

Lecture Notes
in Business Information Processing 9

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Norman M. Sadeh
Carnegie Mellon University, Pittsburgh, PA, USA

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Pekka Abrahamsson Richard Baskerville
Kieran Conboy Brian Fitzgerald
Lorraine Morgan Xiaofeng Wang (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming

9th International Conference, XP 2008
Limerick, Ireland, June 10-14, 2008
Proceedings

13

Volume Editors

Pekka Abrahamsson
VTT Electronics
90571 Oulu, Finland
E-mail: pekka.abrahamsson@vtt.fi

Richard Baskerville
Georgia State University
Dept. of Computer Information Systems
30302 Atlanta, GA, USA
E-mail: baskerville@acm.org

Kieran Conboy
National University of Ireland
Dept. of Accountancy and Finance
Galway, Ireland
E-mail: kieran.conboy@nuigalway.ie

Brian Fitzgerald
Lorraine Morgan
Xiaofeng Wang
University of Limerick
Lero - The Irish Software Engineering Research Centre
Limerick, Ireland
E-mail: {brian.fitzgerald,lorraine.morgan}@ul.ie, xiaofeng.wang@lero.ie

Library of Congress Control Number: 2008927853

ACM Computing Classification (1998): D.2, K.6

ISSN 1865-1348
ISBN-10 3-540-68254-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-68254-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12272334 06/3180 5 4 3 2 1 0

Preface

The XP conference series established in 2000 was the first conference dedicated to
agile processes in software engineering. The idea of the conference is to offer a unique
setting for advancing the state of the art in the research and practice of agile processes.
This year’s conference was the ninth consecutive edition of this international event.
The conference has grown to be the largest conference on agile software development
outside North America. The XP conference enjoys being one of those conferences that
truly brings practitioners and academics together. About 70% of XP participants come
from industry and the number of academics has grown steadily over the years. XP is
more of an experience rather than a regular conference. It offers several different ways
to interact and strives to create a truly collaborative environment where new ideas and
exciting findings can be presented and shared. For example, this year’s open space
session, which was “a conference within a conference”, was larger than ever before.

Agile software development is a unique phenomenon from several perspectives.
Few expected it to last for more than a few years due to the focus on team-level soft-
ware development and a perceived inability to cope with complex development envi-
ronments. The roots of agile development ideas can be traced back for several decades
as experienced practitioners gradually materialized the ideas in the form of several
independently developed methods that shared many common characteristics. Later,
these characteristics became better known in their expression as the agile manifesto.
Anecdotal evidence and the popular press indicate that large software-intensive corpo-
rations who operate in complex global development environments are in the process
of deploying agile processes and practices as part of their de-facto approach to soft-
ware development. This process continues even though attempts thus far to standard-
ize or even set up a list of agreed recommended practices for agile software develop-
ment have fallen short.

Agile software development is unique from a research perspective as well. Anecdo-
tal evidence suggests that, once applied, it may impact the corporate-wide software
development ecosystem. It is therefore one of the few research topics that highlights
the benefits of bringing together the applied research done in software engineering
with theoretically well-developed information systems research, thereby melding con-
structive pragmatics into holistic views of organizational impacts and beyond. To-
gether, both disciplines can increase our understanding of the concepts, issues and
impacts of agile processes in various development contexts. For the first time in the
conference’s history, both the IS and SE community are equally present in the Organi-
zation Committee, in search of the winning balance between abstract perspectives and
the experiences of practitioners from the field.

The XP conference has increased its academic standing year by year. The XP
committee will seek to build upon this trend in the coming years as well. The XP pa-
per submissions went through a rigorous peer-reviewing process. Each paper was
reviewed by at least two Program Committee members. Of 54 papers submitted, only
16 were accepted as full papers. The papers represent a set of high-quality research

 Preface VI

studies addressing a wide variety of different topics ranging from history and evolu-
tion of agile methods to new conceptual models of agility, human factors in agile
development and technical aspects of agile processes. The conference program also
included a number of interactive workshops, panels and the conference-within-a-
conference open space event. This year’s XP also presented a number of high-profile
keynotes from Dave Snowden, Kati Vilkki and Philippe Kruchten. XP 2008 presented
the largest tutorial offering ever seen in the conference history. The participants had
the option to participate in 19 half-day tutorials.

We would like to extend our gratitude to all those who contributed to the organiza-
tion of the XP 2008 event. The authors, the sponsors, the Chairs, the reviewers, and all
the volunteers: without their help, this event would have not been possible.

April 2008

Pekka Abrahamsson
Richard Baskerville

Kieran Conboy
Brian Fitzgerald

Lorraine Morgan
Xiaofeng Wang

Organization

Executive Committee

General Chair

Program Chairs

Organizing Chairs

Local Committee Chair

Publicity and Industrial Chairs

Tutorial Chairs

Panel Chairs

Workshop Chair

Open Space Chair

Poster Chairs

Pekka Abrahamsson (Finland)

Richard Baskerville (USA)
Kieran Conboy (Ireland)

Brian Fitzgerald (Ireland)
Xiaofeng Wang (Ireland)

Lorraine Morgan (Ireland)

Julie Eckstein (Germany)
Brian Hanly (Ireland)

Steven Fraser (USA)
Angela Martin (New Zealand)

David Hussman (USA)
Lasse Koskela (Finland)

Par Ågerfalk (Sweden)

Charlie Poole (USA)

Daniel Karlstrom (Sweden)
Minna Pikkarainen (Finland)

VIII Organization

Program Committee

Marco Abis, Italy
Tom Acton, Ireland
Par Agerfalk, Sweden
Scott Ambler, Canada
David Avison, France
Chris Barry, Ireland
David Bustard, UK
Sven Carlsson, Sweden
Val Casey, Ireland
Francesco Cirillo, Italy
Ethan Cleary, Ireland
Gerry Coleman, Ireland
Kieran Conboy, Ireland
Daniela Damian, Canada
Ernesto Damiani, Italy
Torgeir Dingsoyr, Norway
Brian Donnellan, Ireland
Yael Dubinsky, Israel
Christian Federspiel, Austria
Elaine Ferneley, UK
Guy Fitzgerald, UK
Stephen Fraser, USA
Gary Gaughan, Ireland
Goran Goldkuhl, Sweden
Jim Highsmith, USA
Seamus Hill, Ireland
Mairead Hogan, Ireland
Helena Holmström, Sweden
David Hussman, USA
Linda Levine, USA
Karlheinz Kautz, Denmark
Frank Keenan, Ireland
Mikko Korkala, Finland
Lasse Koskela, Finland

Michael Lang, Ireland
Gary Lohan, Ireland
Kalle Lyytinen, USA
Lars Mathiassen, USA
Frank Maurer, Canada
John McAvoy, Ireland
Fergal McCaffery, Ireland
Orla McHugh, Ireland
Grigori Melnik, Canada
Kannan Mohan, USA
Eoin O’Conchuir, Ireland
Markku Oivo, Finland
Padraig O’Leary, Ireland
Minna Pikkarainen, Ireland
Charlie Poole, USA
Rafael Prikladnicki, Brazil
Bala Ramesh, USA
Barbara Russo, Italy
Outi Salo, Finland
Murray Scott, Ireland
Keng Siau, USA
Maha Shaikh, Ireland
Ahmed Sidky, USA
Alberto Sillitti, Italy
Sandra Slaughter, USA
Christoph Steindl, Austria
Giancarlo Succi, Italy
Richard Vidgen, UK
Xiaofeng Wang, Ireland
Barbara Weber, Austria
Don Wells, USA
Werner Wild, Austria
Laurie Williams, USA

Sponsors

IX Organization

Table of Contents

Agile Innovations

Essence: Facilitating Agile Innovation . 1
Ivan Aaen

Scrum and Team Effectiveness: Theory and Practice 11
Nils Brede Moe and Torgeir Dingsøyr

Misfit or Misuse? Lessons from Implementation of Scrum in Radical
Product Innovation . 21

Jens Henrik Hosbond and Peter Axel Nielsen

Adaptation of Agile

Method Configuration: The eXtreme Programming Case 32
Fredrik Karlsson and Pär J. Ågerfalk

Adopting Agile in a Large Organisation . 42
José Abdelnour-Nocera and Helen Sharp

An Observational Study of a Distributed Card Based Planning
Environment . 53

Robert Morgan, Frank Maurer, and Mike Chiasson

Agile Testing and Assessment

The TDD-Guide Training and Guidance Tool for Test-Driven
Development . 63

Oren Mishali, Yael Dubinsky, and Shmuel Katz

JExample: Exploiting Dependencies between Tests to Improve Defect
Localization . 73

Adrian Kuhn, Bart Van Rompaey, Lea Haensenberger,
Oscar Nierstrasz, Serge Demeyer, Markus Gaelli, and
Koenraad Van Leemput

An Agile Development Process and Its Assessment Using Quantitative
Object-Oriented Metrics . 83

Giulio Concas, Marco Di Francesco, Michele Marchesi,
Roberta Quaresima, and Sandro Pinna

XII Table of Contents

History and Evolution of Agile

Historical Roots of Agile Methods: Where Did “Agile Thinking” Come
From? . 94

Noura Abbas, Andrew M. Gravell, and Gary B. Wills

Seven Years of XP - 50 Customers, 100 Projects and 500
Programmers – Lessons Learnt and Ideas for Improvement 104

Mike Holcombe and Chris Thomson

People Factors in Agile Environments

Applying XP to an Agile–Inexperienced Software Development Team . . . 114
Liana Silva, Célio Santana, Fernando Rocha, Máıra Paschoalino,
Gabriel Falconieri, Lúcio Ribeiro, Renata Medeiros,
Sérgio Soares, and Cristine Gusmão

Investigating the Usefulness of Pair-Programming in a Mature Agile
Team . 127

Irina Diana Coman, Alberto Sillitti, and Giancarlo Succi

Conceptual Models of Agility

Just Enough Structure at the Edge of Chaos: Agile Information System
Development in Practice . 137

Karlheinz Kautz and Sabine Zumpe

A Preliminary Conceptual Model for Exploring Global Agile Teams 147
Jason H. Sharp and Sherry D. Ryan

Scrum Implementation Using Kotter’s Change Model 161
Sinéad Hayes and Ita Richardson

Experience Reports

Agile Estimation with Monte Carlo Simulation . 172
Juanjuan Zang

The Pomodoro Technique for Sustainable Pace in Extreme
Programming Teams . 180

Federico Gobbo and Matteo Vaccari

Adopting Iterative Development: The Perceived Business Value 185
Caryna Pinheiro, Frank Maurer, and Jonathan Sillito

Explicit Risk Management in Agile Processes . 190
Christopher R. Nelson, Gil Taran, and Lucia de Lascurain Hinojosa

Table of Contents XIII

Posters

APDT: An Agile Planning Tool for Digital Tabletops 202
Sebastian Weber, Yaser Ghanam, Xin Wang, and Frank Maurer

Investigating the Role of Trust in Agile Methods Using a Light Weight
Systematic Literature Review . 204

Eisha Hasnain and Tracy Hall

Agile Practices in a Product Development Organization 208
Frank Keenan, Tony McCarron, Shay Doherty, and Stuart McLean

Building and Linking a Metaphor: Finding Value! . 210
Frank Keenan, David Bustard, Namgyal Damdul, and
David Connolly

The Story of Transition to Agile Software Development 212
Gadi Lifshitz, Ayelet Kroskin, and Yael Dubinsky

Predicting Software Fault Proneness Model Using Neural Network 215
Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra

Multi-modal Functional Test Execution . 218
Shelly Park and Frank Maurer

Social Network Analysis of Communication in Open Source Projects . . . 220
Guido Porruvecchio, Selene Uras, and Roberta Quaresima

Toward Empowering Extreme Programming from an Architectural
Viewpoint . 222

Amir Saffarian, Amir Azim Sharifloo, and Fereidoun Shams

A Metric-Based Approach to Assess Class Testability 224
Yogesh Singh and Anju Saha

Inside View of an Extreme Process . 226
Sara Shahzad, Zahid Hussain, Martin Lechner, and Wolfgang Slany

To Track QA Work or Not; That Is the Question . 228
Juanjuan Zang

Build Notifications in Agile Environments . 230
Ruth Ablett, Frank Maurer, Ehud Sharlin, Jorg Denzinger, and
Craig Schock

Supporting Distributed Pair Programming with the COLLECE
Groupware System: An Empirical Study . 232

Rafael Duque and Crescencio Bravo

XIV Table of Contents

Workshops

Experience on the Human Side of Agile . 234
Angela Martin, James Noble, and Robert Biddle

Retrospective Exploration Workshop . 236
David Hussman and Lasse Koskela

Exposing the “Devils” within: Agile Taboos in a Large Organization . . . 238
Lars Arne Sk̊ar and Jan-Erik Sandberg

BIOHAZARD – Engineering the Change Virus . 240
Patrick Kua

Architecture-Centric Methods and Agile Approaches 242
Muhammad Ali Babar and Pekka Abrahamsson

Exploring Agile Coaching . 244
Rachel Davies and Liz Sedley

The Agile Technique Hour . 246
David Parsons

AOSTA: Agile Open Source Tools Academy . 248
Werner Wild, Barbara Weber, and Hubert Baumeister

Panels (Abstracts)

There’s No Such Thing as Best Practice . 250
Moderator: Steve Freeman

Culture and Agile: Challenges and Synergies . 251
Steven Fraser, Pekka Abrahamsson, Robert Biddle, Jutta Eckstein,
Philippe Kruchten, Dennis Mancl, and Werner Wild

Architecture and Agility Are Not Mutually Exclusive 256
Moderator: Lasse Koskela

Author Index . 257

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 1–10, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Essence: Facilitating Agile Innovation

Ivan Aaen

Department of Computer Science, Aalborg University, Denmark
aaen@acm.org

Abstract. This paper suggests ways to facilitate creativity and innovation in ag-
ile development. The paper applies four perspectives – Product, Project, Proc-
ess, and People - to identify ways to support creative software development
based on agile principles. The paper then describes a new facility - Software In-
novation Research Lab (SIRL) - and drafts a new method concept for software
innovation called Essence. Finally the paper reports from an early discovery
experiment using SIRL and Essence and identifies further research.

Keywords: Software innovation.

1 Introduction

This paper is motivated by two observations: (1) Globalization and technological
development opens new challenges for software development in high-cost countries.
A viable software industry in our part of the world will likely depend on the ability to
create high-value products in close collaboration with customers. (2) Agile develop-
ment opens new opportunities for software innovation by allowing for changes and
adaptations even late in development projects. Software innovation is one main strat-
egy for creating high-value software products.

Software innovation is a complex topic and to make it more manageable, the paper
applies four views on innovation - Product, Project, Process, and People - to allow
for separation of concerns.These views are inspired by Pressman [1] as a way to flesh
out important aspects of software development while maintaining an overview.

The paper is very much research in progress. First I contrast traditional and agile
software development with respect to software innovation. Then I describe a new
facility - Software Innovation Research Lab (SIRL) - and a new method concept -
Essence - intended to facilitate software innovation. Lastly I report from an early
experiment on the use of physical space in SIRL and the logical views in Essence.

2 A New Outlook for Software Innovation

A brief look at the Software Engineering Body of Knowledge[2] or the Capability
Maturity Model Integration [3] shows that the traditional software development para-
digm aims for predictable and documented software production. Agile development -
according to the values and principles expressed in the manifesto [4] - aims for software

2 I. Aaen

development. The traditional line of thinking sets one scene for software innovation,
while agile thinking sets a quite different one.

2.1 Product

One of the four values in the Agile Manifesto [2] - Working software over compre-
hensive documentation - marks major differences between the two paradigms. These
differences are about requirements, design, and testing.

Traditional software development focuses on requirements elicitation, on up-front
design in order to get the architecture right from the start, and on verification and
validation to ensure, that deliverables are consistent and comply with requirements.
Agile development focuses on whole team [5], emergent design [6], test-infected
development [7] and sees testing as confirming that user and customer needs are met.

Product innovation is about developing new or changed products and services [8].
Both traditional and agile development sets conditions for product innovation. Tradi-
tional development tends to subjugate innovative ideas to the requirements specifica-
tion. In practice this often leads to an early and small window of opportunity for
innovative ideas, as path dependencies - costs related to rework - effectively impede
later changes. Moreover, these ideas will normally come from the customer. Agile
development reduces path dependencies significantly and makes dialogue between
customers, users, and developers easier.

Both rely on customers as a main source of innovative ideas. Neither stresses the
potential in combining application area expertise with the technological expertise held
by developers. Moreover, both approaches are generally reticent on innovation.

2.2 Project

The agile manifesto values responding to change over following a plan and thereby
emphasizes the project-view on software development.

Traditional project management focuses on cost and schedule, and includes
requirements management, predictive planning, resource allocation, risk planning,
quality planning, and plan management [2]. Collecting comprehensive information
up-front is key. Agile development focuses on adaptive planning with built-in feed-
back loops [9], and is based on incremental development with frequent releases.

Project innovation here refers to changes in the context, where products or services
are produced - what Tidd et al. labels as position innovation [8] - or to the way a soft-
ware project is managed to achieve innovative solutions. Project innovation is both
about stimulating creativity and innovation throughout the project, and about identify-
ing options in previous projects that may offer breakthroughs to a new project.

Requirements management, detailed predictive planning, and plan oversight are
essential to traditional project management. Such principles tend to curb project inno-
vation by limiting efforts to use results and experiences from past projects to the be-
ginning of a new project for the sake of scheduling and requirements management.
Agile development encourages a gradual formation of solutions combined with ad-
justments based on previous experience. These principles contribute to build an
environment for innovative work via cooperation in the whole team.

 Essence: Facilitating Agile Innovation 3

There seems to be little advice on how to sustain creative and innovative work
throughout a software development project. In agile development the window of op-
portunity for introducing new ideas widens to cover a larger part of the entire project.
This wider window necessitates that managerial ways be found to balance progress
and achievement on the one side and creativity on the other.

2.3 Process

By valuing individuals and interactions over processes and tools the agile manifesto
highlights the gap between a traditional emphasis on standardized software processes
and an agile emphasis on practice, competence, motivation, and reflection [10]. Build-
ing stable software processes stands at the center of the traditional paradigm. The
best-known strategy for this is software process improvement (SPI) [2]. In agile de-
velopment, processes are not products - objects - by themselves, but rather practices
that evolve dynamically with the team as it adapts to the particular circumstances.

Process innovation is about developing new or improved ways to produce products
or provide services [8]. To separate product and process innovation, process innova-
tion here only denotes changes in software development. Traditional SPI no doubt is
the best-known example of process innovation in software engineering. SPI efforts
develop process changes to be rolled-out in the organization via descriptions, best
practices, and templates to support the process. Agile process innovation strategies are
very different. Here processes are cultivated in the team while developing software.
Examples of central mechanisms for developing and disseminating good agile devel-
opment practices are sitting together, pair programming, shared code, and continuous
integration.

Neither traditional nor agile development methods aid innovative work via meth-
ods, techniques, or tools. Innovation and creativity are treated as exogenous to soft-
ware development - as something to be taken care of by external disciplines.

2.4 People

The people view is about the stakeholders in software projects. Examples of stake-
holders are senior managers, project managers, developers, customers, super-users,
end users, and marketing people. Here I will focus on the whole development team,
i.e. developers and customer representatives. Main concerns are personal and collec-
tive development, communication, and cooperation.

The agile manifesto values customer collaboration over contract negotiation.
Specifically this value concerns the relationship between developers and customers.
Traditional development views people essentially as functions. Standardization and
division of work are ideal for minimizing communications costs, for getting new staff
up to speed quickly and for exchanging staff between projects when needed. Agile
development puts more emphasis on self-organization, socialization and tacit knowl-
edge. Whereas interpersonal communication in the traditional line-staff organization
is considered a cost that should be minimized, agile teams employ communication as
the primary way to exchange information and negotiate options.

People innovation is about changing the ‘mental models’ which frame what an or-
ganization does, e.g. changes in the perception of self, of the development team, of

4 I. Aaen

the users, or of the market, corresponding to what Tidd et al. calls paradigm innova-
tion [8]. Changes in mental models may help remove blocks or develop new perspec-
tives opening for novel possibilities and solutions.

Little in traditional software development supports people innovation. SPI involves
organizational change but rarely paradigmatic change. Likewise requirements elicita-
tion generally develops a quite conventional understanding of a user organization.
Agile software development is not elaborate on people innovation either, but the
manifesto value mentioned above points to one significant attribute of agile develop-
ment that could lead to changed perspectives: The frequent melding of team and
customer views via customer collaboration and formation of whole teams. Likewise
self-organizing teams may add to the readiness for change.

Neither traditional nor agile software development offers much to develop new
mental models of the development organization or of application areas and markets.

3 SIRL- Software Innovation Research Lab

In this and the following section I will present SIRL and Essence and outline how
they support the four views of software innovation identified above. SIRL (Fig. 1)
was established in August 2006 at Department of Computer Science at Aalborg Uni-
versity to facilitate research on software creativity and innovation. The lab supports
team-based software development using modern development principles.

The lab is used for all phases in a development project and enables working as in-
dividuals, as pairs, and as a team. The lab supports:

• Collective idea-generation via interactive boards
• Creative processes via physical movement and localization
• Applying multiple perspectives via spatial separation
• Maintaining holistic overview via logical coherence
• Flexible arrangement of furniture and equipment
• Free communication and eye contact.

To support multiple perspectives the lab contains four interactive boards represent-
ing four generic views: Earth, Water, Fire and Air. The views were named after
Empedocles of Acragas (ca. 495-435 BCE), who in his Tetrasomia, or Doctrine of the
Four Elements, argued that all matter is comprised of these four elements.

A great many modern systems of perspectives also come in fours. Examples are
SWOT (Strengths, Weaknesses, Opportunities, Threats), McCarthy’s 4P within mar-
keting (Product, Pricing, Placement, Promotion), Gupta’s 4P within Six Sigma proc-
ess management (Prepare, Perform, Perfect, Progress), Liker’s 4P within management
(Philosophy, Process, People, Problem solving), Tidd, Bessant & Pavitt’s 4P within
innovation (Product, Position, Process, Paradigm) and finally Pressman’s 4P within
software engineering (Product, Project, Process, People). The four generic views of
SIRL therefore accommodates many and quite different systems of perspectives of
relevance to creative and innovative software development.

 Essence: Facilitating Agile Innovation 5

Fig. 1. SIRL layout fall 2007

SIRL is equipped with four interactive screens (Smart Board 660) with projectors,
four desktop computers, and one server. The main software is Visual Studio™ IDE
for software development and Smart Ideas™ for idea generation.

4 Essence – Innovation in the Agile Team

Essence is a method concept currently under development in SIRL. The concept is
named after Quintessence, the cosmic fifth element added by Aristotle to complement
Empedocles’ four earthly elements. Essence is based on a number of ideas that can
only be briefly listed here:

• Melding creative sessions with agile development to employ development speed
and flexibility throughout the project.

• Extending existing agile development methods. Essence is not a separate method.
• Entrusting the development team - rather than external specialists - to be creative.
• Kinesthetic thinking - using location and movement in thinking and simulation.
• Using roles to promote the application of multiple perspectives and particularly to

strengthen synergies between customer challenges and developer ambitions.
• Using views for separation of concerns to provide a conceptual division of problem

spaces and to balance overview with detail and coherence with transparency.
• Using modes to adapt Essence to incremental development in the project.

Essence is intended to be lightweight, easy and fun to use. Lightweight as cere-
mony and project overheads must be kept at a minimum so as not to have projects
drop Essence for lack of time. Easy to use as the time needed before Essence is useful
should be short and the activities in Essence should come natural to the participants.
Finally Essence should be fun to use to further motivation and outcome.

The strategy for this is to base activities on principles similar to role-playing games
and improvisational theater. Both of these are based on defined characters, settings

6 I. Aaen

and situations, whereas the events and actions are largely left to the participants them-
selves to develop via disciplined improvisations. To ensure a familiar basis for these
improvisations, the characters and settings are based on permanent structures (roles
and views respectively), whereas situations reflect a current status or challenge.

Team members have roles defining their characters. Each role has a set of ideals or
values providing a clear raison d’être [11] to the role. The Challenger is the customer
and has all the responsibilities of an on-site customer, yet should pose project re-
quirements in the more open form of challenges. The Responder is the developer
employing technical competence to deliver ambitious responses. These two roles
engage in a dialogue where solutions are developed by contrasting application area
needs and desires with technical opportunity. The Anchor serves to keep the team
absorbed and focused on delivering exciting solutions - what Zultner referred to as
Exciting Requirements [12]. The last role is the Child; this role is temporary as any-
one on the team can take this role temporarily at any given time. The Child may raise
any idea or issue - even when contrary to decisions made earlier by the team. This
role is named after the child in The Emperor’s New Clothes who said: But he hasn't
got anything on and thereby revealed the emperor’s folly.

The setting is part of framing the story world - the shared view that forms the basis
for expressing each characters ideals [11]. To define the setting, Essence maps Press-
man’s 4P from software engineering onto SIRL’s four generic views.

The situation introduces the dynamic element to complete the story world: The
point of departure for the game. The first part of this comes in the form of Essence
Games. Essence Games are inspired by Hohmann’s Innovation Games [13] and
numerous methods described in Huczynski [14]. Essence Games are based on the
principle of saying yes - accepting all offers that other characters bring into the situa-
tion [11]. Until now two Essence Games have been outlined and tried. The other part
is the project state. Projects are in one of three states defining the situation to be ad-
dressed - Idea, Plan, or Growth. Idea is the mode for suggesting possible courses of
action and for developing concepts. Games in this mode are mainly exploratory. Plan
is where proposals for doing or achieving goals are developed and necessary prepara-
tions are identified. This mode leads to decisions about what to do, when, and by
whom. Games in this mode focus mainly on inventory building to identify tasks.
Growth is where ideas find actual form via evolution, experimentation, selection,
maturation, expansion, enlargement, and progress. Games in this mode are mainly
confirmatory and investigate if the project maintains a focus on innovation.

To ensure continuity from Essence game to project activities and also minimize
game preparations, Essence structures should form part of the project infrastructure.
Without this, game sessions may not have any real impact on the project. In the
following I will outline how such continuity might be pursued.

4.1 Product

Interactions between stakeholders from the application and development areas may
serve as means for exchanging perspectives and developing challenging ideas possi-
bly leading to innovative results. Methodologically Essence stimulates dialogue be-
tween Challenger and Responder in order to develop ambitious technical responses
and answer application area challenges. Visually the Product view lets the responders

 Essence: Facilitating Agile Innovation 7

represent the product being built - the source code - to make the product and proposi-
tions for changes to it more tangible in team discussions.

4.2 Project

Project-wise software innovation faces at least two challenges: How to manage inno-
vative projects, and how to get inspiration from past projects when addressing new
problems. The challenge grows as the window of opportunity for innovation widens.
This requires project status and progress to be balanced against visions.

A comprehensive response to these challenges has yet to be developed for Essence.
One main strategy may be to use metaphors as instruments for transferring knowledge
and inspiration from one area to another. Methodologically Essence will therefore
propose a repository of metaphors derived from past projects and products. Visually
the Project view supports the Challenger in maintaining project status and planning
throughout the project by giving an overview of status & backlog for the sprint and
for the project.

4.3 Process

The Process view supports innovative and creative work by offering an assortment of
ways to develop and explore concepts and ideas, to elicit tasks and requirements, and
to investigate and confirm if the project upholds an appropriate level of innovation.
Methodologically Essence will therefore contain a repertoire of creative methods,
tools, and techniques such as Innovation Games (Hohmann, 2006) adapted to Essence
with respect to roles, views, and modes. Visually the Process view provides the An-
chor with an overview over and access to this repertoire throughout the project. The
Process view also contains tools for brainstorming, innovation and creativity such as
ThoughtOffice™ and Smart Ideas™.

4.4 People

The People view facilitates the development of new mental models of the develop-
ment organization or of application areas and markets. Methodologically the Child
role in Essence empowers at any time any member of the team to irresponsibly ques-
tion basic assumptions, values or the like in the project for a while. Interventions from
external consultants might also find place here. Visually the People view shows appli-
cations of the software under development. Throughout the project this view visual-
izes use scenarios for example via video footage from the user organization, video
link to actual users, etc. This view also serves as main access point to off-site stake-
holders using video chat, Skype or similar.

5 Early Experiments with Essence and SIRL

Both SIRL and Essence introduce concepts, structures, and ways of working that to
my knowledge have not been combined before. They are still early in their develop-
ment, and experiments will therefore serve to provide insights and knowledge about
their utility and produce ideas for how to apply them. At this stage, experiments

8 I. Aaen

cannot provide enough information or evidence to support conclusions, yet they might
help in formulating hypotheses to be tested at a later stage. For that reason, the early
experiments with Essence and SIRL take the form of discovery experiments [15,16].
The aim of discovery experiments is to weed out less promising ideas and put the
focus on what can best be achieved as well as on conditions for implementation.

 We have worked on SIRL for 18 months now. The idea is to develop SIRL and
Essence incrementally by using them for software development. In the following, I
will report on experiences using physical space in SIRL in combination with the
logical views of Essence. These experiences are based on a term project with four
students in the fall of 2007. Based on Scrum the project developed an IDE plug-in
supporting pair programming between developers in different locations. This discov-
ery experiment addresses among other things two questions:

• Is it useful to physically distribute views in SIRL on four screens?
• Is it useful to logically split up views in Product, Project, Process, and People?

In four months the project completed four Scrum sprints. The students rotated the
Essence roles to ensure that everybody served as Challenger, Responder, and Anchor.
The Child role was not used. Related to these sprints the students responded to a ques-
tionnaire with 16 questions on their experiences using screens, views relative to their
particular role in the sprint. These responses were coded using a 48-node coding tree
with TAMS Analyzer, version 3.41.

The responses reflect variations with respect to personality, time (sprint #) of the
project, and role. In the following, I will address the two questions. For simplicity, I
will refer to roles in the first two sprints as early Challenger, Responder etc., and to
roles in the two last sprints as late.

5.1 Experiences with Physical Space

Early Challengers found the physical distribution helpful for planning and oversight
by showing the project and sprint backlogs and the running product simultaneously.
One early Challenger observed: I think the screens were great for splitting up
thoughts and discuss issues. The screens help keeping ideas alive. The screens help
establish overview. Every discussion was persistent in a way, and because of the
physical split they were also more focused. Late Challengers reported briefly on their
experiences, as they played a limited role in the project.

Early Responders saw themselves as developers and did not engage much in dia-
logue with the Challenger, leaving this dialogue to the Anchor. For that reason, early
Responders focused mainly on their own Product screen. The physical distribution
was useful for overviews and for allocating tasks. Late Responders also focused on
detailed development. This reflects the limited size of the software making it fairly
easy to maintain an overview of the entire product. Larger projects with more people
and more refactoring would likely make more screens useful for Responders.

The group used the Anchor role like a Scrum Master with a stronger managerial
role than expected in regular uses of Essence. Early Anchors found separate screens
useful to split up and discuss issues, focus on ideas, and maintain overview. Late
Anchors pointed more to specific episodes where multiple screens helped maintain
overview while addressing details. Thus this early discovery experiment suggests that

 Essence: Facilitating Agile Innovation 9

splitting up physically on interactive screens has potential, but also - not surprisingly
- that this calls for the Essence roles to be well understood by all team members.

5.2 Experiences with Logical Views

Early Challenger experiences with logical views are on a par with those of physical
space. One of them observed: Having the ability to see the two backlogs and the
running product at the same time helped to understand how each requirement had
been seen by the team and how it had been implemented. The other early Challenger
observed that the roles help distribute responsibilities. The People and Project views
were deemed most important for communication and discussion. Late Challengers
also primarily used the People and Project views to show and prioritize backlog items.

Early Responders used the People and Project views to overview tasks and assign-
ments. The Process and Product views were not sufficiently developed to be fully
useful. As one of them observed: There were unused possibilities in Essence - we
should have used more views. Another late Responder observed that the roles help
distribute responsibilities: This way I have specific responsibilities and can concen-
trate on them [but] the four views were not easy to use directly.

The first Anchor saw little use of the views specifically for his role. The second
Anchor used the People and Project views in meetings to keep track. The third An-
chor used all views episodically and two of them (Product and Project) the rest of the
time, while the fourth primarily used the Project view for status.

Consistent for all sprints was that the views were not fully used as intended. The
primary use of the views was for project overview and coordination - i.e. for project
management - whereas the expected main benefit of them - for creative dialogue un-
der development - was not obtained. Further benefits from using these logical views
may not be obtained without a stronger methodological foundation.

6 Conclusion

This paper has presented SIRL, a facility for experimenting with software innovation,
and Essence, a method concept drafted with use in SIRL in mind. An early discovery
experiment suggests conditions for using physical and logical distribution of project
views for agile teams. There seems to be benefits in physical and logical distribution
for project management, whereas the potential for creative development has yet to be
fully demonstrated. A mature understanding of Essence roles and ideas must be in
place in order to investigate this potential. This constitutes one future line of research.

Essence will be based on a static structure of roles and modes defining charac-
ters,and settings and dynamic situations with events and actions developed by the
participants themselves via disciplined improvisations. How to build such structures
and situations constitutes another line of research in the coming years.

Acknowledgements

Thanks go to Peter Axel Nielsen, Jens Henrik Hosbond, and Jeremy Rose from Insti-
tute for Computer Science at Aalborg University for inspiring discussion. My students

10 I. Aaen

at SIRL, Morten Andersen, Søren Rode Andreasen, Lasse Bæk, and Philip Bredahl
Thomsen (2006-07) and Jeppe V. Boelsmand, Rasmus Jensen, Jan Leckscheidt, and
Morten Saxov (2007-08) have been indispensable for building SIRL and for the ex-
periments. Also thank to Søren Hansen, founder of the Aalborg University Creativity
Lab, for illustrating the potential in Improvisational Theater.

References

1. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. McGraw-Hill Higher
Education, Boston (2005)

2. Abran, A., Moore, J.W. (eds.): Guide to the Software Engineering Body of Knowledge:
2004 Version - SWEBOK. IEEE Computer Society, Washington (2004)

3. CMMI Product Team CMMI for Software Engineering, Version 1.1, Continuous
Representation (CMMI-SW, V1.1, Continuous). Software Engineering Institute,
Pittsburgh, PA (2002)

4. Beck, K., et al.: Manifesto for Agile Software Development (2001),
 http://www.agilemanifesto.org

5. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. Addison-
Wesley, Boston (2005)

6. Fowler, M.: Design - Who needs an architect? IEEE Software 20, 11–13 (2003)
7. Beck, K., Gamma, E.: Test-infected: programmers love writing tests. In: Deugo, D. (ed.)

More Java gems, pp. 357–376. Cambridge University Press, New York (2000)
8. Tidd, J., Bessant, J.R., Pavitt, K.: Managing Innovation: Integrating Technological, Market

and Organization Change. Wiley, Hoboken (2005)
9. Cohn, M.: Agile Estimating and Planning. Prentice Hall Professional Technical Reference,

Upper Saddle River (2006)
10. Aaen, I.: Software Process Improvement: Blueprints versus Recipes. IEEE Software 20,

86–93 (2003)
11. Swartjes, I.M.T., Vromen, J.A.F.: Emergent Story Generation: Lessons from

Improvisational Theater. In: Proceedings of the AAAI Fall Symposium on Intelligent
Narrative Technologies, FS-07-05, November 9-11, pp. 146–149 (2007)

12. Zultner, R.E.: TQM for technical teams. Communications of the ACM 36, 79–91 (1993)
13. Hohmann, L.: Innovation Games: Creating Breakthrough Products Through Collaborative

Play. Addison-Wesley Professional, Reading (2006)
14. Huczynski, A.: Encyclopedia of Development Methods. Gower, Aldershot (2001)
15. Alberts, D.S., Hayes, R.E.: Code of Best Practice for Experimentation. DoD Command

and Control Research Program, Washington, D.C. (2002)
16. Alberts, D.S., Hayes, R.E.: Campaigns of Experimentation: Pathways to Innovation and

Transformation. CCRP Publication Series, Washington, D.C. (2005)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 11–20, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Scrum and Team Effectiveness: Theory and Practice

Nils Brede Moe and Torgeir Dingsøyr

SINTEF ICT
NO-7465 Trondheim, Norway

{nils.b.moe,torgeir.dingsoyr}@sintef.no

Abstract. The scrum software development process has recently gained much
popularity as an agile method primarily focusing on project management.
Scrum has been derived as a set of principles of good management of software
projects, from experienced practitioners. In this paper, we discuss the elements
of Scrum in relation to a proposed theory of the “big five” components for ef-
fectiveness in small teams. We also discuss the theory of scrum in relation to
these components, and in relation to a case study of a start-up Scrum team.

Keywords: Agile software development, scrum, software engineering, team ef-
fectiveness, empirical software engineering, case study.

1 Introduction

Agile software development methods denotes a set of practices for software develop-
ment, created by experienced practitioners [23]. Agile processes deal with the chal-
lenge of an unpredictable world by relying on “people and their creativity rather than
on processes” [12].

Scrum is one of the most popular agile development methods. Rising and Janoff
[14] described Scrum as a development process for small teams, which includes a
series of short development phases, “sprints”, which typically lasts from one to four
weeks. The team captures identified tasks in a backlog, which is reprioritized and
updated in the beginning of each sprint. This also includes estimating the effort re-
quired to complete each task. The customer participates in the sprint meetings, but is
not allowed to influence the team in between the meetings. During a sprint, the team
holds short daily Scrum meetings to discuss progress, plans and potential problems.
Scrum is thoroughly described by Schwaber and Beedle [18].

The cornerstone argument for the suitability of Scrum is that software development
is a complex process where many factors influence the final result. It is therefore
difficult or even impossible to plan ahead such as described in traditional waterfall-
like development processes. Scrum extends incremental software development to
what is called “empirical process control”; where feedback loops is the core element.
Abrahamsson et al. [1] describe Scrum as an agile process which primarily deal with
project management. Scrum is inspired by a range of fields like complexity theory,
system dynamics and Nonaka and Takeuchi’s theory of knowledge creation [21],
adapted to a setting of software development.

12 N.B. Moe and T. Dingsøyr

There are few studies of Scrum in the research literature [6]. Most of the studies
are reports with little scientific backing of claims. We have found three lessons-
learned reports from companies taking up Scrum [14, 17, 20], and three case studies
examining the combination of XP and Scrum [7], the overtime amongst developers
and customer satisfaction in Scrum [10] and experience with scrum in a cross-
organizational development project [5].

Software development processes depend significantly on team performance, as
does any process that involves human interaction. This focus on teams has been the
motivation of this study, where we want to discuss the relation between the general
literature on teams and in particular team effectiveness and Scrum. We ask the fol-
lowing research questions:

• How does Scrum support the factors which influence effective teamwork?
• How can challenges when introducing Scrum be explained by the factors influenc-

ing effective teamwork?

2 Research Design and Method

Given the focus above, we have designed a study of a project using Scrum, focusing
on factors which influence teamwork in a single-case holistic study [22]. We now
describe project context, data sources and analysis.

2.1 Study Context

This case study was done in the context of a larger action research program, where
several companies have introduced elements from agile development in response to
identified problems. Scrum was introduced in one company because they wanted to
improve their ability to deliver iteratively and on time, increase the quality, improve
the team-feeling and team communication. All 16 employees in the development
department were introduced to Scrum at the same time.

The goal of the first Scrum-project was to develop a plan and coordination system
for owners of cables (e.g., electricity, fibre) and pipes (water, sewer). The project
produced a combination of textual user-interfaces and map-functionality.

The company was used to having people work independently, in small projects, so
the case project was one of the largest so far for the organization. Four thousand
hours, six developers, one Scrum-master, and a product owner were allocated to the
project. The product owner was from the same company as the developers, but was
situated in another city. He acted as a representative for the customer who was the
local government of a Norwegian city. The project kick-off was in May 2006, first
installation was in October and final installation was planned to be November 2007.
Prior to the kick-off some initial architectural work was done, and some coding activi-
ties had started. The project used .Net.

2.2 Data Sources and Analysis

The two authors conducted ethnographic observations and used interviews. During the
observation periods, we visited the team once or twice a week, in total 60 observations

 Scrum and Team Effectiveness: Theory and Practice 13

lasting from 10 minutes to 8 hours. In each observation session, we participated in daily
scrum meetings, planning meetings, retrospective, review meetings, and observations of
developers working. We took notes on dialogues, interactions and activities. The dia-
logues were transcribed and integrated with notes to produce a detailed record of each
session. In addition, we interviewed four of the developers after the second sprint, and
all developers, scrum master and product owner after the project was completed. The
analysis draws on this broad material, and is structured after a framework for team ef-
fectiveness, presented in the following.

3 Team Effectiveness; The “Big Five” and Scrum

Much research has been devoted to the topic of teams. In particular, the question of
what processes and components comprise teamwork and how teamwork contributes
to team effectiveness has received much attention [9, 16]. Stewart [19] conducted a
meta-analysis of 93 team studies examining the relationship between team design
features and team performance. He found that teams can indeed be designed for high
performance, and proper design has in fact proved critical for success.

There is, however, an important difference between team productivity and team ef-
fectiveness. There are several models for team effectiveness in the literature. Some
emphasize that team effectiveness must be seen more holistic than productivity, tak-
ing also into account the interaction of a team. Productivity will in some cases rely on
external factors for the team.

A number of frameworks have been proposed to classify teamwork behaviours
(e.g. [11], [8], [16]). However, there is a lack of consensus concerning the conceptual
structure of teamwork behaviours [15]. Some have criticized that studies of teamwork
have been fragmented and not suitable for practical use [16]. A recent review of this
body of research by Salas et al. [16] tries to answer this critique and make the studies
practically usable, suggesting the “Big Five” components of teamwork.

Salas et al. [16] argue that teams require a complex mixture of factors that include
organizational support and individual skills, and also teamwork skills. Therefore,
Salas et al. have condensed the knowledge on teamwork into the “Big Five” frame-
work, see Fig. 1. The five components are: team leadership, mutual performance
monitoring, backup behaviour, adaptability, and team orientation. Each of the “Big
Five” is required for team effectiveness, but each component may be manifested dif-
ferently across most teams task types because of constraints of team task and varying
needs of the team [16]. The “Big Five” require three coordinating mechanisms: shared
mental models, closed-looped communication, and mutual trust.

Building on the theoretically and empirically grounded “Big Five” framework, we will
now describe each component of the framework, how this component is addressed in
Scrum, and how we observed this component in the project which was adopting Scrum.

3.1 Coordinating Mechanisms

Shared Mental Models: are supported in Scrum through the involvement by the
product owner, focus on the project vision, and the planning resulting in a backlog,
and the retrospective meeting. The daily scrum is important for understanding team
members’ tasks.

14 N.B. Moe and T. Dingsøyr

The CoreThe Core

Team
Leadership Mutual

Performance
Monitoring

Team
Orientation

Back-up
Behavior

Adaptability

Team
Effectiveness

Share Mental
Models

Mutual
Trust

Closed loop
communication

Share Mental
Models

Mutual
Trust

Closed loop
communication

Fig. 1. The proposed model of “Big Five” in teamwork by Salas et al. [16]

In the case, because of highly specialized skills and a corresponding division of
work, it was a problem to develop shared mental models both on a project level and
on a task level. Without a clear understanding of the system being developed, plan-
ning was difficult. The planning meetings turned out to be discussions between the
Scrum-master, product owner and the developer that was going to do the work.

Definition [16]: “An organizing knowledge structure of the relationships among
the task the team is engaged in and how the team members will interact”.
Behavioural Makers [16]: “Anticipating and predicting each other’s needs. Identify
changes in the team, task, or team-mates and implicitly adjusting strategies as needed”.
Scrum: The team is supposed to focus on the high level goal setting in the up front
planning. The product owner should provide a vision to help this process. Every
stakeholder is involved in this planning which is conducted as a co-located meet-
ing. The sprint and product backlogs describe what is to be developed.
Case-study: The product owner was responsible for communicating the features
this system was going to provide. But he lived in another city, was very busy, and
became sick in a critical phase. There was a lot of communication between the
developers and the product owner but according to the developers it should have
been more, to help them better understand how the system was going to be used. A
proper vision was also missing.

 Scrum and Team Effectiveness: Theory and Practice 15

Closed-Loop Communication: Communication is supported in Scrum with feedback
on a daily basis in addition to in the end of each sprint. However, closed-loop com-
munication is only explicitly supported by the review meeting.

In the project, because of highly specialized skills and focus on their own module,
the developers did not always listen when others were talking in the daily meeting.
Another reason for developers not paying full attention was that the focus of the meet-
ings was often general project problems, not related to development.

Definition [16]: “The exchange of information between a sender and a receiver
irrespective of the medium”.
Behavioural Makers [16]: “Following up with team members to ensure message
was received. Acknowledging that a message was received. Clarifying with the
sender of the message that the message received is the same as the intended mes-
sage”.
Scrum: The daily Scrum is the most important mechanism, but also the retrospec-
tive, planning meeting and review meetings provide feedback loops. There is no
mechanism that ensures that sent communication is accurately understood.
Case-study: A database model developed shortly before summer holiday, had to be
rewritten during the summer when the person who had made the model was on
holiday. The developer thought he had communicated what he did to the others.
However, the daily meetings increased the overall communication.

Mutual Trust: Scrum does not have mechanisms to directly develop mutual trust, but
assume that there is a culture of mutual trust in the team. Without mutual trust it will
be difficult for the team to commit to the backlog, and keep the deadline.

In the project, the three issues mentioned above could have been handled better in
order to improve the mutual trust. If team members do not feel that their input is val-
ued or that the information they provide will be used appropriately, they may be less
willing to participate in information sharing [2].

Definition [16]: “The shared belief that team members will perform their roles and
protect the interests of their team-mates”.
Behavioural Makers [16]: “Information sharing. Willingness to admit mistakes and
accept feedback”.
Scrum: The whole team is supposed to commit to what is to be delivered during a
sprint. Trust is then needed because team members must be willing to accept a risk
to rely on each other to meet deadlines and contribute to the team task.
Case-study: In interviews, most of the people involved in the project stated that
they trusted others in the team to do what was expected by the team. However,
some events lead to a lack of trust. First, in the beginning of the project, project
members thought the scrum master was overreacting to problems stated at the daily
meetings. This led them to not reporting problems when the scrum master was
present. Second, the fact that developers focused on their own “plan” resulted in a
lack of trust from the Scrum-master. Third, the developers discovered towards the
end of the project that the deadlines the scrum master presented were not the final
deadlines.

16 N.B. Moe and T. Dingsøyr

3.2 The “Big Five” of Teamwork

Team Leadership: The Scrum-master is presented as a coach, focusing on protecting
the team against external noise, removing impediments and facilitating the different
processes defined by Scrum. Salas [28] do not directly describe self-organizing teams,
however in such teams, leadership should be diffused rather than centralized [22], that
is, team leadership should be divided among the Product-owner, Scrum-master, and
the self-organizing team. Team leadership should ensure that the tasks are coordi-
nated, and that accurate shared mental models are developed.

In the project, developing shared mental models was difficult, due to the company
focus on specialization and corresponding division of work. When the Scrum master
acted more like a project manager than a coach, he reduced the ability of the team to
self-organize. A developer stated: “There was really little discussion about what we
could deliver, more about what we had to deliver”. Problem solving was often not
done in the team, as problems related to a module were often seen as personal, and
therefore not reported to the group.

Definition [16]: “Ability to direct and coordinate the activities of other team mem-
bers, assess team performance, assign tasks, develop team knowledge, skills, and
abilities, motivate team members, plan and organize, and establish a positive at-
mosphere”.
Behavioural Makers [16]: “Facilitate team problem solving. Provide performance
expectations and acceptable interaction patterns. Synchronize and combine indi-
vidual team member contributions. Seek and evaluate information that affects team
functioning. Clarify team member roles. Engage in preparatory meetings and feed-
back sessions with the team”.
Scrum: The team has authority and responsibility for many aspects of their work,
such as planning, scheduling, assigning tasks to members, and making decisions.
The Scrum master is often described as a coach or facilitator. The Scrum master
works to remove the impediments of the process, runs and makes decisions in the
daily meetings and validates them with the management [18].
Case-study: A general problem in the company is to protecting the team against
request from other projects, which also in this project resulted in the team in peri-
ods losing resources. The scrum master often acted more like a project manager
than a coach. According to the product owner, “this was necessary ... everyone are
engaged in many projects, so you really need someone to push in order to get
things done”.

Mutual Performance Monitoring: Scrum enables performance monitoring through
feedback loops for each day and iteration.

For the project, participants said they had a better overview than in previous pro-
jects, but because of a lack of shared mental models there were individual goals and
this reduced the possibility for mutual performance monitoring, since missing shared
mental models leads to ineffective feedback [16].

Definition [16]: “The ability to develop common understandings of the team envi-
ronment and apply appropriate task strategies to accurately monitor team-mate
performance”.

 Scrum and Team Effectiveness: Theory and Practice 17

Behavioural Makers [16]: “Identifying mistakes and lapses in other team mem-
bers’ actions. Providing feedback regarding team member actions to facilitate self-
correction”.
Scrum: In the daily Scrum each team member answers three questions: What did
you do since last Scrum meeting? What are you going to do until next Scrum meet-
ing? What are the obstacles in your way? Daily scrums address impediments, to
discover other team-members problems. The sprint burndown gives a daily picture
of remaining work and team progress. The project review and retrospective shows
what has been done and leads to discussions on performance.
Case-study: The daily scrum was held almost every day, but people did often not
listen to what others were talking about. The burndown was not updated regularly.

Backup Behaviour: Scrum only describes the team as multifunctional and self-
organizing. However, to fully self-organize backup behaviour is important, because it
is a mechanism that affects the team’s capability to adapt to changing situations and
environments [16].

In the project, the highly specialized skills and corresponding division of work re-
sulted in a lack of redundancy. This lack of redundancy reduced the flexibility and,
thus, the possibility for backup behaviour.

Definition [16]: “Ability to anticipate other team members’ needs through accurate
knowledge about their responsibilities. This includes the ability to shift workload
among members to achieve balance during high periods of workload or pressure”.
Behavioural Makers [16]: “Recognition by potential backup providers that there is
a workload distribution problem in their team. Shifting of work responsibilities to
underutilized team members. Completion of the whole task or parts of tasks by
other team members”.
Scrum: The team is seen as multifunctional. Self-organizing is an important charac-
teristic of a Scrum team, meaning the team is supposed to find out themselves how
to solve the tasks they have committed them selves to deliver.
Case-study: Few problems related to development tasks were discussed among the
developers as these problems were seen as personal problems. Also, the developers
did not want to edit others code, and there were difficulties with doing others work
when people were not available to the project (e.g. sick, on vacation, or travelling).

Adaptability: Scrum is designed to adapt to change, by frequent feedback loops and
replanning.

In the project, the problem with “highly specialized skills and corresponding divi-
sion of work” was thoroughly discussed, and the team decided to focus on this chal-
lenge. However they did not manage to radically change their working practice during
the project. Changing the way of working is difficult, and when it involves a transi-
tion from specialized skills to redundancy of functions, it requires a reorientation not
only by the developers but also by the management.

Definition [16]: “Ability to adjust strategies based on information gathered from
the environment through the use of backup behaviour and reallocation of intrateam
resources. Altering a course of action or team repertoire in response to changing
conditions (internal or external)”.

18 N.B. Moe and T. Dingsøyr

Behavioural Makers [16]: “Identify cues that a change has occurred, assign mean-
ing to that change, and develop a new plan to deal with the changes. Identify
opportunities for improvement and innovation for habitual or routine practices.
Remain vigilant to changes in the internal and external environment of the team”.
Scrum: Continuous planning and feedback from the customer is important in
Scrum making it possible to respond to unexpected demands. The retrospective
makes it possible to reflect and improve both the project and the process.
Case-study: Problems with self-organization lead to problems with developing a
new plan, solve problems, and identify improvements. The conditions changed, but
they had did not act upon these changes.
The project participants did not give feedback on the problem regarding the struc-
ture of the meeting before the last retrospective.

Team Orientation: Scrum foster team orientation through the planning and retrospec-
tive meetings, self-organizing and the vision.

The company was lacking a system for support. If a developer became responsible
for a solution the developer needed to support it as long as he or she was working in
the company. This resulted in the developers not wanting to take responsibility and
less willing to contribute their knowledge to problem-solving processes, because
when team members feel that the project reflect largely external demands, then they
are less likely to identify with the project.

Definition [16]: “Propensity to take other’s behaviour into account during group
interaction and the belief in the importance of team goal’s over individual mem-
bers’ goals”.
Behavioural Makers [16]: “Taking into account alternative solutions provided by
team-mates and appraising that input to determine what is most correct. Increased
task involvement, information sharing, strategizing, and participatory goal setting”.
Scrum: The team does high level goal setting in the up front planning. The Product
owner should provide a vision to help this process. Further goal setting are done
through sprint planning and somewhat through daily scrums. The team members
are empowered to make commitments that fit themselves, while the team as a un-
ion is responsible for end results. Scrum is also focused on team consensus rather
than dictatorial project managers.
Case-study: Specialisation and the lack of cohesion between short-term and long-
term planning are signs of reduced team orientation. However, many commented
on a good team atmosphere.

4 Conclusion and Further Work

In this paper, we have described the agile process Scrum and a software development
project, using the “Big Five” framework for team effectiveness. We have seen that
Scrum has several mechanisms in place in order to support the factors in the frame-
work, but we have also seen that many of these mechanisms were not easy to imple-
ment in practice in the case organization. As for our first research question, “how
does Scrum support the factors which influence effective teamwork?”, we found the
following:

 Scrum and Team Effectiveness: Theory and Practice 19

The aspect of team leadership is not appropriately addressed in Scrum. In a self-
organizing team, leadership should be diffused rather than centralized [4]. Scrum puts
emphasis on self-organizing teams and coaching, but does not give clear advice on
how this should be implemented. Second, back-up behaviour is an issue that is not
clearly described in Scrum. In the literature on self-organizing teams, we find that
redundancy or back-up behavior has been identified as an important prerequisite for
self-organization [4, 13]. Combining Scrum with for example the practice of pair
programming in XP [3] would improve this aspect. Third, Scrum is not very specific
on how to establish mutual trust in the development team, although this is implicitly a
prerequisite for a self-organizing team.

As for our second research question, “how can challenges when introducing Scrum
be explained by the factors influencing effective teamwork?”, we found:

The main deviations from the recommended practices in the framework were first
that the project suffered from lacking long-term planning, handling of problems and
establishment of mutual trust. Second, the mutual performance monitoring was hin-
dered by the team not using the burn-down charts throughout the project. Third, the
team orientation suffered from specialization in the team, which lead to participants
primarily focusing on their own issues. Fourth, mutual trust was not fully developed,
which resulted in problems not being reported and a lack of self-organization.

In the future we plan to use the “Big Five” framework in studying more projects, in
order to get a better understanding of what the main challenges are when companies
are seeking to promote effective teamwork through implementing agile development
processes.

References

[1] Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development
Methods: Review and Analysis. VTT Technical report (2002)

[2] Bandow, D.: Time to Create Sound Teamwork. The Journal for quality and participa-
tion 24(2), 41 (2001)

[3] Beck, K., Andres, C.: Extreme Programming Explained: Embrace Chage, 2nd edn. Addi-
son-Wesley, Reading (2004)

[4] Morgan, G.: Images of Organizations, p. 504. SAGE publications, Thousands Oaks
(2006)

[5] Dingsøyr, T., Hanssen, G.K., Dybå, T., Anker, G., Nygaard, J.O.: Developing Software
with Scrum in a Small Cross-Organizational Project. In: Richardson, I., Runeson, P.,
Messnarz, R. (eds.) EuroSPI 2006. LNCS, vol. 4257, pp. 5–15. Springer, Heidelberg
(2006)

[6] Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic
Review. Information and Software Technology (2008) doi: 10.1016/j.infsof.2008.01.006

[7] Fitzgerald, B., Hartnett, G., Conboy, K.: Customizing Agile Methods to Software Prac-
tices at Intel Shannon. European Journal of Information Systems 15(2), 200–213 (2006)

[8] Hoegl, M., Gemuenden, H.G.: Teamwork Quality and the Success of Innovative Projects:
A Theoretical Concept and Empirical Evidence. Organization Science 12(4), 435–449
(2001)

[9] Kay, J., Maisonneuve, N., Yacef, K., Reimann, P.: The Big Five and Visualisations of
Team Work Activity. In: Intelligent Tutoring Systems, pp. 197–206 (2006)

20 N.B. Moe and T. Dingsøyr

[10] Mann, C., Maurer, F.: A Case Study on the Impact of Scrum on Overtime and Customer
Satisfaction. In: Proceedings of Agile 2005. IEEE Press, Denver (2005)

[11] Marks, M.A.: A Temporally Based Framework and Taxonomy of Team Processes. The
Academy of Management review 26(3), 356 (2001)

[12] Nerur, S., Sikora, R., Mangalaraj, G., Balijepally, V.: Assessing the Relative Influence of
Journals in a Citation Network. Communications of the ACM 48(11), 71–73 (2005)

[13] Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company. Oxford University Press,
Oxford (1995)

[14] Rising, L., Janoff, N.S.: The Scrum Software Development Process for Small Teams.
IEEE Software 17(4), 26 (2000)

[15] Rousseau, V., Aube, C., Savoie, A.: Teamwork Behaviors - a Review and an Integration
of Frameworks. Small Group Research 37(5), 540–570 (2006)

[16] Salas, E., Sims, D.E., Burke, C.S.: Is There A "Big Five" In Teamwork? Small group re-
search 36(5), 555–599 (2005)

[17] Schatz, B., Abdelshafi, I.: Primavera Gets Agile: A Successfull Transition to Agile De-
velopment. IEEE Software, 36–42 (May/June 2005)

[18] Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, Up-
per Saddle River (2001)

[19] Stewart, G.L.: A Meta-Analytic Review of Relationships between Team Design Features
and Team Performance. 32, 29–55 (2006)

[20] Sutherland, J.: Agile Development: Lessons Learned from the First Scrum. Cutter Agile
Project Management Advisory Service: Executive Update 5(20), 1–4 (2004)

[21] Takeuchi, H., Nonaka, I.: The New Product Development Game. Harvard Business Re-
view, 137–146 (January 1986)

[22] Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. Sage Publications, Thou-
sand Oaks (2003)

[23] Ågerfalk, P., Fitzgerald, B.: Flexible and Distributed Software Processes: Old Petunias in
New Bowls? Communications of the ACM 49(10), 27–34 (2006)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 21–31, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Misfit or Misuse? Lessons from Implementation of
Scrum in Radical Product Innovation

Jens Henrik Hosbond and Peter Axel Nielsen

Department of Computer Science, Aalborg University, Denmark
{joenne,pan}@cs.aau.dk

Abstract. In this paper we report from a study of the implementation and early
experiences of using Scrum for radical product innovation in a traditional, ma-
trix-organized software company. The empirical data was collected in an inter-
view-based case study. The case data show a company undergoing significant
change due to a recent corporate take-over which has lead to a re-thinking of
the roles and tasks of the organization at all levels. We draw on an already es-
tablished framework for analyzing the organizational change process. The
analysis results in a set of observations that we use subsequently in the discus-
sion of practical lessons for organizations facing similar challenges.

Keywords: Agile, Scrum, Product innovation, Organizational change.

1 Introduction

The case we have studied reveals some significant challenges and lessons to be
learned which will be relevant for many software companies. The software company
is in the midst of changing from a traditional way of organizing and developing soft-
ware to a more modern way that is much more agile. As part of their agile process the
company has selected Scrum as their main method. At the same time, the company’s
primary task is to deliver radical product innovation for the mobile phone market and
in particular to innovate the software services delivered on a mobile phone. Hence, we
are here at the intersection between the challenges with implementing Scrum and
implementing innovative product thinking.

We take Scrum to be the process, set of techniques, principles and perspectives that
are defined by [1]. In the words of Schwaber and Beedle, Scrum is an approach that
“reintroduces flexibility, adaptability, and productivity into systems development”
[1]. Scrum implements an empirically based approach to process control which is
contrary to the traditional defined process control model. A method is usually seen as
a way to control a development process. This is not in the sense of the one method,
but rather in the sense of a method being bits and pieces which fit together and which
might be useful for particular purposes. It thus makes sense to at look at the literature
for what to do with implementing such a method. The research on methods for soft-
ware development sees this process as a learning process [2] and as a process of adap-
tation [3] where the dined method is just a small element and where the main focus
should be on the methods-in-action.

22 J.H. Hosbond and P.A. Nielsen

Tidd et al. suggest that four types of innovation exist; product innovation, process
innovation, position innovation, and paradigm innovation [4]. We take the process for
product innovation to include the four activities of searching and selecting ideas,
implementation, and learning from the innovation process [4]. The existing literature
on product innovation has nothing to say on software development and it is therefore
relevant for modern software companies to bring these two different lines of thinking,
organizing and working together in a single study.

2 Related Work

Scrum is not the only method for agile software development, but it is certainly a
significant one amongst Beck’s XP [5] and Cockburn’s Crystal Methodologies [6].

Like any of the methods ever studied for software development Scrum is never just
applied. It is implemented in many different forms. It is adapted to the specific needs
in the company or in a specific project. The experience with using it will vary depend-
ing on who is using it, how it is used and for what purposes. It has been argued in
information systems research that the practice of developing does not follow methods,
and it is a-methodical [7]. Others follow a similar view on methods and have found
through empirical studies that method emerges through practice [8], that methods are
never used by-the-book [9], or that it is necessary to have a critical view on the use of
methods [9]. Another strand of research on methods has been concerned with tailoring
methods to the unique situation where they are to be used, e.g. as combinations of
methods [10, 11]. Harmsen et al. [12] and Brinkkemper [13] suggest that methods are
engineered on the spot to fit the current situation and needs. Reports from empirical
studies show how this has been done in practice at Motorola [14] and at Intel [15].

Product innovation on the other hand is not really a method. It is a task that a com-
pany or a project can undertake. There are many ways in which product innovation
have been undertaken in organizations. Based on a literature study Slappendel [16]
suggests the individualist perspective (innovation is driven by champions), the struc-
turalist perspective (innovation is determined by structural characteristics, e.g., type
of organization, environment etc.), and the interactive process perspective (innovation
is dependent on the interplay between actors and the organizational structures) as
three different theoretical perspectives on innovation in organizations. As one exam-
ple, the work on innovation in organizations by Nonaka and Takeuchi [17] belong to
the interactive process perspective.

Whereas Slappendal [16] takes a process view on innovation, Tidd et al. [4] repre-
sents a product view on innovation. That is, they separate innovation according to the
type of output resulting of an innovation process. They distinguish between product
innovation (output is often a technology or service), process innovation (changes in
how products or services are created or delivered), position innovation (changes re-
lated to positioning or re-positioning a product), and paradigm innovation (changes in
the mental models of the organization itself and of what it does). It is on this back-
ground of related work that we have engaged in the following case study.

Misfit or Misuse? Lessons from Implementation of Scrum in Radical Product Innovation 23

3 Case Study

In the following section we present the background of the case study, the research
approach, and the analysis framework applied.

3.1 Case Background

The history of this software company dates back to the late 1980s. It started out as a
Scandinavian company developing mobile phones. Due to a financial crisis in the mid-
1990s a larger company acquired the company. During its lifetime it has experienced
several take-overs by multi-national corporations. During the years the company has
been engaged mainly in development, but also in production of mobile phones. In 2000
the company was acquired by a dominant player in the mobile phones development
industry. Being one of 9 development sites worldwide the company changed its organ-
izational structure into a matrix organisation fitting the corporate structure. The matrix
organization was divided into functional units each headed by a functional manager,
e.g., a functional unit handling connectivity issues. Developers were split into functional
departments and from here they were assigned to work on specific development pro-
jects. At that time the company counted approximately 300 employees. The type of
work was intended to be R&D, but only on rare occasions was it characterised as re-
search-driven. The organization of work was highly managed. Developers were given
specific and concrete tasks with fixed deadlines. The development practice followed a
very structured adaptation of the specify-and-test model also known as the V-model and
was characterised by considerable documentation work.

In 2004 the company was acquired by a relatively new player within the mobile
phone industry in Europe. This did not last long as it was sold again in 2005 to the
corporation under which it operates today. In late 2007 the organisation has more than
400 employees.

After the last take-over in 2005 the company has been given a new role. The com-
pany has been attached to an already established division within the corporation. The
division worked on wireless innovative technologies and the company was given the
task of developing unique and radically different and innovative mobile phones. This
differed from what previously had been the company’s primary task. This new task
required that the company became more research-driven. Due to the new task and
desire to show that the division got value for money, the company’s top management
decided to try a different approach to product development. The approach had to be
more focused on products, on shorter development cycles, and on responsiveness to
change. Because of a top manager’s prior positive experiences with Scrum at another
company, Scrum was chosen as the new development method for software projects.
Certification programmes for Scrum masters were initiated in 2005 and the first
Scrum projects were started in the late summer of 2005.

3.2 Research Approach

This study may be classified as qualitative research [18] and it uses the case study ap-
proach [19] as foundation. The study was carried out in the spring 2006 spanning a period
of 4 months. Empirical data was collected through 20 semi-structured interviews, reading
of historical data, and through several informal face-to-face conversations at the site. Prior

24 J.H. Hosbond and P.A. Nielsen

to the interviews an interview template was prepared serving as inspiration and as guid-
ance during the interviews. The questions in the template related to prior and current de-
velopment practice. Each interview varied from 30 minutes to more than an hour. All
interviews were audio recorded. Interviewees came from several development projects as
well as managerial levels. These were software project managers, product owners, scrum
masters, developers, functional managers, staff in the technical requirements department,
and people from the quality assurance function. Upon completion of the interviews the
audio recordings were transcribed which were then used for the subsequent data analysis.
The data analysis was conducted in an iterative manner allowing for a continual refine-
ment of the categorisation and selection of observations for further interpretation.

3.3 Analysis Framework

This case study is a study of an organization undergoing significant change. For struc-
turing and scoping the search spaces of our analysis we adopt the multivariate frame-
work proposed by Leavitt [20] more commonly referred to as Leavitt’s diamond, see
Figure. 1. The framework consists of the four variables actors, structure, task, and
technology. Actors are the people part of the change process. Structure reflects the
system of authority and power. Task defines the job to be done by the actors and lastly
Technology represents the means (i.e., tools, techniques, know-how etc.) by which the
tasks are carried out. These four elements are interdependent and change in one will
change the state of each of the remaining three variables.

Fig. 1. Leavitt’s diamond

The framework by Leavitt is simple yet powerful in that it captures the multifaceted
nature of change in an organizational context. The framework is relevant in this study
as the implementation of Scrum and the new task of radical product innovation facing
the organisation cause a significant change process. Much in line with Lyttinen et al.
[21], we found the framework very useful for scoping and structuring our search for
central issues in the change process.

4 Analysis

In this section we present the central observations in the empirical data.

Misfit or Misuse? Lessons from Implementation of Scrum in Radical Product Innovation 25

4.1 Observations

Observation 1: There is a misfit between employee competences and the competences
required to do radical product innovation and mastering Scrum.

This observation relates to two relations in Leavitt’s diamond, see Figure 1. That is,
the relations task-actors and the relation technology-actors. The task-actors relation is
bound to the misfit between employee competences and the new task of doing radical
product innovation. The technology-actors relation refers to misfit between people
competences in following Scrum as a new model for software development.

As part of the recent take-over in 2005 the company experienced a significant
change in focus. Coming from software development projects predominantly con-
cerned with known and existing technologies the company was now given the new
task of developing radical innovative mobile phones. This had several implications. A
development project’s task was now unknown a priori or was at the most only loosely
defined and then often changed on a regular basis. Most likely only a product vision
was passed on to the product owner and the Scrum team. This level of uncertainty
bound to these projects had never before been experienced. Traditionally the company
had been an internal subcontractor on larger and already defined and on-going devel-
opment projects with clear feature requirements. Now, the development teams had to
be proactive, creative yet disciplined, and self-confident in order to live up to the
demand of producing tomorrow’s mobile phones. In addition, top management had
decided to implement Scrum as a new development method. The integration of Scrum
did not happen over night, but as about 20 people had been certified either as Scrum
Masters, product owners or both, the initiative was rolled-out completely replacing
the old V-model. However, the interviews showed that not all developers, Scrum
Masters, and product owners at the time of enrollment felt they had the proper train-
ing in conducting Scrum in a proper way. This re-focusing of the task and the imple-
mentation of Scrum required a complete turn-around in mindset throughout the or-
ganization. Not surprisingly, the empirical data indicated a shortage of developers’
and managers’ competences in dealing with these changes.

Observation 2: Management relied solely on Scrum as enabler for innovation.

This observation relates to the relation technology-task in Leavitt’s diamond. The task
is changed to product innovation and it relates directly to the technology (Scrum as a
method). Scrum is however an insufficient response to the changed task.

As a response to the new focus on innovation, top management decided to imple-
ment a new way of organizing software projects. Scrum was chosen as the new
method for development. The decision to drop the traditional development process
was especially pushed by one of the managers as he had had positive experiences in
using Scrum in similar projects at a different company. The apparent strengths of
Scrum such as increased focus on product output, the ability to change course, and
fostering developer commitment and ownership all seemed relevant in achieving the
task of product innovation. Through self-organizing teams and co-location enabling
free communication, the creation of a shared understanding of the problem to solve,
and ideas for solving these seems intuitively as very good instruments in an innova-
tion process where idea generation, mutual understanding and communication are
necessities. However, Scrum does not say anything specific about innovation. It does

26 J.H. Hosbond and P.A. Nielsen

not address the question on what is required to do innovation: How are ideas gener-
ated, selected, re-fined, and later re-formulated as tasks on a product backlog? These
questions are important in an innovation process and the latter especially in bridging
the innovation process with Scrum.

Observation 3: Unclear and shifting power structures between functional managers,
scrum masters and product owners as a result of implementing Scrum.

This observation concerns the relation technology-structure. The introduction of
Scrum as a method (technology) really requires a changed organization and manage-
ment practices (structure), but these changed were never fully realized and hence
never implemented.

The implementation of Scrum as the new development method has had an impact
on the existing system of authority and power within the organization. Prior to the
Scrum implementation the organization could be characterized as a traditional matrix
organization. A matrix organization divided into functional departments each man-
aged by a functional manager responsible for a group of experts within a pre-defined
knowledge domain, e.g., wireless connectivity. In a functional department all the
experts are grouped in the same room creating a community of experts. The func-
tional manager decides how many and who is to be allocated on to which software
project. In addition, the functional manager is responsible for further educating his
developers. Even though developers within a department belong to different projects
they are still and have always been physically present in the same room.

With the introduction of the Scrum method the focus has now shifted away from
the functional departments to the Scrum projects. This shift is caused by an increased
focus from top management on product output. A product output coming only from
the Scrum teams. With the integration of the roles in Scrum, namely the product
owner and the Scrum master role, the power structure within the organization is
changing. In the new structure the power and authority of the functional manager
decreases at the expense of the increasing power of products owners and Scrum
masters. The previous central role of the functional department is in the eyes of the
functional managers in danger of turning into a mere supplier of expertise for Scrum
projects. But, what is maybe more interesting is that the functional departments stand
the risk of becoming nearly obsolete or they may only exist as virtual groups. That is,
if a full-scale co-location as prescribed by Scrum is carried out. Co-location was not
implemented during the case study period though it was discussed. Co-location is
further elaborated on in observation 4.

Observation 4: Co-location was not implemented, but wanted by developers and Scrum
masters.

As for observation 3 this observation concerns the relation technology-structure.
During implementation of Scrum all principles within Scrum was sought integrated

into existing practice. However, one central aspect of Scrum was not implemented.
That is, co-location was for several reasons found either not important or impossible
to carry through in the company. One reason that some of the interviewees mentioned
were inadequate office space. The current office space was characterized by large and
open rooms that did not facilitate working in isolated small teams as recommended in
Scrum. Another reason was that several Scrum teams working side by side in one room

Misfit or Misuse? Lessons from Implementation of Scrum in Radical Product Innovation 27

would break a corporate security rule. Upon the take-over in 2005 a new and much
tougher security policy had been introduced at the company. This was done to ensure
that the work on innovative technologies was not compromised. What this meant was
that all paperwork related to a project should be locked off when leaving ones desk. At
the end of a work day it should be possible to lock off a room belonging only to that
project. Hence, grouping several teams in one large room would make this impossible.

Yet another reason for not implementing co-location is believed to be connected
with the apparent power struggle in observation 3. Co-locating Scrum teams would
mean having people physically grouped according to their Scrum team relation mak-
ing the functional departments and functional managers much less necessary or
simply serving as virtual departments that group developer’ competences and that is
responsible for further training and education.

Product owners, Scrum masters, and Scrum teams perceived the lacking co-
location as frustrating and a wrong decision made by top management. It was per-
ceived by several interviewees as frustrating as it prohibited them in exploiting the
full potential of Scrum.

Observation 5: There was a misfit between the agile desire for light-weight documen-
tation and the corporate quality assurance system.

This observation concerns the relation technology-structure. The Scrum method
(technology) advocates significantly less documentation than what was required by
the corporate structures. The implementation of an agile approach through Scrum was
decided not only as a response to changes in the company’s primary task; it was also
introduced in order to lessening the documentation work. Documentation work had
previously taken significant resources and time in performing analysis, design and
requirements documentation.

With the introduction of Scrum the management took the opportunity to only spend
resources on activities deemed value-generating such as coding and hence minimize
documentation work. The reduced focus on documentation was throughout the or-
ganization received positively. However, the agile principle of “working software
over comprehensive documentation” [22] did not coincide with the demands for
documentation set by the corporate quality assurance system. The quality assurance
system that was maintained by an external quality assurance department had the pur-
pose of tracing and validating the maturity level of a product under development.
From project initiation until final market launch the project/product must pass a num-
ber of maturity steps in the quality assurance system. For passing a maturity step
comprehensive documentation of the current state of the product must be provided.
The current quality assurance system measures product maturity from a number of
metrics that all are quantitative measures such as lines of code, number of completed
function points, test coverage, etc. The level of documentation for passing a maturity
gate is substantial and the documentation is not readily or easily extracted from the
projects and therefore has to be laboriously created. The project manager of software
had to prepare a 70 pages report on a weekly or bi-weekly basis documenting the cur-
rent progress and maturity of the projects. As noted by the project manager, it would
suit their new way of working if products could to a larger extent be measured qualita-
tively rather than quantitatively. A qualitative evaluation would focus on the look-and-
feel of the product more than it would be based on for instance lines of code.

28 J.H. Hosbond and P.A. Nielsen

4.2 Summary

The analysis of the empirical data has led to five central observations. These five
observations concern the relations in Leavitt’s diamond as displayed in Figure 2.

Fig. 2. Mapping of observations onto Leavitt’s diamond

5 Discussion

As with any major change process much depends on peoples’ competence and this case
show a similar pattern. Observation 1 addresses this directly. The developers needed
considerable training in Scrum, which they then went through. It is fair to state that they
were then sufficiently competence to start using Scrum and that a new balance between
the developers and their technology use had been established. This relation will cer-
tainly improve when the developers gradually gain more experience. The framework
points to the conclusion, that Scrum and the developers’ competences will remain dif-
ferent entities and it will thus make little sense to see the developers’ practice as the
same as Scrum or that Scrum have been ‘internalized’. This coincides with previous
results of previous studies, e.g., [2] [3, 23]. Observation 1 becomes more interesting
when we see it in conjunction with observation 2, that management had their eyes
firmly focused on Scrum (the technology dimension) to enable the developers to gain
the competence (the actors dimension) necessary to do product innovation (the task
dimension). It seems evident that the new technology does not directly address the new
task. Further, changes in actors’ competences could not alone enable the new task.

It is interesting that the interview data points to three central observations concern-
ing the relation between Scrum and the structure: Scrum and power structures (obser-
vation 3), Scrum and co-location (observation 4), and Scrum and documentation rules
(observation 5). The interviews were addressing both Scrum and the radical innova-
tion task and the interviewer did probably not cause the considerable focus on Scrum.
We find that this bias appeared in the company and that the main reason can be found
in observation 2. All management attention has gone into Scrum as the primary en-
abler for the task of product innovation.

It is clear from observations 1, 3, 4 and 5 that this is not a case of successful appli-
cation of Scrum for the purpose of radical product innovation. The developers are
simply too troubled by how to deal with the new task and how to practice Scrum. In

Misfit or Misuse? Lessons from Implementation of Scrum in Radical Product Innovation 29

terms of Leavitt’s diamond the relations between the four dimensions are out of bal-
ance. Without assuming that equilibrium would ever occur we may still use the theory
to point at four dimensions and six relations to be very aware of in agile software
development. From the viewpoint of managing agile software development it is ap-
parent that too little attention has been paid to other dimensions than technology and
how changes in the task must lead management to create changes in both the structure
dimension and in the actor dimension which they have not.

Let us now return to the question posed in the title: Misfit or misuse? That is, is there
a misfit between using Scrum for radical product innovation or is it a case of misuse of
Scrum? If Scrum is not useful for radical product innovation, it would be misfit. Misfit
would in this case have been caused by poor management decisions. If the developers in
this particular company did not use Scrum well or properly, it would be misuse. Misuse
would in this case have been caused by lack of developers’ competence. From the
viewpoint of research methodology it is a question that has always bothered researchers.
Most of the research on development methods evaluate methods in the context of their
use and hence seek to relate features of methods to particular contingencies or at least
explain how methods and situations can be matched given a particular situation. This
line of research is not particularly helpful in explaining what is troubling the developers
in our case. What should they do to turn a growing failure into success?

Based on our case study and our use of Leavitt’s framework we should now like to
abandon the simple dichotomy of misfit-misuse. It is not valuable to the company to
discuss the features of Scrum. The observations and the framework suggest that the
singleton focus on technology inhibits the further development of the whole agile
process. The structures would also have to be changed. Not only to comply the guide-
lines in Scrum, but also to cater for the complex task of product innovation. The ac-
tors’ competence would have to be further developed. Not only to become more
skilled in Scrum, but also to address directly the task’s complexities. The applied
technologies will have to be extended beyond Scrum to address other aspects of the
task at hand. Hence, the research scope for an agile method like Scrum must be wider
than the method and its features.

6 Limitations and Future Work

In this study we have looked at an organisation undergoing significant change. A
change caused by an implementation of Scrum as the enabler for radical product in-
novation. The study points at interesting lessons to be learned for practices in similar
contexts. With that being said, we also know that our study has limitations. The study
only covers one case which limits the general applicability of our findings. In addi-
tion, the study was carried out over a period of four months. In this particular case it
could have been interesting to follow the organisation over a greater time period mak-
ing it possible to observe in greater detail how the organisational change process came
along. However, due to time and resource constraints we did not have that option.
With respect to future work, we would like to conduct similar studies in order to look
for similar observations earning credibility and validity to our findings, but also to
extend our understanding of the issues emerging when applying Scrum or other agile
approaches as enablers of product innovation.

30 J.H. Hosbond and P.A. Nielsen

7 Conclusion

We have studied a case where a software company have tried to use Scrum to enable
radical product innovation. The empirical data came from a series of interviews with
key informants in the company. Leavitt’s framework has then been applied to struc-
ture the findings and that has led to five central observations. The observations are:
(1) There is a misfit between employee competences and the competences required to
do radical product innovation and mastering Scrum, (2) Management relied solely on
Scrum as enabler for innovation, (3) Unclear and shifting power structures between
functional managers, Scrum masters and product owners as a result of implementing
Scrum, (4) Co-location was not implemented, but was wanted by developers and
Scrum masters, and (5) There was a misfit between the agile desire for lightweight
documentation and the corporate quality assurance system. In the discussion we relate
the observations to a wider concern. First the observations were discussed within
Leavitt’s framework and then the discussion extended beyond the question of misfit
or misuse of Scrum. The conclusion is that the observations are valuable on the way
to turn a growing failure into a possible success if attention is put on other dimensions
than technology.

References

1. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. In: Martin, R.C.
(ed.) Agile Software Development. Prentice Hall, Upper Saddle River (2002)

2. Nielsen, P.A.: Reflections on development methods for information systems: a set of dis-
tinctions between methods. Office, Technology and People 5(2), 81–104 (1989)

3. Fitzgerald, B., Russo, N., Stolterman, E.: Information Systems Development: Methods-in-
Action. McGraw-Hill, London (2002)

4. Tidd, J., Bessant, J., Pavitt, K.: Managing Innovation, 3rd edn., p. 582. John Wiley & Sons
Ltd, West Sussex (2005)

5. Beck, K.: Extreme Programming Explained: Embrace Change. The XP Series. Addison-
Wesley, Boston (2000)

6. Cockburn, A.: Agile Software Development. In: Cockburn, A., Highsmith, J. (eds.) The
Agile Software Development Series, p. 304. Addison-Wesley Professional, Reading
(2001)

7. Truex, D., Baskerville, R., Travis, J.: Amethodical Systems Development: The Deferred
Meaning of Systems Development Methods. Accounting, Management, and Information
Technologies 10, 53–79 (2000)

8. Madsen, S., Kautz, K., Vidgen, R.: A Framework for Understanding how a Unique and
Local IS Development Method Emerges in Practice. European Journal of Information Sys-
tems 15(2), 225–238 (2006)

9. Fitzgerald, B.: Formalized systems development methodologies: a critical perspective. In-
formation Systems Journal 6(1), 3–23 (1996)

10. Avison, D., Nandhakumar, J.: Information Systems Development Methodology in Use: An
Empirical Study. In: Lessons Learned from the Use of Methodologies. BCS, London
(1996)

11. Vidgen, R.: Constructing a web information system development methodology. Informa-
tion Systems Journal 12(3), 247 (2002)

Misfit or Misuse? Lessons from Implementation of Scrum in Radical Product Innovation 31

12. Harmsen, F., Brinkkemper, S., Oei Han, J.L.: Situational method engineering for informa-
tional system project approaches. In: Proceedings of the IFIP WG8.1 Working Conference
on Methods and Associated Tools for the Information Systems Life Cycle. Elsevier Sci-
ence Inc., Amsterdam (1994)

13. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools. Information and Software Technology 34(4), 275–280 (1996)

14. Fitzgerald, B., Russo, N., O’Kane, T.: Software development method tailoring at Mo-
torola. Communications of the ACM 46(4), 64–70 (2003)

15. Fitzgerald, B., Hartnett, G., Conboy, K.: Customising agile methods to software practices
at Intel Shannon. European Journal of Information Systems 15(2), 200–213 (2006)

16. Slappendel, C.: Perspectives on innovation in organizations. Organization studies 17(1),
107–129 (1996)

17. Nonaka, I., Takeuchi, H.: The Knowledge-Creating Company: How Japanese Companies
Create the Dynamics of Innovation. Oxford University Press, New York (1995)

18. Patton, M.Q.: Qualitative Evaluation and Research Methods, 2nd edn., p. 536. SAGE Pub-
lications, Thousand Oaks (1990)

19. Yin, R.K.: Case study research - design and methods. SAGE Publications, Thousand Oaks
(1994)

20. Leavitt, H.J.: Applying organizational change in industry: Structural, technological and
humanistic approaches. In: March, J.G. (ed.) Handbook of organizations. Rand McNally,
Chicago (1965)

21. Lyytinen, K., Mathiassen, L., Ropponen, J.: A Framework For Software Risk Manage-
ment. Scandinavian Journal of Information Systems 8(1), 53–68 (1996)

22. Beck, K., et al.: Manifesto for Agile Software Development (2001),
 http://agilemanifesto.org/

23. Mathiassen, L., Purao, S.: Educating reflective systems developers. Information Systems
Journal 12(2), 81–102 (2002)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 32–41, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Method Configuration:
The eXtreme Programming Case

Fredrik Karlsson1 and Pär J. Ågerfalk2

1 Dept. of Informatics (ESI), Methodology Exploration Lab
Örebro University, SE-701 82 Örebro, Sweden

fredrik.karlsson@esi.oru.se
2 Department of Information Science

Uppsala University, SE-751 20 Uppsala, Sweden
Lero – The Irish Software Engineering Research Centre

par.agerfalk@dis.uu.se

Abstract. The Method for Method Configuration (MMC) has been proposed as
a method engineering approach to tailoring software development methods.
This paper evaluates MMC during three software development projects where it
was used to tailor eXtreme Programming (XP). The study has been justified by
the need to complement earlier evaluations of MMC and providing more con-
clusive tests to determine the effectiveness of the meta-method in practice.
Also, since MMC originates from the plan-based method community, no tests
have so far been made on agile methods. Many method engineering concepts
have similar roots and it is of interest to evaluate their applicability also in the
agile context. We report on the migration results together with lessons learned.

Keywords: Method Configuration, Method tailoring, Method Engineering, eX-
treme Programming, Agile Method.

1 Introduction

An often used dichotomy within the field of software and information systems devel-
opment is that of plan-driven vs. agile methods [1]. While agile proponents emphasise
‘just enough method’, plan-driven methods often try to cover every aspect of software
and systems development. As a consequence, the latter have been criticized for being
too inflexible and hard to comprehend [2].

Agile methods, which can be viewed as a reaction towards plan-driven methods
[3], started to evolve in the mid 1990’s with methods such as DSDM [4], eXtreme
Programming [2] and SCRUM [5], and characteristics inherited from Rapid Applica-
tion Development [6]. Despite the large number of agile methods, they all share a
number of characteristics, such as iterative development models [1], emphasis on
interaction with the end users [7] and face-to-face communication [8], and low confi-
dence in intermediate artefacts [9].

However, practical experience shows that all projects are unique and require uni-
que methodological support [10]. Hence, there is no one-size-fits-all method—neither

 Method Configuration: The eXtreme Programming Case 33

plan-based nor agile [11, 12]. Method configuration [13] has been proposed as a possi-
ble solution to this problem. Here, one method, often termed base method, is taken as
the starting point for configuring a situational method suitable to the project at hand.
This is particularly useful when an organization wants to establish an organization-wide
method to be used across all projects. Incentives for such an effort include more effec-
tive communication, reduced training costs due to common modelling languages and the
utilization of industry standards, as well as the access to existing computerized tools.

The Method for Method Configuration (MMC) [13, 14] has been proposed as a
structured way to carry out method configuration. The approach is anchored in Activ-
ity Theory [15] and the concept of method rationale [16, 17] to emphasize the col-
laborative aspect of methods during method tailoring. Furthermore, MMC has been
proposed as a tool to manage method knowledge between projects, since it builds on
the idea of reusing method sections based on similarities in project characteristics.

MMC has so far only been evaluated using a limited number of methods [14].
None of which are particularly agile. Therefore, more conclusive tests, to determine
the effectiveness of MMC, are needed. Aydin et. al [18] state that only a few studies
exist on tailoring of agile methods. In addition, as with most method engineering
concepts and tools, MMC has its roots in the plan-based method community. Conse-
quently, it is of interest to see if it can successfully be moved to the agile context.
Thus, the aim of this paper is to report on the use of MMC and its conceptual frame-
work during method configuration of the agile method eXtreme Programming (XP).

The paper proceeds as follows. Section 2 presents the adopted research approach.
Section 3 introduces a selection of key MMC concepts. Section 4 reports on the em-
pirical experiences from the use of MMC during three agile software development
projects. Finally, Section 5 provides a concluding discussion.

2 Research Approach

The study was carried out as a case study in a small software development company
in Sweden. Their business is mainly to provide project management expertise and run
systems development projects that bring together a network of external partners. The
company agreed to evaluate MMC through the use of MC Sandbox1 [19] in three
commercial software development projects. The choice of XP as the base method was
the industrial partner’s. They do not use it as a true organization-wide method, but
only with some specific clients.

The first author of this paper was the project manager during all three projects. How-
ever, he was not responsible for the method engineering, except for mentoring one
of the software developers when modularizing the base method (XP). Rather method
engineering was distributed among the developers and the majority of the method con-
figuration decisions were taken together during method-user-centred method configura-
tion [19] workshops. Since the teams were unfamiliar with MMC and MC Sandbox they
received an introduction to both—lasting for approx. three hours. Furthermore, some
of the developers participated in more than one of the projects, which facilitated

1 MC Sandbox is the computerized implementation of MMC. For the sake of simplicity we will

only refer to MC Sandbox in the presentation when explicitly needed.

34 F. Karlsson and P.J. Ågerfalk

knowledge sharing. All of the developers had at least four years experience from sys-
tems development and had used XP in earlier projects. The selection of projects was
based on the industrial partner’s current project portfolio. A summary of the projects’
characteristics is shown in Table 1.

Table 1. Characteristics of Projects

Project Type of Information System Person-hours Calendar
Months

No of
Developers

1 Web-based inventory system 1500 4 5
2 Web-based time report system 800 2 4
3 Web-based quotation system 1100 3 5

Empirical data was collected using MC Sandbox, logbooks, and interviews with the
developers. MC Sandbox allows for free text comments to be associated with each
method configuration decision, thus containing developers’ comments. The log books,
written by the first author during the method configuration workshops, are a comple-
ment that focuses on the configuration process as such. The interviews were semi-
structured using the logbooks and data from MC Sandbox as a form of interview guide
[20]. The subsequent analysis focused on categorizing emerging issues into (a) conflict-
ing design principles between MMC and XP, (b) inexperience with MMC/MC Sand-
box, and (c) the developers’ knowledge of XP. In this paper we focus on the results
from (a), which are presented in Section 5.2. Within (a), we grouped problems into
categories that were associated with one or more design principle in MMC, XP or both.
In cases where we only could associate the category with a design principle in either
MMC or XP we searched for a conflicting design principle in the other approach. Inter-
view quotes are used to illustrate the developers’ opinions about these issues.

3 Method for Method Configuration—Key Concepts

The aim of the MMC is to support method configuration: the planned and systematic
adaptation of a specific method through the use of reusable assets. The meta-method
embraces the need for both structure and flexibility in software development practice
and is anchored in the following design principles [14]:

(1) The principle of modularization: (1a) self-contained modules, (1b) internally
consistent and coherent modules, (1c) support for information hiding; (2) The princi-
ple of method rationale for selecting method parts: (2a) support analysis of potential
to achieve rationality resonance (2b) support method-in-action decisions; and (3) The
principle of a multi-layered reuse model.

These design principles are implemented as three core concepts providing the pos-
sibility to work with reusable method assets: method components [15], configuration
packages [14], and configuration templates [14]. The presentation below focuses on
these three key concepts. A more extensive treatment of all concepts can be found in
[14] and [15].

 Method Configuration: The eXtreme Programming Case 35

3.1 The Method Component Concept

A modularization concept is needed to enable systematic ways of working with
method configuration. Through such a concept, specific parts can be suppressed,
added or exchanged within the confines of a coherent method. A method component
is a self-contained part of a method expressing the transformation of one or several
artefacts into a defined target artefact, and the rationale for such a transformation. A
method component has two parts: its content and its interface.

Method Component Content. The content of a method component is an aggregate of
method elements: A method element is a part of a method that manifests a method
component’s target state or facilitates the transformation from one defined state to
another. Method elements are constituted by prescribed actions (e.g. draw class
diagram), concepts (e.g. class), notations (e.g. UML class), artefacts (e.g. class
diagram), and actor roles (e.g. analyst). A development activity is essentially a set of
prescribed actions with associated sequence restrictions that guide project members
actions in specific situations. In performing these actions, developers’ attention is
directed towards specific phenomena in the problem domain. These are concepts that
express an understanding of the problem domain, and also of the method itself. Results
of actions are documented by artefacts using a prescribed notation, giving the concepts a
concrete representation. Artefacts are thus both deliverables from and input to (sub-
sequent stages of) the process. In MMC, methods are viewed as heuristic procedures
and hence specified inputs are only recommended inputs. Finally, actor roles describe
the functions that actors play in the method component. The selection of actor roles is
determined by the prescribed actions that are needed for the transformation process.

The rationale part of the method component has two concepts: goals and values.
Each method element is included in the method component for reasons, which are
made explicit by associating method elements to goals. Moreover, these goals are
anchored in values of the method creator. Together these goals and values reflect the
underlying perspective of the method from which the method component originates.
When working with MMC, method rationale is more important than the deliverable as
such. Through the method rationale it is possible to address the goals that are essential
in order to fulfil the overall goal of a specific project. Prescribed actions and artefacts
are viewed as means to achieve those goals. Hence, method rationale can help devel-
opers not to loose sight of the ultimate result, and also help them find alternative ways
forward.

The Method Component Interface. The purpose of the interface is to hide unneces-
sary details during method configuration. It draws on the general use of the compo-
nent construct in software engineering and that the primary interest during method
configuration is the results offered and the required inputs needed, not how a task is
executed. This reduction of complexity is achieved through the method component
interface: A reference to a selection of method elements and rationale that is relevant
for the task at hand. The interface becomes an external view of method components.
The interface’s content depends on the task at hand [15]. During method configura-
tion, the method component’s overall goals and the artefacts are the primary selection.
The artefacts are designated as input and/or deliverable (output), as discussed above.
This is necessary in order to deal with the three fundamental actions that can be

36 F. Karlsson and P.J. Ågerfalk

performed on an artefact: create, update and delete. An artefact is classified as a de-
liverable when it is only created by the method component. If the artefact can be up-
dated by the same method component it is classified as input as well. In addition, we
stipulate that a component can take one or several input artefacts, but has only one
deliverable. Finally, the interface expresses the method component’s overall goals,
representing the method rationale. These goals are used to discuss the rationality
resonance possible to achieve during a project with certain characteristics.

3.2 The Configuration Package

Method configuration is mainly about deciding whether or not method components in
a base method are to be performed, and to what extent. In MMC this is facilitated by
the use of method rationale, which is expressed in the method components’ interfaces.
The result of this selection, with respect to particular project characteristics, is repre-
sented in a configuration package. This selection of method components can, if re-
quired, include components from complementing methods. A characteristic is viewed
as a question about one isolated aspect of the development situation. Such a question
typically has several possible answers that constitute the characteristic’s dimension;
one possible answer is called a configuration package. A configuration package is
thus a configuration of the base method suitable for a characteristic’s value. Each
characteristic addresses one or several method components and their purpose. A con-
figuration package is thus a classification of method components with regard to how
relevant their overall goals are for a specific answer in a characteristic’s dimension.
The characteristic sets the scope of a configuration package—the method components
that are of interest for classification. The scope is used in order to reduce the number
of classification operations that have to be performed when creating a configuration
package. The classification of method components is based on a two-dimensional
classification schema, as shown in Table 2.

The vertical dimension focuses on how much attention the developers should de-
vote to a particular method component: ‘None,’ ‘Insignificant,’ ‘Normal’ or ‘Signifi-
cant’. If at this stage a method component is found to be unimportant, it can be
classified as ‘Omit’ outright. The three aspects of the horizontal dimension— ‘Satis-
factory,’ ‘Unsatisfactory’ and ‘Missing’—cut across the vertical dimension. This
dimension is referred to as the potential for achieving rationality resonance between
the base method’s content and the software developers’ intensions. Together this
scheme provides different variants of the fundamental method configuration scenarios
that need to be supported: selection, exchange and addition.

Table 2. Classification Schema for Method Components

 Potential to achieve rationality resonance
 Satisfactory Unsatisfactory Missing
None Omit - -
Insignificant Perform

informal
Exchanges informal Added informal

Normal Perform as is Exchanges as is Added as is

A
tt

en
ti

on
 g

iv
en

 to

m
et

ho
d

co
m

po
ne

nt

Significant Emphasize as is Exchanges empha-
sized

Added emphasized

 Method Configuration: The eXtreme Programming Case 37

3.3 The Configuration Template

While configuration packages and characteristics are used to simplify analyses of the
base method, we also need to be able to handle more complicated situations where
characteristics exist in combinations. This is the purpose of the configuration tem-
plate. A configuration template is a combined method configuration, based on one or
more configuration packages, for a set of recurrent project characteristics. The con-
cept allows the reuse of combined configuration packages that target development
situation types common within the organization. In MMC the selection is based on the
set of available characteristics and configuration packages. One configuration pack-
age can be chosen per characteristic and if a characteristic is irrelevant, it can be left
out when selecting configuration packages.

MC Sandbox semi-automatically builds a configuration template based on the se-
lections made. If conflicts arise between overlapping configuration packages, these
are listed together with the reasons. Relevant configuration templates can be retrieved
with a search engine based on a selection of characteristics and configuration pack-
ages. It is thereby possible to tailor the base method more efficiently.

The situational method is based on a selected configuration template and is the
method delivered to the project team for use. When the situational method is enacted
in a project, experiences should be fed back to the configuration process in order to
improve configuration templates and/or configuration packages and to facilitate
knowledge sharing between projects. Such experience is typically fed back continu-
ously throughout the project.

4 Empirical Examples

The empirical work in this research included method configurations in three different
projects. One important aspect of MMC is the idea of reuse. The three projects shared
a number of aspects, such as involving development of web applications. Table 3

Table 3. Overview of Configurations

 Project
Characteristic Configuration Package 1 2 3
Knowledge about business process? High •
 Low • •
On-site customer? Yes •
 No • •
Co-located project team? Yes • •
 No •
Project risk? Normal (normal planning) • • •
 High (extended planning)
Degree of management commitment? High • • •
 Low
Modeling of web aspects Yes • • •
 No
Type of testing Automated • •
 Manual •

38 F. Karlsson and P.J. Ågerfalk

contains the characteristics and configuration packages resulting from the method
configuration work. The three rightmost columns in the table show the combination of
configuration packages for each project; i.e. they illustrate the configuration templates
used. From this table we find that the second and third project shared one configura-
tion template. The first project differed in several respects, but shared the three con-
figuration packages concerning project risk, degree of management commitment and
modelling of “web aspects”, with the other two projects.

Table 4. Configuration Package: On-site customer = No

Method component Method component’s rationale Classification
Vision card To capture the purpose of the system Perform as is
Metaphor To describe the system’s likeness Perform informal
User story To describe a path through the system Omit
Use case To understand the system's behavior Exchanges as is

We choose to exemplify the reuse aspect with the shared configuration package
‘On-site customer = No’. This configuration package focuses how the project teams
plan to handle the fact that no costumer will be on-site. The developers demarcated
the configuration package to requirements aspects of XP (the base method).

Table 4 shows the method components and their classifications. The first component
is the Vision card. The systems developers expressed that it was important for the cus-
tomer to be able to “depict the future system” and that the feasibility of this method
component “does not change with this kind of relationship to the customer.” Hence, the
method component was to be performed as described in the base method. The second
method component, the Metaphor, was to be used on an informal basis. As one of the
systems developer expressed during a method configuration workshop: “we use them
frequently but usually we do not document them.” According to the MMC classification
scheme, such a use is classified ‘Perform informal.’ The last two method components in
Table 4 illustrate the replacement of User stories with Use cases. The rationale for this
exchange is captured in the statements: “we need to compensate [the increased distance]
with more details”, “one needs tools that are not that interaction intense”, and “I view it
[the use case] as a more suitable way.” Consequently, the user story component was
suppressed for the benefit of use case component.

5 Lessons Learned

Three major lessons can be drawn, centring on MMC’s design principles and its ori-
gin in the plan-based method tradition. They are summarized in Table 5.

Table 5. Major lessons learned

No Lesson
1 Different preferences for the use of up-front designs.
2 Different preferences for the use of intermediate artefacts.
3 Different preferences for method size.

 Method Configuration: The eXtreme Programming Case 39

The first lesson concerns MMC’s plan-based preference for up-front design. Here
the systems developers had mixed views. The following represents the voices of three
developers: “it is impossible to anticipate everything”, “unproductive, we were such a
small team … we could have dealt with these issues during the project”, and “these
adaptations are still plans.” However, other developers value in a shared understand-
ing of the ways of working before the projects and sharing experiences between pro-
jects: “[MMC] increased my understanding of how to mitigate [project] risks through
systematic addition of methods”, “[MMC] is a vehicle for sharing knowledge,
strengthened with experience”, “I guess you must view it [the configuration] as a
sketch of your project … a sketch on how to collaborate”, and “we created an under-
standing of what we think is needed.”

The second lesson concerns the agile methods’ lack of confidence in intermediate
artefacts and MMC’s reliance on the method component concept, which centres on
the artefact. This difference in philosophy is obvious in the content administration
process of MMC. The content administration process is the process where MC Sand-
box is populated with method components and the base method (XP in this case). Due
to space limitations, this process is not covered in detail in this paper but is fully
elaborated in [14]. Basically, the modularization process has its starting point in the
intermediate artefacts (models, etc) to which the remaining parts of the method com-
ponent’s content are traced. However, all central prescribed actions of XP cannot be
traced to intermediate artefacts. One of the developers expressed the following confu-
sion about the content administration process: “I interpreted the main result as the
artefact … even if it is not an artefact in its true sense.”

The third lesson concerns the size of the base method. A central aspect of MMC
and method configuration when working with plan-based methods is deciding what to
exclude from the base method. The base method itself is the starting point for these
discussions with developers. The content serves as an encyclopaedia of possible paths
to take. However, XP is a lightweight method providing less guidance when it comes
to suggesting possible paths. Consequently, method configuration came to focus on
extension rather than exclusion.

6 Concluding Discussion

In this paper we have reported on software developers’ experience from using the
Method for Method Configuration (MMC). The method was used during three sys-
tems development projects to tailor the agile method eXtreme Programming (XP).
This study has been justified by (a) the need to complement earlier evaluations of
MMC providing more conclusive tests to determine the effectiveness of the meta-
method, and (b) MMC’s origin is in the plan-based method tradition. Many method
engineering concepts have their roots in this tradition and it is of interest to evaluate
the possibility to transfer such constructs to an agile method context.

Through content examples of method configurations we have shown that it is pos-
sible to use MMC and its conceptual framework on XP. Furthermore, we have identi-
fied reuse of both configuration templates and configuration packages between the
three projects we have studied. This corroborates earlier evaluations of MMC. More-
over, three lessons have been learned about applying MMC to XP with respect to
MMC’s origin in the plan-based method tradition.

40 F. Karlsson and P.J. Ågerfalk

The first lesson concerns MMC’s preference for up-front designs. We can report
on mixed views concerning this aspect of MMC. Three systems developers viewed
method configuration according to MMC as up-front designs of the project, express-
ing a fear of adapting the project and the people to the method. Others expressed
value in creating a shared understanding of the way of working before the projects
started and sharing experiences between projects. The second lesson concerned dif-
ferent preferences regarding the use of intermediate artefacts. While XP reflects a low
confidence in intermediate artefacts, the method component concept of MMC centres
on the artefact concept. Hence, the MMC design was to some extent difficult to apply
and in some cases more attention was paid to the type of development results than the
actual artefacts. The third lesson concerned the support the base method (XP) pro-
vided during the method configuration activities. MMC uses the base method as a
source of possible paths to follow. XP, however, does not provide that extensive cov-
erage of different project paths. Hence, it was more demanding in terms of requiring
the developers to contribute ideas for how to solve different development tasks.

Finally, it should be acknowledged that the interpretive nature of this research
might have induced researcher bias. Also, since we have evaluated MMC using only
one agile method, XP, further research is clearly needed in order to be able to general-
ize the results.

References

1. Nerur, S., Balijepally, V.: Theoretical reflections on agile development methodologies.
Communication of the ACM 50(3), 79–83 (2007)

2. Beck, K.: Extreme Programming explained: embrace change, p. 190. Addison-Wesley,
Reading (1999)

3. Sharp, H., Robinson, H.: An Ethnographic Study of XP Practice. Empirical Software En-
gineering 9, 353–375 (2004)

4. Stapleton, J.: DSDM: dynamic systems development method: the method in practice,
vol. xviii, p. 163. Addison-Wesley, Harlow (1997)

5. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall, Upper
Saddle River (2001)

6. Martin, J.: Rapid application development, p. 788. Macmillan, New York (1991)
7. Hansson, C., Dittrich, Y., Gustafsson, B., Zarnak, S.: How agile are industrial software

development practice? The Journal of Systems and Software 79, 1295–1311 (2005)
8. Radding, A.: Extremely agile programming. Computerworld 36(6), 42–44 (2002)
9. Meso, P., Jain, R.: Agile Software Development: Adaptive Systems Principles And Best

Practices. Information Systems Management 23(3), 19–30 (2006)
10. van Slooten, K., Hodes, B.: Characterizing IS development projects. In: Brinkkemper, S.,

Lyytinen, K., Welke, R. (eds.) Method Engineering: Principles of method construction and
tool support, pp. 29–44. Chapman & Hall, Boca Raton (1996)

11. Henderson-Sellers, B., Serour, M.K.: Creating a Dual-Agility Method: The Value of
Method Engineering. Journal of Database Management 16(4), 1–23 (2005)

12. Fitzgerald, B., Hartnett, G., Conboy, K.: Customising agile methods to software practices
at Intel Shannon. European Journal of Information Systems 15(2), 200–213 (2006)

13. Karlsson, F., Ågerfalk, P.J.: Method Configuration: Adapting to Situational Characteristics
while Creating Reusable Assets. Information and Software Technology 46(9), 619–633 (2004)

 Method Configuration: The eXtreme Programming Case 41

14. Karlsson, F.: Method Configuration - Method and Computerized Tool Support. Linköping
University, Linköping (2005)

15. Karlsson, F., Wistrand, K.: Combining method engineering with activity theory: theoreti-
cal grounding of the method component concept. European Journal of Information Sys-
tems 15, 82–90 (2006)

16. Rossi, M., Ramesh, B., Lyytinen, K., Tolvanen, J.-P.: Managing Evolutionary Method En-
gineering by Method Rationale. Journal of Association of Information Systems 5(9), 356–
391 (2004)

17. Ågerfalk, P.J., Fitzgerald, B.: Exploring the Concept of Method Rationale: A Conceptual
Tool for Method Tailoring. In: Siau, K. (ed.) Advanced Topics in Database Research, pp.
63–78. Idea Group, Hershey, PA (2006)

18. Aydin, M.N., Harmsen, F., van Slooten, K., Stegwee, R.A.: On the Adaptation of an Agile
Information Systems Development Method. Journal of Database Management 16(4), 24–
40 (2005)

19. Karlsson, F., Ågerfalk, P.J.: Method-User-Centred Method Configuration. In: Situational
Requirements Engineering Processes - Methods, Techniques and Tools to Support Situa-
tion-Specific Requirements Engineering Processes (SREP 2005), University of Limerick,
Paris, France (2005)

20. Patton, M.Q.: Qualitative evaluation and research methods, 2nd edn., p. 532. SAGE, New-
bury Park, CA (1990)

21. Kruchten, P.: The rational unified process: an introduction. Addison-Wesley object tech-
nology series, vol. xiv, p. 255. Addison-Wesley, Reading, MA (2004)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 42–52, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Adopting Agile in a Large Organisation

José Abdelnour-Nocera1 and Helen Sharp2

1 Thames Valley University, St Mary’s Road, Ealing, London, W5 5RF
jose.abdelnour-nocera@tvu.ac.uk

2 The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
h.c.sharp@open.ac.uk

Abstract. Much has been written about adopting agile software development
within a large organisation. A key aspect of this significant organisational
change is to ensure that a common understanding of the new technology
emerges within all stakeholder groups. We propose that an analysis framework
based on the concept of Technological Frames (TFs) can identify where under-
standing is in conflict across different stakeholder groups. We used TFs to ana-
lyse data collected in one organisation in the process of adopting an agile
development approach. In doing so, we identified several dimensions (called
‘elements’ in TFs) which characterise a group’s understanding of agility. In this
paper, we present these elements and describe the TFs for four distinct groups.
We suggest that these elements may be used by other organisations adopting
agile methods to help understand the views of different stakeholder groups.

Keywords: Technological frame, human aspects, empirical, qualitative.

1 Introduction

Many aspects have been identified as important in the process of adopting agile devel-
opment, especially in a large organisation. For example, which practices to adopt [1],
how to accommodate restrictive regulations [2] and how to balance repeatable processes
with uncertainty [3]. A key issue underlying these concerns is the need for a common
understanding of the new technology within all stakeholder groups. But where will
conflicts arise in this process? How can different groups be helped to converge on a
common understanding?

The aim of this paper is twofold: to suggest that Technological Frames (TF) [4]
provide a useful analysis framework for studies wishing to answer these questions;
and to present the results from such an analysis of one organisation. TF analysis helps
to identify the elements that shape the process of translation by the key stakeholders
[5], and hence offers a way to characterize where differences may arise. Using this
framework provides a snapshot of the assumptions, knowledge and expectations of
stakeholders during the adoption of agile methods in an organisation, and the prac-
tices constraining, framing and emerging in this process. To illustrate how TFs may
be used, the specific framework of elements derived from a qualitative case study of
one organisation adopting agile methods is presented; this specific framework may be
a useful starting point for others attempting to understand conflicts between stake-
holder groups.

 Adopting Agile in a Large Organisation 43

Section 2 introduces key literature on adopting agile development in a large
organisation. Section 3 introduces technological frames. In section 4 we present
the qualitative case study from one organisation. The analysis and interpretation of
how “agile” is defined and implemented by the different stakeholders is presented in
Section 5. Section 6 discusses our results; section 7 provides some conclusions.

2 Adopting Agile in Large Organisations

Software process changes represent complex organisational change and cannot be
accomplished merely by replacing tools and techniques [6]. Adopting agile develop-
ment is no different from other organisational change events in this sense, and several
authors have identified key challenges from their experience.

Lindvall et al. [7] identify the greatest challenge to adopting agile practices as be-
ing the need to integrate with the existing environment, while Cohn and Ford [8] say
that failing to persuade any stakeholder group to use the new process can impact
negatively on the project’s outcome. Both of these emphasise the need to understand
the wider organisational culture as well as the processes and structures that support it.

Boehm and Turner [9] report the results of workshops aimed at identifying barriers
to agile acceptance in large organisations. They describe three groups of issues that
act as barriers to agile adoption: development process conflicts, business process
conflicts, and people conflicts. People conflicts are identified as the most crucial to
the success of agile adoption.

At a more fundamental level, Weyrauch [10] points out that a common language
needs to be developed between stakeholder groups. However this is not simply a
matter of using the same vocabulary since this common language also needs to repre-
sent the same concepts.

3 Technological Frames

A TF is made up of two parts: elements of interpretation and elements of practice [4]
Elements of interpretation include assumptions, knowledge and expectations about
technology which shape a group’s understanding of the new technology, while ele-
ments of practice describe the constraints from their existing practices on adopting the
new technology. The study of practices includes the existing network of artefacts,
such as manuals, policies, etc. and the practices they represent. Underlying the TF
view is that a community can be divided into different social groups. All members of
one group share the same TF to various extents, but different groups may have differ-
ent TFs. Understanding a group’s TF with respect to a particular technology uncovers
how that technology is being viewed by that group, and hence may identify conflicts
between groups.

The TF concept was originally developed to understand the sociocultural processes
that guided the interactions of groups of scientists and technologists in the invention
and development of a number of technological artefacts - the bicycle, bakelite and the

44 J. Abdelnour-Nocera and H. Sharp

fluorescent lamp [4]. Subsequently, TFs have been used to investigate other kinds of
technological change. Some studies, e.g. [11], use the concept of TF to successfully
explain in what ways groups differ in their interpretation of systems and how this
leads to changes in the way they are designed and adopted. Others have used TFs to
understand conflicts among stakeholders: between producers and users of ERP soft-
ware [12]; in the adoption of intranets in large organisations [13]; and in participatory
design [14]. In this study, we use TFs to understand the conflicting perceptions of
stakeholder groups adopting agile methods in one organisation.

A key characteristic of sociotechnical change is that groups in favour of the new
technology tend to view existing practices as problematic, whereas groups not in
favour of the technology say that the problem lies in the new tools. This key element
of TF construction is referred to as ‘problem locus construction’ [12].

4 The Empirical Study: Data Gathering and Analysis

4.1 The Case Study Organisation

The organisation provides voice and data services around the world, building a ‘new
wave’ business based upon networked IT services, broadband and mobility and is
divided into several businesses, one of which focuses on software development. The
organisation employs approx 100,000 staff, about 7500 of whom are software devel-
opers. Their headquarters is located in the UK, although a large portion of develop-
ment work is carried out off-shore. At the time of study, the agile adoption process
had been running for approximately 2 years. The main thrust for agile adoption came
from the software development business where the CEO mandated it, and it is here
that most adoption work had been accomplished.

4.2 Data Gathering

Data was gathered through a variety of techniques including individual interviews,
observations, face-to-face and telephone meetings, documents, and a wiki. We at-
tached ourselves to one project (Project Z) and also gathered data from representa-
tives of stakeholder groups not part of this project.

Project Z was chosen because the individuals involved in the project had shown
willingness and interest in adopting the agile approach, and hence had tried to under-
stand the technology. Also, the contractor working with the team developed code
using some agile practices, which we thought might influence Project Z’s adoption of
agile. Four people involved in Project Z were interviewed: the delivery manager, the
user experience manager, the technical architect, and an outside contractor. One user
stories meeting which included customer representatives, developers and agile advo-
cates, two user interface design meetings (by telephone with an off-shore contractor),
and two delivery meetings (by telephone with an off-shore contractor) were observed.

Three agile coaches, and members of a four-person agile development team not
connected to Project Z were also interviewed. The team was observed for two days.

 Adopting Agile in a Large Organisation 45

Data consisted of interview summaries and transcriptions, meeting notes, observation
notes, artefacts and images, wiki pages and documents. In the interviews we were
keen to investigate what the individual understood by the term ‘agile’, what their
experience of agile was, and what it meant to them in their day-to-day work to apply
agile principles. A semi-structured interview style was therefore adopted, allowing
individuals to discuss other agile-related issues if they seemed important to them.

During observation we looked for examples of the use of agile terminology, evi-
dence that an agile approach had been adopted to any degree, and whether the push to
adopt agile methods had impacted on normal work patterns.

A key document was a manual of agile development which captured the particular
flavour of agile that the organisation was adopting. The online tracking system and
repository of information (a wiki) for the four-person agile development team was
also an important artefact. A particular emphasis in all the data gathering was to iden-
tify examples of conflict or breakdown [15]. TFs seek to understand how adopters
interpret the new technology, and so studying breakdowns helps to explicate TFs.

4.3 Data Analysis

Following Critical Discourse Analysis (CDA) [16], the data was regarded as text
reflecting stakeholders’ interpretive frames and actions, which, in turn, were taken as
an indication of the social context and ideologies surrounding agile adoption. People’s
interpretive frames are considered to have discursive properties, in accordance with
the ideas of [17]. Following the TF framework, the data was analysed to identify
elements of interpretation and elements of practice. Therefore the TF framework
provided a top-down view of the data, and CDA provided a perspective for analysis
from the bottom-up.

Analysis focused on the situations of instability and fluctuation in which the value
and usefulness of agile methods was defined. This process enabled the comparison of
stakeholder groups in terms of their different TFs.

5 Results: Making Sense of Agile

Accounts about agile and its uses were present in interviews, observational data, pol-
icy documents, and on the wiki. Data analysis identified four elements of interpreta-
tion and five elements of practice that shaped how agile methods were defined and
adopted within the organisation. These elements divided our participants into four
groups each with a different TF. These elements and groups are shown in Table 1. In
the discussion below, we summarise the key observations for each group.

5.1 Agile Advocates and Coaches

A group of Agile Advocates and Coaches is driving the agile ‘push’. Their mission is to
disseminate knowledge of agile methods and facilitate their successful adoption across
the organisation. From a TF perspective, this means that advocates must persuade other

46 J. Abdelnour-Nocera and H. Sharp

staff to adopt the same elements of interpretation and practice to frame agile adoption as
their own. One of the biggest challenges they were facing was to move Agile from the
development teams into the rest of the business.

Elements of interpretation. Agile was seen by the advocates and coaches as a flexible
development method that represents a natural way of doing things – as “a subset of
common sense”. They see agile as delivering “what the customer wants not what they
asked for”, and this reflects their understanding of agile as enabling an increased
collaboration between developers and other stakeholders.

According to the advocates, increased collaboration does not mean letting custom-
ers and users fully steer the process of design and development, however. Instead,
usability professionals and other user researchers from within the organisation should
help customers and users to make decisions. We only saw one instance of this hap-
pening where a user proxy attended a user story workshop.

This group believed that the collaboration brought by agile should benefit all areas
of the business not just the development effort, including groups such as marketing
and retail. They saw the applicability of agile as being across the entire business.

Overall, the value seen by this group for agile adoption is increased customer satis-
faction. As one lead advocate reported, the motivation to bring agile into the organisa-
tion was “to be responsive to the changing needs of the business”.

Elements of practice. One reported practice directly aimed at introducing agile meth-
ods was ‘embedded coaching’, where a coach joined a team of developers and trans-
ferred knowledge to them. However there were too many teams for the number of
coaches, so new coaches were being trained. Translating agile principles to the rest of
the business was attempted through special workshops and presentations. This was
complemented by events of public recognition such as internal ‘Agile Awards’. A key
tool was a manual of agile adoption generated by this group, but it was not designed
to carry agile methods beyond software engineering, i.e. to the business environment.
In terms of problem locus construction, advocates highlighted the inflexibility of
current production processes as being a problem, while middle managers questioned
the ability of agile to be integrated with current practice. The main mind shift required
according to them was the need to think of projects as having flexible as opposed to
fixed scope. One of the advocates said in this respect: “it is a big cultural change. We
develop what we need and we keep things flexible.” To overcome this, the advocates
developed workarounds and ways of knowing how agile a team has become. The
agile manual lists five principles of agility: customer involvement, user stories, itera-
tive development, automated testing and continuous integration. Advocates have
translated what each of these means to non-development staff but not all stakeholders
find this translation logical or relevant to what they do. One instance of this transla-
tion is creation of ‘business scenarios’, which attempt to capture not only the IT
activities but other activities related to the product, including technical and market
research. As one of the lead advocates said, “there is no point in delivering an IT
solution if the business has not done its job”.

 Adopting Agile in a Large Organisation 47

Table 1. Technological Frames relating to Agile for the four groups identified

 Advocates and
Coaches

Agile Team Project Z
Team

The Business

Elements of
Interpretation
The value of
Agile for me is

Customer
Satisfaction,
Responding to
changing needs
of business and
market. Re-use.

Customer Satis-
faction, Busi-
ness Value,
Continuous
Delivery

Faster deliv-
ery,
Structure to
what we do.
Re-usability.

Redundant

Applicability of
Agile

Entire business
process

Software Engi-
neering

Entire product
process

N/A

Project Scope
should be

Flexible Flexible Fixed (but
understand
rationale for
flexibility)

Fixed

Increased col-
laboration for a
better product

Agree Agree Agree Agree

Elements of
Practice
How to be agile In negotiation:

coaching,
workshops,
training.

Highly defined Ad Hoc (will-
ing to bring
Agile for
structure)

Highly Defined
User Research

Tools and Arte-
facts

Agile manual,
change process
documents,
wikis, online
resource. story
cards, MRDs.

The wall, user
story cards,
charts, wikis,
audio ‘culture’.

Ad Hoc: excel
sheets, wire-
frames, flow-
charts, audio
‘culture’,
MRDs.

Audio ‘culture’,
MRDs.

User Input Workshops and
meetings be-
fore and during
the production
process.

Continuous,
they should be
part of the
team.

Only before
production
process. Then
deadlines
more impor-
tant - but want
to change

Only before
production
process. Then
deadlines more
important.

Problem Locus
Construction:
Agile vs. Exist-
ing Production
Process

Agile will
improve pro-
duction. Senior
Management
Confirms this.

Agile will
improve pro-
duction. Senior
Management
Confirms this.

Agile will
improve
production
processes, but
do not know
how.

Agile is not
adequate for our
product re-
search proc-
esses. On the
contrary, it is
redundant.

Workarounds
on adoption

Translating
Agile to entire
business:
- User stories
from MRDs.
- Business
Scenarios

Retrospective
writing of
detailed docu-
ments to fit the
organisation
official proc-
esses.

Extracting
User Stories
from MRDs

N/A

48 J. Abdelnour-Nocera and H. Sharp

Summary. The TF of this group constructs agile as delivering a product of increased
quality that responds to the changing needs of the market. Most of the knowledge
publicly accessible refers to software development and not to product design and
research.

5.2 The Agile Software Development Team

Of the four groups described here, this one followed most of the agile manifesto prin-
ciples. They mainly delivered internal systems and their interpretation of agile was
more focused and consistent than that presented by the advocates and coaches.

Elements of interpretation. The team was proud of being agile and valued the ap-
proach: “It is not just doing one or two things to tick a box. It is the whole methodol-
ogy that counts. We can deliver if we want every two days. The fact that we can do
that shows that we are agile. The customer is very happy!” They used agile to identify
themselves as different from the rest by claiming that several areas within the organi-
sation did not understand what agile is.

A central element in their interpretation of agile was collaboration with the cus-
tomer: they were able to discuss the product with customers on the same level, deliv-
ering a solution closer to their needs. The team leader developed this point by saying
“it is 'I need to speak to my customer and see what he says' rather than thinking 'this
is my requirement I will go and do it'. The key change is to consider the customer as
a part of the team and help them to get the most business value from the system.”
Customer collaboration was viewed as being able to deliver business value to the
development process and its product. Indeed, they saw agile as a set of software engi-
neering practices that help to deliver business value and they all believed that agile
requires a mental shift where the scope of the product remains flexible.

Saving wasted effort was another defining idea: “Being agile is about continuously
getting feedback. You deliver small things quickly and then you build on them so you
save a lot of wasted effort. Historically we used to deliver things that were not used.”

Elements of practice. This team followed most of XP’s principles and techniques.
They claimed to have been practicing agile working before the organisational adop-
tion and had used a number of workarounds in order to comply with incompatible but
established processes in the wider organisation. For example, it was reported that long
and detailed design documents were written in retrospect to fit the system rather than
because they had any value.

A key practice is continuous customer feedback, mostly through a wiki and fort-
nightly telephone meetings. The co-located team used a ‘wall’ where user story cards
and charts were presented, and a wiki recorded their progress, including current user
stories and related acceptance tests. This was especially useful for other project mem-
bers who were working remotely, e.g. the testers who were based offshore.

From the interviews and observations conducted, it was not evident that this team
has been directly influenced by any of the workshops or documents prepared by the
advocates. For instance, they confirmed being aware of the agile manual and sharing
most of what it prescribes, but they had not fully read it or used it as a guide. This
team was awarded an agile prize within the organisation, but they have not applied
agile techniques beyond their role as programmers and software engineers.

 Adopting Agile in a Large Organisation 49

Summary. Most elements of this group’s TF led to a definition and practice of their
development methods very close to the agile manifesto. They have used this to differ-
entiate themselves from the rest of the organisation and have in the past used work-
arounds in order to comply with an incompatible sociotechnical network.

5.3 Project Z

Project Z team is a bigger and more complex team than the agile team presented
above. Project Z is made up of different stakeholders located in different areas of the
organisation. In addition, most of the development work has been done by an out-
sourcing partner. In consequence, this project has many external dependencies.

The introduction of agile was received positively by Project Z in the early stages.
At the user stories workshop the team were enthusiastic and could see various oppor-
tunities in using agile, although we also observed some conflicts between marketing
and other groups. Six months later, we could not identify a consistent agile approach
or influence in what they had produced. However, they still stood by their initial per-
ceptions of what agile methods could offer them.

Elements of interpretation. Their recurrent element of interpretation in describing the
main benefit of agile was that it would allow them to deliver solutions much faster
than they normally do. This idea was shared by developers, delivery and usability
managers, product managers and technical architects. Another element used espe-
cially by usability and user interface designers, was the opportunity to bring end users
closer to the design and production process as well as giving the user experience
group a more coherent role in the production cycle. The usability manager for Project
Z expressed this by saying: “The key is getting user experience people involved ear-
lier, it’s not about getting requirements and handing them over the wall”.

Despite these positive perceptions, we identified frustration because the team had
not been able to adopt agile fully. One indication of this was the absence of user sto-
ries in the discourse, or in any physical or electronic representation. The staff did not
feel ‘touched’ by the organisation’s agile revolution, and there was a general feeling
that “decisions were made at the top but it is not coming down” according to one
delivery manager. He said: “big executives say you do this but people on the ground
do not understand what it is all about”.

Another element of interpretation was the need for greater collaboration and com-
munication across all stakeholders and the problems associated with it, especially
between marketing managers and IT delivery managers. The IT delivery manager
characterized the differences by saying: “I (marketing says) want that box and I want
that now, whereas we (IT delivery) unpack the box”. The technical architect agreed
that all communities need to engage earlier in the process so that decisions make
sense from a customer, business and technical point of view.

Elements of practice. Some of the practices shaping agile adoption reflect the inter-
pretative elements discussed above, the most obvious being the need for increased
collaboration and communication across all stakeholders, including customers. How-
ever the organisation structure was hierarchical and the process of user input was
constrained once the product requirements were identified.

50 J. Abdelnour-Nocera and H. Sharp

There was some evidence of behaviours such as stand up meetings and user story
workshops, and we identified several workarounds to integrate agile into the current
way of working. One was the ‘hothouse’ a kind of workshop that brings together all
the key stakeholders to build and refine prototypes and to agree on the next 90-day
delivery. Extracting user stories from existing, very detailed ‘marketing requirements
documents’ (MRDs) was another workaround. These MRDs were a prominent artifact
found across the organisation. Leaders of Project Z claimed that it was very difficult
to work with such detailed documents in a project whose scope could change rapidly;
one agile developer described MRDs as “not based in reality at all”.

“Engrained processes” arising from existing practices were mentioned by most
members of the project team. According to the delivery manager, these address con-
tracts and integration with larger systems which are issues when adopting agile. To
maintain appropriate communication with geographically distributed team members,
wikis and a culture of phone meetings were encouraged.

A practice identified by technical architects, delivery managers and usability man-
agers was that staff were trying to deliver in 90-day cycles, which meant that they had
only ‘shrunk’ the Waterfall process without any qualitative change.

Summary. A less refined understanding of agile, and a number of engrained processes
that hinder adopting agile are evident in Project Z’s TF. However, we also found a
positive perception of agile and efforts to integrate agile into what they do that re-
spond to this basic understanding.

5.4 The ‘Business’ (or Customer Proxy)

We did not have the opportunity to interview and visit the premises of the ‘business’
companies within the organisation. However, they played a major role in the first user
stories workshop, our interviewees made reference to them, and we had the opportu-
nity to meet representatives of this group informally, which helped us to confirm the
validity of other accounts that we gathered. Although we have less data from this
group, we consider them here as they represent an important reference point in trying
to describe and understand agile adoption.

Elements of interpretation. The main interpretation of agile in this group is that they
did not see any value in creating user stories. From their perspective, the MRD al-
ready reflected their work on user research and did not need to be repeated. However,
there was no discussion or comment on the value of continuous user or customer
feedback during the production process from this group.

Elements of practice. Marketing have historically been physically separated and dis-
tant from the IT division. This affects the amount and quality of collaboration be-
tween the two groups.

Summary. Overall, marketing’s perception of agile is very basic. A higher interaction
with other groups in the organisation, especially advocates and mature agile teams
may have an impact on the elements of interpretation of their TF about product devel-
opment processes.

 Adopting Agile in a Large Organisation 51

6 Discussion

Table 1 shows that the TFs of the four groups we have studied are quite different, but
there are also similarities. Advocates and the agile team have a clear agile frame as
part of their described production methods whereas Project Z shows an initial transi-
tion from their ad hoc methods towards agile. In the case of the business’s TF, we
could not find any strong indication of agile integration.

Three of the groups saw agile as having value for them, while ‘the business’ appar-
ently do not see the value of agile at all. One of the challenges faced by this organisa-
tion is how to extend an agile way of thinking beyond the developers, and both the
Agile Advocates and Project Z believed that agile should cover the entire process,
while the development team were content with focusing on implementation only. This
shows a tension in the process of sociotechnical change: trying to translate principles
created for the development of software into broader knowledge and processes to an
audience with different roles, understandings and expectations, sharing a contrasting
TF. One thing (the only thing) which all groups agreed upon was that increased col-
laboration would result in a better product. There is more variability evident in the
elements of practice for each group, which is a consequence of each working to adapt
to their own circumstances. As might be expected, the problem locus constructions
for the first two groups identify problems in existing practices, while Project Z is
unsure how to proceed and ‘the business’ blame agile itself. Agile advocates, the agile
team and Project Z, agreed that the biggest cause of resistance to adopting the new
methods lay in the need for cultural change in middle management.

According to Bijker, TFs show power dynamics in the constitution of technology.
Powerful members of a social group try to frame other members with their own mean-
ings and prescribed uses for a technology. For example, Advocates are trying to bring
staff into their TF by rewarding mechanisms and faster delivery targets.

7 Conclusions

The Technological Frames developed here provide a snapshot of how agile was being
interpreted and adopted in one organisation at the time of the research. They have
identified some clear issues faced by the organisation and have highlighted areas of
confusion and uncertainty. The analysis reinforces others’ findings regarding the
adoption of agile processes within a large organisation. In particular, the importance
of ensuring that all stakeholder groups are consulted and engaged in the adoption
process, and that existing practices need to be understood and taken into account in
devising new procedures. A key issue faced by individuals and groups appears to be
coming to terms with what adopting agile means to everyday processes: What do I do
when I get up in the morning? But also, what does it mean for the whole business to
adopt Agile?

The TF framework has provided a novel way to analyse the issues of integrating
agile into an organisation. The TF elements presented here emerged from the data and
hence are specific for one organisation, but they provide initial indications of where
others may find areas of conflict.

52 J. Abdelnour-Nocera and H. Sharp

Acknowledgements

We would like to thank all our collaborators for their time and patience.

References

[1] Lawrence, R., Yslas, B.: Three-way cultural change: Introducing agile within two non-
agile companies and a non-agile methodology. In: Proceedings of Agile 2006, pp. 255–
259. IEEE Computer Society, Los Alamitos (2006)

[2] Wils, A., van Baelen, S., Holvoet, T., de Vlaminck, K.: Agility in the Avionics Software
World. In: Abrahamsson, P., Marchesi, M., Succi, G. (eds.) XP 2006. LNCS, vol. 4044,
pp. 123–132. Springer, Heidelberg (2006)

[3] Lycett, M., Macredie, R.D., Patel, C., Paul, R.J.: Migrating agile methods to standardized
development practice. IEEE Computer 36(6), 79–85 (2003)

[4] Bijker, W.E.: Of bicycles, bakelites, and bulbs: toward a theory of sociotechnical change.
MIT Press, Cambridge (1995)

[5] Latour, B.: The Powers of Association. In: Law, J. (ed.) Power, action, and belief: a new
sociology of knowledge, p. viii, 280. Routledge & Kegan Paul, London (1986)

[6] Nerur, S., Mahapatra, R., Mangalaraj, G.: Challenges of migrating to agile methodolo-
gies. Communications of the ACM 48(5), 73–78 (2005)

[7] Lindvall, M., Muthig, D., Dagnino, A., Wallin, C., Stupperich, M., Kiefer, D., May, J.,
Kähkönen, T.: Agile software development in large organisations. IEEE Com-
puter 37(12), 26–34 (2004)

[8] Cohn, M., Ford, D.: Introducing an agile process to an organisation. IEEE Computer 36(6),
74–78 (2003)

[9] Boehm, B., Turner, R.: Management Challenges to Implementing Agile Processes in Tra-
ditional Development Organisations. IEEE Software 22(5), 30–38 (2005)

[10] Weyrauch, K.: What are we arguing about? A framework for defining agile in our organi-
sation. In: Proceedings of Agile 2006, pp. 213–220. IEEE CS, Los Alamitos (2006)

[11] Orlikowski, W., Gash, D.C.: Technological Frames: Making Sense of Information Tech-
nology in Organisations. ACM Transactions on Information Systems 12, 174–207 (1994)

[12] Abdelnour-Nocera, J., Dunckley, L., Sharp, H.: An approach to the evaluation of useful-
ness as a social construct using technological frames. International Journal of Human-
Computer Interaction 22, 157–177 (2007)

[13] Pellegrino, G.: Thickening the Frame: Cross-Theoretical Accounts of Contexts Inside and
Around Technology. Bulletin of Science Technology Society 25, 63–72 (2005)

[14] Sarkkinen, J.: Examining a Planning Discourse: How a Manager Represents Issues within
a Planning Frame and How the Other Could Do the Same. In: Participatory Design Con-
ference, Toronto, Canada (2004)

[15] Winograd, T., Flores, F.: Understanding Computers and Cognition: A New Foundation
for Design. Ablex Pub. Corp., Norwood (1986)

[16] Fairclough, N.: Language and Power, 2nd edn., Harlow, England, Longman (2001)
[17] Harré, R., Gillett, G.: The Discursive Mind. Sage, Thousand Oaks, Calif. (1994)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 53–62, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Observational Study of a Distributed Card Based
Planning Environment

Robert Morgan1, Frank Maurer2, and Mike Chiasson3

1,2 Department of Computer Science, University of Calgary,
2500 University Drive NW Calgary, AB, Canada, T2N 1N4

robertemorgan@gmail.com, frank.maurer@ucalgary.ca
3 Department of Management Studies, Lancaster University,

Lancaster, UK LA1 4YW
m.chiasson@lancaster.ac.uk

Abstract. Providing support for distributed agile teams as they conduct plan-
ning meetings is tricky. In distributed settings, the use of paper index cards for
planning isn’t convenient, as some of the team members do not have access to
the physical cards. We present the results of an observational study where a dis-
tributed card based planning tool was evaluated against planning with physical
cards. The feedback we received from the participants was encouraging. Results
indicated that teams were excited to use the tool in part because telepointers
made knowledge of the other participants actions easier. We also found that
communication was improved as the tool kept teams interested in the meeting
and conversations on topic.

Keywords: Distributed Planning, Groupware, Agile Planning, Story Cards.

1 Introduction

Many software development teams today are involved in projects where the ability to
have all team members sit together and plan the next iteration is difficult. Dispersed &
distributed teams and off-shoring development is commonplace in the software indus-
try. The reality is that distributed software projects are here to stay and with them so
are distributed planning meetings. Planning in an agile environment is something that
does not fit well with distributed projects. Being able to see story cards as they are
created and negotiating whether they are in or out of an iteration is something that is
much easier to do when all team members can see and manipulate the story cards.

Planning processes in the agile community varies from team to team. However, most
teams follow the idea of using index cards (or similar sized sheets of paper) to record
stories and subsequently organize then into iterations [1, 3]. Pen and paper allow easy
and quick creating of stories during a meeting and makes organizing them either on a
table or board effortless. This cannot be said when planning with distributed team mem-
bers. As team members are not at the same location, sharing the current state of the
iteration plan becomes substantially more difficult. Picking up a pen and writing on an
index card and placing it on the table is not helpful in creating a shared understanding of

54 R. Morgan, F. Maurer, and M. Chiasson

the current state of the plan. Cards need to be created and manipulated on multiple sites.
This replication can – and often does – lead to inconsistencies between sites resulting in
misunderstandings and an overall slowdown of the planning process.

Tools that support distributed planning must allow for easy and intuitive creation
and modification of stories and iterations during the planning meetings and not after
the meeting. This implies that digital representations of story cards and iterations must
be as easy to create, modify and destroy as their physical counterparts. DAP [9, 10] is
an open-source distributed project planning tool that supports card based planning in a
fashion that resembles pen and paper based planning. For reasons discussed below,
we picked this tool for evaluating if tools improve the effectiveness of distributed
iteration planning meetings. In this paper, we present the results of a qualitative
evaluation where DAP and distributed paper based planning were compared.

The paper is structured as follows: Section 2 takes a look at existing works relating
to agile project planning and groupware applications. Section 3 highlights DAP dis-
tributed planning features. Section 4 looks at the qualitative evaluation process, par-
ticipants, and context. Section 5 presents the results of our evaluation. We summarize
our results in Section 6.

2 Related Works

Software systems that provide support for both collocated and distributed agile project
planning have been around for quite some time. Existing options such as: Scrum
Works [4], XPSWiki [11], Rally [12], Version One [16], and XPlanner [17] provide
basic functionality for creating and organizing stories in one way or another. Most of
these systems use traditional web technologies and as a result present planning infor-
mation in the form of tables supporting create, read, update and delete operations.

The collaborative aspect of these systems, though effective, leaves a lot of room
for improvement. Awareness information that allows others to know who is online
and working or editing information is often limited or not available at all. Research
into supporting collaboration with computers has been around since the early 1960’s.
Many researchers focusing on Human Computer Interaction have made significant
strides in improving our understanding of how to build more collaborative tools. This
collaboration aware [15] or groupware research has tended to focus on generalized
group activities in order to better understand the entire groupware spectrum. A large
part of the literature in this area looks at tasks such as drawing and or editing text
[5, 15]. The focus on general group tasks has provided significant amounts of insight
for tool developers to draw upon. Recommendations, however, tend to be generalized
to all groupware applications and their relevance to agile planning tasks is varied.

Early work by Tang [15] produced a number of recommendations on how to ap-
proach the design of groupware applications. Of significant importance when building
groupware applications is the consideration of: hand gestures during communication,
the importance of the workspace tools for mediating collaboration, and the role of
spatial orientation in structuring the collaborative activity.

Specifically for planning tasks, workspace awareness is important to understand in
more detail. Gutwin et al. [8] breaks down workspace awareness into three parts:
knowing what others are able to see, knowing where their mouse is located and when

 An Observational Study of a Distributed Card Based Planning Environment 55

it is moving (telepointers), and finally seeing the movements and modifications of
artifacts in the workspace as they happen (What You See Is What I See, or WYSI-
WIS). Research into workspace awareness puts a strong emphasis on sharing the
workspace with everyone connected. With a shared workspace, one important aspect
is knowing where and what others are doing. To provide this information to everyone
all three aspects need to be supported.

To ensure that everyone sees the same information, an interface that supports the
WYSIWIS paradigm is essential [13, 14]. This ensures that when one artifact is
moved or changed that those changes are shared with everyone immediately (in real
time), thus duplicating the environment on every client.

An important aspect for workspace awareness involves supporting telepointers
[6, 7, 15]: the ability to point to locations in the shared workspace on all connected
clients. Support for telepointers in the workspace provides support for gestures in the
workspace as it shares all the interactions of one mouse with the other clients. Tele-
pointers alone do not completely address gesturing in the workspace, however, they
drastically increase team members abilities to refer to an artifact in the workspace.

Recently, two agile planning tools were developed that incorporate ideas from the
groupware community. We used one of them, DAP, for our study and describe it in
detail below. The 2nd tool, CardMeeting [2], is a web-based agile planning application
that moves away from existing implementations by representing planning information
as colored cards in a shared environment. The system provides users the ability to
create blank index cards that look identical to their physical counterparts. The cards
can be moved around the workspace with ease. When compared to existing agile
planning tools, however, there are no accounting features or indicators of which card
belongs to any given iteration. It simply creates digital cards in a workspace that can
be managed and modified by every distributed individual.

The use of a shared environment that simulates face-to-face planning presents the
requirement that updates to that environment are near real-time. When comparing
DAP and CardMeeting against collocated agile planning performance levels were
noticeably different. Both tools were tested with two clients located next to each
other. CardMeeting experienced substantial delays, with interactions taking in excess
of two seconds, interactions in DAP were substantially shorter. (See section 5.3 for
more on DAP’s performance).

3 Distributed AgilePlanner (DAP)

DAP provides a shared planning environment (Figure 1) that helps distributed teams
to conduct a planning meeting synchronously in real time [9,10]. DAP uses visual
objects to represent the various different planning artifacts. These visual artifacts
allow team members to plan in a way that mimics paper based planning with the
added benefit that team members do not have to be in the same room to share a plan-
ning space. Besides providing standard effort accounting functionality, DAP is able to
reconstruct previous planning sessions effortlessly. This allows teams to quickly re-
member the context of the last meeting and track the progress of the project.

56 R. Morgan, F. Maurer, and M. Chiasson

Fig. 1. DAP environment

3.1 Interacting with Planning Artifacts

Story card and iteration creation is straightforward and mimics paper based planning.
Clicking or selecting the story card or iteration button and then clicking or dropping the
artifacts at the desired location creates the artifact. Once the artifact is dropped at the
desired location it is immediately shared with all other connected clients. DAP’s flexi-
bility allows for story cards and iterations to be created anywhere in the workspace.

Editing of story or iteration information again mimics team members using paper
cards. Card fields are quickly edited by clicking on the desired field and changing its
contents. Editing of the text is done directly on the card so that all team members,
distributed and collocated, can see the changes happening in real-time.

DAP takes great care in making card organization intuitive while leaving teams
free to organize cards in a way that best suits them. A large component of card or-
ganization is moving a card from a given location to another. In DAP this is accom-
plished via a simple drag-and-drop action. Moving multiple cards involves selecting
multiple cards and dragging the group. Iteration objects containing cards are also
moved by the same means. Iterations act as containers for story cards and when
moved they keep the internal organization of the stories.

3.2 Distributed Planning

Our primary reason for choosing DAP for our study is its distributed team support.
Traditionally, as we saw earlier, tools to support distributed agile teams do not pro-
vide much synchronous and immediate feedback to the others participating in the
meeting at a different location. DAP attempts to provide team members with as much
as possible non-verbal information as team members would get if they were all sitting

 An Observational Study of a Distributed Card Based Planning Environment 57

in the same location. In order to provide this kind of awareness, artifacts are shown in
all the shared workspaces as soon as they are created.

In order to support pointing to artifacts for distributed teams, DAP makes use of
telepointers [8] (Figure 1:a). DAP’s telepointers provide connected clients the ability
to point out, highlight artifacts or gesture to others in real time. This feature provides
team members with a natural and non-verbal means communicating, in addition to
verbal communication.

4 Study Design

To understand the impact of a distributed planning tool that uses two dimensional
representations of story cards as well as groupware features, a preliminary but struc-
tured qualitative study was conducted. The study looked at how teams interacted with
story cards in both a paper-based environment and then using the DAP tool. The pur-
pose of the study was to determine if tool support for distributed planning improves
upon existing paper based planning approaches. In addition, the study hopes to high-
light the strengths and shortcomings of such a tool.

4.1 Participants and Context

The evaluation of DAP took place over the course of six months in early 2007. Dur-
ing this time five teams were observed (amounting to twenty six participants) as they
conducted various planning meetings. All five teams were predominantly composed
of graduate students from the areas of software engineering and management studies.
The teams can be categorized into two groups Case Study Teams (two teams) and
User Study Teams (three teams). The case study teams were involved in existing
software development projects for clients. The user study teams were participating in
mock project planning meetings organized by the researchers, but no development
was carried out afterwards. User study teams were used to provide a larger user base
for observation, as no other development teams were available.

The Case Study teams had existing projects for delivery to a customer. User Study
teams, on the other hand were given a high level project description, a vague descrip-
tion of a point of sale application. Teams were given a short and limited (30 second)
introduction to the DAP planning tool, comprising of a short tour of the tool.

The five teams were observed in a variety of situations. The three user Study teams
participated in two distributed planning meetings, one with paper index cards and one
with the DAP tool. Of the two Case Study teams the first participated in three distrib-
uted planning all using the DAP tool as they were already using the tool for their
development, while the second team participated in one collocated planning meeting
with paper index cards, one distributed planning meeting using paper index cards and
another distributed planning meeting using the DAP tool. Collocated planning was
not possible for most of the teams due to the geographical limitations.

Participants were located in Canada, the United States and the United Kingdom.
Developers for all the teams were located in one Canadian city with customers located
in another Canadian city, a city in the United States and a city in the United Kingdom.
Participants experience with story card planning varied from team to team, with more
then half of the participants having little to no experience with the planning approach.

58 R. Morgan, F. Maurer, and M. Chiasson

4.2 Data Collection and Evaluation Criteria

Data was collected from the meetings through observations of the planning meetings,
and interviews. Observations were conducted by means of video and the researchers
taking notes during the planning meetings. Researcher observations were conducted
by one researcher in the United Kingdom and one in Canada. No researchers were
able to be on site with the US team.

After the planning meetings, participants were asked a variety of questions relating
to their experience in the study. Questions focused on: the perceived learning curve of
the tool, the perceived ease of use and interaction with the tool, the impact the tool’s
use had on productivity compared to previous meetings and experiences.

5 Study Results

Feedback from the participants in addition to the observations from the planning meet-
ings was affirmative. Participants were generally positive towards their experience with
DAP. We did not observe any difference between participant responses based on loca-
tion nor user type. Participants seemed excited and expressed a desire to use and interact
with DAP. However, this does not mean that there weren’t issues that manifested. Issues
surrounding communication as well as tool related issues did occur.

5.1 Observations

Observations from the teams highlighted a number of positive and negative effects that
DAP brings to distributed environments. The case study teams demonstrated that a tool
like DAP has an impact on synchronizing the entire team while at the same time keep-
ing everyone involved and engaged in the planning when compared against distributed
paper based planning. Based on our own experiences as educators, we decided to use
eye contact and fidgeting as a way to subjectively determine team member engagement.

Team members engagement was most noticeably affected with the introduction of
DAP. The levels of perceived engagement in the meeting as expressed by eye contact
and the amount of fidgeting from each team member increased while using the tool.
When comparing the three meetings of the second Case Study team (collocated, dis-
tributed and DAP) the meetings with the most eye contact and the least amount of
fidgeting were the collocated and the DAP meetings. The distributed planning meet-
ing where no tool was used saw almost everyone on the team looking around the
room, closing their eyes for long periods of time and continuous fidgeting in their
chairs. The collocated and DAP planning meetings saw all team members focusing on
the customer, either physically in the room (collocated) or on their interactions on a
large shared display (DAP). Only rarely did a team member shift their focus away
from the planning tasks. In addition team member’s body language differed: during
the collocated and DAP meetings team members positioned themselves to face the
customer /display and a tendency to lean towards the customer/display. This type of
body positioning was not seen during the paper-only distributed planning meeting.

Tool usage across all five teams was relatively similar. Team interaction with DAP
was dominated by the developers with the customers interacting on occasion. The
exception to this was the third user study team. The interactions with the tool changed

 An Observational Study of a Distributed Card Based Planning Environment 59

mid meeting when one of the customers asked if they could use the tool as well. Once
they started using the tool, they dominated its control, creating new story cards adding
descriptions and even adding the estimate values after discussing them with the de-
velopers. All throughout the meeting both the customers and the developers expressed
excitement about using the tool. Comments like: “this is neat” or “oh cool”.

A point of significant interaction and discussion for all teams were the telepointers.
Team members liked the idea of being able to point to an object in the workspace and
having their colleagues at the other location see their actions. The customer for one of
the case studies commented during one of the planning meetings: “this is exciting.
This is great!” after using the telepointers to point to a story card being discussed.
Following that same meeting a project manager commented “It’s the first time that I
really saw that [telepointers] was useful, because when [he] said look here!” Similar
sentiments regarding telepointers were expressed during the other planning meetings
with everyone making positive comments regarding them.

Although participants were excited about using DAP, teams did experience some
trouble interacting with the tool. Every team had trouble with editing story card con-
tent. Editing of story cards was implemented as a single click on the field once the
card was selected. However, everyone used a double click to try and edit the fields.
Double clicking resulted in the card collapsing instead of entering edit mode, as the
participants expected. This resulted in frustrations amongst the teams and resulted in
the teams asking the observer for help.

The second point of frustration came from creating story cards. One of the user
study teams was trying to create a story card on top of another story card. It appeared
that the team wanted to keep the story cards in the same visible workspace and not
have to scroll around. This was a much smaller point of frustration and resulted in the
team making a few attempts before resizing the other cards and then creating the card
on top of an iteration.1

5.2 Feedback

Of the twenty-six participants, in the five teams, twenty provided feedback on their
experiences in the study. The feedback was encouraging with similar comments being
made by many of the participants. We did not see any differences between feedback
from developers and customers. Generally, participants found that DAP was “... very
very easy to use”, with the exception of editing cards. In addition, participants com-
mented on the visual representations of the cards indicating that “...it gave [them] an
exact picture of the planning project”.

During conversations with the participants telepointers again came up as an impor-
tant part of DAP. Participants indicated that they liked how “...[they] could monitor
whatever was happening on the screen of the other party” and “...that simple pointing
[was] possible”. In addition to the telepointers, participants liked the fact that the story
cards had explicit areas for the story name and a description. In particular the descrip-
tion area was an important feature as it encouraged them to add more information to
the story. One user study participant, acting as a developer, compared the virtual cards
to paper cards and commented that when using the paper cards “...there was nothing

1 Most of the usability issues identified by our study have now been fixed by the DAP developers.

60 R. Morgan, F. Maurer, and M. Chiasson

that forced me to enter a description but the tool had the description [area] so I felt
like, you know, I should fill this in”.

Comments from participants continuously highlighted the impact that DAP had on
communication during the meetings. The majority of those interviewed felt that the
tool helped with keeping the discussions on track. They felt that during the distributed
planning meetings where no tool was used that team members would easily and often
go off topic or get caught up in an idea and they would then have a hard time getting
back on track or interjecting to pose a question.

Participants perceived productivity2 was slightly increased with the introduction of
DAP. Participants felt that with the conversations being more directed and on topic in
addition to being able to see, read and interact with the planning artifacts in near real-
time helped increase the productivity of the meetings. Participants also believed that
they had a better understanding of the stories for the current iteration and spent less
time discussing individual stories. They also found that creating cards was just as
simple and quick as creating paper cards.

5.3 Real-Time Performance

Response times for various actions in DAP are near-real-time. Actions in DAP were
tested both in a controlled laboratory setting with limited network activity and in a
cross-continent setting (Canada - United Kingdom). For both time trials the DAP
server was located in Canada. Table 1 summarizes the times for the various different
actions in DAP. Times were calculated by hand with a stopwatch, researchers com-
municated verbally (via VIOP system in the cross-continent case). Action starts were
verbalized by one individual and when the other individual had seen the change they
would verbally indicate to stop the clock.

Table 1. DAP Performance

As we can see, the majority of actions in DAP takes two seconds or less regardless of
the network settings. Results from the laboratory setting were considerably faster result-
ing in near instantaneous changes to the workspace. We can see that there is a delay
introduced when collaborating over greater distances, however, the delay is still rela-
tively short and did not have an impact on the user study teams ability to collaborate.

5.4 Limitations

The research into the effectiveness of DAP has provided insight into supporting distrib-
uted agile planning. The results of our initial study – although encouraging – suffer from

2 When interviewing study participants, we did not define “planning productivity” but let them

use their own understanding of the term.

 An Observational Study of a Distributed Card Based Planning Environment 61

a number of limitations. Specifically, the participants for the user study are graduate
students and it is unclear how well they represent agile teams working in an industrial
setting. The participants are also volunteers – creating a potential positive bias in the
results.

Secondly, biases are introduced due to the fact that half of the volunteers that par-
ticipated in the user studies were colleagues of the primary researcher. The bias intro-
duced by the volunteers knowing the researcher, are partially kept in check by having
the remaining half of the participants in the user study teams being from other univer-
sities where there was no prior contact with the researcher or knowledge of the tool.

Finally, industrial evaluation is extremely minimal (one individual on one case
study team) and DAP was only compared against paper based planning. No compara-
tive evaluation was conducted between DAP and other distributed agile planning tools
and no comparison where the order in which the planning methods were examined
were conducted. The lack of comparison against other industrial tools and the limited
involvement of industrial participants introduce a bias into the results presented here
and demand further investigation. The reason for focusing on DAP instead of alterna-
tive tools was our desire to primarily compare paper-based distributed planning with
tool-based distributed planning. We picked what we consider the best-of-breed tool as
the basis for our study. After our study indicates the benefits of tool support, a next
step would now be to compare different agile planning tools and evaluate if there are
any differences in planning effectiveness.

6 Conclusions

Tools to support distributed agile planning have made significant strides in bringing the
benefits of collocated planning to distributed teams. Research from the groupware
community like a shared workspace and telepointers provide teams with additional non-
verbal information that is missing from paper based distributed planning meetings.

The results from our observational study are encouraging in that teams found the
additional awareness information beneficial. Participants were very receptive of the
tool and felt that communication and productivity were positively affected when
compared to the paper based distributed planning they experienced. In addition, par-
ticipants’ feedback regarding the use of telepointers is important and suggests that
future agile planning tools consider their inclusion.

Further investigation into the effects of distributed planning tools that use physical
representations of planning artifacts is warranted. In addition, a comparative evalua-
tion that examines the impacts of the various different agile planning tools is needed.

Distributed AgilePlanner provides card-based planning to agile teams – but it uses
a shared vertical surface to display iterations and story cards. Our ongoing work looks
into using digital tables for distributed planning and promises to be even closer to
collocated agile planning meetings.

References

[1] Beck, K.: Extreme Programming Explained: Embracing Change. Addison-Wesley, Read-
ing (2000)

[2] CardMeeting, http://www.cardmeeting.com

62 R. Morgan, F. Maurer, and M. Chiasson

[3] Chon, M.: Agile Estimating and Planning. Pearson Education Inc., London (2006)
[4] Danube Technologies Inc - ScrumWorks, http://danube.com/scrumworks
[5] Ellis, C.A., Gibbs, S.J., Rein, G.: Groupware: some issues and experiences. Communica-

tions of the ACM 34, 19 (1991)
[6] Greenberg, S.: Sharing views and interactions with single-user applications. ACM SI-

GOIS Bulletin 11(2-3), 10 (1990)
[7] Gutwin, C., Greenberg, S.: Workspace awareness for groupware. In: Conference compan-

ion on Human factors in computing systems (CHI 1996). ACM Press, Vancouver, British,
Columbia, Canada (1996)

[8] Gutwin, C., Greenberg, S.: Effects of awareness support on groupware usability. In: Con-
ference on Human Factors in Computer Systems (SIGCHI). ACM Press/ Addison-
Wesley Publishing Co., Los Angeles, California, United States (1998)

[9] Morgan, R., Maurer, F.: MasePlanner: A Card-Based Distributed Planning Tool For Ag-
ile Teams. In: Porceedings, International Conference on Global Software Engineering
(ICGSE 2006). IEEE Computer, Los Alamitos (2006)

[10] Morgan, R., Walyn, J., Kolenda, H., Ginez, E., Maurer, F.: Using Horizontal Displays for
Distributed & Collocated Agile Planning. In: Concas, G., Damiani, E., Scotto, M., Succi,
G. (eds.) XP 2007. LNCS, vol. 4536, pp. 38–45. Springer, Heidelberg (2007)

[11] Pine, S., Mauri, S., Lorrai, P., Marchesi, M., Serra, N.: XPSwiki: An Agile Tool Support-
ing the Planning game. In: Marchesi, M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675, pp.
104–113. Springer, Heidelberg (2003)

[12] Rally Software Development Corp, http://www.rallydev.com/products.jsp
[13] Reinhard, W., Schweitzer, J., Volksen, G., Weber, M.: CSCW Tools: Concepts and Ar-

chitectures. Computer 27(5), 8 (1994)
[14] Stefik, M., Bobrow, D., Foster, G., Lanning, S., Tatar, D.: WYSIWIS revised: Early ex-

periences with multiuser interfaces. ACM Transactions on Information Systems
(TOIS) 5(2), 20 (1987)

[15] Tang, J.C.: Findings from observational studies of collaborative work. Interantional Jour-
nal of Man-Machine Studies 34(2), 17 (1991)

[16] VersionOne LLC, http://www.versionone.net/products.asp
[17] XPlanner, http://xplanner.org

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 63–72, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The TDD-Guide Training and Guidance Tool
for Test-Driven Development

Oren Mishali1, Yael Dubinsky2, and Shmuel Katz1

1 Computer Science Department
The Technion, Haifa, Israel

{omishali,katz}@cs.technion.ac.il
2 IBM Haifa Research Lab

31905 Haifa, Israel
dubinsky@il.ibm.com

Abstract. A tool is presented for guiding Test-Driven Development (TDD),
called TDD-Guide. The tool is integrated into an existing development envi-
ronment and guides the developer during the development by providing notifi-
cations that encourage use of TDD. The TDD practice is defined through rules
that can easily be changed and are used to generate code incorporated to a de-
velopment environment using an aspect-based framework, so that the develop-
ment of the tool has agile characteristics. Feedback from user experiments both
validates the rules and suggests refinements to improve TDD-Guide, as is
shown in descriptions of two user experiments.

Keywords: Rule-based framework, test driven development (TDD), software
process support, user evaluation.

1 Introduction

Test-Driven Development (TDD) is widely considered both one of the central contribu-
tions of Extreme Programming to general agile techniques [1], and one of the most
difficult practices to internalize [2, 3]. In this paper the TDD-Guide tool is shown both
to effectively encourage use of test-driven development, and to allow incremental and
flexible integration into an existing general development environment. The tool can
detect conformance or deviation from test-driven practice as coding or testing steps are
being developed, and provide valuable notifications to the developer. Some of the noti-
fications provide the developer with positive feedback when the practice is followed,
while others identify deviations from TDD. When deviations are detected, the tool can
guide the developer to correct the deviation or even strictly enforce TDD by not allow-
ing the developer to perform an operation deviating from the practice.

TDD-Guide is an application of the Aspect-Oriented Process Support (AOPS)
framework. This framework, whose concepts were first introduced in [4], facilitates
the definition and deployment of support for a variety of software processes in the
form of rules and here the framework is used to define rules to support TDD. As its
name suggests, the framework is based on aspect-oriented technology [5]. Using the

64 O. Mishali, Y. Dubinsky, and S. Katz

support definition, code containing aspects and classes is automatically generated,
ready to be integrated into the target development environment. Such integration
guarantees the customization of the environment according to the defined rules. This
aspect-based integration approach is used here on the Eclipse platform and thus the
generated types are in AspectJ1 and Java. The rules for TDD, code generated from this
set of rules, a repository of key TDD events and their connection to the environment,
together with a user-interface common to all framework products, all integrated into
Eclipse, comprise the TDD-Guide tool.

The rules defined using the framework are simple to express, and it is relatively easy
to add, remove or modify rules. The framework is especially appropriate for defining
development practices that are flexible, may need frequent adjustment, and can be seam-
lessly integrated with an existing, familiar, development environment. This differs from
previous Process Centered Engineering Environments (PCE’s), such as [6, 7], that gener-
ally replace existing environments and are oriented to a fully detailed process model.

The current version of TDD-Guide is the result of ongoing research whose goal is to
define practical and effective TDD rules. Given that goal and the flexible nature of the
framework, we chose to define the rules in an agile fashion, starting from a basic and
simple set of rules that is iteratively refined. In each iteration, the existing set of rules is
tested on real developers and the gathered user feedback is used to refine the set toward
the next iteration. In this paper, two such iterations are described, focusing on the ex-
periments within them. In each experiment, student developers with novice TDD skills
were given a Java development task, and were asked to develop the task using TDD.
TDD-Guide was integrated in advance into the users’ development environment
(Eclipse), and significant development steps were logged. Based on the logs and ques-
tionnaires, we searched for and developed possible rule refinements. We were also
interested in examining the reaction of the developers to this kind of on-line guidance.

We present results showing that TDD-Guide is in general perceived by the users to
be helpful and that the tool indeed is effective in guiding TDD. More importantly, we
show how the experiments provide important user feedback that helps both to improve
the rules themselves and to refine the user-interface. In the next Section we present the
user-interface and rules of TDD-Guide while explaining how rules are defined using the
framework. The experiments’ goals, description, and results are presented in Section 3,
and conclusions and future directions are provided in Section 4.

2 TDD-Guide and the AOPS Framework

We metaphorically view a software development process as a trail defined by the
process methods and practices; the developers are considered as hikers who are sup-
posed to follow the trail but, for various reasons, once in a while deviate from it. Ac-
cordingly, an AOPS rule can be of kind deviation or on-track; a rule of kind on-track
when triggered denotes that the developer is following the trail, and encourages the
developer by providing positive feedback. Similarly, a rule of kind deviation is acti-
vated when the developer deviates from the desired trail; here, the rule may force the
developer to return to the trail, or alternatively provide the developer with the choice
to deviate while presenting negative feedback with different severity levels.

1 The AspectJ Project, http://www.eclipse.org/aspectj/

 The TDD-Guide Training and Guidance Tool for Test-Driven Development 65

2.1 TDD-Guide User-Interface

Upon activation of an AOPS rule, its message is presented to the developer in the
AOPS view (Figure 1), where an appropriate icon denotes the type of the message. In
addition, the AOPS bar (Figure 2) updates its color according the kind of the activated
rule and also supplies a tooltip to quickly observe the rule’s message.

Fig. 1. The AOPS view Fig. 2. The AOPS bar

Rule messages may also be presented to the developer within Eclipse dialogs and
wizards. In Figure 3, for instance, we see the same “No failing test exists” message,
but presented within the Java class creation wizard. This tight integration with Eclipse
allows natural enforcement of the rule by simply disabling the ‘Finish’ button. How-
ever, in editing mode the same rule is not mandatory and can be overridden.

Fig. 3. Java class creation wizard augmented with an AOPS message

2.2 Rule Definition

To define AOPS rules, the manager/governor (the one who defines the rules) should
first define an abstraction of the underlying development process, namely a set of
entities that represent important elements in the process. Then, rules are defined that
operate on the entities.

66 O. Mishali, Y. Dubinsky, and S. Katz

In Figure 4 we see some of the entities and the rules that constitute TDD-Guide.
Two entities are defined, CodingSpace and TestingSpace, representing the space where
the functional code is developed and where the unit tests are developed, respectively.
Each entity can have key-events and attributes; key-events represent abstract events that
occur during the development related to the modeled process element, and attributes are
meant to hold related important values. Both entities have two key-events representing
creation and modification of types in the space, and in addition, TestingSpace has two
attributes numOfFailingTests and numOfBrokenTests; both attributes are of type Integer
and hold the current number of failing tests and broken tests (that do not compile), re-
spectively. An AOPS rule is activated when one of the key-events defined in its condition
part is activated and its predicate, also defined there, holds. The rule NeverWrite-
CodeWithoutFailingTest is therefore activated when the developer creates a new
type/class or modifies an existing one and neither a failing test nor a broken test exists.
Activation of this rule is the most severe deviation from TDD and therefore a strategy of
type error is defined (a strategy describes the general course of action taken upon rule
activation). The second rule ChallengeExistingCode is of kind on-track and is activated
when the developer is modifying a test and no failing test exists. The rule encourages the
developer by clarifying the task ahead: writing a test that is not passed by existing code.

Four more rules are defined. Two of them enforce coding standards that distinguish
between coding and testing elements, and another one HaveOneActiveTest recognizes
deviations from the TDD recommended guideline of not trying to fix several things at
a time2. The last rule MakeExistingCodePass encourages the developer to fix the code
when in the coding space and having one failing test.

Fig. 4. Sample TDD entities and rules

The defined entities are just declarations and thus should be connected to the un-
derlying development environment. This process of connecting the entities to the
environment is called entity-mapping and uses a repository of concrete Eclipse
method calls not elaborated here. After the mapping, during development of an appli-
cation the entities are continuously updated to reflect the state and behavior of the
underlying process elements that they represent. The entities, their mapping, and the
rules, are all defined using the framework’s graphical interface. A public release of

2 http://c2.com/cgi/wiki?OneUnitTestAtaTime

Entity CodingSpace

key-event codeCreation
key-event codeModification

Entity TestingSpace

key-event testCreation
key-event testModification
attribute numOfBrokenTests
attribute numOfFailingTests

Rule NeverWriteCodeWithoutFailingTest (deviation, error)
 condition
Key-events: codeCreation, codeModification
Predicate: numOfFailingTests() == 0
&& numOfBrokenTests() == 0

Rule ChallengeExistingCode (on-track)
 condition
Key-events: testModification
Predicate: numOfFailingTests() == 0

 The TDD-Guide Training and Guidance Tool for Test-Driven Development 67

the AOPS framework is expected within several months. An Eclipse plug-in of TDD-
Guide is available upon request from the authors.

3 Evaluating TDD-Guide

A support tool to guide TDD can be best validated through user experiments. The
validation should involve user experience that is rigorously planned and executed
aiming at refining the tool to be more effective [8, 9]. The users in our case are devel-
opers in software development teams who work to produce code according to some
predefined functionality and need to produce unit tests to support the code.

In this section we describe the two user experiments of the first two development
iterations of TDD-Guide. The first experiment was a spike whose major purpose was
to examine the initial set of the rules of the first iteration in a real development setup.
Based on this spike, several changes were introduced to the tool. The second version
of the tool was experimented with in a larger setting, more focused on rule refine-
ment, namely examining the effectiveness of the rules in supporting TDD, and search-
ing for unanticipated development states.

3.1 First Experiment

Six experienced programmers familiar with Java and Eclipse, and less familiar with
TDD, were given a simple development task and asked to develop the task while using
TDD. The initial feedback was encouraging: all of the participants showed positive
reactions to the idea of accompanying the development with messages and alerts, and
four participants reported that the messages helped them to develop test-first. No change
was noticed in Eclipse performance due to the addition of aspects into it.

The experiment led to changes in the user-interface, in the rules, and in the log-
ging. Four participants reported that paying attention to the AOPS view did not dis-
rupt their concentration in developing the task. The other two felt that it sometimes
was a burden. Accordingly, we decided to add the AOPS bar (Figure 2), hoping that
colored feedback would be more intuitive than a purely textual one. The rule Never-
WriteCodeWithoutFailingTest in its first version attempted to treat a special case:
when the developer had a broken test, the rule allowed moving to the code without
requiring to execute the test (assuming that the developer is interested in creating,
e.g., a missing declaration and then returning to the test). However, we observed that
two participants did not act according to our assumption. They indeed created a miss-
ing declaration, but instead of then returning to the test they continued to develop the
code without first running JUnit. We changed the rule so that test execution is re-
quired before each move to the code, to make the TDD cycle simpler and more uni-
form. Since execution of broken tests is also reported by JUnit with red indication, we
also added a warning to the rule to remind the developer that the JUnit bar is red due
to a compilation error and not because of a failing test. We also added time-stamps to
the logs to facilitate better reasoning.

68 O. Mishali, Y. Dubinsky, and S. Katz

3.2 Second Experiment

The participants in the second experiment were 34 CS-major fourth-year students in
an advanced Software Engineering project course. The experiment had three phases:

1. Pre-experiment phase in which participants filled in a questionnaire about the
level of their familiarity and experience with programming concepts and tools in
general and with TDD in particular. Then, they heard a one-hour lecture about
unit testing and specifically about TDD.

2. Experiment experience phase in which participants moved to the computer lab
where they were guided in groups of 2-4 to perform a specific programming task.
After completing the task they filled in a personal reflection.

3. Post-experiment phase in which participants were asked one week after the ex-
periment to indicate two features of TDD-Guide that they perceive as most
significant and two possible improvements or extensions. This feedback was ob-
tained using a web-based feedback mechanism familiar to the students.

Twenty seven of the participants filled in the questionnaire of the pre-experiment
phase. The results show that participants felt knowledgeable with Java programming
and object-oriented design, less knowledgeable with Eclipse IDE and unit testing, and
beginners in JUnit and TDD. Regarding the development process, participants were
less experienced with measuring the development process and product, but felt
knowledgeable and even expert with working in pairs.

Given a project named money.conversions that contains classes and conversion
utilities3, participants were asked to define a class Money that represents a certain
amount of money in a specific currency. In addition, the class should have the method
Money add(Money m, String currency) where the returned Money represents the
addition of the called Money object and the given Money argument, in the given cur-
rency argument. Participants were asked to develop according to the TDD technique
(within 35 minutes) and to take notice of AOPS messages. As in the first experiment,
aspects were also added to Eclipse to log actual behavior and timing information.

3.2.1 Experiment Outcomes
We illustrate the experiment findings for the NeverWriteCodeWithoutFailingTest rule
of TDD-Guide that detects a deviation as aforementioned. We considered recurrences
of series of events in the logs that show a specific behavior of the developers either
before or after the deviation. The logs of twelve groups that completed their task were
considered and the following four findings were formulated:

 The first finding deals with the intuitive tendency of developers to start programming
with coding rather than with testing. An expected behavior in the beginning of the
log is Test - TestFailed - Code where Test means writing test lines, TestFailed means
that running JUnit causes a failure, and Code means writing code lines. Four logs out
of twelve include Code - DeviationMessage - Test at the beginning of the log (mean-
ing that they start directly with code as they used to, noticed the AOPS deviation

3 The given task is a simplified version of a well-known TDD example by Kent Beck and Erich

Gamma (http://junit.sourceforge.net/doc/testinfected/testing.htm).

 The TDD-Guide Training and Guidance Tool for Test-Driven Development 69

message that appears and responded by starting to test). This tendency to start with
coding was also found in the middle of the task when instead of the expected Code -
TestSucceeded - Test we found Code - TestSucceeded - Code - DeviationMessage -
Test. These cases show that novice developers can benefit from TDD-Guide mes-
sages and by following them they overcome their tendency to start coding without
testing, and thus adhere to the TDD practice. Since this rule can be overruled in edit
mode, we found two cases of Code - DeviationMessage - Code meaning the devia-
tion message was ignored by the developers who continued to work on the code al-
though there was no failed test. This can be also explained as a refactoring activity
and was marked by us for further investigation.

 The second finding concerns getting used to actually run the tests before moving to
code. We found eight cases in six logs where developers did Test - Code - Devia-
tionMessage - TestFailed - Code meaning they worked on the test and switched to
code without receiving the feedback of running JUnit. Following the deviation
message they ran the test, causing a test failure, and went back to code.

 The third finding relates to the learning curve that can be observed especially when
adding the time measure of the different activities. The following series of events
was found starting at the beginning of a specific log:

o Code - DeviationMessage for 1 minute; no work for 2 minutes;
o Test for 15 seconds;
o Code - DeviationMessage for 4 seconds; no work for 7 seconds;
o Test for 8 minutes;
o Code - DeviationMessage for 1 second;
o TestFailed - Code

The deviation message was used three times to correct the development in this
trace. We observed here and elsewhere that the time to respond to the deviation
messages decreased while the time invested in testing increased.

 The fourth finding reveals strong emotions against testing and can be seen as anec-
dotal: one group used “i dont want to test” as part of their test file name.

3.2.2 Participants’ Reflection on the Experiment
After completing the task, participants filled in their level of agreement with state-
ments related to the experiment. Table 1 summarizes their answers; a clear majority is
marked in grey. As can be observed most participants felt that the Eclipse IDE works
as usual (statement 1) and that TDD-Guide helped them in working according to the
TDD technique (e.g., statement 6). However, statements for which no clear majority
exists reveal issues that may suggest rule refinement. For instance, statements 2 and 4
reveal usability issues, and statements 8 and 13 disagreement with the TDD guiding
rules (we refer to these issues in Section 4). Statements 7 and 16 uncover resistance to
the TDD concept. We believe this only emphasizes the necessity of the guidance, in
particular for novices who are not yet familiar with the advantages of TDD.

To assess the longer-term impact of this experience, we asked for feedback one
week after the experiment. As noted, participants were asked to indicate two features
of TDD-Guide that they perceived as most significant and two possible improvements
or extensions to the tool. Thirty two participants responded to this phase.

70 O. Mishali, Y. Dubinsky, and S. Katz

Table 1. Reflecting on the experiment activity

Statement Agree Tend to
agree

Tend to
disagree

Dis-
agree

No
answer

1 During development, I felt that the Eclipse
interface responded as usual

9 15 8 2

2 Paying attention to the AOPS messages
was a burden

3 14 14 3

3 I have hardly had any AOPS Deviation
(Error) messages

1 12 11 8 2

4 Some of the AOPS messages were not
comprehensible

5 12 11 5 1

5 Sometimes I didn’t agree with what an
AOPS message was saying

2 4 15 12 1

6 The AOPS messages helped me to develop
test-first

11 13 8 1 1

7 I find test-first an annoying technique 5 14 13 2

8 Sometimes, I just ignored an AOPS mes-
sage

9 9 8 8

9 Sometimes, I felt that an AOPS message
was needed but it didn’t show up

3 5 18 8

10 I think that accompanying the develop-
ment with messages and alerts is not a
good idea and just interferes with the
fluent work

1 8 17 8

11 Several times, AOPS messages led to a
change in my behavior

4 16 10 4

12 I looked several times at the reference
page to figure out how to develop test-first

3 6 10 15

13 When a failing test does not exist, the
AOPS system should always disallow any
coding

5 13 13 3

14 I got several “false alarms” (incorrect
AOPS messages)

2 3 14 14 1

15 The AOPS view was more useful than the
AOPS bar

2 18 11 3

16 I will definitely develop test-first in the
future

2 15 10 6 1

17 Most of the AOPS Warning messages
were justified

6 24 5 -

Most of them indicate the main tool features, though some mixed the TDD tech-
nique itself with the features of the guiding tool. Following are some of their sugges-
tions for improvements: “A feature can be added to mark code that is already covered
by tests thus help with the testing management”; “Better indication of the current
stage in the development process, sometimes it was difficult to understand what the
environment expects us to do”; “Introduce development tasks into the environment in
order to enable the planning of the product roadmap according to the list of tests that
should be written”; “An error should not always be created in order to go forward,
there can be an option to skip the obvious errors in the beginning or at least to mark

 The TDD-Guide Training and Guidance Tool for Test-Driven Development 71

them for example as ‘preliminary development remarks’”; “In my opinion no signifi-
cant improvements/extensions are needed”; “I suggest to emphasize the status
marker”; “Possible extension is an automatic correction offer when a problem is diag-
nosed”; “Add voice alert when there is a warning”.

4 Conclusion and Future Work

We conclude this paper by describing the implications of the outcomes presented on
the TDD-Guide rules, the user-interface, and the log used to gather information.

As previously mentioned (Section 3.1), after the first experiment we added a warn-
ing to the rule NeverWriteCodeWithoutFailingTest that is activated when the devel-
opers write code while having only broken tests. Its purpose was to remind them that
the JUnit bar is red due to a compilation error and not because of a failing test. The
logs show that although the warning was presented, usually the developers did not
execute the test again after the missing declarations were created but continued to
code in that state, without knowing for sure that the test fails. One possible remedy
could be to activate the warning again after some time. We should also examine
whether the warning message is clear enough.

The addition of time-stamps to the logs discovered that a significant aspect of a
correct TDD trail is related to time. For instance, we found several cases where tests
were developed (for the first time) for more than ten minutes before moving to the
code, and cases where the first successful test execution took place only after fifteen
minutes, both indicating that the initial TDD steps are too complex. A new story de-
fined for the third development iteration of TDD-Guide is to provide timing alerts,
e.g., if the developer stays too long in the testing space.

Although Section 3.2.1 discussed the NeverWriteCodeWithoutFailingTest rule, of
course the other rules were examined and guidelines for their refinements exist. The
rule HaveOneActiveTest was defined to be activated when the developer is in the
coding space and has more than one failing test. However, one log revealed that cod-
ing while having several failing tests is not always a deviation; that may happen when
coding indeed starts with one failing test however changes made in the code cause the
failure of others. Although it may indicate tests that are not reasonably independent, it
should not be classified as a deviation. Thus, the first improvement is to distinguish
between that case and the case where the deviation is certain, that is, where coding
starts with several failing tests. The logs report on three occurrences of the latter and
show that the rule’s notification was ignored, i.e., the developers continued to code.
The reason may be that the guidance was applied in retrospect, i.e., when the devel-
opers already had the tests written. The lesson learned here is that a deviation should
be reported as early as possible, when its correction is practical.

As noted in Section 3.2.1, the pattern Code - DeviationMessage – Code could also
be a sign for a refactoring activity and in that case the TDD rules should not report a
deviation. Therefore, another new story for the third iteration is to define refactoring
as a new state where modified TDD rules apply.

There is a need to emphasize the user interface indications (see statement 2 in Ta-
ble 1 and the last feedback in Section 3.2.2). In the next iteration we plan to add vo-
cal indications. Another point to consider is the use of interactive communication with

72 O. Mishali, Y. Dubinsky, and S. Katz

the developer, e.g., pop-ups asking for real-time developer feedback or a button
whose pressing indicates moving to a refactoring state.

The performance logs were the primary aid for reasoning on the development and
the effectiveness of TDD-Guide. During their analysis, we noted that different views
of the logged data are needed, e.g., to identify recurrent patterns and to analyze all
activations of an individual rule. These views were created manually and we plan to
add their automatic creation. We are also considering the use of a relational database
that will store the data and allow queries and reports.

As confirmed by the experiments, after two iterations TDD-Guide is already an
effective tool for guiding test-driven development. Its flexibility and light-weight
integration into the Eclipse IDE, provided by the AOPS framework, increases the
potential of widespread adoption for this tool and its extensions to additional agile
software processes.

References

1. Beck, K.: Test-Driven Development By Example. Addison-Wesley, Reading (2003)
2. Dubinsky, Y., Hazzan, O.: Measured Test-Driven Development: Using Measures to Moni-

tor and Control the Unit Development. Journal of Computer Science, Science Publication 3,
335–344 (2007)

3. George, B., Williams, L.A.: A structured experiment of test-driven development. Informa-
tion & Software Technology 46, 337–342 (2004)

4. Mishali, O., Katz, S.: Using aspects to support the software process: XP over Eclipse. In:
International Conference on Aspect-Oriented Software Development, pp. 169–179. ACM,
Bonn, Germany (2006)

5. Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., Irwin,
J.: Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

6. Bandinelli, S., Braga, M., Fuggetta, A., Lavazza, L.: The Architecture of SPADE-1-
Process-Centered SEE. In: Warboys, B.C. (ed.) EWSPT 1994. LNCS, vol. 772, pp. 15–30.
Springer, Heidelberg (1994)

7. Junkermann, G., Peuschel, B., Schafer, W., Wolf, S.: MERLIN: Supporting Cooperation in
Software Development Through a Knowledge Based Environment. In: Software Process
Modelling and Technology, pp. 103–129. John Wiley and Sons, Chichester (1994)

8. Dix, A., Finlay, J., Abowd, G.D., Beale, R.: Human-Computer-Interaction, 3rd edn. Prentice
Hall, Englewood Cliffs (2003)

9. Sharp, H., Rogers, Y., Preece, J.: Interaction Design: Beyond Human-Computer Interaction,
2nd edn. John Wiley & Sons, Chichester (2007)

JExample: Exploiting Dependencies between Tests
to Improve Defect Localization

Adrian Kuhn1, Bart Van Rompaey2, Lea Haensenberger1, Oscar Nierstrasz1,
Serge Demeyer2, Markus Gaelli1, and Koenraad Van Leemput2

1 Software Composition Group, University of Bern,
Neubrückstrasse 10, 3012 Bern, Switzerland

{akuhn,gaelli,oscar}@iam.unibe.ch,
lhaensenberger@students.unibe.ch

2 University of Antwerp, Middelheimlaan 1, 2020 Antwerpen, Belgium
{bart.vanrompaey2,serge.demeyer,koen.vanleemput}@ua.ac.be

Abstract. To quickly localize defects, we want our attention to be focussed on
relevant failing tests. We propose to improve defect localization by exploiting
dependencies between tests, using a JUNIT extension called JEXAMPLE. In a
case study, a monolithic white-box test suite for a complex algorithm is refac-
tored into two traditional JUNIT style tests and to JEXAMPLE. Of the three refac-
torings, JEXAMPLE reports five times fewer defect locations and slightly better
performance (-8-12%), while having similar maintenance characteristics. Com-
pared to the original implementation, JEXAMPLE greatly improves maintainabil-
ity due the improved factorization following the accepted test quality guidelines.
As such, JEXAMPLE combines the benefits of test chains with test quality aspects
of JUNIT style testing.

1 Introduction

A well-designed test suite should exhibit high coverage to improve our chances of iden-
tifying any defects. When tests fail, we want to quickly localize defects, so we want our
attention to be focussed on the relevant failing tests to identify the root cause of the de-
fect. However, when some part of the base-code gets changed, a small defect can cause
a domino effect of multiple failing unit tests. This is a problem, because the person
changing the code has no other option than to browse all failing unit tests to try and
deduce a single root cause. This task can prove to be quite difficult when that person is
unfamiliar with the test code that fails.

Dependencies between unit tests, the cause of this domino effect, have generated
considerable controversy [6,12,4]. Common wisdom states that defect localization is
improved by avoiding dependencies between tests, yet empirical evidence shows that
latent dependencies exist anyway even in well-designed test suites [9]. This suggests
that, despite the guidelines, dependencies between tests are inevitable.

In this paper we propose to improve defect localization by making dependencies
between tests explicit. For example, a developer can declare that a testRemove test
depends on the successful outcome of a testAdd test. Based on these depedencies,
a testing framework can automatically determine a suitable order to run the tests, and

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 73–82, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

74 A. Kuhn et al.

to skip tests that depend on other failed tests. This setup prevents the domino effect of
failing tests. We test this hypothesis by means of a case study in which we compare four
implementations of the same test suite: a JEXAMPLE-based implementation and three
alternative JUNIT-based implementations.

The contributions of this paper can be summarized as:

– We propose explicit test dependencies as solution for the domino effect in defect
localization (e.g. in Chained tests),

– We introduce JEXAMPLE, an extension of JUNIT that uses annotations to declare
explicit dependencies between test methods,

– We present empirical evidence that JEXAMPLE provides five times better defect
localization than traditional JUNIT, without considerable degradation in perfor-
mance, code size or duplication.

The remainder of the paper is structured as follows: after related work in Section 2,
Section 3 introduces JEXAMPLE, illustrating the difference between chained test meth-
ods and conventional JUNIT test methods. Section 4 covers the case study, with
Section 5 discussing the results and stating some concluding remarks.

2 Related Work

Many authors have been studying techniques to prioritize test cases, selectively execute
regression tests or reduce test suites.

Kung et al. discuss a cost-effective selective regression testing approach after
changes in an object-oriented program, by (i) determining the set of affected classes
and (ii) prioritizing the testing of classes to minimize test stub construction [10]. A sim-
ilar approach is followed by Wong et al., first applying a modification-based selection
technique followed by test set minimization (minimal selection preserving a coverage
criterion) and prioritization (increasing cost per additional coverage) [19].

Rothermel et al. propose several techniques for prioritizing test cases with the goal
of improving the rate of fault detection. Coverage and fault-detection ability, in various
forms, are used to determine the test cases execution order [14]. Results show that
all techniques improve the rate of fault detection compared to the standard, randomly
ordered suite.

Stoerzer et al. automatically classify changes depending on the likelihood that they
contribute to a test’s failure [16], by monitoring test execution and addressing the local
change history in Eclipse.

Gaelli et al. infer a partial order of unit tests corresponding to the coverage hierarchy
of their sets of covered method signatures [8]. Their work shows that most tests either
cover a superset of another test method’s coverage or cover themselves a subset of
another test, concluding that most tests implicitly depend on other tests. In case of test
case failures, the developer is guided to tests which were found to be smallest in a
previously stored hierarchy of a successful test run. In our a priori approach, letting
developers explicitly link tests, we do not need a green running suite in the first place.

There exists a consensus about the following quality aspects of test code. When sup-
porting fast and frequent code-test cycles, not only should a test run take minimal time
[15,5], but detected defects should be communicated to the developer in an informative

JExample: Exploiting Dependencies between Tests 75

manner [6]. This implies that the link between the test error and the responsible unit
under test is made explicit. In an evolving system, test code needs to be understood,
reviewed and extended by team members. Moreover, knowing that (refactoring) op-
erations to the production system potentially invalidate the corresponding tests, a test
suite’s code should be easy to understand and change [17]. As test code is typically not
verified beyond reviewing (at 150 to 200 lines of code per hour [2]), tests are advised to
be short and simple. Test smells are described as maintenance prone constructs that are
specific for software test code [4,12], in addition to regular deficiencies such as code
duplication. As such, they are to be avoided.

Dependencies between unit tests have generated considerable controversy [4,6,12].
As a motivating example to illustrate a test dependency, consider the test code in List-
ing 1: the unit under test is a simple Stack class, for which two test methods are
given, testPush and testPop, both implemented to run independently of each
other. However, as each of the two test methods must cover Stack’s push method
(there is no pop without push), an implicit dependency between testPop and
testPush is introduced: whenever testPush fails, testPop is likely to fail as
well.

Listing 1. Implicit dependency between test methods

public class StackTest {
private Stack stack;

@Before
public void setup() {

stack = new Stack();
}

@Test
public void testPush() {

stack.push("Foo");
assertEquals(false, stack.isEmpty());
assertEquals("Foo", stack.top());

}

@Test
public void testPop() {

stack.push("Foo");
Object top = stack.pop();
assertEquals(true, stack.isEmpty());
assertEquals("Foo", top);

}
}

On one side of the controversy, detractors consider dependencies to be a form of
“bad smell” in testing code. Van Deursen et al. use the term Eager Test to refer to a test
method checking several methods of the object to be tested [4]. They say that depen-
dencies between the enclosed tests make such tests harder to understand and maintain.
Van Rompaey et al. provide empirical evidence to support this claim [18]. Fewster and
Graham state that the efficiency benefit of long tests (where setup and tear-down is
only performed once) is far outweighed by the inefficiency of identifying the single
point of failure [6]. The xUnit family of testing frameworks, as exemplified by JUNIT,
advises its users to avoid dependencies between tests. Test methods are supposed to be

76 A. Kuhn et al.

independent artifacts, sharing at most a (re-initialized) fixture constituting the unit under
test. Meszaros uses the term ChainedTests to point to this test design [12], motivating
that it may be a valid strategy for overly long, incremental tests. On the down side, the
implicit fixture initialized by previous tests may impede the understandability of a sin-
gle test. On the supporting side of test dependencies, we find testing frameworks such
as TESTNG that provide support to define explicit dependencies between test methods
and or test cases [3].

3 JExample in a Nutshell

In order to facilitate chained tests, JEXAMPLE extends JUNIT as follows: (i) test meth-
ods may return values; (ii) test methods may take arguments; and (iii) test methods may
declare dependencies.

When using JEXAMPLE there is no need for fixtures or setup methods. Any test
method M0 may be used as a setup method, using its return value x as the fixture for
its dependents. That is, JEXAMPLE takes the return value x of M0 and passes it on as
an argument to all methods that depend on M0. Chained tests are related to the idea
of example-driven testing, which states that fixture instances are valuable objects, and
hence, to be reused and treated first-order first order by a testing framework [7].

When executing a standard JUnit test case (e.g., Listing 1), the JUNIT framework
executes setup before each test method, using a field to pass the fixture instance from
setup to test methods. Considering this, we may say that setup creates an example
instance, and that all other tests depend on this instance. Hence, we promote setup to
become a test method with return value:

Listing 2. Promote fixture to test with return value

@Test
public Stack testEmpty() {

Stack empty = new Stack();
assertTrue(empty.isEmpty());
assertEquals(null, empty.top()));
return empty;

}

Note the assertions in the method body. As setup is now a proper test method we
may even test the fixture before passing it on. Next, we rewrite testPush to depend
on the result of setup using a @Depends annotation as follows:

Listing 3. Take another test’s result as input value

@Test
@Depends("testEmpty")
public Stack testPush(Stack stack) {

stack.push("Foo");
assertFalse(empty.isEmpty());
assert("Foo", empty.top());
return stack;

}

JExample: Exploiting Dependencies between Tests 77

When executing the test in Listing 3, the JEXAMPLE framework will first call setup
in order to fetch its return value and then pass the return value as an argument to
testPush. As this method might possible modify its argument, we must either clone
the example instance before passing it on or call setup twice. The current implemen-
tation of JEXAMPLE does the former (of course only if setup succeeds, otherwise all
dependents of setup are skipped anyway).

Next, we readdress Listing 1 to find deeper levels of dependencies, turning the test
case into a graph of chained test methods. And indeed, there is a test method that im-
plicitly depends upon testPush’s outcome: testPop cannot be exercised without
pushing some element first. Hence we implement testPop as follows, avoiding the
duplicate call to push by depending on testPush’s return value:

Listing 4. Avoid code duplication using dependencies

@Test
@Depends("testPush")
public Stack testPop(Stack stack) {

Object top = stack.pop();
assertEquals(true, empty.isEmpty());
assertEquals("Foo", top);
return stack;

}

Given a defect in Stack’s push method, the pop test is ignored by JEXAMPLE,
thereby pointing precisely to the defect location.

4 Case Study

In this section we report on a case study that compares four different implementations
of the same unit test suite. The goal is to check how Chained tests improve defect
localization, and how JEXAMPLE promotes quality criteria related to performance, size
and code duplication.

The (pre-existing) JUnit test suite under study exercises an implementation of the
Ullmann subgraph isomorphism algorithm — i.e., an algorithm to compare the struc-
ture of graphs. This set of rigorous, white box tests was written to verify the core of a
research tool as well as the interaction with a third party graph library.

Ullman Original is the original implementation of the case-study. Figure 1 illustrates
how the test suite is implemented as a single test case consisting of six very long test
methods. The test methods concentrate on a growing unit under test and are hence
implemented as an alternating series of initialization and assertion code, entangling
fixture and test code.

We refactored this original test suite implementation to three alternatives (i) best
practice JUNIT tests; (ii) JUNIT using test case inheritance; and (iii) Chained tests using
JEXAMPLE. The goal of this refactoring was to obtain equivalent implementations of
the same test suite using different test design styles.

The Ullmann JUnit-style (UJ) implementation follows the original JUnit test guide-
lines as described by Beck and Gamma [1]. Tests on the same unit under test are
grouped together, by sharing fixture objects and a setup method. To apply this style

78 A. Kuhn et al.

UO = original tests

UJ = traditional JUnit implementation UR = testcase reuse, ie subclassing

UC = chained JExample implementation

Fig. 1. Polymetric view of the four alternative test suite implementations: The innermost boxes
represent test methods (including setup methods); the height of the boxes shows the method’s
LOC (lines of code) metric; edges show test dependencies. The enclosing boxes represent test
cases; edges show test case inheritance.

to the Ullmann case-study, the original test suite is split into eight test cases that each
focuses on a different snapshot of the growing unit under test.

The Ullman test case Reuse (UR) implementation relies on test case subclassing to
build a set of chained yet isolated test cases. This implementation uses a specific sub-
classing pattern, turning each iterative initialization step of the original test into a sub-
class that calls super.setUp() in its setup method to reuse previous initialization
code. As such, test dependencies are specified by the test case inheritance hierarchy.

Ullmann Chained JExample-Style (UC), finally, introduces explicit dependencies us-
ing JEXAMPLE. Mirroring the iterative initialization code of the original test methods,
and using the dependency mechanism presented in Section 3, a root test method creates
an example instance of an empty graph object, and passes the instance on to dependent
methods. The dependent methods extend the example instance a bit, check some asser-
tions, and eventually pass the instance on to another level of dependent instances, and
so on. Dependencies between methods are declared by the developer using @Depend
annotations, whereas passing on a method’s return values to its dependents is done by
the framework while running the test suite.

Figure 1 presents the test design of the four implementations using polymetric views
[11]. The innermost boxes represent test methods (including setup methods). The height
of these boxes show the method’s SLOC (source lines of code) metric, while edges
show test dependencies. The enclosing boxes represent test cases; edges show test case
inheritance.

4.1 Evaluation Procedure

To evaluate defect localization, we measure the number of reported test case failures
after randomly introducing defects in the system’s code with a mutation testing tool
(Jester [13]). Using the explicit dependencies between tests, JEXAMPLE ignores tests
that depend on a failed test. As such, we expect the UC implementation to report fewer
failures than the other three implementations.

JExample: Exploiting Dependencies between Tests 79

Besides defect localization, we select test suite run-time performance, test size and
code duplication from the set of common test quality criteria. To quantify the adherence
to these criteria, we use the following set of metrics:

– Performance. We measure the execution time of each implementation. To measure
execution of test suites with failures, we use the created mutations.

– Size. We calculate the overall size (source lines of code) of the test suite as well as
the number and size of test methods. While the former tells us something about the
code base as a whole that needs to be maintained, the latter identifies how well the
test suite is factorized.

– Duplication. We measure the amount of duplication1 in each implementation as a
result of the presence or absence of reuse possibilitities.

For comparison reasons, we control a couple of test suite equality factors. First, we
ensured that all four implementations exhibit the same coverage, being 96.9% (Java)
instruction coverage (measured using Emma2). Secondly, we aimed to keep the same
number of assertions. Ultimately, slight differences appeared (between 81 and 85 as-
serts) due to varying reuse opportunities.

4.2 Results

Defect localization. In order to quantify the traceability quality of the four implemen-
tations, we created eight scenarios, named MUT1-MUT8, where a single mutation in
the Ullmann code causes the tests to fail. Jester changes constants in the code and adds
clauses in boolean conditions to test the defect detection strength of a test suite. For
each mutation scenario, we then measure the number of failures JUnit reports. Know-
ing that only one mutation has been introduced at a single location, ideally only a single
failure should be reported.

Table 1. Number of failures: absolute number/ig-
nored tests (relative number)

UO UJ UR UC
MUT1 4 (66%) 12 (46%) 14 (52%) 2/12 (6%)
MUT2 2 (33%) 2 (8%) 2 (7%) 2/0 (4%)
MUT3 1 (17%) 10 (38%) 9 (37%) 1/12 (3%)
MUT4 1 (17%) 1 (4%) 1 (4%) 1/0 (3%)
MUT5 1 (17%) 10 (38%) 9 (37%) 1/12 (3%)
MUT6 1 (17%) 1 (4%) 1 (4%) 1/1 (3%)
MUT7 1 (17%) 10 (38%) 9 (37%) 1/12 (3%)
MUT8 4 (66%) 11 (42%) 9 (37%) 2/14 (4%)

Table 2. Average execution time (in
seconds) of 30 test runs

UO UJ UR UC
SUCC 0.512 0.600 0.747 0.554
MUT1 0.506 0.603 0.753 0.539
MUT2 0.516 0.609 0.753 0.554
MUT3 0.500 0.597 0.748 0.534
MUT4 0.516 0.600 0.751 0.556
MUT5 0.499 0.594 0.752 0.533
MUT6 0.513 0.610 0.747 0.547
MUT7 0.502 0.600 0.755 0.537
MUT8 0.515 0.613 0.754 0.546

Table 1 presents the failures reported during test runs on the mutated Ullmann code
in absolute numbers as well as a percentage of the number of tests. For UC, we add
the number of tests ignored by JEXAMPLE. The results show that for a single mutation,

1 Using CCFinderX — http://www.ccfinder.net
2 http://emma.sourceforge.net

80 A. Kuhn et al.

typically multiple tests fail. In the case of the original implementation, the number of
failures varies between 1 and 4 (out of 6 test methods). For UJ and UR however, up
to 14 tests fail as a result of the factorization of test methods. Due to the ordered test
execution of the UC implementation, at most 2 tests fail during a test run, while up to
14 are skipped. Overall, test runs on the UJ and UR implementations report five times
more defect locations than the JEXAMPLE tests. The original implementation, however,
only reports about 36% more defect locations.

Performance. Table 2 lists the average execution time for the four test suite implementa-
tions, and for 5 scenarios. In the first scenario called SUCC(ESS), we execute the tests
on the original Ullmann implementation. In the four cases we reuse the mutations of
Ullmann created earlier. The results are collected as the average execution time of 30
test runs, measured with the UNIX time command on an Intel Pentium 4, 3 Ghz, 1 Gb
Ram, Sun JDK 1.6.0, JUnit 4.3.1.

For the successful test run on the original implementation of the Ullmann algorithm,
we observe that the original test suite implementation has the fastest average, followed
by UC, UJ and UR. We apply Student’s t-test to verify whether there exists a signifi-
cant difference between the test execution time sample sets. As a result, we can indeed
conclude — with a confidence of 95% — that UC is 7-8% slower than UO, yet 8-12%
faster than UJ and 35-41% faster than the UR approach. The results do only indicate sig-
nificant performance increases – compared to the SUCCESS scenario – for mutations
where 12 to 14 tests are skipped in the UC implementation.

Size. The original Ullmann test implementation, lacking any form of encapsulation for
individual tests or set-up, is the most concise one. As a consequence, the UJ and UC
implementations are 77% and 87% larger. UR is even 2.4 times as large.

Due to explicit set-ups and fixtures for the multiple test cases the original Ullmann
test case (NOTC — number of test cases) has been refactored into, and the method
header code for many test commands, the alternative implementations are better fac-
tored, as Table 3 shows. The average test method length has dropped from close to 40 to
around 10, while the number of assertions per test method decreased from 14 to below 4.

Duplication. To evaluate the level of code duplication, we used CCFinderX to calculate
and report code clones. Table 4 summarizes the results. The original implementation
contains the least duplication, with 266 tokens (out of 3446) involved in any code clone.
The alternative implementations contain between 4200 and 4500 tokens, 13 to 22% of

Table 3. Size of the four implementations ex-
pressed in Source Lines Of Code (SLOC),
Number Of Test Cases (NOTC), Number Of
Test Setups (NOTS) and Number Of Test
Methods (NOTM)

UO UJ UR UC
SLOC 311 551 735 582
NOTC 1 8 26 4
NOTS 1 8 25 0
NOTM 6 52 54 34

Table 4. Code clone results, configured with a
minimum clone token size of 50, soft shaper
and p-match in CCFinderX

#tokens % tokens
UO 266 7.7%
UJ 597 13%
UR 938 22%
UC 780 18%

JExample: Exploiting Dependencies between Tests 81

which is listed in code clones. UC contains about 5% more code covered by clones
than UJ.

5 Discussion and Conclusion

In this paper we introduced the idea of making dependencies between tests explicit
to improve defect localization. We proposed JEXAMPLE, an extension of JUNIT that
allows the tester to annotate test methods with its dependencies. In a case study, JEX-
AMPLE is compared to more traditional JUNIT-style tests.

The case study showed that compared to alternative test suite implementations, JEX-
AMPLE tests indeed exhibit an improved defect localization. Moreover, such test suites
execute faster and contain less code than traditional JUNIT tests. Compared to a test
design style consisting of monolithic test methods entailing long chains of tests, JEX-
AMPLE tests run somewhat slower and contain some more source code, but rely upon
good unit testing practices of encapsulated, concise test methods to ensure maintain-
ability. JEXAMPLE thus combines the best of both worlds: it exhibits the benefits of test
chains with the test quality aspects of JUNIT style testing.

There exist a couple of open challenges to consider regarding maintenance of chained
tests. First, the dependencies between tests have to be indicated by the developers. For-
getting to do so, or introducing wrong dependencies leads to potentially more failures
for a single defect. In the future, automated support to track such dependencies might
alleviate this effort. Secondly, with JEXAMPLE, the concepts of a fixture and a set-up
become implicit, rendering their identification harder.

Being an extension of JUNIT, JEXAMPLE tests can co-exist with regular tests.
Moreover, the migration process merely consists in adding dependency and parameter-
passing annotations, as well as cloning the passed-on objects. Our evaluation showed
that JEXAMPLE-style tests are especially useful for expressing long test chains as well
as for unit tests with obvious dependencies in test suites.

Reproducible Results Statement: A prototype of JEXAMPLE, as well as all four sce-
narios of the case-study are available for download at: http://scg.unibe.ch/
Resources/JExample

Acknowledgments. We gratefully acknowledge the financial support of the Swiss Na-
tional Science Foundation for the project “Analyzing, Capturing and Taming Software
Change” (SNF Project No. 200020-113342, Oct. 2006 - Sept. 2008), and IWT Flan-
ders, in the context of the ITEA project if04032 entitled “SERIOUS: Software Evo-
lution, Refactoring, Improvement of Operational & Usable Systems” (Eureka ∑ 2023
Programme).

References

1. Beck, K., Gamma, E.: Test infected: Programmers love writing tests. Java Report 3(7), 51–56
(1998)

2. Belli, F., Crisan, R.: Empirical performance analysis of computer-supported code-reviews.
In: Proceedings of the 8th International Symposium on Software Reliability Engineering,
pp. 245–255. IEEE Computer Society, Los Alamitos (1997)

82 A. Kuhn et al.

3. Beust, C., Suleiman, H.: Next Generation Java Testing: TestNG and Advanced Concepts.
Addison-Wesley, Reading (2007)

4. Deursen, A., Moonen, L., Bergh, A., Kok, G.: Refactoring test code. In: Marchesi, M. (ed.)
Proceedings of the 2nd International Conference on Extreme Programming and Flexible Pro-
cesses (XP 2001), University of Cagliari, pp. 92–95 (2001)

5. Feathers, M.C.: Working Effectively with Legacy Code. Prentice-Hall, Englewood Cliffs
(2005)

6. Fewster, M., Graham, D.: Building maintainable tests. In: Software Test Automation. ch. 7.
ACM Press, New York (1999)

7. Gaelli, M.: Modeling Examples to Test and Understand Software. PhD thesis, University of
Berne (November 2006)

8. Gaelli, M., Lanza, M., Nierstrasz, O., Wuyts, R.: Ordering broken unit tests for focused
debugging. In: 20th International Conference on Software Maintenance (ICSM 2004), pp.
114–123 (2004)

9. Gaelli, M., Nierstrasz, O., Ducasse, S.: One-method commands: Linking methods and their
tests. In: OOPSLA Workshop on Revival of Dynamic Languages (October 2004)

10. Kung, D., Gao, J., Hsia, P., Toyoshima, Y., Chen, C., Kim, Y.-S., Song, Y.-K.: Developing
and oject-oriented software testing and maintenance environment. Communications of the
ACM 38(10), 75–86 (1995)

11. Lanza, M., Ducasse, S.: Polymetric views—a lightweight visual approach to reverse engi-
neering. Transactions on Software Engineering (TSE) 29(9), 782–795 (2003)

12. Meszaros, G.: XUnit Test Patterns - Refactoring Test Code. Addison-Wesley, Reading (2007)
13. Moore, I.: Jester — a JUnit test tester. In: Marchesi, M. (ed.) Proceedings of the 2nd Interna-

tional Conference on Extreme Programming and Flexible Processes (XP 2001), University
of Cagliari (2001)

14. Rothermel, G., Untch, R., Chu, C., Harrold, M.J.: Prioritizing test cases for regression testing.
Transactions on Software Engineering 27(10), 929–948 (2001)

15. Smith, S., Meszaros, G.: Increasing the effectiveness of automated testing. In: Proceedings
of the Third XP and Second Agile Universe Conference, pp. 88–91 (2001)

16. Stoerzer, M., Ryder, B.G., Ren, X., Tip, F.: Finding failure-inducing changes in java pro-
grams using change classification. In: Proceedings of the 14th SIGSOFT Conference on the
Foundations of Software Engineering (FSE 2006) (November 2006)

17. Deursen, A.V., Moonen, L., Zaidman, A.: On the Interplay Between Software Testing and
Evolution and its Effect on Program Comprehension. In: Software Evolution. ch. 8. Springer,
Heidelberg (2008)

18. Van Rompaey, B., Du Bois, B., Demeyer, S., Rieger, M.: On the detection of test smells: A
metrics-based approach for general fixture and eager test. Transactions on Software Engi-
neering 33(12), 800–817 (2007)

19. Wong, W.E., Horgan, J.R., London, S., Agrawal, H.: A study of effective regression testing
in practice. In: Proceedings of the Eighth International Symposium on Software Reliability
Engineering, November 1997, pp. 230–238 (1997)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 83–93, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Agile Development Process and Its Assessment Using
Quantitative Object-Oriented Metrics

Giulio Concas1,2, Marco Di Francesco3, Michele Marchesi1,2,
Roberta Quaresima1, and Sandro Pinna1

1 DIEE, Università di Cagliari, Piazza d'Armi,
09123 Cagliari, Italy

{concas,michele,roberta.quaresima,pinnasandro}@diee.unica.it
2 FlossLab s.r.l., viale Elmas, 142

09122 Cagliari, Italy
3 Lab for Open Source Software, ICT District, Sardegna Ricerche, Piazza d'Armi,

09123 Cagliari, Italy
difrancesco80@gmail.com

Abstract. The development of a Web application using agile practices is pre-
sented, characterized by empirical software measurements that have been per-
formed throughout the duration of the project. The project is the specialization
of jAPS, an open source Java Web portal generation framework, for building a
Research Register management system. The agile principles and practices used
in the project are described and discussed. During the various phases of the pro-
ject some key agile practices, such as pair programming, test-based develop-
ment and refactoring, were used at different levels of adoption. The evolution of
some object-oriented metrics of the system, and their behavior related to the ag-
ile practices adoption level is presented and discussed, showing that software
quality, as measured using standard OO metrics, looks directly related to agile
practices adoption.

Keywords: Software metrics, agile methodologies, object-oriented languages.

1 Introduction

Agile methodologies are becoming mainstream in software engineering. More and
more projects worldwide are being managed in this way. However, most of them are
performed within private firms, and the availability of software data enabling empiri-
cal software engineering studies about them is still scarce.

Moreover, classical software engineering evolved studying the typical software
projects of the seventies and eighties, where users interact with a centralized system
through specific user interfaces running on a terminal or on a client. The first applica-
tions of agile methodologies, like the Chrysler C3 project [1] where Extreme Pro-
gramming was born, were of this kind too. Nowadays, most software development is
performed either maintaining existing systems, or developing Web applications. We
define Web application development as building software that interacts with the user

84 G. Concas et al.

through a Web browser, and where many, or most of its functionalities are obtained
by assembling together software components already available. A Web application is
commonly structured in a front-end using some dynamic Web content technology, a
business layer performing suitable computations, and a data repository hosted on one
or more servers. For the reasons quoted above, the availability of qualitative and
quantitative data about Web application projects using agile methodologies is still
quite scarce.

In this work we present in detail a Web software project developed in Java
language and carried on using an agile process. Throughout the project we collected
metrics about the software being developed. Since Java is an object-oriented (OO)
language, we used the Chidamber and Kemerer (CK) OO metrics suite [2]. The adop-
tion level of some key agile practices had been recorded as well during the project.

The goals of this paper are two: (i) to present the principles and practices of the
specific agile process we devised for the project, assembling agile practices taken
from XP [3], Scrum [4] and FDD [5]; (ii) to present some quantitative measurements
performed on the system under development, and relate them with the adoption of
some key agile practices, which have been used discontinuously during the develop-
ment. We found that some key software quality metrics show significantly different
mean values and trends during different phases of the project, and that these changes
can be positively related with the adoption of some agile practices, namely pair pro-
gramming, test-based development and refactoring.

The paper is organized as follows: in section 2 we present the agile process we
used; in section 3 we present in some detail the software project and the phases of its
development; in section 4 we present the OO metrics used and their evolution
throughout the phases of the project; in section 5 we discuss the results, relating soft-
ware quality as resulting from the metrics measurements with the adoption of some
agile practices; section 6 concludes the paper.

2 The Agile Practices Used

Before starting FlossAr project, we examined the state of the art of agile software
development, and devised a specific agile process using a set of practices that we
deemed most suited to our Web application development.

Agile Methodologies (AMs) are a recent approach to software development, intro-
duced at the end of the nineties and now widely accepted worldwide as “mainstream”
software engineering [6]. AMs offer a viable solution when the software to be devel-
oped has fuzzy or changing requirements, being able to cope with changing require-
ments throughout the life cycle of a project. Several AMs have been formalized, the
most popular being Extreme Programming (XP) [3], Scrum [4], Feature Driven De-
velopment [5], DSDM [7] and others. All AMs follow the principles presented in the
Agile Manifesto [8].

Very often, software teams intending to pursue and agile approach do not follow
“by the book” a specific AM, but discuss and decide a set of agile practices to be
used, and from time to time review the project and make adjustments to these prac-
tices. This is explicitly referred to in one of the principles of the Agile Manifesto: “At

 An Agile Development Process and Its Assessment Using Quantitative OO Metrics 85

regular intervals, the team reflects on how to become more effective, then tunes and
adjusts its behavior accordingly” [8].

Web application development is relatively new, and it still lacks the many consoli-
dated programming practices applied with traditional software. One of the main pecu-
liarities of this kind of development is a heterogeneous team, composed by graphic
designers, programmers, Web developers, testers. Moreover, the application has typi-
cally to be run on different platforms, and to interact with other systems. So, the
choice of the development practices to use is of paramount importance for the success
of the project. The team first defined some key principles to be followed:

• Modularity and code reuse: the functional blocks of the underlying framework
must be kept, and new modules must be added on each of them with no interven-
tion on the framework itself. Moreover, the specialized software produced must be
reusable.

• Evolvability and maintainability: it is very important that errors and failures must
be fixed quickly, and the software can be easily modified and adapted. In fact,
there is no such thing as a general purpose register of research, but each university
or research institution wishes to customize such a system to cope with its specific
features and requirements.

• Portability: this was a specific requirement of FlossAr, to be able to be sold in the
hardware and software contexts of different research institutions. For other spe-
cialization projects, it might not be as important.

Following the above principles, the team chose and defined an agile process in-
cluding some agile practices, most of them derived from XP process [3]. They were:

• Pair Programming: all the development tasks were assigned to pairs and not to sin-
gle programmers. Given a task, each pair decided which part of it to develop to-
gether, and which part to develop separately. The integration was in any case made
working together. Sometimes, the developers paired with external programmers
belonging to jAPS development community, and this helped to grasp quickly the
needed knowledge of the framework.

• On Site Customer: a customer's representative was always available to the team.
This customer-driven software development led to a deep redefinition of the struc-
ture and features of the system, particularly in the first months of the project.

• Continuous integration: the written code was integrated several times a day.
• Small Releases: the development was divided in a sequence of small iterations,

each implementing new features separately testable by the customer, guaranteeing
feedback. There were three major releases, at a distance of two months each other.

• Test-Driven Development (TDD): all code must have automated unit tests and ac-
ceptance tests, and must pass all tests before it can be released. The choice whether
to write tests before or after the code was left to programmers.

• Refactoring: a continuous refactoring was practiced throughout the project, to
eliminate code duplications and improve hierarchies and abstractions.

• Coding Standards: the same coding standards of the original jAPS project were
kept to increase code readability.

• Collective Code Ownership: the code repository was freely accessible to all pro-
grammers, and each pair had the ability to make changes wherever needed.

86 G. Concas et al.

• Sustainable Pace: this practice was enforced throughout the project, with the ex-
ception of the week before the main releases, when the team had to work more than
forty hours to complete all the needed features in time.

• Stand-up Meeting: every day, before starting the work, an informal short meeting
was held by the team, to highlight issues and to organize the daily activities.

• Feature List and Build by Feature: a list of the features to implement, ordered by
their relevance, was kept in a Wiki, and the system development was driven im-
plementing them. These features are user-oriented, meaning that most of them de-
scribe how the system reacts to user inputs, and have a priority agreed with the on
site customer.

The resulting agile software process proceeds by short iterations and takes advan-
tage of many “classical” agile practices, mainly taken from XP. Its main peculiarity is
the control process, which is less structured than Scrum Sprint and XP Planning
Game, with less meetings and standard artifacts.

The goal of some of the agile practices quoted above is to enable the team to
successfully react to changes in the requirements, to maximize feedback with the cus-
tomer and among the team, and to enable everybody working better. On Site
Customer, Small Releases, Stand-up Meeting, Feature List, Build by Feature and Sus-
tainable Pace are all practices of this kind. These practices were adopted during the
whole development process, and moreover do not directly prescribe how code is writ-
ten. Therefore, it is impossible to assess their impact on the quality of the code,
expressed using the quality metrics described in the followings.

The other practices concern how the code is written and upgraded, and have a more
direct impact on the quality of the code. Coding Standards and Continuous Integration
have been applied throughout the development, so it is not possible to analyze their
impact on code quality in the presented project. On the other hand, Pair Programming,
TDD and Refactoring had different adoption levels during the phases of the project,
so it is possible to study their impact on the quality of the produced software, meas-
ured in term of object-oriented software metrics.

3 The Project and Its Phases

The presented project consisted in the implementation of FlossAr, a Register of Re-
search software for universities and research institutes, developed with a complete
OO approach, and released with an Open Source license. FlossAr manages a reposi-
tory of data about research groups and research results – papers, reports, patents, pro-
totypes – aimed to help research evaluation and matching between firms looking for
technologies and knowledge, and researchers supplying them. Its architecture is that
of a standard Web application, and both researchers who input their profiles and
products, and people looking for information access the system through a standard
Web browser.

FlossAr has been implemented through a specialization of an open source software
project. We intend for specialization the process of creating a software application
customized for a specific business, starting from an existing, more general software
application or framework. The general framework we customized is jAPS (Java Agile

 An Agile Development Process and Its Assessment Using Quantitative OO Metrics 87

Portal System) [9], a Java framework for Web portal creation released with GNU
GPL 2 open source license. jAPS comes equipped with basic infrastructural services
and a simple and customizable content management system (CMS). It is able to inte-
grate different applications, offering a common access point. FlossAr has been devel-
oped by a co-located team of four junior programmers, coordinated by a team leader,
with limited previous experience of agile development. During the development,
FlossAr team adopted the agile process that has been defined in the previous section.

The project evolved through five main phases, each one characterized by an adop-
tion level of the key agile practices of pair programming, TDD and refactoring. These
phases are summarized below:

• Phase 1: an exploratory phase where the team studied both the functionalities of,
and the way to extend the underlying system (jAPS). It started on February 15th,
2007 and lasted three weeks. We will not consider this phase in the measurements
and in the subsequent discussion.

• Phase 2: a phase characterized by the full adoption of all practices, including test-
ing, refactoring and pair programming. It lasted nine weeks, leading to the imple-
mentation of a set of the required features.

• Phase 3: this is a critical phase, characterized by skipping the adoption of pair pro-
gramming, testing and refactoring, because a public presentation was approaching,
and the system still lacked many of the features of competitor products. So, the
team rushed to implement them, compromising the quality. This phase lasted seven
weeks, and included the first release of the system after three weeks.

• Phase 4: an important refactoring phase, characterized by the full adoption of test-
ing and refactoring practices and by the adoption of a rigorous pair programming
rotation strategy. This phase was needed to fix the bugs and the bad design that re-
sulted from the previous phase. It lasted four weeks and produced the second re-
lease of the system.

• Phase 5: Like phase 2, this is a development phase characterized by the full adop-
tion of the entire set of practices, until the final release on October 1st, 2007, after
the last nine weeks. Note that the system development was stopped for three weeks
during Summer holidays, so in practice this phase lasted six weeks.

4 Software Metrics

Throughout the project, we computed and analyzed the evolution of a set of source
code metrics, including the Chidamber and Kemerer suite of quality metrics (CK) [2],
the total number of classes, and the lines of code (LOCs) of classes and methods. The
quality of a project is usually measured in terms of lack of defects, or of ease of main-
tenance. It has been found that these quality attributes are often correlated with spe-
cific metrics. The CK metrics that proved to be the most relevant in our test case are
RFC and LCOM metrics. Other CK metrics, like CBO and WMC were highly corre-
lated with RFC and LCOM, respectively, as reported also in many other studies [10],
and we do not report them here; CK inheritance metrics NOC and DIT are of no in-
terest, also due to the relatively small size of the system. The considered metrics are:

88 G. Concas et al.

• Response For a Class (RFC): a count of the methods that are potentially invoked in
response to a message received by an object of a particular class. It is computed as
the sum of the number of methods of a class and the number of external methods
called by them.

• Lack of Cohesion in Methods (LCOM): a count of the number of method pairs
with zero similarity, minus the count of method pairs with non-zero similarity.
Two methods are similar if they use at least one shared field (for example they use
the same instance variable).

CK metrics have been largely validated in the literature. In a study of two commer-
cial systems, Li and Henry studied the link between CK metrics and the maintenance
effort [11]. Basili et al. found, in another study, that many of the CK metrics were
associated with fault-proneness of classes [12]. In another study, Chidamber et al.
reported that higher values of CK coupling and the cohesion metrics were associated
with reduced productivity and increased rework/design effort [13].

We also consider the LOCs of methods metric, computed for each method of the
system. It is good OO programming practice to keep short the method LOCs, because
every method should concentrate on just one task, and should delegate a substantial
part of its behavior to other methods.

In this paper, we consider just the average values of RFC, LCOM and method
LOCs metrics, averaged on all the classes or methods of the system. The average is
just a rough measure of the metrics, because it is well known that the distributions of
CK and method LOCs metrics follow a power-law [14]. However, also given that the
number of classes of the system is of the order of some hundreds, the average of these
metrics should suffice to give an idea of the average quality of the system.

4.1 FlossAr Metrics Evolution

In this section we analyze the evolution of FlossAr source code metrics. At regular
intervals of two weeks, the source code has been checked out from the CVS reposi-
tory and analyzed by a parser that calculates the metrics. The parser and the analyzer
have been developed by our research group as a plug-in for the Eclipse IDE.

Number of Classes. This metric measures the total number of classes (including ab-
stract classes and interfaces), and is a good indicator of system size. The number of
classes generally increases over time, though not linearly. As reported in Fig.1, the
project started with 362 classes – those of jAPS release 1.6. At the end of the project
the system had grown up to 514 classes, due to the development of new features im-
plemented by the specialized system.

Besides the class number, we analyze in detail the evolution of CK and LOC metrics,
that are very useful for understanding the complexity of the system developed, and to
assess the quality of the product built and how the agile practices used during the pro-
ject affected the metrics in the different phases. All of the three metrics considered
should be kept low for having a system of “good” quality. The basic statistics of these
metrics (mean and standard deviation) are reported in Table 1 for each relevant phase
of the project, that is for all phases but phase 1. Note that, when these metrics are
computed every other week, they refer to an average of the CK metrics over all

 An Agile Development Process and Its Assessment Using Quantitative OO Metrics 89

Fig. 1. The evolution of the number of classes

Table 1. Statistics related to measured metrics, for the relevant project phases

Metrics Phase 2 Phase3 Phase 4 Phase 5
 mean st.dev. mean st.dev. mean st.dev. mean st.dev.
LCOM 25.3 0.4 30.0 5.2 34.7 1.3 33.0 0.4
RFC 14.5 0.34 16.0 0.43 15.3 0.16 15.1 0.11
MLOCs 9.53 0.15 10.7 0.27 10.8 0.05 10.9 0.07

the classes of the system, or of the method LOCs over all its methods. The statistics
shown in Table 1, on the other hand, show the mean and the standard deviation of
these (average) metrics computed in the sampling days, over a phase of the project.

LCOM: The evaluation of LCOM average value, reported in Fig. 2 in conjunction
with other metrics and the process phases, shows a stable behavior during the second
phase, with an average value of 25.3, and then a steady increase in the middle of the
third phase. The peak occurs at the beginning of the fourth phase (RFC peak happens
two weeks before), where it reaches a value slightly less than 36. LCOM shows a sub-
sequent slow decline until it stabilizes at an average value of 33 during the fifth phase.
The standard deviation of LCOM values computed during phases 2 and 5 are low
compared to those of phase 3 and, to a lesser extent, phase 4. This reflect the strong
variations of LCOM occurring in these phases.

RFC is a measure of the complexity level of system classes. The evolution of the av-
erage value of RFC is reported in Fig. 2, together with the other considered metrics.
RFC shows a fair increase during the first development phase of the project (phase 2),
followed by a much higher increase during phase 3, up to a peak with an average
value of 16.4 methods callable in response to a generic message sent to an instance of
the class. During phase 4, the average value of RFC shows a strong decrease, until it
reaches a plateau of about 15 methods callable in response to a message. The standard
deviation is relatively high in the second and third phases of the project, when RFC
tends to increase, while it is lower in the last two phases, when it stabilizes.

90 G. Concas et al.

Fig. 2. Development phases and evolution of some key metrics related to software quality

Method LOCs. This metric is the average number of lines of code of a method. The
evolution of Method LOCs, reported in Fig. 2, shows an increasing trend during phase
2 and the beginning of phase 3, until just before the first release, and then a relative
stabilization, with some minor fluctuations, during the remaining of the project. Also
in this case, the measured standard deviation reflects whether the metric is varying, or
is relatively stable.

Table 2. Confidence level that the measurements taken in two consecutive phases significantly
differ, according to K-S two-sample test

Metrics Phases 2-3 Phases 3-4 Phases 4-5
LCOM 91.5% 75.0% 97.0%
RFC 99.98% 98.1% 97.0%
MLOCs 99.97% 90.3% 56.4%

To assess how these measurements differ from a phase to the next one (excluding
the first inception phase), we performed a Kolmogorov-Smirnov two-sample test.
This KS test determines if two datasets differ significantly, i.e. belong to different
distributions, making no assumption on the distribution of the data. For each com-
puted metric, we compared the measurements belonging to a phase to those belonging
to the next one1. The results are shown in Table 2, showing in bold the cases with

1 Since all the metrics computed at a given time depend also on the state of the system in the

previous measurement, the assumption underlying KS test that the samples are mutually in-
dependent random samples could be challenged. However, we used KS test to assess the dif-
ference between measurements in different phases as if they were independent sets of points,
and we believe that at a first approximation the KS test result is still valid.

 An Agile Development Process and Its Assessment Using Quantitative OO Metrics 91

significance levels greater than 95%. Phase 2 metrics differ very significantly from
phase 3 in two cases (RFC and MLOCs), and get a significance higher than 90% also
for LCOM. The difference of the metrics of other consecutive phases are lower,
though in some cases there is significance greater than 95%. These results in fact con-
firm the difference in trends and values of the various metrics in the various phases
that are patent in Fig. 2.

5 Discussion

As described in section 3, the level of adoption of key agile practices, and namely pair
programming, testing and refactoring was highly variable in the different phases of
the process. Our first observation is that, since these practices were always applied or
not applied together, it is not possible to discriminate among them, or to assess their
relative usefulness, using the data gathered in this case study. Consequently, we will
talk of “key agile practices” as applied together.

The evolution of the studied metrics in conjunction with the process phases, as
shown in Fig. 2, results in significantly different values and trends, depending on the
specific phase. Our hypothesis is that this variability is due precisely to the different
level of adoption of the key agile practices, because, to our knowledge, this is the only
difference among the various phases, as regards external factors that might had an
impact on the project. The only relevant internal factor in play is the team experience,
both in applying agile practices and about the system itself. Since the project duration
was relatively short, we estimate that that the latter factor affected significantly only
phase 2. Let us now discuss the metrics trends during the various phases.

Phase 2 is characterized by a growing trend both of RFC and LOCs – denoting a
worsening of software quality – and by a stationary trend of LCOM. The starting val-
ues of these metrics are those of the original jAPS framework, constituted by 367
classes and evaluated by code inspection as a project with a good OO architecture.
Note that phase 2 is characterized by a rigorous adoption of agile practices, but we
should consider two aspects:

• the knowledge of the original framework was initially quite low, so the first addi-
tion of new classes to it in the initial phase had a sub-optimal structure, and it took
time to evolve towards an optimal configuration.

• some agile practices require a time to be mastered, and our developers were junior;

Phase 3 is characterized by a strong pressure for releasing new features and by a
minimal adoption of pair programming, testing and refactoring practices. In this phase
we observe a growth both in the CK metrics, related to coupling among classes, and
in the LOC metric, indicating that in this phase the quality has been sacrificed for
adding more new features. All the metrics collected in this phase are quite or very
significantly higher than those of the previous phase, denoting a further, clear worsen-
ing of software quality.

Phase 4, that follows phase 3, is a refactoring phase where the team, adopting a
rigorous pair programming rotation strategy together with testing and refactoring,
were able to reduce the values of the most important quality metrics. No new features
were added to the system. However, the number of classes increased during this

92 G. Concas et al.

phase, because refactoring required to split classes that had grown too much, and to
refactor hierarchies, adding abstract classes and interfaces. In particular, RFC com-
plexity metric was very significantly reduced since the beginning of phase 4, and
LCOM was reduced as well, mainly at the end of the phase. Method LOCs was not
reduced, but it stopped to grow. Note that the values of the metric at the end of phase
4 seem to reach an equilibrium.

The last development phase (phase 5) is characterized by the adoption of pair pro-
gramming, testing and refactoring practices, and by the addition of further classes
associated to new features. In this phase the metrics don't change significantly – al-
though in the end their values are slightly lower than at the beginning of the phase –
maybe because the team has become more effective in the adoption of the agile prac-
tices compared to the initial phase 2.

In conclusion, in phase 2 we observed a deterioration of quality metrics, that sig-
nificantly worsened during phase 3; phase 4 led to a significant improvement in qual-
ity, and phase 5 kept this improvement. The only external factors that changed during
the phases were adoption of pair programming, TDD and refactoring, that was aban-
doned during phase 3, and systematic use of these practices during phase 4, aiming to
improve the quality of the system and with no new feature addition. As regards inter-
nal factors, in phase 2 the team was clearly less skilled in the use of agile practices
and in the knowledge of jAPS framework.

Although it is not possible to draw definitive conclusions observing a single, me-
dium-sized project, these observations quantitatively relate software quality metrics
with the use of key agile practices, and this relation is positive – when pair program-
ming, TDD and refactoring are applied, the quality metrics improve, when they are
discontinued, these metrics become significantly worse.

6 Conclusions

In this paper we presented an agile process – aimed to support the development of
FlossAr, a Web application for managing a Register of Research – which was devised
having in mind the specificities of the project and of the team. The process uses sev-
eral agile practices, taken from XP, Scrum and FDD.

During the development. we systematically performed measurements on the source
code, using software metrics that have been proved to be correlated with software
quality. Moreover, the development itself evolved through phases, characterized by a
different adoption level of some key agile practices such a pair programming, TDD
and refactoring, and by different team skills in using these practices and in the knowl-
edge of the software framework which the system was built upon. Consequently, we
correlated the most relevant quality metrics with the agile practices adoption, showing
a significant difference in quality metrics of software developed in the various phases,
and a systematic improvement of software quality metrics when agile practices are
thoroughly used by skilled developers. Clearly, these results represent just a first step
toward a more rigorous and systematic assessment of the effect of the use of agile
practices on software quality, as measured using standard metrics.

Future work will be performed measuring other bigger projects, taking into account
also the number of bugs and the effort to fix them. We also plan to use metrics more

 An Agile Development Process and Its Assessment Using Quantitative OO Metrics 93

sophisticated than the simple computation of the average of metrics computed on the
classes of the system. Such metrics will be related to behavior of the distributions of
CK metrics on the class population, especially in the tail of the distribution, or could
be complexity metrics computed using the complex network approach [14].

References

1. Haungs, J.: Pair Programming on the C3 Project. IEEE Computer 34(2), 118–119 (2001)
2. Chidamber, S., Kemerer, C.: A metrics suite for object-oriented design. IEEE Trans. Soft-

ware Eng. 20, 476–493 (1994)
3. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addi-

son-Wesley, Reading (2004)
4. Schwaber, K.: Agile Project Management with Scrum. Prentice-Hall, Englewood Cliffs

(2001)
5. De Luca, J.: A Practical Guide to Feature-Driven Development. Prentice-Hall, Englewood

Cliffs (2002)
6. Bohem, B., Turner, R.: Balancing Agility and Discipline. Addison-Wesley Professional,

Reading (2003)
7. Stapleton, J.: DSDM Consortium. DSDM: Business Focused Development. Pearson Edu-

cation, London (2003)
8. Agile Manifesto, http://www.agilemanifesto.org
9. JAPS: Java agile portal system, http://www.japsportal.org

10. Gyimothy, T., Ferenc, R., Siket, I.: Empirical Validation of Object-Oriented Metrics on
Open Source Software for Fault Prediction. IEEE Trans. Software Eng. 31, 897–910
(2005)

11. Li, W., Henry, S.: Object oriented metrics that predict maintainability. J. Systems and
Software 23, 111–122 (1993)

12. Basili, V., Melo, L.B.: A validation of object oriented design metrics as quality indicators.
IEEE Trans. Software Eng. 22, 751–761 (1996)

13. Chidamber, S., Kemerer, C.: Managerial use of metrics for object oriented software: An
exploratory analysis. IEEE Trans. Software Eng. 24, 629–639 (1998)

14. Concas, G., Marchesi, M., Pinna, S., Serra, N.: Power-Laws in a Large Object-Oriented
Software System. IEEE Trans. Software Eng. 33, 687–708 (2007)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 94–103, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Historical Roots of Agile Methods:
Where Did “Agile Thinking” Come From?

Noura Abbas, Andrew M. Gravell, and Gary B. Wills

School of Electronics and Computer Science, University of Southampton
Southampton, SO17 1BJ, United Kingdom

{na06r,amg,gbw}@ecs.soton.ac.uk

Abstract. The appearance of Agile methods has been the most noticeable
change to software process thinking in the last fifteen years [16], but in fact
many of the “Agile ideas” have been around since 70’s or even before. Many
studies and reviews have been conducted about Agile methods which ascribe
their emergence as a reaction against traditional methods. In this paper, we ar-
gue that although Agile methods are new as a whole, they have strong roots in
the history of software engineering. In addition to the iterative and incremental
approaches that have been in use since 1957 [21], people who criticised the tra-
ditional methods suggested alternative approaches which were actually Agile
ideas such as the response to change, customer involvement, and working soft-
ware over documentation. The authors of this paper believe that education
about the history of Agile thinking will help to develop better understanding as
well as promoting the use of Agile methods. We therefore present and discuss
the reasons behind the development and introduction of Agile methods, as a re-
action to traditional methods, as a result of people's experience, and in particu-
lar focusing on reusing ideas from history.

Keywords: Agile Methods, Software Development, Foundations and Concep-
tual Studies of Agile Methods.

1 Introduction

Many reviews, studies and surveys have been conducted on Agile methods [1, 20, 15,
23, 38, 27, 22]. Most of these studies focus on the reaction to traditional methods as a
reason behind Agile methods. However, Agile ideas have been around long time ago,
and people who criticized the traditional methods suggested alternative approaches
which were nothing but Agile ideas. Unfortunately these alternative approaches had
not been treated seriously enough, and that is why it took us another 30 years to figure
out that this is an effective way to develop software.

In their famous paper “Iterative and Incremental Development: A Brief History”,
Larman and Basili mentioned that iterative and incremental development was in use
as early as 1957 [21]. In addition, they described projects that used iterative and in-
cremental approaches in the 1970s. In this paper we will focus on the historical roots
of other aspects of Agile thinking such as the response to change, customer involve-
ment, and working software over documentation.

 Historical Roots of Agile Methods: Where Did “Agile Thinking” Come From? 95

2 What Does It Mean to Be Agile

The understanding of the word Agile varies in practice. In addition, it is difficult to
define Agile methods as it is an umbrella for well-defined methods, which vary in
practice. This section will show how this word was explained in literature by its pro-
ponents, as well as by other researchers.

Some researchers tend to define Agile as a philosophy. Alistair Cockburn’s defini-
tion is “Agile implies being effective and manoeuvrable. An Agile process is both
light and sufficient. The lightness is a means of staying manoeuvrable. The suffi-
ciency is a matter of staying in the game” [13]. Barry Boehm describes Agile methods
as “an outgrowth of rapid prototyping and rapid development experience as well as
the resurgence of a philosophy that programming is a craft rather than an industrial
process” [7].

Another way to describe Agile methods is by stating the basic practices various
methods share. Craig Larman stated, “It is not possible to exactly define agile meth-
ods, as specific practices vary. However short timeboxed iterations with adaptive,
evolutionary refinements of plans and goals is a basic practice various methods share”
[22]. Boehm gives more practice-oriented definition, “In general, agile methods are
very lightweight processes that employ short iteration cycles; actively involve users to
establish, prioritize, and verify requirements; and rely on tacit knowledge within a
team as opposed to documentation” [7]. In an eWorkshop on Agile methods organ-
ized by the Centre of Experimental Software Engineering (CeBASE), the participants
defined Agile methods as iterative, incremental, self-organizing, and emergent. In
addition, they stated that all Agile methods follow the four values and twelve princi-
ples of the Agile Manifesto [15]. Boehm provided similar definition as he considered
that a truly Agile method must include all of the previous attributes [7].

2.1 The Author’s View

The previous reviews and discussions were essential to form our understanding of
Agile methods. In this subsection, we will illustrate our understanding by providing
our definition of an Agile method. In other words, what makes a development method
Agile. An Agile method is adaptive, iterative and incremental, and people oriented

• Adaptive: An Agile method welcomes change, in technology and requirements,
even to the point of changing the method itself [16]. In addition, it responds to
feedback about previous work [22]. Fowler stated that an adaptive process is the
one that can give control over unpredictability.

• Iterative and incremental: The software is developed in several iterations, each
from planning to delivery. In each iteration part of the system is developed, tested,
and improved while a new part is being developed. In each iteration, the function-
ality will be improved. In addition, the system is growing incrementally as new
functionality is added with each release. After each iteration (s), a release will be
delivered to the customer in order to get feedback.

• People-oriented: “People are more important than any process. Good people with
a good process will outperform good people with no process every time [8]. In an
Agile method, people are the primary drivers of project success [13]. Therefore, the

96 N. Abbas, A.M. Gravell, and G.B. Wills

role of the process in an Agile method is to support the development team deter-
mine the best way to handle work [16]. Furthermore, an Agile method emphasises
on face-to-face communication within the team and with the customer who is
closely involve with the development process rather than written documents.

To summarize: Software development is an unpredictable activity; therefore, we
need an adaptive process to control this unpredictability. Iterative and incremental
development will be the best controller for this process. In addition, it needs creative
and talented people.

3 What Was Behind Agile Methods

Some interesting questions are:

What was behind Agile methods?
Where Agile methods were introduced?
What are the origins of Agile thinking?

We will answer these questions through three points: reaction to traditional meth-
ods and business change, reusing ideas from history, and people’s experience. Then
we will go through each Agile principle to see which one are new and which are not
with evidence.

3.1 Reaction to Traditional Approaches and Business Change

Although iterative and incremental approaches were in use a long time ago, unfortu-
nately, many sources still recommend the single pass software development lifecycle
which known as the waterfall. However, researchers recognized the problem with the
waterfall and suggested another approaches such as the V-Model [9], the Spiral model
[6] and then the Rational Unified Process (RUP) [8]. These approaches tried to solve the
waterfall problems but they are still heavyweight, document and plan driven ap-
proaches. Fowler refers to these approaches as engineering methodologies which may
work perfectly for building a bridge but not for building software, as building software
is a different kind of activity and it needs a different process [16]. Agile Methods are a
reaction to the bureaucracy of the engineering methodologies. Another reason behind
Agile methods is the increasing change in the business environment. According to
Highsmith and Cockburn, Agile methods were proposed from a “perspective that mirror
today’s turbulent business and technology change” [13]. The traditional approaches
could not cope with this change as they assume that it is possible to anticipate a com-
plete set of the requirements early in the project lifecycle. In reality, most changes in
requirements and technology occur within a project’s life span.

3.2 Reusing Ideas from History

Many Agile ideas are hardly new. Furthermore, as the following paragraphs show
many people believed long age that this is the most successful way of building soft-
ware. However, these ideas have not been treated seriously, and in addition, present-
ing them as an approach for developing software is new [16, 22].

 Historical Roots of Agile Methods: Where Did “Agile Thinking” Come From? 97

Iterative and incremental development is at the top of our list. When we defined an
Agile methods we considered IID the heart of any Agile method. People were using
these approaches successfully in the 70s and the 80s. Larman and Basili found early
roots for (IID) iterative and incremental development since 1950s in NASA and IBM
Federal Systems Divisions (FSD) [21]. According to them, NASA’s 1961-63 Project
Mercury was run with “short half-day iterations”. In addition, the Extreme Program-
ming practice of test-first development was applied as tests were planned and written
and then the code were written to pass the tests. Furthermore, they use continuous inte-
gration as each mini-iteration required integration of all code and passing of the tests.

In 1970, Winston Royce who criticised the sequential model, recommended “five
additional features that must be added to the basic approach to eliminate most of the
development risks” [29]. These steps had the favour of iterative development. In step
two, he recommended an early development pilot model for a 30-month project. This
model might be scheduled for 10 months. In addition, in step five, he stated that the
customer should be formally involved and he/she have to commit himself/herself at
earlier points before the final delivery.

In their famous paper “Iterative and Incremental Development: A Brief History”,
Larman and Basili described a number of projects were iterative and incremental
approaches were in use. These projects were major, government, life-critical systems,
involving large numbers of people. In addition, most of the projects used a combina-
tion of top down concepts and incremental development. The projects used different
iterations’ lengths, which were longer than the range recommended by today’s itera-
tive methods.

People who criticised the waterfall suggested alternative approaches. In his paper
“Stop the life-Cycle, I Want to get off”, Gladden suggested a new view of the devel-
opment process and he called it the Non-Cyclical Hollywood Model. According to
Gladden, this model satisfies three propositions [18]:

System objectives are more important than system requirements: this meets the
Agile idea of having a general understanding of the system rather than having detailed
requirements which will change over the project

• A physical object conveys more information than a written specification: this is noted
as the Agile manifesto values: Working software over Comprehensive documentation.

• System objectives plus physical demonstrations will result in a successful product:
by successful project he meant that a product that performs the function intended
and satisfies the customer’s need.

Gladden believed that most users do not have a clear idea about their needs. In ad-
dition, he raised the problem of missing and changing requirements.

Another suggestion was from McCracken and Jackson in their paper “Life Cycle
Concept Considered Harmful”. They suggested two scenarios of system development
processes [25]:

Prototyping: They suggested building a prototype extremely early in the develop-
ment process as a response to the early statements of the user. A series of prototypes
or a series of modifications to the first prototype will gradually lead to the final prod-
uct. This is exactly how development in Agile is meant to be, with short iterations
each of which improves the system. In addition, they recommended a close relation

98 N. Abbas, A.M. Gravell, and G.B. Wills

with the user: “development proceeds step-by-step with the user, as insight into the
user’s own environment and needs is accumulated”.

The second suggestion was a process of system development done by the end-user
and analyst in this sequence: implement, design, specify, redesign, re-implement.
Again, to start with implementing the system is the idea of modern iterative develop-
ment. In addition, they suggested providing the user with an implementing tool and
one version of a system. It is a similar idea of the CASE tools, which were used in
Rapid Application Development (RAD) the early version on DSDM.

Agile ideas appeared in old development processes as well. In 1985, Tom Gilb
wrote “Evolutionary Delivery versus the ‘Waterfall model’”. In this paper Gilb intro-
duce the EVO method as an alternative of the waterfall which he considered as “unre-
alistic and dangerous to the primary objectives of any software project”.

Gilb based EVO on three simple principles [17]:

• Deliver something to the real end-user
• Measure the added-value to the user in all critical dimensions
• Adjust both design and objectives based on observed realities.

In addition, Gilb introduced his “personal list” of eight critical concepts that ex-
plain his method. When he discussed the early frequent iteration, he emphasised the
concept of selecting the “potential steps with the highest user-value to development–
cost ratio for earliest implementation” [17]. Another important concept in EVO
method is “Complete analysis, design and test in each step” where he stated that the
waterfall is one of the great time wasters with too many unknowns, too much dynamic
change and systems complexity. Gilb stressed being user oriented:

“With evolutionary delivery the situation is changed. The developer is specifically
charged with listening to the user reactions early and often. The user can play a direct
role in the development process”

And being results oriented, not process oriented,
“Evolutionary delivery forces the developers to get outside of the building process

for a moment, frequently and early – and find out whether their ship is navigating
towards that port of call many cycles of delivery away”

Obviously, many of Gilb’s concepts meet Agile principles. Not only the frequent
delivery and the short iterations, but also he stressed the user role in the development
process. In addition, he recommended an adaptive process and he gave the developers
the power to change the direction of the process.

After Gilb’s EVO, in 1988, the DuPont Company presented a methodology called
Rapid Iterative Production Prototyping (RIPP). The main goal was to build working
prototypes that could be presented to customers regularly to ensure that the finished
product is what they wanted. The company guaranteed “Software in 90 days… or
your money back” [3].

James Martin expanded this methodology into a large formalized one which be-
came the Rapid Application Development (RAD). The RAD lifecycle has four
phases: requirements planning, user design, construction and implementation (Martin
1991). What distinguishes RAD from traditional lifecycles is that in RAD construc-
tion phase we do the detailed design and code generation of one transaction after
another. Each transaction can be shown to the end users to make adjustments. In addi-
tion, the “timebox” applies to the construction phase. The team will be given a fixed

 Historical Roots of Agile Methods: Where Did “Agile Thinking” Come From? 99

timebox within which the system must be constructed. The timebox inputs are the
functions and the design framework of the system. The output is the system which
will be evaluated to decide whether to put it in production or not. Within the timebox,
“continuous iterative development is done” in order to produce a working system by
the end of the timebox [24]. Martin recommended 60 days length for the timebox,
with a 1-5 person team. The term “timebox” was created by Scott Shultz and was first
used in DuPont. Shultz stated that the timebox methodology was successful as all the
applications were complete in less time than it would have taken just to write the
specification for a COBOL or FORTRAN application [24].

We can see that RAD has almost all Agile ideas. Actually, it formed the base for
DSDM, one of the Agile methods [34]. RAD recommended quick delivery, iterative
development, a small team of highly trained developers who work together at high
speed, and user’s involvement at every stage. Clearly, these ideas are the heart of
Agile methods. However, the term “timebox” is used differently in Agile. In RAD, it
is the whole construction phase and it consists of many iterations, where in Agile the
timebox means a fixed iteration. In a fixed iteration, if the requests of the iteration
can’t be met within the timebox, the scope will be reduced [34,22].

3.3 People’s Experience

As has been already mentioned, the manifesto gathered people who needed an alterna-
tive to traditional approaches. Importantly, most people involved in the manifesto had
experience in software development. Furthermore, they had their own well-defined
methods such as Extreme Programming (XP), Crystal and Scrum.

Ken Schwaber, one developers of Scrum, described his experience in the early
1990s when he was running a software company. He mentioned that their require-
ments were always changing and their customer’s methodology did not help, instead
it slowed them down. In order to solve the problem, he showed these methodologies
to process theory experts at the DuPont Experimental station in 1995. He stated that
they were amazed that his company was using an inappropriate process. In addition,
they said that systems development had so much complexity and unpredictability that
it had to be managed by an “empirical” process control model [32]. Ken’s company
and other organizations asked another question, which is why empirical development
approaches deliver productivity while defined processes such as Capability Maturity
Model (CMM) do not. They passed the question to scientists at DuPont Chemical’s
Advanced Research facility, and the answer was that CMM is treated as a well-
understood defined process while it is not, and it is performed without control and
therefore it gives unpredictable results [31].

Kent Beck, founder of XP, also had a story. In April 1996, he was hired to help
Chrysler, a payroll system. The project was in a state where two months away from
production, the development team were not “computing the right answers yet”. With
the CIO of Chrysler, they decided to start from scratch with a smaller team. With Ron
Jeffries, who became the first XP coach, and with the help of Martin Flower with
analysis and testing, the first XP project took off. They worked on the base of three
weeks iteration, where they implemented stories chosen by the domain expert. In
April 1997, the system was live, and it was resalable, cheap and easy to maintain and
extend. Beck stated “it was a technical and business success” [4].

100 N. Abbas, A.M. Gravell, and G.B. Wills

Another story is from Alistair Cockburn, one of the Agile Manifesto authors. In
1991, IBM Consulting Group asked him to write a methodology for object-
technology projects [12]. He decided to interview the project teams. He found out that
their stories were different from what was mentioned in methodologies books. He
found that “close communication, morale, and access to end users separated in stark
contrast the successful projects [he] visited from the failing ones”. Cockburn tried
these ideas on a $15 million, fixed-price, and fixed-scope project of forty-five people.
He was the lead consultant of the project and he wrote up the lessons learned from the
project interviews, and from the project itself. Using these ideas, Cockburn built his
Agile method Crystal. Interestingly, unlike most of other authors of the manifesto he
stated that he came to Agile principles “through the need for efficiency, not the need
to handle rapidly changing requirements”.

3.4 What’s New (and Not) About Agile Methods

In this section we will go through each Agile principle, and we will try to find the
roots of this principle. We will see this section will support our previous argument.
This will be illustrated in the next table.

Principle New or not with Evidence
Our highest priority is to satisfy the cus-
tomer through early and continuous deliv-
ery of valuable software.

EVO first principle: deliver something to the
real end-user [17].

Welcome changing requirements, even late in
development. Agile processes harness change
for the customer's competitive advantage.

Relatively new, the problem always existed
but without a real solution.

Deliver working software frequently, from
a couple of weeks to a couple of months,
with a preference to the shorter timescale.

In EVO the frequent and early delivery is
essential, also RAD recommended quick
delivery [17, 24].

Business people and developers must work
together daily throughout the project.

Relatively new as some approaches recom-
mended good relation with customer, how-
ever, the idea of daily communication and
on-site customer is new.

Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

These ideas were raised in the psychology of
computer programming book which was
published in 1985; the author empathized on
the importance of motivation which is the
inner directing force (chp10). In addition, he
mentioned that the richness of the environ-
ment gives it a self–maintaining quality which
resists the imposed changes.(chp4) [37].

The most efficient and effective method of
conveying information to and within a de-
velopment team is face-to-face conversation.

The previous book focused on the impor-
tance of how the working space can affects
the social interaction which in turn will affect
the work. The author emphasized on how
face to face communication helps transmit-
ting useful information [37].

Working software is the primary measure of
progress.

EVO second principle: measure the added-
value to the user in all criteria dimensions [17].

 Historical Roots of Agile Methods: Where Did “Agile Thinking” Come From? 101

Agile processes promote sustainable devel-
opment. The sponsors, developers, and
users should be able to maintain a constant
pace indefinitely.

In the Death March book, Edward Yourdon
pointed the importance of managing and con-
trolling progress and he suggested the “daily
build” concept to succeed that mission [39].

Continuous attention to technical excellence
and good design enhances agility.

Probably we could find the same idea of the
importance of doing a much better program-
ming job (technical excellence) in Dijkstra’s
famous article “Humble programmer” [40].

Simplicity the art of maximizing the
amount of work not done--is essential.

The famous saying on simplicity of design
comes from Antione de Saint-Exupery:
"Perfection is achieved, not when there is
nothing more to add, but when there is noth-
ing left to take away" [30].

The best architectures, requirements, and
designs emerge from self-organizing teams.

We could find the idea of self-organizing
team in open source projects which were out
roughly at the same time as Agile methods.
In the Cathedral and the Bazaar paper, Ray-
mond referred to the developers as people
bring their own resources to the table [28].

At regular intervals, the team reflects on
how to become more effective, then tunes
and adjusts its behaviour accordingly.

The idea of process improvements was pre-
sented in CMMI level 5 with different em-
phasize as in Agile all the team will reflect
on improving the process not only the man-
agement [36].

4 Discussion and Conclusion

Although Agile methods are new as a whole, their principles and ideas have been
around long time ago, and people who criticized the traditional methods suggested
alternative approaches which were nothing but Agile ideas. Unfortunately these alter-
native approaches had not been treated seriously enough. For example Somerville
first edition of the software engineering book describes “The Software Lifecycle”. At
this point the word “waterfall” was not yet in common use: if you assume there is
only one lifecycle, you do not need to give it a name. By the time edition 1989 Som-
merville states that “one of the reasons for the wide spread adoption of the ‘waterfall’
model is that it allows for the straight-forward definition of milestones throughout the
course of a project. Alternative approaches, such as evolutionary prototyping, are
such that milestone definition is a more difficult and less certain process”. Even in the
most recent edition (the 8th in 2007) Sommerville devotes just one chapter (chapter
17) out of 32 to “rapid” software development. In this chapter it is claimed that “dis-
satisfaction with these heavyweight approaches led a number of software developers
in the 1990s to propose new agile methods” [43]. In this paper we provided historical
and anecdotal evidence that a) dissatisfaction with heavyweight approaches existed
long before the 1990s, b) non-waterfall projects succeeded as early as 1957 and c)
viable alternatives such as EVO, RAD and RIPP had been developed and applied
successfully in the 1980s.

We hope that the strong emerge of Agile methods and the pressing need for such
development methods these days will convince the software development community

102 N. Abbas, A.M. Gravell, and G.B. Wills

that this is the right way to develop software. In addition, we think that the education
about Agile thinking history will help understanding as well as promoting the use of
Agile methods.

References

1. Abrahamsson, P., Solo, O., Ronkainen, J., Warsta, J.: Agile Software Debvelopment
Methods, VTT technical Research Centre of Finland (2002)

2. Ambler, S.: Quality in an Agile World. Software Quality Professional 7(4), 34–40 (2005)
3. Ambrosio, J.: Software in 90 days Software Magazine. Wiesner Publications, Inc. (1988)
4. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addi-

son-Wesley Professional, Reading (2004)
5. Boehm, B.: Guidelines for Verifying and Validating Software Requirements and Design

Specifications. In: Samet, P.A. (ed.) Euro IFIP 1979, IFIP. North-Holland Publishing
Company, Amsterdam (1979)

6. Boehm, B.: A spiral model of software development and enhancement. IEEE Com-
puter 21(5), 61–72 (1988)

7. Boehm, B., Turner, R.: Balancing Agility and Discipline: A Guide for the Perplexed. Ad-
dison-Wesley Longman Publishing Co., Inc., Amsterdam (2003)

8. Booch, G.: Object Solutions: Managing the Object-Oriented Project. Addison Wesley
Longman Publishing Co., Inc., Amsterdam (1995)

9. Coad, P., de Luca, J., Lefebvre, E.: Java Modeling Color with UML: Enterprise Compo-
nents and Process with Cdrom. Prentice Hall PTR, Englewood Cliffs (1999)

10. Cockburn, A.: Characterizing People as Non-linear, First-Order Components in Software
Development, Humans and Technology Technical Report (1999)

11. Cockburn, A.: Agile Software Development. Addison-Wesley Longman Publishing Co.,
Inc., Amsterdam (2002a)

12. Cockburn, A.: Crystal Clear A Human -Powered Methodology for Small Teams. Addison-
Wesley, Reading (2005)

13. Cockburn, A., Highsmith, J.: Agile Software Development: The Business of Innovation.
Computer 34(9), 120–127 (2001a)

14. Cockburn, A., Highsmith, J.: Agile Software Development: The People Factor. Com-
puter 34(11), 131–133 (2001b)

15. Cohen, D., Lindvall, M., Costa, P.: An Introduction to Agile Methods. Advances in Com-
puters, 1–66 (2004)

16. Fowler, M.: The New Methodology (2005), http://www.martinfowler.com
17. Gilb, T.: Evolutionary Delivery versus the "waterfall model". ACM SIGSOFT Software

Engineering Notes 10(3), 49–61 (1985)
18. Gladden, G.R.: Stop the Life-cycle, I Want to Get off. 7(2), 35–39 (1982)
19. Highsmith, J.: Adaptive Software Development: a Collaborative Approach to Managing

Complex Systems. Dorset House Publishing Co., Inc. (2000)
20. Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley Longman Pub-

lishing Co., Inc., Amsterdam (2002)
21. Larman, C., Basili, V.R.: Iterative and Incremental Development: A Brief History. IEEE

Computer Society 36(6), 47–56 (2003)
22. Larman, C.: Agile and Iterative Development: A Manager’s Guide. Alistair, C., Jim, H.

(eds.). Pearson Education, Inc., London (2004)

 Historical Roots of Agile Methods: Where Did “Agile Thinking” Come From? 103

23. Levine, L.: Reflections on Software Agility and Agile Methods, Software Engineering In-
stitute, Carnegie Mellon University, Pittsburgh, PA, USA (2005)

24. Martin, J.: Rapid Application Development. Macmillan Publishing Co., Inc., Basingstoke
(1991)

25. McCracken, D.D., Jackson, M.A.: Lifecycle Concept Considered Harmful, vol. 7, pp. 29–
32. ACM Press, New York (1982)

26. Palmer, S.R., Felsing, M.: A Practical Guide to Feature-Driven Development. Pearson
Education, London (2001)

27. Paulk, M.C.: Agile Methodologies and Process Discipline. CrossTalk- The Journal of de-
fence Software Engineering, 15–18 (2002)

28. Raymond, E.S.: The Cathedral and the Bazaar (1999)
29. Royce, W.W.: Managing the Development of Large Software Systems 1970. In: Proceed-

ings, IEEE WESCON, pp. 1–9 (1970)
30. Saint-Exupery, A.D.: Wind, Sand and Stars. Harcourt (1992)
31. Schwaber, K.: Controlled Chaos: Living on the Edge. Advanced Development Methods,

Inc. (1996)
32. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall PTR,

Englewood Cliffs (2001)
33. Sommerville, I.: Software Engineering (1st, 3rd, 8th) edn. Addison-Wesley, Reading

(1972, 1989, 2007)
34. Stapleton, J.: DSDM: The Method in Practice. Addison-Wesley Longman Publishing Co.,

Inc., Amsterdam (1997)
35. Thomas, D.: The Essential Unified Process (EssUP) - New Life for the Unified Process

Dr. Dobb’s Portal: the Worlds of Software Development (2006)
36. Turner, R., Jain, A.: Agile Meets CMMI: Culture Clash or Common Cause? In: Wells, D.,

Williams, L. (eds.) XP 2002. LNCS, vol. 2418, pp. 153–165. Springer, Heidelberg (2002)
37. Weinberg, G.M.: The Psychology of Computer Programming, p. 304. John Wiley & Sons,

Inc., Chichester (1985)
38. Williams, L.: A Survey of Agile Development Methodologies (2004)
39. Yourdon, E.: Death March: The Complete Software Developer’s Guide to Surviving Mis-

sion Impossible Projects. Paul, D.B. (ed.), p. 227. Prentice Hall PTR, Englewood Cliffs
(1997)

40. Dijkstra, E.W.: The humble programmer. Communication of the ACM 15(10), 859–866
(1972)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 104–113, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Seven Years of XP - 50 Customers, 100 Projects and 500
Programmers – Lessons Learnt and Ideas for Improvement

Mike Holcombe* and Chris Thomson

Department of Computer Science, University of Sheffield,
Portobello Street, Sheffield, S1 4DP, UK
m.holcombe@dcs.shef.ac.uk

Abstract. Over the last seven years we have been using eXtreme Programming
(XP) in two commercial software development settings within the University of
Sheffield. The detailed performance of a variety of different project teams has
been analysed by the Sheffield Software Engineering Observatory - a joint re-
search project between the Department of Computer Science and the Institute of
Work Psychology - during this period, based on empirical data collected from
these projects. A number of research questions have been investigated: the
comparison between XP and a traditional software development approach in
terms of product quality and the impact on quality of the number of XP
practices used etc. Problems associated with some aspects of XP have been
identified and adaptations and development of the XP methodology have been
introduced. Other issues studied in the Observatory include the relationship
between methodology and individual well being; the impact of personality on
project outcomes; the level of conflict in different groups; the relationships be-
tween customers and programmers and issues relating to testing. The possible
benefits of XP have been assessed alongside the problems with implementing
the methodology in a variety of settings. 'People' issues are a major determinant
in successfully adopting the XP approach in a sustainable way. This paper is a
brief review of some of this work.

Keywords: XP, empirical software engineering, methodological compliance,
human factors.

1 Introduction

The last 7 years or so have seen an explosion of interest in agile development methods
and attempts by many software development organisations to adopt these ideas. How-
ever, there is little rigorous research data about the long term benefits or otherwise of
the adoption of such techniques.

The Software Engineering Observatory at the University of Sheffield1 exists to ex-
amine a variety of issues in modern software engineering practice in controlled condi-
tions and in as a realistic a setting as possible. In order to achieve this we base this

* Also epiGenesys Ltd. <http://www.epigenesys.co.uk>
1 http://www.observatory.group.shef.ac.uk

 Seven Years of XP - 50 Customers, 100 Projects and 500 Programmers 105

work around a large number of commercial software development projects carried out
in University companies. The Observatory is a collaboration between the Department
of Computer Science and the Institute of Work Psychology in the University. This
means that we can look at a wide number of aspects of software development particu-
larly some associated with ‘people’ issues such as team cohesion, well-being, conflict
and personality and how these factors may impact on software quality.

2 The Observatory Context

Over the last 20 years the curriculum in the Department of Computer Science has
included a second year module called the Software Hut. This module, lasting for the
whole of the second Semester, involves teams of students developing a software ap-
plication for an external business client. The way that it is organised involves dividing
the students into teams of between 4 and 6 individuals. There are a number of external
clients and each client is involved with between 3 and 4 teams. These teams then
compete to build a suitable solution for the client’s needs and the client then chooses a
preferred solution from those delivered and the winning team is rewarded with a small
cash prize.

Twelve years ago a new initiative was undertaken, this involved the setting up of a
commercial software house that was run by the fourth year undergraduates and the
advanced masters students as part of their course. This company, Genesys Solutions
has traded successfully during this period and has recently been spun out as a full
University company (epiGenesys) with professional full time manager and technical
staff, as well as the students who are working in the company as part of their studies.

In both of these activities students are required to spend around 15 hours per week
over 12 weeks, in the case of Genesys this is throughout the two Semesters.

An interesting factor in these activities is that the population of students moves on
after the end of their involvement – thus presenting us with the problem of both deal-
ing with a major break in development work for those projects that extend beyond the
end of the academic year and of maintenance on past projects produced by program-
mers who have since moved on. These issues focus a spotlight on the type and quality
of the documentation that is produced during a project. Over the years this has seen
the development of a number of developments in terms of the design approach, infra-
structure, management and quality assurance mechanisms that we have developed.

In 2000 we started to use a version of XP. In Genesys XP was adopted as fully as
we could and has been the fundamental approach taken for all projects. In the Soft-
ware Hut we initially divided the class into two halves, one half was asked to use XP
and the other the plan based approach using the Discovery methodology (A J H
Simons, Object Discovery: A process for developing medium-sized applications,
Tutorial 14, ECOOP 1998 Tutorials, (Brussels : AITO/ACM, 1998), 109pp). The
projects were arranged so that each client worked with teams of the same level of
experience, some teams using XP and the others the Discovery method and we were
then able to compare the two approaches under realistic conditions to see which ap-
proach tended to be the most successful.

As well as the final product we are able to analyse all of the intermediate project
material, minutes of meetings of the teams and of client meetings, timesheets,

106 M. Holcombe and C. Thomson

requirements and other documents, test sets, quality assurance reports, program code
etc. We sample this material on a weekly basis [17]. This provides a rich resource of
information that is unhindered by problems of commercial confidentiality.

A key factor that distinguishes this type of research from much of the available lit-
erature in empirical software engineering is that all the projects are real ones, have a
real client, involve detailed business analysis as well as the delivery of working soft-
ware and are thus a much better test for measuring the benefits and problems of a
complete software engineering process. The fact that we can also run comparative
experiments on real projects is probably a unique facility (previous studies have only
assessed toy projects with professionals and students comparatively, often with a
focus on only single XP practices [15, 16, 20].

In terms of the Genesys company we can study the adoption of agile approaches
within a realistically operated software house – no comparative studies are carried out
in Genesys since it is, essentially, a commercial operation with targets for earning and
productivity.

One of the reasons why we adopted an agile methodology was the realization that
the type of documentation available during maintenance was often misleading and
unhelpful. Although a large amount of design documentation (UML diagrams etc.)
was archived it rarely reflected the final state of the code since it wasn’t always up-
dated as implementation decisions were made after the initial design phase. This we
began to question the purpose of all this documentation. The choice of XP as the agile
approach was driven by a number of issues:

1. It was a complete package of techniques (practices) focused on the delivery of
high quality software to meet the client’s business needs;

2. The emphasis in XP on testing set it apart from another approaches – software
testing had, for a long time, been a major research interest of the group.

The idea of using XP was very popular with most – but not all – students who had
previously been fed a diet rich in UML and formal methods. The motivation to try to
meet the client’s requirements as they changed during the elicitation and analysis
phases was also an attraction.

3 Problems Associated with Introducing XP

Although the reception of the main tenets of XP were enthusiastically received during
the initial training is soon became apparent that it was a very hard methodology to
adopt fully. Some aspects were quite easily done, for example the idea of describing
requirements a set of stories – although there was some confusion about the size of a
story. Iterations tended to be quite large initially until we managed to get enough
experience to help the students think in terms of delivering chunks of code on a
weekly basis. There was a general problem in that much of the early literature on XP
was written for experienced programmers rather than novices. In particular, the em-
phasis on testing and refactoring was something that few students were prepared for.
There was a severe shortage of a texts with real practical examples and advice that
would allow students to adopt XP fully. Many of the books were rather theoretical,

 Seven Years of XP - 50 Customers, 100 Projects and 500 Programmers 107

conceptual and philosophical treatments that did not provide the students with enough
practical detail to help them progress.

Over the years we have studied a large number of XP projects and gathered a great
deal of detailed data. Many conclusions can be drawn from this information, issues
relating to how easy it is to adopt XP, what additional support is needed, how the XP
approach compares with a traditional approach? What impact does the personality of
individuals have? Does XP engender a more positive attitude to work, and so on? A
number of papers discuss the detailed empirical approach, the data and its analysis,
for example: 1, 2, 6, 9–14, 17-19, 24. One of the longer term aims of the Observatory
project is to provide on-line access to much of this raw data for bona fide researchers
– who may have to sign a Non-Disclosure Agreement to protect client confidentiality.

4 Adoption of and Compliance with the XP Methodology

Some of the practices associated with XP are enthusiastically adopted, these include
using stories and small increments, continuous delivery as far as it is practical and
extensive communication with customers – it is not practical for us to have on-site
customers but teams will meet their customers weekly for much of the project. The
reduction in design documentation is popular and many students are less than inspired
by UML so that an extensive design period is usually counterproductive.

More problematic practices include test first and, for some, pair programming. The
evidence from the research literature on pair programming is pretty inconclusive and
controversial and rarely carried out under realistic conditions found in a real project.
We have found that many students welcome the idea and, after some initial issues
settle down well to pair programming – they gain a great deal an learn a lot by work-
ing intensively in pairs. Since our main objective is to provide a deep learning envi-
ronment for students this is a positive aspect. Some students find it extremely hard to
do, these are usually those with a particular type of personality – loners and highly
introverted types.

Williams [20] presented some evidence for the benefits of pair programming. The
approach has been criticised on blogs such as hacknot.info [21] and other experiments
by other researchers [7] have produced different conclusions. In practice, pair
programming is not for everyone since some people’s personality is such that they
seem to be unable to cope with the intense relationships with their partners that are
needed. Our experience has been that, in the right context, that is, a real project with a
real customer and combined with the other XP practices, pair programming works for
most people – many of whom become very enthusiastic about it.

Test first has been something of a disaster. It is very rarely done properly, program-
mers find it very unnatural since they have never met the concept before and their atti-
tudes are rather set from their first programming classes and it is difficult to overcome
this. They are happy to write done outline tests at the time of writing their story cards
but rarely actually write complete tests – let alone running them on empty code.

The evidence for the benefits of a Test First approach is also mixed. The first thing
to say is that it is actually quite difficult to carry out – nearly all of the approaches to
teaching introductory programming that are found in universities tend to downplay
testing – if it is considered seriously at all. Thus many programmers find the idea of

108 M. Holcombe and C. Thomson

writing a test set before they start coding unnatural. This makes it difficult to carry out
comparative experiments without having to undertake some extensive training on the
technique.

Janzen [23] found that the design of the software was ‘better’ – smaller and less
complex units whereas [22] found that the quality of the design was poorer. There are
a number of other examples of inconclusive results e.g. [16].

One comment that is worth making is that the time that tests are written and used is
only one of a number of factors that might impact on the benefits of doing Test First,
another is the type of tests created – testing is very dependent on the capabilities of
the test sets to detect faults and so influences the ultimate quality of the software
under test. Simple measures such as test coverage can provide some insight into the
quality and effectiveness of a test set but things are more complicated than that.

5 Areas Where XP Needs Strengthening and Supporting

There are a number of things that we have done to try to make the XP processes
better. One of these is to focus much more on the architecture and dynamic modeling
of the proposed system. We have tried to formalize and document certain aspects of
the project in such a way that any document that has been introduced serves a
multiple number of uses – in other words it must add value in more than one aspect of
the project. An example of this is the stories – these are defined in a simple template
which is shown below. Apart from the usual administrative information – story
number etc. we have also included some information about what triggers the story –
the background information tha it needs to operate correctly (for example data from a
database or look-up table etc.) and what the expected results are of this story in
operation. This data provides a basis for strong test design. On the reverse we put
some more useful information including descriptions of the tests and any non-
functional requirements.

Fig. 1. Story card examples from a system developed for a retail company

 Seven Years of XP - 50 Customers, 100 Projects and 500 Programmers 109

We also generate some operational descriptions using generalised state machine
diagrams [18, 19].

Fig. 2. An eXtreme X-machine (XXM) for a simple orders database

In this diagram the circles represent natural states of the systems – positions where
certain functionality is possible and the squares are states where queries will be made in
order to complete a process properly. Screens are also displayed where appropriate –
these can often be very helpful when discussing the system with a customer. If neces-
sary, the transitions can themselves be replaced by a more complex diagram detailing
what is happening at a lower level of abstraction. Thus we have a genuine hierarchical
way of describing complex systems which is very easy to understand and use.

Such diagrams will be used to help everyone understand what the overall objective
of part of the system is, will be the basis for some analysis – for example, identifying
what needs to be done to add suitable robustness to the system – in other words we
will have to think through the machine design and ask ourselves – how could each
transition fail and what should we do about it?

The diagrams can also be used to generate very powerful functional tests – one
simple way is to ensure that every possible path through the machine is triggered at
least once. These techniques have been very successful in our projects.

These are examples of how XP can be developed as an agile development approach
by addressing those areas that are either not fully defined or could be improved. Fur-
ther details will be available in [3, 4].

6 People and XP

There is again a problem in identifying conclusive and convincing evidence about the
benefits of XP. Carrying out comparative experiments in an industrial setting is al-
ways going to be a problem and much of the evidence is based on simple experiments
involving students.

110 M. Holcombe and C. Thomson

Macias [6] found a small benefit in a comparative study involving small industrial
projects. The quality of final software delivered was evaluated by the external clients
using a systematic measurement process with a maximum value of 50 and Bayes
theorem was applied to these data. The average of External quality was 34.95 then a
team succeeded if Q > 34.95 and a team failed if Q <= 34.95. With this criteria the
following probabilities were obtained:

• Probability that a successful team was XP: 0.5454
• Probability that a successful team was Trad: 0.4545
• Probability that a failing team was XP: 0.444
• Probability that a failing team was Trad: 0.555

This gives a measurable difference but not a significant one between the two
treatments (XP and traditional design-led).

Abdullah [2] found that the more XP practices used the better the quality of the
software, again in small industrial projects.

Fig. 3. Spider diagrams comparing product quality with the number of XP practices used over 3
years of projects

The marks were the evaluations of the products by the external clients, there were 7
different clients, 51 teams and 230 programmers in this series of experiments.

The line graphs (Fig. 4) reflect a constant relationship pattern between practices
and external quality in all of the cases The Spearman test conducted revealed a sig-
nificant positive relationship between the two variables [n=6, r=0.749, p = 0.086].

Abdullah also found [3] that there was evidence that teams using XP experienced a
higher level of well-being than teams using a design-led approach involved in the
same projects.

Thomson found that the link between changes as reported by developers and those
made to the code was not strong for any teams whatever the method – suggesting that
changes occur in the high level design not necessarily in volume – perhaps supporting
the use of refactoring [17].

The research on the role of personality and XP performance and compliance has
been taken further by Karn and Cowling [9-14]. This work has looked at conflict in
teams, how conflicts were resolved, the amount of discussion and openness exhibited
by individuals in teams etc. Personality characteristics were also examined using a
standard personality test and some conclusions drawn from this about the sort of

 Seven Years of XP - 50 Customers, 100 Projects and 500 Programmers 111

combinations of personalities that made good XP teams, [9]. Where there were
problems it was often caused by developers having very different levels of experience
and where the more experienced members resented helping the others. This was a
major problem with some pair programming activities.

Fig. 4. The influence of the number of XP practices adopted and the quality of the final product
taken from [24]

7 Conclusions

There has been a lot of research into whether agile developments actually deliver what
is claimed. In particular some of the practices discussed above have been considered to
see if they work. In many cases the detailed experiments involve students carrying out
tasks in a laboratory setting. Unfortunately these experiments often lack credibility in
the sense that it is not possible to generalise their finding to real industrial settings – in
other words the results lack external validity. Secondly, by taking the individual prac-
tices and considering them in isolation from the other practices may also fail to provide
evidence for the benefits of XP and other ‘complete’ agile methodologies.

Over the past seven years we have gained a lot of experience of using XP in real
commercial development projects. In some cases we have been able to run
comparative experiments – pitching XP against a design led approach; using test first
against test last and so on. We have seen how personalities affect the outcomes of
projects, what parts of XP don’t work well without some extra development and how
it is possible to run a company on an agile basis when the staff turnover is also
extreme (everyone leaves together in June and new teams arrive in October!).

112 M. Holcombe and C. Thomson

References

1. Syed-Abdullah, S., Holcombe, M., Gheorge, M.: Practice Makes Perfect. In: Marchesi, M.,
Succi, G. (eds.) XP 2003. LNCS, vol. 2675. Springer, Heidelberg (2003)

2. Syed-Abdullah, S., Holcombe, M., Gheorge, M.: The Impact of an Agile Methodology on
the Well Being of Development Teams. Empirical Software Engineering 11(1), 143–167
(2006)

3. Holcombe, M., Thomson, C.: 20 Years of Teaching and 7 Years of Research: Research
When You Teach SEEFM 2007 SEERC, Thessaloniki, Greece (2007)

4. Holcombe, M.: Running an Agile development Project. Wiley, Chichester (2008)
5. Janzen, D., Saiedian, H.: Test-driven development concepts, taxonomy, and future direc-

tion. Computer 38, 43–50 (2005)
6. Macías, F., Holcombe, M., Gheorghe, M.: A Formal Experiment Comparing Extreme Pro-

gramming with Traditional Software Construction. In: The Proceedings of the Fourth
Mexican International Conference on Computer Science (ENC 2003), Tlaxcala, México,
September 8-12, 2003, pp. 73–80 (2003)

7. Nawrocki, J., Wojciechowski, A.: European Software Control and Metrics (Escom),
(2001),
http://www2.umassd.edu/SWPI/xp/pairprogramming/Nawrocki.pdf

8. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case for pair
programming. IEEE Software 17, 19–25 (2000)

9. Karn, J.S., Cowling, A.J.: An Initial Observational Study of the Effects of Personality
Type on Software Engineering Teams. In: The Proceedings of the 8th International Con-
ference on Empirical Assessment in Software Engineering (EASE 2004), Edinburgh, pp.
155–165 (2004)

10. Karn, J.S., Cowling, A.J.: A Study into the Effect of Disruptions on the Performance of
Software Engineering Teams. In: The Proceedings of the 4th International Symposium on
Empirical Software Engineering (ISESE 2005), Noosaheads, Australia, November 17-18,
2005, pp. 417–427 (2005)

11. Karn, J.S., Cowling, A.J.: Using Ethnographic Methods to Carry Out Human Factors Re-
search in Software Engineering. In: The Proceedings of the Measuring Behavior, Wagen-
ingen, Holland, pp. 505–508 (2005)

12. Karn, J.S., Cowling, A.J.: A Follow Up Study of the Effect of Disruptions on the Perform-
ance of Software Engineering Teams. In: Proceedings of the 5th International Symposium
on Empirical Software Engineering (ISESE 2006), Rio de Janeiro, September 21-22
(2006)

13. Karn, J.S., Cowling, A.J.: Using Ethnographic Methods to Carry Out Human Factors Re-
search in Software Engineering. Journal of Behavior Research Methods (in press)

14. Karn, J.S., Cowling, A.J., Holcombe, M., Syed-Abdullah, S., Gheorghe, M.: The Positive
Effect of the XP Methodology. In: Baumeister, H., Marchesi, M., Holcombe, M. (eds.) XP
2005. LNCS, vol. 3556, pp. 218–222. Springer, Heidelberg (2005)

15. Muller, M., Tichy, W.: Case study: extreme programming in a university environment. In:
Software Engineering, ICSE 2001. Proceedings of the 23rd International Conference
(2001)

16. Muller, M., Hagner, O.: Experiment about test-first programming. Software, IEE Proceed-
ings- [see also Software Engineering, IEE Proceedings] 149, 131–136 (2002)

17. Thomson, C.: Defining and Describing Change Events in Software Development Projects,
PhD Thesis, University of Sheffield, UK (2007)

 Seven Years of XP - 50 Customers, 100 Projects and 500 Programmers 113

18. Thomson, C., Holcombe, M.: Applying XP ideas formally: The story card and extreme X-
machines. In: Drandis, D., Tigka, K. (eds.) 1st South-East European Workshop on Formal
Methods, pp. 57–71. South-East European Research Centre, Thessaloniki, Greece (2003)

19. Thomson, C., Holcombe, M.: Using a formal method to model software design in XP pro-
jects. Annals of Mathematics, Computing and Teleinformatics 1(3) (2006)

20. Williams, L., Kessler, R.R., Cunningham, W., Jeffries, R.: Strengthening the case for pair
programming. IEEE Software 17, 19–25 (2000)

21. [hacknot2004] http://www.hacknot.info/hacknot/action/showEntry?eid=50 (18/12/07)
22. Siniaalto, M., Abrahamsson, P.: Does test-driven development improve program code?

Alarming results from a comparative case study. In: CEE-SET 2007, the Central and East-
European Conference on Software Engineering Techniques (2007)

23. Janzen, D.: An Empirical Evaluation of the Impact of Test-Driven Development on Soft-
ware Quality. Thesis, University of Kansas (2006)

24. Syed-Abdullah, S.L.: Empirical study of Extreme Programming. PhD thesis, University of
Sheffield (2005)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 114–126, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Applying XP to an Agile–Inexperienced
Software Development Team

Liana Silva, Célio Santana, Fernando Rocha, Maíra Paschoalino, Gabriel Falconieri,
Lúcio Ribeiro, Renata Medeiros, Sérgio Soares, and Cristine Gusmão

Department of Computing and Systems – University of Pernambuco
R. Benfica, n. 455 – 50.720-001 – Recife – PE – Brazil

{lsos,cas,fafr,mpf,grff,lr,rwm,sergio,cristine}@dsc.upe.br
http://www.dsc.upe.br

Abstract. Agile Methods are becoming each day a more and more frequently
used alternative among software developing organizations producing high-
quality products in real-world projects. Despite this growth in industry, few
academic institutions provide courses related to this new software development
approach. This paper describes an initiative of introducing agile method
concepts through a Master’s Degree course where the students had not
experienced XP before. In spite of being MSc students they had previous
software development background in industry environment. In this work we
present how the issues found over the process may and have been handled as
well as the benefits found; how the XP practices have been adapted and applied
in a project with time, personnel, and skill constraints and what hindered some
principles from being fully effective. We also present real results and open
problems for further studies from this experience. The study used a real-life
application taken from a need of a real software development company.

Keywords: Agile Methods, XP-Inexperienced, Adaptation, Teaching.

1 Introduction

In the last years, Agile Software Development has been successfully adopted by
Companies in different market segments like Airlines Companies [1], Banking [2]
and Railways [3], Universities [4,5], Research Institutes [6,7,8], and Government
Agencies [9]. Many agile methods like Scrum [10], XP [11], Crystal [12], and Lean
[13] are now used in worldwide organizations.

However, most of the undergraduate, graduate, and post-graduate courses still use
traditional methods to teach software engineering. Usually, the software engineering
courses are based on tools, heavy documentation, follow a previous plan, and use
waterfall-based lifecycles when one project is assigned to the students.

There are many worldwide initiatives using Extreme Programming as the main
approach in academic courses that show the students how agile methods work. We
can find these initiatives in several countries, like in Brazil [5], Germany [4], New
Zealand [14], and USA [15]. Academic initiatives to evaluate new methods and
techniques are very important, since experimentation in industrial environment is
extremely expensive, and therefore, more difficult.

 Applying XP to an Agile–Inexperienced Software Development Team 115

Following this line, a Software Engineering course in a Master’s program has been
oriented to perform agile software development approach. The course consisted in
working on a project employing the agile practices as much as possible to develop a
real-life application. It is important to mention that despite being Master’s students at
the moment, the team came from the software development industry, which implies in
experienced software developers, but with no experience in agile techniques.

The proposal context is a real software development project where agile practices
were introduced to the developers in theoretical classes of a Software Engineering
course. The results also show lessons learned from this process. Besides this
introduction section, there are six other sections. Section 2 shows how the course has
been organized, what project has been chosen, and how it was planned to be executed.
Section 3 explains how the restrictions have influenced throughout the development
and outcome of the project. The XP practices that have been used and how these
practices have been adjusted to the project are presented in Section 4. The problems
occurred during the development and what was the impact on the process and the
results achieved are indicated in Section 5. Section 6 aims to present the lessons
learned from the whole project and the course. Finally, Section 7 brings the
conclusions of this work.

2 The Study Context

This section shows how the MSc course has been organized, the project that has been
chosen, and the execution planning.

2.1 Methodology

The course had two goals: the first was to introduce the concepts of agile software
development to the students using Extreme Programming as a method to conduct a
project. Working on a real-life application development using agile practices as much
as possible can provide more realistic information than performing a theoretical study.
The second goal consists in evaluating if a team having few experience in agile
techniques could apply some of them in a real project.

To reach the goals mentioned above, the study was conducted in two phases. The
first definition was to analyze the course with the purpose of teaching in the context
of M.Sc. students. At the end of the course the students would prepare a workshop to
discuss the final results.

The second definition was to analyze the course with the purpose of evaluating the
effectiveness of the experience from the faculties’ point of view. This particular result
should be used as data to improve the course for the next semesters.

2.2 The Course

The course lasted one semester and contained a total of 60 hours of classes, distributed
in 4 hours a week. It was divided in two parts. The first one, which lasted about 12
hours, was supposed to present the main points of agile methodologies by reading
specific papers and discussing them. The second part, which was supposed to last about
48 hours, was dedicated to apply the agile practices to the software development, based

116 L. Silva et al.

on what the students have learned on the previous classes. However, as the students
worked from home, more than 48 hours were employed to do the job.

On the first 12 hours the course provided fundamentals of Agile Software
Development and the students had to present workshops about them. These workshops
were used to train the students on the following techniques: XP [11], Scrum [10], Test
Driven Development (TDD) [16] and Refactoring [17]. After the workshops were
presented, the students chose one real-life application and Extreme Programming as a
methodology to develop the system that would solve it.

The next phase was dedicated to the project development, which is more detailed in
the next section. At the end of the project, the students presented a workshop showing
the status and conclusions of the project, pointing out problems, enhancing the lesson
learned, constraints and, last but not least, the positive aspects of the project.

2.3 The Project

The project consisted in developing a system to automate tests cases generation from
use cases entries on a web environment. The software requirements were given by a
real software development company that had the need for such a tool, but no
resources to develop it. The main goal of it was to save time on creating test cases. As
advantage, the tests personnel could be assigned to other tasks like increasing test
coverage, for example.

The development was divided into components, which represent use cases as follows:

• Project record: responsible to keep the project registration;
• Requirement record: responsible to keep the project requirements;
• Actor record: responsible for the actors registration of each use case in the

system;
• Field record: responsible for the I/O fields registration of each use case;
• General flow record: responsible for general flow registration that may be

applied to many use cases;
• Use case record: most important functionality of the system, where all the

other previous modules are related. It is responsible to keep the use case
registration of each project;

• Test case generation: responsible for the automatic test cases generation from
the selection of use cases.

The project development lasted three months and was divided into a planning
phase and five iterations according to the schedule described on Table 1.

Table 1. Macro Schedule

Planning 23/Aug/07 to 30/Aug/07
Iteration 01 04/Sep/07 to 13/Sep/07
Iteration 02 18/Sep/07 to 04/Oct/07
Iteration 03 09/Oct/07 to 25/Oct/07
Iteration 04 30/Oct/07 to 15/Nov/07

Iteration 05 (Final) 20/Nov/07 to 29/Nov/07

 Applying XP to an Agile–Inexperienced Software Development Team 117

The planning took three classes (6 hours) to be completed and defined roles, scope
of the project, estimation of how long the iterations would last, practices to be used,
deadlines, technology, and the writing of the first stories was performed, defining the
main stories and the planning of the first iteration.

The first iteration was shorter than the others with two weeks because it was used
to provide background information to the members who had little knowledge about
the technology. This iteration was also used for one of the programming pairs to try
coding some stories and provide background knowledge about the possible problems
and the size of the project, and also fix few technology issues.

The iterations 2, 3 and 4 were used to code and plan the next iteration. At the end
of each one, a release with valuable software was delivered.

The last iteration was supposed to cover some possible delays. Since the project
had both scope and deadline set, some sort of safeness was supposed to be provided
by this short iteration, if needed. This practice is known as “Slack” in [19].

The infrastructure used in the project was the university laboratories and free tools
that were required. A configuration and a database server were created by the students
and their services were available on the internet. The work in laboratories was not
mandatory and the students could work remotely. The developed software was cutting-
edge, using technologies as Java 1.5, JSP & Servlets, Eclipse, Ant, Subversion, MySql
and Mantis.

2.4 The Team

The team was composed by seven students and two faculties. The students have been
organized in three programming pairs and it was necessary to assign a special role for
one student: the Libero [5] The Libero was supposed to support the programmers
creating the product web screens and continuously test the releases that were being
delivered, contributing to refactoring, improvements and representing the client since
the student on this role worked in the company which actually demanded the software.

The faculties initially assumed the role of clients, but they were exchanged by real
users of the system before the beginning of the project development and they assumed
the chicken [10] role. The faculties were inexperienced in the practice of agile
software development and, among the students, only one had more solid experiences
with XP. This particular student volunteered to be the coach and tracker of the
project, but since that the team was small and inexperienced in both technology and
methodology, the team decided to keep him on the programming role and follow the
project without coach, tracker, and specific tester roles.

The details of the project status were frequently posted at the project’s wiki Page
(http://engsw-mestrado-2007.pbwiki.com/). The documents are in Portuguese at the
moment because this was the real communication channel used by the team on the
project.

3 Project Constraints

Conventional practices usually focus on commercial environment where the work load
is usually up until forty hours a week and sometimes more. In spite of some non-agile

118 L. Silva et al.

environments have attributes similar to agile ones, such as the work environment
structured according to the project to be executed, the skilled team, customer and
process to be handled, agile environments focus on team work where everyone may
play different roles. The academic environment, where the project started at, stressed
out some restrictions that directly influenced not only the project results, but the way to
be and actually was executed as well. The most important constraints are explained as
follows.

3.1 Development Environment

University laboratories were used for the pair programming as well as the domestic
environment for the remote work. Using the university facilities were perhaps of the
most dangerous constraint in the beginning of the project, since some privileges
access and network securities were not in charge of the students.

3.2 Workload

It has been determined that the project should be worked on four hours a week, which
is equivalent to the Software Engineering course defined working hours. This has
been scheduled for the whole project (planning, coding, and testing – although testing
has not been devoted much attention to). The fixed fourteen weeks, four hours a week
actually would result in about 48 hours of work to complete the project, however,
more work than these hours were delivered by the team.

3.3 Customer Involvement

The clients, initially represented by the Software Engineering faculties, were not
present in every moment of the project. Thus, the rest of the team itself had been in
charge of all project’s re-planning like: scope redefinition, deadlines, and costs. The
final users here represented by two employees from a private IT company which
could potentially be a client to use the system, have made the validation at the end of
each iteration but they were not present on the project development either.

3.4 Leadership

The professors acted as project supervisors together with one of the members from
the development team who had a more XP practical experience. Thus, there has
definitely been no coach role developed by any one on this project.

3.5 Team

Most of the members of the team did not have full domain of the used technology for
the project development and agile methods experience either. As this project did not
take place in a corporative environment, it was not possible to hire skilled personnel
for all necessary training. Thus, each member was responsible for his/her own
required learning.

The number of people in the team was also restricted to seven, since that was all
enrolled to the course. Other problem was the pairing. The pairs for the programming

 Applying XP to an Agile–Inexperienced Software Development Team 119

were set in a way that they could work together, even though one was a very skilled
programmer and the other not so experienced.

The small number of students also brings to the team the issue of lack of roles.
Some of them very important, like coach and trackers, could clearly have its absence
noticed.

3.6 Tracking

Once again, since the team was not expert on the methodology, it was not possible to
have a well defined tracking system for the project development training. This
constraint has drawn some modifications on the original XP features which will be
detailed on the next section.

4 XP Practices

Some of the agile practices have been successfully adopted and used throughout the
project; while others were neglected due to some specific reason detailed below and
still few remaining ones have only been partially used. Here are our findings:

• Pair Programming – This practice has been partially followed. In spite of initial
planning has defined that the team was supposed to be divided in pairs as it should
be, the practice has been corrupted. Two out of three pairs have decided to switch
the programmer pair in some times of the iterations in a matter of sparing each
other from getting tired or addicted to doing the work and perhaps not watching
the activity or watching out for errors. That way, both of the workers could play
the role of watching the programming and not just programming itself. The pairs
have also remote and/or individually worked. Due to local infrastructure issues
and restrictions explained on the previous section, all the members came to
finding best to work individually in some days. It was needed to set the
environment at their homes and work remotely; hence the pairs were working
separately from each other. This practice has been adjusted according to the
working pace of the project. Considering the project was not being done in
industry and there were a lot of factors interfering on the pairs working together
the whole time, it was known that this practice would be affected. However, the
pairs communicated as much as possible when they were working remotely from
home, which, stimulated to reach the objectives of the practice.

• Sustainable Pace – This practice consists on the team keeping a feasible working
pace, enough to complete the projects with no delays. It has not been followed
thoroughly though. The idea was to work on the project the defined hours of the
classes in a week, which was four hours. One of the pairs has worked around
fifteen hours a week during the last three iterations while the other two pairs have
been idle on the same period though. On the previous weeks, the two mentioned
pairs were working around six to eight hours a week. This discrepancy was due to
the dependency between the stories. One pair was in charge of a story and another
pair could not start another story until that first one is ready. The extreme long
time to finish one story by the first pair and not let the work continue was because

120 L. Silva et al.

the pair decided to remodel the whole code structure too on the same iteration and
they had to integrate the changes. As there was no coach and the two faculties did
not watch out for this hold up, the pace has been compromised. The team did not
find itself in a muddle; it was rather stuck and idle, with no one to manage the
situation and re-address activities. The team did what they thought it was best for
their tasks on the iteration and did not worry about the others. It is known that in
XP one may have more freedom on working regarding process, but that does not
mean the people can do whatever they want to. This is another evidence of the
inexperience of the team on the methodology.

• Refactoring – This practice is about remaking the code in order to improve it by
removing redundancy, eliminating unused functionalities, adapting it to patterns or
even trying to make the software work in an acceptable way. Refactoring
throughout the entire project life-cycle saves time and increases quality [18]. Here,
it was practiced in three iterations:

o On the second one to standardize the screens;
o On the third one to make the database stand for multi-connections and;
o On the one before the last one, to place the entities in the project pattern

determined by this database change.
In fact, of course refactoring helped on the code perspective. It is known that this is

not an only XP practice, but rather much of a general development good practice.
• Planning Game – A project starts with a short exploratory phase in which the

customer expresses the requirements [5] and the development team helps creating
stories to fulfill a release plan detailing which story should be implemented in
each iteration. This practice has been partially accomplished. The requirements
were defined by a real client, a company which had the need of implementing the
system but did not have enough resource to do it.. So the team learned the
requirements from the customer and created an idea. Then the planning began.
The idea was broadcasted to all and the whole team participated on the creation of
the stories which turned into iterations. The planning of each iteration was
performed by the whole team. Each programming pair chose the stories to
implement based on dependency between one another. On the Planning Game, a
brainstorming happened so that the meaning of each story to be developed was
clear. It was not possible to implement a tracking system to monitor the
development of the stories because of the lack of experience of the team on the
practice. The faculties did not become available for this. Even with the possibility
to use methods such as Story Points or Pair-Hours [11], the team did not find itself
in a homogeneous pace to work with desired production estimates.

• Stories – They work as use cases but are distinct from long requirements. They are
more closely to user scenarios detailing only enough to build a reasonable low risk
estimate, but not restricted to user interface implementation. This practice has been
almost all accomplished. Stories were created during the Planning Game and well
understood by the team. The stories together with one another are supposed to result
on the system desired. One small detail that has been modified and probably did not
influence in the job was that the stories have been kept in a wiki repository created
by the team and not manipulated in story cards as recommended. That way, they

 Applying XP to an Agile–Inexperienced Software Development Team 121

were still pretty visible to all. Another interesting thing to be pointed out is that user
stories may be used to create acceptance tests for using in the end of the
development as checklist.

• Short Iterations – The development team is supposed to deliver small releases
instead of big amounts of codes at a time. Whatever is planned to every iteration
should be completed with the ones next to it. On the current project, this has been
performed. The iterations lasted three weeks and all of them have generated
functional software versions with new functionalities, even if they have not
completely met the scope, they were delivered with observations to be followed
on the next iteration. This was considered a good practice. The workers have a
short deadline and are forced to be productive most of the time. In a traditional
methodology development software process, the deadlines for the developers are
too far and it is common to see them starting working on a pace and finishing
working extra time. Here, with a tight date, it was necessary to watch the results at
the end of each day and have a better and closer monitoring of their own activities,
which helped on a more stable and smooth kind of a work.

• Face to face Communication – XP requires direct communication among all
members and this may be a limitation. This has been partially used; only when
everyone was at the same site (lab). As previously mentioned, a considerable part
of the project has been developed remotely, hindering this practice from being
effectively performed. The course schedule used to be twice a week and that was
the time the students really had to attend the classes. They did not belong to the
academic activities or board that made them stay at the university for longer time.
Other Masters activities were usually performed by their local jobs, homes or
whatsoever. However, the team did not face serious issues on communication.
With all resources available such as instant messaging, email, mobile and Voip
technology, the team was always communicating and exchanging information
during the development. This would have been completely different if this project
had been executed in industry. As the workers were supposed to be paid for
working on a project like this, in industry, they would spend most of the hours of
their days at the office working on it. Thus, face to face communication would
definitely not be a problem.

• Collective Code Ownership – This topic indicates that the code created by a
programming pair may be modified by any other pair. Or still that it is shared and
owned by all. Everyone is able to edit it and see the changes made by others. But
it still remains as a unique code. The project had its configuration management
based on Subversion tool (SVN). Thus, the code was available to all the
programmers. This actually helped the workers, in a way that if a pair had
changed something in a specific class or whatever part of the code and tried to
upload it through the tool to attach it to the rest of the code when some other
worker had checked it out, a warning would pop up and let know somebody else is
working on it. The changes may and probably will affect the code if that warning
is ignored, since the other worker is currently working on the same code, so this
practice must be taken a closer look.

• Coding Standards – It indicates that the developers must agree on a common set of
rules enforcing how the system shall be coded. This turns the understanding easier
and helps on producing a consistent code. Java was the chosen programming
language for coding. Aside of that, the team did not gathered to discuss a common

122 L. Silva et al.

pattern. However, maybe for a regional reason when everyone is used to program
in a way or maybe just luck, there was not any problem found regarding this issue
and the coding was pretty homogeneous.

As the team was mostly inexperienced with the methodology, there was a strong
desire to follow the XP practices rigorously. However, this was not possible and the
team learned about the rule “Fix XP When It Breaks”, which was to adapt the practice
trying to be developed to the project’s restriction. The rules must follow until the
team has changed them [18]. The team wanted to adapt to the changes and it is
important to point out that, maybe, some adaptation may have gone to a different path
from agility. For instance, the face to face communication is a great impact practice
on the project and as it could not be followed, the workers adapted it to the way they
thought it was best. And this might have been not agile, in spite of the communication
has been kept or tried through other ways.

5 Achieved Results

On this section, the problems found throughout the project execution are described as
well as the achieved results in the end of it and how they have been handled.

5.1 Problems

In the beginning of the course, the first iteration has been planned and then the first
problem of the whole project was detected: the lack of infrastructure. The team did
not have its own laboratory, sometimes needed to share the lab with other students
and the environment configuration had some limitations and also took some time to
be set every time that would use a different computer. Hence, this problem resulted in
a schedule delay.

Another problem was the lack of knowledge in the development methodology.
None of the professors had the necessary knowledge in the used methodology and this
caused some management failures. Since the only person with some insight in XP
could not assume the coach role, the project had no real management and this factor
contributed to the project delay.

The lack of familiarity with the used technology on the development was another
identified problem. Then, an inconsistent plan was resulted, since it was not possible to
exactly determine the timing of each activity and this led to failures on the project
chronogram. To minimize this difficulty, a whole iteration was needed to provide
training on the technology. However many other serious failures emerged, for instance,
in the beginning the team had little idea about the size and effort of the project and this
led the team to break the sustainable pace to deliver the releases in time.

Still another problem found was the dependency among functionalities, which
hindered some pairs from working simultaneously. Then, some pairs were not able to
finish their tasks waiting for other pairs to finish a required functionality. Besides, the
code needed refactoring for small fixes, to fix a problem in the user access on
the application that was not identified at the beginning. This activity consumed one of
the pairs a lot. Hence, the development needed to hold until the refactoring was
finished.

 Applying XP to an Agile–Inexperienced Software Development Team 123

The interaction between the programmers has been affected throughout the project,
since not everyone was able to keep regular face-to-face meetings. The solution found
when the geographic distance became an issue was having virtual meetings. This
strategy was not fully effective because there was not enough infrastructure at the
residence of the programmers to keep the iteration close to a real one. Often these
virtual meetings were ineffective because the people who had knowledge about the
problem were not available at the moment of these virtual meetings.

The course schedule used as time reserved to develop the Project – four weekly
hours – was below the necessary for the desired scope and available schedule. In fact
one project where both scope and deadlines are set, agile loses its main advantage,
which is embracing changes.

Even with one of the pairs working about fifteen hours a week, which is almost
four times more than the general available time, the team knew that the initial scope
was not going to be reached at the end. Hence, the team decided to reduce the scope
during the development process in order to be able to delivery some product in the
end of the course.

Finally, the motivation of the team was strongly influenced by activities outside the
project, as other courses from the Masters. Not everyone had full time available to the
Masters course. This lack of motivation can be pointed as one of the main causes of
the project failure. One particular factor that had considerably discouraged the team
work was that after a heavy loaded iteration and concluded stories, the job was still
behind schedule and there was still need of refactoring. Then, it was detected that the
project would not successfully reach its end in time and the team needed to keep the
work pace.

5.2 Results

Goldman [5] states that the best way to learn XP is putting it in practice in some
active project. Hence, a Masters Course tries to teach their students this modern
technology by letting them manage themselves in a development of a project. This
forced the students to apply some XP activities, as defining stories based on the idea
of the product, planning the development of each iteration and working with a
metaphor or part of it in every release.

Even with the difficulties, some XP practices could be well handled and observed
such as the pair programming, stories and the planning game. Considering that not
everyone in the team had worked with the idea of programming in pair before, they
had the opportunity to exchange experience between themselves in a beneficial way.
At the end, all the programmers agreed that working in pairs was more productive.
Unfortunately it was not possible to measure how much better the productivity has
been improved, how good the mutual help was or how much of the bug finding
happened when the pairs were working together because the entire development
process was using this methodology.

The stories and the planning game were executed at the very beginning of the
process. The stories were defined and the team decided who would integrate the
release of that iteration. But what was most visible was that even with more than forty
percent of the project already implemented (final of third iteration), everyone knew
that it was not going to be possible to conclude the whole project with success in

124 L. Silva et al.

time. This reflects that everyone in team had knowledge about the entire project size
and development.

In spite of the expectation to finish the project according to the scope and planned
deadlines, the modules were not all fully developed. Test case generation, Field
Record and part of Use Case Record modules have remained pendent. This scope
reduction was caused by the lack of experience of the team in not previously realizing
that the plan was way larger than what could possibly be accomplished in the defined
schedule and size of the team.

The study conducted by the faculties finished inconclusive because other factors
such as infrastructure and lack of technical knowledge would be a bias if they were
not considered, once they had strong influence in the final result of the project.

6 Lessons Learned

Some lessons could be observed during the project development as follows:

• Infrastructure – One needs to be built before project starts. Kent Beck [11] says
that some months before XP team starts a project, they need to create a reasonable
environment so that the team can work with a good productivity pace. On this
particular project, the poor infrastructure took precious hours of the process and
has helped on not delivering the complete project in the end.

• Technical Skills – The technical skills of the team must be evaluated before
planning the project. This issue was considered one of the main reasons for the
team not to complete the project with success.

• Planning – The lack of experience of the team in the technology and in the
methodology took to a mistaken planning at first. Also the lack of a tracker to
estimate and measure productivity led to uncontrolled empiric means, which,
though, did not avoid the delays on delivering stories, dependency in one another
and consequently, an incomplete project delivery.

• Pair Programming – It may work better when the pairs have a nice understanding
of the system and technology. It was shown to be more productive when a pair
with its most experienced member watching and the less experienced one
programming because every mistake used to be observed right away and
instructed to correct it.

• Extreme Programming – Considering every listed difficulty, the methodology has
shown to be very useful in three special aspects: the first one shall be the learning
of the team who did not have previous knowledge in the practice and the learning
process has been accelerated with the pair programming. The second aspect to be
considered is the visibility that XP provided throughout the development, even
with no traceability the team was aware of the delays. The last one is how close
the stories were from one another as well as the system functionalities, and how
the metaphor could leave abstraction and reach a lower level which was the
stories.

• Course – The team has realized that even with all the drawbacks in using XP, its
teaching exclusively inside the classroom with exposing lectures is not recommended
as the best way to teach Software Engineering course focused on Agile Methods.

 Applying XP to an Agile–Inexperienced Software Development Team 125

According to Goldman [5], the best way to understand how the method works is to
work on a project as closest as possible from agility.

7 Conclusion

A new way of system development has been proposed with the rise of agile methodology.
The idea to bring this knowledge to post-graduate students is important and reasonable
and has been accomplished throughout a project that was proposed to be resolved using
agile practices.

Due to some factors that came in the way during the course development, the
project has not been entirely concluded in time and not every Extreme Programming
practice has been able to be used by the team. The students then learned about “Fix
XP When It Breaks” rule, where they changed agile practices that did not fit,
adjusting them to the project’s specifications.

However, there was a clever perception by every member of the staff that XP
brings a different view with its practices and the experience has been considered a
good and valid one to be adopted in other contexts as well. The particularities,
differences from ordinary methods and limitations that characterize this methodology
certainly seal agility rules and space in Software Engineering.

It has been considered of great value the feedback related to the course and that the
teaching must continue considering observations and suggestions pointed out in this
particular course. The experience of teaching Agile Methods is also considered
important in this process and the learning process needs to be done differently from
the conventional way with boards and students in a classroom everyday hearing how
the practices work from the teachers and not living it themselves.

References

1. Gary, H.A.: Sabre takes extreme measures. Computer World (March 2004) (1995), http://
www.computerworld.com/softwaretopics/software/story/0,10801,916
46,00.html

2. Perguliano, B.: eXtreme Programming applied: a case in the private banking domain. In:
Proceedings of OOP, Munich (2003),
http://www.quinary.com/pagine/downloads/files/Resources/OOP200
3Paper.pdf

3. Anderson, J., Bache, G., Sutton, P.: XP with acceptance-test driven development: A
rewrite project for a resource optimization system. In: Marchesi, M., Succi, G. (eds.) XP
2003. LNCS, vol. 2675, pp. 180–188. Springer, Heidelberg (2003)

4. Miller, A.R.: Extreme Programming in a university project. In: Eckstein, J., Baumeister,
H. (eds.) XP 2004. LNCS, vol. 3092, pp. 312–315. Springer, Heidelberg (2004)

5. Goldman, A., Kon, F., Silva, P.J.S.: Being Exteme in the ClassRoom: Experiences
Teaching XP. Journal of the Brazilian Computer Society 10(2), 1–17 (2004)

6. Fuqua, A.M., Hammer, J.M.: Embracing change: An XP experience report. In: Marchesi,
M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675, pp. 298–306. Springer, Heidelberg (2003)

7. Manarro, K., Melis, M., Marchesi, M.: Empirical analysis on the satisfaction of it
employees comparing xp practices with other software development methodologies. In:
Marchesi, M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675, pp. 166–174. Springer,
Heidelberg (2003)

126 L. Silva et al.

8. Pelrine, J.: Modelling infection scenarios – a fixed-price eXtreme programming success
story. In: ACM OOPSLA Companion Proceedings, pp. 23–24. ACM Press, New York
(2000)

9. Santana, C., Gusmão, C., Vasconcelos, A., Timóteo, A.: Implantação de um Processo de
Estimativas de Tempo Utilizando Pontos por Estória em uma Instituição Pública. In: First
Workshop on Rapid Application Development, Ninth Brazilian Symposium of Software
Quality (2007)

10. Schwaber, K., Beedle, M.: Agile Software Development with SCRUM. Prentice-Hall,
Englewood Cliffs (2001)

11. Beck, K.: Extreme Programming Explained – Embrace Change. Addison-Wesley, Reading
(2000)

12. Cockburn, A.: Agile Software Development. Addison-Wesley, Reading (2002)
13. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.

Addison-Wesley, Reading (2003)
14. Mugridge, R., MacDonald, B., Roop, P., Tempero, E.: Five Challenges in Teaching XP.

In: Marchesi, M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675, pp. 1013–1021. Springer,
Heidelberg (2003)

15. Kessler, R., Dykman, N.: Integrating traditional and agile processes in the classroom. In:
Technical Symposium on Computer Science Education Proceedings of the 38th SIGCSE
technical symposium on Computer science education, vol. 39(1), pp. 312–316 (2007)

16. Beck, K.: Test Driven Development by Example. Addison-Wesley, Reading (2002)
17. Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D.: Refactoring: Improving the

Design of Existing Code. Addison-Wesley, Reading (1999)
18. Extreme Programming, http://www.extremeprogramming.org
19. Beck, K.: Extreme Programming Explained – Embrace Change, 2nd edn. Addison-

Wesley, Reading (2004)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 127–136, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Investigating the Usefulness of Pair-Programming in a
Mature Agile Team

Irina Diana Coman, Alberto Sillitti, and Giancarlo Succi

Free University of Bozen-Bolzano, Center for Applied Software Engineering,
Piazza Domenicani 3, 39100 Bolzano, Italy

{IrinaDiana.Coman,Alberto.Sillitti,Giancarlo.Succi}@unibz.it

Abstract. Pair-programming (PP) is one of the key practices of Agile Methods
and there are various claims regarding its benefits. However, the empirical
evidence to sustain these claims is insufficient, often coming from studies with
students as participants. Moreover, the results are sometimes contradictory.
Nevertheless, there are already mature agile teams that currently use PP, pairing
on an “as needed” basis. We investigate the dynamics of the pairing process in a
mature Agile team to understand when practitioners consider PP useful and to
compare this with the claimed benefits of PP. In this paper we present the
results of a 3 months study of PP in an Agile team of 16 developers.

Keywords: Pair-programming, PP, XP, Agile Methods.

1 Introduction

Pair-programming (PP) is a programming technique that requires two programmers to
work together at solving a development task while sharing the monitor, the keyboard,
and the mouse [9]. PP has received significant attention and interest, partially due to
the increased adoption of eXtreme Programming (XP) [2], in which PP is one of the
key practices.

There are many studies that investigate the potential benefits and pitfalls of pair-
programming. The main claims are that PP improves productivity [6], [7], the quality
of the solution [5], and job satisfaction [5]. Moreover, it reduces the time needed for
task completion [3], [5], it is particularly useful in complex tasks [10], and it is useful
for training [4]. A detailed review of the studies on PP is beyond the scope of this
paper, but we refer to the work of Hulkko and Abrahamsson [4], which contains such
a review for works on PP (excluding those focusing on educational aspects of PP) up
to June 2004.

Nevertheless, the previously stated claims regarding PP are not supported by all
empirical evidence. For instance, some studies have found that there is no significant
difference between development time for XP groups working in pairs and working
alone [7] or between quality for code produced by pairs and by solo programmers [4].

In this paper, we propose a new approach to understanding in what cases the pair
programming is useful. We propose to study the occurrence of PP in teams that
already have a vast experience with this practice and use it on an “as needed” basis.
Thus, we can understand when skilled practitioners perceive PP useful.

128 I.D. Coman, A. Sillitti, and G. Succi

In this paper, we explore this approach by studying the occurrence of pair programming
in a mature Agile team of 16 developers over approximately 3 months. We investigate
whether PP occurs more in training situations and whether there are variations in the
amount of PP during various iterations or parts of the iteration.

The paper is organized as follows: section 2 introduces the related work; section 3
and subsections present our study; sections 4 and 5 present and discuss the results;
section 6 describes the limitation of our study; finally, section 7 draws the conclusion
and introduces future work.

2 Related Work

Although there are many studies on PP, few of them report the amount of PP that
takes place in a team. Hulkko and Abrahamsson [4] have monitored 4 projects (3 of
them commercial) lasting 8 weeks each. The development teams considered were
made of master students, research scientists, and practitioners. The developers had no
previous experience with PP and the practice was not occurring entirely on an “as
needed” basis.

The study in [4] reports that the percentage of PP is quite similar for the various
projects during the first three iterations and showed different trends starting with the
fourth iteration. Moreover, the effort spent in PP is the highest in the first iterations of
the project and in the last iteration.

Hullko and Abrahamsson [4] also interviewed the members of the teams in order to
find out the “rationale for pair-programming”. They report that the developers
considered PP most useful for learning and for solving complex tasks.

Cockburn and Williams present in [11] the results of the usage of PP in a web
programming class at the University of Utah. They report that the students had
minimal questions for the teaching staff and that a survey revealed that 74% of the
students wrote “between my partner and me, we could figure everything out”.
Moreover, in their study, 84% of the students agreed that they learned faster and
better because of always working with a partner.

McDowell et al. [12] present a study on approximately 600 students attending a
university course. They report that the students that used PP scored better on
programming assignments and had higher course completion rates. A comparison of
the equal percentages of pairing and non-pairing students that attempted the class
revealed higher scores in the final for the pairing students. Thus, they conclude that
PP is useful for learning.

Williams et al. [13] present the results of a survey administered to professional
software developers. Based on 30 responses, they report the average values for
assimilation (12 days with pairing vs. 27 days without pairing) and for mentoring of
new team members (26% of day with pairing vs. 37% of day without pairing).

3 The Study

The goal of our study is to investigate the way in which PP occurs in a mature Agile
team to identify the cases when developers perceive it useful. We investigate the

 Investigating the Usefulness of Pair-Programming in a Mature Agile Team 129

trends of PP in this team and the claim that PP is useful for knowledge transfer
between developers. To this end, we collect data on the time spent by developers at
their computer working alone and in pairs.

3.1 Environment

Our study takes place in a large Italian company (that prefers to remain anonymous).
The study spanned a period of 84 days (approximately 3 months), out of which 59
working days. Initially, the team was composed of 14 developers but 2 more joined
the team, at the beginning of the second month of our study.

The developers are all Italians with ages between 30 and 40 years. They all hold
university degrees in computer-related areas and have from 10 to 15 years of programming
experience.

The team works on several projects, mainly in C#. They are an Agile team, using a
customized version of XP. In particular, they use weekly iterations, PP, user stories,
and the test-first approach. They use PP on an “as needed” basis. The team has been
using XP for more than two years previously to our study. The members of the team
were not aware of the actual purpose of our study.

The working space of the team consists in an open space, where each member has
her own personal space. Therefore, informal communication between the developers
is easily possible.

3.2 Data

For our study, we collected data on all the activities of developers at their computers,
regardless of the software that they were using, by means of a non-intrusive data
collection tool, PROM [1]. The data have granularity of 1 second and consist in a
timestamp, the name of the currently focused window (for all software applications)
or the name of the current method, class, and file (for code accessed in the usual IDE),
and the name of the currently used software application.

When PP occurs, the developers start a small user interface and enter the names of
the members of the team. This user interface runs in the background during PP.
Developers can stop it manually whenever they finish the PP session.

Thus, we collect extended information on the software application they use, the
locations they access, and the composition of the pairs for PP.

The developers had several months of experience with the data collection tool and
the interface for PP previous to our study.

To address the privacy concerns inherent to the use of these kinds of data
collection tools, we first explain in detail how the tool works and what data it collects;
than, we ensure that each person (including upper management people) has access
only to her own data and to an aggregated summary of the data of all developers in
the team. Moreover, the participation in the study is on a voluntary basis. Developers
are also allowed to look at anytime at the data collected on their own machine and
decide if the data can be sent to the central database or if they have to be deleted.

Although the developers were allowed to suspend their data collection at any given
time, all 16 developers collected data throughout all the study.

130 I.D. Coman, A. Sillitti, and G. Succi

The conditions described above are needed to protect the privacy of the developers
and to ensure their collaboration. We address the possible impacts of these conditions
on our study in section 6.

4 Results

The total time spent by each developer at the computer is on average 6.84 hours a day
with a median of 7.58 hours. We have data for all developers during all days when
they are present. However, not all of them are present during all the working days.
Therefore, the number of days for which we have data varies for each developer.

Regarding PP, there are days when all the developers programmed alone. The
average number of days when a developer PP is 10.44 and the mean is 10.5 days. On
average, a developer PP for 2.83 hours a day, with a median of 2.24 hours (not
considering days in which they program only alone).

Percentage of PP. For the analysis on the trends in PP, we discard the data of the two
newcomers and consider only the data from the 14 veteran members of the team. We
do this mainly because we consider the two newcomers, during their first month of
work, not being representative of the team and because they are not present at the
beginning of the study.

The veteran members of the team do PP on average for 2.75 hours a day each, with
a median of 2.16 hours. On average, each veteran member of the team does PP for
10.21 days (median of 9.5 days). In the days when developers do PP, they spend on
average 47.81% (median 43.48%) of their time in doing it.

To understand possible trends in the amount of PP, we investigate whether there are
significant differences between the beginning and the end of iteration (weekly iterations
in this case). Usually, the team spends the Mondays for non-coding activities, including
stand-up meeting, planning of the iteration, and design. Therefore, there is no PP and we
focus only on the remaining of the week (and thus of the iteration).

We consider PP on Tuesdays and Wednesdays as PP at the beginning of the
iteration (group 1) and PP on Thursdays and Fridays as PP at the end of the iteration
(group 2) and we compute the amount of time spent in PP for each day and each
developer. We are interested in finding out whether there is a significant difference
between the amount of PP in the team during the beginning and the end of the
iteration, and not in the amount of PP of each individual developer. Therefore, we
compute for each week and each group the average time spent in PP. Thus, we have
the average time spent by a developer in PP at the beginning and the end of the
iteration. While the averages of the two groups are slightly different (14.65% of time
is spent in PP at the beginning of the iteration and 15.17% at the end of the iteration),
a Welch t-test (to account for possible different standard deviations of the two groups)
does not offer evidence for rejecting the null hypothesis (p=0.923). Thus, we do not
have enough evidence to consider significant the difference between the average
percent of time spent in PP at the beginning and the end of the iteration.

Considering iterations as a whole, the percentage of PP seems to vary from one
week to another. The average percentage of PP during various iterations varies from 0
to 26.26% with an average of 14.53% and a median of 12.81%. At present, we do not
have enough data to investigate possible trends in this variation.

 Investigating the Usefulness of Pair-Programming in a Mature Agile Team 131

The percentage of total PP of the veteran members of the team during various
iterations varies from 0 to 26.58% with an average of 14.53% and a median of
12.81%. Fig. 1 shows such values for the different iterations: there are no clear
general trends and the values vary quite a lot from one iteration to another.

Fig. 1. Total percentage of PP (only veteran members considered) during each iteration

PP for training. There are claims that PP is an efficient way of training. To investigate
whether developers themselves perceive PP as needed in situations when training
through a transfer of knowledge is needed, we investigate PP of developers that are new
to the team compared to PP of developers that are veteran members of the team.

We consider the developers new to the team as newcomers during their first month in
the team. We expect that after this month, they have already acquired enough
knowledge so that there is no need anymore for a massive knowledge transfer between
developers. Therefore, we focus on comparing the average amount of PP of
the newcomers during their first month to the average amount of PP of veterans during
the same month. We also compare the average amount of PP of the newcomers after the
first month with the average amount of PP of the veterans in the same period of time.

We compute for each day and each developer the amount of time spent in PP as a
percentage of the time spent at the computer that day. Then, we compute for each day
and for each of the two groups (newcomers and veterans) the average percentage of PP
(Table 1). On average, the newcomers do PP during their first month for 74.33% of their
time and for 29.31% during their second month. On average, the veterans do PP during
the same first month for 52.68% of their time and for 43.55% during the second month.

132 I.D. Coman, A. Sillitti, and G. Succi

Table 1. Average PP of a veteran and a newcomer developer during the first and second month

Group Avg. PP of a developer in the first
month

Avg. PP of a developer in the
second month

Newcomers 74.33% 29.31%
Veterans 52.68% 43.55%

To investigate whether the difference between the means is statistically significant,

we compare the means of the two groups during the first month and during the second
month. Fig. 2 shows the average percentage of daily PP per user during the first
month of the newcomers, while Fig. 3 shows the same data collected after the first
month. During their first month, newcomers seem to do PP more (except for one day)
than the veterans. During the second month, neither the newcomers, nor the veterans
do PP constantly more.

In both cases, we perform a Welch t-test (to account for possible different standard
deviations of the two groups). During the first month, there is a statistically significant
difference (at 0.05 level of significance) between the average percentage of PP for the
newcomers and the average percentage of PP for the veterans (p = 0.01). During the
second month, we cannot reject the null hypothesis, thus there is no evidence of a
statistically significant difference anymore between the newcomers and the veterans
during the second month (p = 0.1359).

Fig. 2. Average percentage of daily PP for a developer during the first month of the newcomers

 Investigating the Usefulness of Pair-Programming in a Mature Agile Team 133

Fig. 3. Average percentage of daily PP for a developer during the second month of the
newcomers

5 Discussion

Percentage of PP. During all the iterations, the overall percentage of PP is lower than
30% (Fig. 1). This suggests that developers do not use PP very often. Moreover, the
percentage of PP for each developer during each day (Fig. 2 and Fig. 3), reveals that
there are days when developers do not use PP at all. This has a clear influence on the
overall low value of PP for the entire team.

Although the developers do not use PP every day, the percentage of PP during the
days when it is used is quite high for each developer (Fig. 2 and Fig. 3). These values
are closer to those reported in [141], although constantly lower. However, in [141],
PP was imposed during some parts of the development, thus the percentage of PP is
expected to be higher. Moreover, the members of the team in our study constantly
spend about 20% of their time on email and other communication activities at their
computer. Obviously, such activities are done alone.

The actual amount of PP varies quite much in the various iterations but without
showing any clear trend. Moreover, there are also iterations during which the overall
percentage of PP is extremely low (less than 5%). We cannot relate these variations
between iterations with stages of a project to compare our results with those in [141],
given that throughout the study, the developers were performing maintenance work
on an existing project. One possible explanation for these variations among iterations
relates to the existing claim that PP is more useful on complex tasks. Thus, if there are
significant differences of complexity between the user stories implemented in each
iteration, PP could be used more during the iterations with more complex user stories

134 I.D. Coman, A. Sillitti, and G. Succi

or where more difficulties have been encountered. However, more investigation into
the actual characteristics of the user stories during each iteration is needed in order to
support or refute this possible cause of variations in amount of PP during iterations.

PP is valuable for training. Our data shows that the newcomers in a team constantly
do PP more during their first month than the veteran members (Fig. 2). The difference
is statistically significant at a 0.05 level of significance. Moreover, after the second
month, there doesn’t seem to be any significant difference between the amount of PP
of the newcomers and that of the veteran developers. A statistical test could not reject
the null hypothesis that the average percentage of PP after the first month is the same
for the newcomers and the veteran developers. Therefore, it seems that the
newcomers indeed use PP more during their first month, when they are practically
training. We conclude that PP is perceived by developers as useful during training.
This adds to the existing body of empirical evidence on the usefulness of PP for
training.

Table 2 summarizes the main findings of our study. The findings are compared
with the existing empirical evidence.

Table 2. Summary of our empirical results

Issue Existing Empirical evidence Findings of the Present
Study

• E v o l u t i o n o f
percentage of PP
dur ing va r ious
iterations of a
project.

• Mainly above 60%.
• Highest during the first

and the last iterations of
a project.

• Ascendant or descendant
trends during the life of a
project.

• Around 60% for veteran
members on the days
w h e n t h e y p a i r
programmed and above
only for newcomers
during their first month.

• Overall constantly below
30%.

• No clear trends.

• E v o l u t i o n o f
percentage of PP
during various stages
of the iteration.

• No evidence • No support to sustain
significant variations of
the percentage of PP
during various stages of
the iteration.

• PP is valuable for
training

• Support from developer
interviews

• Support (p=0.01) that the
newcomers PP more
during their first month
than the veterans.

6 Limitations

The study presents several limitations. The most important ones are listed here below.
To ensure the privacy rights of the participants, they have the possibility of

stopping the data collection at any time, temporary or definitively, without giving any
explanation. Moreover, they can choose not to collect data on specific software tools.

 Investigating the Usefulness of Pair-Programming in a Mature Agile Team 135

These options are available to each of the participants on their own machine and are
transparent to us.

During our study, none of the developers decided to entirely stop the data
collection. This is obvious, since we have data for each developer on each day (when
present at work). Moreover, the developers were interested in the data collection and
in the daily summaries available to them regarding their activities at the computer on
the previous day.

The average total time at the computer for each developer is 6.84 hours per day.
This time does not include the meetings or any other activities that the developers do
without using their computer. Since the developers had several meetings during the
week, we think that 6.85 hours of computer interaction per day, per developer is a
reasonable amount. Moreover, developers stated to us during informal meetings that
they never stopped the data collection.

There is also an internal limitation of the tool that collected data. While the tool is
able to discern for long idle periods at the computer and eliminate them from the total
time recorded (thus, from the data considered in our study), it is not able to discern for
short interruptions (seconds or a few minutes). This type of interactions can be easily
generated since the developers work in a shared environment where informal
communication is common.

The external limitations of our study are related to the limited size (1 team of 16
developers) and to the specificities of our sample. However, our study does not aim at
generalizing from these results, but at adding a new piece of evidence, from a new
angle, and from a real-world industrial setting to the body of empirical evidence on PP.

7 Conclusions and Future Work

The main contribution of this work consists in the empirical results on the usage of PP
in a mature Agile team. We investigated the actual amount of PP performed and its
variations, as well as the support for the claim that PP is useful for training and
knowledge transfer. The empirical results provide actual, quantitative, and concrete
information on the practical usage of PP in industry and add to the body of empirical
evidence regarding PP and claims on its potential benefits. However, more studies are
needed to generalize from the results. As future work, we would like to replicate this
study in other teams.

Our empirical results show support for the claim that PP is useful for training.
However, there are other claims regarding PP benefits, such as improved productivity,
improved quality of solution, reduced task completion time, and usefulness for
complex tasks. As future work, we plan to apply our approach to evaluate these
claims by investigating the actual PP of industry teams and the characteristics of their
tasks and code.

Moreover, we consider as future work the investigation of the trends in the PP in
industry teams over a more extended time frame and the relations between such trends
and various stages of the projects.

136 I.D. Coman, A. Sillitti, and G. Succi

Acknowledgements

We would like to thank the developers involved in this study for their participation
and availability and Prof. Enrico Di Bella of the University of Genoa (Italy) for his
suggestions about the statistical analysis of the data.

References

1. Sillitti, A., Janes, A., Succi, G.: Collecting, Integrating and Analyzing Software Metrics
and Personal Software Process Data. In: Proc. Of EUROMICRO (2003)

2. Beck, K.: Extreme Programming Explained. Addison-Wesley, Reading (1999)
3. Nosek, J.T.: The Case for Collaborative Programming. Communications of the ACM 41,

105–108 (1998)
4. Hulkko, H., Abrahamsson, P.: A Multiple Case Study on the Impact of Pair Programming

on Product Quality. In: Proc. Of ICSE, pp. 495–504 (2005)
5. Williams, L., Kessler, R., Cunningham, W., Jeffries, R.: Strengthening the Case for Pair

Programming. IEEE Software 17, 19–25 (2000)
6. Lui, K.M., Chan, C.C.K.: When Does a Pair Outperform Two Individuals? In: Proc. Of XP

(2003)
7. Nawrocki, J., Wojciechowski, A.: Experimental Evaluation of Pair Programming. In: Proc.

Of ESCM (2001)
8. Williams, L., Shukla, A., Anton, A.I.: An Initial Exploration of the Relationship Between

Pair Programming and Brook’s Law. In: Proc. Of Agile Development Conference (2004)
9. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. Addison-

Wesley, Reading (2005)
10. Arisholm, E., Gallis, H., Dyba, T., Sjoberg, D.I.K.: Evaluating Pair Programming with

Respect to System Complexity and Programmer Expertise. IEEE Transactions on Software
Engineering 33(2) (2007)

11. Cockburn, A., Williams, L.: The Costs and Benefits of Pair Programming. In: Proc. Of XP
2000 (2000)

12. McDowell, C., Werner, L., Bullock, H., Fernald, J.: The Effects of Pair-Programming on
Performance in an Introductory Programming Course. In: Proc. Of SIGSE technical
symposium on Computer science education, pp. 38–42 (2002)

13. Williams, L., Shukla, A., Anton, A.I.: An Initial Exploration of the Relationship Between
Pair Programming and Brooks’ Law. In: Proc. Of Agile Development Conference (2004)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 137–146, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Just Enough Structure at the Edge of Chaos:
Agile Information System Development in Practice

Karlheinz Kautz1 and Sabine Zumpe2

1 Copenhagen Business School, Department of Informatics, Howitzvej 60, DK-2000
Frederiksberg, Denmark & University of New South Wales, School of Information Systems,

Technology & Management, Sydney NSW 2052, Australia
Karl.Kautz@cbs.dk

2 The University of Queensland, UQ Business School, Business Information Systems,
Brisbane QLD 4072, Australia

S.Zumpe@business.uq.edu.au

Abstract. Agile information systems development is not well understood and
suffers from a lack of sustainable theories, which are based on empirical research of
practice. We use a framework that focuses on the ‘edge of chaos’ as the area, where
agile information systems development takes place to fill in this gap. Our study
identifies for a concrete project under investigation, where the beneficial balance
between stability and instability lies. It discusses the circumstances, which influence
this balance and the relationships of the elements, which constitute it.

Keywords: Edge of chaos, complex adaptive systems theory.

1 Introduction

The field of information systems development (ISD) is still not well understood and
suffers from a lack of sustainable theories which are firmly based on empirical research of
ISD practice [1]. This is also true for agile information systems development or, to use the
more established term, agile software development (ASD1). The concept ASD serves as
an umbrella for a number of pragmatic approaches which have emerged out of a critique
of traditional, document driven development approaches [3]. ASD is guided by 4 values,
which are contrasted with 4 other, competing values, namely (1) individuals and
interactions over processes and tools (2) working software over comprehensive documen-
tation (3) customer collaboration over contract negotiation and (4) responding to change
over following a plan.

What this however means more concrete in practice and how it relates to a
theoretical understanding of ASD as well as to ISD in general has only to a limited
extent been systematically investigated and reported beyond text book descriptions
and stories often provided by the authors of the methods themselves. The research

1 The abbreviation ASD as used in this article should not be confounded with the same

abbreviation, which Highsmith [2] uses for his agile development method called Adapative
Software Development.

138 K. Kautz and S. Zumpe

presented in this paper contributes to further filling in this gap by providing an
independent study based on scientifically collected and analysed empirical data.

For this purpose, understanding ISD as a complex adaptive system (CAS), it utilises
a framework first introduced by Wang & Vidgen [3] that focuses on the investigation of
the ‘edge of chaos’ in such a system as the area where ASD takes place.

The paper is structured as follows: The next section contains the theoretical
framework, which is applied in our research. Section 3 includes both a brief description
of our research approach and the case setting which built the background for our study.
Section 4 analyses the collected data by applying the theoretical lens and presents our
findings. The last section concludes and summarises the paper.

2 Theoretical Background and Framework

Some authors of ASD methods ([4], [5]) put forward that ASD has a theoretical
grounding, namely in complex adaptive systems (CAS) theory. However, research
([6], [7], [8], [9]) has shown that this claim is largely a post-rationalization: the theory
is, if at all, used in a very relaxed way to justify what is done in practice.
Consequently the large amount of literature available on ASD is of anecdotal and
descriptive character. While these are useful reports, they do not provide any deeper
analysis or theoretical underpinning for a thorough understanding of ASD.

Fig. 1. The edge of chaos (Wang & Vidgen [3])

 Just Enough Structure at the Edge of Chaos: Agile ISD in Practice 139

CAS theory, however, can be an insightful grounding for understanding complex
systems such as ISD endeavours in general and ASD projects in particular. The key
concept in CAS is the poise at ‘the edge of chaos’. Wang & Vidgen [3] use this
concept and provide a conceptual framework to study ASD as structured chaos. In
their framework the edge of chaos is characterised by both being at the same time
stable and unstable [10], it is the part of a system, which never quite locks into place,
yet never quite dissolves into turbulence [11], it is the place, which provides
organisations with both the stimulation and freedom to experiment and to adapt and
with the sufficient frameworks and structures to avoid disorderly disintegration [12].
This gives them a competitive advantage: systems that are driven to the edge of chaos
out-compete those which are not ([13], [14]). Thus, it is the place where the really
interesting behaviour occurs [3]. Two critical boundaries demarcate the edge as the
area of having ‘just enough structure’. For the eight values, which direct ASD, this
means: too much structure leads to bureaucracy with too rigid process and rules, too
much documentation, too much emphasis on contracts and their negotiation, and too
much focus on following the project plans; on the other hand, too little structure leads
to chaos with too loose, if at all defined processes and rules, too much emphasis on
working software, too much focus on collaboration, and too much response to change
requests. Agility and agile processes lie some where in between, they are neither static
nor chaotic. Figure 1 presents the framework and visualises these relations.

In the following we will use the framework to analyse a large ASD project. In
doing so, we want to show in an independent study that the framework is useful. At
the same time we want to contribute to the small, but growing existing body of
scholarly research on ASD in practice. Before doing so, we introduce our research
approach and the case setting.

3 The Research Approach and Case Setting

The research presented in this paper is qualitative. It is based on an empirical case
study of an ASD project in a large German public sector organization, called
WaterWorks, performed by a German software company, called AgDev, which has
specialised on ASD. The empirical data for the case study was collected in semi-
structured, open-ended interviews, which were conducted by a team of two
researchers in a three days period. The research team performed 12 interviews with
11 individuals - the AgDev project manager was interviewed twice. This included
nearly a third of the development team and a representative sample of key players and
future users in the customer organisation. The interviews were tape-recorded and
subsequently transcribed. For the qualitative data analysis a software tool (NVIVO7)
was used. The interview data was supplemented with company and project documents
such as method, requirements and release descriptions, as well as project plans.

The data collection, the coding of the data and the data analysis have been guided
by the eight values underlying ASD and a theoretical framework developed and
applied earlier by [15] to provide a better understanding of ISD in practice. This
framework distinguishes between a structuralist, an individualist and an interactive
process perspective, which together provide a holistic understanding of ISD projects.
For the purpose of this paper we have used the structuralist perspective consisting of

140 K. Kautz and S. Zumpe

the information system under development, the formalised method to be used (if any),
the structural characteristics of the involved development team and its members, as
well as the project’s structural context, to identify the structural profile of the
investigated project. This perspective helps us to structure the description of the case
setting, which is summarized in table 1:

The project under investigation was concerned with the development of an
operations management system (OMS) for the WaterWorks of a large German city.
Founded 150 years ago the organization is now partially privatised with the city
council holding 50.1% of the ownership. The system was developed with a web-based
graphical user interface and a backend to interface the technical infrastructure as
defined by an underlying ERP system.

The project was organized in 4 subprojects to provide IT support ranging from
customer management to the maintenance of the sewer system. After several attempts
of traditional ISD based on a standard ERP system, which had not led to the desired
results, the organization opened a tendering process. It was won by a small software
company, AgDev.

Table 1. The structural Profile of the OMS Project

Information
System

Operations management system (OMS)
with web –based GUI user interface and ERP back end

Formalized
Method

xP:
short releases and iterations of 3-6 months/3-6 weeks
planning games, user stories, story cards, onsite users
pair programming, collective ownership, stand-up meetings
continuous integration, testing, re-factoring

Involved
Development
Team and
Developers

2 overall project managers (1 AgDev, 1 WaterWorks)
AgDev:
up to 12 staff with multiple roles:
project manager, analyst, customer contact, and developer
highly motivated and educated, limited xP experience
4 subproject development leaders also as
customer contacts, analysts, developers with xP experience
WaterWorks:
4 customer subproject leaders also as user representatives
at least 1 additional user representative for each subproject;
not the whole time onsite

Structural
Context

ASD method had been clearly communicated to customer
AgDev: No experience with large ASD projects
WaterWorks: 1. ASD project
project team onsite in a WaterWorks building
general requirements document as basis for contract
failed ERP implementation

AgDev consisted of about 25 employees, 20 of them being developers, and based

its development approach on the agile method xP [16]. The formalized method
includes planning techniques for releases and iterations called planning games, user
stories and story cards to specify user requirements, onsite customers to support
customer-developer communication, daily meetings (stand-up meetings) of the whole

 Just Enough Structure at the Edge of Chaos: Agile ISD in Practice 141

project team to support team communication, pair programming, re-factoring,
collective ownership, continuous integration and testing to develop the software
proper and tuning workshops to improve the development processes regularly. They
have extended the method with some project management processes to cater for larger
projects such an elaborate overall project plan, formal reporting mechanisms and a
formal contract based on a requirements specification produced by the customer. In
the tender process AgDev had convinced the management of WaterWorks that their
approach was viable and would deliver the OMS as requested.

The project was organised in 2 phases. In a first 12 months exploration phase
prototypes catching requirements and possible solutions were developed. This led to
the development of a comprehensive requirements document by the customer
organisation and their decision to contract AgDev also for the development of the
OMS proper.

In this main development phase a team of about 12 development staff with multiple
roles such as project manager, analyst, customer contact, and developer worked onsite
in a building owned by WaterWorks. The project team also consisted of a varying
number of users with at least one representing one of the subprojects. These users were
by and large, however not the whole time onsite as well. A sophisticated management
structure with one subproject manager also acting as contact person from AgDev and
one subproject manager also acting as onsite-customer from WaterWorks for each
individual subproject was, in addition to two overall project managers, established.

The developer team consists largely of highly educated and motivated, young staff
and only the project managers have experience with ISD using an agile method, but
none of them had ever participated in such a large project.

When this study was performed phase one had been successfully closed and after a
break of over a year due to internal politics at WaterWorks phase two had been going on
for 4 months. Responding to an inquiry call during our analysis the AgDev project
manager stated that the project ended 10 months later on time and budget with all parts
of OMS being operational. Despite some challenges (see section 4) from beginning to
end the project was considered a success by all stakeholder groups involved.

The ASD method to be used had been clearly communicated to WaterWorks,
which had been the main reason why AgDev won the tender. The project champion,
an influential member of staff, who did not directly participate in the project team, but
who was involved in most of the important decisions remembered: “They presented a
method, they explain it, and could convince us to get soon user feedback and a
working solution.” Thus it became WaterWorks’ first ASD project and the largest
ASD project for AgDev at that point in time. With this structural profile in mind, we
will now analyse the project in more detail.

4 Analysis and Discussion

The eight values are not just related to each others in pairs, but are highly interrelated.
Processes and tools f. ex. beyond individuals and interactions, are also related to
working software, customer collaboration, and responding to change; and individuals
and interactions are also related to comprehensive documentation, contract negotiations
and following a plan. Due to the space limitations we will in the following stick to the

142 K. Kautz and S. Zumpe

pairing of values as put forward by the promoters of the agile manifesto to structure the
presentation of our analysis and discussion and we will only use selected aspects of each
value to demonstrate the usefulness of the ‘edge of chaos’ framework.

4.1 Individuals and Interaction over Processes and Tools

xP provides quite a number of processes and tools such as short releases and iterations,
planning games, user stories, story cards, onsite users, pair programming, collective
ownership, and stand-up meetings to structure ASD. In the OMS project pair
programming is a prominent process to support the interaction of the individuals of the
development teams by working in shifting pairs of developers in front of a screen while
implementing the requirements written down as user stories on story cards as executable
code. Two sub-processes or mechanisms here are important: 1) to regularly shift a
partner and 2) to regularly shift possession of the keyboard within a team.

In the project the developers find it difficult to find the appropriate synchronization
points at which to change a partner in the teams of 4 developers. No common
practice exists. However they do not follow an overly bureaucratic rule such as
shifting partner every morning regardless of the status of a story card. To avoid both
too much red tape and too much chaos some developers prefer to stay with a partner
until a card is closed. “… changing a partner was always a problem, it still is as
changing in the middle of a card seems foolish to me and I don’t really like doing it
…” says one developer.

This of course can lead to limited interaction, spread of knowledge and dead ends.
Thus, although some uncertainty regarding the mandate exists, a subproject leader
might intervene if a pair has worked together for too long, say 3 days. In doing so, a
balance, ‘just enough structure’ is created between shifting too often and not shifting
at all.

The developers started out with a practice which did not really support the
objectives of interaction, namely that one developer exclusively held the keyboard
and programmed, while the other watched and sometimes commented. To avoid such
situations a process was introduced where using a stopwatch after 20 minutes the
keyboard had to switch. This was however abandoned as too bureaucratic and not
fruitful in a creative work environment. The teams found their own rhythm. “We
don’t do that anymore. It didn’t function. Well, now it also functions without any
explicit rule.” was how one developer commented the emerged practice.

This has also been the case with stand-up meetings. They are performed by all
teams together everyday before lunch with the purpose to keep everyone up to date
with the current status of the project and to exchange useful information. These
sessions originally were quite detailed and long, but they have been refined and were
then acknowledged as very helpful. One AgDev subproject manager describes: “In
the beginning we did this all together, but we found out that it can become too much,
as some are doing something that is not of interest for other teams. But it is good to
know what others do. It does not have to be in detail. And that is what the teams do
now, all teams, but we keep it short.”

Other intensive interaction takes place in the beginning of each iteration, where all
story cards are jointly discussed. Despite the fact that these mechanisms can not
totally provide the intended collective ownership as the project leader regrets and

 Just Enough Structure at the Edge of Chaos: Agile ISD in Practice 143

explains with the size of the teams, they apparently provide enough structure for the
project to be successful: they keep the project teams informed and decrease the need
for documentation, a topic which will be discussed in the next subsection.

4.2 Working Software over Comprehensive Documentation

In the OMS project working software is the measure of progress. Each iteration
produces operational software, but also minor advancements are demonstrated to the
customers. The WaterWorks project manager stated: “… I have never experienced a
project that could generate output so fast.” and continues “The major benefit is that
we do not work so abstract, but rather focus on the real thing.” One of his subproject
managers adds to this “ … this way we have seen that we are on the right way, as we
can use 95% of what has been developed this way, and just the last 5% we have to do
something with again … ”. This is confirmed by one developer by saying “Yes that
functioned well, we made all 3 weeks a short presentation of the running software.”
and another one extended this: “ …we got very quick feedback when we showed what
we had done.” Thus, the short feedback cycles provide the necessary structure for the
development of the working software. On the other hand, structure is also provided
through documents.

Quite a number of different documents exist, but they are all comparably short and
concise. From a customer perspective these are related as follows: “Well, we have the
overall realization concept as the basis for the contract and as a refinement hereof
the requirements lists. These lists govern what should be the outcome of an iteration.
For me this is the basis for my acceptance test: has been achieved what is on the list?
And on the level below there are the story cards, these, so to speak, represent the
detailed specifications and plans for the developers’ process.” The developers share
this perception and confirm that the documents, both in length and in number, are
adequate. One of them says: “Absolutely sufficient” and is acceded by a colleague: “I
flipped through the realization document in the beginning and never touched it
afterwards … the requirements change anyway every 2. week.”

The developers, however, also admit that they need and produce further internal
documents, fragments of functional and technical specifications, in the form of an
open Wikipedia and that there is a necessity to interact with the customers as part of
their collaboration to clarify the contents of story cards. Together with these measures
the utilized documents afford the balance between too little and too much structure.

4.3 Customer Collaboration over Contract Negotiation

Customer collaboration in the OMS project comes in different ways. It takes the form
of onsite customers and users, as well as telephone contact and email correspondence,
especially to clarify requirements as specified on story cards. The planning games, the
presentations of working software and the acceptance tests are as well crucial
elements, which structure the collaboration.

The planning games are partly based on the overall realization concept, a document
which was produced by the customer as a basis for the contract. Another foundation
of the planning game are the requirements lists. These are largely produced by
AgDev, both their project leader and some of the subproject leaders, who also work as

144 K. Kautz and S. Zumpe

contact persons for their counterparts at WaterWorks and as developers. They develop
these documents with input from the onsite customers. The story cards are solemnly
produced by the developers in team work sessions, where they also estimate them.
The developers and the customers then together prioritise these cards.

This can be considered a quite limited form of customer collaboration, however, as
one subproject leader expressed it, there can be a number of reasons for this: “Here
we have users, who have to take their working gloves off before they go to the
keyboard … in contrast to projects I’ve been involved in before, where the customers
were wearing ties, here the subproject leaders are partly folks, who have done
something quite different before, they have a different education and that becomes
apparent with regard to their abstraction capabilities and their abilities to write down
some texts.” However, this form of customer collaboration apparently provides some
of the necessary structure to cope with the complexities of a comparatively large ASD
project, which was performed by quite a number of inexperienced staff, while leaving
room for less structured collaboration as well.

That is to say, when implementing the story cards, it became obvious that some
additional collaboration was needed. One subproject manager estimates that user
contact is necessary for nearly every story card. He puts forward that maybe 60% of a
card’s contents is clear. When no user is onsite available the communication process
is as follows: “Certain users want to be contacted by phone to be reached straight
away, while others prefer to get their requests via email, but answer timely.”

The overall collaborative spirit of the project showing that the limited customer
collaboration was not replaced by formal contracts and negotiations is also expressed by
the project champion, who after having been involved in the original contract
negotiations states: “ … we decided not to be tough on change requests and back-up
formalities, but rather to work constructively with them to make progress. And my good
feelings have been confirmed.” The AgDev project leader confirms this and describes
the context of requirement changes: “The customer is quite relaxed. In such situations
they look where they can cut expenses planned for other requirements or we discuss if
we can make the implementation simpler to meet the budget planned.”

The balance between stability and instability is brought about by different kinds of
customer collaboration and by acknowledging, but not privileging the important role
of contract negotiations, which also extends to the handling of change requests, which
brings us to the last 2 values.

4.4 Responding to Change over Following a Plan

As described above, in the OMS project change, especially change of requirements is
an accepted fact of life. Many change requests are detected through the scheduled
acceptance test sessions for an iteration with a customer representative onsite and are
then dealt with in the next iteration. The customer representatives also regularly
perform ‘road shows’ in the user departments to collect feedback and ideas and
proposals for improvements.

But change requests are also brought forward by the users on a shorter time scale.
There are weekly and bi-weekly feedback loops built into an iteration. The AgDev
project manager explains: “And then after a week the customer rep is back and wants
to see what happened during the week and he gets the first feedback and this then

 Just Enough Structure at the Edge of Chaos: Agile ISD in Practice 145

continues … .” They have the following consequence: “ … often we show the
customer rep something once a week and then he’s going ‘well, I thought this would
be different’ … thus there are always small changes … “ as one developer puts it.

These frequent feedback loops also have the effect that minor misunderstandings are
caught and dealt with as changes early before they can grow into something larger, as
the same developer explains “Until now it has not happened that everything was totally
wrong; there are of course some refinements or a bug is found or something similar.
There is always something.” The feedback is taken seriously and immediately
responded to with action: “Through the feedback we got, we could react directly … .“
as it is described by one developer.

The different feedback mechanisms provide some structure to handle the changes,
but plans and planning although not impeding more spontaneous actions are playing an
important role as well. Even the weekly sessions are to some extent planned, as are of
course the acceptance tests. As one WaterWorks subproject leader relating to the size
and complexity of the project says “Planning is essential in such kind of projects.”

Therefore, the project also has an overall long term plan covering an 14 months
period anticipating 3-6 releases depending on the subprojects. A more fine-grained plan
is developed for the individual iterations, which make up a release detailed to single
weeks. The planning game and the story cards then offer the devices to perform
planning on the most detailed level for very short periods of time. The frequent planning
sessions embedded in a ‘larger’ and coarser plan together with the different means to
handle change provide just enough structure for the project to move forwards.

5 Conclusions

We have applied Wang & Vidgen’s [3] framework to give a detailed description and
analysis of how the edge of chaos provides just enough structure to perform a successful
ASD project in practice. The framework takes both the preferred, and the less preferred
values of the founders of the agile development movement into account. It shows that
they are not opposites, but fundamental and interconnected elements, which, when
balanced appropriately, present the ground for successful ISD endeavors. This balance
will be different for different projects and more such studies are needed to identify
common patterns, if there are any, beyond what has been found in this research.

Our study also shows how the 4 pairs of values are interrelated and how an analysis of
these relationships provides a richer picture of practice as a prerequisite for understanding
it and for building a sustainable theory of ASD and ISD.

References

1. Kautz, K.: The Enactment of Methodology – The Case of Developing a MultiMedia
Information System. In: Proceedings of ICIS 2004, Washington, D.C., USA, December
12-15 (2004)

2. Highsmith, J.: Adaptive Software Development – A Collaborative Approach to Managing
Complex Systems. Dorset House Publishing, New York (1999)

146 K. Kautz and S. Zumpe

3. Wang, X., Vidgen, R.: Order and Chaos in Software Development: A Comparison of two
Software Development Teams in a major Company. In: Proceedings of the 15th ECIS, St.
Gallen, Switzerland, June 7-9 (2007)

4. Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley, Boston (2002)
5. Highsmith, J., Cockburn, A.: Agile Software Development: the Business of Innovation.

Computer 34(9), 120–122 (2001)
6. Kalermo, J., Rissanen, J.: Agile Software Development in Theory and Practice, M.Sc.

Thesis in Information Systems Science. University of Jyväskylä, Finland (2002)
7. Turk, D.R., France, R., Rumpe, B.: Limitations of Agile Software Processes. In: Third

International Conference on eXtreme Programming and Agile Processes in Software
Engineering, Alghero, Sardinia, Italy (2002)

8. Conboy, K., Fitzgerald, B.: Toward a Conceptual Framework of Agile Methods. In: Zannier, C.,
Erdogmus, H., Lindstrom, L. (eds.) XP/Agile Universe 2004. LNCS, vol. 3134, pp. 105–116.
Springer, Heidelberg (2004)

9. Vidgen, R., Wang, X.: Organizing for Agility: a Complex Adaptive Systems Perspective
on Agile Software Development Process. In: Proceedings of the 14th ECIS, Göteborg,
Sweden, June 12-14 (2006)

10. Stacey, R.D.: Strategic Management and Organisational Dynamics: The Challenge of
Complexity, 4th edn. Prentice-Hall, London (2003)

11. Waldrop, M.M.: Complexity: The Emerging Science at the Edge of Chaos. Penguin
Books, London (1994)

12. McMillan, E.: Complexity, Organizations and Change. Taylor & Francis Group, London,
Routledge (2004)

13. Anderson, P.: Complexity Theory and Organization Science. Organization Science: A
Journal of the Institute of Management Sciences 10(3), 216–232 (1999)

14. Kauffman, S.: At Home in the Universe: The Search for Laws of Self-Organization and
Complexity. Oxford University Press, New York (1995)

15. Madsen, S., Kautz, K., Vidgen, R.: A framework for understanding how a unique and local
IS development method emerges in practice. European Journal of Information
Systems 15(2), 225–238 (2006)

16. Beck, K., Andreas, C.: Extreme Programming Explained: Embrace Change, 2nd edn.
Addison Wesley Professional, Boston, Mass. (2004)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 147–160, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Preliminary Conceptual Model for Exploring Global
Agile Teams

Jason H. Sharp1 and Sherry D. Ryan2

1 Department of Computer Information Systems, Tarleton State University
Box T-0170, Stephenville, TX 76402 USA

jsharp@tarleton.edu
2 Department of Information Technology and Decision Sciences, University of North Texas

P.O. Box 305249, Denton, TX 76203 USA
ryans@unt.edu

Abstract. The combination of agile methods and global software development
via virtual teams represents an emerging approach to addressing the challenges
typically associated with software development projects. The prevailing view-
point has been that agile methods are not applicable in global settings. How-
ever, some current research is challenging this assertion. Therefore, we pose the
following research question: How can agile teams be successfully configured in
globally distributed environments? Drawing upon configurational theory, work
group design research, virtualness concepts, and the software agility literature,
the purpose of this paper is to construct a preliminary conceptual model for ex-
ploring three proposed dimensions necessary for successful configuration of
global agile teams: structure, agility, and virtualness. This paper contributes to
the information systems field by providing a starting point towards theory
building in the area of globally distributed agile teams and by suggesting three
dimensions for measuring and characterizing global agile team configuration.

Keywords: Global agile teams, agile methods, global software development,
conceptual model.

1 Introduction

A long-standing challenge in software development has been the completion of pro-
jects on-time, within budget, and suited to the requirements of users. Agile methods,
which represent an emerging set of software development methodologies based on the
concepts of adaptability and flexibility, are currently touted as a way to alleviate these
reoccurring problems and pave the way for the future of development [3].

However, the increasing movement toward global software development and the
formation of virtual teams poses a potential dilemma for organizations who have
adopted agile methods. A fundamental principle underlying agile methods stresses the
necessity for colocated teams in order to facilitate daily, face-to-face interaction be-
tween stakeholders [23]. Within the context of global software development, virtual
teams must rely to varying degrees on technology-mediated communications and in
some cases team members never meet in person [25]. This raises the question of

148 J.H. Sharp and S.D. Ryan

whether it is possible to successfully adopt agile methods for use in global software
development projects. A growing stream of research suggests that, although it is
sometime difficult and takes great care, it is possible [36], [51], [55]. The key is to
modify the agile method to fit the global setting. The concept of tailoring agile prac-
tices to fit the development context has been suggested by others as well [21].

Team configuration in global settings is a complex phenomenon. While it is true
that globally distributed teams encounter many of the same challenges as colocated
teams, these are often exacerbated by physical distance [37]. Thus, the actual configu-
ration of agile teams in globally distributed environments appears to be a significant
area of research that has currently received little attention. Drawing upon configura-
tional theory, work group design research, team virtualness concepts, and the software
agility literature, we propose that it is possible to successfully configure a global agile
development team, but that there are a number of issues that must be well thought-out.
The purpose of this paper is to construct a preliminary conceptual model for exploring
the dimensions involved in the successful configuration of global agile teams. Our
contribution is to highlight key aspects of a global agile team when building a team for
this environment. This is important not only to help academics understand the rela-
tionship among the dimensions of a global software development team, but also to
assist managers in their efforts when constructing these teams. The proposed theoreti-
cal model is the first phase of a multi-phase research program that will investigate agile
software development teams operating in a global distributed environment.

2 Literature Review

This paper reviews multiple streams of literature including agile software develop-
ment methods, global software development, virtual teams, agile methods in distrib-
uted environments, and work group and team design research in its efforts to explore
the configuration of global agile teams

2.1 Agile Software Development Methods

With the volatile nature of business environments, rapidly changing requirements,
emerging technologies, and the traditionally high rates of project failure, the devel-
opment of software in a timely and cost-effective manner which meet the needs of an
organization continues to be a significant concern [5], [19]. One of the current pro-
posed solutions to this challenge has been the creation of agile software development
methods. Highsmith and Cockburn [30] contend that agile methods “view change
from a perspective that mirror today’s turbulent business and technology environ-
ment” (p. 120). The term agile methods grew out of a meeting of scholars and practi-
tioners in 2001 who were interested in establishing common ground among various
development methodologies originating from the 1990s. Initially, agile methods were
called "light-weight methods," to describe ways of producing software in a lighter,
quicker, more people-centered way. However, the Alliance member decided on the
term “agile” rather than “light-weight” because the later might be interpreted as insig-
nificant or trivial. The outcome of this meeting was a statement entitled the “Mani-
festo for Agile Software Development” which summarized the core values as well as
established a set of twelve guiding principles [23].

 A Preliminary Conceptual Model for Exploring Global Agile Teams 149

Agile methods represent a group of methods built upon the concepts of flexibility
and adaptability rather than a single approach to development [3]. Extreme Program-
ming (XP), Scrum, Feature-Driven Development and Adaptive Software Develop-
ment are examples of current agile methodologies. Although numerous agile methods
exist, working code and effective people lie at the heart of all of them. The comple-
tion of projects on time and within budget requires creativity, team work, customer
participation, and continuous feedback, all of which are stressed by agile methods
[30]. To support the claims of its proponents, recent empirical studies have suggested
that agile methods can improve the software development process [1], [2].

2.2 Global Software Development

With the rise in the globalization of business and the advancement of information and
communication technologies, organizations are increasingly adopting global software
development as a strategy to meet the traditional budgetary and time constraints of
software projects. According to Damian and Moitra [16], it is “becoming the norm in
the software industry” (p. 17). Carmel [13] defined global software development as
teams working together to accomplish project goals from different geographic loca-
tions. Many factors are identified which are contributing to this movement. These
factors include: a large, talented global resource pool, proximity to the market, quick
formation of virtual teams, “round the clock” development, cost advantages, and the
need for flexibility [14], [16]. The result is that, “software development is increas-
ingly a multisite, multicultural, globally distributed undertaking” [29, p. 17].

In spite of its potential benefits, as development work becomes increasingly more
virtual and distributed the challenges of working effectively in this environment will
continue to increase as well. Multiple challenges exist including strategic, cultural,
communication, knowledge management, project and process management, geo-
graphic, and technical [8], [29].

2.3 Virtual Teams

Related to the implementation of global software development is the formation of
virtual teams. Almost a decade ago, Townsend, DeMarie, and Hendrickson [54] wrote
of the development of a new workplace that would be “unrestrained by geography,
time, and organizational boundaries”; it would be “a virtual workplace, where produc-
tivity, flexibility, and collaboration will reach unprecedented new levels” (p. 17). This
new virtual workplace would be facilitated by the formation of virtual teams, those
“groups of geographically and/or organizationally dispersed coworkers that are as-
sembled using a combination of telecommunications and information technologies to
accomplish an organizational task” (p. 18). With the advancement of these informa-
tion and communication technologies, significant progress has been made in the utili-
zation of virtual teams. However, the use of collaborative tools that enable virtual
teams is not without problems. Too often, these technologies are viewed as a “cure
all” and inadequate attention is paid to the processes that support the use of these
tools.

The rise of virtual teams parallels the reasons behind interest in global software
development: ever increasing flat or horizontal organizational structures; the need for

150 J.H. Sharp and S.D. Ryan

inter-organizational cooperation and competition; changing expectations of organiza-
tional participation by workers; a shift from production to service/knowledge work
environments; and increasing globalization [54]. Virtual teams share many of the
challenges associated with global software development such as logistics, culture,
technology, and communication [17], [34].

It is important, therefore, to specifically identify the multiple constraints and
factors experienced by both agile and more traditional teams. First, logistical issues
related to the scheduling of meetings, the arrangement of possible travel, taking
advantage of a 24-hour workday, and the act of handing off work from one team
member to another [29], [35], [50]. Second, cultural issues involving challenges in
communication and coordination, language, holiday schedules, and attitudes toward
work in general [35], [41]. Third, communication issues not necessarily related to
cultural settings. Interestingly enough, two studies found that virtual teams actually
communicated more often than colocated teams [20], [24]. Other factors such as rela-
tionship building, coordination, trust, and cohesion are all predicated on effective
communication between team members (e.g., [32], [33], [39], [40]). Finally, technical
issues must be accounted for. As noted by Townsend et al. [54], “the real challenge of
virtual team effectiveness is learning how to work with these new technologies”
(p. 22).

Although global software development and virtual teams constitute two distinct ar-
eas of research, the two are becoming more and more intertwined. With the move
toward global software development by many organizations, the pairing of virtual
teams and globally distributed projects is becoming more common [7], [15], [50].
Virtual teams enable greater organizational flexibility and the ability to respond
quickly to changing global business environments.

2.4 The Use of Agile Methods in Globally Distributed Environments

In line with this move toward global software development and the use of virtual
teams in order to facilitate greater flexibility and adaptability there appears to be a
growing interest in the issue of whether distributed software development as a whole
can be agile [4], [48] and whether or not specific practices such as pairing program-
ming can be effective among globally distributed teams [22]. The debate regarding
the combination of agile and distributed development approaches centers on the sig-
nificant difference in their key tenets. According to Ramesh et al. [48], agile methods
tend to follow more informal processes, while distributed development relies heavily
on formal mechanisms. Consequently, the prevailing viewpoint has been that agile
methods cannot be applied in global software development projects [31].

A further reason contributing to this view is that proponents of agile methods insist
that agile practices must be used in their entirety in order to be effective [21]. One of
the overriding practices is the use of colocated teams and the argument that the “most
efficient and effective method of conveying information to and within a development
team is face-to-face conversation” [23]. Obviously, this poses an immediate problem
to the application of agile methods in globally distributed environments. However, as
mentioned above there is some research that is challenging this assertion (e.g., [36],
[38], [51], [55]).

 A Preliminary Conceptual Model for Exploring Global Agile Teams 151

3 Conceptual Model

Meyer, Tsui, and Hinings [42] defined a configuration to “denote any multidimen-
sional constellation of conceptually distinct characteristics that commonly occur
together” (p. 1175). Simply put, configurations are patterns or characteristics that
describe an entity. Although much work on configurations has been conducted at the
organizational level [43], [44], [45], much less has been done at the group level.
Teams in particular are representative of group level configurations. Therefore, we
pose the following research question: How can agile teams be successfully configured
in globally distributed environments? To address this question we construct a concep-
tual model consisting of three dimensions drawn from the extant literature: team
structure, virtualness, and agility (see Figure 1.).

Challenges

Project
Management

Strategic

CommunicationCultural

Knowledge
Management

Geographic Technical

Fig. 1. Conceptual Model of Global Agile Teams (Adapted from [52])

3.1 Team Structure

Meyer et al. [42] suggested that work group design represents a possible group level
configurational approach [26], [27], [28]. In work group design research, the structural

152 J.H. Sharp and S.D. Ryan

elements play an important role in the effectiveness of the team. Hackman [26] stated,
“it is a fantasy – a tempting and pervasive one, but a fantasy nonetheless – that it is
possible to have great teams without the bother of creating enabling team structures”
(p. 13). Although work group design research addresses teams in general, “the struc-
tural conditions that foster effectiveness of face-to-face teams are just as critical for
virtual teams – but with one caveat: it is much harder to create those conditions in
virtual teams” [26, p. 131]. Unfortunately, the design of the structural characteristics of
virtual teams often appears as if it were only an afterthought [46]. As a dimension of
the proposed conceptual model, team structure includes the sub-dimensions of task
design, core norms of conduct, team composition, and team processes. In sum, Powell
et al. [46] stated, “we believe that investigation of team structure in the virtual envi-
ronment holds significant promise for research and practice because it represents per-
haps the most controllable and influential aspect of virtual team design” (p. 16).

3.1.1 Task Design
Task design deals with the construction of the work itself. Team structure is dependent
on the work performed [47]. According to Powell et al. [46], significant attention has
been paid to the design of virtual team interaction, but much less attention has been
given to the design of the work unit itself. The overall goal of a well constructed design
is to facilitate collective internal work motivation. In order to reach this goal, task de-
sign seeks to provide the team with a meaningful challenge, to allow the team to prac-
tice significant autonomy, and to offer the team regular performance feedback [26].

According to Hackman [26], “the ability to create work that is challenging, com-
plete, and significant – and therefore meaningful to those who carry it out – is one of
the major advantages of designing work for teams” (p. 99). This is important due to
the fact that the division of work across geographically distributed sites represents a
strategic challenge of global software development through the use of virtual teams
[29]. In distributed work, an element of task design is to carefully divide work in such
a way that team members perceive that they are working together on a significant part
of the whole project, rather than an on isolated parts. A second aspect for fostering
collective internal motivation is to provide “team members a large measure of auton-
omy to decide how they will use their human and material resources in carrying out
the work” [26, p. 100]. Ideally, in global software development, the members at each
distributed site would to a large degree work independently while maintaining regular
communication to keep the entire project in focus [29]. It is crucial for those individu-
als chosen for the team to be both independent and self-directing, but at the same time
able work interdependently [54].

Third, collective internal motivation is increased by regular performance feedback.
As noted by Hackman [26] a team cannot evaluate and learn unless it has data about
how it is doing. Subsequently, without learning, there is no improvement. One of the
issues regarding performance feedback in globally distributed teams is their ad hoc
nature. Because virtual teams are often formed for short-term projects, they may be
disbanded before the feedback loop can be completed. Managers and project leaders
should be conscious of providing the needed feedback while the team is in existence.

Task design attempts in some way to address the issues of communication and col-
laboration in distributed work. However, it is often difficult to assess whether or not

 A Preliminary Conceptual Model for Exploring Global Agile Teams 153

team members are truly collaborating in a meaningful way or simply employing a
divide-and-conquer strategy where work is done in isolation and then pieced back
together. From the perspective of the authors, the overall understanding of distributed
work needs further examination and at the moment may not be sufficient to what is
and what is not sufficient in this type of environment, especially when it is global in
nature.

3.1.2 Core Norms
Core norms of conduct indicate the acceptable and unacceptable behaviors of the
team [26]. An important element of virtual team design is the establishment of a
shared set of norms which direct the individual and corporate behavior of members
[49], [54]. During the formation of the team there may be much ambiguity about
member roles, overall goals, and the rules which will govern the actions of the team.
As such, the team leader or project manager will be called upon to begin the process
of defining these areas. It is important that each team member positively internalizes
this set of rules and in essence "buys-in" to their use [49]. Hackman [26] suggested
that not all norms are equal and that primary and secondary norms should be estab-
lished.

Primary norms are fundamental and outward looking. As such, primary norms call
for the team members to “take an active, rather than reactive, stance toward the envi-
ronment in which the team operates, continuously scanning the environment and
inventing or adjusting their strategies accordingly” [26, p. 106]. Primary norms
should establish those things that must “always” be done and those things that must
“never” be done within the team. It is important that these two core norms be deliber-
ately created as a part of the team’s structure.

Secondary norms constitute additional norms that address those behaviors which
the members deem as important enough to regulate. These norms may address such
issues such as punctuality, participation, communication, and conflict management
[26]. In global settings, the establishment of secondary norms may help alleviate
conflicts caused by cultural diversity, language barriers, and communication differ-
ences. In addition common goals and strategies should be established [34], [53].

3.1.3 Team Composition
Team composition addresses the elements of size, mix, interpersonal skills, and task-
related knowledge and skill. Because task-related knowledge and skill is extremely
important most organizations do not err when considering this element. However, it is
common for organizations to make mistakes in regard to the others [26].

Hackman [26] advocated having as few team members as possible to accomplish
the task, in fact, “a team may function better when it has slightly fewer members than
the task actually requires” (p. 118). Hackman cited evidence that while initial produc-
tivity does actually increase as size increases, it eventually levels off, and actually
begins to decrease for very large groups. Determining the size of the team, therefore,
is dependent on the complexity of the task. Powell et al. [46] stated that to their
knowledge no specific study to date has been conducted that explicitly examined
virtual team size as a variable during the team design phase.

According to Hackman [26], “a well-composed team strikes a balance between
having members who are too similar to one another on the one hand and too different

154 J.H. Sharp and S.D. Ryan

on the other” (p. 122). Hackman further cited evidence that there is little proof that
homogenous teams outperform heterogeneous teams. In globally distributed teams it
is reasonable to expect decreased similarity between team members. This is one rea-
son why cultural and communication issues pose such a challenge. It is important for
managers to carefully examine the characteristics of successful virtual teams to in-
form their decision when choosing virtual team members. Currently, little research
has been conducted to examine the personality types which are more amenable to
working in virtual teams. However, one study did examine the personality characteris-
tics of agile software development teams specifically. Balijepally, Mahaptra, and
Nerur [6] cited several personality issues important to the composition of agile teams
such as the ability to work together in creative teams, a willingness to become a gen-
eralist rather than a specialist, and a bent toward collaboration and shared ownership.
Basing their study on the Five-Factor Model of Personality, the authors emphasized
that the personality traits of emotional stability, extraversion, agreeableness, conscien-
tiousness, and openness to experience are helpful measures to explore when assigning
team members to an agile project. Further research in this area may also provide fur-
ther insight when configuring global agile teams.

Ideally, teams should be composed of members who meet a predefined standard
for interpersonal skills, “some people just are not cut out to be team players” [26,
p. 125]. Similarly, Suchan and Hayzak [53] argued that virtual team members must
possess excellent interpersonal and conflict management skills. The importance of
addressing interpersonal skills within the context of team structure cannot be over-
stated. Hackman [26] contends that in an appropriately structured team the number of
interpersonal conflicts will be less than in a team for which the task, norms, and com-
position were given little or no thought.

3.1.4 Team Processes
In regard specifically to global virtual team structure, Prasad and Akhilesh [47] also
suggested that team processes are an important structural element and consist of sev-
eral considerations. The first deals with the mechanism for making decisions. This
authority to make decisions might be centralized or decentralized. It may be more
formal in which decisions lie with the manager or project leader. Or it may less formal
in that the team members are given more control over the decisions that must be made.
The decision-making process dovetails with task design and the autonomy of the team.
The second process addresses the degree of information sharing between the members
of the team and their participation in the long-range planning of projects. The third
process deals with the modes of control and communication and coordination.

As mentioned previously all three of these represent a challenge for globally dis-
tributed teams. Interestingly enough, Holmstrom et al., [31], found that agile practices
appear to actually help reduce the problems of communication, coordination and
control caused by the temporal, geographic, and sociocultural distance engendered in
global software development projects. The mode of dealing with these three issues
may be very systemized, based upon a strict set of procedures and standards on one
extreme or left to the actual team to develop their own mode of achieving the overall
goal and dealing with behaviors and interactions of the team members. Or, the mode
may be somewhere in between, where guidelines as opposed to stringent rules or little
direction. Finally, the last process involves the degree of commonality in work

 A Preliminary Conceptual Model for Exploring Global Agile Teams 155

process and technology infrastructure. This is an important process due to the poten-
tial problems caused by strategic issues such as division of work, time zone differ-
ences, and technological inconsistencies between distributed sites.

3.2 Team Agility

The second dimension of the conceptual model represents team agility which may be
defined as how closely the team aligns with the general values and principles of agile
methods as well as with practices of a specific method. The values and principles are
drawn from the Agile Manifesto [23].

The Agile Manifesto ascribes the following values to agile methods: individuals
and interactions, working software, customer collaboration, and responding to change.
Plan-driven teams, on the other hand, emphasize processes and tools, comprehensive
documentation, contract negotiation, and following a plan [23]. Additionally, twelve
specific principles have been established to guide agile development. These principles
emphasize the need for early and continuous delivery of software, openness to chang-
ing requirements, delivering working software on a frequent basis, strong interaction
between stakeholders, supporting and motivating team members, promoting sustain-
able development, fostering technical excellence, and regular feedback. The practices
are related to the specific agile methods being employed. For example, Extreme Pro-
gramming (XP) is built around twelve specific practices. Proponents of agile methods
have consistently argued that in order for agile methods to be successful and bring the
best benefits, they must be implemented as a whole [9].

However, some research suggests that agile methods can be tailored and that spe-
cific values and practices can be chosen and used with benefit (e.g., [21], [36], [38],
[51], [55]). This tailoring may allow for teams to adhere to fewer values, principles,
and practices and still maintain a high level of agility.

3.3 Team Virtualness

The third dimension of the conceptual model is premised on the concepts of team
“virtualness”. According to Bell and Kozlowski [10] in the same way that traditional,
colocated teams are distinct from virtual, distributed teams, not all virtual teams are
exactly the same either. Virtual teams can be placed on a continuum where one ex-
treme represents the “ideal” type while the opposite extreme represents a type of vir-
tual team that closely resembles a traditional team. The “ideal” type can be defined as
follows: “it is distributed across time, spans numerous functional, organizational, and
cultural boundaries; it is short lived; and is composed of members who each possess
multiple roles in different virtual teams” as opposed to the more “traditional” type
which is “temporally entrained, has less permeable boundaries, has a continuous life-
cycle, and is composed of members who have singular roles” [10, p. 28-29]. This
typology serves to characterize teams as more or less virtual based on the combination
of the characteristics which includes temporal distribution, boundary spanning, lifecy-
cle, and member roles.

Temporal distribution denotes that a virtual team is distributed across time [10].
Virtual team members may be colocated in time, separated by only a few hours, or
separated by many hours. Members may also be temporally synchronized, e.g., lo-
cated in different time zones, but are still working off of the same time reference.

156 J.H. Sharp and S.D. Ryan

Boundary spanning indicates that virtual teams not only cross the boundaries of space
and time, but also functional, organizational, and cultural boundaries as well. Bound-
ary spanning allows virtual teams to exhibit the characteristics of adaptability, flexi-
bility, and responsiveness that are desired by many organizations. Due to their ad hoc,
flexible nature, virtual teams can be formed quickly, but may only be in existence for
a short period of time depending upon the project to which they are assigned. As such,
virtual teams do not follow the traditional life cycle that occurs in traditional teams.
Additionally, depending on the nature of the task, different virtual teams may go
through different life cycle stages than other virtual teams. Lastly, virtual teams pro-
vide for the selection of members from a substantial pool of workers with a diverse
set of skills. Ideally members participate in multiple roles within multiple teams [10].

Based upon these characteristics, the basic argument is that “virtual teams need to
adopt different characteristics to successfully operate within the constraints that are
imposed by the complexity of their collective task” [10, p. 16]. All of these character-
istics are directly affected by the team task, which is one of the reasons it is so impor-
tant to carefully consider its design [26]. With the move toward global software
development, the formation of agile development teams within a globally distributed
environment calls for an alternative and more agile configuration. Although the as-
sumption could be made that as agility increases, virtualness decreases, the constant
advancements being made in the area of information and communication technologies
may allow for globally distributed agile teams to possess a greater degree of both
agility and virtualness.

3.4 Challenges

Based upon a review of the literature, many of the challenges associated with the
individual use of agile methods, global software development, and virtual teams over-
lap and represent possible hindrances to the successful configuration of globally dis-
tributed agile teams. For this reason, the following common or overlapping challenges
have been included in the conceptual model to indicate the potential impact they may
have on successfully configuring globally distributed agile teams. Strategic challenges
may involve deciding how to divide work across distributed sites as well as dealing
with the overall resistance to implementing globally distributed agile teams. The
schedule of work, meeting times, and deadlines as well as the cost of travel between
sites must also be taken into consideration. Because team members are dispersed
across the globe, many cultural challenges exist including differences in language,
attitudes toward work structure, values, conflict management, and competencies.
Related to culture are the communication issues both formal and informal, develop-
ment of mutual knowledge and understanding and the building of relationships, trust,
and cohesion. A given in these teams are the geographic challenges related to dis-
tance, time zone differences, coordination and control and vendor support. Knowl-
edge management also poses a challenge as teams develop mechanisms for collecting
and sharing knowledge across sites. Project management concerns such as the
synchronization of work and techniques employed must be examined. Finally, the
technical aspects revolving around network capability, software, compatibility, and
information and communication technologies are of utmost significant for the success
of the team (e.g., [8], [29], [35], [37]).

 A Preliminary Conceptual Model for Exploring Global Agile Teams 157

4 Research Methodology

A case study as defined by Yin [56] represents “an empirical inquiry that investigates
a contemporary phenomenon within its real-life context especially when the bounda-
ries between phenomenon and context are not clearly evident” (p. 13). Thus, case
study research would be an appropriate extension to further investigate this work. One
of the most important aspects of building theory from case study research is that the
research should begin “as close as possible to the ideal of no theory under considera-
tion and no hypotheses to test” [18, p. 536]. However, Eisenhardt [18] admitted that
“it is impossible to achieve this ideal of a clean theoretical state”, thus suggesting that
the “a priori specification of constructs can also help the initial design of theory-
building research (p. 536).

Due to the complex nature of this topic, the need to examine the phenomenon
within its natural setting, and the limited amount of research that has been conducted
in this particular area, this study will adopt an embedded multiple-case research de-
sign utilizing both theoretical and literal replication logic and a pattern-matching
analytic strategy [11], [12], [18], [56]. According to Eisenhardt [18] the overall goal
of theoretical sampling in regard to literal replication logic is to “choose cases which
are likely to replicate or extend emergent theory” [18, p. 537]. Conversely, theoretical
replication logic is based on the rationale of selecting cases based on the expectation
of contrasting results [56]. Thus, this study will attempt to identify similarities as well
as differences between cases which may contribute to the successful configuration of
global agile teams. Analysis of the data will serve to identify patterns or emerging
themes based upon the three dimensions of the conceptual model as well as the possi-
bility of additional dimensions.

The primary data collection method will consist of semi-structured interviews in-
volving members of globally distributed agile teams within two multinational organi-
zations with team members located in distributed sights and one U.S. organization
utilizing an offshore contracting company. It is hoped that these three organizations
will provide a rich set of data of differing configurations which can be examined. An
interview protocol has been developed and 25 initial interviews have already been
completed. Overall, it is estimated that two teams from each of the three organizations
will participate representing approximately 50 team members. Additional data will be
collected through various forms of documentation and archival records. Within-case
and cross-analysis will be used to analyze and evaluate the data that is collected using
MaxQDA, a qualitative data analysis software package. The major focus of the initial
empirical research will be on the three major dimensions of the conceptual model:
team structure, virtualness, and agility. Subsequent research will more thoroughly
explore the challenges that impinge upon these dimensions.

5 Conclusion

Based upon the literature exploring agility and distribution and initial interviews con-
ducted with numerous members of global agile teams, it is the belief of the authors
that agile methodologies can be successfully applied in global software development
projects. If research on the configuration of global agile teams is not conducted,

158 J.H. Sharp and S.D. Ryan

researchers and practitioners alike will not have a clear understanding if there are
truly significant differences between how agile teams and non-agile teams are de-
signed in globally distributed settings. As such, we believe that this paper contributes
to the information systems field by providing a preliminary conceptual model based
on extant literature for exploring the dimensions which may lead to the successful
configuration of globally distributed agile teams. This conceptual model may serve as
a starting point towards theory building in the area of globally distributed agile teams.
This model makes a contribution in that it provides suggested dimensions for measur-
ing and characterizing global agile team configuration. As of this time no known
research framework exists which incorporates the dimensions of team structure, agil-
ity, and virtualness. The utilization of globally distributed agile teams has the poten-
tial to significantly impact the field of software development. As such, our hope is
that this framework will serve as a building block for further research in this impor-
tant area.

References

1. Abrahamson, P.: Extreme Programming: First Results from a Controlled Case Study. In:
Proceedings of the Euromicro (2003)

2. Abrahamson, P., Koskel, J.: eXtreme Programming: A Survey of Empirical Data from a
Controlled Case Study. In: Proceedings of the ACM-IEEE International Symposium on
Empirical Software Engineering, pp. 73–82 (2004)

3. Abrahamson, P., Warsta, J., Sippon, S.T., Ronkainen, J.: New Directions on Agile meth-
ods: A Comparative Analysis. In: Proceedings of the 25th International Conference on
Software Engineering, pp. 244–254 (2003)

4. Agerfalk, P.J., Fitzgerald, B.: Flexible and Distributed Software Processes: Old Petunias in
New Bowls? Communications of the ACM 49(10), 27–34 (2006)

5. Augustine, S., Payne, B., Sencindiver, F., Woodcock, S.: Agile Project Management:
Steering From the edges. Communications of the ACM 48(12), 85–89 (2005)

6. Balijepally, V., Mahapatra, R., Nerur, S.: Assessing Personality Profiles of Software De-
velopers in Agile Development Teams. Communications of the Association for Informa-
tion Systems 18, 55–75 (2006)

7. Barkhi, R., Amiri, A., James, T.L.: A Study of Communication and Coordination in Col-
laborative Software Development. Journal of Global Information Technology 9(1), 44–61
(2006)

8. Battin, R.D., Crocker, R., Kreidler, J., Subramanian, K.: Leveraging Resources in Global
Software Development. IEEE Software 18(2), 70–77 (2001)

9. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change. Addison-
Wesley, Boston (2000)

10. Bell, B.S., Kozlowski, S.W.J.: A Typology of Virtual Teams: Implications for Effective
Leadership. Group & Organization Management 27(1), 14–49 (2002)

11. Benbasat, I., Goldstein, D.K., Mead, M.: The Case Research Strategy in Information Sys-
tems. MIS Quarterly 11(3), 369–386 (1987)

12. Bonoma, T.V.: Case Research in Marketing: Opportunities, Problems, and a Process.
Journal of Marketing Research 22(2), 199–208 (1985)

13. Carmel, E.: Global Software Teams: Collaborating Across Borders and Time Zones. Pren-
tice-Hall, Upper Saddle River (1999)

 A Preliminary Conceptual Model for Exploring Global Agile Teams 159

14. Carmel, E., Agarwal, R.: Tactical Approaches for Alleviating Distance in Global Software
Development. IEEE Software 18(2), 22–29 (2001)

15. Crampton, C.D., Webber, S.S.: Relationships Among Geographic Dispersion, Team Proc-
esses, and Effectiveness in Software Development Work Teams. Journal of Business Re-
search 58, 758–765 (2005)

16. Damian, D., Moitra, D.: Global Software Development: How Far Have We Come? IEEE
Software 23(5), 17–19 (2006)

17. Dube, L., Pare, G.: Global Virtual Teams. Communications of the ACM 44(12), 71–73
(2001)

18. Eisenhardt, K.M.: Building Theories From Case Study Research. The Academy of Man-
agement Review 14(4), 532–550 (1989)

19. Erickson, J., Lyytinen, K., Siau, K.: Agile Modeling, Agile Software Development, and
Extreme Programming: The State of Research. Journal of Database Management 16(4),
88–100 (2005)

20. Eveland, J., Bikson, T.: Work Group Structures and Computer Support: A Field Experi-
ment. ACM Transactions on Office Information Systems 6(4), 354–379 (1988)

21. Fitzgerald, B., Hartnett, G., Conboy, K.: Customising Agile Methods to Software Practices
at Intel Shannon. European Journal of Information Systems 15, 200–213 (2006)

22. Flor, N.V.: Globally Distributed Software Development and Pair Programming. Commu-
nications of the ACM 49(10), 57–58 (2006)

23. Fowler, M., Highsmith, J.: The Agile Manifesto (2001),
 http://www.agilemanifesto.org

24. Galegher, B., Kraut, R.E.: Computer-Mediated Communication for Intellectual Teamwork:
An Experiment in Group Writing. Information Systems Research 5(2), 110–138 (2004)

25. Gibson, C.B., Cohen, S.G.: In the Beginning: Introduction and Framework. In: Gibson,
C.B., Cohen, S.G. (eds.) Virtual Teams That Work: Creating conditions for Virtual Team
Effectiveness, Jossey-Bass, San Francisco (2003)

26. Hackman, J.R.: Leading Teams: Setting the Stage for Great Performances. Harvard Busi-
ness School Press, Boston (2002)

27. Hackman, J.R., Oldham, G.R.: Work Redesign. Addison-Wesley, Reading (1980)
28. Hackman, J.R., Walton, R.E.: Leading Groups in Organizations. In: Goodman, P.S. (ed.)

Designing Effective Work Groups, Jossey-Bass, San Francisco (1986)
29. Herbsleb, J.D., Moitra, D.: Global Software Development. IEEE Software 18(2), 16–20

(2001)
30. Highsmith, J., Cockburn, A.: Agile Software Development: The Business of Innovation.

IEEE Computer 34(9), 120–122 (2001)
31. Holmstrom, H., Fitzgerald, B., Agerfalk, P.J., Conchuir, E.O.: Agile Practices Reduce Dis-

tance in Global Software Development. Information Systems Management, 7–18 (2006)
32. Jarvenpaa, S.L., Knoll, K., Leidner, D.E.: Is Anybody Out There? Antecedents of Trust in

Global Virtual Teams. Journal of Management Information Systems 14(4), 29–64 (1998)
33. Jarvenpaa, S.L., Leidner, D.E.: Communication and Trust in Global Virtual Teams. Or-

ganization Science 10(6), 791–815 (1999)
34. Kayworth, T.R., Leidner, D.E.: Leadership Effectiveness in Global Virtual Teams. Journal

of Management Information Systems 18(3), 7–40 (2001-2002)
35. Kayworth, T.R., Leidner, D.E.: The Global Virtual Manager: A Prescription for Success.

European Management Journal 36(6), 183–194 (2001)
36. Kircher, M., Prashant, J., Corsaro, A., Levine, D.: Distributed eXtreme programming. In:

Marchesi, M., Succi, G., Wells, D., Williams, L., Wells, J.D. (eds.) Extreme Programming
Perspectives, Addison-Wesley, Reading (2001)

160 J.H. Sharp and S.D. Ryan

37. Komi-Sirvio, S., Tihinen, M.: Lessons Learned by Participants of Distributed Software
Development. Knowledge and Process Management 12(2), 108–122 (2005)

38. Lee, G., De Lone, W., Espinosa, J.A.: Ambidextrous Coping Strategies in Globally Distrib-
uted Software Development Projects. Communications of the ACM 49(10), 35–40 (2006)

39. Lipnack, J., Stamps, J.: Virtual Teams: People Working Across Boundaries with Technol-
ogy, 2nd edn. John Wiley & Sons, New York (2000)

40. Lurey, J.S., Raisinghani, M.S.: An Empirical Study of Best Practices in Virtual Teams. In-
formation & Management 38(8), 523–544 (2001)

41. Maznevski, M.L., Chudoba, K.M.: Bridging Space Over Time: Global Virtual Team Dy-
namics and Effectiveness. Organization Science 11(5), 473–492 (2000)

42. Meyer, A.D., Tsui, A.S., Hinings, C.R.: Configurational Approaches to Organizational
Analysis. Academy of Management Journal 36(6), 1175–1195 (1993)

43. Miles, R.E., Snow, C.C.: Organizational Strategy, Structure, and Process. McGraw-Hill,
New York (1978)

44. Mintzberg, H.T.: The Structuring of Organizations. Prentice-Hall, Englewood Cliffs
(1979)

45. Mintzberg, H.T.: Structure in Fives: Designing Effective Organizations. Prentice-Hall,
Englewood Cliffs (1983)

46. Powell, A., Piccoli, G., Ives, B.: Virtual Teams: A Review of Current Literature and Di-
rections for Future Research. The DATA BASE for Advances in Information Sys-
tems 35(1), 6–36 (2004)

47. Prasad, K., Akhilesh, K.B.: Global Virtual Teams: What Impacts Their Design and Per-
formance? Team Performance Management 8(5/6), 102–112 (2002)

48. Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can Distributed Software Development Be Ag-
ile? Communications of the ACM 49(10), 41–46 (2006)

49. Sarker, S., Lau, F., Sahay, S.: Using an Adapted Grounded Theory Approach for Inductive
Theory Building About Virtual Team Development. DATA BASE for Advances in Infor-
mation Systems 32(1), 38–56 (2001)

50. Sarker, S., Sahay, S.: Implications of Space and Time for Distributed work: An Interpre-
tive Study of US-Norwegian Systems Development Teams. European Journal of Informa-
tion Systems 13, 3–20 (2004)

51. Schummer, T., Schummer, J.: Support for Distributed Teams in eXtreme Programming.
In: Succi, G., Marchesi, M. (eds.) Extreme Programming Examined. Addison-Wesley,
Reading (2001)

52. Sharp, J.H., Ryan, S.D.: A Research Framework for Investigating the Successful Configu-
ration of Globally Distributed Agile Teams. In: Proceedings of the Thirteenth Americas
Conference on Information Systems, pp. 1–7 (2007)

53. Suchan, J., Hayzak, G.: The Communication Characteristics of Virtual Teams: A Case
Study. IEEE Transactions on Professional Communication 44(3), 174–186 (2001)

54. Townsend, A.M., DeMarie, S.M., Hendrickson, A.R.: Virtual Teams: Technology and the
Workplace of the Future. Academy of Management Executive 12(3), 17–29 (1998)

55. Xiaohu, Y., Bin, X., Zhijun, H., Maddineni, S.R.: Extreme Programming in Global Soft-
ware Development. In: Canadian Conference on Electrical and Computer Engineering,
vol. 4, pp. 1845–1848 (2004)

56. Yin, R.K.: Case study research: Design and methods, 3rd edn. Sage Publications, Thou-
sands Oaks (2003)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 161–171, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Scrum Implementation Using Kotter’s Change Model

Sinéad Hayes1 and Ita Richardson2

1 Cadence Design Systems (Ireland) Limited,
Eastpoint Business Park, Dublin 3, Ireland

sinead@cadence.com
2 Lero – the Irish Software Engineering Research Centre,

Department of Computer Science and Information Systems
University of Limerick, Limerick, Ireland

ita.richardson@ul.ie

Abstract. Developing reliable software is a complex task which is becoming
even more challenging as customers put overwhelming demands on software
companies to produce high quality products in shorter time frames. Scrum is an
agile, lightweight software development process that can be used to manage and
control software projects using iterative, incremental practices. Scrum aims to
increase productivity and improve quality in complex environments. Experts
claim that this is a simple process whose aims are effortlessly achieved. The
reality is that successful implementation is far from easy and requires significant
training and plenty of practice. The case study presented in this paper investigates
the use of Kotter’s Change Model to support the implementation of Scrum in a
software company.

1 Introduction

Software development organisations can improve the quality of software products
through the implementation of improved processes and development models. For the
implementation of such improvements to be successful, there is a requirement for
individual employees – from software engineers to management - to embrace the
change that is occurring in the organisation. Companies implementing process
change can benefit greatly from using a change management model. However,
published change management models and frameworks normally relate to
organisational changes as opposed to process related changes. This paper presents
research carried out to investigate the use of an organisational change model while
changing the company’s software development process.

2 An Ever-Changing Software Development Industry

The underlying notion presented in literature that “change is constant”, is particularly
true in the software development sector [1]. To maintain a competitive advantage,
software companies must continually deliver innovative products. This is a complex
task which becomes more challenging as customers put increasing demands on them
to produce high quality products in shorter time frames.

162 S. Hayes and I. Richardson

While the R&D teams strive to continuously change and improve their products,
they must also change their development processes and procedures. This helps to
ensure that effective and efficient techniques are being used to produce the highest
quality products possible. Without concrete processes and procedures the end product
could be below the accepted quality level, delivered late or over budget.

2.1 Agile Development

The latest software process to gain recognition is agile development. Having introduced
concepts such as Scrum, Test Driven Development (TDD) and Extreme Programming
(XP), it is distinctly different to linear development. Traditional models adopt a
structured approach, where large teams follow a specific plan and adhere to stringent
processes to produce a completed product at the end of a cycle. The agile approach
thrives on the lack of stable requirements and uses small self-managed teams to
frequently produce reliable software that meets customer requirements.

When agile development first emerged the reported success of its use was
instantaneous [2]. The key benefits reported included the faster delivery of higher
quality products that better matched customer requirements due to their close
involvement throughout the project. Leszak et al. [3] have argued that the transition
to agile methodologies was initiated as a way of achieving a positive return on
investment in quality early in the development life cycle.

However, not all reports of these agile development techniques described positive
experiences [1]. Despite the fact that they are “simple” and “quick” [4], most are
very difficult to get right and require extensive training, discipline and managerial
support. The ever increasing number of agile methods that are available also presents
a problem: not every technique is suitable for every type of project. This factor must
be given serious consideration before a specific development methodology is chosen
for a project.

Although it can be argued that the traditional and agile approaches to developing
software are founded on the same principles, Goldman et al., [5] maintain that when it
comes to large, complex and uncertain projects, the flexibility of the agile approach is
more employable. More traditional approaches (e.g. waterfall [6], spiral [7]) are best
applied to predictable projects that are safe and the likelihood of change is low.

2.2 Scrum Model

The Scrum process recognises that “these changes are unavoidable and must therefore
be explicitly accommodated in the life cycle” [8]. To control continuous requirement
changes, the Scrum model (Figure 1) uses a Product Backlog to maintain a log of all
items and issues to be completed during a project. The Product Owner, representing the
stakeholder interest, maintains and prioritises the backlog.

Teams work for fixed periods of time called Sprints (short iterations) which last from
five to thirty working days. The Sprint Backlog lists more manageable and visible tasks
from the Product Backlog and makes the Sprint objectives clear from the outset,
keeping the team focused and promoting teamwork. The Burndown Chart graphs the
amount of work remaining in the Sprint, which gives management a dynamic view of
progress and allows the team to respond quickly if daily commitments are not met.

 Scrum Implementation Using Kotter’s Change Model 163

Fig. 1. The Scrum Model [9]

The team is driven by a Scrum Master, who chairs the Daily Scrum Meetings and
removes impediments encountered by team members. At the end of each Sprint, a high
quality functional product is delivered on time to customers, who use this executable as a
way of refining and re-prioritising the Product Backlog. Consulting with customers early
and often is the essence of Scrum. Allowing them to add, remove or modify requirements
improves their confidence in the product as well as in the development team. It also
ensures the delivery of a product that exactly meets customer requirements. Another
advantage of Scrum is that if the team decides it is best to abandon a Sprint for valid
technical or business reasons, the time wasted (maximum 30 working days) is minimal in
comparison to the amount lost during waterfall model implementation.

3 Implementing Organisational Change

Successful growth for any company depends critically on their ability to rapidly
improve their processes and extend their product base in response to market demands
[10]. Management often fail to realise that when implementing change, if not handled
correctly, even the simplest change can have a detrimental effect [11]. Introducing a
change should be a formalised planned process, and, although some may be tempted
to consider the process for managing change as an overhead, change management
techniques have proved to be successful [10].

Each change management initiative is unique, and it is imperative that managers
have a clear understanding of required changes. As the rate of change in organisations
accelerates, the need for change management becomes increasingly important [12].
Managing a change in an organisation means that there is a greater chance that it will
be successfully implemented and as this realisation has become clearer to
organisations more change management models have become available.

Planning models, such as those defined by Kotter [13] and Lippit et al. [14] are based
on the principle that changes that occur in organisations are planned changes. These
models prescribe steps that should be executed sequentially to guarantee a successful
change. The 8 steps described by Kotter [15] are:

164 S. Hayes and I. Richardson

1. Establish a Sense of Urgency 2. Form a Powerful Guiding Coalition
3. Create a Vision 4. Communicate the Vision
5. Empower Others to Act on the Vision 6. Plan for & Create Short-Term Wins
7. Consolidate Improvements and 8. Institutionalise new approaches.
 Produce Still More Change

4 Case Study at Rhythm Ltd.

Focusing on the transition from traditional to agile development, this paper investigates
the hypothesis that Kotter’s “Eight Steps to Transforming your Organisation” [15] is a
suitable framework for such a change. The change was implemented within a software
development team at Rhythm (Ireland) Ltd., a subsidiary of Rhythm International, an
American-based electronic design automation company who employ 5000 worldwide in
63 subsidiaries.

Until September 2005, the primary mission of the software development team was
the maintenance and support of a product called RhythmDoc. RhythmDoc projects
were implemented using the waterfall development methodology [6]. The cumbersome
nature of the process meant the team spent more time trying to keep documentation up
to date than coding which resulted in projects being consistently late and over budget.
This inevitably led to dissatisfaction among customers who were frustrated with the
level of support they were receiving due to: low turnaround time of bugs, requirements
creep and delayed time to market. In September 2005, the parent company decided that
the maintenance of RhythmDoc would cease. Resources in Dublin would develop a
superior replacement product called RhythmHelp. Delivery of RhythmHelp was
mandatory within 18 months, within budget and with a high level of quality.

Subsequently, past project performance and results were scrutinised, highlighting that
the waterfall development methodology no longer suited the Rhythm environment. It
was decided that the Scrum process [9] was to be implemented while developing a
production version of RhythmHelp by March 2007.

5 Research Methodology

This paper presents a pre-structured case study involving the observation and analysis of
the software development team in Rhythm while implementing the Scrum process using
Kotter’s change model, which was chosen by Rhythm management as a suitable change
model prior to instigating this change within the organisation. While one of the researchers
was an employee in the company, she was not part of the group that implemented
the change. To collate data, a combination of participant observation, semi-structured
interviews, workshops and questionnaires, and the collection and analysis of project data
and statistics, were used. Miles and Huberman [16] encourage the use of triangulation
(application of a combination of different research methods) as a means of corroboration
and validation of information. It was important to involve a number of methods in order
to ensure the elimination of any bias. It also assisted in ensuring a correlation between the
information gathered from the different sources.

 Scrum Implementation Using Kotter’s Change Model 165

6 Implementation of Kotter’s Change Model

Step 1: Establish a Sense of Urgency
Prior to any planned change taking place, the need for the change must be communicated
to everyone in the organisation. Management should be completely behind the change
and the development team must be motivated to realise the change. There must be an
evident pressure to change and employees must realise that the company cannot maintain
the status quo [17]. Kotter suggests that the best way to do this is to create or identify a
crisis which forces leaders to have a better handle on the problem. The absence of such
urgency is a reason why so many fail to succeed when implementing a change.

The initial step taken at Rhythm was to investigate existing project artefacts.
Through analysis of project data and customer satisfaction surveys, development groups
recognised that projects were being delivered consistently late (by up to 400% in some
cases [18]), and with poor quality. The team were mired in documentation and unable
to handle the relentless changes to requirements. There was a lack of shared knowledge
among the developers. At this point, people had begun to realise the seriousness of the
situation – failure to deliver could result in the company moving the development of this
product to an alternative location. A different development methodology was required,
and Scrum was to be implemented.

Step 2: Form a Powerful Guiding Coalition
Kotter describes the need to involve different members of the organisation in the change
on a gradual basis and to form a project team. This should begin with one or two
individuals and as the project gains momentum and more resources are required the team
grows to assist in the change implementation. This approach works well in situations
where organisations may wish to use pilot projects [19]. According to Small and Downey
[20] it is imperative that there is adequate support from senior management and a
dedicated change manager that will drive the team. Kotter recommends that characteristics
of team members should include: power, position, leadership and credibility.

The senior management team at Rhythm International were “delighted to see some
positive and pro-active steps being taken to resolve a now critical issue”. The
development team leader was very enthusiastic. He had the influence to encourage
and reassure his team during the change process. While senior management in Dublin
agreed that “performance within the team” was “an obvious problem” they failed to
understand why processes “that work perfectly well for the rest of the organisation
could not be applied to the Dublin Team”. Despite their reservations, they agreed to
lend their support so that a united front could be presented – this was critical to the
success of the project.

Step 3: Create a Vision
At this point, important decisions need to be made regarding the specifics of the change
and how it should be enforced [21]. Success can happen if there is a clear strategy and
implementation plan for implementing the change. A clear and concise vision, while
also being realistic and attainable, should be defined. Otherwise, management run the
risk of people getting disheartened and further adding to resistance to change. Jones et
al., [22] recommend that the vision should be created in three steps:

166 S. Hayes and I. Richardson

1. Confront reality and articulate the need for change
2. Demonstrate faith that the company has a future and the leadership to get there
3. Provide a road map to guide behaviour and decision making.

At Rhythm, the vision for the change project was “To become successful in the

application of agile development methods, particularly Scrum, and leverage these
techniques to improve product quality, reduce the time to market, and increase
customer satisfaction”. An implementation plan was written which stated the
objective of the change project, project scope and schedule, project completion
criteria and measurements, potential risks and mitigating factors.

Step 4: Communicate the Vision
Kotter [13] suggests that communication of the vision should come from senior
management, giving employees relevant timely information and soliciting their
feedback. Relevant input received from employees should be fed into the overall
project plan [22]. They believe such communication is invaluable in guaranteeing
leadership-team alignment. Furthermore, change advocates such as Gremba and
Myers [23] and Senior and Fleming [11] promote the creation of a work plan or
schedule, as it is in keeping with project management techniques. This can also
provide valuable information regarding individual responsibility. It can also detail
how the change will affect different people. It can educate people about the change
which assists in reducing the level of resistance that can arise due to unfounded
rumours and incorrect information [24].

Within Rhythm, a meeting which included a presentation and discussion about the
change project and the proposed Scrum process was held to launch the new
RhythmHelp project. Senior managers from the United States were in attendance.
The implementation plan, including the training plan, roll-out schedule, project risks
and mitigating factors and project goals and measurements was also presented. In
general, the development team were positive: “I like the fact that there is more
emphasis on taking responsibility for development work”. Due to attendance by
senior management, the attitude of the Dublin management team became more
positive. Subsequently, the vision and strategy were distributed and internal meetings
were held to ensure team members were clear about the new process. At this point no
team member had any formal experiences of any agile methodologies.

Step 5: Empower Others to Act on the Vision
To ensure a successful change project, Kotter [13] argues that obstacles, such as
organisational structure and narrow job categories, should be removed. Borjesson and
Mathiassen [19] present the notion of setting up a process action team to implement
the change. Kotter [13] agrees with this approach but also believes that the team must
have the authority to remove or eliminate obstacles as they arise, especially those that
have the potential to cause a project failure. Borjesson and Mathiassen [19] also
consider the concept of a pilot project to be useful in providing the basic concepts of
the new process. It gives people the opportunity to experience new and challenging
aspects of the process, raise questions about how it will work and iron out any
confusion. It can help convince management and others of the new process benefits.
Problems encountered in the pilot project, such as training, can be resolved before the
new process is officially rolled out.

 Scrum Implementation Using Kotter’s Change Model 167

At Rhythm the basic concepts of the Scrum process were implemented in a pilot
project, which consisted of 10 requirements. A Sprint Backlog was created, and time
and responsibilities were assigned to each requirement. Short daily Scrum meetings
were held and the burndown was monitored. The team embraced the opportunity to
be self-organised and self-managed and although only the fundamentals of the Scrum
principles were applied, the project was 100% successful (Figure 2, [18]). Previously,
the same team had taken up to 4 times longer to complete a project with a similar
amount of requirements.

Sprint Burndown Chart

Pilot Project

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9

Sprint Days Completed

N
u

m
b

er
 o

f
H

o
u

rs Burndown
Goal

Actual
Burndown

Fig. 2. Burndown Chart for Pilot Project

Pilot team members reported that they preferred using the Scrum process and

would like to implement it in future projects. They also highlighted aspects of the
process with which they were not familiar. This resulted in Scrum Master training
being organised for some team members and general Scrum training for the entire
team. Consequently, the team were equipped with the essential information and
technical ability when the Rhythm Help project was officially launched.

Step 6: Plan for and Create Short-Term Wins
Kotter argues that it takes time to successfully implement significant change and
momentum can be lost without evidence of progress. Therefore, change should take
place in small steps, each having clear goals and objectives. Completing goals
communicates a clear message, keeping people motivated, maintaining a sense of
urgency and ensures that change agents regularly assess progress and revise plans.

Implementing Scrum means that short term wins for a software development
project are inherent in the process. As each 4 week Sprint has a clear goal and results
in a demonstrable product it was easy to assess what was achieved in the Sprint,
acknowledge how much has been accomplished in a particular phase, and realise what
work remains to be completed.

Measuring success is not something that Kotter [13] emphasises greatly at this
stage but other advocates such as Mathiassen et al., [21] recommend the use of
methods to monitor the improvements that have been made. There are many benefits
of having such measurement criteria in place. Firstly, measurements can be used as a
means of keeping those directly involved in the change project motivated. Secondly,

168 S. Hayes and I. Richardson

positive results reassure management that the change project is evolving in the right
direction. Thirdly, the measurement results show a direct correlation between the
effort being invested and the result being achieved. This visible progression in the
change project clearly results in further promoting the commitment to the change
from staff and management alike.

Within Rhythm, having clear goals, objectives, project completion criteria and
process measurements explicitly stated in the implementation plan was advantageous.
Measurements were gathered and documented at the end of each successive Sprint
allowing comparison of results were comparable and recognition of progress and
process improvement. These included fault density, turnaround times of product
change requests, task effort estimates and burndown rate.

Step 7: Consolidate Improvements and Produce More Change
Given the length of a change management project it can often happen that the team
celebrates victory prematurely [13]. Once the immediate crisis has been addressed
there is a temptation to relax efforts which will have a negative impact on the project
as well as the morale of those working on the change. If this happens, it can be
difficult, if not impossible, to motivate people to start again. For this reason Senior
and Fleming [11] argue that it is necessary to revisit the original plan on a regular
basis and revise it in accordance with current situations and circumstances and Kotter
suggests that management or change advocates be even more involved in the process
to ensure that the changes are continued.

At Rhythm, the Scrum process was consistently implemented and each Sprint
introduced a new and improved element of the process. At the end of each Sprint a
retrospective meeting was held and the team decided what elements of the process
needed to be added, removed or tweaked to improve performance in the subsequent
Sprint. The advantage of Scrum meant that the suggestions raised at the retrospective
meeting were translated into tasks, added to the Backlog and assigned a deadline for
completion during the following Sprint. Consistently assigning time to process
improvement in the Sprint Backlog avoided ‘premature victory’ pitfall.

Step 8: Institutionalise New Approaches
The final state is what Kotter calls “anchoring new approaches in the culture”. If the
change has been implemented so that it is now part of the organisations culture then
the change has been successful. The required change must be reinforced on a regular
basis and this can be done by building the change into career development plans and
reward systems [11].

This step is beyond the scope of this case study as; according to the ISO/IEC
15504 Process Assessment Model [25] the process has not yet reached the level of
maturity to be considered part of the culture at Rhythm. However, using Sprints is
now an accepted and expected approach among the Dublin team members.
Colleagues across the world are now requesting help and advice as they implement
similar processes. In this regard, it is imperative that the Dublin team perfect their
performance as they are fast becoming a “Centre of Excellence” in this area.

 Scrum Implementation Using Kotter’s Change Model 169

7 Discussion

Adopting an agile development practice is a process of continuous learning and
improvement [2] and the transition from sequential development requires intense
focus and strict discipline. The steps outlined by Kotter were beneficial when
implementing the Scrum process at Rhythm. However, there were aspects relating to
agile development and software engineering in general that were either overlooked or
not given enough consideration. Likewise, there were elements of the framework that
were unnecessary or did not warrant as much attention as Kotter advised.

Firstly, when Kotter refers to change management, he assumes that the approach is
always top-down. At Rhythm, the change project was introduced by middle management.
As a result one of the first steps conducted in the change project required gaining the
support and approval of senior and corporate management teams.

The sense of urgency required by Kotter was inherent in the RhythmHelp project.
The team was aware that change was needed. They were willing to make the
adjustments to guarantee success. Kotter’s steps of preparing goals and objectives
and to have a clear and communicated vision worked well. At Rhythm the team went
one step further and documented these goals and objectives in a dedicated
implementation plan which proved to be an invaluable document in terms of
monitoring schedules and recording project measurements.

A fundamental flaw in Kotter’s approach is the absence of any mention of a pilot
project – which was a concept that worked extremely well for Rhythm as it helped to
eliminate stress and apprehension and allowed the team to become self-organised,
self-managed and self-directing. The success of the pilot project also served as a
means of convincing senior management that the team was taking the right approach.

Measurements were presented to the team at the end of each Sprint and at key
stages during the RhythmHelp project. These provided quick wins and inspired
confidence in the development and management teams. They proved that the
development and change projects were moving in the right direction. Measurements
also helped to maintain focus and sustain the improvement efforts. Currently, in
Rhythm, they are concerned with continually improving upon the new performance
levels achieved by the group and finding better ways of working.

Following Kotter’s model was a beneficial starting point for implementing a
change project and although it wasn’t entirely suitable; its use prevented the Rhythm
team in Dublin from making some of the customary mistakes that organisations often
make during change projects. Without using Kotter’s model, the organisation may
have faced difficulty in implementing agile development. Our research shows that,
through following Kotter’s structured change model and tweaking it to suit our
specific needs, the Scrum process was implemented efficiently.

8 Conclusion

Development teams considering an agile approach should first examine their
immediate needs and determine if this is a suitable solution. They should be aware
that, initially, agile methodologies work best with smaller groups. We recommend
that teams adopting an agile approach should first select the principles that suit them

170 S. Hayes and I. Richardson

and follow them closely. After initial implementation, other aspects of the process
can be introduced. As the team gets more confident during later iterations or even
projects, principles and methods can be customised to suit their own needs and the
whole process should eventually become second nature to the group.

There are many books and references available on change management and agile
development. Reading case studies by companies in similar situations is strongly
recommended as they present both realistic and beneficial lessons. Textbooks may
concentrate too much on positives and offer only regimented solutions. Case studies
on previous experiences will give the researcher a more balanced insight.

Given the Rhythm experience, we recommend that the change from a traditional to
agile process should be managed through the use of a prescribed framework. This will
ensure that change is implemented thoroughly within the organisation. While
Kotter’s change model was a good basis in this case, there were specific aspects
relating to agile development and software engineering in general that were either
overlooked or not given enough consideration. Likewise, there were elements of the
model that were unnecessary or did not warrant as much attention as Kotter advised.
In this regard we conclude that a more tailored and specific framework is required for
software development companies who are moving from sequential to agile
development. Research on this aspect is currently underway.

The process at Rhythm has progressed so well that techniques such as Extreme
Programming (XP) and Test Driven Development (TDD) were introduced subsequently.
Scrum is beginning to be applied in its precise form - as a management and control tool for
all engineering practices and standards related to the project. However, the change project
is far from complete. There are still aspects of the process that require further improve-
ment. Furthermore, as Global Software Development (GSD) projects are being imple-
mented at Rhythm and across the software industry, it is necessary to research this
area further to establish how the agile approach can be successfully implemented across
multi-site projects.

Acknowledgement

This research is supported by the Science Foundation Ireland funded project, Global
Software Development in Small to Medium Sized Enterprises (GSD for SMEs) grant
number 03/IN3/1408C within Lero - the Irish Software Engineering Research
Centre (http://www.lero.ie) and the Higher Education Authority through the M.Sc. in
Software Engineering, University of Limerick. The authors would like to thank the
employees and management of Rhythm.

References

1. Law, A., Learn, S.: Waltzing with Changes. In: Proceeding of the Agile Development
Conference (2005)

2. Schatz, B., Abdelshafi, I.: Primavera Gets Agile: A Successful transition to Agile
Development. IEEE Software 22(3), 36–42 (2005)

3. Leszak, M., Perry, D., Stoll, D.: A Case Study in Root Cause Defect Analysis. In: 22nd
International Conference on Software Engineering (June 2000)

 Scrum Implementation Using Kotter’s Change Model 171

4. Beck, K.: Extreme Programming Explained – Embrace Change. Addison-Wesley, Reading
(2000)

5. Goldman, S., Nagle, R., Preiss, K.: Agile Competitors & Virtual Organisations: Strategies
for Enriching Customer. Wiley & Sons, New York (1997)

6. Royce, W.W.: Managing the Development of Large Software Systems. In: Proceedings of
IEEE WESCON, pp. 1–9 (1970)

7. Boehm, B.: A Spiral Model of Software Development and Enhancement, vol. 21(5), pp.
61–72. IEEE Computer Society Press, Los Alamitos (1988)

8. Laplante, P., Neill, C.: The Demise of the Waterfall Model is Imminent and Other Urban
Myths. Queue 1(10) (2004)

9. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice Hall,
England (2002)

10. Forte, G.: Managing Change for Rapid Development. IEEE Software 14(6), 114–123
(1997)

11. Senior, B., Fleming, J.: Organizational Change, 3rd edn. Prentice Hall, England (2006)
12. Mosier, S., Guenterburg, S., Raphael, R.: The Relationship of Technology Change

Management to Risk Management. In: Proceedings of the IEEE Engineering Management
Society (2000)

13. Kotter, J.: Leading Change. Harvard Business School Press, Boston (1996)
14. Lippit, R., Watson, J., Westley, B.: The Dynamics of Planned Change. Her Court Brace,

New York (1958)
15. Kotter, J.: Leading Change: Why Transformation Efforts Fail. Harvard Business School

Press, Boston (2005)
16. Miles, M., Huberman, A.: Qualitative Data Analysis, 2nd edn. SAGE Publications, USA

(1994)
17. Richardson, I., Varkoi, T.: Managing for Change when Implementing Software Process

Improvement Initiatives. In: European Software process Improvement Conference,
EuroSPI 2003 (2003)

18. Hayes, S.: Assessing the Suitability of Kotter’s Change Model for Software Development
Organisations Moving from Sequential to Agile Development, Thesis (MSc.) University
of Limerick (2007)

19. Borjesson, A., Mathiassen, L.: Making SPI Happen: The IDEAL Distribution Effort. In:
Proceedings of the 36th Hawaii International Conference on System Sciences (HICSS
2003) (2003)

20. Small, A., Downey, E.: Managing Change: Some Important Aspects. In: Proceeding of the
Change Management and New Industrial Revolution (IEMC 2001) (2001)

21. Mathiassen, L., Ngwenyama, O., Aaen, I.: Managing Change in Software Process
Improvement. IEEE Software 22(6), 84–91 (2005)

22. Jones, J., Aguirre, D., Calderone, M.: 10 Principles of Change Management (2004)
(accessed 20th September 2006), http://www.strategybusiness.com/

23. Gremba, J., Myers, C.: The IDEAL Model: A Practical Guide for Improvement. Software
Engineering Institute (SEI) Publication, Bridge (3) (1997)

24. Kotter, J., Schlesinger, L.: Choosing Strategies for Change. Harvard Business
Review 57(2), 106–114 (1979)

25. Software Engineering Institute; International Standard for Process Assessment (ISC/IEC
15504) (2007) (accessed 12th April 2007), http://www.sei.cmu.edu

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 172–179, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Agile Estimation with Monte Carlo Simulation

Juanjuan Zang

Jzang@thoughtworks.com

Abstract. Work estimation is very important for Agile projects, especially for
time critical ones. Inaccurate effort estimation can cause over-commitment,
scope creep and trust in the team. Though re-estimation sometimes is necessary,
it usually doesn’t happen due to the time and budget constraints. Moreover, the
initial communication and commitment to business users and stakeholders make
it more difficult to re-estimate and revise the project plan and launch date. This
paper discusses how to manage the estimation uncertainty, reduce the risk of
inaccurate estimation, and better communicate to upper management by using
Monte Carlo model simulation.

Keywords: Agile, Iteration, Release, Estimation, Velocity, Monte Carlo Model,
Simulation, Random number, Frequency.

1 Introduction

Every project needs effort estimation in order to provide useful information on release
planning, project progress, work remaining and milestones to be achieved. Every project
requires some estimate of how long the project will take. For a typical Agile project,
once the list of stories capturing the overall scope of the work comes out, the next step is
to estimate all the stories in the backlog list. The estimation, along with story
prioritization, is the backbone of release and iteration planning. Once the team finishes
the estimation for each story, the team can create the release plan with an estimate of
release date, or even a project plan, with a projection of a go live date based on the
estimation of total effort, the story priority, and the assumed team velocity per iteration1.
The release plan and date are communicated to the business users, stakeholders, and
upper management, and then the development starts. In most projects, this initial work
goes smoothly. But then comes the “estimation itch:” based on new information and
knowledge acquired, the team feels the need to re-estimate the stories.

Now what do we do? Regardless of the question whether the team SHOULD and
CAN re-estimate the effort of the stories, the key challenge is how the team will
communicate the new release plan and date to business users and upper management
if the estimates change?

Before answering this question, let’s revisit the estimation the team initially did.

1 Usually use historical data, sometimes run an initial iteration and use the velocity of that

iteration, or sometimes just take a guess.

 Agile Estimation with Monte Carlo Simulation 173

An initial estimation is not supposed to be accurate. The exercise of estimation is
for the developers to converge on a single estimate for the story based on the best
knowledge they have at that time. However the best knowledge they have, according
to Philosophers, is called priori knowledge, which is knowledge before you
experience something. Let’s call this knowledge-before-the-fact. This is the type of
knowledge the team has when they estimate something. Before estimating
development of a particular story, say for profile creation, the team thinks it’s about 5
story points, because it seems to be about the same total effort as some other story,
also estimated at 5 points. But after gaining more knowledge or further information,
which is called a posteriori knowledge, or after-the-fact2 the team realizes that the
example profile creation story is actually 8 points.

In AMDD (Agile Model Driven Development), the team usually does requirements
envisioning in the first week or the first iteration of the project (iteration 0). The goal
of the effort is to identify some high-level requirements as well as the scope of the
release, or what they think the system should do. The team works closely with
business users and end users to explore how users will work with the system. The
team usually sketches a domain model which identifies fundamental business entity
types and the relationships, and a user interface model which explores UI and
usability issues. The objective here is to build a shared understanding rather than to
write detailed documentation. Based on the identified high level requirements and all
other information during the initial envisioning, the team produces an initial cost
estimate and schedule, or the release plan. The team does more than just write stories;
they discuss each story with business users and document all the questions,
assumptions, the risk factors (the volatility, the complexity and the completeness)
associated with each story. Yet the requirements are very high level, and each story
has so many uncertainties, the estimation is still just an estimate, not the actual work
effort. Regardless of how much envisioning done, it is always expected the team will
acquire new information and new knowledge later, the original estimation may
deviate and the re-estimation may have to happen.

If we call the knowledge-before-the-fact estimation “apple,” and after-the-fact
estimation “orange,” the dilemma of “comparing apples and oranges” is always
present. This means the release plan and release date should be tolerant of imprecision
in the estimates and should be allowed to adjust if there is an estimation blowout.
Unfortunately, most of time, this is not the case.

2 Background

The first project I finished early last year was a “quasi-fixed bid” project meaning the
bid was priced on a per iteration basis. The throughput goal per iteration was estimated
in story point based on projected load factor, planned work days, and staff plan. The
development team was responsible for achieving the target throughput goal per

2 Mike Cohen, “To Re-estimate or not; that is the question” Blog, 2007.

174 J. Zang

iteration3. This bidding approach was exclusively based on the total initial estimation of
all stories. However, the original estimate was done during the exploration phase (the
“Inception Phase”). Most of the stories needed to be re-estimated later because of the
lack of knowledge of the domain, the underestimation of the system complexity, and
unfamiliarity of back end code at the inception phase. But because of the way the
project was bid, no new points could be introduced. We could only re-distribute rather
than re-estimate stories. This caused significant confusion and risk.

The second project I worked on was a BI (Business Intelligence) reporting project
for a giant online clothes retailer. The team did the estimation for about 200 stories in
one week and after the development started, the team realized the estimation was
considerably wide of the mark: almost every single story was misestimated. In
addition, the relative story size was not right either. Unfortunately, since the release
plan and date were already communicated, and also because this project was a time
critical one, the estimation scope was not allowed to change.

Accuracy of estimation is a headache almost on every project. Though everybody
admits the initial estimation is just an estimate, not the reflection of the actual effort,
the release plan, iteration plan and the date are all built upon it. And once the date is
out of door, it is hard to change. So, let’s look at the problem from a different angle:
Maybe we are not really bad at estimating. What we are really bad at is enumerating
all the assumptions or uncertainties that lie behind our estimates4. Then the question
becomes how to communicate the uncertainty along with the estimation, release plan
and the date to stake holders and upper management at first hand?

3 Our Approach

As a spike on one of my projects, we tried a Monte Carlo (MC) simulation model and
presented the estimation/probability diagram to our client. The client, a big retailer,
wanted to build a robust online service center providing all types of products, services
and guides to homeowners. The launch date was critical. The development team had
only 3 months. Thus the client was very careful with the estimation of the stories,
meaning they had to know how much and what exactly could be delivered within the
3 months. In order to provide the client a big picture showing the estimations with
uncertainties, we applied Monte Carlo simulation approach to the estimation. The key
to MC simulation is generating the set of random inputs.

First, we came up the complete story list with business users together. We had 61
stories covering the complete scope of the project. Then, we did the estimation
together with business users who helped clarifying the stories, answering questions
and validating some assumptions5. We had the team (4 developers, 2 of them are
client developers) give the estimation for each of the story and we documented them

3 See my paper “Project Bid on Iteration Basis”, XP2007 conference proceedings, Springer

Lecture Notes in Computer Science (Springer LNCS), 2007.
4 Paul Rook, from his keynote on risk management, European Conference on Software

Methods, London, October 1994.
5 In some cases, business analyst or user proxy can represent business user to help the team

with the estimation.

 Agile Estimation with Monte Carlo Simulation 175

all. The estimation scale ranged from 1 to 5 with 5 the most complex. Next, we
mapped the complexity to effort. In our case, we generated these by picking a random
sample of stories and asking the developers who did the estimates to give us a guess

Table 1. Complexity and Effort Mapping

Complexity Effort (Hours)

1 8

2 16

3 32

4 64

5 128

Table 2. Story list with initial estimation, MC value and MC effort

Story
ID Priority Requirement

1st
Estimat
ion

2nd
Estimat
ion

3rd
Estimat
ion

4th
Estimat
ion Random() MC Value MC Effort

6.3.1 1 Administrator can log in and navigate to the
admin page 4 3 3 3 0.555921215 3 32

6.1.4 1 Administrator can search user by email or last
name, then display the list of results 4 5 4 4 0.413699859 5 128

5.1.1 1 Administrator is able to edit user's preferences
and profile information 5 2 2 3 0.630137989 2 16

6.1.3 1 Administrator is able to create users of different
types 2 4 4 3 0.834879216 3 32

3.3.1 1 Administrator is able to delete user account 2 2 1 1 0.86269591 1 8
1.1.2 1 Using the Refine Search text box, a user can

modify the existing question and resubmit a
new search request, which will refresh the
Answers results page 1 1 2 1 0.629504962 2 16

3.1.1 1 User will be able to rate and comment each
Answer.
The user must be registered. 4 3 3 3 0.47393431 3 32

1.1.1 1 A user will have the option when submitting a
question to the Expert on whether they want to
also submit their question to the community as
well. 1 1 1 1 0.074078524 1 8

7.2.10 1 A third party will support AB testing to compare
the effectiveness of the commercial messages
based on the physical placements 2 2 1 1 0.951485484 1 8

3.4.2 1 A user may roll-over an underlined word and
recive a pop-up ad with a click through to
purchase

2 1 2 1 0.211061509 2 16
6.1.2 1

MMH will provide direction on how the thumbnail
Image will be stored. There will be two work
stream: one for uploading and checking format.
second part will be to resize the image. 4 5 5 4 0.278954786 5 128

1.1.4 1 This tip should be deemed critical which will link
to the specific tip detail page 3 4 3 3 0.899020875 3 32

2.2.2 1 Present a few key featured articles that the user
can toggle through related three distinct
dimensions: Improve, Repair, Maintain 2 3 2 2 0.349332009 3 32

2.2.1 1 Users will be able to remove the content that
they saved previously in My Toolbox 2 2 2 2 0.873661367 2 16

7.2.2 1 General Search will include search into
Community Answers as well as Articles and
Ask the Expert. 2 2 2 2 0.018879821 2 16

2.3.1 1 Clicking on the video will bring up the article in a
separate browser to play the movie. 2 2 2 2 0.929727827 2 16

3.2.2 1 Users can sort search results by type of
content, date, created, alphabetic by titles 2 2 2 2 0.47580461 2 16

1.1.3 1 Expert Performance Report will include an
average time of response to user questions and
amount of workload per expert.

2 2 1 1 0.04172776 2 16

176 J. Zang

of effort required to complete the stories end-to-end. Then we averaged them to come
up with the map.

Remark 1. The MC estimation value for each story is an uncertainty and should fall in
the range of 1 and 5.

Remark 2. The formula to calculate the MC value for each story:

Estimation=IF(RAND()<(0.25),1stestimation,IF(AND(RAN()>=(0.25),
(RAND()<0.5)),2ndestimation,IF(AND(RAND()>=(0.5),(RAND()<0.75)),
3rdestimation ,4th estimation))).

(1)

Remark 3. The four estimations represent the estimation given by each developer.

You can use the Random Number Generation tool in Excel's Analysis ToolPak
Add-In to produce static random numbers for a few distributions. In our case, we
made use of Excel's RAND() formula so that every time the worksheet recalculated, a
new random number was generated.

Let's say we want to run max=10000 evaluations of our model and we can
achieve this using the following Macro.

Sub MCmacro()
'
' MCmacro Macro
' Macro recorded 1/3/2008 by jzang
'
 Dim Counter As Integer
 Dim Max As Integer

 Max = 10000

 For Counter = 1 To Max
 Calculate
 Selection.Copy
 Sheets("Sheet4").Select
 Cells(Counter, 1).Select
 Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _
 :=False, Transpose:=False
 Sheets("Sheet1").Select
 Application.CutCopyMode = False

 Next Counter
End Sub

 Agile Estimation with Monte Carlo Simulation 177

In our case, we ran our model 10000 times. Here are the results:

Table 3. MC samples with estimation hours, frequency and accumulative probability

Effort(Hours) Frequency Probability Cumulative Probability
1088 1 0.0001 0.01
1104 3 0.0003 0.04
1112 9 0.0009 0.13
1120 10 0.001 0.23
1128 18 0.0018 0.41
1136 24 0.0024 0.65
1144 31 0.0031 0.96
1152 46 0.0046 1.42
1160 52 0.0052 1.94
1168 65 0.0065 2.59
1176 84 0.0084 3.43
1184 93 0.0093 4.36
1192 114 0.0114 5.5
1200 124 0.0124 6.74
1208 171 0.0171 8.45
1216 198 0.0198 10.43
1224 227 0.0227 12.7
1232 242 0.0242 15.12
1240 270 0.027 17.82
1248 303 0.0303 20.85
1256 302 0.0302 23.87
1264 341 0.0341 27.28
1272 354 0.0354 30.82
1280 358 0.0358 34.4
1288 348 0.0348 37.88
1296 415 0.0415 42.03
1304 377 0.0377 45.8
1312 384 0.0384 49.64
1320 370 0.037 53.34
1328 356 0.0356 56.9
1336 339 0.0339 60.29
1344 351 0.0351 63.8
1352 359 0.0359 67.39
1360 347 0.0347 70.86
1368 307 0.0307 73.93
1376 269 0.0269 76.62
1384 265 0.0265 79.27
1392 217 0.0217 81.44
1400 210 0.021 83.54
1408 207 0.0207 85.61
1416 176 0.0176 87.37
1424 173 0.0173 89.1
1432 146 0.0146 90.56
1440 136 0.0136 91.92
1448 112 0.0112 93.04
1456 110 0.011 94.14
1464 95 0.0095 95.09
1472 88 0.0088 95.97
1480 70 0.007 96.67
1488 53 0.0053 97.2
1496 50 0.005 97.7
1504 53 0.0053 98.23
1512 41 0.0041 98.64
1520 27 0.0027 98.91
1528 19 0.0019 99.1
1536 25 0.0025 99.35
1544 15 0.0015 99.5
1552 13 0.0013 99.63
1560 12 0.0012 99.75
1568 9 0.0009 99.84
1576 2 0.0002 99.86
1584 7 0.0007 99.93
1600 6 0.0006 99.99
1608 1 0.0001 100

178 J. Zang

Remark 4. The hours represent the total effort in order to finish all the stories in the list.

4 Conclusion

Using the data in table 3, we came up with the Monte Carlo (MC) diagram which
showed the frequency and the cumulative probability corresponding to each possible
total effort to complete the project. As you can see from figure 1, the development
estimation is associated with a probability.

Probability

Development
Estimate
(Hours)

50% 1312
65% 1345
75% 1370
90% 1432

Estimation is nothing that happens “to” business. Instead, it is always “with” the

business. Without business requirements, there will be nothing for the team to estimate.
Without business users’ participation, there will be no validity of the estimation.
Without new business information and changes flowing in, there will be no opportunity
to re-estimate.

0

50

100

150

200

250

300

350

400

450

10
88

11
20

11
44

11
68

11
92

12
16

12
40

12
64

12
88

13
12

13
36

13
60

13
84

14
08

14
32

14
56

14
80

15
04

15
28

15
52

15
76

16
08

0

10

20

30

40

50

60

70

80

90

100

Frequency

Probability

Fig. 1. MC estimation diagram

The presented approach doesn’t serve as a solution to replace re-estimation. Re-
estimation always happens. It is a very common phenomenon that business users feel
quite hard to understand estimation is just an estimate instead of the actual work
effort. When new information and knowledge come in, re-estimation needs to happen

 Agile Estimation with Monte Carlo Simulation 179

and this should happen iteratively with business. The communication with the
business about the project progress and the impact on delivery caused by re-
estimation should also happen iteratively. This approach doesn’t replace all
the iterative activities above. Instead, it gives awareness to business users and sets the
appropriate expectation which prepares the business to understand and embrace the
possibility of delivery date changes.

The development estimation along with the MC diagrams was well received by the
business users, stakeholders and upper management. This set the right expectation.
More importantly, stakeholders realized the uncertainty of the estimates, the
probability of project completion date and the risk of over commitment.

References

1. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley
Professional, Reading (2004)

2. Cohn, M.: Agile Estimating and Planning. Prentice Hall PTR, Englewood Cliffs (2005)
3. Demarco, T., Lister, T.: Waltzing With Bears: Managing Risk on Software Projects. Dorset

House Publishing Company (incorporated, 2003)
4. Highsmith, J.: Agile Project Management: Creating Innovative Products. Addison-Wesley

Professional, Reading (2004)
5. Denne, M., Cleland-Huang, J.: Software by Numbers: Low-Risk, High-Return

Development. Prentice Hall PTR, Englewood Cliffs (2004)

The Pomodoro Technique for Sustainable Pace in
Extreme Programming Teams

Federico Gobbo1 and Matteo Vaccari2

1 Dipartimento di Informatica e Comunicazione,
University of Insubria, Via Mazzini 5, 21100 Varese, Italy

federico.gobbo@uninsubria.it
2 Sourcesense Italy, Via Venezia 23,

20099 Sesto San Giovanni, Milan, Italy
m.vaccari@sourcesense.com

Abstract. One of the common challenges of an Extreme Programming (XP)
team is to find strategies so to reinforce practices and increase velocity. Most
practices have found at least one optimal strategy tested and approved practically
by the community, while ‘sustainable pace’ is core tenet missing a clear strategy.
The aim of the Pomodoro Technique (PT) is exactly to fill this gap. The PT is a
timeboxing strategy originally meant for optimizing personal work and study and
then applied to XP. The PT is widely applied by Italian Agile teams, but is still
little known elsewhere. This paper examines how the PT is applied by them and
how it integrates with XP.

1 Introduction

Starting an Extreme Programming (XP) team from scratch is always a challenge, just
as it is to transform an “ordinary” software team in a genuinely XP one. One of the key
point in enhancing an XP team is promoting team velocity, i.e. its productivity measured
in story points completed in a given iteration. Team pressure in individual programmers’
experience is well-known in XP literature and the use of Yesterday’s Weather is the
suggested practice so to manage the fear of censure and the risk of overwhelming [2].
Nevertheless, one of the known common errors in mentoring an XP team is to put too
much attention to velocity too early, with unuseful stress. In other words, the risk in
focusing on velocity is to reduce enthusiasm among team members: this risk should be
addressed more clearly – after all, agile software developers’ main mantra is ‘coding
as fun’, and if this becomes untrue the whole process collapses. In our experience,
achieving an equilibrium between team velocity and individual satisfaction is much
more difficult for XP teams than “ordinary” ones, because of the very characteristics
of this lightweight methodology. Usually the impact of (un)sustainable pace in a XP
team’s daily work so to achieve this equilibrium is underestimated. We found out that
an unstressful – as well as efficient – way to help teams find their ‘natural’ rythm in
daily work, in other words a sustainable pace, is the most direct way to achieve the
necessary equilibrium between team and individual needs. The Pomodoro Technique
(PT) can be used fruitfully in this sense.

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 180–184, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

The Pomodoro Technique for Sustainable Pace in Extreme Programming Teams 181

2 Pomodori for Time Boxing

The PT is a time boxing strategy people can apply in any situation, e.g., homework,
study, cleaning house, and indeed software development, spread out from the psycho-
logical notions of time elaborated by Bergson and Minkowski [3]. It was invented ini-
tially for individual work, but it was then applied especially by XP teams. This paper
covers only this last case. The goal of the technique is to perceive time as a value (“I’m
doing my best at a right rythm”), instead of an enemy (“I have not enough time; I’m
late”). When the PT is applied, we observe that wasted time and overwork are drasti-
cally reduced, while the distinction between free time and work time becomes clearer.
The individual comes to respect the value of time more, both free time and work time.
The heart of the PT is to start a 25-minutes timer and then focus completely on one task
until it rings; no email, instant messaging or any other distraction is allowed. When the
timer rings, people relax, push away the keyboard and rest for five minutes. This is a
‘pomodoro’: 25 minutes of focused, uninterrupted work on one task. The “pomodoro”
name comes from the use of a common kitchen timer in the shape of a tomato (po-
modoro in Italian). The 5 minutes break permits the performer to keep his or her own
attention curve at its best, enhancing the rising points and at the same time minimizing
the lowest ones. To improve this effect, every four subsequent successful pomodori a
longer pause is recommended, usually 15 minutes long. This combination of breaks and
pauses permit people not to work in overtime, being less efficient because of overtime
work. This alternance of working time and breaks and pauses give the pace to the day,
both to individuals and teams, and hopefully helps people adjust the rythm in order to
reach a real sustainable pace.

There are two important rules in the PT: the Zero Pomodoro Rule and the Funda-
mental Rule. The Zero Pomodoro Rule states that if the pomodoro is interrupted, that
pomodoro counts for nothing. This is a corollary of the Fundamental Rule: a pomodoro
is indivisible. Practitioners become soon aware that there are two kinds of interruptions:
the internal ones (“I should check email; I’ll get me a coffee”), due to fear of being un-
successful or to the difficulty of focusing on a single task for even as little as 25 minutes;
and the external ones (a phone call, a request from a collegue), which are more diffi-
cult to manage. In fact, giving in to all sorts of unplanned and apparently urgent tasks
can literally destroy all planning activity. This is made more visible in XP team, as the
velocity is drastically reduced: “protecting the pomodoro” leads to fewer interruptions.
The PT is also a valid tool for XP coaches, who want to protect the team members from
external influences during their daily iterations. An Italian coach even introduces XP at
the first glance by only retrospectives and the PT as the practices: the first practice tells
which other practices are needed, while the PT get the team aware how much their daily
work is really focused [7].

3 Applying the Pomodoro Technique in XP

During development, for every pair of developers there is a timer. The owner of the
card is responsible for loading the timer, while recording is made on the card itself.
During a meeting with people external to the team, the pomodoro may also be used to

182 F. Gobbo and M. Vaccari

help people focus and reduce wasted time, and also to record precisely how much team
effort was invested.

In XP teams, internal interruptions are easier to reduce, as no one is working really
alone, so there is an implicit control so that everybody avoids at least explicit distrac-
tions. Different people deal with external interruptions differently, but some common
patterns can be found. The most used pattern is called inform, negotiate, callback [3].
When someone interrupts, for instance a colleague, the developer informs that they are
in working time, usually by saying “I’m in the middle of my pomodoro”. Then they
negotiate how urgent the request really is. In most cases the new task is delayed until
the end of the pomodoro (e.g. “I’ll finish my pomodoro in about 7 minutes, then I’ll
come”). In fact, there are few urgencies that can’t be delayed for a few minutes, so peo-
ple accept this callback strategy. Surprisingly, one of the most difficult aspects of the PT
is the art of having a break. A break is really a break: people should relax during breaks,
have a cup of tea or maybe just stand up and take a deep breath. One important thing
is that you shouldn’t actively think about the activity performed in the last pomodoro
or what you expect to do in the next one. Thinking about something else relieves the
mind, often leading to creative solutions, exactly because of the change of the attention
focus. In spite of this it is not rare, while pair programming, to see the navigator calling
the driver who is still juggling eggs in his mind, even after the ring of the timer.

It is worth to notice, that the ideal engineering days are different from the actual
days: typically teams estimate eight pomodori for a project while half of them are actu-
ally spent in meeting, presales or support. In other words, there is no formula to convert
pomodori to calendar time, because of interruptions on one side and of shorter suc-
cessful pomodori on the other one (this is the No Formula Rule [3]). In our experience,
teams learn to estimate every type of working activity, not only design and development.

There is a danger of viewing the pomodoro as a taylorist method for regulating the
workers’ day. It is not so, because the timer is used and regulated by the individual or
pair. One might expect that, in a normal eight-hours work day, we should be able to do 15
or 16 pomodori. In practice, in a perfect day with no interruptions, it is rare to be able to do
more than 12 pomodori. In a healthy, well-rested team it is reasonable to expect everyone
to do about 10 pomodori per day. Where is the rest of the time going? For the most part
in pauses or non-recorded activities, such as reading personal email. It might seem that
this is quite unfortunate for the employer, as he’s only getting 5 hours of concentrated
work per day. But in fact, it is very advantageous to be able to see with this degree of
precision how much real work he’s getting and exactly on what it is spent.

How much does the technique cost? In the PT the first pomodoro is spent plan-
ning the rest of the day, and the last pomodoro is for recording of what was done. The
overhead of two pomodori seems large; but there is much value in planning and in
retrospecting. The first pomodoro can coincide with the daily stand-up meeting.

4 Case Study: XP User Groups and Teams

XP user groups collect people who are interested in exploring XP both in theory and
practice. It is a good environment to share ideas, experience, and to experiment new
techniques. In Milan the XP user group is highly business oriented, while in Varese it is
more linked to the local University [5].

The Pomodoro Technique for Sustainable Pace in Extreme Programming Teams 183

Pomodori came into user stories as an auxiliary tool for difficult estimation. In fact, as
each pomodoro is dedicated to a single task, activites are planned along clearly defined
subactivities estimated in pomodori: this is coverd by the More Than Five Pomodori and
Less Than One Pomodoro rules. The first rule says that if you estimate an activity more
than five pomodori, this should be split up. The complementary rule says that if several
activities are estimated at less than one pomodoro, they should be joined together. The
only exception is during the last pomodoro of a given activity: if the estimation of a
given activity was of three pomodori and that activity is finished during the first 10-15
minutes of the third pomodoro, that pomodoro can be considered completed. Of course,
if the activity is completed in the first 5-10 minutes, an overestimation occured, and that
pomodoro shouldn’t be counted.

Unlike XP user groups, XP teams should deal with the pressure of business needs
and different work contexts. For instance, a team has chosen to deal with multiple si-
multaneous projects with pomodori. The relative priority of the customers were given
by management, and the available weekly pomodori were assigned according to pro-
portions: if the most important customer is as important as all the others put together,
then the team will dedicate 50% of the available pomodori to them [7].

There are different PT recording strategies among teams. For instance, in the Wallabiez
team in Sinapsi (Milan) a big visible chart is used, where every day a different person is
nominated the “Frodo of the Pomodoro”, i.e. the bearer of the timer who is responsible
for loading it and tracking: this allowed to the team to realize they were much less
productive after lunch, so they started to colour the morning pomodori differently, so to
make the problem visible [6]. In the Moonring team (Databtech, Milan), as well as in
the Varese XP-UG, the pomodori are recorded in a wiki [5,8], while in other teams –
e.g. in Sourcesense (Milan), Quinary (Milan) and XP Labs (Rome) custom applications
were built for this purpose.

Sometimes people use the PT in open spaces where other people do not; in that
case the ticking of the kitchen timer can cause problems. In those cases a software
pomodoro can be used, but its use is highly controversial, as experience says that it
is most difficult to have a break. In alternative, different hardwares seem to be more
effective, e.g. hourglasses or countdowns on mobile phones, whose ringing is socially
accepted. Furthermore, people invented strategies also for unnoticed breaks, i.e. to relax
in front of their monitors, for example throughout unobtrusive qi gong exercises for the
eyes [4].

5 Concluding Remarks

Sustainable pace is a practice of XP directly connected to the inner cycle of an XP
team (e.g. where pair programming, simple design and refactoring are performed) and
to retrospectives. Even if the PT doesn’t improve velocity directly, so that it is difficult
to find precise measures of its effect, in our experience it get people more aware on
velocity so to improve it during the next iteration. Moreover, the PT is a lightweight
measure of the effort easily understood: in our experience, retrospectives held after the
introduction of the PT are more focused on work and on real working data, and creative
solution about avoiding external interruptions are found. People learn to give priorities
more explicitly, and, most importantly, they start feeling time as an ally.

184 F. Gobbo and M. Vaccari

References

1. Beck, K.: Extreme Programming Explained: Embrace Change, 1st edn. Addison-Wesley, Up-
per Saddle River (2000)

2. Beck, K., Fowler, M.: Planning Extreme Programming. Addison-Wesley, Upper Saddle River,
NJ (2001)

3. Cirillo, F.: The Pomodoro Technique. XPLabs Technical Report version 1.3. English Version
(Published June 15, 2007), http://www.tecnicadelpomodoro.it

4. Ferraro, D., Ma Xu, Z.: Qi-Gong Pour les Yeux. Guy Trédaniel Éditeur, Paris (1998)
5. Gobbo, F., Bozzolo, P., Girardi, J., Pepe, M.: Learning Agile Methods in Practice: Advanced

Educational Aspects of the Varese XP-UG Experience. In: Concas, G., Damiani, E., Scotto,
M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 173–174. Springer, Heidelberg (2007)

6. Wallabiez Team: La galleria dei Wallabiez [Wallabiez’ gallery] (Cited January 5 2008),
http://wiki.sinapsi.com/La galleria dei wallabiez

7. Lana, G.: Personal communication (Cited January 5, 2008),
http://www.gabrielelana.it

8. Mercanti, A.: Un’esperienza di Tracking [A tracking experience]. In: Italian Agile Day,
Bologna, Italy (November 23, 2007),
http://mythodology.com/iad07/IAD07-Mercanti.pdf

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 185–189, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Adopting Iterative Development: The Perceived
Business Value

Caryna Pinheiro, Frank Maurer, and Jonathan Sillito

University of Calgary
Calgary, Alberta, Canada

{capinhei,frank.maurer,sillito}@ucalgary.ca

Abstract. Iterative development is a common characteristic of agile methods. It
is important to understand how the adoption of an iterative process provides
business value, and how this value can be used to buy management support to
implement other agile techniques. This paper exposes to the community an
experience report of a large government agency’s migration from a Waterfall
process to an iterative methodology, the Rational Unified Process (RUP).
Through field observations and semi-formal interviews with key business
partners, we found five main areas of improvement: reestablishment of business
involvement, better distribution of acceptance testing effort, introduction of a
testing team, less pushback on necessary changes, improved communication
and management of expectations.

Keywords: Iterative development, agile techniques, business value, Rational
Unified Process, acceptance testing.

1 Background

This paper contributes to an understanding of the business advantages in adopting an
iterative development practice in a bureaucratic industrial setting. Such an understand-
ing is important as many business leaders prefer to adopt processes that have been
successfully implemented by others, to reduce the risk of failure [1]. The company
under study is a large Oil & Gas government agency that lacked the initial management
support to adopt mainstream agile methods. This agency has a workforce of 900+
employees, with a large IT department comprised of over 10 different IT Programs.
This study collected field observations and interviews from the key business representa-
tives of the largest IT Program in the corporation, focusing on a set of three existing
applications, and two newly developed systems. These multi-million dollar projects
support business critical functions, such as the digital submission of information,
internal processing of such information, and the publishing of the results to the public.

The original IT vision was to develop a simple solution to provide a central data
management point to the business partners. The first release commenced in early
2001, with a group of 4-6 developers. The development team did not formally adopt a
development methodology, but was following a Waterfall approach: gather all the
system requirements, then develop the entire application, which is at last handed off
to the business partners for testing and approval. After the first few releases, a new

186 C. Pinheiro, F. Maurer, and J. Sillito

vision for a workflow system, that would allow digital submission of data for quicker
turn-around times, was born. By 2004, the team increased to over 15 developers, with
a total of 40+ team members (including business analysts, technical support, and
managers). The former Waterfall process was not able to support the increasing pace
of development, and many releases were delayed, resulting in poor software quality
and cost overruns. Late in 2004, the corporation decided to adopt the IBM Rational
Unified Process (RUP) [2], as it provided an iterative development approach as well
as the degree of formality and traceability desired by the top-level management. Many
Agilists consider the Rational Unified framework heavyweight, but since its inception
in 1998, the RUP framework has been customized to fit more agile environments
[4, 5] and the company adopted such a lighter version.

The adoption stages were identified as: pre-RUP, transition to RUP, and partial
RUP adoption. IBM suggests an iterative approach to the RUP implementation,
“adoption through execution” [2]. The company’s current execution state includes:
the iterative RUP lifecycle (inception, elaboration, construction, and transition),
Rational Tools, role sets, and selected work products (Design and Use-Case Models,
Software Architecture Document, Iteration Plan and Assessment, Risk List, Issues
List, Test Case, amongst others). The partial RUP adoption refers to the pre-existing
projects, as they did not benefit from the iterative approach since inception, missing
the majority of the exercises that result in the above mentioned work products.

The Rational tools that were adopted during the transition stages included software
for source code repository management, requirements gathering, and bug logging.
The pre-existing systems moved to a spiral approach, where development was
conducted in mini waterfall cycles of analysis, development, and testing, with release
dates being booked according to business needs. The team later moved to scheduled
releases, which are comprised of time boxed 6 week iterations. The two new projects
followed the adopted RUP framework since inception.

2 Findings and Observations

Reestablishment of business involvement
During the first system release, the small team atmosphere allowed the business
partners to have an active role in the requirements gathering stages of the system
development. The project manager would set up business meetings with the involved
stakeholders to gather requirements. Some requirements were documented in Word or
Excel, others were only verbally communicated to the development team. Later, the
development team would create screen mock-ups of the application, and present them
to the business partners for feedback during meetings. Although acceptance testing
did not occur until development was completed, business partners found the screen
shoots extremely useful: “even though we didn’t get to test until the end, when we got
the application, it was not about testing the screens and see how they looked like, it
was testing to see if they worked, if they met the requirements.” They were very
pleased with the first release of the system, which took approximately one year to be
production ready. As the number of requirements increased, so did the IT team size.
More rigorous management procedures were put into place. Developers needed to
follow the project plan more closely, in some cases resulting in frustration, as the plan

 Adopting Iterative Development: The Perceived Business Value 187

was quickly outdated. Business partners were used to contacting developers with
requests, who would in turn implement the requirements, causing a delay to the defined
project plan, also found by Blotner [3]. As a result, managers prohibited business partners
from contacting developers directly: “we got cut off by management: ‘that’s it, no more
talking to the developers!’” It got to the point where management would complain about
e-mails sent to developers by business: “don’t be seen talking to a developer, […] and
really, that environment was not good. For us that doesn’t work!” Business partners felt
that they lost the element of teamwork, causing friction and “blaming games” between
IT management and Business, which was “very disruptive to everyone involved.”

The introduction of the six week iterations has helped business partners become
more involved in the iteration planning, by prioritizing which items need to be
worked on first, and which ones require more analysis. They feel more ownership
and accountability over the decisions made, which has helped rebuild the teamwork
[1]. They are now allowed to contact developers: “a developer came and sat with me
[to discuss a task] and mocked it up in paper, and asked if it was ok with me, which
was fantastic.” Still, involvement with developers is limited, as most of the
communication goes through the project leaders and business analysts. Perhaps this
can be attributed to the responsibilities defined in the RUP roles. Business feels that
this “middleman” approach to communication has advantages, when dealing with
developers that lack interpersonal skills, and drawbacks, as information gets “lost in
translation.” To mitigate this issue, key developers are invited to business meetings.

Business partners feel that the most visible gains come from the new systems that
started development using the iterative RUP process, as they were involved in the
process since inception. They were not given functional parts of the system to test
until the construction stages, but they had iteration assessment meetings where demos
were provided, allowing feedback on system functionality. As a result, the first full
iteratively implemented system was the first project in more than six years to be
delivered on-time and on-budget: “which is significant for the organization, the first
in years, [laughs] that says a lot. Our executive was very happy, from our perspective
[it] is great.”

Better distribution of Acceptance Testing effort
The three business managers, corresponding section leads, and a few senior end-users
conduct acceptance testing. The interviewed business partners felt that the original
development process did not provide reasonable time for testing the system: “you
would get it [the application] for two days, and you need to approve it and its gotta
go.” They felt rushed and uncomfortable by having to sign-off on a system that took
over 10 months to develop, and only a few days to test. At the end of the development
cycle, business had compounded testing to do, which caused an overwhelming
workload: “[testing] is not my full time job. I need to deal with core business. Testing
work is supposed to be on the side, but [at that point] becomes fulltime work. I am
basically doing two fulltime jobs, which makes things difficult.” Iterative development
has time boxed the testing effort required by business to two weeks per iteration.
Testing is not compounded, but it can still feel rushed based on the number of
changes implemented during the iteration. The business partners see the organized
and scheduled acceptance testing effort as a big improvement: “it is better to plan

188 C. Pinheiro, F. Maurer, and J. Sillito

that way, even from a personal life perspective. It is just way more organized than it
used to be.” Some interviewees actually stated that this organized schedule is the
major improvement provided by the process changes made to the existing projects.

Introduction of testing team
A Quality Assurance (QA) team was not available in the pre-RUP stage, as
management perceived formal testing as peripheral in comparison with other more
pressing deliverables. The code would go from the developers who did not implement
any automated tests, to the business partners for testing: “we used to joke around saying
what is the point? I open it [the application] and get the ‘yellow screen of death1’, so
you are just wasting my time!” As suggested by the six key RUP principles for
business-driven development, management hired a full-time testing team at the end of
the third transitional iteration. After the introduction of the testing team, all code goes
through a round of formal testing before getting into the hands of the business users, and
as a result the business partners find fewer fatal errors during acceptance testing. They
can also focus on the areas that have been changed or included, as the testing team is
responsible for the regression testing, which is considered a big time saver: “it is night
and day.” However, the testing required by the QA is complex and time consuming.
The QA team is shared between all projects, and may not have enough resources to
provide the appropriate levels of manual regression testing. That, in addition to the lack
of unit tests, has been a sore spot for pre-existing systems, having problems reappear in
production after being fixed. New systems are now implementing unit tests, which
allow developers to regression test the application even before it is handed off to the
formal testing team.

Less pushback on necessary changes
In the former Waterfall process, IT management would push back to implement
changes: “so you get stuck with it.” It is very difficult for business partners to define
the project’s scope to the degree of granularity needed at the initial requirements
gathering stages: “it is virtually impossible to foresee all the details and functionality
of an application to define a hard scope document. To expect that when creating a
scope document is unreasonable and shortsighted.” Business partners would have to
make go-no-go decisions close to the production date, and many releases were
delayed as much as a year due to poor testing results, and essential requirements being
missed in the original scope document.

Iterative development has provided business with a set release schedule that are 6
weeks apart from each other, allowing critical items to be negotiated, prioritized and
included in the next release. Also, for new development projects, the iteration assess-
ments and demos allowed business partners to provide the feedback necessary to avoid
major changes later on in the process. A visible result of that is the number of bugs2 in
production for the first system developed using RUP, which is less than a dozen
compared to the hundreds found in the former ad-hoc projects.

1 This refers to the fatal application errors in .Net, which display the error message in a yellow

screen.
2 Interviewees used the words “bug” and “defect” interchangeably, and both refer collectively

to faults and failures. Enhancement requests were logged separately.

 Adopting Iterative Development: The Perceived Business Value 189

Improved communication and management of expectations
In the former process, issues were logged in Excel spreadsheets, discussed in business
meetings, prioritized and put away in a place only accessible to managers. The RUP
adoption involved the adoption of Rational Tools including a bug and enhancement
logging software. Business partners have access to these tools, being able to view
what is outstanding, which is very important to assist them in negotiations of shared
resources, and to have more realistic expectations of what and when changes will be
delivered. They also feel that overall the projects are much more organized, and due
to the iterations, they are in constant communication with the team, which helps
reduce “surprises” at the end of a release cycle.

3 Implications for Practice

The interviewed business partners see the adoption of the iterative RUP process as a
definite benefit to the organization, with particular improvements in the areas of
organization, communication, accountability, teamwork, and acceptance testing
effort. In a bureaucratic governmental environment, bound to set regulations and
continuous auditing, the patented IBM RUP framework provided the initial social
change required to open the doors to other agile techniques. Management is now
providing support for test and continuous integration automation, and new projects
are holding daily stand-up meetings with the presence of involved business partners.

References

1. Hartman, F.: Don’t Park Your Brain Outside. Project Management Institute (2000)
2. Barnes, J.: Implementing the IBM rational unified process and solutions: a guide to

improving your software development capability and maturity. IBM Press (2007)
3. Blotner, J.A.: Agile techniques to avoid firefighting at a start-up. In: OOPSLA 2002

Practitioners Reports, Seattle, Washington, p. 1. ACM, New York (2002)
4. Hirsch, M.: Making RUP agile. In: OOPSLA 2002 Practitioners Reports, p. 1. ACM, New

York (2002)
5. Ambler, S.: Agile Modeling: Effective Practices for eXtreme Programming and the Unified

Process. John Wiley & Sons, Inc., New York (2002)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 190–201, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Explicit Risk Management in Agile Processes

Christopher R. Nelson, Gil Taran, and Lucia de Lascurain Hinojosa

Institute for Software Research
Carnegie Mellon University

Pittsburgh Pennsylvania 15213, United States
{crnelson,gil,ldelascu}@alumni.cmu.edu

Abstract. This paper explores the implicit nature of risk management in
agile processes. It discusses why current techniques for managing risks in
agile processes are not sufficient and how the processes can benefit from
more explicit techniques. This is supported by the authors’ experience
with an industry project that was managed using Scrum. Initially, risks in
the project were managed implicitly as is typical with agile processes, but
more explicit techniques were adopted as the project progressed. The
paper will discuss these techniques, mechanisms for incorporating them
into agile processes, and lessons learned.

Keywords: Scrum, Risk Management, Software Risk Evaluations.

1 Introduction

Most agile processes [4, 6, 18] claim to be risk driven [15]. The processes themselves
are an attempt to mitigate some risks, such as extremely volatile requirements. Agile
processes manage risk, but in an implicit fashion. The techniques in these processes
inherently deal with risks. However, by doing so, important steps in risk management
are neglected. Missing steps include having defined processes or guidelines,
mitigation strategies, risk repositories for tracking risks, and defining triggers to
indicate the need for changes in the mitigation strategies.

There are commonalities between risk management and agile processes [15]. Risk
management steps can be integrated into agile processes to explicitly address risk and
this integration can be done in an efficient and lightweight manner to keep the processes
honest to their agile spirit [6]. Traditional risk management approaches and tools, such
as the Software Engineering Institute’s (SEI) taxonomy based risk identification
questionnaire and Software Risk Evaluation (SRE) [5,19], IEEE 1540 Standard for
Lifecycle Processes – Risk Management [12] or the Project Management Body of
Knowledge (PMBoK) [17], can be tailored to better suit smaller teams and agile
environments. Risk identification, analysis, mitigation, and tracking can be incorporated
into standard practices in agile processes such as prioritized task lists, iteration planning,
and iteration reviews.

Section 2 gives a brief overview of the DaVinci Transform project sharing the
authors’ experience of using explicit risk management techniques with Scrum.
Section 3 explores the implicit nature of risk management in agile processes and its

 Explicit Risk Management in Agile Processes 191

limitations. Section 4 discusses the need for explicit rather than implicit risk
management in agile processes. Section 5 describes the risk management framework
applied by the DaVinci team. Section 6 details the DaVinci team’s experience with
explicit risk management in Scrum and the team’s migration from an initial implicit
risk management style. Section 7 draws out lessons learned from the project including
effective and ineffective techniques. Section 8 concludes.

2 The DaVinci Transform Project

2.1 The Stakeholders

The DaVinci Transform project was completed as part of Carnegie Mellon
University’s (CMU) Master of Software Engineering (MSE) program [10]. The
project consisted of five team members and two clients. The team members were
students in the MSE program and the clients were senior members of the technical
staff at the SEI. The MSE program uses a capstone element called the Studio project
to allow students to try out tools techniques and methods learned in core courses and
electives in a real project environment.

While the project was conducted in an academic setting, the clients were still
paying customers and the students were all experienced engineers with an average of
5 years of industry experience at companies including Siemens, Interdigital
Communications, and IBM. The project lasted for four semesters (16 months) with
varying time commitments (12 hours per week to 48 hours per week) depending on
the semester. The project had a strict timeline, a budget of 5100 engineering hours,
and was monitored and supervised by two senior faculty members of the MSE
program. Three of the team members were located in Pittsburgh, Pennsylvania, with
the client, and the remaining two were located in Long Island, New York.

2.2 Methodologies

The team used Scrum as their software process. One member on the team had prior
experience with Scrum, agile processes in general, and distributed development.
These concepts were new to the rest of the team members. Explicit risk management
methods were new to all of the team members, but they were exposed to these
methods in multiple classes as part of the MSE curriculum. In particular, continuous
risk management was covered in a course on managing software development, and
the students took a course on software architecture that covered architecture risks
through the use of the SEI’s Architecture Tradeoff and Analysis Method (ATAM)
[2, 3]. Additionally, one of the team’s faculty mentors was an expert in risk
management.

2.3 The Product

The DaVinci Transform project involved developing a plug-in to the Eclipse [21] IDE
that extended the functionality of the SEI’s Open Source AADL Tool Environment
(OSATE) [22]. OSATE is a tool that supports the modeling of embedded software
architectures in the Architecture Analysis and Design Language (AADL)[1]. The AADL

192 C.R. Nelson, G. Taran, and L. de Lascurain Hinojosa

is a standard published by the Society of Automotive Engineers (SAE). The technical
lead for the standard was one of the DaVinci team’s customers. The second customer
was the development lead for OSATE. The extensions to OSATE to be developed by the
DaVinci team included a framework for developing transformations for AADL models
and some example transformations. These transformations involved transforming AADL
models to models in other target languages, transforming models in other target
languages to models defined in the AADL, and transforming models defined in the
AADL to new models defined in the AADL for the purpose of optimizing and re-
factoring the input models.

3 Implicit Risk Management in Agile Processes

Agile processes that claim to be risk driven typically address risk management
implicitly [15,16]. The processes themselves tend to be mitigation strategies for risks
involving tight deadlines and volatile requirements, and the increased visibility by the
customer aims at managing expectations while mitigating environmental and
organizational risks [7]. In this way, risks are managed implicitly through the techniques
commonly found in agile processes. Tasks (also called stories and features) are typically
kept in a list (such as Scrum’s backlog). These tasks are prioritized at the beginning of
each iteration, which means that this implicit risk management is continuous. The
prioritization sometimes explicitly calls for consideration of risks, but not always.
When the prioritization does not explicitly call for the consideration of risks [15], it is
likely that risks are still considered. When a business owner (also called a product
owner, client, or customer) prioritizes tasks, it is likely that they are concerned with
risks about what the market need is, what features competitors may be releasing, and
how end users may react to feature sets. When developers prioritize tasks, they are also
likely taking risks into account, subconsciously. Developers are concerned with tasks
that seem technically difficult, may be hard to integrate, or may have technical
unknowns.

Even when the prioritization does explicitly call for the consideration of risks - it is
common in Scrum for developers to prioritize features in the product and sprint
backlogs based on technical risk - risks are still being managed implicitly. The risks
that make a task risky are not typically identified, that is, the task is not examined to
determine what risks are involved in that task. The risks themselves are not analyzed,
only the tasks are. No mitigation strategies, beyond simply working on the riskier
tasks first, are created. Risks are not tracked to determine if they are mitigated, if they
are on track to be mitigated, if they have been mitigated already, or if they have
actually become problems (also known as issues). All of these missing pieces are left
to the members of the development teams to address on their own with no direction.

4 The Need for Explicit Risk Management in Agile Processes

Simply placing a higher priority on riskier tasks is not managing risk. The risky tasks
get addressed, and hopefully completed sooner, than less risky tasks. However,
without analyzing a risk, and even more so without identifying the right risks, it is

 Explicit Risk Management in Agile Processes 193

very difficult if not impossible to devise an appropriate plan for risk mitigation,
tracking and control [13, 20].

Agile processes do not typically include risk management phases or policies on
when and how to identify, analyze and mitigate risk [16]. The inherent belief is that
agile methods use empirical process control to continuously monitor how the project
is going and that doing so minimizes risks in itself. Furthermore, agile models do not
provide a guideline on roles and responsibilities within a team for risk management
activities leaving it up to the team to do it collectively. From a risk planning
perspective, mitigation must be preceded by explicit risk identification and analysis,
or it would be very difficult to track whether a risk is being mitigated, if a new
mitigation strategy should be used, or if the risk has been mitigated [9].

To explicitly address risks, teams should spend some amount of time identifying
them. Once risks are identified, they should be analyzed and prioritized [5,9,18,19].
Mitigation strategies and triggers can then be devised and built into action plans. The
mitigation strategies are prioritized with other tasks for an iteration, and the action
plans can be used to track the progress of risk mitigation.

At the end of each iteration, risks should be revisited and the action plans should be
used to guide the team in next steps. Based on identification triggers, the team can
decide if the current mitigation strategy is working, if a backup strategy should be put
in place, if the risk has been mitigated, or if the risk has become a problem and the
team needs to switch from prevention to damage control. Once these decisions are
made, the results of the decisions can be fed into the planning phase of the next
iteration. New risks are then identified, and tasks as parts of mitigation strategies can
again be prioritized with other project-related tasks. This should be done continuously
throughout the project.

While agile processes do address risk, doing so in an implicit way is dangerous.
Implicit management of risks is a reasonable start, but it leaves much room for
improvement. Managing risks explicitly, but with techniques that stay true to the
spirit of agility, is a necessary next step to improve risk management in agile
processes and increase the probability of successful projects.

5 Team DaVinci Risk Management Framework

Team DaVinci borrowed methodologies,
tools, and techniques from the SEI to aid
in risk management. They are presented
here, along with how they were tailored
to fit the needs of the project, to better
understand the experiences that the team
had with respect to managing the risks on
their project. Since risk management was
viewed as a continuous event, the team
applied the SEI’s Risk Management
Paradigm [20] and, with it, the phases
presented in figure 1.

The steps of identification, analysis, mitigation, tracking and control occurred
continuously and run concurrently - e.g., as new risks were identified and analyzed,

Fig. 1. The SEI Risk Management Paradigm

194 C.R. Nelson, G. Taran, and L. de Lascurain Hinojosa

other risks are being mitigated and tracked - and iteratively - e.g., one mitigation plan
might yield new risks.

Communication is central to this risk management paradigm. Therefore, team
members were encouraged to communicate the risk status to project (clients, faculty,
and team members) during status and review meetings. The information that was
shared included a current picture of the risks faced by the team, their status, and what
was being done to help mitigate them.

6 Experiences with Explicit Risk Management and Agile
Processes

The DaVinci team, as mentioned earlier, followed Scrum for their software
development process and thus started out managing risks implicitly. The team felt
early on that risk management should be addressed more explicitly than prescribed by
Scrum, based on recommendations from CMU faculty, team mentors, and material
covered in courses as part of the MSE curriculum. The team started managing risks
more explicitly by creating a risk manager role. The person filling this role was
responsible for helping the team identify and document risks. However, no tasks
were defined for these activities at this point. Tasks for mitigation strategies were
not defined either. Risks were identified through informal, and un-facilitated,
brainstorming sessions. The captured risks were placed in an excel spreadsheet and
the risk manager was responsible for prioritizing the risks based on their expected
impacts and timeframes. A general risk mitigation task was included in iteration
planning sessions for prioritization with other project tasks. This was not an effective
approach. It was difficult for team members to understand what the mitigation task
involved and how it supported the project. As a result, the task either did not receive a
high enough priority rating to make it into an iteration plan, or it was the most likely
task to be dropped if problems were encountered in other tasks. After a couple of

Fig. 2. Small-Team Software Risk Evaluation Process

 Explicit Risk Management in Agile Processes 195

iterations, the team realized a change in their risk management approach was
required. This realization was fueled by several iterations that passed without
mitigating a single risk. As a result, the team decided to elicit the help from risk
management experts at Carnegie Mellon University and the SEI. Ray Williams from
the SEI, and Gil Taran, from Carnegie Mellon University, were brought in to facilitate
a small team software risk evaluation (see figure 2), a condensed version of the SEI’s
taxonomy based SRE method [19]. The goal of this evaluation was to identify and
analyze those risks that might stop the team from reaching project success.

Using a technique called the Threshold of Success (ToS), the team was able to
define a set of minimum objectives that needed to be met by projects’ end for it to be
called a success and against which those risks were identified. The result of this half-
day evaluation involving all team members was a prioritized list of twenty risks
formulated in a condition-consequence form as suggested by Gluch [11]. These risks
were documented on the team’s Wiki to allow for easy access for viewing and
frequent updates. The final process the team followed and the way the risk
management steps mapped to Scrum is depicted in figure 3.

Fig. 3. Mapping Risk Management activities to Scrum Activities

The risk manager then documented the components of the risks - source(s),
condition, consequence, impact, timeframe, and probability (see figure 4) - to
facilitate the creation of action plans and mitigation strategies. The risk manager then
worked with other team members to identify mitigation strategies that might lower the
probability, reduce the impact, eliminate the source or consequences or, extend the
time frame in which the risk needed to be addressed. Those team members involved
(the risk manager, the team lead, and one distant team member) compiled a list of
mitigation strategies for the top five risks.

196 C.R. Nelson, G. Taran, and L. de Lascurain Hinojosa

Fig. 4. Identifying the 6 considerations for risk mitigation

The mitigation strategies for each of the top 5 risks were then prioritized based on
cost and the component of the risk that the strategy targeted (i.e., it is generally more
beneficial to mitigate the source of a risk than the condition). The top two mitigation
strategies for each of the top 5 risks were put into an action plan (figure 5 shows an
example action plan) that also included triggers and timeframes for evaluating the
mitigation strategies or re-evaluating the risk.

During iteration planning, the primary mitigation strategies (one for each of the top 5
risks) were included in the sprint backlog for prioritization. This sometimes required
multiple tasks per mitigation strategy. The reason for multiple tasks was to break up the
amount of work required to mitigate a risk such that a portion of a mitigation strategy

could be performed in one iteration
and additional portions could be
completed in following iterations.
This made it more likely for
mitigation strategy tasks to be inclu-
ded in an iteration since they could
be completed in small chunks. If a
mitigation strategy was compli-
cated and required a significant
amount of time, it might be con-
sidered as too much effort for a
single sprint because it could take
too much time away from other
aspects of the project that were
required to show progress to the cus-
tomers. At the end of each iteration,
the team reviewed the triggers for
risks that had timeframes associated
with the end of the current sprint. If
a trigger was triggered, then the
team would take the appropriate
next steps, such as moving to a
backup strategy or closing the risk
because the trigger indicated that the
risk was mitigated.

Fig. 5. An Example of an Action Plan

 Explicit Risk Management in Agile Processes 197

Once risks were mitigated, the top 5 risk list was updated. Also at the end of each
iteration, the team would spend 10 to 15 minutes in the iteration review meeting
discussing any changes in risks or any new risks that any team member had identified
during the iteration. The risk list would be updated accordingly, and the risk manager
would facilitate a quick re-prioritization of the list. If the top 5 risks changed resulting
in risks in the top 5 that did not have defined action plans, then the team would
allocate time in the coming iteration to devise the mitigation strategies for the new
risks and define the action plans. This was a slight drawback. With this method it
would be possible to identify a new risk that was critical and should be mitigated
immediately, but the mitigation of the risk would have to wait until the following
iteration. The current iteration would be used to define the mitigation tasks that could
then be prioritized during the planning of the following iteration.

The adjustment to a more explicit risk management approach had significant
benefits over the team’s initial approach. The team was able to track their progress
with risks. The triggers allowed the team to track the effectiveness of mitigation
strategies. The updated top 5 risk list allowed the team to track which risks had been
mitigated and where the team should be focusing their mitigation efforts at any given
point in time. It was clear to the team that the new, more explicit, risk management
approach was working because the team could see progress. On more than one
occasion, the team switched from a primary mitigation strategy to a backup strategy.
Additionally, prior to using the explicit approach, no risks were mitigated. After the
change, the team effectively mitigated several risks.

7 Lessons Learned

Through the course of the DaVinci team’s project, the team tried multiple techniques
and constantly focused on process improvement through periodic reflections. These
reflections and ongoing discussions with the MSE faculty supervising the project led
to multiple insights with respect to the teams use of explicit risk management within
the project. Following are some of these lessons in the form of both ”Do” and ”Don’t”
recommendations.

7.1 Risk Manager Role

The assignment of a risk manager role is important to ensure that risk management
continues to get attention from the team. Someone needs to be a “risk champion,” the
person responsible for ensuring any necessary documentation is up to date, make sure
that mitigation strategies are revisited at the end of each sprint, and ensure new time is
spent identifying new risks. This role can easily be rotated between team members
and these rotations should occur between iterations.

7.2 Wiki

To effectively manage risks, some documentation is required. It is necessary to
document the current top risk item list, risk priorities, and their respective mitigation
strategies. These documents need to be readily accessible to the whole team, and they
need to be easy to modify. Risk documents can change frequently. A wiki works

198 C.R. Nelson, G. Taran, and L. de Lascurain Hinojosa

exceptionally well for risk management documentation. All members of a team can
easily view and modify the documents, and most wikis also provide version control so
that changes in the documents can be easily tracked.

7.3 Small Team Software Risk Evaluation

The SEI’s SRE is a useful tool for identifying risks, but in its original form, is very
time intensive and resource expensive. The use of the small team software risk
evaluation (to a certain extent - a mini version of the longer SRE) is a great way to get
risk management off the ground and establish an initial risk list for the project.
However, multiple small team risk evaluations are likely to be too expensive to
justify. All risk identification after the initial risk list is generated can be done less
formally during iteration review meetings with the team going around and identifying
new risks in a short brainstorming session.

7.4 Mitigation Tasks in Sprint Backlog

In order to integrate risk mitigation activities into an agile project, mitigation
strategies need to be added to task lists. In Scrum, this is the product or sprint
backlog. If mitigation strategies are not included as part of the tasks, they will not be
prioritized with other tasks, will likely be looked at as simply overhead, and may be
ignored or not given enough attention.

7.5 Multiple Tasks Per Mitigation Strategy

Mitigation strategies should be broken into a set of tasks that need to be completed.
These tasks can be added to the list of tasks that need to be prioritized for an iteration.
This allows for complicated mitigation strategies to be completed over the course of
multiple iterations rather than depriving other aspects of the project while the risk is
mitigated. This also allows for finer grained risk mitigation tracking through the
tracking mechanisms already put in place for iteration tasks.

7.6 Mitigation Trigger

It is important to understand when a risk is mitigated so that efforts to mitigate
the risk can be stopped. Many risks are clearly mitigated when certain tasks from the
mitigation strategy are completed. Other risks require reoccurring tasks as part of the
mitigation strategy. Risk triggers indicate to the team whether or not the existing
efforts are effective. A trigger defines a specific event that may occur in the future.
The trigger also defines what actions need to take place if the event occurs. Possible
actions include closing the risk because it has been mitigated, or reexamine the risk
and other possible mitigation strategies because the current strategy is not effective.

7.7 Mid-Iteration Triggers

Setting up triggers to be evaluated during the course of an iteration causes problems
when a trigger is activated that requires action. Most agile processes talk about a
frozen list of tasks during an iteration to protect the team from change during that

 Explicit Risk Management in Agile Processes 199

short period of time. If triggers are evaluated in the middle of iterations, it may be the
case that the team needs to switch to a back-up mitigation strategy in the middle of
the iteration. Switching to a back-up strategy would require removing remaining tasks
of the primary strategy from the task list and adding the tasks of the back-up to the
task list. This goes against the flow of agile and can throw off the goals set during
iteration planning. Amore appropriate way is to define all triggers such that they are
reviewed at the end of an iteration, during the iteration review. This way, adjustments
can be planned accordingly in the iteration planning that follows the iteration review.

7.8 Multi-voting

There are multiple ways to prioritize and reprioritize risk items. Team DaVinci found
that the use of the multi-voting technique [9] was particularly effective in that the
process was quick, easy to follow and included the opinions of all the team members
within the prioritization effort. The swiftness allowed for the reprioritization of risks
to be easily added as another activity into the regular Sprint planning meetings. The
participation of all team members helped to ensure buy-in for the risk management
activities and for the inclusion of mitigation strategy tasks in the teams sprint
backlogs.

7.9 Mitigation Strategies for New Risks

When new risks are identified, mitigation strategies need to be formulated for the
risks before anyone can start mitigating risks. Team DaVinci would identify new risks
during sprint review meetings and plan for mitigation tasks during sprint planning
meetings (see figure 1). If new risks were identified during a review meeting, a task to
define the mitigation strategies was included in the planning of the following sprint.
This is problematic if there is a critical risk that is identified. The next iteration would
only include the task of identifying appropriate mitigations for this new risk but no
tasks for implementing a strategy. The tasks to mitigate the risk would not occur until
the following sprint. One recommendation would be to include a chunk of effort
(roughly estimated) in the planning for the next sprint to be used for actual mitigation
of the new critical risk in addition to determining appropriate mitigation strategies for
that risk.

8 Conclusion

Agile processes inherently address risk in an implicit fashion. While addressing
project risks implicitly is better than not addressing them at all, implicit risk
management leaves much room for improvement. It lacks the ability to truly
understand the risks a project is facing. Without this understanding, risks can not be
effectively mitigated.

Explicitly engaging in risk management on agile projects involves extra time and
structure seemingly defeating the ‘agile’ nature of the work. However, we have
shown several options for integrating explicit risk management activities into tasks
that already exist in most agile processes. This affords us the countless advantages to
being formal when addressing risks, even in an agile setting. Specifically, explicit risk

200 C.R. Nelson, G. Taran, and L. de Lascurain Hinojosa

management allows for risks to be clearly identified and analyzed, and therefore
directly targeted. Explicit risk management calls for mitigation strategies to be
devised and mitigation tasks to be planned accordingly. Explicit risk management
also provides mechanisms to track these strategies so as to determine if the they are
effective and if the risks are being mitigated.

Explicit risk management can be incorporated into agile processes. Lightweight
version of risk evaluation and identification techniques exist that are appropriate for
small teams working with short iterations. The activities involved in continuous risk
management (identification, analysis, planning, tracking, and control [5,8,9,15,19,20])
can be integrated into agile processes. The activities fit naturally in the iteration
reviews, iteration planning, and iteration tasks.

Agile processes claim to be risk driven, but relying solely on their implicit style of
risk management neglects important aspects of risk management. Any project using
an agile process should seriously consider the value of adding explicit risk
management techniques.

Acknowledgment

The authors would like to thank the other members of the DaVinci team (Carl,
Chung-Hao, Harry, and Luis) for their help on the DaVinci project and insight into
explicit risk management techniques used during the project. The authors would also
like to thank Ray Williams for his guidance with the team’s use of a condensed
version of the SEI’s taxonomy-based software risk evaluation.

References

1. Architecture Analysis and Design Language (Aadl), SAE Standard AS5506 (November
2004)

2. Barbacci, M., Ellison, R., Lattanze, A., Stafford, J., Weinstock, C., Wood, W.: Quality
Attribute Workshops (QAWs), Third Edition, CMU SEI Technical Report CMU/SEI-
2003-TR-016. Software Engineering Institute, Carnegie Mellon University (2003)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2003)

4. Beck, K.: eXtreme Programming Explained: Embrace Change. Addison-Wesley, Reading
(1999)

5. Carr, M.J., Konda, S.L.: Monarch, Ira, Ulrich, Carol F., and Walker, Clay F. Taxonomy-
Based Risk Identification (CMU/SEI-93-TR-6, ESC-TR-93-183). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University (1993)

6. Cockburn, A.: Agile Software Development. Addison-Wesley, Reading (2002)
7. Concha, M., Visconti, M., Astudillo, H.: Agile Commitments: Enhancing Business Risk

Management in Agile Development Projects. In: Concas, G., et al. (eds.) XP 2007. LNCS,
vol. 4536, pp. 149–152. Springer, Heidelberg (2007)

8. Conrow, E.H., Shishido, P.S.: Implementing Risk Management on Software Intensive
Projects. IEEE Software 14(3), 83–89 (1997)

9. Dorofee, et al.: Continuous Risk Management Guidebook. Carnegie Mellon University
(1996)

 Explicit Risk Management in Agile Processes 201

10. Garlan, D., Gluch, D., Tomayko, J.: Agents of Change: Educating Software Engineering
Leaders. Computer 30(11), 59–65 (1997)

11. Gluch, D.P.: A Construct for Describing Software Development Risk (CMU/SEI-94-TR-
14, ESC-TR-94-014). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University (1994)

12. IEEE1540, IEEE 1540 Standard for Lifecycle - Processes-Risk Management. IEEE, New
York (2001)

13. Lu, X.N., Ma, Q.G.: Risk Analysis in Software Development Project with Owners and
Contractors. In: International Engineering Management Conference (October 2004)

14. McMahon Paul, E.: Bridging Agile and Traditional Development Methods: A Project
Management Perspective, Crosstalk (May 2004)

15. Nyfjord, J., Kajko-Mattsson, M.: Commonalities in Risk Management and Agile Process
Models. In: ICSEA 2007, Cap Esterel France (August 2007)

16. Paulk, M.: Agile Methodologies and Process Discipline. Crosstalk (October 2002)
17. Preston, G.: Smith and Roman Pichler, Agile Risks/Agile Rewards, Software

Development, pp. 50–53 (April 2005) Project Management Institute, A Guide to the
Project Management Body of Knowledge (PMBoK), 3rd Ed. ANSI/PMI 99-001-2004,
Project Management Institute, Newton Square, PA (2004)

18. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press (2004)
19. Williams, R.C., Pandelios, G.J., Behrens, S.G.S.: Method Description (Version 2.0) &

SRE Team Members Notebook (Version 2.0) (CMU/SEI-99-TR-029). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon University (1999)

20. Williams Ray, C., Walker, J.A., Dorofee, A.J.: Putting Risk Management into Practice.
IEEE Software 14(3), 75–82 (1997)

21. The Eclipse Development Platform, http://www.eclipse.org
22. The Society for Automotive Engineers Architecture Analysis & Design Language,

http://www.aadl.info

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 202–203, 2008.
© Springer-Verlag Berlin Heidelberg 2008

APDT: An Agile Planning Tool for Digital Tabletops

Sebastian Weber, Yaser Ghanam, Xin Wang, and Frank Maurer

Department of Computer Science, University of Calgary
2500 University Dr. NW, Calgary, AB

Canada T2N 1N4
sebastian.weber@outlawtrail.de,

{yghanam,xin,maurer}@cpsc.ucalgary.ca

Abstract. This paper presents Agile Planner for Digital Tabletops (APDT) as a
tool that facilitates agile planning meetings using large horizontal displays.
Utilizing APDT on a reasonably sized digital tabletop allows collaborators to
create, edit, move, rotate, toss and delete index cards just like they would do with
paper artifacts. APDT provides a multimodal input system that supports gesture-,
handwriting- and speech recognition as alternative input methodologies to
conventional mouse and keyboard input.

Keywords: Agile planning, collaboration, digital tabletop, horizontal display,
surface computing.

1 Introduction

In iterative software development models, planning meetings are a main venue where
the customer conveys his needs and requirements to software developers. In agile
planning meetings, index cards, so called story cards, are traditionally used to arrange
tasks and feature requests into iterations. After filling in the required information,
story cards are spread on a tabletop surface to allow for knowledge sharing among the
attendees while they collaboratively discuss and organize the next iterations/release.
Story cards may also be grouped into piles to indicate what tasks are to be
accomplished in which iterations. Moving a story card from one position to another
on the table surface for grouping or prioritizing purposes is a very common practice.
Because of the setting of the meeting around the tabletop, reorienting story cards to
make them easier to read for collaborators on the other side of the table is a common
practice. Other story card related activities include modifying contents, passing the
story card from one participant to another and trashing dispensable story cards. Most
tools and commercial products focus on delivering the functionalities that are very
likely to be needed in a planning meeting, but introduce a gap between what the
traditional practice is and how the agile team needs to interact with such tools. For
instance, the visualization of index cards as information holders is overlooked in
many planning tools. The tool we present in this paper was specifically designed for
use on digital tabletops to address usability and practicality issues found in other
tools.

APDT: An Agile Planning Tool for Digital Tabletops 203

2 Agile Planner for Digital Tabletops (APDT)

The digital surface we used in our project, shown in Fig. 1, is 210 cm X 120 cm with
a resolution of approximately 10 mega-pixels. APDT was specifically developed for
use on such a large horizontal display. APDT’s ultimate goal is to make interaction
with the planning objects feel as close to interacting with real paper cards as possible,
and enhance this planning meeting by utilizing advantageous features of electronic
devices. APDT allows for a multimodal interaction with the digital tabletop. That is,
besides being able to use traditional input devices like mice and keyboards, users can
use finger tips, electronic markers and even their voices to interact with the tabletop.
The tool allows for unrestricted 360° rotation and movement of index cards. Using the
RNT algorithm [1] implemented for APDT, users can manipulate the location and
orientation of artifacts in the workspace in one fluid motion. Moreover, a tossing
function allows for ‘throwing’ objects across the table to meet participants that are out
of physical reach. The size of the table and the varying positions of the different users
results in ordinary interfaces like menus or toolbars to be inconvenient. To create an
orientation-independent environment, gesturing was implemented for creation,
deletion and organization of planning objects. For instance, using a gesture for
creation, story cards appear properly oriented towards their creator.

Fig. 1. The digital tabletop in our lab

Unlike some previously discussed tools that depend on external devices to feed
recognized handwriting as input to the tabletop, APDT integrates handwriting
recognition functionality directly into the table-interaction. The original handwriting
and the recognized text are both displayed and can be edited afterwards. APDT also
supports voice commands as an alternative channel for user input without the need to
touch the tabletop surface.

Reference

1. Kruger, R., Carpendale, S., Scott, S., Greenberg, S.: Fluid Orientation on Tabletop Display.
Computer Supported Cooperative Work, vol. 13, pp. 501–537. Kluwer Academic
Publishers, Norwell (2004)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 204–207, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Investigating the Role of Trust in Agile Methods Using a
Light Weight Systematic Literature Review

Eisha Hasnain and Tracy Hall

Brunel University, Uxbridge, Middlesex
UB8 3PH, United Kingdom

Eisha.Hasnain@brunel.ac.uk, Tracy.Hall@brunel.ac.uk

1 Introduction

In this paper we use a cut down systematic literature review to investigate the role of
trust in agile methods. Our main motivation is to investigate the impact of the
enhanced role of developers in agile methods. It is important to investigate the role of
trust in agile methods because according to the agile manifesto the role of individual
developers is central in an agile team: “Individuals and Interactions over processes
and tools” and “Build projects around motivated individuals. Give them the
environment and support they need, and trust them to get the job done” [1]. This
suggests that managers must trust their staff to make decisions. The most direct forum
for trust in agile projects is in the daily stand-up meeting. Project managers must trust
that what developers say in the standup they are going to achieve during the day is
what they actually achieve. In this paper we investigate the role trust plays in agile
methods.

We report our systematic literature review to identify the role of trust in agile
methods as reported in previously published studies. Full systematic literature reviews
are very resource and time intensive. Consequently we have adapted Kitchenham’s
[2] guidelines to fit the time and resources we have available. This approach will
allow us to generate the answers to our research questions based on a systematic
analysis of previous published work in the area.

This paper is divided into five sections. The first section defines agile methods.
The second section defines trust, explains the types of trust and describes how trust
can be maintained. The third section describes how we carried out a systematic
literature review. The fourth section presents results from our systematic literature
review and the final section discusses our results and identifies future work.

2 Agile Methods

Agile software development challenges traditional software development methods.
Rapidly changing environments characterized by evolving requirements and tight
schedules require software developers to take an agile approach [3]. According to
agile manifesto the key principles of agile methods are individuals and interactions
over processes and tools, working software over comprehensive documentation,
customer collaboration over contract negotiation, and responding to change over

 Investigating the Role of Trust in Agile Methods 205

following a plan. However one of the most important shifts in adopting an agile
approach is the central focus given to people in the process. This is exemplified by the
independence afforded to developers about the development work they do. Developer
independence is usually structured within daily stand-up meetings. During stand-up
meeting developers must say what they are going to achieve that day. We suggest that
there must be an element of trust in ‘believing’ that developers will achieve what they
say in the stand-up they will achieve. In this paper we investigate what role trust plays
in agile teams by addressing the following research question: RG: What role does
trust play in agile teams?

3 Trust

According to Jinwei and Fox [4]:

“Trust is the psychological state in which the trustor believes that the trustee behaves
as expected in a specific context, based on evidence of the trustee’s competence and
goodwill; the trustor is willing to be vulnerable to that belief.”

In this paper the trustor and trustee are the developers and project managers in a
team and the competence is the capability of the developer to do the development
work announced at the stand-up and goodwill is the good intention of the developer to
do that development work. Trust is context-specific which means that if A trusts B to
do C this doesn’t means that A trusts B to do D. Our analysis of the trust literature
suggests that the types of generic trust that can affect agile methods are interpersonal
trust, relational trust, and system trust, trust in behaviour and trust in belief [4]. While
the factors that maintain trust in agile methods are honesty, communication, cultural
understanding, personal relationships, working together, performance and capability
[5]. We will use these trust types and factors to analyse the importance of trust in
agile methods.

4 Systematic Literature Reviews

Systematic literature reviews (SLR) are fairly new to software engineering but are
long established in disciplines such as medical research. Systematic literature reviews
are a method for analyzing all of the evidence addressing a particular research
question. The outcome of a SLR is a landscape of evidence on a particular issues.
Barbara Kitchenham recently introduced SLR’s to software engineering [2].

In this cut down SLR we used only the IEEE Xplore search engine to identify
papers. We searched for paper from 2000-2007. The searches were done in July and
August 2007. We used the following search terms in our searches:

1. (Agile or XP) and (trust, developer, engineer, people, stand-up)
2. (Developer or Engineer) and Trust

These search terms retrieved 217 papers which we analyse in the next section.

206 E. Hasnain and T. Hall

5 Results

When we read the 217 papers only 11 papers are directly relevant to our research
question. These papers discuss agile software development, the people factor and how
successful teams can make an effect on eXtreme Programming. Further, 12 papers are
indirectly relevant discusses different distributed projects, communication in these
projects, and eXtreme Programming implementation in different university courses.
The remaining 194 papers have been discarded as not relevant, as most papers are
discussing trust related to network and security while other papers are discussing agile
software development methods in software engineering field.

Overall our results shows that 188 of papers reported in the literature are
experienced based while only 29 of papers is empirical as they contains all cases
where data has been gathered either in qualitative or in quantitative forms. Division of
results in these two forms will help us analyzing the material related to research
question. Furthermore about 46 of articles are from the USA, while 171 are from rest
of world. These demographics probably indicate cultural bias in the experiences and
studies published.

6 Discussion

One of the key findings identified in this SLR is that rules are highly related to trust in
development teams. If there is no trust between people then there are likely to be
more rules. Empirical studies carried out by Sharp and Robinson [6] discusses the
importance of trust in agile methods.

According to paper relative analysis between agile software development and war
fighting written by Adolph [7]:

“… people who do not trust one another will end up cooperating only under a
system of formal rules and regulations, which have to be negotiated, agreed to,
litigated, and enforced, sometimes by coercive means. This legal apparatus, serving
as a substitute for trust, entails what economists call “transaction costs”[7].

This finding raises issues such as: What type of rules will be agreed between
people if there is no trust? How will these rules are implemented? And if these rules
are not followed what will be the penalties? And who will enforce these penalties? All
these questions make it clear that in the absence of trust, processes become complex.

It is clear that the importance of trust cannot be neglected. Without trust the
development and implementation of rules is costly, complex and time consuming. All
these factors increase the importance of trust in software development—especially in
Agile Methods.

7 Conclusion

Our systematic literature review does not provide a comprehensive answer to the
research question. This suggests that insufficient previous research has been published
on the impact of trust in agile teams. Future research on this topic is important and

 Investigating the Role of Trust in Agile Methods 207

could help increase the effectiveness of agile methods and also improve the quality of
products developed using agile methods.

References

[1] Fowler, M., Highsmith, J.: The Agile Manifesto [November 10, 2007] (2001),
 http://www.ddj.com/linux-open-source/184414755

[2] Kitchenham, B.: Procedure for Performing Systematic Literature Reviews. Keele
University Technical Report, 1353–7776 (2004)

[3] Cao, L.: Agile Software Development: Ad Hoc Practices or Sound Principles? IT
Professional 9(2), 41–47 (2007)

[4] Huang, J.: Trust Judgement in Knowledge Provenance. In: Proceedings of Sixteenth
International Workshop on Database and Expert Systems, pp. 524–528 (2005)

[5] Nguyen, T.P., Babar, A.M., Verner, J.: Critical Factors in Establishing and Maintaining
Trust in Software Outsourcing Relationship. In: International Conference on Software
Engineering, pp. 624–627 (2006)

[6] Sharp, H., Robinson, H.: Extreme Programming and Agile Processes in Software
Engineering, pp. 139–147. Springer, Heidelberg (2004)

[7] Adolph, S.: Are we ready to be Unleashed? A Comparative Analysis between Agile
Software Development and War Fighting. In: Proceedings of Agile Conference, pp. 20–28
(2005)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 208–209, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Agile Practices in a Product Development Organization

Frank Keenan1, Tony McCarron1, Shay Doherty2, and Stuart McLean2

1 Department of Computing and Mathematics, Dundalk Institute of Technology, Ireland
{frank.keenan,tony.mccarron}@dkit.ie

2 Stiona Software, Ormeau House, 91 / 97 Ormeau Road, Belfast, BT7 1SH, UK

Abstract. Many reports highlight the advantages of using an agile approach to
software development. However, as each case is different it is necessary to use
practices that suit the particular situation under investigation. This paper reports
on how agile practices, largely drawn from eXtreme Programming (XP), were
used by Stiona Software for the development of their internet-based financial
product Fusion Accounts.

Keywords: eXtreme Programming (XP), experience report, agile practices.

1 Introduction

The goal of Stiona’s Fusion Accounts project was to develop a collaborative web-
based accounting application to allow both accountants and their clients to work on
the same accounts at the same time from anywhere. The Software As A Service
(SaaS) model was used, allowing customers to rent part of the product rather than
buying the whole. Development began in September 2006 with one dedicated
developer. Others were expected to contribute as needed or as opportunities arose. A
senior member took the role of product owner liaising with key potential customers
while other members of the team included a marketing specialist and a tester.

A particular challenge, or perhaps opportunity, was the relationship with the
customer base. It was hoped that in addition to existing customers changing from
using traditional accounting packages, it would be possible to recruit new ones at an
early stage of development. Frustrated by previous plan-driven experience, it was
decided to follow an agile approach influenced by XP [1].

2 Introduction of Agile Practices

The agile practices that were adopted are now described.

Work Area: the development office was organized so that the team was located in the
same area with workstations organized around three whiteboards. At various stages
the information displayed changed to reflect development focus. For example,
relevant screenshots would be displayed on one board with another used to perform
use case analysis. Off-site members were kept up-to-date with a shared spreadsheet
and communicated through a wiki and by skype, sharing emerging requirements.

 Agile Practices in a Product Development Organization 209

Real Customer Involvement: The product owner was in continuous contact with an
accountant with a large client base. Other potential customers were also engaged.
From an early stage, although in a separate office, an accounts clerk was contactable.
However, this contribution was enhanced significantly when the clerk relocated to
join the team, using a live version of the product.

Incremental Development and Deployment: Weekly meetings allowed progress
updates, identification of impediments, requirements brainstorming and integration of
emerging concerns. Through feedback, invoicing was chosen as the highest priority.
In short cycles, (one or two weeks) fully functioning and tested software was
produced and made available for demonstration.

Common Ownership: All members had access to the requirements list and source
code allowing requirements to be added at weekly meetings or as they emerged.

Negotiable Scope: The sales approach taken here was to recruit major clients with
their customers in turn becoming Stiona customers. In both cases contracts were
agreed on a short-term basis with an emphasis on the customer renting software rather
than purchasing it. Later, customers can select from a larger package. This allowed
the implementation of the highest priority needs first.

Testing: A dedicated tester participated two days per week. There was also customer
testing by major clients while on-site clerks provided daily feedback. The first
official release was available for pilot testing with a doctor’s surgery in May.

Two significant factors enabled the introduction of these practices were the
technology used and the ability of the team. Development was mainly in .NET 2.0
and AJAX, with specialist software used to create the interface. Tests were
documented in NUnit. SQL Compare was used to compare development and test
databases. Northern Ireland government standards for financial software were
followed. Issue Tracker was used for sharing and tracking requirements and errors.

3 Conclusion

These practices helped “satisfy the customer through early and continuous delivery of
valuable software”. A suitable work environment, supported by various customer
input, helped to realize the SaaS model. Reflecting their initial progress, “Fusion
Accounts” was short listed for the national British Telecom Inspired IT Awards 2007.
A particular challenge that now arises is to support a live product while developing
new software. Ways of supporting this are being investigated including the provision
of customer support through wikis. The work described in this experience report was
supported by the Fusion programme funded by InterTradeIreland.

Reference

1. Beck, K., Andres, C.: Extreme Programming Explained, 2nd edn. Addison Wesley, Reading
(2005)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 210–211, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Building and Linking a Metaphor: Finding Value!

Frank Keenan1, David Bustard2, Namgyal Damdul1, and David Connolly1

1 Department of Computing and Mathematics, Dundalk Institute of Technology, Ireland
{frank.keenan,namgyal.damdul,david.connolly}@dkit.ie

2 School of Information and Software Engineering, University of Ulster,
Coleraine, BT52 1SA, UK

dw.bustard@ulster.ac.uk

Abstract. Initially System Metaphor was included as one of twelve practices of
Extreme Programming (XP) to facilitate participants’ common understanding
and description of the problem under consideration. However, the practice was
removed in the second version of XP as practitioners found it difficult to
understand, devise and link it to implementation activities. This poster describes
how a metaphor can be constructed and linked to development by using
practices associated with Soft Systems Methodology (SSM). Initial, positive,
feedback from an educational exercise is presented.

Keywords: Metaphor, Soft Systems Methodology (SSM).

1 Introduction

XP evolved from a fixed set of twelve practices now described as a “process of
experimentation and improvement” [1]. Despite its removal as an explicit XP practice
this poster describes how describing a metaphor and linking it to development provides
benefit. Here, parts of SSM [2], a well-proven method for analyzing problems including
the development of software is combined with XP. Traditionally, SSM has been
described as a seven-stage process. Problem situations are usually captured diagram-
matically as rich pictures. Although subjective, with no rules defined for drawing them,
they help achieve a shared understanding of a situation among interested parties. Models
of ‘relevant systems’ are then developed, based on that knowledge and are expressed as
root definitions and conceptual models. A root definition is a short textual statement that
defines the important elements of the ‘relevant system’ providing a particular perspec-
tive on the system under investigation. A conceptual model is derived from the root
definition by identifying the activities present or implied and their inter-relationship.
These models provide a basis for further debate on the activities involved. Next, change
recommendations are derived from the results and action to improve the situation
undertaken is recommended.

This approach used rich picture analysis to build a metaphor and then detailed exami-
nation to develop a conceptual model. The activities of this model were then used to
create user stories.

 Building and Linking a Metaphor: Finding Value! 211

2 Evaluation

An evaluation study was conducted with two final year groups of Degree students. All
had previous knowledge of agile methods, particularly XP, and were introduced to
SSM and the combined approach. One team used only XP and the other SSM-XP.
Both had access to a customer throughout development. In the first SSM-XP session
the customer outlined the problem. After a discussion, drawing of a rich picture was
facilitated and the various issues raised were easily and quickly clarified by the
customer. This session was interactive with members offering suggestions, raising
questions and amending the diagram. Finally, the rich picture was photographed and
transcribed. Thus, the metaphor was created. The main challenge appeared to be
reaching agreement on the problem rather than drawing the diagram. As the
conceptual model developed more focused discussion took place. Essentially, one or
two related activities formed an XP release. User stories were agreed and estimated
facilitating the link between metaphor and development. Project scope was not a
difficulty at this stage—a problem that did arise for the XP team. In subsequent
sessions the team used the recorded pictures to recall objectives and stay focused.

The SSM-XP team implemented more user stories which seemed to be of higher
quality. Also, despite extra initial effort, after five sessions they reached the same stage
as the XP team. Feedback indicated that the Rich Picture was “very helpful” and
“effective” in understanding the problem. The conceptual model helped “prioritize the
requirements” from the Rich Picture and helped “clarify stories” for implementation.

3 Conclusion

This poster has proposed that there is still benefit in developing a metaphor for XP as
originally indicated. The new version of XP allows inclusion of other practices so
there is no reason why metaphor should not be implemented. The key is to provide
guidance on how one can be constructed and linked to development. This has been
achieved through the combination of parts of SSM with XP. Student exercises,
although limited, have provided positive feedback indicating that this combination is
beneficial without detracting from the overall development time. Our future work
includes the examination and development of tools to build a metaphor while
enabling communication within a distributed team.

References

1. Beck, K., Andres, C.: Extreme Programming Explained, 2nd edn. Addison Wesley, Reading
(2005)

2. Checkland, P.: Systems Thinking, Systems Practice (with 30-year retrospective). John
Wiley & Sons, Chichester (1999)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 212–214, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Story of Transition to Agile Software Development

Gadi Lifshitz1, Ayelet Kroskin1, and Yael Dubinsky2

1 Cisco Systems, 32 Hamelacha St., Netanya 42504, Israel
{glifshit,akroskin}@cisco.com

2 IBM, Haifa Research Lab, 31905 Haifa, Israel
dubinsky@il.ibm.com

Cisco Systems, Inc. (Nasdaq:CSCO) is the worldwide leader in networking for the
Internet. Inside Cisco's Development Organization, the Network Management
Technology Group (NTMG) is the group responsible for developing and delivering
Network Management software for Cisco devices. The Converged Management
Platform (CMP) Development Group within NMTG is building the Next Generation
Network Management software called Active Network Abstraction (ANA), a
platform which is aimed at converging numerous network management applications
into a single platform, leveraging the capabilities of scale and distribution, and
allowing the benefits of advanced technologies and a uniform interface. In this report
we tell the story of a transition to agile software development in the Active Network
Abstraction (ANA) project, including lessons learned.

The process of transition to agile software development [2,4] was composed of two
main phases: The first-team phase in which one team (consisting of eight developers
and two testers) developed two releases working according to the agile approach, and
the scale phase, in which two additional teams working on the same project made the
transition to agile. In what follows we focus on the first-team phase.

The agile room. The team moved into a large meeting room with a large meeting
table. Working in a single room with developers, testers, a manager and a customer
(the project architect as a proxy customer) enabled communication and collaboration
they had never dreamed of. The main challenge of working in the agile room was
controlling the noise level. The team focused on small improvements that could be
made to ease the noise e.g., all cellular phones were put on vibrate; personal
conversations, arguments and phone calls were taken outside the room; soft
background music was played; a role to enforce noise rules was instated. The walls in
the agile room symbolized the evolvement of the agile team as they were slowly filled
up with a variety of measurements, post it notes displaying the iteration story status,
quotes of the day and work procedures, for example: the Test Driven Development
(TDD) [1] cycle, the continuous integration process and design diagrams. The team
worked in mixed pairs during agile hours between 10:00-16:00.

Agile roles. The team members were encouraged from the beginning of the release to
take on individual roles [3]. These roles included for example: the methodologist who
was the process protector; the tracker who was responsible for all measurements; the
integrator who was responsible for the continuous integration process which included

 The Story of Transition to Agile Software Development 213

a continuous integration machine and a traffic light which signaled the build status;
the tester who was responsible for forming an acceptance test framework, and
defining the methodology of acceptance and unit testing. Acceptance tests were
written for each story and were defined by the customer. TDD was initially practiced
by the team members, but was a disappointment as it was abandoned early on.

The Agile Business Day. The team held a Business Day at the end of each 2-week
iteration. The schedule of this day included a demo to the customer of the stories
completed during the iteration, customer feedback, measurement analysis, reflection,
and planning for the next iteration.

The Demos: The team focused on showing visible, time-boxed demos to the
customer. The demos were initially long but gradually became more efficient.

The measurements: The team initially began with tracking a single measurement
which was a variation of the well known burndown chart. As the team and process
evolved, additional measurements came up as needed by the team, for example, a
team satisfaction measurement, average team overtime (hours worked on stories
outside agile hours) and manager/customer presence time in the agile rooms. Most
measurements were brought up by teammates and were measured in order to deal
with problematic situations the team was facing: not working at a sustainable pace
and the customer not being present to answer questions during the iteration.

The reflections: Reflections [2] were held frequently and were a very significant part
of the transition to agile as they were a tool for continuous improvement. Reflections
were held either on topics that were determined ahead of time, for example, how do
the testers and developers work together as one team, or on spontaneous topics
brought up during the reflection.

The planning process: During the planning process the customer would present the
stories for the next iteration, the team would break down the stories into tasks and
estimate the tasks. The team tried several methods of estimations including estimating
tasks in hours, in buckets (small, medium or large) which team members complained
was not accurate, estimating in relative units and using planning poker. Currently, the
team is estimating in days but still using the planning poker technique.

Outcomes: The first agile team phase was found to be a success at Cisco. Not only
did team members feel the quality of the product was higher, but the team was
consistently delivering at the end of each iteration. The great support of the
management played a big factor in the success of the agile experiment. There were
some topics that the team struggled with throughout the release e.g., the issue of ‘agile
hours’ was questioned and some motivation issues were found among more
experienced engineers.

The experience and lessons learned described during the transition to agile are used
today for the in-progress scale phase in the project. Emphasis is put on the
mechanisms to control the process of multiple teams e.g., working procedures,
common measurements and derived policies.

214 G. Lifshitz, A. Kroskin, and Y. Dubinsky

References

1. Beck, K.: Test-Driven Development By Example. Addison Wesley, Reading (2003)
2. Beck, K., Andres, C.: Extreme Programming Explained. Addison-Wesley, Reading (2004)
3. Dubinsky, Y., Hazzan, O.: Using a role scheme to derive software project quality. Journal

of System Architecture 52(11), 693–699 (2006)
4. Highsmith, J.: Agile Software development Ecosystems. Addison-Wesley, Reading (2002)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 215–217, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Predicting Software Fault Proneness Model
Using Neural Network

Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra

University School of Information Technology, GGS Indraprastha University,
Kashmere Gate, Delhi-110403, India

ys66@rediffmail.com, arvinderkaurtakkar@yahoo.com,
ruchikamalhotra2004@yahoo.com

Importance of quality software is increasing leading to development of sophisticated
techniques for exploring data sets, which can be used in constructing models for
predicting quality attributes. There have been few empirical studies evaluating the
impact of object-oriented metrics on software quality and constructing models that
utilize them in predicting quality attributes of the system. Most of these predicted
models are built using statistical techniques. Most of these prediction models are built
using statistical techniques. ANN have seen an explosion of interest over the years,
and are being successfully applied across a range of problem domains, in areas as
diverse as finance, medicine, engineering, geology and physics. Indeed, anywhere that
there are problems of prediction, classification or control, neural networks are being
introduced. ANN can be used as a predictive model because it is very sophisticated
modeling techniques capable of modeling complex functions.

Khoshgoftaar et al. presented a case study of real time avionics software to predict
the testability of each module from static measurements of source code. They found
that ANN is a promising technique for building predictive models, because they are
able to model nonlinear relationships. The LR and ANN approaches are inherently
different, raising the question whether one approach has better performance than the
other. To investigate this question, the performance of LR and ANN methods was
compared in the study for predicting software fault proneness. The goal of this paper
is to empirically compare regression and machine learning technique to assess
software quality. The binary dependent variable in our study is fault proneness. Fault
proneness is defined as the probability of fault detection in a class. The study used
data collected from public domain NASA data set. We find the effect of software
metric on fault proneness. The fault proneness models were predicted using logistic
regression and decision tree methods. The performance of the two methods was
compared by Receiver Operating Characteristic (ROC) analysis. Most of these
prediction models are built using statistical techniques.

The study is divided into following parts:

(i) Software fault proneness model is constructed using multivariate analysis
to predict fault proneness of classes using LR and ANN technique.

(ii) The performance of the models is evaluated using ROC analysis.

216 Y. Singh, A. Kaur, and R. Malhotra

The predicted model shows that metrics are related to fault proneness. The network
used in this work belongs to Multilayer Feed Forward networks and is referred to as
M-H-Q network with M source nodes, H nodes in hidden layer and Q nodes in the
output layer. The input nodes are connected to every node of the hidden layer but are
not directly connected to the output node. Thus the network does not have any lateral
or shortcut connection. Figure 1 presents structure of ANN used in this study.

ANN repetitively adjusts different weights so that the difference between desired
output from the network and actual output from ANN is minimized. The network
learns by finding a vector of connection weights that minimizes the sum of squared
errors on the training data set. The summary of ANN used in this study is shown in
Table 3. The ANN was trained by standard error back propagation algorithm at a
learning rate of 0.005, having the minimum square error as the training stopping
criterion.

The input layer has one unit for each input variable. Each input value in the data
set is normalized within the interval [0, 1] using min-max normalization. Given an n
by m matrix of multivariate data, Principal component analysis [] can reduce the
number of columns. We performed Principal component analysis on the input metrics
to produce domain metrics []. In our study n represents the number of classes for
which OO metrics have been collected. Using Principal component analysis, the n by
m matrix is reduced to n by p matrix (where p<m).

We use one hidden layer as what can be achieved in function approximation with
more than one hidden layer can also be achieved by one hidden layer. There is one
unit in the output layer. The output unit with value greater than a threshold (cutoff
point) indicates the class selected by the network is fault prone otherwise it is not.

The accuracy of models predicted is somewhat optimistic since the models are
applied on same data set from which they are derived from. To predict accuracy of
model it should be applied on different data sets thus we performed 10-cross
validation of LR and ANN models. For the 10-cross validation, the classes were
randomly divided into 10 equal parts of approximately. The models predict faulty
classes with more than 70 percent accuracy. The areas under the ROC curves 0.78 and
0.76 for the LR and ANN model, respectively.

Based on these results, it is reasonable to claim that such a model could help for
planning and executing testing by focusing resources on fault-prone parts of the
design and code. This study confirms that construction of ANN is feasible, adaptable
to systems, and useful in predicting fault prone classes. While research continues,
practitioners and researchers may apply ANN method for constructing model to
predict faulty classes.

As in all empirical studies the relationship we established is valid only for certain
population of systems. In this case, we can roughly characterize this population as
“medium-sized systems.”

From the design phase, one can make software measurements and then predict
which classes will need extra attention during the remainder of development. This can
help management focus resources on those classes that cause most of the problems.
Also, if required, developers can reconsider design and thus take corrective actions. In
order to draw strong conclusions, however, more replicated studies are needed.

These design measurements can be used as quality benchmarks to assess and
compare products, once one knows the metrics to be measured. More such studies can

 Predicting Software Fault Proneness Model Using Neural Network 217

provide quality benchmarks across organizations, whereas within an organization,
quality benchmarks can be set comparing metric values with the existing operational
good quality software. If deviation is found in the metric values further investigation
to know the cause of deviation could be done. Thus, corrective actions could be taken
before final delivery or future releases of the software. This is particularly important
when systems are maintained over a long period and new versions are released
regularly.

More similar type of studies must be carried out with large data sets to get an
accurate measure of performance outside the development population. In future we
plan to replicate our study on large data sets and to validate OO design metrics across
different fault severities. We plan to replicate our study to predict models based on
machine learning algorithms such as genetic algorithms. We will also focus on cost
benefit analysis of models that will help to determine whether a given fault proneness
model would be economically viable.

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 218–219, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Multi-modal Functional Test Execution

Shelly Park and Frank Maurer

University of Calgary
Department of Computer Science

2500 University Drive NW, Calgary, Alberta, Canada
{parksh,maurer}@cpsc.ucalgary.ca

Abstract. Multi-modal test execution allows execution of the same test against
various layers of a software system, e.g. the GUI layer, the web service layer
and the business logic layer. Multi-modal test execution helps with identifying
the location of software bugs during debugging and maintenance as well as in
tracking the progress of the development effort. This paper presents a method
that effectively encodes multi-modal functional tests without creating large test
maintenance overhead. Our approach extends the Fit table specification
structure by multi-modal fixtures and presents the results of test execution in a
way to help with debugging and progress reporting.

Keywords: Executable Acceptance Testing, Test Driven Development, Func-
tional Specifications, Functional Testing, Validation Testing, Architectural
Design Decisions, Multi-modal Test Execution.

1 Introduction

In Executable Acceptance Test Driven Development (EATDD) – also called story-
test driven development – software requirements are specified in form of executable
acceptance tests or executable specifications. The purpose of acceptance testing is to
give confidence to the customer that the functional specifications defined in the
requirements are correctly implemented in the software product and to ensure high
customer satisfaction through critical examination of the quality of the software
through continuous regression testing.

In an agile environment, acceptance tests are developed by a customer in
collaboration with BAs, QAs and/or developers. The tests can be seen as a contract
between the developers and the customer and it defines criteria for a finished product. In
an EATDD environment, the acceptance tests play an important role throughout the
software development cycle due to the ubiquity of their presence in all aspects of the
development cycle. Everyone in the development team and all stakeholders are at least
partially involved in either specifying, testing, implementing or communicating through
acceptance tests at some point in their work. Acceptance tests are not just for customers,
but an important communication tool for all stakeholders – users, customers, analysts,
developers and testers – in the development project.

Following the discussions at the Agile Alliance Functional Testing Tools Visioning
Workshop as well as Andrea’s paper on envisioning the next functional testing tools [1],

 Multi-modal Functional Test Execution 219

this paper argues that the next generation of functional testing tools needs to be multi-
modal: tests need to be expressible in multiple formats to satisfy the requirements from
different stakeholder groups and need to be executable against different layers of the
software system. We call the first multi-modal test definition and the second multi-
modal test execution.

2 Multi-modal Functional Test Execution

There are two problems in regards to multi-modal functional testing. The purpose of
multi-modal test execution (MMTE) is to provide one-to-many mapping between the
test definition and the test executions: a single test is executed against different layers
and/or components of the software system.

A functional feature can appear in different layers of the software architecture or
different components of the software. Rather than duplicating the acceptance test
definition per appearance of the functionality or completely ignoring the multi-layer
aspect of the software in the acceptance testing, the next generation of acceptance
testing tools should acknowledge the need for MMTE and actively practice MMTE in
all testing processes.

It is important that non-developers are also aware of the MMTE result based. One
of the benefits of having architectural information embedded in the acceptance tests
through MMTE is quick feedback about the impact of system-wide architectural or
business requirement changes that may occur during the development project.
Resource allocation or feature negotiation is easier when all stakeholders are informed
with more concrete evidence to base their decisions.

MMTE can also play an important role in deriving requirements. Often customers
may not be aware of exactly what they need, thus the requirements may be too vague.
Having MMTE capability in the testing tool can help business analysts or testers to
work with the customer to derive more detailed requirements in terms of multi-
layered system components or platforms.

Based on the requirements and motivations provided above, we have implemented
multi-modal test execution based on a popular executable acceptance testing tool
called Fit.

References

1. Agile Alliance Functional Testing Tools Visioning Workshop (October 2007),
 http://www.agilealliance.org/show/1938

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1994)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 220–221, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Social Network Analysis of Communication in Open
Source Projects

Guido Porruvecchio, Selene Uras, and Roberta Quaresima

Department of Electric and Electronic Engineering, University of Cagliari,
Piazza d'Armi, 09123 Cagliari, Italy

{guido.porruvecchio,s.uras,roberta.quaresima}@diee.unica.it

Abstract. In agile methodologies communication is a fundamental value because
understanding communicational practices keeps together all the different aspects
that improve team performance. In Open Source (OS) teams communication is
also important because of the nature of the communities. We present a study of
Mailing Lists (MLs) of some of the most successful OS projects to analyse their
communicational flow. We adopted Social Network Analysis (SNA) approach to
quantitatively describe these communities and to evaluate the communicational
practices.

1 The Value of Communication in Open Source Teams

In this work, we focus on one of the key values behind agile methodologies -
communication, and on the quantitative study of communication in OS communities.
We analyse these communities - and namely the interactions between developers and
users - under the perspective of communicational patterns, as determined by social
network analysis. Our analysis focuses on considering the interaction between
developers and users as a network, and uses the quantitative indicators proposed by
Freeman [2]. We previously found that the virtual place where developers meet users
is the developers Mailing List [3] [1]. It is used to share information, to gather all
users' needs and proposals, and to create a link between users and developers.

2 Social Network Analysis

SNA has been defined as a way to describe relationships among social entities, as
well as the patterns and implications of these connections [4]. Adopting the SNA
approach, the people are actors in contact with one another; to depict the network for
each team, actors become nodes and each relationship between two of them is
represented by a link. One of the most important aspects of SNA is the identification
of the most central actors, that is, those who are particularly visible to other actors in
the network, and who are able to maintain several relationships with them [2]. The
chosen centrality indexes (degree, betweenness, closeness), by identifying the most
central members in the networks, can help us to find a possible relationship between
prominent members and OS projects’ success, quality and maturity.

 Social Network Analysis of Communication in Open Source Projects 221

3 The Social Network of Open Source Communities

We chose the 70 most active projects as of December 2006 in Sourceforge, observing
that not all the developers mailing lists were available. In fact, with respect to these
projects, 30 did not even have a mailing list, and only 9 had a sufficiently active list.
These projects, which we used for our research, are: Arianne, Gaim, Gallery,
Geotools, Gimp-Print, Licq, MinGW, Miranda, Netatalk. We built a framework to
extract key data from mailing list archives (for each mail: sender, subject, date and
thread starter). The network representing the OS community was defined as follows:

• nodes are the mail senders, in other words each community member who
posted a message in a discussion thread

• links are established between two members participating in the same thread.

So two nodes are connected if both participated to the same thread. If a thread
involved several members, the sub-network composed by them is fully connected.
This network was analyzed extracting the three centrality measures previously
mentioned, making possible to better describe interactions and communication flow
among members of the MLs. We found the SNA indexes we used to describe the
networks suited to individuate the most prominent actors in the communities. They
display leadership behaviors and play a major role in team coordination, information
management and sharing. The synthetic indicators of network features (the
centralization indexes) can be used to characterize with a few parameters a network,
easing to discriminate among various possible structures and flows of control.

References

1. Concas, G., Lisci, M., Pinna, S., Porruvecchio, G., Uras, S.: Learning communities in open
source projects. In: Proceedings of CELDA 2007, IADIS, Portugal, pp. 73–78 (2007)

2. Freeman, L.C.: Centrality in social networks: Conceptual clarification. Social Networks 1,
215–239 (1979)

3. Uras, S., Concas, G., Lisci, M., Marchesi, M., Pinna, S.: Communication flow in open
source projects. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS,
vol. 4536, pp. 261–265. Springer, Heidelberg (2007)

4. Wasserman, S., Faust, K.: Social network analysis: methods and applications. Cambridge
University Press, Cambridge (1994)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 222–223, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Toward Empowering Extreme Programming from an
Architectural Viewpoint

Amir Saffarian, Amir Azim Sharifloo, and Fereidoun Shams

Department of Computer Engineering, Faculty of Electrical and Computer Engineering,
Shahid Beheshti University, Tehran, Iran

a_saffarian@std.sbu.ac.ir, a.sharifloo@mail.sbu.ac.ir,
f_shams@sbu.ac.ir

The XP method is one of the noticeable approaches among agile software development
methodologies. Besides its valuable features and capabilities there is a lack and that is
about how to control the quality of the system and the effects of quality attributes on
each other. In the last decade, software quality requirements have been especially
addressed by software architecture. Since software architecture knowledge has grown
and matured in recent years, many of agile methods, like XP, have not considered the
importance of architecture in their development process. This paper introduces two
practices (Continuous Architectural Refactoring and Real Architecture Qualification) in
order to empower XP's development process toward improving system's architecture.
The main characteristic of proposed solution is that it is derived from values and
practices of XP so as to keep its agility intact.

Although there is no explicit support for the concept of architecture in XP method-
ology, it leads to a software system that should have some specific structures which we
call it implicit architecture. One is not fare if he says that XP is free of any architectural
activities because there are three of them by which the mentioned implicit architecture
will be influenced. Spike Solutions, Metaphors and Refactoring are the main XP
elements that could affect the architecture of the system but they are inadequate.
Generally, quality attributes could be divided into two categories considering the per-
spective to be used. The first category is related to the quality attributes that are
evaluated based on developers’ concerns like modifiability, testability, reusability,
understandability, scalability, and maintainability. Ordinarily, this evaluation is done by
the architect, who has the knowledge about architectural design, through system models
and diagrams in the CAR process. The other category contains quality attributes which
should be evaluated using the real working system like performance, usability,
availability. These quality attributes are observable externally considering users view.
Therefore, customer is the person to evaluate these qualities through RAQ [1].

Architectural smells represent inefficiencies that could gradually mislead the
system`s architecture toward an unmanageable and unsuitable shape unless resolved
as soon as possible. In Continuous Architectural Refactoring (CAR) smells are
discovered and solutions to revise them would be identified by using architectural
refactoring techniques [2]. Furthermore, CAR initially designed to be used in parallel
with the development process of XP so as to not affect the performance of a pure XP
and keep agility intact. To make CAR possible, we need a role called Architect who is
responsible to decide on candidate solutions to remove architectural smells. The

 Toward Empowering Extreme Programming from an Architectural Viewpoint 223

architect will continuously receive partial models by development teams. Class
diagram seems to be a suitable model for the architect because the dependencies
between classes and their interfaces are clearly defined in it. The architect could use
formal (fully detailed) class diagrams to depict other informal (shortly detailed)
models like package and layer diagrams to identify smells. As many smells could be
attached to certain patterns, the idea of doing automatic smell checking (e.g. using
JDepend [3]) is not infeasible.

On the other hand, Real Architecture Qualification (RAQ) is almost a kind of
brainstorming session based on a working system and architectural models. RAQ focuses
on achieving customer observable quality requirements. In order to enable programmers
to have an insight about this category of quality attributes each pair programming team
needs to have clear information about each quality attribute. Therefore the criteria of
customer satisfaction have to be attached to e all user stories. This task is achievable by
using general scenarios` checklist [4] to prepare suitable concrete scenarios. After that,
besides functional test cases, developers should design quality test cases so as to check
their code considering the non-functional requirements provided through quality
scenarios. In fact RAQ has two parts. The first part (discussed above) is mainly
performed by developers through pair programming and the second part is the one
mentioned in [1] which becomes active in the end of all iterations. Steps of the second
part of RAQ could be summarized as 1) Preparing the structure of the session and
identifying representatives of stakeholders to join the session, 2) Describing, in brief,
final architectural model of the iteration that is integrated using partial models, 3)
Describing, in brief, refactoring decisions that have be made by architect and ask
members to express their opinions about them, 4) Identifying architectural aspects
(quality attributes) that should be analyzed in the session, 5) For each quality attribute
specified in step 4: a) Start a brainstorming sub-session, taking stakeholder`s opinions
into account about their experience when working with current working system, b)
Decide about solutions for new needs and requests that current working system cannot
provide or handle, c) Defining new solutions as concrete new tasks and taking them as
unfinished tasks.

References

1. Azim Sharifloo, A., Saffarian, A.S., Shams, F.: Embedding Architectural Practices into
Extreme Programming. In: Proceedings of the 19th Australian Software Engineering
Conference, Australia (to appear, 2008)

2. Lippert, M., Roock, S.: Refactoring in Large Software Projects: Performing Complex
Restructurings Successfully, 1st edn. John Wiley & Sons, Chichester (2006)

3. JDepend, http://clarkware.com/software/JDepend.html
4. Bass, L., Klein, M., Moreno, G.: Applicability of General Scenarios to the Architecture

Tradeoff Analysis Method. Technical Report, CMU/SEI-2001-TR-014, Software Engineering
Institute, Carnegie Mellon University (2001)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 224–225, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Metric-Based Approach to Assess Class Testability

Yogesh Singh and Anju Saha

GGSIP University, India
ys66@rediffmail.com, anju_kochhar@yahoo.com

Abstract. In today’s world people have become highly dependent on software
systems for almost everything. Hence it necessitates the need for reliable and
quality software. Software quality and reliability can only be achieved if the
testing is made effective. One way of making testing effective is to improve
software testability. Software testability is an external attribute of the software
which provides a guideline for testing. Software testability has been defined by
numerous researchers from different points of view. An extensive survey of the
literature on software testability was done. During the survey, it was found that
there were very few researchers who had analyzed the relationship between
source code metrics and test metrics. Hence this study aims at performing an
empirical study to evaluate some of the source code metrics that have a bearing
on the testing effort for object oriented development. Testing effort in turn
provides an insight of software testability. This study is performed at the unit
level of testing .i.e class level using JUnit testing framework. JUnit framework
allows users to create a test class for every java class. Two open source Java
projects have been used for this empirical study. In these systems, JUnit test
classes have been written for java classes. This study aims to judge the
capability of the object oriented metrics to assess class testability. A correlation
is found between object oriented metrics and test metrics. To find the
correlation the Spearman’s rank-order correlation coefficient is calculated for
each object oriented metric of the java classes and three test metrics of the
corresponding test classes. The definition used in this study is by ISO[2] which
defines testability as: “attributes of software that bear on the effort needed to
validate the software product. The attributes of software that we consider are
the source code metrics of object oriented software. Object oriented languages
have different features like class, method, inheritance, polymorphism, dynamic
binding etc. Hence these features also have a bearing on the testing effort and
hence on testability. This study focuses on source code factors only and
investigates the effect of source code factors on the testing effort. Through
testing effort we can quantify testability using two factors given by Brutink[1].
These two factors are test case generation and test case construction factors.
Test case generation factor is defined as the factor which influences the number
of required test cases. Test case construction factor is defined as the factor
which influences the effort needed to construct a test case. For each of the
source code metrics we identify which of them is a test case generation and test
case construction factor. This in turn, provides an insight into the required
testing effort and testability. Hence through source code metrics we can assess
software testability. After finding the results, first of all, we observe that some
of the source code metrics are highly correlated amongst themselves. Second

 A Metric-Based Approach to Assess Class Testability 225

observation is that, the test metrics are also correlated. There are four size
related metrics: LOC, NOA, NOM and WMC. All the four metrics are
correlated to all the three test metrics (Except NOA in one of the case study).
We find that high LOC, high NOM and high WMC lead to low testability. We
can not categorize NOA as leading to high or low testability because of the
inconsistency among results of two case studies. High LCOM leads to low
testability. So, more cohesive classes have high testability. There is an inverse
but weak correlation between DIT and test metrics because in these java
projects as the DIT increases the testing decreases in the sense that the core
functionality is tested in the parent class and child classes only test their own
specific features. Although this correlation will vary depending upon the testing
technique used whether the child class tests the features of its parent class or not
which is not the norm. In case of NOC we are not able to draw any conclusion
because there is no consistent correlation between NOC and test metrics.
Although there can be found a correlation among NOC and test metrics if the
testing strategy used makes a thorough testing of parent class with the increase
in number of children, with an intention that if parent class is having a fault it
does not creep into the child class. We foresee the following future work. First,
this experiment should be extended to a large number of systems, using
different development methodologies like Test driven development, extreme
programming and agile software development. Second, this experiment has
been conducted at the class level; it should be extended to package level testing.
Third, the number of metrics we have considered are very few. This experiment
should be extended to a number of other source code metrics which deal with
polymorphism, exception handling etc. Fourth, other strong statistical methods
should be used to find the correlation between source code metrics and test
metrics.

References

1. Bruntink, M., Deursen, A.V.: Predicting class testability using object oriented metrics. In:
Proceedings of the IEEE International Workshop on Source Code Analysis and
Manipulation, pp. 136–145 (2004)

2. ISO, International standard ISO/IEC 9126. Information technology: Software Product
Evaluation: Quality Characteristics and Guidelines for their Use (1991)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 226–227, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Inside View of an Extreme Process

Sara Shahzad, Zahid Hussain, Martin Lechner, and Wolfgang Slany

Institute for Software Technology, Graz University of Technology, Graz, Austria
{sshahzad,zhussain,mlechner,wsi}@ist.tugraz.at

1 Introduction

Agile processes encourage embracing change in an efficient and flexible manner.
Extreme Programming (XP), being a popular agile methodology, has been widely
experimented with by software development teams and many case studies have been
presented by the research community. Our team has employed the XP methodology to
develop a mobile multimedia application. The aim of this paper is to define our project
and team setup and the prevailing XP environment in order to highlight various aspects
of our process.

1.1 XP Motivation

The goal of the project is to develop a multimedia streaming application for mobile
devices with an emphasis to utilize huge archives of TV and radio programs and other
documentary and entertainment content. Having the option for selecting the
development methodology, the team selected XP with an intention to use it in a
progressive manner: conscious of applying each practice, that can be applied, and
looking for the improvement and optimization of the whole XP process to make the
basis for a profound academic research. In recent years, many development teams
have adopted XP to evaluate the methodology and to get hands-on experience of an
agile development methodology [4]. Among the less satisfied in the developer
community some conclude that it is not the process which lacks in providing a proper
base for software development, but it is a short coming on the side of the developers
who fail in applying the necessary practices to their full extent and ignore some
practices altogether [3]. The XP process is so agile that each practice can be
optimized as suited. As in our case we have to consider that we are not a usual XP
team but rather a team of researchers who aim to participate in the software
development as a test-bed for their PhD research. In a sense it is the agility of the
process which has provided us this opportunity to go deep into research, by
experimenting it in different ways, along with application development.

2 The Project

The project team consists of six PhD students, five developers (a mix professional
programmers and members from academia) and one business person. Also, the team
differs in social and cultural backgrounds, as two of the team members are from Asia and
the rest of the team is European. The business person, having a degree in business science,

 Inside View of an Extreme Process 227

deals with project partners and also acts as a replacement for the on-site customer. He acts
as a mediator in team discussions as he has a professional experience in team mediation.
The XP-room provides enough space for having individual places as well as pairing
stations for the team. The room setting also facilitates team discussions as it is surrounded
by six white boards, to place the story cards as well as for drawing graphs and diagrams.

2.1 Evaluating the Process

Each developer, also being a researcher, takes part in the analysis, development and
improvement of XP. The data required for analyzing the process performance is
collected by actually implementing each practice. The developers do their best to fulfill
completeness requirements of the data collected for analysis. Different tools for
planning (e.g., Xplanner [1]) and for empirical data collection (e.g., Shodan 2.0 Input
Metric Survey [2]) are in use since the start of the project to analyze the performance of
XP practices under the project umbrella. Iteration and release velocities are recorded to
visualize the throughput performance of the team over a period of time. The team is
continuously working to tailor the planning and velocity calculation processes for
incorporating application, business and research related stories that it has to schedule.
Pair programming, collective code ownership, simple design, and working in small
releases are some of the main practices which constitute the core XP process for the
team and the project. In order to develop the base for research and development side-by-
side the team takes a routine weekly retrospective view of the process in “reflection
meeting”. In this meeting the team presents application, process and team related
problems, discusses possible solutions, and decides on changes in the overall process.
Test-first programming, regular refactoring of code and system metaphor are some of
the current discussion points in reflection meetings.

3 Conclusion

Being agile, it is inviting to mold and reshape the methodology according to the
requirements of the project. Our experience shows that even though the XP methodology
is simple, a serious effort should be made to apply its practices and in maintaining a
balance between agility and discipline in order to get the maximum benefits from it.

Acknowledgement. The research herein is partially conducted within the competence
network Softnet Austria (www.soft-net.at) and funded by the Austrian Federal Ministry of
Economics (bm:wa), the province of Styria, the Steirische Wirtschaftsförderungsgesellschaft
mbH. (SFG), and the city of Vienna in terms of the center for innovation and technology
(ZIT).

References

1. http://www.xplanner.org/ (visited on 04.01.2008)
2. http://agile.csc.ncsu.edu/survey/shodansurvey.html (visited on 04.01.2008)
3. Rainsberger, J.B.: My greatest misses: Xp 2000-2007, agile 2007(August 18, 2007)
4. Tessem, P.: Experiences in learning xp practices: A qualitative study, xp2003. In: Marchesi,

M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675, pp. 131–137. Springer, Heidelberg (2003)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 228–229, 2008.
© Springer-Verlag Berlin Heidelberg 2008

To Track QA Work or Not; That Is the Question

Juanjuan Zang

Jzang@thoughtworks.com

Abstract. In the past few years, I have been coaching several clients and
numerous projects on Agile management methodology. Unanimously, I was
asked the same question many times: Can we track QA (Quality Assurance)
work as we do with development? In another word, can we capture all the QA
activities and work in a backlog list and do the iteration and release planning
based on the QA staff plan, and assumed QA velocity? Can we also generate
QA status report such as the burn up or burn down chart? Before answering
these questions, my first response would be why. No doubt, QA is a core part
for an Agile project. Suppose developers achieve the throughput per iteration as
scheduled, does it mean the project will be released as planned? Not
necessarily, what if QA could not complete testing all stories from previous dev
iterations? What if QA has to support interim release testing? What if QA is
pulled into other activities than iteration testing? What if QA team is mixed of
on shore and offshore members, and has to support multiple dev teams at the
same time? All these questions become the reasons behind the very first one –
“Can we track QA as we do with our Dev?” The first project I worked on was
for an investment banking client who had a QA team of 6 people with 4 on
shore and 2 off shore, supporting testing for 5 development teams of almost 30
developers. The team faced several issues: There was no QA estimation for
story; QA spent lots of time on non-story activities without tracking; the ratio
QA to developers was 1:5. The second team I worked with was a QA team of
an e-commerce retailer IT department. The team had 3 people supporting 6
developers. The team mixed the dev velocity with QA’s. By their definition,
velocity was the amount of work that passed UAT1 in an iteration, measured in
dev estimation points, while at the same time, Iteration planning only took dev
velocity into consideration. The QA estimation for each story was well off
mark. And as same as the first team, QA team members were pulled regularly
to support release testing and other non project related activities. We helped
both teams by adopting similar tracking mechanism we used for the dev team.
We first created a complete QA backlog list including all the stories, plus the
non-story QA tasks. In the backlog list, we indicated which dev iteration and
QA iteration each story was schedule in. We then did QA estimation for each
story using the “triangulation” rule2. We separated QA velocity from Dev’s. We

1 User Acceptance Testing. In our case, UAT is more like a formality. Most of times, UAT is

passed if QA signs off the story.
2 Triangulating an estimate refers to estimating a story based on its relationship to one or more

other stories. In this case, QA should have its own baseline QA story and triangulate the
baseline story and other QA stories when estimating.

 To Track QA Work or Not; That Is the Question 229

planned QA iteration as we did for Dev, and provided QA status report and
burn up chart per iteration. Both projects achieved good results:

1. We better managed QA work load – By having a complete QA backlog
list and giving QA estimation for each story, the team had a clear idea
about QA scope.

2. We better managed QA non story activities – By having QA non-story
activities in the QA backlog list, and having them prioritized along with
the stories, QA team could schedule these activities along with stories in
each iteration. Thus QA team could work on these technical debts
without being unnoticed.

3. We better tracked QA velocity and load factor – Tracking QA team
velocity and load factor separately helped the team with QA iteration
planning, velocity measuring and monitoring and team status reporting.

4. We better managed QA team staffing – Since now the QA team had the
complete scope measured in points, the team velocity, the project release
plan and date, it served better for QA to figure out how many people the
team needed in order to finish all the testing to make sure the project
could be released on time.

5. We clarified the definition of team velocity – “Never mix the QA
velocity with team velocity”. This is the lesson we learnt. Using QA
velocity as team velocity could mislead the business users and mis-
communicate the team status to the upper management. For example, the
burn up chart shows the total amount of work in dev estimation points,
the dev velocity per iteration, expressed in story points and the trend line
which predicts the possible completion date based on the team velocity so
far. If the team velocity is defined as the total points of stories only
signed off by QA, it means even the stories are completed, but they are
not credited if QA hasn’t signed off yet. In another word, the team
velocity is more QA velocity rather than Dev’s, while the scope line still
represents the total dev estimation points. Obviously, you will
immediately realize these two are not incommensurable. This can also
sets wrong expectation for business users who would expect the dev team
velocity instead of the QA’s.

Keywords: QA, Agile, Iteration, Release, Story, Story Point, Estimation, Load
Factor, Velocity.

References

1. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley
Professional, Reading (2004)

2. Cohn, M.: Agile Estimating and Planning. Prentice Hall PTR, Englewood Cliffs (2005)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 230–231, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Build Notifications in Agile Environments

Ruth Ablett, Frank Maurer, Ehud Sharlin, Jorg Denzinger, and Craig Schock

University of Calgary, Canada
{ablettr,maurer,ehud,denzinge,schock}@cpsc.ucalgary.ca

1 Introduction

Agile methods [1] are becoming popular in the software industry. In agile software
development projects, it is imperative that all software written by each developer
integrates properly into the entire project. To this end, most agile teams adopt
Continuous Integration (CI). CI is the practice of automatically compiling, deploying
and testing the entire codebase against a suite of prewritten tests. This occurs after any
change to the codebase, usually multiple times per day.

When integration is finished, it is important for the developers to become aware of
the result so that any problems can be immediately fixed. Undetected bugs can cause
further problems as other developers may synchronize with a broken version of the
codebase, and this may result in increased effort required to fix the problem and delays
in integrating their changes to the latest build. Thus, awareness of the build status is
essential, especially immediately after submitting new code to the codebase.

2 Previous Work

A study by Saff and Ernst [2] evaluated continuous integration when used by a single
developer to ensure new code passed regression and unit tests. They found that
continuous integration had a positive effect on the completion of programming tasks.
Our research focuses on how agile teams can be notified when build breakages occur.

Alberto Savoia [3] created a build notification system using peripheral awareness
[4] to inform developers of the build state. The system uses two lava lamps, one red
and one green. The continuous integration tool turns on the green lamp when the build
was successful, and the red when it was broken.

3 Experimental Setup

The goal of the experiment described herein is to evaluate three notification
mechanisms - e-mail (virtual), lava lamps (ambient), and BuildBot (active) - within
the context of a shared project. Notifications were sent out when code is committed.
The goal was to determine which of the three modes would be most effective.

Java Lava Lamps were used as an ambient device in this study. An ambient display
is a way of keeping people informed about the build state without disrupting them.

The BuildBot [5] robotic notification device was designed as an active, ambient
build notification tool to study the effect of such a device on an agile team in the
context of a shared project. If the build fails, BuildBot follows a network of lines to
reach the responsible developer’s workstation and kindly barks until the build is fixed.

 Build Notifications in Agile Environments 231

The three-week experiment was set up as follows: During the first week, email was
sent only to the developer responsible for a build breakage. During the second week, a
pair of Java Lava Lamps were installed and showed the build status. BuildBot was
used as the physical notification device instead of the lava lamps for the third week.

4 Results and Discussion

Email was preferred by some developers because each message is nearly instantaneous,
simple, not location dependent, not obtrusive to others, and shows the entire build break
message such as tests failed. However, too many can become spam.

Some participants liked the lava lamps because they were simple, unobtrusive, and
fun. However, most participants did not notice the lamps because of the cubicle walls,
and thought the information was too limited on its own (only red or green). And finally,
a developer must be present in the same room to see the lava lamps.

BuildBot’s popularity among some developers and observers may be due to the fun
and the novelty factor. Others, however, did not like the fact that the robot notifies
everyone. Also, some expressed concern of the robot’s singling out of one developer.

5 Conclusion and Future Work

The results of this evaluation show that the social nature of the group must be
considered when introducing any continuous integration notification device.

The Java Lava Lamps used in this study were well-received in that they were fun
and unobtrusive, but we believe they would be better in a more open environment.

Introducing something as potentially disruptive as BuildBot can cause friction.
Since we found that to the developers, email was the most popular, followed by the
lava lamps, we conclude that the most effective for an agile development team would
be a combination of an openly visible but unobtrusive ambient and a virtual one.

The results presented here are those of a small-scale, short-term study. A longer-
term evaluation (months or years) is needed involving many more developers. Also,
there are also many kinds of alert mechanisms that have yet to be evaluated, such as
ceiling-mounted rope lighting, system tray alerts, or a visit from a project manager.

References

1. Manifesto for Agile Software Development (2005). Accessed 5 June 2007,
 http://agilemanifesto.org

2. Saff, D., Ernst, M.D.: An Experimental Evaluation of Continuous Testing During
Development. In: International Symposium on Software Testing and Analysis, ISSTA (2004)

3. Savoia, A.: On Java Lava Lamps and other eXtreme Feedback Devices (August 26, 2004),
http://www.artima.com/weblogs/viewpost.jsp?thread=67492

4. Cadiz, J.J., Venolia, G.D., Jancke, G., Gupta, A.: Sideshow: Providing peripheral awareness
of important information. Microsoft Research Technical Report MSR-TR-200181 (2001)

5. Ablett, R., Sharlin, E., Maurer, F., Denzinger, J., Schock, C.: BuildBot: A Robotic Self-
Supervision Mechanism for Agile Software Engineering Teams. In: IEEE RO-MAN 2007
(2007)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 232–233, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Supporting Distributed Pair Programming with the
COLLECE Groupware System: An Empirical Study

Rafael Duque and Crescencio Bravo

Department of Information Systems and Technologies
University of Castilla – La Mancha (Spain)

Paseo de la Universidad 4, 13071 Ciudad Real (Spain)
{Rafael.Duque,Crescencio.Bravo}@uclm.es

Abstract. This article presents a comparative study between distributed pair
programming and solo programming practices.

1 Supporting Distributed Pair Programming: An Empirical Study

The COLLECE (COLLaborative Edition, Compilation and Execution) system [1] is a
groupware tool that enables users who are located in different workstations to collaborate
in the same time (real time) in the building of a computer program. COLLECE was used
in a study to compare the activity of distributed pair programmers (DPPs) [2] and solo
programmers. In this study particular attention was given to work productivity and
program quality. The dependent variables considered to evaluate both productivity and
quality are described below:

• Productivity: This quantifies the time that programmers spent completing the
programming task. Moreover, in order to get a more detailed analysis of how the
users’ efforts are distributed during the working process, the following variables
are analyzed:
− NI_edic: Number of interactions of edition (e.g., to insert a character).
− NI_exec: Number of interactions aimed at executing the program coded.
− NI_com: Number of communication interactions (chat messages).
− NI_coor: Number of coordination interactions. (e.g., the interactions refer to

the synchronization of the compilation and execution processes).
• Quality: The programs built by the users were subjected to a process where a

number of experts evaluated their quality. The quality variable is quantified with
a natural number belonging to the set {1, 2, 3, 4, 5} (1: very low quality- 5: very
high quality). In addition, the number of compilation errors of the programs
built was analyzed beforehand.

Three different tasks were proposed to the participants in the experiments. The
participants were 51 programmers that had at least one year’s experience in the
implementation of software projects using the Java programming language. The first
task asked the participants to create a program that test if a string is palindrome. The
second task was aimed at creating a program to calculate the greatest common divisor

 Supporting Distributed Pair Programming with the COLLECE Groupware System 233

of two numbers my means of the Euclidean algorithm. The third task required to build
a program that calculated the first n numbers in the Fibonacci series.

Table 1 shows a global analysis of the results obtained in the study. When the DPPs
have enough experience in the use of the groupware tool and work collaboratively with
their partner, the quality of programs is better than of those built by solo programmers.
In all tasks, the number of compilation errors (CE) made by DPPs is always lower than
those made by the solo programmers.

Table 1. Quality (average values; in brackets the standard deviation)

Solo programmers Distributed pair programmers
Task0 Task1 Task2 Task0 Task1 Task2

Quality 2.6 (1.2) 3.3 (1.1) 3.2 (0.8) 2.4 (0.8) 3.5 (0.75) 3.7 (0.7)

CE 2.2 (2.1) 0.8 (1.2) 0.4 (0.7) 1.6 (1.5) 0.5 (0.8) 0.1 (0.5)

The data collected in Table 2 show that DPPs spent more time completing their tasks.

They had to carry out additional interactions in order to coordinate and communicate in
a distributed collaborative synchronous environment.

Table 2. Productivity (average values; in brackets the standard deviation)

Solo programmers Distributed pair programmers
Task0 Task1 Task2 Task0 Task1 Task2

Time 2560.5
(581.6)

2300.7
(395.1)

1745.5
(495.7)

2901.2
(469.8)

2495.6
(355.1)

2050.7
(833.9)

NI_edic
1052.2
(293.8)

843.0
(257.5)

878.2
(236.4)

446.8
(134.7)

475.3
(118.8)

448.3
(170.0)

NI_exec 5.2 (5.8) 8.8 (10.3) 6.8 (5.4) 1.73 (2.0) 2.1 (1.9) 3.7 (2.0)

NI_coor 0 (0.0) 0 (0.0) 0 (0.0) 18.40 (12.9) 21.4 (10.5) 23.3 (10.3)

NI_com 0 (0.0) 0 (0.0) 0 (0.0) 26.03 (15.5) 22.9 (9.4) 20.7 (8.3)

We can conclude that DPPs make programs of higher quality. The additional effort

they make to coordinate and to communicate is offset by fewer edition interactions.

Acknowledgments

This research is partially supported by the Comunidad Autónoma de Castilla - La Mancha
(Spain) in the PAC07-0020-5702 and PCI08-0069-7887 projects.

References

1. Bravo, C., Duque, R., Gallardo, J., García, J., García, P.: A Groupware System for
Distributed Collaborative Programming: Usability Issues and Lessons Learned. In:
International Workshop on Tools Support and Requirements Management for Globally
Distributed Software Development, Centre for Telematics and Information Technology, pp.
50–56 (2007)

2. Williams, L., Kessler, R.: Pair Programming Illuminated. Addison-Wesley, Reading (2002)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 234–235, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Experience on the Human Side of Agile

Angela Martin1, James Noble1, and Robert Biddle2

1 Victoria University of Wellington, Wellington, New Zealand
angela.m.martin@gmail.com

2 Carleton University, Ottawa, Canada
robert_biddle@carleton.ca

Abstract. This brief paper describes an XP2008 conference workshop on the
subject of experience on the human side of agile development. By this, we
include such topics as the customer role, user interaction design, and the social
nature of teams. The workshop will allow practitioners and researchers
interested in these topics to develop a common map of resources, and a model
to assist collaboration on further exposition and study.

Keywords: Agile Software Development, Human Factors, Development
Experience.

1 Overview

This brief paper describes a half-day workshop at XP2008 on “Experience on the
Human Side of Agile Development”. By the “human side”, we mean to address all
those aspects of agile development that relate primarily to people working together,
rather than technical practices. The workshop will involve both practitioners and
researchers, and the emphasis will be on experience in the agile teams, projects, and
workplaces. We will especially invite practitioners interested in human aspects,
especially including customers, coaches, managers, user interaction designers, as well as
developers. No workshops have previously been held on this topic, but tutorials and
panels on related topics at both XP200X and Agile200X conferences have received
strong attendance and acclaim.

An emphasis on human factors has been evident in Agile Development from the
beginning. For example, the first comparison in the Agile Manifesto is “Individuals and
interactions over processes and tools”. However, some tension arises even in the next line:
“Working software over comprehensive documentation”. And although all agile processes
acknowledge the importance of the human factor, the truth is that most writing on agile
development, most sessions at conferences, and indeed most participants at conferences,
address technical aspects. Even ideas with a human focus, such as “whole team”, too often
involve only the team involved in technical development, and leave outside the customers,
interaction designers, end users, and others. We believe that the core of agile development
involves human aspects; but we believe we need better understanding of those human
aspects to allow agile development to grow and flourish.

There are a number of available resources related to the topic of the workshop.
Some of the Agile Alliance programs have involved work with an emphasis on the

 Experience on the Human Side of Agile 235

human side. In particular, the “Agile Narratives” program has captured many stories
from individual practitioners on their experience working in agile development. Also,
there are experience reports from all the major conferences, XP200X, Agile 200X,
and the earlier XP Agile Universe and Agile Development Conferences. These
typically focus on a development story in a business context, but in doing so
frequently highlight key human experience. As well, the same venues have featured
research papers, and some of these focus on the human aspects. We ourselves have
contributed some of this work, including research on the customer role [4, 3], user
interaction design [2, 1], and motivation and social issues [5, 6]. Several other groups
also focus on issues on the human side, and we propose this workshop to facilitate
collaboration between us, and others who are interested in this area.

The major agenda items are as follows. First, we will pool our knowledge of all the
writing and resources that address the human side of agile development. Second, we
will collaborate in the design of a structure of the broad subject, identifying areas that
have been well covered, and areas in need of further study. Finally, we will plan
collaboration on new projects in this area.

References

1. Ferreira, J., Noble, J., Biddle, R.: Agile development iterations and UI design. In:
Proceedings of the Agile Software Development Conference, IEEE, Washington D.C
(2007)

2. Ferreira, J., Noble, J., Biddle, R.: Up-front interaction design in agile development. In:
Proceedings of the 8th International Conference on eXtreme Programming and Agile
Processes in Software Engineering. LNCS, Springer-Verlag, Como, Italy (2007)

3. Martin, A., Biddle, R., Noble, J.: The XP customer role in practice: Three studies. In:
Alpert, S. (ed.) Proceedings of the Second Agile Development Conference, pp. 42–54.
ACM SIGSOFT, Salt Lake City, USA (2004)

4. Martin, A., Noble, J., Biddle, R.: Being Jane Malkovich: a Look into the World of an XP
Customer. In: Marchesi, M., Succi, G. (eds.) XP 2003. LNCS, vol. 2675, pp. 234–243.
Springer, Heidelberg (2003)

5. Whitworth, E., Biddle, R.: Motivation and cohesion in agile teams. In: Concas, G., Damiani, E.,
Scotto, M., Succi, G. (eds.) XP 2007. LNCS, vol. 4536, pp. 62–69. Springer, Heidelberg (2007)

6. Whitworth, E., Biddle, R.: The social nature of agile teams. In: Proceedings of the Agile
Software Development Conference, IEEE, Washington D.C (2007)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 236–237, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Retrospective Exploration Workshop

David Hussman1 and Lasse Koskela2

1 DevJam Inc., USA
David.Hussman@devjam.biz

2 Reaktor Innovations, Finland
Lasse.Koskela@ri.fi

Abstract. Inspecting and adapting is pitched as being an essential ingredient for
continuous learning and improvement. In Scrum, for example, there's an
explicit opportunity for doing this - it's called the sprint retrospective meeting.
Now, it's one thing to say, "we're going to inspect and adapt", and to actually do
it. Furthermore, facilitating such a meeting is not exactly a skill we inherit in
our genes. It's something we need to learn. Without mastering the skill, we're
effectively losing on a lot of important interaction and learning. This workshop
is an opportunity to improve that skill through a combination of a brief tutorial
and a series of hands-on exercises, letting participants experiment with a
number of retrospective techniques in small groups.

1 Overview

Inspecting and adapting is pitched as being an essential ingredient for continuous
learning and improvement. In Scrum, for example, there’s an explicit opportunity for
doing this—it’s called the sprint retrospective meeting. Now, it’s one thing to say,
“we’re going to inspect and adapt”, and to actually do it. Furthermore, facilitating
such a meeting is not exactly a skill we inherit in our genes. It's something we need to
learn. Without mastering the skill, we're effectively losing on a lot of important
interaction and learning. This workshop is an opportunity to improve that skill
through a combination of a brief tutorial and a series of hands-on exercises, letting
participants experiment with a number of retrospective techniques in small groups.

The exercises follow the five-phase structure [1] of a retrospective: setting the
stage, gathering data, generating insights, deciding what to do, and closing. These
phases are described in more detail below. Select exercises will be carried out in small
groups, each group receiving a scenario to simulate, and each member of the team
taking turns in being the facilitator. After each phase, the whole workshop will share
their observations about the experience—both from a facilitator’s and a participant's
perspective. Retrospectives often follow a five-phase structure: setting the stage,
gathering data, generating insights, deciding what to do, and closing.

A fundamental principle underlying a retrospective is the Prime Directive: “Regardless
what we discover, we understand and truly believe that everyone did the best job they
could, given what they knew at the time, their skills, and abilities, the resource available
and the situation at hand.” Establishing ground rules such as the Prime Directive is a
primary goal for the “set the stage” phase, along with facilitating an environment where
the participants can safely express their feelings and concerns.

 Retrospective Exploration Workshop 237

The purpose of the “gathering data” phase is to create a common understanding
among the participants about what happened during the iteration. Having data on the
events, highlights and low points helps the participants not just to remember what had
happened but also to recognize and appreciate patterns. Furthermore, the hard data
contributes to constructive discussions.

Once everyone is on the same page, it’s time to generate insights. In this phase, the
participants look for the big picture and try to get to the root causes of the observed
patterns and behaviors, mining the data gathered in the previous phase.

Once the participants have identified a number of potential improvements, root
causes for dysfunction, conflict, or inefficiency, it's time to decide what the
participants are going to commit to doing - the fourth phase in the retrospective.

Finally, the fifth and last phase of a retrospective is the closing. This is where the
focus shifts from retrospecting on the past iteration and the group’s working
agreements to retrospecting on the retrospective itself. After all, we wouldn't want to
not improve our retrospectives, would we?

2 About the Session Organizers

David Hussman has been creating software for more than 15 years in a variety of
domains. For the past 7 years, David has mentored and coached agile teams in the
U.S., Canada, Europe, Russia, and Ukraine. Along with presenting and leading
workshops / tutorials at conferences in the U.S. and Europe, David has contributed to
several books (Managing Agile Projects and Agile in the Large), and worked on agile
curriculum for The University of Minnesota and Capella University. David is
currently writing a book for the Pragmatic Programmer series. David leads DevJam, a
Minneapolis based company composed of agile collaborators.

Lasse Koskela works as a coach, trainer and consultant, spending his days helping
clients and colleagues at Reaktor Innovations create successful software products. He
has trenched in a variety of software projects ranging from enterprise applications to
middleware products developed for an equally wide range of domains. In the recent
years, Lasse has spent an increasing amount of time giving training courses and
mentoring teams on-site, helping them improve their performance and establish a
culture of continuous learning. When not working with clients, Lasse hacks on open
source projects, moderates discussions at JavaRanch, or writes about software
development—most recently a book on Test Driven Development [2].

References

1. Derby, E., Larsen, D.: Agile Retrospectives: Making Good Teams Great. The Pragmatic
Programmers (2006)

2. Koskela, L.: Test Driven: TDD and Acceptance TDD for Java Developers. Manning
Publications (2007)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 238–239, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Exposing the “Devils” within: Agile Taboos
in a Large Organization

Lars Arne Skår1 and Jan-Erik Sandberg2

1 Miles, Norway
lars@miles.no

2 Det Norske Veritas, Norway
Jan-Erik.Sandberg@dnv.com

1 Workshop Overview

In the last couple of years, some agile practitioners are moving away from the core
values and principles. We are now seeing that many of the practices we love in Agile is
reduced to academic ramblings. This fuzziness has lead parts of the community back to
vague and undisciplined processes. In large organizations this is becoming particularly
prevalent since many people that really never understood the core values, now adopt
simplified ways of Agile, ignoring the hard and still most important parts of it.

Thus, we propose this workshop for agile2008 to challenge participants to discuss
how to get back to the core agile values; Delivering high quality software at a racing
pace, with a happy team. Even in large globally distributed organizations. We want
the participants of this workshop to be able to reveal who and what is blocking their
efforts and how to get through them to make a real difference.

Below are some examples on concerns we have had based on our own experiences
in the environments we have been working in:

• Project managers who takes an interest in Scrum, but due to lack of experience
in agile practices neglect the importance of self-directing team and tries to impose
direction and delegation and tasks. Unfortunately this happens often. Project
managers may be uncomfortable leaving the normal command-and-control style. We
would like to discuss such experiences and how those could be dealt with.

• Similarly projects that just introduces daily stand-up meetings but no other
practices to support agile development. I have heard projects claiming they are
agile just because they run what they call scrum-meetings. What happens then, and
how can we get it right from there.

• Test-driven development is catching on, and project managers have started an
interest in the coverage reports and want to follow up ridigly on the coverage
numbers. In some cases we have seen that the members have created tests just to
increase the coverage, not really adding useful tests. In such cases you can create a
good environment to discuss the quality and attitude towards the tests itself, and
the purpose of those.

The point of the session is to dare to challenge and assess all the experiences the
participants have had and use those experiences to move forward in an even more
positive direction.

 Exposing the “Devils” within: Agile Taboos in a Large Organization 239

The format of the workshop will be in a modernized way of structured “open space”.

1. The presenters give a small introduction based on their experience with large
distributed organizations to set the tone for the workshop.

2. In the good nature of standup meetings, all participants are asked to name and
quickly explain issues and taboos they have encountered. We will make sure to
follow a very strict approach, so that this does not take more time than it needs to.

3. Together with the attendants, we select the two most pressing matters and split into
groups. The groups will discuss one subject each. Participants are free to choose
which group they want to attend.

4. After the first discussion, we have another very quick standup where the participants
are asked to name new subjects they want to discuss.

5. Since new issues and subjects should have emerged from the first discussion, the
participants vote for two new items to discuss and we divide into two new groups.

6. We repeat the process once more, so that we have in total three discussions.
7. The presenters sum up the output of the discussions.

We are two presenters and we will be active in one discussion group each. Our
responsibility will be to make sure that the discussions are relevant to the subject and
that all participants get to state their experience and opinions. We will take notes and
sum up the workshop at the end.

2 Organizers’ Experience

We would like to point out these experiences for the purpose of this workshop:

1. We started early; Jan-Erik started 8 years ago, Lars started 6 years ago in introducing
agile practices in our own work

2. Through the years we have seen the evolution of the practices, new fads come and
go, and the real usefulness of them as well as the current risk of not achieving what
we expect due to missing important pieces of the puzzle

3. The “taboo” in question could very well be Scrum—we all enjoy the positive
interest in agile practices that Scrum have created; however has the popularity
come at the expense of other important practices?

4. We have now worked for larger organizations for a couple of years (Lars in a
18.000 people European based IT company; Jan-Erik in a 5.000 people global
naval certification company); and have first hand experience in scaling agile
practices, and the value of scaling agile to larger organizations as well as the added
challenges such organizations impose on making agile practices deliver on the
promise

5. Still—this is a workshop format, and our intention is to bring people together who
have started to experience these challenges, and encourage discussions and sharing
of these experiences. We will be happy to share our own, and focus on bringing out
the groups experiences on the table in order to facilitate how we can improve.

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 240–241, 2008.
© Springer-Verlag Berlin Heidelberg 2008

BIOHAZARD – Engineering the Change Virus

Patrick Kua

Thoughtworks
168-173 High Holborn, London
WC1V 7AA, United Kingdom
pkua@thoughtworks.com

Abstract. Introducing change into organisations and influencing the way
people work is a slow and potentially rewarding task. Adapting to changing
circumstances is a key aspect to agile methods and helping others develop
healthy habits in this area is often difficult to accomplish. We will investigate
why it is so difficult as well as principles and practices for introducing change
in effective ways that will help you to spread the change virus.

Keywords: Change, influence, organisational change, agile patterns.

1 Synopsis

We think that agile software development is currently the best way of developing
software, yet it hasn't been adopted by all software companies in the world. Why? The
answer – it's really hard for people to fully embrace change.

Teams and organisations get stuck in their ways, and even cultures of continuous
improvement and openness to change slowly build up a resistance until change no
longer occurs.

This ninety-minute workshop aims to raise your awareness of agents against
change, and equip you with practical skills and techniques that will help you bolster
the strength of the change virus. We'll look at ways of taking it to a point where it's so
contagious that it has a life of its own.

Specifically we will:

• Investigate sources of resistance to agile practices
• Look at a number of patterns for helping others to embrace change
• Examine influence and different styles of influencing
• Share a number of case studies where these were applied to improve agile

adoption and inspire a culture of continuous change.
• Recognise where change patterns can fail and common pitfalls

2 Who Should Attend?

This session will interest anyone who wants to improve their working environment.
It's especially for people working with teams or organisations where agile adoption is
not yet widespread, and continuous improvement is not built into the practices.

 BIOHAZARD – Engineering the Change Virus 241

Everyone who attends this will benefit from an improved awareness of why process
change fails, and come away equipped with some skills they can leverage to improve
their situation for the better.

Participants do not need any experience in agile software development to participate
in this workshop.

3 Presenter's Background

Patrick Kua is an agile coach, facilitator and developer for ThoughtWorks. He has
been working with individuals on teams in agile environments for the last four years,
and understands how powerful and responsive people can be when working together
in a common manner. He is always interested in aspects of continuous improvement,
and how light weight processes can boost team effectiveness.

He brings a blend of deep technical skills and deep understanding of processes that
help his teams succeed in their goals. He's presented at the last few XP conferences
about Test Driven Development and Information Radiators.

4 Workshop History

This workshop is based on a set of training classes we run inside of Thoughtworks.
Patrick ran these training classes for the last three months, refining the material based
on feedback from the class participants. This has not been presented at any other
conferences so far.

The material in this workshop has been very useful for consultants who work with
organisations who are about to, or are continuing to adopt agile software development.

Patrick presented "Reface Your Team Space", a workshop on Information Radiators
at last year's XP2007 and "Test Driving Your Swing" at XP2006.

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 242–243, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Architecture-Centric Methods and Agile Approaches

Muhammad Ali Babar1 and Pekka Abrahamsson2

1 Lero, Univeristy of Limerick, Ireland
malibaba@lero.ie

2 VTT, Finland
pekka.abrahamsson@sintef.no

1 Overview

Agile practices have recently gained popularity among large number of companies as
a mechanism for reducing cost and increasing ability to handle change in dynamic
market conditions. Based on the principles of the Agile manifesto [1, 2], researchers
and practitioners have proposed several software development approaches such as
Extreme Programming, Scrum and Feature-Driven Development. These and other
agile approaches have had significant impact on industrial software development
practices. However, there is also a significant concern and perplexity about the role
and importance of the issues related to a system's software architecture, which is
considered one of the most important initial design artefacts. It is argued that software
architecture is an effective tool to cut development cost and time and to increase the
quality of a system. Many practitioners of Agile approaches appear to view software
architecture in the context of the plan-driven development paradigm [3]. For them,
upfront design and evaluation of software architecture requires too much work, which
may have very little value to the customers of a system. Hence, they perceive
architectural work as part of high ceremony processes, which usually require large
amount of documentation. We maintain that these two seemingly opposing views to
software engineering can be integrated but it requires that experts from both fields
work together to overcome evident challenges in bridging these two paradigms
together. Indeed, software architecture researchers and practitioners appear to believe
that sound architectural practices cannot be followed using Agile approaches.
However, these two extreme views of Agile and architecture appear to neglect that
many agile experts emphasises the importance of paying attention to good design and
architecture early in the development process [4, 5]. Recently, there is growing
recognition of the importance of paying more attention to architectural aspects in
agile approaches [3, 6, 7]. We argue that there is a vital need for devising a research
agenda for identifying and dealing with architecture-centric challenges in agile
software development. Such research agenda should make it possible to guide the
future research on integrating architecture-centric methods in agile approaches and
give advice to the software industry on dealing with architecture related challenges.
Some of the questions to stimulate discussion in the workshop are:

• What is the role of software architecture in Agile software development?
• What are the key architecture-centric challenges and potential solutions in

Agile software development projects?

 Architecture-Centric Methods and Agile Approaches 243

• What is the strength of the evidence that attention to architectural issues can
be counterproductive in Agile development or vice versa?

• What are the prerequisites for integrating Architecture-Centric methods in
agile development and potential implications of such integration?

2 Objectives

The workshop aims at bringing together both researchers and practitioners from agile
approaches and software architecture backgrounds to discuss the importance and
challenges of integrating architecture-centric methods in agile approaches in the
context of developing large (or ultra large) scale software intensive systems. The
overall goal of the workshop is to develop a common research agenda for studying
agile software development and software architecture-centric issues in tandem. This
event will also provide a platform to identify the mechanics of bridging the gap
between agile approaches and architecture-centric methods.

3 Workshop Format

The workshop is planned to provide the attendees with an opportunity to develop a
common research agenda through brainstorming, discussion and building consensus on
important directions. To foster discussions at the workshop, the prospective attendees
will be asked to post questions and/or views about the workshop theme and main
research questions on a Wiki to be setup for the workshop. The workshop organizers will
identify a few main topics to be debated during the workshop in order to develop a
proposed common research agenda. The material produced in the workshop will be
collected and refined to produce a workshop report by the organizers. All the discussions
and workshop report will be placed on the workshop Wiki and open contributions will be
sought from all the interested researchers and practitioners to build a community around
the workshop topic.

References

[1] Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New Directions on Agile
Methods: A Comparative Analysis. In: ICSE 2003 (2003)

[2] Manifesto for Agile Software Development
[3] Nord, R.L., Tomayko, J.E.: Software Architecture-Centric Methods and Agile Development.

IEEE Software 23(2), 47–53 (2006)
[4] Beck, K.: Extreme Programming Explained: Embrace Change. Addison Wesley Longman,

Inc., Reading (2000)
[5] Martin, R.: Àgile Software Development, Principles, Patterns, and Practices. Prentice Hall,

Upper Saddle River (2002)
[6] Parsons, R.: Architecture and Agile Methodologies - How to Get Along. In: WICSA

(2008)
[7] Ihme, T., Abrahamsson, P.: Agile Architecting: The Use of Architectural Patterns in Mobile

Java Applications. International Journal of Agile Manufacturing 8(2), 1–16 (2005)

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 244–245, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Exploring Agile Coaching

Rachel Davies1 and Liz Sedley2

1 Agile Experience Limited, United Kingdom
Rachel@agilexp.com

2 Agile Coaching Limited, United Kingdom
liz@agilecoach.co.uk

Abstract. The surge in Agile adoption has created a demand for project manag-
ers rather than direct their teams. A sign of this trend is the ever-increasing
number of people getting certified as scrum masters and agile leaders. Training
courses that introduce agile practices are easy to find. But making the transition
to coach is not as simple as understanding what agile practices are. Your chal-
lenge as an Agile Coach is to support your team in learning how to wield their
new Agile tools in creating great software.

1 Workshop Summary

The goal of this workshop is to produce a set of guidelines that agile coaches can use
to help their teams in applying agile techniques.

1.1 Participation

This workshop is aimed at the growing number of scrum masters, agile project man-
agers and agile coaches. It assumes participants are already familiar with at least one
agile methodology and the most common agile practices. And provides the opportu-
nity to meet other practicing Agile Coaches and hearing how they work with their
teams. Come along to share coaching experiences of what worked (or did not work)
for you.

To find out more about participation, please see our webpage at:

http://www.agilexp.com/XP2008-AgileCoachingWorkshop.php

1.2 Deliverables

The workshop is to develop a set of coaching guidelines which we will make avail-
able on our website. The presenters will arrange to take digital photographs of all
workshop outputs and arrange for these to be uploaded to the workshop web page or
conference wiki website.

2 Content and Process

The workshop will start with introductions followed by a short presentation on coach-
ing agile teams. The purpose of the presentation is to introduce the topic and share
some examples from real projects.

 Exploring Agile Coaching 245

Next participants will share their experience with the group by presenting their po-
sition papers. The workshop will then move into working in small groups to try an
exercise in coaching agile practices. Following a break for coffee, we will debrief the
exercise and discuss aspects of coaching revealed.

Now the groups start working to distill their ideas into guidelines for coaching ag-
ile teams. Each work group will take a turn to present their set that they develop to the
session group.

2.1 Timetable

 12:30 - 12:35 Introductions
 12:35 - 13:00 Presentation/Position papers
 13:00 - 13:30 Exercise
 Lunch
 15:00 - 15:15 Debrief and discussion
 15:15 - 15:45 Groups explore coaching guidelines
 15:45 - 16:00 Each group presents what they learned to the session group.

3 Workshop Organizers

Rachel Davies is a highly respected Agile Coach whose expertise is recognized inter-
nationally across the XP, Scrum and DSDM communities. She has 20 years experi-
ence in software development and started her own agile journey in 2000 as a pro-
grammer in an XP team. Rachel has served on the board of directors of Agile Alliance
for 5 years and is conference chair for Agile2008. Rachel has presented at numerous
conferences on topics related to agile coaching and has participated in the XP 200x
conference program every year since 2001.

Liz Sedley has been working as an Agile Coach for the last 4 years, in 3 compa-
nies. Previously to that she was a software engineer working in C++ and C# since
graduating with a Computer Science Degree in 1992.

Liz presented an ‘Introduction to Lean Value Stream Mapping’ at the XPDay 2007
conference in London.

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 246–247, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Agile Technique Hour

David Parsons

Institute of Information and Mathematical Sciences
Massey University, Auckland, New Zealand

d.p.parsons@massey.ac.nz

Abstract. This workshop addresses issues around how various techniques may
be integrated within an agile methodology, how these techniques interact with
each other, and how certain techniques may be regarded as more or less critical
to the success of an agile software development project.

Keywords: Agile technique, workshop, process miniature, simulation.

1 Introduction

In recent years, a large number of agile software development methods have been
promoted by various practitioners, with many overlapping techniques. These methods
tend to vary in the prescriptiveness of their approach, in the particular combinations
of techniques they recommended, and in the balance between technological and
managerial emphasis. Some research into agile methods in practice suggests that the
combination and usage of particular techniques varies tremendously even within the
umbrella of a particular agile method [1]. Therefore agile method adoption is not as
significant as agile technique adoption. The main objective of this workshop is to
focus on the influence of particular techniques, using an approach based on process
miniatures [2], a method for simulating agile project processes in a short time scale.

2 The Aims of the Workshop

This workshop aims to explore some of the techniques used within agile methods and
to try to assess their relative usefulness within a simulated agile process. This
workshop is in the spirit of a number of previous approaches to exploring agile
methods by using game-like simulations. These include Process Miniatures [2], the
eXtreme Hour [3], the XP Game [4] and the Planning Game [5]. However the focus
of most of these other efforts has been to concentrate on the managerial aspects of
agile methods. In contrast, the ‘Agile Hour’ enables us to explore the ‘technique’
subset of agile practices, which focuses not so much on planning and estimating
(though this is necessary too to provide us with a framework for the other activities)
but on how agile techniques are used within an iteration. We are particularly
interested in what techniques are used within agile methods, how they may synergise
with one another, and which practices might be regarded as ‘core’.

The approach of the workshop is to do a process miniature that gradually introduces
subsets of the available techniques, and by doing so, helps us to assess which techniques

 The Agile Technique Hour 247

may be the most helpful. Of course we cannot test all the techniques in this way because
not all techniques can reasonably be simulated in a workshop. Therefore the techniques
that we address are the following; active stakeholder participation, pair programming,
co-location, refactoring, regression testing, common coding guidelines, continuous
integration and test driven development.

3 Overview of the Process

The task is to design a human powered vehicle. Teams are allocated a set of user stories
describing required features of a human powered vehicle. The vehicle is created by
overlaying features drawn on A4 transparencies, and each transparency can depict
exactly one feature. Teams develop these features concurrently, and new user stories are
introduced with each iteration. Each feature has a score representing its business value,
which is useful for the teams when choosing development priorities. The teams consist
of; stakeholders (who specify requirements on story cards), developers (who estimate
and design solutions) QA (who acts as judge and acceptance tester), and Tracker (who
records and times everything).

The schedule is broken down into three twenty minute stages. In each stage the
first five minutes consist of planning tasks, such as selecting user stories, making
estimates, and prioritizing stories. The following ten minutes is a development phase,
during which QA writes acceptance tests and developers build using a subset of
techniques. This phase includes a mid-term review. The final five minutes is a review
stage, including acceptance testing. We have eight techniques in total. The first three
techniques are controlled and must be used as advised. Developers may request one
additional technique during the first and second post-iteration review.

At the end of the workshop we discuss the design outcomes, discuss our
experiences with the different techniques and vote on the perceived usefulness of the
techniques. We then reflect on the experience and share our responses.

References

1. Parsons, D., Ryu, H., Lal, R.: The Impact of Methods and Techniques on Outcomes from
Agile Software Development Projects. In: McMaster, T., Wastell, D., Ferneley, E.,
DeGross, J. (eds.) Organisational Dynamics of Technology-Based Innovation: Diversifying
the Research Agenda, pp. 235–252. Springer, New York (2007)

2. Cockburn, A.: Agile Software Development. Addison-Wesley, Reading (2002)
3. Extreme Hour Wiki (2005), http://c2.com/xp/ExtremeHour.html
4. Peeters, V., Van Cauwenberghe, P.: The XP Game (2006),

 http://www.xp.be/xpgame.html
5. Planning Game Wiki (2007), http://c2.com/cgi/wiki?PlanningGame

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 248–249, 2008.
© Springer-Verlag Berlin Heidelberg 2008

AOSTA: Agile Open Source Tools Academy

Werner Wild1, Barbara Weber2, and Hubert Baumeister3

1 Evolution Consulting, University of Innsbruck, Management Center Innsbruck
2 University of Innsbruck, Austria

3 Technical University of Denmark, Lyngby

1 Workshop Description

Our workshop provides a platform to share experiences, exchange success stories and
discuss potential pitfalls when using Open Source Tools (OST) for Agile Development.
The goal of this workshop is to create awareness of useful OST and help to improve
one’s portfolio of tools for Agile Development. This ninety-minute workshop is a follow
up on the highly successful AOSTA workshops at XP’2006 in Oulu Finland – there were
more than 25 participants and a mid-night (!) sun BOF on the same topic attracted more
than 10 additional attendees and XP’2007, Como, Italy. We will continue our discussions
and share new up-to-date experiences among all new and repeat participants.

Everyone who already uses or plans to use OST for developing software the Agile
Way can participate. All, from hard-core developers via project managers to CIOs are
welcome to share their experiences and expectations. In addition, OST developers
should attend to gain additional insights in their “customer’s” agile needs to better steer
their ongoing open source projects. Finally, whoever wants to get a quick overview on
the state of the art in OST for Agile Development can participate in the discussions
and/or demos; however, we kindly ask participants to get ready to demo, or at least
share some stories about their favourite tool(s). Bring your Laptop!

To get started a comprehensive overview on OST is given by the organizers when
presenting the results of two Master Theses (e.g. Value Benefit Analysis) at the MCI
(Management Center Innsbruck). After this brief introduction workshop participants
should present a short summary of their agile open source toolbox, including the pros
and cons they find noteworthy. Then, like in an Open Space, “workshoppers” should
demo their agile toolkit, or, at least, their favourite OST at given timeslots. Short
“hands on” sessions would be great, if there are the “right” number of participants at
each spot in the Open Space. Finally, a wrap up session with all participants will give
a chance to discuss open questions, share “war stories” and get feedback.

This workshop provides participants with the unique opportunity to profit from the
experience of real practitioners using OST in their current projects and, equally
important, to leave with the gratifying feeling of having been able to help others with
your expertise. Participants will gain a quick perspective whether a specific tool can
ease their daily work and learn how to avoid well know and not-so-well-known
pitfalls.

A comprehensive list of OST for Agile Warriors will be created as one of the
publicly available outputs from this workshop. It will be made available on the web.
However, physically present, active participants will learn the most, e.g., through the

 AOSTA: Agile Open Source Tools Academy 249

shared stories and networking opportunities. And, last but not least, you will be able
to spend a fun and nice morning with great people like you!

2 About the Facilitators

Werner Wild has been in IT for almost 30 years and currently is a consultant with
Evolution, Innsbruck. He also lectures at the University of Innsbruck, the University
of Bolzano and the Management Center Innsbruck (MCI). He has long-term
experience with many practices of XP as a developer, project manager and consultant
and tries hard to convince his students to become more agile! He also is an elected
board member of the steering committee for the Austrian IT Industry at the Federal
Chamber of Commerce.

Barbara Weber is a full-time researcher at the Computer Science Department,
University of Innsbruck, Austria and specializes in Business Process Management/
Business Agility. She has given lectures in Agile Methods for several years and
managed numerous XP projects with graduate students. Her development projects are
almost exclusively done with Open Source tools.

Hubert Baumeister is associate professor at the Technical University of Denmark,
Lyngby, and is one of the few people who has been attending all (!) XP 2000-2007
conferences! In addition, he served as Program Chair of XP 2005 and as Academic
Chair of XP 2004.

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, p. 250, 2008.
© Springer-Verlag Berlin Heidelberg 2008

There's No Such Thing as Best Practice

Moderator: Steve Freeman

Abstract. The Agile movement presents itself as a carrier of "Best Practice",
tools and techniques that any self-respecting development organisation should
follow. Most of these practices were first written up from a few iconic projects
and other groups' attempts to imitate them -- without the original organisation,
technologies, or personalities. Now we have a lot of useful ideas and can even
be certified to prove we know what we're doing. But is this right?

Do we really believe in reproducible methodologies? Surely organizational
context trumps everything -- which is why some Agile adoptions don't last. Or
are there fundamental concepts that we can apply everywhere? And how can we
figure out what's fundamental and what's circumstantial?

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, pp. 251–255, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Culture and Agile: Challenges and Synergies

Steven Fraser1, Pekka Abrahamsson2, Robert Biddle3,
Jutta Eckstein4, Philippe Kruchten5, Dennis Mancl6, and Werner Wild7

1 Director – Engineering, Cisco Research, USA
sdfraser@acm.org

2 Professor, VTT Technical Research Centre, Finland
pekka.abrahamsson@vtt.fi

3 Professor, Human-Oriented Technology (HOT) Lab, Canada
robert_biddle@carleton.ca

4 Partner, IT Communications, Germany
jutta@jeckstein.com

5 Professor, UBC, Canada
philippe@kruchten.com

6 Member of Technical Staff, Lucent-Alcatel, USA
mancl@alcatel-lucent.com

7 Consultant, Evolution, Austria
werner.wild@evolution.at

Abstract. Culture offers both local and global challenges to software teams as
they collaborate to understand requirements, build systems, and deliver product.
Agile software practices through iteration, incremental delivery, and customer
proximity can ameliorate cultural challenges to create synergies. Alternatively,
some cultural barriers may prove insurmountable. This panel brings together
community experts to share and discuss research and field experience.

1 Steven Fraser (panel impresario)

STEVEN FRASER recently joined Cisco Research in San Jose California as a Director
(Engineering) with responsibilities for developing and managing university research
collaborations. Previously, Steven was a member of Qualcomm's Learning Center in
San Diego, California with responsibilities for technical learning and development
and creating the corporation's internal technical conference - the QTech Forum.
Steven held a variety of technology management roles at Bell-Northern Research, NT,
and Nortel including Process Architect, Senior Manager (Disruptive Technology and
Global External Research), and Advisor (Design Process Engineering). In 1994, he
was a Visiting Scientist at the Software Engineering Institute (SEI) at Carnegie
Mellon University (CMU) collaborating with the Application of Software Models
project on the development of team-based domain analysis (software reuse) tech-
niques. Fraser was the General Chair for XP2006, the Corporate Support Chair for
OOPSLA'07 and OOPSLA’08, and Tutorial Chair for both XP2008 and ICSE 2009.
Fraser holds a doctorate in EE from McGill University in Montréal - and is a member
of the ACM and a senior member of the IEEE.

252 S. Fraser et al.

2 Pekka Abrahamsson

PEKKA ABRAHAMSSON is research professor at VTT Technical Research Centre of
Finland. He holds also an adjunct chief scientist’s position in SINTEF, Norway. He is
currently a visiting professor at Free University of Bozen-Bolzano in Italy. His
current responsibilities include managing a FLEXI-ITEA2 project, which involves 35
organizations from 7 European countries. The project aims at developing agile
innovations in the domain of global, large and complex embedded systems develop-
ment. His previous project was awarded an ITEA Achievement for outstanding
industrial impact. His research interests are centred on business agility, agile software
development, empirical software engineering and innovation theories. He has coached
several agile software development projects in industry and authored more than sixty
scientific publications focusing on software process and quality improvement, agile
software development and mobile software. He was recently awarded a Nokia
Foundation Award for his achievements in software research.

In the field of organizational behaviour there are two opposing thoughts of schools
representing fundamentally different views on organizational culture. One argues that
the culture, per se, cannot be changed. Rather, it merely develops or evolves over
time to a certain direction. This direction is difficult or even impossible to control or
manage. The other school holds a belief that cultures can indeed be changed, if certain
determinants are in place and concrete actions are taken. In this view, cultures can
somehow be managed. Agile software development represents, in my view, a
culturally sensitive view on software development. It is a unique approach to software
engineering since it explicitly states the values and principles it holds valuable over
others. It goes further and provides a set of concrete practices that are likely to
influence on behaviour of the developers, managers and customers. These elements
can be viewed as a vehicle for the development of an organizational culture. I find
that the direction of this change vehicle is towards professionalism in the field of
software development. Maybe this is the reason explaining why agile implementa-
tions differ from one company to another so widely. Being a culturally sensitive
approach places several challenges as well. As an example, the third parties are
experiencing great difficulties in viewing from the outset how deeply the profession-
alism promoted by agile methods has penetrated into the behaviour of the software
teams. As agile approaches are being adopted globally, it will be interesting to see
how national cultures, habits and customs conflict or support the type of openness and
transparency supported by agile methods.

3 Robert Biddle

ROBERT BIDDLE is Professor of Human Computer Interaction at Carleton University
in Ottawa, Canada, where he is a member of the graduate faculties of both Computer
Science and Psychology. His active research is in human aspects of agile develop-
ment, computer games, and computer security.

Agile methods emphasize the importance of people working together. This emphasis
is a timely and refreshing change from the emphasis on production-line automation that
has been the dominant, if seldom acknowledged, ideal of software development since its

 Culture and Agile: Challenges and Synergies 253

inception. Despite this new emphasis, we lack much theoretical and operational
understanding of how to work together well. Too often, this results in us inappropriately
applying to people the techniques we know from computer systems. To work well as
people, we must acknowledge and embrace our human character: our behavior and our
culture. In turn, this means that we as software developers need to understand human
behavior and human culture much better than we do now. In our recent research work,
we are conducting studies from the viewpoints of human activity, teams as social
organizations, and involving varying cultural dimensions. We are finding some good
explanations for situations where agile methods work well, and some surprises about
where there are challenges. We increasingly believe that being good software develop-
ers means recognizing our nature as humans. Although we work with machines, and we
build machines, we must recognize that we ourselves are not machines.

4 Jutta Eckstein

JUTTA ECKSTEIN is a partner of IT Communication and an independent consultant-
trainer from Braunschweig, Germany. Jutta has over ten years experience with agile
processes in developing object-oriented applications. She has helped many teams and
organizations all over the world to make the transition to an agile approach. She has a
unique experience in applying agile processes within medium-sized to large mission-
critical projects. This is also the topic of her book Agile Software Development in the
Large. Besides engineering software, Jutta has designed and taught Object Technol-
ogy courses for industry. Jutta has completed a course on teacher training and led
many train-the-trainer programs. Another focus area includes techniques, which help
teach OT, and she is the lead for a pedagogical patterns project. Jutta has presented
work at conferences including ACCU, JAOO, OOPSLA, XP, and Agile.

Often, when people discuss culture they have different geographic areas or diverse
religions in mind. However, on second thought you will find that as well a company
shapes a culture (e.g. the difference between the culture in a small company compared
to a large organization is significant) and so do branches and roles (e.g. analysts seem
to be of a different tribe than programmers), etc. Now let's take a look at the origin of
Agility: definitely the breeding ground was the Smalltalk community - and the ones
who are around long enough know that the Smalltalk-guys had their own culture,
especially if you compared them with the C++ crowd. After the first successes of
Agile many doubted that this will work in a culture that C++ provides. In the mean
time this question isn't asked anymore and I am aware of projects which followed an
agile approach in a mainframe environment.

So yes, a different culture (no matter if it is geographic area or a programming
language) makes a difference in the implementation of agile. However, I came to the
conclusion that the more difficult any kind of culture seems to be for applying agility
at first glance, the more essential it is to recollect and understand the agile value
system and the principles and take those as a guidance for establishing an agile
culture. So in a sense a more difficult culture asks for a deeper understanding of agile,
whereas a more "natural" agile culture might allow people to get away with only a
vague idea of it.

254 S. Fraser et al.

5 Philippe Kruchten

PHILIPPE KRUCHTEN is a Professor of Software Engineering in the Department of
Electrical and Computer Engineering of the University of British Columbia, in Vancou-
ver, Canada. He joined UBC in 2004 after a 30+ year career in industry, where he
worked mostly in with large software-intensive systems design, in the domains of
telecommunication, defense, aerospace, and transportation. Some of his experience is
embodied in the Rational Unified Process (RUP) whose development he directed from
1995 until 2003, when IBM acquired Rational Software. RUP includes an architectural
design method, known as “RUP 4+1 views”. Philippe’s current research interests still
reside mostly with software architecture, and in particular architectural decisions and the
decision process, as well as software engineering processes, in particular the application
of agile processes in large and globally distributed teams. He is a senior member of IEEE
Computer Society, the cofounder of Agile Vancouver, a BC Professional Engineer, and a
member of the APEGBC council.

In recent research, we have taken a systematic look at how intercultural factors
affect the outcomes of software development practices. We have identified patterns
and anti-patterns of organizational behavior that affect the outcome of off-shoring or
outsourcing software projects. In the past decade, the North American and Western
European IT industry has observed a rapid increase in the number of companies
outsourcing software projects for development abroad or starting their own develop-
ment centers in remote locations. In spite of great promises and anticipation, not all
global software development projects succeed. When they fail, people are quick to
blame it on “them”, their lack of diligence or commitment, or to blame it on technol-
ogy, but we observed that they often fail because of subtle intercultural issues. To
explore this matter, we have studied the concept of culture and the potential impact of
intercultural dynamics on global software development projects. There has been little
analytical research done in this area and impact is assessed based on anecdotal
accounts by project managers. Our research takes a grounded theory approach,
starting with a collection of critical incidents in a range of global projects, obtained
through semi-structured interviews. Our recent work has presented a descriptive
conceptual framework for coordination between individuals and teams, which we
have used to analyze and explain some of our findings. Our ultimate objective is to
provide project managers with tools to help identify and mitigate the risks associated
with a given mix of cultures in a software project.

6 Dennis Mancl

DENNIS MANCL is a member of Technical Staff at Alcatel-Lucent Bell Labs. He has
been a researcher and internal consultant on the use of object-oriented technologies for
telecommunications software, with a special emphasis on leveraging legacy software.

We have witnessed many successful and unsuccessful attempts to introduce agile
practices in teams of software professionals. Three reasons for resistance to the
adoption of more agile practices include: "we have always done things this way," "we
are afraid that quality will suffer," and "we don't have time to change." These teams
have all had one thing in common: they are trying to use the most efficient techniques

 Culture and Agile: Challenges and Synergies 255

to build what they believe to be a well-defined system. On the other hand, the teams
that have successfully employed agility also have one thing in common: everyone
admits that they have a lot to learn, both about the system under development and
about the process of building and delivering systems. Agile methods are seen by
many team members as a way to attack the "discovery costs" that are inherent in any
large project. Iteration, prototyping, unit testing, refactoring, and other related
practices -- these are viewed as the most effective ways of learning what they need to
know. For green field system, we all need to fill in the gaps that are inevitable in the
initial problem specification. In extending or reengineering legacy systems, we all
need to understand things that might be missing in the design documentation. In short,
the culture in an agile environment is a "lifelong learning" culture, and the biggest
challenge in introducing agility to a new organization is to convince them that their
current understanding is incomplete.

7 Werner Wild

WERNER WILD is a long-term agile consultant and university lecturer and has
introduced several hundred students to agile and lean ideas. He introduced small and
medium-sized enterprises to eXtreme Programming and has run several Agile
Software Development projects in Central Europe. Together with Barbara Weber he
researches and publishes on the agile management of business processes. As an
elected official of the Austrian Chamber of Commerce he spreads Agile Software
Development through local events, workshops and the media.

My experience with cultural synergies and challenges stems from introducing more
than a hundred students and several Central European small/medium-sized enterprises
to agile development practices. While we did not conduct a full scientific study,
several observations were repeated. There appears to be a significant difference
between Austrian (Germanic culture) and Italian (Romanic culture) students - the
ones south of the Alps are more used to “non-plan driven” environments and learn
agile development (specifically Lean and XP) within 2-4 weeks, while their Austrian
colleagues take 4-8 weeks to be productive. This is not gender-specific, although my
observations indicate that female students on both sides of the Alps pick up the
concepts significantly faster than their male counterparts. Most students don't want to
go back to “traditional” methods, once they experienced Agile, except possibly for
those who seem to live in a “culture of blame.” Similar observations were made
within enterprise organizations. Is there a pattern emerging?

P. Abrahamsson et al. (Eds.): XP 2008, LNBIP 9, p. 256, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Architecture and Agility Are Not Mutually Exclusive

Moderator: Lasse Koskela

Abstract. Over the recent years, we've seen a constant stream of tutorials and
workshops on "agile architecture" in conferences and there seems to remain a
variety of suggested answers to this question - how should agile methods and
architecture relate to each other and whether evolutionary design should include
architecture or stick to what's inside the boxes?

The idea of emergent design through Test Driven Development and Refactoring
has been a popular concept in discussions ever since Extreme Programming
Explained was published but many consultants suggest that we shouldn't let it all
emerge from code and rather carry out some up-front design in the form of iteration
design workshops, for example. Some even suggest that TDD tends to lead to
downright bad architectures.

What is the answer? Can we reach agreement? Can we agree on a good
approach for a given scenario? Or is architecture the software community's wild
west where whoever holds the gun is right?

Author Index

Aaen, Ivan 1
Abbas, Noura 94
Abdelnour-Nocera, José 42
Ablett, Ruth 230
Abrahamsson, Pekka 242, 251
Ågerfalk, Pär J. 32

Babar, Muhammad Ali 242
Baumeister, Hubert 248
Biddle, Robert 234, 251
Bravo, Crescencio 232
Bustard, David 210

Chiasson, Mike 53
Coman, Irina Diana 127
Concas, Giulio 83
Connolly, David 210

Damdul, Namgyal 210
Davies, Rachel 244
de Lascurain Hinojosa, Lucia 190
Demeyer, Serge 73
Denzinger, Jorg 230
Di Francesco, Marco 83
Dingsøyr, Torgeir 11
Doherty, Shay 208
Dubinsky, Yael 63, 212
Duque, Rafael 232

Eckstein, Jutta 251

Falconieri, Gabriel 114
Fraser, Steven 251
Freeman, Steve 250

Gaelli, Markus 73
Ghanam, Yaser 202
Gobbo, Federico 180
Gravell, Andrew M. 94
Gusmão, Cristine 114

Haensenberger, Lea 73
Hall, Tracy 204
Hasnain, Eisha 204
Hayes, Sinéad 161

Holcombe, Mike 104
Hosbond, Jens Henrik 21
Hussain, Zahid 226
Hussman, David 236

Karlsson, Fredrik 32
Katz, Shmuel 63
Kaur, Arvinder 215
Kautz, Karlheinz 137
Keenan, Frank 208, 210
Koskela, Lasse 236, 256
Kroskin, Ayelet 212
Kruchten, Philippe 251
Kua, Patrick 240
Kuhn, Adrian 73

Lechner, Martin 226
Lifshitz, Gadi 212

Malhotra, Ruchika 215
Mancl, Dennis 251
Marchesi, Michele 83
Martin, Angela 234
Maurer, Frank 53, 185, 202, 218, 230
McCarron, Tony 208
McLean, Stuart 208
Medeiros, Renata 114
Mishali, Oren 63
Moe, Nils Brede 11
Morgan, Robert 53

Nelson, Christopher R. 190
Nielsen, Peter Axel 21
Nierstrasz, Oscar 73
Noble, James 234

Park, Shelly 218
Parsons, David 246
Paschoalino, Máıra 114
Pinheiro, Caryna 185
Pinna, Sandro 83
Porruvecchio, Guido 220

Quaresima, Roberta 83, 220

Ribeiro, Lúcio 114
Richardson, Ita 161

258 Author Index

Rocha, Fernando 114
Ryan, Sherry D. 147

Saffarian, Amir 222
Saha, Anju 224
Sandberg, Jan-Erik 238
Santana, Célio 114
Schock, Craig 230
Sedley, Liz 244
Shahzad, Sara 226
Shams, Fereidoun 222
Sharifloo, Amir Azim 222
Sharlin, Ehud 230
Sharp, Helen 42
Sharp, Jason H. 147
Sillito, Jonathan 185
Sillitti, Alberto 127
Silva, Liana 114
Singh, Yogesh 215, 224
Sk̊ar, Lars Arne 238

Slany, Wolfgang 226
Soares, Sérgio 114
Succi, Giancarlo 127

Taran, Gil 190
Thomson, Chris 104

Uras, Selene 220

Vaccari, Matteo 180
Van Leemput, Koenraad 73
Van Rompaey, Bart 73

Wang, Xin 202
Weber, Barbara 248
Weber, Sebastian 202
Wild, Werner 248, 251
Wills, Gary B. 94

Zang, Juanjuan 172, 228
Zumpe, Sabine 137

	Table of Contents
	Agile Innovations
	Essence: Facilitating Agile Innovation
	Scrum and Team Effectiveness: Theory and Practice
	Misfit or Misuse? Lessons from Implementation of Scrum in Radical Product Innovation

	Adaptation of Agile
	Method Configuration: The eXtreme Programming Case
	Adopting Agile in a Large Organisation
	An Observational Study of a Distributed Card Based Planning Environment

	Agile Testing and Assessment
	The TDD-Guide Training and Guidance Tool for Test-Driven Development
	JExample: Exploiting Dependencies between Tests to Improve Defect Localization
	An Agile Development Process and Its Assessment Using Quantitative Object-Oriented Metrics

	History and Evolution of Agile
	Historical Roots of Agile Methods: Where Did "Agile Thinking" Come From?
	Seven Years of XP - 50 Customers, 100 Projects and 500 Programmers – Lessons Learnt and Ideas for Improvement

	People Factors in Agile Environments
	Applying XP to an Agile–Inexperienced Software Development Team
	Investigating the Usefulness of Pair-Programming in a Mature Agile Team

	Conceptual Models of Agility
	Just Enough Structure at the Edge of Chaos: Agile Information System Development in Practice
	A Preliminary Conceptual Model for Exploring Global Agile Teams
	Scrum Implementation Using Kotter's Change Model

	Experience Reports
	Agile Estimation with Monte Carlo Simulation
	The Pomodoro Technique for Sustainable Pace in Extreme Programming Teams
	Adopting Iterative Development: The Perceived Business Value
	Explicit Risk Management in Agile Processes

	Posters
	APDT: An Agile Planning Tool for Digital Tabletops
	Investigating the Role of Trust in Agile Methods Using a Light Weight Systematic Literature Review
	Agile Practices in a Product Development Organization
	Building and Linking a Metaphor: Finding Value!
	The Story of Transition to Agile Software Development
	Predicting Software Fault Proneness Model Using Neural Network
	Multi-modal Functional Test Execution
	Social Network Analysis of Communication in Open Source Projects
	Toward Empowering Extreme Programming from an Architectural Viewpoint
	A Metric-Based Approach to Assess Class Testability
	Inside View of an Extreme Process
	To Track QA Work or Not; That Is the Question
	Build Notifications in Agile Environments
	Supporting Distributed Pair Programming with the COLLECE Groupware System: An Empirical Study

	Workshops
	Experience on the Human Side of Agile
	Retrospective Exploration Workshop
	Exposing the "Devils" within: Agile Taboos in a Large Organization
	BIOHAZARD – Engineering the Change Virus
	Architecture-Centric Methods and Agile Approaches
	Exploring Agile Coaching
	The Agile Technique Hour
	AOSTA: Agile Open Source Tools Academy

	Panels (Abstracts)
	There's No Such Thing as Best Practice
	Culture and Agile: Challenges and Synergies
	Architecture and Agility Are Not Mutually Exclusive

	Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

