisions will be followed. This concept can be implemented because the customer

is involved in the development process continuously, as is presented in what

follows.

A project schedule comprising short releases of three to four months each

is set. Each release includes short iterations of one to a few weeks. See

Figure 3.1 for an example of two releases of three months each with two-week

iterations.

As part of release planning, the following activities take place:

l The customer describes the project vision, the project main stories, and the

guidelines according to which development priorities will be set.

l The architects present their vision about the product architecture, including

the existing architecture and anticipated changes.

48 3. Customers and Users

l The project manager presents his or her view of the development process and

the working environment as well as his or her personal expectations.

l Other stake holders present their expectations from the development process.

This part of the release planning takes place after the presentation of the

previous release has been completed and a retrospective session between the two

releases has been facilitated (see Chapter 11, Reflection, and Chapter 14, Delivery

and Cyclicality).

The development tasks of each iteration are determined in a planning session

which is part of a Business Day (Dubinsky et al. 2005a). A Business Day takes

place between each two consecutive iterations of the release: at the end of each

iteration and the beginning of the next one (for example, between the forth and

the fifth iterations). The rest of the iteration days are development days.

For example, in Figure 3.1, the project road map is based on two three-month

releases and includes a Business Day every two weeks (circled). In between two

Figure 3.1 A two-release calendar of 2007 with marked business days.

3.4 The Customer 49

Business Days, development days take place. At the end of each release a retro-

spective (see Chapter 11, Reflection) and release planning take place.

A Business Day Between Two Iterations

A Business Day takes place between iterations and between
HOT

releases.

On the Business Day, in addition to the team and the customer, other project

stake holders are invited to participate, including managers and external parties

such as customer associates and users.

It is common not to perform Business Days on the first working day or the last

working day of the week in order to eliminate the pressure to work over weekends.

In the first part of the Business Day the previous iteration is summarized. In

the second part, after a reflective session takes place, the next iteration planning

starts. The Business Day between iterations is time-boxed to one working day and

the exact schedule of the different activities may vary between projects; in most

cases, the planning starts after the lunch break.

The main Business Day activities are:

l presentation of the accomplishments of the ending iteration;

l measures’ review;

l customer feedback;

l reflective session;

l planning of the next iteration.

During all these activities the customer has a significant role, as is explained in

the following descriptions of each element of the Business Day.

The presentation of the system demonstrates the main new features

developed in the ending iteration, executed on the actual integrated system.

The features that are presented belong to specific customer stories of the ending

iteration. A customer story being defined in Beck and Fowler (2000) as follows:

‘‘The story is the unit of functionality in [a] . . . project. We demonstrate progress

by delivering tested, integrated code that implements a story. A story should be

understandable to customers and developers, testable, valuable to the customer,

and small enough so that programmers can build half a dozen in an iteration’’

(p. 45). The customer business interest is also emphasized: ‘‘The most important

stories to do first are the ones that contain the highest business value. Beware of

sequencing stories based on technical dependencies. Most of the time, the depen-

dencies are less important than the value’’ (p. 63).

In many cases, the planning session does not replace a separate meeting with

the customer in which the entire iteration’s product is presented. This is done

50 3. Customers and Users

towards the end of each iteration, and normally takes two to four hours of a task-

by-task demonstration and intense freehand use of the system by the customer.

The Business Day presentation has two different goals. The first is to make sure

that the system is indeed fully integrated, and includes all the customer stories of

the ending iteration, and that the team is able to deploy it when needed.

The second is to make sure that everyone knows all of the system’s features,

from the customer’s and the user’s (in contrast to the programmer’s) point of

view. The second reason becomes prominent as the deployment approaches.

During the system presentation each team member presents his or her work as

a developer (see Chapter 2, Teamwork). This activity raises the developers’

accountability in two ways. First, they should develop high quality code that

answers a specific customer story, is supported by tests, and is fully integrated

into the system. Second, they should present this output at every iteration in front

of all people who are interested in the development, including managers and

external parties as well as their own team. Since each team member shares

the information with all the other people involved and answers their questions,

the overall understanding of the project components and features is increased.

The measures review is a presentation and analysis of the ending iteration’s

metrics. The following four metrics are interesting for many agile teams

(Dubinsky et al. 2005b). The product metric (the number of written and passed

tests), the pulse metric (a measure of continuous integration [Beck 2000, see also

Chapter 5, Measures]), the burn-down metric (an estimation of the convergence

to the
HOT

release/iteration goals), and fault metrics (the number of new and open

defects). Further elaboration about these metrics can be found in Chapter 5,

Measures.

The goal of this element of the iteration summary is twofold. First is to present

the data to the entire team, replacing individual perceptions (for example, about

product quality, time lost to overhead, etc.) by facts. Second is to openly discuss

the reasons behind the metrics, since metrics cannot be analyzed regardless of

context. For example, a decrease in the number of new defects does not necessarily

stem from improved product quality: It may be the case that less testing was

performed in this iteration (and thus fewer bugs were found), or that people did

not report all defects into the common defects table (for example, if they fixed

them at once and consider the report redundant).

The customer role in this part is first, ‘‘to be there,’’ which highlights the fact

that both the process and progress are transparent and that the customer is

updated continuously about the project status. The decisions taken by the

customer are also influenced by the information that is provided in the measures

presentation. For example, if the measures indicate that a specific component is

more complex than it seemed when planned, then the customer can decide to

change the development scope and/or the priorities. Second, the customer can

3.4 The Customer 51

enhance collaboration by adding measures of his or her own interest. This way the

teammates improve their understanding with respect to the customer emphases

and priorities.

Task

What, in your opinion, are the most important topics to highlight in the system

presentation and the measures review?

The customer feedback is a short, informal verbal summary of the iteration,

given by the customer. This direct feedback usually focuses on the product rather

than on the process. It is important to
HOT

include the customer’s message in the

iteration summary to signal the customer’s importance in the development pro-

cess. It also helps in focusing people on the product as an end goal, rather than

their own specific tasks or the development process.

The reflective session is intended to discuss a specific issue in the develop-

ment process, and to change the process if needed. This practice is described in

detail Chapter 11, Reflection. This part of the Business Day is announced and

considered as a timeout, a time to stop considering the regular, mainly technical,

issues and to think about other kind of topics. Usually, people enjoy this timeout,

cooperate in bringing new issues to the discussion, and volunteer to take respon-

sibility to follow up on things that they find interesting and relevant for them.

Task

In your opinion, what are the topics to be highlighted in the customer feedback

and the reflective session elements of the first part of the Business Day? Compare

your ideas with your colleagues’ opinions. Are your opinion and interest similar to

you colleagues? Are they different? What, in your opinion, is the source of these

differences or similarities?

Planning the next iteration starts immediately after the previous iteration

is summarized and its reflective sessions ended. As in the first part of the Business

Day, the customer and all team members participate; other people who have

interest in the project are invited.

First, the customer tells the stories that were prepared in advance to be

developed in the next iteration. To the customer list, stories from other sources

are added, such as: incomplete stories from previous iterations, refactoring tasks

(see Chapter 8, Abstraction), and user interface stories that emerged from the

user evaluation (see the second part of this chapter). The customer role in this

part is to prioritize the stories so that all the people involved, including all the

52 3. Customers and Users

team members, hear and realize what, from the customer perspective, the impor-

tant stories and the less important stories for this iteration are.

Second, based on earlier work that in some cases is done by system analysts

and in other cases by architects and team leaders, the top prioritized development

tasks are described. Then the development time of each of these tasks is estimated

by the developers who take ownership of them. The actual planning is set

according to the available time of the team members in the coming iteration.

The fact that the developers estimate the development time is important. This

practice replaces development environments in which developers are frustrated,

since schedules are set without considering their time estimation. In many such

cases, project and team leaders decide upon requirements and schedules together

with the customer. Then the team leaders serve as the customer, answer the

developers’ questions according to their understanding of the project, and decide

upon priorities. They also distribute the work among the team members. Since

such scenarios increase the developers’ frustration, the agile approach attempts to

avoid them by letting the developers take the responsibility for time estimation

and task allocation.

Finally, the development loads are balanced among the developers.

The iteration planning is performed differently by different agile methods;

still, a few principles are maintained:

l Time is an important resource and should be managed wisely.

l The smaller a development task is, the more accurate its development time

estimation is. Thus, product delivery on time and of high quality is better

ensured.

l An ordered professional work environment is required by professional practi-

tioners; chaos frustrates professionals especially because the resulting pro-

ducts are of low quality and their professionalism is doubted.

l Fairness and a cooperative work environment are valued by professional

developers; an open and transparent work distribution, in which all parties

are involved, increases practitioners’ security, trust, and cooperation.

The planning subject is elaborated on Chapter 4, Time.

Tasks

1. What are the main customer responsibilities?

2. What are the main characteristics of the Business Day? For each character-

istic, specify which HOT|Human, Organizational and Technological|

perspective you use.

3.4 The Customer 53

3. In light of the Business Day description, what, in your opinion, are the

customer’s feelings during a Business Day? Would you like to serve as the

customer in the Business Day format? Why?

4. How is the Agile Manifesto expressed in the above description of the customer

role?

5. Describe how the HOT perspectives on software engineering is expressed in

the Business Day.

3.4.2 Customer Collaboration

As one of the Agile Manifesto principles states, customer collaboration is one of

the most significant issues of agile software development, and it plays an impor-

tant role in agile teamwork. This section focuses on the common language

required in order to maintain
HOT

ongoing communication with the customers.

Specifically, we describe the use of metaphors (Beck 2000).

Metaphors are used in order to understand and experience one specific thing

using the terms of another (Lakoff and Johnson 1980, Lawler 1999). Communica-

tion which uses metaphors to improve our understanding of a specific thing refers

not only to instances in which both worlds of concepts correspond to one another,

but also to cases in which they do not. If both worlds of concepts are identical, the

metaphor is not a metaphor of a thing, but rather the thing itself.

For example, Beck (2000) suggests ‘‘driving’’ as a metaphor for software

development. The process of software development is controlled by the execution

of many small adjustments in a similar way to car driving. Feedback is required

when the driver is slightly ‘‘off,’’ and many opportunities are needed for correc-

tions at a reasonable cost. This metaphor, however, is limited. For example, no

teamwork is involved in driving. Still, this metaphor is worthwhile.

Several attempts to use metaphors in agile projects have been made, but all

have reported difficulties in adopting this practice (Gittins and Hope 2001,

Wilson 2001, Johnson and Caristi 2001). Indeed, metaphor is a practice that

requires a high level of cognitive awareness when implemented (Hazzan and

Dubinsky 2003). Here are two guidelines that can be used when metaphors aim

at increasing and improving communication in software projects.

First, be aware of metaphors. We all use metaphors naturally, and from those

metaphors we can learn about our own as well as others’ (teammates, customers)

understanding of a given system. This understanding can support our commu-

nication. In most cases, when developers see the horizons that metaphors can

open, they respond positively and want to extend their use. This leads to the need

to talk about metaphors and to encourage their use.

54 3. Customers and Users

Second, encourage developers to provide multiple metaphors: the more meta-

phors we use, the more we improve both our understanding of the project and our

communication with respect to the various aspects of the project, as well as with

respect to difficulties the project stakeholders might encounter during the course

of project development. No harm arises when using several metaphors for differ-

ent parts of the project, using each one according to need. Developers are willing

to use different metaphors for the same topic, and it does not interfere with the

project’s progress. On the team level, multiple metaphors increase understanding,

mainly because each metaphor supports the thinking of different team members,

and in many cases, when there are several metaphors, they complement each

other.

Tasks

1. What metaphors can you suggest for the projects on which you currently

work?

2. Suggest a metaphor for the notion of software development. Discuss simila-

rities and differences between the metaphor and the notion of software

development.

3. Lakoff and Johnson (1980) explain the metaphor ‘‘Argument is War.’’ Sug-

gest three illustrations for this metaphor. Use this metaphor to describe

typical situations that may occur with customers in software projects.

4. Suggest a metaphor to describe the kind of customer collaboration which the

agile approach inspires.

3.5 The User

The human computer interaction (HCI) field emerged in the early 1960s. It deals

with interface design and evaluation and with the interactions between users and

systems, where systems can be hardware, software, or both. The main goal of the

HCI field is to improve these interfaces and interactions according to the users’

needs. This is done by rigorous techniques that involve users and HCI design

experts in the design of the user interface and the evaluation process.

Norman (2006) suggests abandoning the traditional HCI approach of ‘‘study

first, design second’’ and to try the ‘‘design, then study’’ approach. This sugges-

tion is influenced by the agile approach to software development and therefore is

included in this book.

3.5 The User 55

Task

1. In what way does the ‘‘design, then study’’ approach fit the agile approach?

2. In your opinion, in what way can the user contribute to the customer’s role in

agile software development?

Since usability is ‘‘the extent to which a product can be used by specified users

to achieve specified goals with effectiveness, efficiency, and satisfaction in a

specified context of use’’ (ISO 9241{11, 1998), it is essential to integrate the

users in the development process. This importance is highlighted when the most

useful indicators in measuring the usability level of a product, as defined by the

ISO 9241 standards, are examined:

l Effectiveness in use, which encompasses accuracy and completeness, through

which users achieve certain results.

l Efficiency in use, which has to do with the resources utilized in relation to

accuracy and completeness.

l Satisfaction in use, which includes freedom from inconveniences and a posi-

tive attitude toward the use of a product.

Tasks

1. Chose a software tool you use on a regular basis. Suggest specific examples for

each of the above indicators.

2. Suggest specific examples for each of the above indicators with respect to the

software project you currently develop.

The integration of the user in the development environment is accomplished

by the user centered design (UCD) approach, which is a set of design techniques

that emphasizes user needs during the design of the user interface. This is

achieved by managing user evaluation with validated user evaluation techniques

(Vredenburg et al. 2002).

Evaluation of user interfaces aims at assessing the extent of system function-

ality while the user interacts with and gains experience with the system, and

identifies specific problems related to the system (Dix et al. 2004). There are two

main types of evaluation:
HOT

expert-based evaluation and user-based evaluation.

In expert-based evaluation, a designer or an HCI expert assesses a design of

user interfaces based on known cognitive principles or empirical results. The user-

based evaluation is based on user participation, i.e., evaluation that involves the

people who are going to use the system. User-based evaluation techniques include

experimental methods, observational methods, questionnaires, interviews, and

56 3. Customers and Users

physiological monitoring methods. User-based evaluations can be conducted in a

laboratory and/or in the field.

Surprisingly, it is known that the best evaluation results come from small tests

with no more than five users, conducted in several iterations (Nielsen and Land-

auer 1993). Therefore, the evaluation process is not an expensive process, as it is

sometimes wrongly conceived. For example, Nielsen and Landauer (1993)

describe an iterative design in which the evaluation of five users revealed 85% of

the usability problems. Accordingly, the design of the user interface was changed

and reevaluated to ensure that problems were fixed and that new problems had

not emerged. Indeed, reevaluation iterations probe deeper usability problems.

Tasks

1. For a specific software project with which you are acquainted, define the users

and explain when and how they should be involved in the project

development.

2. Choose a software application that you use on a regular basis. Ask the

development team of this application how to get you involved in the devel-

opment process as a user.

3. In your opinion, what should be the relationship between the users and the

customer? Between the users and the development team?

3.5.1 Combining UCD with Agile Development

The UCD approach goes hand in hand with the agile software development

approach and they mutually benefit each other (Blomkvist 2005); hence users

should be constantly involved in the software development process. User evalua-

tion contributes to the set of measures used for the steering and directing of agile

projects (see Chapter 5, Measures) and also enhances the emerging design of the

user interfaces which are part of the software project.

Case Study 3.1 illustrates the combination of UCD with agile software

development.

3.5.1.1 Case Study 3.1. Merging Development Iterations
with User Evaluation Iterations

This case study illustrates the combination of UCD with agile software develop-

ment in a specific software project called Catalogue Browsing Project (CBP) in

3.5 The User 57

which a speech-based mobile interface to a na€�ve digital library was developed

(Dubinsky et al. 2007). The main goal of the CBP development project is to

provide a seamless interaction between the physical and digital realms in acces-

sing library artefacts, based on the concept of browsing through a catalogue. An

artefact of a digital library can be accessed over the web, and it contains a

metadata record with descriptive details like title, author, year of publication,

etc., as well as the data itself.

The first release of CBP was developed by two people during four months

(from the middle of May till the beginning of September 2006) and divided into

four iterations of about three to five weeks. Customer collaboration and user

evaluation were emphasized during the development process. Details about the

implementation and some CBP screenshots can be found in Dubinsky et al. (2007).

The CBP evaluation process was composed of evaluation iterations, each one

examining the artefacts of the previous development iteration and resulting in

design changes for the next iteration. Sometimes, there were changes in the

current iteration, especially when these changes were small, related to the stories

of the current iteration, and ranked by the users as high severity. In this sense, this

can be seen as a bug fix that was found and fixed in the same iteration.

The stages of this process|development and evaluation|are described in

what follows.

1. The 1st development iteration provides its artefacts.

2. During the 2nd development iteration, the 1st evaluation iteration takes

place to evaluate and reflect on the artefacts developed in the 1st develop-

ment iteration and to decide what changes should be introduced, if any, into

one of the next development iterations, according to the decisions made in the

planning session.

3. During the 3rd development iteration, the 2nd evaluation iteration takes

place to evaluate and reflect on the artefacts produced in the 2nd develop-

ment iteration, and so on.

Task

How is this process related to agile software development?

In the first two iterations the user groups were identified. They included

librarians and readers. Questionnaires and semistructured interviews were pre-

pared in order to improve the understanding of users’ needs.

In the third iteration an evaluation was performed with two users. The

purpose of this evaluation was to learn about the users’ interaction with the

system and about any major problems encountered.

58 3. Customers and Users

After the fourth iteration had ended, that is, after the first release was over, an

experiment for speech evaluation was planned and conducted. Besides the system

evaluation, the main goal was to provide guidelines for the evaluation of speech-

based user interfaces to ensure better design of these interfaces.

An experiment with six participants was conducted. The six users were

computer science students in different stages of their studies, three male and

three female. The experiment tasks included login to the system, search activities,

and a book localization activity. The task could have been performed with a

speech interface (S) or without a speech interface (non-S). Each of the partici-

pants performed the task in both modes (S and non-S), while three participants

started with S and proceeded to non-S and three started with non-S and con-

tinued to S. In addition, before the experiment had started, each participant filled

out an attitude questionnaire with respect to speech interfaces and received a ten-

minute CBP usage training. Each of the participants performed the experiment

separately. After the experiment had ended, each participant filled in a reflective

questionnaire on his or her activities.

In what follows the experiment stages, together with qualitative and quanti-

tative data, are presented.

Pre-experiment stage: This stage was carried out before the users experi-

enced the system.

In general, it was observed that the attitudes towards speech interfaces were

mixed and did not reflect a consistent approach. Though the speech interfaces

were found to be fun, they were also annoying; and though participants liked

them, they did not always prefer them.

Experiment stage: After the participants had filled in the questionnaire,

they received a one-page users’ guide for the CBP and were asked to read it and to

ask questions.

Then the users received the relevant task page according to their experiment

order of S and non-S. As mentioned previously, each of the participants performed

the experiment separately. An automatic time measure, which was developed as

part of the system, provided the login/logout time stamps as well as the time

stamps for each search start/end.

Table 3.1 presents the average time in minutes invested in the two search

activities by both experiment groups, together with their duration per mode.

Table 3.1 Average search time (in minutes) (With kind permission of
Springer Science and Business Media.)

Group
Average search
duration

Average Non-S
search duration

Average S search
duration

Non-S! S 54.66 28 81.33

S! Non-S 26.58 14 39.16

3.5 The User 59

As can be observed, the S!Non-S group performed the entire task

almost twice as fast as the Non-S!S group. When looking into the data of

speech and non-speech per group, it can be observed that the participants in

both groups performed the speech task more slowly than the non-speech

task. This implies that although the speech task required a longer time, the

participants learned the system in a better way when they used it first with the

speech option.

Task

What can be learned from this observation?

Post-experiment stage: After completing the CBP task, the participants

were asked to reflect on their own activities. Some participants found it hard to

use CBP in its current development stage, though it was fun and they expected

such interfaces in the future.

In addition, users’ answers revealed that some improvements are needed.

These improvements deal with speech implementation for all interface features

and with online usage information. This conclusion was based on the observation

that when users are introduced to a speech-based interface they expect it

to be fully speech-based i.e., not using the keyboard at all. Further, they

expect to receive vocal online help to assist them in the process of using the

application.

Tasks

1. Suggest specific tasks that should be implemented in the next development

iteration that are directly derived from the above user evaluation.

2. What lessons could have been learned from each of the experiment stages?

3. Had you been assigned to interview the users, what questions would you have

asked them?

4. Had you been assigned to observe how the participants used the system, what

elements would you have focused on?

5. How can customers use the information obtained from user evaluations?

What benefits would customers gain from learning and taking into the con-

sideration user evaluations?

6. Describe the main agile ideas expressed in Case Study 3.1.

60 3. Customers and Users

3.6 Customers and Users in Learning
Environments

3.6.1 Teaching and Learning Principles

The following two teaching and learning principles deal with communication and

establish a common language by using metaphors. In our list of teaching and

learning principles, presented in Chapter 14, Delivery and Cyclicality, these

principles are numbers 5 and 10.

3.6.1.1 Teaching and Learning Principle 5: Elicit
Communication

Communication is a central theme in software development. Indeed, the success

or failure of software projects is sometimes attributed to people communication

issues. Accordingly, in all learning situations, aim at fostering learner-learner, as

well as learner-teacher communication.

This idea is implemented in many ways. One option is to present students with

conflicts and problems in software teamwork. The opportunity to discuss sensi-

tive topics face-to-face has direct implications on students’ teamwork in general,

and their cooperation and decision-making processes in the team in particular.

Another process which elicits communication is the retrospective, to which we

dedicate a lot of attention.

3.6.1.2 Teaching and Learning Principle 10: Use Metaphors
or ‘‘Other World’’ Concepts

This principle addresses the cognitive aspects of software development. Generally

speaking, metaphors are used in order to understand and experience one specific

thing using the terms of another thing (Lakoff and Johnson 1980). Metaphors are

used naturally in our daily life, as well as in educational environments.

Metaphors can be useful even without specifically mentioning the metaphor

concept. For example, a teacher may say, ‘‘Can you suggest another conceptual

world that might help us understand this unclear issue.’’ Learners then suggest a

varied collection of conceptual worlds, each highlighting a different aspect of the

issue and together supporting the comprehension of the topic discussed.

3.6 Customers and Users in Learning Environments 61

3.6.2 Customer Stories

In this studio meeting the teammates meet the customer and listen to the

customer’s vision and the stories that are expected to be developed in the coming

release. If the project either does not have a customer at all or has more than one

customer, a discussion about who is the customer takes place and a proxy

customer is nominated, usually one of the students.

Specifically, during the meeting, teammates are exposed to the entire list of

customer stories, and hear how the customer prioritizes them. During the prior-

itization process, the academic coach explains that in the next iteration things can

be changed by the customer according to the presentation of the artefacts devel-

oped and the resulting new understandings. This kind of behavior is encouraged,

since the goal is to provide the customer with what he or she needs. Further, the

customer is asked to elaborate with details about who the users of the system are;

and the user evaluator (a student role) is asked to prepare a work plan, together

with other teammates, for the purpose of the users’ involvement.

When the list of stories for the first iteration is ready, the academic supervisor

guides an open discussion, its aim is to improve the understanding of each story.

The customer is asked to explain unclear matters, and the students are requested

to make sure that they understand what is needed.

At the end of this meeting, the team is familiar with the stories to be developed in

the first iteration. They are asked to spend the next week preparing a high level design

according to these stories and a list of development tasks to be distributed among

teammates. It is explained that this list of stories is not necessarily the exact work that

will be developed in the first iteration, and that the exact scope will be determined in

the next meeting when the development tasks will be estimated and compared to the

available time. If the estimated time turns out to be longer than the available time,

the customer will decide what stories to omit; and if the estimated time turns out to be

shorter that the available time, the customer will decide what stories to add.

3.6.3 Case Studies of Metaphor Use

To illustrate how metaphor can be used to foster customer-teammates communica-

tion, we present several case studies of agile projects developed by students. For each

case, the project and the use of metaphor with respect to its development are described.

3.6.3.1 Case Study 3.2. Identification of Short Sequence
Repetitions in a DNA Sequence

This aim of this project was to identify short sequence repetitions (SSR) in a DNA

sequence. A graphical interface was provided, and after receiving a DNA sequence

62 3. Customers and Users

and several parameters about the required repetition, the system was required to

return the following: the basic components of the repeated element, the number of

repetitions of that element in the sequence, the length of the repeated segment,

and the starting position of the segment within the DNA sequence.

The students were requested to provide metaphors for the project’s subject.

These metaphors are presented in Table 3.2. In this case, the metaphors were also

needed by the lecturer and the assistant in order to enhance their own under-

standing of the biological subject. Discussing these metaphors with groups of

students helped the lecturer and the assistant promote their understanding of the

various concepts of the project.

Task

Do the metaphors presented in Table 3.2 improve your understanding of the

project?

3.6.3.2 Case Study 3.3. Personal Information Organizer

This project dealt with a personal information organizer that acts as an interface

between the user and different applications that enable access to the user’s

personal data. The system contains a navigator that provides effective data

management, and enables the formation of dependency relationships between

different kinds of data, which can be reached by the user from within different

kinds of applications.

For example, the user can create a dependency between specific data in a

document file and specific data in a spreadsheet file. A uniform format is used for

all files in order to enable dependency relationships. In addition, the system

provides a special security feature that resembles a private virtual safety deposit

Table 3.2 Metaphors for the SSR project

Biology
terminology Metaphoric expressions

Teammate
1

The DNA
sequence

A sequence of 0s and 1s as electrical pulses of a computer

The SSR It contains sequences of 0s and 1s

Teammate
2

The DNA
sequence

A topographic road map with slopes, traffic signs, traffic
lights, etc.

The SSR Contains repetitions of sequences

Assistant The DNA
sequence

A sequence of bits received when listening to the network by a
communication card

The SSR The repetition of new packet bits

3.6 Customers and Users in Learning Environments 63

box which is implemented for all users using client/server architecture. A graphic

monitor is provided for viewing general virtual vault transactions. In addition, the

monitor enables each user to view personal security information, such as when

and by whom each file was accessed.

Students were given specific instructions concerning protocols, databases,

programming languages, and development techniques that were to be used in

the implementation of this system.

During the first planning sessions, after listening to the customer stories,

most students were uncertain about how to think about the file navigator. The

customer emphasized that he was not comfortable with the current tree hierarchy

of files, which he found to be poorly organized. According to the client, files

were saved in incorrect locations, rendering them impossible to retrieve. As a result,

such files did not undergo automatic synchronization with other related files.

Task

What metaphors would you suggest for this system? How would they help you

communicate the nature of the system?

One of the students suggested the navigator be treated as if it were an

association graph. An association graph is made up of nodes that represent

specific subjects, and connecting arcs, which denote equivalent relationships

between the nodes. The idea was to regard each such node as representing a file,

and each arc between two files as denoting a first-degree relation with respect to

the file contents. The student explained that the use of such an association graph

to manage the files would enable the user to manage each file according to his or

her own perception of the relationships between a given file and other files. Thus,

a graph could be created in which adjacent nodes represent files that are more

strongly related to one another than nodes that are more distant. The student

concluded his explanation by stating that this is the way in which our minds work.

Some students claimed that this scheme would be impossible to implement.

However, during a discussion with the academic coach, in which the students

used the above metaphor to explain how our minds relate to data, they began to

realize how the project could be planned using the metaphor.

Eventually, the ‘‘file organization is mental association’’ accompanied the

group’s discussions throughout the semester. Following are several examples of

this metaphor, as expressed by the students:

l ‘‘After the user creates a file he will decide how to save it according to its

relation to other files.’’

l ‘‘The file will be associatively close to another file if their contents are related.’’

64 3. Customers and Users

l ‘‘The distance between one file and another can be infinite.’’

l ‘‘At any given moment we can ask which files have a level-2 relation to a

specific file.’’

l ‘‘The file tree should be suited as much as possible to the user, and each user is

an individual, and the subjects are integrated differently in each individual’s

mind.’’

Tasks

1. In what sense do the above statements support communication among team

members and between the team and the customer?

2. In what ways, if any, does the proposed metaphor improve your understand-

ing of the system?

3. Can you add statements that reflect how the ‘‘file organization is mental

association’’ metaphor can be used?

3.6.3.3 Case Study 3.4. Simulator of the UnixTM File System
Module

The subject of this project was an educational computer program that simulates

the work of the UnixTM file system module. The system relates to the following

subjects: buffer cache, file system structure of inodes table and data block, and

the superblock for management of available inodes and data blocks. Each file

is represented by an inode in the inodes table, and each inode contains file

details such as owner and permissions, as well as a pointer to the data blocks

that contain the file’s contents. The system has a graphical interface that

enables the user to learn about the file system structure, perform actual

training, read online help, and view running simulations of UnixTM commands.

Task

What metaphors would you suggest for this system?

The students were requested to provide metaphors for the project’s

subject as a whole or for its parts. The proposed metaphors are presented

in Table 3.3.

3.6 Customers and Users in Learning Environments 65

Tasks

1. In what sense is each of the descriptions presented in Table 3.3 a metaphor for

the developed software?

2. In what ways, if any, do these metaphors improve your understanding of the

system?

3. Can you add metaphors for this system?

4. In what sense may the above metaphors support communication among team

members and between team members and the customer?

The students were asked about the main problems in the software. One of

the students talked about the difficulty of understanding how to implement the

inodes table in general, and about the connection between each inode and the data

blocks in particular. The students discussed this problem and mentioned the

metaphors ‘‘an inode is a book record’’ and ‘‘file data blocks are a book.’’ The

first of these two metaphors, as explained by the students, refers to the situation

in which a specific book is found in a library catalogue. The book record contains

details such as the author and publisher, as well as a pointer to the location of the

actual book in the library. The idea behind the second metaphor was found to be

irrelevant as students continued to discuss it, since file data blocks in UnixTM are

not consecutive, unlike the pages of a book.

Following this discussion, the students were asked about the contribution of

the discussion to their understanding of the problem and to its solution. Following

are the responses of several students:

l ‘‘The discussion using the metaphor helped open an additional channel by

which to understand. . . .’’

Table 3.3 Students’ metaphors for the UnixTM file system educational computer program

Project terminology Metaphoric expressions

Creating a GUI Painting a picture

Simulation screen in our project A transparent phone that enables us to see how
the system works inside

The project as a whole { A piece of land on which we begin to build
rooms, and then add details inside the
rooms

{ A vehicle that has many parts and together
they enable it to move

Files permissions in the UnixTM file system
differ between file owner, the group, and
others

At the bank, the clerk has permission to look at
the accounts. The bank manager and the
client have other permissions

66 3. Customers and Users

l ‘‘The metaphor about the catalogue and library shelves illustrated well how a

file search is performed when we know its inode number.’’

l ‘‘The truth is that it helped me personally, since it made me realize that I

didn’t really understand it before.’’

l ‘‘Actually, in the end, we didn’t use the metaphor. . . .’’

l ‘‘The metaphor changed the concepts from being distant to being

tangible. . . .’’

l ‘‘I think that had we started this subject with the metaphor we would have

understood it faster.’’

l ‘‘The discussion using the metaphor didn’t contribute to my understanding,

but didn’t bother me either, because I understood the subject even before the

discussion. . . .’’

l ‘‘The library idea is perfect, but in my opinion the right metaphor in order to

understand . . . is a family tree. . . .’’

Tasks

1. What benefits does a discussion have that leads to a decision that a specific

metaphor does not fit for the said system?

2. How do metaphors enhance understanding when problems are discussed?

3.7 Summary and Reflective Questions

1. Indicate three main ideas that you learned about the customer’s position and

role in agile software development.

2. Indicate three main ideas that you learned about the users’ role in agile

software development.

3. During the development process of your last project, what were the custo-

mer’s main stories? Why, in your opinion, were these requirements prioritized

in this way?

4. During the development process of your last project, were the customer’s stories

clear? What were your main questions with respect to the customer’s stories?

5. What is your opinion with respect to the way teammates hear the project

requirements? How is this similar or different from your personal experience?

3.7 Summary and Reflective Questions 67

6. Suggest a work plan to involve users in the project you are currently

working on.

7. What are the main concepts learned in this chapter? How are they connected

to each other?

8. How is each of the concepts reviewed in this chapter connected to agile

software development? Answer this question from the HOT perspectives.

3.8 Summary

In this chapter the customers’ and the users’ roles in agile software development

are described. The activities by which the customer navigates the project by

telling the development stories, prioritizes the stories, and gives ongoing feedback

to the teammates with respect to the developed artefacts, are laid out. This kind

of collaboration provides the setting needed for dealing with change requests, thus

establishing a process that leads to the development of a high quality product

from the customer’s perspective.

User involvement in software projects in order to develop the needed user

interface is also discussed in this chapter. For this purpose, a user-centered

approach is adopted for the interface design and evaluation.

References

Beck K (2000) Extreme programming explained: embrace change. Addison-Wesley,
Reading, MA

Beck K, Fowler M (2000) Planning extreme programming. Addison-Wesley, Reading, MA
Blomkvist S (2005) Towards a model for bridging agile development and user-centered design.

In: Seffah A, Gulliksen J, Desmarais M (eds) Human-centered software engineering|
integrating usability in the development process. Springer, Dordrecht, The Netherlands

Dix A, Finlay J, Abowd GD, Beale R (2004) Human-computer-interaction, 3rd ed. Scotprint,
Haddington

Dubinsky Y, Hazzan O, Keren A (2005a) introducing extreme programming into a software
project at the israeli air force. Proceedings of the 6th international conference on extreme
programming and agile processes in software engineering. Sheffield University, UK

Dubinsky Y, Talby D, Hazzan O, Keren A (2005b) Agile metrics at the Israeli air force. Agile
conference, Denver, CO

Dubinsky Y, Catarci T, Kimani S (2007) A user-based method for speech interface development.
In: Stephanidis C (ed) Universal access in HCI, part I, HCII, LNCS 4554, HCI international,
Beijing, China. pp 355{364

Gittins R, Hope S (2001) A study of human solutions in extreme programming. 13th annual
workshop of the psychology of programming interest group. pp 41{51

68 3. Customers and Users

Hazzan O, Dubinsky Y (2003) Bridging cognitive and social chasms in software development
using extreme programming. Proceedings of the 4th international conference on extreme
programming and agile processes in software engineering, Genoa, Italy. pp 47{53

Hwong B, Laurance D, Rudorfer A, Song X (2004) User-centered design and agile software
development processes. Identifying 2004, workshop bridging gaps between HCI and software
engineering and design, and boundary objects to bridge them. CHI workshop, Vienna,
Austria

ISO 9241{11 (1998) Ergonomic requirements for office work with visual display terminals:
guidance on usability

Johnson DH, Caristi J (2001) Extreme programming and the software design course. XP/Agile
Universe website

Lakoff G, Johnson M (1980) Metaphors we live by. University of Chicago Press
Lawler JM (1999) Metaphors we compute by. In: Hickey DJ Figures of thought: for college

writers. Mayfield Publishing
McInerney P, Maurer F (2005) UCD in agile projects: dream team or odd couple? Interactions

12(6):19{23
Mullet D (1999) The software crisis. Benchmarks Online|a monthly publication of Academic

Computing Services 2(7): http://www.unt.edu/benchmarks/archives/1999/july99/crisis.
htm

Nielsen J, Landauer TK (1993) A mathematical model of the finding of usability problems.
Proceedings of ACM INTERCHI’93 conference, Amsterdam, The Netherlands, pp 206{213

Norman D (2006) Why doing user observations first is wrong. ACM Interact July-August 50ff
Rogers Y, Preece J, Sharp H (2002) Interaction design: beyond human-computer interaction.

Wiley, New York
Standish Group Chaos Report: http://www.standishgroup.com/sample_research/

chaos 1994 2.php
Vredenburg K, Isensee S, Righi C (2002) User-centered design: an integrated approach.

Software Quality Institute Series, Prentice Hall PTR
Wilson D (2001) Teaching XP: a case study. XP/Agile Universe website

References 69

4
Time

Abstract

Time is addressed differently by different people and cultures; for example, in

western culture, time is mainly associated with financial profit, i.e., ‘‘Time is

money.’’ Time plays a special role in software engineering: the project schedule

should be met, the product should be delivered on time, teammates should

complete their tasks on time, and so on. This chapter deals with how the time

concept is expressed in software engineering in general and in agile software

development in particular. In agile software development time is boxed for each

activity, and when needed, instead of ‘‘moving’’ deadlines, the scope is changed

according to customer priorities. This conception is supported by agile software

development methods in different ways that not only enable one to work at a

sustainable pace, but that also result in high quality products.

4.1 Overview

This chapter examines how time issues are expressed in agile software develop-

ment environments in general; more specifically, it describes the planning activity

that is part of the iteration Business Days, described in Chapter 3, Customers and

Users.

In a specific iteration planning, the customer presents the relevant stories, and

the team, based on a high level design prepared previously, carries out a planning

session which includes work distribution, time estimation, and load balance

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 4, � Springer-Verlag London Limited 2008

among the team members. The goal of the planning session is to reach a complete

yet sustainable plan for the implementation of the customer stories during the

coming iteration. At the end of the planning session all teammates are familiar

with the customer’s vision and priorities and with the individuals’ tasks for the

coming iteration.

No change is introduced on the iteration development days. The customer can

still change the project scope, the stories, and their priorities; still, these changes

are implemented only in the next Business Days.

The details of the planning session are described in the section that deals with

time in learning environments. The same process, with some adjustments, should

be conducted in industry.

Additional topics discussed in this chapter include:

l time-related problems associated with software projects;

l a tightness model for the assessment of software development methods;

l the concept of working at a sustainable pace;

l time management with respect to software development methods.

4.2 Objectives

l Readers will get acquainted with agile planning activity, including time esti-

mation of development tasks, work distribution among teammates, total time

calculation for the iteration, and load balance among teammates.

l Readers will become aware of the time and pace notions with respect to agile

software development.

l Readers will become familiar with how a week in the life of an agile team works.

l Readers will become familiar with time management in agile software devel-

opment methods in general, and with measures as part of time management in

particular.

l Readers will become familiar with a tightness model.

4.3 Study Questions

1. What is unique about the planning process of an agile software project?

2. What are the main characteristics of the agile planning sessions? Of the

release? Of the iteration?

72 4. Time

3. Describe methods for time estimation of software projects.

4. How do different software development methods relate to time management?

5. What measures can be used for time management in software projects?

6. What is the concept of team velocity? What is its importance? How do agile

methods calculate team velocity?

7. What is the concept of sustainable pace? What is its importance?

8. Why, in your opinion, are many software projects characterized by schedule

overrun? How would you suggest overcoming this problem?

9. Do you have personal successful experiences with respect to project sche-

dules? If yes, explain the source of their success.

10. What are the similarities and differences between software projects and

non-software projects? How do these similarities and differences relate to

time issues?

11. One of the famous rules of software engineering is Brooks’s assertion that

‘‘Adding manpower to a late software project makes it later’’ (Brooks 1975,

1995). Can you explain this rule? In your opinion, is it relevant for other

professions as well? Why? In what ways does it highlight the importance of

the time dimension of software projects?

4.4 Time-Related Problems in Software Projects

In his classic book The Mythical Man-Month (Brooks 1975, 1995), Brooks writes:

More software projects have gone awry for lack of calendar time than for all other
causes combined. Why is this cause of disaster so common?

First, our techniques of estimating are poorly developed. More seriously, they reflect an
unvoiced assumption which is quite untrue, i.e., that all will go well.

Second, our estimating techniques fallaciously confuse effort with progress, hiding the
assumption that man and months are interchangeable.

Third, because we are uncertain of our estimates, software managers often lack the
courteous stubbornness of Antoine’s chef.

Fourth, schedule progress is poorly monitored. Techniques proven and routine in other
engineering disciplines are considered radical innovations in software engineering.

Fifth, when schedule slippage is recognized, the natural (and traditional) response is to
add manpower. Like dousing a fire with gasoline, this makes matter worse, much worse.
More fire requires more gasoline, and thus begins a regenerative cycle which ends in
disaster (14).

4.4 Time-Related Problems in Software Projects 73

Tasks

1. Explain each of Brooks’s claims.

2. Do you have personal experiences that strengthen Brooks’s claims?

It is clear that time occupies a crucial place in project management. It seems,

however, that in software engineering time plays a special role. It also seems that

time is one of the most important factors dominating software development. One

reason that makes time so crucial in software development is that software

development does not progress linearly. This, in fact, is expressed by Brooks’s

statement that, in software projects, months and people are not interchangeable

(Brooks 1975, 1995).

4.4.1 List of Time-Related Problems of Software Projects

Based on Hazzan and Dubinsky (2007), we illustrate the significant role of time in

software development by presenting time-related problems in the development

process.

Bottlenecks. Bottlenecks in software development occur when
HOT

one or more

functions in the process await the output of another function in the process, with

teammates having nothing to work on in the meantime. This may happen, for

example, when quality assurance people wait for artefacts to work on or, vice

versa, when developers wait for artefacts from quality assurance people. Another

example is when developers wait for artefacts from system analysts, like the

specification of a specific module.

Project planning and schedule. Two main problems are associated with

schedules, which are, in fact, closely connected. The first is the mere construction

of a feasible project schedule. The second problem is to meet the schedule that has

been set.

Time estimation. There are different ways to support time
HOT

estimation

(Boehm 1981, Boehm et al. 2000, Kemerer 1987, SEI 2001). With respect to the

estimation of the development time of a specific module/class/task, it is well

known that the greater the module/class/task is, the more difficult it is to

estimate its development time. Tomayko and Hazzan (2004) present evidence

that the smaller the estimated unit is, the more accurate is its time estimation.

Time pressure. Time pressure is the result of the previous
HOT

problems. It

happens usually toward the end of the development process, when teammates

cannot meet the project schedule, either because of poor time estimations or

bottlenecks. Time pressure usually leads to the skipping of different testing

activities, which in turn leads to a decrease in software quality. Van Vliet

74 4. Time

(2000), for instance, says: ‘‘The testing activity often does not get the attention it

deserves. By the time the software has been written, we are often pressed for time,

which does not encourage thorough testing.. . . Postponing test activities for too

long is one of the most severe mistakes often made in software development

projects. This postponement makes testing a rather costly affair’’ (386{397).

Late delivery. Late deliveries occur as a result of inappropriate project

planning, usually due to poor estimations. Data indicate that the percentage of

software projects that fail to accomplish on-time delivery is quite high. See, for

example, the data presented by the Standish Group Report (Standish 1994).

Tasks

1. For each of the above problems, specify how agile software development

methods attempt to overcome it in general and, in particular, what agile

practice(s) aims at solving it. If needed, go on reading this chapter before

answering this question.

2. Analyze the above problems from the HOT|Human, Organizational, and

Technological|perspectives.

4.4.2 Case Study 4.1. Software Organizational Survey
from the Time Perspective

This case study illustrates some of the above mentioned problems that character-

ize software projects. The following data were gathered in a large company during

an organizational survey conducted at the company in order to understand the

roots of the problems the company encountered with respect to software devel-

opment and to propose possible solutions to overcome those problems. We

present here only data related to time.

Task

For each of the following data pieces, explain its source and suggest how agile

software development attempts to solve it.

a. One of the questions presented to developers was: Indicate two factors that you

would improve in your team in order to develop higher quality software.

Out of 46 answers, 13 developers (28%) indicated the time element as a

factor that should be addressed in order to improve software quality. Here are

several illustrations:

4.4 Time-Related Problems in Software Projects 75

l Planning a schedule that can be met.

l Allocation of time to learn the things [to be implemented] before we rush

to the next coding; allocation of enough time for review and debugging.

l Allocation of time for design and education in design topics.

l Commitment of the software people to the schedule and the product.

l Add time to the development and testing [stages].

l Dedicate additional time to code review.

b. The developers were asked to describe the development process in the orga-

nization and to indicate the pros and cons of that process. Following are some

of the time-related responses received.

Indicate at least three benefits of the development process that you have

just described.

Out of 22 developers who answered this question, none mentioned the

concept of time.

At the same time, time appears in the ‘‘pitfalls’’ question, as described

below.

Indicate at least three pitfalls of the development process that you have just

described.

Out of 22 developers who answered this question, 9 (41%) mentioned the

concept of time, as is illustrated by the following quotes:

l It is difficult to estimate times (the scope is not really known).

l This process requires a lot of time and resources.

l It lasts too long.

l The schedule is tight and it requires making decisions that are detrimental

to the quality of the development.

l Too many bad ideas are accepted because there is not enough time to

establish a new process.

l The lack of parallel work leads to some inefficiency and redundancy in the

development time; the requirements are not always well defined, a fact that

takes a lot of the time of the software engineers and the system engineers

during the DR [Design Review].

l The tests require too much time.

76 4. Time

4.5 Tightness of Software Development Methods

This section shows that agile software development methods are tight, which

means that, though they are flexible in terms of change introduction, they are

very sensitive to time frameworks. This awareness of time frameworks is impor-

tant since software is an intangible product, and accordingly its development

should be kept strictly paced; otherwise, problems such as the ones described

above emerge in many cases. Also, ‘‘tightness’’ suggests the idea that the tighter a

development method is, the more ordered is the software development environ-

ment it inspires.

The tightness of agile methods is achieved in several ways. First, short itera-

tions and releases are set. Second, agile methods set
HOT?

the time dimension fixed as well

as the cost and quality axes, enabling changes only in the project scope (Beck 2000,

Beck and Fowler 2000, Cohn 2006). The time setting is determined by the project

timetable, as presented in Chapter 3, Customers and Users, by designing the

project roadmap consisting of iterations of a fixed number of development days.

Schuh (2004) explains that ‘‘Agile projects perform time boxing at the

release and the iteration levels, so a single agile project contains multiple time-

boxes.... Time boxes force the customer to make decisions on the short-term

direction of the project; second, they always provide a near-term goal, which

can keep the entire team from wandering off target.... Finally, time boxes ensure

that the team delivers something useful within a short and defined period.. . .

The last two arguments closely refer to the first-things-first idea|if you have a

four months release time you think you have a lot of time and you are not

focused on what is important|to deliver working software to the customer’’

(154{155).

Beck and Andres (2005) analyze the importance of keeping the time axes

fixed. They present the three variables|time, quality, and scope|as variables of

which, in some software development processes, two are usually set and the third

can vary. However, they claim, ‘‘This method doesn’t work well in practice. Time

and cost are generally set outside the project. That leaves quality as the only

variable you can manipulate. Lowering the quality of your work doesn’t eliminate

work, it just shifts it later so delays are not clearly your responsibility. You can

create the illusion of progress this way, but you pay in reduced satisfaction and

damaged relationships. Satisfaction comes from doing quality work’’ (92).

Among other differences, software development methods vary with respect to

their tightness level and the culture that the tightness level of the development

method inspires. Connections between tightness and organizational changes are

further examined in Chapter 12, Change.

4.5 Tightness of Software Development Methods 77

In this book we adopt a relatively tighter approach, since we believe that the

tightness level that characterizes a development method is one of the main factors

that enable software projects to achieve their targets successfully.

Hazzan and Dubinsky (2005) conceptualize the tightness idea by defining the

tightness level of a software development method along the following five dimen-

sions, whereby the higher the values of these factors, the tighter the software

development method.

l Project plan dimension: number of releases and feedback milestones, level of

emphasis placed on planning, number of days for which specific planning is

made (the smaller the number of days, the tighter the software development

method).

l Procedures and standards dimension: level of detail that describes the

software development method.

l Responsibility and accountability dimension: level of role performance, level

of personal accountability, frequency at which team members are required to

report on their progress.

l Time estimation dimension: importance given to time estimation, resolution

level of time estimation (hours, days, months)|the smaller the time units,

the higher the resolution, and the higher the value of this dimension.

l Individual need satisfaction dimension: mutual dependency of team mem-

bers, level of planning that inspires the message ‘‘Invest now for the

future.’’

Tasks

1. Analyze the agile practices presented in Chapter 1, Introduction to Agile

Software Development, according to their tightness level.

2. For each dimension of the tightness model explain how it is expressed by the

agile approach.

3. How does the tightness model inspire software project management?

4. In your opinion, what tightness level (low, high) of a software development

method do teammates prefer? Why?

5. Choose two agile development methods and analyze them according to the

tightness model.

6. Suppose we have a tool that measures the tightness level of a team in a similar

way to the way in which we measure the tightness level of a development

78 4. Time

method. Suggest possible scenarios for the adoption of agile development

when the team tightness and the software development tightness fit each

other and when there is a clash between the tightness level of the team and

that of the software development method. Address questions such as: What

would happen when the team tries to adopt the development method? What

is the best situation for the application of an agile process?

4.6 Sustainable Pace

Tightness is one time-related characteristic of agile software development.

Sustainable pace is another one. This section introduces the importance of

the sustainable pace that agile methods inspire. Sustainable pace means that

the development process is carried out in a reasonable number of hours, which

are well planned and enable the team to be productive and to produce quality

products.

The rationale for keeping a sustainable pace is that
HOT?

overworked programmers

are unable to produce quality code. Since several agile principles, such as the

whole team, pair programming, the planning session, and time estimation, ensure

productivity during the development hours, agile programmers can work at a

sustainable pace, be productive, and produce quality code.

Task

What characteristics of the agile planning session enable development at a

sustainable pace?

The following data illustrate this productivity. Based on 31 Extreme

Programming/Agile-methods early adopter projects, Reifer (2002) indicated

a 25{50% reduction in time-to-market (188). These data are also supported by

the results of the VersionOne and Agile Alliance survey conducted in 2007 (see

Chapter 1, Introduction to Agile Software Development). This evidence shows

that the agile approach inspires a productive and efficient working environment

without working long hours. In other words, the agile approach shows that

quality and productivity can be achieved at a sustainable pace as long as the

work hours are managed efficiently.

As it turns out, the agile method is not the only one that advocates the

sustainable pace concept. For example, in their software project management

book, Hughes and Cotterell (2002) state: ‘‘There is good evidence that produc-

tivity and the quality of output goes down when more than about 40 hours a

week are worked.... Clearly, it is sometimes necessary to put in extra effort to

4.6 Sustainable Pace 79

overcome some temporary obstacle or to deal with an emergency, but if over-

time working becomes a way of life then there will be longer-term problems’’

(226). Indeed, in some cases this principle is presented as a general guideline or

as a recommendation. At the same time, however, in agile development envir-

onments this concept is one of the core principles of the approach; and for an

agile team, working at a sustainable pace is an integral part of the development

framework.

4.6.1 Case Study 4.2. An Iteration Timetable
of an Agile Team

To illustrate the idea of sustainable pace, this case study presents an iteration

timetable of an agile team. The team belongs to an organization which works in

two-week iteration cycles. On the first day of the iteration the team runs the

Business Day (see Chapter 3, Customers and Users). The nine remaining days of

the iteration are development days. The team decided on the actual hours during

which the team sits together in the collaborative workspace (see Chapter 1,

Introduction to Agile Software Development) and carries out the development

tasks. The decision was 10:00{12:30 and 13:30{16:00 (that is, five hours

each day). At the beginning of each development day a stand-up meeting takes

place. Each team member describes in two or three sentences what he or she has

accomplished the day before and what he or she plans to perform for today. These

brief reports address both the development tasks and the tasks associated with

the personal role.

Following the development time slots, time is dedicated to professional devel-

opment activities, project meetings, sub-project meetings and role-holder meet-

ings (see Chapter 2, Teamwork).

Table 4.1 describes the schedule of a development day of that agile team. The

notion of sustainable pace, reflected in nine work hours per day with five devel-

opment hours, is clearly reflected in this timetable.

Table 4.1 A development day of an agile team

Hours Activity

9:00{9:30 Personal arrangements: emails, phone calls, etc.

9:50{10:00 Stand-up meeting

10:00{12:30 Development

12:30{13:30 Lunch break

13:30{16:00 Development|Continuation

16:00{17:30 Other Tasks (e.g., project meetings, role and study tasks, role holders meetings)

17:30{18:00 Miscellaneous

80 4. Time

Such a schedule is possible because of tight planning and the fact that when a

team sits together and concentrates on the development task, time is exploited

more efficiently. It can also be seen that each individual’s time is shared between

the accomplishment of the development tasks and the individual role.

Task

Discuss and build with your team a weekly sustainable time table. What con-

siderations guided your discussion and decision making process?

4.7 Time Management of Agile Projects

This section reviews two ways in which time is managed effectively by agile

methods. First, we review time related measures; second, we put the agile

approach within Covey’s time management framework of First Things First

(Covey et al. 1994).

4.7.1 Time Measurements

One of the common measures with respect to software project time management

is the time estimated for development tasks versus
HOT

the actual time to develop

them. In order to control the iteration progress, this kind of measure is inspected

on a daily basis; in order to control the release progress, this kind of measure is also

examined each iteration. The daily progress is measured against the iteration

commitment conducted in the Business Day. The iteration progress is measured

against the release commitment, shared at the beginning of the release.

The whiteboards of the collaborative workspace constantly present a graph in

which the horizontal axis represents the iteration days and the vertical axis

indicates the number of hours.

Each day, the tracker adds two new points to the graph that represent the

project’s progress. The first one|the ‘‘total expected’’ point|represents the

cumulative estimations of all tasks that were completed up to the previous day;

the second point|the ‘‘total done’’ point|represents the cumulative actual time

devoted to those tasks. A completed task is counted only when the developer in

charge completes its coding, unit testing, and integration into the developed

system.

The following case study illustrates this practice.

4.7 Time Management of Agile Projects 81

4.7.1.1 Case Study 4.3. Measuring Estimations Versus
Actual Development Time

Figure 4.1 presents three graphs: estimations, actual time in a specific iteration of

a specific team, and the expected average pace according to available time

(Dubinsky et al. 2008).

As can be observed, there is a significant difference between the allocated time

for development (about 270 hours) and the time that was actually dedicated for

development. Several factors may cause this gap: First, only completed tasks are

presented; tasks that have been performed but have not been completed before

the end of the iteration are not calculated, and the time that has been dedicated

for their development is not reflected in the graph. Second, time invested in tasks

that appear urgently, like support service to end users who work with deployed

modules, is not presented in the graph. Third, there was a sudden absence of

developers whose time was taken into account in the iteration.

Figure 4.2 shows another graph of estimations versus actual development time

(Dubinsky et al. 2008). In this case, all the planned tasks were completed.

Accordingly, the total-expected point unites with the expected-pace point, since

this was the number of development hours considered in the planning session.

It can also been observed in Figure 4.2 that the time distribution among tasks

was reasonably good. Further, the graph shape shows that the integration is

continuous; too many dependencies between tasks would have delayed their

completion and integration, reflected by a nearly flat total-done line until almost

the end of the iteration, and then a sharp increase as many tasks are completed

together.

Figure 4.1 Estimation versus actual development time: example 1.

82 4. Time

Data such as those presented in Figures 4.1 and 4.2 is examined every day.

Thus, if it seems that problems are expected with respect to the completion of the

planned stories of the current iteration, the customer can reprioritize the stories

and change the iteration scope. This way, stories that remain in the iteration

scope can be developed and tested properly.

In addition, these data are examined when the iteration ends in order to learn

about the team velocity. Team velocity can be perceived as the amount of

productive work units per iteration (Beck and Fowler 2000). Measuring team

velocity increases the visibility of the development progress and enables one to

make decisions on how to continue with respect to functionalities and priorities.

The data are examined also with all the other iterations completed so far in the

release, in order to learn about the project’s progress.

Task

How does such a measure support the project management?

4.7.2 Prioritizing Development Tasks

What is common to refactoring, test-driven development, and the planning

activity, which are some of the basic practices of agile teams?
HOT

Why are they

important? After all, it can be argued that the only important activity is code

production. The answer is that they all support the management of the software

development process. This idea is further strengthened by the following case

study that uses Covey’s concept of First Things First (Covey et al. 1994). It

Figure 4.2 Estimation vs. actual development time: example 2.

4.7 Time Management of Agile Projects 83

shows how agile software development helps agile teams focus on what is impor-

tant rather than on what is urgent. This idea is manifested by different agile

practices such as refactoring (always important but not urgent) and pair pro-

gramming (helps the team stay focused and avoid the distractions of unimportant

and non-urgent activities).

4.7.2.1 Case Study 4.4. First Things First

This case study illustrates how time management is manifested in agile software

development environments and how agile software development increases the

team members’ awareness of time management ideas as they are manifested in

agile software development environments.

This data set is taken from a team undergoing the transition to agile software

development. The team is used to carrying out a one-hour reflection at the end of

each iteration. The reflections that the team conducted at the end of the first two

iterations were dedicated to learning processes (the first) and to prioritizing

activities (the second).

A reflective session takes place during the Business Day, which, as has been

described in Chapter 3, Customers and Users, also includes a demonstration of the

features developed during the last iteration, a presentation of the measures taken,

and the planning session for the next iteration. Additional details on reflective

activities performed by agile teams are presented in Chapter 11, Reflection.

The rationale for the second reflection is based on the realization that time

management is a key element of agile software development. Accordingly, its

objective was first, to emphasize the importance of time management issues in

software projects, and second, to help developers grasp how time management is

expressed in agile software development.

More specifically, according to Covey’s concept of First Things First (Covey

et al. 1994), agile software development helps teams focus on what is important

rather than on what is urgent. As mentioned above, this idea is manifested by

different agile practices such as refactoring and pair programming.

Table 4.2 Reflection on time management

You are kindly requested to reflect on your role and personal work habits/processes in the
project and to complete the following matrix accordingly:

I. Urgent and Important II. Not Urgent but Important

III. Urgent but Not Important IV. Not Urgent and Not Important

After you complete the four quadrants, please formulate at least two rules/guidelines to apply
when needed in order to focus on activities that belong in Quadrant II.

84 4. Time

In this reflective activity, the participants (team members, customer and

management representatives) were asked first to work individually on the task

presented in Table 4.2.

Tasks

1. Fill in Table 4.2 by analyzing your current software project development.

2. Describe three things that you learned from filling in the table (about your-

self, about your work, about your time allocation, and about your team).

The aim of the above activity is to direct developers to focus on Quadrant

II, which contains items that are non-urgent but important. As it turns out,

these items are the ones we are more likely to neglect but should focus on in

order to achieve effectiveness and quality. In the context of software develop-

ment, this can be explained by the fact that people tend to be distracted from

what is important because it is difficult to stay focused on the development of

an intangible product, such as software. As mentioned above, and illustrated

by the developers’ responses presented in Table 4.3, agile software development

guides developers to stay focused by implementing activities from the second

quadrant|the quality quadrant (important but not urgent). Further, as this

illustration indicates, this was very clear to the team after only two two-week

iterations.

Table 4.3 A sample of developers’ suggestions for each quadrant (# [2007] IEEE)

I. Urgent and Important II. Not Urgent but Important

Production problems Iteration planning

Fixing bugs that prevent progress Design

Preparing a presentation after it has been
postponed till the last minute

Learning new technologies
Refactoring

Tracking|follow-up and control

Testing

Taking care of infrastructure

Preparing a presentation on time

Taking care of procedures, target
definition and responsibilities

III. Urgent but Not Important IV. Not Urgent and Not Important

Working on management assignments that arrive
late and have tight deadlines

Mingling
Personal arrangements/errands

Helping other team members with urgent tasks
that are not important to me

4.7 Time Management of Agile Projects 85

Table 4.3 presents a sample of suggestions developers made for each quadrant.

As can be seen below, Quadrant II|the quality quadrant|contains agile activ-

ities and practices.

During the discussion that followed the individual work, guidelines for items

in the Important but Not Urgent quadrant, such as the following ones, were

suggested:

l When there is a problem, ‘‘put it on the table’’ and talk about it (thus, we

make it important).

l Allocate time for important but non-urgent issues.

l When the time is dedicated and we sit [to discuss the problem], do not waste

time.

l Let as many people as possible obtain a wide perspective.

l Plan everything possible in advance, not to put things off till the last minute.

l As much as possible, do not perform tasks that are not connected to the

current iteration.

The project manager noted: ‘‘The second quadrant is characterized by team-

work|because of the team, I do what is important and I do not give up.’’

The above quotes illustrate that agile software development helps software

developers focus on the second quadrant, inspiring a development process that is

composed of important (but not urgent) activities and eliminating the perfor-

mance of urgent activities (mainly the not important ones) during the course of

the project.

4.8 Time in Learning Environments

4.8.1 The Planning Activity

The forth studio meeting aims at the completion of the planning session. The

description fits for the industrial setting as well, with necessary adjustments.

Students estimate the duration of the different tasks. They are encouraged to

give realistic estimates, rather than to succumb to the pressure to present overly

optimistic estimations. The students are reminded that the time allocated for a

specific task should include its unit testing as well (see Chapter 6, Quality).

We note that in some agile methods the personal distribution of tasks among

teammates is not carried out during the planning session, but rather during the

iteration itself.

86 4. Time

Specifically, the development tasks are reviewed by the academic coach, who

verifies that a realistic estimated development time is given for each task. Then he

or she writes the different tasks on the board along with their estimated time.

Time estimations are discussed with the students, especially if they are too short

(less than two hours) or too long (over fifteen hours). The academic coach asks the

students who suggested estimates exceeding fifteen hours to explain their estima-

tions. Usually, it turns out that most of the time is needed in order to study the

subject. In such cases, the students’ attention is drawn to the fact that the long

time estimation was due to this and that the coding and unit testing takes up only

part of this time. In other cases, it happens either when a high level design has not

been prepared or the task is too vague. In such cases, the breakdown into tasks is

redone.

Next, the time estimations are added up, and the total available working

hours the team has in the coming iteration is calculated as well. These two

numbers are compared, and the comparison indicates whether customer stories

should be added or some should be removed. In such cases, the customer prior-

itizes and adds or removes stories according to the situation in hand. Table 4.4

presents an example of such a time calculation.

Before the activity ends, the academic coach explains the practice of pair

programming, and emphasizes its contribution to information sharing and col-

lective ownership.

The planning session concludes with a final balancing of the development time

among the students.

Table 4.4 Example of the calculation of the available development time for a team of twelve
students

Activity

Time available Since the first presentation to the customer is done in the 7th
week of the semester, and this meeting takes place at the
4th week of the semester, the calculation of the available
development hours yields 360 hours and is described in
what follows:

3 weeks until the iteration presentation (the 7th week of the
semester)

� 12 students
� 10 hours per student per week

Pair programming factor Let us assume that the total time estimation for all of the
development tasks is 180 hours. Based on Cockburn and
Williams (2000), the pair-programming factor is 1.15.
Since the students are not yet familiar with this practice,
a factor of 1.5 should be used. Accordingly, the 180 hours
are multiplied by 1.5, and we get 270 development hours

Others The remaining 90 hours are allocated for integration,
presentation, and documentation purposes

4.8 Time in Learning Environments 87

4.8.2 Teaching and Learning Principles

The following two teaching and learning principles deal with the concept of time

management. In our teaching and learning principles list, these principles are

numbers 3 and 8. The complete list appears in Chapter 14, Delivery and

Cyclicality.

4.8.2.1 Teaching and Learning Principle 3: Explain
While Doing

This principle implies that when a concept, an activity, or a practice is first

introduced to learners, the educator should not explain it too extensively, but

rather should invite the learners to start applying it as soon as the basic relevant

knowledge has been introduced. While the learners are performing the activity,

the educator should then add the details gradually, refine the explanation, and

reflect on the learners’ activities.

A good illustration of the application of this principle is the teaching of how to

carry out the planning session, through which the customer communicates to the

development team his or her requirements, to be implemented in the next itera-

tion, and the team members plan the actual development of the tasks allocated for

the coming iteration. Since the planning session consists of many relatively simple

stages and details, if learners are given all of these details before they start

experiencing the planning session, then the global picture, as well as the logic of

each stage, the order of the stages, and their interconnections might not be clear.

Alternatively, if learners are first introduced only to the main ideas of the plan-

ning session and then start performing it, with the details gradually introduced

during this process, the different stages will be situated better within the wider

context and will serve to clarify the structure and logic of the entire process.

4.8.2.2 Teaching and Learning Principle 8: Manage Time

This principle relates to time management and is manifested in the course in

different ways, mainly in the studio component, in which the students develop the

software project.

First, students are required to arrive on time to all the weekly meetings.

Second, the students are committed to attend all meetings. If a student is

forced to leave the lesson for some unexpected reason, it is an opportunity to

discuss the analogy of such a case in real life situations.

88 4. Time

Third, development at a sustainable pace is highlighted. Students are required

to invest in the project development activities a specific and known number of

hours, according to the course credit. The allocation of development tasks fits this

number of hours and is determined in a transparent process during the planning

session.

Forth, time estimation for the development tasks (and the assessment of this

time estimation) is never skipped. Furthermore, learners are asked to estimate

(and then to evaluate) the way their time is shared between the accomplishment

of their personal development tasks and the performance of their personal roles

(see Teaching and Learning Principle 7, explained in Chapter 2).

4.8.3 Students’ Reflections on Time-Related Issues

Students’ reflections on the planning activity show that the planning session

supports their time management in general and increases their awareness of

time-related issues in particular. Here are some students’ reflections after the

first and the third iterations of a specific project.

l ‘‘MUCH more time should be dedicated to the planning of the structure of the

program, both interfaces and implementation, before anyone starts writing

any code.’’

l ‘‘Things usually take more time than expected, especially because of integra-

tion and misconceptions|this must be taken into account when estimating

times.’’

l ‘‘As for time evaluation, we met our estimations almost exactly, and in some

cases even finished tasks sooner than we had expected.’’

l ‘‘In iterations 2 and 3 the times were better defined, because of the experience

we had gained.’’

4.8.4 The Academic Coach’s Perspective

The planning session gives the academic coach an excellent viewpoint on the

students’ work with respect to the project’s planning, the design of its parts, and

the development management. During the planning activity, the academic coach

becomes extensively familiar with the project details and with each student’s part

in the development. This, in turn, enables a more precise evaluation of each

student (see the evaluation scheme presented in Chapter 2, Teamwork).

4.8 Time in Learning Environments 89

At the last iteration, the coach may add a change request to the project in

order to illustrate the fact that new customer change requests can be added at any

time, provided they fit into the project time framework. In such cases, the student

whose role is the customer (if no real external customer participates) is asked to

omit one or more story to enable the addition of the new change request.

In general, the planning session provides a coaching framework from a time

management perspective. Following are some remarks of academic coaches with

respect to this activity:

l ‘‘I now have a much better feeling about how to lead a project. Leading a

project by giving out the work and simply waiting for them [the students] to

come to you with questions or results is one way. It’s totally different, how-

ever, when you have a group, and you lead it through the project in one way or

another. It gave me experience managing a project. Experience in different

aspects: one is time scheduling, another is the planning of the work, and

another is the professional side of programming.’’

l ‘‘As for the planning session, I really saw that it was important; they worked

with the cards and wrote their contents into the computer.’’

4.9 Summary and Reflective Questions

1. Select one of your development requirements/stories, and perform the follow-

ing activities with respect to it:

a. prepare a high level design;

b. break it down into development tasks;

c. estimate the development time for each task, including development and

unit testing;

d. calculate the total time|that is, sum up the estimated development time

for all the tasks;

e. develop all tasks and measure the actual time invested;

f. sketch a graph of estimations versus actual development times;

g. discuss lessons learned.

2. Select two time-related issues presented in this chapter that you find inter-

esting. Explain why you selected them and describe how the agile approach

deals with these issues.

90 4. Time

3. Indicate two time-related characteristics of software development methods.

Discuss their expression by agile development methods.

4. Analyze the concept of time as it is manifested in agile software development

from the HOT|Human, Organizational, and Technological|perspectives.

4.10 Summary

This chapter discusses the concepts of time and time management and presents

the planning activities carried out in agile software development environments.

The way the agile approach refers to time is ‘‘tight’’|the main activities carried

out in agile development environments are time boxed and are measured with

respect to their actual development time in hour resolution. These characteristics

ensure a controlled development process that enables the developers to increase

the product quality. The concept of sustainable pace is also explained and

illustrated in this chapter.

References

Beck K (2000) Extreme programming explained: embrace change, 1st ed. Addison-Wesley,
Reading, MA

Beck K, Fowler M (2000) Planning extreme programming. Addison-Wesley, Reading, MA
Beck K, Andres C (2005) Extreme programming explained: embrace change, 2nd ed. Addison-

Wesley, Reading, MA
Boehm B (1981) Software engineering economics. Prentice-Hall, Englewood Cliffs, NJ
Boehm B, Horowitz E, Madachy R, Reifer D, Clark BK, Steece B, Brown AW, Chulani S, Abts C

(2000) Software cost estimation with COCOMO II. Prentice-Hall, Englewood Cliffs, NJ
Brooks FP (1975, 1995) The mythical man-month|essays on software engineering. Addison-

Wesley, Reading, MA
Cockburn A, Williams L (2000) The costs and benefits of pair programming. 1st international

conference on extreme programming and agile processes in software engineering. Italy
Cohn M (2006) Agile estimating and planning. RC Martin Series, Prentice Hall PTR,

Englewood Cliffs
Covey S, Merrill AR, Merrill RR (1994) First things first. Free Press, New York
Dubinsky Y, Yaeli A, Feldman Y, Zarpas E, Nechushtai G (2008) Governance of Software

Development: The Transition of Agile Scenario, IT Governance and Service Management
Frameworks and Adaptations, Idea Group Publishing, Information Science Publishing,
IRM press

Hazzan O, Dubinsky Y (2005) Clashes between culture and software development methods: the
case of the Israeli hi-tech industry and extreme programming. Proceedings of the agile
conference, IEEE computer society, Denver, CO, pp 59{69

Hazzan O, Dubinsky Y (2007) The software engineering timeline: a time management perspec-
tive. Proceedings of the IEEE international conference on software|science, technology &
engineering, Herzelia, Israel, pp 95{103

References 91

Hughes B, Cotterell M (2002) Software project management. McGraw-Hill, New York
Kemerer CF (1987) An empirical validation of software cost estimation models. Communica-

tions of the ACM
Reifer DJ (2002) How to get the most out of XP/agile methods. Proceedings of the second XP

universe and first agile universe conference, Chicago, IL, pp 185{196
Schuh P (2004) Integrating agile development in the real world. Charles River Media
SEI (2001) Standard CMMI appraisal method for process improvement (SCAMPISM).

Software Engineering Institute
Standish group chaos report (1994) http://www.standishgroup.com/sample research/

chaos 1994 2.php
Tomayko J, Hazzan O (2004) Human aspects of software engineering. Charles River Media
Van Vliet H (2000) Software engineering|principles and practices. Wiley

92 4. Time

5
Measures

Abstract

There is a consensus that the control and management of any process and activity

can be improved by using measures to monitor its performance. In general, soft-

ware engineering is a discipline that acknowledges products measures as well as

measures of the development process. Specifically, the agile approach promotes a

constant tracking during the entire process of software development. For exam-

ple, the team velocity explained in Chapter 4, Time, is one of the important ways

to control the project’s progress. Further, the tracker role is responsible for the

definition and refinement of the team measures, for the collection of the required

data, and for the measure presentation. Some measures are presented daily, like

the daily progress within the iteration; some measures are presented every itera-

tion, like code coverage or iteration progress within the release; yet other mea-

sures are presented every release, like customer satisfaction or level of product

testability. By using measures on a regular basis, all teammates and stakeholders

can view them, give feedback, and suggest refinements, and thus become accoun-

table for the project development.

5.1 Overview

This chapter focuses on how agile teams use measures|an important practice

that agile teams apply to increase project transparency and reduce cognitive

complexity. The idea is to help the agile team sense the development process of

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 5, � Springer-Verlag London Limited 2008

an intangible product|software. The need for such a practice is clear if we

compare the development process of software to the development process of a

tangible product, such as a road. In the road case, a professional person can

estimate how long it will take to pave a specific part of the road based on

previous experience and on measurements of how many miles have already been

paved for how many hours or days. In software development it does not work so

easily.

First, we cannot just look at or measure what portion of the software has been

developed so far. Second, it is not clear how the measures should be taken|that

is, according to what parameters the progress obtained so far should be measured:

shall we use number of lines of code? No, it is well known that that is not a good

indicator. Shall we measure progress by the number of work hours? Maybe, but

still it is well known that software development does not progress linearly. Shall

we use the number of tests we developed today, or during the last week? This

might be a good measure; it will be discussed later in this chapter. What addi-

tional measures should be taken?

These measures, however, unlike those of the road, will not tell us exactly how

far we are in the development process and what we still have ahead. This is

because the ultimate target of software projects is not always clear at the early

stages of development. For example, new requirements may emerge as the custo-

mer improves his or her understanding of the developed application; the team

members may find out that the previous design they used does not capture the

new requirements; etc. Therefore another kind of measure is needed for software

development. This topic is the focus of this chapter.

In order to get at the chapter’s main ideas, we first answer the following

questions as they are applied in agile software development environments:

l Why are measures needed?

l Who decides what is measured?

l What should be measured?

l When are the measures taken?

l How are the measures taken?

l Who takes the measures?

l How are the measures used?

To illustrate the answers to these questions, two case studies are presented

with specific examples of measures and an explanation of how the measures

helped the engineers monitor the development process.

94 5. Measures

5.2 Objectives

l Readers will understand the importance of measures in software development.

l Readers will understand what measures are needed for monitoring software

projects.

l Readers will experience the formulation of measures for their software project.

l Readers will learn the tracker role and the responsibilities related to this

role.

5.3 Study Questions

1. How did you control the development process of your last software project?

2. Suggest measures that would enable you to improve your control of the devel-

opment process? For each measure explain in what ways it might support the

development process.

3. How would you suggest collecting data in practice? With respect to two

specific measures, refer to the frequency of the measure collection, their

display, and any additional factor that seems to be relevant for this

purpose.

5.4 Why Are Measures Needed?

Measures are used in order to control and monitor software development
HOT

processes

and products. There are software projects in which measures are either not taken

at all, or if taken, do not explicitly serve specific goals.

Accordingly, a set of measures, defined for a specific software project, should

adhere to the following characteristics:

l The measures should be mapped to the project goals. It is recommended that

this mapping be regularly assessed in order first, to ensure that no redundant

measures are taken; and second, to check compliance with the different goals

based on the existing measures (Dubinsky et al. 2008).

l The measure collection should not affect the process performance or product

that the measures control.

5.4 Why Are Measures Needed? 95

In the case of a specific software project, a goal might be to shorten software

delivery time. Consequently, among different sub-goals related to this goal, one

can monitor on a daily basis the progress of a specific software project. One

specific measure can be the rate of new check-in operations, performed each

day, of an agile iteration. In order to learn about the progress of a specific project

that is part of a given organization, this data is viewed on a daily basis, an

iteration basis, and a release basis.

Measurements enable an agile software development team to get
HOT

constant

feedback from the different components of the software development environ-

ments, people, and code. A measure which is people-oriented might be, for

example, customer satisfaction, or the amount of team overtime hours (for

sustainable pace measure). A measure which is code-oriented might be code

coverage, which is the level of coverage that unit tests give, or the number of

defects. The ongoing presentation of the measures increases the project’s trans-

parency. Further, since agile software developments are open to (see the Agile

Manifesto in Chapter 1), it is possible, if necessary, to replace a set of measures

during the course of the project development process, or to decide on different

measure sets for different projects within the same organization. One general rule,

however, which is derived directly from the Agile Manifesto, should be followed:

Measures should support and assist the individuals involved in the software

development process.

Tasks

1. Explain how measures increase project transparency. Use specific examples of

measures to illustrate your explanations.

2. Describe a team goal, measures that can help the team to achieve its goal, and

how the measures can guide the team’s decision making process.

3. Describe an organizational goal, measures that can help the organization to

achieve its goal, and how the measures can guide the organizational decision

making process.

5.5 Who Decides What Is Measured?

In an agile process, measures are determined by the customer, the development

team, and the organization; each party decides what to measure based on its

interests in the development process and artefacts.

96 5. Measures

The customer is interested in measuring the development progress
HOT?

and the

quality of the artefact’s performances and stability; the development team is

interested in measuring the impacts of the development methodology, the satis-

faction of the people involved, and the quality of the artefacts from technical

perspectives, such as maintainability and extensibility; management people are

interested in business aspects, like project costs and return on investment, as well

as customer satisfaction.

Task

Give an example for at least one measure that you would define, if you were a

customer, a team member, or a management member. For each measure define its

purpose and how it would help you improve performance. Describe specific

scenarios in which these measures would be helpful.

5.6 What Should Be Measured?

We measure artefacts that answer specific questions derived from specific goals.

For example, suppose the team goal is to increase their productivity. Some

questions that can be derived from this goal are: how many hours per day do

teammates work to produce code? How many hours per day do teammates work

in pairs? What is the pair’s turnover? What is the actual size of the development

work? The measure set that helps answer such questions should fit the situation

and the involved individuals. In another case, for example, teammates need to

decide about the best way to measure the size of their project, and which

information should be gathered from each pair. The set of measures should be

refined and adapted when needed. In the first case, for example, teammates can

measure the number of hours they work together in the collaborative workspace,

as another indicator for the productivity measure.

Measures should be as simple as possible to enable their actual measurement,

as well as interpretation, by the different players participating in the development

process. For example, if teammates are requested to report every fifteen minutes

about their position in pairs, it will become annoying; instead, it is simpler to

check a box in the team’s planning tool every time a pair is changed.

Only several measures should be chosen; a large set of measures can negatively

influence the development itself, since many hours will be needed for the measure-

ment process. Hence, a reasonable and refined set of measures should be used.

This number of measures, however, should fit the team’s, the customers’, and

the organization’s needs. Our rule of thumb is that the tracker should invest no

5.6 What Should Be Measured? 97

more than 20% of his or her time for the collection, presentation, and refinement

of the set of measures.

Tasks

1. Suggest a situation in which too many measures negatively influence the

software development process.

2. What principles of the Agile Manifesto are supported by the measures taken

for a given software project?

5.7 When Are Measures Taken?

Agile software development requires constant feedback. Therefore, there are

activities, like continuous integration, that should be measured several times

each day. In such cases it is preferable that measures be taken automatically.

Other activities can be measured on a daily basis. For example, measures that

reflect the number of hours invested each day in development tasks and the hour

distribution among the tasks completed during the day, can be taken on a daily

basis. Measurements on a daily|or iteration|basis allow reflection (see Chapter

11, Reflection) on the progress of the process as often as possible.

Tasks

1. Suggest additional examples for measures that should be taken several times a

day, on a daily basis, and on the iteration basis. Specify the purpose of each

measure.

2. What principles of the Agile Manifesto are supported by the frequency of

measure collection?

5.8 How Are Measures Taken?

Though there is a set of agreed upon measures, in order to foster and support

measure collection, they are taken by the different role representatives assigned

within the agile team (See Chapter 2, Teamwork).

The tracker is responsible for the measure collections and their presentations.

One basic measure compares the developer’s time estimation of the development

tasks with the actual development time (see Chapter 4, Time).

98 5. Measures

The tester is responsible, among his or her other activities, for devising

measures that deal with the code quality.

The user evaluator is responsible for measures that reflect the users’ involve-

ment in the design. And so on.

Task

Choose two roles. For each role suggest two measures that can support their

accomplishment.

5.9 Who Takes the Measures?

All team members are involved in measuring the software development progress,

either by reporting essential information to the team members who are respon-

sible for specific measures or by measure gathering, analysis, and presentation.

5.10 How Are Measures Used?

It is not sufficient to observe the measures on a regular basis in order to commu-

nicate the project status among the different individuals and stakeholders

involved in the development process. In addition to measure examination on a

regular basis, after each period, preferably after each release that longs about two

month (see Chapter 3, Customers and Users), the information derived from the

measures and their analysis, should be evaluated against the project’s goals.

During such an iterative process, the goals and their sub-goals are refined, the

measures are determined and changed if needed, and the actual information is

assessed to check its compliance with the current goals.

In the agile spirit, the conclusions derived from such an examination are

communicated to the team members, the customer(s), and the management,

whether by actual participation in the examination sessions or by other means

found appropriate for a specific project setting.

Tasks

1. Assume that not all the project stakeholders can participate in measure

examination meetings (for example, the team is dispersed). Suggest other

means by which the results of such an examination can be communicated to

those who did not participate in the examination meeting itself.

5.10 How Are Measures Used? 99

2. Analyze the main ideas presented so far with respect to measures within the

HOT|Human, Organizational, and Technological|analysis framework.

5.11 Case Study 5.1. Monitoring a Large-Scale
Project by Measures

This case study illustrates how measures are used for a large-scale project, that

the implementation of the agile approach for its development process was con-

sidered a risk (Talby et al. 2006). However, the agile approach was chosen to be

applied for its development based on the analysis of the problems which the

projects faced and the realization that the agile approach might help with these

problems.

Accordingly, the project began with close management supervision and only

one team. This implementation started with ambivalent feelings. On the one

hand, it started with the hope that this team would be a prototype for the

implementation of the agile approach among the other teams of the project; on

the other hand, the beginning was accompanied by fears and concerns expressed

about the possible incompatibility of the agile approach with the environment in

which the project was developed. Consequently, it was determined to constantly

evaluate the development process as part of the tracker role.

In what follows we first describe the measure definition and then illustrate the

actual measures.

5.11.1 Measure Definition

The measure design begins with a project risk analysis. During this analysis, a

measure is added when it seems valuable for risk reduction purposes.

In what follows, the four measures used in this project are described, together

with the kinds of data gathered for their calculation. These four measures reflect

the project status, presenting information about the total work and quality of

work performed so far (product size and faults, respectively), the work progress

pace (pulse), and the status of the remaining work versus the remaining human

resources (burn down).

Product size is the first measure. It aims at presenting the amount of com-

pleted work. The data selected to reflect the amount of the completed work is the

number of test points. One test point is defined either as one test step in an

automatic acceptance test scenario or as one line of unit tests. The total number of

test points that pass successfully is calculated for each kind of test (either

acceptance test or unit test) and is gathered per iteration per component.

100 5. Measures

Additional information is gathered with respect to the number of test points

for tests that pass, the number of test points for tests that fail, and the number of

test points for tests that do not run at all.

This product size measure is very effective in delivering the following message:

test points are the only measure that reflects the project productivity|nothing

else (like the number of lines of the running code, for example) counts.

The product size measure is designed to cope with the risk related to the

inability to measure the project’s progress before the agile approach has been

applied, and, consequently, the inability to compare its current velocity to that of

the organization’s previous development process (Beck and Fowler 2000, Cohn

2006). The advantage of test points over, for example, the number of lines of code

or lines of specifications, is that the number of test points for a given feature is

usually proportional to the feature’s size and complexity. This is not the case with

respect to the number of lines of code or lines of specifications.

Another significant risk that this measure deals with is the not thoroughly tested

product; that is, a product that is not totally and systematically covered by tests.

Such a situation arises when developers do not write or run enough tests. This

observation, in fact, is not surprising. It is known that developers do not like and

resist testing (Hazzan and Leron 2006). In the case of the project described in this

case study, many of the team members had had previous experience in other projects

in the organization, in which the artefacts which they developed were tested after

the development phase|for example, by the quality assurance (QA) team.

Pulse is the second measure, which aims to measure how continuous the

integration is. The data are automatically gathered from the development envir-

onment by counting how many check-in operations occur per day. Data are

gathered for code (that is, code plus its unit test) check-ins, automatic-acceptance

test check-ins, and detailed specifications check-ins.

The risk that the pulse measure is designed to monitor is high overhead due to

lack of continuous integration. Agile software development requires a different

mindset than the one the developers in this project were used to: instead of

completing a two-week specifications task and only then starting the development

phase, with the agile approach an entire iteration is set to be two weeks long, during

which a full cycle of specification-coding-testing is completed, and usually more

than one cycle per each teammate. When keeping a daily pulse, i.e., ongoing check-

in operation of tested code, the overhead on integration and bug fixing is reduced.

Hence, the preliminary role of the pulse measure is to verify that integration is

spread evenly across iterations. Accordingly, steady means that the pulse is more

or less equal across many days and reflects a desired status; spiky means that most

of the check-ins are grouped at the end of iterations, which in turn means that the

developers do not integrate enough during the iterations. Naturally, spiky pulse

reflects a negative signal.

5.11 Case Study 5.1. Monitoring a Large-Scale Project by Measures 101

Burn-down is the third measure. It presents the project’s remaining work

versus the remaining human resources. This measure is supported by two tables.

The first table is the main planning table that is updated for each task

according to its kind (code, a test, or a detailed specification); opening and closing

dates; estimated and real development time; and the component it belongs to.

The second table is the human resources table that is updated when new

information about a teammate’s absence is received. This table also includes the

information about the allocation of a product’s component to each teammate,

with the percentages of her or his position portion in the project.

The data presented in these tables organize the burn-down chart by the

remaining work in days versus the remaining human resources in days. This

information can be presented per week or for any number of weeks till the release

is completed.

The burn-down graph answers a very basic and important managerial question:

are we going to meet the release goal, and if not, what can we do about it? Thus, it

enables us to cope with the risk of missing the release goals due to the lack of a clear

view of the project’s progress and the release availability during the release.

The burn-down is useful both on the team level and the organization level.

Based on the information obtained from the burn-down chart, a team leader, for

example, can change the teammates’ task allocation during the release according

to high-priority components; upper management can easily verify whether the

release is on track.

Release goals are set before each release|each goal is defined by a high-level

feature, specified by the customer. Their accomplishment is verified by comparing

a rough estimation of the effort required to complete each goal (given by the

development team) with the total available resources. Once goals are defined and

estimated, the calculations of the remaining work and the remaining resources are

based on this initial estimation, which is refined as the release progresses.

Faults is the fourth measure, which counts faults per iteration. During the release,

all faults that were discovered in a specific iteration were fixed at the beginning of the

next iteration. The faults measure is required to continuously measure the product

quality. It is important to note that the product size measure does not reflect the

product quality, since although it measures test points, it does not correlate the

number of failed or un-run test steps to the number of bugs which are currently open.

5.11.2 Measure Illustration

The presented data were gathered throughout the first release of the project,

which consisted of four two-week iterations. The measures were presented during

the iteration summary meetings, every two weeks before the planning session

102 5. Measures

(see Chapter 3, Customers and Users), and were also continually available on the

project’s Intranet. Most of the participants in the planning session reported that

they were viewing the measure status only when it was presented in the iteration

summary meeting every two weeks. The project leader, however, stated that the

measures caused a change in the teammates’ behavior, especially with respect to

the writing of more tests.

Product Size. Usually, we do not view software product size through its tests.

However, this is one of the interesting aspects of the product size measure.

Figure 5.1 shows a global view of the four iterations, reflecting the growing

numbers of test points as the product is developed. The significant growth in

the last iteration is explained by the relatively small number of testers’ hours for

automatic test writing that were allocated to the project at first, and that soon

became a bottleneck. In the third iteration, for example, not all coded

features were tested, and accordingly the size measure showed only a small

increase. Consequently, it was decided that at the beginning of the fourth

iteration the main tester would teach the developers to write automatic test

scenarios for their code. Accordingly, during the fourth iteration she wrote

fewer tests by herself. The result was a sharp increase in product size during

the forth iteration.

There is an option to drill down into the data in order to observe the product

size per component. Figure 5.2 presents the number of test points per component

per iteration. As can be observed, the fourth iteration was the most fruitful. A new

component was dealt with, while the number of test points for the other

0
200
400

600
800

1000
1200

1400
1600
1800

End of 1st
Iteration

End of 2nd
Iteration

End of 3rd
Iteration

End of 4th
Iteration

N
u

m
b

er
 o

f
T

es
t

P
o

in
ts

Successful Test Points Failed Test Points

Test Steps that did not run

Figure 5.1 Size measure during the release (# [2006] IEEE).

5.11 Case Study 5.1. Monitoring a Large-Scale Project by Measures 103

components increased as well. This reflects a more mature stage of the develop-

ment process.

Pulse. When the pulse measure was first presented to the team, some slight

resistance to it was expressed. Several teammates argued that this measure does

not really reflect continuous integration. One team member explicitly said that

this measure searches for ratings like web surveys, and, accordingly, he suspected

that teammates would simply click for check-in operation, just to raise the count.

Other team members admitted to understanding why someone would do so. All

signs of resistance disappeared when the teammates realized that first, only real

check-in operations are counted|meaning a check-in is counted only when there

is a change in the integrated part; and second, that this measure reflects more

than continuous integration|that is, it actually indicates continuous work.

Figure 5.3 shows the pulse measure for the entire release.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Account

Bank

Mortgage

Warning

Marketing

Financing

Number of Test Points

C
o

m
p

o
n

en
t

N
am

e

7006005004003002001000

Figure 5.2 Size measure according to components (# [2006] IEEE).

0

50

100

150

200

20
/0

2/
20

05

13
/0

2/
20

05

06
/0

2/
20

05

30
/0

1/
20

05

23
/0

1/
20

05

16
/0

1/
20

05

09
/0

1/
20

05

02
/0

1/
20

05

Days of Release

N
u

m
b

er
 o

f
C

h
ec

k-
in

O
p

er
at

io
n

s

Figure 5.3 Pulse measure during the release (# [2006] IEEE).

104 5. Measures

As can be observed, the first week of each two-week iteration has fewer check-

in operations than the second week of the iteration. Also, in the forth iteration the

work has been distributed in the best way among the iteration days.

Figure 5.4 presents daily information about the pulse measure of the third

iteration with the details of the different kinds of check-in operations. Note that

check-ins of code files are the most prevalent, because code tends to be spread over

more files than specifications of test scenarios, which in the case of this project

were acceptance tests.

Burn-down. The burn-down measure is a classical managerial measure that

shows whether the project plan can actually be accomplished. Figure 5.5 presents

the burn-down measure for the entire release, derived from the estimations of the

release and the total resource allocation for the entire release. Each pair of points

represents data that were known at the beginning of the specified week. At the

beginning of the first week, before the release started, the resources were 387 days

for the entire release, while the work was estimated at 370 days. During the

release, the number of resource days, as well as the number of days estimated

for the development of the remaining work, were reduced. The data for the last

(the eighth) week show the eighth week itself, where the number of days as

resources is 49 and the estimated work is 46.25 days.

This kind of burn-down measure gives a two-month view of the development

process and can serve as a successful plan chart.

Figures 5.6 and 5.7 present drill down data of the fifth and sixth weeks that are

part of the third iteration. These figures present the inner data of the burn-down

0

10

20

30

40

50

60

10
/0

2/
20

05

09
/0

2/
20

05

08
/0

2/
20

05

07
/0

2/
20

05

06
/0

2/
20

05

05
/0

2/
20

05

03
/0

2/
20

05

04
/0

2/
20

05

02
/0

2/
20

05

01
/0

2/
20

05

31
/0

1/
20

05

30
/0

1/
20

05

Days of Iteration

N
u

m
b

er
 o

f
ch

ec
k-

in
O

p
er

at
io

n
s

Code Automated Test Detailed Specs

Figure 5.4 Pulse measure of iteration 3 (# [2006] IEEE).

5.11 Case Study 5.1. Monitoring a Large-Scale Project by Measures 105

measure that show the remaining human resource days versus the remaining work

days for each of the product’s components.

In addition to the product’s components, overhead was also referred to. Over-

head includes training sessions, the Business Days, coordination meetings, and

other activities which are not mere development activities. People were not

allocated specifically for the ‘‘overhead’’ component|this is why its remaining

resources are zero during the entire release, and it is supposed to be spread

relatively equally across all team members. The simplest and most effective way

to achieve this load balance was to require a small positive gap between resources

and work in each component, which is reserved for the shared overheads. Note

that the accumulated burn-down chart (shown in Figure 5.5) does contain the gap

(remaining resources are greater than remaining work at the start).

Remaining Work Remaining Resources

Account

Bank

Mortgage

Marketing

Financing

Development

(Overhead)

Days

S
o

ft
w

ar
e

C
o

m
p

o
n

en
ts

7060 50 40 30 20 10 0

Figure 5.6 Burn-down measure at week 5 (# [2006] IEEE).

Remaining Work Remaining Resources

0
50

100
150
200
250
300
350
400
450

Week Number

D
ay

s

8 7 6 5 4 3 2 1 0

Figure 5.5 Burn-down measure during the release (# [2006] IEEE).

106 5. Measures

As can be observed, the variation among components is significant. This

illustrates the strength of this measure with respect to the ability to decide

about human resources mobility. For example, in Figure 5.6 the ‘‘Mortgage’’

component was below its goal in week 5. When this was observed, it was fixed

in week 6, by adding human resources and reducing the number of features

allocated for the release. Note also that the problem was not visible by looking

at the accumulated burn-down chart alone, since the ‘‘Bank’’ and ‘‘Account’’

components have surplus human resources in these weeks that hide the lack of

human resources for the ‘‘Mortgage’’ component.

Faults. The faults measure is a standard quality measure that indicates the

number of faults found and what kind they are. They could be coding errors or

detailed specifications errors. Figure 5.8 presents the number of faults per itera-

tion, along with their distribution. Note how spec errors are common at the

0

5

10

15

20

25

30

Iteration Number

N
u

m
b

er
 o

f
E

rr
o

rs

Code Errors Detailed Specs Errors

41 2 3

Figure 5.8 Fault measure during the release (# [2006] IEEE).

Account

Bank

Mortgage

Marketing

Financing

Development

(Overhead)

Days

S
o

ft
w

ar
e

C
o

m
p

o
n

en
ts

Remaining Work Remaining Resources

35302515 201050

Figure 5.7 Burn-down measure at week 6 (# [2006] IEEE).

5.11 Case Study 5.1. Monitoring a Large-Scale Project by Measures 107

beginning of the project, when many team members are inexperienced at using the

agile method, but slowly reduce their relative rate.

Tasks

1. How are the different agile characteristics and elements with which you are

familiar at this stage of the book expressed in Case Study 5.1?

2. What additional lessons did you observe while reading Case Study 5.1?

5.12 Measures in Learning Environments

5.12.1 Teaching and Learning Principles

We present one teaching and learning principle that deals with how a develop-

ment method is related to the real world of software development. In our list of

teaching and learning principles, this is number 11. The complete list appears in

Chapter 14, Delivery and Cyclicality.

5.12.1.1 Teaching and Learning Principle 11: Emphasize
the Software Development Approach in the Context
of the World of Software Development

Since the world of software engineering has witnessed relatively many cases in

which new terms emerged and soon turned out to be no more than buzzwords,

when teaching a software development approach, it would be preferable to con-

nect that approach to the world of software development in general, and to other

software development approaches in particular.

This can be done, for example, by presenting specific problems faced by the

software industry, and illustrating how the particular approach taught|in our

case, agile software development|can help overcome them. Learners will then

feel, on the one hand, that they are being introduced to a development approach

that is part of the software industry world and is not merely a passing fashion; and

on the other hand, that the approach in question has emerged as a timely answer

to the needs of the software industry, and that it will be useful to them in the

future.

In the case of teaching the agile approach, the need for agility in software

development may first be explained, and some problems involving other software

development processes may be outlined. Such a perspective enables learners to

108 5. Measures

understand the role of the agile approach in the software industry and to observe

that software engineering is still a developing field. This ability to cope with

changes may be also required in the future, when other approaches to software

development are formulated to meet the future needs of the software industry,

which are currently still unknown.

This principle suits this chapter, since many software teams in the industry do

not use measures on a regular basis. Further, goals are not set clearly and

measures are not defined to answer whether we comply with the goals or not.

The agile approach, that encourages measures as presented in this chapter, is one

suitable way to close this gap.

5.12.2 Measurement Activities

In this studio meeting, students

l define the measures,

l decide on how to collect the relevant data,

l analyze and present the measures,

l assess the project status by using the measures.

In what follows we present a set of activities to perform related to measures.

5.12.2.1 Activity 1: Measure Definition

l Individual work: Write down two goals that in your opinion are the most

important for the project’s success.

l Open discussion about the project goals. At the end, two main goals are

determined and are posted on the whiteboard.

l Group work of three or four students: Break down the two main goals into

measurable sub-goals.

l Open discussion about the nature of measurable sub-goals.

l Group work: Exchange sub-goals among groups, and for each sub-goal

received suggest appropriate measures.

l Open discussion about the project measures: The agreed upon measures are

posted on the whiteboard, including their titles, a short description, their

relation to the main project goals and sub-goals, ways to collect data for their

measurement, and the teammates who are in charge of their measurement.

5.12 Measures in Learning Environments 109

l Individual reflection: Write down two things that you learned about your

project during this activity.

5.12.2.2 Activity 2: Data Collection

The team members who are responsible for the measures either explain to the

other teammates what data they expect to report on when the measure is

manually gathered, or inform the team about the automatic way by which

information is gathered.

Sometimes, teammates do not cooperate with the team members who are

responsible for the measures and do not report the requested data. In this case, an

activity about cooperation in software teams is facilitated (for an example of such

an activity, see the bonus allocation activity described in Chapter 2, Teamwork).

5.12.2.3 Activity 3: Measure Analysis and Presentation

The measure analysis and presentation are usually carried out by the tracker and

the other team members who are responsible for specific measures. These role-

holders:

l present the weekly measures in each stand-up meeting;

l present the iteration measures in each iteration planning;

l present the release measures at the end of the release (in the case of academia,

a semester).

In industry, when the team meets daily, teammates and customers can

decide on measures that will be presented on a daily basis, such as the amount

of work accomplished each day, the number of tests written and passed success-

fully each day, as well as other measures according to the team’s and the

customers’ needs.

5.12.2.4 Activity 4: Assessment

In each iteration planning, the following activities are performed:

l Individual reflection: Write down two things you learned from the measure

presentation.

l Group work: Check the measure’s compliance against the project’s goals.

110 5. Measures

l Open discussion about the measure’s compliance with the project’s goals.

l Group work: Check if there is a need to refine/change the measures.

l Open discussion about the need to refine/change the measures.

5.12.3 Case Study 5.2. Role-Related Measures

This case study focuses on an agile project developed in the university by a team of

ten students and illustrates how the role scheme described in Chapter 2, Team-

work, enabled the definition of measures that assisted in viewing the project’s

progress.

5.12.3.1 Defining the Measures

The role scheme enables us to define three main measures. The first is the role time

measure. It measures the ratio of development to role performance; that is, the

time invested in development tasks relative to the time invested in role activities.

The second measure is the role communication measure that indicates the level of

communication in the team at each development stage. This measure evolves

because each role-holder needs to communicate with the other team members in

order to perform his or her individual role efficiently. The third measure is the role

management measure that indicates the level of project management. Since the

role scheme aims to cover all management aspects of the project, the maximal

level is obtained when all role-holders provide the maximum role performance.

These three measures, derived from the teammates’ input on a weekly basis, as

well as by an examination of the students’ electronic forums and their personal

role reports, can be viewed as ongoing indicators of student interaction. Although

the agile approach emphasizes face-to-face communication among team mem-

bers, when it is applied in a university environment several adaptations should be

made. One adaptation, for example, that is relevant for this case study is the

addition of electronic communication via an electronic forum, during the week-

days between the face-to-face compulsory sessions.

5.12.3.2 Illustrating the Measures

Role Time. Data related to the role time measure started being collected even

before the first planning session took place. At this stage most of the students

predicted a role time ratio of 70% development to 30% role, and only a few

predicted 60 to 40% or 80 to 20%. Students talked about the role time variation

5.12 Measures in Learning Environments 111

that is expected with respect to some of the roles in their role-peak weeks relative

to their role-non-peak weeks. During the semester the students reported their own

role time ratio only a few times. The semester average was 80 to 20% for all roles.

Role Communication. Role communication was measured by examining the

electronic forum. 714 messages were sent during the semester, out of which 698

were sent by the ten students (the others were sent by the academic staff). Since

there is a load balance with respect to the development task, it is reasonable to

refer to the number of messages as indicators for the role part. Table 5.1 provides

the message distribution among the role{holders, including their percentage of

the total number of messages. In this team an earlier version of the role scheme

(see Chapter 2{teamwork) has been used.

As can be observed, the leading group was the most communicative (49.2%)

while the customer group was the least (6.5%). Looking into the messages’ details,

it could have been identified that, indeed, the coach sent a response message for

almost every message that another teammate had sent, and both the coach and

the tracker also played the role of the continuous integrator, since they felt the

need to do so for the project’s sake.

There were forum messages that were initiated by the role-holder and others

that were responses to other role-holders. Table 5.1 also shows for each role the

division of original messages and responses to others. Among students who sent a

small number of messages, most of their messages were original and not responses.

The students who responded with many messages were actually the core group of

students whose roles were the most performed during the semester.

Table 5.1 Forum messages according to roles. (Reprinted from Journal of System Architec-
ture, 52, Dubinsky Y, Hazzan O, Using a role scheme to derive software project quality, 693{699,
Copyright (2006), with permission from Elsevier.)

Role
Forum messages
(Total)

Forum messages
(%)

Forum messages
Original þ Response

Leading group (49.2%)

Coach 225 32.2 58 þ 167

Tracker 118 17 72 þ 46

Customer group (6.5%)

Customer þ End user 32 4.5 19 þ 13

Acceptance tester 14 2 13 þ 1

Maintenance group (15.2%)

Presenter þ Documenter 53 7.6 26 þ 27

Installer 53 7.6 23 þ 30

Code group (29.1%)

Designer 51 7.3 6 þ 45

Unit tester 31 4.5 23 þ 8

Continuous integrator 33 4.7 25 þ 8

112 5. Measures

Role Management. Role management was calculated for each iteration by

summing the total number of messages during all the iteration weeks, and

examining their distribution into original messages and responses. Table 5.2

shows the data for the three iterations of the semester.

Figure 5.9 shows the average weekly role management per iteration. Thus, in

iterations 2 and 3 the number of original messages was bigger than the responses.

This makes sense, since iteration 1 is the launching of the project and of the role

scheme, and it requires intensive correspondence. It also seems that iteration 2 is

highly managed because of the large number of total messages. This also makes

sense, since the last iteration is influenced by the stress of the end of the semester.

During the second iteration, the students are more experienced with the project

method and perform at their best.

Task

How are the different agile characteristics and elements with which you are

familiar at this stage of the book expressed in this case study? Elaborate on

each of these characteristics and elements.

Table 5.2 Management level for each iteration(Reprinted from Journal of
System Architecture, 52, Dubinsky Y, Hazzan O, Using a role scheme to
derive software project quality, 693{699, Copyright (2006), with permission
from Elsevier.)

Iteration No. No. of weeks No. of messages Original þ responses

1 4 336 119 þ 217

2 3 209 125 þ 84

3 4 153 85 þ 68

0

20

40

60

80

100

Original Responses Total

N
u

m
b

er
 o

f
m

es
sa

g
es

Iteration 1

Iteration 2

Iteration 3

Figure 5.9 Weekly role management for each iteration. (Reprinted from Jour-
nal of System Architecture, 52, Dubinsky Y, Hazzan O, Using a role scheme to

derive software project quality, 693{699, Copyright (2006), with permission from
Elsevier.)

5.12 Measures in Learning Environments 113

5.13 Summary and Reflective Questions

For the specific software project that you currently work on:

1. Set two goals.

2. For each goal indicate three measures that in your opinion can be used to

verify that the goal has been met. If the goal is too general, break it down into

sub-goals and perform the task for each sub-goal.

3. Suggest work procedures that adhere to the measures you have indicated.

4. Explain how you will use the data from the measurements in order to verify

that the goals have been met.

5. Analyze this activity within the HOT|Human, Organizational, and

Technological|framework.

5.14 Summary

This chapter deals with measures that suit agile software development environ-

ments. Goals are set for the relevant part of the organization, and then measures

are set according to the different goals and sub-goals. This way the measures are

meaningful and there is a realistic way to add and/or remove measures according

to their relevance.

One of the case studies presented in this chapter describes a way to measure

the product size by its testability level. This measure demonstrates that ‘‘no

testing equals no progress.’’ This message is directly connected to the next

chapter, about quality.

References

Beck K, Fowler M (2000) Planning extreme programming. Addison-Wesley, Reading, MA
Cohn M (2006) Agile estimating and planning. Robert C. Martin Series, Prentice Hall PTR,

Englewood Cliffs
Dubinsky Y, Yaeli A, Feldman Y, Zarpas E, Nechushtai G (2008) Governance of software

development: the transition to agile scenario, IT governance and service management frame-
works and adaptations. Idea Group Publishing, Information Science Publishing, IRM Press

Hazzan O, Leron U (2006) Why do we resist testing? System Design Frontier 3(7): 20{23
Talby D, Hazzan O, Dubinsky Y, Keren A (2006) Agile software testing in a large-scale project.

IEEE Software, Special Issue on Software Testing, pp 30{37

114 5. Measures

6
Quality

Abstract

High quality assurance is a fundamental element of every engineering process and

is considered to be one of the more difficult things to achieve and sustain. Since

high quality is also a basic concern of software engineering, there are values and

practices that support the assurance of high quality software products and

processes. However, these are not sufficient, and in many cases, software products

lack the required quality. In this chapter, among other issues, we analyze why this

happens. We also describe how quality is perceived using the agile approach,

starting with values and practices that support and control the process quality,

such as customer collaboration and the planning of a typical agile software

development process. We continue with values and practices that support the

product quality, for example, refactoring and the feedback gained by exhaustive

testing and test automation. Finally, we focus on the Test Driven Development

(TDD) practice, analyze its acceptance by software developers and present a way

to measure and control TDD processes.

6.1 Overview

In this chapter we describe how quality is assured in the agile approach by

describing how the development framework that it inspires encompasses activities

that deal with process and product quality. We highlight some of the differences

between agile software development and other approaches, and outline why

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 6, � Springer-Verlag London Limited 2008

quality should be defined and how it is employed in agile software development

environments.

We distinguish between process quality and product quality and describe how

the agile approach refers to them. With respect to process quality we show how

the transparency and tightness characteristics of the agile approach increase

process quality. For example, the iterative process performed in short iterations

of 2{4 weeks, increases process tightness, which in turn raises process quality by

enabling better control and faster response to unexpected problems and changes.

With respect to product quality, we describe several agile practices that

constantly support keeping high quality products. Among other practices, pair

programming enables regular code inspection,
HOT

and unit testing keeps a testable

build and fast identification of integration problems. Specifically, we elaborate in

this chapter on one of the agile practices that strongly relates to software quality|

test driven development (TDD) (Beck 2003, Feathers 2004, Newkirk and Vorontsov

2004). Though TDD has proven benefits, it is still one of the more difficult practices

for implementation by software teams (George and Williams 2003, Meszaros et al.

2003). We analyze this phenomenon and argue that since additional conditions are

needed in order to experience the benefits of TDD, it can only partially solve the

problems associated with traditional testing. This idea of supporting a practice by

other values and practices has already been mentioned in the literature. For example,

TDD is strongly supported by other practices, like pair programming and simple

design (Beck 2000); software teams are advised to apply TDD only when all team-

mates agree on its use, and in other cases, it is recommended to give it up (Ambler

2006). Indeed, TDD requires a collaborative development environment and addi-

tional supporting practices in order to be integrated successfully into software devel-

opment processes.

We refer to TDD as a process that, like other processes, should be monitored

and controlled. For this purpose, we present a technique called measured TDD,

that is based on size and complexity measures and that continuously monitors the

TDD process. In addition, we illustrate both how this technique ensures the

performance of TDD and how it provides ongoing quality measures.

6.2 Objectives

l Readers will become acquainted with the agile principles and practices related

to software quality assurance from the process and product perspectives.

l Readers will learn the practice of test driven development (TDD) and the main

issues related to its practice.

116 6. Quality

l Readers will learn a technique to control the TDD process.

l Readers will learn how to produce quality measures related to the TDD

process.

6.3 Study Questions

1. What is quality?

2. What is software quality?

3. Based on your experience, how is software quality expressed in software

development environments?

4. What is the difference between process quality and product quality? What is

common to these two terms? What connections exist between them?

5. Based on your experience, how would you assure process and product quality?

6. Are you familiar with test driven development (TDD)? If so, how do you

experience it, and what are your impressions? If not, describe the way you

have performed unit testing till now.

7. How would you suggest maintaining software quality for a specific software

project?

6.4 The Agile Approach to Quality Assurance

Some software development methods mimic traditional industries by employing

some kind of pipelined production chain. However, the failure of software projects

teaches us that such models do not always work well with software development.

In order to cope with problems that result from such approaches, the notion of a

production chain is eliminated in agile software development environments and is

replaced by a more network-oriented development process.

In practice, this means that in agile teams, the task in hand is not divided and

allocated to several different teams according to
HOT

their functionality (for example,

designers, developers, and testers), each of which executes its part of the task;

rather, all software development activities are intertwined and there is no passing

on of responsibility to the next stage in the production chain. Thus, all team

members are equally responsible for the software quality. This different concept of

the development process results from, among other things, the fact that software

is an intangible product, and therefore it requires a different development process

6.4 The Agile Approach to Quality Assurance 117

in general, and a different approach towards the concept of software quality in

particular, than do tangible products (Hazzan and Dubinsky 2007).

The terminology used by several software development approaches includes

two quality-related concepts: Quality and Quality Assurance. The first concept|

quality| refers both to the product and to the process. The second concept|

quality assurance (QA)|is associated with a specific stage of some software devel-

opment process and is usually carried out by QA people, who are not the developers

of the code whose quality is being examined.

To illustrate the agile software development approach towards quality, we

quote Cockburn (2001), who describes quality as a team characteristic: ‘‘Quality

may refer to the activities or the work products. . . . All checked-in code must pass

unit tests at 100 percent at all times.. . . In some cases, quality is given a numerical

value; in other cases, a fuzzy value’’ (118).

Within the framework of agile software development, quality refers to the entire

team during the entire process of software development, and it measures the code as

well as the actual activities performed during the development process, both in

quantitative and in qualitative manners. Accordingly, the term quality assurance

does not appear in agile software development as a specific stage of the development

process, and its aims are achieved differently. Table 6.1 summarizes some of the

noticeable differences between the attitude towards quality of agile software devel-

opment methods and of some other approaches (Hazzan and Dubinsky 2007).

Tasks

1. Select three agile practices with which you are already familiar and explain

how each of them affects quality. Does it affect the process quality? Does it

affect the product quality?

Table 6.1 Some differences between agile and other methods with respect to quality

Quality-related
aspect The agile approach Some other approaches

Who is responsible
for software
quality?

All the development team members The QA team

When are quality-
related topics
addressed?

All of the time; quality is one of the
primary concerns of the
development process

At the QA/testing stage

Quality-related
activities status

Same as other activities Low (Cohen et al. 2004)

Work style Collaboration with all parties Developers and QA people
might have conflicting
interests

118 6. Quality

2. For each of the practices you discussed in Task 1, suggest how it can con-

tribute to quality measurement.

3. Chose one aspect presented in Table 6.1. Based on your experience, elaborate

how it is expressed in agile software development environments and in other

software development environments.

4. Add aspects to the comparison presented in Table 6.1.

6.4.1 Process Quality

Two main characteristics of agile processes are transparency
HOT

and tightness (see

Chapters 2, Teamwork, and 4, Time). These characteristics require a high quality

process, as is illustrated by the following two examples, which are connected to

the transparency of agile development processes.

l Planning sessions are performed when all people involved in the development

process are present. Specifically, developers and testers, system analysts and

the customer, all participate together in the release planning and the plan-

ning of each short iteration. This practice causes the project subject and

features to be known by all the people involved. Thus, the project’s ongoing

details are highly transparent. The impact of this high transparency on

quality is multifaceted. Among other things, we emphasize the high level

communication which significantly decreases misunderstandings and reveals

problems before or as soon as they occur. Another impact on quality is the

adhering to customer requirements, which are heard by all teammates. This

kind of transparency is highly appreciated by teammates and influences

positively their morale and the general atmosphere which, in turn, enhance

a high quality process.

l Process measures are available all the time to all the people involved in the

development process, including the customer. This increases the transparency

of all measures, e.g., the project’s progress versus estimations, the customer

satisfaction, etc. The impact on the process quality of the measurement process

itself, as well as its ongoing availability to all the project stakeholders, is clear.

With respect to the process , the following are two examples of agile practices that

contribute to high quality process.

l The one day|the Business Day|allocated every two weeks for the presenta-

tion of the work accomplished in the previous iteration, for reflective think-

ing, and for planning the next nine development days, lays out a tight

rhythm. This tightness encourages a high quality process, since it controls

6.4 The Agile Approach to Quality Assurance 119

the project management, among other ways, by revealing and dealing with

unexpected events at early stages.

l The estimated work hours versus the actual time invested in the development task

is one measure by which iteration progress, continuous integration, and release

progress are measured (see Chapter 5, Measures). This measure is tightly main-

tained by the reports from each team member with respect to the time invested in

the development of each task (estimations are known from the planning session).

By letting everyone know the iteration progress and the integration status on a

daily basis, and the release progress on an iteration basis, this measure increases

the teammates’ awareness, care, and attention to process quality issues.

Tasks

1. Suggest additional situations in which transparency and tightness may

increase process quality.

2. Suggest situations in which transparency and tightness may decrease process

quality.

3. Discuss the characteristics of transparency and tightness with respect to

product quality.

6.4.2 Product Quality

There is no one standard way to measure software product
HOT

quality. Besides

different measurement approaches, several agile practices, such as the ones pre-

sented in what follows, aim at constantly improving the software quality.

l The goal of refactoring is to provide a simple and clear design which is easy to

maintain and simplifies future development extensions (see Chapter 8,

Abstraction). By performing ongoing refactoring activities, code is kept read-

able and flexible. The refactoring activities include the examination of the

code and its design to find places for improvement, as well as the actual code

improvement and change. Such changes also include the necessary modifica-

tions in the unit tests that support the code. These changes may be reflected in

the code measures that accompany the development. Examples of such mea-

sures are the code coverage measure that shows the level of unit tests, or the

performance measures that show the level to which the product adheres to the

performance requirements. When major needs for refactoring activities are

recognized, the refactoring tasks are formulated and entered for consideration

in the next planning session, to be presented to the customer and prioritized.

120 6. Quality

l Pair programming enables code inspection for each piece of code (see Chapter 1,

Introduction to Agile Software Development). This code inspection provides

information in two levels of abstraction. Such a multilevel examination

increases the code quality since it enables additional aspects of the code to be

captured. Pair programming also ensures adhering to coding standards as well

as to unit testing.

l The product quality is also increased by the definition of acceptance tests that

ensure the validation of each customer story.
HOT

These acceptance tests are

defined by the teammates together with the customer. During the definition

process of the acceptance tests, the customer stories are elaborated and

become clearer and better understood. The development process of the

acceptance test itself increases the teammates’ confidence with respect to

the correctness of the developed code and allows a smooth presentation of the

software functionality at the end of the iteration.

l Test driven development (elaborated in the next section) is a technique that

enables a step-by-step development of a specific functionality together with

its unit test, when each step of the test precedes the respective step of code.

Tasks

1. Summarize the agile perspective on three quality issues that you find inter-

esting. Explain why you selected these issues and share your experience (if

any) with respect to your summary.

2. Provide at least two additional agile practices that aim at increasing quality

(either process or product quality).

6.5 Test-Driven Development

Test-driven development (TDD) is a programming technique that aims to pro-

vide clean, fault-free code (Beck 2003). TDD means that first,
HOT

we write a test case

that fails, and then we write the simplest possible code that enables the test to

pass successfully. TDD implies that new code is added only if an automated test

has failed. In addition, in order to improve our code, we perform refactoring

activities (Fowler 1999), in order, among other reasons, to eliminate duplications.

Accordingly, the TDD guideline is red/green/refactor, where red means writing a

simple test that fails; green means writing the minimal and simplest code that

causes the test to pass (in graphical testing environments this is represented by a

6.5 Test-Driven Development 121

red/green bar displayed when the test fails/passes); refactor means that code

quality is improved without adding functionality. This guideline is iteratively

implemented in small steps. The cumulative experience of the community is that

TDD provides high-quality code (George and Williams 2003), which usually

means that the code is readable and includes fewer bugs. Furthermore, there is

evidence that through a TDD process, software developers improve their under-

standing with respect to the developed product (George and Williams 2004).

6.5.1 How Does TDD Help Overcome Some of the Problems
Inherent in Testing?

TDD can help overcome some of the common problems associated with tradi-

tional testing that are encountered in software projects. Based on Dubinsky

and Hazzan (2007), the following TDD analysis addresses cognitive, social,

affective, and managerial elements and is structured around arguments fre-

quently offered to explain why, in many cases, traditional testing is skipped.

Such arguments are accompanied by explanations on how TDD might help

overcome these obstacles.

l Not enough time to test|Traditionally, unit testing, if it exists, is performed

after the code is written and usually under time pressure. Thus, according to

Van Vliet, ‘‘the testing activity often does not get the attention it deserves.

By the time the software has been written, we are often pressed for time,

which does not encourage thorough testing’’ (Van Vliet 2000, 397). However,

‘‘postponing test activities for too long is one of the most severe mistakes often

made in software development projects. This postponement makes testing a

rather costly affair’’ (ibid.). Since TDD introduces unit tests throughout the

entire development process, this problem is eliminated in TDD processes.

l Testing provides negative feedback|Traditional testing processes require the

developer to find bugs in his or her own work; in other words, testing

activities end in failure. Indeed, who would enjoy that? (Hamlet and Maybee

2001, Hazzan and Leron 2006). In TDD, the rules of the game are reversed.

TDD ends in success: after the test fails, code is written and the test pas-

ses|success! To illustrate
HOT

this perspective, we quote the reflection of a

developer, Michael Feathers (http://c2.com/cgi/wiki?CodeUnitTestFirst):

‘‘Why don’t people like testing? Well, the traditional way of testing is tough

to take. You write what seems to be perfectly sensible code, then you write a

test and the test tells you that you failed. No one wants to hear that. Let’s

turn it around. Write the test first; run it. Of course it fails You haven’t

122 6. Quality

written the code under test yet. Start writing code ... keep testing. Soon, the

test will tell you that you’ve succeeded!’’

l Responsibility for testing is transferred|There are software development

environments in which bugs are found and, in many cases, also fixed by

other practitioners than the developer who actually wrote the code; thus, it is

not clear who is responsible for each specific testing activity. In TDD pro-

cesses, the responsibility for testing is borne by the person who writes the

code.

l Testing is a low-status job|In some software development processes, testing

is carried out at the
HOT?

end of the production line, and, as with traditionally

working class jobs, the task is assigned low status, which in turn leads to

tension among different groups of employees. Cohen et al. (2004) reported

that ‘‘though most organizations recognize the need for high-quality testers

and their specialized skill set, testers still struggle to win the respect they

deserve The lack of status and support makes the tester’s job more

difficult and time consuming, as the struggle for recognition becomes part

of the job itself’’ (80). Since in TDD processes all developers test their own

code, this negative feeling towards testing is eliminated.

l Testing is hard to manage|From a managerial perspective, it is sometimes

claimed that in general, testing is a hard process to manage, and that in

particular, testing slows down the development process. Since TDD is firmly

integrated throughout the entire software development process, it turns

development and testing into controlled processes. Furthermore, the fact

that TDD is done by writing automatic (not manual) tests, further increases

the control level. Indeed, introducing TDD might slow down the develop-

ment process in the short term simply because testing is actually performed.

In the long run, however, it assists in shortening the integration period

(especially when performing continuous integration).

l Testing is hard|Testing is also difficult from a cognitive perspective mainly

because it is not always clear what tests are suitable for a specific purpose and

how much testing should be done. The following reflection of a practitioner,

Ron Jeffries, explains how TDD supports the testing from the cognitive

perspective (http://c2.com/cgi/wiki?RonJeffries):
HOT

‘‘A key aspect of this pro-

cess: don’t try to implement two things at a time, don’t try to fix two things

at a time. Just do one. When you get this right, development turns into a very

pleasant cycle of testing, seeing a simple thing to fix, fixing it, testing, getting

positive feedback all the way. Guaranteed flow.’’ Being a detail-oriented and

explicit process, TDD improves one’s understanding of what should be

developed, since the test must be written prior to the writing of the code.

6.5 Test-Driven Development 123

Task

Represent the above TDD analysis within the HOT|Human, Organizational,

and Technological|framework.

Though TDD helps cope with traditional problems related to traditional

testing, it is, however, not sufficient and is still not performed at full scale. The

following are two illustrative case studies that show that developers still find it

hard to implement the entire TDD process, including the refactoring stage. These

case studies, as well as other data, motivated the development of the measured

TDD technique, presented in the following part of this chapter.

6.5.2 Case Study 6.1. TDD Steps

This data set looks at the activities performed during the development of specific

functions developed by TDD as part of a large software project (Dubinsky and

Hazzan 2007).

N
u

m
b

er
 o

f
T

D
D

 T
ra

n
si

ti
o

n
s

0
5

10
15
20
25
30
35
40
45
50

Checking code
improvements

Checking
number of
elements

Checking inputChecking
functionality

Checking
parameters
correctness

Checking
exceptional

Cases

Checking
function/class

existence

(b)

0

2

4

6

8

10

12

14

Functions

T
D

D
 s

te
p

s

Number of TDD Steps
Average

(a)

3129272523211917151311973 51

Figure 6.1 TDD steps and the reasons for the respective TDD transitions.

124 6. Quality

An examination of 31 functions, developed using TDD, reflects a total of 129

TDD steps. The participants were asked to save the file that corresponds to each

TDD step, to explain why they moved on to the next step, and to document their

refactoring activities. By refactoring activities we refer to code activities that

should be carried out frequently, on the level of the currently-developed unit, each

time after several test and code steps have been developed.

Figure 6.1a presents the number of TDD steps for each of the 31 functions, as

well as the average number of TDD steps per function (horizontal, dashed line),

which was found to be 4.16. Figure 6.1b presents the reasons given for making

TDD transitions to the next step in the development of the examined functions, as

reported by the participants, as well as the number of times each reason was given.

As can be observed, the two main reasons for moving to the next TDD step are

checking the functionality of the feature to be implemented and checking excep-

tional cases. An examination of the participants’ reports on their refactoring

activities revealed that the participants did not perform code refactoring at all,

i.e., they did not stop to improve the unit code each time after several test and code

steps had been developed; rather, they continued developing till the unit coding was

completed. We note that refactoring activities that are on the project level, such as

improving class hierarchies, are not included in the analysis presented here.

6.5.3 Case Study 6.2. Reflection on TDD

Participants were asked to reflect on their first TDD experience. Following are

some of the participants’ expressions, categorized into pros and cons.

Developers described the advantages of as follows:

l ‘‘It makes us think ahead.’’

l ‘‘There are less bugs. Developers are forced to produce high-quality software.’’

l ‘‘It helps us get acquainted with the software components.’’

l ‘‘It makes us think before coding.’’

l ‘‘It requires writing minimum code in order to let the tests pass.’’

l ‘‘It saves time that used to be dedicated to bug finding.’’

l ‘‘It helps in quality assurance!’’

Developers described the disadvantages of TDD as follows:

l ‘‘Work is delayed because of relatively simple items.’’

l ‘‘It doubles the time to write code.’’

6.5 Test-Driven Development 125

l ‘‘It increases development time.’’

l ‘‘There is no global view when dealing with complicated components.’’

l ‘‘It is hard to identify the critical cases.’’

l ‘‘It is not suitable for every kind of task.’’

l ‘‘It is a waste of time if the code is not used later.’’

An examination of these reflections reveals two main observations. First,

developers tend to refer to TDD as a thinking activity in general, and as a

thinking-before-coding activity in particular. This observation means that when

TDD guides the development process, coding is not perceived by developers as a

spontaneous developer-computer interaction, but rather as an activity that

requires thinking before performing. This can be explained by the fact that unlike

TDD, which forces the developer to think before coding, there are cases in which

developers tend to start coding intuitively.

The second observation involves the contradictions and conflicts that TDD

introduces. For example, one developer claimed that TDD ensures that fewer

bugs occur and consequently leads to shorter integration times. At the same

time, however, this developer claimed that the time overhead that TDD intro-

duces is a disadvantage. Another developer claimed that since she thinks before

coding, she knows exactly what she is going to code. At the same time, however,

this developer indicated a feeling of uncertainty when practicing the TDD

approach. A third developer claimed that TDD disrupts the coding continuity,

but acknowledged its convenience. These contradicting reflections may be

explained by the fact that, traditionally, developers used to code first and test

later; TDD forces them to perform these activities in a reversed order. Accord-

ingly, their first TDD experiences cause mixed feelings and contradicting

opinions.

Tasks

1. Explain the source of the phenomena presented in Case Studies 6.1 and 6.2.

2. Have you experienced similar situations and/or feelings to the ones presented

in these case studies?

Based on the above illustration, it is clear that TDD has many benefits and

that it might indeed help cope with some of the cognitive, affective, social, and

managerial problems associated with traditional testing. However, Case Study

6.1 and the accumulated experience of the agile community tell us that though

126 6. Quality

TDD does help overcome many of the problems associated with traditional

testing processes by providing a tight and clear testing procedure to follow, it is

not fully performed in agile projects and is still considered to be one of the more

difficult practices to introduce when the decision to apply the agile approach in

the organization is taken. Furthermore, even when TDD is applied, developers

tend to reduce the number of TDD steps and to skip the refactoring phase, which

is required repeatedly after every few TDD steps. In addition, according to Case

Study 6.2, the new work habit that TDD introduces leads to some confusing

feelings.

One possible reason for these phenomena is that, like other processes that

must be measured, disciplined, and controlled, TDD processes should also be

measured and controlled (see Chapter 5, Measures); that is, their tightness should

be increased (see Chapter 4, Time). Accordingly, measures should be taken

alongside the TDD steps to lead and guide this process. To that end, a techni-

que| measured TDD|whereby two measures are added to the TDD process, is

presented, rendering it a more controlled process.

6.6 Measured TDD

The measured TDD technique (Dubinsky and Hazzan 2007) aims at improving

the performance of TDD by incorporating measures
HOT

and control elements into the

TDD process itself. Specifically, at the end of each TDD step, developers measure

the size and complexity of the developed code. Size is determined by the number of

lines, and complexity is determined by calculating the cyclomatic complexity

(McCabe 1976, Watson and McCabe 1996), whereby a sequential method has a

complexity of 1, and each decision that causes a binary split adds 1 to the

complexity1. Size and complexity are measured also with respect to the evolved

test. Other measures can be taken as well. However, we focus on the aforemen-

tioned measures since they are simple, easy to use, and can be taken automatically.

Measured TDD has the added value of measuring while developing. Specifi-

cally, the use of the size and complexity measures of both the test and the code

helps developers determine when, while implementing TDD steps, they should

refactor the code. This phenomenon is reflected in Case Studies 6.3 and 6.4.

1 The Metrics software, for example, provides a plug-in that automatically calculates McCabe
cyclomatic complexity (http://metrics.sourceforge.net/).

6.6 Measured TDD 127

6.7 Quality in Learning Environments

In this studio meeting the students complete the development tasks and integrate

them. Naturally, this task is easier for teams who apply continuous integration

and high level testing than for teams which do not. They also prepare the

presentation of the first iteration to be presented to the customer in the next

studio meeting.

We focus in this section on case studies taken from the academic setting to

show how students work with measured TDD.

6.7.1 Case Study 6.3. Size and Complexity Measures

An examination of the size and complexity measures of 19 different functions developed

through a measured TDD process and of the 75 TDD steps associated with these 19

developed functions reveals the following observations (Dubinsky and Hazzan 2007).

First, since in general each line of code is inspected by several tests (and each

test is usually one line long), more lines of test are expected than lines of code.

Indeed, the 19 different functions developed through the measured TDD process

yielded about two times more lines of tests (1582) than lines of code (800).

Second, as can be observed in Figure 6.2, which presents the size (6.2a) and

complexity (6.2b) of the code for each measured TDD step, most of the functions

were developed in three or four measured TDD steps. Figure 6.2a shows that most

functions have less than 20 lines of code, which means that the functions remain

short and simple. Figure 6.2b, which presents the code complexity of each mea-

sured step in terms of cyclomatic complexity, further validates this assumption

about the nature of the functions developed through the measured TDD process.

Third, though the number of TDD steps did not increase relative to Case

Study 6.1 (the average number of measured TDD steps for these 19 functions was

3.95), we will observe later the added value of the measured TDD mainly by the

actual performance of refactoring activities that lead to simpler code. We note

that when the data presented in Case Study 6.3 are combined with another data

set that refers to 16 functions developed through a measured TDD for which the

average number of steps was 5.5 (an increase of 32% relative to Case Study 6.1),

the average number of steps for the 35 functions is 4.66, which indicates a 12%

increase relative to Case Study 6.1.

Task

Why, in your opinion, does measured TDD increase developers’ awareness of

refactoring activities?

128 6. Quality

Fourth, Figure 6.2b reveals that the cyclomatic complexity in most cases is

less than 5. As mentioned before, this means that most of these functions are

not complicated. In one case, for example, in which the cyclomatic complexity

soared 27, the code was checked and it was found that the task included nine

hash table manipulation functions. When complexity was higher than 5, devel-

opers suggested improvements and in some cases also implemented them. In

two of the 19 cases in which the cyclomatic complexity was reduced at some

stage (#6 and #10), the size of the code was also reduced (see Figure 6.3). This

indicates that since developers constantly monitor their work, measured TDD

keeps complexity, as well as the size of the code, low.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Measured TDD steps per task

L
in

es
 o

f
C

o
d

e

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Measured TDD steps per task

cy
cl

o
m

at
ic

 c
o

m
p

le
xi

ty

0

5

10

15

20

25

30

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

(b)

Figure 6.2 Code size and complexity for measured TDD steps.

6.7 Quality in Learning Environments 129

6.7.2 Case Study 6.4. Illustrating Measured TDD

This part illustrates the measured TDD process by a Java class that was devel-

oped using the measured TDD technique.

The project deals with the development of a shell language that enables search

in several digital libraries (Dubinsky et al. 2006). In order to increase awareness of

measures as well as of their implications, the developers were asked to complete a

containing the following information: step number, test and code descriptions,

size of test and code, cyclomatic complexity of test and code, and a description of

the refactoring activities performed. The developers were told that they must

complete all table columns for each TDD step and, specifically, a refactoring

description must be written for all steps, even if they decide that a specific step

requires no refactoring.

The name of the class was SearchCommand. Table 6.2 (Dubinsky and Hazzan

2007) presents a tracking table for the class development, as constructed by one of

the developers. As can be observed, the table was indeed used by the developer to

track the development process. The refactoring column was completed for all 12

steps and indicates the exact step (#7) where the developer became aware of the

need to refactor. At this stage, the developer also started to make use of the

measures, citing the high as the rationale for her need to refactor. Though the

need to refactor was detected in Step #7, the developer decided to continue with

the class development before performing the refactoring (see the Comments

Case #6: Lines of Code

0

5

10

5 4321

4321

4321

54321

15
Case #10: Lines of Code

0

50

100

150

Case #6: Cyclomatic Complexity

0
0.5

1
1.5

2
2.5

Case #10: Cyclomatic Complexity

0
1
2
3
4
5

Figure 6.3 Reduction in cyclomatic complexity and code size.

130 6. Quality

column). The refactoring of both code and test was carried out in the last two

steps (#11 and #12).

Figure 6.4 presents the test and code measures as reported in the tracking

table (Table 6.2). (Dubinsky and Hazzan 2007) It is clear that the refactoring

activities, of both the code and of the test, reduced the size and lowered the size

and lowered the complexity of both code and test. It can be concluded that, as a

result, the clarity and simplicity of both code and test increased.

To illustrate how measured TDD is used, we present the code for three of the

steps (#1, #7, and #12). The test of Step #1 consists of a sanity check. The

developer checks that SearchCommand can be instantiated. Naturally, this test

fails since no code exists at that time (note that the developed class extends the

abstract class ACommand, and therefore three empty methods are created). Both

measures are low and no refactoring action is needed.

The examination of Step #7 shows that the code indeed became longer and

now includes many repetitions. The code complexity measure for this step is 13

and increases to 19 (step #10) before refactoring is performed (see Table 6.2).

Finally, in Steps #11 and #12, is performed. Both test and code are improved

by introducing a method that eliminates code duplications. The measures indi-

cate that the code is indeed more concise and simpler (see Table 6.2 and

Figure 6.4). These three stages of the refactored code are presented in what

follows.

Code of Step #1:

package gsdl.command;

import gsdl.exception.*;

public class SearchCommand extends ACommand {

public void setParameter(String name, String value) throws Illegal-

CommandException {

}

public void verifyParameters() throws IllegalCommandException {

}

public void execute() throws ScriptException {

}

}

Code of Step #7 (Since this is a printout, a difference exists between its

number of lines and the student’s count of the lines of code as appeared

in Table 6.2):

package gsdl.command;

import gsdl.exception.*;

6.7 Quality in Learning Environments 131

T
a
b

le
6
.2

T
h

e
m

ea
su

re
d

T
D

D
tr

ac
k
in

g
ta

b
le

fo
r

th
e

cl
as

s
S

ea
rc

h
C

o
m

m
a

n
d

#
T

es
t

C
od

e
T

es
t

li
n

es
#

C
od

e
li
n

es
#

T
es

t
C

C
C

od
e

C
C

R
ef

ac
to

r
C

om
m

en
ts

1
S

a
n

it
y

ch
ec

k
M

et
h

od
si

gn
at

u
re

11
3

1
1

N
ot

n
ee

d
ed

|
I

d
id

n
’t

st
ar

t
y
et

M
et

h
od

si
gn

at
u

re
an

d
te

st
’s

te
ar

U
p

m
et

h
od

2
S

et
p

ar
a
m

et
er

|
te

x
t

H
an

d
le

te
x
t

p
ar

am
et

er
19

9
4

3
N

ot
n

ee
d

ed

3
S

et
p

ar
a
m

et
er

|
n

am
e

H
an

d
le

n
am

e
p

ar
am

et
er

31
14

6
5

N
ot

n
ee

d
ed

4
S

et
p

a
ra

m
et

er
|

se
a
rc

h
L

is
t

H
an

d
le

se
a
rc

h
L

is
t

p
ar

am
et

er
40

19
8

7
N

ot
n

ee
d

ed

5
S

et
p

ar
a
m

et
er

|
m

et
a

H
an

d
le

m
et

a
p

ar
am

et
er

51
26

10
9

N
ot

n
ee

d
ed

6
S

et
p

ar
a
m

et
er

|
op

H
an

d
le

op
p

ar
am

et
er

62
31

12
11

N
ot

n
ee

d
ed

7
S

et
p

ar
a
m

et
er

|
ca

se
S

en
si

ti
v
e

H
an

d
le

ca
se

S
en

si
ti

v
e

p
ar

am
et

er
74

36
14

13
C

C
h

ig
h

->
n

ee
d

re
fa

ct
or

in
g,

la
te

r

N
ee

d
ed

re
fa

ct
or

in
g,

I’
ll

d
o

it
at

en
d

8
S

et
p

ar
a
m

et
er

|
ra

n
k

H
an

d
le

ra
n

k
p

ar
am

et
er

84
41

16
15

C
C

h
ig

h
->

n
ee

d
re

fa
ct

or
in

g,
la

te
r

N
ee

d
ed

re
fa

ct
or

in
g,

I’
ll

d
o

it
at

en
d

9
S

et
p

ar
a
m

et
er

|
in

to
R

es
u

lt
L

is
t

H
an

d
le

in
to

R
es

u
lt

L
is

t
p

ar
am

et
er

95
46

18
17

C
C

h
ig

h
->

n
ee

d
re

fa
ct

or
in

g,
la

te
r

N
ee

d
ed

re
fa

ct
or

in
g,

I’
ll

d
o

it
at

en
d

1
0

S
et

p
ar

a
m

et
er

|
p

op
u

p
H

a
n

d
le

p
op

u
p

p
ar

am
et

er
10

6
51

20
19

C
C

h
ig

h
,
co

d
e

H
IG

H
->

n
ee

d
re

fa
ct

or
in

g

F
in

is
h

ed
m

et
h

od
,

n
ow

re
fa

ct
or

in
g

132 6. Quality

T
a
b

le
6
.2

(c
o
n

ti
n

u
ed

)

#
T

es
t

C
od

e
T

es
t

li
n

es
#

C
od

e
li
n

es
#

T
es

t
C

C
C

od
e

C
C

R
ef

ac
to

r
C

om
m

en
ts

1
1

R
ef

ac
to

r
ex

is
ti

n
g

co
d

e
R

ef
ac

to
ri

n
g

b
y

in
tr

od
u

ci
n

g
ch

ec
k
V

al
u

e
fu

n
ct

io
n

,
it

w
il
l
re

d
u

ce
b

ot
h

C
C

a
n

d
C

od
eL

in
es

10
6

26
20

10
In

tr
od

u
ce

d
a

m
et

h
od

th
at

re
d

u
ce

d
co

d
e

d
u

p
li
ca

ti
on

1
2

R
ef

ac
to

r
te

st
co

d
e

R
ef

ac
to

r
te

st
co

d
e

b
y

in
tr

od
u

ci
n

g
a

h
el

p
te

st
m

et
h

od

16
26

2
10

In
tr

od
u

ce
d

a
m

et
h

od
th

at
re

d
u

ce
d

d
u

p
li
ca

ti
on

in
te

st
co

d
e

6.7 Quality in Learning Environments 133

public class SearchCommand extends ACommand {

private static final String PARAM_TEXT = ‘‘-text’’;

private . . . [variables declaration and initialization]

public void setParameter(String name, String value) throws Illegal-

CommandException {

if (PARAM_TEXT.equals(name)) {

if (value == null || value.length() == 0)

throw new IllegalCommandExcep-

tion(STR_GOT_NULL_VALUE + name);

} else if (PARAM_NAME.equals(name)) {

if (value == null || value.length() == 0)

throw new IllegalCommandExcep-

tion(STR_GOT_NULL_VALUE + name);

else

strName = value;

} else if (PARAM_LIST.equals(name)) {

if (value == null || value.length() == 0)

throw new IllegalCommandExcep-

tion(STR_GOT_NULL_VALUE + name);

else

strSearchList = value;

0
20
40
60
80

100
120

Measured TDD steps

Number of
Lines

Test

Code

121110987654321

Test

Code

0

5

10

15

20

25

Cyclomatic
complexity

Measured TDD steps

121110987654321

Figure 6.4 Test and code measures of SearchCommand.

134 6. Quality

} else if . . . [Same for more PARAM_’s]

..

}

else throw new IllegalCommandException("Got invalid

parameter: ‘‘ + name);

}

public void verifyParameters() throws IllegalCommandException { }

public void execute() throws ScriptException { }

}

Code of Step #12:

package gsdl.command;

import gsdl.exception.*;

public class SearchCommand extends ACommand {

private static final String PARAM_TEXT = ‘‘-text’’;

private . . . [variables declaration and initialization]

public void setParameter(String name, String value) throws Illegal-

CommandException {

checkValue(name, value);

if (PARAM_TEXT.equals(name)) {

} else if (PARAM_NAME.equals(name)) {

strName = value;

}else if (PARAM_LIST.equals(name)) {

strSearchList = value;

}else if . . . [Same for more PARAM_’s]

. . .

}

else throw new IllegalCommandException(‘‘Got invalid

parameter: ’’ + name);

}

public void verifyParameters() throws IllegalCommandException { }

public void execute() throws ScriptException { }

private void checkValue(String name, String value) throws Illegal-

CommandException {

if (value == null || value.length() == 0)

throw new IllegalCommandExcep-

tion(STR_GOT_NULL_VALUE + name);

}

}

6.7 Quality in Learning Environments 135

6.7.3 Teaching and Learning Principles|The Case of Quality

Naturally, software engineers should be educated for quality. This message is

clearly delivered by the Software Engineering 2004 volume of the Computing

Curricula 2001 (http://sites.computer.org/ccse/), in which Software Quality is

one of the Software Engineering Education Knowledge Areas (p. 20), and is

described as follows: ‘‘Software quality is a pervasive concept that affects, and is

affected by all aspects of software development, support, revision, and mainte-

nance. It encompasses the quality of work products developed and/or modified

(both intermediate and deliverable work products) and the quality of the work

processes used to develop and/or modify the work products. Quality work pro-

duct attributes include functionality, usability, reliability, safety, security, main-

tainability, portability, efficiency, performance, and availability’’ (31).

Furthermore, the Software Engineering Code of Ethics and Professional

Practice, formulated by an IEEE-CS/ACM Joint Task Force, addresses quality

issues and outlines how software developers should adhere to ethical behavior. In

Chapter 9, Trust, we discuss the subject of ethics and the principles of the above

code. At this stage, we highlight Principle 3 of the code, which focuses on quality:

‘‘3 PRODUCT|Software engineers shall ensure that their products and related

modifications meet the highest professional standards possible.’’

Based on the assumption that the concept of quality should be taught as part

of software engineering education, the question that should be asked is how

quality should be taught.

In general, the nature of the software development methods that inspire a

curriculum, is usually reflected in the curriculum itself. Accordingly, when the

concept of quality is integrated into a software engineering program that is

inspired by agile software development, quality-related issues should be inte-

grated and intertwined in all learned topics. This idea is illustrated in what

follows, in which the teaching of quality issues, as they are perceived by the

agile approach, is compatible with two of the teaching and learning principles,

presented in Chapter 14, Delivery and Cyclicality:

l Let the learners experience the software development approach|(see Teaching

and Learning Principle 2 in Chapter 1)|Since quality is a complex concept,

its gradual learning process should be based on the learners’ experience. With

respect to acceptance testing, active learning can be expressed in several ways.

First, learners are active in the definition of the software requirements.

Second, learners define the acceptance tests together with the customer and

verify that they meet the requirements. Third, they develop the acceptance

tests and use them to validate the developed code. And fourth, they are

encouraged to reflect both on each individual step and on the entire process.

136 6. Quality

l Elicit communication|(see Teaching and Learning Principle 5 in

Chapter 3)|This principle can be applied very naturally in the context

of quality since it is a multifaceted concept. During the learning of quality

activities, learners can be asked to identify its different facets, to allocate

the learning of its parts to different team members|first learning them,

and then subsequently teaching them to the other team members in the

stage that follows. In the spirit of agile software development, it is

appropriate to assign the different parts that are to be learned to pairs

of learners (rather than to individuals), in order to foster learning pro-

cesses. When the team members present what they have learned to their

teammates, not only do they share their knowledge, but further commu-

nication is enhanced.

6.8 Summary and Reflective Questions

1. Select two of your development tasks and develop them using the measured

TDD technique. Construct a tracking table.

2. Based on this experience, evaluate the final code of these two tasks with

respect to readability and meeting the required functionality. In addition,

evaluate the final tests with respect to the coverage they supply to the

developed code.

3. Would you recommend your colleague to use the TDD technique? The

measured TDD technique? Why?

4. Suggest how unit tests and acceptance tests can assist in the evaluation of

software projects in general and their code in particular.

5. Present the different ideas presented in this chapter within the HOT|Human,

Organizational, and Technological|framework.

6.9 Summary

This chapter describes the agile approach to process and product quality. Speci-

fically, it delves into the details of TDD implementation. We present a technique

for function/unit development that uses size and complexity measures for mon-

itoring and controlling the TDD process. This technique helps overcome difficul-

ties developers face in applying and sustaining TDD, and further encourages

6.9 Summary 137

function refactoring; thus the TDD advantage of developing high quality software

is enhanced. The simple and easy-to-automate measures ensure no significant

overhead. This technique also provides a means to promote automated unit tests,

which are considered to be one of the basis steps towards the production of high

quality products.

References

Ambler SW (2006) Introduction to test driven development (TDD). http://www.agiledata.org/
essays/tdd.html. Last updated July 28, 2006

Beck K (2000) Extreme programming explained. Addison-Wesley Reading, MA
Beck K (2003) Test-driven development by example. Addison Wesley, Reading, MA
Cockburn A (2001) Agile software development. Addison-Wesley, Reading, MA
Cohen CF, Birkin SJ, Garfield MJ, Webb HW (2004) Managing conflict in software testing.

Commun ACM 47(1):76{81
Dubinsky Y, Catarci T, Kimani S (2006) Active data and the digital library shell. Joint

conference on digital libraries (JCDL) workshop on digital libraries in the context of users’
broader activities. Chapel Hill, NC, USA

Dubinsky Y, Hazzan O (2007) Measured test-driven development: using measures to monitor
and control the unit development. J Comput Sci 3(5):335{344

Feathers M (2004) Working effectively with legacy code. Prentice Hall, Englewood Cliffs
Fowler M (1999) Refactoring: improving the design of existing code. Addison-Wesley Profes-

sional, Reading
George B, Williams L (2003) An initial investigation of test driven development in industry.

Proceedings of the ACM symposium on applied computing, March 9{12, Melbourne, Florida
George B, Williams L (2004) A structured experiment of test-driven development. Inform

Software Tech 46:337{342
Hamlet D, Maybee J (2001) The engineering of software. Addison Wesley, Reading, MA
Hazzan O, Leron U (2006) Why do we resist testing? System Design Frontier 3(8):13{17.
Hazzan O, Dubinsky Y (2007) Teaching agile software development quality assurance. In:

Stamelos I, Sfetsos P (eds) The agile software development quality assurance book. Idea
Group Inc., Chap. IX:171{185

McCabe T (1976) A complexity measure. IEEE T Software Eng 308{320
Meszaros G, Smith SM, Andrea J (2003) The test automation manifesto. Proceedings of the XP/

agile conference, pp 73{81
Newkirk JW, Vorontsov AA (2004) Test-driven development in Microsoft .NET. Microsoft

Press
Van Vliet H (2000) Software engineering|principles and practice. Wiley, New York
Watson AH, McCabe TJ (1996) Structured testing: a testing methodology using the cyclomatic

complexity metric. NIST Special Publication 500{235

138 6. Quality

7
Learning

Abstract

Software development is a learning process. This statement can be explained both

from the customers’ and team members’ perspectives. At the beginning of the

development process customers do not know explicitly and entirely what their

requirements for the developed product are, but improve their understanding with

respect to these requirements during the development process. The team members

keep improving their understanding of the customer requirements as well as of the

developed product. If software development is a learning process, an appropriate

learning environment should be provided to all project stakeholders. Indeed, this is

another characteristic of agile software development environments|they support

leaning processes. This aspect is explored in this chapter by an examination of agile

software development environments from the constructivist perspective.

7.1 Overview

In this chapter we explore how agile software development environments support

learning processes of agile teams and customers of software products. This asser-

tion is derived
HOT

from the fact that the development of a software product can be

viewed, among other ways, as a learning process for all the project’s stakeholders.

The customer learns in a gradual way what specific features will answer his or her

needs; team members learn the customer’s requirements as well as how those

requirements can be implemented in the best way, taking into consideration the

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 7, � Springer-Verlag London Limited 2008

software characteristics, such as quality, readability, simplicity, and code man-

ageability; the organization management learns the business environment with

which it deals with respect to a given project and steers the organization

accordingly.

The topics that should be learned during a typical software development process

are not simple. Most of them are unknown, abstract, complex, and multifaceted.

Therefore, learning tools should be provided to software teams. This chapter

explores mechanisms that agile software development environments provide for

the stakeholders of agile projects to ease and support their learning processes.

The very same idea is applied with respect to learning this book. In the

learning section of this chapter we explain this assertion and present a set of

reflective activities to promote the book learning process.

7.2 Objectives

l Readers will learn how agile software development supports learning processes.

l Readers will become familiar with the constructivist approach to learning

processes and how agile software development can be analyzed from this

perspective.

l Readers will experience reflective processes in agile teams at team and indivi-

dual levels.

l Readers will get a holistic picture of the main ideas presented so far in this

book.

l Readers will grasp the relationships between the main ideas presented so far in

the book.

7.3 Study Questions

1. In your opinion, what are the three main topics related to agile software

development discussed so far in the book? Why did you identify these topics

as the main agile topics? Why are they agile?

2. Identify the main connections and interrelations between the different topics

reviewed so far in the book. Why did you indicate them as the main connec-

tions and interrelations?

140 7. Learning

3. Analyze the development process of the software you currently develop.

Identify the three main characteristics of your development process. What

are the three advantages of that process? What are the three main pitfalls of

that process? How can the process be improved?

4. Reflect on the development process of your current project. Do you recall

situations in which you had to change the process based on new understand-

ings you gained during the process? Describe these cases: What exactly led you

to change the process? How did you change the process? What were the

consequences of this change in the process?

5. Based on your current understanding of agile software development, define the

concept ‘‘agile software engineering.’’

6. What topics, in your opinion, should be presented in the rest of this book to get

a fuller picture of agile software development?

7.4 How Does Agile Software Development
Support Learning Processes?

7.4.1 Agile Software Development from the Constructivist
Perspective

Constructivism has been mentioned in the second teaching and learning principle

presented in Chapter 1, Introduction to Agile Software Development.

Constructivism is a learning theory that examines the nature of learning

processes. A central tenet of the constructivist approach is that learners construct

new knowledge by rearranging and refining their existing knowledge. More spe-

cifically, according to the constructivist approach, new knowledge is constructed

gradually, based on the learner’s existing mental structures. Mental structures are

developed in steps, each elaborating on preceding ones, though there may of

course be regressions and blind alleys. This process is referred to by Leron and

Hazzan (1997) as ‘‘learning by successive refinement’’ and it is closely related to

the Piagetian mechanisms of assimilation and accommodation (Piaget 1977). The

term successive refinement itself is borrowed from computer science, where it

refers to a methodology that guides a gradual elaboration of complex programs

(Dijkstra 1972). This methodology is based on the assumption that successive

refinement is an especially effective way for the human mind, with its particular

strengths and limitations, to deal with complexity.

7.4 How Does Agile Software Development Support Learning Processes? 141

Since software development is a complex process (Hamlet and Maybee 2001),

methods that support learning processes should be provided to all software

projects’ stakeholders|team members, customers, and management. According

to the constructivist perspective, these tools should support a gradual learning

process, through which the project stakeholders improve their understanding

regarding the development process and product. These means should on the one

hand lead to improved understanding, and on the other hand enable mistake

corrections in an easy and inexpensive way. The fact that a software development

method provides these means indicates that it legitimates learning processes and

misconception correction. Indeed, agile software development legitimizes such

processes. (Eckstein 2004) says with respect to this that ‘‘accepting and embra-

cing change also means understanding that errors are part of the process’’ (122).

In what follows we explain how agile software development supports the

gradual construction of knowledge related to the development of software sys-

tems. The discussion is based on the practice of short iterations. It is shown how

short iterations lead to improved understanding of the developed product by the

customer and team members, and consequently, they are able to carry out the

software development task more confidently.

7.4.2 The Role of Short Releases and Iterations
in Learning Processes

One of the main practices of agile software development processes is short releases

and iterations. An iteration of an agile software development process includes all

the phases and activities involved in software development processes; they are

applied, however, only on a portion of the developed software product. The part

on which an iteration focuses is determined by the customer, who prioritizes the

development tasks according to his or her preferences.

This practice of agile software development has been mentioned several times

in this book so far, especially in Chapter 3, Customers and Users. Different aspects

of this practice have been highlighted in these discussions. In the context of this

chapter we highlight the idea that the fact that the software is developed in short

iterations and releases guides the customer, as well as the team members, in a

gradual process of knowledge construction with
HOT

respect to the developed software.

It is a known fact that customers face difficulties in determining in advance all

of the required features of the software. Still, some software developers request

customers to define their software requirements in detail at the beginning of the

development process. Agile software development, however, takes a different

approach: iteration and release Business Days|which include planning and

reflective sessions|are conducted frequently in accordance with the practice of

142 7. Learning

short iterations and releases. These planning sessions, and the reflective processes

that accompany them, provide the customers with the opportunity to rethink,

refine, and improve their understanding of the software they require. Conse-

quently, customers are able to define and communicate their requirements to

the software team members in a more precise and clear manner.

In addition, in each short iteration and release the team members get feedback

with respect to their understating so far of the customer’s requirements. If they

misunderstand the requirements, the customer can clarify his or her intentions; if

they do not understand a specific customer request, they have the opportunity to

clarify the customer’s intention in a face-to-face interaction.

Indeed, this kind of interaction is based on the realization that misunderstand-

ing exists in dealing with customer requirements and that an opportunity to

improve and correct the understanding of what should be developed, both by

the customer and the software team members, should be provided.

Tasks

1. Describe a scenario in which a customer improves his or her understanding of

the product requirements through three or four iterations. Indicate the specific

elements that caused and led the customer’s learning process. In your descrip-

tion address also the kind of interaction that influenced this learning process.

2. How does such an approach at learning processes influence the culture and

social interactions among the different project stakeholders?

From the constructivist perspective, a development process that is based on

short iterations has several benefits which are directly connected to learning

processes.

First, it allows both the customer and the software team members to focus on a

relatively small part of the iteration.

Second, it allows the customer and the software team members to gradually

improve their understanding with respect to the developed software. This is

because short iterations do not require dealing with future developments that

are unknown at a specific stage, and that will probably be clarified later when the

development proceeds.

Third, short iterations improves communication between among the project

stakeholders in general and between the customer and the team in particular. The

Business Day, which takes place after each short iteration, and in which the

customer, the team, and management participate, enables all the project stake-

holders to gather together, communicate, become familiar with the others’ per-

spectives on the project, express their concerns with respect to the development

7.4 How Does Agile Software Development Support Learning Processes? 143

process and the product, and reflect on previous developments. All these activities

improve the understanding of the development process and the product by all the

project stakeholders.

Fourth, short iterations define very clearly the time for feedback and reflective

sessions. Feedback is provided by the customer at the end of each iteration;

reflective sessions also take place at the end of each iteration.

Fifth, in addition to the lessons learned during such reflective sessions, such a

break enables the developers to rest and detach for a while from the demanding,

complex, and tight process of software development. It enables the team members

to exploit their capabilities in a better way when they return to the development

tasks of the next iteration.

Sixth, short iterations foster courage to raise problems and to attempt to solve

them together. At the end of each iteration the team presents to the customer

what has been accomplished during the last iteration, and if needed, shares with

the customer any misunderstandings and/or problems in the development

process.

Tasks

1. Analyze the practice of short releases within the HOT|Human, Organiza-

tional, and Technological|framework.

2. What other agile practices that have been reviewed so far in the book support

learning processes?

Another agile practice that supports learning processes is reflective thinking.

This thinking mode will be reviewed in depth in Chapter 11, Reflection, and

Chapter 14, Delivery and Cyclicality. It is, however, important to begin this

practice even before its theoretical background is learned. In the next section,

which addresses learning in learning environments, a set of reflective tasks on

learning this book is presented.

7.5 Learning in Learning Environments

In the first part of this chapter we explain how agile software development

environments support learning processes by laying out a development process

that encourages gradual learning. This gradual learning perspective is applied

also with respect to learning this book and the course for which the book is used.

Therefore, in what follows, we use the terms course and book alternately.

144 7. Learning

Accordingly, and in the spirit of the agile perspective, this chapter ends the

book’s first iteration and opens the second iteration. It reviews what has been

learned so far in the course and what will be taught in upcoming lessons. The

rationale for this intermediate step is to summarize the ideas presented so far in

the book into one comprehensive picture that captures the spirit of agile software

development environments and, at the same time, serves as an introduction for

the second and third iterations of the course, which on the one hand delves into

more detail, and on the other hand presents agility in a wider context.

This intermediate step is based on reflective processes (see Chapter 11, Reflec-

tion). Reflective tasks are offered to all the book’s readers and course participants|

software developers, students, academic coaches, and instructors|in different set-

tings: groups, development teams, and individuals. Such an iteration-based process

enables us to look back at what we have done, reflect on what has been accom-

plished, and realize what we have achieved. In addition, such a process sets the stage

and infrastructure for the next iterations.

At this stage, we stop learning new agile ideas, check our understanding of

what we have learned so far in the book, reflect on what we have learned so far,

clarify issues that are unclear to us at this point, and outline what will be learned

in future chapters.

7.5.1 Gradual Learning Process of Agile Software
Engineering

We first review how each of the ideas presented as the rationale for short itera-

tions with respect to software development is reflected in the learning process of

this book.

First, learning in iterations allows the learners to focus on a smaller part of the

course content. This ability is important in the learning process of complex ideas,

such as software engineering. Such a teaching process also encourages the instruc-

tor not to worry if not all course topics and aspects are addressed at each stage.

This is because it will be possible to revisit these topics and add details in the next

iterations of the learning process.

Second, short iterations allow learners to gradually improve their understand-

ing of the learning material, based on the previous lessons and the actual software

development in the studio, if it is carried out.

Third, the practice of short iterations improves communication between the

instructor and the students. After each short iteration, the instructor stops the

teaching of new ideas (as we do now), has an opportunity to hear the students’

voices (as we will do later in this chapter), communicates with the students, and

becomes familiar with what is interesting for the students, how they understand

7.5 Learning in Learning Environments 145

the material taught so far, and what bothers them. Based on new understand-

ings the instructor gains, he or she can consider how to improve the continua-

tion of the course. From the students’ perspective, this break enables them to

share with the instructor what topics they find interesting and relevant, what

ideas are difficult for them to grasp, and so on. Clearly, such a dialogue

influences the course’s atmosphere and inspires a culture that is motivated by

a shared goal.

Fourth, if the course is accompanied by the development of a software product

in the agile approach, the end of each short iteration serves as an opportunity to

present to the academic coach and to the project customer what has been

accomplished during the last iteration. It is also an opportunity to share with

the instructor and the academic coach problems in the development process (if

any exist), and guided by the academic coach, to sketch together the future road

map of the development process.

Fifth, short iterations define very clearly the timing for feedback and reflective

sessions. Lessons learned based on the iteration elicited in the reflective process, as

we will do later in this chapter, can start being applied in the next iteration.

Finally, in a very similar way to software developers in the industry, after a

short break dedicated to reflective sessions, feedback, and learning processes,

the learners return with new energy to the course in general, and in particular

to the development of the next iteration of the software product, if one accom-

panies the course learning.

7.5.2 Learning and Teaching Principle

We add now Learning and Teaching Principle 4, which deals with the integration

of reflective sessions in the course. The full list of Learning and Teaching Princi-

ples is presented Chapter 14, Delivery and Cyclicality.

7.5.2.1 Teaching and Learning Principle 4: Elicit Reflection
on Experience

The importance of introducing reflective processes into software development

processes in general, and into agile software development processes in particular,

has already been discussed (Derby et al. 2006, Hazzan 2002, Hazzan and

Tomayko 2003, Kerth 2001), based mainly on Sch€on’s Reflective Practitioner

perspective (Sch€on 1983, 1987).

According to this principle, learners should be encouraged to reflect on their

process of learning the taught software development approach. Reflection

146 7. Learning

processes should not be limited to technical issues, but rather should also address

feelings, work habits, and social interactions related to the software development

process.

Based on this principle, after each studio meeting the students are asked to

reflect on some aspect of the development process, such as their role in the process,

their experience with specific activities, and their teamwork conception.

7.5.3 The Studio Meeting—End of the First Iteration

So far, till mid-semester, the students have developed one iteration in the studio

and have two more iterations to go in order to complete the first product release.

The first iteration lasted seven weeks and included the learning of the project

subject and development method and the definition and construction of the

project development environment. The second iteration, which starts at this

meeting, lasts four weeks|one week for high-level design and three weeks for

development work. The product will be presented to the customer in the eleventh

week of the semester. The third and final iteration of the product development,

will include three weeks|one for high-level design and two weeks of development|

and will be presented in the fourteenth and last meeting of the semester. This

project timetable clearly reflects agility as it is applied in real-life situations, from

both the team members’ and the customer’s perspectives.

According to this semester timetable, this meeting ends the first iteration. The

developed product is presented to the customer and feedback is given on the

accomplishment of the requirements.

The presentation to the customer includes the acceptance tests of those

customer stories developed during the first iteration, measures taken during the

iteration, and presentations of the product from the perspective of the role

holders.

Based on this presentation, the team receives feedback from the customer and

facilitates a reflective session which focuses on the development process and

product.

This meeting is also the beginning of the second iteration: students listen to

the customer’s priorities for the second iteration (as is described with respect to

the first iteration in Chapter 3, Customers and Users).

7.5.4 Intermediate Course Review and Reflection

In addition to the focused reflective session that takes place as part of the studio

learning, the end of the iteration is a good opportunity to facilitate additional

7.5 Learning in Learning Environments 147

reflective processes that address also what has been studied so far in the course.

This section presents several reflective activities that can be facilitated with the

course participants. The activities can be conducted with the academic coaches,

with the students, and with the instructor, based on the specific situation in which

the course is taught.

If the instructor participates in these reflective activities, it enables him or her

to hear the students’ voices, communicate with the students, and become familiar

with what they find interesting, how they understand the material taught so far,

and what bothers them. Based of such interaction, the instructor can decide about

the exact continuation of the course teaching.

The academic coaches who guide the students in their agile software develop-

ment methods have the opportunity to deepen their understanding of the devel-

opment process, including what goes on in between the weekly meetings. The

academic coaches would also be able to understand what additional guidance the

students need and what agile practices should be further emphasized.

The students, who should gain the most out of this reflective week, will have

an opportunity to summarize what they have learnt so far, and to start the second

course iteration based on this comprehensive picture and their improved

understanding.

We divide the reflective tasks into four types. First, we present tasks that can

be performed with any groups of students (not necessarily the teams which

develop the software product in the studio). After these tasks are carried out in

groups, a discussion, in which all the students who take the course participate,

should be facilitated. In this discussion each group presents its messages to all the

students.

The second set of activities should be conducted with the teams that develop

the software in the studio.

The third set of activities can be performed with the teaching staff of the

course (instructors and academic coaches).

The fourth set of activities can be performed individually by each of the course

participants.

Each set of activities contains several suggestions. The facilitators of the

reflective sessions can choose the activities that fit the specific teaching and

learning environment, and of course change them and add new activities.

7.5.4.1 Group Activities

The following tasks can be performed in groups, not necessarily groups that form

development teams. In some cases it is preferable to form groups with students

148 7. Learning

who belong to different teams in order to enable them to share the different

experiences gained in each team.

l Summarize the main concepts learned so far in the course. Explain why these

are the main concepts in your opinion.

l Discuss connections between the topics you mentioned in Question 1.

l Illustrate the importance of the concepts you just chose. Illustrations can be

case studies, problems, success stories, failure stories, pictures, applications to

other domains, patterns in software development processes, and more.

l Document the process the group goes through during the development of these

illustrations. How can this process be characterized?

l For each topic addressed so far in the course, describe situations that have

occurred in the studios. Compare the different stories. What is common to all of

them? In what ways do they differ?

l Analyze each topic discussed so far in the course within the HOT|Human,

Organizational, and Technological|analysis framework. What lessons can

you derive from such an analysis?

l If the group is composed of students from different development teams, iden-

tify lessons that all the teams learned during the first iteration of project

development in the studio.

l What topics would you like to learn in the next course iteration?

l Review the topics to be learned in the continuation of this course (look at the

book’s Table of Contents). With respect to each topic, suggest at least three

questions for which you would like to get an answer when the topic is learned.

l Summarize the main lessons you learned during this reflective process.

7.5.4.2 Activities for the Development Teams

This set of activities should be facilitated with the teams that develop the soft-

ware projects in the studio. If the academic coach wishes to guide this reflective

discussion he or she should be very sensitive, avoiding imposing his or her opinion.

The different reflective tasks can be facilitated also by the team members. Indeed,

the facilitation of such reflective processes requires some experience; this practice,

however, can serve as a good opportunity to start acquiring this skill. If the team

decides to facilitate these activities on their own, it is recommended that the

academic coach be present just to navigate the discussion if needed and to

7.5 Learning in Learning Environments 149

improve his or her own understanding of the team’s perspective on the develop-

ment process. In any case, the information shared in this process should be used in

the future only in a positive manner by all the participants (the students and the

academic coach).

l Identify the three main activities performed by the team so far that influenced

positively the team performances. What characterizes these activities? How is

each of them connected to the HOT analysis scale?

l Identify the three main activities performed by the team that influenced

negatively the team performances. What characterizes these activities? How

is each of them connected to the HOT analysis scale?

l As a team, select one lesson to be delivered to the other teams in the course.

This lesson should be derived directly from your analysis of your agile devel-

opment process in the studio. What is this lesson? Why is it important? Did

you consider additional lessons? Why did you choose this lesson?

l Analyze the team interaction with the customer. Identify positive aspects of

this interaction and points that can be improved with respect to this commu-

nication channel.

l Analyze the team interaction with the academic coach. Identify positive

aspects of this interaction and points that can be improved with respect to

this communication channel.

l Analyze connections between the activities you conduct in the studio and the

contents of the lectures. What connections should be strengthened, in your

opinion?

l Summarize the main lessons you learned during this reflective process. How

can they be applied in the continuation of the development process?

7.5.4.3 Activities for the Teaching Staff—Academic
Coaches and Instructors

The third set of activities is directed to the teaching staff of the course|instructors

and academic coaches. The goal of these activities is to increase the awareness of

the teaching staff of the students’ perspectives on the course|their understand-

ing of the course in general and their development process in the studio in

particular|and to navigate the course continuation according to this

understanding.

150 7. Learning

It is important to dedicate a specific time for these activities. If time is

dedicated for these activities, their importance is highlighted and the chances to

enjoy their benefits increase.

l Identify the best activities the students performed in the studio during the

development process of the first iteration. Why, in your opinion, were these

activities performed well? Are these activities connected to the material pre-

sented in the lectures?

l Identify the activities the students performed badly in the studio during

the development process of the first iteration. Why, in your opinion, were

these activities performed badly? Were these activities connected to the

material presented in the lectures? How can their accomplishment be

improved?

l How did the students interact as a development team during the first iteration?

Did they use the role scheme to improve communication? If so, how can this

communication be further supported? If not, why?

l Identify conflicts that arose between team members. What were their sources?

Were they solved? If so, how? If not, how can they be solved? What activities

can be performed with the students to solve these conflicts?

l How did the students interact with the academic coaches during the first

iteration? Can this communication be improved?

l Identify the main characteristics of the students’ accomplishments as a team.

Analyze them within the HOT|Human, Organizational, and Technological|

analysis framework.

7.5.4.4 Reflective Tasks—Personal Work

The following activities can be performed individually by each of the course

participants|students, coaches, and instructors.

l What was the most influential event for you so far in the course? Why do you

characterize this event as the most influential? How is this event connected to

the HOT|Human, Organizational, and Technological|analysis framework

of software engineering?

l Summarize the main lessons you learned during the reflective process you

conducted in teams and individually.

7.5 Learning in Learning Environments 151

7.6 Summary and Reflective Questions

1. What characteristics of agile development environments support learning

processes?

2. Review the main agile software development methods. How does each of them

support learning processes?

3. Assess your presentation to the customer.

4. What lessons did you learn from the team’s accomplishments in the first

iteration?

5. How did the reflective activities improve your understanding of the course

contents?

7.7 Summary

In this chapter we focused on learning|a central element of software projects. We

examined how the agile practice of short releases supports learning processes in

general, and software development processes and the course learning in particu-

lar. This examination has been conduced from the constructivist perspective. In

line with this perspective on learning processes, after the rationale for this practice

is explained from the cognitive perspective, the learning community is invited to

dedicate some period of time to its knowledge construction, to examine what has

been learned so far in the course, and to think about the continuation of the

course.

References

Derby E, Larsen D, Schwaber K (2006) Agile retrospectives: making good teams great.
Pragmatic Bookshelf

Dijkstra EW (1972) Notes on structured programming. In: Dahl OJ, Hoare CAR, and Dijkstra
EW (eds) Structured programming. Academic Press, New York

Eckstein J (2004) Agile software development in the large|diving into the deep. Dorset House
Publishing, New York

Hamlet D, Maybee J (2001) The engineering of software. Addison Wesley, Reading, MA
Hazzan O (2002) The reflective practitioner perspective in software engineering education.

J Syst Software 63(3):161{171
Hazzan O, Tomayko J (2003) The reflective practitioner perspective in eXtreme programming.

Proceedings of the XP agile universe 2003, New Orleans, Louisiana, USA, pp 51{61
Kerth N (2001) Project retrospective. Dorest House Publishing

152 7. Learning

Leron U, Hazzan O (1997) Computers and applied constructivism. IFIP WG g.1. Information
and communications technologies in school mathematics. Working conference|secondary
school mathematics in the world of communication technologies: learning, teaching and the
curriculum. Grenoble, France, pp 195{203

Piaget J (1977) Problems of equilibration. In: Appel MH, Goldberg LS (1977) Topics in
cognitive development, volume 1: equilibration: theory, research and application. Plenum
Press, New York, pp 3{13

Sch€on DA (1983) The reflective practitioner. BasicBooks
Sch€on DA (1987) Educating the reflective practitioner: towards a new design for teaching and

learning in the profession. Jossey-Bass, San Francisco

References 153

8
Abstraction

Abstract

Software development is a complex task. Abstraction is one means used for

reducing the complexity involved in software product development. One way by

which abstraction is expressed is by removing details in order to simplify and

capture a concept, finding a common denominator for generalization. Though

abstraction is a useful tool, it is not always used; sometimes it is just difficult to

think abstractly, and sometimes abstraction is not utilized due to a lack of

awareness of its significance and its potential contribution. This chapter describes

how abstraction is expressed in agile software development environments. Speci-

fically, software design and architecture are abstractions used in this chapter to

discuss the concepts of simple design and refactoring. In addition, we revisit

subjects that have been introduced in earlier chapters of the book and analyze

them from the perspective of abstraction.

8.1 Overview

Abstraction is a central issue in mathematics, computer science, and software

engineering (Devlin 2003, Hazzan 1999, Kramer 2007). It is a cognitive means by

which, in order to overcome complexity at a specific stage of a problem solving

situation, we concentrate on the essential features of our subject of thought, and

ignore irrelevant details. Abstraction is especially important in solving complex

problems, as it enables the problem solver to think in terms of conceptual ideas

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 8, � Springer-Verlag London Limited 2008

rather than in terms of their details. The discipline of software engineering, which

leans on the sciences of mathematics and computer science, uses abstraction for

the accomplishment of the complex task of software development.

There are different situations in which practitioners who take
HOT

part in software

development processes, are required to think abstractly. For example, when

listening to customer stories, teammates are sometimes exposed only to the

details and should think more abstractly in order to construct a structural and

more global meaning; discussions that take place when the design implications of

the customer stories are pondered increase the level of abstraction.

Further, since abstraction can be addressed on different levels, moving

between different levels of abstraction can help in problem solving situations.

For example, during discussions about
HOT

the software design, teammates should

sometimes ask the customer clarification questions in order to improve their

understanding of the details of a specific story. They talk to the customer, explain

their concerns, and ask for elaboration. The customer tells the story again,

relating to the different concerns raised. Based on the customer’s explanations,

the software design is clarified. This short description illustrates how moving from

a global view of the system, i.e., a high level of abstraction, to a local and detailed

view of the system, i.e., a low level of abstraction, and vice versa, improves the

understanding of the customer’s stories and the implied design.

Obviously, there are intermediate abstraction levels that can be used during

the process of software development. However, the
HOT?

knowledge of how and when to

move between different levels of abstraction does not always come naturally, and

requires some degree of awareness. For example, a team member may remain in an

inappropriate level of abstraction for too long a time, while the problem could be

solved immediately if it were viewed on a different level of abstraction (Hazzan

and Kramer 2007).

In this chapter we deepen the discussion about abstraction as it is manifested

in agile software development environments. We do that by discussing the

practices of design and refactoring and by revisiting, this time from the perspec-

tive of abstraction, some of the agile practices we have already met in the book.

8.2 Objectives

l Readers will become familiar with the concept of abstraction and with what the

ability to abstract means.

l Readers will get acquainted with how abstraction is related to and manifested

in agile software development environments.

156 8. Abstraction

l Readers will learn how the practices of simple design and of refactoring increase

abstract thinking.

l Readers will become aware of how abstraction is expressed by different agile

practices.

8.3 Study Questions

1. What is abstraction? How is abstraction expressed in software engineering?

2. Is abstraction important in software engineering? Explain your answer.

3. How do the following statements, expressed by practitioners, reflect the need

to move between levels of abstraction?

{ ‘‘I need to gain a global view of the application in order to know how this

method fits into this design.’’

{ ‘‘I truly believe that if I had a minute to think about these two objects, I’d

have come up with the conclusion that they could be extracted into one

class. But I must move on to the next development task.’’

{ ‘‘I need some time to think about the code without being swamped with all

the details. I’m almost sure that if I could leave now and go to swim, I could

come up with a solution. But I must stay late, like all the other members of

my team.’’

{ ‘‘I wish I could join the programmers when they write the code. You

ask why? I’m not sure if this design can be easily implemented in Java

or C#.’’

4. Present at least three teammates’ statements that reflect the need to move

between levels of abstraction. How did you choose them? How would you move

between the levels of abstraction in the statements you just described? For

what purposes?

5. Choose at least three agile practices that you have learned so far in this book.

Analyze them from the perspective of abstraction, addressing questions such

as: Does this practice lead me to think in terms of different abstraction levels?

Are advantages gained from thinking on different abstraction levels? Are there

situations in which this shift between abstraction levels interrupts? Illustrate

your claims with specific illustrations taken from software development

processes.

8.3 Study Questions 157

8.4 Abstraction Levels in Agile Software
Development

Abstract thinking is needed in software engineering in order to understand the

requirements and simplify the product design, keeping it maintainable and ready

for ongoing changes. Several agile practices make use of abstraction in general and

the shift between different abstraction levels in particular. In what follows (based

also on Hazzan and Dubinsky 2003) we illustrate the abstraction notion by different

situations in which agile teams use abstraction either explicitly or implicitly.

8.4.1 Roles in Agile Teams

The role scheme described in Chapter 2, Teamwork, can be viewed as a means

that encourages software developers to look,
HOT

think, and examine the development

process on different abstraction levels. More specifically, if a team member wishes

to perform the personal role successfully, that is, to lead the project in the

direction that the role specifies, he or she must gain a more global and abstract

view of the developed application as well as of the development process. When

working on a specific development task, the developer works on a lower abstrac-

tion level. Thus, the role holder has two mental images of the project: one includes

the details of a specific task of the development process, and the other encom-

passes a global view of a certain aspect related to the entire project. These two

perspectives improve the role holder’s understanding of both the product and

process, mutually support and complement each other, and further, promote

abstract thinking.

For an illustration, we examine the tracker role. The tracker collects data

according to a set of measures used by the team, e.g., the actual development time

of specific tasks. The minimal set of measures usually includes information about

the project’s progress relative to previous estimations and a measure that deals

with the
HOT

product quality|for example, code coverage (see Chapter 5, Measures).

While the data is being collected, the tracker communicates with the other

teammates. The tracker also analyzes and presents the measures at every itera-

tion. This analysis is carried out at a higher level of abstraction than that needed

for the actual data gathering. The former examines the project from a global view;

the latter delves into the details of specific tasks.

Task

Choose at least two roles you have performed in software projects. Analyze them

from the perspective of abstraction. What levels of abstraction were expressed

158 8. Abstraction

while performing each role? What characterized each level of abstraction? Did the

performance of these roles encourage shifts between abstraction levels? How?

8.4.2 Case Study 8.1. Abstraction During Iteration Planning

The concept of short releases/iterations, and the planning sessions that direct the

development process, encourage all the project stakeholders to move between

levels of abstraction and to improve their understanding of the developed soft-

ware gradually and periodically. While the release planning sessions inspire a

global view of the developed product at a higher abstraction level, planning is

conducted on a lower level of abstraction in the iteration planning sessions,

considering the development tasks for the next iteration and their time

estimation.

Task

Describe a scenario taken from a planning session in which you participated as

part of a software project. Analyze the scenario from the perspective of abstrac-

tion. Can you identify abstract thinking? Can you indicate shifts between

abstraction levels?

In what follows, based on Dubinsky et al. (2005), we analyze, from the

perspective of abstraction, data taken from a planning session that took place

as part of an agile introduction workshop (see Chapter 12, Change) for a software

development team.

The following feedback was received from the participants after the first

planning session had been conducted. This was the first time they had partici-

pated in such a session. The participants were asked to reflect on the contribution

of the planning session to their understanding of the project and to describe the

advantages as well as the disadvantages of this practice. Nine participants (out of

ten), among them the project manager who played the customer role, reported

that the planning session improved their understanding of the essence of the

project and its requirements. Only one participant reported that the planning

session did not contribute at all to his understanding.

Following is a sample of participants’ expressions when describing the advan-

tages of their first planning session: ‘‘Sharing information among teammates.

Everyone knows what happens. Requirements understanding by all teammates.

Acquaintance with all factors involved.’’; ‘‘. . .enables distribution to sub-tasks.’’;

‘‘The process was quick and enabled making many decisions in short time.’’; ‘‘The

customer was available and understand our constraints.’’; We saw everything in

8.4 Abstraction Levels in Agile Software Development 159

front of our eyes.’’; ‘‘Collaboration and improved acquaintance with the people we

work with’’

The focus on the advantages of the planning session, while neglecting its

details, guided the participants to think on a higher level of abstraction than

that on which they think during the planning session itself or during development

activities. Therefore, they can observe more global ideas related to the customer,

the project, and the work process.

Task

Describe how abstraction is expressed in several of the above teammates’ expres-

sions about the advantages of the planning session.

Following are participants’ expressions when describing the disadvantages of

their first planning session: ‘‘Some discussions were not necessarily related to the

problem.’’; ‘‘Too many people are involved, lack of focus.’’; ‘‘Tendency to distrac-

tion. The customer is in pressure and doesn’t remember everything.’’; ‘‘We didn’t

check duplications’’; ‘‘We designed top-down and didn’t verify our decision by

bottom-up design.’’; ‘‘Sometimes, over talking caused lack of interest and con-

centration.’’; ‘‘Someone should manage the planning session so it won’t be scat-

tered.’’; ‘‘I didn’t figure out how this will work. The planning seems very

optimistic.’’

Task

Describe how abstraction is expressed in several of the above teammates’ expres-

sions about the disadvantages of the planning session.

The above feedback had been given before the team actually started develop-

ing by using an agile process. They indicate how the teammates grasped the

planning session’s benefits while still being suspicious and judgmental.

During the same reflective session the participants were also asked to describe

their personal role in the team and how the planning session could help them

perform their role (see Chapter 2, Teamwork). Table 8.1 presents the partici-

pants’ feedback by their roles.

The participants’ expressions from the personal role perspective reflect a

higher level of abstraction than the level expressed when delving into the details

of a specific development task. In general, the role scheme encourages moving

between abstraction levels; the role perspective fosters thinking on a higher

abstraction level than that on which teammates think in actual code development

processes.

160 8. Abstraction

Task

Illustrate the statement that ‘‘the role perspective fosters thinking on a higher

abstraction level than that on which teammates think in actual code development

processes’’ by at least two expressions of different role holders.

8.4.3 The Stand-Up Meeting

The stand-up meeting is conducted at the beginning of every development day

(see Chapter 4, Time). It takes about ten minutes,
HOT

in which each teammate

describes in up to one minute what he or she accomplished the day before with

respect to project development, what he or she is going to perform today, and the

main problems encountered, if any. The meeting goal is to share relevant infor-

mation about the project and to launch the development day. The coach who

listens to the main problems can take care of them briefly during the stand-up

meeting or, if needed, during the development day. The teammates stand during

the meeting to make it short and concise.

Table 8.1 Planning session reflections by roles (With kind permission of Springer Science and
Business Media).

Role
How can the planning session help you with performing
your role?

Coach ‘‘{Tasks distribution.

{Accountability of all teammates.

{Statements regarding times.

{Working according to a method.

{Coordination of expectations.’’

Tracker ‘‘Getting acquainted with all tasks and time estimations to
be used for control.’’

Customer ‘‘Receiving a realistic picture regarding my
requirements|what is possible and when.’’

Acceptance tester ‘‘The planning session will help me realize the size and
scope of the tests.’’

Continuous integrator ‘‘Keeping communication with the customer. Presenting
results to the customer, sharing development
constraints with the customer.’’

Designer ‘‘Enables figuring out the structure of the system and
influencing it, since all tasks can be easily observed.’’

In charge of infrastructure (an
additional role that was
required in this project)

‘‘The planning session can help me plan how the work and
development environment should be arranged for the
project, which tools will be used.’’

Unit tester ‘‘Getting acquainted with all tasks and understanding
functionality before implementation.’’

Presenter and documenter ‘‘Understanding the processes in the project.’’

Code reviewer ‘‘Can help in thinking of possible ways to code.’’

8.4 Abstraction Levels in Agile Software Development 161

Tasks

1. Stand up and perform an individual stand-up meeting that relates to a specific

topic in your life. State in up to one minute what you did yesterday with respect

to the said topic, what you are going to do today, and the main problems

encountered, if any.

Analyze your stand-up meeting from the perspective of abstraction. What

levels of abstraction did you move between? When did the move/s happen?

Why?

2. Perform a stand-up meeting with your team. Analyze it in the same way you

analyzed the individual stand-up meeting.

The idea of a stand-up meeting is also used in the ‘‘scrum of scrums’’ practice.

In this practice, representatives from all the teams in the project, who are in

charge of the development process in their teams, conduct a stand-up meeting

based on the same elements as a team stand-up meeting. That is, each represen-

tative describes what his or her team performed yesterday with respect to project

development, what his or her team is going to perform today, and the team’s main

problems, if any. The need to summarize the team activities requires the team

representative to take a more global and abstract view than the local detailed

view needed during the team stand-up meeting, in which the team representative

speaks as a teammate.

8.4.4 Design and Refactoring

Software design is carried out on a higher level of abstraction
HOT

than code devel-

opment. In other words, the development of a specific part of the software

includes details which are eliminated when the design is constructed. Design is

used to simplify communication with respect to the software and to represent the

structure of the software components in an organized manner that can be under-

stood by the different developers involved. Design can be sketched by some visual

model and should be kept simple and clear.

Refactoring (Beck 2000, Fowler 1999, Highsmith 2002) or redesign means that

we improve the software design without adding functionality. Refactoring is

based on the current design and it attempts to simplify it and ease future changes.

This activity requires thinking at a higher abstraction level than the level of

abstraction needed when dealing with the design itself.

Reaching a simple design is not a simple task, and therefore refactoring is

one of the practices that people find hard to accomplish. This difficulty can be

162 8. Abstraction

explained by the need to think about the code at a higher level of abstraction than

the level of abstraction on which the code was written.

Since the practice of refactoring encourages programmers to keep improving

code structure and readability without adding functionality to the code, the

essence of refactoring is a gradual process of code improvement. More specifically,

and especially for cases in which the final ‘‘correct’’ structure of the code and

design cannot be predicted in advance, refactoring serves as a tool that leads and

supports the team members in a gradual process of code and design improvement.

The inclusion and legitimization of refactoring as part of the development

method delivers a clear message|that it is acceptable to stop the development of

new tasks from time to time and to allocate time for code improvement. This

improvement, in turn, eases future development.

Further, in practice, when a need for an extensive refactoring is acknowledged

and is agreed to by the customer in the planning session, time is allocated for

refactoring, and the same activities conducted with respect to code development,

such as breaking down the refactoring activity into small parts and time estima-

tion, are conducted with respect to code refactoring.

Ongoing refactoring takes time. The return on this investment, however, is

expressed in maintenance activities, in which changes are inserted in clear and

easy-to-change code.

Tasks

1. How is refactoring related to learning processes as described in Chapter 7,

Learning?

2. Describe a situation is which you carried out a refactoring process. Reflect on

this process by answering the following questions:

{ What were the reasons for the refactoring? How did the need for refactoring

emerge?

{ How did you carry out the refactoring activity?

{ What difficulties did you face during this process?

{ Compare the situation before you started the refactoring and when you

ended it. In what ways, if at all, did you achieve your goals? Are there

differences between the two situations? What are they? Did these differ-

ences change your work with the code in later stages?

{ Did the refactoring improve your understanding of the code structure? If so,

in what ways?

8.4 Abstraction Levels in Agile Software Development 163

{ Predict in what ways the changes you made during the refactoring process

might influence someone who did not write the code but might add to it a

specific functionality.

3. Kent Beck (Fowler 1999) says that refactoring ‘‘is like a new kind of relation-

ship with your program. When you really understand refactoring, the design of

the system is as fluid and plastic and moldable to you as the individual

characters in a source code file. You can feel the whole design at once. You

can see how it might flex and change|a little this way and this is possible, a

little that way and that is possible’’ (333). How do you conceive refactoring?

What does Beck’s description mean to you? Can you describe a specific situa-

tion that demonstrates Beck’s assertion?

4. Sometimes people tend not to refactor. Can you explain why?

5. Sometimes refactoring raises resistance. Can you predict why?

6. Opdyke (Fowler 1999) explains why developers are reluctant to refactor (313).

For each of the following statements, explain its source and indicate whether

you agree with it or not:

{ Refactoring should be executed when the code runs and all the tests pass. It

seems that refactoring wastes time.

{ If the benefits of refactoring are long-term, why exert the effort now? In the

long term, developers might not be with the project to reap the benefits.

{ Developers might not understand how to refactor.

{ Refactoring might break the existing program.

7. If someone in your team put forth one of the following claims regarding

refactoring, how would you answer him or her?

{ ‘‘I’m paid to write new, revenue-generating features.’’

{ ‘‘Refactoring is an overhead activity.’’

{ ‘‘It is hard for me to see the benefits of refactoring.’’

8.5 Abstraction in Learning Environments

The eighth meeting in the Studio is dedicated to the beginning of the second

iteration. In the previous meeting, the product, which was developed during

the first iteration, was presented to the customer, and the teammates listened

164 8. Abstraction

to the customer feedback. Also, new stories for the second iteration were told by

the customer and the teammates were required to arrive at this eighth meeting

with a high level design for the new stories and a suggested list of development

tasks that fit these stories.

During this meeting, the planning session is completed by preparing a list of

tasks that are split among the teammates according to their available time during

this iteration. Load balance is also performed (see Chapter 4, Time). If the

academic coach concludes that the team can perform the entire planning session

on their own, as a self-organized team, he or she can leave the studio and let the

team complete the planning session and publish the results|a list of personal task

ownerships|in the electronic forum. At the end of this meeting, the second

iteration of the product development starts.

8.5.1 Teaching and Learning Principles

The following teaching and learning principle deals with awareness of abstraction

levels. In our list of teaching and learning principles presented in Chapter 14,

Delivery and Cyclicality, this principle is number 9.

8.5.1.1 Teaching and Learning Principle 9: Be Aware
of Abstraction Levels

During the process of software development, teammates are required to think at

different abstraction levels and to move between abstraction levels.

Accordingly, this teaching principle suggests that the instructor and the

academic coach should be aware of the abstraction level at which each stage of

each lesson/activity is performed. Based on this awareness, they should then

decide whether to stay at this abstraction level, or, alternatively, whether there

is a need to guide the learners to think in terms of a different level of abstraction. It

is further suggested that they explicitly highlight the movement between abstrac-

tion levels and discuss with the learners the advantages, as well as the disadvan-

tages, of such moves (Hazzan and Kramer 2007).

The iteration-based course structure supports this principle. It allows the

learning community to start, in the first stages of the course, with a more specific

examination of the main course ideas, and to proceed to a more abstract

perspective in the later stages, based on the understanding gained in the earlier

stages.

8.5 Abstraction in Learning Environments 165

8.5.2 Case Study 8.2. RefactoringActivity

This case study describes a refactoring activity facilitated with 32 students who

developed software products as part of two project-based courses taught in two

different academic institutions. The academic coaches of both courses attended

the activity session. The subject was refactoring and the goal was to increase the

students’ awareness of abstraction as well as their abstraction skills. The students

worked on the activity in eight mixed groups, formed to increase diversity (see

Chapter 9, Trust).

The hands-on section is based on three worksheets. The first worksheet defines

the practice of refactoring and its goals, and, based on that definition, asks the

students to suggest examples of refactoring operations. Then two code excerpts

are presented, and the students are asked to suggest refactoring operations for

each.

Following is one of the code examples: 1

SimpleString listHead = SimpleStringLinkedList(head);

counter = objectCounter(listHead);

listHead = mergeSort(listHead,counter);

listHead = SimpleStringCleanUp(listHead);

counter = objectCounter(listHead);

String[] cityArray = new String[counter];

createCityArray(listHead,cityArray,counter);

int[][] distanceArray = new int[counter][counter];

initializeDistanceArray(distanceArray,counter);

createDistanceArray(head,distanceArray,cityArray);

String[][] timeArray = new String[counter][counter];

initializeTimeArray(timeArray,counter);

createTimeArray(head,timeArray,cityArray);

Six groups suggested the following refactoring operations (two groups did not

suggest any operation):

l There is a need to add documentation; there is a need to unify the three

arrays.

1 This code was taken from a refactoring example by Jaela Gulamhusein and Albert Choi
(example by Michael Hanna). The URL is not accessible anymore.

166 8. Abstraction

l Add documentation and meaningful names for variables; listHead can be given

by reference (&); distanceArray and timeArray will be implemented by a data

structure whose implementation is not transparent to the user.

l We use only the number of elements in SimpleStringLinkedList; thus, perform-

ing the mergeSort is redundant; the two last parts do the same operations and

can be unified into one function.

l Use a class/template to create and manage the arrays; inherit for city, distance,

time.

l Create a new variable listHead1 for rows 3{14; create a class named CityArray

and execute line 6 in the class constructor; the same for segments 3, 4.

l Create objects distance, time, city and enter them functions and fields; enter

mergeSort under SimpleStr since this is an essential operation for it.

Task

What can be concluded from the fact that different student groups arrived at

different suggestions for refactoring?

The second worksheet starts with a section that elaborates on the importance

of refactoring. Then the refactored code for both examples is presented and

students are asked to explain the refactoring operations.

The third worksheet describes cases in which refactoring is required and some

refactoring operations are illustrated. Based on this description, students are

asked to suggest refactoring operations for their current software project. All

eight groups suggested refactoring operations for the two projects developed in

the two institutions.

Finally, students are asked to answer three summary questions, presented in

Table 8.2.

Tasks

1. Based on the students’ answers presented in Table 8.2, what can you learn

about thinking at different levels of abstraction?

2. Based on the students’ answers presented in Table 8.2, what can you learn

about the refactoring activity and its understanding?

3. Based on the students’ answers presented in Table 8.2, what can you learn

about the students’ perceptions of refactoring?

8.5 Abstraction in Learning Environments 167

Table 8.2 Reflections on refactoring

Group # In which situations is it worth using refactoring?

1 Before the addition of new features

When future reuse is expected

When time limitations have caused quick and dirty writing

2 When functions become big

When classes execute different actions, there is a need to split

3 When there is a long complex code and we would probably need to extend it

When a project is divided into several parts and there is a chance that we will want
to use these parts in the future

4 When we feel that the code becomes too complex

When class functionality needs to use external modules

5 No answer

6 When there is code duplication

When a method includes too much functionality

When there is a complex code

7 When we receive new stories from the customer

In the integration phase

8 When the code is not modular enough

When the code isn’t flexible for changes

Group # In your opinion, what is the connection between unit testing and
refactoring?

1 The unit testing should check that the refactoring did not interfere with the
function

2 Makes the code more focused, prevents redundant code, simplifies the program

3 Unit tests are created in order to check that the system behaves correctly after
refactoring

4 As the level of refactoring increases, the testing will be better, easier, and there will
be less bugs and nonsense

5 After the refactoring there is a need to re-execute all the unit tests for all the units
in the project

6 It is much easier to execute unit testing for small independent units that have unit
functionality

7 During the testing, we can reveal that our design is not good enough (the tests will
not pass in this design) and then . . . refactoring will solve all our problems

8 After the refactoring we will execute the unit tests and will check that the change
that was performed at a specific point in the system does not interfere with
other points

Group # In your opinion, what is a reasonable frequency for refactoring
operations?

1 When code reuse is required
2 In every iteration as needed (and also during the planning)

3 In our opinion, if we use code standards, then not so frequent. But for our projects
it is worthwhile to do it at the beginning of every iteration. The reason is the
addition of more user stories

4 Once a week and every time you achieve a new understanding of the customer
requirements

168 8. Abstraction

8.6 Summary and Reflective Questions

1. Choose at least three agile practices that were not addressed in this chapter

and explain how they guide practitioners to move between abstraction levels

during the development process of a software project.

2. Recall a situation in which you considered at different levels of abstraction a

software project that you developed. Identify cases in which you felt the need

to think at different levels of abstraction. Did that thinking process at different

levels of abstraction help you? Did it interrupt you?

3. For each of the common activities conducted during a typical process of soft-

ware development (planning, design, etc.), identify how it can be expressed at

different levels of abstraction. Can it be characterized only at one level of

abstraction? If so, how? If not, why?

4. Describe your cell phone (GPS, or any other tool) on at least four levels of

abstraction. Outline the main considerations that guided you in choosing these

descriptions. Had you been asked to develop a software system for this tool,

how would the different descriptions influence the development process?

5. In your next software development session, reflect on your development pro-

cess from the perspective of abstraction. Address questions such as: When do

you move between abstraction levels? Do you increase the level of abstraction?

Do you move to a lower level of abstraction? Why do you move to another level

of abstraction? Do you change the object of your thoughts? Does this move

support your thinking? If so, how? If not, why?

6. Imagine you are asked to develop a software system for a specific functionality.

Describe two processes by which this system can be developed. The first

process is constantly guided by abstraction; the second uses no abstraction.

After completing the formulation of the two processes, compare them and draw

your conclusions. Can you identify connections between these processes and

agile software development?

Table 8.2 (continued)

Group # In which situations is it worth using refactoring?

5 Every iteration

6 It depends on the project progress. You need a reasonable amount of units, and you
need to prevent a situation where the refactoring damages the program

7 At the end of every iteration or after a change in the customer requirements

8 At the beginning of every iteration to fit the new requirements

8.6 Summary and Reflective Questions 169

7. Analyze the concept of abstraction and the practice of refactoring within the

HOT|Human, Organizational, and Technological|analysis framework.

8.7 Summary

In this chapter we focus on abstraction and show how agile software development

guides abstract thinking in general and the transition between abstraction levels

in particular. One of the main messages of this chapter is that the shift between

levels of abstraction increases teammates’ understanding of both the develop-

ment process and the product.

This chapter starts the second iteration of the book, as well as of the software

product developed in the learning environment. In the learning section, we pre-

sent a refactoring activity that usually requires thinking at a high abstraction

level.

References

Beck K(2000) Extreme programming explained. Addison-Wesley, Reading, MA
Devlin K (2003) Why universities require computer science students to take math. Commun

ACM 46(9):37{39
Dubinsky Y, Hazzan O, Keren A (2005) Introducing extreme programming into a software

project at the Israeli Air Force. Proceedings of the 6th international conference on extreme
programming and agile processes in software engineering, Sheffield University, UK

Fowler M (1999) Refactoring|improving the design of existing code. Addison-Wesley, Read-
ing, MA

Hazzan O (1999) Reducing abstraction level when learning abstract algebra concepts. Educa-
tional studies in mathematics 40. Kluwer Academic, pp 71{90

Hazzan O, Dubinsky Y (2003) Bridging cognitive and social chasms in software development
using extreme programming. Proceedings of the fourth international conference on eXtreme
programming and agile processes in software engineering. Genova, Italy, pp 47{53

Hazzan O, Kramer J (2007) Abstraction in computer science & software engineering: a peda-
gogical perspective. Featured Frontier Columnist. System Design Frontier 4(1):6{14

Highsmith J (2002) Agile software development ecosystems. Addison Wesley, Reading, MA
Kramer J (2007) Is abstraction the key to computing? Commun ACM 50(4):37{42

170 8. Abstraction

9
Trust

Abstract

Software is an intangible product. Therefore, it is difficult to understand its

development process using our regular senses; the exact status of the development

process is not always clear; misunderstandings may emerge. Consequently, it is

sometimes difficult to establish trustful professional relationships, and team

members may tend not to trust each other. This chapter focuses on how agile

software development fosters trust among team members. We first explain how

agile software development makes the development process more transparent and

thus makes the process and the developed product more understandable. Then,

using the ‘‘prisoner’s dilemma’’ framework taken from game theory, we explain

why and how a transparent process does indeed foster trust among team mem-

bers. Based on this working assumption, i.e., that the transparent nature of agile

software development fosters trust among team members, we focus on how agile

software development enhances ethical behavior and diversity in a way that

improves process and product quality.

9.1 Overview

Since software engineering deals with the development of an intangible pro-

duct|software|its development process cannot be managed by our regular

senses|seeing, hearing, etc. Rather, other
HOT

means must be employed for process

control. In addition, software intangibility makes it difficult to identify each

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 9, � Springer-Verlag London Limited 2008

individual’s contribution. Therefore, it might be difficult to foster trustful rela-

tionships in such an environment.

This chapter focuses on how trust is fostered by agile software development.

The basic notion addressed in this chapter is how the agile software development

environment makes the development process more transparent and sensible to the

developers. Next, the focus is placed on conditions for cooperation, exploring how

game theory helps explain why and how a transparent process increases trust and

cooperation among team members.

Such a development environment, in which trustful relationships exist,

enhances ethical behavior and diversity. The contribution of ethical behavior

and diversity to the software development process and product is explained. Some

limitations of diversity are explained as well.

The learning session of this chapter introduces the teaching and learning

principle that advocates the establishment of diverse teams.

9.2 Objectives

l Readers will apprehend how agile teams can be empowered.

l Readers will deepen their understanding about the nature of agile software

development in general and how it makes the development process more

transparent in particular.

l Readers will become familiar with how agile software development can be

analyzed from a game theory perspective.

l Readers will become familiar with the notion of ethics and how the agile

software development environment supports ethical behavior.

l Readers will become familiar with the concept of diversity, understand its role

in agile teams, and realize how diversity can enhance and support agile teams.

9.3 Study Questions

1. Explore the field of game theory. Suggest main ideas taken from game theory

that can be utilized for the understanding of software development in general

and agile software development in particular.

2. Discuss ways to increase trust among software team members. How do these ways

enhance cooperation among team members? What characterizes these ways?

172 9. Trust

3. What is ethics? What professions have codes of ethics? Based on what ideas

does a code of ethics rely? Can the software engineering community learn from

these codes?

4. How can ethics improve the way a profession achieves its goal? How can ethics

contribute to the creation of a community of practice?

5. How can ethics be expressed in software engineering processes? Illustrate your

ideas with specific scenarios.

6. What is diversity? What connections can you find between diversity and

software development in general and agile software development in particular?

7. Explore different ways by which your team can benefit from diversity.

8. Explore different ways by which your team can suffer from diversity.

9. Describe scenarios which illustrate how diversity may improve team

performance.

9.4 Software Intangibility and Process
Transparency

In previous chapters we mentioned connections between properties of software

development processes and the fact that software is an intangible product. For

example, in Chapter 6, Quality, it is suggested that since software is an intangible

product, it requires a different development process in general, and a different

approach towards the concept of software quality in particular, than do tangible

products.

Since software is an intangible product, its development process is not trans-

parent. In other words, when dealing with an intangible object, how can we know

the exact development stage the process has reached, what has been accomplished

by the teammates so far, what units or modules have already been tested, whether

refactoring has been carried out, and so on? Therefore, in such environments it

may be difficult to build trust.

In what follows, we show how several basic agile concepts increase project

visibility, making the development process more transparent. This discussion is

based on Hazzan (2007).

Whole team. This concept implies that all team members sit together in

one space, including role holders that traditionally
HOT

belong to separate teams

(e.g., testers and designers). In agile development environments, the walls serve

as a means of communication, constituting an informative workspace. Among

9.4 Software Intangibility and Process Transparency 173

other items that the team decides on, the information posted on the walls includes

the status of the personal tasks that belong to the current iteration and the

measures taken. Thus all participants can see all that goes on all the time. See

Chapter 1, Introduction to Agile Software Development, for further details about

the collaborative workspace. In addition, the entire team holds daily stand-up

meetings, which usually take place in the morning (see Chapter 4, Time). In these

meetings, each team member presents the status of what he or she accomplished

the day before, what he or she plans to do during the day to come, and problems he

or she faces, if any.

Short releases. The actual detailed plan of the short releases and iterations is

carried out during a planning session, in which all relevant parties participate|

customer, team members, management representatives, and so on (see Chapter 3,

Customers and Users). This activity, which usually takes a full day, includes a

presentation of what was developed in the previous iteration, along with any

relevant measures taken, and the planning for the next iteration. At the end of the

day, a balanced workload is ensured among all team members. In the course of this

day, a reflection process is also facilitated, in which development progress so far is

analyzed and lessons learned (see Chapter 11, Reflection). The fact that all sides

participate in this day, the nature of the activities that take place during the day,

and the fact that it takes place every week or two, all increase process visibility

and make the entire development process more transparent.

Time estimations. In agile software development, the teammate who is in

charge of a specific development task also estimates the time needed for its

development (see Chapter 4, Time). This increases the teammate’s responsibility

to perform well, and also enhances process transparency. The message conveyed is

that all teammates know what each developer has committed to in terms of time

estimations.

Measures. Measures are an essential element of agile software development

(see Chapter 5, Measures). With respect to the discussion in this chapter, this

means that visible measures are used to increase the transparency of the devel-

opment process.

Customer involvement. In agile software development, all team members

have access to the customer during the entire development process. This is

particularly true during the planning game, in which all team members commu-

nicate with the customer, as mentioned earlier (see Chapter 3, Customers and

Users). This direct communication channel enhances both process transparency

and the chances that the software requirements are communicated correctly.

Testing. Testing is an integral part of an agile software development process

(see Chapter 6, Quality); it ensures a more transparent process, because it clarifies

who is in charge of the testing of each developed unit. Furthermore, acceptance

174 9. Trust

tests, which are defined by the customer and outline how each functionality

should be tested, clarify the requirements and lead to a more transparent process.

Pair programming. Pair programming implies that
HOT?

all team members

become familiar with all parts of the software, and thus process transparency is

increased (see Chapter 1, Introduction to Agile Software Development).

Tasks

1. For each of the above agile practices explain how the fact that it increases

process transparency might foster trust among team members.

2. Within the HOT|Human, Organizational, and Technological|analysis fra-

mework, suggest connections between the fact that software is an intangible

product and its development process.

9.5 Game Theory Perspective in Software
Development

In Chapter 2, Teamwork, we examined reward allocation among software team-

mates. In this chapter we continue this discussion and examine the issue from a

game theory perspective. Specifically, we explain how the fact that agile methods

make development more transparent increases trust, and consequently, coopera-

tion, between team members is enhanced.

Game theory is concerned with the ways in which individuals make decisions,

where such decisions are interdependent. For this purpose game theory uses

theoretical fields such as mathematics, economics, and other social and behavioral

sciences. The word ‘‘game’’ indicates the fact that game theory examines situa-

tions in which participants wish to maximize their profit by choosing particular

courses of action, and in which each player’s final profit depends on the courses of

action chosen by the other players as well.

The ‘‘prisoner’s dilemma’’ is a game theory framework that illustrates how a lack

of trust leads people to compete with one another, even in situations in which they

might gain more from cooperation. We will show that the transparency of agile

software development eliminates the basic condition of the prisoner’s dilemma and

thus increases trust. The following analysis is based on Hazzan and Dubinsky (2005).

In the simplest form of the prisoner’s dilemma, each of two players can choose,

at every turn, between two actions: cooperation and competition. The working

assumption is that none of the players knows how the other player will behave and

that the players are unable to communicate. Based on the choices of the two

9.5 Game Theory 175

players, each player gains points according to the payoff matrix presented in

Table 9.1, which describes the game from Player A’s perspective. A similar table,

describing the prisoner’s dilemma from Player B’s perspective, can easily be

constructed by replacing the locations of the values 10 and ({10) in Table 9.1.

The values presented in Table 9.1 are illustrative. They do, however, indicate

the relative benefits gained from each choice. Specifically, it can be seen from

Table 9.1 that when a player does not know how the other player will behave, it is

advisable for him or her to compete, regardless of the opponent’s behavior. In

other words, if Player A does not know how Player B will behave, then in either

case (whether Player B competes or cooperates), Player A will do better to

compete. According to this analysis, both players will choose to compete. How-

ever, as can be seen, if both players choose the same behavior, they will benefit

more if they both cooperate rather than if they both compete.

The prisoner’s dilemma is manifested in real life situations in which people tend

to compete instead of to cooperate, although they can benefit more from coopera-

tion. The fact that people tend not to cooperate is explained by their concern that

their cooperation will not be reciprocated, in which case they will lose even more.

The dilemma itself stems from the fact that the partner’s behavior (cooperation

or competition) is an unknown factor. Since it is unknown, the individual does not

trust the other partner, nor does the partner trust the individual, and, as described

in Table 9.1, both parties choose to compete. We emphasize that this behavior is

common to all human beings in situations in which cooperation can not be ensured.

Tasks

1. Find on the Web a Java applet that illustrates the prisoner’s dilemma and play

with it. What was your strategy? Did you win? What did you learn from this game?

2. What connections can you find between the fact that software is an intangible

product and the prisoner’s dilemma?

3. What connections can you find between the prisoner’s dilemma framework and

software development in general and agile software development in particular?

We now use the prisoner’s dilemma to analyze software development environ-

ments. It should be noted first that, in these environments, cooperation (and

Table 9.1 The prisoner’s dilemma from player A’s perspective
(with kind permission of Springer Science and Business Media.)

B cooperates B competes

A cooperates þ5 �10

A competes þ10 �5

176 9. Trust

competition) can be expressed in different ways, such as information sharing (or

hiding), using (or ignoring) coding standards, clear and simple (or complex and

tricky) code writing, etc. It is reasonable to assume that expressions of coopera-

tion will increase the project’s chances of success, while expressions of competition

may add problems to the process of software development.

Since cooperation is so vital in software engineering, it seems that the quand-

ary raised by the prisoner’s dilemma is even stronger in software development

environments. To illustrate this, let us examine the following scenario, according

to which a software team is promised that if it completes a project on time, a

bonus will be distributed among the team members according to the individual

contribution of each team member to the project. In order to simplify the story,

we will assume that the team comprises only two members|A and B. Table 9.2

presents the payoff table for this case.

The main difference between Table 9.2 and the original prisoner’s dilemma

table (Table 9.1) lies in the cell in which the two players compete. In the original

table, this cell reflects an outcome that is better for both players than the situation

in which the player cooperates and the opponent competes. In software develop-

ment situations (Table 9.2), the competition-competition situation is worst for

both team members. This is explained by the vital need for cooperation in soft-

ware development. It can be seen from Table 9.2 that in software development

environments, partial cooperation (reflected in Table 9.2 by the cooperation of

only one team member) is preferable to no cooperation at all.

In general, software team members are asked to cooperate. At the same time,

however, if the development process is not transparent, they are unable to ensure

Table 9.2 The prisoner’s dilemma in software teams (With kind permission of Springer Science
and Business Media.)

B cooperates B competes

A cooperates The project is completed on time.
A and B get the bonus. Their
personal contribution is
evaluated as equal and they share
the bonus equally: 50% each

A’s cooperation leads to the project’s
completion on time and the team
gets the bonus. However, since A
dedicated part of his or her time to
understanding the complex code
written by B, while B continued
working on his or her development
tasks, A’s contribution to the
project is evaluated as less than
B’s. As a result, B gets 70% of the
bonus and A gets only 30%

A competes The analysis is similar to that
presented in the cell ‘‘A
cooperates/B competes.’’ In this
case, however, the allocation is
reversed: A gets 70% of the bonus
and B gets 30%

Since both A and B exhibit
competitive behavior, they do not
complete the project on time, the
project fails and they receive no
bonus: 0% each

9.5 Game Theory 177

that their cooperation will be reciprocated. In such cases, even if there is a desire to

cooperate, as indicated by the prisoner’s dilemma Table 9.1, each team member

will prefer to compete. However, as indicated by Table 9.2, in software develop-

ment situations such behavior (expressed by the competition-competition cell)

results in the worst result for both team members.

In what follows we illustrate, by the agile practices of test-driven development

(see Chapter 6, Quality) and refactoring (see Chapter 8, Abstraction), how agile

software development enhances trust among team members. This is because these

practices, among others, make the development process transparent and elimi-

nate the working assumption of the prisoner’s dilemma that the way the other

teammates will behave is unknown. Thus, within such an environment, team-

mates are led into cooperation-cooperation situations. In other words, we explain

how, from a game theory perspective, agile practices lead to the establishment

of development environments whose atmosphere can be characterized by the

cooperation-cooperation cell of the prisoner’s dilemma.

Test-Driven Development. The meaning of cooperation in the case of test-

driven development is that all team members verify that
HOT

their code is tested and

does not fail; competition means that team members do not verify that the code is

fully tested.

Since agile development is the development environment, all team members

are committed to apply its practices and, in particular, the practice of test-driven

development. Specifically, this means that all team members are committed to

verify that their code is fully tested. In other words, it implies that all team

members cooperate and apply this practice. Thus, the unknown behavior of the

others, which is the source of the prisoner’s dilemma, ceases to exist. Conse-

quently, team members face no (prisoner’s) dilemma whether to cooperate or

not, and since they are guided by the practice of test-driven development, they all

cooperate and test their code with no concern about whether their cooperation

will be reciprocated or not. Since, for purposes of software quality, it is required

that software be intensively tested, all team members benefit more from this

practice than if they had chosen to be in competition with one another. Thus,

the practice of test-driven development yields a better outcome for all team

members.

Refactoring. The meaning of cooperation in the case of refactoring is that all

team members make sure to stop their development tasks from time
HOT

to time and

improve their existing code readability and clarity (remember that time is allo-

cated in the planning sessions for big refactoring activities); competition means

that the team members do not pay attention to code readability and improvement

and do not invest the time needed for refactoring.

In agile development, all team members are committed to apply agile

practices and, in particular, the practice of refactoring. Specifically, this

178 9. Trust

means that all team members are committed to refactor the code when it is

needed. In other words, since all team members are committed to working

according to the agile development process, part of which is refactoring, they

all cooperate, and apply this practice. Thus, the unknown behavior of the

others, which is the source of the prisoner’s dilemma, ceases to exist. Conse-

quently, team members face no (prisoner’s) dilemma whether to cooperate or

not, and since they are guided by the practice of refactoring, they all cooperate

and refactor their code when needed with no concern about whether their

cooperation will be reciprocated or not. Since, for purposes of software quality

and maintainability, it is required that software be refactored when needed, all

team members benefit more from this practice than if they had chosen to be in

competition with one another. Thus, the practice of refactoring yields a better

outcome for all team members.

Tasks

1. Apply the above analysis to other agile practices. Which practices did you

decide to start your analysis with? Why?

2. The above analysis of agile software development using the prisoner’s dilemma

is illustrated by practices that are directly related to code development|test-

driven development and refactoring. Apply the above analysis to practices

which are not code-related (though, of course, they may influence code

quality).

3. There are variations and subtle points (and extensive literature) related to the

prisoner’s dilemma. Explore the relations of such variations and subtle points

to agile software development.

9.6 Ethics in Agile Teams

Tasks
HOT

1. In your opinion, does the software engineering community need a code of

ethics? If so, what situations are appropriate to be addressed by such a code?

What situations should be not be addressed by a code of ethics?

2. In your opinion, what other occupations related to software engineering should

have a code of ethics?

9.6 Ethics in Agile Teams 179

3. Suggest specific scenarios that illustrate the importance of ethics in software

development environments in general and agile software development in par-

ticular. Are these scenarios different? Explain your answer.

Codes of ethics guide professionals how to behave in vague situations when it

is not clear what is right and what is wrong. The need for a code of ethics arises

from the fact that any profession generates situations that can neither be pre-

dicted nor answered uniformly by all members of the relevant professional com-

munity. In this section we examine how agile software development fosters ethical

behavior by developers.

There are many ethical issues related to information technology, computing,

and technology. To address this reality, the ACM/IEEE-CS Joint Task Force

defined the Software Engineering Code of Ethics and Professional Practice

(Version 5.2). Its short version is presented in what follows (for the full version

look at http://info.acm.org/serving/se/code.htm).

The Software Engineering Code of Ethics and Professional Practice|

Short Version1

Software Engineering Code of Ethics and Professional Practice

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics

and Professional Practices

Short Version

PREAMBLE

The short version of the code summarizes aspirations at a high level of abstrac-

tion; the clauses that are included in the full version give examples and details of how

these aspirations change the way we act as software engineering professionals. With-

out the aspirations, the details can become legalistic and tedious; without the details,

the aspirations can become high sounding but empty; together, the aspirations and

the details form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification,

design, development, testing and maintenance of software a beneficial and respected

profession. In accordance with their commitment to the health, safety, and welfare of the

public, software engineers shall adhere to the following Eight Principles:

1. PUBLIC|Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER|Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with the public interest.

1 Copyright (c) 1999 by the Association for Computing Machinery, Inc. and the Institute for
Electrical and Electronics Engineers, Inc. It is explicitly specified in the Code website that it may
be published without permission as long as it is not changed in any way and carries the copyright
notice.

180 9. Trust

3. PRODUCT|Software engineers shall ensure that their products and related modifica-

tions meet the highest professional standards possible.

4. JUDGMENT|Software engineers shall maintain integrity and independence in their

professional judgment.

5. MANAGEMENT|Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and

maintenance.

6. PROFESSION|Software engineers shall advance the integrity and reputation of the

profession consistent with the public interest.

7. COLLEAGUES|Software engineers shall be fair to and supportive of their colleagues.

8. SELF|Software engineers shall participate in lifelong learning regarding the practice

of their profession and shall promote an ethical approach to the practice of the

profession.

Naturally, all software development environments should encourage ethical

behavior. In the context of this book we review several sections of the code of

ethics from the perspective of agile software development. In general, the working

assumption is that since agile software development processes are transparent,

ethical behavior is encouraged in the same way as trust is fostered in agile

software development (see the previous section). In particular, in what follows,

we specify, with respect to several sections of the code of ethics, what agile

practices support it.

2. CLIENT AND EMPLOYER|Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with the public interest.

This section of the code of ethics is fostered by the close interaction with the

customer in agile software development (see Chapter 3, Customers and Users).

Specifically, the fact that the customer is in close interaction with the team and

the fact that all the project stakeholders hear the customers’ requirements,

further support the enhancement of this section of the code of ethics. The

acceptance tests that are defined together with the customer further boost the

ability to achieve ethical behavior in this respect.

3. PRODUCT|Software engineers shall ensure that their products and related mod-

ifications meet the highest professional standards possible.

Ethical behavior in this respect is achieved by several agile practices, such as

measures (see Chapter 5, Measures), testing (see Chapter 6, Quality), and refac-

toring (see Chapter 8, Abstraction).

9.6 Ethics in Agile Teams 181

Task

How does each of the above mentioned agile practices, as well as other agile

practices, reinforce ethical behavior with respect to the product?

4. JUDGMENT|Software engineers shall maintain integrity and independence in

their professional judgment.

Integrity is maintained by the fact that agile team members are encouraged to

raise problems they encounter, to discuss dilemmas, and to express their concerns.

Several kinds of opportunities are provided to agile team members for dealing

with these subjects, such as reflective and retrospective sessions (see Chapter 7,

Learning, and Chapter 11, Reflection).

5. MANAGEMENT|Software engineering managers and leaders shall subscribe to

and promote an ethical approach to the management of software development and

maintenance.

This section of the code of ethics is related to topics discussed in future

chapters (Chapter 12, Change, and Chapter 13, Leadership). In these chapters,

we will draw attention to this section of the code of ethics.

6. PROFESSION|Software engineers shall advance the integrity and reputation of

the profession consistent with the public interest.

This section talks about the profession of software engineering. The standards

that agile software development sets for the profession emphasize responsibility,

accountability, fairness, and trust (see Chapter 2, Teamwork, and the discussion

in this chapter).

7. COLLEAGUES|Software engineers shall be fair to and supportive of their

colleagues.

This section of the code of ethics looks at the relationships among the indivi-

duals in a software development process and advocates fairness and support

among them. This idea is fostered by the Agile Manifesto (see Chapter 1, Intro-

duction to Agile Software Development) and is achieved, among other means, by

the role scheme described in Chapter 2, Teamwork.

Tasks

1. How does the role scheme, described in Chapter 2, Teamwork, foster ethical

behavior in general and with respect to Section 7 or the code of ethics?

2. How does agile software development foster ethical behavior with respect to

Sections 1 and 8 of the code of ethics?

182 9. Trust

3. Describe scenarios which illustrate the importance of each section of the Code

of Ethics of Software Engineering. Explain how the code of ethics guides us to

cope with such situations.

In conclusion, we emphasize that by making the development process more

transparent, agile software development supports ethical behavior. This is because

a more transparent process means that behaviors are more visible; consequently,

norms can be set and adhered to and ethical behavior is therefore more easily

supported. As a result, trust and communication are increased among team members.

Tasks

1. Choose at least three agile practices and explore their contribution to ethical

behavior in agile teams. What sections of the code of ethics do these practices

support? Why did you select these practices?

2. Some communities of practice have a well known code of ethics (e.g., the code

of medical ethics). What, in your opinion, is common to these codes of ethics

and the Code of Ethics of Software Engineering?

3. Formulate a set of ethical behavior guidelines that your team members should

adhere to.

9.7 Diversity

Diversity can be expressed in different contexts, such as nationalities,
HOT?

worldviews,

genders, minorities, cultures, and life styles. Diversity can also be expressed with

respect to internal characteristics, such as hobbies, skills, thinking styles, and

interests.

In general, studies tell us that no matter how diversity is expressed, it benefits

and enhances societies that foster it (e.g., Florida 2002). Diversity is also per-

ceived as a powerful management practice (see, for example, Toyota’s 21st

Century Diversity Strategy2 and Thomas 2004). This perspective is based on

management theories that assert the added value of diversity (see the American

Institute for Managing Diversity, http://aimd.org/).

At the same time, however, and mainly with respect to social and ethnic

diversity, resistance is sometimes expressed towards diversity. The main argu-

ment presented is that people tend not to trust people who are not like them.

2 Toyota’s 21st Century Diversity Strategy: http://www.toyota.com/about/diversity/
21stcenturyplan.pdf.

9.7 Diversity 183

For example, Harvard professor Robert D. Putnam’s research indicates that

the effect of diversity is worse than had been imagined.3 In diverse communities,

Putnam’s research shows, trust (even of one’s own ‘‘race’’) is lower (Smith

2001, 2007). Also, according to Austin (1997) ‘‘there may be an optimal level

of diversity that will stimulate creative thinking within a group, and the rela-

tionship between group diversity and creativity may be curvilinear’’ (342).

Accordingly, Austin suggests that organizational members should be aware

of the increased number of disagreements that may stem from increased

diversity.

Diversity is introduced into agile development to exploit its benefit for soft-

ware development. For illustration, we quote Kent Beck who presents diversity as

an Extreme Programming principle in the 2nd edition of Extreme Programming

Explained: ‘‘Teams need to bring together a variety of skills, attitudes, and

perspectives to see problems and pitfalls, to think of multiple ways to solve

problems, and to implement the solutions. Teams need diversity.’’ (Beck with

Andres 2005:29).

So far we have seen the transparent nature of agile software development and

how it fosters cooperation and ethical norms. Within such conditions, diversity

can also flourish. Though, as just mentioned, it is sometimes argued that diversity

does not necessarily increase trust, it does depend on the atmosphere that a

(working) environment inspires. This is because when trust is increased, team

members are more open to new ideas and perspectives in particular and to

diversity in general.

Task

1. Is your team diverse? If so, in what sense? Do you benefit from this diversity?

If not, why? If so, how? If your team is not diverse, what is common to all the

team members? Describe specific scenarios to illustrate your ideas.

2. How can trust support diversity? Describe possible situations that illustrate

how trust and diversity mutually support each other.

3. Review how different software development methods express and foster

diversity.

In what follows, we first explore how the agile approach enhances diversity.

Then we examine how diversity can benefit agile teams and how diversity can

improve the quality of software products.

3 Look at http://www.amconmag.com/2007/2007_01_15/cover.html.

184 9. Trust

Diversity is enhanced in agile teams in different ways. First, the role scheme

presented in Chapter 2, Teamwork, enables each team member to express his or

her perspective on the development process and to influence it. When the project

is scaled up, the role holder meetings enable the expression of different opinions

based on the experience gained in each team. Second, the fact that all the project

stakeholders participate in the planning session, as well as in the reflective

sessions (see Chapter 11, Reflection), enhances the contribution and expression

of different opinions, that may influence and contribute to the development

process. Third, Beck says that ‘‘Diversity is expressed in the practice of Whole

Team, where you bring together on the team people with different perspectives’’

(Beck with Andres 2005:29).

Teams may benefit from diversity. First, the more diverse a team is, the more

diverse perspectives are elicited; consequently, teammates are exposed to other

kinds of perspectives, and are able to use these different points of view in

different situations. Second, the developed software product itself may be

improved, because when different perspectives are expressed with respect to a

specific aspect of its development, the chances that subtle issues will emerge are

higher; consequently, additional factors are considered when decisions related to

the developed product are taken. Third, the creation process is questioned

more when diverse opinions are expressed, and, once again, we may get a more

argument-based process on which specific decisions are based. Fourth, diversity

reduces resistance to new ideas and establishes an atmosphere which is

open towards alternative opinions. Finally, as more and more companies

become global, diversity is becoming an integral characteristic of software

development teams and, therefore, cannot be neglected (see Chapter 10,

Globalization).

When different and diverse opinions are encouraged, the development process

becomes more transparent, since it is clear how the different project stakeholders

conceive of the different aspects of the development process. This openness to

diversity naturally increases communication and, consequently, the development

process is enhanced.

Tasks

1. Describe a scenario that illustrates how diversity benefits agile teamwork.

What characterizes such scenarios?

2. Describe a scenario that illustrates how diversity may harm agile teamwork.

What characterizes such scenarios?

9.7 Diversity 185

3. Resistance is sometimes expressed towards diversity. These opinions some-

time assert that diversity creates disorder. What is your viewpoint on such

arguments? Explain and illustrate it.

4. How does the role scheme presented in Chapter 2, Teamwork, enhance

diversity (beyond the way mentioned above)?

5. How does the reflection practice (see Chapter 11, Reflection) enhance diversity?

6. Suggest additional ways by which agile development processes enhance

diversity. Do they influence the development process? If so, how?

7. Does diversity always empower agile teams? Try to present a balanced

argument.

8. How does diversity influence the HOT|Human, Organizational, and Tech-

nological|aspects of software development processes in general and of agile

software development in particular?

9. Choose at least three agile practices and explore their influence on diversity

in agile teams.

10. In Chapter 10, Globalization, we mention diversity as one of the inherent

characteristics of distributed teams. What, in your opinion, are the advan-

tages and disadvantages of diversity in such situations?

9.8 Trust in Learning Environments

Meetings 9 and 10 are part of the development phase of the second iteration and

are dedicated to the actual development. The academic coach can assess the

project’s progress and each student’s involvement by participating in this devel-

opment meeting, listening to the stand-up meeting, watching how students work

on their development tasks and on their personal roles, talking to them, pair

programming with them, and reading their reflections.

If needed, team discussions can be held in which students can raise specific

issues for discussion.

9.8.1 Teaching and Learning Principle

We present one teaching and learning principle that deals with diversity. In our

list of teaching and learning principles this is number 6. The complete list of

teaching and learning practices appears in Chapter 14, Delivery and Cyclicality.

186 9. Trust

9.8.1.1 Teaching and Learning Principle 6:
Establish Diverse Teams

Diversity can be expressed in different ways, such as nationalities, gender,

minorities, cultures, life styles, and worldviews. The importance attributed to

diversity is based on management theories that assert the added value of

diversity. Therefore, and not surprisingly, diversity is perceived as a powerful

management practice. In the same spirit, diversity is encouraged in agile soft-

ware development.

This principle advocates the idea that teams should be diverse with respect to

different factors, external (such as gender) and internal (such as perspectives).

The more diverse a team is, the more diverse are the perspectives elicited, which in

turn may improve software development and teammate communication.

9.9 Summary and Reflective Questions

1. Review a game theory website. Summarize five lessons you learned from this

review. Suggest additional connections to, or implications of game theory for,

software engineering in general and agile software development in particular.

2. How is trust expressed in your teamwork?

3. Describe situations in which cooperation between team members is enhanced

when the rules of the development process are clear, transparent, and known

to all.

4. Describe situations in which cooperation between team members is reduced

when the rules of the development process are not clear, not transparent, and

not known to all.

5. How can the role scheme presented in Chapter 2, Teamwork, enhance ethical

behavior and diversity?

6. Describe situations related to your teamwork that illustrate the need for the

Code of Ethics of Software Engineering.

7. Explain how diversity influences agile teamwork.

8. Discuss connections between the different ideas presented in this chapter.

9. Analyze the concepts presented in this chapter within the HOT|Human,

Organizational, and Technological|analysis framework.

9.9 Summary and Reflective Questions 187

9.10 Summary

This chapter binds three concepts|cooperation, ethics, and diversity|under the

notion of trust. We explain how agile software development increases trust by

establishing a transparent development process. Based on this working assump-

tion, i.e., that agile software development fosters a trustful atmosphere, we

describe how cooperation, ethical behavior, and diversity can be fostered, flourish,

and contribute to the development process and product.

References

Austin JR (1997) A cognitive framework for understanding demographic influences in groups.
International J Organ Anal 5(4):342{359

Beck K, Andres C (2005) Extreme programming explained, 2nd ed. Addison Wesley, Reading, MA
Florida R (2002) The rise of the creative class. Basic Books
Hazzan O (2007) Agile software development and the nature of software development. Featured

Frontier Columnist. System Design Frontier 4(3):28{32
Hazzan O, Dubinsky Y (2005) Social perspective of software development methods: the case of

the prisoner dilemma and extreme programming. Proceedings of the sixth international
conference on extreme programming and agile processes in software engineering. Sheffield
University, UK, pp 74{81

Smith MK (2001, 2007) Robert Putnam: the encyclopedia of informal education. www.infed.
org/thinkers/putnam.htm. Last update: November 05, 2007

Thomas D (2004) Diversity as strategy. Harvard Bus Rev 98{108 (http://www.gpworldwide.
com/quick/sep2004/art2.asp)

188 9. Trust

10
Globalization

Abstract

In this chapter we address the concept of agility in a wider context. One topic on

which we focus is globalization in terms of distributed teams; the second idea is

the application of the agile approach for the management of non-software pro-

jects. Agile software development has evolved significantly during the last dec-

ade. In parallel to this evolution, globalization in software development has also

emerged, and software is developed in many cases by teams which are spread

across geographical areas, cultures, and nationalities. This reality, called global

software development, has advantages as well as disadvantages. The most

obvious advantage is the business aspect of cost reduction; the most problematic

issues are communication and team synchronization. In this chapter we briefly

describe the notion of global software development and explain how some agile

practices help cope with the challenges involved. Specifically, we will see that the

agile approach encourages a transparent global software development process.

thus increasing information flow and project visibility and assistings in solving

communication and synchronization problems. Further, the tightness of agile

processes simplifies software project management. We also examine in this chap-

ter the notion of agility beyond the software world and discover its usefulness in

such projects

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 10, � Springer-Verlag London Limited 2008

10.1 Overview

Globalization is usually related to time, distance, and culture.

Referring to time, we cite Friedman’s book The World is Flat: ‘‘. . . ‘That’s

globalization,’ said Nilekani. Above the screen there were eight clocks that pretty

well summed up the Infosys workday: 24/7/365. The clocks were labeled US

West, US East, GMT, India, Singapore, Hong Kong, Japan, Australia’’ (Fried-

man 2005:6). Chapter 4, Time, discusses the concept of time in general and with

respect to the agile approach in particular. In this chapter we elaborate on its

relation to global software development.

Referring to distance, a physical distance between teams which
HOT

work together

on the development of one software product increases the process complexity. It is

claimed that even a fifty-meter distance can be considered a distributed develop-

ment environment (Allen 1984 in Sangwan et al. 2007).

Referring to culture, this concept has been explored extensively
HOT

with respect

to different kinds and sizes of groups like nations, tribes, and teams. We define the

concept of culture as a set of explicit and implicit norms, values, and beliefs,

shared by the members of a group, which, on the one hand, influences directly the

members’ daily activities, behaviors, and interactions; and on the other hand, is

shaped by these activities, behaviors, and interactions.

So far in this book we have addressed the concept of agility in the context of

software projects that take place in software organizations. In this chapter, we

address the concept of agility in a wider and more global context. One topic on

which we focus is globalization in terms of distributed teams; the second idea is

the application of the agile approach to the management of non-software projects,

illustrating how that approach has been applied in the process of writing this

book. In both cases, it will be seen that the agile approach offers solutions for

similar challenges.

The readers are familiar with most of the notions we address, such as com-

munication and short releases, since they have been presented in previous chap-

ters of this book. Other notions, such as reflection and leadership, will be

addressed in later chapters. In this chapter, however, all these notions are exam-

ined with respect to distributed teams and non-software projects, illustrating

their fitness for such settings.

10.2 Objectives

l Readers will become familiar with the notion of globalization, how it is

expressed in software development environments, and the challenges it

introduces.

190 10. Globalization

l Readers will get acquainted with how agile software development methods are

implemented in global software development.

l Readers will learn how the agile culture fits into distributed software develop-

ment environments.

l Readers will see how the agile approach can be used for non-software projects.

l Readers will realize how the book learning style itself reflects the agile approach.

10.3 Study Questions

1. What is globalization? Present at least three examples of how globalization is

expressed in different disciplines.

2. What are the main advantages of global software development? Present

evidence for your claims.

3. Present at least three problems that characterize global software development.

For each problem present evidence and at least one solution.

4. Referring to the notion of diversity (see Chapter 9, Trust), explain how globali-

zation of software development can promote diversity. How can diversity benefit

the individuals? The team? The organization? How can diversity interfere?

5. Within what context are you familiar with the concept of culture? What are

the culture’s norms? How are these norms implemented on a daily basis?

6. Look at the proceedings of the agile conferences: What can be learned about

the culture of the agile community? What values does it honor? Who plays a

role in the agile culture? How is the culture of the agile community related to

global software development?

7. In your opinion, how are the aspects of the HOT|Human, Organizational,

and Technological|analysis framework expressed in global software develop-

ment environments?

8. What agile ideas can be used for the accomplishment of non-software develop-

ment tasks? Describe how they can be used.

10.4 The Agile Approach in Global Software
Development

Global software development is employed when software companies set distrib-

uted teams to work together on product development (Carmel 1999, Herbsleb

et al. 2001, Sahay et al. 2003, Sangwan et al. 2007). The
HOT

motivation for global

10.4 The Agile Approach in Global Software Development 191

development usually stems from the need to use the organization’s resources cost-

competitively, and the need to shorten time to market by around-the-clock

development.

Some experience has already been gained with the implementation of agile

software development in distributed environments (Sangwan et al. 2007). In this

section, we show how the agile approach guides software development processes

in global software development environments, focusing on the following topics:

communication, planning, reflection, and organizational culture.

10.4.1 Communication in Distributed Agile Teams

Interactions among individuals who are part of the software development envir-

onment are emphasized by the Agile Manifesto (see Chapter 1, Introduction to

Agile Software Development). Further, the application of a role Scheme in soft-

ware teams enhances communication and interactions among teammates because

of the teammates’ accountability for cross-project activities (see Chapter 2,

Teamwork).

Distributed teams cannot meet face-to-face and do not have
HOT

‘‘corridor meet-

ings.’’ Nevertheless, interaction between teammates is crucial for the success of

distributed teams. Since the agile approach emphasizes the need for smooth and

fruitful communication in distributed teams, communication issues should be

constantly addressed by deciding, for example, on communication facilitators,

communication channels, and communication measures.

In Sahay et al. (2003) three strategies for cross-cultural communication are

suggested. The first is to minimize communication needs as much as possible; the

second is to invest in learning the other side’s culture and language; the third

suggests assigning a person who serves as a bridge between the two sides, who

understands the cultural as well as the technical issues of both sides. In Sangwan

et al. (2007) tips are listed with respect to the facilitation of communication

among distributed teams. It is suggested that the communication should be

adequate, not too minor and not overwhelming, and, in any case, that it should

be measured. In Carmel (1999), initial face-to-face meetings are suggested to

enable smooth electronic communication in later stages.

The agile approach promotes communication for the development of a high

quality product. In general, distributed teams adhere to the agile notion of

communication by discussing how to exploit the benefits of communication,

setting the resources and procedures needed for fruitful communication, and

tracking the actual communication.

192 10. Globalization

Tasks

1. How can the agile approach towards communication be implemented in dis-

tributed software teams? Suggest specific ways for such implementation.

2. Suggest specific measures of communication in distributed agile teams. What

does each measure reflect? What values and norms does each measure foster?

10.4.2 Planning in Distributed Agile Projects

Planning is one of the tightest activities in agile software development. It is

performed in an iterative manner|small releases of
HOT

a few months each and

short iterations of 2{4 weeks each (see Chapter 3, Customers and Users, and

Chapter 4, Time).

Teams should be synchronized in order to develop a high quality product. In

distributed teams the planning activity also serves coordination and synchroniza-

tion purposes. Different techniques and tools are suggested for the planning of

software projects in distributed environments. Cusick and Prasad (2006) present

some recommendations that emerged from their experiences with many global

non-agile development projects, that fit for implementation in agile software

development environments as well. For example, ‘‘Limit phase durations to

keep control. Shorter phases are easier to track and manage. Track all issues

assiduously. Require interim deliveries to ensure quality.’’

Task

In your opinion, what problems led Cusick and Prasad (2006) to provide these

recommendations?

10.4.3 Case Study 10.1. Tracking Agile Distributed Projects

This case study describes measures that were taken in a simulation of the agile

distributed environment within the framework of an activity called ‘‘Planning

with Distributed Teams,’’ that was facilitated by Smits and Sulaiman in the Agile

2007 conference. The participants in this activity were practitioners involved in

global software development and belonging to distributed teams.

During the simulation, two teams in two different time zones (Washington

DC and India) performed a release planning session. In actuality, the two teams

were in the same room, on two different sides, without direct eye contact, and

10.4 The Agile Approach in Global Software Development 193

planned the release in accordance with a predefined requirement list. A project

wiki was simulated by a flip chart that was handed over every ‘‘morning;’’ a

conference call was simulated by sitting back to back in separate places in the

room, so delays and communication freezes happened; finally, key roles were

played by participants who came from different cultures.

When measuring the cost of this communication, both financial costs and

human costs were considered and ranked between 1 (low cost) to 5 (high cost).

Table 10.1 summarizes the measurements determined by each team, as expressed

and ranked by them. As can be observed, people mainly referred to human cost.

After this experience, a person was assigned to be in charge of communication;

some participants claimed that there was some improvement.

Tasks

1. Can you explain the selection of measures by the teams in the simulation?

2. What other measures would you suggest be used in this case?

3. Describe at least three characteristics of the communication facilitator.

10.4.4 Reflective Processes in Agile Distributed Teams

In Chapter 7, Learning, and Chapter 11, Reflection, we describe the reflection and

retrospective activities which are essential for agile teams that wish to maintain

and improve the development process. Reflection is also one of the most impor-

tant tools to control and improve performances in distributed environments.
HOT?

It

provides teammates with a way to talk about problems and discuss their main

concerns. Further, it highlights information about the process and enables

improvements to reduce some of the frustration that developers in distributed

environments feel.

Table 10.1 Human cost in a distributed environment

Team A
(DC) Team B (India)

Team B
(India)

Team A (DC) Cost description Rank Cost description Rank

We were stressed, didn’t hear well 3 Cannot hear 4

Frustrations, cannot concentrate 5 Not engaged, nobody loves us 4

Misunderstanding, slow process
with many interruptions

4 Do not feel engaged, don’t know
what the process is

4{5

Frustration 4{5

194 10. Globalization

In Nirenberg (2002) a leader in a global environment is described as a practi-

tioner with self-reflection and social skills. These skills are needed for building a

group consensus, taking into consideration personal and team characteristics.

Task

Suggest a retrospective activity for a distributed team in the middle of the first

release of an agile project.

10.4.5 Organizational Culture and Agile Distributed Teams

The culture of a specific group is influenced by the culture of the nation as well as

the organizational culture. Both are relevant for global environments. Connec-

tions between software development methods and cultural issues have been

discussed previously (Yourdon 1997, Sawyer and Guinan 1998, Abrahmsson

et al. 2002). For example, Highsmith (2002) says that ‘‘A particular culture is

not necessarily change tolerant or change resistant|but it may resist certain

types of changes and embrace others. . . . Many methodology failures are caused

by a problem definition followed by a solution design, with little analysis of

whether or not the solution design fits the company or the project team’s culture.’’

According to Moore (2000), there are four basic organizational
HOT

cultures:

cultivation, competence, collaboration, and control; to which he matches one of

three methodology categories: rigorous (RM), agile (AM), and ad hoc or no

methodology (NM). A cultivation culture is motivated by self-realization and

can be illustrated by Silicon Valley start-up companies, to which fits the NM

category. A competence culture is driven by the need for achievement; collabora-

tion cultures are driven by a need for affiliation; and control cultures are moti-

vated by the need for power and security. While the agile approach fits the

competence and the collaboration cultures, the RM fits the control culture.

Highsmith (2002) adds another dimension and associates each methodology

to a specific market phase. According to Highsmith, while the NM approach fits

the initial phases of software product development, at later stages, when close

interaction with customers is required, the AM approach fits better. During the

Main Street market phase, the RM approach fits the best.

Task

Address connections between culture, development methodology, and market

phase in global software development.

10.4 The Agile Approach in Global Software Development 195

Case Study 12.1, presented in Chapter 12, Change, describes an organizational

survey which aimed at revealing the organizational culture and development

environment before the agile approach was introduced into the organization. As

is explained in Chapter 12, Change, the purpose of such an organizational survey is

twofold: first, to understand the current culture of the organization in general and

the status of software development in the organization in particular; second, to

discover whether the agile approach fits for the organization|if it is found that it

might, the data gathered during the survey is used to determine how to initiate the

introduction of agile software development into the organization. Such a survey can

be used in global software development in order to learn about the different cultures

involved and to use the survey’s results to enhance communication and cooperation

between the distributed teams.

10.5 Application of Agile Principles
in Non-Software Projects

The agile approach fits not only for the development of software. Its main ideas

can also be applied for the accomplishment of other, non-software tasks and

projects. In Chapter 12, Change, for example, we will see how this idea has been

applied to the transition process to agile development. Here, we illustrate this idea

by describing how an agile process guided the writing of this book.

10.5.1 Case Study 10.2. Book Writing

Just as software projects are learning processes, so is book writing. Indeed, when we

signed the contract for this book, we were familiar with the ideas of agile software

development and with how to teach it; yet, in the book writing process, not only

did we learn new ideas about agile software development, we also improved our

understanding of how to teach it and how to present its main ideas in writing.

In what follows, we share how we used the agile approach for the process of

book writing. Naturally, not all the agile practices can be applied in this process

exactly as they are applied in software projects. The readers are invited to

indicate the agile practices that are reflected by our activities.

At the beginning of the writing process, we set an initial table of contents and a

short iteration schedule of two weeks, in each of which each of us wrote a chapter

and gave it to the second co-author for review. At the end of each iteration, after

we had reviewed the chapter written by the co-author, we met for feedback and

further discussions about specific topics related to the book shape, orientation,

and content.

196 10. Globalization

After several chapters had been written, we stopped the actual writing,

reviewed all the chapters we had completed, integrated them into one consistent

format, and updated the future writing process. Sometimes we changed the main

ideas to be presented in the chapters we were going to write next; sometimes we

decided to change the chapter order; yet other times we decided to reorganize a

chapter structure.

For example, according to our initial plan, the section that deals with learning

environments in each chapter included only the description of the studio meeting

of that week. In a later stage, we realized that this section should be broadened to

provide readers a comprehensive understanding of the teaching and learning

processes of agile software development. Another example: Chapter 7, Learning,

included in the beginning also the topic of abstraction. As can be seen in the

current book structure, abstraction has become the topic of Chapter 8, which

discusses several agile practices from the perspective of abstraction.

In addition, we facilitated reflective sessions about the reasons that guided us

to change our perspective on the book writing process and its structure and shape.

At the end of the writing process, we packed the book and delivered it to the

publisher|our customer|to be distributed to you|our users. We hope that we

accomplished our task successfully. We now plan the next release.

Tasks

1. This is only a short description of the book writing process. Other agile

practices were used in this process. Can you suggest which ones would be

suitable for writing a book?

2. Suggest other projects and tasks for which agile ideas and practices can be

applied? What is common to all these projects and tasks?

10.6 Globalization in Learning Environments

The tenth studio meeting is dedicated to preparing the presentation of the second

iteration product to be held at the next (eleventh) meeting (see Chapter 6,

Quality, for more details about this last week of the iteration).

10.6.1 Teaching and Learning Principles

The following teaching and learning principles have already been presented in

previous chapters. In the context of this chapter, their connection to globalization

10.6 Globalization in Learning Environments 197

is highlighted. In our list of teaching and learning principles, presented in

Chapter 14, Delivery and Cyclicality, these principles are numbers 6 and 11.

10.6.1.1 Teaching and Learning Principle 6: Establish
Diverse Teams

Diversity is easy to attain in a global software development environment. Still,

while diversity is naturally achieved among teams, it is not always reflected

within each team. See Chapter 9, Trust, for more details about diversity.

10.6.1.2 Teaching and Learning Principle 11: Emphasize
the Software Development Approach in the Context
of the World of Software Engineering

This principle directs us to emphasize connections to relevant trends in the world

of software engineering. Since nowadays most organizations make use of distrib-

uted teams, teachers of software engineering should expose learners to such

experiences and develop the learners’ relevant capabilities.

Task

Suggest two additional teaching and learning principles from Table 14.4 pre-

sented in Chapter 14, Delivery and Cyclicality, and explain their application in

distributed software development.

10.6.2 An Agile Perspective on the Book/Course Structure

Continuing the discussion presented in Chapter 7, Learning, about the contribu-

tion of the course structure to the learning process, we examine in this section how

additional characteristics of this book, when used as a course textbook, are

compatible with the agile approach. Specifically, in what follows, we examine

how the book/course structure, as described in Chapter 1, Introduction to Agile

Software Development, is especially suitable for teaching the Software Develop-

ment Methods course within the framework of agile software development.

Iterative. As the development of agile software projects is based on itera-

tions, the two course components|lectures and studio meetings|are iterative.

Based on feedback and reflective processes, such a framework constitutes a

learning environment that supports gradual understanding of the developed

198 10. Globalization

product (in the case of agile projects) and of software development methods (in

the case of the course). (See also Chapter 7, Learning.) This implies that the

course topics are revisited several times during the course, in different ways, from

different perspectives, and on different levels of abstraction. This is similar to the

way agile software development supports customers and team members in their

gradual understanding of the software requirements.

Multifaceted. The development of agile software projects increases aware-

ness of the multifaceted nature of the process. Likewise, the course described in

this book highlights the different facets of software development methods from

the agile perspective. This has also been done by the HOT|Human, Organiza-

tional, and Technological|analysis framework.

Interactive. As the development of agile software projects is based on close

interaction between the project’s stakeholders, the course is based on close

student{student, student{lecturer, and student{academic coach interactions.

Enhances reflective processes. An agile development process includes

reflective sessions on different occasions, mainly at the end of the iteration and

the end of the release. In a similar fashion, each chapter of this book includes

reflective questions, and three chapters (Chapter 7, Learning, Chapter 11, Reflec-

tion and Chapter 14, Delivery and Cyclicality) are dedicated to reflective sessions.

These common features of agile software development and the course learning

highlight the fact that in the case of a Software Engineering Methods course, the

course structure and syllabus are shaped according to the perspective on software

engineering that it addresses. In other words, as a course that highlights software

development processes that are based on stages is usually organized according to

the structure of such processes, a course that is organized around the agile

approach, like the one described in this book, shares similar characteristics with

the agile approach, such as the ones described above.

Task

What additional common characteristics do software projects and learning pro-

cesses share in general? In particular, what additional common characteristics do

agile software projects and the learning process of this particular book share?

10.6.3 Case Study 10.3. Follow-the-Sun with Agile
Development

In general, distributed teams should deal with coordination and collaboration

issues in order to work effectively (Jarvenpaa and Leidner 1998, Carmel and

10.6 Globalization in Learning Environments 199

Agarwal 2001). This section describes an experiment conducted in academia

designed to investigate the ‘‘Follow-the-Sun’’ idea in an agile software develop-

ment environment. Data related to this experiment is still gathered in parallel to

the writing of the book.

According to Carmel1 the follow-the-sun idea means: ‘‘Hand-off work from one

site to the next as the world spins (USA to India, for example). This way you

reduce the total time of development by 50% if you have two sites, and by 67% if

you have three sites. Follow-the-sun is about speed!|cycle-time reduction, time-

to-market reduction, duration reduction.’’

Carmel adds that a follow-the-sun project must satisfy the following five

conditions:

1. at least two sites substantially separated by time zones;

2. high dependency between sites;

3. project set up with the objective of reducing duration;

4. successfully achieving duration reduction;

5. successfully achieving duration reduction using objective measures.

In what follows we describe the experiment of the application of the follow-

the-sun idea in an agile environment.

Experiment goals: To investigate the Follow-the-Sun (FTS) idea in an agile

environment. Specifically, to check the duration measure and calculate the per-

centages of time reduction, if any.

Experiment participants: Three groups of 7{8 students each participate in

the experiment. One group is the FTS group which is divided into two teams of

3 and 5 students each. Two additional groups are the control (CO) groups: one

group of 8 students is divided into two teams of 3 and 5 students each and one

group of 7 students is divided into two teams of 3 and 4 students each. Two

academic coaches, who have guided agile teams since 2002, supervise the devel-

opment process: one coach guides the FTS group and one guides the two CO

groups.

Experiment description: The three groups develop a software project on

the same subject with the same functionality. The project subject is a simulator of

processes and threads scheduler in the Unix operating system.

In the first three weeks all students learn the subject and the project function-

ality, prepare a high level design and a list of development tasks, understand their

personal roles (see Chapter 2, Teamwork), and learn the integration environment.

1 See Carmel’s blog at http://errancarmel.blogspot.com/2007/09/follow-sun-call-for-more-
research-and.html.

200 10. Globalization

The project is developed in two iterations of five weeks each. In the first

iteration each student in each of the three groups invests 50 development hours,

and each team develops the same project scope. The two CO groups work without

any constraint and the FTS group work with several time and communication

constraints, as is outlined in what follows:

1. Simulate work in two non-overlapped time zones. The team of 3 students

(team3) works from 21:30 to 11:00 while the team of 5 students (team5) works

from 11:30 to 21:00.

2. The academic coach is in the same time zone as team3 for the duration of the

first iteration. Weekly meetings in the first iteration are conducted with each

team during its working hours, when meetings with team5 are carried out

over the phone.

3. Team3 members should not directly contact or talk on the phone with team5

members, and vice versa.

4. All access to the integration server (CVS) and to the electronic forums should

be performed during the working hours of each team, as is described in item 1

above.

The first iteration aims at checking that these rules are kept and that the CO

groups work naturally in a framework of 12 hours as is predicted. Also, during the

first iteration, the CVS repository and the electronic forums are checked to see

what information about work patterns they can provide.

The second iteration aims at checking the duration measure. Given the same

number of development hours for all groups and the same functionalities to be

developed, the duration of the second iteration is set to be 5 weeks for the CO

groups and 2.5 weeks for the FTS group.

10.7 Summary and Reflective Questions

1. Indicate at least three guidelines that can assist you in forming a software

team of three distributed sub-teams for the development of a certain software

product. Explain the rationale of each guideline. Will your guidelines change

if you have to form two sub-teams? Four sub-teams? Why?

2. Indicate at least three agile practices that can support solving the main

problems that exist in distributed software development environments.

Explain the contribution of each practice.

10.7 Summary and Reflective Questions 201

3. Distributed environments are diverse in many ways, such as work attitude,

value set, time sense, and communication style. What, in your opinion, are

the advantages and disadvantages of diversity in such situations?

4. Analyze the concept of globalization within the HOT|Human, Organiza-

tional, and Technological|analysis framework.

5. Discuss the analogy between the following three processes: software develop-

ment, learning this book, and our book writing process.

10.8 Summary

In this chapter we focus on globalization. We first explore how it is expressed in

software development when teams work in a distributed manner on the develop-

ment of a specific software product. A few agile practices are described as they

are applied in such environments. We suggest that the agile approach fits global

software development because of its high visibility, transparency, and tightness|

characteristics that contribute to co-located software teams and therefore to

distributed ones as well. Second, the application of agility beyond software

projects, for the management of other processes, is also addressed in this chapter.

References

Allen TJ (1984) Managing the flow of technology: technology transfer and the dissemination of
technological information within the R&D organization. MIT Press, Cambridge, MA

Carmel E (1999) Global software teams: collaborating across borders and time zones. Prentice
Hall, Upper Saddle River, NJ

Carmel E, Agarwal R (2001) Tactical approaches for alleviating distance in global software
development. IEEE Software pp 22{29

Cusick J, Prasad A (2006) A practical management and engineering approach to offshore
collaboration. IEEE Software pp 20{29

Friedman TL (2005) The world is flat: a brief history of the twenty-first century. Farrar, Straus
and Giroux

Herbsleb JD, Mockus A, Finholt TA, Grinter R (2001) An empirical study of global software
development: distance and speed. In: Proceedings of the 23rd international conference on
software engineering (ICSE). IEEE Computer Society Press, Los Alamitos, CA

Highsmith J (2002) Agile software developments ecosystems. Addison-Wesley, Reading, MA
Jarvenpaa SL, Leidner DE (1998) Communication and trust in global virtual teams. Organ Sci

10(6):791{815
Moore GA (2000) Living on the fault line: managing for shareholder value in the age of the

internet. Harper Business, New York
Nirenberg J (2002) Global leadership. Capstone Wiley

202 10. Globalization

Sahay S, Nicholson B, Krishna S (2003) Global IT outsourcing: software development across
borders. Cambridge University Press, Cambridge

Sangwan R, Bass M, Mullick N, Paulish DJ, Kazmeier J (2007) Global software development
handbook. AuerBach Publications, Taylor and Francis Group, New York

Sawyer S, Guinan PJ (1998) Software development: processes and performance. IBM Syst J
37(4) http://www.research.ibm.com/journal/sj/374/sawyer.html

Yourdon E (1997) Death march: the complete software developer’s guide to surviving ‘‘mission
impossible’’ projects. Prentice Hall PTR, NJ

References 203

11
Reflection

Abstract

This chapter describes the notions of reflection and retrospective: reflection

usually refers to the individual’s thinking about what he or she has accomplished;

retrospective is usually conducted in teams, and is partially based on the indivi-

duals’ reflections performed during the retrospective sessions. In fact, you, the

readers, are familiar with and have experienced these notions at the end of the first

iteration of the book, in Chapter 7, Learning, both individually and on the team

level. Indeed, since these concepts are not trivial to grasp, it is preferred that

learners experience them first, before the theoretical ideas are presented. This

chapter, which closes the second iteration of the book, serves as an opportunity to

understand the theory behind these concepts as well as to add some practical

details about their actual performance.

11.1 Overview

This chapter focuses on the nature of reflective processes on
HOT

the individual

level (reflection) and on the team level (retrospective). While reflection pro-

vides the individuals feedback with respect to how they perceive different

aspects of the development process, retrospective elevates these thoughts to

the team level.

Reflective thinking is important in learning processes in general and software

development processes in particular (Sch€on 1987, Hazzan 2002). Specifically,

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 11, � Springer-Verlag London Limited 2008

since software development can be viewed as a learning process (see Chapter 7,

Learning), agile teams and the other project stakeholders facilitate reflective

sessions on a regular basis in order to improve their understanding of the devel-

oped product and process. In this spirit, we have met the concept of reflective

thinking in this book several times so far. For example, at the Business Day,

conducted at the end of each iteration (see Chapter 3, Customers and Users), a

specific time slot is allocated for a reflective session; at the end of the first iteration

of the book (Chapter 7, Learning), the reflective thinking focused on learning

processes.

In order to enable readers to start implementing retrospective sessions by

themselves, we present in this chapter, in addition to the general descriptions of

the two reflective processes|reflection and retrospective|specific guidelines

with respect to the facilitation of retrospective sessions.

11.2 Objectives

l Readers will understand the importance of reflective processes in software

development environments.

l Readers will become familiar with the notions of reflection and retrospective

and how to employ their benefits.

l Readers will learn basic ideas with respect to the facilitation of the retro-

spective process.

l Readers will increase their awareness with respect to the variety of opportu-

nities that agile software development offers for reflective processes.

11.3 Study Questions

1. What were the main lessons you learned from the reflective sessions you

facilitated in Chapter 7, Learning? How did you use these lessons in the

continuation of the book learning? How did you use them in the continuation

of your current software development project?

2. In your opinion, with respect to which topics presented so far in the book

should you improve your understanding? What characterizes these topics?

How will you improve your understanding about these topics?

206 11. Reflection

11.4 Case Study 11.1. Reflection on Learning
in Agile Software Development

This case study illustrates how reflective processes can be facilitated from the

early stages of software projects. Data are taken from a team undergoing transi-

tion to agile software development which carries out a one-hour reflective session

at the end of each iteration. Additional details about this team are described in

Case Study 4.4 (Chapter 4, Time). See also Hazzan and Dubinsky (2007).

The first reflective session took place at the end of the first two-week iteration,

as part of the iteration summary meeting (see Chapter 3, Customers and Users),

and it focused on learning. The software teammates, the customer, and manage-

ment representatives were asked to reflect on what they had learned during the

first iteration with respect to the following topics: the software development

process, the project, the teammates, roles in the team, work habits, and any

additional topics they saw fit to raise. They were asked to elaborate on what

they learned and to specify how they learned it; in other words, what in the agile

software development environment enabled their leaning.

Specifically, by filling in Table 11.1, each participant first addressed the

following question: ‘‘What did you learn during the first iteration?’’|which

calls for reflective thinking.

To strengthen the message delivered in Chapter 4, Time, we present here

responses related to time management expressed with respect to the software

development processes and the work habits categories.

Software development processes:

l It is important to estimate times for each task and then to specify how long it

took in practice.

l It is difficult to estimate times precisely.

Table 11.1 Reflection on learning (# [2007] IEEE)

About
What did you
learn?

How did you learn it? What in the development
environment enabled that learning?

Software development
processes

The project

The teammates

Roles in the team

Work habits

Additional topics|please
elaborate

11.4 Case Study 11.1. Reflection on Learning in Agile Software Development 207

Work habits:

l We can follow a schedule.

l Changes are more focused and there was less waste of time.

l Time management enables us to produce the maximum benefit from each

person.

l I saw how the time management process was internalized by all team members.

l When we focus on a task with targets and when we limit the times, we achieve

better results.

l Learning is a nice process. The question is for how long, and how can its output

be measured.

In order to establish a learning community, each practitioner shared with the

other participants one item he or she had learned during this personal reflection.

To deliver the message about learning, we present one illustrative quote: ‘‘I have

the feeling that within a short time we can see what we have done. I can see the

direction. Even if it is not accurate, it is a direction.’’

Tasks

1. Conduct the above reflection with respect to the project you are currently

working on.

2. Ask your team members to carry out Task 1. Compare your reflections. What

can you learn from this comparison?

3. What does the last quote reflect with respect to the nature of the learning

process? Can you connect your answer to the constructivist perspective

described in Chapter 7, Learning?

4. In your opinion, how did the fact that the team facilitated this reflection in an

early stage of the development process influence the continuation of the devel-

opment process?

11.5 Reflective Practitioner Perspective

Reflection is the process by which an individual examines his or her actions during

the accomplishment of a task or after the task has been accomplished. Though

reflection is not a new concept, its common practice has been boosted after Sch€on

208 11. Reflection

published his two books, The Reflective Practitioner in 1983, and Educating the

Reflective Practitioner in 1987 (Sch€on 1983, 1987). In order to become a reflective

practitioner, one should keep reflecting on his or her accomplishments, activities,

and behaviors. Sch€on’s books advocate the idea that a person who keeps reflecting

becomes a reflective practitioner, a position which enables him or her to keep

improving his or her professional skills.

Generally speaking, the reflective practitioner perspective
HOT

encourages profes-

sional practitioners (such as architects, managers, musicians, and others) to

examine and rethink their professional creations during and after the act of

creation. The working assumption is that such a reflection improves both profi-

ciency and performance within such professions. Analysis of the field of software

engineering and the kind of work that software engineers usually accomplish in

general (Sch€on and Bennett 1996), and the agile approach in particular, support

the adoption of the reflective practitioner perspective in software engineering

processes (Hazzan 2002, Hazzan and Tomayko 2003). Specifically, a reflective

mode of thinking may improve the performance of some of the agile practices.

Though the importance of reflective processes is acknowledged by many

professions, it is not always done if time is not specifically dedicated for this

process. Accordingly, since agile software development acknowledges the impor-

tance of reflective processes, it allocates specific time slots for their accomplish-

ment. One time slot is a retrospective that usually takes place at the end of the

release (see the remainder of this chapter and Chapter 14, Delivery and

Cyclicality).

Tasks

1. What topics, in your opinion, are suitable as subjects for reflective thinking?

2. For each of the following topics, suggest a specific subject on which, in your

opinion, it is worth facilitating a reflective process:

{ the developed software systems;

{ the development environment;

{ the development process;

{ the ways algorithms are used;

{ ways of thinking;

{ quality issues.

3. What|Human, Organizational, and Technological|aspects might elicit

reflective thinking? Illustrate your answer.

11.5 Reflective Practitioner Perspective 209

Though it takes time to become a reflective practitioner and it requires some

practice and experience, this skill can be learned and gained gradually. One

possible way to start practicing being a reflective practitioner is by introducing

it to your team in a team setting, for example, in retrospective sessions.

11.6 Retrospective

Retrospective is a reflective session that takes place on the
HOT

team level, usually

during long sessions (from one hour to several days). In retrospectives, in addition

to personal reflective processes, the team as a whole facilitates reflective thinking

to derive lessons from its past experience. As mentioned earlier, in Chapter 7,

Learning, you have already experienced retrospective processes.

Though the concept of retrospective usually refers to long sessions that take

place at the end of the release, we adopt this notion for any team gathering (such

as the end of the iteration meetings, role-holders meetings, and more) whose aim is

to reflect on the team performance in order to improve the software development

process and product. We note that the term ‘‘team’’ refers not only to the

development team; rather, it encompasses also, if needed, the customer, manage-

ment, and other project stakeholders.

Several systematic approaches have been suggested on how to conduct effective

retrospective processes in agile teams. The most widely known are post-iteration

workshops (Cockburn 2001, Salo et al. 2004) and the postmortem review tech-

nique (Dingsøyr and Hanssen 2003, Myllyaho et al. 2004). Empirical studies on

the effectiveness of these methods have been conducted by Salo (2004, 2005),

Salo et al. (2004), and a few experience reports have been published as well

(Lamoreux 2005, Talby et al. 2006).

In the continuation of this section we present main ideas and guidelines

relevant to the facilitation of and participation in retrospective sessions.

Retrospective processes guide a team reflection, in which each team member

shares his or her reflection with the other participants in order to improve the

team performance, and consequently, the process and product quality. Accord-

ingly, communication and feedback are important in retrospective sessions, and

dependencies and mutual feedback should be enhanced in such sessions.

Acknowledging the importance of the learning process, agile methods dedicate

specific time slots for retrospective sessions: at the end of each short iteration a short

retrospective session takes place during the Business Day (see Chapter 3, Customers

and users); at the end of the release a longer retrospective session is facilitated (see

the continuation of this chapter and Chapter 14, Delivery and Cyclicality).

Since during the retrospective session development/planning/design/testing

and other kinds of tasks are not accomplished, the mere existence of retrospective

210 11. Reflection

sessions delivers a very important message about their importance. This message

is based on the anticipated contribution of retrospective sessions to the team’s

future performance and to the product and process quality. In other words, it is

assumed that the time invested in retrospective sessions will be repaid in

improved product and process quality.

Further, the experience the participants gain in such retrospectives is cumu-

lative. In other words, each time a team is engaged in a retrospective, new lessons

are learned, which on the one hand may deepen previous lessons, and on the other

hand may open the team learning to new horizons.

Tasks

1. In Chapter 3, Customers and Users, the Business Day and its components are

described. Explain the importance and contribution of the reflective session to

the entire Business Day. How does each of the elements of the Business Day

which take part before the reflective session set the atmosphere for the reflec-

tive session?

2. It is sometimes argued that a retrospective session is a waste of time. Can you

explain the source of such claims? What is your opinion with respect to such

statements? How would you cope with expressions that claim that retrospec-

tive sessions waste time and that it is better to dedicate that time for develop-

ment tasks?

3. Suggest an example of an idea that may emerge during a retrospective session

and that has the potential to improve team performance in the future.

4. If you have already participated in retrospective sessions, describe their

dynamics. Reflect on how the retrospective session influenced the continuation

of the development process.

5. What feelings might practitioners have in a retrospective meeting? What are

their resources? How can they influence the atmosphere in the retrospective

session?

11.6.1 The Retrospective Facilitator

Each retrospective session should be facilitated by a moderator. One option is to

invite a facilitator who is not part of the team. Another option is to assign one of

the team members to be the retrospective facilitator. Teams which facilitate

retrospective sessions on a regular basis can either add the role of Retrospective

Facilitator to the role scheme presented in Chapter 2, Teamwork, or add this

11.6 Retrospective 211

responsibility to one of the other roles on the team (for example, to one of the role

holders in the leading group). Alternatively, the Retrospective Facilitator role

can be rotated among the team members. It is recommended, of course, that the

Retrospective Facilitator know how to facilitate retrospective processes. How-

ever, even if the team does not have a person who is familiar with guiding retro-

spective processes, the team can dedicate the needed time for a gradual

improvement of its retrospective sessions in a constructivist manner.

The role of the Retrospective Facilitator includes the selection of a subject for

the retrospective, in coordination with the team and the team leader, and the

actual facilitation (including time keeping) of the retrospective meeting itself.

During the retrospective, special attention should be given by the facilitator to

the fact that all the participants are active and highly communicative.

Tasks

1. Describe the benefits and disadvantages of assigning one of the team members

to be the Retrospective Facilitator.

2. Describe the benefits and disadvantages of having a Retrospective Facilitator

who is not one of the team members.

3. In your opinion, are there situations in which it is better to have a Retro-

spective Facilitator who is not part of the team, and other situations in which it

is better that this role is carried out by one of the team members? Explain and

elaborate on these different situations.

4. How can the retrospective practice empower agile teams?

11.6.2 Case Study 11.2. Guidelines for a Retrospective
Session

The following list presents guidelines (adopted from Talby et al. 2006) formulated

by a specific team for its retrospective sessions that take place at each of its

Business Days.

l Only one specific problem is discussed at each retrospective meeting.

l The problem discussed should relate to the development process, not the

developed product.

l The subject is chosen in advance by the moderator (after informal/formal

consultation with other team members), and presented at the beginning of

the retrospective meeting.

212 11. Reflection

l The retrospective cannot exceed one hour.

l The whole team is required to attend the retrospective.

l Everyone is proactively encouraged to speak, but is not required to do so.

l Team members are encouraged to speak their own opinions.

l The moderator records important insights and proposes action items that

surface during the meeting.

l The moderator summarizes the meeting by reading to the team the action

items that have been decided upon.

l The moderator publishes the main insights and action items for the team soon

after the retrospective. A wiki can be used for this purpose.

l The decided action items are effective immediately. These are changes in the

day-to-day team operations that should help resolve the debated problem.

Tasks

1. Express your opinion with respect to each guideline presented above. Explain

the rationale behind each guideline as you conceive of it. In your opinion, what

advantage and/or disadvantage does each guideline have? In what way may

each guideline help achieve the retrospective goals? In what way (if at all) does

each element foster agile culture?

2. Formulate with your team the guidelines with which the team wishes to

facilitate its retrospective sessions.

3. According to the guidelines presented above, how does the team conceive the

role of the Retrospective Moderator?

11.6.3 Application of Agile Practices in Retrospective
Sessions

This section highlights several facilitation guidelines for retrospective sessions in

agile software development environments. These guidelines demonstrate that

when a retrospective session takes place in an agile project, the retrospective itself

should be based on agile ideas|for example, it should foster diversity (see

Chapter 9, Trust), support learning processes (see Chapter 7, Learning), and

include the whole team. In other words, when a retrospective takes place in an

agile software development environment, it should apply and promote agile

11.6 Retrospective 213

practices and principles. The idea that agile methods apply beyond the develop-

ment of software products has already been discussed in Chapter 10,

Globalization.

Whole team. Everyone who belongs to the team should participate in the

retrospective. Also, it is recommended that the team take an active part in the

preparation of the retrospective as well as during and after it, when lessons are

implemented.

Abstraction. During the retrospective meeting, it is recommended that the

topics representing different levels of abstraction (see Chapter 8, Abstraction)|

from conceptual ideas to practical activities and measures|be addressed.

Further, it is recommended that this movement between abstraction levels be

emphasized, to enable the participants to exploit the associated cognitive

benefits.

Diversity. Everyone should be encouraged to share his or her professional

thoughts (see also Chapter 9, Trust).

Measures. It is important to accompany the application of each decision

made in a retrospective session by a measure that first, will enable the team to

observe whether or not the decision itself is applicable; and
HOT

second, will enable the

team to examine its actual performance and contribution to the development

process. See additional details about measures in Chapter 5, Measures.

Time allocation. As with other activities, time should be allocated for the

retrospective session as well. Kerth (2001:53) suggests two or three days for a

retrospective session. Since we expand the use of the term retrospective to include

each reflective activity which is conducted at the team level, the time for a

retrospective should be allocated according to the retrospective scope and goals.

For additional discussion about time related issues in agile software development

environments, see Chapter 4, Time.

Tasks

1. What additional agile characteristics can and should be expressed in retro-

spective processes?

2. How does each of these characteristics enhance the retrospective process, if at

all? Illustrate your thoughts with examples.

3. Describe a problem that in your opinion is an appropriate subject for a retro-

spective session. Facilitate a retrospective session with your team about that

problem. Make sure that a measure that indicates whether the solution is

applicable or not is set up to determine the solution’s effectiveness.

214 11. Reflection

11.6.4 End of the Release Retrospective

This section suggests a framework for the end of release retrospective. The frame-

work should be adjusted for each specific team’s and project’s needs. The place

and role of this retrospective at the end of the release period is described in

Chapter 14, Delivery and Cyclicality. For additional details about the facilitation

of retrospective sessions with software teams, look at Kerth’s book Project Retro-

spective (Kerth 2001).

Retrospective Place. It is advisable to facilitate the release retrospective

outside the development site. The idea behind this recommendation is first, to

disconnect the practitioners from their ongoing work in order to enhance reflec-

tive thinking, and second, to demonstrate that the retrospective is at least as

important as the development work. This importance is highlighted by allocating

a special time and place for the retrospective session, as is done for other kinds of

tasks.

Retrospective Length. In Chapter 3, Customers and Users, we saw how a

retrospective session is integrated on a weekly (or bi-weekly) basis into the

iteration summary meeting that takes place on the Business Day. For the end of

release retrospective a longer period of time should be dedicated.

The retrospective scope is determined by its length. In a short retrospective

session that takes place on the Business Day, one topic at most can be addressed;

for a retrospective that takes place at the end of the release, in which the team

wishes to get a comprehensive understanding of the release and in order to collect

the different elements and lessons learned during the release into one framework, a

longer period of time should be allocated.

In addition, the longer period of time which is allocated for a release retro-

spective gives the team a timeout before the next release starts. Therefore, two

days seems to be an appropriate period.

Retrospective Participants. The retrospective participants should be

selected according to the retrospective’s goal. The entire retrospective (as well

as parts of it) may include only the development team, or the team with the

management and/or customer. The exact mix should be determined according to

the team climate and dynamics, the development stage, and the lessons learned in

previous retrospective sessions. In any case, when a specific decision is made about

participation, its rationale should be shared with all the project stakeholders.

Topic(s) Selection. In order to address most of the team members’ concerns

in the retrospective, it is recommended that the retrospective subject(s) be

selected from a list that is generated by the team members, posted on the walls

of the informative workplace, and accessible to all.

11.6 Retrospective 215

This topic selection process has several advantages. First, the subject will be

relevant for at least several team members; second, it is reasonable to assume that

a topic selected in this way will be connected to the daily project life; third, time

will not be spent in the retrospective meeting deciding on the subject of the

retrospective; fourth, such a selection process will enhance the environment’s

transparency. Yet in some cases, the team leader or a project manager may

suggest topics which were not selected democratically.

From the suggested list of topics, it is advisable to select topics about which

different opinions have been expressed and to avoid selecting a topic that involves

personal quarrels and accusations.

Retrospective Preparation. The participants should be encouraged to

bring to the retrospective session ideas, event descriptions, measures, and perso-

nal stories related to the retrospective scope. To encourage the participants to

start preparing themselves for the retrospective, they can be encouraged to think

about one positive experience they have had during the release and one experience

they have bad feelings about.

The Retrospective Facilitator should be aware of the different concerns that

the practitioners may bring into the retrospective. Global planning should be

constructed accordingly; yet some freedom should be left to enable the accom-

modation of the retrospective timetable to the participants’ needs, as well as

unexpected events that may come up during the retrospective.

Retrospective Organization. As in agile software development pro-

cesses, it is advisable to base the retrospective session on cycles, each of them

including a trigger (explained below), a group activity, a discussion, and a

summary.

If the retrospective participants break into subgroups for different activities,

the subgroups’ members should be mixed for each activity, in order to allow all the

retrospective participants to interact with as many other participants as possible.

The gathering of all the participants after the group activities, in which the

groups report their conclusions to the entire retrospective milieu and a discussion

is facilitated, is important and should not be skipped.

As with the development process, in which development continues according

to the current understanding, both from the customer and the team perspective,

of what should be developed, so the contents of the next retrospective cycle can be

determined during the retrospective according to general guidelines prepared in

advance. Nevertheless, the Retrospective Facilitator should navigate the retro-

spective according to his or her experience and conception of the current situation

and atmosphere.

Retrospective Trigger. A trigger is a stimulus that fosters thinking on

selected topics. A well chosen trigger can open the participants’ horizons to new

ideas and enable them to communicate those ideas from new perspectives. It is

216 11. Reflection

advisable, though not necessary, to employ the trigger in small groups, since that

will enable each participant to express his or her opinion in a more relaxed

atmosphere. It will also enable the retrospective participants to be exposed to a

wider perspective on the topic, since after the trigger is employed in small groups,

the subgroups present their conclusions to the full forum.

There are different kinds of triggers. Since they vary in the time it takes to

facilitate them, the Retrospective Facilitator should select them according to the

goals of the retrospective and the available time.

Among many options, movies can serve as triggers. For example, a movie

about a leader or about a natural phenomenon can serve as triggers that stimulate

interesting discussion. After the movie is shown, the similarities and differences

between what is seen in the movie and what happens in software engineering

processes can be discussed. In other words, the question that can be addressed is:

To what extent is the movie a good metaphor (see Chapter 3, Customers and

Users) for software development processes?

Movies are good triggers for retrospective sessions because they enable each

team member to connect what he or she watches to his or her professional life

experience. In addition, such a trigger encourages diversity, since each teammate

brings into the discussion his or her particular perspective, experience, and

background.

Task

Review different movies you have watched in your life. What lessons, if any, did

they attempt to deliver? Can these lessons be transferred and used in software

development processes?

Example for a Trigger: March of the Penguins. We illustrate how to

use movies as triggers for retrospectives about software development processes by

the National Geographic feature film March of the Penguins. The main reason for

the selection of this movie is that it emphasizes several ideas about the nature of

software development. Specifically, since software development is characterized

by changes (See Chapter 12, Change), the movie illustrates how nature adjusts

itself to changes.

The movie describes the yearly journeys of the penguins of Antarctica to their

ancestral breeding grounds. There, the penguins participate in a courtship that, if

successful, results in the hatching of a chick. For the chick to survive, both parents

must make multiple arduous journeys between the ocean and the breeding

grounds.

11.6 Retrospective 217

Tasks

1. Explore different resources about this movie. What messages are delivered

when the movie is described?

2. Watch the movie. What relevant lessons for software development can be

learned from the movie?

3. In what follows, several facts taken from the movie are listed. For each of them

explain how it is or is not related to software development in general and to

agile software development in particular.

{ Each time one penguin leads the march.

{ The goal (direction) is clear (to find a mate); the path changes, since the

land moves beneath the penguins’ legs each year. For example, when ice

starts melting it has more holes. Since the food is available beneath the ice,

such moves enable the penguins to find food.

{ When the temperature goes down, the penguins adjust their behavior to

the change.

{ The term ‘‘unified and cooperative team’’ is used in the movie.

{ The penguins keep shifting places so each time another penguin is in the

middle of the group and keeps its body warm.

{ Penguins have an internal compass.

{ The penguins look for safe ground.

{ In the winter the penguins are not able to survive alone; they stand next to

one another to conserve heat.

{ Pair parenting: the mother transfers the egg to the father when she goes to

eat; the father keeps the egg for two months; both the father and the

mother feed the chick.

{ Taking care of the egg: one parent keeps the egg and the second one

supports it. They rotate roles: when one goes to eat, the second keeps

the egg/chick.

{ When an egg is broken, the mates separate.

{ Problem solving: There is food beneath the ice that cannot be accessed;

what can be done?

{ There is one new egg each year for each pair.

218 11. Reflection

{ Not all the chicks survive their first year of life.

{ For four years the chicks do not participate in the march, they start it only

in their fifth year.

4. How can the lessons you learned from The March of the Penguins help your

team improve its performance?

5. Think of another movie, not necessarily about animals, that can illustrate

agile ideas. Elaborate these ideas. In what way are they expressed in the

movie?

11.7 Reflection in Learning Environments

This studio meeting summarizes the second course iteration and opens the third

iteration. The main objectives of this meeting are to present to the customer what

has been developed during the second iteration, to provide and receive feedback,

and to begin the third iteration by listening to the customer’s priorities with

respect to what he or she wants developed in the third iteration. Also in this

meeting, both personal reflection and team retrospective take place.

11.8 Summary and Reflective Questions

1. Reflect on your presentation of the second iteration product to the customer.

What went well? What can be improved?

2. What main lessons did you learn from the development of the second

iteration?

3. So far, you, the reader, have been trained to perform reflective processes by

being asked to reflect on the software development process on a weekly basis.

Together with your team, collect the different lessons you learned from these

weekly reflections. Discuss how you can use these lessons in the continuation

of the development of your current software project as well as for the devel-

opment of future software projects.

4. Together with your team, select a topic for a retrospective session of one hour.

Choose one team member to facilitate this session. Choose another topic for a

retrospective session of one hour and another team member to facilitate it.

11.8 Summary and Reflective Questions 219

Observe these two retrospective sessions. Discuss the facilitation style of the

two team members. What can they learn from each other?

5. How are reflective processes|reflection and retrospective|connected to the

Agile Manifesto presented in Chapter 1, Introduction to Agile Software

Development?

6. How can the retrospective outcomes be measured?

7. In your opinion, should an iteration/release retrospective take place both

when the release ends successfully and when it fails? Explain your opinion.

What advantages and disadvantages would a release retrospective have in

each case?

8. A reflective practitioner reflects at almost any opportunity. Review the

different agile practices and ideas presented so far in this book and discuss

their fitness and their potential to promote reflective processes|either reflec-

tions or retrospectives.

9. Analyze the reflection and retrospective activities within the|Human, Orga-

nizational, and Technological|analysis framework.

11.9 Summary

This chapter looks at the contribution of reflective processes|reflection and

retrospective|to software development. One of the main messages delivered in

this chapter is that these practices should be conceived important as development

tasks are and treated like other kinds of tasks in agile software development

environments: that is, with specific time allocations, the inspiration of the agile

approach, and the application of agile practices.

References

Cockburn A (2001) Agile software development. Addison-Wesley, Reading, MA
Dingsøyr T, Hanssen GK (2003) Extending agile methods: postmortem reviews as extended

feedback. In: 4th international workshop on advances in learning software organizations
LNCS 2640, Springer, New York, pp 4{12

Hazzan O (2002) The reflective practitioner perspective in software engineering education.
J Syst Software 63 (3): 161{171

Hazzan O, Tomayko J (2003) The reflective practitioner perspective in eXtreme programming.
Proceedings of XP agile universe, New Orleans, Louisiana, USA, pp 51{61

Hazzan O, Dubinsky Y (2007) The software engineering timeline: a time management perspec-
tive. Proceedings of the IEEE international conference on software|science, technology &
engineering, Herzelia, Israel, pp 95{103

220 11. Reflection

Kerth NL (2001) Project retrospectives: a handbook for team reviews. Dorset House Publishing
Company, New York

Lamoreux M (2005) Improving agile team learning by improving team reflections. Proceedings
of Agile, Colorado

Myllyaho M, Salo O, Ka��a��ria��inen J, Hyysalo J, Koskela J (2004) Analysis of small and large post-
mortem review methods. Proceedings of ICSSEA: 17th international conference on software &
systems engineering and their applications, Paris, France

Salo O (2004) Improving software process in agile software development projects: results from
two XP case studies. In: EUROMICRO 2004. IEEE Computer Society Press, Rennes, France

Salo O, Kolehmainen K, Kyll€onen P, L€othman J, Salmija��rvi S, Abrahamsson P (2004) Self-
adaptability of agile software processes: a case study on post-iteration workshops. Proceed-
ings of XP, Germany, pp 184{193

Salo O (2005) Systematical validation of learning in agile software development environment.
7th international workshop on learning software organizations, Germany

Sch€on DA (1983) The reflective practitioner. BasicBooks
Sch€on DA (1987) Educating the reflective practitioner: towards a new design for teaching and

learning in the profession. Jossey-Bass, San Francisco
Sch€on D, Bennett J (1996) Reflective conversation with the materials. In: Winograd T, Bennett J,

De Young L, Hartfield B (eds) Bringing design into software. ACM Press, Addison-Wesley
Publishing Company, Boston, pp 171{184

Talby D, Hazzan O, Dubinsky Y, Keren A (2006) Reflections on reflection in agile software
development. Proceedings of the agile conference, Minneapolis, Minnesota, USA, pp 100{110

References 221

12
Change

Abstract

Coping with change is one of the main challenges of software engineering. This

challenge encourages agile software developers to establish a development process

that enables them to cope successfully with changes introduced during that

process, while keeping the high quality of the product. This chapter focuses on

change introduction into organizations that plan to transit, or that are already in

the transition, to agile software development. Specifically, we present an evolu-

tionary framework for coping with change, using it for understanding a transition

to agile development. We also suggest several methods to use in such a transition

process, such as an organizational survey and a condensed workshop format on

agile software development.

12.1 Overview

The notion of change has been mentioned so far in the book several times. For

example, in Chapter 1, Introduction to Agile Software Development, we reviewed

the Agile Manifesto in general
HOT

and one of its main ideas|responding to change by

following a plan|in particular. We emphasized that this idea encourages agile

software developers to establish a development process that enables them to cope

successfully with changes introduced during that process, while keeping the high

quality of the product. Later, in Chapter 3, Customers and Users, and in

Chapter 4, Time, we learned how, in practice, agile software development

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 12, � Springer-Verlag London Limited 2008

methods inspire a process that enables change introduction in the developed

product which emerges from an improved understanding of the software require-

ments. This characteristic of agile development is also reflected by the agile

approach’s acknowledgement of learning processes (see Chapter 7, Learning).

Further, in Chapter 8, Abstraction, we saw how the agile approach legitimizes

change introduction in the code design, by allowing emerged design and ongoing

refactoring activities to be revealed based on an improved understanding by the

team members of the code structure and functionality.

In this chapter we deepen the examination of the concept of change, high-

lighting the fact that the agile approach supports changes of different kinds. This

legitimization is important in software engineering processes, first, because of the

frequent changes in the discipline’s body of knowledge itself and in its application;

and second, since changes are inherent elements of software development

processes and therefore should not be neglected.

We focus on two kinds of changes. The first one|changes in the customer’s

requirements|has already been addressed in the book (see Chapter 3, Custo-

mers and Users). The second kind of change is the organizational required when

the agile approach is introduced. For each kind of change (software require-

ments and organizational change) we first present the importance of supporting

the given change. Then, in order to explain how the agile approach copes

with that change, we use Plotkin’s framework, borrowed from evolutionary

theories, which describes how the universe copes with changes throughout its

evolution. This exploration shows that agile software development realizes

that changes are an inherent part of any software development process,

and therefore it adopts several ways that support change instead of

blocking it.

12.2 Objectives

l Readers will understand the concept of change and its centrality in the soft-

ware development process.

l Readers will review different kinds of changes which are inherent in software

development.

l Readers will understand the need for and nature of the change required when

agile software development is introduced into the organization.

l Readers will become familiar with several ways to initiate and maintain the

agile software development process.

224 12. Change

l Reader will gain practical advice with respect to organizational surveys and

short presentations of agile software development.

12.3 Study Questions

1. What adjectives, in your opinion, fit for a description of the agile approach

(besides agile, of course)? Why? What do these adjectives reflect?

2. What kinds of changes are inherent in software development processes?

Explain their source.

3. According to what you have learned so far in the book, how do agile teams cope

with changes introduced by the customer?

4. Predict what claims are typically raised by practitioners who do not wish to

transition to agile software development. Do these claims contradict the Agile

Manifesto? How would you cope with such expressions of resistance?

5. How could you learn about the software development process in a software

organization? Suggest different methods that you would employ.

6. If you had to advise a software organization which does not work according to

the agile approach how to transit to agile software development, what would

be your three most important pieces of advice? Explain their rationale.

12.4 A Conceptual Framework for Change
Introduction

Henry Plotkin presents the notion of change in his book Darwin Machines and the

Nature of Knowledge as part of the chapter that deals with the evolution of

intelligence.

Change is a universal condition of the world. If the world were unchanging, then
evolution would have proceeded to some optimal point and then ceased. This has not
happened. Nothing stands still, and the very occurrence of evolution is both a force for
change itself and proof positive for its existence (Plotkin 1997, 139).

Since software development processes, as has been explained earlier in this

book, are also characterized by changes, it might be a good idea to use some

evolutionary mechanisms for coping with changes for the shaping and analysis of

software development processes. In the rest of this chapter we apply this idea by

using Henry Plotkin’s notion of coping with change.

12.4 A Conceptual Framework for Change Introduction 225

The main question Plotkin poses is how we can deal with the uncertainty

introduced by change. He describes two main sets of solutions to deal with change

and explains how they enable us to cope with change (Plotkin 1997, 145{152).

The first set of solutions concerns with ‘‘reducing the amount of significant

change,’’ thus reducing the change scope (see left branch in Figure 12.1). One way

to do this is by reducing the period of time (see branch T in Figure 12.1) between

conception and reproductive ability. It means to keep the ratio of life-span length

to numbers of offspring low, or in other words, to maintain high reproductive

output in a relatively short period of time. This copes with change by keeping the

genetic instructions for each individual updated as much as possible.

Task

Which agile practices lead to time reduction?

The second way to reduce the amount of significant change according to

Plotkin is to live in a relatively isolated and unpopulated place (see branch P in

Figure 12.1). A variation on this idea is parents protecting their offspring by

isolating them.

Task

Which agile practices lead to place reduction?

The second set of solutions for the phenomenon of change takes the form of ‘‘if

you can’t beat it, join it,’’ i.e., change the phenotypes so that they can change with

Figure 12.1 Solutions for dealing with change (Plotkin 1997) (#[2003] IEEE).

226 12. Change

and match the changing features of the world (see right branch in Figure 12.1).

The first strategy to accomplish this target is to produce large numbers of

different offspring in order to increase diversity. Thus, the chance increases that

this approach will lead to a situation in which at least some individuals will be able

to face the change (see D branch in Figure 12.1).

Task

Which agile practices enhance diversity?

The second strategy, called the ‘‘tracking option,’’ enhances change within

phenotypes by producing phenotypes that change in response to changes in the world

(see branch K in Figure 12.1). The tracking option is supported by knowledge-

gaining devices which, according to Plotkin, are the immune system and the brain

intelligence mechanisms. The immune system operates in the sphere of chemistry,

while the brain mechanisms, known as rationality or intelligence, operate in the sphere

of the physical world of temporal and spatial relationships of events and objects.

Task

Which agile practices can be considered as knowledge-gaining devices?

We now apply Plotkin’s framework for the analysis of two kinds of change

which are relevant for software development environments: a change in software

requirements, and organizational change. We first re-examine how agile software

development copes with changes in the software requirements. At this stage of the

book, readers will be familiar with most of the ideas presented in this examination.

Then we apply Plotkin’s framework for organizational changes required when an

organization moves to agile software development.

12.4.1 Changes in Software Requirements

Changes in software requirements are predominant partially due to the fact that

software is an intangible product. On the one
HOT?

hand, because it is an intangible

product, it is difficult to envision how the software will look, work, function, and

evolve; accordingly, customers keep changing their requirements as they improve

their understanding of the features of the product they need and ask for. On the

other hand, software intangibility suggests incorrectly that change introduction

in software products is easy, simply because it is applied on an intangible product.

This, of course, turns out to be mistaken; change introduction in software pro-

ducts indeed causes complications, predicted as well as unpredicted.

12.4 A Conceptual Framework for Change Introduction 227

Since, however, change introduction in software products is an integral part of

software development, we have two options. One option is simply to neglect this

fact and to block change introduction in the requirements after they have been

formalized, set, and agreed upon; the results of this approach are well known.

The second option is to offer a development process that allows changes in the

requirements without reducing the software quality. This is what agile software

development attempts to accomplish.

In what follows we summarize several of the ideas we have already examined in

the book with respect to software requirements, presenting them within Plotkin’s

framework.

12.4.1.1 Reducing the Change Scope—Time Reduction
Mechanism

The customer has an opportunity to update the requirements at the end of each

short release and iteration; this clearly is a mechanism for time reduction. The

question to be asked is how this mechanism influences cost and quality.

Analysis shows that the cost of change introduction in this fashion remains

constant. This is because it allows updating the requirements on a small scale as

soon as it is realized that a different feature is needed. Under this working

assumption, customers do not assume what will probably be needed, and there-

fore, in the planning sessions, ask only for relevant requirements.

This approach stands in contrast to situations in which customers are told

that ‘‘the later a change is introduced, the more expensive it will be.’’ In such

situations, customers (and teammates) try to make (and implement) a ‘‘com-

plete’’ list of requirements, even though it may turn out at a later stage, when their

understanding of the project requirements is clarified, that not all these require-

ments are indeed needed. However, if change introduction is not allowed, in order

to save money and to feel on safer ground, customers will attempt to provide a

priori a full set of requirements, without a solid basis for their decisions.

Task

How can this last described behavior be explained by the ideas presented in

Chapter 9, Trust?

Since in the agile development process the cost of change introduction is

constant during the entire process, customers are not forced to present a full

requirement list without a clear idea of their needs. Thus, at the end of an agile

project, only features that the customer needs will have been developed.

228 12. Change

Indeed, there are cases in which customers keep changing their requirements on

a regular basis, and it becomes difficult to cope with such frequent changes. Such

cases further emphasize the need for customer collaboration with the relevant role

holders whose technical recommendations should be heard, shared with the custo-

mer, and considered. In any case, the customer makes the final decision.

Task

Which other agile practices leave the cost constant and the quality high? Can

they be considered as time-reduction mechanisms?

12.4.1.2 Reducing the Change Scope—Space Reduction
Mechanism

Space is reduced by the co-location of the team and the customer in the work-

space. This space includes also the walls, which serve as a communication means,

so that all the relevant information is accessible to all. In the case of distributed

teams (see Chapter 10, Globalization), a virtual space reduction should be

supported|for example, by using video conference calls and/or a shared project

wiki.

Tasks

1. How does space reduction enable developers to cope with changes in software

requirements?

2. Explain the need in space and time reduction within the HOT|Human,

Organizational, and Technological|analysis framework.

Space and time reduction in agile software development create a situation in

which changes take place within a defined framework, which increases the parti-

cipants’ confidence in the change process they go through.

12.4.1.3 Join the Change—Diversity Mechanism

Naturally, the discussion about diversity, presented in Chapter 9, Trust, is of high

relevance in this context of change in software requirements. This is because

diversity welcomes new ideas and perspectives that are so predominant in change

introduction processes.

12.4 A Conceptual Framework for Change Introduction 229

Task

Review the concept of diversity presented in Chapter 9, Trust. How does diversity

welcome change introduction? How can it interfere?

12.4.1.4 Join the Change—Mechanism
of Knowledge-Gaining Devices

Several agile practices that can be characterized as knowledge-gaining devices

have been presented so far in this book. Among them, we have mentioned short

releases and iterations (see Chapter 7, Learning), refactoring (Chapter 8,

Abstraction), and retrospectives (see Chapter 11, Reflection).

Tasks

1. For each of the above mechanisms, explain it can be conceived as a knowl-

edge-gaining device that helps cope with changes in software requirements.

2. What other agile practices can be considered knowledge-gaining devices that

help cope with changes in software requirements? Explain why.

3. Analyze the notion of change in software requirements within the HOT|

Human, Organizational, and Technological|analysis framework.

12.4.2 Organizational Changes

In Chapter 4, Time, we met one characteristic of agile software development|

tightness (Hazzan and Dubinsky 2005). The concept of tightness gets its impor-

tance, among other reasons, from
HOT?

the fact that software development processes

are characterized by changes. A tight process keeps development on track, and if

it gets off track, the method’s relevant practices return it to the right path. These

practices are based mainly on the ongoing feedback that tight software develop-

ment processes provide. If these practices are rarely applied, that is, if the

methodology is not tight, the chances to get off track increase. Since agile software

development is a tight process, it leads the agile team onto safe ground, even

though changes are introduced along the way. In addition, tightness keeps the

development rhythm; this characteristic is important since, once again, software

is an intangible product, and therefore a tight process to follow and support its

development is needed.

230 12. Change

In practice, the tightness of agile software development influences the daily

activities of all the project participants|the team as well as the other project’s

stakeholders, as is illustrated in what follows.

First, agile development inspires cooperation. Among the many implications of

this fact, this means that knowledge should be shared among all the projects’

stakeholders and that the development environment should encourage each practi-

tioner to contribute his or her professional knowledge. This is achieved by the

transparency that characterizes agile environments. This transparency is expressed

among other means by the development environment itself, the practice of whole

team, and the ongoing collaboration with the customer (see also Chapter 9, Trust).

The atmosphere that such a development environment establishes contrasts with

development environments in which practitioners tend to conceive of knowledge as

power, and accordingly tend not to share their knowledge.

Second, the agile approach delivers a new message with respect to the custo-

mer role in the development process that team members should be aware of and

act accordingly. Specifically, the agile approach legitimizes the customer’s gra-

dual understanding of the requirements and inspires listening-to-the-customer

processes in order to understand the customer’s needs. The shift in customer

perception introduced by the agile approach changes the customer-teammate

relationship and replaces the common belief among team members that customers

do not know their requirements (see Chapter 3, Customers and Users).

Third, work habits change in agile software development. Among the differ-

ent changes, we mention the responsibility inspired by the agile approach, the

well-planned development process that results in a sustainable pace (see Chap-

ter 4, Time), and the development environment itself, which is open and trans-

parent to everyone. When the agile approach is introduced in an organization,

these work habits should replace different work habits, such as long work hours,

that result mainly from an unplanned development process and that may reduce

quality.

Fourth, the agile approach aims at enabling all the practitioners who participate

in the development process to communicate as much as needed. Such a collaborative

working environment requires that all practitioners will be in that environment at a

certain period of time; it is not supported in organizations in which practitioners

arrive and leave the workplace whenever they wish. This last described behavior,

which does not support communication, might be the result of the belief that since an

intangible product is being constructed, i.e., software, no dependencies exist between

practitioners who work on the same project. However, as has been acknowledged

here, this very reason|the fact that software is an intangible product|requires huge

and strong dependencies between all the project stakeholders. In practice, some agile

activities, such as the stand-up meeting, require all team members to attend the

development site at the same time and place.

12.4 A Conceptual Framework for Change Introduction 231

Task

How are the above characteristics of agile software development connected to the

Agile Manifesto (see Chapter 1, Introduction to Agile Software Development)?

In what follows we use Plotkin’s framework for dealing with change for the

characterization of a transition process to agile software development. We focus

on the initial stages of the change required when an organization wishes to start

the transition to agile software development. As we shall see, such a transition has

agile characteristics by itself. An agile approach towards a transition to the agile

process implies that different agile practices are applied with respect to the

transition process, such as tracking, stand-up meetings, short iterations, custo-

mers on site, and role assignments.

Task

For each of the above mentioned agile practices, explain how it is compatible with

Plotkin’s framework for coping with change.

12.4.2.1 Reducing the Change Scope—Space and Time
Reduction

If a decision is made to transition to the agile process, a team should be selected

to start the transition. The decision to begin with one team, which is organized

in one development space, is a good illustration of scope reduction in terms of

space.

This selected team should learn agile software development. One way to start

this learning process is to apply several agile practices right at the beginning of the

transition process, and gradually add agile practices to be applied by the team.

One practice that is suitable to start with is agile planning. The gradual applica-

tion of agile software development should be discussed with the team based on

reflection and retrospective sessions (see Chapter 11, Reflection).

Another option by which it is possible to start the learning process of agile

development is to let the team learn the basics of agile software development in a

condensed workshop. A suggestion for such a condensed workshop, which lasts

two days, is presented later in this chapter. It is preferable not to mange this

workshop in the team’s development environment, but rather in a learning site

organized for the purpose. In this workshop, the team learns the basic knowledge

required to start the change process and the implementation of agile software

232 12. Change

development. Based on this knowledge, as the team proceeds with the application

of the agile process, it continues the ongoing learning of agile software development.

Task

Does the condensed workshop reflect scope and time reduction? Why?

In addition, as part of the transition process to agile development, a time line

for the transition process is set, exactly as it is set with respect to agile software

projects. Thus, for example, short iterations are set which aim at helping the

management clarify its requirements and expectations of the transition process

and define measures to navigate that process (see Chapter 5, Measures).

Task

For each of these two practices|short iterations and measures|when applied to

the transition process to agile development, explain:

l How does it reflect an agile transition process to agile software development?

l Lay out the details of its implementation with respect to the transition

process to agile development.

l In what ways are these practices compatible with Plotkin’s framework?

12.4.2.2 Join the Change—Diversity

In the transition process, roles are assigned to team members, and the customer

for the transition process is specified. Measures are set to reflect the concerns of all

the project stakeholders. Several of the reflective sessions in the iteration sum-

mary meeting (see Chapter 3, Customers and Users) are dedicated to the transi-

tion to agile development (and not on the agile software development itself). All

these means enable the participants to express their feelings, suggestions, etc.,

and consequently to support the transition process.

Task

How does each of the practices mentioned above reflect diversity?

12.4.2.3 Join the Change—Knowledge-Gaining Devices

Among the main knowledge-gaining devices used in the transition
HOT

process to agile

development we mention reflections and retrospective sessions (see Chapters 7,

12.4 A Conceptual Framework for Change Introduction 233

Learning, and Chapter 11, Reflection). These processes are dedicated not only to

improving the software development process, but also to supporting the transi-

tion process to agile development that takes place in the organization. Based on

lessons learned in these reflection and retrospective sessions, the continuation of

the transition process to agile development is determined, and issues such as

scalability (see Chapter 2, Teamwork) are considered.

Tasks

1. What other knowledge-gaining devices can be applied with respect to the

transition to agile software development?

2. Analyze the notion of organizational change within the HOT|Human,

Organizational, and Technological|analysis framework.

3. Summarize how Plotkin’s framework is applied to change introduction in

software requirements and to organizational change.

12.5 Transition to an Agile Software Development
Environment

Since, as we have seen, agile software development introduces
HOT

changes in work

habits, when an organization wishes to transition to agile software development,

an organizational change is required.

Different approaches are suggested for these organizational changes in general

and for transition processes to agile software development in particular. For

example, Manns and Rising (2004) suggest 48 patterns for change introduction.

Christensen et al. (2006) propose four major categories of cooperation tools in

change processes: power, management, leadership, and culture. Choosing the

right tool, according to the authors, requires assessing the organization along

two critical dimensions: the extent to which people agree on what they want, and

the extent to which they agree on cause and effect, or how to get what they want.

Task

Review the frameworks for transition processes suggested in the above resources.

How are they compatible with the agile approach?

The notion of agile software development is usually introduced into an

organization by one of the practitioners in the organization. This person can

234 12. Change

come from any of several different hierarchical levels. Sometimes this person is

a developer who feels that something is wrong with the way software is

currently developed in his or her team or in the organization. Sometimes, this

person may be one of the team leaders who feels that he or she does not control

the process he or she is in charge of, and is brave enough to admit it. In yet

other cases, the notion of agile development is raised by a person with a higher

position in the organization who is not satisfied with the results of the current

software development process, hears customers’ complaints, and understands

the financial implications of this dissatisfaction. In most cases, many informal

conversations take place before the organization takes any action to start the

transition process to agile development.

Task

Can you suggest what topics are discussed in these informal conversations? What

role do they play in the transition process to agile software development?

After the decision is made by an organization’s management to examine the

suitability of agile software development for the organization, in many cases an

outside consultant is hired to assist and support the transition process. The

position of the consultant is important, because he or she will not be involved in

the organization’s politics and socialization and can see and analyze the develop-

ment process and the transition to agile development from a more objective

viewpoint. The role of the consultant in the transition process to agile develop-

ment is further elaborated in Chapter 13, Leadership.

12.5.1 Organizational Survey

One possible way by which the consultant can learn about the organization is

through an organizational survey, whose purpose is threefold: First, the survey

may help the consultant to understand the current situation and status of soft-

ware development in the organization. Second, the survey helps the consultant

become familiar with the organization’s terminology; the consultant’s familiarity

with this terminology will assist the assimilation process, if it is decided to

transition to agile software development. Third, a survey may help in the decision

as to whether the agile approach fits for the organization at all; if it is found that

agile software development might fit the organization, the data gathered during

the survey can be used for the decision on how to initiate the transition process to

agile software development. Based on such a survey, however, it can also be found

that either the agile process does not fit the organization or that a change is not

needed at all for the organization.

12.5 Transition to an Agile Software Development Environment 235

In what follows we suggest an organizational survey process carried out by a

consultant who is hired by a software organization to check the suitability of the

agile approach for its software development process.

Stage 1. Meeting(s) with the people who initiated the transition

process to agile software development. The target of this meeting(s) is to

clarify the organization’s needs, set mutual expectations, describe the nature of

the organizational survey, and explain the process that will follow the survey, if it

is decided to start a transition process to agile software development. In this

meeting(s) the consultant usually meets the people who will control and supervise

the transition process, if it is decided at all to transition to agile software

development.

Stage 2. Two days of interviews and meetings with people from the

organization who hold different roles and belong to different levels and

teams. The main purpose of these interviews is to get as diverse, multidimen-

sional, and wide a picture as possible about the current situation of software

development in the organization. If possible, it is recommended that people from

outside the organization be interviewed also.

Each interview/meeting starts with a short description of the goal of the

interview, its structure, and its length|one hour. The interviewee is assured

that the information he or she shares will be used only for the survey purposes

and will be kept anonymous. Then the practitioner works on short and quick

questionnaires for about 15 minutes. The idea is to guide the practitioners

through a reflective mode of thinking (see Chapter 7, Learning, and Chapter 11,

Reflection). These questionnaires should be adjusted for each organization

according to its nature and specific characteristics.

Next, an open interview takes place in which the practitioners are asked to

reflect on and describe their software development experience in the organization.

The interview is guided by questions such as: Describe the development process

that is currently applied in your organization. What is your role in this process?

What are the process’s benefits? What are its pitfalls? Describe a successful story

of software development by your team. Describe a story that shows the failure of a

software project that your team experienced. How would you improve the devel-

opment process of your organization? How would you describe the knowledge

flow and sharing in your team? In your project? In the organization?

These questions usually lead to follow-up questions about the development

process in the organization. Additional questions can be asked, of course, if

needed.

Stage 3. Data analysis. The data gathered during these two days are

analyzed by the consultant. The analysis findings are used first for an examina-

tion of the current software development status in the organization, and second,

to determine whether the agile approach for software development fits the

236 12. Change

organization. If it is decided to transition to agile software development, the

survey’s results guide the selection of the team which will start the transition

process.

Stage 4. Presentation of the survey results to the organization’s

management. After the data are analyzed, a meeting with the organization’s

management takes place, in which the survey findings are presented by the

consultant, a written report is submitted, and the continuation of the assimilation

process is determined.

In the report (both written and verbal) it is recommended to start with some

details about how the survey was conducted (when, how, who was interviewed).

Then the focus should be placed on the main observations (high level description

first, details latter; see chapter 8, Abstraction), the benefits of the current devel-

opment process in the organization, the pitfalls/problems of the current develop-

ment method, and, of course, general thoughts about the process continuation.

The conclusion should summarize in a high level description what has been

presented. It is recommended that the human, organizational, and technological

(HOT) aspects be addressed in the presentation and in the written report, in order

to provide a wide and comprehensive picture as possible of the development

process that takes place at the organization.

During the presentation it is important to stop from time to time to hear the

management’s reaction and to answer questions if raised. It is reasonable to

assume that if the survey’s findings are not positive, the management represen-

tatives will express some resistance, and sometimes even anger. Such reactions

should be understood and can be approached in different ways. For example, it

can be recommended that they take advantage of this opportunity to learn about

the opinions of the practitioners who work in the organization with respect to

their working environment in general and their software development process in

particular.

Task

How is Plotkin’s framework for coping with change expressed in the way an

organizational survey is conducted?

12.5.2 Case Study 12.1. A Report of an Organizational Survey

This case study presents the report of an organizational survey conducted in a

large company whose management decided, based on the survey results, to start

implementing the agile approach. As just described, the written report was

12.5 Transition to an Agile Software Development Environment 237

submitted together with a presentation to the organization’s management. We

should mention that many of these findings are not unique to this company and

have emerged in other organizational surveys.

Company A—Organizational Survey about Software
Development Processes

The survey is based on:

l three meetings with the organization’s management at the company sites;

l interviews with about 20 practitioners with different roles in the organization;

l questionnaires which were filled in by about 30 practitioners in the

organization.

The report focuses on different aspects of the development process and is divided

into two parts: findings and recommendations. Each of these parts addresses four

aspects: customers, development methods, development culture, and teams.

Findings

Customers

l Customer perception: Customer satisfaction is considered one of the main

parameters for software quality. At the same time, however, when customers

are confident with respect to their requirements, resistance is raised.

l Only a few team members are in contact with the customers|usually team

leaders and system analyzers. At the same time, however, contact with the

customers is desired by all the practitioners, while code writing and tests are

less attractive activities.

l The need for a defined working process with the customers is expressed by

different practitioners.

l Requirements: Problems in requirement understanding, incompatibility with

the customer’s requirements, assumptions added to the customer require-

ments, ongoing interaction with the customers not taking place, developers

humiliated in front of customers when it turns out that what they have

developed doesn’t fit the customer’s requirement.

l Contracts: A need for a change in the contracts signed with the customers is

expressed.

238 12. Change

Development methods

l Absence of a defined development methodology.

l Absence of development resources.

l Testing: No automatic tests, absence of an ordered testing process, many

bugs, testing schedule is not met.

l Specification: The specification definition process sometimes takes too long

without coding, sometimes specifications do not exist at all, in other cases

there are failures in the requirement formulation and in the design.

l Changes: Absence of a methodology for change introduction, changes cause

delays, it is unknown what the number of changes is.

l Absence of measures.

Development culture

l Time management: Wasted hours and unexploited time, at the same time|

short schedules are promised to the customer.

l Problem in knowledge and information maintenance, management, and sharing.

Teams

l Team leaders have too many roles.

l Developers are evaluated by the number of bugs they fix.

l Roles are not clearly defined.

l Developers are overloaded.

l Importance is attributed to reflective processes.

Recommendations

Note: Most of the following recommendations have been suggested by the

practitioners who participated in the organizational survey.

Customers

l Set a responsible and reasonable development process.

l For projects with users|build a user forum.

12.5 Transition to an Agile Software Development Environment 239

l For each project, define the customer and increase the customer involvement

in the development process.

Development methods

l Establish a development method that encourages an organized work process.

l Define a reasonable schedule.

l Assign leadership with responsibility and professional experience.

l Establish a mechanism for code quality review.

l Improve the test quality.

l Integrate reflective meetings on a regular basis.

Development

l Ensure organized and fair work distribution among the developers.

l Establish a culture of adhering to deadline/scope/quality.

Teams

l Improve cooperation between teams as well as communication among

teammates.

l Define measures for team and individual evaluation (not necessarily by the

number of bugs).

l Grant responsibility to team members for the product quality.

l Establish an organized process of information sharing.

General Message

Management commitment to the development processes should be reflected by:

l development policy;

l development processes (including measures);

l project transparency to all project stakeholders, mainly developers and

customers.

240 12. Change

End of Organizational Survey

Tasks

The following tasks address Case Study 12.1.

1. What can be learned about the organization in which the above organiza-

tional survey was carried out?

2. Based on the report, can you describe the current development process

applied in the organization?

3. How would you address each of the recommendations suggested in the report?

4. Would you recommend that the organization’s management start a transi-

tion process to agile development?

5. In your opinion, how did the organization’s management react to the fact that

most of the recommendations were suggested by the practitioners who parti-

cipated in the organizational survey?

6. Can you speculate which items in the report would have influenced the

management of the organization to decide to start a transition process to

agile development?

7. Analyze the writing style of the report. In your opinion, why was this style

chosen?

8. How is the HOT|Human, Organizational, and Technological|analysis

framework for the software development environment expressed in this

report?

12.5.3 Case Study 12.2. Applying an Agile Process
to a Transition Process

This case study illustrates how agile practices can be applied for non-software

projects in this case, for the tarnation to new software development process. For

further elaboration on this idea, see Chapter 10, Globalization.

Sharon was in charge of the development of a software system used by

thousands of users and developed by 60 highly skilled developers and testers.

The 60 practitioners were organized in a hierarchical structure of smaller teams.

To foster communication, we also use the term team when we refer to the group of

60 practitioners.

12.5 Transition to an Agile Software Development Environment 241

Sharon was assigned by the organization’s management to change the

current development process to one that would enable a rapid response to

customers’ change requests. Sharon had one year to implement this change.

In brief, Sharon’s task was to lead an organizational change the highlight of

which would be the adoption of an unknown (in the beginning) software

development process.

The management supported this process and specifically declared that while

reduction in functionality might be accepted, quality and fitness to customers’

needs would not be compromised.

Since Sharon’s team was big, such a change could not be implemented at once.

Rather, it would need to be performed gradually and to be monitored and planned

accordingly.

Sharon asked two representatives of a consultancy company to help her

plan the transition to the new development process (that had not been

defined yet). In other words, Sharon asked them to help her plan a non-

software project that aimed at the assimilation of a new (as yet unknown)

software development process. This process of assimilation should consider

the individual’s interests and the resistance each individual and party might

raise, as well as the harmony and synergy between the different changes that

would take place with each team in each of the process phases.

Sharon started the actual work by meeting with the consultants. When

Sharon described the process according to which the team currently worked,

the following basic problems were identified:

l Too long a feedback process: In some cases it took a year and a half to get

feedback from users who had asked for a change. In many cases no feedback

was received from the users at all. In yet other cases when feedback was

received and addressed, it was no longer relevant.

l Only a few people communicated directly with the customer; developers did

not have any contact with the users.

l Intercommunication between team members was cumbersome.

l Each developer worked at one abstraction level: Developers’ roles were very

narrow and forced them to stay at one specific abstraction level (such as code

level or design level) during the entire development process.

l Too big (75%/25%) a nondevelopers/developers ratio: more specifi-

cally, only small number of people actually wrote code while all the

others worked on requirement gathering, design activities, etc. This

structure was, in fact, part of the one abstraction level problem

described before.

242 12. Change

l Resistance to change: The source of this resistance was people’s worries about

losing some of the authority they had in the current organizational structure.

The team members, who did feel a need for change, were too low in the

hierarchy, and therefore their ideas were easily blocked by their superiors.

l No personal responsibility: In other words, it was not clear who was in charge

of what.

l Lack of time to deal with all these problems.

As a preparation for this transition, a task force of 10 volunteers was estab-

lished, whose aim was to formulate and plan a process at the end of which the

entire team would work according to the new yet-unknown software development

process.

The task force was composed of representatives from all team levels. It met

every two weeks and worked according to the following agile practices. (Note that

the agile approach was applied for a planning project and not for a software

development process.)

l Small versions and iterations were defined.

l The customer’s side (Sharon) was constantly represented.

l Customers’ stories were gathered and divided into iterations.

l Customers’ stories were broken down into specific tasks.

l Tasks were assigned at each meeting to each of the task force members. The

members estimated the time needed for the task performance.

l Stand-up meetings took place at the beginning of each meeting.

l Special roles were assigned to the teammates in order to control the process.

l Tests were defined in order to check whether the customers’ stories were

performed as required.

Thus, for example, a planning session took place in the first meeting, when

Sharon played the customer of the transition project, and the different assign-

ments (such as reading and learning relevant material, mapping the project’s

current organizational structure, etc.) were allocated to the task force members

for the first two weeks’ iteration.

The second meeting, which took place after two weeks, started with a stand-up

meeting in which each member of the task force reported on the tasks he or she had

accomplished during the past two weeks. Then the following roles were assigned:

coach, tracker, on-site customer, and those in charge of acceptance testing, pre-

sentations, documentation, design, and code effectiveness and correctness. Since

12.5 Transition to an Agile Software Development Environment 243

the project was a planning project and not a software project, the roles were

defined slightly differently from their description in Chapter 2, Teamwork.

Next, the task force members presented their first iteration products on which

they had worked during the previous two weeks. Then a planning session for the

second iteration of the first release was facilitated. The meeting ended with a

retrospective session of 20 minutes (see Chapter 11, Reflection), in which topics

such as the following were discussed: the increased ability to cope with many tasks

if they are planned, allocated, and carried out properly, and the fitness of this

mode of work for the task force. The first voices of resistance were heard.

So far three teams of this projects had started working in accordance with an

agile process, and scalability issues started to be discussed at the project level.

Tasks

1. Analyze Case Study 12.2 using Plotkin’s framework of coping with change.

2. Analyze Case Study 12.2 using the HOT|Human, Organizational, and

Technological|analysis framework.

12.6 Change in Learning Environments

This meeting is part of the development phase of the third iteration. As with

meetings 9 and 10, which were dedicated to the development of the second itera-

tion, the academic coach can participate in this meeting and take the opportunity

to assess the project’s progress at both the team and individual levels.

12.6.1 Introducing the Teaching of Agile Software
Development

We use Plotkin’s framework for showing how the teaching of agile software

development can be introduced into academia. It is relevant for cases in which a

department wishes to let its students experience the development of projects in

team of 10{12 students in an agile process, as is described in this book.

12.6.1.1 Reducing the Change Scope—Space Reduction

Start the assimilation process with one course. Dedicate a development work-

space, such as the studio, for each student team.

244 12. Change

As presented in Chapter 1, Introduction to Agile Software Development, it is

advisable, in order to ease the academic coaches’ adoption of the new coaching

environment, to offer in the first semester of the transition projects that had

already been developed in previous semesters and to adjust the scale of such

projects to team sizes of 10{12 students. This way the academic coaches can

focus on the new coaching environment without being distracted by technical

issues. In the following semesters, when the coaching team feels more comfortable

with the framework, new topics for projects can be introduced.

12.6.1.2 Reducing the Change Scope—Time Reduction

In an academic environment, the implementation of this idea is immediate and

natural, since semesters determine the time framework. As is illustrated in this

book, the semester is divided into three development iterations.

12.6.1.3 Join the Change—Diversity

Form diverse student teams, since it is more likely that in diverse teams some of

the students will like the change. The same idea should be applied as well for the

selection of the team of the academic coaches.

12.6.1.4 Join the Change—Knowledge-Gaining Devices

Encourage ongoing reflective processes (on the individual level and the team

level) both with the students and with the academic coaches. In addition, share

with the outside environment what goes on in the transition process, listen to its

reaction, and navigate the assimilation process accordingly.

Additional details about the transition process to agile software development

as it takes place in academia can be found in Hazzan and Dubinsky (2003) and in

Dubinsky and Hazzan (2005).

12.6.2 Two-Day Workshop

Agile software development can be introduced in a condensed form of a two-day

workshop. After the general description of the workshop, we describe how the

workshop can be adjusted for the introduction of agile software development to a

group of academic coaches.

12.6 Change in Learning Environments 245

In the two-day workshop presented here, agile software development is intro-

duced while enabling the participants to experience as far as possible the actual

construction of a software system. The idea is to show the participants just how

much can be achieved in two days if the planning and time management are

conducted properly, while paying attention to the customer’s needs. In order to

achieve this goal within the time limit, during the workshop the participants

complete the development of the first iteration of a software system of their

choice. In addition, reflective processes are conducted, and a discussion is held

on the suitability of agile software development for the organization in question.

The pedagogy that guides this workshop is the same pedagogy reflected in the

teaching and learning principles introduced in the different chapters of this book

(for a complete list of these principles, look at Chapter 14, Delivery and

Cyclicality). There are, however, several additional useful teaching principles

which are especially relevant for short presentations of agile software develop-

ment such as this two-day workshop.

Group size. The preferred group size for this workshop is 6{12 participants.

The upper limit (12) is defined to reflect realistic team sizes in the software

industry. The lower limit (6) is required because this number of participants

provides a feeling of how agile development works for a team. In addition, all

participants are required to attend the full two days. If a participant is forced to

leave the workshop for some unexpected reason, it is a good opportunity to discuss

the analogy of such a case to real life situations.

Sustainable pace. It is important to make sure that the development

performed during the workshop is conducted at a reasonable pace. The fact that

the first iteration is developed within two days serves to reinforce the partici-

pants’ feelings about the potential contribution of the agile approach to the

software development process.

Workshop site. The host organization should equip the room in which the

workshop is to take place with a large table for the planning session, computers,

flipcharts or a whiteboard, and a coffee corner.

Narrative. In such short term presentations, it is not sufficient to merely

describe those practices which there is no time to experience. As an alternative

to a technical explanation of these practices, a storytelling approach, which

has become popular in management process, can be adopted. In this spirit, the

agile practices (in various levels of detail) can be presented using the following

story.

The story describes two days in the life of a software team member working in

an agile environment: one Business Day (see Chapter 3, Customers and Users)

and one development day. In the course of the story, the audience is invited to

envision themselves in the environment described and to compare it continuously

with their own current software development environment. As in a real story, in

246 12. Change

Table 12.1 Schedule of the first day of a two-day agile workshop (# [2003] IEEE)

Time Activity

10:00{10:30 Introduction

30 minutes The day starts with the presentation of the two-day story and references are
made to what the participants can expect to experience during the next two
days

10:30{11:00 Selection of a topic for the project

30 minutes The participants decide on the software project they are going to develop in the
workshop. The idea is to show that any project can be developed using agile
software development

The workshop participants are asked to suggest ideas for the software project
and then take a vote on the preferred topic. The person who suggested the
selected topic becomes the main customer (see Chapter 3, Customers and
Users) in the later stages. In case of disagreement among the audience with
respect to customer stories’ preferences, he or she will decide on these
preferences

11:00{13:00 Planning session

2 hours All stages of the planning session (see Chapter 3, Customers and Users, and
Chapter 4, Time) are performed: telling of customer stories, allocation of
releases and iterations, simple design of the first iteration, breakdown into
development tasks, allocation to developers, time estimation, and load
balance. During all of the stages, rather than explaining the rules of the game
up front, they are introduced during the session itself (see Teaching and
Learning Principle number 3, Explain while doing). Such an approach
enables the participants to immediately apply what they hear. Additional
guidelines used during the planning session include:

Telling customer stories

The participants are encouraged to add stories. Since most of the participants
have no previous experience being a customer, some feel uncomfortable with
this request. When participants are encouraged to tell stories and they do
start to add stories, they may begin to sympathize with this task, which
customers are usually asked to perform

Distinction between the customer and the end user is made (see Chapter 3,
Customers and Users). Sometimes, perhaps due to lack of experience,
participants confuse these two roles. This stage of the planning session offers
an appropriate opportunity to distinguish between the two roles

Role assignments

The roles presented in Chapter 2, Teamwork, are assigned for the entire duration
of the iteration. Specifically:

Customer: It is important that the role of the customer is not played by the
workshop’s facilitator

Team Coach: This role, too, must be played by one of the workshop participants
and not by the workshop facilitator. The team coach is in charge of the actual
development of the software, as in real agile teams; whereas the workshop
facilitator is in charge of managing the workshop itself.

The first iteration

After the allocation of customer stories into releases and iterations, the focus is
placed on the first iteration. With respect to this iteration, the following
issues are discussed with the participants:

the need to split a customer story;

12.6 Change in Learning Environments 247

Table 12.1 (continued)

Time Activity

the importance of clarifying with the customer topics that appear to be unclear;

the importance of documenting the process that takes place during the planning
session (decisions, questions, clarifications, etc.); and

the role of the whiteboards as a means of communication.

13:00{13:30 Lunch

30 minutes

13:30{14:00 Discussion of problems using metaphors

30 minutes Metaphors can be used in order to increase the participants’ awareness of
problems that may arise during the process of software development (see
Chapter 3, Customers and Users). Metaphors can be used also in order to
improve the team members’ understanding in cases in which they are
relatively familiar with developed applications

14:00{15:00 Planning session (Cont.)

1 hour Delve into the development tasks

Time estimation

When participants are asked to estimate the development time for each task, it is
important to legitimize time for learning the material needed for the
accomplishment of the tasks in the first iteration

Participants’ awareness should be increased with respect to the learning value of
time estimation

An explanation of how testing (see Chapter 6, Quality) is dealt with in the time
estimation should be presented

Total development time

The total estimated development time is summed up by one team member.
Participants get a better sense of this idea when it is done by a participant
rather than by the workshop facilitator. A factor of 1.5 is introduced into the
calculation to account for pair programming

The time available during the condensed format of the workshop is calculated.
For example: 8 people � 5 development hours in the second day = 40
development hours. This number (40) is compared with the total number of
hours estimated for the development tasks of the first iteration; stories are
added or removed accordingly

The concept of load balance is addressed. It is important to ensure that for such a
short workshop the difference in loads between team members does not
exceed 1.5 hours

15:00{15:45 Acceptance tests

45 minutes Acceptance tests are discussed in small groups and the set of acceptance tests are
determined by the entire team

15:45{17:00 Reflection on the first day

75 minutes The day ends with a retrospective session on the first day (see Chapter 11,
Reflection). Specifically, it is stimulating to perform this retrospective by
addressing the idea of ‘‘changing hats’’ (team members, learners of a new
software development method, customers) and the main questions that arise
with respect to each hat

In preparation for the second day of the workshop, participants are asked to start
thinking about agile-related topics that in their opinion can be implemented
in their own organization

248 12. Change

addition to presenting the agile software development by means of the main

character’s actions, it is advisable to spice up the story with various details

(such as a description of the site where the story takes place|the setting of the

tables and the computers in the development environment, the information

posted on the whiteboards, etc.).

Table 12.2 Schedule of the second day of a two-day agile workshop (# [2003] IEEE)

Time Activity

10:00{10:15 Stand-up meeting. The participants are requested to explain in about
three sentences what they learned in the first day of the workshop
and to share one of their ideas regarding the implementation of the
agile approach in their workplace

15 minutes

10:15{10:45 Testing in agile software development

30 minutes Short explanation and demonstration of test-driven development
(TDD). See Chapter 6, Quality

Discussion about the benefits and pitfalls of TDD

10:45{13:00 Development of the first iteration. At this stage, the team coach enters
the picture. It should be clear to the participants that they are
responsible for making relevant decisions and completing the
development of the first releases by the end of the day

2 hours and 15
minutes

13:00{13:30 Lunch break

30 minutes

13:30{15:15 Completion of development and integration.

1 hour and 45
minutes

15:15{15:30 Presentation of first iteration. If the first iteration is ready, it is presented
to the ‘‘customer’’ and to the workshop facilitator. If the first
iteration is not ready, the opportunity is taken to discuss the reasons
that led to this situation. It is also a good opportunity to conduct
code review and address related topics, such as coding standards and
refactoring

15 minutes

15:30{17:00 Reflective session. In this stage, participants are asked to suggest topics
and activities they performed well, and activities that they feel they
could have performed better. The topics are listed on the board in two
columns: human- and organizational-related topics and technically-
oriented topics. The participants are not yet privy to the
classification criteria. When no more new ideas are suggested, the
participants are requested to offer titles for the two columns. Usually,
at some stage, the above categorization is suggested. One clear lesson
that emerges from this session is that the main issues are related to
human, technical, and organizational aspects of software
development, and not to technological aspects only. Table 12.3
illustrates one outcome of such a reflection process

1.5 hours

Implementation of agile software development in the participants’
organization. This last part of the workshop is dedicated to a
discussion in which the participants present their thoughts on the
implementation of agile software development in their organization
in general, and in their team in particular

12.6 Change in Learning Environments 249

Tables 12.1 and 12.2 present the schedules for the two-day agile workshop. In

order to illustrate how the days look in practice, hour notations are added to the

workshop plan.

As can be observed from Table 12.1, the main role in the first day is that of the

customer and the message to be conveyed in this day is that the customer is an

integral part of the development environment.

Prior to the beginning of the second day of the workshop, the customer stories

are presented on the whiteboard according to the releases and iterations that were

determined the previous day.

When the participants enter the workshop room at the beginning of the

second day, this presentation illustrates very clearly how the whiteboard can

serve as a communications tool. The agenda for the second day is also presented

on the whiteboard.

Table 12.2 presents the schedule for the second day of the two-day agile

workshop, together with an explanation of the main activities conducted during

each time slot. The main role in the second day is that of the coach.

12.6.3 Two-Day Workshop Format for a Team
of Academic Coaches

When the two-day workshop is conducted with a team of academic coaches

who are not familiar with agile software development, but need to start guiding

students in the software development process using the agile approach, several

additional topics can and should be discussed during the workshop. For a

comprehensive explanation of such a workshop, see Dubinsky and Hazzan

(2003).

Telling customer stories. Discuss with the academic coaches the fact that

in educational environments some students tend to refrain from adding

Table 12.3 Example of the reflection stage conducted at the end of the second day of an agile
workshop (# [2003] IEEE)

Human and organizational topics Technological topics

Activities we
were good at

Establishment of a positive atmosphere Java

Team work Software development

Learning Test-first

Cooperation

Working in pairs

Activities we
can improve

Team management Software detailed-design

Additional learning Coding while relating to design

250 12. Change

customer stories, since they assume they will have to develop all of the sug-

gested stories. In such cases, it is important to explain to the students that the

final decision about which stories will be introduced into each iteration is made

according to the available time and the number of students on the team.

Accordingly, the students should receive a clear message that they need not

worry about adding customer stories.

Student teamwork. Discuss with the participants the ‘‘free riders’’

phenomenon and ways in which it is possible to grade projects so as to

overcome this problem. One suggested solution is to establish a grading

policy that takes into account both the personal contribution to

the software project as well as the team achievement (see Chapter 2,

Teamwork).

Reflective sessions. In the pedagogically-oriented workshop, it is important

to address also pedagogical topics such as learning through activity (see

Chapter 7, Learning), awareness of metaphors (see Chapter 3, Customers and

Users), students’ self-learning of new topics, and knowledge sharing among team

members.

12.7 Summary and Reflective Questions

1. Review special change-related events that occurred during the software

development process in the studio during the semester. Can they be consid-

ered as successes? As failures? Can they be explained in terms of Plotkin’s

framework of coping with changes?

2. In your opinion, is an evolutionary perspective on software projects useful? In

what sense? How might an evolutionary perspective help improve software

development processes?

3. Examine the course structure (taught by this book) within Plotkin’s frame-

work. With what changes does the course deal? How does it do that?

4. Explore the connections between the ideas presented in this chapter and

Section 5: Management, of the Code of Ethics of Software Engineering,

presented in Chapter 9, Trust.

5. Construct two case studies about software development projects that illus-

trate Plotkin’s framework for coping with change|one demonstrating a

successful case; the other demonstrating a case in which a transition to the

agile process did not take place or failed. You can look for such case studies in

the software engineering literature.

12.7 Summary and Reflective Questions 251

12.8 Summary

One of the main ideas of this chapter is the legitimization of agile software

development for change introduction. We use Plotkin’s framework for coping

with change to explain the agile approach towards change. We delve into the

details of the transition process to agile software development, reviewing how an

organizational survey can be conducted, describing two case studies about the

transition to agile software development, and outlining a two-day workshop on

agile software development.

References

Christensen CM, Marx M, Stevenson HH (2006) The tools of cooperation and change. Harvard
Bus Rev 84(10):72{80, 148

Dubinsky Y, Hazzan O (2003) eXtreme programming as a framework for student-project
coaching in computer science capstone courses. Proceedings of the IEEE international
conference on software|science, technology & engineering, Herzelia, Israel, pp 53{59

Dubinsky Y, Hazzan O (2005) A framework for teaching software development methods.
Comput Sci Educ 15(4):275{296

Hazzan O, Dubinsky Y (2003) Teaching a software development methodology: the case of
extreme programming. The proceedings of the 16th international conference on software
engineering education and training, Madrid, Spain, pp 176{184

Hazzan O, Dubinksy Y (2005) Clashes between culture and software development methods: the
case of the Israeli hi-tech industry and extreme programming. Proceedings of the agile 2005
conference, IEEE computer society, Denver, Colorado, pp 59{69

Manns ML, Rising L (2004) Fearless change: patterns for introducing new ideas. Addison-
Wesley, Reading, MA

Plotkin H (1997) Darwin machines and the nature of knowledge. Harvard University Press,
London

252 12. Change

13
Leadership

Abstract

Leadership is the ability to influence people, encouraging them to behave in a

certain way in order to achieve the group’s goals. Leadership is independent of job

titles and descriptions; usually, however, in order to lead, leaders need the power

derived from their organizational positions. There are different leadership styles,

such as task-oriented versus people-oriented, directive versus permissive, auto-

cratic versus democratic. While leaders can shape their leadership style according

to circumstances, followers might prefer different leadership styles depending on

their situation. Agile software engineering adopts a leadership style that empow-

ers the people involved in the product development process. For example, instead

of promoting the idea that ‘‘leaders should keep power to themselves in order not

to lose it,’’ the agile approach fosters the idea that ‘‘leaders gain power from

sharing it.’’ This idea is expressed, among other ways, by the transparency of

the agile development process that makes information accessible to anyone and

enables each team member to be accountable for and fully involved in the devel-

opment process.

13.1 Overview

Leadership is a social phenomenon required for achieving a group’s goals

(Nirenberg 2002). Various definitions for leadership exist. The evolution of

these definitions across the last century reflects a change in leadership conception:

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 13, � Springer-Verlag London Limited 2008

from leadership as a unilateral ability or process to control people, to leadership as

an influential relationship between leaders and followers (Ciulla 1998, Cooper

2005). In other words, leadership definitions have moved from the description of a

unique person who was born a leader, to comprehensive definitions for leadership

that refer to all people involved|leaders and followers, the interaction among

them, and the task in hand (Topping 2002).

In software development environments, leadership is required
HOT

for the manage-

ment of different activities in different situations. Management of a software

project includes team management, process management, quality management,

and cost management (Hughes and Cotterell 2002, Mayrhauser 1990,

Sommerville 2001, Humphrey 2000), and consists of constant assessment of its

own activities (Putnam and Myers 1997, Pulford et al. 1996). Table 13.1 outlines

these four categories; for each category several main activities are described. For

example, time management is part of process management. As discussed in

Chapter 4, Time, time is managed on different levels of the organization and for

different process phases. Specifically, one can manage his or her personal time

within a day or within a specific iteration/release; a team manages its time within

iteration/release; and a team that is composed of several teams should also

manage and coordinate its time within iteration/release.

In this chapter we explore leadership and leadership styles and examine how

leadership is expressed in agile teams. Since leadership is not just an expression of

a position in a hierarchy or a chain of command, project and team managers are

Table 13.1 Software development management

Management category Description

Team management Increasing awareness of human factors

Consolidating group and introducing organization values

Arranging suitable development environment

Updating organization and group knowledge base

Enhancing communication

Defining and implementing training programs

Process management Detailing process activities

Managing time

Implementing a role scheme

Obtaining metrics regarding time, resources, and events

Improving the process continuously

Quality management Defining quality goals

Defining and implementing quality procedures

Setting metrics regarding quality

Improving quality procedures

Cost management Defining and implementing a cost model

Referring to project, product, resources, and personnel aspects

Using a costing model as a metric for process status

254 13. Leadership

expected to be leaders and to coach their teams. We describe how agile develop-

ment methods refer to coaching in general and describe a case study about

academic coaching in particular.

13.2 Objectives

l Readers will become acquainted with the concept of leadership in general and

leadership styles in particular, and with how leadership is expressed in agile

software development environments.

l Readers will become acquainted with leadership levels and their impact.

l Readers will become familiar with the leadership role of the methodology

change leader.

l Readers will learn the practice of coaching agile teams.

l Readers will learn to assess leadership expressions in their environment and

evaluate leadership contributions to teamwork.

l Readers will gain the skills to evaluate how different agile notions and practices

enhance leadership.

13.3 Study Questions

1. What is leadership and how can its impact be measured?

2. Identify two leaders in your development environment. Why do you perceive

them as leaders? What do they lead? In general, what characteristics do you

use to identify leaders?

3. Based on your experience, what is expected from a team leader? For each of

these expectations, explain how the team leader should handle it and what

difficulties he or she may encounter in this process. Base your analysis on

examples of leadership styles you are familiar with.

4. Describe the coaching characteristics desired from an agile team leader. What

are the two characteristics you like the most? Why? What are the two char-

acteristics you dislike the most? Why?

5. Based on the previous chapters, describe two leadership mechanisms in agile

teams.

13.3 Study Questions 255

13.4 Leaders

Management and leadership are described as a continuous act
HOT

that aims to keep

the balance between characteristics that on the one hand dominate and control,

and on the other hand are inspiring and strive for creativity. Table 13.2 (adopted

from Huff and Moeslein 2005, originally from Drath 1998) presents the evolution

of leadership models, indicating a shift in leadership perception.

Tasks

1. In your opinion, what is the main change in leadership perception across time?

2. What leadership style suits you personally? Why?

3. Select two issues or scenarios in software development environments and

analyze them using the evolutionary model of leadership.

4. Select two agile notions and explain them using the evolutionary model of

leadership.

In software development environments, ‘‘Leadership is generally taken to

mean the ability to influence others in a group to act in a particular way to

achieve group goals’’ (Hughes and Cotterell 2002, 222). In Augustine et al. (2005)

an adaptive leadership is suggested for agile teams, including first, the ability to

adapt to changes (see also Chapter 12, Change); and second, the problem-solving

approach that considers all stakeholders to be skilled and valuable, relies on

autonomous teams, and minimizes up front planning to be able to adapt to

changes (see also Chapter 4, Time, and Chapter 7, Learning). It is important to

note that autonomous agile teams also have leaders who work in a leadership-

collaboration environment (Cockburn and Highsmith 2001). This means that in

many cases team members experience collegial relationships with the team leader,

not necessarily hierarchical ones.

Table 13.2 Evolving models of leadership (source: Drath 1998, 408) (Reprinted with permis-
sion of John Wiley & Sons, Inc.)

Ancient Traditional Modern Future

Idea of leadership Domination Influence Common goals Reciprocal
relations

Action of
leadership

Commanding
followers

Motivating
followers

Creating inner
commitment

Mutual meaning
making

Focus of leadership
development

Power of the
leader

Interpersonal
skills of the
leader

Self-knowledge
of the leader

Interactions
within the
group

256 13. Leadership

Referring to Table 13.2, the agile approach fits the ‘‘modern’’ and ‘‘future’’

leadership styles, on which we elaborate in what follows.

With respect to the idea of leadership, the notion of common goals in agile

teams is expressed mainly by the customers’ ongoing collaboration along the entire

development process; and by information transparency, which enables each team

member to know what these common goals are and to participate in the planning

and presentation meetings related to them. Reciprocal relations relate to high

levels of cooperation, confidence, and trust among team members. In Hazzan and

Dubinsky (2005), we use game theory to explain reciprocation in software devel-

opment environments by employing the prisoners’ dilemma (see Chapter 9, Trust).

Task

Describe three scenarios that exemplify reciprocation in agile teams. For each

scenario explain how reciprocation is achieved and expressed, and evaluate its

contribution to the development process.

With respect to the action of leadership (Table 13.2), inner commitment is

created and enhanced when using the role scheme, by which each team member

has an additional specific role that assists the project leadership (Dubinsky and

Hazzan 2006) (see also Chapter 2, Teamwork). Though team members are

committed, mutual meaning is still needed, i.e., the commitment should provide

a specific relevant and meaningful product.

The focus of leadership development aspect of Table 13.2 shows how the

leader’s position should be developed to improve leadership. While the three

first columns focus on the leader, the ‘‘future’’ column deals with the group and

its interactions. As the level of leadership increases, the group interactions lead

the team, i.e., the way team members communicate, reflect, and collaborate

enables the team to lead itself as if there were no leader, while, in practice, high

quality leadership exists.

Task

Explain the way group interactions form the focus of leadership development in

the agile environment.

13.4.1 Leadership Styles

There are several leadership styles in software development environments (Bruce

and Langdon 2000, Hughes and Cotterell 2002).

13.4 Leaders 257

The first and most common style ranges from dictatorship or autocracy to

democracy. The autocratic leader decides alone, while the democrat leader

involves the team members in decision making processes. In between these two

poles we have the analytic leader, who makes decisions based on data collection

and analysis, and the opinion-seeking leader, who seeks for the team members’

opinions in order to make a decision.

The second scale ranges from directive to permissive leadership. The directive

leader conducts close supervision of the implementation, while the permissive

leader encourages team members to have latitude. This scale also includes the

level of delegation a leader uses, i.e., the degree to which he or she delegates tasks

to team members.

Another scale is known as task-oriented leadership versus people-oriented

leadership. The former relates to the degree leaders are focused on the task in

hand; versus the latter, which relates to the degree leaders are focused on the

people involved.

Finally, emotional intelligence is a relatively new leadership style scale (Gole-

man 1998). Since human beings’ behavior is influenced by emotions, leaders can

elevate emotions as a tool to improve leadership.

Tasks

1. Select three software development teams that you are familiar with. For each

team describe its leadership style.

2. Discuss the characteristics of tightness (see Chapter 4, Time) with respect to

leadership styles.

13.4.2 Case Study 13.1. The Agile Change Leader

One of the roles in a software team is that of the methodologist, who guides the

team members how to follow the principles of their software development method

and is responsible for the method’s implementation (Dubinsky and Hazzan,

2006). This role definition stems from a team perspective, i.e., an insider to the

team who constantly lives the methodology (see Chapter 2, Teamwork).

This case study broadens the discussion of this role, focusing on what happens

in one specific organization in which several software projects and multiple teams

participate in a transition process to agile software development (see Chapter 12,

Change). In this case, the responsibilities and authorities associated with the role

of methodologist are extended.

258 13. Leadership

In general, an agile change leader, whom we call the methodology change

leader (MCL), can be found in almost any transition to agile development. The

MCL is an insider who knows well why change is required in his or her specific

environment and finds it worthwhile to adopt the agile spirit either as a whole

or only with regard to several of its practices. He or she is aware of the

problems in the organization with respect to software development, can in

most cases analyze them, and has reached the conclusion that the agile

approach can solve them with some degree of success. The MCL can belong

to the organization’s management or to one of the software groups. In any case,

the MCL is busy convincing the management to make the initial decision

towards adopting the agile approach. This process can sometimes take months

and even years.

In practice, the MCL is a kind of mediator between the different parties

involved in the transition process. The MCL understands all sides involved and

can put himself or herself in the shoes of either side.

The MCL role evolves gradually, since the MCL, as well as the other people

involved in the process, learn while implementing the agile approach daily. An

MCL should have enough patience and strength to lead a learning process that

has its ups and downs, in which, on the one hand, everyone knows that the MCL is

there for them, and on the other hand there are always some cynics who are just

waiting to watch how he or she falls. In addition, the MCL establishes a network

of team methodologists, who together serve as the backbone of the transition

process and later on support the sustainability phase (see Chapter 2, Teamwork

for scalability issues).

13.4.2.1 The Change Leader Model

In most cases, and as happened in this case study, when a large software devel-

opment company that wishes to explore the introduction of agile software devel-

opment into the organization, the MCL is placed in the center of this process. The

MCL model presented in what follows highlights the centrality of this role in such

transition processes. Based on it, we present several guidelines and specific

practices that address the way in which the person holding this role should

interact with the different players involved in the process.

As shown in Figure 13.1, the other entities in this model are the organization’s

management, the customer, the software team or teams, and consultants that

most companies hire to help with the transition process (see Chapter 12, Change).

The MCL role, which is the heart of the model, plays a key role in the

transition process, as is described in what follows:

13.4 Leaders 259

l The MCL serves as a knowledge center, who is aware of all information related

to the transition process, including plans, problems, and documents.

l The MCL serves as a leadership center in the transition process, who has the

ability to lead the process and the people involved in directions he or she sees

as being the best.

l The MCL serves as a communications center, who relays various kinds of

messages among the different entities.

Each of the relationship lines in the figure represents a different kind of

interaction and serves different purposes. The dashed lines represent interactions

that are not made via the MCL. The solid lines represent interactions with the

MCL. Note that since the MCL and the consultant are new to the organization

and appear in the organization as a result of the transition process, the only

interactions that existed prior to the transition were those depicted by the dashed

triangle between the management, the customer, and the team. Still, since this

model represents the transition, the relationship content of the triangle is changed

by the transition to agile development. Another observation that emerges from

using this model is that the MCL and the consultant are not related directly to the

customer; they do, however, provide the management and the team with gui-

dance and support on how to continue development according to the agile

approach in general and how to mange the customer collaboration in particular.

In what follows, we describe the MCL’s relationships in the model as they are

manifested in the management-team-consultant triangle. In general, the MCL

conveys the management’s needs to the other people involved in the process, and

returns feedback from the process to the management. In other words, the MCL

establishes a communication and feedback channel among the entities, as follows.

Team

ConsultantManagement

Methodology Change
Leader

Customer

Figure 13.1 Positioning the methodology change leader.

260 13. Leadership

ManagementMCLConsultant. Usually, there is no direct relation-

ship between the consultant and the management other than via the MCL. When

the MCL is absent and is replaced by someone else from the management, both

sides will update the MCL on all that transpires. Specifically, in the Management

MCL Consultant chain:

l Management $ MCL: The MCL works with the management in order to

reach an understanding of the consultant’s role and scope of authority,

including the definition of the contract between the organization and the

consultant. In general, the MCL is usually more concerned with the manage-

ment’s side.

l Consultant$MCL: The consultant learns the measures used by the manage-

ment to gauge the success of the process. The consultant reports to the MCL

on all major events that the management should be aware of.

Team $ MCL $ Consultant. The main and most noticeable character-

istic of this relationship is ‘‘presence;’’ the MCL is present in as many meetings as

possible between the team and the consultant, especially during the methodology

launching phase. Specifically, in the TeamMCL Consultant chain:

l Team$MCL: The MCL is involved in the selection of the best team to start

the process in the organization, as well in the selection of any subsequent

teams. The MCL encourages the team during the process, which is guided by

the consultant, and delivers the message that the consultant’s work is part of

the management initiative. The MCL also listens to the teammates in order

to understand their difficulties (some of which can be solved using the

organization’s internal resources).

l Consultant$MCL: The MCL conveys feelings, problems, and requests that

emerge in the team and works with the consultant to refine the way of work

accordingly. In a sense, the MCL serves as the organization’s ‘‘sensor.’’ The

consultant collaborates with the MCL in fostering the implementation of the

agile methodology.

TeamMCLManagement. The Team$ Management relationship

exists under all conditions and, in the transition process, receives additional

attention in order to ensure success. Specifically:

l Team $ MCL: The MCL brings the management’s vision to the team and

shares with it the management’s praises as well as its concerns. The team uses

this interaction to deliver their fears and concerns. The MCL also searches for

a team methodology leader (methodologist) in the different teams under-

going the transition process. Thus, the MCL builds a network of

13.4 Leaders 261

methodology change leaders and receives constant feedback from the field on

the agile implementation.

l Management $ MCL: The MCL delivers feedback from the team to the

management and together with the management deals with special events

concerning the team. The MCL is the management’s representative in the

Business Day of each iteration, and updates the management regarding the

customer’s level of satisfaction.

Tasks

1. Analyze the model relationships by the leadership styles presented in

Table 13.2.

2. What characteristics should we seek for when hiring an MCL?

3. In your opinion, how can the agile approach assist the MCL in evaluating his

or her role?

13.4.2.2 The Model Dynamics

The entities in the model are all people who are undergoing transition; thus, some

level of dynamics can be expected. The MCL entity, in particular, is a dynamic

entity that can move according to the subject matter. We now use Plotkin’s

notion of change (presented in Chapter 12, Change) and analyze two field

scenarios to demonstrate the dynamic characteristic of the model.

Scenario 1. Several teammates talk with the MCL about their concerns with

the way their role was changed. It is clear to the MCL that in order to improve the

software development process in the team, these changes in role definitions are

essential. The MCL tries to encourage them to see the positive sides of the change,

but some still suggest they should leave the organization. The MCL decides that

this situation requires the help of both management and consultant. Using this

help, the MCL entity leans towards the team entity in order to solve the problem

(see Figure 13.2).

Analyzing this scenario within the framework of coping with change, we can

see the use of a knowledge-gaining device in the form of ongoing feedback. The

MCL uses various pieces of advice received from the other entities involved in the

process and focuses his or her efforts on solving an isolated problem.

Scenario 2. During the Business Day the customer expresses deep concern

about the progress of a production release of a specific component of the devel-

oped product. The MCL feels that not enough is being done to address this issue

262 13. Leadership

and suggests a plan to ensure that the production release is dealt with within the

next few iterations. The MCL further stresses that this is the management’s wish.

The consultant suggests a measure to be used specifically to advance this compo-

nent’s progress, and the team’s tracker adds it to the board for daily viewing.

Figure 13.3 shows the MCL dynamics in this case.

Analyzing this scenario within the framework of coping with change, we can

see that the MCL uses time and scope reduction in order to solve the problem

within a few iterations. The MCL also adopts the knowledge-gaining device of

measurements in order to control the process.

Tasks

1. Suggest two more scenarios that demonstrate the model dynamics and ana-

lyze them using Plotkin’s framework of coping with change (presented in

Chapter 12, Change).

2. Analyze the MCL role within the HOT|Human, Organizational, and

Technological|analysis framework.

Team

ConsultantManagement

Customer MCL

Figure 13.3 Leaning towards the customer.

Team

ConsultantManagement

MCL
Customer

Figure 13.2 Leaning towards the team.

13.4 Leaders 263

13.5 Coaches

Coaching is often compared to sport coaching where the coach recruits players

and develops their talents, implements strategies, establishes teamwork, and

guides the players on how to improve their role performance (Topping 2002).

The sport coach is measured only by the number of wins. In the case of a loss, the

sport coach is considered the person most accountable for the failure.

In software development projects, the coach is the team leader. The agile

approach relates to coaching as the ‘‘balance between being part of the team and

having an independent perspective’’ (Beck and Andres 2004, 143). According to

the perspective presented in Chapter 7, Learning, coaches improve their job

performance during its actual accomplishment. The coach deals with communi-

cation problems and encourages the implementation of practices that enhance

product and process quality (see Chapter 6, Quality). ‘‘A coach is responsible for

the process as a whole, keeping the team working at a sustainable pace and

continuing to improve . . . a coach should encourage independence, not depen-

dence. A good coach moves on a little before you think you’re ready and leaves

behind a team that finds itself firmly on a path to sustainable, profitable, stable,

fast, fun software development’’ (Beck and Andres 2004, 143{144).

Tasks

1. Suggest three characteristics for a software team coach. For each character-

istic, explain how it relates to the agile notions with which you are familiar.

2. Write a work procedure which describes the agile coach role. The work

procedure should include the role goals, responsibilities, guidelines, and illus-

trative scenarios.

3. Referring to the work procedure above, suggest a way to evaluate the coach

role. The evaluation description should include criteria for evaluation, ways

to collect the required data, and methods of data analysis.

4. Analyze the coach role within the HOT|Human, Organizational, and

Technological|analysis framework.

13.6 Leadership in Learning Environments

The atmosphere in this weekly meeting is characterized by positive stress and

excitement towards the end of the semester. No special activity is planned with

the academic coach. It is, however, an excellent opportunity for him or her to be

264 13. Leadership

involved in the process, observe the group work as well as the individuals’ con-

tributions, and evaluate the product integration.

Students work to complete their development tasks and are busy with the

integration process. They also complete their test-driven development exercise

(see Case Study 6.4 in Chapter 6, Quality) and summarize their activities regard-

ing their role.

In addition, the release presentation, scheduled for the next week, is discussed.

See Chapter 14, Delivery and Cyclicality.

13.6.1 Teaching and Learning Principles

The inspiration for the nature of the software development approach is a teaching

principle that is highly related to leadership in learning environments. In

Chapter 1, Introduction to Agile Software Development, this principle was first

introduced. Here we further connect it to leadership.

Teaching and Learning Principle 1: Inspire the Nature
of the Software Development Approach

Leaders should inspire the software development approach instead of lecturing

about it. This way the team members practice communication, reflection, and

collaboration, leading themselves with the inspiration of high quality leadership.

13.6.2 Case Study 13.2. A Coaching Framework

This case study (based on Dubinsky and Hazzan 2003) presents a coaching

framework, based on a reflective process (see Chapter 11, Feedback) conducted

by a team of four coaches, who guided the development of agile software projects

in academia during a full academic year. This coaching was performed in line with

the academic coach description presented in Chapter 1, Introduction to Agile

Software Development. For simplicity purposes, we use the term coach instead of

academic coach.

Before the agile approach was introduced into the course, projects were

developed with no emphasis on any specific software development method.

Each coach had between five and seven groups of two or three students each.

The students met with the academic staff at the beginning of the semester to

receive their project requirements, and presented documentation and code on

three specific occasions during the semester. During the rest of the time, the

13.6 Leadership in Learning Environments 265

students could approach the coaches during their office hours. The students

usually did not use this means of communication. The coach was not involved

in the students’ work, since the students did not work near or with the coach when

the actual planning, designing, or coding tasks were performed.

The group of coaches was trained using the agile approach before they started

to coach. During the training sessions the team was introduced to agile basics,

experienced several agile practices, and was trained to teach the method. Special

focus was placed on the planning activity, since it provided a development frame-

work from a time management perspective. The main issues of student team

projects were discussed, including their structure, the coaches’ roles, the students’

roles, and the evaluation scheme (see Chapter 2, Teamwork). All decisions were

made jointly by the entire coaching team.

Starting to work, coaches’ meetings were conducted to rehearse agile prac-

tices. Specifically, guidance was provided to the coaches regarding which activ-

ities to conduct, how to overcome specific problems, what tasks to assign students

the following week, and other such topics.

After a year of work, a reflective process was performed. The aim of this

reflective process was to draw lessons from the accumulated experience, to be

implemented in the following stages. Two almost identical questionnaires served

as the basis for reflective interviews. The first questionnaire was filled out by each

of the coaches prior to the first training; the second was completed towards the

end of the year, when the coaches had had one year of experience. Both ques-

tionnaires referred to software development projects in general and did not

address any specific software development method. In the questionnaires, the

coaches were asked to describe the phases of a software development project,

specifying the more important phases. In addition, they were requested to

describe their role as coaches in the process of guiding students in software

development; to rank the main activities performed during software development,

as they perceived them; to specify the development process’ main problems; and

to suggest solutions to these problems.

Two consecutive interviews were performed with each coach. In the first

interview, the coaches started by filling out the second questionnaire. Then

they were asked to describe the agile implementation, the effect of the agile

training (a year before), and the topics that they felt should be the focus of the

next coaching training. In the second interview, each of the coaches was asked to

reflect on the two questionnaires they had previously filled in and to describe how

the use of agile software development influenced them personally. They were also

asked to compare their teaching approach before and after this year. At the end of

the second interview the coaches were requested to put in writing their reflections

on the two interviews.

266 13. Leadership

Additional details about the coaching training as well as about the reflective

process, can be found in Dubinsky and Hazzan (2003).

13.6.2.1 A Coaching Framework

The data analysis yielded six categories that form a coaching framework, as

shown in Table 13.3. The Project category emphasizes the management of

resources needed for the project, such as a time schedule and various organiza-

tional aspects. The Method category addresses the method’s practices and the

tools used in the project. The Development Team category focuses on the devel-

opment environment and on communication among team members. The Custo-

mer category brings the business aspect into the project and focuses on

requirements and product acceptance. The Feelings category refers to the people

involved in the project, from the viewpoint of their inner being. The last category,

Coaching Team, emphasizes the support given to the coaching team in order to

maintain continuous learning and receipt of feedback. Naturally, there are over-

laps between these six categories; it seems, however, that each of these categories

plays a significant role.

In what follows, we present the six categories, describing how each category

was referred to by the coaches with respect to their coaching. In addition, we

discuss the conceptual change related to each category.

Project. As it turns out, coaches must undergo some conceptual change in

relation to the essence of coaching according to the agile approach. In our case, the

coaches no longer perceived themselves as student project coaches, but more as

project leaders. They held relatively long weekly meetings with the students, and

as a result, were more involved in all phases of the project development. This in

turn led to a more accurate project evaluation. In addition, the coaches were

aware and appreciative of the resources they had in this case: a studio for each

team, computers dedicated to the development of each specific project,

Table 13.3 A coaching framework (# [2003] IEEE)

Category Description

Project Resource management: time and organizational aspects

Method Practices and tools used in the project

Development Team Development environment and communication among team members

Customer Customer requirements and product acceptance

Feelings Inner being of people involved in the project

Coaching Team Support given to the coaching team in order to maintain continuous
learning and feedback

13.6 Leadership in Learning Environments 267

whiteboards, and other materials for ongoing activities. All of the above contrib-

uted to making them feel a higher commitment to their coaching role. Following

are some of the coaches’ self-expressions with respect to this category:

l I now have a much better feeling about how to lead a project. Leading a

project by giving out the work and simply waiting for them [the students] to

come to you with questions or results is one way. It’s totally different,

however, when you have a group, and you lead it through the project in

one way or another. It gave me experience managing a project. Experience in

different aspects: one is time scheduling, another is planning of the work, and

another is the professional side of programming.

l This method makes me understand that first and foremost this work is with

people.

l The frequency with which I see the students changed. It has both positive and

negative sides. It is exhausting. It is tremendously exhausting. Especially

when they are hard people.

As can be observed from the quotes above, the way projects are conducted

using the agile approach demands more work from the coaches than they were

accustomed to investing before. As it turns out, the coaches perceive this as a

significant positive change. This may be a result of the fact that this framework

provides solutions to some of the problems which coaches faced before the agile

approach was introduced. At that time, coaches were not deeply involved in all

aspects of the project and did not see the students actually work on the project.

Within this coaching framework, the coaches were familiar with the project

planning, design, coding, and testing, and thus they felt that they were part of

the development process.

Method. The introduction of the agile method into academic environments

requires the implementation of its practices in a way that fits this framework.

Following are several examples of this. The small releases practice was implemen-

ted by structuring the course schedule around a release of three iterations (see

Chapter 1, Introduction to Agile Software Development). The customer role was

implemented, in cases in which no real customer was available, by having the

coach as the main customer. In addition, one of the students was assigned to play

the role of the customer throughout the duration of the course, especially during

the planning sessions (see Chapter 2, Teamwork). The pair programming practice

was implemented by installing approximately five computers in each project

room and by encouraging the students to exchange pairs. When a metaphor

was raised by the students in a natural manner, it was adopted by the coach as

a means of increasing the students’ understanding of the project’s concepts (see

Chapter 3, Customers and Users). The sustainable pace practice was adjusted to

268 13. Leadership

the academic environment by the holding of two- to four-hour weekly meetings.

Such meetings started with a stand-up meeting in order to align information. In

addition, each student had to invest 10{15 hours every week working on his or her

development tasks. Also, the use of the electronic forum in between meetings was

encouraged to promote communication. Following are some of the coaches’ self-

expressions regarding several of the practices:

l I told them that no one works alone; working is done [only] in pairs. I told

them of the case that happened last semester, when the coach [one of the

students] left, and had held a great deal of code. They had to rescue what he

had done.

l They worked test-first [. . .]. The group took the testing subject seriously, a

real test-first and unit testing and then automation and testing.

l As for the planning activity, I really saw that it was important; they worked

with the cards and wrote their contents into the computer.

l They [the students] built an integration machine. Anyone could have come

and dealt with the code.

In light of the way coaching was done before the agile approach had been

introduced, the change that took place as a result of its implementation in the

course of a specific development method was significant. Specifically, based on the

agile practices, the coaches constructed a framework for themselves and for their

students, which made clear which activities to promote and which values to

impart.

Development Team. With respect to the development team, we focus on

the studio environment and the communications that it encourages (see Chap-

ter 1, Introduction to Agile Software Development). As it turns out, the

coaches had positive feelings towards this situation. They reported an increase

in communications with the students and among the students themselves

during the weekly meetings, and particularly during the planning sessions

and code reviews. The coaches admitted that in this course setting, they talked

to the students more and also became familiar with some of the students’

personalities. Following are several of the coaches’ self-expressions with respect

to communications within the studio:

l Many problems are caused [in software development in general] due to a lack

of communications. I saw, and I fairly agree, that many agile principles help

to overcome the lack of communications. Communications between the

customer and the development team, and also among the team members.

Both are big problems [in other development environments].

13.6 Leadership in Learning Environments 269

l It was easy to improve communications since there are concepts [practices],

guidelines provided by agile, they are fairly clear, and not so difficult to

implement.

l The groups of three students that used to come to me before [before agile was

introduced into the course], I barely remembered their names. I looked at

what they did, never at their eyes, at who they [the students] were.

l [Coaching using agile is] much more active and much more alive.

l When working in groups of three, you threw this tool into the water, and

waited for it to respond. You gave them a problem and you waited for them

to come back in the middle or at the end of the semester. Here [in the agile

environment], the entire process takes place right in front of your eyes.

As can be observed, communication increased significantly when the agile

approach was used as the development method. Coaches began to appreciate

the benefit of such communication, from both technical and social perspectives.

Before the agile approach was introduced, when small groups of students worked

on a project, the communication level between them and the coach was shallow and

communication among the team members took place mostly at the end of the

semester, towards the final presentation. In light of this, a conceptual change occurred

in the coaches’ understanding of the significance of communication.

Customer. Within the agile development framework, the customer’s role

became essential to all participants. Indeed, the coaches perceived the customer

as playing a key role in their projects. Instead of talking about the course project,

they started talking about the product. During the planning session, the students,

on their part, elaborated on the stories provided by the customers or coaches. In

projects with no real customers, during the iteration presentations, the students

who had been assigned to be the customer first provided feedback on the current

state of the product, trying to be as objective as possible. This was not always

easy, especially during the planning session, when conflicts arose between

the need to play the role of the customer and the awareness that issues raised

by the customer would have to be dealt with and implemented. Following are

some of the coaches’ thoughts regarding the role of the customer:

l While reflecting [. . .] something new came to me based on the experience of

the past year. It is an increased awareness of the customer, and of the human

aspect of the development team in general.

l It was a real product that you could even ‘‘sell,’’ a real on-the-shelf product

that one could say, ‘‘Here, I have a product,’’ so they got a real satisfaction

from the fact that they actually did something.

270 13. Leadership

l During the summer semester, we had a [real] customer. Moshe was the

customer; he entered [the studio]. He really gave feedback. His sentences

were in the background even when he was not participating. During the

winter semester, we had a customer as well. [. . .] When he couldn’t come, a

student would replace him and was even in contact with him if needed. The

issue of the customer is really important, and this semester it is missing. It is

hard for the students to enter the customer’s shoes since the scope is not

clear. They are in conflict all the time.

l If a customer joins the project, it changes the coaching significantly.

In the past, the instructor wrote a detailed description of the requirements for

each of the projects, so the students had no need to discuss requirements unless a

question came up and was posed to the coach. With the introduction of the agile

approach, a major change has taken place. Students were involved in the defini-

tion of the requirements together with the coach. The coaches reported that

students were amazed at this process, and sometimes expressed their resistance

by stating that in the previous format of the course requirements were given and

were not subject to discussion. Being aware of the importance of experiencing the

process of defining project requirements, the coaches had positive feelings about

the students’ involvement in deciding what requirements were to be part of a

specific iteration.

Feelings. Personal feelings were expressed during the entire reflective pro-

cess. Since all coaches addressed the human aspect of the agile approach, these

expressions of feelings were natural. All coaches felt satisfaction with the new

method and each of them emphasized his or her favorite practices. They also felt

the satisfaction of the students in each of their studios. All the coaches expressed

also the hard work involved in this kind of coaching. Following are several of the

coaches’ self-expressions of their feelings:

l There is a lot of personal satisfaction when a team arrives at the beginning [of

the course] without having heard anything about the subject, or about me

either, [. . .] and together we complete a project that starts at zero and

achieves something. There is a lot of satisfaction when it succeeds. The

benefit is the satisfaction.

l They have a real satisfaction from the fact that they really did something.

l I feel as if the project is my baby.

The coaches’ high level of involvement led them to surface their feelings. Each

coach met with his or her students every week, and after several weeks of working

together got to know the students quite well. Thus, the coaches were highly

involved, a fact that contributed to the project’s progress and to the

13.6 Leadership in Learning Environments 271

communication among the people involved; however, this involvement should be

monitored; otherwise, too great an involvement may lead the coaches to become

subjective.

Coaching Team. With respect to the coaching team, we focused on the

learning and feedback processes undergone by the coaches who participated in

the training program (see Chapter 7, Learning, and Chapter 11, Feedback). In the

first training session, the coaches became familiar with agile concepts in general

and with several specific practices in particular (such as the planning session and

pair programming). In addition, decisions about the course framework were taken.

Following are some of the coaches’ self-expressions about the first training session:

l The training offers a framework. It brings us to a certain level of knowledge

that we weren’t at before.

l The training taught me to pay attention to the people here. We are working

with people, not with a subject [of a project]. My emphasis was always on the

subject. The subject first. I must have been familiar with the subject as much

as possible. This method [agile] makes me understand that this work is first

and foremost with people.

Following are some of the coaches’ self-expressions regarding their expecta-

tions for the next training session:

l What I am lacking now is the topic of time estimations. OK. They gave the

time estimations, how we go and disassemble it.

l [I want to know more about] the second part of the planning activity, how

exactly do you assign a function or a class to a student. I want to see an

instructive example from beginning to end.

l I want to learn more about testing tools and how to build the integration

machine.

As can be seen, the coaches would like the second training program to be

dedicated to a more in-depth examination of the details of the development, as

they are outlined by the agile approach. It seems that at this stage the new

structure of the course has been accepted, and there is a need to fill it with more

details.

Tasks

1. In what ways can you implement the coaching framework described in Case

Study 13.2 for industrial environments? What elements can be adopted and

what elements do not fit? Explain your answers.

272 13. Leadership

2. Based on your experience, suggest additional aspects for the coaching frame-

work described in Case Study 13.2.

3. Analyze the coaching framework presented in Case Study 13.2 within the

HOT|Human, Organizational, and Technological|analysis framework.

13.7 Summary and Reflective Questions

1. Describe three events in software projects from the leadership perspective

presented in this chapter.

2. Describe in detail your preferred leadership style. Describe your position|

team member, team leader, project leader, etc.|and explain why this style

suits you. Does this leadership style fit agile teams? Explain your perspective.

3. How can the contribution of your suggested leadership style be evaluated?

Address its contribution both to the product and the process.

4. Explore the connections between the ideas presented in this chapter and

Section 5: Management, of the Code of Ethics of Software Engineering,

presented in Chapter 9, Trust.

5. Looking towards the release presentation next week, summarize your con-

tribution to the project’s management from the perspective of your personal

role.

6. How did your team decide about the main messages to be delivered next week

in the release presentation? What were the team’s guidelines?

13.8 Summary

This chapter deals with leadership and coaching in software development envir-

onments in general and in agile software development environments in particular.

Different leadership styles are described and a case study referring to the meth-

odology change leader is presented. Also, the academic coach role is described,

delving into the details of a specific case study that describes a coaching

framework.

References

Augustine S, Payne B, Sencindiver F, Woodcock S (2005) Agile project management: steering
from the edges. Commun ACM 48(12):85{89

13.8 Summary 273

Beck K, Andres C C (2004) Extreme programming explained: embrace change, 2nd ed. Addison-
Wesley, Reading, MA

Bruce A, Langdon K (2000) Project management. Dorling Kindersley, New York
Ciulla JB (1998) Ethics: the heart of leadership. Praeger, Westport, Connecticut
Cockburn A, Highsmith J (2001) Agile software development: the people factor. IEEE Software

34(11):131{133
Cooper CL (2005) Leadership and management in the 21st century: business challenges of the

future. Oxford University Press, New York
Drath WH (1998) Approaching the future of leadership development. In: McCauley CD, Moxley

RS, Van Velsor E (eds) The center for creative leadership: handbook of leadership develop-
ment. San Francisco, CA, Jossey-Bass, pp 403{432

Dubinsky Y, Hazzan O (2003) eXtreme programming as a framework for student-project
coaching in computer science capstone courses. Proceedings of the IEEE international
conference on software|science, technology & engineering. Herzelia, Israel, pp 53{59

Dubinsky Y, Hazzan O (2006) Using a role scheme to derive software project quality. J Syst
Architect 52(11):693{699

Goleman D (1998) What makes a leader? Harvard Bus Rev 76(6):93
Hazzan O, Dubinsky Y (2005) cognitive and social perspectives of software development

methods: the case of extreme programming. Proceedings of the 6th international conference
on extreme programming and agile processes in software engineering, pp 74{81

Huff AS, Moeslein K (2005) An agenda for understanding individual leadership in corporate
leadership systems. In: Cooper CL (ed) Leadership and management in the 21st century:
business challenges of the future. Oxford University Press, New York, pp 248{270

Hughes B, Cotterell M (2002) Software project management, 3rd edition. McGraw-Hill,
New York

Humphrey WS (2000) Introduction to the team software process. Addison-Wesley,
Reading, MA

Mayrhauser VA (1990) Software engineering methods and management. Academic Press,
New York

Nirenberg J (2002) Global leadership. Capstone Wiley, New York
Pulford K, Combelles KA, Shirlaw S (1996) A quantitative approach to software

management|the ami handbook. Addison-Wesley, Reading, MA
Putnam LH, Myers W (1997) Industrial strength software|effective management using mea-

surement. IEEE Computer Society Press, Silver Spring, MD
Sommerville I (2001) Software engineering, 6th ed. Addison-Wesley, Reading, MA
Topping PA (2002) Managerial leadership. McGraw-Hill, New York

274 13. Leadership

14
Delivery and Cyclicality

Abstract

This chapter describes the cyclic nature of the agile software development pro-

cess, which is composed of releases, each of which first, ends with the product

delivery to the customer and a reflective process; and second, signals the begin-

ning of the next release. We focus on the delivery of a product, to the development

of which the entire release has been dedicated, describing what happens in agile

software development at the end of the release|the delivery, as well as just before

and just after it. Specifically, prior to the delivery, the customer examines the

product and checks its fitness to his or her expectation; then, the product release is

celebrated; finally, after the delivery, a reflective session is facilitated to explore

the lessons learned during the release for the improvement of future develop-

ments. We also summarize in this chapter the teaching and learning principles

presented throughout the book.

14.1 Overview

In Chapter 3, Customers and Users we saw how a release starts. One of the main

characteristics of the beginning of a release is the role of the customer, who

describes the project vision, the project main stories, and the guidelines according

to which the development priorities will be set. The customer presents his or her

perspective after the presentation of the previous release has been completed and

O. Hazzan, Y. Dubinsky, Agile Software Engineering,
DOI: 10.1007/978-1-84800-198-5 14, � Springer-Verlag London Limited 2008

a retrospective session between the two releases has been facilitated. This descrip-

tion reflects the cyclic nature of agile software development.

In this chapter we look at what happens between two releases, focusing on the

end of the release|the period prior to the actual product delivery|the delivery

itself, and the reflective process that takes place after the release delivery. This

chapter also focuses on the customer, who gets a product that is going to influence

his or her business value, after the entire release has been dedicated to the

product’s development.

In the section that focuses on learning environments, we summarize the

teaching and learning principles presented in the various chapters of this book.

14.2 Objectives

l Readers will become familiar with the cyclic nature of agile software develop-

ment processes.

l Readers will become familiar with delivery issues, such as the presentation of

the release artefacts to the customer, the artefacts delivery, and the release

acceptance tests.

l Readers will understand the atmosphere at agile software development envir-

onments between two releases.

l Readers will become familiar with the nature of metareflective processes|

reflective processes on reflective processes.

14.3 Study Questions

1. What associations do you have with the two words appearing in the chapter

title: delivery and cyclicality? What are their relations to the world of software

development? What are their relations to agile software development?

2. In your opinion, what are the customer expectations towards the end of the

release?

3. How would you suggest presenting the release product to the customer?

4. Review your personal reflective processes during the course learning. Describe

the three most important lessons you learned from these reflective processes?

Address lessons on the personal and team level.

276 14. Delivery and Cyclicality

14.4 Delivery

The period of time that takes place between two releases is highly important. The

beginning of the release has been described in
HOT

Chapter 3, Customers and Users. In

this chapter we focus on the end of the release, which is a special event in the

development cycle of software products. The customer gets the product he or she

envisioned at the beginning of the release; the team members and the manage-

ment get feedback with respect to how they accomplished and met the customer’s

needs. Indeed, at the end of each iteration the customer gives feedback to the team

in the planning session; yet, these feedbacks are on a relatively low level of

abstraction (see Chapter 8, Abstraction), focusing on the specific features devel-

oped in a given iteration. From a more global perspective of the release, the

feedback addresses the product as a whole, referring to its global characteristics.

The period between two releases lasts about a week. It starts with several

meetings with the customers in which the product features are reviewed and the

team members make the final preparation for the delivery itself. Then one day is

dedicated for the celebration of the delivery in which the product is presented to

all the project stakeholders. Then a retrospective takes place. Finally, the plan-

ning of the next release starts (see Chapter 3, Customers and Users).

14.4.1 Towards the End of the Release

The period of time that takes place just before the end of the release is important,

since the customer is going to get a product that will influence his or her business

value. Therefore, several special activities should be carried out to accomplish the

delivery successfully.

First, the team members work on the final product integration,
HOT

making sure

that all the tests are passed successfully. Several role-holders (see Chapter 2, Team-

work) are especially dominant in this period of time. The continuous integrator

manages the integration process, while all the other teammates develop and run

final acceptance (system) tests; the installer makes sure that the installation kit

works properly and prepares a CD (or another tool) with installation instructions;

the presenter organizes, plans, and prepares the presentation that summarizes the

release.

The customer reviews the last iteration developments and checks global

features of the product, such as cross release acceptance tests, response time,

and GUI consistency. The professional relationships, shaped by the customer and

the teammates during the release development, are expressed during this week,

especially respect and trust (see Chapter 9, Trust).

14.4 Delivery 277

This week is characterized by a high level of abstraction (see Chapter 8,

Abstraction), examining the product as a whole. Such a
HOT

perspective is based on

the ongoing learning that has taken place during the development process.

Tasks

1. In your opinion, what is the most important characteristic of the ‘‘between the

releases’’ period of time?

2. In your opinion, or based on your own experience, what feelings are mainly

expressed during the ‘‘between the releases’’ periods of time?

3. Analyze the ‘‘between the releases’’ period of time within the HOT|Human,

Organizational, and Technological|analysis framework.

14.4.2 Release Celebration

‘‘Celebration! We deliver the software today! We are all here and we will start

soon. Can you feel the excitement?’’ We invite you to feel this way when you read

this section focusing on the celebration that takes place in agile software devel-

opment environments at the end of the release. After the team and the customer

have made the needed preparations (see the previous subsection), this celebration

is carried out at the organization level.

In general, all the activities included in the iteration summary meeting (see

Chapter 3, Customers and Users) are carried out also at the release celebration,

but on a higher level of abstraction and with respect to a wider scope. The wider

scope is expressed in two ways: First, the release scope is wider than the iteration

scope; second, additional people, beyond the team, attend this celebration so it

becomes an organizational/departmental celebration.

We call this section Release Celebration because we see it as an event that on

the one hand celebrates the end of the release, and on the other hand marks the

beginning of the next release. The end of the release is celebrated for several

reasons.

First, the team has accomplished the tasks that had been allocated for each of

the short iterations of the release. This has been achieved by the application of the

various agile practices.

Second, at the end of the release the customer will want to thank the team for

the efforts it has put into his or her product throughout the development process.

Since the daily routine usually does not allow this, a specific event is a perfect

opportunity for this purpose.

278 14. Delivery and Cyclicality

Third, a break is needed after the effort put out by the team in the tight

development process that the agile approach encourages. A celebration is a

perfect means for such a break.

Fourth, since after all, the celebration is a professional celebration, it can be

used for some learning and reflective processes which will be applied in future

development cycles.

And finally, the end of the release signals the beginning of the next release,

which hopefully will introduce new challenges.

Tasks

1. What other reasons can you suggest for celebrating the end of the release?

2. What are your associations with the concept of celebration? How can they be

applied to this celebration of the end of the release?

Among the many associations that come with parties, we would mention

happiness, the gathering of many people familiar and less so, different decorations

from the usual ones, special food, speakers. . . . Let’s see how these associations can

be applied to the release celebration.

Atmosphere. It is important to make sure that the celebration space

includes some elements that indicate a celebration (we do not want to limit

your imagination, so we do not mention any such elements). Also, light refresh-

ments are served at the celebration. The atmosphere should allow everyone to be

relaxed and without any duty to carry out during the celebration period. No one

should feel under attack or criticized.

Presentation. While the presentation at the end of the iteration
HOT?

was at a

relatively low level of abstraction (see Chapter 3, Customers and Users, and

Chapter 8, Abstraction), examining the acceptance tests of all the customer

stories included in the iteration, the presentation at the end of the release

celebration is performed at a higher level of abstraction. Only cross-iteration,

global features, and high level customer stories, which are intertwined and imple-

mented in many stories, are presented with their acceptance tests. These stories

reflect the nature of the product and how it can be used from a wider perspective.

Measures. As in the iteration summary meeting, measures are examined at

the end of the release celebration also. These measures reflect the entire release

and, from the measurement perspective, present a more global view of the release.

Tasks

1. Choose several stories from the different iterations of the project you are

currently working on. Develop one story that would illustrate them all.

14.4 Delivery 279

2. What measures should be presented in the release celebration? Are they the

same as the measures presented at each iteration summary meeting? Should

other measures be presented? Explain your opinion.

3. What additional information can measures at the release level deliver beyond

the information provided by the measures taken at the iteration level?

4. Analyze the Release Celebration event within the HOT|Human, Organiza-

tional, and Technological|analysis framework.

14.4.3 Reflective Session Between Releases

So far in this book we have encountered several time slots which are not dedicated

to explicit development activities. For example, at the end of the iteration, a

Business Day takes place, part of which is devoted to a reflective process (see

Chapter 3, Customers and Users); in Chapter 11, Reflection, we present a release

retrospective that takes place between releases. Needless to say, though develop-

ment is not carried out during these time slots, they are still very valuable for the

development process. The importance of such breaks has been explained in

Chapter 7, Learning, and Chapter 11, Reflection. Among other ideas, the con-

tribution of these breaks to learning processes and to the improvement of future

development processes is explained.

As presented in Chapter 11, Reflection, the end of the release is
HOT

one of the

cases in which we stop the development and dedicate time for learning purposes

that will be used in the development of future releases. Since in Chapter 11,

Reflection, we present a framework for a release retrospective, in the remainder

of this chapter we present another kind of reflective process| a meta-reflective

process|that can take place after one or several releases. This is, in fact, an

expansion of the scope of the object of reflection. While in Chapter 7, Learning,

the focus of the reflection was the iteration, and in Chapter 11, Reflection,

reflective processes were conducted with respect mainly to project-related activ-

ities, the object of reflection on which we focus here is the reflective activities

themselves|reflection and retrospection. In other words, the objects of thinking

on which we reflect now are reflections and/or retrospections.

There are different ways to apply such processes. One option is to reflect on

the reflective activity during its carrying out or just after it has been conducted;

another way, which we illustrate here, is to reflect on a set of reflective sessions.

Accordingly, we can facilitate either reflection on reflections, reflection on retro-

spectives, retrospectives on reflections, or retrospectives on retrospectives (see

Table 14.1).

280 14. Delivery and Cyclicality

Tasks

1. Discuss the main characteristics, advantages, and disadvantages of each of the

cells of Table 14.1.

2. Among the four options presented in Table 14.1, in which would you prefer to

participate. Why?

3. Apply with your team the four kinds of metareflective sessions described in

Table 14.1. Analyze what happened in each case. What were the outcomes of

each process? Which process yielded the most important outcomes? Why do

you consider them the most important ones?

4. Going even further, we can facilitate a reflective process (either reflection or

retrospective) on both reflection and retrospective sessions. Try this process.

What are your conclusions?

5. Explain the idea behind the metareflective processes within Plotkin’s perspec-

tive on change processes presented in Chapter 12, Change.

Case study 14.1 presents an example of reflection on retrospective processes.

14.4.3.1 Case Study 14.1. Metareflective Processes

This case study focuses on the metareflective processes that took place in the

large-scale agile software project described in Case Study 5.1. In short, the project

is a business-critical enterprise information system, considered to be highly com-

plex and intended for a large and varied user population. The following descrip-

tion is based on Talby et al. (2006).

The data used for this case study were gathered from the personal reflections

of the team members on the retrospective processes that took place at each of the

iteration summary meetings. The data were gathered via written questionnaires

several months after the retrospective sessions took place. The presented data are

based on the first four releases (eight months) of the project.

The project’s development team averaged 15 members during this period; this

is an average, since the team experienced several personnel changes. According to

Table 14.1 Metareflective processes: reflective processes on reflective processes

Reflection on Retrospective on

Reflections Carried out at the individual level
with respect to personal reflections

Carried out at the team level with
respect to personal reflections

Retrospectives Carried out at the individual level
with respect to team retrospectives

Carried out at the team level with
respect to team retrospectives

14.4 Delivery 281

Whole Team practice, the development team included a mix of programmers,

business analysts, testers, and managers. Note that although 15 people filled out

the questionnaires used as the main data source, not all of them were in the team

throughout the entire period. Still, the answers come from at least two people in

each of the above roles.

As just mentioned, the team had a retrospective session every two weeks as

part of the iteration summary meeting (see Chapter 3, Customers and Users), the

intention of which was to discuss a specific problem in the development process,

and make changes as necessary. The particular structure of this team’s iteration

summary meeting is presented in Table 14.2. Section 11.2 presents the team’s

guidelines for the retrospective session facilitated at the Business Day.

Figure 14.1 summarizes the team’s answers to the following question: ‘‘Indi-

cate the importance of each element of the iteration summary meeting.’’ Possible

answers were on a scale of 1 (unimportant) to 5 (very important). Team members

were also given the option to explain their choices in writing.

The results indicate that, as a whole, team members considered the iteration

summary meeting to be of high value|its average importance was 3.9. The most

important element of the meeting according to this team was the customer’s

summary, with an average of 4.1. Note that in this case it was just a ten-minute

element at the beginning of the meeting. It seems that the team members placed

very high value on this direct form of feedback; as one member wrote: ‘‘It’s hard to

explain why, but it’s good to know what he thinks.’’

The formal presentation of the system, as well as the reflection elements,

received an average of 3.7. The respondents’ explanations of their choices were

usually in line with the intended goals of these elements (see Chapter 3, Custo-

mers and Users). The review of metrics element received an average importance of

3.0, and the written comments supported the impression that team members were

divided in their opinion regarding its importance. All managers and team leaders

viewed it as highly important, while some of the novice team members wrote that

‘‘it is mainly of interest to managers.’’ In this specific case, these results reflect an

inherent difficulty in balancing some programmers’ general dislike of

‘‘management.’’

Table 14.2 Example of the structure of an iteration summary meeting
(# [2006] IEEE)

Schedule Activity

9:00{9:10 Customer’s summary of the iteration

9:10{9:25 Formal presentation of the system

9:25{9:50 Review of iteration’s metrics

9:50{10:45 Retrospective

282 14. Delivery and Cyclicality

When asked the open-ended question: ‘‘Which elements of the meeting should

be modified (extended, reduced, or cancelled)?’’ the most popular answer was that

reflections could be extended when their subject was very important. There were

no suggestions to cancel any element, and (this was asked in a separate question)

no offers of any new elements.

Figure 14.2 summarizes the team members’ reflections about the goals of the

reflection process. They were asked about their agreement with given statements,

and possible answers were: strongly disagree (SD), disagree (D), indifferent (I),

agree (A), or strongly agree (SA).

As Figure 14.2 shows, the team members generally assessed the reflective

sessions carried out in this project to have achieved their goals as defined for

this project.

Task

According to the data presented in Figure 14.2, can you predict the atmosphere in

this team’s retrospective sessions?

0
1
2
3
4
5
6
7
8

0

1

2

3

4

5

6

Customer Summary Formal Presentation Review of Metrics

0

1

2

3

4

5

6

Reflection The Entire Meeting

54321

54321 54321

54321 54321
0

1

2

3

4

5

6

0

1

2

3

4

5

6

Figure 14.1 Perceived importance of elements of the iteration summary
meeting (# [2006] IEEE).

14.4 Delivery 283

Let us focus on the responses indicating that these reflective sessions served as

a tool to vent negative feelings on an issue (average 4.2). The main cause for this

was that in these sessions, team members were able to express their true opinions

and feelings about the debated subject, even if it was obviously unaccepted by the

rest of the team. This statement had an average agreement of 4.5, with only one

who disagreed, writing that personal insults should not be allowed. Blunt and

sarcastic statements were sometimes a natural part of retrospectives, but the

results suggest that the positive effects of the retrospective sessions, of creating an

open and honest atmosphere, outweighed their negative effects.

The questionnaire filled out by team members included also several questions

intended to measure specific aspects of the reflective session. We focus on four

aspects, summarized in Figure 14.3.

First, team members assessed the subjects of reflective meetings to be relevant

to their ongoing work (an average of 4.1, no one disagreeing). This is important,

since in this team the subject was chosen in advance by the moderator (who was

usually the team leader). This had the advantage of not having to spend time

deciding on the subject during the reflective session itself, thus lowering the

overall time it required. The risk of selecting ‘‘wrong’’ subjects did not seem to

0
1
2
3
4
5
6

0

2

4

6

8

“Decisions reached in reflection meetings
were usually implemented”

“Reflection is an efficient
way to solve tensions and conflicts”

0
1
2
3
4
5
6
7
8

0

2

4

6

8

10

“One of the goals of reflection is to let peo-
ple ‘blow off steam’ on an issue”

“In a reflection anyone can speak their
mind fully, even if it is obviously unac-
cepted”

SDDIASA

SDDIASA SDDIASA

SDDIASA

Figure 14.2 Reflections on the goals of the retrospective meetings(# [2006] IEEE).

284 14. Delivery and Cyclicality

materialize in this project, probably because the moderator was the team leader,

who was a member of the development team and was thus intimately familiar

with its day-to-day problems.

Second, only five team members agreed that structured retrospectives were

preferable to unstructured ones (an average of 3.2). Only four reflective meetings

were structured throughout the period examined. It may be the case that the right

problem-solving technique was not introduced to this team. In any case, open

discussions were sufficient to achieve the bottom-line positive results for the team.

Third, the publication of a written summary of each reflective meeting, even if

done in an informal forum such as email, was perceived by the team as highly

important (a 4.3 average, no one disagreeing). In their comments, people

explained that this was important mainly to prevent arguments on whether

something was agreed upon and in what exact way, particularly as the project’s

history became longer and the risk of forgetfulness rose. An additional benefit was

enabling newcomers to the team to catch up quickly with the team process and

general insights that the team applied.

Fourth, the team had mixed opinions as to whether the strict limit on the

reflective session’s time frame impeded its effectiveness. The average agreement

on this statement was 3.4, and the written comments on the issue were mostly of

0
1
2
3
4
5
6

0

2

4

6

8

“The subjects of reflection meetings
 are usually relevant to day-to-day work”

“A structured reflection
is preferable to free conversation”

0

2

4

6

8

0

1

2

3

4

5

“It’s important to publish the
 reflection meeting’s decisions
 immediately after it ends”

“Limiting the reflection’s time some-
times impeded the ability to get to the
root of the problem”

SDDIASA

SDDIASA SDDIASA

SDDIASA

Figure 14.3 Reflections on the technique of the reflective sessions (# [2006]
IEEE).

14.4 Delivery 285

two kinds: either that more time was required only in several difficult retro-

spectives; or that in some reflective sessions much more time could have been

spent, but would not have led to any improved results. It may be that when trying

to balance a fruitful discussion, a minimal overhead, and a thorough investigation

of the given problem, maintaining a strict one-hour limit works against those

goals.

Having discussed the technique and the goals of the reflective session, we turn

now to the most important question: Is it effective?|the answers to which are

summarized in Figure 14.4. Briefly, all results were very positive.

Team members highly agreed that raising a problem in a reflective meeting is

better than having a decision made by the team leaders alone (a 4.1 average, no

one disagreeing), and that they would be glad if were used in their next team

(a 4.2 average, no one disagreeing). Nor did anyone agree with the statement,

‘‘I don’t understand at all the purpose of reflections’’ (a 1.5 average). It seems that

people are much more satisfied when they take part in the decision making

process, and when their opinions are seriously heard.

0

1

2

3

4

5

0
1
2
3
4
5
6

“When I am a team leader, I’ll conduct on-
going collection and tracking of metrics”

“I’ll be glad if a reflective process
will be used in my next team”

0

2

4

6

8

10

0

2

4

6

8

“I don’t understand at all the purpose of
reflections”

“Raising a problem in a reflective
meeting is better than having a deci-
sion made by the team leaders”

SDDIASA

SDDIASA SDDIASA

SDDIASA

Figure 14.4 Reflections on the perceived effectiveness of metrics and
reflections (# [2006] IEEE).

286 14. Delivery and Cyclicality

This case study analyses the reflective practice of an agile team in a large-

scale, long-term software project in an industry setting. It is perceived as effective

in stabilizing a new agile project, fostering continuous improvement, and resol-

ving team conflicts.

Task

What would your answers to the questions presented in Case Study 14.1 be if your

team had conducted a reflective process on the iteration basis and a metareflective

process as presented in this case study?

14.5 Cyclicality

When the product of the release is delivered, the customer gets a version of the

product that can be used; this, however, does not signal the end of the develop-

ment. In most cases, additional releases are needed to complete a product. That is,

a release ends but the development continues. In other words, the development

process is cyclic|it is composed of several releases, each of them including several

iterations.

Cyclicality is reflected not only by the fact that each release has several

iterations, but also by the fact that the software life cycle is composed of several

releases. In practice, activities that are performed between iterations are carried

out on a larger scale between releases. Specifically, the cyclicality is expressed by

iteratively performing the following activities: planning according to customer

stories and priorities; development, including exhaustive testing; presentation

and feedback; a reflective process. This kind of cyclicality is analogous to the

iterative life cycle of other cases. In Dubinsky and Hazzan (in press) we elaborate

on the analogy of this idea to teaching agile software development.

The difference between iterations and releases is expressed, in the context of

this chapter, in the delivery process. While at the end of each iteration, the

product is potentially deliverable; at the end of the release, the product, in most

cases, is actually delivered. Still, there are occasions in which the splitting into

releases is artificial and is made simply in order to keep the development in small

releases.

It is important to realize that though each release and iteration has a similar

structure, the developed product keeps changing, evolving, with the goal of

satisfying the customer’s expectations and improving the customer’s business

value.

14.5 Cyclicality 287

Tasks

1. Identify additional cyclic elements in agile software development.

2. Are you familiar with other cyclic phenomena in your life? In what way is

their cyclicality expressed?

3. Find connections between the cyclic nature of agile software development and

Plotkin’s framework for coping with change, presented in Chapter 12,

Change.

4. Analyze the cyclic nature of agile software development within the

HOT|Human, Organizational, and Technological|analysis framework.

14.6 Delivery and Cyclicality in Learning
Environments

This chapter brings us to the end of the book and the course learning. This is

definitely an appropriate reason for celebration. We close a specific period of time

which was dedicated for a specific purpose|the course learning|and start a new

period during which you, the readers, will use what you have gained from the

course learning.

Similar ideas to the ones presented in the first part of this chapter are applied

to the celebration of the end of the course learning. As in the real development

environment, the last week of the semester is dedicated to meetings with the

customers (either proxy or real), integration activities, preparation for the release

presentation, and reflective session(s) that take place after the release celebration.

In addition to the description of how the end of the release can take place in

learning environments, we summarize in this section the teaching and learning

principles presented in the various chapters of the book.

Task

In your opinion, what do the concepts delivery and cyclicality mean in the learning

of agile software development?

14.6.1 The Delivery in the Studio

This studio meeting celebrates the end of the release development in the course

component in which the students developed a software product (see Chapter 1,

288 14. Delivery and Cyclicality

Introduction to Agile Software Development). During the last week, on the team

level, the students made the needed preparations for this meeting. In the meeting,

all students from all teams gather for a real celebration with light refreshments.

Each team reports on its main achievements with respect to its project, and then a

tour is conducted among the different studios to enable the students to visit and

examine the projects developed by the other teams.

After the tour, each group meets with its customer(s) and academic coach for

the presentation of the first release that was developed in three iterations during

the fourteen weeks of the semester. The academic coach facilitates a feedback and

summary session of the project.

Table 14.3 presents an example for a timetable of such a release celebration in

academia for a course with four teams.

Here is a short explanation of each component.

Project presentations. The lecturer starts with a brief general explanation

of the structure of the meeting and its purpose. Then each team presents its

project in front of all the teams for about ten minutes, with five minutes for quick

questions from members of the other teams. These presentations both contribute

to the students’ learning by requiring them to encapsulate the essence of their

project in several minutes, and foster information sharing.

The presentations are at a high level of abstraction. In most cases, the pre-

sentation of each project includes an overall project description, the main require-

ments, what has and has not been achieved, the work process (including the

gradual project evolution over the three iterations), the general design measures,

the problems encountered and how they were solved, what has been learned during

the development process with respect to the project subject and software project

development in general, possible future development, and the project illustration.

Open tour in projects’ studios. The tour of the various studios allows the

students to see in more depth what has been developed by the other teams and to

ask additional questions according to their interests. This component of the end of

the release celebration widens the students’ perspective on the development

process with respect to what has been developed and learned in the other teams.

Presentations and discussion in the team studio. The last part of the

celebration takes place in the studio, each team with its customer(s) and academic

coach.

Table 14.3 Example of a celebration timetable at the end of the semester

Schedule Activity

14:30{15:30 Project presentations (15 minutes for each team)

15:30{16:00 Open tour in projects’ studios

16:00{17:00 Presentation and discussion in the team studio, including the presentation to the
customer and a feedback and summary session

14.6 Delivery and Cyclicality in Learning Environments 289

At the beginning of this part, the product is presented to the customer. Unlike

what is done in industry (see Section 14.4), the presentation to the customer in the

academic setting is done by reviewing all customer stories. This is because in

the academic setting, this time marks the project’s end; most probably the team

will not meet the customer again, as they would in the industrial case, where

project development proceeds to the next release and the interaction with the

customer continues. This presentation format highlights the importance of accep-

tance tests. In general, any problems encountered by the team are raised in this

presentation; specifically, if the team did not develop all the allocated stories, the

reasons for this are explained. When a specific question is raised by the customer,

the relevant role holder answers it.

After the product is presented to the customer, the team and the academic

coach facilitate their last feedback meeting, which includes general comments

from the coach and the students’ reflective processes. It is advisable not to make

this conversation too structured and to let the students navigate it according to

their needs. At this stage of the semester they are familiar with each other and are

capable of doing this. When appropriate, the academic coach can direct the

discussion, focusing on questions such as what could have been done in the second

release (had it been developed), and what considerations should be considered in

order to continue the project development.

14.6.2 Teaching and Learning Principles

This section summarizes the eleven teaching and learning principles that guide

the course pedagogy, presented in the various chapters of the book (see

Table 14.4). These principles can serve as pedagogical guidelines for the teaching

Table 14.4 Teaching and learning principles

Principle Description

1 Inspire the nature of the software development approach

2 Let the learners experience the software development approach

3 Explain while doing

4 Elicit reflection on experience

5 Elicit communication

6 Establish diverse teams

7 Assign roles to team members

8 Manage time

9 Be aware of abstraction levels

10 Use metaphors or ‘‘other worlds’’ concepts

11 Emphasize the software development approach in the context of the world
of software development

290 14. Delivery and Cyclicality

of any software development approach and can be applied in both academic and

industrial settings. For additional details, see Hazzan and Dubinsky (2003, 2006,

2007).

As can be observed, the numbers of the principles as presented in the various

chapters are not consecutive. Indeed, while in the chapters we presented them in

the appropriate context, within one teaching and learning framework the follow-

ing order reflects a more coherent picture.

14.7 Summary and Reflective Questions

1. In your opinion, if the software product developed in the studio continues to

be developed after the semester ends, what directions will its development

take? Based on what information did you base your conclusions?

2. What main lessons did you learn during the project presentations?

3. How are the lessons learned connected to the main ideas learned in the course?

Address the three aspects of the HOT|Human, Organizational, and

Technological|analysis framework.

4. Analyze the ideas presented in this chapter within the HOT|Human, Orga-

nizational, and Technological|analysis framework.

5. What main ideas did you learn in the course?

6. Define ‘‘agile software engineering.’’

7. Present the main ideas of this book within the framework of one main idea.

8. What further issues would you like to learn about with regard to agile soft-

ware development? How would you intend to learn them? Ask yourself

questions such as: What do I take from the course, and how do I continue

its learning? Can you use the metaphor of the agile process for the analysis of

your learning process?

14.8 Summary

This chapter ends the first release of the course learning and, for the interested

learners, starts the second release. We have presented in this chapter the period

of time that takes place between two releases, highlighting the ideas of delivery and

cyclicality to emphasize the continuous nature of agile software development with

delivery peaks.

14.8 Summary 291

References

Dubinsky Y, Hazzan O (in press) Action research in software engineering: using a 3D analogy to
analyze the implementation of agile software development in software teamwork. Computer
Software Engineering Research, Frank Columbus (ed). Nova Science Publishers

Hazzan O, Dubinsky Y (2003) Teaching a software development methodology: the case of
extreme programming. The proceedings of the 16th international conference on software
engineering education and training. Madrid, Spain, pp 176{184

Hazzan O, Dubinsky Y (2006) Teaching framework for software development methods: poster
presented at the ICSE educator’s track. Proceedings of ICSE (International Conference of
Software Engineering), Shanghai, China, pp 703{706

Hazzan O, Dubinsky Y (2007) Teaching agile software development quality assurance.
In: Stamelos I, Sfetsos P (eds) Agile software development quality assurance book. Idea
Group Inc., pp 171{184

Talby D, Hazzan O, Dubinsky Y, Keren A (2006) Reflections on reflection in agile software
development. Proceedings of the agile conference, Minneapolis, Minnesota, USA, pp 100{110

292 14. Delivery and Cyclicality

Epilogue

This book focuses on the agile approach to software engineering.

We end this book by presenting contemporary issues as food for thought: To

what extent will the agile approach be accepted as the approach for the develop-

ment of software products? What will be the needs of the software industry in the

future? Will agile software development fit these needs? Will a different approach

for software engineering processes be needed? If so, what will be its main char-

acteristics? How will it be accepted by the software industry? Will its assimilation

process be similar to the assimilation process of agile software development? Will

the agile approach be adopted for non-software projects?

No matter what the answers to the above questions are, we believe that the

basic ideas of agile software development and the HOT|Human, Organizational,

and Technological|analysis framework for software development methods

remain valid.

Index

Abowd, GD., 68
Abrahamsson, P., 221
Abstraction, 33, 121, 155, 197, 242, 277
{ during iteration planning, 159
{ in learning environments, 164{165
{ levels, 32, 156, 157, 161, 162, 165, 242
Abts, C., 91
Academic coach, 18{19, 62, 87, 89{90, 145
Acceptance tester, 28
Acceptance tests, 248, 276, 279
Accountability, 25, 30, 32, 182
ACM/IEEE-CS Joint Task Force, 180
Activities
{ ad hoc methodology, 195
{ group, 140
{ measurement, 109
Agarwal, R., 200, 202
Agile
{ learning environments, 15
{ practices, 158
{ software development, 3
{ software development processes, 2
{ software engineering, 3, 18
Agile Alliance, 13, 23
Agile community
{ accumulated experience, 126{127
Agile Manifesto, 2, 4{5, 32, 35, 42, 45,

96, 192
Agile methods
{ Adaptive Software Development, 5
{ Crystal, 5
{ DSDM, 5

{ Extreme Programming, 5
{ Feature-Driven Development, 5
{ SCRUM, 5
Agile perspective
{ on the book/course structure,

198{199
Agile practices
{ in retrospective sessions, 210{211
Agile principles
{ in non-software projects, 196{197
Agile process
{ on a transition process, 236
Agile projects
{ scaling, 34
Agile software development, 1
{ continuous nature of, 287
{ cyclic nature of, 287
{ data, 13
Agile teams
{ roles, 25
{ role scheme, 27
Agility, 145, 189
Allen, TJ., 190, 202
Ambler, SW., 116
Andres, C., 77, 91, 184, 188, 264, 274
Approach
{ agile, 191{192
{ software development, 108, 136{137,

265{267
Architecture, 155
Aspect
{ cognitive, 33

{ human, 2
{ organizational, 2
{ social, 32
{ technological, 2
Atmosphere
{ in retrospective sessions, 281
Augustine, S., 256, 273
Austin, JR., 184, 188
Average pace
{ expected, 82
Awareness
{ cognitive, 54

Bass, M., 203
Beale, R., 68
Beck, K., 50, 51, 54, 68, 77, 83, 91, 101,

114, 116, 121, 162, 164, 170, 184, 185,
188, 264, 274

Bennett, J., 209, 221
Blomkvist, S., 57, 68
Boehm, B., 74, 91
Bonus allocation, 35
Book writing, 196{197
Bottlenecks, 74
Brooks, FP., 23, 73{74, 91
Brown, AW., 91
Bruce, A., 257, 274
Bugs, 122
Burn-down, 102, 105{108
Business day, 9{10, 49{54, 71{72,

80, 81, 142, 206, 211,
212{213

Business values, 276

Caristi, J., 54, 69
Carmel, E., 191{192, 199{200
Case study
{ abstraction during iteration planning,

159{161
{ the agile change leader,

258{262
{ an iteration timetable of an agile team,

80{81
{ applying an agile process on a transition

process, 241{244
{ book writing, 196{197
{ a coaching framework,

265{273
{ First Things First, 81
{ follow-the-sun with agile development,

199{201
{ Guidelines for a Retrospective Session,

212{213

{ identification of short sequence
repetitions in a DNA sequence, 62{63

{ illustrating measured TDD, 129
{ measuring estimations versus actual

development time, 82{83
{ merging development iterations with

user evaluation iterations, 57{60
{ meta-reflective processes, 280
{ monitoring large-scale project by

measures, 100{108
{ personal information organizer, 63{64
{ refactoring activity, 166{167
{ reflection on learning in agile software

development, 207{208
{ reflection on TDD, 125{126
{ a report of an organizational survey,

237{241
{ role-related measures, 111{113
{ simulator of the UnixTM file system

module, 65{67
{ size and complexity measures, 128{130
{ software organizational survey from

the time perspective, 75{76
{ TDD Steps, 124{125
{ tracking agile distributed projects,

193{194
Catarci, T., 68
Celebration, 278{279
Center
{ communication, 260
Change, 6, 87, 223
{ coping with, 223
{ in the customer’s requirements, 224
{ introduction, 225{227
{ in learning environments, 244{250
{ organizational, 223, 230{232
{ resistance to, 243
{ in software requirements, 227{230
Change introduction, 225{227
{ cost of, 228
Change leader model, 259{262
Chaos Report, 48, 69, 92
Christensen, CM., 234, 252
Chulani, S., 91
Ciulla, JB., 254, 274
Clark, BK., 91
Coach, 28, 264
{ academic, 145{146, 148, 199
Coaching, 245, 255
Coaching framework, 90, 265{267
Coaching team, 18{19, 266
Cockburn, A., 87, 91, 118, 210, 220,

256, 274

296 Index

Code of ethics, 173, 179{180
Code of Ethics and Professional

Practice, 136
Code review, 269
Code reviewer, 28
Coding standards, 177
Cognition, 55{156
Cognitive aspect, 33
Cohen, CF., 118, 123
Cohn, M., 77, 91, 101, 114
Collaboration, 195, 256{257, 265
Collaborative workspace, 14
Combelles, KA., 274
Commitment, 30, 31, 257
Communication, 5, 15, 30, 31{32, 61, 137,

145, 174, 189, 260, 264, 267
{ in distributed agile teams, 192{193
Competition, 178
Complexity, 127, 128{130
Computer science, 3
Conflicts, 27
Constructivism, 20, 141
Constructivist, 141{142
Consultant, 235{237, 259{263
Continuous integration, 98, 101, 104, 120
Continuous integrator, 29, 277
Control, 93
Cooperation, 61, 172, 175{179, 184, 187
Cooper, CL., 249, 254
Coordination, 193, 199{200
Cost management, 254
Cotterell, M., 79, 91, 254, 256, 257, 274
Course review
{ intermediate, 147{148
Course structure, 15
Covey, S., 83{84, 91
Creativity, 26
Culture, 9, 10, 65, 168, 173, 213, 218
{ collaboration, 195
{ competence, 195
{ control, 195
{ cultivation, 195
Cunningham, W., 24
Cusick, J., 193, 202
Customer, 6, 7, 14, 29, 46, 68, 96, 99,

238{240, 247{250, 259, 263, 267
{ business values, 277
{ collaboration, 10, 45, 54{55
{ feedback, 50, 52
{ involvement, 240
{ role, 48{50
{ on-site, 243
{ stories, 62

Customer perception, 238
Customer stories, 247, 250{251
Customers and users
{ learning environments, 61
Cyclicality, 275{291
Cyclomatic complexity, 127{130

Darwin Machines and the Nature of
Knowledge, 225

Davis, RB, 16, 24
Delivery, 275{291
{ late, 75
Delivery and cyclicality, 275{291
Derby, E., 146, 152
Design, 162{163
{ simple, 155
Designer, 29
Development methods, 239
Development policy, 240
Development tasks
{ prioritizing, 83{86
Development team, 267
Devlin, K., 155, 170
Dijkstra, EW., 141, 152
Dilemmas, 182
Dings�yr, T., 210, 220
DiSessa, AA., 24
Distance
{ between teams, 190
Distributed teams, 191{193, 195{196
Diversity, 26, 172{173, 183{186,

191, 198, 202, 214, 217, 227, 229{230
Dix, A., 46, 56, 68
Documenter, 28
Drath, WH, 256, 274
Drill down data, 105{106

Eckstein, J., 142, 152
Effectiveness, 85
Effectiveness in use, 56
Efficiency in use, 56
Emotional intelligence, 258
End of the release
{ atmosphere, 279
{ measures, 279
{ presentation, 279
Estimations, 74{75
Ethics, 172{173, 179{183
{ in agile teams, 179{183
{ client and employer, 181
{ colleagues, 181
{ judgment, 181
{ management, 181

Index 297

{ product, 181
{ profession, 181
{ and public, 181
{ self, 181
Evaluation
{ expert-based, 56{57
{ iterations, 57{60
{ personal, 41
{ scheme, 40
{ student evaluation, 40{41
{ team performances, 40
{ user, 57
{ user-based, 57
Evolutionary framework, 223

Fairness, 53, 182
Faults, 100, 102, 107{108
Feathers, M., 116, 122
Feedback, 40, 93, 159, 230, 262
{ negative, 122
Feelings, 261, 267, 271
Feldman, Y., 114
Finholt, TA., 202
Finlay, J., 68
First planning session
{ disadvantages, 160
First Things First, 81
Florida, R., 183, 188
Follow-the-sun, 199{201
Fowler, M., 50, 68, 77, 83, 91, 101,

114, 121, 162, 164, 170
Friedman, TL., 190, 202
Functionality, 117

Game theory, 171{173, 175{179, 257
Genders, 183
Generalization, 152
George, B., 116, 122
Gittins, R., 54, 68
Globalization, 189{202
{ in learning environments,

197{198
Global software development,

189{202
Goals, 95{96, 109{111
{ group, 256
{ release, 102
Goleman, D., 258, 274
Grading policy, 41
Grinter, R., 202
Group
{ code, 31
{ customer, 29

{ leading, 29
{ maintenance, 29
Guinan, PJ., 195, 203

Hamlet, D., 122, 142, 152
Hanssen, GK., 210, 220
HCI, 46, 55
Herbsleb, JD., 191, 202
Highsmith, J., 162, 170, 195, 202, 256, 274
Hope, S., 54, 68
Horowitz, E., 91
HOT, 4, 8, 32, 52, 68, 75, 91, 100,

114, 124, 127, 137, 144, 149, 151,
156, 175, 186, 191, 202

Huff, AS., 256, 274
Hughes, B., 79, 91, 254, 256, 257, 274
Human Computer Interaction, 46
Human resources, 102
Humphrey, W., 27, 43
Humphrey, WS., 254, 274
Hwong, B., 46, 69
Hyysalo, J., 221

Improvement
{ continuous, 287
Information sharing, 177
Installer, 29, 277
Integration, 249
Interaction, 5, 181
Interviews, 236
Introduction
{ of teaching of agile software

development, 244{250
Involvement, 30, 32
Isensee, S., 69
ISO 9241-11, 56, 69
Iteration, 93, 103{105
Iteration planning
{ abstraction, 159{161
Iteration timetable, 80

Jarvenpaa, SL., 199, 202
Jeffries R., 10, 24
Johnson, DH., 54, 69
Johnson, M., 54, 55, 61, 69

K€a€ari€ainen, J., 221
Kazmeier, J., 203
Kemerer, CF., 74, 91
Keren, A., 68, 114, 170, 221, 292
Kerth, N., 146, 152
Kerth, NL, 214, 215, 221
Kessler, R., 24

298 Index

Kimani S., 68
Knowledge
{ distribution, 33
Knowledge gaining devices, 227, 230,

233{234, 245
Kolehmainen, K., 221
Koskela, J., 221
Kramer, J., 155, 156, 165, 170
Krishna, S., 203
Kuhn S., 17, 24
Kyll€onen P, 221

Lakoff, G., 54, 55, 61, 69
Lamoreux, M., 210, 221
Landauer, TK, 57, 69
Langdon, K., 257, 274
Large-scale company, 237{238
Larsen, D., 152
Laurance, D., 69
Lawler, JM., 54, 69
Leader, 235, 238
{ agile change, 258{259
{ autocrat, 258
{ democrat, 258
{ directive, 258
{ methodology change, 259, 260
{ permissive, 258
Leadership, 257{258, 260, 262, 264{265
{ ancient, 256
{ future, 256
{ in learning environments, 264{265
{ modern, 256
{ styles, 253{255, 257{258, 262
{ traditional, 256
Learning, 136{137, 288
{ gradual, 41
{ in learning environments, 144{151
Learning community, 208
Learning environments
{ abstraction in, 164{165
{ agile in, 15{23
{ change in, 244{251
{ customers and users in, 61{67
{ delivery and cyclicality in, 288{290
{ globalization in, 197{201
{ leadership in, 264{273
{ learning in, 144{151
{ measures in, 108{113
{ quality in, 128{137
{ reflection in, 219
{ teamwork in, 36{41
{ time in, 86{90
{ trust in, 186{187

In learning environments, 288{290
Learning processes, 141{144,

205{206, 224
{ of agile software engineering,

145{146
{ gradual, 145{146
Leidner, DE., 199{200, 202
Leron, U., 101, 114, 122, 141, 153
Life styles, 183
Load balance, 72
L€othman, J., 221

Madachy, R., 91
Maher, CA., 22
Management, 7, 83{84, 89, 93, 97, 182, 189,

210, 233, 235
{ cost, 254
{ process, 254
{ quality, 254
{ team, 254
Manns, ML., 234, 252
March of the Penguins, 217
Marx, M., 252
Mathematics, 155
Maurer, F., 46, 69
Maybee, J., 122, 142, 152
Mayrhauser, VA, 254, 274
McCabe, T., 127
McInerney, P., 46, 69
Measure
{ set of, 95
Measured TDD, 127, 128{134
Measures, 10, 81, 93{114, 194, 200, 214,

239, 261
{ analysis, 110
{ assessment, 110{111
{ burn down, 100, 102
{ collection, 26
{ complexity, 127
{ data collection, 110
{ definition, 109{110
{ faults, 100
{ formulation, 95
{ iteration, 110
{ in learning environments, 108{113
{ presentation, 110
{ process, 119{120
{ product size, 100
{ pulse, 101
{ questions about, 97
{ release, 110
{ review, 50, 51
{ role communication, 111, 112

Index 299

{ role management, 111, 113
{ role-related, 111{113
{ role time, 111{112
{ size, 127
{ weekly, 110
Meeting
{ iteration summary, 279
Merrill, AR., 91
Merrill, RR., 91
Meszaros, G., 116
Metaphor, 54{55, 61{67, 248
Meta-reflective processes, 280
Methodologist, 29
Methodology
{ ad hoc, 195
{ agile, 195
{ rigorous, 195
Metric, 282
{ burn-down, 51
{ fault, 51
{ product, 51
{ pulse, 51
Minorities, 183
Mockus, A., 202
Moeslein, K., 256, 274
Monitoring, 100{108
Moore, GA., 195, 202
Movies, 217
Mullet, D., 48, 69
Mullick, N., 203
Myers, W., 254, 274
Myllyaho, M., 210, 221
The Mythical Man-Month, 73

Narrative, 246
Nationalities, 183
Nechushtai, G., 114
Newkirk, JW, 116
Nicholson, B., 203
Nielsen, J., 57, 69
Nirenberg, J., 195, 202, 253, 274
Noddings, N., 24
Non-software projects, 196, 293
Norman, D., 44, 52, 64
No Silver Bullet, 23

Organizational change, 230{234
Organizational culture
{ and agile distributed teams, 195{196
Organizational survey, 75, 196,

235{237
Organizational terminology, 235
Organization management, 238

Pair programming, 11, 12, 13, 84, 116,
175, 268

Paulish, DJ., 203
Payne, B., 273
Perspective
{ cognitive, 123
{ constructivist, 139, 141, 142, 152
{ customer, 53
{ managerial, 123
{ reflective practitioner, 208{210
{ team members, 129
Piaget, J., 141, 153
Planning, 48{50, 52{53, 64, 71{72,

74{75, 76, 78
{ agile, 232
{ in distributed agile projects, 193
Planning activity, 266
Planning session, 120, 159{161, 163, 174,

228, 246, 247, 248
Plotkin, H., 224{228, 232{234, 237, 244,

251, 262{263, 281, 288
Post-iteration workshop, 210
Postmortem review, 220
Practice, 8, 115
Prasad, A., 193, 202
Preece, J., 69
Presenter, 29
Prisoner’s dilemma, 171, 175{179
Process
{ iterative, 116
{ learning, 136
{ tight, 230{231
{ transparent, 171{172
And process transparency, 173{175
Productivity, 79
Product size, 100{103
Professional development, 33
Project
{ goals, 95
{ large-scale, 100
{ non software, 190
{ schedule, 48
Project development
{ launching, 20
Project management, 32
Project presentation, 289
Project Retrospective, 215
Project wiki, 229
Pulford, K., 254, 274
Pulse, 101, 104
{ spiky, 101
{ steady, 101
Putnam LH., 254, 274

300 Index

Quality, 6, 71, 74, 115{138, 184, 209, 238,
242, 248, 249

{ assurance, 117{118
{ in learning environments, 128{137
{ process, 119{120
{ product, 120{121
{ quadrant, 85
Quality Assurance (QA), 101
Quality management, 254
Questionnaires, 59, 266
{ reflective, 59

Reduction
{ of the change scope, 232{233
{ of period of time, 226
{ of scope, 232{233
{ of space, 232{233
{ of time, 226
Refactoring, 11, 12, 83{84, 115, 120,

124{125, 127, 130{133, 138, 155{157,
162{164, 166{170, 173, 178{179, 181,
224, 230, 249

{ operations, 166{168
Reflection, 18, 84, 89, 98, 144, 145, 185,

205{220
{ individual, 110
{ on learning, 186
{ in learning environments, 219
{ reflection on, 280{281
{ retrospective on, 280
Reflective
{ activity, 85
{ processes, 209
{ session, 84, 142
{ tasks, 144, 148
Reflective meeting
{ written summary of, 285
Reflective practitioner, 208{210
Reflective processes, 265{267
{ in agile distributed teams, 194{195
{ meta, 280
Reflective session, 147{148, 160, 249, 275,

280{281
Reifer, DJ., 79, 91, 92
Relationship
{ trustful, 171{172
Releases
{ beginning of, 278
{ celebration, 278{279
{ end of, 278
{ reflective session between, 280{281
{ towards the end of the, 277{278
{ between two, 276{277

Requirements, 46, 227
{ customer, 119
Responsibility, 26, 32, 36, 77, 123, 174, 240
Retrospective, 194, 205{206, 210{220, 276
{ end of the release, 215{219
{ facilitator, 211{212
{ length, 215
{ organization, 216
{ participants, 215
{ place, 215
{ preparation, 216
{ reflection on, 281
{ retrospective on, 281
{ topic(s) selections, 215{216
{ trigger, 216{217
Retrospective session, 205, 210
{ guidelines, 212{213
Reward allocation, 175
Righi, C., 69
Rigorous methodology, 195
Rising, L., 234, 252
Risk, 101{102
Risk analysis, 100
Rogers, Y., 46, 69
Role
{ academic coach, 18{19
{ activities, 37{39
{ assignment, 243{244
{ coaching, 264
{ holders, 32
{ scheme, 27{34, 158
Role activities
{ assignments, 37
{ improvement, 40
{ maintenance, 39{40
{ role list generation, 37
{ roles distribution, 38
Roles, 28, 160{161, 207
{ and abstraction, 158{164
Role scheme, 27{34, 158
Roschelle, J., 24
Rudorfer, A., 69

Sahay, S., 191{192, 203
Salmij€arvi, S., 221
Salo, O., 210, 221
Sangwan, R., 190{192, 203
Satisfaction in use, 56
Sawyer, S., 195, 203
Scalability, 244
Schedule, 71, 74
{ of the first day of the 2-day agile

workshop, 247

Index 301

{ of the second day of a 2-day agile
workshop, 249

Sch€on DA., 146, 153, 208{209, 221
Schuh P., 77, 92
Schwaber K., 152
Scope, 77
Security, 53
SEI, 74, 92
Sencindiver, F., 273
Session
{ retrospective, 281{284
Sharp, H., 69
Shirlaw, S., 274
Short iterations, 48, 77, 142, 193
{ and learning processe, 142{144
Short releases, 9, 12, 142, 159
{ and iterations in learning processes, 142{144
Simple design, 155
Size, 127
Small releases, 268
Smith, JP., 16, 24
Smith MK., 184, 188
Social aspect, 33
Software
{ as an intangible product, 173{175
{ development process, 86, 93{100
{ intangibility, 173{175
Software design, 162
Software development
{ global, 189{202
{ method, 3
{ monitor, 95{96
Software development method, 3
Software development process,

207, 224
{ as a learning process, 146{147
Software Engineering 2004 Curricula, 136
Software Engineering Code of Ethics and

Professional Practice, 136, 180
Software Engineering Education

Knowledge Areas, 136
Software Engineering Methods

course, 199
Software intangibility, 173{175
Software Intangibility and Process

Transparency, 173{175
Software product contracts, 7
Software projects
{ problems, 73{75
Software quality, 116
Software team, 258{259
Sommerville, I., 254, 274
Song, X., 69

Stakeholders, 231, 256
Standish Group, 48, 69, 92
{ Chaos Report, 48, 69
Stand-up meeting, 39, 161{162, 232, 243
Steece, B., 91
Stevenson, HH, 252
Studio, 2, 17, 148, 165, 244, 251, 267
Successive refinement, 141
Summary and Reflective Questions, 23,

42, 67{68, 90{91, 114, 137, 152,
169{170, 187{188, 201{202, 251,
273, 291

Survey, 235{237
Sustainable pace, 79, 89, 246
Synchronization, 189
System
{ formal presentation of the, 282
{ presentation, 50

Talby, D., 68, 100, 114, 210, 212,
221, 281, 292

Task
{ distribution, 72
Tasks
{ reflective, 144
Teaching and learning principle, 15{17,

36{37, 61, 88{89, 108, 136{137,
141, 146, 165, 172, 197{198, 228

Teaching and learning principles
{ list of, 290
Teaching staff, 150{151
Team, 26, 93, 240
{ of academic coaches, 250{251
{ agile, 35, 80{81
{ development, 267
{ forming, 22{23
{ members, 267, 270
{ velocity, 83
Team leader, 282
Teammates, 207
Teams
{ diverse teams, 245
Teamwork, 25{42
{ dilemmas, 25, 34{35
{ learning environments, 36{41
Technical aspect, 3
Test
{ points, 100{102
Test-Driven Development (TDD),

115{117, 121{127
{ advantages, 125{126
{ disadvantages, 125{126
{ green, 121{122

302 Index

{ measured, 127{132
{ red, 121{122
{ steps, 124{125
Testing, 118, 174{175, 210{211, 248
{ acceptance tests, 11, 14
{ automatic, 11
{ { unit, 117, 121
Thinking
{ reflective, 144
Thomas, D., 183, 188
Tightness, 77{79, 116, 120, 189, 230
Tight process, 230
Time, 73
{ actual, 81
{ allocation, 214, 220
{ boxing, 77
{ estimation, 9{10, 72, 74, 87, 98, 159
{ management, 81{88, 207{208, 239, 246,

254, 266
{ pressure, 74{75
{ reduction, 228{229
Tomayko, J., 146, 152
Tomayko JE., 17, 74Topping, PA, 254,

264, 274
Tracker, 28, 93, 95, 158
Tracking
{ agile distributed projects, 193{194
Tracking table, 130{132
Transition
{ to agile software development

environment, 234{244
Transition process, 223, 232{236, 241, 245
Transparency, 96, 119, 231
Trust, 53, 136, 166, 171{188
{ in learning environments, 186{187

UCD
{ with agile development, 57{60

Understanding, 119, 139, 145
{ of the requirements, 228
Unit tester, 29
Unit tests
{ automated, 138
Usability, 56
User, 45{47, 55{56
User centered design (UCD), 56
User-centric techniques, 46
User evaluator, 29

Values, 31, 115
Van Vliet, H., 74, 92, 122
Velocity, 83
VersionOne, 13
Video conference, 229
Virtual space reduction, 229
Vorontsov, AA., 116
Vredenburg, K., 56, 69

Watson, AH., 127
Whole team, 8, 173, 213
Williams, L., 11, 24, 87, 91, 116, 122
Wilson, D., 54, 69
Woodcock, S., 273
Work environment
{ cooperative, 53
Work habits, 207{208, 231
Workshop, 232
{ two-day, 245{246
The World is Flat, 190
Worldviews, 183

Yaeli, A., 114
Yourdon, E., 195, 203

Zarpas, E., 114

Index 303

	Preface
	Overview and Goals
	Organization and Features
	The Academic Community
	The Industrial Community
	Acknowledgments

	Contents
	Introduction to Agile Software Development
	1.1 Overview
	1.2 Objectives
	1.3 Study Questions
	1.4 Three Perspectives on Software Engineering
	1.5 The Agile Manifesto
	1.5.1 Individuals and Interactions over Processes and Tools
	1.5.2 Working Software over Comprehensive Documentation
	1.5.3 Customer Collaboration over Contract Negotiation
	1.5.4 Responding to Change over Following a Plan

	1.6 Application of Agile Software Development
	1.7 Data About Agile Software Development
	1.8 Agile Software Development in Learning Environments
	1.8.1 University Course Structure
	1.8.2 Teaching and Learning Principles
	1.8.3 The Studio Environment
	1.8.4 The Academic Coach Role
	1.8.5 Overview of the Studio Meetings
	1.8.6 Launching the Project Development in the Studio

	1.9 Summary and Reflective Questions
	1.10 Summary
	References

	Teamwork
	2.1 Overview
	2.2 Objectives
	2.3 Study Questions
	2.4 A Role Scheme in Agile Teams
	2.4.1 Remarks on the Implementation of the Role Scheme
	2.4.2 Human Perspective on the Role Scheme
	2.4.3 Using the Role Scheme to Scale Agile Projects

	2.5 Dilemmas in Teamwork
	2.6 Teamwork in Learning Environments
	2.6.1 Teaching and Learning Principles
	2.6.2 Role Activities
	2.6.3 Student Evaluation

	2.7 Concluding Reflective Questions
	2.8 Summary
	References

	Customers and Users
	3.1 Overview
	3.2 Objectives
	3.3 Study Questions
	3.4 The Customer
	3.4.1 Customer Role
	3.4.2 Customer Collaboration

	3.5 The User
	3.5.1 Combining UCD with Agile Development

	3.6 Customers and Users in LearningEnvironments
	3.6.1 Teaching and Learning Principles
	3.6.2 Customer Stories
	3.6.3 Case Studies of Metaphor Use

	3.7 Summary and Reflective Questions
	3.8 Summary
	References

	Time
	4.1 Overview
	4.2 Objectives
	4.3 Study Questions
	4.4 Time-Related Problems in Software Projects
	4.4.1 List of Time-Related Problems of Software Projects
	4.4.2 Case Study 4.1. Software Organizational Survey from the Time Perspective

	4.5 Tightness of Software Development Methods
	4.6 Sustainable Pace
	4.6.1 Case Study 4.2. An Iteration Timetable of an Agile Team

	4.7 Time Management of Agile Projects
	4.7.1 Time Measurements
	4.7.2 Prioritizing Development Tasks

	4.8 Time in Learning Environments
	4.8.1 The Planning Activity
	4.8.2 Teaching and Learning Principles
	4.8.3 Students’ Reflections on Time-Related Issues
	4.8.4 The Academic Coach’s Perspective

	4.9 Summary and Reflective Questions
	4.10 Summary
	References

	Measures
	5.1 Overview
	5.2 Objectives
	5.3 Study Questions
	5.4 Why Are Measures Needed?
	5.5 Who Decides What Is Measured?
	5.6 What Should Be Measured?
	5.7 When Are Measures Taken?
	5.8 How Are Measures Taken?
	5.9 Who Takes the Measures?
	5.10 How Are Measures Used?
	5.11 Case Study 5.1. Monitoring a Large-Scale Project by Measures
	5.11.1 Measure Definition
	5.11.2 Measure Illustration

	5.12 Measures in Learning Environments
	5.12.1 Teaching and Learning Principles
	5.12.2 Measurement Activities
	5.12.3 Case Study 5.2. Role-Related Measures

	5.13 Summary and Reflective Questions
	5.14 Summary
	References

	Quality
	6.1 Overview
	6.2 Objectives
	6.3 Study Questions
	6.4 The Agile Approach to Quality Assurance
	6.4.1 Process Quality
	6.4.2 Product Quality

	6.5 Test-Driven Development
	6.5.1 How Does TDD Help Overcome Some of the Problems Inherent in Testing?
	6.5.2 Case Study 6.1. TDD Steps
	6.5.3 Case Study 6.2. Reflection on TDD

	6.6 Measured TDD
	6.7 Quality in Learning Environments
	6.7.1 Case Study 6.3. Size and Complexity Measures
	6.7.2 Case Study 6.4. Illustrating Measured TDD
	6.7.3 Teaching and Learning Principles -|The Case of Quality

	6.8 Summary and Reflective Questions
	6.9 Summary
	References

	Learning
	7.1 Overview
	7.2 Objectives
	7.3 Study Questions
	7.4 How Does Agile Software Development Support Learning Processes?
	7.4.1 Agile Software Development from the Constructivist Perspective
	7.4.2 The Role of Short Releases and Iterations in Learning Processes

	7.5 Learning in Learning Environments
	7.5.1 Gradual Learning Process of Agile Software Engineering
	7.5.2 Learning and Teaching Principle
	7.5.3 The Studio Meeting—End of the First Iteration
	7.5.4 Intermediate Course Review and Reflection

	7.6 Summary and Reflective Questions
	7.7 Summary
	References

	Abstraction
	8.1 Overview
	8.2 Objectives
	8.3 Study Questions
	8.4 Abstraction Levels in Agile Software Development
	8.4.1 Roles in Agile Teams
	8.4.2 Case Study 8.1. Abstraction During Iteration Planning
	8.4.3 The Stand-Up Meeting
	8.4.4 Design and Refactoring

	8.5 Abstraction in Learning Environments
	8.5.1 Teaching and Learning Principles
	8.5.2 Case Study 8.2. RefactoringActivity

	8.6 Summary and Reflective Questions
	8.7 Summary
	References

	Trust
	9.1 Overview
	9.2 Objectives
	9.3 Study Questions
	9.4 Software Intangibility and Process Transparency
	9.5 Game Theory Perspective in SoftwareDevelopment
	9.6 Ethics in Agile Teams
	9.7 Diversity
	9.8 Trust in Learning Environments
	9.8.1 Teaching and Learning Principle

	9.9 Summary and Reflective Questions
	9.10 Summary
	References

	Globalization
	10.1 Overview
	10.2 Objectives
	10.3 Study Questions
	10.4 The Agile Approach in Global Software Development
	10.4.1 Communication in Distributed Agile Teams
	10.4.2 Planning in Distributed Agile Projects
	10.4.3 Case Study 10.1. Tracking Agile Distributed Projects
	10.4.4 Reflective Processes in Agile Distributed Teams
	10.4.5 Organizational Culture and Agile Distributed Teams

	10.5 Application of Agile Principles in Non-Software Projects
	10.5.1 Case Study 10.2. Book Writing

	10.6 Globalization in Learning Environments
	10.6.1 Teaching and Learning Principles
	10.6.2 An Agile Perspective on the Book/Course Structure
	10.6.3 Case Study 10.3. Follow-the-Sun with Agile Development

	10.7 Summary and Reflective Questions
	10.8 Summary
	References

	Reflection
	11.1 Overview
	11.2 Objectives
	11.3 Study Questions
	11.4 Case Study 11.1. Reflection on Learning in Agile Software Development
	11.5 Reflective Practitioner Perspective
	11.6 Retrospective
	11.6.1 The Retrospective Facilitator
	11.6.2 Case Study 11.2. Guidelines for a Retrospective Session
	11.6.3 Application of Agile Practices in Retrospective Sessions
	11.6.4 End of the Release Retrospective

	11.7 Reflection in Learning Environments
	11.8 Summary and Reflective Questions
	11.9 Summary
	References

	Change
	12.1 Overview
	12.2 Objectives
	12.3 Study Questions
	12.4 A Conceptual Framework for Change Introduction
	12.4.1 Changes in Software Requirements
	12.4.2 Organizational Changes

	12.5 Transition to an Agile Software Development Environment
	12.5.1 Organizational Survey
	12.5.2 Case Study 12.1.AReport of an Organizational Survey
	12.5.3 Case Study 12.2. Applying an Agile Process to a Transition Process

	12.6 Change in Learning Environments
	12.6.1 Introducing the Teaching of Agile Software Development
	12.6.2 Two-Day Workshop
	12.6.3 Two-Day Workshop Format for a Team of Academic Coaches

	12.7 Summary and Reflective Questions
	12.8 Summary
	References

	Leadership
	13.1 Overview
	13.2 Objectives
	13.3 Study Questions
	13.4 Leaders
	13.4.1 Leadership Styles
	13.4.2 Case Study 13.1. The Agile Change Leader

	13.5 Coaches
	13.6 Leadership in Learning Environments
	13.6.1 Teaching and Learning Principles
	13.6.2 Case Study 13.2. A Coaching Framework

	13.7 Summary and Reflective Questions
	13.8 Summary
	References

	Delivery and Cyclicality
	14.1 Overview
	14.2 Objectives
	14.3 Study Questions
	14.4 Delivery
	14.4.1 Towards the End of the Release
	14.4.2 Release Celebration
	14.4.3 Reflective Session Between Releases

	14.5 Cyclicality
	14.6 Delivery and Cyclicality in Learning Environments
	14.6.1 The Delivery in the Studio
	14.6.2 Teaching and Learning Principles

	14.7 Summary and Reflective Questions
	14.8 Summary
	References

	Epilogue
	Index

