Jerome Boyer
Hafedh Mili

Agille
Business Rule
Development

Process, Architecture,
and JRules Examples

@ Springer



Agile Business Rule Development






Jérome Boyer . Hafedh Mili

Agile
Business Rule
Development

Process, Architecture, and JRules Examples

@ Springer



Mr. Jérome Boyer Prof. Hafedh Mili

IBM Université du Québec a Montréal
4400 North First Street Dépt. Informatique
San Jose, CA, 95134 C.P. 8888
USA Succursale centre-ville
boyerje@us.ibm.com Montréal Québec H3C 3P8
Canada
hafedh.mili@ugam.ca
ISBN 978-3-642-19040-7 e-ISBN 978-3-642-19041-4

DOI 10.1007/978-3-642-19041-4
Springer Heidelberg Dordrecht London New York

ACM Computing Classification (1998): J.1., H.3.5,1.2, D.2
Library of Congress Control Number: 2011924779

© Springer-Verlag Berlin Heidelberg 2011

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To my family and friends who support my day to day work and humor
To Amel, Haroun and Khalil, for giving a meaning to what I do

To Aicha, Taieb, Faouzi, Ali, Kamel, Fatma, Hedia, Seloua,
Sadok and Nebiha, for being there when it matters

To Lal-Melika and in memory of Si El Moncef






Foreword I

We all make a huge variety of decisions every day. For the vast majority of our
daily chores we make those decisions based on the set of experiences and philoso-
phies that we have developed and evolved over time. It is that combination of
experience that makes us who we are—and that ensures that we are uniquely
qualified to perform our jobs. The problem is that all too often the things that
make us unique will lead us to making different decisions from everyone else in the
organization. Those differences may be acceptable for a large class of the decisions
we make. However, that can also be detrimental to the organization when it comes
to certain core business processes.

Businesses that are able to capture the criteria by which they make business
decisions are able to drive better business results. By capturing those criteria you
can reason about their effectiveness. You can combine the best of everyone’s
experience to ensure you are able to respond to the most comprehensive set of
circumstances. You can communicate those criteria across the organization and
thus ensure that decisions are being made consistently. You can publish those
criteria and use them as a benchmark against which to measure the effectiveness
of decisions made in different parts of your organization. You can evolve those
criteria in a systematic fashion—testing the effectiveness of decisions and evolving
them over time to improve the performance of your business.

And what is the codification of those criteria? By any other name we refer to
them as “business rules”. Business rules are an independent representation of how
the business should behave—the principles and expectations that go into business
decisions.

Business rules capture decision criteria in a way that can be applied coherently,
comprehensively and consistently across the organization. Further, they enable us
to automate the execution of those decisions in our business processes. And by
separating the business rules from the technical plumbing of the application we can
update automated decision criteria, adjusting those rules as often as new experi-
ences, changes in the environment, or changes in philosophy dictate. We can update
how our business behaves at the speed of change in our marketplaces.

vii



viii Foreword 1

This book is about Business Rules. It opens by reasoning about the power of
separating business rules from the technical infrastructure of our applications. It
outlines methods for creating and maintaining business rules. It covers approaches
to integrating business rules into our business processes, and for monitoring results
and driving improvements to the rules, that in turn, drive improvements in business
outcomes. It does so by discussing architectural issues, proposing general solution
patterns, and illustrating those patterns for the case of IBM’s business rule manage-
ment system, WebSphere ILOG JRules. Most importantly, it explains how to
manage rules like you would any other valuable business asset.

Quite possibly this will be the most important and comprehensive book you will
ever read on the topic of business rules. I highly encourage you to read it from cover
to cover and use it to guide your business process and application development
activities. Having done so, I'm convinced that you will be in a better position to
drive significant improvements to how we leverage Information Technology as a
competitive weapon in our business markets.

Rob High, Jr.
IBM Fellow
IBM SOA Foundation, Chief Architect



Foreword 11

I first met Jerome and Hafedh at an ILOG event in 2008 when ILOG, then an
independent software company focused on business rules, had just donated its work
on an Agile Business Rules Development (ABRD) methodology to the open source
community. I had heard of this methodology while I was working on Decision
Management at FICO, another business rules vendor, but had not had a chance to
work with it. I was immediately impressed with both ABRD and the Eclipse
Process Framework in which it was presented. I had worked on Ernst & Young’s
methodology and its automation in the 90s and I understood both the work involved
and the value of managing the methodology—not just writing it. ABRD was clearly
a well thought out methodology, embodying many best practices for business rules-
based development, that could help organizations adopt Decision Management and
business rules management systems.

Decision Management is an approach that focusses on automating and improv-
ing operational business decisions, including the many micro-decisions that impact
a single customer or a single claim. It requires a solid platform for managing
decision-making logic—a business rules management system (BRMS)—and a
methodology for effectively finding and automating this logic. The combination
of business rules and a Decision Management approach results in systems and
processes that are simpler, more agile, more aligned with the business and funda-
mentally smarter. Effective management of the decision logic has improved deci-
sion accuracy, compliance and consistency.

Some companies make the mistake of assuming that decision management and
business rules can be adopted by an IT department without changing existing
governance and development approaches. Others assume that they can handle
business rules as part of modeling and managing business processes. In fact, new
approaches and techniques are required. Best practices already call for developers
to separate the data, user interface and process definitions from applications.
Decision Management takes this one step further and separates decision-making
logic from the remainder of the technical implementation. Further, it empowers
business users and analysts to collaborate effectively with their IT teams and even

ix



X Foreword II

to control some of the logic themselves. But extracting decision-making logic as
business rules and managing those business rules over time requires new skills, new
techniques and new best practices, i.e. a new development methodology.

Among rule development methodologies, ABRD is unique in that it promotes
iteration and the early use of a business rules management system. Focussing on
incremental and iterative development, it has been specifically developed to handle
new artifacts like business rules, decision points and more. It applies the key tenets
of the agile manifesto and takes advantage of the power of business rules manage-
ment systems to deliver on those tenets. Its approach to rule elicitation values
“Individuals and interactions over processes and tools”. It prototypes early to
ensure “Working software over comprehensive documentation”. It leverages the
ability of non-technical business people to understand and even edit business rules
to deliver “Customer collaboration over contract negotiation”. Finally, it relies on
the faster update and deployment cycles of a business rules management system to
ensure projects put “Responding to change over following a plan”.

I have helped several companies adopt business rules, using ABRD and the
ILOG business rules management system, now part of the IBM WebSphere product
suite. These companies have seen tremendous improvements in business agility and
in business/IT alignment. Their use of a business rules management system played
a big part in these improvements. To be truly successful, however, these companies
have also had to adapt and change their approach to systems development and
maintenance. Whether they were using agile methods or not for their traditional
development, the need for a new approach to effectively apply agile techniques to
business rules was clear. ABRD delivered what these companies needed to be
successful.

A book on ABRD, then, is both timely and necessary. With this book, Jerome
and Hafedh have written more than just a complete guide to ABRD. This book
provides an introduction to business rules and to the ABRD methodology. It
discusses key ABRD cycles and activities. It outlines key design patterns and
covers critical issues in everything from rule authoring to deployment and testing.
Rule performance, rule governance and detailed descriptions of how to do all this
with IBM’s flagship business rules management systems round out a thorough and
complete book. If you plan to use business rules to extend and manage the decisions
in your operational environment, something I highly recommend, this book will
show you how to use an agile approach to do so.

James Taylor

James is CEO and Principal Consultant, Decision Management Solutions and is
based in Palo Alto, CA. He is the author, with Neil Raden, of Smart (Enough)
Systems (Prentice Hall, 2007) and of numerous chapters on decision man-
agement and business rules. He is an active consultant helping companies
all over the world implement business rules, and can be reached at james@
decisionmanagementsolutions.com.



Preface

Why Business Rules

According to Wordnet, a rule is “a principle or condition that customarily
governs behavior” or “a prescribed guide for conduct or action.” Businesses, and
organizations in general, operate under a number of rules: rules about what services
to offer and to whom; rules about how much to charge for those services; rules
about how to handle service recipient requests; rules about hiring employees,
promoting them, firing them, reimbursing their travel expenses, and paid leave
rules; customer relationship management rules; web portal layout rules; salary
scales and overtime rules; opening hours rules; emergency behavior guidelines;
promotional campaign targeting rules; cross-selling rules, up-selling rules, meeting
conduct rules; document disposal recycling and security rules; and so forth. Busi-
ness rules are everywhere. Every bit of process, task, activity, or function, is
governed by rules.

Thus, the question is not why business rules, but rather, how business rules?
Currently, some of the business rules are implicit and thus poorly enforced; those
should minimally be written (formalized), if not enforced. Others are written and
not enforced. Others yet are poorly written and obscurely enforced. Some are even
written and should not — but that is a different story ©.

The business rule approach looks for ways to (1) write (elicit, communicate,
manage) the important business rules in a way that all stakeholders can understand,
and (2) enforce those business rules within the IT infrastructure in a way that
supports their traceability and facilitates their maintenance.

The business rules approach is no longer the exotic paradigm it was at the
turn of the century. Banks are doing it, insurance companies are doing it, phone
companies are doing it, retailers are doing it, manufactures are doing it, and
government agencies are doing it. This book is not about convincing you of
the merits of the business rules approach — it is about helping you adopt it
effectively.

xi



xii Preface
Why an Agile Business Rule Development Methodology

Business rule pioneers have long recognized that we need a distinct development
methodology for business rules, one that is different from traditional development
methodologies (see justification in Chap. 1). That much we know. But how about
agile?

Business rules embody functional requirements. The business rules approach
emphasizes the elicitation, analysis, documentation, and management of such
requirements. In fact, rule discovery, discussed in Chap. 4, borrows many techni-
ques from requirements engineering. Thus, “agile business rule development” may
sound like an oxymoron — how can an approach that puts so much emphasis on
requirements be agile?

True. Agility is not a defining characteristic of business rule development, except
perhaps for the rule maintenance phase, where IT agility is achieved through
separate authoring and deployment of business rules. To the contrary, most business
rule development methodologies put a heavy emphasis on up-front business mod-
eling and analysis. Further, many experts consider business rules within the broader
context of enterprise architecture, business—IT alignment, business process reengi-
neering and management, service-oriented everything, or some other intimidating
and long-drawn-out are-we-there-yet kind of IT/business transformation that
requires deliberate, strategic planning, an unshakeable faith in the outcome, a lot
of patience, and deep pockets — in short anything but agile.

That is exactly our point. Because agility is not a given with business rule
development, we need to engineer it within business rule development methodol-
ogies, and that is what agile business rule development (ABRD) is about. If we
think of a methodology as a pentad of processes, deliverables, roles, techniques,
and best practices, ABRD differs from other business rule methodologies mainly
along the processes and best practices dimensions and, to a lesser extent, on the
emphasis (or lack thereof) we put on some of the deliverables. Indeed, ABRD
borrows many of the business rule—specific techniques and deliverables from other,
rule development methodologies, including Barbara von Halle’s STEP methodology
(see von Halle 2002). The agility of ABRD, on the other hand, is borrowed from
agile methodologies and development principles such as OpenUp, and test-
driven development. In particular, ABRD is (1) incremental, (2) iterative, and (3)
test-driven. Rather than spending weeks and months discovering and analyzing rules
for a complete business function, ABRD puts the emphasis on producing executable,
tested — though partial — rulesets since the first few weeks of a project, and strives to
do that without jeopardizing the quality, perennity, and foresight of the end result.

Our experience in the field shows that ABRD is valuable, feasible, effective, and
perfectible! We more than welcome your feedback on the customization and use of
ABRD, through personal communication or via the public companion Web site we
have set up for the book (http://www.agilebrdevelopment.com) to share comments,
criticisms, experiences, information, and insights!



Preface xiii

Why This Book

While we think that the ABRD methodology is a story worth telling, it alone does
not justify writing — or reading — a book!
Successful adoption of the business rules approach requires four ingredients:

1. Foundations, to understand what business rules are (and are not), why you
should use the business rules approach, and what it can do for you.

2. Methodology, to understand how to apply the business rules approach, from a
process point of view, to your business.

3. Architecture, to understand how rule automation, i.e., how the separate packag-
ing, deployment, and execution of business rules impacts your application.

4. Implementation, to actually deliver the technical solution within the context of a
particular business rule management system (BRMS).

We have long felt that the available business rules literature did not address these
four ingredients in an integrated way. There are a number of excellent foundational
books — most of them are cited in this book — including Ron Ross’s Principles of the
Business Rules Approach (Addison Wesley, 2003) and Tony Morgan’s Business
Rules and Information Systems: Aligning IT with Business Goals (Addison Wesley,
2002). While these books present some business rule-related techniques — some of
which are used in this book — they do not provide a step-by-step methodology and do
not delve far enough into architecture, let alone implementation. On the methodol-
ogy front, a number of authors have done a great job, including Barbara von Halle,
from whom we gratefully borrow many of the techniques and deliverables of her
STEP methodology (see Business Rules Applied: Building Better Systems Using the
Business Rules Approach, John Wiley & Sons, 2001). However, the book did not
(could not) focus on architecture or implementation. James Taylor and Neil Raden’s
Smart (Enough) Systems: How to Deliver Competitive Advance by Automating the
Hidden Decisions in Your Business (Prentice-Hall, 2007) focused on how business
rules are part of an overall approach to managing and automating decisions but only
touched on methodology and the software development life cycle.

From the tool end of the spectrum, we have a number of great books with
practical and immediately applicable know-how around specific — typically open-
source — rule engines (e.g., JESS) and budding business rule management systems
(BRMSs, e.g., IBOSS Drools); however, many such books are definitely short on
methodology (not their focus), short on architecture, and say little about rule
management, and governance issues and functionalities.

Hence, the idea of writing this book, which covers all four aspects in significant
detail: the foundations, in Chaps. 1, 2, and 6; methodology, in Chaps. 3,4, 5, and 16;
architecture and design, in Chaps. 7,9, 12, and 14; and implementation in Chaps. 8,
10, 11, 13, 15, and 17. We use an insurance case study that deals with claim
processing. We highlight the major issues in the book text and provide excerpts
from the various deliverables. The full versions of the deliverables are available
through the companion web portal http://www.agilebrddevelopment.com.



Xiv Preface

Why JRules

First of all, let us reiterate why we think going to implementation is important.
Implementation shows how some design solutions and patterns are operationalized
within the context of a particular technology. This not only helps the readers to
implement the solutions within the chosen technology, but it also helps them in
adapting/adopting the solutions to other technologies. The Gang of Four patterns
book would not have been the same without the C++ and Smalltalk examples, and
that, whether you are implementing in C++, Smalltalk, Java, or C#.

Having decided to go all the way to implementation, we had to pick a business rule
management system . . . or two . . . or more. If we were to pick one, it had to be JRules,
for several reasons. First of all, it is the one business rule management system
(BRMS) that we know best: we have a cumulative experience of 25 years, going
through several generations of JRules, and have witnessed major shifts in the industry,
in terms of architecture and functionalities. JRules also happens to be a market leader
and a mature product, both in terms of deployment architecture and rule management
functionality. Our biases notwithstanding, we believe that JRules benefited from great
product management, often anticipating and leading market trends.

If we were to pick a second BRMS, which one would it be? Our choice would
probably go to JBoss DROOLS, the leading BRMS in open-source tools, both in
terms of user community and in terms of entry cost. Including DROOLS would
have significantly lengthened this book (another 200 pages) — and the time to write
it. And besides, if we pick two, why not pick a third BRMS?

Throughout this book, we strove to identify and separate product/vendor-
independent issues, from product-specific features and limitations. This is certainly
true for the methodology part, where the contents and semantics of the various work
products and deliverables are the same, regardless of the technology. It is also
true for rule authoring (a constraint is a constraint, regardless of which BRMS you
use), for rule integration (embed rule engines or implement rule execution as a
service), for rule testing (unit testing, test scenarios, regression testing, performance
tuning, etc.), and for rule governance (rule life cycle, change management, etc.).
Out of 18 chapters, only a third (6) are JRules specific.

What happens now as JRules evolves? There are three levels of evolution: (1)
features, (2) API, and (3) architecture. Features evolve constantly, as menu actions
are added here and others are removed from there. That is inevitable, and of no
consequence to us: the JRules-specific parts of the book are not a product tutorial,
anyway; they simply show how to implement some general solution patterns with
JRules. As for changes to the API, they seldom break old code. The ones that are not
related to architecture often consist of limited scope refactorings. With the excep-
tion of Decision Validation Services, whose packaging is fairly recent,’ the APIs
referred to in this book (for ruleset packaging, deployment, execution, performance

"By contrast, the core functionality underlying DVS is fairly mature.



Preface XV

tuning, execution server integration, and rule governance) are fairly mature and
stable. Changes to the architecture can be more problematic to the shelf life of the
material in this book. However, the current architecture uses proven state-of-the-art
technologies that are beyond the turbulence of the first years. The portal http://www.
agilebrdevelopment.com will maintain information about consequential product
updates and will update our operationalization of solution patterns accordingly.

How to Read This Book

This book consists of 18 chapters, organized in eight parts:

Part I, “Introduction,” introduces the business rules approach (Chap. 1) and
provides example application areas for business rules (Chap. 2).

Part II, “Methodology,” focuses on methodology. The agile business rule devel-
opment (ABRD) methodology is presented in Chap. 3. The rule harvesting cycle is
introduced in Chap. 4, where we talk about rule discovery and analysis, and the
prototyping cycle (phase) is discussed in Chap. 5.

Part IT1, “Foundations,” covers the basics/main ingredients. Chapter 6 introduces
rule engine technology, by going over its history, and explains the inner workings of
rule engines, in general, and the JRules rule engine, in particular. Chapter 7
explores the design space for business rule applications and for rule management
in the early phases of the rule life cycle. Chapter 8 introduces the JRules BRMS.

Part IV, “Rule Authoring,” deals with rule authoring. Chapter 9 explores rule
authoring design issues in a technology/vendor-independent way. Chapter 10 dis-
cusses JRules artifacts and functionalities for setting up the rule development
infrastructure (project structure, business object model) and proposes best practices
for it. Chapter 11 discusses rule authoring per se, where we introduce the JRules
rule languages and artifacts, and rule execution orchestration.

Part V, “Rule Deployment,” deals with ruleset deployment and execution;
Chap. 12 discusses deployment and execution issues, in general, whereas
Chap. 13 explores deployment and execution options in JRules.

Part VI, “Rule Testing,” deals with testing. Chapter 14 discusses rule testing and
validation issues, in general, whereas Chap. 15 explores JRules functionality for
rule testing, tracing, and performance monitoring.

Part VII, “Rule Governance,” deals with rule governance. Chapter 16 introduces
rule governance and discusses the main process and design issues. Chapter 17
explores JRules support for rule governance.

Part VIII, “Epilogue,” concludes this book with a short epilogue.

Clearly, by choosing to address foundations, methodology, architecture, and
implementation, this book caters to five different audiences:

e Project managers will find a pragmatic, proven methodology for delivering and
maintaining business rule applications.



Xvi Preface

® Business analysts will find a methodology that they can use for rule discovery
and analysis, and a number of guidelines and best practices for rule authoring,
and for structuring rules during development.

* Rule authors will find a number of guidelines and best practices for rule author-
ing, in general, and detailed explanations about rule artifacts and rule authoring
languages in JRules.

e Application and software architects will find an exploration of the design space
for business rule applications, and a number or proven architectural and design
patterns, in general, and for the case of JRules.

e Developers will find practical design and coding guidelines for implementing
design choices, in general, and using JRules.

Incidentally, CTOs and product/business line managers will also find some value
in this book; thanks to our explanation of the business rules approach, to the
example application areas, and to a discussion of rule governance issues, but they
are probably better off with other foundational books such as those mentioned
earlier.

The following table shows reading paths for the different audiences:

Target audience Should-read chapters/parts Optional
chapters
Project manager Parts I and II: Chaps. 1-5, Chaps. 8, 16, and 18 Chaps. 7
and 14
Application architect Parts I and II: Chaps. 1-5, Chaps. 8, 12, 14, 16, and 18
Software architect Part I: Chaps. 1-2, Chap. 3; Part III: Chaps. 6-8; Chaps. 4
Part V: Chaps. 12—-13; Part VI: Chaps. 14-15; Part VII: and 5
Chaps. 16-17); and Part VIII: Chap. 18
Business analyst Part I: Chaps. 1-2, Chaps. 3, 4, 8,9, 14, 16, and 18 Chap. 7
Rule author Part I: Chaps. 1-2, Chaps. 3, 8; Part IV: Chaps. 9-11,
Chap. 16; Part VIII: Chap. 18
Developer Part I: Chaps. 1-2, Chaps. 3 and 5; Part III: Chaps. 6-8,

Chap. 10; Part V: Chaps. 12-13; Part VI: Chaps. 14-15;
Part VII: Chaps. 16-17; and Part VIII: Chap. 18




Acknowledgments

This book has been an on-and-off project for many years. Vilas Tulachan, an
independent J2EE consultant and author, and a JRules consultant and trainer, has
revived an earlier incarnation of this book project, which, while it did not material-
ize in its earlier form, kept us talking about it above the noise level, until a concrete
book proposal was submitted to Ralf Gerstner, our indefatigable Springer editor, in
the fall of 2007.

We wish to thank Ralf for his legendary patience with us through many (self-
imposed) missed time targets. Thanks to ABRD, we are much better at delivering
business rule solutions than we have been at delivering this book!

ABRD is the open-source descendant of the proprietary ILOG ISIS (ILOG
Solution Implementation Standard) methodology. Our thanks to the members of
the ISIS team, namely, Pierre Berlandier, who has written extensively about rule
governance, and Jean Pommier, who supported the development of ABRD, its open
publication — and the writing of this book!

Our sincerest thanks go to Tonya Teyssier, a conscientious, patient, and gener-
ous JRules curriculum developer from IBM WebSphere Education, who sacrificed
many evenings and weekends to help us write — and think — clearly the first chapters
of the book. She has become a master of euphemisms in “constructively criticizing”
some of the earlier drafts.

Eric Charpentier, a JRules consultant extraordinaire, who excels at everything he
does, provided us with very valuable and timely feedback on all the chapters of the
book. He certainly helped us a great deal in improving the organization and
pedagogy of many chapters of the book. Eric blogs about topics ranging from
scorecards to rule governance (see http://www.primatek.ca/blog).

James Taylor, a leading authority on decision management, including business
rules, and analytics, and an independent consultant, speaker, and author, volun-
teered to read a complete draft of the book, and provided us with valuable, timely,
concise, to the point (and witty) feedback, James-style! He blogs extensively about
decision management (check JT on EDM, at http://jtonedm.com/), and has
authored, with Neil Raden, Smart Enough Systems: How to Deliver Competitive

Xvii



XVviii Acknowledgments

Advantage by Automating Hidden Decisions (Prentice-Hall, 2007), which is be-
coming a classic on decision management.

We both wish to thank our respective families who, like families of all authors,
have to put up with absentee — or absent-minded — father/partner for a never-ending
book project. Are we there yet? Yes, we are . . . till the next book ©.

December 2010 Hafedh Mili and Jérome Boyer



Contents

Part I Introduction

1 Introduction to Business Rules .........................ooL. 3

1.1 What Are Business Rules? ... 3

1.1.1 Business Rules Are About the Business ........................ 7

1.1.2 Business Rules Concern Both the Structure

and the Behavior of the Business ....................oooooi.t. 7

1.2 Motivations for the Business Rules Approach ........................ 8
1.3 How Do Business Rule Applications Differ from Traditional

Business Applications? ............oiiiiiiiiii e 13

1.4 Why Do We Need a New Methodology? ...........cccooviiiiieenn. 16

1.5 Summary and Conclusions .............cooiviiiiiiiiiiiiinieiieennnn. 24

1.6 Further Reading ...t 25

2 Business Rules in Practice ......................... 27

2.1 Introduction .........cooiuuuiiiiiiii it 27

2.2 Engineering Applications ............coveiiiiiiiiiiiiiiiineeiiiaaeennn. 28

2.2.1 Alarm Filtering and Correlation .................ccccoiunnn... 29

2.2.2 Train Cars Preventive Maintenance ........................... 31

2.3 Financial Services ...........oiiiiiiiiiiiiiiiii i 33

2.3.1 Mortgage Underwriting ...........ccceiiiiiiiiiiinninnnnnn... 33

2.3.2 Tax Reporting and Withholding ............................... 36

2.4 TNSUTANCE ettt ettt ettt et e et ee e eiaeeeens 38

2.4.1 Policy Underwriting ...........ceeeeeiuiiiinneeeeieeninnnnnn... 38

2.4.2 Claim Processing ..........uiiiiieiiiiiiiiinee ... 41

2.5 ConClUSION ...ttt 43

2.6 Further Reading ............ ..o 45

XixX



XX Contents

Part I Methodology

3 Agile Business Rule Development .......................coiiiiiiis. 49
3.1 INtroduction ......eeiieiii e 49
3.2 Core Principles of the ABRD Methodology .....................c... 50

3.2.1 ACycle Approach .........ccoiiiiiiiiiiiiii i, 52
3.2.2 Cycle 1: Harvesting .........ooveeeeiiiiiiiinieieeiiiiannn.. 53
3.2.3 Cycle 2: Prototyping .......uoeeeeeeeiiiiiiineeeeiiiiiiinaannn. 54
324 Cycle 3: Building .......ovviiiiiiiiiiin i 55
3.2.5 Cycle 4: Integrating ........ccouveeeinieeeinneeeunnneeennneennns 56
3.2.6 Cycle 5: Enhancing .........cooiviiiiiniiiiiniiiiniiineeann, 56
3.3 Eclipse Process Framework .............. ... 57
331 OpenUp oot 59
3.3.2 ABRD Structure .........ouuiiiiiiiiiiiiiiie e, 59
333 ABRDROIES ..ottt 61
3.3.4 ABRD Work Products ............ccoiiiiiiiiiiiiiiiiiiin... 64
3.4 Usage Scenario for ABRD ... 65
3.5 Summary and Conclusions ..........c..ooveeiiiiiiiiiiiiiiinieininnn. 70
3.6 Further Reading ..ottt 71

4 Rule Harvesting ............ooiiiiiiiiiiiiiiiii i i, 73
4.1 IntroducCtion .........ceoiuuuiiiiiitiiiiii e 73
4.2 Rule DiSCOVETY  oovuittitt it 74

4.2.1 Classification of Business Rules .....................oocoil 75
4.2.2 Discovery ACHVITIES . ....oeeettituuiineeeeeiiiiiiiaaeeeaaaans 80
4.3 Rule Discovery: Case Study ........ovviiiiiriiiineiiiiineeiineennn. 93
4.4 Rule ANalySiS ..ovvuneeiiieeeiie et i 102
4.4.1 Analyze Rule Descriptions and Fact Models ................. 102
4.4.2 Transforming Rules ..., 105
4.4.3 Building Test Scenarios .............c.ceeeeveeiieieeiieeeeee... 109
4.4.4 Verify Rules Against the Data Models ....................... 110
4.5 Case Study: Rule AnalysSisS ......ccoviviiiiiniiiiiniiiiineeniinnans 111
T TN 111010021 o 112
4.7 Further Reading ..........ooooiuiiiiiiiii it 112

5 Prototyping and Design ......... ... 115
5.1 Introduction .......oeeiiimiiiiii e 115
5.2 Determine Rule Implementation ...............ccooovviiiiiiiinn... 117

5.2.1 Implementing Rules Within the Data Model ................. 118
5.2.2 Implementing Rules Within Application Code .............. 120
5.2.3 Implementing Rules in GUI ...t 121
5.2.4 Implementing Rules in Process Maps ...................oooee 123

5.2.5 Implementing Rules in a Rule Engine ....................... 125



Contents XX1
5.3 Build Models ......oooiiiiiiiiiiii e 127
5.3.1 JavaModel ... 127
5.3.2 XML Schema .....cooiiiiiiiiiii i 128
5.3.3 Synchronize with the Data Models ........................... 129
5.4 Building Structures for Rule Development and Execution ........ 130
5.4.1 Rule Project Structure ...........ccovviiiiiiiiiiineiinnneennn. 130
5.4.2 Defining Rule Meta Data ..............ccooiviiiiiiiiiina., 132
5.4.3 Orchestrating Rule Execution ...............ccoooooiiiiin, 134
5.5 Prototyping Rules .........ooiiiiiiiiiiiiiiii it 136
5.5.1 Purpose of Rule Prototyping ............ccoovvviiiiiiiiiina.n. 136
5.5.2 Some Useful Rule Patterns .................coociiiiiiiii ... 137
5.6 Case StUAY  «ovuniiitiet e 140
5.7 Communicate Back to Business ...............ccooiiiiiiiiiiii 142
5.8 SUMMALY .ttt 142
5.9 Further Reading ............co i 143
Part IIl Foundations
6 Rule Engine Technology ................ ... ... 147
6.1 INntroduction ..........oeiuuuuiiiii it 147
6.2 The History of Rule-Based Programming .......................... 148
6.3 Rule Engines .........coouuiiiiiiiiiiiii i 151
6.3.1 The Basics of Production Systems ...................ooo..... 151
6.3.2 The JRules Rule Engine .................oiiiiiiiiii.... 155
6.4 Engine Execution Algorithms ... 161
6.4.1 The RETE Algorithm .........ccooiiiiiiiiiiiiiiniiiinnannn. 161
6.4.2 The Sequential Algorithm ..............cccooiiiiiiiiinna... 168
6.4.3 The Fastpath Algorithm ..............ccoiiiiiiiiiiiiiinaa., 172
6.5 Summary and Conclusions .........c..oooiiiiiiiiiiiiiiiii i 173
6.6 Further Reading .............o oo 174
7 Issues in Designing Business Rule Applications ...................... 177
7.1 Introduction .........ceouuuuiieee ittt 177
7.2 Design Dimensions for Rule Management ......................... 178
7.2.1 Early Versus Late BRMS Tools ..............ccoooiiiiii.t. 178
7.2.2 Requirements for an Early BRMS Tool ...................... 179
7.2.3 ConcluSion ......ccoiiiiiiniiiii it 184
7.3 Design Options for a Business Rule Application .................. 184
7.3.1 Standalone Applications ..............cceiiviiiiiniiiiinneann. 186
7.3.2 Synchronous Client—Server Architecture ..................... 187
7.3.3 Message-Oriented Architectures .................ooovinnnn. 189
7.3.4 Service-Oriented Architectures .................cccceiinn... 191
7.4 Designing the Integration of Rules into Applications .............. 194

7.4.1 Rule Engine Deployment Options ............c.covvevvnnnn.. 196



Xxii

9

Contents
7.4.2 Architecture of the Calling Application ...................... 198
7.4.3 Additional Requirements .................iiiiiiiiiiiiiiiit 202
TA4 SUMMATY ...ttt eeeees 203

7.5 Reengineering Existing Applications to Externalize
Business Rules ... 204
7.5.1 Reengineering the Application Layer ........................ 205
7.5.2 Reengineering the Business Layer ........................... 207
7.5.3 Reengineering the Data Layer ..........................oo. 209
7.6 Summary and DiSCuSSION ........ccoiiiiiiiniiiiiiiiiiniiaaa 211
7.7 Further Reading ..........ooooiiiiiiiiiiiiiii it 212
IBM WebSphere ILOG JRules ..., 215
8.1 INtroducCtion ..........oiiiiniii i 215
8.2 Business Rule Management System Main Components ........... 216
8.2.1 The Concept of Operations ...........c.c..coovveeeieeeennnnnn... 218
8.2.2 Rule Artifacts .........coooiiiiiiiiiiiiiiiiii 220
8.3 Rule Studio .....cooiiiiii 221
8.3.1 Designing the Rule Project Structure ......................... 223
8.3.2 Designing the Business Rule Model .......................... 226
8.3.3 Designing the Business Object Model ....................... 228
8.3.4 Orchestrate Rule Execution .....................a 231
8.3.5 Ruleset Testing and Deployment ..................oonn..n. 231
8.4 Rule Team Server .............coooiiiiiiiiiiiiiiiiiiiiiiiii, 232
8.5 Rule Execution Server ..............ooooiiiiiiiiiiiiiiiiiiiiiinn.. 236
8.6 Rule Solutions for Office ..., 239
8.7 SUMMATY ..ttt ittt i iie e ie e eeaens 241
8.8 Further Reading ..........coiviiiiiiiiiiii i 242

Part IV Rule Authoring

Issues in Rule Authoring ......... ... . i 245
9.1 INtroduCtiOn .........uuuuiiiiiiiiii e 245
9.2 Rule Languages ........c.uvveiiiiriiiiineiiiineeiineeiiaeeeiiaaaes 246
9.2.1 The Domain of Discourse: Business Object Models ......... 247
9.2.2 Flavors of Rule Authoring Languages ....................... 251
9.3 Rule Coding Strategies and Patterns ....................oooieae. 257
9.3.1 Coding Constraints and Guidelines ........................... 258
9.3.2 Coding Computations and Inferences ........................ 264
9.3.3 Coding Action Enablers ..............ccoiiiiiiiiiiiiiiin, 265
9.3.4 Coding Risk-Assessment Rules .............................. 265
9.3.5 Encoding Business Data Tables .....................o.oo.... 267
9.4 Organizing Rules During Development ............................ 269
9.4.1 Rule Structures ...........c.eeveiiiiiiiiiiiiiiiiiiiiiiinnnnnnnn. 270

9.4.2 Design Drivers for an Effective Organization of Rules ...... 271



Contents

10

11

9.4.3 Best Practices ............ooiiiiiiiiiiiiiii
9.5 Summary and DiSCUuSSION ..........cceviiiiiiiiiiiiiiiiiiiiiiiiinn..
9.6 Further Reading ..o

Rule Authoring Infrastructure in JRules ......................... ...

10.1 IntroduCtion .......cceounuuiiieei ittt i

10.2 Rule Projects ......oieiniiii i

10.2.1 The Structure of Rule Projects in Rule Studio ............

10.2.2 Rule Project Dependencies ..............ccoovvviinneeennn..
10.2.3 Synchronizing Projects Between Rule Studio

and Rule Team Server ...............cccoiiiiiiiiiiiiiii.

10.2.4 Managing Multiple Users ...............oooiiiiiiinnn..

10.3 The Business Object Model ............cooiiiiiiiiiiiiiiiiii.

10.3.1 The Basics of the BOM ..........cccooiiiiiiiiiiinna.

10.3.2 Verbalization ...........ccceviiiiiiiiiiiiiiiiiiiiiiiinan...

10.3.3 BOM to XOM Mapping .......cceueeeirineeeinneeennnnnnns

10.3.4 Refactoring ......oveeinniiiiiii i

10.3.5 Enhancing the Rule Authoring Experience ...............

10.4 Best Practices ......oooiuuiiiieeeiiitiiii i

10.4.1 Best Practices for Organizing Rule Projects ..............

10.4.2 Best Practices for the Design of the BOM ................

10.5 DISCUSSION .ttt

10.6 Further Reading .........ccoouiiiiiiiiii i

Rule Authoring in JRules ...
11.1 Introduction .........cc.oiiiiiiii i it
11.2 Rule Artifacts ......coiuiiiiiiii it
11.2.1 IRL and Technical Rules ........................ooeees.
11.2.2 BAL and Action Rules .............cciiiiiiiiiiiin....
11.2.3 Decision Tables ..........cooiiiiiiiiiiiiiiiiiiiiiiaenn.n.
11.2.4 Decision Trees ........ooouiiiiiiiiiii i,
11.2.5 Score Cards .......oiiniiiiiiii i
11.2.6 The Business Rules Language Development
Framework ...
11.3 Rule Execution Orchestration ...............ccooiiiiiiiiiinain....
11.3.1 Ruleset Parameters and Variables .........................
11.3.2 Rule Flows: Basics .......c.coiiiiiiiiiiiiiiiiiiaainannn.
11.3.3 Rule Flows: Advanced Concepts ............cccceeuuunn....
11.4 Best PractiCes .......oouiiiiiiiiiiiii i i
11.4.1 Best Practice 1: Design the Signature First ...............
11.4.2 Best Practice 2: Rulesets and Ruleflows ..................
11.4.3 Best Practice 3: My Kingdom for an Algorithm ..........
11.4.4 Best Practice 4: Do You Really Need a Custom
Language? ...t



XXiv Contents

11.5 DISCUSSION ¢ttt ettt et ettt e e e et e s 386
11.6 Further Reading ............ooiiiiiiiiii i 387

Part V Rule Deployment

12 Issuesin Deploying Rules ................. i, 391
12,1 INtroduction ..........coouuueiieee it 391
12.2 Integration and Deployment Considerations ...................... 392

12.2.1 Transaction SUPPOIT .....veeruieeiiiieeeiiieeeriineennnnas 392
12.2.2 Scalability ... 394
12.2.3 Datd ACCESS .ttt ettt ettt eeannns 397
12.2.4 Ruleset Hot Deployment .................coooviiiiiiin.. 400
12.3 Decision Service Integration ................ccoiiiiiiiiiiiiiiiin. 402
12.3.1 Service Implementation ..............ooiiiiiiiiiiiiinnn... 404
12.3.2 Messaging Deployment .............coeviiviiiiiniinnnnn.s 405
12.3.3 Service Component Architecture ....................c...... 406
12.3.4 Embedding Rule Engines Using Low-Level Rule
Engine APL: JSRO4 ... i 408
12.4 Ruleset Deployment ...........oooouiiiiiiiiiiiiiieiiiin e 413
12.4.1 Building the Ruleset .............ccocoiiiiiiiiiiiiinna., 414
12.4.2 Loading the Ruleset in Execution Server ................. 416
12.5 SUMMATY oottt ettt ettt 417
12.6 Further Reading .......... ... 418

13 Deploying with JRules ..................... .. 419
13.1 INtroduction ..........c..eeuuiiiiiiiiiiiiii e, 420
13.2 Reminder on the Concepts of Operation .................cevuunn.. 420
13.3 Integration with JRules Engine ...............ccooiiiiiiiniiiin.. 424

13.3.1 Deploying with the Rule Engine APT ..................... 424
13.3.2 JSR94: JRules Specifics .........c.cevviiiiiiiiiiiiiiiien... 426
13.3.3 Monitoring and Tracing Rule Execution .................. 427
13.3.4 Resource Pooling ...........ccoovviiiiiiiiiiniiiiinnnnnnn.. 427
13.4 Deploying with the Rule Execution Server ....................... 428
13.4.1 Using RES Session APT ..., 431
13.4.2 JMS Deployment ............cooiiiiiiiiiiiiiiiiiiiiinnn.. 433
13.4.3 SCA COmMPONENt ........veeuunieimuineiiieeeeineennnnens 434
13.4.4 Monitoring and Decision Warehouse ..................... 435
13.4.5 Transparent Decision Service ...............ccviveennnn.. 437
13.5 Rule Team Server ...........coiiiiiiiiiiiiiiiiiiiiiiiiiiiiinaeeeees 441
13.5.1 Physical Deployment ............cccoviiiiiiiiiiiiiiinnn. 441
13.5.2 QUEIIES ..ottt ettt e 442
13.6 SUMMATY . ..uttt et eeeas 443

13.7 Further Reading ..........ooiiiiiiiiiiiii i 444



Contents

XXV
Part VI Rule Testing
14 Issues with Rule Testing and Performance ........................... 447
14.1 IntrodUCtion .......ccooiiiiniiie et 448
14.2 Rule TeStING ...ooviiiiiiiiiiie et 448
14.2.1 Unit TeSting .....ooouuuiiiiiiiiiiiiiiii e 449
14.2.2 Component Testing ..........cceeeiuuiiiiieeiieinnnnnnnn... 453
14.2.3 Functional Testing ..........ccoeeiiiiiiiiiiiiiieinnnnnnn... 454
14.2.4 Regression Testing .........ovviiiiineiiiineeiiineennnnnnns 456
14.3 Performance Testing ........cc.ovviiiiiiiiiiiniiiiineeiiineeennnn. 456
14.3.1 Multiple Performance Dimensions ........................ 458
14.3.2 Patterns of Data Materialization ..................c.oo.. 460
14.3.3 Accessing Data from Within the Rules ................... 460
14.3.4 Pattern Matching Performance ............................ 461
14.3.5 Some Guidelines on Keywords .................oonit 462
14.4 Continuous TeStNG ....c.uureiitneeiin et iieeeeannn. 463
14.5 Semantic Consistency Checking ....................iiiiin 465
14.6 Tracing and Logging Rule Applications .................ccooinee 467
DN 11431 10 F: Y 2 468
14.8 Further Reading ...........oooiiiiiiiiiiii i 469
15 Rule Testing with JRules ... 471
15.1 IntroduCtion .........ceeeuniiiinine et 472
15.1.1 Semantic Consistency Checking .......................... 472
15.1.2 Semantic QUETIES .........coiiuiiiiiiiieiiieiiieiiiaaiaan. 474
15.1.3 Rule COoVErage ........coviiiiieeeiiineeiiineeeiianennnnnnns 475
15.2 Rule TeSting ...oveiunnetiiiiee et iee e eeaans 476
15.2.1 Unit TSt .ooiiiiiiiiie e 476
15.2.2 Decision Validation Service ................coovvunnnnn... 477
15.2.3 DVS CuStomization ...........cceeeuuiiiieeeeeeennnnnnn... 488
15.3 Performance Tuning ..........ccoeuuiiiiiiineeiiineeeiineeennannnns 492
15.3.1 Ruleset Parsing .........ooeeuiviiiiiniiiiinneeiiineeennnnns 492
15.3.2 Execution Algorithms ............cccoviiiiiiiiiiiniiin... 494
15.3.3 Rule Execution Improvement ............................. 496
15.4 SUMMATIY . .oooe e 499
15.5 Further Reading ..........cccooiiiiiiiiiiiiiiiiiiiiiiiii, 499
Part VII Rule Governance
16 Rule GOVErnance ................cooviiiiiiiiiiinieeteiiiiiaaaeeeeannns 503
16.1 INtroduction .........coouuuuiiii it 503
16.2 Need for GOVErnance .............c.eeeuuuiieeeeieeuuininnneeeeenns 504

16.2.1 IT and Business GOvVernance .................c.cceeeuevn.n. 504



XXVi Contents

16.2.2 How to Start Developing Rule Governance .............. 505

16.2.3 What Are the Main Processes in Rule Governance? ..... 506

16.3 Defining Rule GOVernance ............c...c.ooiveieeiiiiiiiineeeenns 506

16.3.1 Create the Business Rules Management Group ........... 507

16.3.2 Identify Stakeholders .............cccoviiiiiiiiiiiniiinnn.. 508

16.3.3 Ruleset OwWning Groups .........c.ovveiunneeeinnneeennnnns 512

16.3.4 Rule Life Cycle .........oooiiiiiiiiiiiii i, 513

16.4 Rule Change Process ...........oooiuiiiiiiiiiiiiiiiiiiiiniiiines 515

16.4.1 Scope of Change .........ccooviiiiiiiiiiiniiiiiieeianns 517

16.4.2 Rule Authoring Subprocess ...........cccovveiiiiviiinnnn.s 518

16.4.3 Rule Testing SUbProCess ........c..eveeiiieeeinineeennnnns 519

16.4.4 Rule Deployment Subprocess ..............ccccovvunnn... 519

16.5 SUMMATY ..ottt e es 520

16.6 Further Reading ..o 521

17 Rule Governance with JRules ... 523

17.1 INtrodUCtion .......uueeinee ettt e ees 523

17.2 JRules and Rule Governance .............c...ooeiiiiiiiiiniennnnne. 524

17.2.1 Defining Roles in Rule Team Server ...................... 524

17.2.2 Rule Life Cycle ......oiiiiiiiiiiiii i 526

17.2.3 Ruleset Baseline and Versioning .......................... 529

17.2.4 Deeper Changes .........eeeeieeeiiineeiiineeeiiineennnnnns 532

17.3 The Rule Change Management Process .............c.covevuunn.. 534

17.3.1 Process Implementation ....................cciiiinna... 535

17.3.2 RTS and Workflow Integration ........................... 538

17.3.3 Getting Rule Status Modification Event from RTS ....... 539

17.3.4 Getting the List of Rules from RTS ....................... 540

174 SUMMATY ..ottt ettt et eaanns 542

17.5 Further Reading .........ooooiiiiiiiiii i 542
Part VIII Epilogue

18 Epilogue ... 545

18.1 It Is About People, Process, and Technology ..................... 545

18.2 Success — and Failure — Factors ..............coocoiiiiiiiiiit 546

18.3 Where to from Here ....... ... 548

Bibliography ...t 551






Part I
Introduction



Chapter 1

Introduction to Business Rules

Target audience

All

In this chapter you learn

Key points

What are business rules

What are the motivations behind the business rules approach

In what ways do business applications with business rules differ
from traditional applications

Why do we need a different development methodology

A business rule is a statement that defines or constrains some
aspect of the business. Business rules have a business motivation
and an enforcement regime.

The business rules approach enables, (a) a better alignment
between information systems and business, and (b) a greater
business agility.

Business rule applications externalize business logic and sepa-
rate it from the underlying computational infrastructure where it
can be managed by business.

Business rule development differs from traditional application
development in many ways: (1) it is business requirements-centric,
(2) enterprise-level ownership — and management — of business
logic, and (3) business-led implementation and maintenance of
business logic.

1.1 What Are Business Rules?

An on-line store might not accept a next-day delivery order if the order is
received after 3:00 p.m.

J. Boyer and H. Mili, Agile Business Rule Development, 3
DOI 10.1007/978-3-642-19041-4_1, © Springer-Verlag Berlin Heidelberg 2011



4 1 Introduction to Business Rules

My bank will not lend me money if my debt-over-income ratio' exceeds 37%

Section 152 of the US tax code defines a dependent as a person who is either a
“qualifying child” or a “qualifying relative.” A taxpayer’s qualifying child for
any taxable year is a person who:

e Isthe taxpayer’s child, sibling, step-sibling, or a descendant of any such relative

e Has the same principal residence as the taxpayer for at least half the taxable year

e Is younger than 19 at the end of the taxable year, or is a student who is
younger than 24 at the close of the year, or is a student with disability —
regardless of age

e Has provided for no more than half of her or his support for the taxable year

A qualifying relative, on the other hand.

My health insurance does not reimburse medical expenses incurred abroad if the
claim is presented more than 1 year after the expenses had been incurred, or if
the claimant has spent more than 182 days abroad within the past year.

Passengers with frequent flyer status Silver, Gold, Platinum, Super Platinum,
and Super Elite Platinum may board at their leisure.

My car insurance does not cover drivers who have been convicted of driving
while intoxicated (DWI) within the past 2 years; they are referred to a public no-
fault insurance.

Fannie Mae will only underwrite mortgages on properties that have hazards
insurance that protects against loss or damage from fire and other hazards
covered by the standard extended coverage endorsement. The policy should
provide for claims to be settled on a replacement cost basis. The amount of
coverage should at least equal the minimum of:

e 100% of the insurable value of the improvements®

¢ The principal balance of the mortgage (as long as it exceeds the minimum
amount — typically 80% — required to compensate for damage or loss on a
replacement cost basis)

'The debt over income ratio is the ratio between total (monthly or yearly) debt obligations over
gross income for the same period (monthly or yearly).

2For example, if a property is worth $200,000, $80,000 for land and $120,000 for the building, then
the value of the improvements is $120,000.



1.1 What Are Business Rules? 5

Periodic interest payments made to the accounts of foreign entities who filed
IRSform W-9 are subject to 28% backup withholding and need to be reported to
the IRS in form 1099, with the box number 3 checked.

Citizens of NAFTA countries who travel into the USA by road need only show
proof of citizenship.’

When mailing out monthly account statements, include marketing materials that
match the customer profile.

Plane tickets purchased with Amex/Visa Gold/<insert your favorite card here>
have built-in trip cancellation insurance.

If two alarms are issued by the same network node within 30 s of each other with
the same alarm code, then group them under the same umbrella alarm.

If a wheel shows two consecutive temperature readings higher than 558°, then
check for sticking brakes.

These are just a sampling of the types of rules that we have come across in our
practice. Application areas include customer relationship management, marketing
campaigns, the mortgage industry (retailers, mortgage insurance, secondary mar-
ket), banking (credit cards, loans), car insurance, health insurance, loyalty pro-
grams, tax law, compliance, e-government, telecommunications, engineering,
transportation, manufacturing, etc.

So, what is a business rule? If we break down the term “business rule” we get a
rule of the business. Wordnet defines a rule as, among other things, “a principle or
condition that customarily governs behavior,” or “a prescribed guide for conduct or
action.” A rule of the business means that this principle or prescription is in the
business domain, that is, it is part of the requirements (the problem domain), as
opposed to a prescription dictated by a particular technological choice (the solution
domain).

Business rule authors have proposed a number of definitions for business rules.
Tony Morgan defines a business rule informally as “a compact statement about an
aspect of the business . . . It is a constraint in the sense that a business rule lays down

3NAFTA: North American Free Trade Agreement, binding Canada, Mexico, and the USA.



6 1 Introduction to Business Rules

what must or must not be the case” (Morgan 2002, p. 5). Ronald Ross defines a
business rule as “a directive intended to influence or guide business behavior” (Ross
2003, p. 3). Barbara von Halle would like us to think of business rules as “the set of
conditions that govern a business event so that it occurs in a way that is acceptable
to the business” (von Halle 2001, p. 28).

The Object Management Group (OMG) defines a rule as a “proposition that is a
claim of obligation or of necessity,” and a business rule as a rule that is under
business jurisdiction (OMG 2008). The Business Rules Group, which is an inde-
pendent non-commercial peer group of business rule specialists, has produced a
number of documents about the business rules approach, and has contributed to
OMG’s work on business process management and business rules. The Business
Rules Group considers business rules from two perspectives, the business perspec-
tive, and the information systems perspective, defined as follows:

¢ From the business perspective: “... a business rule is guidance that there is an
obligation concerning conduct, action, practice or procedure within a particular
activity or sphere. Two important characteristics of a business rule: (1) there
ought to be an explicit motivation for it, and (2) it should have an enforcement
regime stating what the consequences would be if the rule were broken” (BRG
2008).*

e From the information system perspective: . a business rule is a statement
that defines or constrains some aspect of the business. It is intended to assert
business structure, or to control or influence the behavior of the business” (BRG
2008).

13

This distinction between the two perspectives is needed to account for the fact
that a business process typically involves human actors and an information system,
and business rules guide both. From the information system perspective, the rules
talk about the data that is captured by the information system about the real world
entities involved in the business process such as customers, products, or transac-
tions. For example, in the insurance domain, a number of on-line quotation systems
have three outcomes. In addition to “accept” and “decline” responses for clear-cut
requests, borderline cases may receive a “manual referral” response so the request
can be reviewed by a human underwriter. The human underwriter operates under a
slightly different set of business rules from the ones automated in the information
system. Such business rules would typically be captured in underwriting manuals.

While the bulk of this book is about the information system perspective, the
early chapters address both perspectives.

Two characteristics of business rules stand out from the above definitions: (1)
business rules are about business, and (2) business rules concern both the structure
and the behavior of the business. We will elaborate these two characteristics further
below.

“The Business Rule Group web site: http://www.businessrulesgroup.org/defnbrg.shtml.



1.1 What Are Business Rules? 7

1.1.1 Business Rules Are About the Business

Indeed, in the examples given, there is a business motivation behind the rule. To
illustrate this point, consider our first rule about next-day delivery and the 3:00 p.m.
deadline. Why would an on-line store put in place such a restrictive rule, and risk
losing business as a consequence? A plausible justification could be that it may take
more than 4 h to, (a) find a free warehouse clerk to fulfill the order, and for the
assigned warehouse clerk to (b) locate the book in the warehouse, (c) prepare a
package for delivery, and (d) deliver the package to the nearest Federal Express or
UPS branch. Notice that the same rule would apply if the customer called by phone
to place the order. Similarly, the rule about rejecting drivers with recent DUI
convictions: the obvious business motivation is that such drivers present a high
risk of causing accidents, and would cost the insurance too much money.

Von Halle says that “business rules are the ultimate levers with which business
management is able to guide and control the business. In fact, the business’s rules
are the means by which an organization implements competitive strategy, promotes
policy, and complies with legal obligations” (von Halle 2006). The Business Rules
Group (BRG) has proposed a Business Motivation Model that attempts to formalize
the link between business rules and business objectives (BRG 2007); the OMG’s
Business Motivation Model Specification is based on (BRG 2007). Roughly
speaking, business rules are seen within the context of business plans: a business
plan includes ends (business objectives) and means to achieve the ends. Business
rules are part of the means that businesses deploy to achieve their goals (profitabil-
ity, market share, customer loyalty, etc.); we will say more about the business
motivation model in Chap. 4.

1.1.2 Business Rules Concern Both the Structure
and the Behavior of the Business

This distinction is evident in the information systems perspective of the business
rules group definition, and somewhat in the OMG definition, which distinguishes
between structural or definitional rules and operative or behavioral rules. Roughly
speaking, structural rules define the business information model. The statement ““a
sale record includes the buyer, the product, the quantity, the price, and any
applicable discount” is a structural business rule. We can think of it as the definition
of the Sale entity (or class). Similarly, the statement “an order can include one or
several line items, one per product, indicating number of units and price” is also a
structural business rule, which can be seen as defining the Order entity. A behav-
ioral rule, on the other hand, is about how the business reacts to business events.
Most of the example rules shown above are actually behavioral rules. The first rule
(3:00 p.m. deadline) is relevant to order entry. The debt-over-income ratio is
about loan application underwriting. The health insurance rule is relevant to the



8 1 Introduction to Business Rules

processing of claims. And so forth. Generally speaking, behavioral rules kick in
when something happens at the boundaries of the system. This distinction and
others are described in more detail in Chap. 4.

1.2 Motivations for the Business Rules Approach

Before we talk about the business rules approach, let us talk about the “nonbusiness
rules approach.”

The sample of rules shown above has, for the most part, been successfully
implemented in working information systems by people who have never heard of
the business rules approach. So what is the hoopla about the business rules
approach?

The next few real-life examples will illustrate three major issues that are
adequately addressed by the business rules approach. We will present the examples
first, and then identify the dominant issues:

e A company is in the natural gas business. It sells natural gas to public utilities. It
draw 8-9 figure contracts with these public utilities, whose prices depend on the
total volume (a certain volume of natural gas over the duration of the contract),
throughput (a certain volume per hour), options to request a 10% (or 15% or
20%) increase of throughput within 6 h to accommodate consumption peaks, the
possibility of storing the gas for low usage periods, etc. Beyond the raw volume
(x cubic tons of gas), each one of these “options” has an infrastructure cost — and
thus a price associated with it. The company’s top management looks at the
yearly numbers and figures two things: (1) given the volume that it sells, it
should be making more money, and (2) overall, its customers are having a good
deal, relative to the competition, and some customers have very good deals, but
neither the company nor its lucky customers know it. We need to capture those
pricing rules precisely so that (1) we can fine-tune the rules to make more money
and yet remain competitive and (2) we can tell customers, precisely, how good a
deal they are getting. As it turned out, those pricing rules walked out the door
every day between 4:00 and 7:00 p.m., got stuck in traffic on most days, and
called in sick some of the time — not to mention the occasional vacation. Not
only that, but they took on separate lives in separate spreadsheets on the contract
officers’ laptops.

e A US state manages a number of social benefits (welfare) programs for people
with disabilities, senior people, low-income people, single mothers, back-to-
school single mothers, back-to-work programs for long-term unemployed peo-
ple, food stamps, etc. Each one of these programs has eligibility guidelines, the
contours of which have been defined by the laws that created those programs.
Applications to the various programs are dispatched to “case workers” who
assess the eligibility of the applicants and determine the benefits level. Case workers
were overwhelmed, and their determinations were uncomfortably inconsistent.



1.2 Motivations for the Business Rules Approach 9

Managers asked a couple of questions: (1) exactly what rules were being
used, (2) how to ensure that those rules are used consistently, and (3) why
processing times for straightforward cases were the same as for complex
borderline cases.

These were but two of many examples of organizations that did not know
precisely the rules under which they were operating, and consequently, operated
under different — and often conflicting — sets of rules. Hence:

Issue 1: Organizations need to know which business rules they are using, and
whether they are using them consistently.

¢ A phone company’s core business is local phone service. The company was
getting in the long-distance service. The local public utility commission® wants
to ensure that phone companies with a monopoly on local phone service offer the
same quality of service between customers who use them for long-distance
service, and customers who use other carriers. Thus, “our” phone company has
to file a report every month that shows quality of service statistics for its long-
distance customers, and for the long-distance customers of other carriers.
Because heavy penalties are levied when statistics show that the company
gives preferential treatment to its long-distance customers,® an important part
of the report filed with the PUC is the method of calculation. And, in the case of
audit, our phone company has to be able to show that it has, indeed, used those
calculations to produce the report.

e The nth user acceptance testing postmortem meeting. The customer complaints:
“the system still does not do what it is supposed to.” Technical lead: “Perhaps
not, but it does what you told us to do.” The customer: “I never told you to
underwrite loans for customers with FICO score lower than 600.” Technical
lead: “You never told us the contrary either: you said underwriting decisions are
based on our risk assessment score, not on FICO score alone.” Customer: “yeah,
but isn’t the FICO score a big component of the risk assessment score.” Techni-
cal lead, getting tired with all this fuzziness: “Define big.” Customer: “Well, big
as in 80%, perhaps more?” Technical lead turns to developer, whispers some-
thing, developer opens Eclipse on his laptop, and starts looking frantically
through code, then his face illuminates: “well, we have it set at 90%.” Customer,
after doing calculations by hand, is adamant now: “Can’t be! Show me.”
Developer looks at technical lead for a cue, and technical lead responds:

°In the USA, Public Utility Commissions (PUCs) are statewide regulatory commissions with a
mandate to balance the needs of consumers and utilities (electricity, natural gas, water, telecom-
munications, etc.) to ensure safe and reliable utility service at reasonable, competitive rates.

SFor example, both Jane and Joe have their local service with our company — they have no choice —
but Jane chose our company for long-distance service, whereas Joe chose a competitor. If both
Jane and Joe make a service call, say to report a problem with the line, the PUC wants to know if
Joe’s calls are handled as diligently as Jane’s (how fast it takes customer service reps to get back to
Jane vs. Joe, how many calls it takes to resolve the issue, what is the elapsed time between opening
the case and closing it, etc.).



10 1 Introduction to Business Rules

“Show them the code!” The developer starts looking for a cable to connect his
laptop to the overhead projector. He does not find one, walks out of the room.
The project manager, who called the meeting, asks “do we have to do this now?
Because we have ...” The technical lead and customer answer emphatically:
“Yes!” The developer comes back with a cable, and puts up the method
addFactor from the prosaically named RAStrategyDataProxy
class on the screen:

public void addFactor (float v, HashMap<Interval,Float> penalties) {
Iterator<Interval> intervals = penalties.keys();
float pen = 0;
while (intervals.hasNext()) {
Interval next = intervals.next();
if (next.contains(v)) {
pen = (penalties.get (next)).floatValue();
break;

}
raScore = WEIGHT* raScore + (1-WEIGHT) *pen;

The technical lead is happy with how intimidating this must look to the
customer, and looks at her defiantly, as if taunting her “Ok, so what are you
going to do with it?” The customer, unfazed, wastes no time throwing the curve
ball back at him: “Don’t look at me like that! Translate!”

Now it is his problem again: explain classes, methods, generics, hashmaps,
and iterators to a business person! Luckily, this business person is a very smart
lady who was once a programmer ... 30 years ago ... in COBOL. Lo and
behold, after explanations about what the penalties hashmap represents, and
through many detours through the code, for example, to find where the constant
WE IGHT is defined, what ¥ &S C O ¥ € means, how it is initialized, and how it
gets updated, they actually find the bug. True, WE TGHT is set to 90%, and the
risk assessment score is initialized to the FICO score, but each time a new factor
is taken into account, the underlying weight of the FICO score is actually
decreased by 10%. This explains the discrepancy between the customer’s hand
calculations and the output of the program. It is 6:30 p.m., the tension has
subsided, the meeting is finished, and as everybody walks out, the project
manager sighs “There’s gotta be a better way!”

This story ended well because the customer was smart, stubborn, no pushover,
and was once a programmer. How many business customers are like that? Further,
in this case, we were able to pull out a single Java method that enforces the business
rule, and inspect it. We are seldom that lucky. Indeed, the business logic will
often be scattered in many places: context-sensitive interaction screens based on
customer profile or location, configuration data in external files, limited validation



1.2 Motivations for the Business Rules Approach 11

functionality in input screens, control logic in functions, database integrity con-
straints, SQL code, and the nightmarish stored procedures. Hence:

Issue 2: Organizations need to describe the business rules that are embodied in
their information systems in a way that all stakeholders can understand, and need
a way of ensuring traceability between those rule descriptions and the actual
implementations of the rules.

e Aninsurance company sells all kinds of policies to individuals and corporations.
Its marketing department regularly evaluates its underwriting rules to assess the
profitability of the various market segments. For example, assume that the
insurance company covers drivers who are as young as 18 years old. Given
that young drivers are more accident prone, one may ask whether the 18- to
19-year-old market segment makes money for the insurance. To this end, the
marketing department compares the total claims paid out in the past 6 months, on
policies held by drivers between the ages of 18 and 19, to the total value of
premiums collected for that market segment. If the company collects more in
premiums than it pays out in claims, then that market segment is cost effective.
Else, it needs to make its rules more stringent to weed out the statistically losing
market segment. All is good. The marketing department performs these simula-
tions every month, on the data for the previous 6 months, and makes recom-
mendations for new underwriting rules. IT takes a minimum of 4 months to
implement such changes with the current technology. Hence, the company
cannot react as rapidly to changing market conditions. Its reaction is always
4 months behind, and when IT is doing the final testing, everyone knows that the
rules that are being tested are already 3 months obsolete.

¢ The mortgage division of a financial services and insurance company has reacted
quickly to the sub-prime mortgage market crisis by tightening the eligibility
requirements for mortgages as soon as the first signs of the crisis started showing
on the radar, that is, in the late spring of 2007. By mid-July, new eligibility
requirements were published internally and sent out to retail branches. By late
fall, the online mortgage application system was still using the old eligibility
criteria. Potential customers with shaky credit, who had been hearing about
tightening credit from the 6 o’clock news, started believing in Santa Claus
when the online system replied “Congratulations. Your application has been
pre-qualified. A mortgage specialist will be in touch with you soon.” Which
specialist sometimes had the un-CRM task of calling the customer to say “we
apologize: our on-line system still operates under the old eligibility rules.” Not
cool.

e An investment company buys and sells (trades) securities on behalf of its
customers. For each trade, it chooses the best exchange market on which to
execute the trade based on (1) the types of security (bonds, equities, etc.), (2)
the actual security (e.g., Microsoft stock), (3) the volume (e.g., ten versus ten
million), (4) the commission charged by the exchange market on such trades,
(5) any contractual agreements between the investment company and the
exchange, (6) any contractual agreements between the exchange and the



12 1 Introduction to Business Rules

customer on behalf of which the trade is being made, and (7) the market
conditions. Trade execution routing is automated through an application. The
investment company would like the application to be responsive to changes in
the various factors. However, the frequency of these changes goes from once in
a lifetime (e.g., the emergence of a new exchange market or of a brokerage
house) to the minute (market conditions), to anything in-between (weekly,
monthly, etc.).

These are just three real-life examples of situations where the IT infrastructure
of a company becomes an impediment to evolution, as opposed to an enabler.
Hence:

Issue 3: Organizations need an agile development infrastructure/paradigm that
enables them to react to the changing environment in a timely manner.

Having accepted that business rules should, and do, for the most part,drive our
business information systems (Sect. 1.1), the several real examples showed a
number of problems with the way business rules are typically implemented — or
not, as for the case of the natural gas company — in information systems. The
business rules approach addresses all of these problems. So what is it? Barbara von
Halle defines the business rules approach as “a formal way of managing and
automating an organization’s business rules so that the business behaves and
evolves as its leaders intended” (von Halle 2001). We like this definition because
we feel that it captures the essence of the business rules approach in a single
sentence:

o It is a formal approach: This means clearly defined processes, tasks, roles, and
work products, that is, a methodology.

* Managing and automating business rules: Management and automation are
related but separate concerns. Management includes collecting, recording, vali-
dating (for accuracy), assessing (for business worth), publishing, and evolving
the business rules. This needs to be done — and can be done — whether those
business rules are automated or not: as our natural gas supplier example showed,
important rules of the business were not defined precisely and consistently
across the enterprise. As for rule automation, it means making those rules
operational, that is, come up with a <language, interpreter> pair so that
enterprise applications can reference them.

¢ [The business] behaves and evolves as [...] intended: As our mortgage under-
writing example duel between business and IT showed, language barriers
between business and IT can make the first goal — behave as intended — difficult
to achieve, and equally difficult to verify. As the last three examples showed,
traditional development techniques cannot possibly meet the pace of change of
the business environment.

We can think of this definition as a set of requirements. In the next section, we
look at how typical implementations of the business rules approach look like.



1.3 How Do Business Rule Applications Differ from Traditional Business Applications? 13

1.3 How Do Business Rule Applications Differ from
Traditional Business Applications?

What does a business application developed with the business rules approach
look like? We know how a business rule application should not look like: it
should not look like the rule-based systems that were developed in the 1980s: (1)
custom (from the ground up) development methodologies with esoteric terminol-
ogies; (2) their own programming language — or at least one not used in business
applications; (3) their own data storage (persistence) mechanisms; (4) poor
scalability; and (5) little or no connectivity to any of the existing business
systems. No wonder the technology failed to penetrate business information
systems back then!

To understand what business applications developed under the business rules
approach look like, we have to understand what the business rule approach entails.
A full implementation of the business rules approach has three components:

1. A methodology for rule management, that is, collecting, recording, validating,
assessing, publishing, and evolving the business rules

2. One or several more or less formal languages for expressing business rules at
different stages of their life cycle and for different audiences (business, IT, and
computer)

3. A tool set for managing and executing the rules, a Business Rule Management
System (BRMS)

The three components are interrelated:

e The BRMS supports the methodology to various degrees through a shared
repository for rule artifacts, workflow/process management functionalities, an
enforcement of roles through access control, and so forth.

¢ The management functionalities of the BRMS support the creation and modifi-
cation of rules expressed in the rule languages, and the translation of rules
between the various languages.

¢ The rule automation (execution) functionalities of the BRMS support the execu-
tion of rules in one or several of the supported rule languages.

Some authors consider the provision of an executable rule language, as distinct
from the application programming language, and the provision of rule execution
functionalities by the BRMS as a highly desirable but not a necessary aspect of the
business rules approach. We agree that it is highly desirable, and if we consider
agility as an essential aspect of the business rules approach, then we will have to
consider it necessary.

Figure 1.1 shows the three components of a business rules approach implemen-
tation and their dependencies. Part II of this book (Chaps. 3, 4, and 5) will deal with
process. We introduce BRMS in general and JRules in particular, in Part III (Chaps.
6, 7, and 8). Rule authoring and rule languages are discussed in Part IV (Chaps. 9,
10, and 11). Rule execution is discussed in Part V (deployment, Chaps. 12 and 13)



14 1 Introduction to Business Rules

Rule
deliverables

Languages

Rule
authoring

Rule
execution

management

Fig. 1.1 The three components of a business rules approach and their interrelationships

——  Business

BRMS rule
execution
request le-based
< Rule-base
Rule Rule . < > Business
management automation - Application
yGlis » rule
— = 3 execution
outcome
repository

IT

Fig. 1.2 The role of a BRMS in a business rule implementation

and Part VI (testing, Chaps. 14 and 15). Rule management is discussed in Part VII
(rule governance, Chaps. 16 and 17).

Figure 1.2 shows the BRMS within the context of its operational environment.
The BRMS has two components, a management component and an execution
component, sharing a common repository of rules. The rule repository is read and
modified by management functionalities, but read-only by automation (execution)
functionalities. The rule repository may contain different representations of the



1.3 How Do Business Rule Applications Differ from Traditional Business Applications? 15

same business rules, depending on lifecycle stage and on audience. Figure 1.2
shows that both business and IT access the management functionalities. We will
not try to be more precise at this point; Chap. 3 presents the different roles in more
detail.

According to this scenario, the rules relevant to business applications are
executed outside of the business applications: the rule automation component of
the BRMS acts as a rule execution service on behalf of business applications. This
is the most typical scenario for full-functionality BRMSs and shows one way that
business applications developed with the business rules approach differ from
traditional development methods. However, it is not the only way of executing
rules; this and other issues will be discussed at length in Part III of this book.

In this context, business applications developed with the business rules approach —
or business rule applications, in short — differ from traditional applications in four
ways: (1) the code itself, (2) deployment, (3) run-time behavior, and (4) maintenance.
We will discuss the four aspects in turn.

The code. A good application design with the business rules approach should
exhibit very few code-level differences with good nonbusiness rule applications.
The only difference is in the way control-intensive domain functionality is imple-
mented. A good object-oriented design would typically assign each domain-specific
function to a facade or controller method, which in turn would coordinate domain
objects to produce the result. Take the property insurance coverage for mortgages
rule (third example presented in Sect. 1.1). A good object-oriented application
would have a method called “checkPropertyHazardInsuran
ceCoverage ()~ defined for the class MortgageApplication, or for
some PropertyAssessmentService class, which returns true if the
coverage is adequate, and false otherwise. In a nonbusiness rule-oriented
application, the method would implement the business logic described by the
rule in the implementation language (java or C# or Object Cobol!) with loops,
ifs, thens, and elses. A business rule application would, instead, code the business
decision logic in a rule language and delegate its execution to the rule execution
component of the BRMS, as illustrated in Fig. 1.2. Other than that, the code should
look identical! In fact, we consider it good practice to circumscribe the parts of
a business application that are “aware” of business rules, and that interact with a
BRMS.

Deployment. With regard to deployment, a business rule application differs from
a traditional application in that application logic is broken into two pieces: (1)
business rules that are managed and executed by a BRMS and (2) a computational
infrastructure that is responsible for everything else (materializing application
objects and managing them, managing the application workflow, architectural
services, etc.). These two pieces are packaged separately, and deployed separately,
and often asynchronously; we will say more when we talk about maintenance.

Run-time. In terms of run-time behavior, we should see no difference between
the functional behavior of a business rule application and that of a traditional one:
they are supposed to be both implementing the same business rules, and thus we
should get the same outcomes for the same inputs! In fact, this is one way that we



16 1 Introduction to Business Rules

can validate a business rule application that is a reengineered version of a legacy
application — as most rule projects are. In terms of run-time architecture, an
implementation scenario such as Fig. 1.2 means that our business rule application
needs to invoke an external service, although we could also embed a rule interpreter
(called rule engine) in the business application in the same executable/run-time
image.

Maintenance. Maintenance is probably the one aspect of a business rule applica-
tions that is most different from traditional applications. As we saw in Sect. 1.2, one
of the key motivators for the business rules approach is the need for agility so that
business rule applications can evolve as fast as the business needs it. Several factors
make maintenance easier and faster:

1. Understandability by business. Business rules are expressed in languages that
business users can understand, enabling them to either specify the rules them-
selves or to easily validate them.

2. Separate deployment. Because business rules are deployed separately from the
code base of applications, we can have a rule maintenance and release cycle that
is separate from — and hence much lighter-weight than — your average applica-
tion maintenance and release cycle.

3. Separate execution. As a corollary of separate deployment, and based on the
scenario shown in Fig. 1.2, business rules are executed by the BRMS, on demand
from business applications. This means that we can have hot deployment of new
business rules, without shutting down the business application. In fact, the
Websphere ILOG JRules BRMS — JRules, in short — enables us to run different
versions of business rules simultaneously. We will introduce JRules in Chap. 8
and talk about situations where we might need several versions of rules in
Chap. 13.

Figure 1.3 illustrates the different release and maintenance cycles for the core of
business applications and for the business rules.

The lower part of the figure shows the maintenance and release cycle for the
application code, which should be fairly stable. After the first release of an
application, we may have an update release or two within the first year, but after
that, the pace of change slows down even further — often once a year or less, for
back-office systems. With regard to the rules, we can have many smaller updates as
frequently as needed, including daily, or even hourly, if quality assurance can
follow!

1.4 Why Do We Need a New Methodology?

The business rules approach makes business rules explicit, separates them from
other application requirements and development artifacts, and manages their devel-
opment, their deployment, and their execution. The way that we develop the basic
application infrastructure, however, need not change significantly. If you have been



1.4 Why Do We Need a New Methodology? 17

Maintenance and release cycles for business rules

Analyse Author Analyse Author

Discove Rele ase @ @ @wcov Release Test

The lifeline of a business application

Release Release

Test Test

Maintenance and release cycles for application infrastructure

Fig. 1.3 Maintenance and release cycles for application core versus business rules

using some homegrown version of the Unified Process (UP), or some agile method,
or flavorful combinations of the two such as OpenUp,’ you need not change the way
that you develop your application infrastructure: (1) you still use use cases or
business process description (or whatever it is that you use) to capture functional
requirements, (2) you still use object models to represent the business domain and
the way it is captured in the software, and (3) you still design your architecture
using the same criteria (distribution, scalability, performance, and security) and the
same solutions. However, we need well-defined processes, roles, and deliverables
to handle business rules, and their relationship to the application infrastructure. In
the remainder of this section, we will discuss the ways in which the process of
developing a business rule application differs from traditional application develop-
ment. Part II of this book will go over our own methodology, Agile Business Rule
Development (ABRD); in this section, we will content ourselves with highlighting
the issues.

Synchronous versus asynchronous rule management. Before we start talking
about various development activities, we need to make a distinction between two
ways of developing and managing business rules, which have different methodo-
logical implications:

7OpenUP is an Eclipse project that uses the Eclipse Process Framework (http://www.eclipse.org/
epf) to specify an agile version of the Unified Process.



18 1 Introduction to Business Rules

e We can develop business rules as a separate activity, independent of specific
business application projects, and project schedules. We can think of business
rule management as part of a broader knowledge management practice within the
organization. This means, among other things, the existence of a rule manage-
ment organization within the enterprise, which can serve various business
applications. The rule management organization is then responsible for collect-
ing, codifying, validating, and publishing the business rules. The application
project organizations will then reference a subset of those rules in their applica-
tions. In this case, we have a well-defined producer—consumer relationship
between the rule management organization and the application project organiza-
tions. Figure 1.4 illustrates this scenario.

e We can also develop business rules as a by-product of specific business applica-
tions. In this case, the rules will be developed incrementally, and always within
the context of a specific application project. However, the rules will be stored
and managed in a shared repository. Figure 1.5 illustrates this scenario.

Which approach works best? Each of the two approaches has its advantages and
disadvantages. The first approach may be more appropriate for a large and mature
organization which will have a dedicated team of business analysts whose job is to
create and manage business rules for the enterprise. This approach requires top-
level management commitment since it requires significant up-front investment
costs in human resources that are not easily linked to operational priorities. One of
the methodological challenges that such teams would face is the scoping of their
activities. Indeed, without any specific mandate at hand, they need to identify and
prioritize the business areas that they need to address. Also, the chances are that in
the first few months or years of operation, many project organizations will not find
in the repository everything that they need. The advantages of this structure include

Bus. app 1 project
organization

Bus. app 2 project
organization

Bus. app n project
organization

Rule management
organization

Fig. 1.4 Rule management is the responsibility of an independent organization that produces
rules consumed by different project organizations



1.4 Why Do We Need a New Methodology? 19

Vs

O
O

Bus. app 1 project organization

Rule
Administration

O
O

Bus. app 2 project organization

Rule administration
organization

@ ;
O

Bus. app n project organization

Fig. 1.5 Each project team develops and manages the business rules it needs for the application it
is building

a de facto enterprise-wide visibility of rules, a more coherent rule repository, and a
more consistent application of rules across business applications.

The second approach does not require substantial up-front investments that are
hard to justify, will not suffer from “analysis paralysis” since rules will be collected
within the context of specific applications, and each business application will have
all the rules it needs by the time it is done. However, it has two major disadvan-
tages: (1) a duplication of effort between various project teams, especially if several
projects are running in parallel and (2) having to manage multiple sets of rules with
a potential proliferation of variations on the same rules, or worse yet, conflicting
versions of rules. Figure 1.5 shows this scenario. In this case, we have an enterprise-
wide lightweight rule administration function, in terms of a shared repository and
centralized access control, but each business application project team is responsible
for managing its rules, from discovery to execution.

In practice, enterprises would use an organization that is between these two
extremes, depending on its maturity level. An enterprise that is making its first foray
into the business rules approach should use the organization shown in Fig. 1.5, for
the first couple of pilots, typically in sequence. It is more likely in this case that the
same people involved in the business rule component of the first application will
also be involved in the second application, both to perfect their techniques and
to act as seeds for other teams. As they get involved in more projects, these
pioneers will also start developing a global view of the business rules, and start
seeing opportunities for sharing and reusing rules between applications, and across
business functions. They may eventually get integrated into an enterprise-
wide business rules expertise center that includes expertise in business rules
methodology, business rule implementation technology, and business knowledge.
Some of these pioneers may be loaned to specific project teams, while others focus



20 1 Introduction to Business Rules

Bus. app 1 project organization

Bus. app 2 project organization

Corporate-
wide rules

&
P, rule
base

Rule management organization/business
rule expertise center

y/ app n project organization

Fig. 1.6 An intermediary organization that combines the agility of synchronous development
while leveraging common expertise and corporate-wide rules

on corporate-wide rules. Figure 1.6 illustrates such an organization, which we have
seen operate successfully in some of the more mature organizations. Figure 1.6
shows that there is two-way communication between project-specific rule activities
and corporate-wide rule activities. Indeed, project-specific rule teams will use the
corporate-wide rule base as a potential source of rules relevant to the application at
hand. Also, in the process of collecting rules for a specific application, they may
find that some rules are generally applicable, and include them — or ask that they be
included — in the corporate-wide rule base.

The methodology presented in this book, ABRD, is based on the synchronous
model — Fig. 1.5.

New application development versus reengineering existing applications. Many
of our engagements with customers dealt with new applications aiming at automat-
ing previously manual, decision-intensive business processes. Such projects have
the necessary business focus from the beginning, and provide an opportunity to
apply the principles of the business rules approach, almost by the book. However,
many more engagements consisted of reengineering existing applications. The
scope and depth of the reengineering effort determine the extent of freedom that
the project team will have in implementing the new system, and the number of
painful compromises that need to be made to accommodate the legacy system.
Figure 1.7 shows different reengineering scopes in relation to a layered system



1.4 Why Do We Need a New Methodology? 21

Presentation layer

Application layer

~
Business Business
Scope of re- rules process
engineering > Domain layer
effort

Domain objects

JAN

> Technical layer
Data access layer

A J

. A

Fig. 1.7 The implications of the business rules approach depend on the scope of the reengineering
project

architecture. We will comment on a few points in this space that correspond to the
most typical situations.

A common scenario consists of introducing new technologies into a legacy
system to make it more scalable, agile, modifiable, etc. In this case, business
rules technology is introduced along with a mix of other technologies, including
an object-oriented domain layer, a web-based presentation layer, a business process
workflow engine, etc. In this case, the only thing that is salvaged from the legacy
system is often limited to the legacy database (or EIS layer); anything from the data
access layer up to the presentation layer is built from scratch. With the appropriate
discipline (e.g., business focus), these projects may be managed — and feel like —
new application development (forward engineering), with few constraints and
compromises.

Another common scenario consists of reengineering the top layers of the appli-
cation, going from the presentation layer down to, and excluding, the domain
objects layer. This means that the domain objects are already built in Java or C#,
and that we need “only” to reengineer the way the business rules are implemented
and executed in the application. This scenario is not trivial as the existing domain
object implementation may not readily lend itself to the expression and execution of
business rules according to the business rules approach. The gap needs to be
bridged through a combination of methodology and technology.

Figure 1.8 shows a methodology matrix that illustrates the methodological
variants of the business rules approach. The STEP methodology (von Halle 2001)



22 1 Introduction to Business Rules

New development
A

STEP (von
Halle, 02)

Asynchronous Synchronous
Rule - Rule
Development ABRD Development

~

Re-engineering
legacy
applications

Fig. 1.8 A business rules methodology matrix

is an essentially synchronous, forward-engineering methodology for new applica-
tions built under the business rules approach, and addresses both the infrastructure
of the application and the business rules component in the same framework. ABRD
focuses on the business rules component and its interface with the application
infrastructure, of which it is fairly independent.

We now turn our attention to the various development activities and see how
they are affected by business rule methodologies, depending on where they fit in
this matrix. For the sake of discussion, we will consider (a) requirements capture,
(b) analysis and design, (c) coding/authoring, (d) testing, and (e) maintenance; the
changes brought upon by the business rules approach are fairly independent from
the actual process along which these activities are organized.

Requirements capture. In the synchronous mode, for new developments, we
elicit the business rules as part of the requirements capture. However, the business
rules are gathered in separate deliverables, which cross-reference other require-
ments deliverables such as domain models and business use cases. Further, there is
an explicit emphasis on business rationale (business policies and motivations
behind them), as opposed to focusing on the business actions that derive from
such rationale. Accordingly, we need specific processes, roles, techniques, and
deliverables to handle business rules. The processes and techniques for eliciting
business rules, and the intermediary deliverables, depend on the requirements
capture technique traditionally used by the organization. For example, if an organi-
zation relies on use cases for capturing functional requirements, the business rules
will be captured in the context of decision steps within those use cases [see, e.g., the
use-case rule discovery roadmap of the STEP methodology (von Halle 2001)]. If
we have a reengineering project, the legacy system and its documentation are
usually used as a potential source — seldom the only one — for business requirements



1.4 Why Do We Need a New Methodology? 23

in general, and business rules in particular. In this case, the process and techniques
for rule discovery are adapted accordingly.

In the asynchronous mode, we clearly need separate processes, roles, techniques,
and deliverables for the discovery of enterprise business rules, independently of
requirements capture for specific business applications.

Analysis and design. The analysis and design of the infrastructure of a business
application are marginally affected by the adoption of the business rules approach,
except for a more explicit business focus, and the reliance on a BRMS for
performing business decisions (see, e.g., Fig. 1.2). However, there are lots of new
things to analyze and design on the decision/business rule side of the application.
There is such a thing as rule analysis, which deals with things such as breaking
complex business rules into several simpler more atomic ones, detecting redundan-
cies, overlaps or contradictions between rules, documenting the business motiva-
tions of rules, and so forth (see Chap. 4). Further, we need to package rules into
coherent units of testing, deployment, and execution — called rulesets — depending
on the underlying business process and on application design considerations
(Chap. 9). We also need to specify and design the management component of the
BRMS, including the structure of the rule repository (Chap. 9), the rule metadata,
the enforcement of the rule change processes, etc. (Chaps. 16 and 17). Finally, we
need to design the way in which the business application will interact with the
BRMS for executing the business rules (Chaps. 7, 12 and 13).

Codinglauthoring. The coding of the application infrastructure is not affected by
the use of the business rules approach. However, decision logic is now coded
separately as business rules through a BRMS system, and we need a new set of
processes, techniques, skills, roles, and tools for rule authoring. One of the major
consequences of this separation is that the two aspects of the application are
decoupled and can progress independently. We have been involved in projects
where the application infrastructure was completed before the first business rule
was coded and tested. An incredulous CIO protested “how could you send half the
development team home when you are still capturing requirements.” We have also
been to projects where all of the business rules have been coded, and many were
tested, before a single domain Java class was coded. Rule authoring issues and
solution patterns are fairly independent of where we stand in the methodology
matrix (Fig. 1.8). Part IV of this book (Chaps. 9, 10, and 11) is dedicated to rule
authoring.

Testing. In traditional system development, functional testing can only start after
large chunks of an application have already been implemented. Further, black box
functional testing provides little to no help in diagnosing an application’s business
logic, whereas white box functional testing requires us to identify and analyze
logical paths within complex execution traces. With the business rules approach,
we can test individual business rules, with little infrastructure code. This is like
performing functional unit testing where we are able to identify, trace, and modify
individual logical paths through the application code. The testability of individual
rules is a powerful verification and validation tool. Part VI of this book (Chaps. 14
and 15) deals with rule testing.



24 1 Introduction to Business Rules

Maintenance. In traditional system development, maintenance requests follow a
similar implementation path, whether the request concerns business logic or infra-
structure code: once a manager has signed off on a maintenance request, it falls into
the hands of IT who implement it, test it, and deploy it. With the business rules
approach, because business rules (decision logic) are developed and maintained
separately, we have different processes in place that recognize the business nature
of business rule maintenance, and that take advantage of the lighter deployment
mechanisms for business rules. Business rule maintenance is part of a wider set of
rule management activities that we refer to as rule governance. Rule governance
processes depend heavily on the business rule approach variant along the synchro-
nous versus asynchronous development dimension (see Figs. 1.4 to 1.6). Rule
governance is discussed in Chaps. 16 and 17.

1.5 Summary and Conclusions

Organizations develop business information systems to support their business
processes. These information systems should behave in a way that is consistent
with the organization’s business objectives and policies. They do so by enforcing
business rules. Put another way, business rules embody the business soul of
business applications. Both business and IT need to know what those rules are,
and sometimes customers and regulators do too. The rules need to be expressed in a
language that all the stakeholders can understand, and implemented in a way that
enables us to change them at the speed of business, as opposed to the speed of IT.
These are the motivations behind the so-called business rules approach.
The business rules approach consists of three interrelated components:

1. A methodology for creating and managing the business rules

2. One or more languages for expressing them at different stages of their life cycle
and for different audiences

3. A tool set for managing and executing them on behalf of business applications

We saw in Sect. 1.4 that business rules methodologies come in different flavors,
depending on the maturity of the organization with the business rules approach and
on the nature of the project, that is, a new development versus a reengineering
project. We also saw how the adoption of the business rules approach affects
traditional development tasks such as requirements capture, analysis, design, cod-
ing, testing, and maintenance. The remainder of this book addresses all of these
activities within the context of the Agile Business Rule Development methodology
and the IBM Websphere ILOG JRules business rule management systems (BRMSs) —
JRules in short.

So, is it an evolution or a revolution? We do not like revolutions. Revolutions
start with destruction — destroying legacies — lead to initial chaos — even if
temporary — and are often run by quasi-religious zealots. And the outcome is
often unpredictable. The ingredients for the business rules approach have been



1.6 Further Reading 25

around for more than 20 years. It is their combination, in their current mature form,
which gives the approach its revolutionary power.

In this chapter, we strove to focus on the basics, which does not necessarily do
justice to the complex technological landscape of today’s enterprise applications.
More detail and nuances will be presented in the next 17 chapters of the book!

1.6 Further Reading

There are a number of resources about the business rules approach that the reader
can consult to complement the information provided in the chapter.

e A book by Ronald Ross titled Principles of the Business Rules Approach,
published by Addison Wesley, February 2003, Addison Wesley. As the title
suggests, this is a foundational book. It talks about the essence of business rules,
how they relate to business events, and proposes an extensive classification of
rules. This book says very little about implementation, and does not present a
step by step methodology for building business rule applications — nor was it its
intent.

e The book Business Rules and Information Systems: Aligning IT with Business
Goals, by Tony Morgan, Addison Wesley, March 2002. This is another founda-
tional book — a great one, nonetheless. It presents the essence of the business
rules approach by explaining what business rules are, what they are about, and
attempts a rigorous approach to rule capture and analysis. There is little in terms
of a step-by-step methodology and very little in terms of technology.

e Barbara von Halle’s book, Business Rules Applied: Building Better Systems
Using the Business Rules Approach, published by John Wiley & Sons, in
2001. This book presents the STEP methodology (Separate, Trace, Externalize,
and Position rules for change). It does an excellent job of presenting methodol-
ogy but is a bit short on design and very short on implementation.

e The business rules group web site (http://www.businessrulesgroup.org) contains
links to the various papers published by its members. Topics addressed include
the definition of business rules (see Sect. 1.1), the business rule motivation
model, and the business rule maturity model.

e The Object Management Group (http://www.omg.org) has a number of active
standards related to business rules, a number of which are based on (more
readable) submissions of the business rules group.

e The business rules forum (http://www.businessrulesforum.com) is an annual
conference for people interested in the business rules approach, and is a good
opportunity for learning about new product features and cutting-edge thinking.



Chapter 2
Business Rules in Practice

Target audience
o All

In this chapter you will learn
e Typical applications areas for the business rules approach
o The case study used throughout this book

Key points
e The business rules approach applies to all kinds of industries and

spheres of activities.

e The business rules approach applies to all organization sizes,
from the smallest of enterprises to the biggest fortune 100
companies.

® The business rules approach has been successfully used to auto-
mate all sorts of business processes, from back-office processes to
front-end processes.

2.1 Introduction

Recall von Halle’s definition of the business rules approach, “a formal way of
managing and automating an organization’s business rules so that the business
behaves and evolves as its leaders intended” (von Halle 2001). This definition is
fairly broad and can apply to any type of organization, be it a for-profit organization
(an enterprise), a not-for-profit public organization, or a government. It can also
apply to any type of “business,” whether it is financial services, health, insurance,
telecommunications, manufacturing, transportation, or customs and border control!

Historically, the business rules approach has started in engineering domains, due
to its expert systems lineage (see Chap. 6). Roughly speaking, expert systems are
computer programs that attempt to capture human expertise in areas where the
expertise is rare and heuristic in nature to solve problems. By heuristic we mean that
it calls for the human judgment of experts as opposed to being mechanical from first

J. Boyer and H. Mili, Agile Business Rule Development, 27
DOI 10.1007/978-3-642-19041-4_2, © Springer-Verlag Berlin Heidelberg 2011



28 2 Business Rules in Practice

principles. This is generally the case in domains where the relevant knowledge is
complex (many interrelationships), extensive (volume-wise), and incomplete (some
missing links). The expert systems approach has thus typically been applied to areas
in medical diagnosis and engineering design. Example medical applications include
the pioneering Internist system, which was used to diagnose internal medicine
problems (ref), and the DENDRAL system, which was used to classify substances
based on their spectrometer readings (ref). Example engineering applications
include the [vax design expert system], which was used to design the architecture
of Digital Equipment Corporation’s’ VAX family of computers.

The business rules approach has a much broader scope than the expert systems
approach. The issue is not so much to codify complex decision processes, the kind
that require a 12-year postsecondary education — Internist, for example. As we
showed in Chap. 1, the issue is one of capturing the business’s policies, whatever
they are, being able to share them with the various stakeholders, operationalizing
them, and being able to evolve them at the speed of business. In fact, most of the
rules shown in Sect. 1.1 are quite simple.

In the remainder of this chapter, we will go over some general application areas.
The business rules approach has been applied to many different industries, from
manufacturing, to financial services, to insurance, to e-government. In each one of
these industries, it has been used to support both core vertical processes (e.g., loan
underwriting, insurance claim processing), as well as support, horizontal processes
(e.g., accounting, human resources, CRM). Space limitations do not allow us to
present examples from all the industries that we were personally involved in, and all
of the business processes that we supported. To get an idea about the range of
industries and processes that used the business rules approach, the reader can check
the list of customers of the various tool vendors or look at the technical program of
the latest edition of the business rules forum.>

In this chapter, we will talk about three major areas: engineering (Sect. 2.2),
financial services (Sect. 2.3), and insurance (Sect. 2.4). For each industry, we will
give two example applications. The case study used throughout this book is from
the insurance domain and will thus be presented in Sect. 2.4. We conclude in
Sect. 2.5.

2.2 Engineering Applications

In this section, we present two example applications from the engineering domain.
These examples are not meant to be either exhaustive or representative, but
illustrate the broad range of problems that call for the business rules approach.

lDigital Equipment Corporation was a manufacturer of mid-size time-sharing mainframes that was
purchased by Compaq in 1998, which in turn merged with HP in 2002. The VAX family of
computers was its flagship product line.

2Check http://www.businessrulesforum.com/



2.2 Engineering Applications 29

IncidentReport Alarm

-networkElementlD : String -umbrella -alarms
-symptom : String

-latestAlarm : Alarm
-alarms : sequence(idl) 0..1

-networkElementID : String
-symptom : String
1 -timeStamp : Date

0“1? -latestAlarm 1

Fig. 2.1 A simplified object model for alarm filtering and correlation

2.2.1 Alarm Filtering and Correlation

Telecommunication companies operate and manage networks. Roughly speaking, a
telecommunications network consists of a network whose nodes consist of network
equipment and whose edges consist of links — different kinds of cables. Typical
networks include tens of thousands of nodes and span thousands of miles. Compa-
nies manage their networks remotely whereby each piece of equipment emits
regular messages — sometimes referred to as heartbeats — related to their working
status. These messages are routed to operators’ consoles. Operators monitor the
status of the network by analyzing the inflow of messages and are called upon
regularly to diagnose eventual problems with network nodes or links, and when
warranted, dispatch repair crews to fix the problem. Messages that indicate abnor-
mal function — called alarms — are the ones that operators focus on. While alarms
represent a small fraction of the volume of messages sent by network elements, we
are still talking about millions of alarms of different severities that operators need
to sift through daily. However, given the way that alarms are generated, the number
of alarms that operators need to focus on can be reduced considerably.

First, consider this: a single malfunction will generate a stream of alarms with a
given time regularity. As any Unix user knows, if you unplug the network cable
from your workstation, you will receive a series of annoying “network cable
problems?”” messages on the Unix console. If you re-plug the cable, the messages
stop. You unplug again, the messages (alarms) start again. We need rules that will
tell us that (a) the first stream is related to a single incident and (b) the first and
second streams are related to two different incidents. What the operator should see
on their console is two incident reports, instead of hundreds or thousands of
“network cable problem?” alarms. Intuitively, a rule might say:

If we have two alarms originating from the same network element with the same problem,
within 5 seconds of each other, then they are related to the same malfunction.

Consider the following data model (Fig. 2.1). The Alarm class represents the
raw alarms emitted by the network elements. IncidentReport represents the
corresponding incident report that we are able to infer from the individual alarms.



30 2 Business Rules in Practice

Thus, an IncidentReport will point to all of the relevant alarms through the
“alarms” association — implemented with the “alarms” data member. An Incident
Report will also point to the /atest alarm related to the incident — the “latestAlarm”
data member. Both Alarm and IncidentReport refer to the ID of the network
element that raised the alarm and include a description of the problem — the
“symptom” data member. The “timeStamp” attribute of Alarm refers to the time
of occurrence.

We can operationalize the above intuitive rule with the following two rules, one
that creates a new incident report from an alarm, and one that groups an alarm into
an existing incident report as shown in Fig. 2.2.

Other examples of alarm filtering and correlation take into account the effects
of a malfunction on one network element on neighboring network elements.

RULE ‘new incident report’
if an Alarm AL is received and
there is no IncidentReport IR such that
AL and IR are about the same network element and
AL and IR have the same symptom and
AL occurred within 5 s of the latest alarm of IR
then
create an IncidentReport IR new suchz that
IR new.latestAlarm <« AL
IR new.networkElementID <« AL.networkElementID
IR new.symptom <« AL.symptom

add AL to IR new.alarms

RULE ‘add to existing incident report’
if an Alarm AL is received and
there is a IncidentReport IR such that
AL and IR are about the same network element and
AL and IR have the same symptom and
AL occurred within 5 s of the latest alarm of IR
then
IR.latestAlarm < AL

add AL to IR.alarms

Fig. 2.2 Sample rules for alarm correlation



2.2 Engineering Applications 31

For example, a node that is downstream from a broken link will report the absence
of upstream activity, whereas nodes upstream from that link will fail to give a sign
of life.

2.2.2 Train Cars Preventive Maintenance

Trains constitute one of the most efficient modes of transportation for both people
and merchandise. Freight trains, however, have the bad habit of derailing, much
more so than passenger trains, for a combination of technological and economic
reasons.” A common cause of derailment is unstable train cars which can jump over
the tracks at “high” speeds, or displace the tracks themselves, with a similar result.
What makes cars unstable? What train conductors refer to as flat wheels, i.e., when
the steel wheels of a train car lose their perfect circular shape (see Fig. 2.3c). What
creates those flat spots? To simplify and caricaturize a bit, the answer is, extended
hard braking: in the same way that hard breaking with rubber tires consumes the

b |-

Axle

Surfaces in

/ contact with
rail

Rail

DD l
J

I

Train car wheel

Cross-section of wheel

Rotation direiy

Point with
high impact

Chipped area on wheel Rail
Side view of flat spot on wheel surface (“flat” spot)

Fig. 2.3 The “flat wheel” problem with train cars

3Safc—:ty can almost always be framed in economic terms, i.e., costs versus benefits.



32 2 Business Rules in Practice

rubber (those skid marks), extended hard breaking with trains will either cause the
wheels to lock and grind against the rail, or, even if they don’t lock, they will heat to
such high temperatures that, eventually, the surface will chip and break to a similar
effect. And why would a train conductor push the brakes hard for an extended
period of time? Well, not on purpose: the brake shoes around the wheel can get
stuck, even after the conductor releases the pressure. Indeed, freight trains use
nineteenth-century braking technology: air (pneumatic) braking system, which can
get stuck. With over five million cars in circulation aged 0—120 years, it is not
economically or logistically feasible to upgrade them all at once — as we would have
to, considering how air brakes work . ..

Railroad companies have been trying to detect sticking brakes in running trains
so as to prevent “flat wheels” and ultimately, derailments. For this, they use a
definitely twentieth-century technology: they place infrared temperature readers
along the tracks that measure the temperature of the wheels on passing trains. Such
detectors can be placed at regular intervals, e.g., every 20 miles. A wheel tempera-
ture reading above 558°F is considered suspicious and is sent to an operator console
at the railroad control center. If 20 miles down the track, the next temperature
reader registers another reading above 558, then a control center operator will
notify the train conductor. The train conductor may choose to ignore the warning
if coincidentally he had pushed the brakes at both spots. He may also stop at the
next station — or right away — to inspect the suspicious car.*

Naturally, not all consecutive high temperature readings are suspicious. There
may be cases where a train would be braking for a long distance such as the span
between two temperature readers: if a train is climbing down a mountain, the
conductor would push the brakes for the entire descent. Thus, readings for descending
trains on specific track segments would be ignored. Further, not all hot temperatures
point to sticking brakes: both wheels (left and right) of the same axle need to be hot,
since their braking shoes are connected via a bar, etc. Clearly, there is a nontrivial
engineering knowledge that is needed to capture and interpret problematic situations.

In addition to capturing and standardizing engineering rules used by Rail Traffic
& Control (RTC) operators and conductors to detect sticking brakes, we can use
historical data about cars to perform preventive maintenance. While a single
instance of a sticking brake for a car may not suggest a problem with the breaking
system, repeated instances may suggest a — costly and time consuming — repair of
the car. Further, a car that experienced a number of sticking brakes incidents may
need to have its wheels replaced, or minimally, thoroughly inspected. Each inspec-
tion and repair has a cost associated with it, but the benefits are considerable. Not
only does the cost of an accident, regardless how minor, ranges anywhere from a

4Interestingly, with current technology (pre-RFID), the control operator can only “guess” what car
the hot wheel belongs to, based on its position in the train, but cannot be sure because trains can
exchange cars (drop some, acquire others) at different stations, and the positions — and cars — will
keep shifting. Some railroad operators have a policy of not telling conductors which car has the hot
wheel, as added security, and let them find out by walking along the train — which could be miles
long — to find out on their own.



2.3 Financial Services 33

few to a few dozen million dollars,’ but there is a more substantial business cost: the
unreliability of delivery leads to a pricing model that is well below trucking, even
though, on the average, trains can deliver merchandise across the North American
continent as fast as trucks do.

2.3 Financial Services

Through our combined 20 year experience with the business rules approach, we can
confidently say that the overwhelming majority of the important players in the
banking and mortgage sector have adopted the business rules approach for some of
their core processes, most notably, for managing their loan and credit products,
including consumption loans, student loans, mortgage loans, credit cards, and so
forth. All of these products share an important characteristic: they involve giving
money (or making it available) to a customer, for a fee (interest), with an expecta-
tion of repayment of capital and interest. For these products to make money for the
financial company, the customer has to be able and willing to repay the capital and
interest. Ability deals mostly with income. Willingness is more behavioral and
deals with the propensity of the customer to pay back debt. It is usually assessed
based on a track record of the customer with debt. Banks, mortgage banks, and
credit card companies use a whole set of business rules to assess the ability and
willingness of prospective customers to repay back their debt. We will discuss a
simple mortgage underwriting example. Our second example deals with tax report-
ing. The US tax system is notorious for its complexity. It takes us into the wonderful
world of tax law and gives the reader a glimpse of what lies out there in terms of
business rules.

2.3.1 Mortgage Underwriting

A mortgage loan is a loan that is guaranteed or secured by a property. A borrower
needs an X amount of money that they commit to repaying over a period of time
according to some repayment schedule, typically over a period going from 10 to 30
years. Because X tends to be large, the lender requires a property (house, apartment,
building, piece of land) in guarantee that it can take possession of and sell, if the
borrower defaults, i.e., is no longer able to pay. More often than not, the borrower
contracts a mortgage loan to purchase the property they are giving as guarantee.

SThe costs of an accident include (1) replacing equipment, (2) repairing tracks, (3) insurance
deductibles for lost merchandise, (4) costs of cleaning up spills, (5) costs of evacuations, (6)
compensation to other users of the track, (7) penalties paid to local authorities and regulatory
agencies, (8) costs to any litigation resulting from the accident, etc.



34 2 Business Rules in Practice

Other reasons include renovating the property, sending the kids to college, buying a
new car, consolidating debt,® or taking a dream vacation!

Mortgage lenders will apply a number of business rules to assess the potential
borrower’s willingness and ability to pay. Roughly speaking, the rules may be seen
as falling into three categories:

1. Eligibility rules. These are pass/fail kinds of rules that determine whether the
mortgage loan application is even worth looking at. Failing an eligibility rule is
“fatal” to a loan application. But passing it does not guarantee acceptance: more
analysis (underwriting) is required to make a determination. An example of an
eligibility rule concerns the age of the borrower: they must be old enough for a
mortgage note to be enforceable in the jurisdiction where the property is located.

2. Detailed assessment rules (underwriting), which are applied against eligible loan
applications, to determine whether the loan should be granted or not.

3. Computation rules, which determine (compute) the parameters of the loan, such
as the interest rate, the repayment schedule, the level of insurance required, etc.,
based on the loan amount, the financial situation of the borrower, and their credit
history.

In fact, these rules are typically applied in sequence: only eligible applications
are analyzed/put through underwriting, and we compute the loan parameters only
for those applications that are deemed to have acceptably risk.” Figure 2.4 illus-
trates this process in an activity diagram notation.

The eligibility rules are fairly standard across the industry, and they concern the
loan itself, the borrower, and the property. An example of an eligibility rule for the
loan itself is about the down payment of the borrower. A typical® rule might say:

The borrower must put minimum cash down of 5%. The 5% must come from the

borrower’s savings or other liquid assets. The remainder of a larger down payment may
come from other sources such as gifts.

Assess Assess Risk
Eligibility (Underwriting)

[acceptable

[yes] risk]

Compute
Parameters

[too high risk]

[ineligible]

Fig. 2.4 A simplified process for evaluating a mortgage application

SIf the borrower has a number of outstanding loans, including credit card debt, they can borrow
money from their bank to pay back their other debts.

In actual applications, there is a third outcome which sends the loan application to a loan
officer for “manual underwriting,” who may ask for more information before making a final
determination.

8The rules illustrated in this section come from Fannie Mae’s underwriting guidelines, which set
the industry standard for investment-quality mortgages — not the subprime type.



2.3 Financial Services 35

Other constraints may concern the so-called loan-to-value (LTV) ratio: a bor-
rower cannot borrow more than some threshold percentage of the value of the
property that they are purchasing. For example, a bank might require that the loan
does not exceed 75% of the value of the property. Thus, for a property that is worth
$100,000, the bank cannot lend more than $75,000. Said another way, the borrower
must put a down payment that is at least 25% of the value of the property — $25,000
in this case. In practice, this threshold itself depends on several factors, including:

e The intended usage of the property. If the mortgaged property is the principal
residence, a bank will tolerate a higher LTV ratio (up to 95%) because it figures
that borrowers will do their utmost to avoid defaulting on the loan — and risking
eviction. If the mortgaged property is an investment property, then the bank’s
tolerance is much lower and it may put the threshold at 70%.

o The intended usage of the loaned money. If the money is borrowed to purchase
the property, the bank will tolerate higher LTVs, but if the borrower wants to
spend the money on a Hawaiian cruise vacation, say, then the bank will be less
tolerant.

Rules about the borrowers concern their age, their residency status, and their
debt load. A US mortgage banker will only lend money to US citizens, or perma-
nent residents of the USA, or legal foreigners, provided that they (intend to) live in
the property and that the LTV is less than 75%, or ... Regarding the debt load,
banks will not loan you money if the repayment of that loan, plus your other
recurring payments, exceed some threshold portion of your income — typically
37%. In case several borrowers apply for the loan jointly, it is their combined debt
over their combined income that has to be over 37% . .. nevertheless, the debt over
income ratio of each borrower alone must be less than 43%, etc.

Then there are eligibility rules about the property itself, including location and
construction type. A US mortgage banker will not want to mortgage a Canadian or
French property, and vice versa. Also, you cannot mortgage mobile homes, whose
values depreciate more like that of a car, as opposed to appreciating more like that
of a fixed building.

And this is just to determine if we should bother analyzing the mortgage
application (underwriting) or not. A whole other set of rules will look at credit
reports, including single scores (e.g., FICO score) as well as credit history (bank-
ruptcy or not, and how far back, number of late payments of bills, how much, how
many, how late, and how long ago), cash reserves, and so on and so forth.

And this is just for your run of the mill mortgage. Then there are a number of
special products aimed at different segments of society to help promote home
ownership and to compensate for all sorts of disadvantages, including socio-
economic and geographical ones. Some of the criteria may be tightened or relaxed,
in which case some government agencies or government mandated institutions
may shoulder some of the risk. The parameters can also be adapted for special real
estate markets, which are either too high priced, or shielded from cyclical market
trends, or in flood or earthquake zones, etc. Before you know it, we are talking
about hundreds and thousands of business rules.



36 2 Business Rules in Practice

Historically, the better organized mortgage institutions developed underwriting
manuals, with rules and tables and all, and provided training to their underwriters.
When new rules were added or existing ones were modified, memos, change
notices, updates, or whatever they were called, were sent around the enterprise to
inform the underwriters of the changes, and occasionally, remedial training was
offered to explain the changes. In some ways, these organizations had a very partial
implementation of the business rules approach: they managed — more or less
effectively — the business rules of the enterprise. However, they did not automate
them. Indeed, all of the decision making was performed manually; information
systems were used simply to record information and the decisions reached by the
human underwriters. Further, their way of managing the business rules did not
facilitate their evolution. Most often, the carefully crafted glossy color manuals
became obsolete by the time they were distributed.

With the first generation of automated underwriting systems, IT had to imple-
ment the business rules based on the (obsolete) underwriting manuals, the notes,
memos, meeting minutes, e-mails, and other records of the organization’s memory.
Omissions were frequent, misunderstandings galore, and making changes took a
whole lot of time. As we illustrated in Chap. 1, one of our clients’s web under-
writing application lagged behind the policy changes implemented by the enterprise
since the subprime meltdown, leading to an embarrassing problem for customer
relations.

It should come as no surprise that the majority of the major mortgage institutions
have adopted the full business rules approach (management, automation, evolu-
tion), some as far back as 15 years ago — and even before, if you count the kind of
ad-hoc rough-edged custom “rule engines” that the more creative ones have
implemented.

2.3.2 Tax Reporting and Withholding

Resident companies and individuals in the USA file their income tax forms every
year, the former, soon after the closing date of their financial year, and the latter, on
April 15th. Employers are requested to collect income taxes on their regular
employees’ salaries every month and send them to the Internal Revenue Service
(IRS). Employers compute the monthly deductions based on the information they
have about their employees (marital status, number of dependents, etc.) in such a
way that the taxes collected during the year come as close the final tax bill as
possible. During the year, the IRS does not get details about who paid which taxes:
they receive a bulk payment from each employer for all their employees for the
period (month, trimester). At the end of year, employers send their employees a
summary of their income and all of the deductions during the year, including taxes
collected. Copies of those summaries are also sent to the IRS. A similar scheme is
used for corporations: corporations can make provisional income tax payments
during a given fiscal year based on the previous year’s income. When they file for



2.3 Financial Services 37

taxes at the end of the fiscal year, they compute actual taxes owed based on actual
income for the fiscal year and then make the necessary adjustments consisting of
additional taxes to be paid, if not enough taxes were collected during the year, or a
tax refund, otherwise.

When a US company makes out a payment to another resident company for
products or services rendered, or a nonsalary payment to a resident person, it is the
responsibility of the receiver of the payment — the resident company or resident
person — to declare (report) the payment at the end of the year and to pay taxes on it.
What happens when the receiver is not a resident? Because the IRS cannot run
around the globe collecting taxes from foreign entities that had had a US income, it
requires the payers to preemptively withhold taxes on each payment and report it to
the IRS. For example, a Spanish person opens an investment account with a US
brokerage house and buys some stock. If they later sell the stock at a higher price,
the capital gains they made are taxable. The brokerage house should withhold taxes
on the capital gains and deposit the remainder of the proceeds from the stock sale.

The general, default rule says: withhold 30% on income made by foreign
entities. The explanations and exceptions to this rule take 58 pages of three-column
dense IRS prose that, in turn, refers to a bunch of other IRS publications . . . and that
is the simplified version for small businesses ©. What takes so long?

e We need to define “foreign” entities and “nonresident alien,” for the purpose of
this tax law. This is usually ascertained by the documentation that the entity or
person filed when they opened their brokerage account. There are a bunch of
forms (W-8, W-9), and variations within those forms (W-8BEN, W-8ECI,
W-8EXP, W-8IMY). And then, it depends on which boxes were checked or
filled out in each form.

¢ Not all foreign entities are subject to withholding. For example, foreign govern-
ments and international charities are exempt. Again, this is a question of which
form was filed by the brokerage account holder, which boxes were checked or
unchecked, which fields were filled, and what was written in them.

e The withholding tax rate (30%) depends on the type of payment! First of all, not
all payments correspond to income. If you buy 50 shares of some company at
$10 and sell them for $9, the proceeds of the sale ($450) are not a taxable gain.
And then, it depends on the income type: you have interest, dividends, capital
gains, each of which is subject to a different tax — and thus withholding rate.

e Then there are tax treaties with individual countries. So our Spanish investor
would be subject to a 10% withholding rate on interest income, whereas a
Turkish investor, say, would be subject to a 15% withholding rate on interest
income. People and companies from countries that do not have tax treaties with
the USA will pay 30%, across the board, for all income types.

e Then there is the case when the foreign entity is a flow-through entity. Intuitively,
a flow-through entity is a partnership through which money simply flows to the
individual partners. For tax purposes, we allocate the gains back to the individual
partners and withhold tax in accordance with each partner’s nationality. Thus, if
we make a $200 interest payment to a flow-through 40-60 partnership between a



38 2 Business Rules in Practice

Spanish and a Turkish, we treat it as an $80 interest payment to the Spanish,
subject to 10% withholding, and a $120 interest payment to a Turkish, subject to
15% withholding.

And once we figure out all of this, we need to figure out which form to use to
report the income and submit the withheld tax, and in which box or column to report
which amount.

And you thought that your business rules were complex!

An investment bank used the business rules approach to implement these tax
reporting and withholding rules. This bank executes anywhere from hundreds of
thousands to millions of transactions per day. Transactions typically include infor-
mation about the type of payment (interest, dividend, etc.), the amount, and the
customer account (payee). Each transaction coming into the system was first
submitted to the reporting and withholding module, which applied the business
rules to figure out whether the payment was subject to reporting, withholding, and
how much. Then, based on the outcome, the appropriate deposits were performed
on the appropriate accounts, and the information recorded in a reporting module.
The application was delivered in a record time, and the project schedule was
followed to the hour. This was due to a combination of a disciplined use of agile
methods and the business rules approach. The latter meant, among other things, that
our customer’s accountants were still sorting out the business rules with IRS
accountants, while IT was putting the final touches on the application infrastructure.
This was a textbook case of the decoupling between the application development
cycle and the business rules development cycle illustrated in Fig. 1.3.

2.4 Insurance

The insurance industry is another big consumer of business rules technology, and
insurance companies have been among the early adopters. The business rules
approach has been used for both its core processes (policy underwriting, claim
processing), as well as support processes such as accounting, CRM, and marketing.
In this section, we will present two examples, one for policy underwriting, for
regular insurance, and another for claim processing, looks at an example from
health insurance. The case study used throughout this book is in claim processing.

2.4.1 Policy Underwriting

Let us take a representative sample of a thousand (1,000) drivers between the ages
of 30 and 40, and see how many of them get into accidents over the period of 1 year,
and tally up the costs of these accidents in terms of vehicle repair, medical bills,
income support during work stoppage or due to disability, and god forbid, death.
Assume that all of this adds up to $600,000. Let us figure out how much it would



2.4 Insurance 39

cost to insure these 1,000 drivers so that (a) all of the costs are covered by the
insurer and (b) the insurer makes money — after it has paid its staff, its buildings, the
various services it uses, its utility bills, and the tax man. Let us say that those extra
costs add up to $400,000. If the insurer wants to make money, it should charge at
least $1,000/year. An insured would be more than willing to pay that insurance
premium, because even though the expected (mathematical average) cost to each
insured is $600/year, most will incur no cost during that year, but the unlucky ones
who get into an accident can go bankrupt.

Let us now throw in some competition. A competitor figures that women
between the ages of 30 and 40 get into much fewer accidents than men, with
perhaps an expected yearly cost (in terms of claims) of $350, per driver per year.
Having figured that, the competitor will offer insurance to women at a much lower
cost, while possibly jacking up the prices for men to reflect their true cost. If women
flock to the competitor, they deprive the first insurer of his lower-cost customers,
and so he too needs to segment the market and price the coverage accordingly. Once
they have segmented based on age and gender, then they get into driving habits,
e.g., occasional drivers versus drivers who use their car to commute to work, rural
versus city driving, etc. Then they look at the driving record considering DUI
convictions, accidents, moving violations, and so forth.

Insurance companies typically have large marketing departments full of statis-
ticians, actuaries, and marketers who peer over market data, demographic data, and
all sorts of statistics (accident statistics, for auto insurance, epidemiological studies,
for medical insurance, etc.) to identify the level of risk associated with different
segments of the market. The result of these studies is a bunch of rules that help
determine (a) which potential customers to underwrite (accept) at all, and (b) for
those that are accepted, how to price the insurance contract to them in such a way
that the insurer beats the competition and makes money.

Figure 2.5 shows a simplified version of what an automated underwriting
process might look like. An insurance broker fills out an electronic form based on
data supplied by a potential customer. The system first validates the data, i.e., things
such as the social security number,” the zip code, or the driver license number. If the

[acceptable
‘ risk] Generate
Quote

[too high risk]

Validate [yes] Assess [yes] Assess Risk
data Eligibility (Underwriting)

[ineligible]

[invalid data]

Fig. 2.5 A simplified process for insurance policy quote generation

“There are two possible levels of verification: we could either check that the social security is well
formed or further check that it belongs to the potential customer.



40 2 Business Rules in Practice

data is invalid, the insurance policy is rejected. If the data is valid, we look at
eligibility criteria. For auto insurance, these include things such as the age of the
driver, the driver license (jurisdiction, expiration date, possible suspension). If the
policy is eligible, then we go into pricing and generate a quote. Else, we produce a
rejection report explaining while the policy was rejected. Each one of the steps of
this process will involve a bunch of business rules.

Actual processes used in policy underwriting systems are far more complex.
When a potential customer calls an insurer’s call center, they do not typically know
what insurance product they want: the insurance agent has to ask a number of
questions, to identify the insurance type, and each insurance type can have its own
eligibility and risk assessment criteria. To say that you want to insure a car is not
enough: is it a personal car for personal use, or a company car, or a rental car.
Second, the data that you supply depends on the type of insurance. If you say that
you want to insure a company car, we will ask about the company: what is its yearly
income, how many employees, how long it has been in business, etc. Insurance
agents will usually navigate through a sequence of input screens where the next
input screen to pop-up depends on the data entered so far. Further, some data fields
are usually validated on the fly, while others are performed once the data entry is
complete. Further, the risk assessment phase is usually done in several stages. The
first stages typically consist of computing one or several scores. In the last stage, we
make a decision based on where the score(s) fall: between 50 and 150, between 150
and 250, and above 250. Finally, the last stage will typically have three outcomes,
instead of the binary yes/no: we have “may be” for borderline cases, in which case
the policy is sent for manual referral to a human underwriter. Typically, the
underwriter would talk to the customer to seek additional information before
making a final decision.'®

Full-service insurance companies will offer insurance products to individuals —
personal lines — and corporations — commercial lines. Within personal lines, we
have auto insurance, homeowners insurance, renters insurance, flood protection,
valuable items, boat insurance, umbrella, etc. For commercial lines, we have
auto insurance, workers’ compensation, as well as insurance packages, which
may be customized to company sizes (small, medium, large) and industries
(restaurants, garages, stores, professional services offices, manufacturers, etc.).
Each one of these products will have its own business rules, but many products
will share some business rules. For example, data validation rules can be shared
across many products. Eligibility rules may also be common to several products.
This raises a number of rule management challenges, which we will discuss in
Chap. 7.

1%We have seen insurers who have a policy of referring high-risk customers to a competitor, when
they know that the competitor does have an insurance product appropriate for their profile.



2.4 Insurance 41

2.4.2 Claim Processing

People buy insurance so that when something happens, they get covered. A health
insurance customer who pays for a medical service will file a claim to get reim-
bursed for the corresponding expenses. Similarly, a car insurance customer who
gets into an accident and has to pay for car repairs will also file a claim to get the car
repairs paid for.

There are different payment modalities, depending on the type — and level — of
coverage, the cost of the services rendered, the kind of agreement that may exist
between the service provider (doctor, hospital, or garage) and the insurer, or the level
of integration of their information systems. In some cases, the insured pays first for
the services rendered (medical or car repair) and then asks the insurer to be reim-
bursed. In other instances, the service provider is the one who files the claim before
performing the service, to get a decision regarding coverage, and then, depending on
the answer of the insurance company, will bill the insurance company and the insured
accordingly. In yet other instances, the insured pays for the services, the service
provider fails a claim with the insurance, and the insured receives payment.

Regardless of the payment modality, the various claim processing processes
share a common subprocess, which starts with the input or electronic reception of a
claim form — regardless of who is filing it — along with invoices for services
rendered (or estimates for services to be rendered). The claim is then validated
(data fields). Next, we match a claim to the coverage to figure out which of the
services rendered are covered by the policy. Finally, we determine the amount of
the payment; this is called claim adjudication. Figure 2.6 shows a simplified claim
processing process.

The tasks of the “happy path” involve a large number of business rules. Claim
validation deals with the validation of the various data fields of the claim, such as
the name of the insured, their social security number, the policy number, the
identification of the service provider, the various dates, etc. The process of
Fig. 2.6 shows that invalid claims are routed out of the system, after we prepare a
validation report that describes the things that are wrong with the claim. In some
systems, the validation report is sent to a human claim handler who follows up with
the insured or with the service provider to complete or correct the information.

Claims that are found to be data-valid are submitted to a process that determines
their eligibility under the coverages of the insurance policy. This decision is ripe
with hundreds if not thousands of rules, regarding the identity of the insured and

else —>{Validation Issue Reporting

else
Coverage Issue Reporting

Eligible
Adjudicate Claim

Validate Claim Data Determine Coverage

Fig. 2.6 A simplified claim processing process



42 2 Business Rules in Practice

their affiliation/relation to the policy holder,!! the date at which the accident/
sinister occurred, relative to the effectiveness period of the policy — and any default
extensions thereof — and the duration of the association of the insured to the
policyholder, the location of the accident/sinister, the cause of the accident/sinister,
the nature of the damage, the nature of the service rendered to fix the damage, the
location (distance and jurisdiction), affiliation, certification, or identity of the
service provider, the time that separates the service delivery from the accident/
sinister, the time that separates the service delivery from the claim submission, etc.
Then you look at corroboration. For example, in car insurance, an assessor will
examine the accidented vehicle to assess the damage, and the type — and cost — of
repair to be performed. With health insurance, medical doctors peer over medical
records to assess the necessity of the recommended treatment, and the absence of
less expensive alternatives; in rare cases, a health insurer will require that insured
seek second opinions from other specialists — or ones that are affiliated with them,
etc. A number of these rules are coverage-specific. For example, coverage C,
covers procedures P; and P, performed by any qualified <whatever>, whereas
coverage C, covers only procedure P, with a yearly cap of X amount of dollars, if
performed by an affiliated <whatever>, etc.

Once we determine the eligibility of a claim, then we need to determine the level
of coverage to determine how much the insurer will pay versus how much the
insured will pay. Here again, we have hundreds and possibly thousands of rules,
depending on the complexity of the products offered by the insurer. First, we have
the notion of deductibles (the insured pays the first X dollars, or the first X%
dollars), then you have caps, which can be per insured, or per policy, or per
procedure/service, per year or over the life of policy, or a combination thereof.
Then you have reimbursements that depend on the location at which the service is
rendered. For example, the health insurance of one of the authors will pay a flat rate
for a “semi-private bed” for hospitalization (i.e., two patients to a room), regardless
of which option I choose (private, i.e., one bed per room, or semi-private, or shared,
with four to six beds in one hospital room), and when I submit a claim, I get
reimbursed for the minimum of actual expenses incurred and the price of a semi-
private room. However, the price of a semi-private room depends on where the
hospitalization occurs: anywhere in Canada versus in the USA, versus Europe, etc.

In this presentation, we simplified the underlying business process by clearly
separating claim data validation, from claim eligibility, from claim adjudication.
Some business rules might be considered borderline between two areas, and
some reasonable people might disagree.'> Without getting into the various issues

"!"The insured could be the policy holder, or a dependent or the spouse of the policy holder, e.g., for
health or personal car insurance, or working for the policy holder, in case of a commercial
insurance, etc.

"My health insurance puts a $500 yearly cap on physiotherapy. Assume that I reach the cap within
a particular year and that I submit another claim for physiotherapy for an extra $100. Should I
consider my claim as eligible but adjudicated to zero, or should I consider it as not eligible since I
will not get a single penny in reimbursement and does it make a difference?



2.5 Conclusion 43

involved, let us just say that (a) the distinction is important for several reasons,
including legal ones and (b) we found it useful to always push customers for crisp
business process definitions because it helps them sharpen their understanding of
their business and simplify their business rules by breaking them into “atomic”
parts (see Chap. 4).

Much like with the policy underwriting rules, the rules for claim processing need
to evolve frequently to accommodate the following changes:

¢ Changes in the insurance products, with the addition of new types of coverage

¢ Changes in the costs for performing various procedures/services

¢ Changes in diagnostic and treatment/repair techniques

e Changes in demographics or other trend-setting phenomena' that can affect the
revenue versus expense relationship

e Pressure from competitors, etc.

For this reason, most of the large insurance companies that we know are at different
stages of adoption of the business rules approach for their claim processing, going
from looking into the technology and building proofs of concepts to actually main-
taining production business rule applications. Some customers we worked with have
started introducing the approach to some of their product lines and are generalizing to
other product lines. One particular customer has an enterprise-level business rules
competency center, which is responsible, among other things, for implementing and
maintaining a fairly sophisticated business rule management system.

The case study used throughout this book is based on claim processing. We will
elaborate on the process shown in Fig. 2.6 as the need arises in the subsequent
chapters.

2.5 Conclusion

In this chapter, we presented a sample of six application areas for the business rules
approach, addressing both core business processes and support processes, in tele-
communications, railroad operations, mortgage underwriting, tax reporting and
withholding, insurance policy underwriting, and insurance claim processing,
which is the case study used throughout the book. This is but a small sample of
the range of application areas. Business rules have been used for a broad range of
e-government services, from managing student loans, to managing welfare pro-
grams, to customs, to taxation, to managing various compliance programs. It has

BFor example, in the health insurance business, population aging increases the incidence of
chronic age-related diseases which require different business models. Similarly, advances in
medicine on one hand and changes in diet and lifestyle on the other, change the profile of medical
conditions (what they are and their preponderance in the general population) that insurers have to
deal with.



44 2 Business Rules in Practice

also been used for various aspects of customer relationship management (trade
promotions, web personalization, recommender systems, loyalty programs, product
configuration, and others), manufacturing (planning, manufacturing shop controls),
marketing, and others. We have also been involved with customers ranging in size
from a start-up with a staff of four (including the CEO) to fortune 100 companies,
with tens, or hundreds, of thousands of employees. Perhaps more to the point, we
have applied the approach to $300,000 software projects as well as to 30 or 100
million dollar projects.

So what makes a software application or a company appropriate for the business
rules approach? In Sect. 1.2, we identified three issues that cry out for the business
rules approach: (1) the need for eliciting and sharing the business rules under which
an organization operates (in short, the need for rule management), (2) the need for
expressing executable business rules in a way that all stakeholders can understand,
or conversely, the need to make the shared expression of business rules executable
(in short, the need for rule automation), and (3) the need for development infra-
structure/paradigm that supports timely rule maintenance (in short, the need for
agile rule maintenance). The question then becomes, which kinds of applications
face these issues? To use a Jeff Foxworthy'* pattern:

¢ The need for rule management:

— If your business operates processes with nontrivial policies and rules that are
common to your industry, then, you might need the business rules approach.
Indeed, this is the case of voluntary “codes of conduct” one might find within
a particular industry, or imposed by regulatory agencies.

— If your business draws competitive advantage from the way it does things,
then you might need the business rules approach. Indeed, business policies
and rules can differentiate players within the same industry (underwriting
rules which might be more permissive to a particular market segment,
etc.), and it is important to capture and manage those rules throughout the
enterprise.

Another way of stating the above is, “if parts of your business are knowledge-

intensive, regardless of whether that knowledge is external or home-grown, then

you might need the business rules approach.”
¢ The need for rule automation:

— If your business software automates some of the decision making of your
business processes, as opposed to simply records the decisions made by
human actors, then you might need the business rules approach.

— If your business needs to show the business rules under which its processes
operate, then you might need the business rules approach.

Indeed, business rule automation buys you three things: (1) ease of implementa-

tion of the business rules, thanks to a rule language that is more appropriate for

expressing business rules than a procedural (or object-oriented) programming

M4yeff Foxworthy is a stand-up comedian, who has written a number of sketches that consist of
sentences along the pattern “if <some condition is true>, then you might be a <some quality>.”



2.6 Further Reading 45

language, (2) ease of deployment, thanks a separation between the business rules
and the rest of the code, and (3) ease of traceability to requirements, because
more often than not, the rule authoring language, or some translation thereof, is
also the rule execution language.
¢ The need for agile rule maintenance:
— If your business rules evolve at all, then you might need the business rules
approach.

Indeed, rule maintenance is always faster with the business rules approach than
with a procedural (or object-oriented) approach: (1) it is easier to understand the
change since requirements are given as business rules, (2) it is easier to identify
the artifact that needs to change — typically a well-identified business rule, (3) it
is easier to validate the changed version, because it is expressed in a language
close to requirements, and (4) it is easier to deploy the changed version, since
business rules are considered as data. This advantage of the business rules
approach becomes more overwhelming, as the frequency of changes increases.
In fact, with traditional methods, if the business rules change more than once
every 4-10 weeks — depending on the type and scope of change — then IT is
simply not able to respond.

2.6 Further Reading

Interested readers can find out about some business rules case studies in many of the
business rules publications and conferences. The annual business rules forum
(http://www .businessrulesforum.com) and its more technically oriented younger
sibling, October Rule Fest (http://www.rulefest.org), feature a number of speakers
from industry who report on lessons learned from real projects. Experience reports
in the more academically oriented conferences (IJCAI, ICTAI, etc.). A number of
on-line or dual-media magazines occasionally publish essays, state of the practice
surveys, case studies, or product reviews, including Information Week, Information
Management, KMWorld, BPTrends, and others. Books may contain descriptions of
some case studies, although project details might be hard to come by because of the
proprietary nature of the underlying information. Some companies might not even
want their competition to know that they are using the approach for a particular
business function, because they consider the adoption of the business rules
approach, in and of itself, as a competitive advantage.



Part I1
Methodology



Chapter 3

Agile Business Rule Development

Target audience

All; nontechnical audiences can skip Sects. 3.3 and 3.4

In this chapter you will learn

Key points

What is the Agile Business Rule Development (ABRD) metho-
dology, and what are its core principles.

Why develop business rule applications using an agile and itera-
tive approach.

How you can leverage the Eclipse Process Framework (EPF)
Composer and OpenUp to customize ABRD to your enterprise
environment and projects.

An Agile methodology promotes iterations and early use of tools,
which is the most appropriate approach to develop business
application leveraging BPM and BRM technologies.

The goal of executable rules over comprehensive rule description
is supported by the strongly iterative approach of ABRD.

3.1 Introduction

Business rule management systems (BRMS) introduce great flexibility to the IT
architecture, enabling developers to quickly and easily change the behavior of an
application and the decisions it produces. To best leverage the inherent agility of
BRMS components, the application development process must also be agile, with
developers, architects, and project managers working iteratively and incremen-
tally. The integration of BRMS, Business Process Management (BPM), Business

J. Boyer and H. Mili, Agile Business Rule Development, 49
DOI 10.1007/978-3-642-19041-4_3, © Springer-Verlag Berlin Heidelberg 2011



50 3 Agile Business Rule Development

Process Execution Language (BPEL)' engines, and MDM? in a service-oriented
architecture (SOA) enforces the need for an agile method of developing new systems.

Agile methodologies, such as eXtreme Programming, SCRUM, and more
recently, OpenUp, have provided an excellent foundation from which we can
start to address the particularities of developing business application using business
rules. What are these specificities?

Here are some typical questions from our client’s business analysts, project
managers, or enterprise architects:

e How do I discover the business rules?

¢ Can all rules be implemented with a BRMS?

e How can a BRMS be integrated with BPM products or fit into a service-oriented
architecture?

e How do I represent and manage the data used by the rules?

¢ How do I manage the rule life cycle from requirements to testing, deployment,
and retirement?

Recognizing that such concerns needed to be addressed in the context of a
methodology, we began developing the Agile Business Rule Development
(ABRD) methodology in 2003. The ABRD methodology includes a description
of all the different BRMS actors, the activities involved, the work deliverables to
produce, and the best practices or guidelines to follow. A rigid methodology has no
real chance of adoption if it cannot be adapted to your own approach of developing
software. Our goal, therefore, was to enable the methodology as content that could
be managed through a tool that allowed users to reuse, tune, and enhance it
according to their needs. The ABRD methodology was given to the Open Source
community so as to capitalize on the excellent work done in Eclipse Process
Framework Composer and OpenUp content and is now present as a plug-in of the
OpenUp library within http://www.eclipse.org/epf.

This chapter outlines the core principles of Agile Business Rule Development
and its strongly iterative approach to develop business processes and business rules.
You will also be introduced to OpenUp and Eclipse Process Framework Composer
tools that you can use to tailor the methodology to your organization.

3.2 Core Principles of the ABRD Methodology

The Agile Business Rule Development methodology is an incremental and iterative
software development process that takes into account the new concepts required
to deploy BRMS, BRE, BPEL, and BPM components into business applications.

'Business Process Execution Language is an OASIS standard executable language for specifying
interactions with web services (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=
wsbpel).

“Master Data Management is a set of processes and tools that defines and manages the reference
data and nontransactional data of an organization.



3.2 Core Principles of the ABRD Methodology 51

The ABRD methodology is adapted to the software and business challenges of
developing decision support systems and provides a better collaboration framework
between IT and business than traditional waterfall software development life cycle
(SDLC). Traditional software development models, such as the waterfall or the
V-model, while they may be interesting to support the development of mission-
critical projects, are notorious for producing over-budget, late-to-market solutions
that do not match initial business expectations for fast-paced projects where
requirements are evolving frequently. Such approaches leave business users with
little ownership of the solution, and implementing changes can easily take months.
As a result, business policy owners are uncomfortable with change — which
translates into loss of agility to respond competitively. In addition to the latency
between submitting change requirements to IT and the actual deployment of new
rules, policy managers have no guarantee that their changes were implemented
according to the business needs. Business users can only hope that all possible test
cases were covered during testing.

In contrast to such development models, ABRD leverages the following princi-
ples presented by the Agile Alliance manifesto (Fig. 3.1).

The Agile development values are particularly relevant to the implementation of
a rule set using the ABRD approach:

e [Individuals and interactions over processes and tools. The rule discovery,
analysis, and validation activities require active and efficient communication
between the rule developer, subject matter experts (SME), and business users.
Such processes are defined as lightly as possible.

o Working software over comprehensive documentation. Each iteration produces a
working, tested set of rules that can be executed, which has far more business
value than a rule description manual. While all project stakeholders benefit from
such a principle, business users in particular are then sure that what they see (the
rules, the business process) is what gets executed in the deployed system.

e Customer collaboration over contract negotiation. Subject matter experts who
define the business policies and the business rules are strongly involved in the
development process. As the customers of the final system and owners of the
policies, they are conveniently collocated with the development team during
the project. There is no specification document thrown above a wall waiting for
the IT to develop the system.

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation

Responding to change over following a plan

Fig. 3.1 Manifesto for Agile Software Development (http://www.agilemanifesto.org)



52 3 Agile Business Rule Development

® Responding to change over following a plan. Business rules evolve more often
and faster than other standard pieces of software. This is actually one of the key
values of the business rule approach. For this fundamental reason, the method-
ology to support the rule set development must be tailored to such rapid life
cycle and include the appropriate activities, processes, best practices, and work
products to support such changes efficiently.

The ABRD addresses the following goals in more detail:

e Separate rules as manageable artifacts using discovery, analysis and authoring
activities, and their related work products

e Trace rules during their full life cycle from requirement to deployment and
maintenance

¢ Link rules to business context and motivation

e Develop the rule description using business terms and high-level rule language

e Prepare the logical data model for the rule engine using object-oriented analysis
and design

e Prepare the rule set implementation and deployment as decision services in an
SOA

e Validate the rule set quality using a test-driven approach with continuous
integration and testing once the development team develops the rules, and the
business user maintains them

e Articulate the rule governance processes

Two fundamental drivers govern successful rule set development:

¢ The unforgiving honesty of executable rules
¢ The effectiveness of people working together with goodwill, shared vision, and
common interests (the business user and the development team)

Executable or working rules demonstrate to the developers and the subject
matter experts what they really do, as opposed to promises of a paper-based design
or specification.

ABRD extends OpenUP to avoid redefining standard roles, tasks, work products,
guidelines, and processes that are also relevant to rule development. As an EPF
plug-in, development teams can tailor it to the specific context of their own project,
leveraging the EPF Process Composer.

3.2.1 A Cycle Approach

The ABRD approach groups activities into cycles that enable iterative develop-
ment. ABRD activities include:

¢ Rule discovery
¢ Rule analysis
¢ Rule design



3.2 Core Principles of the ABRD Methodology 53

e Rule authoring
¢ Rule validation
¢ Rule deployment

Figure 3.2 represents how these activities can be executed in loops or cycles.

Working in short cycles allows you to ensure that the outcomes of these itera-
tions match the business expectations as the rule set grows.

The first cycle loops over rule discovery and analysis activities to harvest the
business policies and rules. The second loop is to prototype the executable rules by
looping of the rule discovery, analysis, design, and authoring activities. The third
cycle, called building includes multiples potential loops adapted by what needs to
be done: a pure focus on rule implementation loops between rule authoring and
validation, but when SMEs advises are needed the loop can go back to the discovery
and analysis activities. Finally the last cycle is to enhance the ruleset quality, by
adding new tests, new rules, and deploy it to the integrated business application.

3.2.2 Cycle 1: Harvesting

The goal of this first cycle is to understand the business entities and document just
enough rules so you can begin implementation.

During this first cycle, which may fit into the inception phase (see OpenUP for
more information), the project team performs business modeling activities, which
aim to describe the business process and decisions applied within the scope of the
business application. This phase also helps identify and evaluate potential rule
patterns (Fig. 3.3).

Building
Harvestlng ‘
‘__{ Rule H Rule H Rule H Rule H Rule H Rule }__‘
Discovery Analysis Design Authoring Validation Deployment
Prototyping X Enhancing

Fig. 3.2 Rule set development life cycle

Harvesting

Rule
Analysis

Rule
Discovery

Fig. 3.3 Rule harvesting
activities




54 3 Agile Business Rule Development

To get started, the development team splits the day into two parts. The morning
is spent in a discovery workshop, which is a 2-3 h session of harvesting the rules
from rule sources. The team harvests the rules from the business process descrip-
tion, interviews with subject matter experts, use cases descriptions, and any other
sources. The rest of the day is spent performing some analysis and documentation
of the discovery results. Depending on the number and complexity of the rules, the
team iterates on these two steps for 25 days.

One of the documents produced during this modeling phase is the decision point
table (DPT), which describes the points in the process (tasks, activities, transitions)
where there are a lot of business decisions involved (test conditions and actions).
These decision points represent potential candidates for rule sets.

3.2.3 Cycle 2: Prototyping

The prototyping cycle involves preparing the structure of the project and outlining
how rules are organized into a rule set. Once a certain level of discovery is done, the
development team can start implementing the structure of the rule set and can begin
rule authoring, while discovery and analysis activities continue (Fig. 3.4).

Starting rule authoring using the tools — typically and integrated development
environment (IDE) — as soon as possible allows you to uncover possible analysis
and design issues early on. Indeed, the rules may look good on paper but, just as
with classical software development, the real issues arise during implementation
and testing. Issues found during prototyping are communicated back to the business
team during the following morning discovery workshop. This feedback loop
approach provides an efficient mechanism to build a pragmatic, adequate, and
business-relevant executable rule set.

To ensure that the development team understands the rule set, they can work
from the decision point table produced during the harvesting cycle. As a starting
point for initial design, each decision point in the decision point table is mapped to a
rule set. (Rule sets can later be merged or split depending of reuse needs or service-
oriented design.) The architect needs to consider the data model, the flow of rule
execution (or rule flow), how errors and exceptions will be reported, input and

Prototyping

Rule Rule Rule Rule
Discovery Analysis Design Authoring

Fig. 3.4 Prototyping activities



3.2 Core Principles of the ABRD Methodology 55

output parameters used by the rule engine for each candidate rule set, and how
decision results will be reported back to the calling client.

Chapter 5 will provide more details about prototyping activities. In particular,
we will look at some BRMS-neutral best practices for project design and rule set
design.

3.2.4 Cycle 3: Building

In harmony with the Test-Driven Development (TDD) approach, the goal of the
building phase is to implement a set of unit test cases with real (or realistic) data,
write the rules being tested, and test the rules within their corresponding rule sets
and their targeted execution context.

As learned through our experiences during implementations of decision-support
systems, executable rules are more important than those defined “on paper” or in
some nonexecutable form. The “unforgiving honesty of executable rules” has a
strong value to show project progress and acceptance of those new technologies.
This agile statement is at the core of this cycle (Fig. 3.5).

This 3—4-week cycle includes daily authoring activities, which can be seen as a
set of little steps involving test case implementation, writing and executing rules,
and doing some validation with the team members. The short daily loops include:

¢ Loop on authoring and validation to develop test cases and rules.

e Loop on analysis, design, authoring, and validation to author executable rules,
complete the analysis, do some unit testing and address or resolve issues. This
is an improvement loop. The design is linked to enhance the data model and
the rule set structure (local variables, rule flow changes, and so on).

e Loop on a bi-daily basis on discovery, analysis, authoring, and validation. The
discovery will be used to complete the scope of the rule set and to address the
issues identified during implementation.

By the end of this cycle, the data model used by the rules in the context of this
rule set should be at least 90% complete, the project structure should be finalized,

Building
Complement
Improve
f Harvest j l vﬁ Enhance
Rule Rule Rule Rule Rule
Discovery Analysis Design Authoring Validation
[+] [+] [+] [+] [+]

Fig. 3.5 Building activities



56 3 Agile Business Rule Development

and a rule set should be deployed for testing so you can start testing the business
application with the decision service. The rule set may only be 40-60% complete,
but business users or rule writers can then elaborate and complete it in a later cycle,
Cycle 5: Enhancing (Sect. 3.2.6).

If the rule set is too large to be 40% complete by the end of 3 weeks, you can
execute this cycle multiple times. However, we recommend keeping this cycle to
3 weeks so you can deliver a concrete build to the Quality Assurance or validation
team for review and execution, before embarking on another build cycle.

3.2.5 Cycle 4: Integrating

The goal of this cycle is to deploy the rule set under construction to an execution
server to test it with an end-to-end testing scenario.

The integration of the decision service and the domain data model is an impor-
tant task. Data coming from the real data source is sent to the rule engine to fire
rules and infer decisions. During the previous phases, the development team
develops a set of test scenarios with realistic or real data which triggers rule
execution. Those test scenarios are executed during the integration phase to support
end to end testing. They can later serve as a nonregression test suite. If the test
framework is well designed, some of the data set can be used for unit testing on the
rule set and also to perform higher level functional verification tests (Fig. 3.6).

3.2.6 Cycle 5: Enhancing

Cycle 5 may be seen as a maturing phase where the goal is to complete and maintain
the rule set. This cycle includes authoring, validation, and deployment, but may still
require some short face-to-face discovery activities with subject matter experts
(SMEs) to address and wrap-up issues and questions (Fig. 3.7).

Integrating

Rule
Deployment N

Fig. 3.6 Deployment
activities Rule Set



3.3 Eclipse Process Framework 57

Enhancing

Complement

Improve
Harvest Enhance

Rule Rule Rule Rule Rule
Dlscovery AnaIyS|s Authorlng Valldatlon Deployment

Fig. 3.7 Rule set enhancing activities

The actors responsible for completing the rule set may be different from those
involved in the initial cycles. The members of this team are more business-oriented
and are the owners of the rule set and business policies. Once the core infrastructure
is implemented by the development team, they can complete the rule set at their
own pace. Even during a development phase, the business users can start their work
of completing the rule set.

Enhancements may also be required for the object model or physical data model,
such as adding new facts, attributes, or entities. Such modifications can follow the
standard software build management process of the core business application.

Do not expect the business team to discover and implement 100% of the rules
during the development of the rule set. The scope of a decision evolves over time.
The purpose of cycle 5 is to enhance the quality and completeness of the rule set.
However, the rule architect must design the rule set so that when no decision can be
taken for a given set of data, a default decision is enforced and that data can be
identified for future analysis.

3.3 Eclipse Process Framework

As a framework, EPF provides tools for software process engineering to develop
methodologies and share best practices. EPF comes with knowledge content
organized in a library, and with a tool (EPF Composer see Fig. 3.8) that enables
process engineers to implement, deploy, and maintain processes for organizations
or individual projects.

The goal of EPF is to deliver a platform for producing software development
practices, how-to, common definitions and vocabulary, and processes with tasks,
roles, work products, and guidelines definitions. Libraries are physical containers
for knowledge content, process configuration, and other parameters to publish the
content as a set of web pages. The library is organized in method plug-ins.
According to the EPF documentation, a method plug-in is “a container of content
used to describe what is to be produced, the necessary skills required” and “the step-
by-step explanations describing how specific development goals are achieved.”
Plug-ins can reference other plug-ins to extend existing content.



58 3 Agile Business Rule Development

# Eclipse Process Framework Composer - C:\ocuments and Settings\Administrator\EPPlepf_practices

L Probiess | . Mavgetir | T Prepmran
ety vae

Fig. 3.8 Eclipse Process Framework (EPF) composer screenshot

Processes describe the development life cycle for a given project or team.
Processes order the method content elements according to sequences/dependencies
that depend on the specific types of projects and determine when specific work
products can (no earlier than) or should (no later than) be performed.

As shown in Fig. 3.8, ABRD is subdivided into multiple method plug-ins:

e practice.tech.abrd.base includes all the content to describe tasks, work products,
and guidance.

e practice.tech.abrd.assign includes the roles description and the assignment tasks.

e process.abrd.base includes the delivery process and capability pattern definitions
for a typical rule set implementation.

e publish.abrd.base includes the view definition to export the content as HTML
pages.

One way to view the methodology is to use a Work Breakdown Structure (WBS)
to list the activities of ABRD. We define roles, tasks, work products, and guidance
in a hierarchy of folders named Content Packages. All content can be published to
HTML and deployed to web servers for distributed usage. Finally, process engi-
neers and project managers can select, tailor, and rapidly assemble processes for
their concrete development projects. Processes can be organized into reusable
building blocks, called capability patterns, which represent best development
practices for specific disciplines, technologies, or management styles.



3.3 Eclipse Process Framework 59

Using EPF Composer, practice libraries, and the ABRD plug-in, you will have
the tools and the base content to develop your own methodology to develop
business applications in the context of a first project or within a rule deployment
at the enterprise level.

For details and a download of the latest framework go to http://www.eclipse.
org/epf.

3.3.1 OpenUp

OpenUP is a light Unified Process® that uses an iterative, incremental, and col-
laborative approach to development and can be extended to address a broad variety
of project types. For example, you might use daily stand-up meetings for team
members to discuss project status or issues. Team members include the stake-
holders, developers, architects, project manager, and testers. The objective is to
reduce risk by identifying issues early in the life cycle and implementing mitigation
strategies.

OpenUP tries to balance agility and discipline. It measures individual progress in
micro-increments, which represent short units of work that produce a steady,
measurable bits of project progress. The process encourages team members to be
self-disciplined and organized in order to facilitate collaboration as the system is
incrementally developed. OpenUP divides a project into iterations that are mea-
sured in weeks, not months. Each iteration aims at delivering a measurable incre-
ment to stakeholders. For each iteration, the plan (including task asignment) is
geared towards producing a deliverable at the end.

The OpenUP project life cycle includes four phases: Inception, Elaboration,
Construction, and Transition. This life cycle is defined by a project plan. Stake-
holders and team members have visibility throughout the project, which enables
effective project management and allows you to make “go or no-go” decisions at
appropriate times.

Agile Business Rule Development leverages all the concepts described in
OpenUp and applies them for the purpose of developing business applications
using rule engines, BPEL and BPM technologies.

3.3.2 ABRD Structure

Once the practice.tech.abrd.base plug-in is open, you can navigate to the Content
Packages hierarchy. The structure may look like as shown in Fig. 3.9.

3See http://en.wikipedia.org/wiki/Unified_Process for detail on UP and the book “The Unified
Software Development Process” (ISBN 0-201-57169-2) by Ivar Jacobson, Grady Booch, and
James Rumbaugh.



60 3 Agile Business Rule Development

B library £2 B Content] i ddiade)
~

@8} meth_mgmt
=3 practice
@ &3 mgmt
=8 tech
=3 abrd
© @Y= assign
== base
(= =8 Method Content
=g Content Packages
== architecture
L5 Roles
&I Tasks
-8 Work Products
#-@® Guidance
& B common
B rule_analysis
(B8 rule_authoring
[\ rule_deployment
B rule_design
B rule_discovery
= rule_governance
#- =)\, rule_validation
B templates
=-(S Standard Categories
=[] Disciplines
@ [[Z] abrd_discipline
@ (8 Domains
(Z8 Work Product Kinds
& L5 Role Sets
(% Tools
L= custom Categories
#-[L Prav

(£

Fig. 3.9 ABRD base plug-in structure

Content is organized in a hierarchy of folders, which are mapped to the major
phases of the methodology: architecture, rule discovery, analysis, authoring, test-
ing, deployment, and governance. A common package includes the term defini-
tions, like business rules, rule engine, the introduction, and the cycle approach
explanation. When you are managing content, you need to be able to quickly
develop reusable templates, so the Templates folder groups these documents all
in one place. Any elements of the content can be categorized for quick navigation.
Categories are defined in the Standard Categories folder.



3.3 Eclipse Process Framework 61

3.3.3 ABRD Roles

ABRD role definitions were developed based on consulting engagements and on
reflection over “standard” definitions. The full list of predefined roles can be found
in the practice.tech.abrd.assign > role assignments content package. The role
descriptions include:

e Business analyst

e Rule analyst

e Rule architect

e Rule writer

e Rule administrator

e Subject matter expert

3.3.3.1 Business Analyst

The business analyst extends the definition of Analyst as described in OpenUP. The
business analyst, who is a major actor within the IT and business landscape, acts as
a bridge between the two organizations, with a good understanding of the business
goal, metrics, business process, and also with IT analysis skill set. In the scope of a
business rule application, business analysts help move corporate policy from
definition to execution inside a software application. Business analysts must trans-
late policy into a formal specification acceptable to developers and must validate
the formal specification with policy managers who may not understand the language
of the specification. The typical work products the business analyst is responsible for
are the business process definition, the decision point table, and glossary of term and
some time the entity model or logical data model.

3.3.3.2 Rule Analyst

Another important role is the rule analyst, which is a specialized business analyst
with a strong knowledge of how a business rule application runs, how a rule engine
works, how to design a logical data model, and how to do the rule discovery and
analysis activities. In rule-based project, the rule analyst is directly involved in
these activities:

¢ Create rule templates for rule authors to use

¢ Analyze rules for completeness and correctness, and apply logical optimization
of the rule structure

e Identify the use of rules in processes that implement business policies

¢ Ensure the quality of the business rules in term of documentation, meta-data, and
coverage

¢ Ensure that consistent terminology is used in the business rules in order to build
a common vocabulary and a domain data model



62 3 Agile Business Rule Development

e Analyze business rules to identify conflicts, redundancies

¢ Ensure consistency of business rules across functions, geographies, and systems
e Conduct impact analysis for revision or replacement of business rules

e Integrate new or revised rules into existing rule sets

e Make recommendations for business rule changes based on business knowledge
e Facilitate resolution of business rules issues

e Act as consultant for the project team

e Act as a liaison between business and IT

The rule analyst is responsible for the discovery roadmap and detailed workshop
itinerary. Rule analysts may be considered as knowledge engineers as they need to
assess the problem to solve, structure the knowledge around the business decision,
acquire, and structure the information to prepare for the implementation. Rule
analysts should be involved in testing and validating the outcomes of the different
decision services the business application is using. Figure 3.10 illustrates the
relationship between the tasks performed and work products that the rule analyst
produces or manages.

3.3.3.3 Rule Architect

The Rule architect is an extension of the concept of software architect. The rule
architect is responsible for defining and maintaining the structure of the rule-based
application. A rule architect helps the team work together in an agile fashion and
understands the iterative approach and how to design the application to deliver
value for each iteration. The rule architect jointly owns the solution and has strong
communication skills to interface with other parts of the organization. The rule
architect defines the structure and organization of the rule-based system. Outside of
the standard activities, skills, roles, and responsibilities of a software architect, this
role extends to:

The Rule Analyst is responsible for putting in place the rule approach and the rule stewardship. He is reponsible for the execution of the rule
managament process. and helps extract and write the business rules

Extends: Busin nalyst

Role Sets. ABRD

Palicy Change Discovery
Tamplates Roadmap
partoims

Extract The Get SME Feadback  Maintain Fules Prototype Rules  ReviewDuchsion  Synchesnize Data  Trandomm Rales
Meaning Of The Point Table
Fuls Bustiness Procem

Rule Anatyst
sspenaitle for

* Dise sy
Rosdmap

Fig. 3.10 Rule analyst role in Agile Business Rule Development (ABRD)



3.3 Eclipse Process Framework 63

e Selecting the technology to ensure performance of the rule execution and
usability of the BRMS platform

¢ Designing the infrastructure necessary for editing rules

¢ Producing one or several rule sets

¢ Building the structure of rule projects and the dependencies on the executable
domain object model

If the deployment of the application is part of a service-oriented architecture, the
rule architect participates in defining the various decision services that will use the
rule engine. The rule architect focuses on ensuring that the overall deployment and
organization of the rules makes sense from an application segmentation perspec-
tive, keeping in mind reuse, not only of decision services, but also at a lower
granularity, reuse of rules.

During the analysis activity, the rule architect designs the structure of the rule
repository, defining the required metadata to manage the rules, and possibly
implementing the structure personally to quickly prototype and get feedback from
the business team. Metadata attached to the rule is used to establish traceability for
rules from business motivation to the technical implementation and used to manage
the rule life cycle.

Once a first project is successfully finished, the architect has to design and
deploy the BRMS capability at the enterprise level. He leads the development of
the processes around repository management, rule life cycle, rule set life cycle, and
rule governance.

3.3.3.4 Rule Writer

ABRD specifies a dedicated role for writing rules. We observed various approaches
for this, from remote outsourcing at low cost labor to highly skilled business
analysts working closely with the business users. The range of approaches may
be led by the business goals and the type of business application. For example in the
subprime lending market where competition is intense, the loan processing appli-
cation needs to be changed quickly to adapt to new product definitions, new
regulation, or new risk management. In that case, local teams need to act quickly
on the rules, writes new rules or update existing ones, apply regression testing, and
run simulation tests before deploying the rules. Rule writers are involved during the
first phases of the business rule development, so in the agile approach, rule writers
are part of the team, participating in the discovery and analysis tasks.

Off-shoring rule development is an antinomy for the agile business rule
approach where business and IT work closely together and should be avoided for
the sake of efficiency and long-term maintenance purposes. The business has
ownership of the rules, not a remote team. To be successful, communication
between the business and the rule writer has to be strong, co-located at best, and
each team has to trust the other to deliver what was agreed on. Business rules are a
company asset delivering competitive advantages, which makes giving the imple-
mentation to an outside group more risky.



64 3 Agile Business Rule Development

Other roles involved in the application development are more standard, and we
do not need to describe them in the context of this book.

3.3.3.5 Subject Matter Expert

The Subject Matter Expert (SME) is responsible for defining the business processes,
the business policies, and the application requirements. He leads the business rules
acquisition activities as a domain expert and uses the Rules Management Applica-
tion as reviewer.

3.3.3.6 Rule Administrator

The Rule Administrator manages the rule authoring and deployment. He executes
the business rule management process and ensures the integrity of the rule set by
using the rule life cycle and rule set life cycle.

3.3.4 ABRD Work Products

Work products are outcomes of tasks in EPF. We grouped the work products per
main area of concern like architecture, discovery, analysis, validation, and rule
governance. Each major work product is detailed in the corresponding chapter
below. There are some work products that serve as input to the application of
ABRD. As defined in OpenUP and other Unified Processes, the project starts by an
inception phase, where some business modeling activities are started. Part of these
activities ABRD leverages at least the following work products:

e The business process description in the format of text or process map. Process
Maps are well described using the graphical notation as specified by the Business
Process Modeling Notation. For more information, visit http://www.bpmn.org.
From a process modeling point of view the level 3 of process decomposition is a
good source to identify decision points.

¢ Another type will be the use cases description of the business application. Here,
we need to focus on the end user use cases which are processing business data
and the ones involving business decisions. Technical or IT related use cases may
not be in scope of rule discovery and analysis.

From the use case description and the business process definition, it is possible
to extract a list of the candidate decision points. A decision point is an anchor
into one of the activity or step of the business process or use case where a set of
knowledge-driven decisions are done on the data or documents under process.
Those decision points are rule rich and will be most likely implemented using
BRMS technology. So building a Decision Point Table (DPT) at the earliest phases
of the project will help to drive the business rule development.



3.4 Usage Scenario for ABRD 65

3.4 Usage Scenario for ABRD

ABRD as an EPF plug-in can be extended for your own needs such as adding new
content, tuning the existing processes, developing best practices for a given BRMS
tool or organization, adding BPM activities and roles, etc. As an open source
contribution, ABRD is evolving at each release of the EPF practice library. We
recommend developing your own plug-in as an extension of ABRD. Using the EPF
Composer, you should create your own plug-in referencing practice.tech.abrd
using the New Method Plug-in wizard as shown in Fig. 3.11.

From there you can add any element as an extension of an existing element
defined in the hierarchy of the selected plug-ins. Figure 3.12 shows the various EPF
elements and concepts involved in a plug-in and their containment organization. It
is important to note that the entities whose name starts with a lowercase letter are
element instances, created by the plug-in author, while entities whose name starts

4 New Method Plug-in

Create a new method plug-in —H
Specify a name and provide general information about the new method plug-in. i :‘ E ,J"
Name: new_plug-in

Brief description:

Authors:

Referenced Plug-ns: | [] 4 practice.mgmt.whole_team.base A

<J=practice. tech.abrd.assign
<I=practice.tech.abrd.base
|:| &= practice. tech.concurrent_testing.assign
[[] <F=practice.tech.concurrent_testing.base
[[] <= practice.tech.continuous_integration.assign
[] <F=practice.tech.continuous_integration.base
[[] <¥=practice.tech.evolutionary_arch.assign
] <= practice. tech.evolutionary_arch.base
| 71 <=practice. tech.evolutionary desian.assian bl

[ Ensh [ concel |

Fig. 3.11 Create your own content plug-in



66

Fig. 3.12 Eclipse Process
Framework (EPF) library
elements

3 Agile Business Rule Development

= <~ i
(== Method Content
= (g Content Packages
- [=) B\ content_package
= L5 Roles
. C_‘ role
2 Tesks
_ L task
= &2 Wark Products
3 artifact
i deliverable
: % ouktcome
= (@ Guidance
©* concept
¥ checklist
__» example
2l gudeline
E repork
@ template
B supporting_material
*{ toolmentor
ﬁ whitepaper
EP practice
E;’!) estimation_considerations
reusable_asset
@ roadmap
_ A= term_definition
2 (2 standard Categories
IE’} Disciplnes
: (&2 pomains
(2 work Product Kinds
L5 Role sets
¥ Tools
=2 Custom Categories
. (=) custon_category
= (g Processes
(= £l Capability Patterns
S pattem
= &g Delivery P-ocesses
: P&o process
= ([ Configurations

config



3.4 Usage Scenario for ABRD 67

with a capital letter are structuring concepts provided by EPF. We recommend
using a naming convention for the elements created. The EPF practice is to use
lower case and to separate words using an underscore (““_").

Let us take an example of adding a task for an architect to design and prototype a
business process using a BPEL engine. The EPF Method content developer needs to
follow at least the following steps:

1. Create the Method Content Package with role, work product, guidance, and
then task: For example, add a Architecture Package, with a bpm_architect role
who will develop a bpel_process work product during the activity of design_
prototype_bpel_process as shown in Fig. 3.13.

When creating those elements, it is interesting to note that the task may
leverage work products or roles defined in other plug-ins. The business_process_
map and use_case model are coming from the abrd and core plug-ins.

2. Once we have created all the work products, we may need to update the role for
the responsibility link to the work product. Going to the bpel_architect we can
add bpel_process as a work product he is responsible for.

3. It is possible to add guidance like a “how to guide” describing how to use a
BPEL designer. This guidance can be linked to a task or a work product.

4. Optionally create within each task some step which the main performer will
have to complete for this task.

Composer - C:\Documwnts and Settings dsvnistrater EPFlopd_practices (4=

et arcePractons g R
= Wk Meted Coent T Expand Al Sectices
=l Contart Packages

9 Balen Foles

desgn_orotseres Inputs

Stantars Categores Outpues

Descrpten Saeca Msies Vierk Procucts Gudsece | Categenes Preven
2. Probless | = Mavigetor | T Provertes 11
Sroarty Vil

Fig. 3.13 New task to design Business Process Execution Language (BPEL) process



68

3 Agile Business Rule Development

5. Create categories to classify the content elements: modify roles, work products,

guidance, and tasks accordingly. Method Content elements are organized into
logical categories. The categories can appear in your final, published website as
views. The following table shows sample categories adapted from the typical
EPF categories.

Standard categories

Description

Example

Disciplines Disciplines are a collection of tasks ~ Perform certain requirements
that are related to a major area of tasks in close coordination
concern within the overall IT with analysis and design tasks
environment

Domains A domain is a refineable, logical, Architecture domain to capture
hierarchy of related Work WP related to architecture
products grouped together based
on timing, resources, or
relationships

A work product belongs to only one  Requirements, project
domain management, risk
management, etc.
Customer lending is a candidate
domain

Work product kinds ~ Work product kind is another Specification, plan, model,
category for grouping work assessment
products. A work product can
have many work product kinds

Role sets A role set is used to group roles with  The analyst role set could be used
certain commonalities to group together roles such as

business process analyst,
system analyst, and
requirements developer
BRMS role set could be used to
group rule analyst, rule admin
Tools Tools is a container for tool mentors  Clearcase mentors user guides

which provides guidance on how
to use a specific tool

For example, we can define a new category of work products to include any
elements related to BPEL and then attach the bpel_process to this category
(Fig. 3.14).

Another example of a useful category is to group roles by specialty or domain
area, or from an organization point of view (e.g., customer vs supplier, various
departments). Role sets should be created as soon as there are several specific
roles in a plug-in, to simplify views and allow them to be consistent.

Using the same mechanism, we can create one architecture discipline to group
all the tasks related to the application architecture.

Define configuration for the publishing step. The ultimate output of the EPF
Composer is a published website with method guidance and processes that can
be used by a project team. A Method Configuration is a selection of Content
Packages across different Method Plug-ins containing the method and process



3.4 Usage Scenario for ABRD 69

L] *bpel_process &3
Work Product (Artifact): bpel_process

~ Categories
Manage the categories :o which this work product belongs.

Domain:

;

‘Work product kinds
% bpel_wp_kind, ycur_plugin/Categories/WP Types

Fig. 3.14 Grouping work products together

content that will be included in the published website. So under the Config-
urations node in the Library View, we can create a “MyPlugin” configuration,
and then we need to specify the plug-ins we may reuse.

7. Create Capability Pattern. A Capability pattern is a special process that
describes a reusable cluster of activities in a general process area that provides
a consistent development approach to common problems. Capability patterns
can be used as building blocks to assemble delivery processes or larger
capability patterns. Under the Processes-Capability Patterns node in myPlugin,
we can add the “architecturePattern.” Once created, we can open the Work
Breakdown Structure (WBS) to add some tasks by drag and drop from the
configuration panel. The WBS may look like:

Presentation Name In... Predecessors Model ‘nfo Type Planned | Repea...|

= “& ArchitecturePattern 0 Capability P... (mjl|
e. Design and Prototype a Business Process l Task Descrip,.. O O
L Design Object Model for Rule Engine Pracessing Task Descrip... O a |
®& Develop Business Rule Application Archtecture _—_ Task Descrip... -D-- D.

8. Create Delivery Process. A Delivery Process describes a complete and
integrated approach for performing a specific type of project. We add a
Delivery Process named “myDeliveryProcesses” under the Processes/Delivery
Processes node and drag and drop our “ArchitecturePattern” from the configu-
ration view. The process WBS will look like:

£ *myDeliveryProcesses 53 =i
Presentation Name In... Predecessors Model Info Type Pkmed
= 3 myOclwwyﬁooe!u: Dolivery Pro..
I-_—- I-I
c. Deslm md Prototype a Business Process Task Descrip. ..
en Design Cbject Model for Rule Engine Processing 3 Task Descrip... [:]
L& Develop 3usiness Rule Application Architecture 4 Task Descrip... O

Doing this kind of method, we can add as many capabilities as needed to tune
our processes for our project or group or company.



70 3 Agile Business Rule Development

Design and prototype BPEL process
Weblisrance View z %

g ubts BPEL ¢

Rales

Outputs

Fig. 3.15 Published content of “MyPlugin”

9. Create View. Custom categories can be used to compose publishable views,
providing a means to organize method content prior to publishing. Under the
Custom Categories node of “myPlugin,” we can create a custom category name
“my_plugin_views,” then within the Assign table can add any elements content
like an introduction, the architecture discipline, and our process.

web_insurance_view 1 i bom_process myPlugn_cfy

Custom Category: web_insurance_view

= Content Elements
Maniage the content slsments that constitute this custom category
Content elements:
&= arch_mechanism, core. bech.common. extend_suop/technical_gusdance/Architecture Guidance

cesi sotteeol procts, yiein e SCEs ARGt =
v DO _DrOcess, MyWeDINsUancEeTACION_plug-n

To complete our configuration we need to add the newly created view in the
Views of the Configuration: myPlugin_cfg.

10. The last step is to publish our content in static or web application. The content
of several plug-ins can be mixed into one published view. Each view corre-
sponds to a tab in the tree view of the portal. Using the top menu Configuration/
Publish, we can export the Configuration named “myPlugin_cfg” and get a web
page like as shown in Fig. 3.15.

The left side offers a navigation tree to access content pages displayed on the
right side. HTML-based content links allow for easy navigation into the content.

Using these techniques, it is also possible to integrate ABRD and your own plug-in
with other agile methods such as SCRUM, XP, and RUP. The import/export facility
of EPF composer supports sharing plug-ins between libraries.

3.5 Summary and Conclusions

Agility is a must for business rule application development. Regardless of the
BRMS product you use, ABRD provides a starting point for developing your own
best practices and method content. ABRD supports a simple cycle approach to



3.6 Further Reading 71

implementing decision points within a business process and has already demon-
strated its effectiveness through its successful use during consulting engagements
and JRules deployments all over the world.

ABRD is the first open-source methodology and is supported by the Eclipse
Process Framework, which offers the tools, content, and methodology to help your
organization tailor the contents of ABRD to your needs and to create reusable
practices for efficient development.

Chapter 4 will explore the harvesting cycle in detail. In particular, we will
discuss rule analysis in detail. Chapter 5 will discuss the prototyping cycle, where
we highlight the major design issues facing application architects, and the rule
architect. The remaining cycles, that is, Building, Integration, and Enhancing, start
with the same activities as Prototyping, continuing on with rule validation, and rule
deployment. The duration and scope of the iterations change, and the focus shifts
away from discovery and analysis to authoring, validation, and deployment. We
explore the rule deployment design space in Chap. 12 and discuss JRules’ deploy-
ment options in Chap. 13. We will also explore rule testing issues in Chap. 14 and
discuss JRules’s features for testing in Chap. 15.

3.6 Further Reading

Agile Business Rule Development draws on a number of best practices in software
development, general software development methodologies (e.g., RUP and
OpenUP), rule-specific methodologies, and a number of technologies.

The reader can find more information about:

¢ Eclipse Process Framework at http://www.eclipse.org/epf.

e A publish version of Open Unified Process can be accessed at epf.eclipse.org/
wikis/openup/ and in the practice library http://www.eclipse.org/epf/downloads/
praclib/praclib_downloads.php, with ABRD and SCRUM.

e ABRD content is published at http://epf.eclipse.org/wikis/epfpractices/ going
under practices > Additional practices > Agile Business Rule Development.

e The book “The Unified Software Development Process” (ISBN 0-201-57169-2)
by Ivar Jacobson, Grady Booch, and James Rumbaugh — Publisher: Addison-
Wesley Professional presents the unified process methodology using UML
artifacts to develop efficient software application.

e The agile eXtreme Programming methodology is introduced at http://www.
extremeprogramming.org/ with detailed explanation of the XP rules.

* One of the most used agile and iterative methodology, SCRUM, has its own
portal at http://www.scrumalliance.org/.

¢ An introduction to the Master Data Management can be found on Wikipedia at
http://en.wikipedia.org/wiki/Master_data_management.

¢ The agile manifesto is presented at http://www.agilemanifesto.org.

¢ An introduction to the test-driven development may be read at http://en.wikipedia.
org/wiki/Test-driven_development.



Chapter 4
Rule Harvesting

Target audience
® (Must) business analyst; (optional) project manager, application
architect, rule author

In this chapter you will learn

o What are the different types of rules, and why it is important to
understand them

e How to set in place the rule harvesting process according to the
source of rules and the team structure

e How to extract a data model for the rules from the rule description

e How to prepare the rules for implementation

e How to put into practice these techniques with a claim processing
application

Key points
Start by a decision point that is simple but still brings business

value to the stakeholders.
o Describe rules using the business domain vocabulary, and future
map it to a logical data model.

4.1 Introduction

Rule harvesting includes the two main activities of rule discovery and analysis,
with the goal to understand the business entities (conceptual data model [CDM)])
within the scope of the application and to identify and extract the rules. A key
activity in the rule harvesting phase is to formalize the decisions made during the
execution of the business process by defining the different decision point candidates
for business rule implementation.

Agile Business Rule Development (ABRD) puts the emphasis on developing the
system through short iterations. Each iteration produces a working set of rules.

J. Boyer and H. Mili, Agile Business Rule Development, 73
DOI 10.1007/978-3-642-19041-4_4, © Springer-Verlag Berlin Heidelberg 2011



74 4 Rule Harvesting

| = = =l | |
Decision Business  Use Cases Business Rule Rule
Points Table Process Map Process Map Template Description

Review
Decision Point Define Organize Rule ~ Execute Rule Analvee - Transform Build
O> Tableor —» Discovery —b Discovery —p DisCovery vze __y LAy — -»> @

Analysis Team

B Roadmap Workshops Roadmap Rule Data Models Rules Test Scenario
Process Map
Discovery DP-rule Workshop  Glossary Rule Conceptual Rule Test
Roadmap map Agenda Description Data Model Description Scenario

Fig. 4.1 Rule harvesting activities

Feedback from the harvesting and prototyping phases forces the subject matter
experts (SMEs) to better understand their own business processes and help them to
adapt those processes for more efficiency. Rule harvesting is a short project activity
executed for each decision point in scope for implementation. The process flow
may look like in Fig. 4.1.

Section 4.2 will discuss rule discovery. First, we start by identifying the
different kinds of rules, then we describe the discovery activities. There are
different ways of conducting rule discovery, depending mostly on rule sources,
i.e., where we are going to discover the rules from, and the organization’s
modeling and requirements tradition (e.g., using use case, Oor process maps,
or business event analysis, etc.). Thus, as Barbara von Halle suggests, part of
rule discovery activities is . . . figuring out how to discover rules, i.e., defining the
rule discovery roadmap. Section 4.2 will discuss common activities (e.g., review
decision point table, define discovery roadmap, gather documents, document
rules), as well as roadmap specific activities (e.g., discover rules from SMEs,
discover rules from documents, discover rules from code). Section 4.3 shows rule
discovery for our case study.

Rule analysis is discussed in Sect. 4.4; many of the techniques presented are
based on vonHalle’s STEP methodology. Analysis activities include (1) reviewing
rule descriptions and fact models (Sect. 4.1), (2) transforming rules to obtain
unambiguous, atomic, nonredundant, and consistent rules (Sect. 4.2), (3) building
test scenarios (Sect. 4.3), and (4) verifying the rules against the data model
(Sect. 4.4). Section 4.5 shows rule analysis for our case study. We conclude in
Sect. 4.6.

4.2 Rule Discovery

Rule discovery, also called Business Rules Modeling in the industry, aims to
develop simple modeling artifacts like rule descriptions, business entity diagrams,
and business process maps. As described in Chap. 3, the development team
executes this activity on a regular basis during the development of the business



4.2 Rule Discovery 75

application. Rule discovery is an iterative process that will identify a subset of rules
and document them as opposed to spending months figuring out all the rules up
front and producing a huge document.

Business rule discovery techniques are similar to those used for traditional
requirements elicitation, with one main difference: focus on those special needs
that support decisions on how the business is executed in the company. From the
inception phase the project team gets a set of work products that are used during
rule discovery. These artifacts include:

. A high-level description of the business process

. A high-level description of the current and future architectures
. A list of data sources and data models

. The decision points table

B W N =

The decision points table, in particular, helps define where to find the rules (rule
sources) and which method to use for rule harvesting. The rule discovery process
changes according to the sources used. For example, working from a legal docu-
ment implies a different discovery process from the discovery based on interview-
ing subject matter experts.

4.2.1 Classification of Business Rules

Before deciding how to write rules and where to implement them, you first need to
understand which types of rules your team will be harvesting. In early 2008, the
Object Management Group (OMG) finalized a specification for documenting
the semantics of business vocabularies and business rules, entitled Semantics of
Business Vocabulary and Business Rules (SBVR).

The specification describes SBVR as part of the OMG’s Model Driven Archi-
tecture (MDA). Its purpose is to capture specifications in natural language and to
represent them formally to facilitate automation. SBVR includes two specialized
vocabularies:

¢ One to define business terms and meanings from the perspective of the business
teams. It is named in the SBVR specification as Business Vocabulary.

¢ One used to describe business rules in an unambiguous way leveraging the
business vocabulary.

The meaning is what someone understands or intends to express. The meanings
are derived into concepts, questions and propositions. A phrase such as “We deny
the invoice if the medical treatment was done after one year of the accident” has a
clear meaning for a claim processor (CP) within a car insurance company. Ana-
lysts need to logically transform this meaning into concepts that have a unique
interpretation so that we can represent the business knowledge within a compre-
hensive vocabulary. Concepts include a unique combination of characteristics or
properties.



76 4 Rule Harvesting

Within the Business Motivation Model (BMM),1 the OMG has also defined the
relation between business policies, directives, business processes, and business
rules. This work is very important to clearly classify each of those concepts. The
OMG definition of business policy is: “A non-actionable directive whose purpose is
to govern or guide the enterprise. Business policies govern business processes.”
A Business rule is — “A directive, intended to govern, guide, or influence business
behavior, in support of business policy that has been formulated in response to an
opportunity, threat, strength, or weakness. It is a single directive that does not
require additional interpretation to undertake strategies or tactics. Often, a business
rule is derived from business policy. Business rules guide a business process.” For
the purpose of rule harvesting, keep in mind that business rules are actionable,
unambiguous, and derived from the business policy. Considering rules as semanti-
cally meaningful, rather than business policies, is key to making them executable.

The OMG BMM reuses some classifications from the SBVR: business rules are
separated into two possible classes:

e Structural (definitional) business rules which are describing the structure of
the business entities used by the line of business organization. Such rules
describe constraints on the model, like possible value, or mandatory inclusion
or associations.

e Operational (behavioral) business rules are developed to enforce business poli-
cies, seen as obligations to execute efficiently the business. When considering
operational business rules it is important to look at the level of enforcement and
where the rule enforcement occurs.

In SBVR, rules are always constructed by documenting conditions to business
entities defined in the business vocabulary. A fact is a relationship between two or
more concepts.

Another approach to define facts is to use the Ontology Web Language (OWL)
and Resource Description Framework (RDF). Developed to specify semantic web,’
OWL and RDF can be used to model the enterprise ontology. The ontology is the
source for data models used by the rules as an alternate to traditional Object-
Oriented Analysis (OOA) and SBVR. OWL and RDF implement an object-rela-
tional model allowing creation of a directed graph, a network of objects and
relationships describing data.

Using a mix of the SBVR classification for business rules, OWL-RDF to
describe the domain and an older rule classification model which we have used
for years in consulting engagements, the different types of business rules can be
presented as shown in Fig. 4.2.

'Business Motivation Model V 1.1, Object Management Group at http://www.omg.org/spec/
BMM/1.1/.

*From Wikipedia, semantic web is defined as an extension to the WWW in which the meaning of
information and services on the web is defined, making it possible for the web to “understand” and
satisfy the requests of people and machines to use the web content.



4.2 Rule Discovery 77

["El Directive
&= BusinessPolicy | =] BusinessRule
E structuralRule | ] OperationalRule
|
|
[l ProcessFlow E Infe ! Guideli ] Constraint Clcomputation | | ] ActionEnabler | JECA

Fig. 4.2 Business rule schema

This schema represents the different types of rules that are relevant to the
business, including structural and operational rules. Structural rules define the
terms used by the business in expressing their business rules and the relationships
(facts) among those terms. These include the vocabulary used in rule authoring. As
an example a statement like: An insurance policy includes a set of coverage. The
policy is effective at a given date and needs to be renewed every six months.
Transforming this statement implies defining a structure in the insurance domain,
where an insurance policy entity has an effective date, expiration date, and a list of
coverages.

Operational rules are the rules that implement business decision logic. When a
business decision is made (e.g., whether to sell a given insurance policy, whether
to accept or reject a claim), the business rules are the individual statements of
business logic that are evaluated by the rule engine to determine the decision
result.

The following table is adapted from the work by Barbara Von Halle and is a
simplified view of the business rules group classification. It details those categories:

Rule classification Explanation
Mandatory Rules that reject the attempted business transaction.
constraints Grammar to use during rule documentation not implementation.

<term> MUST HAVE <at least, at most, exactly n of> <term>;

<term> MUST BE IN LIST <a,b,c>;

SBVR expression: it is [not] necessary that <fact>

Guidelines Rules that does not reject the transaction; they merely warn about an

undesirable circumstance. Usually translates to warning messages.

<term> SHOULD HAVE <at least, at most, exactly n of> <term>;

<term> SHOULD BE IN LIST <a,b,c>

SBVR expression: it is [not] possible that < fact >

It is possible but not necessary < fact >

(continued)



78 4 Rule Harvesting

Rule classification Explanation

Action-enablers Rules that tests conditions and upon finding them true, initiate another
business event, message, business process, or other activity
IF <condition> THEN action
Computations Rules that create new information from existing information based on
mathematical computation
<term> IS COMPUTED AS <formula>

Inferences Rules that create new information from existing information. The result
is a piece of knowledge used as a new fact for the rule engine to
consider

IF <term> <operator> <term> THEN <term> <operator> <term>

Event Condition Rules where the condition is evaluated once the occurrence of an event

Action (ECA) is found. Most ECA rules use temporal operators to search events

related to their timestamp of creation or occurrence
On <event> when <condition> then <action>

To implement guidelines and constraints, you need to consider what happens
when they are violated. Most of the time, the action raises an exception or a high
priority issue to be managed later in the business process, which may reject the
business event. The rule needs to report clearly on the selected decision so that a
human can understand and act on the business transaction.

A guideline written as: The date of loss should be before the expiration date
of the policy may translate to the following rule: if the date of loss is after the
expiration date of the policy, then create a warning ticket for the claim processor to
handle. This implementation allows the insurer to make allowances for an insured
person who has a history of regularly renewing the policy but for some reason
forgot to renew on time.

A constraint written as: The borrower must put a minimum cash down of 5%
translates to this rule: if the minimum cash is below 5% then reject the loan
application with the reason “The borrower must put minimum cash down of 5%.”

Action enabler rules modify, create, or delete terms or association between
terms, or execute methods, which can be web service. For example, a rule like: if
a driver has made one or more at-fault claims in the current year, decrease the
discount rate by 3% changes an attribute (“discount rate”) of an object.

Computation rules implement mathematical equations and assign values to
variables according to a set of given criteria. For example, a risk factor variable
can be computed according to the age of the driver. It is important to note that
management of computation rules may require managing the entire ruleset together
if there are rules that are required to be managed prior to those calculations and at
the terms of the calculation.

Process flow routing rules direct the movement through a process flow or
workflow. Process flow rules are distinct from business logic rules. It may be
helpful to distinguish process flow rules from the business logic rules that
determine the values of the parameters on which the process flow is directed as
such rules are more often complex and numerous than routing rules. Routing rules



4.2 Rule Discovery 79

may be written as: if there is at least one exception in previous activity of the
process goes to this task if not continue on the main path. The business logic to
define if there is an exception is made within a rule engine with a lot of rules to
evaluate and execute.

Inference rules use syntax similar to action enabler rules, but they create new
objects or facts which may bring the engine to re-evaluate some other rule’s
eligibility. During discovery, it is important to understand the execution context
as seen by the business user and be able to answer questions like: “If executing this
rule modifies the state of the claim, will the eligibility rules that have already
executed need to be reevaluated?” For example, an insurance policy underwriting
rule that says if the age of the driving license is below 3, add a risk factor of 50 and
reevaluate the total risk score modifies the risk scoring variables, which requires
that other rules be reevaluated.

It is possible to continue the decomposition of those rules. For example, trans-
formation rules in ETL (Extract Transform Load) are often considered separate
from other business rules; although in pattern, they are essentially inference rules
and computation rules. Data transformation rules, while important to the business,
are a side effect of system implementation rather than a reflection of core business
logic. For implementation, the decision to use a rule engine for data transformation
rules depends on whether the rules are static, dynamic, or business driven. Some
implementations use a rule engine to easily implement transformation rules
between two data models instead of using a complex scripting language when
the transformations have to be maintained by business users.

Recently, a new subcategory of ECA rule appeared within the IT horizon: the
Complex Event Processing (CEP) statements (or rules) which support a category of
business rules related to real-time event filtering, event aggregation and correlation,
and applying pattern matching conditions on attributes of events. CEP applies
business rules to a stream of data. A business rule to detect fraud on banking
cards may be written as: Raise a warning alarm if more than one transaction for
an amount over $100 is received from the same merchant on the same card number
within the last 15-minutes. According to the preceding rule classifications, this rule
would be considered a mix of ECA and inference rules. However, one important
dimension of this type of rule is the time window constraint on which the rules
apply and the type of language used to write the rule. Today most of those
languages are based on SQL and include operators to look at time window. The
action part of the rule creates new events (called the complex events), which are
managed by a downstream application. The convergence of a CEP engine with a
BRMS platform starts to happen, as rule engines excel in pattern matching, and can
apply more complex decisions on already aggregated and filtered events. In fact,
alarm filtering and correlation applications in telecommunications network man-
agement are examples of complex event processing implemented with a BRMS
(see Sect. 2.2.1).

In addition to industry standards, here are other rule patterns commonly found in
business applications:



80 4 Rule Harvesting

Rule classification Type of application

Compliance rules Rules that reject the attempted business transaction
Yes/no result but completed with reason code and explanation
Underwriting
Fraud detection
Data and form validation
Example: Whoever receives a commission paid by an insurance company
for the sale of an insurance policy needs an insurance license
Rating Strongly interrelated rules that compute metrics for a complex object model
Scoring and rating
Contracts and allocation
Pure calculations on an object providing a final value (or rating)
Example: if the driver is between 16 and 22 years old the risk is set to 400
If the driver is between 23 and 27 the risk is set to 300 .. ..
Correlation Strongly interrelated rules that correlate information from a set of objects to
Compute some complex metrics
Billing and cost estimation
Complement by inserting information
Example: if the medical bill references a patient, and the patient is not
declared in the related claim then there is an issue on the claim
description or the invoice is not related to a patient covered
Stateful Strongly interrelated rules that correlate events in a stateful way. Stateful
in this context means the internal states of the engine are maintained
between rule execution invocations
Alarm filtering and correlation
Web page navigation
GUI customization
Example: if there is an alarm L1 on network element A and an alarm L2 on
network element B and a direct link exists between A and B then the
alarm L1 is linked to L2, remove alarm L2

Classifying rules facilitates the design cycle, which focuses on deciding the best
implementation for a given rule. Inference and action enabler rules are good
candidates for a rule engine. Pure computation will most likely be implemented
in code unless computation rules are subject to frequent changes in the criteria of
applicability or are linked to others business rules. The classification also helps to
evaluate the complexity of the rules and the workload to implement it.

4.2.2 Discovery Activities

The discovery phase contains some preparation tasks, such as reviewing the
decision point table, the use case model or the business process, defining the
discovery roadmap, and organizing the elicitation workshops. Some activities are
recurring such as executing the discovery itself. These are basic steps, which you
can extend to your own project needs (see Fig. 4.1). The remaining subsections
detail some of those activities. The work products listed in this process are part of
ABRD EPF plug-in.



4.2 Rule Discovery 81

The discovery activities are conducted during the elaboration phase of the
project, but the same process is conducted even after the system has gone into
production when there is a new business event, or when there is a need to modify
some decision or some business policy. Companies have been operating with
business rules for many years, but the form of these rules is not externalized and
managed as standalone artefact. Capturing business rules relies on a combination of
eliciting business requirements, reverse engineering existing applications, and
expert’s knowledge. Business rules are not just requirements: they specify how a
business process is executed, how decisions are made, and how domain knowledge
is structured. When using a business rule approach for business requirements
elicitation, we are working at the business process and policies and procedures
level to understand the constraints and the behaviours of the process.

The most unique aspect of the rules discovery phase is the perception of a
business event as a set of decision-rich activities. We unfold the processing of a
business event as a set of decisions and policies. We then dissect the decisions and
policies into executable and precise business rules that guide the business event in a
predictable and desirable manner. We will detail these concepts in Sect. 4.4.

There are two dimensions to consider when preparing the rule discovery activ-
ities or roadmap.’

e The source of rule, which can be:

e The documentation which includes all sorts of documents (business plans,
deliverables of earlier projects, legislation, regulations, standards, and busi-
ness requirements for the current project)

e The tacit know-how: the unwritten “way we do things”, embodied as a
collective way of doing things (organizational intelligence), or as individual
expertise

e The legacy system, which includes an operational system that implements
some of the business logic (code mining)

e The Business records as the way particular customer requirements have been
satisfied, pricing formulas used in previous contracts

¢ The type of analysis techniques used by the project team:

¢ Business event analysis

¢ Use case elaboration

¢ Business process modeling

e Business mission and strategy analysis

e Data analysis

Obviously the know-how discovery is the most difficult elicitation task to
execute and the one that usually takes the longest time. We will provide details
later in this section on how to conduct such an elicitation workshop.

3The term “rule discovery” roadmap is also used in the industry to present the journey the analysts
go through.



82 4 Rule Harvesting

The following table is giving the different possible starting points for the
discovery activities based on the analysis method used:

Starting point Analysis description

Business events Start with the business events listed in the inception artifacts. Some
example can be: a claim or invoice is received, the loan application is
submitted, the call data record is posted ... Each business event is
processed by a set of activities that can be described in document or
business process. This approach is rarely used

Use case Analyze use case description to find decision points and then rules.
Preferred approach, for teams familiar with use cases, or user stories
Business process — Evaluate individual process steps and tasks to define the decision behind
workflow activity and then the rules. Used when the organization uses process

decomposition for the requirements gathering and analysis phase. We
group workflow in this category

Data analysis Used in case of data change-oriented rules project. The project team looks
at the life cycle of the major business objects and extracts the
processes and decisions used to change the state of the data. It can start
with the logical data model and how the business entities are created,
updated, deleted and what their states are. One example of such an
approach is to look at the states of an insurance policy, and how, who,
when changes are made

Business mission Based on a top-down rules and business policies approach. Rules sources

and strategy are high-level manager, decision makers, legal documentation . . .

It is important to set the expectation among the stakeholders that not all the rules
will be discovered during this phase. The goal is to complete the rule discovery up
to 40-60% so we can have some tangible decisions on standard business events to
process. The rule writers and the development team will increase the amount of
rules in scope during future iterations of the implementation.

4.2.2.1 Review Decision Point Table or Business Process Map

When the business modeling activity of the Inception phase is completed, the
project team should have a decision point table document as a source for the rule
discovery phase. If not, it is still possible to build it from the description of the
business process. There are different ways to extract the decision points table.

Use Case Approach

If the project team uses use cases approach to document requirements, the rule
discovery team can study the use case descriptions to identify those tasks or
activities where the system makes a nontrivial decision. In her book “Business
Rule Applied”, Barbara Von Halle suggests looking for verbal cues in task/activity
descriptions that might suggest a nontrivial decision making. For example, verbs
such as check, qualify, compute, calculate, estimate, evaluate, determine, assess,



4.2 Rule Discovery 83

compare, verify, validate, confirm, decide, diagnose, or process may hint at some
“intelligent” processing. Behind these verbs lurk lots of business knowledge and
business rules.

Here is an example of a use case description for a basic loan underwriting process:

Use case name  Check mortgage eligibility Version 0.9
Problem domain Handling mortgage applications Author
Purpose A Borrower has submitted a mortgage application, along with supporting

documentation. A loan officer/clerk has verified the supporting
documentation, and input the application into the system. The data of the
application has been validated. We check three sets of criteria, in this order:
(mortgage) loan eligibility, borrower eligibility, and property eligibility.
When one of them fails, we exit the use case.

Actors Mortgage Loan Officer (or clerk), on behalf of Borrower

Trigger events  The data of a mortgage application has passed validation, and is now submitted
through eligibility

System response Decision

Start the eligibility verification
Verify the eligibility of the loan ® Check the type of loan
® Check the transaction type
® Check the loan amount
® Check the down payment
® Check the term of the loan
® Check the loan to value ratio
The loan is eligible. ® Check the age of the borrower
Verify the eligibility of the borrower ® Check the immigration/citizenship status of the borrower
® Check the financial situation of the borrower
® Check the number of mortgages

This use case template includes a decision column used to drive the discussion
during the rule discovery.

Business Process Modeling Approach

Business process modeling involves the same approach and should include at least
the following activities:

¢ Define the actors of the process — by roles. Clearly list the different human actors
of the process and classify them by role.

¢ Design the as-is process with tasks and dependencies. Do not attempt to analyze
the full process in one shot, instead, use an incremental approach. Use BPMS
editor to design the process and simulate it. BPMS includes some simulation tool
that helps to verify the process being analyzed.

¢ Identify branch points in the process which lead to different subpaths from the
current point. The decisions to route to one of the sub branches can be considered
as business rules: in Fig. 4.2, those routing rules are simply expressed in the
process model as a set of conditions leading to different branches. The simplest
response will be providing a binary response, but it is possible to define responses



84 4 Rule Harvesting

as a set of predefined values of an enumeration such as {good, average, bad},
{gold, silver, and platinum} .... From our experience we do not recommend
having a lot of branches coming out of a conditional node in a process map. A
typical process will have from 2 to 6-8 branches.

With a business process modeling approach, the analysis team looks at task
descriptions to search for mental thinking verbs, the same. Then the analyst works
with the subject matter experts to understand how the decisions on those activities
are made. If there are decisions based on business practices and decisions, we need
to log in a table format the task reference, what are the sources for rule, who is the
owner, etc. Each row of the table forms a decision point. Once decision points are
identified, a review of each decision point is needed. This review should take less
than half a day to conduct. This session allows stakeholders to review the decision
points and to set the priority for rule harvesting at each decision point level. To
complete this task, you may need to get answers to at least the following questions:

e What is the current process to define, document, implement, test, and update the
business rules?

e Who owns the rules and the business policy definitions within the business
organization?

¢ Are there any classifications such as country/geography or product category with
some specific rules we need to take care of? Is the same team defining them? We
were working on projects where at the beginning of the project we were dealing
with the core business team, but a lot of rules were overridden by the branch
offices in the different countries, so the elicitation process has to be adapted to
get such information.

e What is the number of rules for each decision point?

e What are examples of actual rules?

e [s there a rule sharing policy?

A good practice is to start with a simple, well-understood decision point, to help
train the team on the elicitation practices, but keep in mind that the management
will want to see the business value of what the team is working on. So a decision
point which brings a lot of business value should be at the top of the list. With the
iterative approach of ABRD, we can develop an executable ruleset in one time
boxed iteration of 20-25 days. This is important to show the value of the approach
with tangible results.

The purpose of this activity is to preset the roadmap definition phase and to
verify that we have the important information on the business process and the
related decision points.

4.2.2.2 Define Discovery Roadmap

The definition of the discovery roadmap is an important step to understand how the
analyst team will extract the rules from the different kind of sources. The selection
of the type of roadmap is linked to the rule source. Tony Morgan in his book



4.2 Rule Discovery 85

“Business Rules and Information Systems: Aligning IT with Business Goals”
proposes the following discovery processes:

e The static analysis process uses reading and highlighting the rules within
documentation, which can be legal, internal policies, procedure. The team
has to gather all the related documents with the reference on version, date of
creation, and validity. The elicitation is based on reading sessions completed
with Question/Answer workshop sessions.

e [nteractive involves working sessions with subject matter experts who have the
knowledge of the business process and the decisions within a process task. Also
a person doing the day-to-day activity is a very good source to understand how
decisions are made and how exceptions to the main business process are
handled. The process to elicit rules from people will be accomplished by using
elicitation workshop.

* Automated involve using a computer and special applications to search for rule
statement within procedure code, SQL procedures, code listing, and so forth.
When using rule mining technology, we have to be careful to not lose the context
of execution in which the if-then-else statement was implemented. Therefore,
code review should always be complemented by workshop sessions for Q&A.

Code mining is one activity our customers or prospects request quite often, but
which ends up being less efficient than expected. Care needs to be taken on that
matter as responding and addressing the following items can be time consuming:

e Who has the knowledge of the current code? Is this person still in the company?

¢ Should the current business context use the same business rules as 15 or 20 years
ago? If those rules are still valuable and valid they should be well known by the
company and no code mining is required.

e Not all “If-then-else” statements in legacy code represent business rules, some-
times procedures, functions, and algorithms may be an implementation of
business rules. The context of execution is a very important dimension to
understand before reusing a coded (business) rule as-is.

e Variable names were often limited to eight characters in a flat data model. There
is no need to keep it that way. You may want to think about designing an
efficient object-oriented model.

e Most of the time automatic translation of badly coded business rules will
generate bad business rules in the new environment.

¢ Business rules implemented for a business rule engine have a different structure
than procedural code. They should be more atomic and isolated* (see also
Concept: Atomic Rule in a later section), and the rule writer may leverage the
inference capacity of the engine. Therefore, the automatic translation will pro-
duce poor results.

“A business rule is said to be “atomic” in that it cannot be broken down or decomposed further into
more detailed business rules. If reduced any further, there would be loss of important information
about the business (Source: http://www. businessrulesgroup .org/first_paper/brO1c3.htm).



86 4 Rule Harvesting

The following table summarizes the different techniques classified per type of
source, based on Morgan (2002):

Source Static analysis Interactive Automated
Documentation Very good fit As a complement of Not yet possible
static analysis
Know-how Not applicable Unique solution Not applicable
Code Efficient As a complement of the Gives good result
other processes
Business record Depends on the Moderate or a Depends on the source
source complement (may be impossible)

When the source of the business rules is people, individual interviews are
required to get the core of the knowledge and then followed up with workshops
to resolve outstanding issues and process exception paths with the team.

Once we understand the type of elicitation roadmap, we can move to the
preparation and execution of the rule discovery activities.

4.2.2.3 Gather the Related Documents

For rule discovery based on documentation or code, the project team must gather all
the applicable documents and add (and version) them in a central document
repository for traceability purpose. The more information the team can gather at
the beginning of the discovery the easier the elicitation job is. There is a common
pattern of human thinking that the system is working a certain way, but no
document or even code can prove it really works as expected.

4.2.2.4 Studying Decision Point

It is a good practice to automate, with rule processing, the decision points of the
business process, leaving the exceptions to humans. Over time some exception
handling can be added to the rules. A typical case can be seen in loan underwriting
rules: An expert may quickly extract the main rules to support the loan application
(the loan to value should be under 85%), but over time, market conditions,
regulations, new legislations, and competition may enforce the line of business to
define exceptions to the core rules. Those exceptions are added to the ruleset as
new rules.

From the decision point table extracted in the previous activity, it is important to
complete its description by specifying the list of decisions required at this point of
the process. This table may be completed by logging the outcomes of conversations
with the different experts or by reading legal documents.



4.2 Rule Discovery 87
4.2.2.5 Organize Rule Discovery

To make a better use of the development and business teams’ time, it is important to
plan in advance the workshop sessions and to clearly state what is in the agenda. We
recommend organizing the day in two parts:

e Use the morning for discovery workshops using elicitation techniques with the
project stakeholders and subject matter experts. During the rule harvesting cycle
of ABRD, the analyst team may want to use the rule template document to enter
the rule description and use some simple diagramming techniques to define the
business entities as conceptual data model® (A good tool to use is a UML class
diagram editor, by adding entities as class and attributes and omitting the details
of the methods and the associations). Ensure the tool, notation used are clearly
understood by team members.

e Use the second part of the day to perform the analysis activities.

As explained in the previous chapter, the discovery workshops are executed
using different frequency of occurrence. In ABRD harvesting and prototyping
cycles, the workshops can be set every morning, but when starting with the
implementation cycle, they could occur only every 2 days or more, but never
more than a week apart to keep the team focused and enforce feedbacks.

The team should have access to a dedicated meeting room with white boards,
pencils, paper, post it notes, and potentially a UML tool to quickly develop diagrams.
To organize the sessions, the project team may need to name a moderator responsible
for managing the meetings and keeping the team on track. The moderator role is to:

¢ Establish a professional and objective tone to the meetings

e Start and end the meetings on time

e Establish and enforce the “rules of conduct” of the meetings

e Introduce the goals and agenda for the meetings

e Facilitate a process of decision and consensus making, but avoid participating in
the content

e Make certain that all stakeholders participate and have their input heard

¢ Control disruptive or unproductive behavior

e Gather “Open Points” and follow up actions between sessions (use a simple
Excel sheet for instance or “Meeting Minutes” template document)

To organize the workshop, the project manager has to set a strict agenda inviting
all the domain experts who will help to formalize the rules. Gather the required
documents and explain how the meetings will be managed. The agenda may have at
least the following information:

A conceptual data model defines the meaning of the things in an organization and includes
business entities and their associations.



88 4 Rule Harvesting

e Which decision point is being discussed in this meeting
e Which documents to use
e Rule template
e Glossary of terms document
e Business process map or use case documents
¢ Conceptual data model
¢ Any additional helpful documents/resources
¢ The meeting room and the schedule
¢ The name of the moderator
e The high-level rules to follow during the meeting like:
¢ Be on time: you will have one “joker” for one time late. A fee of $5 will be
taken after that towards a conclusion party
¢ In each session all the members should participate
e We will use brainstorming techniques
¢ The moderator controls the time
¢ Everyone can have their opinion
e No criticism

The session should not last more than 2 h, typically from 9 to 11. This can be
scheduled for 2 or more consecutive days.

4.2.2.6 Execute Rule Discovery Roadmap

This activity supports the three types of rule discovery: business users and experts
workshop session, document study, and legacy code mining. Even if the main
sources of rules are documents or code, it is still important to come back to an
SME to get feedback on what the team discovered. Note that access to SMEs is
quite often challenging because they are typically engaged in other production
projects. To reduce this impact to a minimum, it is very important to do a lot of
preparation work to optimize the meeting time.

Rule elicitation is an ongoing activity you perform throughout the project.
Collaboration with your stakeholders is critical. They will change their minds as
the project proceeds and that’s perfectly fine.

It is important at this stage to remember that there are different types of
languages for expressing business rules:

e Natural language
e Restricted Language
e Formal expression using a specific grammar

The natural language is initially used during business conversations to describe the
rules, informally, without trying to impose any structure, for example with people
sitting around a table. At this stage, we do not have any templates or guidelines



4.2 Rule Discovery 89

for structure that we need to abide to. Using this language, we may have redundancy
and inconstancy in the rule expressions and in the business terms used.

A second evolution is using a restricted language, still consumable by both
analysts and developers, but where we have imposed some structure and grammar
to the language so we can express rule statements with proper form. SBVR
proposes the restricted English for this purpose. The statement may not be correct
semantically (redundancy, consistency, etc.), but we can formalize the business
term and glossary of terms. Templates such as the one below can be used to also
define some meta-data attached to the rule:

Business Activity: use case # decision
Decision:
Policies:

Owner Person or team owner of the business policies

Candidate rule project | Used later during the prototyping and building phases

Candidate Package Sometimes a decision point will be mapped to a group called package and be part
of a decision service. A decision service will have multiple packages with the or-
chestration of execution handled by a rule flow

History
Rule Name Rule Comment |
Accident Prone Use the raw natural language of the business conversation. Use comment for
Customer Later we may need to use a more strict language like the example to de-
restricted English of SBVR. scribe the type of
A customer who had an accident report in the past is rule
marked as accident prone inference
R2 It is necessary that only one deductible be attached to a
coverage
R3
Business entities List the business entities used, this will help to build the conceptual data model
referenced

Who can change the Can be filled during analysis, it helps to understand the velocity of the rule and
rules? prepare in the design of the ruleset and the rule governance process

‘When the change can Same comment as above.
occur?

The third type of language is precise and there are no ambiguities: the rule refers
exactly to information system objects. This language is parseable and nonambigu-
ous and can be executed by a computer.



90 4 Rule Harvesting

A formal language features sentences which have a clear and unambiguous
interpretation. There are different kinds of formal languages:

e Predicate logic using syntax like: (V X,Y) [Claim(X) A Medicallnvoice(Y) A
Relation(X,Y) => (claimRefNumber(Y) = claimNumber(X))]

¢ Object Constraint Language (OCL): is an addition to UML to express con-
straints between objects that must be satisfied

e Truth tables or decision table which present rule as row and columns repre-
senting conditions and actions

e Semantics of Business Vocabulary and Business Rules or SBVR which
defines structural and operational rules as well a vocabulary to define business
concepts

¢ JRules Technical Rule Language executable by a rule engine

e JRules Business Action Language, high-level language close to English,
which is formal as it is using a unique interpretation and unique translation.
Rule writers pick among a set of predefined sentences

4.2.2.7 Discovering Rules from SMEs

Interviews and analysis workshops are the two types of interaction used with
subject matter expert. For interviews, the typical number of people in the same
room is around two or three and for workshops six to ten people are involved.
Workshops can last several days. Interviews are used at the beginning of the
discovery phase and will most likely address one area of the business process.
The analysis workshop is perhaps the most powerful technique for eliciting a lot of
requirements. It gathers all key stakeholders together for a short but intensely
focused period. The use of a facilitator experienced in requirements management
can ensure the success of the workshop. Brainstorming is the most efficient
technique used during the sessions.

Brainstorming involves both idea generation and idea reduction. Voting techni-
ques may be used to prioritize the ideas created during a brainstorming session. The
workshop facilitator should enforce some rules of conduct during these workshops:

¢ Do not “attack” other members.

e Do not come back late from a break, even if key stakeholders may be late
returning because they have other things to do. The sessions are short so they
should be able to do other activities during the day.

¢ Avoid domineering position.

Some authors have suggested the following to improve the process:

¢ Facilitator keeps a timer for all breaks and fines anyone that is late, everyone gets
one free pass.

¢ Facilitator encourages everyone to use 5-min position statement.

¢ In case of a long discussion without reaching a firm conclusion or an agreement
it is good to use the business concerns to drive the elicitation.



4.2 Rule Discovery 91

e If a rule is not clear, then it is a good idea to try it out/prototype it.
e Use concrete scenarios to illustrate some rules. These scenarios can later be
leveraged for tests.

The following table lists the standard questions the analyst team may ask during
the workshop, depending of the source:

Type of input document  Questions Type of artifacts
impacted
Use case or business In this activity, what kind of control the worker Use case or BPM
process map is responsible to perform the task? What kind of ~ Rule description
decisions? On this use case step, the person document

assess the application, what kind of assessment
is he doing? Is there a standard check list?

Rule description What do you mean by . ... (a business term Conceptual data

Conceptual data model to clearly define) model
How does it relate to . ... (other business term)

Rule statement What about the other ranges of possible values  Business Entities
for this condition? How often does this Diagram
condition change? Do you have some other Rule description
cases? document

Between sessions, verify that business terms are well defined and the rules make
sense and do not have logical conflicts. Log all the questions related to this analysis
in an issue tracking document (Open Points).

4.2.2.8 Discovering Rules from Documents

This approach is used when Governmental Administration or policy group issues
legal documents. We did observe this work requires courage and rigor. When using
electronic documents, we used the following practices:

¢ Annotate the document on anything that needs some future discussion

¢ Copy and paste the business policy declared in the document to the rule template
to clearly isolate it for future analysis

e Work in a consistent/systematic way to ensure a good coverage

e Check for agreement with the current business model as you go along

¢ Investigate discrepancies and log them

¢ Focus on stakeholder understanding (communication is key) and insist to clarify
how a legal rule is interpreted by the line of business

One risk with this approach is that the reader is making his own interpretation of
the context, and the document may not include all the cases and criteria leading to
interpretations. It is sometimes difficult to get the business motivation behind a
written policy. We recommend applying a rigorous method to be able to achieve the
following goals:



92 4 Rule Harvesting

¢ Get an exhaustive list of the business events under scope: log them in a table

¢ Get the activities, tasks, and processes that support the processing of those
business events

¢ Identify where the business rules could be enforced in the process

e Get the business motivation behind the rules

¢ Get explanation on rules if they are unclear, ambiguous

e Try to extract the object model under scope, domain values by looking at the
terms used by the rules . ..

We should still apply agile modeling by involving the SMEs to get feedbacks on
the findings, assumptions, and issues. Use simple diagrams to communicate with
the project stakeholders.

4.2.2.9 Discovering Rules from Code

Discovering rules from application code is time consuming and does not lead to
great results. The analyst needs to study a lot of lines of code and procedures to find
the conditional operators which are linked to business decisions. Depending on the
design and code structure of the application, this work can be very time consuming.
It is important to remember the context of execution when the “if statement” is
executed, some variables may change the context of this “business rules.” With
some languages using limited length to define variable names it is more difficult to
relate such variables to business entities. A variable in one procedure can have a
different name but the same meaning. Code mining tools exist on the market and
help to extract business rules and the variables meanings. It is important to keep in
mind that rules written in the past may not be relevant any more. Lastly, as stated
previously, most of the rules implemented as procedural function need a deep
refactoring before deployment to a rule engine.

Code mining is commonly requested by people as it reassures the business team
that the rule harvesting starts by the existing behavior of the legacy code. Code
mining is usually better used to confirm behavior of some litigious points identified
from using other techniques than to try to extract all of the rules as a whole. Rule
discovery with SME, using workshop sessions, may conduct to ambiguities or
misconceptions. Trying to understand how the rules are implemented in the current
system helps to resolve such situations.

4.2.2.10 Documenting the Business Rules

We suggest that a template as presented above should be used for documenting rule
details during the harvesting phase. To document the rule, try to use the language
of the business (“problem domain”) rather than the language of the technology



4.3 Rule Discovery: Case Study 93

(“solution domain”). The following rule is as stated by a business user in a car rental
industry:

A driver authorized to drive a car of group K must be over 29
A rule developer may think to document the rule as:

If the age of the driver is less than 29 and the requested group of the reservation is
K, modify the authorized attribute of the driver accordingly.

As stated above it is important to identify the different languages used to
document the rule. The rule statements may evolve with time. We use different
templates for documenting rules, depending of the type of discovery roadmap.
ABRD includes different templates you can leverage.

4.3 Rule Discovery: Case Study

To illustrate all the concepts described in this book, we use a simplified business
process for the claim processing application in a fictional insurance property and
casualty company named MyWeblnsurance. Currently, the claim processing appli-
cation is using a mix of a legacy COBOL application, which has been doing an
excellent job during recent years using a data processing approach, and packaged
applications, which are not easily adaptable to support new requirements. In the last
few months, an increase in the number of claims to process has led the business
executives to address the following business problems:

e Supporting better user experience by giving clear information on the claim
processing state

e Supporting a dramatic increase of the demands: more claims to process without
hiring more staff

e Supporting new regulatory rules or financial audit policies that force, for exam-
ple, to pay a claim within 30 days or to be able to re-play an old processed claim
for audit purposes

As business grows, customer quality concerns arise because the legacy applica-
tion could not easily and quickly be modified to support new demands and changes
to the process. We can imagine many more drivers for the change but those
important business requirements force the enterprise architect of MyWeblnsurance
to work on the future evolution of this claim processing application, based on agile
technologies such as BPM, BRMS, MDM, ESB, and leveraging a Service Oriented
Architecture.

The current business process starts with an insured person sending a claim or a
medical service provider sending a medical invoice to the company. The following
actors or stakeholders are part of the process. Each actor is accessing the current
legacy application using different menus depending on his role.



o4

4 Rule Harvesting

Actor Role Type of interface

Claimant The insured person Use standard paper forms
to fill the claim

Patient The person related to the insured person May mail medical

Medical service
provider

Mail processor
(MP)

who receives medical treatments after
an accident

The medical provider or other service
provider who can invoice.

The claim or bill request is received by mail,
so the mail processor enters some

invoice

Enter information on a
legal paper form.
Legacy text-based screen

— claim entry
information in the system. The system
returns the claim number and the claim
processor candidate to handle this claim.
The paper form is routed internally to the
claim processor

Claim processor Responsible to complete the data entry, to

(CP) make first level of investigation, to pay
simple claim, and additionally, some are
responsible to analyze customer records
and determine if the billed level of service
is appropriate

Responsible for coverage, liability, and

damage investigations. The CA authorizes
payments for both indemnity and expense
payments and is responsible for providing
the direction to bring claims to a timely
and accurate conclusion

Manage the claim processing employees

within a branch. He is involved in specific
claim reviews typically with invoices
above a certain dollar amount

Legacy text-based screen
— claim processor
access

Claim adjuster
(CA)

Legacy text-based screen
— adjuster access

Branch manager Legacy text-based screen

— manager access

The process below is a simplified version of a real insurance claim application,
but illustrates the major activities we need to consider for our case study. The
analyst is using the current application main user menu to initiate the process
modeling task.

When MyWeblnsurance receives the paper documents, a Mail Processor starts
the process by looking at the paper sent and by assigning the document to a Claim
Processor. He assigns a claim number at this moment by using a legacy system to
get new claim number. Then the medical invoice or the claim follows a set of
activities to assess the customer eligibility, the coverage as defined in the policy and
to evaluate the amount of money to pay. The set of issues found by the different
applications and by the people are resolved during the life cycle of the claim. This
process can take a lot of time and it is possible that the bill may not get paid on time
and to get penalties.

The claim validation and coverage verification are completed partially manually
by the claim processor visiting a set of screens and data fields to verify if coding
is entered correctly. There are some communication protocols, using mail to route
the work item to a different person in the process. The file moves from an input
basket to the output basket of the claim processor. The process is hard coded



4.3 Rule Discovery: Case Study 95

Claim Adjuster Branch
Processor Manager

()
_/

User Login

Adjuster access:
Claim Summary
Claim Review

Manager access:

Operational Reports
User Admin

Claim Processor|

Main Menu

—

\,| Claim Entry

~0[+]
Manage

Adjudication
Issues

|, [Claim Verificatior)

~+]

Issue
Management

~0)f+

Issue Payment O
Correspondance

Coverage
Verification

Fig. 4.3 As-is claim process as described by claim processor

in the application. Changes are difficult to make and take a long time to release.
Some functions are already revamped with a web interface to reduce the cost of
maintenance. When the claim is verified successfully, the adjudication can be
calculated by one of the adjusters. The process in our case ends with the payment.
In fact all the issues are well managed by the application, and correspondence is
generated to ask questions to service providers or claimants to get more informa-
tion. All correspondence is persisted in a legacy data store and can be retrieved from
the screen to see the progress of the claim within the process and what information
we are waiting for. Figure 4.3 was used to present this process.

We will not spend too much time describing the process in detail, but from this
process the analysis team members can define the following decision point table:

Decision point Description Source for rule Current Rule owner —
name discovery state of SME
automation
Claim verification Validate that the claim  Interview SME and  Manual Adjuster
or medical invoice insurance legal department
entered in the system document and
contains valid data policies like the

one related to
UB92 legal form

(continued)



96 4 Rule Harvesting

Decision point Description Source for rule Current Rule owner —
name discovery state of SME
automation
Coverage The system needs to Interview SME, Manual Adjuster
verification verify what coverage query the policy department
and deductible apply data base for
to the given claim coverage and
deductible types
Adjudication Claims adjudication in  Interview and legal = Manual Adjuster
health insurance rule department

refers to the
determination of a
member’s payment,
or financial
responsibility, after a
medical claim is
applied to the
member’s insurance

benefits
Route issue If there is an issue in the Interview claim Manual Management
automated process, it operator manager department

will create an issue
that needs to be
handled manually.
Decisions on who to
route this issue can
be made. Claims can
follow at least three
paths:

® Automatic processing

® Exception-issues to be
resolved by claim
processor

® Exception-issues to be
resolved by claim
manager

We will focus on two decision points: claim validation and claim adjudication.
For the claim processing application, the development team decided to apply a rule
discovery process based on a business process analysis roadmap. Sources for the
rules are divided between expert know-how and some legal documentation and
forms. The execution of rule discovery workshops with the different claim proces-
sors and managers provided the following important information:

¢ (Claims and medical invoices are received by mail. A “mail processor” (human)
assigns a unique claim number and then routes the claim to a claim processor
(a person). This data is manually written on the claim. The claim processor
enters the claim in the system. The description is based on a simplified version of
the UB92 (or HCFA1450) American standard form. In this example, we keep the



4.3 Rule Discovery: Case Study

97

simplest version so that the process can easily be adapted to other countries. We
do not aim to develop a real business application.

Patient control number: Statement covers Admission Patient name
XXXXX period Date  Hour Type Src
From Through
Type of bill
Patient’s Birthday Sex Patient’s Address
Conditions codes: | | | | |
RCC description | Rate Unit Serv.date Total Charge | Non-covered
Payer name Est. amount due Due from
patient
Provider no. Provider address
Insured’s name Insurance company | Employer name Employer
ref location
Treatment authorization Principal procedure | Other procedure Other proc.
codes Code Date Code Date Code Date
remarks Provider signature Date

e Certain types of claims are either calculated manually or processed through
stand-alone software applications. A small minority of claims are paid in full,
requiring no adjudication.

Here is an example of a rule from a legal statements at the back page of the UB92
form: If the patient has indicated that other health insurance or a state medical
assistance agency will pay part of his/her medical expenses and helshe wants
information about his/her claim released to them upon their request, necessary
authorization is on file. This rule may land behind the claim validation decision
service. Some business terms like patient, other health insurance, claim informa-
tion, release authorization, need to be integrated in the conceptual data model and
somewhere the process needs to include a notification activity to exchange corre-
spondence with the other health insurance party. Studying the UB 92 form leads us
to extract the following business entities:



98

4 Rule Harvesting

This form represents a medical bill: MedicalBill. A code supports the type of

bill. This code is a legal reference number and can be retrieved from a reference

data source.

Provider name, address, and telephone number are required; the minimum entry

is the provider’s name, city, state, and ZIP code.

The patient’s unique alphanumeric number assigned by the provider to facilitate

retrieval of individual financial records and posting of payment.

The type of bill is a three-digit alphanumeric, with the first digit specifying the

type of facility:

¢ 1 — Hospital

e 2 — Skilled nursing

e 3 — Home health

¢ 4 — Religious nonmedical (hospital)

e 5 —Religious nonmedical (extended care)

¢ 6 — Intermediate care

e 7 — Clinic or hospital-based renal dialysis facility (requires special informa-
tion in second digit)

e 8 — Special facility or hospital ASC surgery (requires special information in
second digit below)

e 9 —Reserved for national assignment

The second digit is for classification outside of a clinic, and the third digit is for

frequency.

The medical bill includes the patient information, like control number (required
number assigned by the provider), name, address, and his status related to the
insurance policy; patient sex is M or F. The month, day, and year of birth is
shown numerically as MMDDYYYY.

The coverage period: beginning and ending dates of the period of the injury.
The admission type to identify if this is an emergency (severe, life threatening,
or potentially disabling conditions), urgent, elective, or NA.

The conditions code: codes identifying medical conditions related to this bill
which may affect processing.

The line item includes a medical procedure code, revenue description, a rate,
service data ... The medical procedure code is a very important element to
identify the type of invoice. A large portion of the rules will have conditions that
look at this code.

The claim verification step is started once the claim data entry is completed. The

following business policies are extracted from interactions with the different claim
processors of the company (Table 4.1):

For the purpose of this sample, we are not developing a complete application.

Claim processing represents one of the most difficult applications in the insurance
industry. The rules above should help to support the analysis and development of
our first ruleset and not support a real-life claim processing application. It is also



4.3 Rule Discovery: Case Study

Table 4.1 Claim verification rule description

99

Process step: Called after the claim or medical invoice is entered in the system.

Va!idate Business motivation: Any violation of the following rules will be a rejection of the
claim or claim or the medical bill. The claimant needs to provide accurate data. The sooner
medical we can extract data inconsistency the lower will be the cost of processing.
invoice
Rule id Raw description of the rule Comment — rule classification
VCo1 The Claim should be initiated within 30 Guidance. We may need to specify a
working days after the accident range of possible days when the
Claim must be rejected. We can
propose 45 days and never after
1 year. Also the number of days
could come from the policy
VC02 We need to verify that the accident location Constraint. The list of supported
is one supported by the policy. For a states is variable
given product, MyWeblnsurance defines Rejection generates issue
different states where the policy applies.
But as the customer may want to change
this coverage, the list of possible states is
attached to the policy
VCO03 Verify that the person state of residency is  Constraint.
one supported by the policy Rejection generates issue.
VC04 The customer insurance policy has a set of ~ Very specific — Constraint.
coverage with coverage code, which Rejection generates issue
needs to be different from 05 and a
business code not equal to 45
VCO05 The claim must be issued before the Constraint
expiration date of the policy. Rejection generates issue
VCO06 The date of loss should be before the Guidance. We may need to specify
expiration date of the policy and after a range of possible days when
the effective date the Claim must be rejected
according to the federal and
local laws
VCo07 The claim applies on a property covered by Constraint
the policy (a car, a bicycle)
VC08 The billing invoice is always linked to a Constraint
claim. It includes a reference to a patient
and a list of billing item. Each billing
item has a procedure code, a quantity, a
service data, total charges, and
noncovered charges. If any procedure
code is unknown raise an issue
VC09 When the medical invoice is the first
received for a given claim, we need to
verify that the date of the earliest service
has to be within 1 year after the date of
loss, and the invoice should be received
before this 1 year delay
VC10 The first medical treatment should be within
90 days after the date of loss
VCl11 A policy applies to one or more listed

drivers. Listed drivers mean the first
name and last name provided by the
insured person. A claim must come from
one of the listed drivers




100 4 Rule Harvesting

Table 4.2 Adjudication rule description

Business Activity: adjudication of medical invoice
Decision:
Policies:

Owner Adjudication department — Adjudicator director

Candidate rule project adjudicateClaimRules

History
Rule name Rule description Comment
Verify Treatment Evaluate if one of the treatments in the ~ This may be implemented
needs independent medical bill needs an IME by looking with a decision table to
medical at the medical procedure code in table look for each line item the
evaluation “IMEevaluationNeeded.” We want to procedure code and the
add some criteria on the invoice action is to set some IME
amount and later on the service needed or not with a type
provider of IME request. This

resolution will include
information such as:

Need peer review, need
potential peer review, and
need claim processor’s
review

The invoice is put on hold,
and the action is wait for

IME results
Review IME results  If the invoice needs IME, verify we have
all the IME results. If not continue to
keep invoice on hold and create issue
for each missing IME result
Missed Medical When there are two or more missing
Evaluation Independent Medical Evaluation
Appointments appointments, the invoice is set to
“grounds for non-cooperation.” This
should force denial of the entire claim
Create an issue for the claim processor to
contact the person with the number of
appointments missed
Identify Medical Deny any invoice with medical procedure The IME result has
Procedure (s) not supported by our expert Treatments. So we need to
excluded from evaluation verify for each line item of
Expert Treatment the invoice; the procedure
evaluation code is the same as the

treatment code
This can be accomplished in
java or SOL with a join
between two collections
ReviewByLicensed = The chiropractic claim must be reviewed

chiropractic by a licensed chiropractor. Procedure
code start by “CHIR”
GoodStanding The chiropractic consultant must be in
Chiropractic good standing and have a current

license in the state in which the review
is performed with no current license
term violations

(continued)



4.3 Rule Discovery: Case Study 101

Table 4.2 (continued)

Business Activity: adjudication of medical invoice
Decision:

Policies:

Owner Adjudication department — Adjudicator director

Candidate rule project adjudicateClaimRules

History
Rule name Rule description Comment
Emergency Create an audit review if there is a ER Treatment after DOL
Treatment after medical treatment given in the
date of loss emergency room later than 5 days
after the accident
Ambulance after date Create an audit review if there is a Ambulance Treatment not on
of loss ambulance transport not on the same DOL
day as the accident
Too late medical If the earliest medical service date of any Reason is: “First Date of
treatment treatment invoiced is after 1 year of Service is one year past
the accident deny the entire invoice Date of Loss”
and report an issue
Gap in treatments If there is at least more than 100 days
between the earliest medical service
date of any treatment invoiced and the
last date of medical service on
previous invoice, then deny the entire
invoice
Late treatment Create an issue when the earliest medical Reason is: “First Date of
service is given 90 days after the date Service is a late treatment”
of loss
Late invoice Create an issue when the received date of Reason is “Receipt date of
the medical invoice is 1 year after the invoice one year past Date
date of loss of Loss”
Bill not timely We are rejecting the invoice if there is any
line item with a date of service older
than 90 days from the date of invoice
Outpatient The covered outpatient services include
reimbursement the following services, emergency

room, ambulatory room, medically
necessary outpatient hospital and
clinic, radiology, and medical
imaging

When the invoice is from an hospital and
related to an outpatient service, the
revenue code needs to be 490 and bill
type 83X; any surgical procedure
listed in CPT code will be reimbursed
accordingly

Reimburse the service at the outpatient
OMB rate

Otherwise claims are reimbursed by
multiplying covered charges by the
statewide outpatient cost-to-charge
ratio




102 4 Rule Harvesting
important to note that those rules are not in their final state, we will transform them
using a more formal representation during the analysis phase.

In insurance, claim adjudication refers to the determination of an insured
person’s payment, or financial responsibility, after a medical claim is applied to
the insured’s insurance benefits. Most of the time the insurance company will
initiate some expert audit, called Independent Medical Evaluation, to complete
the diagnostic of the patient and evaluate the appropriateness of the given treatment.
An Adjustment is the calculation of the amounts to be made paid by the insurance
company. For the “adjudicate claim” decision point, the rule discovery aims to
develop the business rules as in Table 4.2 which presents a second type of template.

4.4 Rule Analysis

The goal of the rule analysis activity is to understand the meaning of the rule as
stated by the business person and subject matter experts and to remove any
ambiguity and semantic issue. The objective is to prepare the rules for the future
implementation. As mentioned in the Chap. 3, rule analysis can start as soon as the
team has some rule descriptions which are agreed upon by the subject matter
experts. The rule analysis phase includes activities such as “analyze the rule
description and fact models”, “transform the rule”, “build test scenario”, “design
the data model used by the rules”, and “synchronize with current logical or physical
data models.” The flow may look like in Fig. 4.4.

4.4.1 Analyze Rule Descriptions and Fact Models

The first activity focuses on analyzing the rule descriptions to extract the business
entities and terms used. During the elicitation activity, the raw description of the

Rule

Desc‘ription
= ---
I
o
it
@

@

4 &
2

<C| Rule Analyst

Congeptual
Data Model
I

- $
P
v .V
Analyze

Rule Description & ¢—p
Fact Models

1

Build
Test Scenario

Transform
Rules

Functional Test

Rule Description Description

Developer

Synchronize
—————» With Other Data ——»-
Models

Design Data
Model for Rules

UML - XSD, Java Java, XSD, SQL

Fig. 4.4 Rule analysis activities




4.4 Rule Analysis 103

rule uses business terms as used in a common language, used by the people. We are
at the expression level used to communicate between humans. At this level, terms
have lot of ambiguities. To be able to remove those ambiguities, we need to define
the meaning of the concepts used and link them by formal propositions.

W3C has produced important specifications to define semantic models which
could be used to define the data model used by the rules. As mentioned earlier,
OWL (Ontology Web Language) helps to define the enterprise domain model or
ontology. The ontology describes the concepts in the domain and the relationships
between them. It can vary from taxonomy to conceptual model. OWL leverages
W3C-RDF, the Resource Description Framework, to persist the semantics of the
things to be described in XML format. A reasoning engine can check the internal
consistency of the statements and definitions in the ontology. It can also classify
concepts by finding the definitions/categories under which they fit. Many compa-
nies interested in business rules are also considering developing an enterprise
ontology with OWL-RDF. The adoption of such standards and emerging tools
will help to develop the complete semantics needed for enterprise data models.

Using a more traditional approach, Object-Oriented Analysis (OOA) describes
what the system is by using a set of models of the system as a group of interacting
objects. Each object represents some entity of interest and is defined with a Class.
A class includes attributes and behaviors as methods. OOA models are typically
represented with UML use case diagrams, UML class diagrams, and a number of
UML interaction diagrams. Using an OOA approach, we can model the concepts
used by the business in static class diagrams to use a formal notation. At this stage
of the methodology, we may have the following possible data models in our hands:

e A conceptual data model

¢ A logical data model

¢ A physical data model

e Some reference data which describes static list, enumerated value, classifica-
tions, and the like

Those models are not finalized, and they are enhanced and transformed during
future iterations of the harvesting and prototyping phases. Most projects have
already some data models, and database analysts contribute to explain how some
business concepts are mapped to physical data model elements. When using a rule
approach, it makes sense to start by the rule description and define the data model
from there and not to start from an existing physical data model. We need a view of
the current data model and a clear definition of the terms used by the rules; we do
not need a complex data model to express the rules. Rule analysts have to extract
the business terms from the rule statement and build a business glossary. We did
observe that this glossary brings a lot of value to the line of business as terms are
defined without ambiguity and interpretation. Business terms and their relationships
can be represented in a conceptual data model (CDM) or entities diagram. The steps
to perform the analysis are:



104 4 Rule Harvesting

e Highlight the nouns used in each rule description. We are talking about Terms,
as referring to a business concept used in daily business operations. It can be
one or more words and nouns. They are often differences found in between
departments, and each department may refer to the same business concept but
defines it using different perspective and hence different words. These are
actually synonyms. Examples of term are: a taxpayer, a taxpayer obligation, a
loan, a claim, a legal entity, an application, a customer, a product, etc.

e Analyze facts: A fact is a statement that connects terms into a business-relevant
relationship. Some examples of facts: A taxpayer files a tax return form; the
customer could have only one purchase order at a time; a medical invoice is
linked to one claim. The fact has to be analyzed to understand how the applica-
tion will support it. It can be through use case implementation, business rule, or
the relation between objects.

¢ Build the facts declaration to define the used terms. It is possible at this level to
represent entities in a model using a diagram such as a UML class diagram (see
Figs. 4.5 and 4.6).

e Map it within a conceptual data model diagrams.

A term may describe a business concept which will be mapped to a Class, a
characteristic of a business entity which will be mapped to an attribute of a class,
and sometimes a term may describe the way a business object behaves. In that last
case, it will be mapped within a method of a finite state machine. As an example we
can take the following rule description:

Adjusters reject the invoice if any line item has a date of service older than 90 days
from the date of invoice.

From this rule statement, an analyst can build the following facts:

e Adjuster is an employee of the insurance company.

¢ Invoice is a medical invoice.

¢ A medical invoice has a date of invoice.

¢ A medical invoice has at least one line item.

¢ A line item describes a medical treatment.

¢ A medical treatment has a date of service.

¢ A medical treatment must have one unique procedure code, a quantity which is
at least one (and most likely a price but we do not know yet).

The creation of facts may generate new rules. Here we can add the following
business rules into the scope:

e If the claim is related to a loss, the date of loss has to be provided.
e The insured person must have a residency in the USA.
e The patient name, address, and status must be on the medical invoice.

It is clear that we can add a lot of facts to link terms in our model. And we
can spend months of documentation doing so. In Agile Business Rule Development,



4.4 Rule Analysis 105

we prefer having working rules and light documentation. Such facts can be presented
by a set of diagrams, which will help us communicate with business users. Those
diagrams evolve later to class diagrams from which we can generate code. Diagrams
are always a good vehicle for communication. It is also important to make different
diagrams for different audiences, but to also maintain them in synchronous manner.
We propose to keep the conceptual model as a set of diagrams to communicate to the
business user. These diagrams evolve with the rule harvesting phase.

It is important to note that not all the rules can be implemented and deployed into
a software component. Some rules may end in a procedure manual delivered to the
worker to enforce a good business practice as defined by corporate policies.

4.4.2 Transforming Rules

The activity “Transform Rules” leads to modifying rule declarations so that they
become formal, atomic, and standalone elements. This is needed for understand-
ability and ease of implementation and maintenance. This activity also includes
understanding the rule patterns, eventually removing redundant rules, or resolving
overlaps among rules. This activity is also conducted during the implementation of
the rules, but it is started during the analysis, so we are detailing the approach in this
context. The key concept is to transform rules to an atomic level as much as
possible.

Concept: Atomic Rule

A rule is atomic if it cannot be further decomposed without losing meaning.
Atomicity is desired for understandability, ease of maintenance and execution
efficiency.

The following rule statement can be decomposed into two rules. From

The insurance does not reimburse medical expenses incurred abroad if the
claim is presented more than one year after the expenses had been incurred,
or if the claimant has spent more than 182 days abroad within the past year.

to

—  When the date of creation of the claim is more than one year after the date of
treatment of the medical expense then reject the medical expense.

— When the claimant spend more than 182 days abroad within the past year
then reject the claim.

Rule conditions are true or false and should lead to one result. The rule analyst
has to clearly understand the Boolean logic.



106 4 Rule Harvesting

Concept: Boolean Logic Summary®

AND/Conjunction

The conjunction of two propositions is true when both propositions are true. The
truth table is:

AND A True False
B

True True False
False False False

Another notation is using the dot operator for AND so A.B is equivalent to A
AND B.

OR/Disjunction
Disjunction of two propositions is false when both propositions are false.
OR A True False
B
True True True
False True False

Another notation for disjunction is using the operator + for A OR B like A + B.

NOT/Negation

A NOT A
True False
False True

Implication
A—B, implication is a binary operation which is false when A is true and B is
false. A—B can be expressed as NOT A OR B.

A—B A True False
B

True True True
False False False

XOR or exclusive OR
Exclusive OR of two propositions is true just when exactly one of the propositions
is true:

XOR A True False
B

True False True
False True False

%See also http://en.wikipedia.org/wiki/Introduction_to_Boolean_algebra; http://www.internettu-
torials.net/boolean.asp.



4.4 Rule Analysis 107

De Morgan’s Law
De Morgan’s law represents rules in formal logic relating pairs of dual logical
operators in a systematic manner expressed in terms of negation:

NOT (A AND B) =NOT A OR NOT B

NOT (A OR B) =NOT A AND NOT B

De Morgan’s law can be used to improve rules during the rule transformation
activity.

To refine rules to the atomic level, the rule analyst has to apply some transfor-
mation patterns. For example, when a rule is an inference or an action enabler, it
may be important to consider separating expressions linked with ANDs within the
action part of the rule (also named the right hand side).

A pattern of criteria organized such as:
IF condition_A THEN do (B) AND do(C) may be rewritten as two rules to
make them atomic

IF A THEN do (B)
IF A THEN do (C).

This is due to the fact that a change in the data used as part of the conditions of a
rule may force the reevaluation of all rules using such data. We will detail the rule
engine’s RETE algorithm in Chap. 6. In the first schema nothing happens before the
end of the action. So if the action B makes the condition A false, C is executed when
it really should not.

When expressing an inference rule or an action enabler, do not allow ORs on the
left hand side of the rule (the condition part); break the rule.

A pattern like:
IF A OR B THEN do(C) can be rewritten as two rules to make them atomic

IF A THEN do(C)
IF B THEN do(C).

This is a good practice when the conditions A and B are complex. A simple
condition like the age is 18 or 21 does not need to be separated into two rules.
Also the semantic of the OR has always to be assessed. It could be that the
subject matter expert means an exclusive OR. In that last case the rules are:

If A and Not B then do(C)

If B and Not A then do (C)




108 4 Rule Harvesting

When expressing constraints (must, have to) and guidelines (should), try to
remove ANDs between conditions and clearly separate them in different rules.

A business policy like:
A driver must be 25 years old or older AND must have good credit rating
May be split into two constraints like:

Rule 1: A driver must be at least 25 years old
Rule 2: A driver must have good credit rating

The goal is to clearly separate the constraints. The action part of the rule will
most likely raise an issue. It may be more efficient to have all the issues the
business transaction is violating. Here we want to see the issues reported about a
bad credit and a young driver.

Make sure that each rule contains only necessary conditions; do not over-
constrain the rule applicability. The rule analyst has also to look for redundant
rules and try to remove them. Redundant rules are duplicated rules, duplicated
through some transformations (renaming, inversion of conditions, etc.), and redun-
dancies among rules that create a common data value or a common truth value, or
initiate a common action.

Removing redundancy is simpler if rules are atomic, otherwise analyst may get
lost in the equivalence of complex logical formulas (e.g., If NOT (A AND B) is
equivalent to IF (NOT A) OR (NOT B)). There are subtle forms of redundancy:
IF A AND B THEN C is equivalent to IF (NOT C) THEN (NOT A) OR (NOT B).
Sometimes changing the order of conditions can help highlight identical rules: IF A
AND B THEN C is the same as [IF B AND A THEN C. This looks obvious as
written like a mathematical expression, but depending on the rule language it may
be difficult to see at first reading.

Another step of the analysis is to remove inconsistent rules. Overlapping rules
are partially redundant because they are not semantically equivalent but they point
to problems: one rule may say IF A AND B THEN C, the other says IF A THEN C.
The question will be: is B really needed to infer C? One of the two rules should be
eliminated or modified to fix the inconsistency.

It is also possible to get semantically equivalent conditions with contradictory
conclusions: two rules like IF A THEN B; and IF A THEN NOT(B) are two
conflicting rules, probably due to two different sources of information for docu-
menting the decisions. Typically, this is symptomatic of the fact that we are missing
some necessary conditions in either rule (or both, e.g., IF A AND C THEN B; IF A
AND D THEN NOT(B)).

Another pitfall are rules that lead to the same conclusion based on contradictory
conditions: rules like IF A THEN B and IF NOT (A) THEN B. Logically, this
means that the conclusions should always be true. This is symptomatic of the fact
that the condition is not really relevant to the conclusion.

The analysis has to ensure the completeness of the rules. We may consider three
kinds of completeness:



4.4 Rule Analysis 109

e Make sure that all the possibilities are covered for a given rule pattern. If you
have a rule that says “loans for value greater than $250,000 should be approved
by the branch manager”, it does not tell us who must/can approve loans of value
less than $250,000.

e Make sure that all derived data in the object model has corresponding computa-
tion or inference rules. This involves computed attributes, qualifications (e.g.,
customer status, account type, etc.).

e Make sure that integrity and cardinality constraints are somehow represented.
Either in the object model or in rules.

The analysis phase is a good time to ask the business user how often the rule will
change, we call this rule volatility. Rules about risk computation, eligibility, under-
writing, or configuration may change over time. We notice that when a user does not
anticipate the rule changing, rules unplanned at the beginning are added over time.
Some rules may not change often but other rules in the same ruleset may. Moving the
“non changing” rules outside of the ruleset may have bad impacts on the ruleset
integrity. When looking at rule volatility, it is important to assess which factors
trigger rule changes and how new rules are defined for a given decision point.

Lastly, the rule analyst needs to understand the rule dependencies and rule
sharing goals. A rule R1 depends on a rule R2 if the enforcement of R2 results
into a situation where R1 is relevant (or needs to be enforced). A simple example is a
rule R2 which is creating new data or is modifying existing data that is tested by R1.

Rule sharing is a more complex concept to implement and may be linked
to the BRMS capability. The goal is to avoid to copy and paste the same logic
across rulesets. One ruleset can include a set of rules that are common to multiple
ruleset. For example, testing the age of a customer can be put in a common rulesets.
The other rulesets are referencing the common one, and rules are shared. A possible
side effect of rule sharing is rule overriding: a specific rule in one ruleset takes
precedence over another rule in a common ruleset. The overriding enforcement is
most likely done using some meta-properties attached to the rule.

Understanding dependencies help determine the likely “execution” sequence
of rules. The execution sequence is useful for rule analysis to detect undesirable
dependencies. For the implementation, the execution sequence is useful to under-
stand what the results will look like: some rule engine determines that sequence
automatically and on the fly (chaining). If we implement business rules in a
procedural fashion, we need to understand the execution sequence to enforce it.
Some of the undesirable dependencies include circular dependencies leading to
infinite loops.

4.4.3 Building Test Scenarios

Developing software without testing makes no sense in today’s world (we
hope!). Developing rules deployed in a rule engine helps developers to efficiently



110 4 Rule Harvesting

support a Test Driven Development (TDD) approach. Writing tests before author-
ing the rule makes testing part of a validation feedback loop. During the harvest-
ing phase, the analysis team needs to develop test scenarios and data elements
to support the future rule writing and testing. The development of concrete
scenarios leads to the clarification of ambiguities, finds holes in the decision
processing, enhances rules decision coverage, and the overall quality. Implemen-
ted rules are software elements like methods and classes in object-oriented
development: we may define tests for each rule. Concrete scenarios may be
written as a story board. Start by a simple case and then add more data elements
to cover specific rule.

Here is an example of user story: Jack Bee living in California and customer of
Weblnsurance for 3 years as a good driver. He filed a claim for a minor car
accident where his friend Mark, located on the right seat, was slightly injured at
the neck. Mark went to the hospital one day after the accident and he follows up
with his medical provider. The hospital and the medical provider are sending
invoices to Webinsurance. One medical invoice includes neck massage with a
date of treatment six months after the date of the accident. The invoice should be
rejected.

With Test Driven Development (TDD) we write a single test before writing the
rule which fulfills that test. Basically, the rule writer executes the following
steps:

e Add test by specifying the data and expected results

¢ Run the tests to ensure that the new test does in fact fail

e Create or update the rule or rules so that they pass the new test
e Run the test suite again to verify the test now succeeds

The advantage of TDD is to write rules by small increments, which is safer
than writing a complete ruleset without testing. Another advantage is that it
helps design the code, the rules, and how exceptions are reported.

4.4.4 Verify Rules Against the Data Models

The rule analyst needs to continuously verify that business terms used in rule
statements are part of the logical data model as classes or attributes. The model
exposed to the rules needs to get data from data sources. If a concept is not in the
data, it has to be quickly handled and managed by the application architect. So this
activity of synchronizing the work done at the model level with the different
existing data models is a very important task of any business rule project. Most
of the time a concept has different names, but sometimes a new concept may force
adding a new column in a table.



4.5 Case Study: Rule Analysis 111

4.5 Case Study: Rule Analysis

Back to the Weblnsurance claim processing application, the rules in Tables 4.1
and 4.2 are analyzed and completed after discussions with the SMEs. The following
facts are added:

The claim must reference one insurance policy.

The insurance policy has at least one insured person.

A patient is also called an involved party.

An involved party is a legal entity involved in a loss; he could be the insured
person.

An accident is a loss.

A policy is an insurance policy.

An insurance policy lists a set of coverage.

A coverage has a unique coverage code.

Coverage is the amount of protection against loss.

A deductible is the amount the insured must pay when a loss occurs.

An insurance policy has one effective date and one expiration date.

Claim has a date of creation.

The insured person has one or more properties covered by one policy.

A medical invoice includes code to define the type of bill.

A medical bill is synonymous as a medical invoice.

A medical bill includes the patient information.

A medical bill includes a control number (required number assigned by the
provider).

A medical invoice is issued by one medical provider.

A medical invoice includes a cover period.

The cover period has beginning and ending dates of the period included in the bill.

From these facts, we can build the following conceptual data model. This model

is closed to a UML class diagram, but is used as a tool to communicate the business
concepts with the SMEs and the IT team. This is important to use this artifact to
present the data model used by the rules (Fig. 4.5).

InsurancePolicy
i :Long
& effectvelate - Date

- clam - pokey | S =

at
& entifier : Sting

& hredToPublc : bookean

dad i Deductible

& amount ToPay © double

@ ProtectionAmount : doubls
G embursementFacte : deuble

Fig. 4.5 Claim conceptual data model (CDM)



112 4 Rule Harvesting

e = LegalMedicalProvider
— MedicalBil
£, firstName : String
: - legalMedicalProvider
£ clam : Claim ega £ lastName : String
patient : InvolvedPerson 1 &7, officelame : String
£ status : StatusValue £ hasHistoricaRecords : boolean
& [totalCharge : double £, «JavaCollection= historicalRecords : HistoricalRecord
1
1.* - medicalBilDetail
= MedicalBillDetaill
E7id: Long

7, notCoveredCharge @ double
&7 status : BilDetalStatus

Fig. 4.6 Invoice conceptual data model (CDM)

For the medical invoice or medical bill, the model looks like as shown in Fig. 4.6.

These diagrams are not complete, but we have enough elements to prototype
some rules. All these model artifacts help us build a common vocabulary with a
structure and syntax we can quickly leverage for our implementation.

4.6 Summary

Rule discovery should not be performed in one long session running for weeks to
produce only documentation. Rule harvesting starts at the beginning of the project
but is supported with the rule analysis and rule authoring, so that the work produces
executable rules and nonexecutable rules. There are cases where the business rules
have to be coded in the core application, in the data model structure, or in
components other than a rule engine. The rule documentation can indicate where
the rule is implemented or enforced. The rule description uses the language of the
business and not a technical language.

Rule Analysis is a very important activity in the ruleset development life cycle as
it prepares the rules for a successful implementation. Focusing on the data model,
the rule semantics and the process flow can help to determine where to implement
the business rules. Analysis should not be limited to paper work, but should also use
UML tools and even the rule IDE. This should not be a long activity as we are
proposing to quickly move to the next phase of rule prototyping. It is easier to find
issues related to rule expressiveness or the data model by implementing rules, not
by writing extensive documentation.

4.7 Further Reading

Barbara von Halle’s STEP methodology, presented in her first book “Business
Rules Applied: Building Better Systems Using the Business Rules Approach”
(2001), does a great job with rule discovery and analysis, both in terms of



4.7 Further Reading 113

identifying the different discovery and analysis activities and in proposing effective
techniques for performing them. The techniques presented here are largely based on
STEP.

Tony Morgan’s book “Business Rules and Information Systems: Aligning IT
with Business Goals” proposes three rule discovery roadmap families depending on
rule sources (SMEs, documents, and code), and much of our discussion of those
(sections 2.2.7, 2.2.8, and 2.2.9) is inspired from that book.

Two of the main contributors on decision management and decision service
approach are James Taylor and Neil Raden with their book “Smart Enough Sys-
tems: How to Deliver Competitive Advantage by Automating Hidden Decisions” —
Prentice Hall (2007).

The Object Management Group (http://www.omg.org) has defined the Semantic
of Business Vocabulary and Rules specification, which can be read at http://www.
omg.org/spec/SBVR/1.0/.

The OMG also specifies an important framework to define a business motivation
model, where the specification can be read at http://www.omg.org/spec/BMM/1.1/.

Detailed about the W3 “OWL Web ontology Language” (OWL) and Resource
Description Framework (RDF) can be found at http://www.w3.org/TR/owl-features/
and at http://www.w3.0org/TR/2004/REC-owl-features-200402 10/#ref-rdf-schema.

Conceptual data model is introduced at en.wikipedia.org/wiki/Conceptual
schema and at http://www.agiledata.org/essays/dataModeling101.html.



Chapter 5
Prototyping and Design

Target audience
e (Must) architect, developer, (optional) project manager (high-
lights)

In this chapter you will learn

e How to prepare the rules for the implementation

e How to use an evaluation framework to decide where to imple-
ment the business rules

e How to build the object models used by the rules

e How to design the project structure and the related rule elements

e How to implement some rules to validate the analysis, find issues,
and communicate to the SME

e How to use some common rule design patterns to facilitate rule
implementation

Key points

e Start quickly to prototype rules to develop both rule projects and
the data model.

* Organize rule artifacts and think of reuse as soon as possible in
the project life cycle.

® Maintain strong communication with SME to address issues
about the model, the rule description, the rule scope, and the
context of execution.

5.1 Introduction

The purpose of the prototyping phase is to take a first complete pass through the
development process, confront the main design issues, and lay the groundwork for
future refinements. Prototyping is incremental and iterative: we start by “imple-
menting” a subset of the processes — or of the decisions within a single process to try
out a particular design. Subsequent prototyping cycles will refine the architecture
and expand the coverage of the prototype, functionality-wise.

J. Boyer and H. Mili, Agile Business Rule Development, 115
DOI 10.1007/978-3-642-19041-4_5, © Springer-Verlag Berlin Heidelberg 2011



116 5 Prototyping and Design

Note that a rule-engine execution of business rules is not a sine qua none
condition for the business rules approach, even though it is a highly desirable
one; for one thing, without the rule-engine execution of business rules, we lose
much of the IT agility that comes with the business rules approach. Thus, the first —
and probably most important — design decision to make during the prototyping
phase is to decide on the rule implementation. Generally speaking, we can imple-
ment business rules in five different ways: (a) at the data model level, (b) in the
application code, (c) in a process map, (d) in the graphical user interface (GUI) of
the application, or (e) using a rule engine. Section 5.2 explores the five alternatives,
and — surprise!! — the rule-engine solution is shown to be superior to the alter-
natives. The remaining prototyping activities assume that we have chosen a rule-
engine implementation but are independent of the business rule management
systems (BRMS) that is used for the implementation. Figure 5.1 shows the proto-
typing activities and their dependencies. Table 5.1 shows where each activity is
discussed. In this chapter, we focus on the process and will be content to highlight
the broad design issues. Chapters 7, 9, 12, and to a lesser extent, 14 and 16 will
revisit these design issues in far more detail.

In Sect. 5.6, we discuss prototyping for our case study, and we conclude in
Sect. 5.8.

Architect ﬁe
Deéfljlr;“"e Build Rule Build  Developer Prototype Get Stakeholder
> Projects * * Test Scenario * > Rules ¢ *  Feedbacks > O

Implementation

A
|
|
I

I
£ | - !
; b L
= |
2 |
2 | .
= «___ Rule Projects Rule Project Java, XSD, SQL
£ | Rule Meta Data Rule Artifacts
Design Data TDD-Enhance _ |
Model Models
Developer ? ?

B g

UML Class diagram Java/XSD

Fig. 5.1 Rule prototyping development activities

Table 5.1 Prototyping

o Activity Section
activities - - -
Determine rule implementation 5.2
Build data models 5.3
Build structures for development and execution 54
Develop unit tests for each rule 5.5
Author rules 5.5
Execute rules 5.5

Obtain SME feedback 5.7




5.2 Determine Rule Implementation 117

5.2 Determine Rule Implementation

The purpose of this activity is to determine the best way to execute the rules. When
we come out of the rule harvesting phase (see Chap. 4), it is still possible that some
rules will stay on paper and will never be implemented in a software component.
This includes rules used by human decision makers that require human judgment, or
that require data that is either not recorded electronically or, data that is recorded
but that is not usable. Of the ones that will be automated, there are many ways of
implementing them:

e At the data model-level. A number of business rules are about the structure of the
data — called structural assertion rules. A statement like “a mortgage application
must have a single primary borrower, and may have zero or many secondary
borrowers”, will be embodied into two classes, Borrower and Application, and
two associations. But beyond structural rules, we can also enforce some behav-
ioral rules at the time that objects (class instances) are created or persisted, by
triggering some dynamic checks (e.g., database triggers, embedded SQL code,
O/R mapping code, etc.).

e Within application code. This is the default and most common non-rule-oriented
implementation: complex decision logic is coded within functions/procedures/
subroutines, scripts, or within method bodies within the context of object-
oriented applications.

e Within business processes, within the context of a business process manage-
ment (BPM) tool/system. BPM tools address business process efficiency
issues, by focusing on the fundamentals of a business process, namely,
“who is involved”, “when they should be involved”, “what do they need to
do”. BPM tools support both human and automated actors. When defining
a business process, typical BPM tools enable us to define/attach business/
decision logic to tasks within the process, to the routing of work items
through the process flow, and to the semantics of the business data. In fact,
a number of BPM tools do come with some capabilities for defining business
logic declaratively or using some form of scripting logic. Thus, if an organi-
zation is already using BPM tools to implement and manage its business
processes, it might consider implementing all of its business rules through a
BRMS tool.

e Graphical user interface. In a number of web applications, the bulk of the
business rules concern data validation and input screen navigation, i.e., deciding
what screen/page to bring up next, depending on the data entered so far. Tra-
ditionally, such business rules are encoded using client-side scripting, or within
(web) server-side controller classes. Performing such data validations close to the
data source has its advantages, including responsiveness and avoiding unneces-
sary network traffic. We were hard-pressed, at times, to justify the overhead of
a full-blown BRMS/rule-engine solution, and this remains a serious contender
for some types of web applications.



118 5 Prototyping and Design

® Rule engine. This is the case when business rules are written by business users
in a declarative business-friendly language, are interpreted during run-time by
a rule engine, and are deployed and maintained separately from the core of
the application.

We argue that the rule-engine solution is the best overall general-purpose
approach to implementing automatable business rules. However, certain types of
rules such as structural assertion rules should be expressed within the data model.
There could also be compelling design/architectural reasons why some of the other
alternatives should be given serious considerations. An enterprise application
might, legitimately, combine approaches.

Being in the software/solution space, the choice of an implementation approach
should be dictated by architectural considerations/qualities. Thus, we shall assess
our alternatives along the typical architectural requirements that business places on
their IT architecture, namely:

® Adaptability corresponds to the ability to change the business logic easily. The
need for adaptability may come from short deadline constraints, frequent small
changes to the business logic (e.g., daily, or even hourly), or more substantial
changes that may occur weekly, monthly, or quarterly.

e Traceability refers to the ability to clearly relate what was implemented to what
was agreed upon between the business unit and IT. Traceability often implies that
the expression of business logic in running applications is understandable by all
parties (business and IT), as is, or through simple transformations.

e Auditability refers to the ability to trace from business motivation to execution of
the policy to better understand the logic behind a decision. Good traceability is a
necessary but not a sufficient condition for auditability.

® Reusability refers to the ability to share business logic across processes, or across
applications. For example, policy holder data validation rules would apply
indiscriminately to new business or policy renewal, and for car insurance under-
writing, as well as home insurance underwriting.

* Manageability refers to the ability to manage the [ife cycle of the business logic,
and in a way that is relatively independent from the life cycle of the application
core, which tends to be more stable/evolve less often. Manageability includes
issues of governance (discussed in Chaps. 16 and 17), development life cycle,
and maintenance.

In the following sections, we will assess each of the five implementation choices
along the five architectural qualities discussed above.

5.2.1 Implementing Rules Within the Data Model

Generally speaking, rules that define the structure of the data model, or that state
low-level semantic structural constraints, such as referential integrity constraints,



5.2 Determine Rule Implementation 119

should be implemented within the data model. This means within either the schema
definition or the object-relational (O/R) mapping, or at the level of the business
entities themselves. Examples of structural rules include rules defining the structure
of the business entities, like saying that attribute X applies to entity Y, or rules
setting constraints on relationship, like stating that a loan application could only
have two borrowers.

Table 5.2 shows how this solution measures up according to the five architec-
tural qualities discussed in the beginning of Sect. 5.2.

Table 5.2 Rule in data model assessment

Variable Potential assessment

Adaptability Very static implementation. A change in the constraints placed on the
object model may impact all the layers of the application, from the
logical data model to the persistence service, and all the way up to the
presentation layers. Change is managed through a full software release
life cycle. Thus:

Poor. There are some design patterns to develop a more flexible data model,
including the so-called Adaptive Object Model® pattern, but this pattern
has a number of disadvantages (e.g., type safety, consistency,
performance) and is seldom used for high-volume data.

Traceability UML class diagrams do not constitute a good communication medium with
business — and cannot express/visualize many structural constraints.
Business analysts prefer a simple entity model. Entity diagrams present a
higher-level representation of the domain model, but force the team to
maintain the link between the implementation and the business
representation.

Medium. Tools can help maintain the consistency of multiple data models
and provide some traceability of business rules with things such as
annotations, comments, or UML templates. Logical data models and
physical data models are most likely not generated automatically from the
same conceptual model. For efficiency considerations, the physical model
may end up diverging more or less significantly from the conceptual
model, breaking the traceability.

Auditability Fair. Configuration management tools, with a strict development process and
adhered to discipline in documenting any change in the model, can help
trace changes to the structural rules back to the business motivation.

Reusability Fair. Domain object models can be designed to be reusable. But in reality
each application needs its own view of the core enterprise business object
model. To avoid a lot of data transformations between applications, one
approach consists of using a canonical data model. Each implemented
application needs to design and build its own view of that model, using
XML Schema (XSD), a Java data model, or any other object-oriented
language. The use of a canonical object model within the context of an
enterprise service bus (ESB) would require performing data conversion
between models either at the service implementation level, or in the
mediation layer.

Manageability Good. Modern modeling tools, configuration management tools, and a
strictly adhered to development process help maintain the business logic.

“See Joseph Yoder work at http://adaptiveobjectmodel.com/ and http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.66.3382&rep=rep 1 &type=pdf




120 5 Prototyping and Design

Concept. An Adaptive Object Model helps to add flexibility to a domain object
model. The simplest version of this pattern links business concepts modeled as
Entity. Entity has a type, modeled using EntityType. Entities have attri-
butes or properties, which are implemented with the Property pattern. Each
property has a type, called PropertyType and each EntityType can then
specify the types of the properties for its entities.

E] Entity -type = = EntityType
[Eg name : String = " [y hame : String
1 1
*propertics *propertics
& Property o £ PropertyType
[Eg name : String [Eg name : String
cg value : String * 1 | Egtype :String

With this model a developer can add attributes to an entity easily.

Entity coverage = ..

Property benefit = new Property(“Benefit”);
benefit.setValue (someValue) ;
coverage.getProperties () .add (benefit);

5.2.2 Implementing Rules Within Application Code

Implementing business rules in application code is currently the most common
way IT developers implement business rules. The usual justifications are perfor-
mance and flexibility of the coding language, and what they perceive as a steep
learning curve for business rule technology. Using hardcoded if/then/else state-
ments is not very flexible, but in the hands of a top notch programmer it can be
very efficient and arguably faster than a rule engine. When the number of rules
grows to the hundreds or thousands, the code becomes complex, the business
logic becomes nearly unmanageable and increasingly difficult to maintain. Using
traditional software development life cycle (SDLC), changes to the business rules
have to be implemented by IT developers, which means change implementation,
unit testing, followed by QA testing, then promotion to production and deploy-
ment. Depending on the frequency and scope of changes, this process may be
heavy and may not be agile enough for most of the business rule changes
(see examples mentioned in Chap. 1).



5.2 Determine Rule Implementation 121

We have often heard reluctant IT developers argue that their business rules
are computation intensive, and do not change that often, pleading for the more
efficient, and less flexible application code implementation. Consider the following
business rule:

Verify in each item the customer bought since he is
customer with us there is at least one article of type
T so that we can propose the new product Y with X % of
discount, except if the customer is from the state of
New York or New Jersey (no discount apply).

We can implement this in a method which loops on the articles bought by a
given customer and do the search. At a first glance, navigating a collection of
objects and testing multiple conditions on them are easy to implement using
the power of the programming language. The exceptions around the State can be
hardcoded in the rule, or, for more flexibility, a smart developer might use
some lookup table to get the list of nondiscounted states. Excluding another
state from the discount offer is then as simple as adding a row in the table. “Is
that (business logic) declarative/data-driven enough for you,” we hear. However,
if the business wants to add conditions on the product category, the custo-
mer profile, or the time of the year, the new logic requires the addition of if
statements in the code, driving a code change, and so a full software develop-
ment and release life cycle. This is not to say that all business logic should be
coded within rules; dispatching, orchestration, data manipulation, and the like
are better suited for an imperative (as opposed to declarative) implementation in
application code.

Table 5.3 shows how the implementation of business rules within application
code fares, relative to the five architectural qualities we mentioned earlier.

5.2.3 Implementing Rules in GUI

This is a special case of the previous one, but one that occurs often, and that
merits a separate discussion. This is the case where business rules are embedded
in the presentation tier. We will examine this within the context of the Model-
View-Controler (MVC). Recall that, within the context of the MVC pattern, the
model embodies the state of the interaction between the user and the application,
and it may refer to some domain objects. The view’s main responsibility is to
present an up-to-date graphical view of the model. The controller is responsible
for capturing user input, and translating into commands to be executed on
the model. It is also responsible for view content and flow, i.e., which elements
to include/display within a particular view, their data, and which view should
follow/come next, after another view. In this context, the logic of the controller
is often decision intensive. For example, we can have rules control the data
contents of widgets within a particular view. This is useful for applications that



122 5 Prototyping and Design

Table 5.3 Rules in application code assessment

Variable Potential assessment

Adaptability  Poor. The need to change application code when a business rule changes is not
nearly as bad as changing the underlying data model (see Sect. 5.2.1) but is
still unpleasant. Indeed, while software application builds are more efficient
and less costly than before, deployment remains expensive, depending on the
complexity of the production environment.

Changing code under time pressure usually leads to poor quality.

Traceability ~ Poor. The logic that underlies a business rule may be spread out between several
methods or procedures in the application code and is not encoded in a way that
business can understand. Strong code documentation practices and standards
can help, but do not solve the problem. For example the development team
may need to maintain a mapping table linking the business policy statement to
the components, classes, or methods that implement the corresponding
business rules.

Auditability ~ Poor. Only a disciplined use of configuration management tools with a strict
development process, and an in-grained (or enforceable) change
documentation practice, can ensure that code changes can be traced back to the
corresponding business motivations. This is a lot of ifs.

Reusability Fair. If the business logic is implemented in a service layer with well-defined
interfaces, it may be possible to reuse the business rules.

Manageability Fair. Manageability depends on the good will — and disciplines — of developers,
who are expected to use configuration management tools and strictly adhere to
development practices. Even when such developers can be found, one has to
worry about personnel turnover, or offshore development.

involve dynamic questionnaires or product configuration. An example of such a
rule is:

If the value of the selection on this page was <X> then add <Y> to the model

Similarly, a rule that controls the flow of pages could look like:

If the user visited page <X> and selected value <Y> in field <Z> then next
page is <R>

Both rules may be enriched with business type conditions based on data
available in the model. Many of the legacy web applications embed such (busi-
ness) rules in the controller class or in scripts within the view (e.g., java script of
the view). In terms of the architectural qualities discussed at the beginning of this
section, this solution compares to implementing rules within application code (see
Table 5.3).

Naturally, it is possible to implement controller rules using a rule engine — rule-
engine implementation is discussed last. This is particularly valuable for e-com-
merce web sites where marketing campaign can be put in place quickly by proposing
new products or new product features more dynamically. Typically, rule engines
would apply a set of decisions according to previously entered data and web
historical navigation. The actions of the rules could prepare some product or
marketing information to display in the web page. As a rule of thumb using a rule
engine in the controller is worthwhile if we need to change the logic over time, and
this logic needs to take into account a lot of cross checks and complex data
validations.



5.2 Determine Rule Implementation 123

Our recommendation is to classify the business rules during the rule analysis,
assess the rule change dimension, start to implement where it is the most efficient and
makes more sense. Do not jump too quickly into the final design and conclusion. This
is why the prototyping phase is important: try and catch the best implementation.

5.2.4 Implementing Rules in Process Maps

Business process automation (BPA) is the technology used in lieu of, or in addition
to, manual processes to manage information flow within an organization. Business
process automation (BPA) is supposed to lower costs, reduce risk, and increase
consistency. In this context business rules embody the structure, operation, and
strategy of an organization’s business processes as well as the decisions within the
activities of those processes. Sometimes the business process definition is itself
considered as a business rule, as it embodies business decisions about how the process
should be done. We do not share this view: the OMG clearly separates the business

Data Validation

+

T
|
|

If data.reasons

YES . -
includes exception
Process NO
Exception ¢

|T|

Coverage
Verification

[+]

-----

Fig. 5.2 Process map revisited



124 5 Prototyping and Design

process from the business rules, where the former is driven by the latter. For a business
process analyst, business rules involve routing of data, processing work items to a
work queue, a task, or a sub process, which will most likely be implemented as a
gateway in a process map. We have come across situations where some business rules
were implemented in the process flow as a graph of gateways. A rule like:

if a claim is for a car accident and there is no injured person then go to activity A, else if
there is an injured person and the injured person is an insured person then go to activity B,
else go to activity C.

Defined at the task relationship level, business rules are thus linked to the
structure of the process flow. Another example, a rule like the one given below
will most likely finish as a guard on a process map link.

if there is an exception in the claim processing, we want a supervisor to study the claim and
the accumulated reasons extracted by the process so far

Figure 5.2 illustrates such a process map.

In the example of Fig. 5.2, task 1 (Data validation) evaluates the data quality for
the claim. This task can build a lot of issues on the data quality. If the list includes
an exception or high priority issue, the process map will route to the “Process
Exception” task. This task can queue the work item to a supervisor’s queue with all
the data needed for investigation.

If we embed the business rules directly in the structure of a process map, any
changes to the business rules will require redefining and redeploying the process.
This could be quite problematic with long-running process. Changing a business
process is usually risky: we do not want to change things currently running that
involve a lot of parties and stakeholders. New policies, regulations, or business
strategies should affect the decision rules without having to change the core
business processes.

Table 5.4 Rule in process flow assessment

Variable Potential assessment

Adaptability Poor. Hard coding business rules in process maps is not efficient, and leads to
brittle and overly complex process maps.
If we combine the business process management (BPM) with the business
rule management systems (BRMS) approach, and delegate business rules
to process tasks — as opposed to process structure — we achieve great

adaptability.
Traceability Good. if we combine BPM with BRMS, we get excellent traceability.
Auditability Good. BPM tools typically have version control, and it is possible to trace

process map changes to business requirements. When we combine BPMS
and BPMS, we can take advantage of the versioning capabilities in both
tools, and link process map versions to ruleset versions.

Reusability Fair. Rules in a BPM map are not really reusable outside of the context of the
process. However, rules defined in a task can be made reusable if they are
exposed as a service. Further, a process itself can be exposed as a service.

Manageability Good. Process logic will usually have a more stable life cycle, and it is
managed in the BPMS.




5.2 Determine Rule Implementation 125

Note, however, that there are a lot of tasks in a business process that are decision
rich, with a lot of business rules to execute within the task. Those rules can be
executed by a rule engine. The integration of BPM with BRM offers a unique set of
features that support agile business processes. Table 5.4 shows how the process map
implementation of business rules measures up relative to the five qualities we
discussed. We will discuss both standalone BPM, and the BPM-BRM combination
for decision-rich business processes.

5.2.5 Implementing Rules in a Rule Engine

Roughly speaking, a is an interpreter that takes two inputs, application data and
business rules, and that produces a decision embodied in new data, or in new values
of attributes for existing data. This is illustrated in Fig. 5.3. Chapter 6 discusses rule
engines and rule-engine technology in-depth, but for the purposes of the current
discussion, we will be content to illustrate the paradigm.

A key aspect of the rule-engine implementation is the fact that business rules are
treated as data by the rule engine. This implies two things: (a) as data, they can be
deployed separately from the application code, and better yet, (b) they can be read-
in during run-time. This is the key to the flexibility and adaptability of the approach.
Another key aspect of the rule-engine implementation is the fact that the executable
form of the rules, or a direct translation thereof, can be understood by business.
This is the key to the traceability and auditability of the approach. Table 5.5
evaluates the rule-engine implementation with regard to the five architectural
qualities we discussed above.

During our consulting engagements, we have often come across some business-
rules-approach-skeptics, who overplay the run-time performance argument,' and

Rule engine

Fig. 5.3 A rule engine takes two inputs, a ruleset and business data, matches the rules to the
business data, and acts on it accordingly

Read

Business I
data

modify

Business
rules

"The word “interprets” as in “the rule engine interprets the ruleset” can scare off many an architect.
As we will see in Chap. 6, rule engines can execute tens of thousands of rules per second.



126 5 Prototyping and Design

Table 5.5 Rule in rule engine

Quality Potential assessment

Adaptability  Excellent. The rules can be changed quickly, off-line, and deployed, at the press of
a button, often while the business application is running (a hot deploy).
Obviously, rule governance processes need to be put in place to ensure orderly
rule maintenance.

Traceability ~ Excellent. A key aspect of traceability is the fact that most rule engines (including
JRules) support a natural language-like, domain-specific language for
entering/authoring rules. This makes executable rules understandable to
business. By adding rule metadata, we can capture quite a bit more about the
business context or motivation of the rule.

Auditability  Excellent. this is made possible thanks to a number of features in commercial
business rule management systems (BRMS) — including JRules, (a) powerful
tracing capabilities that enables us to trace the rules that matched a specific
business transaction, (b) rule reports, and (c) change management
functionalities. The JRules BRMS, discussed in Chaps. 8, 10, 11, 13, 15, and
17, supports all of these, and more.

Reusability Very good: Reusability is never an easy requirement to support, regardless of the
technology. Good reusability results from a proper modularization of business
logic along a hierarchy of decisions (decisions, and subdecisions) so that the
lower-level decisions can be reused across major decision points or business
processes. JRules supports a number of development and run-time rule
structuring mechanisms which enable us to package rules in a way that is
independent from their usage context (see Chaps. 10, 11, and 13).

Manageability Excellent. By definition, business rule management systems (BRMS) support
management functions. JRules supports a particularly rich set of management
functionalities, including rule and rule set versioning, rule life cycle
management, access control, and the like.

downplay the flexibility argument “our rules do not change often; we can afford to
code them in application logic.” For example, a rule such as the one given below
may sound stable at first, with no possible variations.

If the status of the customer is gold and the product is <> then apply <> %
discount.

However, discussions with the business about the meaning of “Gold customer”
might identify other criteria that definitively change over time. A typical discussion
may look like: “A customer who spend more than <> amount of money ... during
the last 6 months . . . well, except for product X where we only look at the last four
months because product X has been in the market for that long . .. and by the way,
customers in the states A, B, and D could not be part of the gold status because . . .
and did we mention that a customer must be 18 years old or older ... and by the
way, customers working for our company or subsidiaries cannot be part of the gold
program”. Before you know it, we have gone through an entire ruleset, just to
capture this supposedly simple — and stable — piece of business logic.

Accordingly, our recommendation would be to use a rule engine to execute
rules, or more broadly, a business rules management system to manage the life cycle
and the execution of business rules. As shown in the previous sections, there are
certain kinds of rules (e.g., structural assertion rules) or situations (e.g., the need for



5.3 Build Models 127

a responsive, client-side data validation) where the other alternatives may be given
some consideration. However, by default, the recommendation is to use a rule-
engine implementation. As we have shown in Sect. 5.2.4, rule engines can be
combined with other technologies, such as business process management systems
(BPMS) to get the best of both worlds.

5.3 Build Models

Having chosen a rule implementation, the next step is to implement the code infra-
structure that will implement or use the rules identified during rule harvesting phase
(see Chap. 4). The code infrastructure consists of two pieces: (a) the data model code,
and (b) the application/service invocation code. With regard to the data model, within
the context of rule applications BRMSs will distinguish between two models, (a) a
physical or executable data model, implemented in the application’s implementation
language — Java, C#, etc. — or using XML Schema (XSD), and (b) a business view of
the physical data model, used to author rules; Sect. 9.2.1 talks about the different
requirements that we place in these languages, and how to keep them synchronized. In
this section, we focus on the physical/implementation data model, and discuss how to
build one during the prototyping cycle. However, as we show in Sect. 5.3.3, such a
model needs to evolve constantly during this phase to accommodate the needs of rule
authors as they write/prototype rules.

With regard to the application/service invocation code, we assume that the
various decision points of our business process will be exposed as decision services,
within the context of a service-oriented application. We will discuss some best
practices regarding the packaging of such services. Chapters 12 and 13 will revisit
this issue, in general, and within the context of JRules.

We start by discussing the implementation of the physical model in Java
(Sect. 5.3.1). Section 5.3.2 talks about XSD specifics. Section 5.3.3 addresses
model evolution during the prototyping phase.

5.3.1 Java Model

If the analysis model is available in UML format, most IDEs provide functionality
to generate an implementation of the model in a number of target languages or
technologies, including Java. Many IDEs will also offer the so-called round-trip
engineering, where changes to the Java code are immediately reflected back to the
UML model. Starting with a given UML model, it is recommended to generate the
Java code in different projects, by applying the separation of concerns principle.
For example, the data model definition should be kept separate from the definition
of service/controller classes, the former being widely shared between different



128 5 Prototyping and Design

applications within the same domain, whereas the latter are specific to individual
applications.

With regard to the application/invocation code, if we will deploy some of our
services as web services using XML document/literal as the main communication
style, the data model will need to be a mix of XSD and java model, with a mapping
between the two. We can also generate the XML version of the Java model directly
from the Java model by using the Java XML Binding API (JAXB 2.0) to annotate
the business classes.

For most application implementations, we recommend to use a meet-the-middle
approach for defining the web service interfaces: (a) use a bottom-up approach to
define the XSD schema from the java model that was so far implemented and tested,
and (b) use a top-down approach to define the web service contract (WSDL) first,
and then implement some mapping objects, if needed, in the service implementa-
tion to map between the WSDL schema and the java model. For example, the
WSDL interface for operations such as validateClaim, verifyCoverage and adjudi-
cateClaim, should refer to claims through a String identifier, and then use that
identifier internally to pull out the relevant data for the claim. This is preferable to
having the service consumer be responsible for preparing all the data for the service
provider. Not only the service consumer does not always have the “knowledge” of
the required data structure, but using full objects as parameters lead to large
messages. An exception to this model is when the consumer already has all the
data and is delegating some of its own processing to another service.’

5.3.2 XML Schema

Using XML schema to define the data model has a number of advantages over a
Java model, independent of the architecture of the application. From a data defini-
tion point of view, XSD has a richer set of constructs for expressing data extensions
and refinements. For example with XSD, we can specialize a data type by restrict-
ing it, i.e., by constraining the set of values that the elements and attributes can
take. Java has no equivalent for restriction: attributes are either inherited as is, or are
hidden.’

Within the context of a web-services-based SOA, it makes sense to use an XSD
implementation of the application data: indeed, the WSDL specification defines
data types using XSDs. Idem for the general case of a message-oriented architec-
ture: to the extent that application data will be shipped around in XML messages,

This may sound like a common pattern, but it is not necessarily a good one from the point of view
of SOA: the resulting service is not reusable and is specific/dedicated to its consumer.

3We can mimic restriction/specialization by redefining the setters in subclasses to make sure that
only a specific subset of values is allowed. However, this would break polymorphism, and its
promise of object substitutability.



5.3 Build Models 129

we might as well define it directly in XML; this way, we will be dealing with a
single data model, and we will be saving on data marshaling and un-marshaling. We
have to be careful, though. There are a number of issues that we need to consider
when using XSD. The first one is related to the versioning of such a schema and the
complex management of version control and integrity between applications. The
second issue is related to the use of industry models. Some industries have defined
standard data models as set XSDs. For example, the telecommunications industry
has developed the SID Tele-Management Forum, the real estate finance industry
has developed MISMO, and the insurance industry has developed ACORD. Such
models provide excellent sources for business ontologies and can — and should —
be used as starting point for defining your own enterprise data model. However,
they should not be used as is to write rules. Indeed, they typically expose an
unnecessarily complex vocabulary to use for the rules, and business users will
typically reject it.

The third issue raised by the use of an XSD implementation of the data model is
the “decapsulation”: the data elements and the business logic that manipulate them
are implemented in different paradigms. This makes both reuse and testing more
difficult. For example, with a Java implementation, we can easily use a unit-testing
framework such as Junit to unit test our rules. This is more complicated and
cumbersome with an XSD implementation. In fact, projects end up using a mix
of Java and XSDs to define and manipulate data. Using JAXB2 we can generate
java beans from the XML schema, and so offer also the service interface based on
java objects.

5.3.3 Synchronize with the Data Models

During the prototyping phase, the data model will keep evolving. Rule authors will
keep coming up with data elements that are missing from one of the many layers of
data models starting with the underlying database, up the rule vocabulary. The
different layers and the relations between them will be discussed in general terms in
Sects. 7.6 and 9.2.1, and for the case of JRules, in Sects. 10.3 and 10.4.2. For the
purposes of this discussion, it suffices to say that we need constant communication
between the rule authors and IT to ensure rule author requests are handled dili-
gently. There will be some changes, however, which have important implications
and will not be resolved as quickly as everyone hopes for. For example, if a rule
requires a data element that is not even available in the database, then we could
have a serious problem. If the database is specific to the current application and is to
be built from scratch, then we can pretty much put in it whatever we need —
provided we know how to get it from external sources via other parts of the
application. If the database is shared with other applications — as will often be the
case — then we have a serious problem: Either the attribute is available somewhere
else within the legacy systems landscape, in which case we have to figure out ways
of efficiently pulling it out from those other sources, or it is a new data item that is



130 5 Prototyping and Design

not currently captured by the system, in which case we need to drop the business
rule for the time being and redesign the business logic.

In addition to issues with the data definition (tables, attributes), we will have
issues with data Values. Indeed, part of any business application is referential data
which may include lists of codes and enumerated domain values, which rule writers
use in the rules. It is important to properly design the way that data is defined and
accessed by both the application and the rule-authoring environment. If the organi-
zation uses a Master Data Management (MDM) product to manage the referential
data, we may need to be able to connect to the MDM from the rule-authoring
environment and from the running application, using the MDM API or services.

Accessing the referential data for rule authoring can be done statically, to
define the rule-authoring vocabulary — however that is defined — or dynamically,
by filling out specific pull-down lists in the rule editor. A static implementation is
simpler and more cost-efficient and is only appropriate when the referential data
changes rarely at well-defined milestones in the life cycle of the project or
application. If the referential data changes frequently, then a dynamic implemen-
tation is preferred. Depending on the BRMS product this can be easy or quite
cumbersome. To access the referential data during rule execution, we should
probably use a hybrid approach: reference data may be accessed dynamically, at
specific times (e.g., at server start-up, or some fixed regular schedule), and remain
cached in the application for rules to access them in the most efficient way; doing
one or more round trips to a MDM service during a ruleset execution may not be
such a good idea.

5.4 Building Structures for Rule Development and Execution

Before we start coding rules, we need to set-up the rule development infrastructure.
This infrastructure has to facilitate rule development, management, and packaging/
deployment, to an execution environment. Later chapters will explore all of these
issues in detail. In this section, we limit ourselves to describing the process and
highlighting the major issues. Section 5.4.1 will discuss the rule project structure. In
Sect. 5.4.2, we look at the issue of designing/defining rule metadata. Finally, we
look at orchestrating rule execution in Sect. 5.4.3.

5.4.1 Rule Project Structure

A rule project is a container for rule artifacts. Such artifacts include business and
technical rules, decision tables and decision trees, functions, variables, rule flows,
and ruleset parameters. Rule projects also help package and deploy rules for
execution. One of the issues that we face when moving from rule analysis to
prototyping is to decide how many rule projects we should have. The simplest



5.4 Building Structures for Rule Development and Execution 131

design is to have one rule project per major decision point of the business process.
It will often be the case that several decision points may share the same set of rules.
To promote the reuse of those common rules, we may have to associate several
projects with a single decision point. Different BRMSs might make this more or
less easy. JRules’s support for project dependencies, and for configurable ruleset
extractors, gives rule architects plenty of degrees of freedom to structure rule
projects to accommodate the needs of rule authors during rule authoring, and to
make rule deployment and execution flexible. Rule project organization is more
thoroughly discussed in Sect. 9.4, where we focus on development-time organiza-
tion, in a tool-independent way, and in Sect. 10.2, where we focus on JRules’s rule
project organization features. For the purposes of this discussion, we will limit
ourselves to some general issues, and to the relationships between rule projects, and
projects related to relevant parts of the application.

The organization of rule projects and java projects follows the same pattern
as traditional project organization. We partition the work to avoid concurrent
updates as much as possible and define the structure to reflect business structure
or technical and deployment constraints. For example, if the application uses a
web tier it is important to isolate this project within a web project. Further, the
services can be packaged in one java project or per major service component.
The code which calls the rule engine is part of this project. Maybe one of the
interesting differences with n-tier application structure is the fact that we are
using separate projects to support the data model for the domain; it could be java
classes or XML schema definitions. This project is shared between the rule projects
and the application tiers and even among applications. The rule project structure
should strive to isolate the rules and the subset of the business object model used
by those rules in a separate rule project. Best practices for rule project organization
are discussed, in general terms, in Sect. 9.4.3, and for the case in JRules, in
Sect. 10.4.1.

Figure 5.4 shows an example project structure that adopts some of the basic best
practices, illustrated for our case study. In this case, we have three Java/nonrule
projects, which include the physical data model (the ClaimModel Java project), the
claim processing service implementation (project ClaimProcessing-core), and
the web application that invokes the service (project ClaimProcessing-webapp).
We have three separate rule projects, each handing a nontrivial decision step of the
business process, namely, validateClaim-rules, adjudicateClaim-rules, and verify-
Coverage-rules.

When designing the rule project structure, an architect needs to consider
the overall business context requirements. Indeed, looking at the big picture is
always a good thing. At the same time, it should not jeopardize the short-term
goals of getting a quick prototypical implementation, or delivery timeline for the
entire project, through some sort of analysis paralysis. And remember, if this is
your first rule project, getting the technology adopted at the enterprise level
requires unmitigated success at the project level — or a very dedicated CTO. That
being said, rule architects can consider some of the design drivers discussed in
Sect. 9.4.



132 5 Prototyping and Design

J J
/ B\
ClaimModel ClaimProcessing-
core
\ J
7'
w
4 N
ClaimProcessing-
webapp
\ J
N R R R
validateClaim-rules adjudicateClaim-rules verifyCoverage-rules

Fig. 5.4 Example of projects organization

5.4.2 Defining Rule Meta Data

During the project structure definition it makes sense to also address the life cycle of
the rules under scope and to define rule properties/metadata that the business team
may want to leverage during the rule management and the rule execution. The
common properties we use are:

Rule ID, author, owner, status. To trace the rule maintenance process. The status
helps to manage the rule life cycle, for example, to avoid deploying rules under
development to production. The possible values for the status can be configured
and customized.

Expiration date, effective date. To filter the rules according to a date and time.
Business motivation, policy reference, requirement reference. To reference rules
back to the requirements, the business policies, or the specifications.

Product reference, states, geographies. To manage rules per type of deployment
or other dimensions relevant to the business.

Properties such as rule effective date and expiration date can be used to filter out

the rules that do not apply to a given business event. Another example is the
geography or jurisdiction dimension, which can limit the applicability of a rule to
entities (customers, properties, etc.) that fall within their jurisdiction. This filtering
can happen either during ruleset packaging (e.g., effective and expiration date), or
during execution (e.g., jurisdiction). The following table elaborates on the char-
acteristics of those properties that the rule analyst can design for the future rule
management:



133

5.4 Building Structures for Rule Development and Execution

uosraod arnsur
UBd PUE SAOYJO [YOURIq 9ARY

yel) ‘euoziy
‘U03aI1Q) ‘BPBAIN

ON SOA SOA SOA  somedwod ay) aIayMm SIeIS Y] ISI'T ‘eruojie) ‘Oidwexs 104 uoneRIOWNUF uondIpsLnf
PIoBINX
ON SOA SOA SOA 9q [[IM NI Y} USYM WOI} e Aeq e QAN
PJoBINXD
ON SOA SOA SOA 9q 10U [[IM NI Y} uaym e Aaeq Jreq uonendxyg
SOX ON SOX sox uosiad powreu ou — wed) Juounredaq 3unsg IoumQ 9y
painar ‘pakordeg
SOx SOL SOL ON 9[nI 9y Jo 9[040 o1y ay3 woddng  “‘o[qelorde( ‘peuye( ‘MIN Sug snjels
ON ON SOA SOA Korjod ssoutsng & 03 9[na Ay JuI| 3ung Q0URIRJIYADI[O]
uoneAnou
ON oN SOA SOA ssauIsng ay) 0} NI Y} JuI] o 3ug uoneANOASSaUISNg
SOX oN oN OoN S9N Ay} J0J I9YNUIpI anbrupn SuLns 10 Uy i oy
{own-uni
Io juowkordop
paxmnboy 10J [njos) 9[qeaduey) 9[qe[[NN uondroseq sonfeA odA L, owreu Kjradoig




134 5 Prototyping and Design

As you can tell from this table, some properties may be useful for deployment or
run-time. We say may because it depends on the BRMS being used, in general, and
the underlying rule engine in particular. For example, the rule status, which
indicates the status/state of a rule within its life cycle, may be useful to a deploy-
ment tool to determine which rules get deployed and which rules do not. Rule
jurisdiction, effective date, and expiration date can be used during run-time to
determine which rules apply to a given business event, based on its localization
and occurrence date. The JRules BRMS supports a flexible and customizable
ruleset extraction and deployment tool, which relies on user-defined queries to
select which rules of a given project are to be extracted and deployed for a particular
decision/ruleset. A number of other features enable us also to filter rule during run-
time based on their properties, including so-called dynamic rule selection, dis-
cussed in Chap. 11, and agenda filtering (see Chap. 6).

5.4.3 Orchestrating Rule Execution

The rule project structure discussed in Sect. 5.4.1 is aimed primarily at managing
rule development in a way that promotes an effective division of labor and rule
reuse. In this section, we focus on the run-time structure of a ruleset. While the rule
engines and the underlying production paradigm (see Chap. 6) do not require an
internal structure to the ruleset,4 the kinds of decisions that we map to a ruleset will
often involve a series of stable and well-defined subdecisions. In that case, it makes
sense to orchestrate/organize rule execution within the ruleset accordingly. Further,
some decisions may involve hundreds or even thousands of rules. By structuring
their execution within the ruleset, we ensure that only a subset of them will be
evaluated at any given point in the execution of the ruleset. Hence the concept of
ruleflow, which is supported by several BRMS, including JRules.

Rule flows typically consist of linked tasks, each of which contains a subset of
rules to execute. If we think of a ruleset as a library of simple functions, a ruleflow
can be thought of as a loosely structured main program. We say loosely structured
because the rules within a task of the rule flow are unordered and are considered as a
“bag of rules.” A ruleflow typically looks like a process flow with tasks, transitions
(guarded or not), starting and ending nodes, fork and join operators, and condition
nodes. But the scope is different from that of a process flow: tasks can only include
a set of rules, and the parameters needed to control their execution, with no external
call, work queue, or work item like we have in a workflow engine. The execution of
a ruleflow typically corresponds to single synchronous invocation of the rule
engine. Depending on the BRMS, ruleflows may also help improve execution
performance. In IBM WebSphere ILOG JRules, we can select different execution

“We can give a rule engine a “bag of rules” and it will sort its way through, thanks to rule
dependencies and rule chaining.



5.4 Building Structures for Rule Development and Execution 135

algorithms for the different tasks of the ruleflow, taking advantage of the depen-
dencies that may exist — or not — between the rules of a given task. Chapter 11 will
explain JRules ruleflows, in far more detail, and will provide heuristics and best
practices for designing ruleflows. For the purposes of this chapter, we will simply
stress the following points:

¢ An initial rule flow design needs to take place during prototyping, prior to rule
authoring.

e The structure of the ruleflow has to make sense from a business point of view,
i.e., it has to reflect, somehow, the business structure of a (nontrivial) decision;
we should not code algorithms using ruleflows.

e At the same time, in terms of a granularity, a ruleflow corresponds to a single
invocation of the rule engine, and no heavy lifting (e.g., accessing external
resources) should take place within a ruleflow.

One technique for designing a rule flow relies on the life cycle of business
objects. Indeed, in those applications where the processing of some business objects
goes through a number of discrete and identifiable stages, it helps to build a finite
state machine (FSM) to model the evolution of the business entities through the
business process. For example, a claim typically goes through several processing
stages, from not-processed, to having its data validated (e.g., filtering out claims
with null or invalid required fields), to having its coverage validated (to ensure that
what is claimed is covered by the underlying policy), to being fully processed/
adjudicated. The transition from one processing stage to the next requires some
checks and verifications (i.e., rules) to be performed, and a specific outcome (e.g.,
pass versus fail). This can be readily modeled as an FSM. This FSM can serve as the
basis for designing the ruleflow.

Concept: Finite State Machine

In business application, FSM” is used to design /ife cycle of business entities, as
it represents a number of finite states a business entity can have over time. A
state is materialized by a node in a graph. Actions change the state. A business
entity starts its life cycle on a start state, and then goes through transitions until it
reaches an end state. The arrows from a node represent the different actions the
business entity supports at the current state. A current state is determined by past
states and the events received. The UML notation includes state charts, which
are nothing but a (compact) variant of finite state machines, with things such as
state generalization and state aggregation.

Within a BPM-BRM approach, the use of FSM for the important business object
is a standard design approach. It is important to note, however, that FSMs are not
sufficient to describe the business process. Indeed, an FSM follows a unique path
whereas a business process can have multiple concurrent paths of execution.

5See also Wikipedia http://en.wikipedia.org/wiki/Finite-state_machine.



136 5 Prototyping and Design

(V| & Iniidlization
- l 3

—iS ] ,”:;‘i?-'e ——  @FrfikD —> @PofeC —> @PofieB —> Groika —(8)
k]

Mo Jssessmerll I—I

Iniiate Assassmant

Fig. 5.5 Rule flow for a risk assessment ruleset

Figure 5.5 shows a sample — and realistic — rule flow for a risk assessment
ruleset. The flow starts by making some initialization, mostly to prepare for the rule
execution, and checking whether there is a risk assessment already available for this
customer. If not, the rule flow triggers an assessment process by going to the left
branch. If an assessment is available, it goes through a step by step evaluation of the
customer risk profile, where the customer is to be classified according to one of four
profiles. We start with the worse case, i.e., Profile D. Profile D includes rules about
government blacklisted persons, or bank blacklisted customers, high-risk benefici-
aries, etc. If a customer record does not match rules for profile D, they may match
rules for the subsequent profile. If a customer record fails to match any of the earlier
profiles, it will get assigned profile A, which is the best risk profile. This is a real-
life example that illustrates the concepts presented above.

More ruleflow design guidelines will be presented in Sects. 11.3 and 11.4.

5.5 Prototyping Rules

Prototyping rules is a very important step in ABRD as it enables us to stabilize
many of the design choices needed before we start tackling high-volume rule
authoring in the building phase. We first describe the purpose of rule prototyping,
and then discuss some rule coding patterns.

5.5.1 Purpose of Rule Prototyping

Rule prototyping enables us to:

1. Validate the data models. As mentioned in Sect. 5.3.3, regardless of how careful
we were with the data model coming out of the analysis phase, as we start
writing rules, we will invariably discover missing attributes — and sometimes,
classes — that we needed to add.

2. Validate the structures for rule development. This concerns rule project struc-
tures, rule metadata, and the rule flow. Indeed, by starting to input real rules,
we will get an idea about whether the rule project structure makes sense/is



5.5 Prototyping Rules 137

workable, about whether the rule metadata makes sense for all rules and,
conversely, whether we need more properties. It will also help us partially
validate the ruleflow by checking, among other things, if it enforces some of
the rule dependencies identified during analysis.

3. Identify and try out rule coding patterns. Generally speaking, the rules that come
out of rule analysis will map to a handful of rule types, such as constraints,
guidelines, action enablers, and the like. They will also map to some business
decision patterns. There are some well-documented type-specific patterns,
which will be presented in Sect. 9.3, and which are true and tested. However,
here we talk about business-specific patterns, which need to be identified,
formalized, and encoded in the prototyping phase, so that they may be used on
a wide scale during the building phase.

4. Set-up a unit-testing framework. More often than not, rule authoring starts well
before the rest of the application is developed. Rule authors need a way to test
rules that is independent of the full computational infrastructure of the applica-
tion. A test harness needs to be set-up for this purpose, which can feed business
data to a rule engine (or a rule service) for testing.

The first three goals require us to prototype a representative subset of the rules to
be developed during the “Building” phase. If our process involves claim data
validation, claim coverage verification, and claim adjudication, we should imple-
ment a representative subset of the data validation rules, another subset from the
coverage verification rules, and a third subset from the adjudication rules, e.g., to
tackle a particular use case. Selecting that representative subset requires a good
knowledge of the business rules within the domain, and should be done with the
help of business: they know which rules are more complex than others, and which
ones will exercise exotic corners of the data model — and thus, uncover missing
attributes or classes.

5.5.2 Some Useful Rule Patterns

In this section, we present two useful, domain-independent patterns. The first is
related to collecting the results of rule firings without corrupting the business
objects. The second is related to buffering rule actions until the ruleset finishes
executing. The third is related to testing for data quality first, before semantic data
validation.

5.5.2.1 Pattern 1: Providing Decision Explanations and Audits

In any ruleset making decisions or performing validations, it is a good practice to
provide accumulated explanations on the issues found or the decisions taken during
ruleset execution. The action part of the rule adds the issue to a collection of issues



138 5 Prototyping and Design

L ClaimProcessingResult
g «JavaCollection» issues : Issue
g claim :Claimlype
2, error : boolean

4§ ClaimProcessingResult () ; ] Issue

43 createlssue () Rl v T

g;é :ggi::i 8 & «JavaCollection» reasonCodes : ReasonCode
O 1 * = . . i

@ addAuditRequest() g message St

i addreasonAndissue () ¥ foString ()

42 searchlssues ()

42 addIssue ()
% hasError () -reasonCodes |4 =
& tostring () £ ReasonCode

[, code : String
(3, description : String

Fig. 5.6 Result data model

already found. The supporting model is simple and may look like that in Fig. 5.6,
with one Result object (ClaimProcessingResult) associated to the main business
entity — not shown in this Fig. 5.6, but assumed to be a Claim. The result object
includes a set of Issue’s, and issues can use reasons (ReasonCode) defined in a
central master data repository.

With this data model a business rule could look like:

if

The day of loss of 'the claim' is before the effective date of 'the policy'
then

add to 'the result' the issue : "claim date error" with a code "R02" and a descrip-
tion : "claim is before effective date of the policy";

5.5.2.2 Pattern 2: Delaying Rule Actions

There are situations when rule actions are supposed to trigger some process that we
do not wish to perform immediately, for a variety of reasons, including:

e Remoteness. Within the context of a remote rule execution service, executing the
desired actions would require remote calls.

e FException handling. If any of the actions raises an exception, we want a caller-
specific exception handler.

o Transaction management and compensation. If a block of actions fails, we may
not want, or be able to perform an outright rollback: we may want to manage
which steps are allowed to stand, which are rolled back, and which steps are
compensated for.

e Override. We may want to be able to override the recommendation of the engine
if it conflicts with other information.



5.5 Prototyping Rules 139

«interface»

=] Invoker £ command
2 execute ()
] commandManager =! Receiver ] concreteCommand
2 sendEmail () i execute ()

Fig. 5.7 Command pattern

For all of these reasons, the Command design pattern® may be useful within the
context of rule actions. The Command pattern is used when the object which invokes a
command is not the same object that executes it. For example, in a cross-sell business
ruleset, the intent of the rules is to compute the best promotion, or actions for this given
customer, customer profile, and customer history. If the action is meant to send an e-mail
or an SMS, we may not want to keep sending individual SMSs for each rule that fires:
we collect the messages during rule execution and then send them (or collate them) once
we come out of the engine. The command pattern elements are shown in Fig. 5.7.

The solution is to have the rules create a ConcreteCommand by using a Com-
mandManager in the action part of the rule. The execution of the command is
postponed to a later step of the application flow by an Invoker object. Using add
<> methods, the CommandManager creates instances of ConcreteCommand and
sets the Receiver object for that command, which is an object that will be notified
when the command is executed. The notification can be as simple as “I am done”, to
a full execution report. In turn, the Receiver can perform other actions to relay the
information, such as sending e-mails or messages to human actors. This is useful in
those cases where we have a human task in a work flow and we want the human to
act on the command created by the rule engine. In this case, the e-mail would contain
the relevant information the human will need, including, for example, links to
confirm certain actions. A further refinement of this pattern would buffer notifica-
tions to only forward the most relevant ones, or to send an aggregated notification
(e.g., e-mail) that covers all of the actions proposed by the actions of the rules.

5.5.2.3 Pattern 3: Test for Data Quality Before Business Logic

When the data that comes into the rule engine may have quality issues, it is common to
prefix the business rules conditions with data quality checks to avoid null pointer
exceptions or meaningless inferences. The following rule excerpts illustrate the pattern:

if the procedure code is not null and the procedure code is equal to 55 and . . ..

SSee detail http://en.wikipedia.org/wiki/Command_pattern.



140 5 Prototyping and Design

We are likely to find the condition “the procedure code is not null” at the
beginning of the action part of every rule of the current rule task of ruleset. This is
somewhat awkward as it mixes “computational” conditions with business condi-
tions, almost like saying “if the database connection is open and the credit score is
higher than 650 ...”. Worse yet, it places an undue burden on rule authors to test
for data quality issues in every rule they write: they will have to know which fields
are nullable — legitimately — and which are not, and they have to be disciplined
about writing their conditions. In such cases, the recommended practice is to
separate data quality issues from business conditions that use the data. Thus, we
can leverage the rule flow to address the data quality tests at the beginning and
assume that these conditions are true in subsequent tasks — and in rules that go into
those tasks. This solution has its disadvantages, however: it makes the rules
somewhat contextual. As always, design is a trade-off: we have to choose our
pain.

5.6 Case Study

One of the first issues that we need to address during prototyping is the data model.
As explained in Sect. 5.3.3, it is in this phase that we concretely confront the data
model to the rules, to identify which data is missing, and to complete it. The
following table shows a sample of issues concerning the data model, and proposed
ways of addressing them.

Issue Action plan

Day of service for the bill detail is Add the date attribute to the medical invoice and to the bill
missing. detail.

Where are the medical procedure  They are defined in an external system accessible through a
codes defined? data source. We need to cache them for the execution of

the rules, but also for the authoring of the rules (see
discussion in Sect. 5.3.3). For the time being, there are
only ten codes in scope for the rules, and thus, we can
handle them using a simple Java enumeration.
Claim and Medicallnvoice have Need to design FSMs to support them (see Sect. 5.4.3).
nontrivial life cycles.
The reason codes we are adding to Implement a central reference data or use a MDM product.

explain the rejection of the The reason codes can be defined during rule authoring,
claim or of the medical invoice but later be externalized in the reference data or MDM
should be defined in a central repository. They should be accessible, programmatically,
repository. from the rule authoring and rule execution environments.

Avoid coding treatment code in the
medical bill, use a treatment
object that can be also
populated from a predefined set
of treatments.




5.6 Case Study 141

¢o: Claim FSM
gatherInformation
Received
start processing &2 Qualification
issue
validate
Rejected
@O Validation reject
adjudicate
ICancelle-:l
&9 Adjudication cance
close
File

Fig. 5.8 Claim simple state machine version 1

As mentioned above, the major business entities such as Claim and Medical-
Invoice have nontrivial life cycles. We propose to define the following simple FSM
for the entity Claim, which we will enhance later in the project implementation
(Fig. 5.8).

After the start of processing, the claim may be canceled at any step which is
not represented in this FSM. A claim can be rejected if it has issues or during
validation if it violates hard constraint rules. The completion of the adjudication
step is to pay or not the claim, so the final state is to file the claim. The claimed
amount and the paid amount are kept for record. This FSM can serve as the
basis for the ruleflow. However, if we deem that the intermediate tasks involve
lots of decisions, and that we need to access external resources between two
tasks, then clearly, this FSM should not be implemented within a single ruleflow.
In our particular case, qualification, validation, and adjudication can involve
thousands of rules each, and represent major decisions each. Further, it is likely
that adjudication will require us to pull data out of external resources as we need to
look at procedure codes, payment and claim history, and the like. Hence, this is a
clear-cut case where the FSM is implemented outside of the rules. There are
multiple ways of implementing the FSM outside of the rules, including regular
Java code, a BPEL process, or a mix of the two. Either way, it is within the context
of this FSM that we would invoke a rule service to execute the rulesets appropriate
for each decision.

With regard to the rule organization, a first look at the “validate claim” ruleset/
decision point reveals two fairly distinct types of validations: validating the claim



142 5 Prototyping and Design

itself, and in case of an accident with bodily injuries, the medical invoices linked to
the claim. These are clearly two different concerns, so we can design two rule
projects to support the two types of validations. Further, the two validation deci-
sions refer to two fairly distinct data models: one having to do with accident reports
and equipment damage and repair and the other to bodily injuries, medical proce-
dures, and health care providers. Thus, we can have two different Java projects to
define the business objects needed by the two decisions, and two additional projects
to support service definition and implementation.

5.7 Communicate Back to Business

The last step of the prototyping is to produce reports from the different rule projects,
collect test execution traces, if needed, and log any issues we may have found
during these steps. Showing executable rules with actual test cases to subject matter
experts (SME) has a much bigger impact than well-documented policies. Concrete
test scenarios and execution reports have the virtue of helping to identify issues
with the ruleset, in a palpable and nonambiguous manner, and it helps the various
stakeholders address these issues early on and fix them before going into the
building phase (see Chap. 4), or worse, during production.

5.8 Summary

Rule prototyping is a very important phase in the ruleset development life cycle as it
forces us to exercise the major design decisions early on and provides a quick value
to the various stakeholders. We presented the common activities that are part of this
phase, putting emphasis on (a) a data model driven by the business entities as
expressed by the rules and not a data model as defined by industry standards or
enterprise models (Sect. 5.3); (b) a development organization structure (Sect. 5.4)
that promotes separation of concerns, an effective division of labor, and reuse; and
(c) working and tested rules, understandable by the business users (Sect. 5.5). We
presented some generic best practices for all of these design decisions; more best
practices will be presented within the context of more in-depth discussions of the
design trade-offs, in general (Chaps. 7, 9, and 12), and for the case of JRules
(Chaps. 10, 11, and 13).

The deliverables of this prototyping phase are by no means throw-away artifacts:
we use the term prototyping only as recognition of the exploratory nature of some of
the design choices, and the inevitable refinement that will follow.



5.9 Further Reading 143

5.9 Further Reading

e ABRD is an Eclipse Process Framework practice plugin readers may find at
http://www.eclipse.org/epf and within the practice library at http://www.eclipse.
org/epf/downloads/praclib/praclib_downloads.php

e The ACORD data model can be found at http://www.acord.org

e Explanations about the Adaptive Object Model pattern, by Joe Yoder, are
available at http://adaptiveobjectmodel.com/

¢ For an introductory definition of finite state machines, check http://en.wikipedia.
org/wiki/Finite-state_machine

e The Tele-management forum is actively maintaining a rich data model, SID, as
reference model for telecom service providers and vendors. Readers can see
more detail and download the model at http://www.tmforum.org/Information-
Framework/1684/home.html

e MISMO is accessible at http://www.mismo.org

e Test-driven development is covered in lots of books, but was developed by Ken
Beck in his book: Beck, K. Test-Driven Development by Example, Addison
Wesley, 2003



Part 111
Foundations



Chapter 6

Rule Engine Technology

Target audience

Developer (must); optional for anyone wishing to look under the
hood

In this chapter you will learn

Key points

The history of rule-based decision making

The principles of rule engines, and the implications of object-rule
systems

The basics of the RETE algorithm

The different rule engine execution algorithms

Rule-based decision making has a long history and some cogni-
tive plausibility.

Rules are treated as data processed by an interpreter — the rule
engine.

In the production system ideal, the “intelligence” is in the rules
as opposed to the control mechanism of the engine, which should
remain simple.

The JRules rule engine is a Java object that “reasons about”
Java application objects.

The RETE algorithm makes the production system paradigm
computationally efficient.

Decisions that do not require rule chaining can use simpler — and
an order of magnitude faster — execution algorithms.

6.1 Introduction

In this chapter, we explain rule engines and rule-based programming. We start by
briefly describing the history of rule-based programming, in Sect. 6.2. Rule-based
programming belongs to the family of production systems, which can be thought of as

J. Boyer and H. Mili, Agile Business Rule Development, 147
DOI 10.1007/978-3-642-19041-4_6, © Springer-Verlag Berlin Heidelberg 2011



148 6 Rule Engine Technology

a programming paradigm in the same way that object-orientation is a programming
paradigm. By the same token, we go over some of the tenets of production systems
which find expression in some of the design guidelines for rule authoring, to be
covered in Chaps. 9 and 11. In Sect. 6.3, we describe the structure of a rule engine and
explain the basics of its inner workings. In particular, we go over the characteristics of
production systems in general (Sect. 6.3.1), and then talk about the JRules rule engine
(Sect. 6.3.2). Section 6.4 describes the three rule execution algorithms supported by
JRules, namely, a simplified version of the RETE algorithm, which is supported by all
the “modern” rule engines, the sequential algorithm, some version of which is
supported by some rule engines, and the Fastpath algorithm, which is specific to
the JRules rule engine. Truth be told, our (simplified) description of RETE and
sequential algorithms are also tainted by the way JRules does it, to support our
discussion of the choice of an execution algorithm in Chap. 11. We conclude in
Sect. 6.5. Material for further reading is provided in section on “Further Reading.”

Note that Sects. 6.2 and 6.3.1 owe much to the still current The Origin of Rule-
Based Systems in Al, by Randall Davis and Jonathan King (1984), two rule-based
system pioneers. However, any misinterpretations, inaccuracies, or gross simplifi-
cations are our own.

6.2 The History of Rule-Based Programming

Rule-based programming is part of a long tradition in computing called production
systems. Production systems can be seen as having three distinct lineages:

1. Mathematics and theory of computation, through work of Emil Post
(1897-1954) a Polish-born American logician who tried to design a universal
computation machine, not unlike Turing’s machine'

2. Cognitive psychology, as a way of modeling cognitive processes, including
recognition and problem solving tasks

3. Artificial intelligence applications, and more specifically, knowledge-based
ones, whose expertise is expressed declaratively as a set of if-then rules

It is not clear how much Post’s work influenced the use of production systems in
cognitive modeling and knowledge-based applications. However, it does provide a
somewhat stylized theoretical foundation for the paradigm.

As has been the case in other areas of artificial intelligence and cognitive
science, the two fields pursued two different objectives but mutually enriched
each other. Cognitive psychology is concerned with understanding human cognitive
processes. Cognitive psychologists develop models for such things as memory

"Post did not call his contraption a “machine,” but called it “worker” or “problem solver” (see Emil
Post, by Alasdair Urquhart, in Handbook of the History of Logic, vol 5: Logic from Russell to
Church, eds Dov M. Gabbay and John Woods, Elsevier, Amsterdam, pp. 429—478).



6.2 The History of Rule-Based Programming 149

(short- and long term), recall, recognition, categorization, and various types of
problem-solving tasks such as planning, diagnosis, etc. Naturally, these models
need to be cognitively plausible, that is, they need to be able to mimic or explain
some observed behavior in psychological experiments, such as error rates or time
delays in performing certain tasks. Note that here we are not concerned about
structural plausibility of the models, that is, whether these models are good models
of the actual hardware (the brain, neurons, etc.), although much has been made
about neural networks, which happen to be biologically inspired.”

So what evidence do we have that our brain works like a rule engine interpreting
rules? Allen Newell (1973) has been able to model human behavior on some
cognitive tasks using a production system and task-specific rules. Further, if we
compare the performance of a novice to that of an expert, in any domain, we know
that novices solve problems from first-principles, whereas experts use rules that
they have developed through their practice. These “chunks” of knowledge can
typically emerge in one of two ways. First, they can emerge through repeated
co-occurrences of certain events whereby we establish some sort of causality — or
at least a strong correlation. For example, an experienced mechanic will know, with
a high probability, that problem/symptom X with car model Y, or car model year Y,
is due to the wear of part Z: he or she has had to investigate so many instances of the
problem where part Z turned out to be the cause, that he or she can make the
connection with a high level of confidence. A very good mechanic or a quality
engineer will even know why part Z wears/breaks often (design, material, etc.), but
that is a different diagnostic task. If a groundhog sees its shadow on Groundhog
Day, it is going to be a long winter.® An insurance underwriter “knows” (statistics
bore that out) that a young male driver is a high-risk one or that certain car models
are more prone to theft than others.

The other way that rules can emerge is through what cognitive psychologists
have sometimes called “chunking.” One example of chunking is “short-circuiting”
a long inference. What is the effect of raising interest rates on employment? Let us
see: it increases the cost of borrowing for consumers, and consequently they refrain
from borrowing to purchase stuff, and consequently inventory builds up, at current
production levels, and consequently companies shed unneeded workers.* This may
reflect the reasoning of a (bright) freshman economy student, but an economist,
having gone through that inference before, will jump to the end result: raising
interest rates lowers employment.

“Mathematically speaking, a neural network can be thought of as a special kind of numerical
classifier. By varying the topology of the network and the behavior of the individual neurons/
nodes, we get different mathematical behaviors (convergence, types of classes that can be
identified/isolated, etc.).

3Check http://en.wikipedia.org/wiki/Groundhog_Day for this North American folklore.

“It also increases the cost of borrowing for companies, which cannot even expand in foreign
markets, and it makes interest-bearing investment products more attractive than stocks, which
further starves companies for capital, stunting their growth.



150 6 Rule Engine Technology

Let us now look at how artificial intelligence adopted — and adapted — this
computational metaphor. Generally speaking, “artificial intelligence” applications
aim at providing solutions to problems that do not have known or computationally
tractable, algorithmic solutions. Traditionally, researchers have taken two general
approaches to solving such problems: either devise smart algorithms or design a
knowledge-based system that uses a general purpose problem solver that manip-
ulates a domain-specific “knowledge base.” The first generation of chess-playing
programs used the first strategy: a smart algorithm.> Knowledge-based expert
systems, on the other hand, used the second approach, which has been used to
solve problems ranging from medical diagnosis (e.g., INTERNIST, MYCIN) to
mineral prospection (PROSPECTOR), to chemical analysis (DENDRAL), to hard-
ware design (X-CON), and many more application areas.

Al researchers, who were more concerned about the performance of their applica-
tions than they were about the cognitive plausibility of their creations, tweaked the
production system paradigm to a great extent, mixing complex rule formats, with
complex control and inference mechanisms, sometimes straying away from the
production system “ideal” (Davis and King 1984) However, because the expert
knowledge needs to be elicited from experts, and the results explained to experts
and novices alike, those same Al researchers have also contributed to cognitive
modeling by helping us understand how experts internalize and externalize their
expertise, and by developing models, techniques, and tools for knowledge extrac-
tion.® In fact, the (business) rule discovery techniques of today are often business
adaptations of the knowledge engineering techniques developed by Al researchers.

Naturally, the rule-based applications of today are fairly different from the Al
applications of the 1980s. Traditional Al rule-based systems focused on knowledge
areas where expertise was rare, expensive, or inaccessible, and hence the focus on
advanced engineering and scientific domains. Rule-based business applications “bor-
row” the rule paradigm but for different reasons: they help externalize, share, and
maintain consensus business knowledge that, more often than not, is already known
and codified in the procedural code of legacy applications. Thus, both the business rules
and the control mechanisms used to execute them tend to be rather simple. As mentioned
in Chap. 1, rule-engine execution of business rules is but one aspect of the business rules
approach, the others being business knowledge sharing and management.

In the next section, we first describe the production system ideal, and then
describe the JRules rule engine, which is typical of rule engines operating on
objects, in the OOP sense.

STt is theoretically possible to develop a chess playing program that explores all of the legal moves
to pick ones that lead to checkmates . . . the problem is there are over 10** legal chess positions and
it would take forever to explore them! Al researchers have developed approximate and smart
search algorithms that explore only a few moves ahead (and hence, approximate) and that know
how to focus on promising moves (hence smart). “Modern” chess playing programs also rely on a
database of classical openings and end games.

5The term “extraction” may be evocative of tooth extraction. Without the appropriate techniques,
the process can indeed be as painful to both the expert and the knowledge engineer.



6.3 Rule Engines 151

6.3 Rule Engines

In this section, we first present the basic architecture of a production system, and
discuss some of its variants. In Sect. 6.3.2, we present the JRules engine.

6.3.1 The Basics of Production Systems

A production system is typically defined in terms of three components:

1. A set of rules, or ruleset
2. A database
3. An interpreter

The ruleset is an unordered set of rules, consisting of expressions of the type
LHS — RHS, where LHS and RHS stand for left-hand side and right-hand side,
respectively. The database consists of a (typically) unordered set of elements, and
the interpreter is the processor that applies the rules to the database. The process
goes as follows: the interpreter matches the LHS parts of the rules of the ruleset
against the database, and if a match is found for a particular rule, that rule is
executed, which will typically modify the database. This process repeats as long as
matches can be found, and terminates only when no LHS of a rule matches the
current state of the database. This simple architecture belies a wide range of
production systems ranging in complexity from abstract symbol manipulation
machines to medical diagnosis expert systems (e.g., the MYCIN or INTERNIST
family) to circuit layout designers (X-CON) to the decision component of a claim
processing application or a mortgage underwriting system. What distinguishes
these systems?

1. The structure of objects of the database. These can range in complexity from
simple symbols (strings) to stateful, history-aware objects.

2. The structure of the rules, which can range in complexity from simple rewriting
(symbol transformation) rules to having access to the full power of a modern
programming language in both the LHS and RHS.

3. The functioning of the interpreter, and, more specifically, the algorithm and data
structures used by the interpreter to control the evaluation and execution of the
rules.

The JRules rule engine, to be discussed in Sect. 6.3.2, manipulates stateful,
history-aware Java objects using the full power of the Java language in both the
LHS and RHS of rules. It also supports a rich set of control structures and rule
execution algorithms, to be discussed in Sect. 6.4, and again in Chap. 11, when we
talk about ruleset orchestration. We will discuss these aspects in due time. For the
purposes of this section, we explore the basic functioning of a production system
using the simplest of rules and the simplest of databases.



152 6 Rule Engine Technology

Ruleset

(ABscol | an (1)
‘\\

| Apcocpe

Interpreter

Execute (3)
ABC— ADE

ACD - AEF

J

Database

Fig. 6.1 The typical production system process cycle: (1) scan, (2) match, and (3) execute

Figure 6.1 shows a simple production system where the database consists of a set
of strings (symbols) and the rules consist of string transformation (or rewriting)
rules. In this case, the three rules match strings in the database: the (rewrite) rule AB —
CD matches the string ABC (the first two letters), the rule BC — DE matches the
same string ABC (the last two letters), and the rule CD — EF matches the string
ACD (last two letters). The pair consisting of a rule and a matching string will be
called rule instance. In this case, we have three rule instances, <AB — CD, ABC>,
<BC — DE, ABC>, and < CD — EF, ACD>. To facilitate reading, we underlined
the matching substring in each rule instance.

This simple example raises a number of questions about the functioning of the
interpreter:

1. What order do we use to evaluate the rules on the database — and does it matter?

2. If amatch is found, do we immediately execute the corresponding rule, or do we
continue exploring other rule-data matches until we are through with all the
rules, before we execute any rule; we refer to the latter as batching rule
execution.

3. If we choose to batch rule execution and we identify several rule instances,
which rule instance should we fire first — and does it matter which ordering we
use?

4. If we batch rule execution, do we perform a full <ruleset, database> scan after
each rule execution or do we wait until we complete executing the whole batch?

These are all parameters of the interpreter’s control strategy and different
production systems have used different combinations, except for the fourth



6.3 Rule Engines 153

question: all true production systems perform a full ruleset—database scan after
each rule execution, whether rule execution is batched or not.’

Let us now go back to the first three questions. First, which order do we use to
scan rules? This matters only if we execute immediately the right-hand side of a rule
whose left-hand side is satisfied, that is, if we do not batch rules. In such a case, the
end result may be different, depending on the ordering used. Indeed, because each
rule changes the state of the database (by replacing a string by another), rule
execution order matters: a transformation can #rigger another rule, that is, can
change the database in a way such that it matches the left-hand side of another
rule, or inhibit another rule, by changing the database in a way that fails the LHS of
another rule. Different production systems may use different scan-ordering
mechanisms. In our example, the two rule instances <AB — CD, ABC> and
<BC — DE, ABC>> inhibit each other: if we apply the transformation AB — CD
to ABC first, yielding the string CDC, the second one (BC — DE) is no longer
applicable. Conversely, if we apply BC — DE to ABC first, yielding ADE, the rule
AB — CD is no longer applicable.

With regard to the second question, that is, whether we execute a rule whose
LHS is satisfied immediately, or whether we complete a full ruleset—database scan
before we start executing rules, both strategies have been used in production
systems. We also know that they produce different results since each rule execution
modifies the state of the database, thereby influencing which rules match, or fail to
match, the current state of the database. Notice that the JRules rule engine uses rule
batching with the RETE algorithm, and immediate rule execution in the sequential
algorithm; the Fastpath algorithm uses a combination of the two.

With regard to the third question (rule execution ordering), note first that this
question is only relevant when we have rule batching, that is, when we perform a
full ruleset—database scan, before we start executing any rule. If a full scan
identifies several rule instances, called conflict set, we need an execution ordering
strategy — called conflict resolution strategy. Further, the choice of a strategy does
affect the end result. Referring back to the example of Fig. 6.1, a full ruleset—
database scan identified the rule instances <AB — CD, ABD>, <BC — DE,
ABC>, and <CD — EF, ACD>. The question then is which transformation to
apply first; as we saw for the issue of scan ordering, the order matters, and the end
result will be different.

Different ordering strategies have been used, including rule priority, rule
recency, rule condition strength, and others. We will briefly explain them here;
we discuss the JRules engine conflict resolution strategy in the next section. With
rule priority, rules are assigned priority values which are used to order rule
instances within the conflict set. If rule AB — CD had higher priority, it would
be executed first, and the string ABC would be transformed to CDC. Note that if we

"In RETE mode, the JRules rule engine is a true production system. However, in Sequential and
Fastpath mode, the rule engine does not perform a full ruleset—database scan after each rule
execution. More on the algorithms in Sect. 6.4.



154 6 Rule Engine Technology

perform a full ruleset—database scan after this transformation (see the answer to the
fourth question above), we will identify a second match for the rule CD — EF, and
will end up with two rule instances corresponding to the same rule: <CD — EF,
ACD>, which was already identified in the first scan, and <CD — EF, CDC>,
which showed up as a result of executing the first rule. This is a fundamental feature
of true production systems: by performing a full ruleset—database scan after each
rule execution, we ensure that the conflict set is always current with respect to the
state of the database. This currency comes at an important cost: that of performing
a full ruleset—database scan after each rule execution. Thanks to his RETE algo-
rithm, Charles Forgy made sure that this cost is minimal; we will talk about a
simplified version of the RETE algorithm in Sect. 6.4.1.

Let us go back to our example and to the conflict resolution strategy: notice that
priority alone does not suffice in this case, since the two rule instances/matches
correspond to the same rule.® One criterion that is often used in rule engines —
including JRules — is recency: If we have two rule instances in the conflict set, we
pick the one that was most recently added to it. In our example, recency means that
<CD — EF, CDC> is executed first, followed by <CD — EF, ACD>.

Rule condition strength is another criterion that has been used to break ties
between rule instances having the same priorities: we typically pick the rule with
the strongest condition first. The intuition behind this choice is to favor rules that use
“more knowledge” or “more information” about the current database, as their
actions are likely to be more “appropriate” to the situation at hand. Condition
strength can be defined in many ways. Given two rules R;: LHS; — RHS; and
R,: LHS, — RHS,, we could say that LHS; is stronger than LHS; if the string LHS;
contains the string LHS,. For example, the rule ABC — <some string> has a
stronger condition than either AB — <some string> or BC — <some string>.’ The
problem with such a definition is that not all rules can be ordered: for example, the
rules R;: ABC — <some string> and R,: DE — <some string>> are not compara-
ble: neither string (ABC and DE) is included in the other. A weaker relation that just
looks at string length may be used instead. Note finally, that this relationship does
not eliminate the possibility of ties. Rule engines do need to break ties one way or
another, but they may not publish all of their tie-breaking rules as we are not
supposed to care — or count on a particular obscure strategy. For example, the
JRules engine documentation says that we should not care beyond recency: for all
practical purposes, beyond recency, we can consider the selection random.

The above discussion showed some of design dimensions for production sys-
tems, in general, and as it relates to the control strategy used by the interpreter. An
important characteristic — and advantage — of the production systems paradigm is
that “intelligence” is embodied in the rules, and to a lesser extent the database, as

8JRules supports the so-called dynamic priorities, which are rule instance—specific priorities. More
about this in Chap. 11 (see discussion about IRL).

This definition also maps nicely to logical formulas: if A, B, and C are predicates, condition
strength corresponds to logical implication: ABC implies AB (ABC — AB) and BC (ABC — BC).



6.3 Rule Engines 155

opposed to the interpreter: a single and simple interpreter should be able to execute
rulesets in a variety of domains. Further, the “intelligence” of the rules should not
be embodied in fairly complex rules or in a set of intricately dependent rules:
individual rules should be simple and independent of other rules. Ideally, the
“intelligence” of the ruleset should emerge from the implicit interactions of simple
rules as they manipulate the same database.

Achieving rule set simplicity and modularity has always been a challenge,
including to some of the early AI pioneers who tweaked interpreters beyond
recognition to extract performance or additional inferencing behavior (see, e.g.,
Davis and King 1984). Closer to home, we have seen many business rule projects
where rule authors used every bell and whistle of the JRules product to reproduce an
essentially procedural decision process. We have seen rules with dozens of condi-
tions or with conditional logic in the action part. We have also seen cases where rule
authors implemented explicit and heavy-handed dependencies between rules, and/
or a very intricate orchestration (see Chap. 11).

How to avoid “overengineering” a production system, in general, and a ruleset,
in particular? Some of the methodological guidelines shown in the book help.
Proper rule discovery and analysis, discussed in Chaps. 3 and 4, play a central
role by producing rules that are business oriented, relevant, properly contextual-
ized, and atomic. Rule authoring best practices and design patterns, discussed in
Chap. 9, rule entry infrastructure design, discussed in Chap. 10, and rule authoring
in JRules, discussed in Chap. 11, should take care of the rest.

6.3.2 The JRules Rule Engine

In this section, we discuss the basics of the JRules rule engine. The letter J of JRules
stands for Java: the rule engine itself is a Java object, instance of the class
IlrContext, the ruleset is represented by a Java object (class IlrRuleset),
and what we have called database in Sect. 6.3.1 — called working memory in JRules —
consists of a bunch of plain old Java applications objects (POJOs). The JRules rule
engine uses what we called rule batching in Sect. 6.3.1, and hence, it uses a data
structure to hold the conflict set, called agenda. In this section, we will explain how
the rule engine operates on Java objects. We will show just enough of the API to
understand the basics: the full API will be presented in Chap. 13, which deals
specifically with deployment rules with JRules. The supported rule engine execu-
tion algorithms will be discussed in the next section. How to select an execution
algorithm and criteria for algorithm selection will be presented in Chap. 11. To
better understand the inner workings of the engine, we will show rules in the Ilog
Rule Language (IRL), which is the JRules rule execution language, and bears some
resemblance to Java; IRL is discussed more thoroughly in Chap. 11.

Consider the following Java class definitions for the classes Claim and Policy;
the reader can guess what the classes PolicyHolder and StatusType look
like (Fig. 6.2).



156 6 Rule Engine Technology

class Policy extends .. { class Claim extends .. {
private int policyNumber; private Date claimDate;
private Date beginDate; private Policy policy;
private Date endDate; private float amount;

private PolicyHolder holder;| private StatusType status;
- private float payment;
// constructors -
public Policy(int number, // constructors

PolicyHolder public Claim(Policy pcy,Date dte) {..}
holder) {..} .
- // getters and setters
// getters and setters public Date getClaimDate () {..}
public int getPolicyNumber () | ..
{..} // utility functions
- public boolean filedAfter (Date dte)

{..}

: public boolean filedMoreThanNumDays-—
After (int numDays, Date dte) {..}

}

Fig. 6.2 Sample class definitions

Consider now the following two IRL rules big_claimand claim_
over_90_days_past_exp_date_policy. The first rule matches
claims that have an amount higher than $100,000; because of the amount involved,
such claims are referred to a human claim adjudicator. The second rule rejects claims
that were filed more than 90 days after the expiration of the policy. The line:

?myClaim: Claim(getAmount ()> 100000) ;

In the rule big_claim represents the condition part of the rule. In IRL
terminology, it is called a simple class condition and it matches a Claim object
such that the result of calling getAmount () on it yields a value higher than
$100,000. The condition part of the second rule is more involved but does the same
thing. The action parts of the rules change the status of the matching claim (called ?
myClaim in both rules) and apply the action “update ?Cclaim;” that we
will explain shortly (Fig. 6.3).

Roughly speaking, to apply rules to Java application objects using a JRules rule
engine, we need to do the following:

1. Create the rule engine and load it with the ruleset.

2. Load up the working memory (database) of the rule engine. For the case of the
JRules engine, when using the default algorithm, loading the working memory
triggers an incremental scan/match of <ruleset, database>. The scan/match is
incremental since the scan is “focused” on the new data; more on this in
Sect. 6.4.1.

3. Perform an execute-scan-match cycle, until there are no more rules to execute.

4. Reset the rule engine for future use.



6.3 Rule Engines 157

rule big claim {
when {
?myClaim: Claim(getAmount () > 100000);

} then{
?myClaim.setStatus (StatusType.MANUAL REFERRAL) ;
update ?myClaim;

}

rule claim over 90 days past exp date policy {
when {
?myClaim: Claim(filedMoreThanNumDaysAfter (90,

getPolicy () .getEndDate()));

} then {
?myClaim.setStatus (StatusType.REJECTED) ;
update ?myClaim;

Fig. 6.3 Sample (Ilog Rule Language, IRL) rules

We will first show Java code that performs these four steps. Then, we will look at
what happens internally inside the rule engine.

Figure 6.4 shows a typical Java code sequence for performing these steps. To
simplify the first step, we will assume that the above two rules are packaged in an
old-style IRL text file called “myrules.irl”; Chap. 13 will show a more up-to-date
API for ruleset parsing and loading. With regard to the scan-match-execute cycle,
we should mention that the scan in JRules is triggered by either changes to the
working memory/database or changes to the ruleset. We change the working
memory by adding objects to it, modifying them, or removing them from it; we
change the ruleset by adding or removing rules, or changing their status. Finally, the
scan-match-execute cycle starts with the execute step (execute-scan-match).

Figure 6.5 illustrates what happens under the hood. The left-hand side of Fig. 6.5
shows the part of the call stack that concerns the method that contains the code of
Fig. 6.4."° The call stack includes memory locations (variables) to hold the
addresses of the actual Java objects, which are allocated in the Java heap memory,
shown on the right-hand side of Fig. 6.5. The important instructions in Fig. 6.4 have
been numbered ([1]-[6]). Their effect is shown in Fig. 6.5 in terms of links created
([1]-[4]) and removed (links [5] and [6]).

The Java instruction [1] in Fig. 6.4 results into the creation of an IlrRuleset
object in the Java heap, and the setting of reference to it from the call stack (the
variable myRuleset. We will not go into the details of how the rules are
organized internally, which will be covered in Sect. 6.4. The construction of the rule
engine using the one-arg constructor (line [2] in Fig. 6.4) will create the rule engine
with an empty working memory (a collection of null pointers), an empty agenda
(a collection of null pointers), and the previously created ruletset ruleset object; the
corresponding links have been labeled [2]. The instruction numbered [3] in Fig. 6.4

19Sometimes called activation record of the caller.



158 6 Rule Engine Technology

// 1. Create the rule engine and load it with the ruleset

// We need to create a ruleset object first, and then construct
// the rule engine object with it
[1] IlrRuleset myRuleset = new IlrRuleset();
// begin -- old style ruleset loading and parsing
FileInputStream fis =
new FileInputStream(new File (“myruleset.ilr”));

if (! myRuleset.parseStream(fis)) {
// rules/ruleset file contains syntax error(s). Exit
System.out.println (“Ruleset parsing error(s): quitting”);
return;

}

// end -- old style ruleset loading and parsing

// Construct the rule engine with the ruleset object
[2] 1IlrContext myEngine = new IlrContext (myRuleset);

// 2. Load up the working memory (database) of the rule engine
// first, get a claim object from some incoming stream

[3] Claim myClaim = getNextClaim() ;
// Next, insert myClaim into the working memory of the engine
// This will perform a scan/match of the rules in the ruleset

[4] myEngine.insert (myClaim) ;

// 3. Perform the execute-scan-match cycle until there are no
// more rules

[5] myEngine.execute();

// 4. Reset the engine

[6] myEngine.reset();

Fig. 6.4 Excerpts from a Java program that uses a JRules engine

obtains a local (to the calling context) reference to some claim object. Here, we do
not care how the claim object was created: the function getNextClaim()
could be returning a reference to an already existing Java object, or creating a Java
object itself by iterating over the results of a database query, or retrieving the next
message from a queue. The important thing to stress is that the Java objects that the
rule engine works on (i.e., the contents of its working memory) have an independent
life cycle from the rule engine.

When we insert an object into a rule engine (line [4] in Fig. 6.4), we do two
things: (1) add a reference to that object from the working memory of the engine,
and (2) while we are at it, perform a <ruleset, working memory> scan/match
sequence. If the newly inserted object contributes to some match, a new rule
instance, that is, a pair <rule, data tuple>, will be added to the agenda. Figure 6.5
illustrates the case where the newly inserted claim object (myC 1 a im) matches
the rule big_claim. As aresult, a new rule instance is added to the agenda,



6.3 Rule Engines

159
_____ ’a’—-N‘\\i_—’/’ ‘“\\
! !
| 1 \ PN
1 \ - \
;o S
Rule engine ruleset \
]
. . |
myRuleset blgfclalm /'
\ RSEL] claim ... h
\ (2] ‘
! \
: > WM ||AGENDA \
myEngine / '

myClaim -

1
1
claim !
id )
/\_/—\ amount Datd ’

\ date K/

\ Rule instance |
Call stack ' !
\ 1

1
Java heap memory J/
S -7 ~< PR ’

Fig. 6.5 What happens under the hood when using a Java rule engine

which can be thought of as a pair <rule, data>. The “rule” component points to
big_claim and the data component points to myClaim.

The call to execute (line [5] in Fig. 6.4) triggers a loop that looks as follows:

e while the agenda is not empty

— remove the rule instance at the top of the agenda
— execute the action part of the corresponding rule.

perform a scan/match cycle of the <ruleset, working
memory>.

Note that executing the action part of a rule can modify the working memory.
Indeed, we typically call Java methods that modify the state of the object(s)
matched by the condition part of the rule. In our example, both rules modify the
status attribute of the matching Claim object. Thus, we need to perform a
scan/match cycle after each rule execution. A consequence of this scan/match could
be the addition or removal of rule instances to/from the agenda. In the example of
Fig. 6.5, we show the effect of the execute() method as executing the action part of
the top (and unique) rule instance of the agenda.

Because a <ruleset, working memory> scan/match is costly — optimizations
explained in Sect. 6.4.1 notwithstanding — and because not a/l actions parts of rules



160 6 Rule Engine Technology

modify the working memory, or modify it in a way that concerns rules, we only
perform a <ruleset, working memory> scan/match when we need to. The question
then is, how do we know that we need to perform a scan? Could the engine tell, by
looking at the code in the action part of the rule? Alas, it cannot: we should not let
the “setStatus () ” name fool us: using the setter naming pattern in our code
is just a coding convention . We could write a method that follows the “setter”
naming pattern that does not change the object, and a method that changes the
object that does not follow this pattern. Hence, we need to tell the engine explicitly
that a scan is needed.'' That is the role of the IRL action “update ?
myClaim;” used in both rules.

The call to the method execute () returns when no rule instances remain
on the agenda. This signals that no rule matches the current state of the working
memory. This, in turn, means that we have “inferred” everything that could be
inferred from the starting state working memory, in one or several steps. The only
way then to “reload” the agenda is to insert new data into the working memory of
the engine, to remove existing data from working memory,'? or to modify existing
data (e.g., myClaim) from the calling Java application, and letting the engine
know about it."?

Finally, note that this behavior is specific to the RETE mode, which is the default
execution behavior of JRules rule engine, and the only mode that conforms to the
production system model described in Sect. 6.3.1; we will explain in Sect. 6.4.1 how
the ruleset, working memory, and agenda are organized internally in RETE mode to
make this process efficient.

The execution mode notwithstanding, the behavior presented in this section is a
simplification of what will happen in your rule application:

¢ In the above description, application objects are provided to the engine through
an explicit insertion into the engine’s working memory, and the result of the rule
engine execution is implicitly embodied in the changes performed on those
objects by the action parts of rules. We will see in Chap. 11 ruleset parameters

"One possible alternative to having to request a scan by explicitly calling the “update” is to
instrument the code of the classes manipulated by the engine (e.g., the class Claim in our case) so
that the engine is notified whenever some attribute is modified. This is the technique used by
object-oriented databases, where persistent classes are instrumented so that whenever an attribute
of a java object is modified, the object instance is “dirtied,” triggering a save at the end of the
transaction. Such a solution would not work in our case for several reasons. First, this instrumen-
tation would add processing overhead to a// the instances of a class, whether they are manipulated
by a rule engine or not. Second, it adds processing overhead to all object attributes, whether they
have a bearing on rules or not. However, let the reader be assured: this explicit notification is
transparent to business rule authors, as explained in Chap. 11.

12Indeed, assume we have a rule that says “if there is no claim over 1,000 then do such.” If the
working memory contains/references a claim worth 1,100, the rule will not match the current state
of the working memory. If I remove that claim, the rule will match.

3The IRL instruction “update ?myC laim;” hasaJava API equivalent, which can be called
from the Java calling context as in “myEngine.update (myClaim) ;”.



6.4 Engine Execution Algorithms 161

which provide a more elegant and scalable way of passing data back and forth to
the rule engine.

¢ In the above example, the rule engine is local to the business application that
needs it, and is manipulated directly through an explicit reference — the variable
myEngine. We refer to this as the embedded mode. Most enterprise applica-
tions will access rule engine functionality as a service through an abstraction
layer that provides location transparency, scalability, load balancing, run-time
ruleset management (hot deployment, execution statistics, etc.), and other enter-
prise services. Chapter 7 will explore the design space for business rule applica-
tions in general. Chapter 12 will address the design space for rule deployment, in
a vendor independent way, and Chap. 13 will discuss the specifics of the JRules
product.

In some ways, this section provides the basic mechanics of a rule engine that
refers to native Java objects. Subsequent chapters will show how this scales up for
enterprise applications.

6.4 Engine Execution Algorithms

In this section, we explain the three engine algorithms supported by JRules. The
RETE algorithm, explained first, is supported, in one form or another'* by all rule
engines, and fully implements the production system paradigm explained in
Sect. 6.3.1. Some form of sequential algorithm is supported by most commercial
products. The sequential algorithm does not implement the full production system
model, but there are some classes of problems for which it produce the same result
as the RETE algorithm, but an order of magnitude faster. Here, we will introduce
the JRules sequential algorithm (Sect. 6.3.2). The sequential algorithm is applicable
to only certain kinds of problems, and imposes some restrictions on the kinds of
rules and rule constructs that can be used. The JRules Fastpath algorithm enables us
to relax some of those conditions, with a performance comparable to that of
sequential. The Fastpath algorithm will be discussed in Sect. 6.4.3.

6.4.1 The RETE Algorithm

We mentioned in Sect. 6.3.1 that an important aspect of production systems is
the fact that we perform a full scan <ruleset, database> after each rule execution.
A brute force <ruleset, working memory> scan would make rule engines too

"RETE is the name given to the original algorithm published by C. Forgy in his doctoral thesis.
Subsequent enhancements, introduced by Forgy and others, have been dubbed RETE II and RETE
II plus.



162 6 Rule Engine Technology

inefficient. The RETE algorithm proposes an organization of the ruleset and of the
database (working memory) that makes such <ruleset, working memory> scans far
more efficient. It does so by applying three techniques that dramatically reduce the
number of tests that need to be performed:

e It builds a complex index of rule conditions that takes advantage of similarities
between rule conditions to reduce the number of tests that need to be evaluated
for the entire ruleset. This index is called the RETE network.

e Because a <ruleset, working memory > scan is almost always triggered by a data
insertion into, or removal from, the working memory, or by the modification of
an object already in working memory, the RETE algorithm is able to precisely
identify those parts of the RETE network that need to be reevaluated.

e The network stores partial matches to further reduce the number of tests that
need to be performed.

We explain below the structure of the RETE network and the workings of the
rule engine. We will use a sample ruleset with three rules to illustrate the structure
of the RETE network.

Roughly speaking, the RETE network is a hierarchy with a single entry node and
several exit nodes, one per rule in the ruleset. The internal nodes of the hierarchy
represent the different tests embodied in the ruleset. Each working memory event
(insertion, modification, or removal of objects) is handled as a foken entering the
hierarchy from the top, and traveling down the hierarchy as far as successful tests
will take it. Object insertion is treated as a positive token. Object removal is treated
as a negative token. Object modification may spawn both positive and negative
tokens.'” If a positive token reaches a leaf node (a rule node), a new rule instance is
added to the agenda. If a negative token reaches a leaf node, the corresponding rule
instance is removed from the agenda.

We will first illustrate the structure of the network with a single rule and then
show the effect of condition sharing between two rules. Figure 6.6 shows simplified
class definitions'® and Fig. 6.7 shows a sample IRL rule.

Assume now that we have inserted in working memory the following objects:

¢ Cl = Claim(amount = 110,000, policyNumber = 123)

e (C2 = Claim(amount = 120,000, policyNumber = 456)

e (C3 = Claim(amount = 1,500, policyNumber = 789)

e P1 = Policy(policyNumber = 123, endDate = 31/1/2011, holderSSN
= 111111111)

15 Actually, even object insertion can spawn negative tokens, if some rule contains a not condition.
This will become clearer later in this chapter, and after we cover the IRL in Chap. 11.

1%The simplification consists of (a) treating all attributes as public data members and (b) imple-
menting associations between objects through “foreign keys,” as opposed through direct object
pointers (e.g., Claim “points” to the Policy via the data member “int policyNumber”), to illustrate
more clearly joins. With regard to the public data members, we will see in Chap. 10 that JRules
does indeed treat getters/setters as “bean properties.”



6.4 Engine Execution Algorithms 163

class Policy extends .. { class Claim extends .. {
public int policyNumber; public Date claimDate;
public Date beginDate; public int policyNumber;
public Date endDate; public float amount;

public String holderSSN; public StatusType status;
. public float payment;

}

}
class PolicyHolder extends ..{

public String ssn;

Fig. 6.6 Simplified class definitions

rule big claim holder({
when {
?claim: Claim(amount > 100000; ?pNumber : policyNumber);
?policy: Policy(endDate.after (“31/12/2010");
policyNumber == ?pNumber;
?ssnHolder : holderSSN) ;
?holder: PolicyHolder (ssn.equals (?ssnHolder));
} then ({
out.println(?holder + ”’s high claim policy ends in 2011”);

Fig. 6.7 Sample Ilog Rule Language (IRL) rule

e P2 = Policy(policyNumber = 456, endDate = 30/6/2011, holderSSN
= 222222222)

e P3 = Policy(policyNumber = 789, endDate = 30/6/2010, holderSSN
= 333333333

e PHI1 = PolicyHolder(ssn = 111111111)

Figure 6.8 shows the resulting RETE network. The network has a root node,
which is the entry point for inserting objects into working memory. The first-level
nodes are type nodes, where we test the type of the object. Subsequent levels
correspond to single-object tests which are laid out in the same way they appear
in the rule. In this case, there is only one single-object test for the classes Claim
and Policy, and none for PolicyHolder. This part of the network is indeed a
tree and is called the discrimination tree. The objects that pass these single-object
tests make it to the so-called alpha nodes, which serve as inputs to the so-called
network of joins. In our example, the objects C1, C2, P1, P2, and PH1 make it
through the discrimination tree to the alpha nodes, while the objects C3 and P3 do not.

The network of joins, as its name suggests, applies the join conditions of the rules
that are compiled into the network. A join condition is a condition that involves
more than one object. In this case, they are “foreign key reference” type of



164 6 Rule Engine Technology

discriinination
tree

PolicyHolder

amount > endDate>
100 K 31/12/2010

A\ 4
C1(110000,123) P1(123,31/1/2011,111111111 ) |PH1(111111111)| alpha
C2(120000,456) P2(456,30/6/2011,222222222) nodes

policyNumber == ?pNumber

<C1(110000, 123), P1(123,31/1/201 L,I11111111)>
<C2(120000,456), P2(456,30/6/2011,222222222)>

ssn.equals(?ssnHolder)

Network A
of joins <C1(110000,123),P1(123,31/1/2011,111111111),PHI (111111111)>

A
BIG CLAIM HOLDER

Rule
nodes

Fig. 6.8 The RETE network resulting from the single rule in Fig. 6.7

conditions, but they could be arbitrarily complex and may involve any combination
of attributes. Note that join conditions are applied only to those objects that have
passed the single-object conditions, that is, those objects that made through the
discrimination tree down to the alpha nodes — C1, C2, P1, P2, and PH1, in our case.

Note also that join conditions cascade in the same order in which they appear in
the rules.'” For example, the condition labeled “ssn.equals(?ssnHolder),” which
stands for ?holder.snn.equals(?policy.holderSSN, is only applied to those Policy

""The fact that “rule layout” influences the topology of the RETE network may be used to squeeze
out a (tiny) bit of performance. More on this in Chap. 13.



6.4 Engine Execution Algorithms 165

objects that are part of <Claim,Policy> pairs have already passed the first join
test. Thus, if we find a PolicyHolder object in the corresponding alpha node that
matches the Policy component of a <Claim, Policy> pair, we know that we have a
<Claim, Policy, PolicyHolder> triple that satisfies all of the conditions of the
rule; this is the case for the triple <C1, P1, PH1> in Fig. 6.8. The alpha nodes and
the outputs of the join nodes embody the ability of the RETE network to store
partial matches.

Consider now what happens if we insert a new object in working memory.
Assume that we insert a new policy holder, PH2 = PolicyHolder(ssn
= 222222222). This insertion is treated as a positive token “dropped” from the
top of the network, and works its way through the various condition nodes.
Figure 6.9 shows the resulting network. Because there are no single-object condi-
tions on PolicyHolder’s, PH2 goes straight to the alpha node. And because the join
condition involving PolicyHolder is last in the network of joins, we only need to
“compare” PH2 to the Policy components of the pairs that passed the first join
condition (policyNumber == ?pNumber). Thus, the insertion of PH2 required
applying a single join test (ssn.equals(?ssnHolder)) on two object pairs (<P1,
PH2> and <P2,PH2>). Compare that to a brute force approach which would
have generated all possible triples involving PH2 — nine in our case'® — and then
testing all the conditions on each triple.

We will now consider the case of an object modification. Assume that we change
the amount of claim C1 from $110,000 to $11,000. Now, C1 no longer satisfies the
condition (amount >100,000). Consequently, we need to pull out C1 from the
corresponding alpha node, and by extension, from all the tuples in which it was
involved. Because C1 was involved in a triple that satisfied all the conditions of rule
BIG_CLAIM_HOLDER (<P1,C1,PH1>), the corresponding rule instance will be
pulled out from the agenda (not shown in Fig. 6.9).

An object removal is handled in a similar fashion to the modification of Cl
above: in such a case, we need not reevaluate any tests but simply pull out the object
from the alpha nodes, and any nodes further down in the join network that the object
(i.e., tuples containing it) may have passed.

Finally, the example in Fig. 6.9b illustrated a situation where an object state
change failed a previously satisfied rule. Naturally, the opposite can also happen: an
object that was previously “blocked” at either the discrimination tree or at some of
the join tests, may now pass some previously failed tests and “slide down” the
network, possibly leading to the creation of a new rule instance and its addition to
the agenda.

Let us now turn to another important characteristic of the RETE network, which
makes rule evaluation and execution: condition sharing. Condition sharing works
as follows: if two rules share some conditions, appearing in the same order, those
conditions/tests will appear once in the RETE network, and will serve both rules.
Consider the following two rule excerpts:

"¥Namely, < any of {C1,C2,C3}, any of {P1, P2, P3}, PH2>.



166 6 Rule Engine Technology

modify C1 {amount = 11000} Insert
PH2(222222222) discriminption

tree

-

PolicyHolder

end Date>
31/12/2010

/
LA v
c1(1100@§§ PI(123,31/1/2011,111111111) PHI(111111111) alpha
€2(120000,456) P2(456,30/6/2011,222222222) PH2(222222222) nodes
policyNumber == ?pNumber
] <c1(110000,123),131(123,31/}(2:011,111111111)>
<C2(120000,456),P2(456,30/6/2011,222222222)>
ssn.equals(?ssnHolder)
Network <C1(110000,123),P1(123,%)<20}111111111),PH1 (111111111)>
of joins
<C2(120000,456),P2(456,30/6/2011,222222222),PH2 (222222222)>
\ 2
Rule BIG CLAIM HOLDER
nodes

Fig. 6.9 The effect of (a) object insertion and (b) object modification

rule rule onef{
when {

?cl: Claim(amount > 1000; payment == 0; status == IP);

}
rule rule twof{
when {

?cl: Claim(amount > 1000; payment == 0; status == REJECT);



6.4 Engine Execution Algorithms 167

Fig. 6.10 The effect of
condition sharing between
rules on the topology of the
RETE network

amount >
1000

rule_one branch rule_two branch

Figure 6.10 shows excerpts from the discrimination tree of the resulting RETE
network. As we can see, both rules test Claim’s, first for “amount > 1000,
and then, for “payment == 0”. The two tests are then shared between the two
rules. Put another way, if the ruleset parser sees a rule “if A and B and C
then do X endif” and another “1if A and B and D thendo Y endif”, it
changes them into:

if A and B then
if C then
do X
endif
if D then
do Y
endif
endif

We finally consider the control or conflict resolution strategy of the JRules rule
engine. We mentioned in Sect. 6.3.1 some of the criteria typically used by rule engines,
namely, priorities, recency, and condition strength. JRules uses a hierarchy of criteria:

® Refraction. A rule instance that just fired is automatically removed from the
agenda, even if its condition part is still satisfied. If the condition part becomes
negative at some later point, the engine will “forget” it ever fired, and should it
become satisfied again, the rule instance can get back on the agenda. This
behavior actually makes sense for the majority of applications. If we want
a looping behavior, of the kind “while COND do X”, there is a way to
override the refraction principle.



168 6 Rule Engine Technology

e Priority. Given several rule instances on the agenda, we pick the one that has the
highest priority.

® Recency. In case of a tie with priorities, we look for the rule instance that
involves the most recently modified object.

e Other. In case several same-priority instances of the agenda involve the most
recently modified object, the engine will use some additional internal, nonpublic
criteria.

In the early days, rule authors used to rely heavily on rule priorities to control the
sequence of rule execution. Priorities can become hard to maintain, and lead to
sloppy rule authoring.'® JRules now offers sophisticated ruleset orchestration
mechanisms (see Chap. 11), and the recommended practice is to stay away from
priorities, and only rely on ruleflows (see Chap. 11) and on the refraction principle.

As for the other criteria, rule authors should absolutely not integrate the recency
factor into their business logic, that is, they should not rely on recency to obtain the
appropriate behavior. However, while tracing or debugging a ruleset, it is helpful to
understand that recency comes into play in the ordering of the agenda. As for other,
there is no clue in the documentation as to what those might be.?°

While the RETE algorithm has rendered the production system paradigm com-
putationally tractable, by being smart (selective) about the <ruleset,database> scan,
there are certain types of problems where, by virtue of the nature of the rules, such a
scan is not even needed. In such situations, we do not need the complexity of the
RETE network or the corresponding inference algorithm. A brute force method
might do a good job: that is the sequential algorithm discussed next.

6.4.2 The Sequential Algorithm

Assume that part of our claim processing business process, one step consists of a
data validation. A ruleset for data validation would typically consist of a bunch of
rules, each one of which validates a particular field or a particular combination of
fields. The rules will typically follow the BAL pattern:
if
<some claim field fails some condition>
then
set the decision of 'the claim'to: “INVALID”;

add to 'the claim'validation message: <violated condition>

19Intellectually lazy rule authors may rely too heavily on rule priorities, as a mechanism for
controlling rule execution, as opposed to relying on logical dependencies between rules.
2The other part used to be documented in the product. Since JRules 5, it was felt that JRules users
not only should not rely on other, but they should no longer even know what other is ©.



6.4 Engine Execution Algorithms 169

We show below an example of such a rule.

if

the date of 'the claim'is more than 182 days old
then

set the decision of 'the claim'to "INVALID";

add to 'the claim'validation message:"Claim too old";

If we know that our rules are such that their action parts will not change the
database (working memory) in a way that affects other rules, then we know that a
one and only <ruleset, database> scan will be needed. Indeed, whichever <rule,
data tuple> matched on the first pass will not break after other rules have executed,
and conversely, whichever <rule, data tuple> failed to match on the first scan, will
not match after other rules executed. If that is the case, all of the machinery for
incremental <ruleset, database> scan are not needed and represent a pure over-
head, with no performance gains. Indeed, for these kinds of rulesets, even RETE’s
condition sharing (see Fig. 6.10) is unlikely to provide any benefit: typically,
different rules test on different attributes. Thus, we might as well use a brute
force method for matching all rules to all applicable data tuples, and be done with
it. This is the premise behind the sequential algorithm.

Figure 6.11 shows a high-level version of the sequential algorithm. It consists of
two nested loops: the outer loop iterates over the data and the inner loop over the
rules. Notice that we talk about ruple and not about single objects. Indeed, generally
speaking, rules match tuples of objects. In the example of Fig. 6.7, the rule
big_claim_holder matches triples <claim, policy, policy holder>.
The triple <claim, policy, policy holder> is called signature of the rule.

While there are still data tuples to process:

. Take the next tuple
. While there are still rules to apply
2.a Take the next rule
2.b Check the condition part of the rule to the tuple
2.c IF the condition part is satisfied THEN apply the action part

o =

Using the initial contents of the working memory of the example in Sect. 6.4.1:

e (C; = Claim(amount = 110,000, policyNumber = 123)
e (C, = Claim(amount = 120,000, policyNumber = 456)
¢ (C; = Claim(amount = 1,500, policyNumber = 789)

While there are still data tuples to process
1 Take the next tuple
2 While there are still rules to apply
2.a Take the next rule
2.b Check the condition part of the rule to the tuple
2.c IF the condition part is satisfied THEN apply the action part

Fig. 6.11 Basic sequential algorithm



170 6 Rule Engine Technology

e P, = Policy(policyNumber = 123, endDate = 31/1/2011, holderSSN

= 111111111)

e P, = Policy(policyNumber = 456, endDate = 30/6/2011, holderSSN
= 222222222)

e P3; = Policy(policyNumber = 789, endDate = 30/6/2010, holderSSN
= 333333333)

e PH; = PolicyHolder(ssn = 111111111)
e PH, = PolicyHolder(ssn = 222222222)

we can get 18 different triples, corresponding to the combinations C;, P;, PHy, for
i=1.3 andj = 1.3, 1e., <Cy, P, PH;>, <C,, P,, PH,>, <C,, P35, PH;>, <C,,
P,, PH,>, ..., <C;s, P3, PH,>, then <C,, P;, PH,>, ..., and <Cs, P3, PH,>. In
JRules, the generation of these tuples is performed by a default ruple generator.
Because the same tuple will be submitted to all of the rules of the ruleset (the inner
loop of the algorithm of Fig. 6.11), the tuple generator needs to consider all of the
rules of the ruleset to generate a tuple structure that can accommodate all of the
rules. Naturally, the order of the classes in the tuple is immaterial, <Cy, Py, PH,;>
represents the same data as <Py, C;, PH;>, say. Thus, if all of the rules of the
ruleset have the same signature (tuple structure), tuple generation is simple. If the
rules have different signatures, then things get a bit more complicated.

Assume that we have three rules R1, R2, and R3, with signatures <Claim,
Policy>, <Claim, Policy, PolicyHolder>, and <Claim, Policy, ServiceAct21>,
respectively, and assume that we have on service act, SA;. The JRules default
tuple generator will generate quadruples with the signature <Claim, Policy, Policy
Holder, ServiceAct>. For a given quadruple, each rule will pick the subset of
elements it is interested in and apply the conditions to that subset. Thus, given a
quadruple <C, Py, PH;, SA;>, rule R1 will extract the pair <C;,P;> and ignore
the rest, rule R2 will see the triple <C, P, PH;>, and ignore SA,, and rule R3 will
see the triple <Cy, Py, SA;>, and ignore PH;. In other words, R1 sees it as <Cy, Py,
* % > R2 sees it as <Cy, Py, PHy, * >, and R3 sees it as <C,, Py, *, SA;>. This
behavior of the tuple generator is customizable, and an (advanced) user can replace
the default tuple generator by his or her own.

Note that the inner loop in Fig. 6.11 embodies the default behavior of the
sequential algorithm: we apply all of the rules to each tuple. There may be
situations where, for a given tuple, we are only interested in the first rule that
fires, after which we drop the tuple and move to the next. This is equivalent to
replacing the inner loop by:

2. While there are still rules to apply and no rule has yet fired
2.a Take the next rule
2.b Check the condition part of the rule to the tuple
2.c IF the condition part is satisfied THEN apply the action part

21ServiceAct represents an act (occurrence) of the service for which payment is claimed.



6.4 Engine Execution Algorithms 171

If the rules of the ruleset are validation rules that look for violations, and we are
only interested in a pass—fail decision, then this could be appropriate. Indeed, as
soon as a tuple fails a validation constraint, we drop it and move to the next. There
may also be situations where we are interested in the first n rule firings, after which
we drop the tuple and move to the next. Again, there may be validation applications
where we care about the first # violations, after which we throw out the tuple. This
again would lead to a slight change in the inner loop. As we will see in Chap. 11
when we talk about ruleset orchestration, these are actually user-configurable
parameters. In fact, the whole execution algorithm selection can be set at the
individual rule flow task level, as opposed to an entire ruleset (see Chap. 11).
Thus, within a given ruleset/decision, different steps (rule flow tasks), can use
different execution algorithms.

Where applicable, the sequential algorithm yields an order of magnitude
improvement in performance. This means that the same ruleset would execute
around ten times faster in sequential mode than in RETE mode. This enhancement
is due, in part, to the much simpler data structures managed by the engine in
sequential mode (no RETE network, no agenda), and in part, to the fact that the
engine uses Just In Time (JIT) bytecode generation in sequential mode. Indeed,
while the RETE mode interprets rule conditions and actions on the fly, in sequential
mode, the first time a rule is executed (on the first tuple), the corresponding Java
bytecode is generated, and executed from that point on.*” This means that the first
tuple will take a performance hit, due to the bytecode generation, but subsequent
tuples will run much faster.

However, all of these niceties do not come for free. Notwithstanding the fact that
the sequential algorithm works only for some types of problems (see above), there
are some important restrictions. First, all the rule constructs that rely on, or assume
the existence of, the working memory or the agenda, either do not work as intended
or cause run-time errors, altogether. For instance, constructs that use quantifiers
(there is no, there exists, the number of, etc.) or collections cause ruleset
compilation errors. For example, a rule that includes the condition “there is no
claim such that the policy holder was at fault” will cause a compilation error.”
Idem for rules that use dynamic priorities, that is, priorities that are variables whose
values will only be known once the rule condition is evaluated (see Chap. 11).
Finally, more advanced rule engine functionality such as truth maintenance and
event processing are not supported.

22Two comments: (1) This JIT compilation is to be distinguished from the JIT compilations of Java
virtual machines whereby Java bytecode is compiled into native machine code if it satisfies some
criteria (e.g., frequent invocation, as is the case for Sun’s hotspot JVM). (2) The RETE mode also
supports a compiled mode, whereby the ruleset is “parsed” off-line to generate java bytecode; we
then talk about a compiled ruleset.

2 Luckily, there is a way around that: if the “quantifier” is “scoped” on something other than the
working memory, the rule is OK (more information in Chap. 11 when we talk about the IRL, and in
the product documentation). Thus, whereas “there is no claim such that . ..” will cause a run-time
error, “there is no claim in the claims of the policy such that ...” would work.



172 6 Rule Engine Technology

A more annoying problem has to do with rulesets where rules have heterogeneous
signatures, such as the three rules R1, R2, and R3 that we used above to illustrate
tuple generation. The default tuple generator leads to multiple firings of the same
rule on the same data. For example, the quadruples <Cy, Py, PH;, SA;> and <Cy,
Py, PH,, SA;> will lead to two firings of the rule R1 on <C;,P;>, as it ignores the
third and fourth components of the tuples. This is anywhere from inefficient
(needlessly firing the same rule several times on the same data), to annoying
(e.g., recording the same violation message, say, for a given claim, several
times), to outright wrong (e.g., incrementing or decrementing a score several
times for the same reason). And no customer tuple generator can fix that: however
you generate your tuples, they need to have the union of the signatures, and the
engine will apply all of the rules to each tuple.

The Fastpath algorithm, discussed next, is also targeted to problems that do not
require rule chaining. It is a bit more complex, but (1) it addresses many of the
weakness of the sequential algorithm and (2) it has comparable performance to the
sequential algorithm — even better, on some kinds of rulesets.

6.4.3 The Fastpath Algorithm

The Fastpath algorithm is a hybrid between the RETE and the sequential algorithm.
It is sequential in the sense that:

1. It does not rely on, or manipulate, an agenda.
2. There is no rescanning of rules over data, after each rule firing.

The Fastpath algorithm resembles the RETE algorithm to the extent that rules are
compiled in a RETE network, and it manipulates a working memory. When an object
is inserted into working memory, it is processed in the same way it is with the RETE
algorithm, working its way through the network of single-object conditions (discrim-
ination tree, see Fig. 6.8), then join conditions, down to rule nodes, if a particular
tuple involving that object satisfies all of the conditions of a rule. The same process
happens for all data inserted into working memory. It is the call the “execute” (see
line [5] in Fig. 6.4) that distinguishes the RETE algorithm from the Fastpath
algorithm. The execution loop for the Fastpath algorithm looks as follows:

1. Order the rule nodes by decreasing order of static priority
2. While there are still rule nodes
2.a Take the next rule node
2.b While there are still tuples in that rule node
2.b.1 Take the next matching tuple
2.b.2 Execute the rule action part on that tuple

Whereas with the RETE algorithm, we create rule instances for all the tuples that
make it to rule nodes, and add them to the agenda, the Fastpath algorithm relies
solely on the static priority of rules and takes a single pass. Indeed, we do not



6.5 Summary and Conclusions 173

perform a <ruleset, working memory> scan after each rule execution (step 2.b.2).
We could think of the Fastpath algorithm as a sequential, single-pass RETE
algorithm.

Compared to the sequential algorithm, the Fastpath algorithm has many advan-
tages:

1. It can handle rules with heterogeneous signatures, much like the RETE algorithm.

2. It can handle rules with “working memory quantifiers” such as there is no, there
exists, the number of, and collections, without scoping (see footnote 26).

3. It does take advantage of shared conditions between rules, much like the RETE
algorithm, to speed up rule condition evaluations.

The Fastpath algorithm also has some disadvantages compared to the sequential
algorithm:

1. An up-front — albeit a one-time — cost of compiling the ruleset
2. A slower execution, on the average, than the sequential algorithm

While the Fastpath algorithm is slower, on the average, there are some situations
where it can be faster than the sequential algorithm: if our ruleset contains many
rules with shared conditions, the condition sharing that results from building the
RETE network will more than offset the overhead of managing a more complex
structure.

The Fastpath algorithm shares some of the same limitations as the sequential
algorithm:

1. No support for rule chaining

2. No support for dynamic priorities

3. No effect (or unexpected effects) of some of the working memory manipulation
actions such as insert, update, or retract

4. No support for some of the more advanced features of the rule engine, like event
management and truth maintenance

Section 11.4.3 will go into criteria for selecting one algorithm over another.

6.5 Summary and Conclusions

In this chapter, we went over the history and basics of rule engine technology, in
general, and for the case of JRules. We also presented the various rule execution
algorithms. The RETE algorithm, developed by Charles Forgy, has greatly con-
tributed to making the production system paradigm practical, and has been adopted,
in one form or another, by commercial and open-source rule engines alike. As we
showed in Sect. 6.4.2, many business decisions do not require rule chaining. In such
cases, we do not need the machinery of the RETE network, and we can use simpler
and more efficient execution algorithms. This is the case of the sequential algo-
rithm. Many commercial rule engines implement some form or another of a



174 6 Rule Engine Technology

sequential algorithm; we presented in Sect. 6.4.2 the JRules’s implementation. This
algorithm, which typically results in order of magnitude gains in execution speed,
comes at a cost: a number of more or less annoying restrictions on rule language
constructs and features. The kinds of decisions that do not require rule chaining are
not likely to suffer from these restrictions, but some will. In that case, we can use
the hybrid Fastpath algorithm, explained in Sect. 6.4.3.

Let us now put the issue of rule engines back into the perspective of the business
rules approach and business rule management systems (BRMSs). Rule engine
execution of business rules is an important aspect of the business rules approach,
but not the only one — or some would say, the most important one (see Chap. 1). An
organization that recognizes the rules that govern its business processes as a corpo-
rate asset that needs to be managed are able to attain most of the business benefits of
the business rules approach. Similarly, rule engines are important components of
business rule management systems (BRMSs), but not the only important ones. True,
back in the early days (early 1990s), commercial BRMSs consisted of little more than
rudimentary development environments and a library — in fact, some open-source
tools are still like that. As business rules moved from engineering applications to
more business-oriented applications, functionalities for rule management, testing,
deployment, and monitoring became increasingly important.

How important is the rule engine execution algorithm in the general scheme of
things? On some academic benchmark, the JRules rule engine can execute tens of
thousands of rules, per second, in RETE mode. Execution speed depends, natu-
rally, on the complexity of the rules, the complexity of the tests performed within
the rules (e.g., number comparisons versus string matching), the number of objects
in working memory, the extent of condition sharing between the rules, the use of
particular constructs within rules ... and the hardware on which the benchmarks
ran! But rule execution speed is seldom an issue. In practice, materializing the data
that the engine will work on (loading objects from persistent storage, pulling
messages off a queue, etc.), and dematerializing the results is often the major
performance bottleneck. Using the sequential algorithm, where appropriate, will
divide rule execution time by ten ... but will not do much about the time to load an
object from the database or pulling a message off a JMS queue. We need to keep
this in mind as we consider algorithm selection in Chap. 11.

6.6 Further Reading

This already cited paper by Randall Davis and Jonathan King remains a reference
on the origin of rule-based systems, and has been the main source for Sects. 6.2
and 6.3.1:

¢ Davis, R. and King, J. “The Origin of Rule-Based Systems in Al,” in Rule-Based
Expert Systems: The MYCIN Experiments of the Stanford Heuristic Program-
ming Project, eds B. Buchanan and E. Shorliffe, Addison-Wesley, Reading,
1984, pp. 20-52



6.6 Further Reading 175

Other chapters of the same book provide an insight into the technology during its
most effervescent years.

Readers with an academic or historical interest in the RETE algorithm can read
Charles Forgy’s original doctoral thesis on the topic:

e Charles Forgy, “On the efficient implementation of production systems.” Ph.D.
thesis, Carnegie-Mellon University, 1979

The Wikipedia entry for the RETE algorithm has more details about the RETE
algorithm than Sect. 6.4.1. In particular, it explains how quantifiers (universal,
existential) and ORed conditions are handled, and points to additional references.

InfoWorld publishes, with some regularity, the results of some academic bench-
marks using the latest versions of the best known commercial and open-source
engines (http://www.infoworld.com).

The JRules documentation provides more information about the parameters of
the various execution algorithms, and their customization and extension points.



Chapter 7

Issues in Designing Business Rule Applications

Target audience

Application architect, software architect, developer

In this chapter you will learn

Key points

The major design issues for early business rule management
systems

An overview of the major architectural choices for a business
rules application

An overview of the major design issues surrounding the integra-
tion of rule engines into business applications

An overview of the major design issues and best practices regarding
reengineering legacy applications to introduce business rules

Business rule management is about more than authoring — and
managing — executable rules: we need to manage the early
deliverables (rule capture and analysis) and ensure proper trace-
ability through the various stages of ABRD.

Business rule applications can come in many shapes and sizes:
rules are architecture-neutral.

Most BRMSs offer many rule engine deployment options.

The integration of rule-based decisioning into applications
depends, in part, on the architecture of the application, and in
part, on rule-specific architectural requirements.

There are some proven patterns to reengineer the decisioning
aspect of a legacy application using rule engines.

7.1 Introduction

In this chapter, we go over the design space for enterprise applications that adopt
the business rules approach. We identify the main design dimensions, and for
each dimension, we identify the general design issues and outline broad solution

J. Boyer and H. Mili, Agile Business Rule Development, 177
DOI 10.1007/978-3-642-19041-4_7, © Springer-Verlag Berlin Heidelberg 2011



178 7 Issues in Designing Business Rule Applications

strategies. We will revisit each of the dimensions in later chapters of the book to go
more in depth into the design problems, and where applicable, to describe the
solution patterns provided by, or made possible with, the JRules BRMS.

The first design dimension that we will consider is the Business Rules Man-
agement System space. Indeed, recall from Chap. 1 that at the core of the business
rules approach is the corporate-wide management of business rules, and at the
core of such a management is a business rules management system. Recall that a
business rules management system (BRMS) has two major functionalities, rule
management, and rule automation. Section 7.2 will focus on rule management
functionalities.

Because the architectural style of the business rule application influences the
way the application interacts with the rule automation component of the BRMS,
Sect. 7.3 will provide a very high-level view of the major architectural metaphors
for enterprise applications. Clearly, a handful of pages cannot do justice to such a
broad topic about which numerous, voluminous books have been — and continue to
be — written! The purpose of this section is more modest: to get some vocabulary
and some points of reference that we can refer to in our subsequent discussions.

Having talked about the architecture of the business application, we then discuss
the different design dimensions concerning the ways in which the business appli-
cation can access the rules, in Sect. 7.4. In particular, we will talk about two general
strategies for executing rules (a) by manipulating a rule engine directly, and (b) by
accessing a centralized rule execution service.

A number of projects that we ran into in our practice are reengineering projects
of existing applications. Minimally, such reengineering efforts involved externaliz-
ing business decisions using BRMS technology. In many cases, reengineering also
involves a redesign of the presentation and application layers, adding or renovating
modalities for interacting with the application. In such cases, the design is subjected
to a number of constraints, and some design choices will be made for us. We will
highlight the main issues and best practices in Sect. 7.5. We will summarize the key
findings of this chapter in Sect. 7.6 and suggest further readings in the section on
“Further Reading.”

7.2 Design Dimensions for Rule Management

7.2.1 Early Versus Late BRMS Tools

We mentioned in Chap. 1 that a business rule management system (BRMS)
provides functionalities for rule management and execution. While there are
many commercial — and open-source — business rule management systems, none
that we know of handle the entire lifecycle of rules, i.e., from rule capture all the
way to rule retirement. Historically, business rule management systems have
evolved from rule engine technology where the focus was on providing efficient



7.2 Design Dimensions for Rule Management 179

execution of rules written in fairly formal languages (see Chap. 6), and JRules was
no exception. The past decade has seen an increasing awareness of the importance
of rules as business assets that need to be managed and shared across the organiza-
tion, and management functionalities have been added to execution functionalities.
However, the focus remained on rules already coded in a formal business rule
language. We could call these late BRMS tools.

Independently, the past decade has seen the emergence of a number of early
BRMS tools that focus on the early phases of the rule lifecycle such as business
modeling, rule capture, analysis, management, vocabulary management, and so
forth. Such tools include BRS RuleTrack ' or RuleXpressTM.2 However, we know
of no product that does a good job throughout the entire rule lifecycle, i.e., from
business modeling all the way to execution, maintenance, and retirement. We also
know of no pair of products (“early” BRMS, “late” BRMS) that can be easily piped
together to handle the entire lifecycle. Accordingly, an organization that needs to
support the entire rule lifecycle will have to perform some kind of customization.
Because of the complexity of the features of late BRMS tools — formal rule
language parsing, translation, and execution — the recommended practice is then
to first select the late BRMS tool among available offerings that addresses our late
BRMS needs, which would be JRules in our case, and then select among the early
BRMS tools the one that would require the least customization or the simplest
bridge to our late BRMS tool. From our experience, what ends up happening, most
of the time, is that customers custom-build the early BRMS functionalities them-
selves on top of early CASE? tools or some general office productivity tools such as
spreadsheet software, shared workspaces (e.g., Lotus Notes databases), etc.

The issue that we wish to address in this section is to identify the kinds of
functionalities that are needed for “early BRMS”, i.e., establish a list of require-
ments for “early BRMS”.

7.2.2 Requirements for an Early BRMS Tool

Business rules being a development artifact that results from applying a specific
development process, an early BRMS tool should:

e Support the representation of “early rules”, and the artifacts they depend on
e Support the processes inherent in early business rule management

'BRS RuleTrack is a product of Business Rule Solutions, http://www.BRSolutions.com.
RuleXpress is a product of RuleArts, check http://www.RuleArts.com.

3CASE for Computer Assisted Software Engineering. Our use of the terms early BRMS and late
BRMS is actually borrowed from CASE terminology, where early CASE refers to functionalities
focusing on requirements and modeling, and late CASE focuses on design and coding. That
distinction concerning CASE is blurring with model-driven development as we now have powerful
CASE tools that can perform round-trip engineering from platform independent UML models all
the way to platform-specific Java (or C#) code, and back.



180 7 Issues in Designing Business Rule Applications

Figure 7.1 shows a metamodel of rules adapted from Morgan (2002). This
diagram shows the relationship between business rules, object models, process
models, and business intent. We can interpret this metamodel at two levels. At
the surface level, we can think of it as a way of designing rule templates. Figure 7.1
then tells us that a rule template must include, in addition to the name or text of the
rule itself, the following pieces of information: (1) the business motivation behind
the rule (business intent), (2) a list of the objects constrained by the rule, (3) the
process step(s) constrained by the rule, and (4) any business events (or other process
steps) triggered by the rule. Figure 7.2 shows a sample rule template.

Practically, this template can be implemented using an Excel spreadsheet, a local
database form (e.g., Access), or a web form accessing a common repository. We
have seen all three implementations at different customer sites.

constrains -
Object

A

Applied through triggers
Intention Rule » Event

. acts-on
constrains launches

Process element

Fig. 7.1 An ontology of rules (Simplified from Morgan 2002, p. 28)

Name AUTO_UW _Drivers with DUI

Author John Smith Creation date April 15, 2009
Rule text Driver must not have had DUI conviction within past 7 years
B.usiness motiva- I?o not under.wrlte Proc:esses con- UW/Eligibility
tion risk prone drivers strained by rule

Objeias con- Driver; Policy Bt'lsmess events

strained by rule triggered by rule

Fig. 7.2 A sample rule template based on the ontology of Fig. 7.1



7.2 Design Dimensions for Rule Management 181

Discover initial requirements Rule capture

. Model Document \ Capture Document complete
process decisions / rules rules domain model

Rule analysis

@é Document Clean-up rule base Break rules
rule dependencies (redundancies, overlaps, etc.) into atomic rules

Fig. 7.3 A simplified process for rule capture and analysis

The problem with such a representation is that it is static: the things that the
template refers to (objects, processes, events) can change, but their references will
not. For example, after the rule is written, somebody decides to refer to all potential
insurance holders as PolicyHolder, instead of Driver, HomeOwner, or Tenant.
This change will not be automatically propagated to the rule description, which will
then become obsolete. The solution, naturally, is to have the template refer to the
actual entities (objects, processes, business events), as opposed to referring to their
names. An example of such a tool is RuleXpress' from RuleArts, which supports
rule capture, and term and fact modeling. An alternative consists of building a
bridge between a rule management tool, and a business/system modeling tool. For
example, in the above template, we can imagine having automatically filled pull-
down lists for the field “Objects constrained by rule”. The same applies for
“Processes constrained by rule” or “Business events triggered by rule”.

With regard to the rule capture and analysis process, Fig. 7.3 shows a simplified
process. This process, based on the STEP methodology (von Halle 2001), shows the
key tasks we adopted in ABRD (see Chap. 3), without the incrementality (tackling
one piece of a functional area at a time) and iteration (feedback loop). Nevertheless,
the process can tell us three things:

1. The various deliverables and artifacts that are needed
2. The different versions of each deliverable
3. The workflow

We will discuss the early BRMS artifacts and deliverables in Sect. 7.2.2.1. The
versioning and lifecycle management (workflow) of these artifacts and deliverables
will be discussed in Sect. 7.2.2.2.

7.2.2.1 Early BRMS Artifacts and Deliverables

With regard to the deliverables, the ontology of Fig. 7.1 has already established
the need to represent — and co-reference — process models, rules, and domain models.
The main issue here is whether we need to have one or two — or more — representations



182 7 Issues in Designing Business Rule Applications

of rules, one as the output of rule capture, and another, as the output of rule analysis.
Consider the following Fannie Mae mortgage underwriting guideline” found in the
underwriting manual:

Properties must have hazards insurance that protects against loss or damage from fire and

other hazards covered by the standard extended coverage endorsement. The policy should

provide for claims to be settled on a replacement cost basis. The amount of coverage should

at least equal the minimum of:

a) 100% of the insurable value of the improvements.

b) The principal balance of the mortgage (as long as it exceeds the minimum amount —
typically 80% — required to compensate for damage or loss on a replacement cost basis).

If we are performing rule capture from the underwriting manual (see rule capture
in Chap. 4), we would take this prose, and pretty much stuff it as is into the “Rule
text” field of the rule template shown in Fig. 7.2.° If we put this rule through
analysis, it will be broken down and will result into a bunch of rules, including:

e The property MUST HAVE a hazards insurance that protects against loss or
damage from fire, flood, etc.

¢ The coverage amount of the hazards insurance policy of the property MUST BE
GREATER THAN 100% of the insurable value of the improvements.

These are the rules that will be handed to rule authors who will code them. So
now the question is, do we need both versions? We definitely need the atomic one
(output of analysis), because that is the appropriate input for rule authors. We
believe that it is important to keep the original version too, because that is the
version closest to the original business requirement, and it is important to keep it for
traceability purposes. Indeed, a policy manager who needs to validate — i.e., verify
conformance to business intent — the result of rule analysis needs to know where the
atomic rule comes from. For example, during analysis, one of the steps consists of
making rules atomic, which maps a discovery-level rule into several analysis-level
rules. The reverse can also happen. One of the tasks of rule analysis in STEP (von
Halle 2001) is the identification of rule patterns. If 1 find several rules that use the
age of the policy holder, and their credit score, to compute a risk factor, I would
probably group them in a single rule artifact, i.e., a decision table.

This raises several issues. While the two examples above are clear-cut, rule
analysis includes a number of less dramatic transformations that rules undergo. Do
we always need to have two versions of each rule, one as the output of capture, and
the other as the output of analysis? And if so, at what level should we perform rule
maintenance? Should we maintain rules at the “capture level”, and then percolate
the changes down, to analysis, or, should we simply perform maintenance at the
analysis level. Using our property hazards insurance example, let us say we change
the requirement on the percentage of the coverage from 100% of the insurable value

*The Fannie Mae underwriting manual calls it a guideline, but according to the classification of
rules discussed in Chap. 4, this rule represents a constraint, i.e., a must-have condition.

SWe may massage the text using some of the linguistic templates described in Chap. 4.



7.2 Design Dimensions for Rule Management 183

oo - proemememimimen -
: Rule L ’: Rule i
: (Analysis) 1 . (Authoring) !
ge oot [ !
re t
Requiremen Rule - Rule L Rule
(Capture) "1 (Analysis) (Authoring)

Change

I st
memmm sy . oo - prmmmm -
! Rule [ ! Rule ; ! Rule i
: (Capture) ; © (Analysis) 1 > (Authoring) !
1 I

Fig. 7.4 Managing dependencies within an early BRMS tool

of the improvements to 95%. Should we update the non-atomic version — and
update the atomic version accordingly — or should we update the atomic version
(analysis-level) directly, leaving the non-atomic one unchanged? This depends on
the type and form of the change request. If the change request concerns the entire
(non-atomic) rule, then we should update the non-atomic rule, and then percolate
the change down to the atomic ones. If the change request concerns only the
coverage percentage, then we do not need to update the non-atomic version: it
adds no value in terms of traceability. Figure 7.4 illustrates the various dependen-
cies that would be useful to record in an early BRMS tool.

7.2.2.2 Versioning and Lifecycle Management

An important issue in maintenance, in general, is that of versioning. A naive
versioning policy would create a different version each time a rule is modified.
However, such a policy would lead to a proliferation of versions, with no signifi-
cance to business. When first created, the attributes of a rule (fields in the rule
template) will either have default values or will be empty. The various attributes
may be edited at different times, and it does not make sense to treat each attribute
(field) modification as a new version. At the same time, it may be useful to keep a
history of the changes that took place for a given rule. Thus, a sensible versioning
policy would include a combination of history management functionality, which
keeps track of all changes to rules, meaningful or otherwise, and a deliberate
versioning mechanism, where the user chooses to tag a specific modification as a
version change.



184 7 Issues in Designing Business Rule Applications

Going back to Fig. 7.3, in addition to managing the various lifecycle deliver-
ables, an early BRMS must also manage the workflow. Rule capture and analysis
involves several tasks, each involving a set of actors playing different roles,
including policy managers, subject matter experts, rule (business) analysts, rule
stewards, etc. Chapter 16 of this book talks about rule governance in relation to
authored rules. However, the same concepts apply to “early rules”. In particular, an
early BRMS must support role-based access control, and implement a state-driven
management of rules.

7.2.3 Conclusion

In this section, we explored the kinds of functionalities that an early BRMS tool
should support. We identified some of the things that we need to represent about
rules, including their relationships to other modeling and analysis artifacts such as
process models (or use cases) and domain models. We also touched upon the need
to represent different lifecycle versions for rules to reflect the changes that they
undergo during capture and analysis. An early BRMS tool must also support the
process of capturing and analyzing rules, and we identified the need for managing
the workflow of the various lifecycle deliverables.

None of the early BRMS tools we looked at — or know of — support all of these
functionalities. Until such time that early BRMS tools support the required func-
tionalities and integrate seamlessly with a late BRMS tool such as JRules, we
recommend that organizations adopt and adapt existing technologies for document
management. While automation is often desirable, it usually comes at a high cost in
terms: (1) implementation effort and (2) reduced flexibility.

7.3 Design Options for a Business Rule Application

In this section, we explore some of the design dimensions for a business application
that implements business rules using BRMS technology, but without special con-
sideration for BRMS integration; that aspect will be treated in Sect. 7.4. Entire
books have been written about application design, in general, and about specific
architectures and technologies. Our goal is not to rival such treatises. Instead, we
simply aim at providing the reader with some terminology corresponding to some
cardinal points in the design space to anchor our discussion about rule integration
(see Sect. 7.4).

The architecture of an application is influenced by many factors. The most salient
of these are (1) requirements, (2) constraints, and (3) previous experience. With
the regard to requirements, there is a whole bunch of them, including — fittingly
called — architectural requirements, which include a variety of development-level
qualities (modularity, various “abilities” such as portability, reusability, scalability,



7.3 Design Options for a Business Rule Application 185

evolvability, etc.), run-time qualities (performance, fault-tolerance, recoverability,
etc.), business requirements, which relate to qualities such as cost, time to market,
configurability (i.e., the ability to deliver easily configurable subsets of the func-
tionalities), organizational requirements (e.g., the ability to have components of the
system developed by geographically distributed teams), etc. Constraints include
things such as the obligation to adopt a particular architectural style or technology in
use at the organization — or, the prohibition to use a particular technology.® Con-
straints can also include regulatory, industry-specific guidelines or requirements,
and so forth.

Luckily, little architectural design is done from first principles nowadays: we
draw on experiences, both our own and those of other architects, in the form of
various architectural styles or patterns. It is useful to think of application archi-
tectures in terms of architectural styles and technologies that adhere to, or support,
those styles.” For the purposes of our discussion, we will limit ourselves to the most
common architectural styles, i.e., those appropriate for business applications that
are typically deployed in a modern enterprise environment. In terms of technolo-
gies, we will also limit ourselves to the most commonly used technologies in an
enterprise environment. Exotic, niche, or unproven architectural styles or technol-
ogies will not be considered.

Roughly speaking, when considering developing a business application, four
broad categories may be considered:

e Standalone applications. by this we mean an application that runs on the CPU of
the machine of the user that uses only those resources that are available on that
machine.

e Synchronous client—server applications. by this we mean an enterprise applica-
tion whereby the processing of business events takes place in at least two
processes — which typically reside in different CPUs — and follows a synchro-
nous call pattern, i.e., whenever a “client” tier player issues a command to a
“server” tier player, the client blocks waiting for the answer from the “server”.
Ajax notwithstanding,® typical web and J2EE applications fit in this category,
except for asynchronous invocation patterns, discussed next.

® Message-oriented architectures. this is also the case where the processing of a
business event takes place in more than one process — and typically, more than
one machine. The difference with the previous category is that the communica-
tion between the system’s components is message-oriented and asynchronous.

e Service-oriented architectures. in such architectures, applications are seen as
orchestrations of services. Services are software components that satisfy a
number of properties, including the following four: (a) loose coupling, whereby

SWe dealt with one customer who prohibited the use of J2EE technology.

’Some authors will talk about architectural metaphors. These basically mean the same thing,
except that architectural styles have a precise meaning in the academic literature.

8AJAX, for Asynchronous Javascript and XML, offers limited-scope a-synchronicity between web
clients and servers, and does not fit the asynchronous style discussed here.



186 7 Issues in Designing Business Rule Applications

they interact through publicly declared interfaces, with no hidden dependencies,
(b) implementation neutrality, whereby a service can be invoked the same way,
regardless of the way it is implemented, (c) late-bound composition, whereby
services can be composed on the fly/on-demand, and (d) coarse granularity,
whereby services implement business-level services.

In the remaining subsections, we look at these four families in a bit more detail.
For each family, we look at five criteria: (1) simplicity of implementation, (2)
performance, (3) scalability, (4) ease of deployment, and (5) ease of maintenance/
evolvability. Because the BRMS we talk about in this book — IBM WebSphere
ILOG JRules — is Java based, we will consider the Java flavors of the various
architectural families.

7.3.1 Standalone Applications

Within the context of the Java language, we talk about J2SE applications. Such
applications perform all of their processing locally on the user machine, accessing
local resources (a local database, the file system) for the bulk of their processing.
If you think about it, most of the applications running on your PC are standalone
applications. Your file explorer, word processor, spreadsheet software, non-web
e-mail client, or development IDE (Eclipse, NetBeans, VisualStudio) are just like
that.” Such applications may, on occasion, access external resources. For example,
a licensed desktop application may access a remote license server on start-up. An
IDE may embed a version control system client which connects with the server
when it is time to check-in or check-out stuff, but most of the work is done on your
local workspace.'® An antivirus software may check for updates at start-up etc.
While this architecture seems appropriate for office software or operating system
utilities, is it adapted to business applications? Business applications usually access
business data, which tends to be voluminous and distributed. But there are some
situations where business applications can be developed as standalone, “desktop”,
applications. For example, a sales support application for traveling salespeople may
be developed as a standalone application that accesses a local product catalog with
prices schedules, and a nearly up-to-date inventory.'' We have worked with
insurance companies that developed desktop underwriting applications that their
brokers could run on their laptops while on the road, enabling them to provide

By the way, so is your web browser — as an application. Whether it is Internet Explorer, or
Firefox, or Opera, or Safari, the executable is on your machine, and it executes on your machine.
101f the local workspace happens to reside on a remote disk, the operating system will make that
transparent to the IDE.

"For example, the salespeople may synchronize their local inventory database (on their PC) with
the corporate inventory database when they are back to their hotel at night.



7.3 Design Options for a Business Rule Application 187

quotes to potential policyholders offline without having to “wait to go back to the
office”. We have encountered a similar situation with mortgage brokers.

The standalone application style has one major advantage: simplicity! Standa-
lone applications also tend to be responsive: indeed, because all resources are local,
there is no network latency or database contention to deal with. By definition, they
are not scalable, but given the type of application — i.e., a single user, in interactive
mode — they often do not need to. In terms of deployment and maintenance, there
are a number of tools nowadays that make the initial deployment, and the deploy-
ment of consecutive updates, relatively painless.'>

7.3.2 Synchronous Client-Server Architecture

This family of architectures covers a fairly broad spectrum, from a simple, run of
the mill, three-tier web application with a thin client, a web server, and a database to
a full four-tier application with a thin client, a web server, an app server, and an
enterprise information service (EIS) providing access to legacy data. Figure 7.5
shows a typology of J2EE-type client—server architectures.'?

What the various flavors have in common is the client tier — web client or
standalone — and the EIS tier, which stands for a database or a legacy information
system that enables us to access enterprise data through an API. Between these two,
we can have a direct connection (e.g., between a standalone client and the EIS
resource), in which case we have a two-tier architecture, or a web container, or an
application server, for a three-tier architecture, or both, for a full-fledged four-tier
architecture. Naturally, if we have a (thin) web client, we minimally need a web
container — and a three-tier architecture. However, it is possible to have a rich client

Web client
Y 7
L
Web tier Bus'mess EIS re-
ﬁ tier sources
N\
~
Standalone

client

A A

Fig. 7.5 Different client—server architectures

12Java Webstart, e.g., is about as simple as it gets.
3This diagram is borrowed from the J2EE literature. See for example http://java.sun.com/javaee.



188 7 Issues in Designing Business Rule Applications

connect to an application server, which, in turn, accesses data through an EIS
resource. Although there are legitimate-use cases for all of the above combinations,
we will focus on the most common ones: three-tier web applications, with a thin
web client, a web server tier, and EIS tier, and four-tier web applications, with a
business tier between the web tier and the EIS.

In a four-tier web application, we strive to separate the business logic from the
presentation and interaction logic of the application. The presentation and interac-
tion logic are embodied in the web tier, while the business logic (business entities,
non-modal business functions) is embodied in the business tier. The web tier itself
is commonly architected along some flavor of the model-view-controller pattern,
first developed within the context of Smalltalk’s GUI libraries, and later adapted to
the web context. Indeed, most of the web-development frameworks (Struts and
Struts2, Spring MVC, Ruby on Rails, Tapestry, etc.) implement some variation on
the model-view-controller. Figure 7.6 illustrates the principles behind the MVC.

The view component embodies the user interface (e.g., the HTML contents of a
web page) and represents (views) the current state of the model component, the
controller embodies the program that captures user input, and that translates it into
commands to be executed by the model component, and the model component
represents the application logic. The plain arrows show the references between the
components, while the dashed arrows represent the data and command flows
between them. A key aspect of the MVC is the fact that the model has no explicit
knowledge of the view or controller, which makes the application logic independent
of the presentation technology, enabling us to offer multiple views/presentations for
the same model. Another key aspect of MVC frameworks is the provision of view
and controller libraries, which enable web developers to develop views and con-
trollers by composing configurable library components, thereby enhancing the

User inputs

— » Reference @  ------- -+ Data and control flow

Fig. 7.6 The principles behind the MVC pattern



7.3 Design Options for a Business Rule Application 189

productivity of the presentation layer development and its quality (e.g., consistent
look and feel).

Within the context of web applications, the view is typically some flavor of
HTML, and the controller is a user-coded or framework-generated servlet that acts
as an intermediary between the model and the view, with no direct reference or data
flow between the two, as is suggested by Fig. 7.6. As for the model component, it is
usually a facade for the business logic that records the current state of the applica-
tion/interaction and manages the application flow. Within the context of three-tier
applications, the business logic is packaged together with the model component of
the web application. Within the context of four-tier applications, the business logic
is packaged — and deployed — separately from the web component. In this latter
case, the invocation of business services by the model component of the MVC triad
may be delegated to a session bean-like interface, i.e., a proxy facade for business
services. Note that, within the context of a four-tier application, the web component
and the business tier component need not reside in different servers, and the
communication between the two need not be remote. However, they are packaged
and deployed separately.

It is beyond the scope of this section, chapter, and book, to explore the full-
design space for synchronous J2EE-style client—server applications. For the pur-
poses of the current discussion, we are interested in identifying the different places
within an application that business decisions may need to be taken, and correspond-
ingly, the different invocation sites for business rules. The latter aspects will be
discussed in Sect. 7.4.2.

7.3.3 Message-Oriented Architectures

A common problem faced by IT departments is that of integrating a variety of
mission critical applications developed using different technologies, running on
different platforms, and that were never meant to work together in the first place.
Message-Oriented Middleware (MOM) was developed to address this enterprise
application integration problem. With MOM, instead of remote procedure calls
between applications — which would be unworkable in this case — applications send
each other messages that contain a description of what needs to get done, along with
the data. Thus, if an online web-based order processing system wants to invoke a
mainframe batch inventory management system, it can send to it a message, for
every confirmed order, that contains the required inventory decrements. The main-
frame batch inventory management application can process the queued messages
when it kicks off at 3:00 a.m., along with the transaction logs coming from other
legacy applications.
The advantages of message-oriented integration are many, including:

e [nteroperability. Producers and consumers of messages can agree on a technology-
neutral message format that abstracts the many differences that may exist in the
underlying programming languages, memory models, and function call semantics.



190 7 Issues in Designing Business Rule Applications

This makes it possible to interconnect applications developed with totally different
technologies. In the simple example above, the inventory management system
need not even be “working” when the online order processing system “makes the
call.”'*

® Robustness. The MOM virtually guarantees message delivery. Indeed, the mes-
sages that are sent are persisted so that if the messaging channel or the receiver
fails, the messages can be recovered and put back on the queue until they are
consumed by the targeted destination. By comparison, no such guarantees exist
for remote procedure calls: the best a caller can do is to retry a failed call."

e Loose coupling. The interacting applications are loosely coupled. Thus, we can
replace an application by another one that does the same job, in a different
location, and using a different technology. We can also add new functionality to
the system on the fly by having it “listen in” on the existing message channels to
consume existing messages without having to change.

e Scalability. In a traditional synchronous RPC call, the caller blocks until the call
completes. During this idle wait, the caller uses up system resources and cannot
process other business events/transactions. With MOM, an application can turn
around and process other transactions as soon as it sends a request concerning
the current transaction. When the receiver replies, the application can take up
with that transaction where it left off.

Because of these advantages, message-oriented integration has been applied
beyond its original niche of enterprise application integration (EAI) problems. In
particular, the Java Message Service (JMS) API, which provides a standard Java
API that enables Java programs to communicate with various messaging imple-
mentations, has been used to mediate interactions between Java components within
the context of J2EE applications. Here, interoperability is not much of an issue,'®
but architects value loose coupling, robustness, and scalability. In particular,
messaging can be used within the context of a four-tier architecture (see the
previous section), either for the interactions between the web tier and the business
tier (e.g., using message-driven beans) or to implement some business services on
behalf of the business tier.

Again, for the purposes of this section and chapter, we will not explore the
full design space for message-driven architectures. We will be content to raise
the possibility of having the communication between rule “consumers” (i.e., busi-
ness application components) and rule “providers” (e.g., a rule execution serve)
mediated through a messaging framework or middleware.

4Contrast this with typical OO RPC calls: the caller and receiver processes need to be active for
the “call to be delivered”. In fact, part of CORBA’s lifecycle management services consists of
instantiating a server process whenever a client makes a call to a dead server object.

5This is often problematic because in the case of a RPC call, it is not always possible to tell when a
connection exception occurred during the request or the response. Unless we use a transactional
context, retrying a failed call may not be appropriate.

'The J2EE platform does offer other APIs to integrate with legacy EIS, e.g., JCA.



7.3 Design Options for a Business Rule Application 191

7.3.4 Service-Oriented Architectures

What is SOA? Is it a panacea that will revolutionize the way we develop software —
and some say, manage our businesses — or is it yet another marketing-driven IT fad
peddled by integrators and solution vendors. We believe it is neither. It is not
revolutionary — you know what we think of revolutions by now — but an evolution-
ary convergence of advances in middleware, software architecture, and “age old”
best IT practices. Like most new trends, its potential has been overhyped, and its
challenges have not been well-understood. But there is real substance, and its power
can be harnessed with proper methodology, reasonable expectations, and some
(appropriate) technology. We first discuss the principles underlying service-
oriented computing. Next, we discuss the historical influences of SOC. Finally,
we say a few words about service-oriented engineering.

7.3.4.1 Service-Oriented Computing Principles

The service-oriented computing (SOC) paradigm views the development of busi-
ness applications as the late-bound composition (orchestration) of loosely coupled,
implementation-neutral, coarse-grained software components called services.
Roughly speaking, a service is a collection of coherent/cohesive capabilities that
can address the needs of many consumers. A flight booking service would offer
functions/operations for searching for flights, booking flights, and canceling exist-
ing bookings. There has been much debate in the community about what constitutes
a service. Thomas Erl (2005), an SOA pioneer, identified eight characteristics of
services:

e Standardized (service) contracts. As software components, services define their
capabilities using a standard, implementation-neutral language.

e Loose coupling. The services are loosely coupled, and any dependencies are
explicitly stated in their service contracts.

e Abstraction. Whereas loose coupling refers to dependencies between services,
abstraction refers to dependencies between a service provider and a service
consumer. The consumer should not depend on the implementation details of
the service.

® Reusability. Services embody reusable functionality that can service many con-
sumers. In other work, we defined reusability as usefulness and usability (Mili
et al. 2002). Usefulness refers to how often the provided functionality is needed
while usability refers to how easy it is to use. Usability embodies many aspects,
including the existence of (standardized) service contracts (see above), as well as
discoverability, composability, and interoperability, discussed below.

e Autonomy. From the perspective of the consumer, services should be perceived
as self-contained components with total control over their resources and envi-
ronment. The consumer should be able to assume that the service needs no more
than the parameters specified in its service contract to do its job. Naturally,



192 7 Issues in Designing Business Rule Applications

behind the scenes, a service may in turn depend on other services. For example,
business services can depend on a layer of shared technical services.

o Statelessness. We can understand statelessness of services in two complemen-
tary ways. To be able to “service” many consumers, a service should not have to
rely on implicit state information about its consumers; all of the data needed to
service a particular consumer’s request should be explicitly passed as para-
meters. The second aspect of statelessness is related to multiple interactions
with the same consumer. This means that a consumer can invoke the operations
of the service as many times as they want, in any order they wish, and always
get the same result. In practice, of course, these two conditions are seldom
attainable — and not necessarily desirable. If I am using a flight booking service,
I sure hope that my interactions with the service have a lasting effect on the state
of the world: the creation of a booking in the booking database. Erl writes:
“Applying the principle of service statelessness requires that measures of realis-
tically attainable statelessness be assessed, based on the adequacy of the sur-
rounding technology architecture to provide state management delegation and
deferral options™."”

e Discoverability. This refers to the ability of services to document — and advertise
— their capabilities so that service consumers can find them. The documentation
of the capabilities of a service needs to be expressed in a domain language that is
distinct from the language used to express the service contract.

e Composability. This refers to dual capability of services to (a) be composed at
arbitrary levels of aggregation to form more complex services and (b) address
many needs. This, in turn, influences two design aspects of services: (a) the
modalities for interacting with the service and (b) the way the capabilities of the
service are distributed among its operations.

7.3.4.2 SOC Lineage

The above characteristics embody a number of design principles that have evolved
over the years, and that have found expression in a number of technologies. To
name a few:

1. Object-orientation. From OO, we inherit the idea of a service contract (the
public interface of a class), abstraction (information hiding), reusability, and to
some extent, autonomy (encapsulation). However, classes do not have the appro-
priate granularity to form the foundation of a SOC — too small, too dependent on
others.

2. Component-oriented development embodies many of the same principles that
underlie OO, but at a higher level of abstraction and granularity. In component-
oriented development, we have a burgeoning expression of autonomy, stateless-
ness, and discoverability.

3. Distributed applications, in general, and message-oriented architectures, in
particular, contribute remoteness, interoperability, and loose coupling. In fact,



7.3 Design Options for a Business Rule Application 193

Service Service
orchestration-based orchestration-based
application 1 application 2 Portal

Enterprise Service Bus : reliable asynchronous secure messaging

Y ~
Service
Web IMS/ MQ
Adapters service J2EE gateway
Enterprise NET Java Mainframe &
applications applications applications legacy applications

Fig. 7.7 A typical technological landscape of an SOA, using an enterprise service bus (ESB)
(Adapted from Papazoglou et al. 2007)

as we will see shortly, these architectures often provide the computational
backbone for SOC.

4. Business process management, which makes a clear distinction between the
orchestration of a business process, and execution of the various tasks of the
process by separate applications.

5. Web services, which constitute one implementation of SOC, and thus, not
surprisingly, embody most of the above characteristics “out of the box”, in
part thanks to web service standards such as WSDL (service contracts) and
UDDI (discoverability).

From a technological point of view, SOAs tend to be message-oriented, and an
enterprise service bus typically constitutes its infrastructural backbone. Figure 7.7
shows a typical technological landscape of an SOA.

7.3.4.3 Service-Oriented Engineering

Now that we understand what an SOA is, and what it looks like, how do you build
one? What constitutes a good service? How can I (can 1?) leverage existing IT
assets? And so forth. A pure service-oriented analysis would start from an abstract
description of some business functionality and decompose it into an orchestration
of services that satisfy the eight criteria mentioned above. To make sure that the so-
identified services are truly reusable and composable, we need to consider many
such business functionalities within a particular domain, i.e., we need to perform a
good domain analysis. There are many ways to decompose business functionalities,



194 7 Issues in Designing Business Rule Applications

including good old functional decomposition, process decomposition, goal-subgoal
decomposition (see, e.g., Huhns and Singh (2005)), or as Zimmermann et al. (2004)
have suggested, using Feature-Oriented Domain Analysis (FODA; Kang et al.
1990) to help with the identification of candidate services. A pure top-down
approach can only be part of the solution: we need to take into account and leverage
the existing IT assets to guide the service decomposition. Zimmermann et al.
referred to this as a “meet in the middle” approach. Actually, most domain engi-
neering methods do use a combination of analysis (top-down decomposition) and
synthesis (generalizing from existing applications within the domain) to arrive at a
good domain architecture (Mili et al. 2002). That being said, a number of authors
and practitioners recognize that slapping a web service interface onto a legacy
system does not make a good service. Indeed, legacy applications may fail many of
the essential/non-packaging related criteria mentioned above (autonomy, abstrac-
tion, statelessness, and composability), and some measure of reengineering is often
needed to make them good service citizens.

For the purposes of the current discussion, we will not delve any deeper into
SOA. We are interested in the role that rule-based decisioning can play within
service-oriented applications. Referring back to Fig. 7.7, we can see two places
where rule-based decisioning might take place: (a) within the context of individual
services (lower half of the diagram), or (b) within the context of the application
orchestration of services (workflow routing and management). Section 7.4.2 will
discuss the various rule engine deployment alternatives to accommodate these
decisioning needs.

7.4 Designing the Integration of Rules into Applications

If we adopt the business rules approach, business applications will delegate the
decision aspects of their processing to a rule engine (see Fig. 7.8). In this section,
we look at the design space for how a business application invokes the rule engine.
There are a number of design factors to consider, but the most obvious ones are: (a)
what does the calling application look like and (b) how the rules are deployed, in the
first place. The architecture of the calling application will typically be determined by a
number of factors not having to do with the use of business rules. Section 7.3 of this
chapter explored (summarily) the design space for enterprise applications; in this
section, we look at how a particular point in that space influences our integration. With
regard to rule engine deployment, roughly speaking, there are two broad options:

e Executing rules by manipulating rule engines directly as Java objects running
within the same JVM — typically within the same thread — as the calling business
application

¢ Executing rules by invoking a separately running — and typically remote — rule
execution service



7.4 Designing the Integration of Rules into Applications 195

clerical task
Decision-rich task
~
~

~

: : - Rule engine
Clerical task Decision-rich task

I I
I I
I I
I I
V% Vv
Fig. 7.8 Business applications delegate decision-rich tasks to a rule engine

A rule execution service typically offers a number of services, in addition to
executing rules on behalf of business applications. Those services will be discussed
in Sect. 7.4.1, and will serve for the comparison between the two deployment
options. Existing BRMSs offer one, the other, or both deployment options.'” The
issue then becomes, given an application architecture, which rule engine deploy-
ment to choose? Generally speaking, we would want to use the simplest deploy-
ment option that will do the job, and that will generally plead for the option
consisting of manipulating rule engines directly. However, other architectural
requirements, such as scalability and hot deployment, or rule management require-
ments, such as versioning, might plead for a rule execution service option.

We start this section by comparing the two engine deployment options
(Sect. 7.4.1). In Sect. 7.4.2, we talk about how the architecture of the calling
application influences the choice of a deployment options. Section 7.4.3 provides
a summary.

JRules offers half a dozen variants of the rule execution service option, to be discussed in
Chap. 13.



196 7 Issues in Designing Business Rule Applications

7.4.1 Rule Engine Deployment Options

Generally speaking, there are two broad options for executing rules on behalf of a
business application. In the first option, illustrated in Fig. 7.9a, the business
application manipulates a rule engine and its required resources directly. Typically,
the rule engine is written in the same language as the business application (for
example Java) and lives in the same memory space and the same thread as the

a
/ rule engine \

) -
ruleset |
Rule Ruleset > — >
Management extraction p—
. =
A 4

Development
rule repository

BRMS

\ Business application /

b Rule execution
service interface
/

¥
Rule management
Rule Rule .\ exequte\(rset, |date
search analysis
Rule Ruleset L
authoring| |extraction B automation

} execpite (rset,

Execution
ruleset
repository

Development
rule repository

\ Business application /

BRMS

Fig. 7.9 (a) Business applications execute rules by manipulating rule engines directly. (b) Ruleset
execution as a service provided by a rule execution server



7.4 Designing the Integration of Rules into Applications 197

calling application. In this case, the execution component of the BRMS is some-
what limited to a code library that can be integrated in calling business applications,
and the business application manages the lifecycle of the rule engine and its
required resources — typically, the ruleset, and any reference data the ruleset needs.

In the second option, illustrated in Fig. 7.9b, rule execution is offered as a service
to business applications offered by a rule execution server whereby a business
application may request the execution of a particular ruleset on a specific data set,
and get the result of the execution is return. In such situations, the rule execution
server is responsible for managing the lifecycle of the rule engine and its required
resources. The business application would use the rule execution service interface
to submit a ruleset execution request. A request would have to identify the ruleset,
and pass the data on which we wish to apply the rules. Typically, we would expect
the rule execution server to be an independently running service. Among other
things, this makes it possible to have a remote invocation of the rule execution
service.

Note that such a rule execution service does not necessarily fit the definition of a
service in the SOA sense (see Sect. 7.3.4.1). This aspect is thoroughly discussed in
Chap. 12, which explore rule engine deployment options in far more detail.

Figure 7.9b shows a plausible implementation for such a rule execution service.
We will have ample opportunity in the coming chapters to talk about JRules’s own
Rule Execution Server; in this section, we focus on what a rule execution service
might entail, in general. First, it makes sense to have an execution ruleset repository
that is separate from the development repository. A ruleset extraction tool generates
rulesets from the development repository. As rules are modified and versioned in
the development repository, new versions of the rulesets need to be created and
saved in the execution repository. Some form of ruleset versioning is typically
supported.

The rule automation component of the BRMS consists mainly of the ruleset
execution service, which accesses the execution repository and relies on a pool of
rule engines to service requests coming from possibly different business applica-
tions. Scalability is made possible by increasing the size of the rule engine pool.

The rule execution service approach (Fig. 7.9b) means that rulesets are
deployed, physically separately from the business application code: to invoke a
ruleset, we only need to know it by name. This means that we can update a ruleset
referenced by a business application without redeploying the business application
itself.'® In mission-critical 24/7 business applications, hot deployment of rulesets is
a must-have feature.

In summary, if we adopt the rule execution service, we can expect the following
services/features:

1. A central point of ruleset execution for different applications
2. As a corollary, the possibility of remote ruleset execution

18Meaning the application code archive (in Java, it could be a Java Archive, or jar, a Web Archive,
or war, or an Enterprise Archive, or ear).



198 7 Issues in Designing Business Rule Applications

3. Separate physical deployment of rulesets'® from the executable code of business
applications

4. As a corollary, hot deployment of executable rulesets

. The possibility for versioning executable rulesets

6. The possibility for scalability

9,1

The vendor solutions that offer ruleset execution as a service may offer different
combinations of these features. The JRules BRMS offers all of them.

Given all of these features, why would anyone bother using — or even considering
— the first approach? In fact, there are many reasons to forego these services and use
the simpler implementation approach. Indeed, these features come at a — sometimes
substantial — cost in terms of added complexity of deployment, of implementation,
and of use. For example, if a feature such as hot deployment or separate physical
deployment of rulesets is not critically needed, we forego the rule execution service
and choose to manipulate rule engines directly. The next two sections will explore
the various design trade-offs.

It should be noted that BRMS industry players have used the Java Community
Process to come up with a standard API — JSR94 — that abstracts differences
between BRMS vendors. In effect, this API also abstracts away differences in
deployment modes: the same API can be used whether we are manipulating a
rule engine directly or interacting with a rule execution service.””

7.4.2 Architecture of the Calling Application

The architecture of the calling business application has a great influence over the
way we integrate rule engines into the application. There are different factors to
consider, including:

1. The type of application we have: standalone, synchronous client—server, message-
oriented, or service-oriented

2. For client—server applications, the tier in which rules should be executed

3. Architectural requirements, e.g., application availability, connectivity to legacy
systems, and must-have or cannot-have technologies

In the remainder of this section, we will go over the different criteria and discuss
their impact on the choice of a deployment option.

'“From, a deployment point of view, the business rules approach does enable us to treat business
logic as data that is separate from program code. However, with the first deployment approach that
data is often bundled with the program code in the same application code archive.

20As a consequence, the JSR94 API is too “verbose” in those cases where we are manipulating a
rule engine directly, and too “coarse” for those instances where we are using the API to invoke a
rule execution service. For example, JRules’s rule engine API is more “efficient” than JSR94, and
its rule execution server (RES) API offers finer control than JSR94.



7.4 Designing the Integration of Rules into Applications 199
7.4.2.1 The Types of Applications

For a standalone (desktop) application, it is hard to imagine scenarios where an
architect would choose to execute rules using a rule execution service. Remote
invocation would be too much of an overhead. Indeed, scalability is not an issue in
this case, and there is little benefit to be gained from a central point of execution of
rules — having already opted for a decentralized execution of the application itself. If
hot deployment of rulesets is an important requirement, we can imagine other ways of
distributing new rulesets and running different versions of rulesets. Most likely,
desktop applications can run offline and do not need the rulesets to be accurate to
the minute. Take the example of a traveling insurance broker who has a desktop quote
generation/underwriting application on their laptop. They can connect to home base
at night to load the latest version of the underwriting rules. Actually, the chances are
you have a similar application running on your laptop right now. Indeed, many
antivirus software packages work just this way: they work on your machine, but
they check regularly with home base to load the latest virus definitions, which are
nothing but rules, i.e., declaratively specified patterns of malicious code!

With client—server applications, both deployment options are plausible. Having
made the decision to use a client—server type of application, using a rule execution
service does not add undue complexity or overhead. The importance of features such
as hot deployment, ruleset versioning, or central point of execution makes the
difference. The same can be said about message-oriented architectures or service-
oriented architectures: both types of architectures come at the cost of added com-
plexity in terms of development, deployment, and execution, and executing rules
through a rule execution service does not represent undue complexity or overhead.

Note that JRules’s rule execution server (RES) supports a message-oriented
execution pattern built on top of the call-and-return rule (execution) sessions, which
integrates neatly with message-oriented architectures. Note also that the fact that
we adopt a service-oriented architecture does not necessarily mean that (a) only a
rule execution service makes sense or (b) in such an architecture, the rule execution
service would be one of the published services. With regard to the latter point,
SOA-type services tend to be coarse-grained business services whereas rule execu-
tion is more of a support or infrastructure service for the various business functions.
Further, it is difficult to optimize properties such as autonomy and statelessness
while maintaining a generic, clean service interface.

Finally, note that there are no absolutes. For every imaginable combination of
<application type, rule execution type>>, there is a legitimate-use case that warrants
it. This is true for the application type, but also of the other criteria discussed in this
section.

7.4.2.2 Which Tier, for Client-Server Applications?

Client—server applications come in many flavors, illustrated in Fig. 7.5 (see
Sect. 7.3.2) and Fig. 7.10, shown below. One of the issues that designers face is



200 7 Issues in Designing Business Rule Applications

Web client
Y 5

)
Web Application EIS re-
ﬁ container server sources

N N
P A
Standalone < :
client < ' . —

N
\
\

">~ Rules can be in-
voked at any tier

Fig. 7.10 In a client—server application, rules can be invoked at any tier

choosing the application tier at which rules can be invoked. In this section, we look
at the reasons — and implications — of invoking rules at a given tier, and how that
choice might influence the integration of rule execution in an application — i.e.,
direct engine manipulation versus rule execution service.

Business rules are part of the business logic, and the most natural place for
invoking rules in a multi-tier application is the application server tier. It is also the
most common one. There are situations, however, where rules may be invoked from
a different tier.

Let us go back to our claim processing application, and assume that claim entry
is done through a client side form. A first step in processing claims is data
validation. This can take many flavors. The simplest is data format validation,
i.e., ensuring that a date is a date or that a number contains no letters. This kind of
validation can usually be embedded in the input field controls: the prompt for a date
is a calendar! More complex validations include things such as checking the general
pattern for a social security number, or a claim ID, or a policy number, prior to
performing an actual lookup. Yet a more sophisticated validation will ensure that
birthdates do not predate 1850,21 say, or that a given zip code is indeed, located
within the state provided. Other validations will check that the policy number is not
only well formed, but also corresponds to an actual policy. And so forth.

This raises two questions. First, should the validation rules even be captured and
managed by the BRMS? If so, the second question is, at what point/tier should
the rules be invoked: should they be invoked at the client tier, at the web tier, the
application server tier, or the database/EIS tier? With regard to the first question, the

2'We have come across an insurer that was carrying a policy that was over a hundred years old.
Even though the initial policyholder deceased quite a while ago, the policy was converted in some
form of trust in the name of the beneficiaries.



7.4 Designing the Integration of Rules into Applications 201

rule classification proposed by the business rules group includes all of the previous
validations. Indeed, structural assertions cover all of the “data definition rules”.
However, such rules are not necessarily to be captured by the BRMS: some are
going to be implicit in data or class diagrams, and subsequently in database schemas
or class definitions. In our example, it is clear that rules related to data syntax, such
as the input format for dates and numbers, should not be captured in the BRMS.
How about the well-formedness of data values? If the rules are not trivial, then they
should probably be managed by the BRMS. How about referential integrity con-
straints?” Integrity constraints can be specified and enforced at the database level
itself, but do we want to wait until we are about to commit a long and complex
transaction? This ties into the second question, discussed below.

We are back to the question of deciding the tier at which to invoke rules. For
simple validation rules, if the rules are not invoked at the client tier, it means that
the end user could potentially be filling out a long or multi-page input form, and
only finds out what is wrong after she or he submits the form for processing to the
other tiers. What should we do in this case? There are three possible solutions:

1. Implement such rules at the client side using a scripting language, i.e., outside of
a rule engine, or

2. Embed a rule engine on the client side, provided that the footprint of the basic
rule engine API is not too heavy, or

3. Break entry forms into shorter forms that are submitted to web or app server tier
to do a partial validation on the data entered on each sub-form, providing
medium responsiveness of the application.

The first solution is the simplest and the most pragmatic and it should be limited
to simple semantic> data validation rules. The disadvantage of this solution is the
non-uniform treatment of a kind of rules both at development time — they will not be
managed by the BRMS?* — and at run-time — they will not be executed by rule
engines.

The second solution strikes a balance: semantic validation rules are created and
managed by the BRMS, but may use a different execution infrastructure from the
rest of the rules. In this case, we need to figure out how to update the client-side
rules, and the answer depends on how often rules need to be updated. Options
include redeploying the client with every new version of rules, or having clients
retrieve the latest version of rules from the BRMS, at start-up/initialization.

The third solution favors the uniformity of implementation: all rules are handled
on the server side, and the same execution infrastructure is used everywhere. There

22The requirement that a claim refer to an actual policy is an example of a referential integrity
constraint. In database terms, such a constraint can be specified by stating that a database table
column is a foreign key to another table.

2To us, it is clear that syntactic data validation rules are out of scope of the BRMS.

24They could still be managed by the same early BRMS as the other rules, but not in formal//
executable form.



202 7 Issues in Designing Business Rule Applications

is certainly value in such a solution, as uniformity is a much desired quality in
architecture. But so is pragmatism.

Note that rules can also be invoked at the database tier. Database management
systems enable us to specify and enforce integrity constraints that are triggered
when new data is committed to the database. To the extent that a DBMS supports
Java-stored procedures, we can augment the integrity constraint capabilities of
DBMSs with the full power of Java-based rule description languages and execution
engines. In fact, the Versata>> BRMS started out as a back-end BRMS. The problem
with embedding rules at the data tier level is that we have to wait until we commit a
potentially long transaction, before we find out if there is something wrong with
the data.

7.4.3 Additional Requirements

Our application may be subjected to requirements which can influence the deploy-
ment option chosen for rule engines. For example, for mission-critical 24/7 appli-
cations, we cannot shutdown the application to update the rules. This leaves us with
two options:

1. Execute rules as a service. New versions of rules can be deployed to the rule
execution service, and become available for execution immediately.

2. Embed the rule engine in the application, but figure out a way of updating
rulesets while the application is running. There are many ways of achieving
this. In one solution, our application can poll a given location (file system, URL,
etc.) for the latest version of a ruleset, and if it finds a ruleset that is more recent
than the currently running version, it loads it. We can also implement function-
ality that pushes a new version of a ruleset on a running business application
when that version becomes available.

The embedding solution would work, but it requires custom development and
adds complexity to the application. Thus, hot deployment of rules for 24/7 applica-
tions pleads for a rule execution service solution.

Another common requirement would be to run different versions of the same
ruleset, simultaneously. Take our insurance claim processing example. Our insur-
ance company may change the claim eligibility or adjudication rules at the begin-
ning of every year. Claims for medical services received starting January 1, 2009,
may use a different set of rules from that used for medical services performed
before January 1, 2009. Thus two claims C, and Cg submitted on the same day —
say January 15, 2009 — will need to be processed with two different rulesets. Strictly
speaking, this can be accommodated using both deployment options. As mentioned
in Sect. 7.4.1, we would expect a rule execution service to support ruleset

2See http://www.versata.com.



7.4 Designing the Integration of Rules into Applications 203

versioning out of the box; in such a case, the calling application just needs to
specify which version of a particular ruleset it wants to execute. If, instead, we
choose to embed rule engines in our application, then the application needs to
manage the different ruleset versions, and the different rule engines that will run
them. Again, this is technically feasible, but at the cost of much added complexity
to the calling business application.

We ran into situations where a customer had a “no technology X policy, which
would preclude the use of a rule execution service based on technology X. A Wall
Street company we worked with had a “no J2EE” policy, period.*® For the case of
JRules, this meant that we could not use the full-fledged J2EE version of JRules’s
Rule Execution Server (RES). Lighter versions of the RES could be used, however.
Chapter 13 deals specifically with deployment in JRules.

7.4.4 Summary

In this section, we summarize our analysis of the design drivers that influence the
choice of a deployment option for rule engines. Table 7.1 looks at general applica-
tion characteristics. As the previous discussion showed, there are no absolutes: the
“4” and “—” signs should be interpreted as “tends to favor” and “tends to disfavor”.

Table 7.2 looks in more detail at client—server applications. Here, we look at
both the rule invocation tier and deployment option, based on the rule type.

Table 7.1 Influence of application characteristics over rule engine deployment options

Deployment option Embeddedrule engine Rule execution service
Application type
Desktop application + -
Client—server — +
Hot deployment — +
Executable ruleset versioning - +
Table 7.2 Ir‘lﬂuence.: of rule Rule type Invocation  Favored deployment
type on rule invocation and tier option
depl t for client—
aepl?c}:g(e)gs or chient=server Syntactic data Client side  Outside of the BRMS.
pP validation Client-side scripting
Simple semantic data Client side  Client side embedded
validation rules rule engines

Other types of rules ~ Application Rule execution service
server

261t is pretty much a settled debate in the Java community that EJBs are an overkill for many
situations, and even more so for entity beans. Because there are alternatives to EJBs, even in those
situations where the full EJB services are needed (persistence, transactions, security), corporate
architects may be tempted by a no-exception policy. The alternative, a case by case analysis of
every project, would be too energy consuming!



204 7 Issues in Designing Business Rule Applications

7.5 Reengineering Existing Applications to Externalize
Business Rules

An overwhelming majority of the business rule projects we got involved in are
reengineering projects. In some instances, the use of business rules is the main
driver behind the reengineering effort. More often than not, business rules are
introduced as part of a general modernization of a legacy system. Two factors
influence the way we integrate the business rules, the scope of the reengineering
effort and, to a lesser extent, the driver for the reengineering effort, i.e., business
rules versus other considerations. The discussion in Sect. 7.4 was about rule engine
deployment options, namely, embedding rule engines versus rule execution service,
and rule invocation site, i.e., which tier for a multi-tier application, without worry-
ing about external constraints. In this section, we look at the kinds of constraints
that come from dealing with a legacy system.

Figure 7.11 shows a number of stereotypical reengineering scopes. Each scope
comes with different design degrees of freedom, and a different set of constraints.

A typical scenario consists of reengineering the presentation layer, as in going
from, say, a terminal-based application to a GUI application or a web client, or,
going from a browser-based web application to a mobile application. In this case,
the business objects remain unchanged, and so does the application/process layer.
Business rules seldom get introduced in this context.”” Another scenario will see

Re-engineering the
presentation layer

Presentation layer

Re-engineering the
il presentation and

IApplication/process layer application layers

Business layer

Re-engineering all
\ Data access layer but the data access

layer

Re-engineering all but
the data access layer
for a particular
subsystem/subfunction

Fig. 7.11 Different reengineering scopes: different depths and breadths

2TIf we replace a thin client by a rich client, and introducing business rules to handle client-side
validation, say, then we are changing the application flow.



7.5 Reengineering Existing Applications to Externalize Business Rules 205

both the presentation layer and the application/process layer changed, leaving the
business layer and the data layer unchanged. This means that the business objects
remain unchanged, but everything else above them is changed. This corresponds to
reengineering recent legacy systems and covers many change scenarios, including
introducing new modalities for invoking the application’s functionality, as in going
from batch to interactive, or from RPC?® to message-oriented. It also includes more
fundamental paradigm changes, as in adding a workflow or service-oriented layer on
top of the existing business logic. Finally, notice that adding new functionality that
uses the same business objects will also make changes to the application layer and to
the presentation layer. Regardless of the change scenario, if we are to integrate
business rules in this case, they would be introduced at the application layer.

A third scenario will have us reengineer everything above the data layer. For all
practical purposes, this is similar to a new project: all of the application code is
developed from scratch, from the Java entity classes all the way to the presentation
layer. The only constraint here is that the new business objects will be populated by
the legacy data, which can reside in databases that can be accessed directly or in
other legacy systems through APL>’ In this case, ruleset execution can be invoked
either from the application layer or from the business layer. Yet, a fourth scenario,
not illustrated in Fig. 7.11, will have us reengineer everything, from the data layer
and on up. This happens in situations where new or modified functionality requires
data that is not currently captured in the legacy databases.

Naturally, in practice, reengineering scenarios are combinations of these proto-
typical scenarios. We might reengineer different subsystems to different depths.
When we add new functionality, we might reuse the existing infrastructure to
various degrees/depths, depending on how close the existing infrastructure comes
to addressing the needs of the new functionality, but also depending on the time and
resources we have for the project, on the number of mission-critic al applications
that use the existing infrastructure, and so on and so forth.

It is beyond the scope of this chapter — or this book — to recommend best
practices for all possible situations. We will look at a couple of typical situations
that we encountered, and what they mean for integrating business rules.

7.5.1 Reengineering the Application Layer

This is the case where we are reengineering a recent legacy system that is already
implemented in object technology — typically, Java EE — to introduce business
rules. In the simplest of cases, the process flow does not change: we are simply
replacing programmed/in-lined business logic by a rule engine invocation.
Figure 7.12 illustrates this scenario, where we assumed that we are using a rule

ZRPC: remote procedure call, the way synchronous distributed applications work.
2The Java Connector Architecture (JCA) makes this distinction, in theory, irrel