

Agile Business Rule Development

.

Jérôme Boyer l Hafedh Mili

Agile
Business Rule
Development

Process, Architecture, and JRules Examples

Mr. Jérôme Boyer
IBM
4400 North First Street
San Jose, CA, 95134
USA
boyerje@us.ibm.com

Prof. Hafedh Mili
Université du Québec á Montréal
Dépt. Informatique
C.P. 8888
Succursale centre-ville
Montréal Québec H3C 3P8
Canada
hafedh.mili@uqam.ca

ISBN 978-3-642-19040-7 e-ISBN 978-3-642-19041-4
DOI 10.1007/978-3-642-19041-4
Springer Heidelberg Dordrecht London New York

ACM Computing Classification (1998): J.1., H.3.5, I.2, D.2

Library of Congress Control Number: 2011924779

Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective
laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To my family and friends who support my day to day work and humor

To Amel, Haroun and Khalil, for giving a meaning to what I do

To Aicha, Taieb, Faouzi, Ali, Kamel, Fatma, Hedia, Seloua,
Sadok and Nebiha, for being there when it matters

To Lal-Melika and in memory of Si El Moncef

.

Foreword I

We all make a huge variety of decisions every day. For the vast majority of our

daily chores we make those decisions based on the set of experiences and philoso-

phies that we have developed and evolved over time. It is that combination of

experience that makes us who we are—and that ensures that we are uniquely

qualified to perform our jobs. The problem is that all too often the things that

make us unique will lead us to making different decisions from everyone else in the

organization. Those differences may be acceptable for a large class of the decisions

we make. However, that can also be detrimental to the organization when it comes

to certain core business processes.
Businesses that are able to capture the criteria by which they make business

decisions are able to drive better business results. By capturing those criteria you

can reason about their effectiveness. You can combine the best of everyone’s

experience to ensure you are able to respond to the most comprehensive set of

circumstances. You can communicate those criteria across the organization and

thus ensure that decisions are being made consistently. You can publish those

criteria and use them as a benchmark against which to measure the effectiveness

of decisions made in different parts of your organization. You can evolve those

criteria in a systematic fashion—testing the effectiveness of decisions and evolving

them over time to improve the performance of your business.

And what is the codification of those criteria? By any other name we refer to

them as “business rules”. Business rules are an independent representation of how

the business should behave—the principles and expectations that go into business

decisions.

Business rules capture decision criteria in a way that can be applied coherently,

comprehensively and consistently across the organization. Further, they enable us

to automate the execution of those decisions in our business processes. And by

separating the business rules from the technical plumbing of the application we can

update automated decision criteria, adjusting those rules as often as new experi-

ences, changes in the environment, or changes in philosophy dictate. We can update

how our business behaves at the speed of change in our marketplaces.

vii

This book is about Business Rules. It opens by reasoning about the power of

separating business rules from the technical infrastructure of our applications. It

outlines methods for creating and maintaining business rules. It covers approaches

to integrating business rules into our business processes, and for monitoring results

and driving improvements to the rules, that in turn, drive improvements in business

outcomes. It does so by discussing architectural issues, proposing general solution

patterns, and illustrating those patterns for the case of IBM’s business rule manage-

ment system, WebSphere ILOG JRules. Most importantly, it explains how to

manage rules like you would any other valuable business asset.
Quite possibly this will be the most important and comprehensive book you will

ever read on the topic of business rules. I highly encourage you to read it from cover

to cover and use it to guide your business process and application development

activities. Having done so, I’m convinced that you will be in a better position to

drive significant improvements to how we leverage Information Technology as a

competitive weapon in our business markets.

Rob High, Jr.

IBM Fellow

IBM SOA Foundation, Chief Architect

viii Foreword I

Foreword II

I first met Jerome and Hafedh at an ILOG event in 2008 when ILOG, then an

independent software company focused on business rules, had just donated its work

on an Agile Business Rules Development (ABRD) methodology to the open source

community. I had heard of this methodology while I was working on Decision

Management at FICO, another business rules vendor, but had not had a chance to

work with it. I was immediately impressed with both ABRD and the Eclipse

Process Framework in which it was presented. I had worked on Ernst & Young’s

methodology and its automation in the 90s and I understood both the work involved

and the value of managing the methodology—not just writing it. ABRD was clearly

a well thought out methodology, embodying many best practices for business rules-

based development, that could help organizations adopt Decision Management and

business rules management systems.

Decision Management is an approach that focusses on automating and improv-

ing operational business decisions, including the many micro-decisions that impact

a single customer or a single claim. It requires a solid platform for managing

decision-making logic—a business rules management system (BRMS)—and a

methodology for effectively finding and automating this logic. The combination

of business rules and a Decision Management approach results in systems and

processes that are simpler, more agile, more aligned with the business and funda-

mentally smarter. Effective management of the decision logic has improved deci-

sion accuracy, compliance and consistency.

Some companies make the mistake of assuming that decision management and

business rules can be adopted by an IT department without changing existing

governance and development approaches. Others assume that they can handle

business rules as part of modeling and managing business processes. In fact, new

approaches and techniques are required. Best practices already call for developers

to separate the data, user interface and process definitions from applications.

Decision Management takes this one step further and separates decision-making

logic from the remainder of the technical implementation. Further, it empowers

business users and analysts to collaborate effectively with their IT teams and even

ix

to control some of the logic themselves. But extracting decision-making logic as

business rules and managing those business rules over time requires new skills, new

techniques and new best practices, i.e. a new development methodology.

Among rule development methodologies, ABRD is unique in that it promotes

iteration and the early use of a business rules management system. Focussing on

incremental and iterative development, it has been specifically developed to handle

new artifacts like business rules, decision points and more. It applies the key tenets

of the agile manifesto and takes advantage of the power of business rules manage-

ment systems to deliver on those tenets. Its approach to rule elicitation values

“Individuals and interactions over processes and tools”. It prototypes early to

ensure “Working software over comprehensive documentation”. It leverages the

ability of non-technical business people to understand and even edit business rules

to deliver “Customer collaboration over contract negotiation”. Finally, it relies on

the faster update and deployment cycles of a business rules management system to

ensure projects put “Responding to change over following a plan”.

I have helped several companies adopt business rules, using ABRD and the

ILOG business rules management system, now part of the IBMWebSphere product

suite. These companies have seen tremendous improvements in business agility and

in business/IT alignment. Their use of a business rules management system played

a big part in these improvements. To be truly successful, however, these companies

have also had to adapt and change their approach to systems development and

maintenance. Whether they were using agile methods or not for their traditional

development, the need for a new approach to effectively apply agile techniques to

business rules was clear. ABRD delivered what these companies needed to be

successful.

A book on ABRD, then, is both timely and necessary. With this book, Jerome

and Hafedh have written more than just a complete guide to ABRD. This book

provides an introduction to business rules and to the ABRD methodology. It

discusses key ABRD cycles and activities. It outlines key design patterns and

covers critical issues in everything from rule authoring to deployment and testing.

Rule performance, rule governance and detailed descriptions of how to do all this

with IBM’s flagship business rules management systems round out a thorough and

complete book. If you plan to use business rules to extend and manage the decisions

in your operational environment, something I highly recommend, this book will

show you how to use an agile approach to do so.

James Taylor

James is CEO and Principal Consultant, Decision Management Solutions and is

based in Palo Alto, CA. He is the author, with Neil Raden, of Smart (Enough)

Systems (Prentice Hall, 2007) and of numerous chapters on decision man-

agement and business rules. He is an active consultant helping companies

all over the world implement business rules, and can be reached at james@

decisionmanagementsolutions.com.

x Foreword II

Preface

Why Business Rules

According to Wordnet, a rule is “a principle or condition that customarily

governs behavior” or “a prescribed guide for conduct or action.” Businesses, and

organizations in general, operate under a number of rules: rules about what services

to offer and to whom; rules about how much to charge for those services; rules

about how to handle service recipient requests; rules about hiring employees,

promoting them, firing them, reimbursing their travel expenses, and paid leave

rules; customer relationship management rules; web portal layout rules; salary

scales and overtime rules; opening hours rules; emergency behavior guidelines;

promotional campaign targeting rules; cross-selling rules, up-selling rules, meeting

conduct rules; document disposal recycling and security rules; and so forth. Busi-

ness rules are everywhere. Every bit of process, task, activity, or function, is

governed by rules.

Thus, the question is not why business rules, but rather, how business rules?

Currently, some of the business rules are implicit and thus poorly enforced; those

should minimally be written (formalized), if not enforced. Others are written and

not enforced. Others yet are poorly written and obscurely enforced. Some are even

written and should not – but that is a different story J.

The business rule approach looks for ways to (1) write (elicit, communicate,

manage) the important business rules in a way that all stakeholders can understand,
and (2) enforce those business rules within the IT infrastructure in a way that

supports their traceability and facilitates their maintenance.

The business rules approach is no longer the exotic paradigm it was at the

turn of the century. Banks are doing it, insurance companies are doing it, phone

companies are doing it, retailers are doing it, manufactures are doing it, and

government agencies are doing it. This book is not about convincing you of

the merits of the business rules approach – it is about helping you adopt it

effectively.

xi

Why an Agile Business Rule Development Methodology

Business rule pioneers have long recognized that we need a distinct development

methodology for business rules, one that is different from traditional development

methodologies (see justification in Chap. 1). That much we know. But how about

agile?
Business rules embody functional requirements. The business rules approach

emphasizes the elicitation, analysis, documentation, and management of such

requirements. In fact, rule discovery, discussed in Chap. 4, borrows many techni-

ques from requirements engineering. Thus, “agile business rule development” may

sound like an oxymoron – how can an approach that puts so much emphasis on

requirements be agile?

True. Agility is not a defining characteristic of business rule development, except

perhaps for the rule maintenance phase, where IT agility is achieved through

separate authoring and deployment of business rules. To the contrary, most business

rule development methodologies put a heavy emphasis on up-front business mod-

eling and analysis. Further, many experts consider business rules within the broader

context of enterprise architecture, business–IT alignment, business process reengi-

neering and management, service-oriented everything, or some other intimidating

and long-drawn-out are-we-there-yet kind of IT/business transformation that

requires deliberate, strategic planning, an unshakeable faith in the outcome, a lot

of patience, and deep pockets – in short anything but agile.
That is exactly our point. Because agility is not a given with business rule

development, we need to engineer it within business rule development methodol-

ogies, and that is what agile business rule development (ABRD) is about. If we
think of a methodology as a pentad of processes, deliverables, roles, techniques,
and best practices, ABRD differs from other business rule methodologies mainly

along the processes and best practices dimensions and, to a lesser extent, on the

emphasis (or lack thereof) we put on some of the deliverables. Indeed, ABRD

borrows many of the business rule–specific techniques and deliverables from other,

rule developmentmethodologies, including Barbara von Halle’s STEP methodology

(see von Halle 2002). The agility of ABRD, on the other hand, is borrowed from

agile methodologies and development principles such as OpenUp, and test-

driven development. In particular, ABRD is (1) incremental, (2) iterative, and (3)

test-driven. Rather than spending weeks and months discovering and analyzing rules

for a complete business function, ABRD puts the emphasis on producing executable,

tested – though partial – rulesets since the first few weeks of a project, and strives to
do that without jeopardizing the quality, perennity, and foresight of the end result.

Our experience in the field shows that ABRD is valuable, feasible, effective, and

perfectible! We more than welcome your feedback on the customization and use of

ABRD, through personal communication or via the public companion Web site we

have set up for the book (http://www.agilebrdevelopment.com) to share comments,

criticisms, experiences, information, and insights!

xii Preface

Why This Book

While we think that the ABRD methodology is a story worth telling, it alone does

not justify writing – or reading – a book!

Successful adoption of the business rules approach requires four ingredients:

1. Foundations, to understand what business rules are (and are not), why you

should use the business rules approach, and what it can do for you.

2. Methodology, to understand how to apply the business rules approach, from a

process point of view, to your business.

3. Architecture, to understand how rule automation, i.e., how the separate packag-

ing, deployment, and execution of business rules impacts your application.

4. Implementation, to actually deliver the technical solution within the context of a
particular business rule management system (BRMS).

We have long felt that the available business rules literature did not address these

four ingredients in an integrated way. There are a number of excellent foundational
books – most of them are cited in this book – including Ron Ross’s Principles of the
Business Rules Approach (Addison Wesley, 2003) and Tony Morgan’s Business
Rules and Information Systems: Aligning IT with Business Goals (Addison Wesley,

2002). While these books present some business rule–related techniques – some of

which are used in this book – they do not provide a step-by-step methodology and do

not delve far enough into architecture, let alone implementation. On the methodol-

ogy front, a number of authors have done a great job, including Barbara von Halle,

from whom we gratefully borrow many of the techniques and deliverables of her

STEP methodology (see Business Rules Applied: Building Better Systems Using the
Business Rules Approach, John Wiley & Sons, 2001). However, the book did not

(could not) focus on architecture or implementation. James Taylor and Neil Raden’s

Smart (Enough) Systems: How to Deliver Competitive Advance by Automating the
Hidden Decisions in Your Business (Prentice-Hall, 2007) focused on how business

rules are part of an overall approach to managing and automating decisions but only

touched on methodology and the software development life cycle.

From the tool end of the spectrum, we have a number of great books with

practical and immediately applicable know-how around specific – typically open-

source – rule engines (e.g., JESS) and budding business rule management systems

(BRMSs, e.g., JBOSS Drools); however, many such books are definitely short on

methodology (not their focus), short on architecture, and say little about rule

management, and governance issues and functionalities.

Hence, the idea of writing this book, which covers all four aspects in significant

detail: the foundations, in Chaps. 1, 2, and 6;methodology, in Chaps. 3, 4, 5, and 16;
architecture and design, in Chaps. 7, 9, 12, and 14; and implementation in Chaps. 8,
10, 11, 13, 15, and 17. We use an insurance case study that deals with claim
processing. We highlight the major issues in the book text and provide excerpts

from the various deliverables. The full versions of the deliverables are available

through the companion web portal http://www.agilebrddevelopment.com.

Preface xiii

Why JRules

First of all, let us reiterate why we think going to implementation is important.

Implementation shows how some design solutions and patterns are operationalized
within the context of a particular technology. This not only helps the readers to

implement the solutions within the chosen technology, but it also helps them in

adapting/adopting the solutions to other technologies. The Gang of Four patterns

book would not have been the same without the C++ and Smalltalk examples, and

that, whether you are implementing in C++, Smalltalk, Java, or C#.

Having decided to go all the way to implementation, we had to pick a business rule

management system . . . or two . . . or more. If we were to pick one, it had to be JRules,

for several reasons. First of all, it is the one business rule management system

(BRMS) that we know best: we have a cumulative experience of 25 years, going

through several generations of JRules, and havewitnessedmajor shifts in the industry,

in terms of architecture and functionalities. JRules also happens to be a market leader

and a mature product, both in terms of deployment architecture and rule management

functionality. Our biases notwithstanding, we believe that JRules benefited from great

product management, often anticipating and leading market trends.

If we were to pick a second BRMS, which one would it be? Our choice would

probably go to JBoss DROOLS, the leading BRMS in open-source tools, both in

terms of user community and in terms of entry cost. Including DROOLS would

have significantly lengthened this book (another 200 pages) – and the time to write

it. And besides, if we pick two, why not pick a third BRMS?

Throughout this book, we strove to identify and separate product/vendor-

independent issues, from product-specific features and limitations. This is certainly

true for the methodology part, where the contents and semantics of the various work

products and deliverables are the same, regardless of the technology. It is also

true for rule authoring (a constraint is a constraint, regardless of which BRMS you

use), for rule integration (embed rule engines or implement rule execution as a

service), for rule testing (unit testing, test scenarios, regression testing, performance

tuning, etc.), and for rule governance (rule life cycle, change management, etc.).

Out of 18 chapters, only a third (6) are JRules specific.

What happens now as JRules evolves? There are three levels of evolution: (1)

features, (2) API, and (3) architecture. Features evolve constantly, as menu actions

are added here and others are removed from there. That is inevitable, and of no

consequence to us: the JRules-specific parts of the book are not a product tutorial,
anyway; they simply show how to implement some general solution patterns with

JRules. As for changes to the API, they seldom break old code. The ones that are not
related to architecture often consist of limited scope refactorings. With the excep-

tion of Decision Validation Services, whose packaging is fairly recent,1 the APIs

referred to in this book (for ruleset packaging, deployment, execution, performance

1By contrast, the core functionality underlying DVS is fairly mature.

xiv Preface

tuning, execution server integration, and rule governance) are fairly mature and

stable. Changes to the architecture can be more problematic to the shelf life of the

material in this book. However, the current architecture uses proven state-of-the-art

technologies that are beyond the turbulence of the first years. The portal http://www.

agilebrdevelopment.com will maintain information about consequential product

updates and will update our operationalization of solution patterns accordingly.

How to Read This Book

This book consists of 18 chapters, organized in eight parts:

Part I, “Introduction,” introduces the business rules approach (Chap. 1) and

provides example application areas for business rules (Chap. 2).

Part II, “Methodology,” focuses on methodology. The agile business rule devel-
opment (ABRD) methodology is presented in Chap. 3. The rule harvesting cycle is
introduced in Chap. 4, where we talk about rule discovery and analysis, and the

prototyping cycle (phase) is discussed in Chap. 5.

Part III, “Foundations,” covers the basics/main ingredients. Chapter 6 introduces

rule engine technology, by going over its history, and explains the inner workings of

rule engines, in general, and the JRules rule engine, in particular. Chapter 7

explores the design space for business rule applications and for rule management

in the early phases of the rule life cycle. Chapter 8 introduces the JRules BRMS.

Part IV, “Rule Authoring,” deals with rule authoring. Chapter 9 explores rule

authoring design issues in a technology/vendor-independent way. Chapter 10 dis-

cusses JRules artifacts and functionalities for setting up the rule development

infrastructure (project structure, business object model) and proposes best practices

for it. Chapter 11 discusses rule authoring per se, where we introduce the JRules

rule languages and artifacts, and rule execution orchestration.

Part V, “Rule Deployment,” deals with ruleset deployment and execution;

Chap. 12 discusses deployment and execution issues, in general, whereas

Chap. 13 explores deployment and execution options in JRules.

Part VI, “Rule Testing,” deals with testing. Chapter 14 discusses rule testing and

validation issues, in general, whereas Chap. 15 explores JRules functionality for

rule testing, tracing, and performance monitoring.

Part VII, “Rule Governance,” deals with rule governance. Chapter 16 introduces

rule governance and discusses the main process and design issues. Chapter 17

explores JRules support for rule governance.

Part VIII, “Epilogue,” concludes this book with a short epilogue.

Clearly, by choosing to address foundations, methodology, architecture, and
implementation, this book caters to five different audiences:

l Project managers will find a pragmatic, proven methodology for delivering and

maintaining business rule applications.

Preface xv

l Business analysts will find a methodology that they can use for rule discovery

and analysis, and a number of guidelines and best practices for rule authoring,

and for structuring rules during development.
l Rule authors will find a number of guidelines and best practices for rule author-

ing, in general, and detailed explanations about rule artifacts and rule authoring

languages in JRules.
l Application and software architects will find an exploration of the design space

for business rule applications, and a number or proven architectural and design

patterns, in general, and for the case of JRules.
l Developers will find practical design and coding guidelines for implementing

design choices, in general, and using JRules.

Incidentally, CTOs and product/business line managers will also find some value

in this book; thanks to our explanation of the business rules approach, to the

example application areas, and to a discussion of rule governance issues, but they

are probably better off with other foundational books such as those mentioned

earlier.

The following table shows reading paths for the different audiences:

Target audience Should-read chapters/parts Optional

chapters

Project manager Parts I and II: Chaps. 1–5, Chaps. 8, 16, and 18 Chaps. 7

and 14

Application architect Parts I and II: Chaps. 1–5, Chaps. 8, 12, 14, 16, and 18

Software architect Part I: Chaps. 1–2, Chap. 3; Part III: Chaps. 6–8;

Part V: Chaps. 12–13; Part VI: Chaps. 14–15; Part VII:

Chaps. 16–17); and Part VIII: Chap. 18

Chaps. 4

and 5

Business analyst Part I: Chaps. 1–2, Chaps. 3, 4, 8, 9, 14, 16, and 18 Chap. 7

Rule author Part I: Chaps. 1–2, Chaps. 3, 8; Part IV: Chaps. 9–11,

Chap. 16; Part VIII: Chap. 18

Developer Part I: Chaps. 1–2, Chaps. 3 and 5; Part III: Chaps. 6–8,

Chap. 10; Part V: Chaps. 12–13; Part VI: Chaps. 14–15;

Part VII: Chaps. 16–17; and Part VIII: Chap. 18

xvi Preface

Acknowledgments

This book has been an on-and-off project for many years. Vilas Tulachan, an

independent J2EE consultant and author, and a JRules consultant and trainer, has

revived an earlier incarnation of this book project, which, while it did not material-

ize in its earlier form, kept us talking about it above the noise level, until a concrete

book proposal was submitted to Ralf Gerstner, our indefatigable Springer editor, in

the fall of 2007.

We wish to thank Ralf for his legendary patience with us through many (self-

imposed) missed time targets. Thanks to ABRD, we are much better at delivering

business rule solutions than we have been at delivering this book!

ABRD is the open-source descendant of the proprietary ILOG ISIS (ILOG

Solution Implementation Standard) methodology. Our thanks to the members of

the ISIS team, namely, Pierre Berlandier, who has written extensively about rule

governance, and Jean Pommier, who supported the development of ABRD, its open

publication – and the writing of this book!

Our sincerest thanks go to Tonya Teyssier, a conscientious, patient, and gener-

ous JRules curriculum developer from IBM WebSphere Education, who sacrificed

many evenings and weekends to help us write – and think – clearly the first chapters

of the book. She has become a master of euphemisms in “constructively criticizing”

some of the earlier drafts.

Eric Charpentier, a JRules consultant extraordinaire, who excels at everything he

does, provided us with very valuable and timely feedback on all the chapters of the
book. He certainly helped us a great deal in improving the organization and

pedagogy of many chapters of the book. Eric blogs about topics ranging from

scorecards to rule governance (see http://www.primatek.ca/blog).

James Taylor, a leading authority on decision management, including business

rules, and analytics, and an independent consultant, speaker, and author, volun-

teered to read a complete draft of the book, and provided us with valuable, timely,

concise, to the point (and witty) feedback, James-style! He blogs extensively about

decision management (check JT on EDM, at http://jtonedm.com/), and has

authored, with Neil Raden, Smart Enough Systems: How to Deliver Competitive

xvii

Advantage by Automating Hidden Decisions (Prentice-Hall, 2007), which is be-

coming a classic on decision management.

We both wish to thank our respective families who, like families of all authors,

have to put up with absentee – or absent-minded – father/partner for a never-ending

book project. Are we there yet? Yes, we are . . . till the next book J.

December 2010 Hafedh Mili and Jérôme Boyer

xviii Acknowledgments

Contents

Part I Introduction

1 Introduction to Business Rules . 3

1.1 What Are Business Rules? . 3

1.1.1 Business Rules Are About the Business . 7

1.1.2 Business Rules Concern Both the Structure

and the Behavior of the Business . 7

1.2 Motivations for the Business Rules Approach . 8

1.3 How Do Business Rule Applications Differ from Traditional

Business Applications? . 13

1.4 Why Do We Need a New Methodology? . 16

1.5 Summary and Conclusions . 24

1.6 Further Reading . 25

2 Business Rules in Practice . 27

2.1 Introduction . 27

2.2 Engineering Applications . 28

2.2.1 Alarm Filtering and Correlation . 29

2.2.2 Train Cars Preventive Maintenance . 31

2.3 Financial Services . 33

2.3.1 Mortgage Underwriting . 33

2.3.2 Tax Reporting and Withholding . 36

2.4 Insurance . 38

2.4.1 Policy Underwriting . 38

2.4.2 Claim Processing . 41

2.5 Conclusion . 43

2.6 Further Reading . 45

xix

Part II Methodology

3 Agile Business Rule Development . 49

3.1 Introduction . 49

3.2 Core Principles of the ABRD Methodology . 50

3.2.1 A Cycle Approach . 52

3.2.2 Cycle 1: Harvesting . 53

3.2.3 Cycle 2: Prototyping . 54

3.2.4 Cycle 3: Building . 55

3.2.5 Cycle 4: Integrating . 56

3.2.6 Cycle 5: Enhancing . 56

3.3 Eclipse Process Framework . 57

3.3.1 OpenUp . 59

3.3.2 ABRD Structure . 59

3.3.3 ABRD Roles . 61

3.3.4 ABRD Work Products . 64

3.4 Usage Scenario for ABRD . 65

3.5 Summary and Conclusions . 70

3.6 Further Reading . 71

4 Rule Harvesting . 73

4.1 Introduction . 73

4.2 Rule Discovery . 74

4.2.1 Classification of Business Rules . 75

4.2.2 Discovery Activities . 80

4.3 Rule Discovery: Case Study . 93

4.4 Rule Analysis . 102

4.4.1 Analyze Rule Descriptions and Fact Models 102

4.4.2 Transforming Rules . 105

4.4.3 Building Test Scenarios . 109

4.4.4 Verify Rules Against the Data Models . 110

4.5 Case Study: Rule Analysis . 111

4.6 Summary . 112

4.7 Further Reading . 112

5 Prototyping and Design . 115

5.1 Introduction . 115

5.2 Determine Rule Implementation . 117

5.2.1 Implementing Rules Within the Data Model 118

5.2.2 Implementing Rules Within Application Code 120

5.2.3 Implementing Rules in GUI . 121

5.2.4 Implementing Rules in Process Maps . 123

5.2.5 Implementing Rules in a Rule Engine . 125

xx Contents

5.3 Build Models . 127

5.3.1 Java Model . 127

5.3.2 XML Schema . 128

5.3.3 Synchronize with the Data Models . 129

5.4 Building Structures for Rule Development and Execution 130

5.4.1 Rule Project Structure . 130

5.4.2 Defining Rule Meta Data . 132

5.4.3 Orchestrating Rule Execution . 134

5.5 Prototyping Rules . 136

5.5.1 Purpose of Rule Prototyping . 136

5.5.2 Some Useful Rule Patterns . 137

5.6 Case Study . 140

5.7 Communicate Back to Business . 142

5.8 Summary . 142

5.9 Further Reading . 143

Part III Foundations

6 Rule Engine Technology . 147

6.1 Introduction . 147

6.2 The History of Rule-Based Programming . 148

6.3 Rule Engines . 151

6.3.1 The Basics of Production Systems . 151

6.3.2 The JRules Rule Engine . 155

6.4 Engine Execution Algorithms . 161

6.4.1 The RETE Algorithm . 161

6.4.2 The Sequential Algorithm . 168

6.4.3 The Fastpath Algorithm . 172

6.5 Summary and Conclusions . 173

6.6 Further Reading . 174

7 Issues in Designing Business Rule Applications . 177

7.1 Introduction . 177

7.2 Design Dimensions for Rule Management . 178

7.2.1 Early Versus Late BRMS Tools . 178

7.2.2 Requirements for an Early BRMS Tool . 179

7.2.3 Conclusion . 184

7.3 Design Options for a Business Rule Application 184

7.3.1 Standalone Applications . 186

7.3.2 Synchronous Client–Server Architecture . 187

7.3.3 Message-Oriented Architectures . 189

7.3.4 Service-Oriented Architectures . 191

7.4 Designing the Integration of Rules into Applications 194

7.4.1 Rule Engine Deployment Options . 196

Contents xxi

7.4.2 Architecture of the Calling Application . 198

7.4.3 Additional Requirements . 202

7.4.4 Summary . 203

7.5 Reengineering Existing Applications to Externalize

Business Rules . 204

7.5.1 Reengineering the Application Layer . 205

7.5.2 Reengineering the Business Layer . 207

7.5.3 Reengineering the Data Layer . 209

7.6 Summary and Discussion . 211

7.7 Further Reading . 212

8 IBM WebSphere ILOG JRules . 215

8.1 Introduction . 215

8.2 Business Rule Management System Main Components 216

8.2.1 The Concept of Operations . 218

8.2.2 Rule Artifacts . 220

8.3 Rule Studio . 221

8.3.1 Designing the Rule Project Structure . 223

8.3.2 Designing the Business Rule Model . 226

8.3.3 Designing the Business Object Model . 228

8.3.4 Orchestrate Rule Execution . 231

8.3.5 Ruleset Testing and Deployment . 231

8.4 Rule Team Server . 232

8.5 Rule Execution Server . 236

8.6 Rule Solutions for Office . 239

8.7 Summary . 241

8.8 Further Reading . 242

Part IV Rule Authoring

9 Issues in Rule Authoring . 245

9.1 Introduction . 245

9.2 Rule Languages . 246

9.2.1 The Domain of Discourse: Business Object Models 247

9.2.2 Flavors of Rule Authoring Languages . 251

9.3 Rule Coding Strategies and Patterns . 257

9.3.1 Coding Constraints and Guidelines . 258

9.3.2 Coding Computations and Inferences . 264

9.3.3 Coding Action Enablers . 265

9.3.4 Coding Risk-Assessment Rules . 265

9.3.5 Encoding Business Data Tables . 267

9.4 Organizing Rules During Development . 269

9.4.1 Rule Structures . 270

9.4.2 Design Drivers for an Effective Organization of Rules 271

xxii Contents

9.4.3 Best Practices . 275

9.5 Summary and Discussion . 280

9.6 Further Reading . 281

10 Rule Authoring Infrastructure in JRules . 283

10.1 Introduction . 283

10.2 Rule Projects . 284

10.2.1 The Structure of Rule Projects in Rule Studio 285

10.2.2 Rule Project Dependencies . 289

10.2.3 Synchronizing Projects Between Rule Studio

and Rule Team Server . 291

10.2.4 Managing Multiple Users . 296

10.3 The Business Object Model . 301

10.3.1 The Basics of the BOM . 301

10.3.2 Verbalization . 305

10.3.3 BOM to XOM Mapping . 308

10.3.4 Refactoring . 316

10.3.5 Enhancing the Rule Authoring Experience 320

10.4 Best Practices . 324

10.4.1 Best Practices for Organizing Rule Projects 324

10.4.2 Best Practices for the Design of the BOM 326

10.5 Discussion . 331

10.6 Further Reading . 331

11 Rule Authoring in JRules . 333

11.1 Introduction . 333

11.2 Rule Artifacts . 334

11.2.1 IRL and Technical Rules . 335

11.2.2 BAL and Action Rules . 341

11.2.3 Decision Tables . 348

11.2.4 Decision Trees . 353

11.2.5 Score Cards . 354

11.2.6 The Business Rules Language Development

Framework . 357

11.3 Rule Execution Orchestration . 360

11.3.1 Ruleset Parameters and Variables . 361

11.3.2 Rule Flows: Basics . 365

11.3.3 Rule Flows: Advanced Concepts . 370

11.4 Best Practices . 375

11.4.1 Best Practice 1: Design the Signature First 375

11.4.2 Best Practice 2: Rulesets and Ruleflows 377

11.4.3 Best Practice 3: My Kingdom for an Algorithm 379

11.4.4 Best Practice 4: Do You Really Need a Custom

Language? . 384

Contents xxiii

11.5 Discussion . 386

11.6 Further Reading . 387

Part V Rule Deployment

12 Issues in Deploying Rules . 391

12.1 Introduction . 391

12.2 Integration and Deployment Considerations . 392

12.2.1 Transaction Support . 392

12.2.2 Scalability . 394

12.2.3 Data Access . 397

12.2.4 Ruleset Hot Deployment . 400

12.3 Decision Service Integration . 402

12.3.1 Service Implementation . 404

12.3.2 Messaging Deployment . 405

12.3.3 Service Component Architecture . 406

12.3.4 Embedding Rule Engines Using Low-Level Rule

Engine API: JSR94 . 408

12.4 Ruleset Deployment . 413

12.4.1 Building the Ruleset . 414

12.4.2 Loading the Ruleset in Execution Server 416

12.5 Summary . 417

12.6 Further Reading . 418

13 Deploying with JRules . 419

13.1 Introduction . 420

13.2 Reminder on the Concepts of Operation . 420

13.3 Integration with JRules Engine . 424

13.3.1 Deploying with the Rule Engine API . 424

13.3.2 JSR94: JRules Specifics . 426

13.3.3 Monitoring and Tracing Rule Execution 427

13.3.4 Resource Pooling . 427

13.4 Deploying with the Rule Execution Server . 428

13.4.1 Using RES Session API . 431

13.4.2 JMS Deployment . 433

13.4.3 SCA Component . 434

13.4.4 Monitoring and Decision Warehouse . 435

13.4.5 Transparent Decision Service . 437

13.5 Rule Team Server . 441

13.5.1 Physical Deployment . 441

13.5.2 Queries . 442

13.6 Summary . 443

13.7 Further Reading . 444

xxiv Contents

Part VI Rule Testing

14 Issues with Rule Testing and Performance . 447

14.1 Introduction . 448

14.2 Rule Testing . 448

14.2.1 Unit Testing . 449

14.2.2 Component Testing . 453

14.2.3 Functional Testing . 454

14.2.4 Regression Testing . 456

14.3 Performance Testing . 456

14.3.1 Multiple Performance Dimensions . 458

14.3.2 Patterns of Data Materialization . 460

14.3.3 Accessing Data from Within the Rules 460

14.3.4 Pattern Matching Performance . 461

14.3.5 Some Guidelines on Keywords . 462

14.4 Continuous Testing . 463

14.5 Semantic Consistency Checking . 465

14.6 Tracing and Logging Rule Applications . 467

14.7 Summary . 468

14.8 Further Reading . 469

15 Rule Testing with JRules . 471

15.1 Introduction . 472

15.1.1 Semantic Consistency Checking . 472

15.1.2 Semantic Queries . 474

15.1.3 Rule Coverage . 475

15.2 Rule Testing . 476

15.2.1 Unit Test . 476

15.2.2 Decision Validation Service . 477

15.2.3 DVS Customization . 488

15.3 Performance Tuning . 492

15.3.1 Ruleset Parsing . 492

15.3.2 Execution Algorithms . 494

15.3.3 Rule Execution Improvement . 496

15.4 Summary . 499

15.5 Further Reading . 499

Part VII Rule Governance

16 Rule Governance . 503

16.1 Introduction . 503

16.2 Need for Governance . 504

16.2.1 IT and Business Governance . 504

Contents xxv

16.2.2 How to Start Developing Rule Governance 505

16.2.3 What Are the Main Processes in Rule Governance? 506

16.3 Defining Rule Governance . 506

16.3.1 Create the Business Rules Management Group 507

16.3.2 Identify Stakeholders . 508

16.3.3 Ruleset Owning Groups . 512

16.3.4 Rule Life Cycle . 513

16.4 Rule Change Process . 515

16.4.1 Scope of Change . 517

16.4.2 Rule Authoring Subprocess . 518

16.4.3 Rule Testing Subprocess . 519

16.4.4 Rule Deployment Subprocess . 519

16.5 Summary . 520

16.6 Further Reading . 521

17 Rule Governance with JRules . 523

17.1 Introduction . 523

17.2 JRules and Rule Governance . 524

17.2.1 Defining Roles in Rule Team Server . 524

17.2.2 Rule Life Cycle . 526

17.2.3 Ruleset Baseline and Versioning . 529

17.2.4 Deeper Changes . 532

17.3 The Rule Change Management Process . 534

17.3.1 Process Implementation . 535

17.3.2 RTS and Workflow Integration . 538

17.3.3 Getting Rule Status Modification Event from RTS 539

17.3.4 Getting the List of Rules from RTS . 540

17.4 Summary . 542

17.5 Further Reading . 542

Part VIII Epilogue

18 Epilogue . 545

18.1 It Is About People, Process, and Technology . 545

18.2 Success – and Failure – Factors . 546

18.3 Where to from Here . 548

Bibliography . 551

Index . 557

xxvi Contents

.

Part I

Introduction

Chapter 1

Introduction to Business Rules

Target audience
l All

In this chapter you learn
l What are business rules
l What are the motivations behind the business rules approach
l In what ways do business applications with business rules differ

from traditional applications
l Why do we need a different development methodology

Key points
l A business rule is a statement that defines or constrains some

aspect of the business. Business rules have a business motivation
and an enforcement regime.

l The business rules approach enables, (a) a better alignment
between information systems and business, and (b) a greater
business agility.

l Business rule applications externalize business logic and sepa-
rate it from the underlying computational infrastructure where it
can be managed by business.

l Business rule development differs from traditional application
development in many ways: (1) it is business requirements-centric,
(2) enterprise-level ownership – and management – of business
logic, and (3) business-led implementation and maintenance of
business logic.

1.1 What Are Business Rules?

An on-line store might not accept a next-day delivery order if the order is

received after 3:00 p.m.

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_1, # Springer-Verlag Berlin Heidelberg 2011

3

My bank will not lend me money if my debt-over-income ratio1 exceeds 37%

Section 152 of the US tax code defines a dependent as a person who is either a

“qualifying child” or a “qualifying relative.” A taxpayer’s qualifying child for

any taxable year is a person who:

l Is the taxpayer’s child, sibling, step-sibling, or a descendant of any such relative
l Has the same principal residence as the taxpayer for at least half the taxable year
l Is younger than 19 at the end of the taxable year, or is a student who is

younger than 24 at the close of the year, or is a student with disability –

regardless of age
l Has provided for no more than half of her or his support for the taxable year

A qualifying relative, on the other hand.

My health insurance does not reimburse medical expenses incurred abroad if the

claim is presented more than 1 year after the expenses had been incurred, or if

the claimant has spent more than 182 days abroad within the past year.

Passengers with frequent flyer status Silver, Gold, Platinum, Super Platinum,

and Super Elite Platinum may board at their leisure.

My car insurance does not cover drivers who have been convicted of driving

while intoxicated (DWI) within the past 2 years; they are referred to a public no-

fault insurance.

Fannie Mae will only underwrite mortgages on properties that have hazards

insurance that protects against loss or damage from fire and other hazards

covered by the standard extended coverage endorsement. The policy should

provide for claims to be settled on a replacement cost basis. The amount of

coverage should at least equal the minimum of:

l 100% of the insurable value of the improvements2

l The principal balance of the mortgage (as long as it exceeds the minimum

amount – typically 80% – required to compensate for damage or loss on a

replacement cost basis)

1The debt over income ratio is the ratio between total (monthly or yearly) debt obligations over

gross income for the same period (monthly or yearly).
2For example, if a property is worth $200,000, $80,000 for land and $120,000 for the building, then

the value of the improvements is $120,000.

4 1 Introduction to Business Rules

These are just a sampling of the types of rules that we have come across in our

practice. Application areas include customer relationship management, marketing

campaigns, the mortgage industry (retailers, mortgage insurance, secondary mar-

ket), banking (credit cards, loans), car insurance, health insurance, loyalty pro-

grams, tax law, compliance, e-government, telecommunications, engineering,

transportation, manufacturing, etc.

So, what is a business rule? If we break down the term “business rule” we get a

rule of the business. Wordnet defines a rule as, among other things, “a principle or

condition that customarily governs behavior,” or “a prescribed guide for conduct or

action.” A rule of the business means that this principle or prescription is in the

business domain, that is, it is part of the requirements (the problem domain), as
opposed to a prescription dictated by a particular technological choice (the solution
domain).

Business rule authors have proposed a number of definitions for business rules.

Tony Morgan defines a business rule informally as “a compact statement about an

aspect of the business . . . It is a constraint in the sense that a business rule lays down

If a wheel shows two consecutive temperature readings higher than 558�, then
check for sticking brakes.

Periodic interest payments made to the accounts of foreign entities who filed

IRSform W-9 are subject to 28% backup withholding and need to be reported to

the IRS in form 1099, with the box number 3 checked.

Citizens of NAFTA countries who travel into the USA by road need only show

proof of citizenship.3

When mailing out monthly account statements, include marketing materials that

match the customer profile.

Plane tickets purchased with Amex/Visa Gold/<insert your favorite card here>
have built-in trip cancellation insurance.

If two alarms are issued by the same network node within 30 s of each other with

the same alarm code, then group them under the same umbrella alarm.

3NAFTA: North American Free Trade Agreement, binding Canada, Mexico, and the USA.

1.1 What Are Business Rules? 5

what must or must not be the case” (Morgan 2002, p. 5). Ronald Ross defines a

business rule as “a directive intended to influence or guide business behavior” (Ross

2003, p. 3). Barbara von Halle would like us to think of business rules as “the set of

conditions that govern a business event so that it occurs in a way that is acceptable

to the business” (von Halle 2001, p. 28).

The Object Management Group (OMG) defines a rule as a “proposition that is a
claim of obligation or of necessity,” and a business rule as a rule that is under

business jurisdiction (OMG 2008). The Business Rules Group, which is an inde-

pendent non-commercial peer group of business rule specialists, has produced a

number of documents about the business rules approach, and has contributed to

OMG’s work on business process management and business rules. The Business

Rules Group considers business rules from two perspectives, the business perspec-

tive, and the information systems perspective, defined as follows:

l From the business perspective: “. . . a business rule is guidance that there is an

obligation concerning conduct, action, practice or procedure within a particular

activity or sphere. Two important characteristics of a business rule: (1) there

ought to be an explicit motivation for it, and (2) it should have an enforcement

regime stating what the consequences would be if the rule were broken” (BRG

2008).4

l From the information system perspective: “. . . a business rule is a statement

that defines or constrains some aspect of the business. It is intended to assert

business structure, or to control or influence the behavior of the business” (BRG

2008).

This distinction between the two perspectives is needed to account for the fact

that a business process typically involves human actors and an information system,

and business rules guide both. From the information system perspective, the rules

talk about the data that is captured by the information system about the real world

entities involved in the business process such as customers, products, or transac-

tions. For example, in the insurance domain, a number of on-line quotation systems

have three outcomes. In addition to “accept” and “decline” responses for clear-cut

requests, borderline cases may receive a “manual referral” response so the request

can be reviewed by a human underwriter. The human underwriter operates under a

slightly different set of business rules from the ones automated in the information

system. Such business rules would typically be captured in underwriting manuals.

While the bulk of this book is about the information system perspective, the

early chapters address both perspectives.

Two characteristics of business rules stand out from the above definitions: (1)

business rules are about business, and (2) business rules concern both the structure
and the behavior of the business. We will elaborate these two characteristics further

below.

4The Business Rule Group web site: http://www.businessrulesgroup.org/defnbrg.shtml.

6 1 Introduction to Business Rules

1.1.1 Business Rules Are About the Business

Indeed, in the examples given, there is a business motivation behind the rule. To

illustrate this point, consider our first rule about next-day delivery and the 3:00 p.m.

deadline. Why would an on-line store put in place such a restrictive rule, and risk

losing business as a consequence? A plausible justification could be that it may take
more than 4 h to, (a) find a free warehouse clerk to fulfill the order, and for the

assigned warehouse clerk to (b) locate the book in the warehouse, (c) prepare a

package for delivery, and (d) deliver the package to the nearest Federal Express or

UPS branch. Notice that the same rule would apply if the customer called by phone
to place the order. Similarly, the rule about rejecting drivers with recent DUI

convictions: the obvious business motivation is that such drivers present a high

risk of causing accidents, and would cost the insurance too much money.

Von Halle says that “business rules are the ultimate levers with which business

management is able to guide and control the business. In fact, the business’s rules

are the means by which an organization implements competitive strategy, promotes

policy, and complies with legal obligations” (von Halle 2006). The Business Rules

Group (BRG) has proposed a Business Motivation Model that attempts to formalize

the link between business rules and business objectives (BRG 2007); the OMG’s

Business Motivation Model Specification is based on (BRG 2007). Roughly

speaking, business rules are seen within the context of business plans: a business

plan includes ends (business objectives) and means to achieve the ends. Business
rules are part of the means that businesses deploy to achieve their goals (profitabil-

ity, market share, customer loyalty, etc.); we will say more about the business

motivation model in Chap. 4.

1.1.2 Business Rules Concern Both the Structure
and the Behavior of the Business

This distinction is evident in the information systems perspective of the business
rules group definition, and somewhat in the OMG definition, which distinguishes

between structural or definitional rules and operative or behavioral rules. Roughly
speaking, structural rules define the business information model. The statement “a

sale record includes the buyer, the product, the quantity, the price, and any

applicable discount” is a structural business rule. We can think of it as the definition

of the Sale entity (or class). Similarly, the statement “an order can include one or

several line items, one per product, indicating number of units and price” is also a

structural business rule, which can be seen as defining the Order entity. A behav-
ioral rule, on the other hand, is about how the business reacts to business events.

Most of the example rules shown above are actually behavioral rules. The first rule
(3:00 p.m. deadline) is relevant to order entry. The debt-over-income ratio is

about loan application underwriting. The health insurance rule is relevant to the

1.1 What Are Business Rules? 7

processing of claims. And so forth. Generally speaking, behavioral rules kick in

when something happens at the boundaries of the system. This distinction and

others are described in more detail in Chap. 4.

1.2 Motivations for the Business Rules Approach

Before we talk about the business rules approach, let us talk about the “nonbusiness

rules approach.”

The sample of rules shown above has, for the most part, been successfully

implemented in working information systems by people who have never heard of

the business rules approach. So what is the hoopla about the business rules

approach?

The next few real-life examples will illustrate three major issues that are

adequately addressed by the business rules approach. We will present the examples

first, and then identify the dominant issues:

l A company is in the natural gas business. It sells natural gas to public utilities. It

draw 8–9 figure contracts with these public utilities, whose prices depend on the

total volume (a certain volume of natural gas over the duration of the contract),

throughput (a certain volume per hour), options to request a 10% (or 15% or

20%) increase of throughput within 6 h to accommodate consumption peaks, the

possibility of storing the gas for low usage periods, etc. Beyond the raw volume

(x cubic tons of gas), each one of these “options” has an infrastructure cost – and
thus a price associated with it. The company’s top management looks at the

yearly numbers and figures two things: (1) given the volume that it sells, it

should be making more money, and (2) overall, its customers are having a good

deal, relative to the competition, and some customers have very good deals, but

neither the company nor its lucky customers know it. We need to capture those

pricing rules precisely so that (1) we can fine-tune the rules to make more money

and yet remain competitive and (2) we can tell customers, precisely, how good a

deal they are getting. As it turned out, those pricing rules walked out the door

every day between 4:00 and 7:00 p.m., got stuck in traffic on most days, and

called in sick some of the time – not to mention the occasional vacation. Not

only that, but they took on separate lives in separate spreadsheets on the contract

officers’ laptops.
l A US state manages a number of social benefits (welfare) programs for people

with disabilities, senior people, low-income people, single mothers, back-to-

school single mothers, back-to-work programs for long-term unemployed peo-

ple, food stamps, etc. Each one of these programs has eligibility guidelines, the

contours of which have been defined by the laws that created those programs.

Applications to the various programs are dispatched to “case workers” who

assess the eligibility of the applicants and determine the benefits level. Caseworkers

were overwhelmed, and their determinations were uncomfortably inconsistent.

8 1 Introduction to Business Rules

Managers asked a couple of questions: (1) exactly what rules were being

used, (2) how to ensure that those rules are used consistently, and (3) why

processing times for straightforward cases were the same as for complex

borderline cases.

These were but two of many examples of organizations that did not know

precisely the rules under which they were operating, and consequently, operated

under different – and often conflicting – sets of rules. Hence:

Issue 1: Organizations need to know which business rules they are using, and
whether they are using them consistently.

l A phone company’s core business is local phone service. The company was

getting in the long-distance service. The local public utility commission5 wants
to ensure that phone companies with a monopoly on local phone service offer the

same quality of service between customers who use them for long-distance

service, and customers who use other carriers. Thus, “our” phone company has

to file a report every month that shows quality of service statistics for its long-
distance customers, and for the long-distance customers of other carriers.

Because heavy penalties are levied when statistics show that the company

gives preferential treatment to its long-distance customers,6 an important part

of the report filed with the PUC is the method of calculation. And, in the case of

audit, our phone company has to be able to show that it has, indeed, used those
calculations to produce the report.

l The nth user acceptance testing postmortem meeting. The customer complaints:

“the system still does not do what it is supposed to.” Technical lead: “Perhaps

not, but it does what you told us to do.” The customer: “I never told you to

underwrite loans for customers with FICO score lower than 600.” Technical

lead: “You never told us the contrary either: you said underwriting decisions are

based on our risk assessment score, not on FICO score alone.” Customer: “yeah,

but isn’t the FICO score a big component of the risk assessment score.” Techni-

cal lead, getting tired with all this fuzziness: “Define big.” Customer: “Well, big

as in 80%, perhaps more?” Technical lead turns to developer, whispers some-

thing, developer opens Eclipse on his laptop, and starts looking frantically

through code, then his face illuminates: “well, we have it set at 90%.” Customer,

after doing calculations by hand, is adamant now: “Can’t be! Show me.”

Developer looks at technical lead for a cue, and technical lead responds:

5In the USA, Public Utility Commissions (PUCs) are statewide regulatory commissions with a

mandate to balance the needs of consumers and utilities (electricity, natural gas, water, telecom-

munications, etc.) to ensure safe and reliable utility service at reasonable, competitive rates.
6For example, both Jane and Joe have their local service with our company – they have no choice –

but Jane chose our company for long-distance service, whereas Joe chose a competitor. If both

Jane and Joe make a service call, say to report a problem with the line, the PUC wants to know if

Joe’s calls are handled as diligently as Jane’s (how fast it takes customer service reps to get back to

Jane vs. Joe, how many calls it takes to resolve the issue, what is the elapsed time between opening

the case and closing it, etc.).

1.2 Motivations for the Business Rules Approach 9

“Show them the code!” The developer starts looking for a cable to connect his

laptop to the overhead projector. He does not find one, walks out of the room.

The project manager, who called the meeting, asks “do we have to do this now?

Because we have . . .” The technical lead and customer answer emphatically:

“Yes!” The developer comes back with a cable, and puts up the method

addFactor from the prosaically named RAStrategyDataProxy
class on the screen:

public void addFactor(float v, HashMap<Interval,Float> penalties) {
Iterator<Interval> intervals = penalties.keys();
float pen = 0;
while (intervals.hasNext()) {

Interval next = intervals.next();

if (next.contains(v)) {
pen = (penalties.get(next)).floatValue();

break;
}

}

raScore = WEIGHT* raScore + (1-WEIGHT)*pen;
}

The technical lead is happy with how intimidating this must look to the

customer, and looks at her defiantly, as if taunting her “Ok, so what are you

going to do with it?” The customer, unfazed, wastes no time throwing the curve

ball back at him: “Don’t look at me like that! Translate!”

Now it is his problem again: explain classes, methods, generics, hashmaps,

and iterators to a business person! Luckily, this business person is a very smart

lady who was once a programmer . . . 30 years ago . . . in COBOL. Lo and

behold, after explanations about what the penalties hashmap represents, and

through many detours through the code, for example, to find where the constant

WEIGHT is defined, what raScoremeans, how it is initialized, and how it

gets updated, they actually find the bug. True, WEIGHT is set to 90%, and the

risk assessment score is initialized to the FICO score, but each time a new factor

is taken into account, the underlying weight of the FICO score is actually

decreased by 10%. This explains the discrepancy between the customer’s hand

calculations and the output of the program. It is 6:30 p.m., the tension has

subsided, the meeting is finished, and as everybody walks out, the project

manager sighs “There’s gotta be a better way!”

This story ended well because the customer was smart, stubborn, no pushover,

and was once a programmer. How many business customers are like that? Further,

in this case, we were able to pull out a single Java method that enforces the business

rule, and inspect it. We are seldom that lucky. Indeed, the business logic will

often be scattered in many places: context-sensitive interaction screens based on

customer profile or location, configuration data in external files, limited validation

10 1 Introduction to Business Rules

functionality in input screens, control logic in functions, database integrity con-

straints, SQL code, and the nightmarish stored procedures. Hence:

Issue 2: Organizations need to describe the business rules that are embodied in
their information systems in a way that all stakeholders can understand, and need
a way of ensuring traceability between those rule descriptions and the actual
implementations of the rules.

l An insurance company sells all kinds of policies to individuals and corporations.

Its marketing department regularly evaluates its underwriting rules to assess the

profitability of the various market segments. For example, assume that the

insurance company covers drivers who are as young as 18 years old. Given

that young drivers are more accident prone, one may ask whether the 18- to

19-year-old market segment makes money for the insurance. To this end, the

marketing department compares the total claims paid out in the past 6 months, on

policies held by drivers between the ages of 18 and 19, to the total value of

premiums collected for that market segment. If the company collects more in

premiums than it pays out in claims, then that market segment is cost effective.

Else, it needs to make its rules more stringent to weed out the statistically losing

market segment. All is good. The marketing department performs these simula-

tions every month, on the data for the previous 6 months, and makes recom-

mendations for new underwriting rules. IT takes a minimum of 4 months to

implement such changes with the current technology. Hence, the company

cannot react as rapidly to changing market conditions. Its reaction is always

4 months behind, and when IT is doing the final testing, everyone knows that the

rules that are being tested are already 3 months obsolete.
l The mortgage division of a financial services and insurance company has reacted

quickly to the sub-prime mortgage market crisis by tightening the eligibility

requirements for mortgages as soon as the first signs of the crisis started showing

on the radar, that is, in the late spring of 2007. By mid-July, new eligibility

requirements were published internally and sent out to retail branches. By late

fall, the online mortgage application system was still using the old eligibility

criteria. Potential customers with shaky credit, who had been hearing about

tightening credit from the 6 o’clock news, started believing in Santa Claus

when the online system replied “Congratulations. Your application has been

pre-qualified. A mortgage specialist will be in touch with you soon.” Which

specialist sometimes had the un-CRM task of calling the customer to say “we

apologize: our on-line system still operates under the old eligibility rules.” Not

cool.
l An investment company buys and sells (trades) securities on behalf of its

customers. For each trade, it chooses the best exchange market on which to

execute the trade based on (1) the types of security (bonds, equities, etc.), (2)

the actual security (e.g., Microsoft stock), (3) the volume (e.g., ten versus ten

million), (4) the commission charged by the exchange market on such trades,

(5) any contractual agreements between the investment company and the

exchange, (6) any contractual agreements between the exchange and the

1.2 Motivations for the Business Rules Approach 11

customer on behalf of which the trade is being made, and (7) the market

conditions. Trade execution routing is automated through an application. The

investment company would like the application to be responsive to changes in

the various factors. However, the frequency of these changes goes from once in

a lifetime (e.g., the emergence of a new exchange market or of a brokerage

house) to the minute (market conditions), to anything in-between (weekly,

monthly, etc.).

These are just three real-life examples of situations where the IT infrastructure

of a company becomes an impediment to evolution, as opposed to an enabler.
Hence:

Issue 3: Organizations need an agile development infrastructure/paradigm that
enables them to react to the changing environment in a timely manner.

Having accepted that business rules should, and do, for the most part,drive our

business information systems (Sect. 1.1), the several real examples showed a

number of problems with the way business rules are typically implemented – or

not, as for the case of the natural gas company – in information systems. The

business rules approach addresses all of these problems. So what is it? Barbara von

Halle defines the business rules approach as “a formal way of managing and

automating an organization’s business rules so that the business behaves and

evolves as its leaders intended” (von Halle 2001). We like this definition because

we feel that it captures the essence of the business rules approach in a single

sentence:

l It is a formal approach: This means clearly defined processes, tasks, roles, and

work products, that is, a methodology.
l Managing and automating business rules: Management and automation are

related but separate concerns. Management includes collecting, recording, vali-
dating (for accuracy), assessing (for business worth), publishing, and evolving

the business rules. This needs to be done – and can be done – whether those

business rules are automated or not: as our natural gas supplier example showed,

important rules of the business were not defined precisely and consistently

across the enterprise. As for rule automation, it means making those rules

operational, that is, come up with a <language, interpreter> pair so that

enterprise applications can reference them.
l [The business] behaves and evolves as [. . .] intended: As our mortgage under-

writing example duel between business and IT showed, language barriers

between business and IT can make the first goal – behave as intended – difficult

to achieve, and equally difficult to verify. As the last three examples showed,

traditional development techniques cannot possibly meet the pace of change of

the business environment.

We can think of this definition as a set of requirements. In the next section, we

look at how typical implementations of the business rules approach look like.

12 1 Introduction to Business Rules

1.3 How Do Business Rule Applications Differ from

Traditional Business Applications?

What does a business application developed with the business rules approach

look like? We know how a business rule application should not look like: it

should not look like the rule-based systems that were developed in the 1980s: (1)

custom (from the ground up) development methodologies with esoteric terminol-

ogies; (2) their own programming language – or at least one not used in business

applications; (3) their own data storage (persistence) mechanisms; (4) poor

scalability; and (5) little or no connectivity to any of the existing business

systems. No wonder the technology failed to penetrate business information

systems back then!

To understand what business applications developed under the business rules

approach look like, we have to understand what the business rule approach entails.

A full implementation of the business rules approach has three components:

1. A methodology for rule management, that is, collecting, recording, validating,

assessing, publishing, and evolving the business rules

2. One or several more or less formal languages for expressing business rules at

different stages of their life cycle and for different audiences (business, IT, and

computer)

3. A tool set for managing and executing the rules, a Business Rule Management
System (BRMS)

The three components are interrelated:

l The BRMS supports the methodology to various degrees through a shared

repository for rule artifacts, workflow/process management functionalities, an

enforcement of roles through access control, and so forth.
l The management functionalities of the BRMS support the creation and modifi-

cation of rules expressed in the rule languages, and the translation of rules

between the various languages.
l The rule automation (execution) functionalities of the BRMS support the execu-

tion of rules in one or several of the supported rule languages.

Some authors consider the provision of an executable rule language, as distinct

from the application programming language, and the provision of rule execution

functionalities by the BRMS as a highly desirable but not a necessary aspect of the

business rules approach. We agree that it is highly desirable, and if we consider

agility as an essential aspect of the business rules approach, then we will have to

consider it necessary.
Figure 1.1 shows the three components of a business rules approach implemen-

tation and their dependencies. Part II of this book (Chaps. 3, 4, and 5) will deal with
process. We introduce BRMS in general and JRules in particular, in Part III (Chaps.

6, 7, and 8). Rule authoring and rule languages are discussed in Part IV (Chaps. 9,

10, and 11). Rule execution is discussed in Part V (deployment, Chaps. 12 and 13)

1.3 How Do Business Rule Applications Differ from Traditional Business Applications? 13

and Part VI (testing, Chaps. 14 and 15). Rule management is discussed in Part VII

(rule governance, Chaps. 16 and 17).

Figure 1.2 shows the BRMS within the context of its operational environment.

The BRMS has two components, a management component and an execution

component, sharing a common repository of rules. The rule repository is read and

modified by management functionalities, but read-only by automation (execution)

functionalities. The rule repository may contain different representations of the

BRMS

LanguagesProcess

Rule
authoring

Rule
execution

Rule
management

Rule
deliverables

Fig. 1.1 The three components of a business rules approach and their interrelationships

BRMS

Rule-based
Business

Application

Rule
automation

Rule
repository

Rule
management

Business

IT

rule
execution
request

rule
execution
outcome

Fig. 1.2 The role of a BRMS in a business rule implementation

14 1 Introduction to Business Rules

same business rules, depending on lifecycle stage and on audience. Figure 1.2

shows that both business and IT access the management functionalities. We will

not try to be more precise at this point; Chap. 3 presents the different roles in more

detail.

According to this scenario, the rules relevant to business applications are

executed outside of the business applications: the rule automation component of

the BRMS acts as a rule execution service on behalf of business applications. This

is the most typical scenario for full-functionality BRMSs and shows one way that

business applications developed with the business rules approach differ from

traditional development methods. However, it is not the only way of executing

rules; this and other issues will be discussed at length in Part III of this book.

In this context, business applications developed with the business rules approach –

or business rule applications, in short – differ from traditional applications in four

ways: (1) the code itself, (2) deployment, (3) run-time behavior, and (4) maintenance.

We will discuss the four aspects in turn.

The code. A good application design with the business rules approach should

exhibit very few code-level differences with good nonbusiness rule applications.

The only difference is in the way control-intensive domain functionality is imple-

mented. A good object-oriented design would typically assign each domain-specific

function to a facade or controller method, which in turn would coordinate domain

objects to produce the result. Take the property insurance coverage for mortgages

rule (third example presented in Sect. 1.1). A good object-oriented application

would have a method called “checkPropertyHazardInsuran
ceCoverage()” defined for the class MortgageApplication, or for
some PropertyAssessmentService class, which returns true if the

coverage is adequate, and false otherwise. In a nonbusiness rule-oriented

application, the method would implement the business logic described by the

rule in the implementation language (java or C# or Object Cobol!) with loops,

ifs, thens, and elses. A business rule application would, instead, code the business

decision logic in a rule language and delegate its execution to the rule execution

component of the BRMS, as illustrated in Fig. 1.2. Other than that, the code should

look identical! In fact, we consider it good practice to circumscribe the parts of

a business application that are “aware” of business rules, and that interact with a

BRMS.

Deployment. With regard to deployment, a business rule application differs from

a traditional application in that application logic is broken into two pieces: (1)

business rules that are managed and executed by a BRMS and (2) a computational

infrastructure that is responsible for everything else (materializing application

objects and managing them, managing the application workflow, architectural

services, etc.). These two pieces are packaged separately, and deployed separately,

and often asynchronously; we will say more when we talk about maintenance.

Run-time. In terms of run-time behavior, we should see no difference between

the functional behavior of a business rule application and that of a traditional one:

they are supposed to be both implementing the same business rules, and thus we

should get the same outcomes for the same inputs! In fact, this is one way that we

1.3 How Do Business Rule Applications Differ from Traditional Business Applications? 15

can validate a business rule application that is a reengineered version of a legacy

application – as most rule projects are. In terms of run-time architecture, an

implementation scenario such as Fig. 1.2 means that our business rule application

needs to invoke an external service, although we could also embed a rule interpreter

(called rule engine) in the business application in the same executable/run-time

image.

Maintenance. Maintenance is probably the one aspect of a business rule applica-

tions that is most different from traditional applications. As we saw in Sect. 1.2, one

of the key motivators for the business rules approach is the need for agility so that

business rule applications can evolve as fast as the business needs it. Several factors

make maintenance easier and faster:

1. Understandability by business. Business rules are expressed in languages that

business users can understand, enabling them to either specify the rules them-

selves or to easily validate them.

2. Separate deployment. Because business rules are deployed separately from the

code base of applications, we can have a rule maintenance and release cycle that

is separate from – and hence much lighter-weight than – your average applica-

tion maintenance and release cycle.

3. Separate execution. As a corollary of separate deployment, and based on the

scenario shown in Fig. 1.2, business rules are executed by the BRMS, on demand

from business applications. This means that we can have hot deployment of new
business rules, without shutting down the business application. In fact, the

Websphere ILOG JRules BRMS – JRules, in short – enables us to run different
versions of business rules simultaneously. We will introduce JRules in Chap. 8

and talk about situations where we might need several versions of rules in

Chap. 13.

Figure 1.3 illustrates the different release and maintenance cycles for the core of

business applications and for the business rules.

The lower part of the figure shows the maintenance and release cycle for the

application code, which should be fairly stable. After the first release of an

application, we may have an update release or two within the first year, but after

that, the pace of change slows down even further – often once a year or less, for

back-office systems. With regard to the rules, we can have many smaller updates as

frequently as needed, including daily, or even hourly, if quality assurance can

follow!

1.4 Why Do We Need a New Methodology?

The business rules approach makes business rules explicit, separates them from

other application requirements and development artifacts, and manages their devel-

opment, their deployment, and their execution. The way that we develop the basic

application infrastructure, however, need not change significantly. If you have been

16 1 Introduction to Business Rules

using some homegrown version of the Unified Process (UP), or some agile method,

or flavorful combinations of the two such as OpenUp,7 you need not change the way

that you develop your application infrastructure: (1) you still use use cases or

business process description (or whatever it is that you use) to capture functional

requirements, (2) you still use object models to represent the business domain and

the way it is captured in the software, and (3) you still design your architecture

using the same criteria (distribution, scalability, performance, and security) and the

same solutions. However, we need well-defined processes, roles, and deliverables

to handle business rules, and their relationship to the application infrastructure. In

the remainder of this section, we will discuss the ways in which the process of

developing a business rule application differs from traditional application develop-

ment. Part II of this book will go over our own methodology, Agile Business Rule
Development (ABRD); in this section, we will content ourselves with highlighting

the issues.

Synchronous versus asynchronous rule management. Before we start talking

about various development activities, we need to make a distinction between two

ways of developing and managing business rules, which have different methodo-

logical implications:

The lifeline of a business application

Revise

DesignDevelop

Test

Release

Revise

DesignDevelop

Test

Release

Discover

Analyse Author

TestRelease

Analyse Author

TestRelease

Maintenance and release cycles for business rules

Maintenance and release cycles for application infrastructure

Discover

Fig. 1.3 Maintenance and release cycles for application core versus business rules

7OpenUP is an Eclipse project that uses the Eclipse Process Framework (http://www.eclipse.org/
epf) to specify an agile version of the Unified Process.

1.4 Why Do We Need a New Methodology? 17

l We can develop business rules as a separate activity, independent of specific

business application projects, and project schedules. We can think of business

rule management as part of a broader knowledge management practice within the
organization. This means, among other things, the existence of a rule manage-

ment organization within the enterprise, which can serve various business

applications. The rule management organization is then responsible for collect-

ing, codifying, validating, and publishing the business rules. The application

project organizations will then reference a subset of those rules in their applica-

tions. In this case, we have a well-defined producer–consumer relationship

between the rule management organization and the application project organiza-

tions. Figure 1.4 illustrates this scenario.
l We can also develop business rules as a by-product of specific business applica-

tions. In this case, the rules will be developed incrementally, and always within

the context of a specific application project. However, the rules will be stored

and managed in a shared repository. Figure 1.5 illustrates this scenario.

Which approach works best? Each of the two approaches has its advantages and

disadvantages. The first approach may be more appropriate for a large and mature
organization which will have a dedicated team of business analysts whose job is to

create and manage business rules for the enterprise. This approach requires top-

level management commitment since it requires significant up-front investment

costs in human resources that are not easily linked to operational priorities. One of

the methodological challenges that such teams would face is the scoping of their

activities. Indeed, without any specific mandate at hand, they need to identify and

prioritize the business areas that they need to address. Also, the chances are that in

the first few months or years of operation, many project organizations will not find

in the repository everything that they need. The advantages of this structure include

Discover

Analyse Author

TestRelease

Rule management
organization

…

Bus. app 1 project
organization

Bus. app 2 project
organization

Bus. app n project
organization

Fig. 1.4 Rule management is the responsibility of an independent organization that produces

rules consumed by different project organizations

18 1 Introduction to Business Rules

a de facto enterprise-wide visibility of rules, a more coherent rule repository, and a

more consistent application of rules across business applications.

The second approach does not require substantial up-front investments that are

hard to justify, will not suffer from “analysis paralysis” since rules will be collected

within the context of specific applications, and each business application will have

all the rules it needs by the time it is done. However, it has two major disadvan-

tages: (1) a duplication of effort between various project teams, especially if several

projects are running in parallel and (2) having to manage multiple sets of rules with

a potential proliferation of variations on the same rules, or worse yet, conflicting

versions of rules. Figure 1.5 shows this scenario. In this case, we have an enterprise-

wide lightweight rule administration function, in terms of a shared repository and

centralized access control, but each business application project team is responsible

for managing its rules, from discovery to execution.

In practice, enterprises would use an organization that is between these two

extremes, depending on its maturity level. An enterprise that is making its first foray

into the business rules approach should use the organization shown in Fig. 1.5, for

the first couple of pilots, typically in sequence. It is more likely in this case that the

same people involved in the business rule component of the first application will

also be involved in the second application, both to perfect their techniques and

to act as seeds for other teams. As they get involved in more projects, these

pioneers will also start developing a global view of the business rules, and start

seeing opportunities for sharing and reusing rules between applications, and across

business functions. They may eventually get integrated into an enterprise-

wide business rules expertise center that includes expertise in business rules

methodology, business rule implementation technology, and business knowledge.

Some of these pioneers may be loaned to specific project teams, while others focus

Bus. app 1 project organization

Bus. app 2 project organization

Bus. app n project organization

…

Rule
Administration

Rule administration
organization

Fig. 1.5 Each project team develops and manages the business rules it needs for the application it

is building

1.4 Why Do We Need a New Methodology? 19

on corporate-wide rules. Figure 1.6 illustrates such an organization, which we have

seen operate successfully in some of the more mature organizations. Figure 1.6

shows that there is two-way communication between project-specific rule activities

and corporate-wide rule activities. Indeed, project-specific rule teams will use the

corporate-wide rule base as a potential source of rules relevant to the application at

hand. Also, in the process of collecting rules for a specific application, they may

find that some rules are generally applicable, and include them – or ask that they be

included – in the corporate-wide rule base.

The methodology presented in this book, ABRD, is based on the synchronous

model – Fig. 1.5.

New application development versus reengineering existing applications. Many

of our engagements with customers dealt with new applications aiming at automat-

ing previously manual, decision-intensive business processes. Such projects have

the necessary business focus from the beginning, and provide an opportunity to

apply the principles of the business rules approach, almost by the book. However,

many more engagements consisted of reengineering existing applications. The

scope and depth of the reengineering effort determine the extent of freedom that

the project team will have in implementing the new system, and the number of

painful compromises that need to be made to accommodate the legacy system.

Figure 1.7 shows different reengineering scopes in relation to a layered system

Rule management organization / business
rule expertise center

Corporate-
wide rules

Pn rule
base

P2 rule
base

Bus. app 1 project organization

Bus. app 2 project organization
…

Bus. app n project organization

P1 rule
base

Fig. 1.6 An intermediary organization that combines the agility of synchronous development

while leveraging common expertise and corporate-wide rules

20 1 Introduction to Business Rules

architecture. We will comment on a few points in this space that correspond to the

most typical situations.

A common scenario consists of introducing new technologies into a legacy

system to make it more scalable, agile, modifiable, etc. In this case, business

rules technology is introduced along with a mix of other technologies, including

an object-oriented domain layer, a web-based presentation layer, a business process

workflow engine, etc. In this case, the only thing that is salvaged from the legacy

system is often limited to the legacy database (or EIS layer); anything from the data

access layer up to the presentation layer is built from scratch. With the appropriate

discipline (e.g., business focus), these projects may be managed – and feel like –

new application development (forward engineering), with few constraints and

compromises.

Another common scenario consists of reengineering the top layers of the appli-

cation, going from the presentation layer down to, and excluding, the domain

objects layer. This means that the domain objects are already built in Java or C#,

and that we need “only” to reengineer the way the business rules are implemented

and executed in the application. This scenario is not trivial as the existing domain

object implementation may not readily lend itself to the expression and execution of

business rules according to the business rules approach. The gap needs to be

bridged through a combination of methodology and technology.

Figure 1.8 shows a methodology matrix that illustrates the methodological

variants of the business rules approach. The STEP methodology (von Halle 2001)

Data access layer

Data base

Domain objects

Business
rules

…

Business
process

Application layer

Presentation layer

Domain layer

Scope of re-
engineering

effort

Technical layer

Fig. 1.7 The implications of the business rules approach depend on the scope of the reengineering

project

1.4 Why Do We Need a New Methodology? 21

is an essentially synchronous, forward-engineering methodology for new applica-

tions built under the business rules approach, and addresses both the infrastructure

of the application and the business rules component in the same framework. ABRD

focuses on the business rules component and its interface with the application

infrastructure, of which it is fairly independent.

We now turn our attention to the various development activities and see how

they are affected by business rule methodologies, depending on where they fit in

this matrix. For the sake of discussion, we will consider (a) requirements capture,

(b) analysis and design, (c) coding/authoring, (d) testing, and (e) maintenance; the

changes brought upon by the business rules approach are fairly independent from

the actual process along which these activities are organized.

Requirements capture. In the synchronous mode, for new developments, we

elicit the business rules as part of the requirements capture. However, the business

rules are gathered in separate deliverables, which cross-reference other require-

ments deliverables such as domain models and business use cases. Further, there is

an explicit emphasis on business rationale (business policies and motivations

behind them), as opposed to focusing on the business actions that derive from

such rationale. Accordingly, we need specific processes, roles, techniques, and

deliverables to handle business rules. The processes and techniques for eliciting

business rules, and the intermediary deliverables, depend on the requirements

capture technique traditionally used by the organization. For example, if an organi-

zation relies on use cases for capturing functional requirements, the business rules

will be captured in the context of decision steps within those use cases [see, e.g., the
use-case rule discovery roadmap of the STEP methodology (von Halle 2001)]. If

we have a reengineering project, the legacy system and its documentation are

usually used as a potential source – seldom the only one – for business requirements

ABRD

New development

Re-engineering
legacy

applications

Asynchronous

Rule
Development

Synchronous

Rule
Development

STEP (von
Halle, 02)

Fig. 1.8 A business rules methodology matrix

22 1 Introduction to Business Rules

in general, and business rules in particular. In this case, the process and techniques

for rule discovery are adapted accordingly.

In the asynchronous mode, we clearly need separate processes, roles, techniques,

and deliverables for the discovery of enterprise business rules, independently of

requirements capture for specific business applications.

Analysis and design. The analysis and design of the infrastructure of a business
application are marginally affected by the adoption of the business rules approach,

except for a more explicit business focus, and the reliance on a BRMS for

performing business decisions (see, e.g., Fig. 1.2). However, there are lots of new

things to analyze and design on the decision/business rule side of the application.

There is such a thing as rule analysis, which deals with things such as breaking

complex business rules into several simpler more atomic ones, detecting redundan-

cies, overlaps or contradictions between rules, documenting the business motiva-

tions of rules, and so forth (see Chap. 4). Further, we need to package rules into

coherent units of testing, deployment, and execution – called rulesets – depending

on the underlying business process and on application design considerations

(Chap. 9). We also need to specify and design the management component of the

BRMS, including the structure of the rule repository (Chap. 9), the rule metadata,

the enforcement of the rule change processes, etc. (Chaps. 16 and 17). Finally, we

need to design the way in which the business application will interact with the

BRMS for executing the business rules (Chaps. 7, 12 and 13).

Coding/authoring. The coding of the application infrastructure is not affected by
the use of the business rules approach. However, decision logic is now coded

separately as business rules through a BRMS system, and we need a new set of

processes, techniques, skills, roles, and tools for rule authoring. One of the major

consequences of this separation is that the two aspects of the application are

decoupled and can progress independently. We have been involved in projects

where the application infrastructure was completed before the first business rule

was coded and tested. An incredulous CIO protested “how could you send half the

development team home when you are still capturing requirements.” We have also

been to projects where all of the business rules have been coded, and many were

tested, before a single domain Java class was coded. Rule authoring issues and

solution patterns are fairly independent of where we stand in the methodology

matrix (Fig. 1.8). Part IV of this book (Chaps. 9, 10, and 11) is dedicated to rule

authoring.

Testing. In traditional system development, functional testing can only start after
large chunks of an application have already been implemented. Further, black box
functional testing provides little to no help in diagnosing an application’s business

logic, whereas white box functional testing requires us to identify and analyze

logical paths within complex execution traces. With the business rules approach,

we can test individual business rules, with little infrastructure code. This is like
performing functional unit testing where we are able to identify, trace, and modify

individual logical paths through the application code. The testability of individual

rules is a powerful verification and validation tool. Part VI of this book (Chaps. 14

and 15) deals with rule testing.

1.4 Why Do We Need a New Methodology? 23

Maintenance. In traditional system development, maintenance requests follow a

similar implementation path, whether the request concerns business logic or infra-

structure code: once a manager has signed off on a maintenance request, it falls into

the hands of IT who implement it, test it, and deploy it. With the business rules

approach, because business rules (decision logic) are developed and maintained

separately, we have different processes in place that recognize the business nature
of business rule maintenance, and that take advantage of the lighter deployment

mechanisms for business rules. Business rule maintenance is part of a wider set of

rule management activities that we refer to as rule governance. Rule governance

processes depend heavily on the business rule approach variant along the synchro-

nous versus asynchronous development dimension (see Figs. 1.4 to 1.6). Rule

governance is discussed in Chaps. 16 and 17.

1.5 Summary and Conclusions

Organizations develop business information systems to support their business

processes. These information systems should behave in a way that is consistent

with the organization’s business objectives and policies. They do so by enforcing

business rules. Put another way, business rules embody the business soul of

business applications. Both business and IT need to know what those rules are,

and sometimes customers and regulators do too. The rules need to be expressed in a

language that all the stakeholders can understand, and implemented in a way that

enables us to change them at the speed of business, as opposed to the speed of IT.

These are the motivations behind the so-called business rules approach.

The business rules approach consists of three interrelated components:

1. A methodology for creating and managing the business rules

2. One or more languages for expressing them at different stages of their life cycle

and for different audiences

3. A tool set for managing and executing them on behalf of business applications

We saw in Sect. 1.4 that business rules methodologies come in different flavors,

depending on the maturity of the organization with the business rules approach and

on the nature of the project, that is, a new development versus a reengineering

project. We also saw how the adoption of the business rules approach affects

traditional development tasks such as requirements capture, analysis, design, cod-

ing, testing, and maintenance. The remainder of this book addresses all of these

activities within the context of the Agile Business Rule Development methodology

and the IBMWebsphere ILOG JRules business rule management systems (BRMSs) –

JRules in short.

So, is it an evolution or a revolution? We do not like revolutions. Revolutions

start with destruction – destroying legacies – lead to initial chaos – even if

temporary – and are often run by quasi-religious zealots. And the outcome is

often unpredictable. The ingredients for the business rules approach have been

24 1 Introduction to Business Rules

around for more than 20 years. It is their combination, in their current mature form,

which gives the approach its revolutionary power.

In this chapter, we strove to focus on the basics, which does not necessarily do

justice to the complex technological landscape of today’s enterprise applications.

More detail and nuances will be presented in the next 17 chapters of the book!

1.6 Further Reading

There are a number of resources about the business rules approach that the reader

can consult to complement the information provided in the chapter.

l A book by Ronald Ross titled Principles of the Business Rules Approach,
published by Addison Wesley, February 2003, Addison Wesley. As the title

suggests, this is a foundational book. It talks about the essence of business rules,

how they relate to business events, and proposes an extensive classification of

rules. This book says very little about implementation, and does not present a

step by step methodology for building business rule applications – nor was it its

intent.
l The book Business Rules and Information Systems: Aligning IT with Business

Goals, by Tony Morgan, Addison Wesley, March 2002. This is another founda-

tional book – a great one, nonetheless. It presents the essence of the business

rules approach by explaining what business rules are, what they are about, and

attempts a rigorous approach to rule capture and analysis. There is little in terms

of a step-by-step methodology and very little in terms of technology.
l Barbara von Halle’s book, Business Rules Applied: Building Better Systems

Using the Business Rules Approach, published by John Wiley & Sons, in

2001. This book presents the STEP methodology (Separate, Trace, Externalize,
and Position rules for change). It does an excellent job of presenting methodol-

ogy but is a bit short on design and very short on implementation.
l The business rules group web site (http://www.businessrulesgroup.org) contains

links to the various papers published by its members. Topics addressed include

the definition of business rules (see Sect. 1.1), the business rule motivation

model, and the business rule maturity model.
l The Object Management Group (http://www.omg.org) has a number of active

standards related to business rules, a number of which are based on (more

readable) submissions of the business rules group.
l The business rules forum (http://www.businessrulesforum.com) is an annual

conference for people interested in the business rules approach, and is a good

opportunity for learning about new product features and cutting-edge thinking.

1.6 Further Reading 25

Chapter 2

Business Rules in Practice

Target audience
l All

In this chapter you will learn
l Typical applications areas for the business rules approach
l The case study used throughout this book

Key points
l The business rules approach applies to all kinds of industries and

spheres of activities.
l The business rules approach applies to all organization sizes,

from the smallest of enterprises to the biggest fortune 100
companies.

l The business rules approach has been successfully used to auto-
mate all sorts of business processes, from back-office processes to
front-end processes.

2.1 Introduction

Recall von Halle’s definition of the business rules approach, “a formal way of

managing and automating an organization’s business rules so that the business

behaves and evolves as its leaders intended” (von Halle 2001). This definition is

fairly broad and can apply to any type of organization, be it a for-profit organization

(an enterprise), a not-for-profit public organization, or a government. It can also

apply to any type of “business,” whether it is financial services, health, insurance,

telecommunications, manufacturing, transportation, or customs and border control!

Historically, the business rules approach has started in engineering domains, due

to its expert systems lineage (see Chap. 6). Roughly speaking, expert systems are

computer programs that attempt to capture human expertise in areas where the

expertise is rare and heuristic in nature to solve problems. By heuristic we mean that

it calls for the human judgment of experts as opposed to being mechanical from first

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_2, # Springer-Verlag Berlin Heidelberg 2011

27

principles. This is generally the case in domains where the relevant knowledge is

complex (many interrelationships), extensive (volume-wise), and incomplete (some

missing links). The expert systems approach has thus typically been applied to areas

in medical diagnosis and engineering design. Example medical applications include

the pioneering Internist system, which was used to diagnose internal medicine

problems (ref), and the DENDRAL system, which was used to classify substances

based on their spectrometer readings (ref). Example engineering applications

include the [vax design expert system], which was used to design the architecture

of Digital Equipment Corporation’s1 VAX family of computers.

The business rules approach has a much broader scope than the expert systems

approach. The issue is not so much to codify complex decision processes, the kind

that require a 12-year postsecondary education – Internist, for example. As we

showed in Chap. 1, the issue is one of capturing the business’s policies, whatever

they are, being able to share them with the various stakeholders, operationalizing

them, and being able to evolve them at the speed of business. In fact, most of the

rules shown in Sect. 1.1 are quite simple.

In the remainder of this chapter, we will go over some general application areas.

The business rules approach has been applied to many different industries, from

manufacturing, to financial services, to insurance, to e-government. In each one of

these industries, it has been used to support both core vertical processes (e.g., loan

underwriting, insurance claim processing), as well as support, horizontal processes

(e.g., accounting, human resources, CRM). Space limitations do not allow us to

present examples from all the industries that we were personally involved in, and all

of the business processes that we supported. To get an idea about the range of

industries and processes that used the business rules approach, the reader can check

the list of customers of the various tool vendors or look at the technical program of

the latest edition of the business rules forum.2

In this chapter, we will talk about three major areas: engineering (Sect. 2.2),

financial services (Sect. 2.3), and insurance (Sect. 2.4). For each industry, we will

give two example applications. The case study used throughout this book is from

the insurance domain and will thus be presented in Sect. 2.4. We conclude in

Sect. 2.5.

2.2 Engineering Applications

In this section, we present two example applications from the engineering domain.

These examples are not meant to be either exhaustive or representative, but

illustrate the broad range of problems that call for the business rules approach.

1Digital Equipment Corporation was a manufacturer of mid-size time-sharing mainframes that was

purchased by Compaq in 1998, which in turn merged with HP in 2002. The VAX family of

computers was its flagship product line.
2Check http://www.businessrulesforum.com/

28 2 Business Rules in Practice

2.2.1 Alarm Filtering and Correlation

Telecommunication companies operate and manage networks. Roughly speaking, a

telecommunications network consists of a network whose nodes consist of network

equipment and whose edges consist of links – different kinds of cables. Typical

networks include tens of thousands of nodes and span thousands of miles. Compa-

nies manage their networks remotely whereby each piece of equipment emits

regular messages – sometimes referred to as heartbeats – related to their working

status. These messages are routed to operators’ consoles. Operators monitor the

status of the network by analyzing the inflow of messages and are called upon

regularly to diagnose eventual problems with network nodes or links, and when

warranted, dispatch repair crews to fix the problem. Messages that indicate abnor-

mal function – called alarms – are the ones that operators focus on. While alarms

represent a small fraction of the volume of messages sent by network elements, we

are still talking about millions of alarms of different severities that operators need

to sift through daily. However, given the way that alarms are generated, the number

of alarms that operators need to focus on can be reduced considerably.

First, consider this: a single malfunction will generate a stream of alarms with a

given time regularity. As any Unix user knows, if you unplug the network cable

from your workstation, you will receive a series of annoying “network cable

problems?” messages on the Unix console. If you re-plug the cable, the messages

stop. You unplug again, the messages (alarms) start again. We need rules that will

tell us that (a) the first stream is related to a single incident and (b) the first and

second streams are related to two different incidents. What the operator should see

on their console is two incident reports, instead of hundreds or thousands of

“network cable problem?” alarms. Intuitively, a rule might say:

If we have two alarms originating from the same network element with the same problem,

within 5 seconds of each other, then they are related to the same malfunction.

Consider the following data model (Fig. 2.1). The Alarm class represents the

raw alarms emitted by the network elements. IncidentReport represents the

corresponding incident report that we are able to infer from the individual alarms.

-networkElementID : String
-symptom : String
-timeStamp : Date

Alarm
-networkElementID : String
-symptom : String
-latestAlarm : Alarm
-alarms : sequence(idl)

IncidentReport

-umbrella

0..1

-alarms

1..*

0..1
-latestAlarm 1

Fig. 2.1 A simplified object model for alarm filtering and correlation

2.2 Engineering Applications 29

Thus, an IncidentReport will point to all of the relevant alarms through the

“alarms” association – implemented with the “alarms” data member. An Incident

Report will also point to the latest alarm related to the incident – the “latestAlarm”

data member. Both Alarm and IncidentReport refer to the ID of the network

element that raised the alarm and include a description of the problem – the

“symptom” data member. The “timeStamp” attribute of Alarm refers to the time

of occurrence.

We can operationalize the above intuitive rule with the following two rules, one

that creates a new incident report from an alarm, and one that groups an alarm into

an existing incident report as shown in Fig. 2.2.

Other examples of alarm filtering and correlation take into account the effects

of a malfunction on one network element on neighboring network elements.

RULE ‘new incident report’
if an Alarm AL is received and

there is no IncidentReport IR such that
AL and IR are about the same network element and
AL and IR have the same symptom and
AL occurred within 5 s of the latest alarm of IR

then
create an IncidentReport IR_new suchz that

IR_new.latestAlarm AL
IR_new.networkElementID AL.networkElementID
IR_new.symptom AL.symptom
add AL to IR_new.alarms

RULE ‘add to existing incident report’
if an Alarm AL is received and

there is a IncidentReport IR such that
AL and IR are about the same network element and
AL and IR have the same symptom and
AL occurred within 5 s of the latest alarm of IR

then

IR.latestAlarm AL
add AL to IR.alarms

¬

¬

¬

¬

Fig. 2.2 Sample rules for alarm correlation

30 2 Business Rules in Practice

For example, a node that is downstream from a broken link will report the absence

of upstream activity, whereas nodes upstream from that link will fail to give a sign

of life.

2.2.2 Train Cars Preventive Maintenance

Trains constitute one of the most efficient modes of transportation for both people

and merchandise. Freight trains, however, have the bad habit of derailing, much

more so than passenger trains, for a combination of technological and economic

reasons.3 A common cause of derailment is unstable train cars which can jump over

the tracks at “high” speeds, or displace the tracks themselves, with a similar result.

What makes cars unstable? What train conductors refer to as flat wheels, i.e., when
the steel wheels of a train car lose their perfect circular shape (see Fig. 2.3c). What

creates those flat spots? To simplify and caricaturize a bit, the answer is, extended

hard braking: in the same way that hard breaking with rubber tires consumes the

3Safety can almost always be framed in economic terms, i.e., costs versus benefits.

Train car wheel

a

c

b
Axle

Rail

Surfaces in
contact with
rail

Cross-section of wheel

Point with
high impact

Chipped area on wheel
surface (“flat” spot)

Rotation direction

Side view of flat spot on wheel

Rail

Fig. 2.3 The “flat wheel” problem with train cars

2.2 Engineering Applications 31

rubber (those skid marks), extended hard breaking with trains will either cause the

wheels to lock and grind against the rail, or, even if they don’t lock, they will heat to

such high temperatures that, eventually, the surface will chip and break to a similar

effect. And why would a train conductor push the brakes hard for an extended

period of time? Well, not on purpose: the brake shoes around the wheel can get

stuck, even after the conductor releases the pressure. Indeed, freight trains use

nineteenth-century braking technology: air (pneumatic) braking system, which can

get stuck. With over five million cars in circulation aged 0–120 years, it is not

economically or logistically feasible to upgrade them all at once – as we would have

to, considering how air brakes work . . .
Railroad companies have been trying to detect sticking brakes in running trains

so as to prevent “flat wheels” and ultimately, derailments. For this, they use a

definitely twentieth-century technology: they place infrared temperature readers

along the tracks that measure the temperature of the wheels on passing trains. Such

detectors can be placed at regular intervals, e.g., every 20 miles. A wheel tempera-

ture reading above 558�F is considered suspicious and is sent to an operator console

at the railroad control center. If 20 miles down the track, the next temperature

reader registers another reading above 558, then a control center operator will

notify the train conductor. The train conductor may choose to ignore the warning

if coincidentally he had pushed the brakes at both spots. He may also stop at the

next station – or right away – to inspect the suspicious car.4

Naturally, not all consecutive high temperature readings are suspicious. There

may be cases where a train would be braking for a long distance such as the span

between two temperature readers: if a train is climbing down a mountain, the

conductor would push the brakes for the entire descent. Thus, readings for descending
trains on specific track segments would be ignored. Further, not all hot temperatures

point to sticking brakes: both wheels (left and right) of the same axle need to be hot,

since their braking shoes are connected via a bar, etc. Clearly, there is a nontrivial

engineering knowledge that is needed to capture and interpret problematic situations.

In addition to capturing and standardizing engineering rules used by Rail Traffic

& Control (RTC) operators and conductors to detect sticking brakes, we can use

historical data about cars to perform preventive maintenance. While a single

instance of a sticking brake for a car may not suggest a problem with the breaking

system, repeated instances may suggest a – costly and time consuming – repair of

the car. Further, a car that experienced a number of sticking brakes incidents may

need to have its wheels replaced, or minimally, thoroughly inspected. Each inspec-

tion and repair has a cost associated with it, but the benefits are considerable. Not

only does the cost of an accident, regardless how minor, ranges anywhere from a

4Interestingly, with current technology (pre-RFID), the control operator can only “guess” what car

the hot wheel belongs to, based on its position in the train, but cannot be sure because trains can

exchange cars (drop some, acquire others) at different stations, and the positions – and cars – will

keep shifting. Some railroad operators have a policy of not telling conductors which car has the hot
wheel, as added security, and let them find out by walking along the train – which could be miles

long – to find out on their own.

32 2 Business Rules in Practice

few to a few dozen million dollars,5 but there is a more substantial business cost: the

unreliability of delivery leads to a pricing model that is well below trucking, even

though, on the average, trains can deliver merchandise across the North American

continent as fast as trucks do.

2.3 Financial Services

Through our combined 20 year experience with the business rules approach, we can

confidently say that the overwhelming majority of the important players in the

banking and mortgage sector have adopted the business rules approach for some of

their core processes, most notably, for managing their loan and credit products,

including consumption loans, student loans, mortgage loans, credit cards, and so

forth. All of these products share an important characteristic: they involve giving

money (or making it available) to a customer, for a fee (interest), with an expecta-

tion of repayment of capital and interest. For these products to make money for the

financial company, the customer has to be able and willing to repay the capital and

interest. Ability deals mostly with income. Willingness is more behavioral and

deals with the propensity of the customer to pay back debt. It is usually assessed

based on a track record of the customer with debt. Banks, mortgage banks, and

credit card companies use a whole set of business rules to assess the ability and

willingness of prospective customers to repay back their debt. We will discuss a

simple mortgage underwriting example. Our second example deals with tax report-

ing. The US tax system is notorious for its complexity. It takes us into the wonderful

world of tax law and gives the reader a glimpse of what lies out there in terms of

business rules.

2.3.1 Mortgage Underwriting

A mortgage loan is a loan that is guaranteed or secured by a property. A borrower

needs an X amount of money that they commit to repaying over a period of time

according to some repayment schedule, typically over a period going from 10 to 30

years. Because X tends to be large, the lender requires a property (house, apartment,

building, piece of land) in guarantee that it can take possession of and sell, if the

borrower defaults, i.e., is no longer able to pay. More often than not, the borrower

contracts a mortgage loan to purchase the property they are giving as guarantee.

5The costs of an accident include (1) replacing equipment, (2) repairing tracks, (3) insurance

deductibles for lost merchandise, (4) costs of cleaning up spills, (5) costs of evacuations, (6)

compensation to other users of the track, (7) penalties paid to local authorities and regulatory

agencies, (8) costs to any litigation resulting from the accident, etc.

2.3 Financial Services 33

Other reasons include renovating the property, sending the kids to college, buying a

new car, consolidating debt,6 or taking a dream vacation!

Mortgage lenders will apply a number of business rules to assess the potential

borrower’s willingness and ability to pay. Roughly speaking, the rules may be seen

as falling into three categories:

1. Eligibility rules. These are pass/fail kinds of rules that determine whether the

mortgage loan application is even worth looking at. Failing an eligibility rule is

“fatal” to a loan application. But passing it does not guarantee acceptance: more

analysis (underwriting) is required to make a determination. An example of an

eligibility rule concerns the age of the borrower: they must be old enough for a

mortgage note to be enforceable in the jurisdiction where the property is located.

2. Detailed assessment rules (underwriting), which are applied against eligible loan
applications, to determine whether the loan should be granted or not.

3. Computation rules, which determine (compute) the parameters of the loan, such

as the interest rate, the repayment schedule, the level of insurance required, etc.,

based on the loan amount, the financial situation of the borrower, and their credit

history.

In fact, these rules are typically applied in sequence: only eligible applications
are analyzed/put through underwriting, and we compute the loan parameters only

for those applications that are deemed to have acceptably risk.7 Figure 2.4 illus-

trates this process in an activity diagram notation.

The eligibility rules are fairly standard across the industry, and they concern the

loan itself, the borrower, and the property. An example of an eligibility rule for the

loan itself is about the down payment of the borrower. A typical8 rule might say:

The borrower must put minimum cash down of 5%. The 5% must come from the

borrower’s savings or other liquid assets. The remainder of a larger down payment may

come from other sources such as gifts.

6If the borrower has a number of outstanding loans, including credit card debt, they can borrow

money from their bank to pay back their other debts.
7In actual applications, there is a third outcome which sends the loan application to a loan

officer for “manual underwriting,” who may ask for more information before making a final

determination.
8The rules illustrated in this section come from Fannie Mae’s underwriting guidelines, which set

the industry standard for investment-quality mortgages – not the subprime type.

Assess
Eligibility

Assess Risk
(Underwriting)

Compute
Parameters

[yes]
[acceptable

risk]

[ineligible]

[too high risk]

Fig. 2.4 A simplified process for evaluating a mortgage application

34 2 Business Rules in Practice

Other constraints may concern the so-called loan-to-value (LTV) ratio: a bor-

rower cannot borrow more than some threshold percentage of the value of the

property that they are purchasing. For example, a bank might require that the loan

does not exceed 75% of the value of the property. Thus, for a property that is worth

$100,000, the bank cannot lend more than $75,000. Said another way, the borrower

must put a down payment that is at least 25% of the value of the property – $25,000

in this case. In practice, this threshold itself depends on several factors, including:

l The intended usage of the property. If the mortgaged property is the principal

residence, a bank will tolerate a higher LTV ratio (up to 95%) because it figures

that borrowers will do their utmost to avoid defaulting on the loan – and risking

eviction. If the mortgaged property is an investment property, then the bank’s

tolerance is much lower and it may put the threshold at 70%.
l The intended usage of the loaned money. If the money is borrowed to purchase

the property, the bank will tolerate higher LTVs, but if the borrower wants to

spend the money on a Hawaiian cruise vacation, say, then the bank will be less

tolerant.

Rules about the borrowers concern their age, their residency status, and their

debt load. A US mortgage banker will only lend money to US citizens, or perma-

nent residents of the USA, or legal foreigners, provided that they (intend to) live in

the property and that the LTV is less than 75%, or . . . Regarding the debt load,

banks will not loan you money if the repayment of that loan, plus your other

recurring payments, exceed some threshold portion of your income – typically

37%. In case several borrowers apply for the loan jointly, it is their combined debt

over their combined income that has to be over 37% . . . nevertheless, the debt over
income ratio of each borrower alone must be less than 43%, etc.

Then there are eligibility rules about the property itself, including location and

construction type. A US mortgage banker will not want to mortgage a Canadian or

French property, and vice versa. Also, you cannot mortgage mobile homes, whose

values depreciate more like that of a car, as opposed to appreciating more like that

of a fixed building.

And this is just to determine if we should bother analyzing the mortgage

application (underwriting) or not. A whole other set of rules will look at credit

reports, including single scores (e.g., FICO score) as well as credit history (bank-

ruptcy or not, and how far back, number of late payments of bills, how much, how

many, how late, and how long ago), cash reserves, and so on and so forth.

And this is just for your run of the mill mortgage. Then there are a number of

special products aimed at different segments of society to help promote home

ownership and to compensate for all sorts of disadvantages, including socio-

economic and geographical ones. Some of the criteria may be tightened or relaxed,

in which case some government agencies or government mandated institutions

may shoulder some of the risk. The parameters can also be adapted for special real

estate markets, which are either too high priced, or shielded from cyclical market

trends, or in flood or earthquake zones, etc. Before you know it, we are talking

about hundreds and thousands of business rules.

2.3 Financial Services 35

Historically, the better organized mortgage institutions developed underwriting

manuals, with rules and tables and all, and provided training to their underwriters.

When new rules were added or existing ones were modified, memos, change

notices, updates, or whatever they were called, were sent around the enterprise to

inform the underwriters of the changes, and occasionally, remedial training was

offered to explain the changes. In some ways, these organizations had a very partial

implementation of the business rules approach: they managed – more or less

effectively – the business rules of the enterprise. However, they did not automate

them. Indeed, all of the decision making was performed manually; information

systems were used simply to record information and the decisions reached by the

human underwriters. Further, their way of managing the business rules did not

facilitate their evolution. Most often, the carefully crafted glossy color manuals

became obsolete by the time they were distributed.

With the first generation of automated underwriting systems, IT had to imple-

ment the business rules based on the (obsolete) underwriting manuals, the notes,

memos, meeting minutes, e-mails, and other records of the organization’s memory.

Omissions were frequent, misunderstandings galore, and making changes took a

whole lot of time. As we illustrated in Chap. 1, one of our clients’s web under-

writing application lagged behind the policy changes implemented by the enterprise

since the subprime meltdown, leading to an embarrassing problem for customer

relations.

It should come as no surprise that the majority of the major mortgage institutions

have adopted the full business rules approach (management, automation, evolu-

tion), some as far back as 15 years ago – and even before, if you count the kind of

ad-hoc rough-edged custom “rule engines” that the more creative ones have

implemented.

2.3.2 Tax Reporting and Withholding

Resident companies and individuals in the USA file their income tax forms every

year, the former, soon after the closing date of their financial year, and the latter, on

April 15th. Employers are requested to collect income taxes on their regular

employees’ salaries every month and send them to the Internal Revenue Service

(IRS). Employers compute the monthly deductions based on the information they

have about their employees (marital status, number of dependents, etc.) in such a

way that the taxes collected during the year come as close the final tax bill as

possible. During the year, the IRS does not get details about who paid which taxes:

they receive a bulk payment from each employer for all their employees for the

period (month, trimester). At the end of year, employers send their employees a

summary of their income and all of the deductions during the year, including taxes

collected. Copies of those summaries are also sent to the IRS. A similar scheme is

used for corporations: corporations can make provisional income tax payments

during a given fiscal year based on the previous year’s income. When they file for

36 2 Business Rules in Practice

taxes at the end of the fiscal year, they compute actual taxes owed based on actual
income for the fiscal year and then make the necessary adjustments consisting of

additional taxes to be paid, if not enough taxes were collected during the year, or a

tax refund, otherwise.

When a US company makes out a payment to another resident company for

products or services rendered, or a nonsalary payment to a resident person, it is the

responsibility of the receiver of the payment – the resident company or resident

person – to declare (report) the payment at the end of the year and to pay taxes on it.

What happens when the receiver is not a resident? Because the IRS cannot run

around the globe collecting taxes from foreign entities that had had a US income, it

requires the payers to preemptively withhold taxes on each payment and report it to
the IRS. For example, a Spanish person opens an investment account with a US

brokerage house and buys some stock. If they later sell the stock at a higher price,

the capital gains they made are taxable. The brokerage house should withhold taxes
on the capital gains and deposit the remainder of the proceeds from the stock sale.

The general, default rule says: withhold 30% on income made by foreign

entities. The explanations and exceptions to this rule take 58 pages of three-column

dense IRS prose that, in turn, refers to a bunch of other IRS publications . . . and that
is the simplified version for small businesses J. What takes so long?

l We need to define “foreign” entities and “nonresident alien,” for the purpose of

this tax law. This is usually ascertained by the documentation that the entity or

person filed when they opened their brokerage account. There are a bunch of

forms (W-8, W-9), and variations within those forms (W-8BEN, W-8ECI,

W-8EXP, W-8IMY). And then, it depends on which boxes were checked or

filled out in each form.
l Not all foreign entities are subject to withholding. For example, foreign govern-

ments and international charities are exempt. Again, this is a question of which

form was filed by the brokerage account holder, which boxes were checked or

unchecked, which fields were filled, and what was written in them.
l The withholding tax rate (30%) depends on the type of payment! First of all, not

all payments correspond to income. If you buy 50 shares of some company at

$10 and sell them for $9, the proceeds of the sale ($450) are not a taxable gain.
And then, it depends on the income type: you have interest, dividends, capital

gains, each of which is subject to a different tax – and thus withholding rate.
l Then there are tax treaties with individual countries. So our Spanish investor

would be subject to a 10% withholding rate on interest income, whereas a

Turkish investor, say, would be subject to a 15% withholding rate on interest

income. People and companies from countries that do not have tax treaties with

the USA will pay 30%, across the board, for all income types.
l Then there is the case when the foreign entity is a flow-through entity. Intuitively,

a flow-through entity is a partnership through which money simply flows to the

individual partners. For tax purposes, we allocate the gains back to the individual

partners and withhold tax in accordance with each partner’s nationality. Thus, if

we make a $200 interest payment to a flow-through 40–60 partnership between a

2.3 Financial Services 37

Spanish and a Turkish, we treat it as an $80 interest payment to the Spanish,

subject to 10% withholding, and a $120 interest payment to a Turkish, subject to

15% withholding.

And once we figure out all of this, we need to figure out which form to use to

report the income and submit the withheld tax, and in which box or column to report

which amount.

And you thought that your business rules were complex!

An investment bank used the business rules approach to implement these tax

reporting and withholding rules. This bank executes anywhere from hundreds of

thousands to millions of transactions per day. Transactions typically include infor-

mation about the type of payment (interest, dividend, etc.), the amount, and the

customer account (payee). Each transaction coming into the system was first

submitted to the reporting and withholding module, which applied the business

rules to figure out whether the payment was subject to reporting, withholding, and

how much. Then, based on the outcome, the appropriate deposits were performed

on the appropriate accounts, and the information recorded in a reporting module.

The application was delivered in a record time, and the project schedule was

followed to the hour. This was due to a combination of a disciplined use of agile
methods and the business rules approach. The latter meant, among other things, that

our customer’s accountants were still sorting out the business rules with IRS

accountants, while IT was putting the final touches on the application infrastructure.

This was a textbook case of the decoupling between the application development

cycle and the business rules development cycle illustrated in Fig. 1.3.

2.4 Insurance

The insurance industry is another big consumer of business rules technology, and

insurance companies have been among the early adopters. The business rules

approach has been used for both its core processes (policy underwriting, claim

processing), as well as support processes such as accounting, CRM, and marketing.

In this section, we will present two examples, one for policy underwriting, for

regular insurance, and another for claim processing, looks at an example from

health insurance. The case study used throughout this book is in claim processing.

2.4.1 Policy Underwriting

Let us take a representative sample of a thousand (1,000) drivers between the ages

of 30 and 40, and see how many of them get into accidents over the period of 1 year,

and tally up the costs of these accidents in terms of vehicle repair, medical bills,

income support during work stoppage or due to disability, and god forbid, death.

Assume that all of this adds up to $600,000. Let us figure out how much it would

38 2 Business Rules in Practice

cost to insure these 1,000 drivers so that (a) all of the costs are covered by the

insurer and (b) the insurer makes money – after it has paid its staff, its buildings, the

various services it uses, its utility bills, and the tax man. Let us say that those extra

costs add up to $400,000. If the insurer wants to make money, it should charge at

least $1,000/year. An insured would be more than willing to pay that insurance

premium, because even though the expected (mathematical average) cost to each

insured is $600/year, most will incur no cost during that year, but the unlucky ones

who get into an accident can go bankrupt.

Let us now throw in some competition. A competitor figures that women
between the ages of 30 and 40 get into much fewer accidents than men, with

perhaps an expected yearly cost (in terms of claims) of $350, per driver per year.

Having figured that, the competitor will offer insurance to women at a much lower

cost, while possibly jacking up the prices for men to reflect their true cost. If women

flock to the competitor, they deprive the first insurer of his lower-cost customers,

and so he too needs to segment the market and price the coverage accordingly. Once

they have segmented based on age and gender, then they get into driving habits,

e.g., occasional drivers versus drivers who use their car to commute to work, rural

versus city driving, etc. Then they look at the driving record considering DUI

convictions, accidents, moving violations, and so forth.

Insurance companies typically have large marketing departments full of statis-

ticians, actuaries, and marketers who peer over market data, demographic data, and

all sorts of statistics (accident statistics, for auto insurance, epidemiological studies,

for medical insurance, etc.) to identify the level of risk associated with different

segments of the market. The result of these studies is a bunch of rules that help

determine (a) which potential customers to underwrite (accept) at all, and (b) for

those that are accepted, how to price the insurance contract to them in such a way

that the insurer beats the competition and makes money.

Figure 2.5 shows a simplified version of what an automated underwriting

process might look like. An insurance broker fills out an electronic form based on

data supplied by a potential customer. The system first validates the data, i.e., things

such as the social security number,9 the zip code, or the driver license number. If the

Assess
Eligibility

Assess Risk
(Underwriting)

Generate
Quote

[yes]
[acceptable

risk]

[ineligible]

[too high risk]

Validate
data

[yes]

[invalid data]

Fig. 2.5 A simplified process for insurance policy quote generation

9There are two possible levels of verification: we could either check that the social security is well

formed or further check that it belongs to the potential customer.

2.4 Insurance 39

data is invalid, the insurance policy is rejected. If the data is valid, we look at

eligibility criteria. For auto insurance, these include things such as the age of the

driver, the driver license (jurisdiction, expiration date, possible suspension). If the

policy is eligible, then we go into pricing and generate a quote. Else, we produce a

rejection report explaining while the policy was rejected. Each one of the steps of

this process will involve a bunch of business rules.

Actual processes used in policy underwriting systems are far more complex.

When a potential customer calls an insurer’s call center, they do not typically know

what insurance product they want: the insurance agent has to ask a number of

questions, to identify the insurance type, and each insurance type can have its own

eligibility and risk assessment criteria. To say that you want to insure a car is not

enough: is it a personal car for personal use, or a company car, or a rental car.

Second, the data that you supply depends on the type of insurance. If you say that

you want to insure a company car, we will ask about the company: what is its yearly

income, how many employees, how long it has been in business, etc. Insurance

agents will usually navigate through a sequence of input screens where the next

input screen to pop-up depends on the data entered so far. Further, some data fields

are usually validated on the fly, while others are performed once the data entry is

complete. Further, the risk assessment phase is usually done in several stages. The

first stages typically consist of computing one or several scores. In the last stage, we

make a decision based on where the score(s) fall: between 50 and 150, between 150

and 250, and above 250. Finally, the last stage will typically have three outcomes,

instead of the binary yes/no: we have “may be” for borderline cases, in which case

the policy is sent for manual referral to a human underwriter. Typically, the

underwriter would talk to the customer to seek additional information before

making a final decision.10

Full-service insurance companies will offer insurance products to individuals –
personal lines – and corporations – commercial lines. Within personal lines, we

have auto insurance, homeowners insurance, renters insurance, flood protection,

valuable items, boat insurance, umbrella, etc. For commercial lines, we have

auto insurance, workers’ compensation, as well as insurance packages, which

may be customized to company sizes (small, medium, large) and industries

(restaurants, garages, stores, professional services offices, manufacturers, etc.).

Each one of these products will have its own business rules, but many products

will share some business rules. For example, data validation rules can be shared

across many products. Eligibility rules may also be common to several products.

This raises a number of rule management challenges, which we will discuss in

Chap. 7.

10We have seen insurers who have a policy of referring high-risk customers to a competitor, when

they know that the competitor does have an insurance product appropriate for their profile.

40 2 Business Rules in Practice

2.4.2 Claim Processing

People buy insurance so that when something happens, they get covered. A health

insurance customer who pays for a medical service will file a claim to get reim-

bursed for the corresponding expenses. Similarly, a car insurance customer who

gets into an accident and has to pay for car repairs will also file a claim to get the car

repairs paid for.

There are different payment modalities, depending on the type – and level – of

coverage, the cost of the services rendered, the kind of agreement that may exist

between the service provider (doctor, hospital, or garage) and the insurer, or the level

of integration of their information systems. In some cases, the insured pays first for

the services rendered (medical or car repair) and then asks the insurer to be reim-

bursed. In other instances, the service provider is the one who files the claim before
performing the service, to get a decision regarding coverage, and then, depending on

the answer of the insurance company, will bill the insurance company and the insured

accordingly. In yet other instances, the insured pays for the services, the service

provider fails a claim with the insurance, and the insured receives payment.

Regardless of the payment modality, the various claim processing processes

share a common subprocess, which starts with the input or electronic reception of a

claim form – regardless of who is filing it – along with invoices for services

rendered (or estimates for services to be rendered). The claim is then validated

(data fields). Next, we match a claim to the coverage to figure out which of the

services rendered are covered by the policy. Finally, we determine the amount of

the payment; this is called claim adjudication. Figure 2.6 shows a simplified claim

processing process.

The tasks of the “happy path” involve a large number of business rules. Claim

validation deals with the validation of the various data fields of the claim, such as

the name of the insured, their social security number, the policy number, the

identification of the service provider, the various dates, etc. The process of

Fig. 2.6 shows that invalid claims are routed out of the system, after we prepare a

validation report that describes the things that are wrong with the claim. In some

systems, the validation report is sent to a human claim handler who follows up with

the insured or with the service provider to complete or correct the information.

Claims that are found to be data-valid are submitted to a process that determines

their eligibility under the coverages of the insurance policy. This decision is ripe

with hundreds if not thousands of rules, regarding the identity of the insured and

Validate Claim Data Determine Coverage Adjudicate Claim
Valid Eligible

Validation Issue Reportingelse

Coverage Issue Reporting
else

Fig. 2.6 A simplified claim processing process

2.4 Insurance 41

their affiliation/relation to the policy holder,11 the date at which the accident/

sinister occurred, relative to the effectiveness period of the policy – and any default

extensions thereof – and the duration of the association of the insured to the

policyholder, the location of the accident/sinister, the cause of the accident/sinister,

the nature of the damage, the nature of the service rendered to fix the damage, the

location (distance and jurisdiction), affiliation, certification, or identity of the

service provider, the time that separates the service delivery from the accident/

sinister, the time that separates the service delivery from the claim submission, etc.

Then you look at corroboration. For example, in car insurance, an assessor will

examine the accidented vehicle to assess the damage, and the type – and cost – of

repair to be performed. With health insurance, medical doctors peer over medical

records to assess the necessity of the recommended treatment, and the absence of

less expensive alternatives; in rare cases, a health insurer will require that insured

seek second opinions from other specialists – or ones that are affiliated with them,

etc. A number of these rules are coverage-specific. For example, coverage C1

covers procedures P1 and P2 performed by any qualified <whatever>, whereas

coverage C2 covers only procedure P1 with a yearly cap of X amount of dollars, if

performed by an affiliated <whatever>, etc.

Once we determine the eligibility of a claim, then we need to determine the level

of coverage to determine how much the insurer will pay versus how much the

insured will pay. Here again, we have hundreds and possibly thousands of rules,

depending on the complexity of the products offered by the insurer. First, we have

the notion of deductibles (the insured pays the first X dollars, or the first X%
dollars), then you have caps, which can be per insured, or per policy, or per

procedure/service, per year or over the life of policy, or a combination thereof.

Then you have reimbursements that depend on the location at which the service is

rendered. For example, the health insurance of one of the authors will pay a flat rate

for a “semi-private bed” for hospitalization (i.e., two patients to a room), regardless

of which option I choose (private, i.e., one bed per room, or semi-private, or shared,

with four to six beds in one hospital room), and when I submit a claim, I get

reimbursed for the minimum of actual expenses incurred and the price of a semi-

private room. However, the price of a semi-private room depends on where the

hospitalization occurs: anywhere in Canada versus in the USA, versus Europe, etc.

In this presentation, we simplified the underlying business process by clearly

separating claim data validation, from claim eligibility, from claim adjudication.

Some business rules might be considered borderline between two areas, and

some reasonable people might disagree.12 Without getting into the various issues

11The insured could be the policy holder, or a dependent or the spouse of the policy holder, e.g., for

health or personal car insurance, or working for the policy holder, in case of a commercial

insurance, etc.
12My health insurance puts a $500 yearly cap on physiotherapy. Assume that I reach the cap within

a particular year and that I submit another claim for physiotherapy for an extra $100. Should I

consider my claim as eligible but adjudicated to zero, or should I consider it as not eligible since I

will not get a single penny in reimbursement and does it make a difference?

42 2 Business Rules in Practice

involved, let us just say that (a) the distinction is important for several reasons,

including legal ones and (b) we found it useful to always push customers for crisp

business process definitions because it helps them sharpen their understanding of

their business and simplify their business rules by breaking them into “atomic”

parts (see Chap. 4).

Much like with the policy underwriting rules, the rules for claim processing need

to evolve frequently to accommodate the following changes:

l Changes in the insurance products, with the addition of new types of coverage
l Changes in the costs for performing various procedures/services
l Changes in diagnostic and treatment/repair techniques
l Changes in demographics or other trend-setting phenomena13 that can affect the

revenue versus expense relationship
l Pressure from competitors, etc.

For this reason,most of the large insurance companies that we know are at different

stages of adoption of the business rules approach for their claim processing, going

from looking into the technology and building proofs of concepts to actually main-

taining production business rule applications. Some customers we worked with have

started introducing the approach to some of their product lines and are generalizing to

other product lines. One particular customer has an enterprise-level business rules

competency center, which is responsible, among other things, for implementing and

maintaining a fairly sophisticated business rule management system.

The case study used throughout this book is based on claim processing. We will

elaborate on the process shown in Fig. 2.6 as the need arises in the subsequent

chapters.

2.5 Conclusion

In this chapter, we presented a sample of six application areas for the business rules

approach, addressing both core business processes and support processes, in tele-

communications, railroad operations, mortgage underwriting, tax reporting and

withholding, insurance policy underwriting, and insurance claim processing,

which is the case study used throughout the book. This is but a small sample of

the range of application areas. Business rules have been used for a broad range of

e-government services, from managing student loans, to managing welfare pro-

grams, to customs, to taxation, to managing various compliance programs. It has

13For example, in the health insurance business, population aging increases the incidence of

chronic age-related diseases which require different business models. Similarly, advances in

medicine on one hand and changes in diet and lifestyle on the other, change the profile of medical

conditions (what they are and their preponderance in the general population) that insurers have to

deal with.

2.5 Conclusion 43

also been used for various aspects of customer relationship management (trade

promotions, web personalization, recommender systems, loyalty programs, product

configuration, and others), manufacturing (planning, manufacturing shop controls),

marketing, and others. We have also been involved with customers ranging in size

from a start-up with a staff of four (including the CEO) to fortune 100 companies,

with tens, or hundreds, of thousands of employees. Perhaps more to the point, we

have applied the approach to $300,000 software projects as well as to 30 or 100

million dollar projects.

So what makes a software application or a company appropriate for the business

rules approach? In Sect. 1.2, we identified three issues that cry out for the business

rules approach: (1) the need for eliciting and sharing the business rules under which

an organization operates (in short, the need for rule management), (2) the need for

expressing executable business rules in a way that all stakeholders can understand,

or conversely, the need to make the shared expression of business rules executable

(in short, the need for rule automation), and (3) the need for development infra-

structure/paradigm that supports timely rule maintenance (in short, the need for

agile rule maintenance). The question then becomes, which kinds of applications

face these issues? To use a Jeff Foxworthy14 pattern:

l The need for rule management:

– If your business operates processes with nontrivial policies and rules that are

common to your industry, then, you might need the business rules approach.

Indeed, this is the case of voluntary “codes of conduct” one might find within

a particular industry, or imposed by regulatory agencies.

– If your business draws competitive advantage from the way it does things,

then you might need the business rules approach. Indeed, business policies

and rules can differentiate players within the same industry (underwriting

rules which might be more permissive to a particular market segment,

etc.), and it is important to capture and manage those rules throughout the

enterprise.

Another way of stating the above is, “if parts of your business are knowledge-

intensive, regardless of whether that knowledge is external or home-grown, then

you might need the business rules approach.”
l The need for rule automation:

– If your business software automates some of the decision making of your

business processes, as opposed to simply records the decisions made by

human actors, then you might need the business rules approach.

– If your business needs to show the business rules under which its processes

operate, then you might need the business rules approach.

Indeed, business rule automation buys you three things: (1) ease of implementa-

tion of the business rules, thanks to a rule language that is more appropriate for

expressing business rules than a procedural (or object-oriented) programming

14Jeff Foxworthy is a stand-up comedian, who has written a number of sketches that consist of

sentences along the pattern “if <some condition is true>, then you might be a <some quality>.”

44 2 Business Rules in Practice

language, (2) ease of deployment, thanks a separation between the business rules

and the rest of the code, and (3) ease of traceability to requirements, because

more often than not, the rule authoring language, or some translation thereof, is

also the rule execution language.
l The need for agile rule maintenance:

– If your business rules evolve at all, then you might need the business rules

approach.

Indeed, rule maintenance is always faster with the business rules approach than

with a procedural (or object-oriented) approach: (1) it is easier to understand the
change since requirements are given as business rules, (2) it is easier to identify

the artifact that needs to change – typically a well-identified business rule, (3) it

is easier to validate the changed version, because it is expressed in a language

close to requirements, and (4) it is easier to deploy the changed version, since

business rules are considered as data. This advantage of the business rules

approach becomes more overwhelming, as the frequency of changes increases.

In fact, with traditional methods, if the business rules change more than once

every 4–10 weeks – depending on the type and scope of change – then IT is

simply not able to respond.

2.6 Further Reading

Interested readers can find out about some business rules case studies in many of the

business rules publications and conferences. The annual business rules forum

(http://www.businessrulesforum.com) and its more technically oriented younger

sibling, October Rule Fest (http://www.rulefest.org), feature a number of speakers

from industry who report on lessons learned from real projects. Experience reports

in the more academically oriented conferences (IJCAI, ICTAI, etc.). A number of

on-line or dual-media magazines occasionally publish essays, state of the practice

surveys, case studies, or product reviews, including Information Week, Information
Management, KMWorld, BPTrends, and others. Books may contain descriptions of

some case studies, although project details might be hard to come by because of the

proprietary nature of the underlying information. Some companies might not even

want their competition to know that they are using the approach for a particular

business function, because they consider the adoption of the business rules

approach, in and of itself, as a competitive advantage.

2.6 Further Reading 45

Part II

Methodology

Chapter 3

Agile Business Rule Development

Target audience
l All; nontechnical audiences can skip Sects. 3.3 and 3.4

In this chapter you will learn
l What is the Agile Business Rule Development (ABRD) metho-

dology, and what are its core principles.
l Why develop business rule applications using an agile and itera-

tive approach.
l How you can leverage the Eclipse Process Framework (EPF)

Composer and OpenUp to customize ABRD to your enterprise
environment and projects.

Key points
l An Agile methodology promotes iterations and early use of tools,

which is the most appropriate approach to develop business
application leveraging BPM and BRM technologies.

l The goal of executable rules over comprehensive rule description
is supported by the strongly iterative approach of ABRD.

3.1 Introduction

Business rule management systems (BRMS) introduce great flexibility to the IT

architecture, enabling developers to quickly and easily change the behavior of an

application and the decisions it produces. To best leverage the inherent agility of

BRMS components, the application development process must also be agile, with

developers, architects, and project managers working iteratively and incremen-

tally. The integration of BRMS, Business Process Management (BPM), Business

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_3, # Springer-Verlag Berlin Heidelberg 2011

49

Process Execution Language (BPEL)1 engines, and MDM2 in a service-oriented

architecture (SOA) enforces the need for an agile method of developing new systems.

Agile methodologies, such as eXtreme Programming, SCRUM, and more

recently, OpenUp, have provided an excellent foundation from which we can

start to address the particularities of developing business application using business

rules. What are these specificities?

Here are some typical questions from our client’s business analysts, project

managers, or enterprise architects:

l How do I discover the business rules?
l Can all rules be implemented with a BRMS?
l How can a BRMS be integrated with BPM products or fit into a service-oriented

architecture?
l How do I represent and manage the data used by the rules?
l How do I manage the rule life cycle from requirements to testing, deployment,

and retirement?

Recognizing that such concerns needed to be addressed in the context of a

methodology, we began developing the Agile Business Rule Development

(ABRD) methodology in 2003. The ABRD methodology includes a description

of all the different BRMS actors, the activities involved, the work deliverables to

produce, and the best practices or guidelines to follow. A rigid methodology has no

real chance of adoption if it cannot be adapted to your own approach of developing

software. Our goal, therefore, was to enable the methodology as content that could

be managed through a tool that allowed users to reuse, tune, and enhance it

according to their needs. The ABRD methodology was given to the Open Source

community so as to capitalize on the excellent work done in Eclipse Process

Framework Composer and OpenUp content and is now present as a plug-in of the

OpenUp library within http://www.eclipse.org/epf.

This chapter outlines the core principles of Agile Business Rule Development

and its strongly iterative approach to develop business processes and business rules.

You will also be introduced to OpenUp and Eclipse Process Framework Composer

tools that you can use to tailor the methodology to your organization.

3.2 Core Principles of the ABRD Methodology

The Agile Business Rule Development methodology is an incremental and iterative

software development process that takes into account the new concepts required

to deploy BRMS, BRE, BPEL, and BPM components into business applications.

1Business Process Execution Language is an OASIS standard executable language for specifying

interactions with web services (http://www.oasis-open.org/committees/tc_home.php?wg_abbrev¼
wsbpel).
2Master Data Management is a set of processes and tools that defines and manages the reference

data and nontransactional data of an organization.

50 3 Agile Business Rule Development

The ABRD methodology is adapted to the software and business challenges of

developing decision support systems and provides a better collaboration framework

between IT and business than traditional waterfall software development life cycle

(SDLC). Traditional software development models, such as the waterfall or the

V-model, while they may be interesting to support the development of mission-

critical projects, are notorious for producing over-budget, late-to-market solutions

that do not match initial business expectations for fast-paced projects where

requirements are evolving frequently. Such approaches leave business users with

little ownership of the solution, and implementing changes can easily take months.

As a result, business policy owners are uncomfortable with change – which

translates into loss of agility to respond competitively. In addition to the latency

between submitting change requirements to IT and the actual deployment of new

rules, policy managers have no guarantee that their changes were implemented

according to the business needs. Business users can only hope that all possible test

cases were covered during testing.

In contrast to such development models, ABRD leverages the following princi-

ples presented by the Agile Alliance manifesto (Fig. 3.1).

The Agile development values are particularly relevant to the implementation of

a rule set using the ABRD approach:

l Individuals and interactions over processes and tools. The rule discovery,

analysis, and validation activities require active and efficient communication

between the rule developer, subject matter experts (SME), and business users.

Such processes are defined as lightly as possible.
l Working software over comprehensive documentation. Each iteration produces a

working, tested set of rules that can be executed, which has far more business

value than a rule description manual. While all project stakeholders benefit from

such a principle, business users in particular are then sure that what they see (the

rules, the business process) is what gets executed in the deployed system.
l Customer collaboration over contract negotiation. Subject matter experts who

define the business policies and the business rules are strongly involved in the

development process. As the customers of the final system and owners of the

policies, they are conveniently collocated with the development team during

the project. There is no specification document thrown above a wall waiting for

the IT to develop the system.

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

Fig. 3.1 Manifesto for Agile Software Development (http://www.agilemanifesto.org)

3.2 Core Principles of the ABRD Methodology 51

l Responding to change over following a plan. Business rules evolve more often

and faster than other standard pieces of software. This is actually one of the key

values of the business rule approach. For this fundamental reason, the method-

ology to support the rule set development must be tailored to such rapid life

cycle and include the appropriate activities, processes, best practices, and work

products to support such changes efficiently.

The ABRD addresses the following goals in more detail:

l Separate rules as manageable artifacts using discovery, analysis and authoring

activities, and their related work products
l Trace rules during their full life cycle from requirement to deployment and

maintenance
l Link rules to business context and motivation
l Develop the rule description using business terms and high-level rule language
l Prepare the logical data model for the rule engine using object-oriented analysis

and design
l Prepare the rule set implementation and deployment as decision services in an

SOA
l Validate the rule set quality using a test-driven approach with continuous

integration and testing once the development team develops the rules, and the

business user maintains them
l Articulate the rule governance processes

Two fundamental drivers govern successful rule set development:

l The unforgiving honesty of executable rules
l The effectiveness of people working together with goodwill, shared vision, and

common interests (the business user and the development team)

Executable or working rules demonstrate to the developers and the subject

matter experts what they really do, as opposed to promises of a paper-based design

or specification.

ABRD extends OpenUP to avoid redefining standard roles, tasks, work products,

guidelines, and processes that are also relevant to rule development. As an EPF

plug-in, development teams can tailor it to the specific context of their own project,

leveraging the EPF Process Composer.

3.2.1 A Cycle Approach

The ABRD approach groups activities into cycles that enable iterative develop-

ment. ABRD activities include:

l Rule discovery
l Rule analysis
l Rule design

52 3 Agile Business Rule Development

l Rule authoring
l Rule validation
l Rule deployment

Figure 3.2 represents how these activities can be executed in loops or cycles.

Working in short cycles allows you to ensure that the outcomes of these itera-

tions match the business expectations as the rule set grows.

The first cycle loops over rule discovery and analysis activities to harvest the

business policies and rules. The second loop is to prototype the executable rules by

looping of the rule discovery, analysis, design, and authoring activities. The third

cycle, called building includes multiples potential loops adapted by what needs to

be done: a pure focus on rule implementation loops between rule authoring and

validation, but when SMEs advises are needed the loop can go back to the discovery

and analysis activities. Finally the last cycle is to enhance the ruleset quality, by

adding new tests, new rules, and deploy it to the integrated business application.

3.2.2 Cycle 1: Harvesting

The goal of this first cycle is to understand the business entities and document just

enough rules so you can begin implementation.

During this first cycle, which may fit into the inception phase (see OpenUP for

more information), the project team performs business modeling activities, which

aim to describe the business process and decisions applied within the scope of the

business application. This phase also helps identify and evaluate potential rule

patterns (Fig. 3.3).

Rule
Discovery

Rule
Analysis

Rule
Authoring

Rule
Validation

Rule
Deployment

Enhancing

Building

Harvesting

Rule
Design

Prototyping

Fig. 3.2 Rule set development life cycle

+

Rule
Discovery

+

Rule
Analysis

Harvesting

Fig. 3.3 Rule harvesting

activities

3.2 Core Principles of the ABRD Methodology 53

To get started, the development team splits the day into two parts. The morning

is spent in a discovery workshop, which is a 2–3 h session of harvesting the rules

from rule sources. The team harvests the rules from the business process descrip-

tion, interviews with subject matter experts, use cases descriptions, and any other

sources. The rest of the day is spent performing some analysis and documentation

of the discovery results. Depending on the number and complexity of the rules, the

team iterates on these two steps for 2–5 days.

One of the documents produced during this modeling phase is the decision point
table (DPT), which describes the points in the process (tasks, activities, transitions)
where there are a lot of business decisions involved (test conditions and actions).

These decision points represent potential candidates for rule sets.

3.2.3 Cycle 2: Prototyping

The prototyping cycle involves preparing the structure of the project and outlining

how rules are organized into a rule set. Once a certain level of discovery is done, the

development team can start implementing the structure of the rule set and can begin

rule authoring, while discovery and analysis activities continue (Fig. 3.4).

Starting rule authoring using the tools – typically and integrated development

environment (IDE) – as soon as possible allows you to uncover possible analysis

and design issues early on. Indeed, the rules may look good on paper but, just as

with classical software development, the real issues arise during implementation

and testing. Issues found during prototyping are communicated back to the business

team during the following morning discovery workshop. This feedback loop

approach provides an efficient mechanism to build a pragmatic, adequate, and

business-relevant executable rule set.

To ensure that the development team understands the rule set, they can work

from the decision point table produced during the harvesting cycle. As a starting

point for initial design, each decision point in the decision point table is mapped to a

rule set. (Rule sets can later be merged or split depending of reuse needs or service-

oriented design.) The architect needs to consider the data model, the flow of rule

execution (or rule flow), how errors and exceptions will be reported, input and

Prototyping

+

Rule
Discovery

+

Rule
Analysis

+

Rule
Design

+

Rule
Authoring

Fig. 3.4 Prototyping activities

54 3 Agile Business Rule Development

output parameters used by the rule engine for each candidate rule set, and how

decision results will be reported back to the calling client.

Chapter 5 will provide more details about prototyping activities. In particular,

we will look at some BRMS-neutral best practices for project design and rule set

design.

3.2.4 Cycle 3: Building

In harmony with the Test-Driven Development (TDD) approach, the goal of the

building phase is to implement a set of unit test cases with real (or realistic) data,

write the rules being tested, and test the rules within their corresponding rule sets

and their targeted execution context.

As learned through our experiences during implementations of decision-support

systems, executable rules are more important than those defined “on paper” or in

some nonexecutable form. The “unforgiving honesty of executable rules” has a

strong value to show project progress and acceptance of those new technologies.

This agile statement is at the core of this cycle (Fig. 3.5).

This 3–4-week cycle includes daily authoring activities, which can be seen as a

set of little steps involving test case implementation, writing and executing rules,

and doing some validation with the team members. The short daily loops include:

l Loop on authoring and validation to develop test cases and rules.
l Loop on analysis, design, authoring, and validation to author executable rules,

complete the analysis, do some unit testing and address or resolve issues. This

is an improvement loop. The design is linked to enhance the data model and

the rule set structure (local variables, rule flow changes, and so on).
l Loop on a bi-daily basis on discovery, analysis, authoring, and validation. The

discovery will be used to complete the scope of the rule set and to address the

issues identified during implementation.

By the end of this cycle, the data model used by the rules in the context of this

rule set should be at least 90% complete, the project structure should be finalized,

Complement
Improve

EnhanceHarvest

Building

+

Rule
Discovery

+

Rule
Analysis

+

Rule
Authoring

+

Rule
Validation

+

Rule
Design

Fig. 3.5 Building activities

3.2 Core Principles of the ABRD Methodology 55

and a rule set should be deployed for testing so you can start testing the business

application with the decision service. The rule set may only be 40–60% complete,

but business users or rule writers can then elaborate and complete it in a later cycle,

Cycle 5: Enhancing (Sect. 3.2.6).

If the rule set is too large to be 40% complete by the end of 3 weeks, you can

execute this cycle multiple times. However, we recommend keeping this cycle to

3 weeks so you can deliver a concrete build to the Quality Assurance or validation

team for review and execution, before embarking on another build cycle.

3.2.5 Cycle 4: Integrating

The goal of this cycle is to deploy the rule set under construction to an execution

server to test it with an end-to-end testing scenario.

The integration of the decision service and the domain data model is an impor-

tant task. Data coming from the real data source is sent to the rule engine to fire

rules and infer decisions. During the previous phases, the development team

develops a set of test scenarios with realistic or real data which triggers rule

execution. Those test scenarios are executed during the integration phase to support

end to end testing. They can later serve as a nonregression test suite. If the test

framework is well designed, some of the data set can be used for unit testing on the

rule set and also to perform higher level functional verification tests (Fig. 3.6).

3.2.6 Cycle 5: Enhancing

Cycle 5 may be seen as a maturing phase where the goal is to complete and maintain

the rule set. This cycle includes authoring, validation, and deployment, but may still

require some short face-to-face discovery activities with subject matter experts

(SMEs) to address and wrap-up issues and questions (Fig. 3.7).

Integrating

Rule Set

+

Rule
Deployment

Fig. 3.6 Deployment

activities

56 3 Agile Business Rule Development

The actors responsible for completing the rule set may be different from those

involved in the initial cycles. The members of this team are more business-oriented

and are the owners of the rule set and business policies. Once the core infrastructure

is implemented by the development team, they can complete the rule set at their

own pace. Even during a development phase, the business users can start their work

of completing the rule set.

Enhancements may also be required for the object model or physical data model,

such as adding new facts, attributes, or entities. Such modifications can follow the

standard software build management process of the core business application.

Do not expect the business team to discover and implement 100% of the rules

during the development of the rule set. The scope of a decision evolves over time.

The purpose of cycle 5 is to enhance the quality and completeness of the rule set.

However, the rule architect must design the rule set so that when no decision can be

taken for a given set of data, a default decision is enforced and that data can be

identified for future analysis.

3.3 Eclipse Process Framework

As a framework, EPF provides tools for software process engineering to develop

methodologies and share best practices. EPF comes with knowledge content

organized in a library, and with a tool (EPF Composer see Fig. 3.8) that enables

process engineers to implement, deploy, and maintain processes for organizations

or individual projects.

The goal of EPF is to deliver a platform for producing software development

practices, how-to, common definitions and vocabulary, and processes with tasks,

roles, work products, and guidelines definitions. Libraries are physical containers

for knowledge content, process configuration, and other parameters to publish the

content as a set of web pages. The library is organized in method plug-ins.

According to the EPF documentation, a method plug-in is “a container of content

used to describe what is to be produced, the necessary skills required” and “the step-

by-step explanations describing how specific development goals are achieved.”

Plug-ins can reference other plug-ins to extend existing content.

Complement
Improve

EnhanceHarvest

Enhancing

+

Rule
Discovery

+

Rule
Analysis

+

Rule
Authoring

+

Rule
Validation

+

Rule
Deployment

Fig. 3.7 Rule set enhancing activities

3.3 Eclipse Process Framework 57

Processes describe the development life cycle for a given project or team.

Processes order the method content elements according to sequences/dependencies

that depend on the specific types of projects and determine when specific work

products can (no earlier than) or should (no later than) be performed.

As shown in Fig. 3.8, ABRD is subdivided into multiple method plug-ins:

l practice.tech.abrd.base includes all the content to describe tasks, work products,

and guidance.
l practice.tech.abrd.assign includes the roles description and the assignment tasks.
l process.abrd.base includes the delivery process and capability pattern definitions

for a typical rule set implementation.
l publish.abrd.base includes the view definition to export the content as HTML

pages.

One way to view the methodology is to use aWork Breakdown Structure (WBS)

to list the activities of ABRD. We define roles, tasks, work products, and guidance

in a hierarchy of folders named Content Packages. All content can be published to

HTML and deployed to web servers for distributed usage. Finally, process engi-

neers and project managers can select, tailor, and rapidly assemble processes for

their concrete development projects. Processes can be organized into reusable

building blocks, called capability patterns, which represent best development

practices for specific disciplines, technologies, or management styles.

Fig. 3.8 Eclipse Process Framework (EPF) composer screenshot

58 3 Agile Business Rule Development

Using EPF Composer, practice libraries, and the ABRD plug-in, you will have

the tools and the base content to develop your own methodology to develop

business applications in the context of a first project or within a rule deployment

at the enterprise level.

For details and a download of the latest framework go to http://www.eclipse.

org/epf.

3.3.1 OpenUp

OpenUP is a light Unified Process3 that uses an iterative, incremental, and col-

laborative approach to development and can be extended to address a broad variety

of project types. For example, you might use daily stand-up meetings for team

members to discuss project status or issues. Team members include the stake-

holders, developers, architects, project manager, and testers. The objective is to

reduce risk by identifying issues early in the life cycle and implementing mitigation

strategies.

OpenUP tries to balance agility and discipline. It measures individual progress in

micro-increments, which represent short units of work that produce a steady,

measurable bits of project progress. The process encourages team members to be

self-disciplined and organized in order to facilitate collaboration as the system is

incrementally developed. OpenUP divides a project into iterations that are mea-

sured in weeks, not months. Each iteration aims at delivering a measurable incre-

ment to stakeholders. For each iteration, the plan (including task asignment) is

geared towards producing a deliverable at the end.

The OpenUP project life cycle includes four phases: Inception, Elaboration,

Construction, and Transition. This life cycle is defined by a project plan. Stake-

holders and team members have visibility throughout the project, which enables

effective project management and allows you to make “go or no-go” decisions at

appropriate times.

Agile Business Rule Development leverages all the concepts described in

OpenUp and applies them for the purpose of developing business applications

using rule engines, BPEL and BPM technologies.

3.3.2 ABRD Structure

Once the practice.tech.abrd.base plug-in is open, you can navigate to the Content

Packages hierarchy. The structure may look like as shown in Fig. 3.9.

3See http://en.wikipedia.org/wiki/Unified_Process for detail on UP and the book “The Unified
Software Development Process” (ISBN 0-201-57169-2) by Ivar Jacobson, Grady Booch, and

James Rumbaugh.

3.3 Eclipse Process Framework 59

Content is organized in a hierarchy of folders, which are mapped to the major

phases of the methodology: architecture, rule discovery, analysis, authoring, test-

ing, deployment, and governance. A common package includes the term defini-

tions, like business rules, rule engine, the introduction, and the cycle approach

explanation. When you are managing content, you need to be able to quickly

develop reusable templates, so the Templates folder groups these documents all

in one place. Any elements of the content can be categorized for quick navigation.

Categories are defined in the Standard Categories folder.

Fig. 3.9 ABRD base plug-in structure

60 3 Agile Business Rule Development

3.3.3 ABRD Roles

ABRD role definitions were developed based on consulting engagements and on

reflection over “standard” definitions. The full list of predefined roles can be found

in the practice.tech.abrd.assign > role assignments content package. The role

descriptions include:

l Business analyst
l Rule analyst
l Rule architect
l Rule writer
l Rule administrator
l Subject matter expert

3.3.3.1 Business Analyst

The business analyst extends the definition of Analyst as described in OpenUP. The
business analyst, who is a major actor within the IT and business landscape, acts as

a bridge between the two organizations, with a good understanding of the business

goal, metrics, business process, and also with IT analysis skill set. In the scope of a

business rule application, business analysts help move corporate policy from

definition to execution inside a software application. Business analysts must trans-

late policy into a formal specification acceptable to developers and must validate

the formal specification with policy managers who may not understand the language

of the specification. The typical work products the business analyst is responsible for

are the business process definition, the decision point table, and glossary of term and

some time the entity model or logical data model.

3.3.3.2 Rule Analyst

Another important role is the rule analyst, which is a specialized business analyst

with a strong knowledge of how a business rule application runs, how a rule engine

works, how to design a logical data model, and how to do the rule discovery and

analysis activities. In rule-based project, the rule analyst is directly involved in

these activities:

l Create rule templates for rule authors to use
l Analyze rules for completeness and correctness, and apply logical optimization

of the rule structure
l Identify the use of rules in processes that implement business policies
l Ensure the quality of the business rules in term of documentation, meta-data, and

coverage
l Ensure that consistent terminology is used in the business rules in order to build

a common vocabulary and a domain data model

3.3 Eclipse Process Framework 61

l Analyze business rules to identify conflicts, redundancies
l Ensure consistency of business rules across functions, geographies, and systems
l Conduct impact analysis for revision or replacement of business rules
l Integrate new or revised rules into existing rule sets
l Make recommendations for business rule changes based on business knowledge
l Facilitate resolution of business rules issues
l Act as consultant for the project team
l Act as a liaison between business and IT

The rule analyst is responsible for the discovery roadmap and detailed workshop

itinerary. Rule analysts may be considered as knowledge engineers as they need to

assess the problem to solve, structure the knowledge around the business decision,

acquire, and structure the information to prepare for the implementation. Rule

analysts should be involved in testing and validating the outcomes of the different

decision services the business application is using. Figure 3.10 illustrates the

relationship between the tasks performed and work products that the rule analyst

produces or manages.

3.3.3.3 Rule Architect

The Rule architect is an extension of the concept of software architect. The rule

architect is responsible for defining and maintaining the structure of the rule-based

application. A rule architect helps the team work together in an agile fashion and

understands the iterative approach and how to design the application to deliver

value for each iteration. The rule architect jointly owns the solution and has strong

communication skills to interface with other parts of the organization. The rule

architect defines the structure and organization of the rule-based system. Outside of

the standard activities, skills, roles, and responsibilities of a software architect, this

role extends to:

Fig. 3.10 Rule analyst role in Agile Business Rule Development (ABRD)

62 3 Agile Business Rule Development

l Selecting the technology to ensure performance of the rule execution and

usability of the BRMS platform
l Designing the infrastructure necessary for editing rules
l Producing one or several rule sets
l Building the structure of rule projects and the dependencies on the executable

domain object model

If the deployment of the application is part of a service-oriented architecture, the

rule architect participates in defining the various decision services that will use the

rule engine. The rule architect focuses on ensuring that the overall deployment and

organization of the rules makes sense from an application segmentation perspec-

tive, keeping in mind reuse, not only of decision services, but also at a lower

granularity, reuse of rules.

During the analysis activity, the rule architect designs the structure of the rule

repository, defining the required metadata to manage the rules, and possibly

implementing the structure personally to quickly prototype and get feedback from

the business team. Metadata attached to the rule is used to establish traceability for

rules from business motivation to the technical implementation and used to manage

the rule life cycle.

Once a first project is successfully finished, the architect has to design and

deploy the BRMS capability at the enterprise level. He leads the development of

the processes around repository management, rule life cycle, rule set life cycle, and

rule governance.

3.3.3.4 Rule Writer

ABRD specifies a dedicated role for writing rules. We observed various approaches

for this, from remote outsourcing at low cost labor to highly skilled business

analysts working closely with the business users. The range of approaches may

be led by the business goals and the type of business application. For example in the

subprime lending market where competition is intense, the loan processing appli-

cation needs to be changed quickly to adapt to new product definitions, new

regulation, or new risk management. In that case, local teams need to act quickly

on the rules, writes new rules or update existing ones, apply regression testing, and

run simulation tests before deploying the rules. Rule writers are involved during the

first phases of the business rule development, so in the agile approach, rule writers

are part of the team, participating in the discovery and analysis tasks.

Off-shoring rule development is an antinomy for the agile business rule

approach where business and IT work closely together and should be avoided for

the sake of efficiency and long-term maintenance purposes. The business has

ownership of the rules, not a remote team. To be successful, communication

between the business and the rule writer has to be strong, co-located at best, and

each team has to trust the other to deliver what was agreed on. Business rules are a
company asset delivering competitive advantages, which makes giving the imple-
mentation to an outside group more risky.

3.3 Eclipse Process Framework 63

Other roles involved in the application development are more standard, and we

do not need to describe them in the context of this book.

3.3.3.5 Subject Matter Expert

The Subject Matter Expert (SME) is responsible for defining the business processes,

the business policies, and the application requirements. He leads the business rules

acquisition activities as a domain expert and uses the Rules Management Applica-

tion as reviewer.

3.3.3.6 Rule Administrator

The Rule Administrator manages the rule authoring and deployment. He executes

the business rule management process and ensures the integrity of the rule set by

using the rule life cycle and rule set life cycle.

3.3.4 ABRD Work Products

Work products are outcomes of tasks in EPF. We grouped the work products per

main area of concern like architecture, discovery, analysis, validation, and rule

governance. Each major work product is detailed in the corresponding chapter

below. There are some work products that serve as input to the application of

ABRD. As defined in OpenUP and other Unified Processes, the project starts by an

inception phase, where some business modeling activities are started. Part of these

activities ABRD leverages at least the following work products:

l The business process description in the format of text or process map. Process

Maps are well described using the graphical notation as specified by the Business

Process Modeling Notation. For more information, visit http://www.bpmn.org.

From a process modeling point of view the level 3 of process decomposition is a

good source to identify decision points.
l Another type will be the use cases description of the business application. Here,

we need to focus on the end user use cases which are processing business data

and the ones involving business decisions. Technical or IT related use cases may

not be in scope of rule discovery and analysis.

From the use case description and the business process definition, it is possible

to extract a list of the candidate decision points. A decision point is an anchor

into one of the activity or step of the business process or use case where a set of

knowledge-driven decisions are done on the data or documents under process.

Those decision points are rule rich and will be most likely implemented using

BRMS technology. So building a Decision Point Table (DPT) at the earliest phases

of the project will help to drive the business rule development.

64 3 Agile Business Rule Development

3.4 Usage Scenario for ABRD

ABRD as an EPF plug-in can be extended for your own needs such as adding new

content, tuning the existing processes, developing best practices for a given BRMS

tool or organization, adding BPM activities and roles, etc. As an open source

contribution, ABRD is evolving at each release of the EPF practice library. We

recommend developing your own plug-in as an extension of ABRD. Using the EPF

Composer, you should create your own plug-in referencing practice.tech.abrd

using the New Method Plug-in wizard as shown in Fig. 3.11.

From there you can add any element as an extension of an existing element

defined in the hierarchy of the selected plug-ins. Figure 3.12 shows the various EPF

elements and concepts involved in a plug-in and their containment organization. It

is important to note that the entities whose name starts with a lowercase letter are

element instances, created by the plug-in author, while entities whose name starts

Fig. 3.11 Create your own content plug-in

3.4 Usage Scenario for ABRD 65

Fig. 3.12 Eclipse Process

Framework (EPF) library

elements

66 3 Agile Business Rule Development

with a capital letter are structuring concepts provided by EPF. We recommend

using a naming convention for the elements created. The EPF practice is to use

lower case and to separate words using an underscore (“_”).

Let us take an example of adding a task for an architect to design and prototype a

business process using a BPEL engine. The EPFMethod content developer needs to

follow at least the following steps:

1. Create the Method Content Package with role, work product, guidance, and

then task: For example, add a Architecture Package, with a bpm_architect role

who will develop a bpel_process work product during the activity of design_

prototype_bpel_process as shown in Fig. 3.13.

When creating those elements, it is interesting to note that the task may

leverage work products or roles defined in other plug-ins. The business_process_

map and use_case model are coming from the abrd and core plug-ins.
2. Once we have created all the work products, we may need to update the role for

the responsibility link to the work product. Going to the bpel_architect we can

add bpel_process as a work product he is responsible for.

3. It is possible to add guidance like a “how to guide” describing how to use a

BPEL designer. This guidance can be linked to a task or a work product.

4. Optionally create within each task some step which the main performer will

have to complete for this task.

Fig. 3.13 New task to design Business Process Execution Language (BPEL) process

3.4 Usage Scenario for ABRD 67

5. Create categories to classify the content elements: modify roles, work products,

guidance, and tasks accordingly. Method Content elements are organized into

logical categories. The categories can appear in your final, published website as

views. The following table shows sample categories adapted from the typical

EPF categories.

Standard categories Description Example

Disciplines Disciplines are a collection of tasks

that are related to a major area of

concern within the overall IT

environment

Perform certain requirements

tasks in close coordination

with analysis and design tasks

Domains A domain is a refineable, logical,

hierarchy of related Work

products grouped together based

on timing, resources, or

relationships

Architecture domain to capture

WP related to architecture

A work product belongs to only one

domain

Requirements, project

management, risk

management, etc.

Customer lending is a candidate

domain

Work product kinds Work product kind is another

category for grouping work

products. A work product can

have many work product kinds

Specification, plan, model,

assessment

Role sets A role set is used to group roles with

certain commonalities

The analyst role set could be used

to group together roles such as

business process analyst,

system analyst, and

requirements developer

BRMS role set could be used to

group rule analyst, rule admin

. . .
Tools Tools is a container for tool mentors

which provides guidance on how

to use a specific tool

Clearcase mentors user guides

For example, we can define a new category of work products to include any

elements related to BPEL and then attach the bpel_process to this category

(Fig. 3.14).

Another example of a useful category is to group roles by specialty or domain

area, or from an organization point of view (e.g., customer vs supplier, various

departments). Role sets should be created as soon as there are several specific

roles in a plug-in, to simplify views and allow them to be consistent.

Using the same mechanism, we can create one architecture discipline to group

all the tasks related to the application architecture.

6. Define configuration for the publishing step. The ultimate output of the EPF

Composer is a published website with method guidance and processes that can

be used by a project team. A Method Configuration is a selection of Content

Packages across different Method Plug-ins containing the method and process

68 3 Agile Business Rule Development

content that will be included in the published website. So under the Config-

urations node in the Library View, we can create a “MyPlugin” configuration,

and then we need to specify the plug-ins we may reuse.

7. Create Capability Pattern. A Capability pattern is a special process that

describes a reusable cluster of activities in a general process area that provides

a consistent development approach to common problems. Capability patterns

can be used as building blocks to assemble delivery processes or larger

capability patterns. Under the Processes-Capability Patterns node in myPlugin,

we can add the “architecturePattern.” Once created, we can open the Work

Breakdown Structure (WBS) to add some tasks by drag and drop from the

configuration panel. The WBS may look like:

8. Create Delivery Process. A Delivery Process describes a complete and

integrated approach for performing a specific type of project. We add a

Delivery Process named “myDeliveryProcesses” under the Processes/Delivery

Processes node and drag and drop our “ArchitecturePattern” from the configu-

ration view. The process WBS will look like:

Doing this kind of method, we can add as many capabilities as needed to tune

our processes for our project or group or company.

Fig. 3.14 Grouping work products together

3.4 Usage Scenario for ABRD 69

9. Create View. Custom categories can be used to compose publishable views,

providing a means to organize method content prior to publishing. Under the

Custom Categories node of “myPlugin,” we can create a custom category name

“my_plugin_views,” then within the Assign table can add any elements content

like an introduction, the architecture discipline, and our process.

To complete our configuration we need to add the newly created view in the

Views of the Configuration: myPlugin_cfg.

10. The last step is to publish our content in static or web application. The content

of several plug-ins can be mixed into one published view. Each view corre-

sponds to a tab in the tree view of the portal. Using the top menu Configuration/

Publish, we can export the Configuration named “myPlugin_cfg” and get a web

page like as shown in Fig. 3.15.

The left side offers a navigation tree to access content pages displayed on the

right side. HTML-based content links allow for easy navigation into the content.

Using these techniques, it is also possible to integrate ABRD and your own plug-in

with other agile methods such as SCRUM, XP, and RUP. The import/export facility

of EPF composer supports sharing plug-ins between libraries.

3.5 Summary and Conclusions

Agility is a must for business rule application development. Regardless of the

BRMS product you use, ABRD provides a starting point for developing your own

best practices and method content. ABRD supports a simple cycle approach to

Fig. 3.15 Published content of “MyPlugin”

70 3 Agile Business Rule Development

implementing decision points within a business process and has already demon-

strated its effectiveness through its successful use during consulting engagements

and JRules deployments all over the world.

ABRD is the first open-source methodology and is supported by the Eclipse

Process Framework, which offers the tools, content, and methodology to help your

organization tailor the contents of ABRD to your needs and to create reusable

practices for efficient development.

Chapter 4 will explore the harvesting cycle in detail. In particular, we will

discuss rule analysis in detail. Chapter 5 will discuss the prototyping cycle, where

we highlight the major design issues facing application architects, and the rule

architect. The remaining cycles, that is, Building, Integration, and Enhancing, start
with the same activities as Prototyping, continuing on with rule validation, and rule
deployment. The duration and scope of the iterations change, and the focus shifts

away from discovery and analysis to authoring, validation, and deployment. We

explore the rule deployment design space in Chap. 12 and discuss JRules’ deploy-

ment options in Chap. 13. We will also explore rule testing issues in Chap. 14 and

discuss JRules’s features for testing in Chap. 15.

3.6 Further Reading

Agile Business Rule Development draws on a number of best practices in software

development, general software development methodologies (e.g., RUP and

OpenUP), rule-specific methodologies, and a number of technologies.

The reader can find more information about:

l Eclipse Process Framework at http://www.eclipse.org/epf.
l A publish version of Open Unified Process can be accessed at epf.eclipse.org/

wikis/openup/ and in the practice library http://www.eclipse.org/epf/downloads/

praclib/praclib_downloads.php, with ABRD and SCRUM.
l ABRD content is published at http://epf.eclipse.org/wikis/epfpractices/ going

under practices > Additional practices > Agile Business Rule Development.
l The book “The Unified Software Development Process” (ISBN 0-201-57169-2)

by Ivar Jacobson, Grady Booch, and James Rumbaugh – Publisher: Addison-

Wesley Professional presents the unified process methodology using UML

artifacts to develop efficient software application.
l The agile eXtreme Programming methodology is introduced at http://www.

extremeprogramming.org/ with detailed explanation of the XP rules.
l One of the most used agile and iterative methodology, SCRUM, has its own

portal at http://www.scrumalliance.org/.
l An introduction to the Master Data Management can be found on Wikipedia at

http://en.wikipedia.org/wiki/Master_data_management.
l The agile manifesto is presented at http://www.agilemanifesto.org.
l An introduction to the test-driven development may be read at http://en.wikipedia.

org/wiki/Test-driven_development.

3.6 Further Reading 71

Chapter 4

Rule Harvesting

Target audience
l (Must) business analyst; (optional) project manager, application

architect, rule author

In this chapter you will learn
l What are the different types of rules, and why it is important to

understand them
l How to set in place the rule harvesting process according to the

source of rules and the team structure
l How to extract a data model for the rules from the rule description
l How to prepare the rules for implementation
l How to put into practice these techniques with a claim processing

application

Key points
l Start by a decision point that is simple but still brings business

value to the stakeholders.
l Describe rules using the business domain vocabulary, and future

map it to a logical data model.

4.1 Introduction

Rule harvesting includes the two main activities of rule discovery and analysis,

with the goal to understand the business entities (conceptual data model [CDM])

within the scope of the application and to identify and extract the rules. A key

activity in the rule harvesting phase is to formalize the decisions made during the

execution of the business process by defining the different decision point candidates

for business rule implementation.

Agile Business Rule Development (ABRD) puts the emphasis on developing the

system through short iterations. Each iteration produces a working set of rules.

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_4, # Springer-Verlag Berlin Heidelberg 2011

73

Feedback from the harvesting and prototyping phases forces the subject matter

experts (SMEs) to better understand their own business processes and help them to

adapt those processes for more efficiency. Rule harvesting is a short project activity

executed for each decision point in scope for implementation. The process flow

may look like in Fig. 4.1.

Section 4.2 will discuss rule discovery. First, we start by identifying the

different kinds of rules, then we describe the discovery activities. There are

different ways of conducting rule discovery, depending mostly on rule sources,

i.e., where we are going to discover the rules from, and the organization’s

modeling and requirements tradition (e.g., using use case, or process maps,

or business event analysis, etc.). Thus, as Barbara von Halle suggests, part of

rule discovery activities is . . . figuring out how to discover rules, i.e., defining the
rule discovery roadmap. Section 4.2 will discuss common activities (e.g., review

decision point table, define discovery roadmap, gather documents, document

rules), as well as roadmap specific activities (e.g., discover rules from SMEs,

discover rules from documents, discover rules from code). Section 4.3 shows rule

discovery for our case study.

Rule analysis is discussed in Sect. 4.4; many of the techniques presented are

based on vonHalle’s STEP methodology. Analysis activities include (1) reviewing

rule descriptions and fact models (Sect. 4.1), (2) transforming rules to obtain

unambiguous, atomic, nonredundant, and consistent rules (Sect. 4.2), (3) building

test scenarios (Sect. 4.3), and (4) verifying the rules against the data model

(Sect. 4.4). Section 4.5 shows rule analysis for our case study. We conclude in

Sect. 4.6.

4.2 Rule Discovery

Rule discovery, also called Business Rules Modeling in the industry, aims to

develop simple modeling artifacts like rule descriptions, business entity diagrams,

and business process maps. As described in Chap. 3, the development team

executes this activity on a regular basis during the development of the business

A
n

a
ly

si
s

T
e

a
m

Decision
Points Table

Review
Decision Point

Table or
Business

Process Map

Business
Process Map

Define
Discovery
Roadmap

Organize Rule
Discovery

Workshops

Execute Rule
Discovery
Roadmap

Analyze
Rule

Business
Process Map

Use Cases Rule
Template

Rule
Description

Glossary Conceptual
Data Model

Workshop
Agenda

Discovery
Roadmap

Transform
Rules

Build
Test Scenario

DP-rule
map

Test
Scenario

Rule
Description

Rule
Description

Layout
Data Models

Fig. 4.1 Rule harvesting activities

74 4 Rule Harvesting

application. Rule discovery is an iterative process that will identify a subset of rules

and document them as opposed to spending months figuring out all the rules up

front and producing a huge document.

Business rule discovery techniques are similar to those used for traditional

requirements elicitation, with one main difference: focus on those special needs

that support decisions on how the business is executed in the company. From the

inception phase the project team gets a set of work products that are used during

rule discovery. These artifacts include:

1. A high-level description of the business process

2. A high-level description of the current and future architectures

3. A list of data sources and data models

4. The decision points table

The decision points table, in particular, helps define where to find the rules (rule

sources) and which method to use for rule harvesting. The rule discovery process

changes according to the sources used. For example, working from a legal docu-

ment implies a different discovery process from the discovery based on interview-

ing subject matter experts.

4.2.1 Classification of Business Rules

Before deciding how to write rules and where to implement them, you first need to

understand which types of rules your team will be harvesting. In early 2008, the

Object Management Group (OMG) finalized a specification for documenting

the semantics of business vocabularies and business rules, entitled Semantics of
Business Vocabulary and Business Rules (SBVR).

The specification describes SBVR as part of the OMG’s Model Driven Archi-

tecture (MDA). Its purpose is to capture specifications in natural language and to

represent them formally to facilitate automation. SBVR includes two specialized

vocabularies:

l One to define business terms and meanings from the perspective of the business

teams. It is named in the SBVR specification as Business Vocabulary.
l One used to describe business rules in an unambiguous way leveraging the

business vocabulary.

The meaning is what someone understands or intends to express. The meanings

are derived into concepts, questions and propositions. A phrase such as “We deny

the invoice if the medical treatment was done after one year of the accident” has a

clear meaning for a claim processor (CP) within a car insurance company. Ana-

lysts need to logically transform this meaning into concepts that have a unique

interpretation so that we can represent the business knowledge within a compre-

hensive vocabulary. Concepts include a unique combination of characteristics or

properties.

4.2 Rule Discovery 75

Within the Business Motivation Model (BMM),1 the OMG has also defined the

relation between business policies, directives, business processes, and business

rules. This work is very important to clearly classify each of those concepts. The

OMG definition of business policy is: “A non-actionable directive whose purpose is

to govern or guide the enterprise. Business policies govern business processes.”

A Business rule is – “A directive, intended to govern, guide, or influence business

behavior, in support of business policy that has been formulated in response to an

opportunity, threat, strength, or weakness. It is a single directive that does not

require additional interpretation to undertake strategies or tactics. Often, a business

rule is derived from business policy. Business rules guide a business process.” For

the purpose of rule harvesting, keep in mind that business rules are actionable,

unambiguous, and derived from the business policy. Considering rules as semanti-

cally meaningful, rather than business policies, is key to making them executable.

The OMG BMM reuses some classifications from the SBVR: business rules are

separated into two possible classes:

l Structural (definitional) business rules which are describing the structure of

the business entities used by the line of business organization. Such rules

describe constraints on the model, like possible value, or mandatory inclusion

or associations.
l Operational (behavioral) business rules are developed to enforce business poli-

cies, seen as obligations to execute efficiently the business. When considering

operational business rules it is important to look at the level of enforcement and

where the rule enforcement occurs.

In SBVR, rules are always constructed by documenting conditions to business

entities defined in the business vocabulary. A fact is a relationship between two or

more concepts.

Another approach to define facts is to use the Ontology Web Language (OWL)

and Resource Description Framework (RDF). Developed to specify semantic web,2

OWL and RDF can be used to model the enterprise ontology. The ontology is the

source for data models used by the rules as an alternate to traditional Object-

Oriented Analysis (OOA) and SBVR. OWL and RDF implement an object-rela-

tional model allowing creation of a directed graph, a network of objects and

relationships describing data.

Using a mix of the SBVR classification for business rules, OWL–RDF to

describe the domain and an older rule classification model which we have used

for years in consulting engagements, the different types of business rules can be

presented as shown in Fig. 4.2.

1Business Motivation Model V 1.1, Object Management Group at http://www.omg.org/spec/

BMM/1.1/.
2From Wikipedia, semantic web is defined as an extension to the WWW in which the meaning of

information and services on the web is defined, making it possible for the web to “understand” and

satisfy the requests of people and machines to use the web content.

76 4 Rule Harvesting

This schema represents the different types of rules that are relevant to the

business, including structural and operational rules. Structural rules define the

terms used by the business in expressing their business rules and the relationships

(facts) among those terms. These include the vocabulary used in rule authoring. As

an example a statement like: An insurance policy includes a set of coverage. The
policy is effective at a given date and needs to be renewed every six months.
Transforming this statement implies defining a structure in the insurance domain,

where an insurance policy entity has an effective date, expiration date, and a list of

coverages.

Operational rules are the rules that implement business decision logic. When a

business decision is made (e.g., whether to sell a given insurance policy, whether

to accept or reject a claim), the business rules are the individual statements of

business logic that are evaluated by the rule engine to determine the decision

result.

The following table is adapted from the work by Barbara Von Halle and is a

simplified view of the business rules group classification. It details those categories:

Rule classification Explanation

Mandatory

constraints

Rules that reject the attempted business transaction.

Grammar to use during rule documentation not implementation.

<term> MUST HAVE <at least, at most, exactly n of> <term>;

<term> MUST BE IN LIST <a,b,c>;

SBVR expression: it is [not] necessary that <fact>
Guidelines Rules that does not reject the transaction; they merely warn about an

undesirable circumstance. Usually translates to warning messages.

<term> SHOULD HAVE <at least, at most, exactly n of> <term>;

<term> SHOULD BE IN LIST <a,b,c>
SBVR expression: it is [not] possible that < fact >
It is possible but not necessary < fact >

(continued)

Fig. 4.2 Business rule schema

4.2 Rule Discovery 77

Rule classification Explanation

Action-enablers Rules that tests conditions and upon finding them true, initiate another

business event, message, business process, or other activity

IF <condition> THEN action

Computations Rules that create new information from existing information based on

mathematical computation

<term> IS COMPUTED AS <formula>
Inferences Rules that create new information from existing information. The result

is a piece of knowledge used as a new fact for the rule engine to

consider

IF <term> <operator> <term> THEN <term> <operator> <term>
Event Condition

Action (ECA)

Rules where the condition is evaluated once the occurrence of an event

is found. Most ECA rules use temporal operators to search events

related to their timestamp of creation or occurrence

On <event> when <condition> then <action>

To implement guidelines and constraints, you need to consider what happens

when they are violated. Most of the time, the action raises an exception or a high

priority issue to be managed later in the business process, which may reject the

business event. The rule needs to report clearly on the selected decision so that a

human can understand and act on the business transaction.

A guideline written as: The date of loss should be before the expiration date
of the policy may translate to the following rule: if the date of loss is after the
expiration date of the policy, then create a warning ticket for the claim processor to
handle. This implementation allows the insurer to make allowances for an insured

person who has a history of regularly renewing the policy but for some reason

forgot to renew on time.

A constraint written as: The borrower must put a minimum cash down of 5%
translates to this rule: if the minimum cash is below 5% then reject the loan
application with the reason “The borrower must put minimum cash down of 5%.”

Action enabler rules modify, create, or delete terms or association between

terms, or execute methods, which can be web service. For example, a rule like: if
a driver has made one or more at-fault claims in the current year, decrease the
discount rate by 3% changes an attribute (“discount rate”) of an object.

Computation rules implement mathematical equations and assign values to

variables according to a set of given criteria. For example, a risk factor variable

can be computed according to the age of the driver. It is important to note that

management of computation rules may require managing the entire ruleset together

if there are rules that are required to be managed prior to those calculations and at

the terms of the calculation.

Process flow routing rules direct the movement through a process flow or

workflow. Process flow rules are distinct from business logic rules. It may be

helpful to distinguish process flow rules from the business logic rules that

determine the values of the parameters on which the process flow is directed as

such rules are more often complex and numerous than routing rules. Routing rules

78 4 Rule Harvesting

may be written as: if there is at least one exception in previous activity of the
process goes to this task if not continue on the main path. The business logic to

define if there is an exception is made within a rule engine with a lot of rules to

evaluate and execute.

Inference rules use syntax similar to action enabler rules, but they create new

objects or facts which may bring the engine to re-evaluate some other rule’s

eligibility. During discovery, it is important to understand the execution context

as seen by the business user and be able to answer questions like: “If executing this

rule modifies the state of the claim, will the eligibility rules that have already

executed need to be reevaluated?” For example, an insurance policy underwriting

rule that says if the age of the driving license is below 3, add a risk factor of 50 and
reevaluate the total risk score modifies the risk scoring variables, which requires

that other rules be reevaluated.

It is possible to continue the decomposition of those rules. For example, trans-

formation rules in ETL (Extract Transform Load) are often considered separate

from other business rules; although in pattern, they are essentially inference rules

and computation rules. Data transformation rules, while important to the business,

are a side effect of system implementation rather than a reflection of core business

logic. For implementation, the decision to use a rule engine for data transformation

rules depends on whether the rules are static, dynamic, or business driven. Some

implementations use a rule engine to easily implement transformation rules

between two data models instead of using a complex scripting language when

the transformations have to be maintained by business users.

Recently, a new subcategory of ECA rule appeared within the IT horizon: the

Complex Event Processing (CEP) statements (or rules) which support a category of

business rules related to real-time event filtering, event aggregation and correlation,

and applying pattern matching conditions on attributes of events. CEP applies

business rules to a stream of data. A business rule to detect fraud on banking

cards may be written as: Raise a warning alarm if more than one transaction for
an amount over $100 is received from the same merchant on the same card number
within the last 15-minutes. According to the preceding rule classifications, this rule
would be considered a mix of ECA and inference rules. However, one important

dimension of this type of rule is the time window constraint on which the rules

apply and the type of language used to write the rule. Today most of those

languages are based on SQL and include operators to look at time window. The

action part of the rule creates new events (called the complex events), which are

managed by a downstream application. The convergence of a CEP engine with a

BRMS platform starts to happen, as rule engines excel in pattern matching, and can

apply more complex decisions on already aggregated and filtered events. In fact,

alarm filtering and correlation applications in telecommunications network man-

agement are examples of complex event processing implemented with a BRMS

(see Sect. 2.2.1).

In addition to industry standards, here are other rule patterns commonly found in

business applications:

4.2 Rule Discovery 79

Rule classification Type of application

Compliance rules Rules that reject the attempted business transaction

Yes/no result but completed with reason code and explanation

Underwriting

Fraud detection

Data and form validation

Example: Whoever receives a commission paid by an insurance company
for the sale of an insurance policy needs an insurance license

Rating Strongly interrelated rules that compute metrics for a complex object model

Scoring and rating

Contracts and allocation

Pure calculations on an object providing a final value (or rating)

Example: if the driver is between 16 and 22 years old the risk is set to 400
If the driver is between 23 and 27 the risk is set to 300

Correlation Strongly interrelated rules that correlate information from a set of objects to

Compute some complex metrics

Billing and cost estimation

Complement by inserting information

Example: if the medical bill references a patient, and the patient is not
declared in the related claim then there is an issue on the claim
description or the invoice is not related to a patient covered

Stateful Strongly interrelated rules that correlate events in a stateful way. Stateful

in this context means the internal states of the engine are maintained

between rule execution invocations

Alarm filtering and correlation

Web page navigation

GUI customization

Example: if there is an alarm L1 on network element A and an alarm L2 on
network element B and a direct link exists between A and B then the
alarm L1 is linked to L2, remove alarm L2

Classifying rules facilitates the design cycle, which focuses on deciding the best

implementation for a given rule. Inference and action enabler rules are good

candidates for a rule engine. Pure computation will most likely be implemented

in code unless computation rules are subject to frequent changes in the criteria of

applicability or are linked to others business rules. The classification also helps to

evaluate the complexity of the rules and the workload to implement it.

4.2.2 Discovery Activities

The discovery phase contains some preparation tasks, such as reviewing the

decision point table, the use case model or the business process, defining the

discovery roadmap, and organizing the elicitation workshops. Some activities are

recurring such as executing the discovery itself. These are basic steps, which you

can extend to your own project needs (see Fig. 4.1). The remaining subsections

detail some of those activities. The work products listed in this process are part of

ABRD EPF plug-in.

80 4 Rule Harvesting

The discovery activities are conducted during the elaboration phase of the

project, but the same process is conducted even after the system has gone into

production when there is a new business event, or when there is a need to modify

some decision or some business policy. Companies have been operating with

business rules for many years, but the form of these rules is not externalized and

managed as standalone artefact. Capturing business rules relies on a combination of

eliciting business requirements, reverse engineering existing applications, and

expert’s knowledge. Business rules are not just requirements: they specify how a

business process is executed, how decisions are made, and how domain knowledge

is structured. When using a business rule approach for business requirements

elicitation, we are working at the business process and policies and procedures

level to understand the constraints and the behaviours of the process.

The most unique aspect of the rules discovery phase is the perception of a

business event as a set of decision-rich activities. We unfold the processing of a

business event as a set of decisions and policies. We then dissect the decisions and

policies into executable and precise business rules that guide the business event in a

predictable and desirable manner. We will detail these concepts in Sect. 4.4.

There are two dimensions to consider when preparing the rule discovery activ-

ities or roadmap.3

l The source of rule, which can be:
l The documentation which includes all sorts of documents (business plans,

deliverables of earlier projects, legislation, regulations, standards, and busi-

ness requirements for the current project)
l The tacit know-how: the unwritten “way we do things”, embodied as a

collective way of doing things (organizational intelligence), or as individual

expertise
l The legacy system, which includes an operational system that implements

some of the business logic (code mining)
l The Business records as the way particular customer requirements have been

satisfied, pricing formulas used in previous contracts
l The type of analysis techniques used by the project team:

l Business event analysis
l Use case elaboration
l Business process modeling
l Business mission and strategy analysis
l Data analysis

Obviously the know-how discovery is the most difficult elicitation task to

execute and the one that usually takes the longest time. We will provide details

later in this section on how to conduct such an elicitation workshop.

3The term “rule discovery” roadmap is also used in the industry to present the journey the analysts

go through.

4.2 Rule Discovery 81

The following table is giving the different possible starting points for the

discovery activities based on the analysis method used:

Starting point Analysis description

Business events Start with the business events listed in the inception artifacts. Some

example can be: a claim or invoice is received, the loan application is

submitted, the call data record is posted . . . Each business event is

processed by a set of activities that can be described in document or

business process. This approach is rarely used

Use case Analyze use case description to find decision points and then rules.

Preferred approach, for teams familiar with use cases, or user stories

Business process –

workflow

Evaluate individual process steps and tasks to define the decision behind

activity and then the rules. Used when the organization uses process

decomposition for the requirements gathering and analysis phase. We

group workflow in this category

Data analysis Used in case of data change-oriented rules project. The project team looks

at the life cycle of the major business objects and extracts the

processes and decisions used to change the state of the data. It can start

with the logical data model and how the business entities are created,

updated, deleted and what their states are. One example of such an

approach is to look at the states of an insurance policy, and how, who,

when changes are made

Business mission

and strategy

Based on a top-down rules and business policies approach. Rules sources

are high-level manager, decision makers, legal documentation . . .

It is important to set the expectation among the stakeholders that not all the rules

will be discovered during this phase. The goal is to complete the rule discovery up

to 40–60% so we can have some tangible decisions on standard business events to

process. The rule writers and the development team will increase the amount of

rules in scope during future iterations of the implementation.

4.2.2.1 Review Decision Point Table or Business Process Map

When the business modeling activity of the Inception phase is completed, the

project team should have a decision point table document as a source for the rule

discovery phase. If not, it is still possible to build it from the description of the

business process. There are different ways to extract the decision points table.

Use Case Approach

If the project team uses use cases approach to document requirements, the rule

discovery team can study the use case descriptions to identify those tasks or

activities where the system makes a nontrivial decision. In her book “Business

Rule Applied”, Barbara Von Halle suggests looking for verbal cues in task/activity

descriptions that might suggest a nontrivial decision making. For example, verbs

such as check, qualify, compute, calculate, estimate, evaluate, determine, assess,

82 4 Rule Harvesting

compare, verify, validate, confirm, decide, diagnose, or process may hint at some

“intelligent” processing. Behind these verbs lurk lots of business knowledge and

business rules.

Here is an example of a use case description for a basic loan underwriting process:

Use case name Check mortgage eligibility Version 0.9

Problem domain Handling mortgage applications Author

Purpose A Borrower has submitted a mortgage application, along with supporting

documentation. A loan officer/clerk has verified the supporting

documentation, and input the application into the system. The data of the

application has been validated. We check three sets of criteria, in this order:

(mortgage) loan eligibility, borrower eligibility, and property eligibility.

When one of them fails, we exit the use case.

Actors Mortgage Loan Officer (or clerk), on behalf of Borrower

Trigger events The data of a mortgage application has passed validation, and is now submitted

through eligibility

System response Decision

Start the eligibility verification

Verify the eligibility of the loan l Check the type of loan
l Check the transaction type
l Check the loan amount
l Check the down payment
l Check the term of the loan
l Check the loan to value ratio

The loan is eligible.

Verify the eligibility of the borrower

l Check the age of the borrower
l Check the immigration/citizenship status of the borrower
l Check the financial situation of the borrower
l Check the number of mortgages

This use case template includes a decision column used to drive the discussion

during the rule discovery.

Business Process Modeling Approach

Business process modeling involves the same approach and should include at least

the following activities:

l Define the actors of the process – by roles. Clearly list the different human actors

of the process and classify them by role.
l Design the as-is process with tasks and dependencies. Do not attempt to analyze

the full process in one shot, instead, use an incremental approach. Use BPMS

editor to design the process and simulate it. BPMS includes some simulation tool

that helps to verify the process being analyzed.
l Identify branch points in the process which lead to different subpaths from the

current point. The decisions to route to one of the sub branches can be considered

as business rules: in Fig. 4.2, those routing rules are simply expressed in the

process model as a set of conditions leading to different branches. The simplest

response will be providing a binary response, but it is possible to define responses

4.2 Rule Discovery 83

as a set of predefined values of an enumeration such as {good, average, bad},

{gold, silver, and platinum} From our experience we do not recommend

having a lot of branches coming out of a conditional node in a process map. A

typical process will have from 2 to 6–8 branches.

With a business process modeling approach, the analysis team looks at task

descriptions to search for mental thinking verbs, the same. Then the analyst works

with the subject matter experts to understand how the decisions on those activities

are made. If there are decisions based on business practices and decisions, we need

to log in a table format the task reference, what are the sources for rule, who is the

owner, etc. Each row of the table forms a decision point. Once decision points are

identified, a review of each decision point is needed. This review should take less

than half a day to conduct. This session allows stakeholders to review the decision

points and to set the priority for rule harvesting at each decision point level. To

complete this task, you may need to get answers to at least the following questions:

l What is the current process to define, document, implement, test, and update the

business rules?
l Who owns the rules and the business policy definitions within the business

organization?
l Are there any classifications such as country/geography or product category with

some specific rules we need to take care of? Is the same team defining them? We

were working on projects where at the beginning of the project we were dealing

with the core business team, but a lot of rules were overridden by the branch

offices in the different countries, so the elicitation process has to be adapted to

get such information.
l What is the number of rules for each decision point?
l What are examples of actual rules?
l Is there a rule sharing policy?

A good practice is to start with a simple, well-understood decision point, to help

train the team on the elicitation practices, but keep in mind that the management

will want to see the business value of what the team is working on. So a decision

point which brings a lot of business value should be at the top of the list. With the

iterative approach of ABRD, we can develop an executable ruleset in one time

boxed iteration of 20–25 days. This is important to show the value of the approach

with tangible results.

The purpose of this activity is to preset the roadmap definition phase and to

verify that we have the important information on the business process and the

related decision points.

4.2.2.2 Define Discovery Roadmap

The definition of the discovery roadmap is an important step to understand how the

analyst team will extract the rules from the different kind of sources. The selection

of the type of roadmap is linked to the rule source. Tony Morgan in his book

84 4 Rule Harvesting

“Business Rules and Information Systems: Aligning IT with Business Goals”

proposes the following discovery processes:

l The static analysis process uses reading and highlighting the rules within

documentation, which can be legal, internal policies, procedure. The team

has to gather all the related documents with the reference on version, date of

creation, and validity. The elicitation is based on reading sessions completed

with Question/Answer workshop sessions.
l Interactive involves working sessions with subject matter experts who have the

knowledge of the business process and the decisions within a process task. Also

a person doing the day-to-day activity is a very good source to understand how

decisions are made and how exceptions to the main business process are

handled. The process to elicit rules from people will be accomplished by using

elicitation workshop.
l Automated involve using a computer and special applications to search for rule

statement within procedure code, SQL procedures, code listing, and so forth.

When using rule mining technology, we have to be careful to not lose the context

of execution in which the if-then-else statement was implemented. Therefore,

code review should always be complemented by workshop sessions for Q&A.

Code mining is one activity our customers or prospects request quite often, but

which ends up being less efficient than expected. Care needs to be taken on that

matter as responding and addressing the following items can be time consuming:

l Who has the knowledge of the current code? Is this person still in the company?
l Should the current business context use the same business rules as 15 or 20 years

ago? If those rules are still valuable and valid they should be well known by the

company and no code mining is required.
l Not all “If-then-else” statements in legacy code represent business rules, some-

times procedures, functions, and algorithms may be an implementation of

business rules. The context of execution is a very important dimension to

understand before reusing a coded (business) rule as-is.
l Variable names were often limited to eight characters in a flat data model. There

is no need to keep it that way. You may want to think about designing an

efficient object-oriented model.
l Most of the time automatic translation of badly coded business rules will

generate bad business rules in the new environment.
l Business rules implemented for a business rule engine have a different structure

than procedural code. They should be more atomic and isolated4 (see also

Concept: Atomic Rule in a later section), and the rule writer may leverage the

inference capacity of the engine. Therefore, the automatic translation will pro-

duce poor results.

4A business rule is said to be “atomic” in that it cannot be broken down or decomposed further into

more detailed business rules. If reduced any further, there would be loss of important information

about the business (Source: http://www. businessrulesgroup .org/first_paper/br01c3.htm).

4.2 Rule Discovery 85

The following table summarizes the different techniques classified per type of

source, based on Morgan (2002):

Source Static analysis Interactive Automated

Documentation Very good fit As a complement of

static analysis

Not yet possible

Know-how Not applicable Unique solution Not applicable

Code Efficient As a complement of the

other processes

Gives good result

Business record Depends on the

source

Moderate or a

complement

Depends on the source

(may be impossible)

When the source of the business rules is people, individual interviews are

required to get the core of the knowledge and then followed up with workshops

to resolve outstanding issues and process exception paths with the team.

Once we understand the type of elicitation roadmap, we can move to the

preparation and execution of the rule discovery activities.

4.2.2.3 Gather the Related Documents

For rule discovery based on documentation or code, the project team must gather all

the applicable documents and add (and version) them in a central document

repository for traceability purpose. The more information the team can gather at

the beginning of the discovery the easier the elicitation job is. There is a common

pattern of human thinking that the system is working a certain way, but no

document or even code can prove it really works as expected.

4.2.2.4 Studying Decision Point

It is a good practice to automate, with rule processing, the decision points of the

business process, leaving the exceptions to humans. Over time some exception

handling can be added to the rules. A typical case can be seen in loan underwriting

rules: An expert may quickly extract the main rules to support the loan application

(the loan to value should be under 85%), but over time, market conditions,

regulations, new legislations, and competition may enforce the line of business to

define exceptions to the core rules. Those exceptions are added to the ruleset as

new rules.

From the decision point table extracted in the previous activity, it is important to

complete its description by specifying the list of decisions required at this point of

the process. This table may be completed by logging the outcomes of conversations

with the different experts or by reading legal documents.

86 4 Rule Harvesting

4.2.2.5 Organize Rule Discovery

To make a better use of the development and business teams’ time, it is important to

plan in advance the workshop sessions and to clearly state what is in the agenda. We

recommend organizing the day in two parts:

l Use the morning for discovery workshops using elicitation techniques with the

project stakeholders and subject matter experts. During the rule harvesting cycle

of ABRD, the analyst team may want to use the rule template document to enter

the rule description and use some simple diagramming techniques to define the

business entities as conceptual data model5 (A good tool to use is a UML class

diagram editor, by adding entities as class and attributes and omitting the details

of the methods and the associations). Ensure the tool, notation used are clearly

understood by team members.
l Use the second part of the day to perform the analysis activities.

As explained in the previous chapter, the discovery workshops are executed

using different frequency of occurrence. In ABRD harvesting and prototyping

cycles, the workshops can be set every morning, but when starting with the

implementation cycle, they could occur only every 2 days or more, but never

more than a week apart to keep the team focused and enforce feedbacks.

The team should have access to a dedicated meeting room with white boards,

pencils, paper, post it notes, and potentially a UML tool to quickly develop diagrams.

To organize the sessions, the project teammay need to name a moderator responsible

for managing the meetings and keeping the team on track. The moderator role is to:

l Establish a professional and objective tone to the meetings
l Start and end the meetings on time
l Establish and enforce the “rules of conduct” of the meetings
l Introduce the goals and agenda for the meetings
l Facilitate a process of decision and consensus making, but avoid participating in

the content
l Make certain that all stakeholders participate and have their input heard
l Control disruptive or unproductive behavior
l Gather “Open Points” and follow up actions between sessions (use a simple

Excel sheet for instance or “Meeting Minutes” template document)

To organize the workshop, the project manager has to set a strict agenda inviting

all the domain experts who will help to formalize the rules. Gather the required

documents and explain how the meetings will be managed. The agenda may have at

least the following information:

5A conceptual data model defines the meaning of the things in an organization and includes

business entities and their associations.

4.2 Rule Discovery 87

l Which decision point is being discussed in this meeting
l Which documents to use

l Rule template
l Glossary of terms document
l Business process map or use case documents
l Conceptual data model
l Any additional helpful documents/resources

l The meeting room and the schedule
l The name of the moderator
l The high-level rules to follow during the meeting like:

l Be on time: you will have one “joker” for one time late. A fee of $5 will be

taken after that towards a conclusion party
l In each session all the members should participate
l We will use brainstorming techniques
l The moderator controls the time
l Everyone can have their opinion
l No criticism

The session should not last more than 2 h, typically from 9 to 11. This can be

scheduled for 2 or more consecutive days.

4.2.2.6 Execute Rule Discovery Roadmap

This activity supports the three types of rule discovery: business users and experts

workshop session, document study, and legacy code mining. Even if the main

sources of rules are documents or code, it is still important to come back to an

SME to get feedback on what the team discovered. Note that access to SMEs is

quite often challenging because they are typically engaged in other production

projects. To reduce this impact to a minimum, it is very important to do a lot of

preparation work to optimize the meeting time.

Rule elicitation is an ongoing activity you perform throughout the project.

Collaboration with your stakeholders is critical. They will change their minds as

the project proceeds and that’s perfectly fine.

It is important at this stage to remember that there are different types of

languages for expressing business rules:

l Natural language
l Restricted Language
l Formal expression using a specific grammar

The natural language is initially used during business conversations to describe the

rules, informally, without trying to impose any structure, for example with people

sitting around a table. At this stage, we do not have any templates or guidelines

88 4 Rule Harvesting

for structure that we need to abide to. Using this language, we may have redundancy

and inconstancy in the rule expressions and in the business terms used.

A second evolution is using a restricted language, still consumable by both

analysts and developers, but where we have imposed some structure and grammar

to the language so we can express rule statements with proper form. SBVR

proposes the restricted English for this purpose. The statement may not be correct

semantically (redundancy, consistency, etc.), but we can formalize the business

term and glossary of terms. Templates such as the one below can be used to also

define some meta-data attached to the rule:

Business Activity: use case # decision

Decision:

Policies:

Owner Person or team owner of the business policies

Candidate rule project Used later during the prototyping and building phases

Candidate Package Sometimes a decision point will be mapped to a group called package and be part

of a decision service. A decision service will have multiple packages with the or-

chestration of execution handled by a rule flow

History

Rule Name Rule Comment

Accident Prone
Customer

Use the raw natural language of the business conversation.

Later we may need to use a more strict language like the

restricted English of SBVR.

A customer who had an accident report in the past is
marked as accident prone

Use comment for

example to de-

scribe the type of

rule

inference

R2 It is necessary that only one deductible be attached to a
coverage

R3

Business entities
referenced

List the business entities used, this will help to build the conceptual data model

Who can change the
rules?

Can be filled during analysis, it helps to understand the velocity of the rule and

prepare in the design of the ruleset and the rule governance process

When the change can
occur?

Same comment as above.

The third type of language is precise and there are no ambiguities: the rule refers

exactly to information system objects. This language is parseable and nonambigu-

ous and can be executed by a computer.

4.2 Rule Discovery 89

4.2.2.7 Discovering Rules from SMEs

Interviews and analysis workshops are the two types of interaction used with

subject matter expert. For interviews, the typical number of people in the same

room is around two or three and for workshops six to ten people are involved.

Workshops can last several days. Interviews are used at the beginning of the

discovery phase and will most likely address one area of the business process.

The analysis workshop is perhaps the most powerful technique for eliciting a lot of

requirements. It gathers all key stakeholders together for a short but intensely

focused period. The use of a facilitator experienced in requirements management

can ensure the success of the workshop. Brainstorming is the most efficient

technique used during the sessions.

Brainstorming involves both idea generation and idea reduction. Voting techni-

ques may be used to prioritize the ideas created during a brainstorming session. The

workshop facilitator should enforce some rules of conduct during these workshops:

l Do not “attack” other members.
l Do not come back late from a break, even if key stakeholders may be late

returning because they have other things to do. The sessions are short so they

should be able to do other activities during the day.
l Avoid domineering position.

Some authors have suggested the following to improve the process:

l Facilitator keeps a timer for all breaks and fines anyone that is late, everyone gets

one free pass.
l Facilitator encourages everyone to use 5-min position statement.
l In case of a long discussion without reaching a firm conclusion or an agreement

it is good to use the business concerns to drive the elicitation.

A formal language features sentences which have a clear and unambiguous

interpretation. There are different kinds of formal languages:

l Predicate logic using syntax like: (8 X,Y) [Claim(X) LMedicalInvoice(Y) L
Relation(X,Y) ¼> (claimRefNumber(Y) ¼ claimNumber(X))]

l Object Constraint Language (OCL): is an addition to UML to express con-

straints between objects that must be satisfied
l Truth tables or decision table which present rule as row and columns repre-

senting conditions and actions
l Semantics of Business Vocabulary and Business Rules or SBVR which

defines structural and operational rules as well a vocabulary to define business

concepts
l JRules Technical Rule Language executable by a rule engine
l JRules Business Action Language, high-level language close to English,

which is formal as it is using a unique interpretation and unique translation.

Rule writers pick among a set of predefined sentences

90 4 Rule Harvesting

l If a rule is not clear, then it is a good idea to try it out/prototype it.
l Use concrete scenarios to illustrate some rules. These scenarios can later be

leveraged for tests.

The following table lists the standard questions the analyst team may ask during

the workshop, depending of the source:

Type of input document Questions Type of artifacts

impacted

Use case or business

process map

In this activity, what kind of control the worker

is responsible to perform the task? What kind of

decisions? On this use case step, the person

assess the application, what kind of assessment

is he doing? Is there a standard check list?

Use case or BPM

Rule description

document

Rule description What do you mean by (a business term
to clearly define)

Conceptual data

modelConceptual data model

How does it relate to (other business term)

Rule statement What about the other ranges of possible values

for this condition? How often does this

condition change? Do you have some other

cases?

Business Entities

Diagram

Rule description

document

Between sessions, verify that business terms are well defined and the rules make

sense and do not have logical conflicts. Log all the questions related to this analysis

in an issue tracking document (Open Points).

4.2.2.8 Discovering Rules from Documents

This approach is used when Governmental Administration or policy group issues

legal documents. We did observe this work requires courage and rigor. When using

electronic documents, we used the following practices:

l Annotate the document on anything that needs some future discussion
l Copy and paste the business policy declared in the document to the rule template

to clearly isolate it for future analysis
l Work in a consistent/systematic way to ensure a good coverage
l Check for agreement with the current business model as you go along
l Investigate discrepancies and log them
l Focus on stakeholder understanding (communication is key) and insist to clarify

how a legal rule is interpreted by the line of business

One risk with this approach is that the reader is making his own interpretation of

the context, and the document may not include all the cases and criteria leading to

interpretations. It is sometimes difficult to get the business motivation behind a

written policy. We recommend applying a rigorous method to be able to achieve the

following goals:

4.2 Rule Discovery 91

l Get an exhaustive list of the business events under scope: log them in a table
l Get the activities, tasks, and processes that support the processing of those

business events
l Identify where the business rules could be enforced in the process
l Get the business motivation behind the rules
l Get explanation on rules if they are unclear, ambiguous
l Try to extract the object model under scope, domain values by looking at the

terms used by the rules . . .

We should still apply agile modeling by involving the SMEs to get feedbacks on

the findings, assumptions, and issues. Use simple diagrams to communicate with

the project stakeholders.

4.2.2.9 Discovering Rules from Code

Discovering rules from application code is time consuming and does not lead to

great results. The analyst needs to study a lot of lines of code and procedures to find

the conditional operators which are linked to business decisions. Depending on the

design and code structure of the application, this work can be very time consuming.

It is important to remember the context of execution when the “if statement” is

executed, some variables may change the context of this “business rules.” With

some languages using limited length to define variable names it is more difficult to

relate such variables to business entities. A variable in one procedure can have a

different name but the same meaning. Code mining tools exist on the market and

help to extract business rules and the variables meanings. It is important to keep in

mind that rules written in the past may not be relevant any more. Lastly, as stated

previously, most of the rules implemented as procedural function need a deep

refactoring before deployment to a rule engine.

Code mining is commonly requested by people as it reassures the business team

that the rule harvesting starts by the existing behavior of the legacy code. Code

mining is usually better used to confirm behavior of some litigious points identified

from using other techniques than to try to extract all of the rules as a whole. Rule

discovery with SME, using workshop sessions, may conduct to ambiguities or

misconceptions. Trying to understand how the rules are implemented in the current

system helps to resolve such situations.

4.2.2.10 Documenting the Business Rules

We suggest that a template as presented above should be used for documenting rule

details during the harvesting phase. To document the rule, try to use the language

of the business (“problem domain”) rather than the language of the technology

92 4 Rule Harvesting

(“solution domain”). The following rule is as stated by a business user in a car rental

industry:

A driver authorized to drive a car of group K must be over 29

A rule developer may think to document the rule as:

If the age of the driver is less than 29 and the requested group of the reservation is
K, modify the authorized attribute of the driver accordingly.

As stated above it is important to identify the different languages used to

document the rule. The rule statements may evolve with time. We use different

templates for documenting rules, depending of the type of discovery roadmap.

ABRD includes different templates you can leverage.

4.3 Rule Discovery: Case Study

To illustrate all the concepts described in this book, we use a simplified business

process for the claim processing application in a fictional insurance property and

casualty company named MyWebInsurance. Currently, the claim processing appli-

cation is using a mix of a legacy COBOL application, which has been doing an

excellent job during recent years using a data processing approach, and packaged

applications, which are not easily adaptable to support new requirements. In the last

few months, an increase in the number of claims to process has led the business

executives to address the following business problems:

l Supporting better user experience by giving clear information on the claim

processing state
l Supporting a dramatic increase of the demands: more claims to process without

hiring more staff
l Supporting new regulatory rules or financial audit policies that force, for exam-

ple, to pay a claim within 30 days or to be able to re-play an old processed claim

for audit purposes

As business grows, customer quality concerns arise because the legacy applica-

tion could not easily and quickly be modified to support new demands and changes

to the process. We can imagine many more drivers for the change but those

important business requirements force the enterprise architect of MyWebInsurance

to work on the future evolution of this claim processing application, based on agile

technologies such as BPM, BRMS, MDM, ESB, and leveraging a Service Oriented

Architecture.

The current business process starts with an insured person sending a claim or a

medical service provider sending a medical invoice to the company. The following

actors or stakeholders are part of the process. Each actor is accessing the current

legacy application using different menus depending on his role.

4.3 Rule Discovery: Case Study 93

Actor Role Type of interface

Claimant The insured person Use standard paper forms

to fill the claim

Patient The person related to the insured person

who receives medical treatments after

an accident

May mail medical

invoice

Medical service

provider

The medical provider or other service

provider who can invoice.

Enter information on a

legal paper form.

Mail processor

(MP)

The claim or bill request is received by mail,

so the mail processor enters some

information in the system. The system

returns the claim number and the claim

processor candidate to handle this claim.

The paper form is routed internally to the

claim processor

Legacy text-based screen

– claim entry

Claim processor

(CP)

Responsible to complete the data entry, to

make first level of investigation, to pay

simple claim, and additionally, some are

responsible to analyze customer records

and determine if the billed level of service

is appropriate

Legacy text-based screen

– claim processor

access

Claim adjuster

(CA)

Responsible for coverage, liability, and

damage investigations. The CA authorizes

payments for both indemnity and expense

payments and is responsible for providing

the direction to bring claims to a timely

and accurate conclusion

Legacy text-based screen

– adjuster access

Branch manager Manage the claim processing employees

within a branch. He is involved in specific

claim reviews typically with invoices

above a certain dollar amount

Legacy text-based screen

– manager access

The process below is a simplified version of a real insurance claim application,

but illustrates the major activities we need to consider for our case study. The

analyst is using the current application main user menu to initiate the process

modeling task.

When MyWebInsurance receives the paper documents, a Mail Processor starts
the process by looking at the paper sent and by assigning the document to a Claim
Processor. He assigns a claim number at this moment by using a legacy system to

get new claim number. Then the medical invoice or the claim follows a set of

activities to assess the customer eligibility, the coverage as defined in the policy and

to evaluate the amount of money to pay. The set of issues found by the different

applications and by the people are resolved during the life cycle of the claim. This

process can take a lot of time and it is possible that the bill may not get paid on time

and to get penalties.

The claim validation and coverage verification are completed partially manually

by the claim processor visiting a set of screens and data fields to verify if coding

is entered correctly. There are some communication protocols, using mail to route

the work item to a different person in the process. The file moves from an input

basket to the output basket of the claim processor. The process is hard coded

94 4 Rule Harvesting

in the application. Changes are difficult to make and take a long time to release.

Some functions are already revamped with a web interface to reduce the cost of

maintenance. When the claim is verified successfully, the adjudication can be

calculated by one of the adjusters. The process in our case ends with the payment.

In fact all the issues are well managed by the application, and correspondence is

generated to ask questions to service providers or claimants to get more informa-

tion. All correspondence is persisted in a legacy data store and can be retrieved from

the screen to see the progress of the claim within the process and what information

we are waiting for. Figure 4.3 was used to present this process.

We will not spend too much time describing the process in detail, but from this

process the analysis team members can define the following decision point table:

Decision point

name

Description Source for rule

discovery

Current

state of

automation

Rule owner –

SME

Claim verification Validate that the claim

or medical invoice

entered in the system

contains valid data

Interview SME and

insurance legal

document and

policies like the

one related to

UB92 legal form

Manual Adjuster

department

(continued)

User Login
Manager access:

Operational Reports
User Admin

+

Adjuster access:
Claim Summary
Claim Review

~ +

~ +~

Claim Entry

Coverage
Verification

Adjudication

+

Manage
Adjudication

Issues

+

Issue Payment Or
Correspondance

Claim
Processor

Claim Processor
Main Menu

Branch
Manager

Adjuster

Issue
Management

Claim Verification

~ +

~ +

+

Fig. 4.3 As-is claim process as described by claim processor

4.3 Rule Discovery: Case Study 95

Decision point

name

Description Source for rule

discovery

Current

state of

automation

Rule owner –

SME

Coverage

verification

The system needs to

verify what coverage

and deductible apply

to the given claim

Interview SME,

query the policy

data base for

coverage and

deductible types

Manual Adjuster

department

Adjudication Claims adjudication in

health insurance

refers to the

determination of a

member’s payment,

or financial

responsibility, after a

medical claim is

applied to the

member’s insurance

benefits

Interview and legal

rule

Manual Adjuster

department

Route issue If there is an issue in the

automated process, it

will create an issue

that needs to be

handled manually.

Decisions on who to

route this issue can

be made. Claims can

follow at least three

paths:

Interview claim

operator manager

Manual Management

department

l Automatic processing
l Exception-issues to be

resolved by claim

processor
l Exception-issues to be

resolved by claim

manager

We will focus on two decision points: claim validation and claim adjudication.

For the claim processing application, the development team decided to apply a rule

discovery process based on a business process analysis roadmap. Sources for the

rules are divided between expert know-how and some legal documentation and

forms. The execution of rule discovery workshops with the different claim proces-

sors and managers provided the following important information:

l Claims and medical invoices are received by mail. A “mail processor” (human)

assigns a unique claim number and then routes the claim to a claim processor

(a person). This data is manually written on the claim. The claim processor

enters the claim in the system. The description is based on a simplified version of

the UB92 (or HCFA1450) American standard form. In this example, we keep the

96 4 Rule Harvesting

simplest version so that the process can easily be adapted to other countries. We

do not aim to develop a real business application.

Patient control number:
xxxxx

Statement covers
period
From Through

Admission
Date Hour Type Src

Patient name

Type of bill

Patient’s Birthday Sex Patient’s Address

Conditions codes:
RCC description Rate Unit Serv.date Total Charge Non-covered

Payer name Est. amount due Due from
patient

Provider no. Provider address

Insured’s name Insurance company
ref

Employer name Employer
location

Treatment authorization
codes

Principal procedure

Code Date

Other procedure

Code Date

Other proc.

Code Date

remarks Provider signature Date

l Certain types of claims are either calculated manually or processed through

stand-alone software applications. A small minority of claims are paid in full,

requiring no adjudication.

Here is an example of a rule from a legal statements at the back page of the UB92

form: If the patient has indicated that other health insurance or a state medical
assistance agency will pay part of his/her medical expenses and he/she wants
information about his/her claim released to them upon their request, necessary
authorization is on file. This rule may land behind the claim validation decision

service. Some business terms like patient, other health insurance, claim informa-

tion, release authorization, need to be integrated in the conceptual data model and

somewhere the process needs to include a notification activity to exchange corre-

spondence with the other health insurance party. Studying the UB 92 form leads us

to extract the following business entities:

4.3 Rule Discovery: Case Study 97

l This form represents a medical bill: MedicalBill. A code supports the type of

bill. This code is a legal reference number and can be retrieved from a reference

data source.
l Provider name, address, and telephone number are required; the minimum entry

is the provider’s name, city, state, and ZIP code.
l The patient’s unique alphanumeric number assigned by the provider to facilitate

retrieval of individual financial records and posting of payment.
l The type of bill is a three-digit alphanumeric, with the first digit specifying the

type of facility:
l 1 – Hospital
l 2 – Skilled nursing
l 3 – Home health
l 4 – Religious nonmedical (hospital)
l 5 – Religious nonmedical (extended care)
l 6 – Intermediate care
l 7 – Clinic or hospital-based renal dialysis facility (requires special informa-

tion in second digit)
l 8 – Special facility or hospital ASC surgery (requires special information in

second digit below)
l 9 – Reserved for national assignment

The second digit is for classification outside of a clinic, and the third digit is for

frequency.

l The medical bill includes the patient information, like control number (required

number assigned by the provider), name, address, and his status related to the

insurance policy; patient sex is M or F. The month, day, and year of birth is

shown numerically as MMDDYYYY.
l The coverage period: beginning and ending dates of the period of the injury.
l The admission type to identify if this is an emergency (severe, life threatening,

or potentially disabling conditions), urgent, elective, or NA.
l The conditions code: codes identifying medical conditions related to this bill

which may affect processing.
l The line item includes a medical procedure code, revenue description, a rate,

service data . . . The medical procedure code is a very important element to

identify the type of invoice. A large portion of the rules will have conditions that

look at this code.

The claim verification step is started once the claim data entry is completed. The

following business policies are extracted from interactions with the different claim

processors of the company (Table 4.1):

For the purpose of this sample, we are not developing a complete application.

Claim processing represents one of the most difficult applications in the insurance

industry. The rules above should help to support the analysis and development of

our first ruleset and not support a real-life claim processing application. It is also

98 4 Rule Harvesting

Table 4.1 Claim verification rule description

Process step:

Validate

claim or

medical

invoice

Called after the claim or medical invoice is entered in the system.

Business motivation: Any violation of the following rules will be a rejection of the

claim or the medical bill. The claimant needs to provide accurate data. The sooner

we can extract data inconsistency the lower will be the cost of processing.

Rule id Raw description of the rule Comment – rule classification

VC01 The Claim should be initiated within 30

working days after the accident

Guidance. We may need to specify a

range of possible days when the

Claim must be rejected. We can

propose 45 days and never after

1 year. Also the number of days

could come from the policy

VC02 We need to verify that the accident location

is one supported by the policy. For a

given product, MyWebInsurance defines

different states where the policy applies.

But as the customer may want to change

this coverage, the list of possible states is

attached to the policy

Constraint. The list of supported

states is variable

Rejection generates issue

VC03 Verify that the person state of residency is

one supported by the policy

Constraint.

Rejection generates issue.

VC04 The customer insurance policy has a set of

coverage with coverage code, which

needs to be different from 05 and a

business code not equal to 45

Very specific – Constraint.

Rejection generates issue

VC05 The claim must be issued before the

expiration date of the policy.

Constraint

Rejection generates issue

VC06 The date of loss should be before the

expiration date of the policy and after

the effective date

Guidance. We may need to specify

a range of possible days when

the Claim must be rejected

according to the federal and

local laws

VC07 The claim applies on a property covered by

the policy (a car, a bicycle)

Constraint

VC08 The billing invoice is always linked to a

claim. It includes a reference to a patient

and a list of billing item. Each billing

item has a procedure code, a quantity, a

service data, total charges, and

noncovered charges. If any procedure

code is unknown raise an issue

Constraint

VC09 When the medical invoice is the first

received for a given claim, we need to

verify that the date of the earliest service

has to be within 1 year after the date of

loss, and the invoice should be received

before this 1 year delay

VC10 The first medical treatment should be within

90 days after the date of loss

VC11 A policy applies to one or more listed

drivers. Listed drivers mean the first

name and last name provided by the

insured person. A claim must come from

one of the listed drivers

4.3 Rule Discovery: Case Study 99

Table 4.2 Adjudication rule description

Business Activity: adjudication of medical invoice

Decision:

Policies:

Owner Adjudication department – Adjudicator director

Candidate rule project adjudicateClaimRules

History

Rule name Rule description Comment

Verify Treatment

needs independent

medical

evaluation

Evaluate if one of the treatments in the

medical bill needs an IME by looking

at the medical procedure code in table

“IMEevaluationNeeded.” We want to

add some criteria on the invoice

amount and later on the service

provider

This may be implemented

with a decision table to

look for each line item the

procedure code and the

action is to set some IME

needed or not with a type

of IME request. This

resolution will include

information such as:

Need peer review, need

potential peer review, and

need claim processor’s

review

The invoice is put on hold,

and the action is wait for

IME results

Review IME results If the invoice needs IME, verify we have

all the IME results. If not continue to

keep invoice on hold and create issue

for each missing IME result

Missed Medical

Evaluation

Appointments

When there are two or more missing

Independent Medical Evaluation

appointments, the invoice is set to

“grounds for non-cooperation.” This

should force denial of the entire claim

Create an issue for the claim processor to

contact the person with the number of

appointments missed

Identify Medical

Procedure

excluded from

Expert Treatment

evaluation

Deny any invoice with medical procedure

(s) not supported by our expert

evaluation

The IME result has

Treatments. So we need to

verify for each line item of

the invoice; the procedure

code is the same as the

treatment code

This can be accomplished in
java or SQL with a join
between two collections

ReviewByLicensed

chiropractic

The chiropractic claim must be reviewed

by a licensed chiropractor. Procedure

code start by “CHIR”

GoodStanding

Chiropractic

The chiropractic consultant must be in

good standing and have a current

license in the state in which the review

is performed with no current license

term violations

(continued)

100 4 Rule Harvesting

Table 4.2 (continued)

Business Activity: adjudication of medical invoice

Decision:

Policies:

Owner Adjudication department – Adjudicator director

Candidate rule project adjudicateClaimRules

History

Rule name Rule description Comment

Emergency

Treatment after

date of loss

Create an audit review if there is a

medical treatment given in the

emergency room later than 5 days

after the accident

ER Treatment after DOL

Ambulance after date

of loss

Create an audit review if there is a

ambulance transport not on the same

day as the accident

Ambulance Treatment not on

DOL

Too late medical

treatment

If the earliest medical service date of any

treatment invoiced is after 1 year of

the accident deny the entire invoice

and report an issue

Reason is: “First Date of

Service is one year past

Date of Loss”

Gap in treatments If there is at least more than 100 days

between the earliest medical service

date of any treatment invoiced and the

last date of medical service on

previous invoice, then deny the entire

invoice

Late treatment Create an issue when the earliest medical

service is given 90 days after the date

of loss

Reason is: “First Date of

Service is a late treatment”

Late invoice Create an issue when the received date of

the medical invoice is 1 year after the

date of loss

Reason is “Receipt date of

invoice one year past Date

of Loss”

Bill not timely We are rejecting the invoice if there is any

line item with a date of service older

than 90 days from the date of invoice

Outpatient

reimbursement

The covered outpatient services include

the following services, emergency

room, ambulatory room, medically

necessary outpatient hospital and

clinic, radiology, and medical

imaging

When the invoice is from an hospital and

related to an outpatient service, the

revenue code needs to be 490 and bill

type 83X; any surgical procedure

listed in CPT code will be reimbursed

accordingly

Reimburse the service at the outpatient

OMB rate

Otherwise claims are reimbursed by

multiplying covered charges by the

statewide outpatient cost-to-charge

ratio

4.3 Rule Discovery: Case Study 101

important to note that those rules are not in their final state, we will transform them

using a more formal representation during the analysis phase.

In insurance, claim adjudication refers to the determination of an insured

person’s payment, or financial responsibility, after a medical claim is applied to

the insured’s insurance benefits. Most of the time the insurance company will

initiate some expert audit, called Independent Medical Evaluation, to complete

the diagnostic of the patient and evaluate the appropriateness of the given treatment.

An Adjustment is the calculation of the amounts to be made paid by the insurance

company. For the “adjudicate claim” decision point, the rule discovery aims to

develop the business rules as in Table 4.2 which presents a second type of template.

4.4 Rule Analysis

The goal of the rule analysis activity is to understand the meaning of the rule as

stated by the business person and subject matter experts and to remove any

ambiguity and semantic issue. The objective is to prepare the rules for the future

implementation. As mentioned in the Chap. 3, rule analysis can start as soon as the

team has some rule descriptions which are agreed upon by the subject matter

experts. The rule analysis phase includes activities such as “analyze the rule

description and fact models”, “transform the rule”, “build test scenario”, “design

the data model used by the rules”, and “synchronize with current logical or physical

data models.” The flow may look like in Fig. 4.4.

4.4.1 Analyze Rule Descriptions and Fact Models

The first activity focuses on analyzing the rule descriptions to extract the business

entities and terms used. During the elicitation activity, the raw description of the

Developer

Rule Analyst

Analyze
Rule Description &

Fact Models

Transform
Rules

Rule
Description

Build
Test Scenario

Functional Test
Description

Design Data
Model for Rules

UML – XSD, Java

Synchronize
With Other Data

Models

Java, XSD, SQL

Conceptual
Data Model

Rule Description

A
na

ly
si

s
T

ea
m

Fig. 4.4 Rule analysis activities

102 4 Rule Harvesting

rule uses business terms as used in a common language, used by the people. We are

at the expression level used to communicate between humans. At this level, terms

have lot of ambiguities. To be able to remove those ambiguities, we need to define

the meaning of the concepts used and link them by formal propositions.

W3C has produced important specifications to define semantic models which

could be used to define the data model used by the rules. As mentioned earlier,

OWL (Ontology Web Language) helps to define the enterprise domain model or

ontology. The ontology describes the concepts in the domain and the relationships

between them. It can vary from taxonomy to conceptual model. OWL leverages

W3C-RDF, the Resource Description Framework, to persist the semantics of the

things to be described in XML format. A reasoning engine can check the internal

consistency of the statements and definitions in the ontology. It can also classify
concepts by finding the definitions/categories under which they fit. Many compa-

nies interested in business rules are also considering developing an enterprise

ontology with OWL-RDF. The adoption of such standards and emerging tools

will help to develop the complete semantics needed for enterprise data models.

Using a more traditional approach, Object-Oriented Analysis (OOA) describes

what the system is by using a set of models of the system as a group of interacting

objects. Each object represents some entity of interest and is defined with a Class.

A class includes attributes and behaviors as methods. OOA models are typically

represented with UML use case diagrams, UML class diagrams, and a number of

UML interaction diagrams. Using an OOA approach, we can model the concepts

used by the business in static class diagrams to use a formal notation. At this stage

of the methodology, we may have the following possible data models in our hands:

l A conceptual data model
l A logical data model
l A physical data model
l Some reference data which describes static list, enumerated value, classifica-

tions, and the like

Those models are not finalized, and they are enhanced and transformed during

future iterations of the harvesting and prototyping phases. Most projects have

already some data models, and database analysts contribute to explain how some

business concepts are mapped to physical data model elements. When using a rule

approach, it makes sense to start by the rule description and define the data model

from there and not to start from an existing physical data model. We need a view of

the current data model and a clear definition of the terms used by the rules; we do

not need a complex data model to express the rules. Rule analysts have to extract

the business terms from the rule statement and build a business glossary. We did

observe that this glossary brings a lot of value to the line of business as terms are

defined without ambiguity and interpretation. Business terms and their relationships

can be represented in a conceptual data model (CDM) or entities diagram. The steps

to perform the analysis are:

4.4 Rule Analysis 103

l Highlight the nouns used in each rule description. We are talking about Terms,

as referring to a business concept used in daily business operations. It can be

one or more words and nouns. They are often differences found in between

departments, and each department may refer to the same business concept but

defines it using different perspective and hence different words. These are

actually synonyms. Examples of term are: a taxpayer, a taxpayer obligation, a

loan, a claim, a legal entity, an application, a customer, a product, etc.
l Analyze facts: A fact is a statement that connects terms into a business-relevant

relationship. Some examples of facts: A taxpayer files a tax return form; the

customer could have only one purchase order at a time; a medical invoice is

linked to one claim. The fact has to be analyzed to understand how the applica-

tion will support it. It can be through use case implementation, business rule, or

the relation between objects.
l Build the facts declaration to define the used terms. It is possible at this level to

represent entities in a model using a diagram such as a UML class diagram (see

Figs. 4.5 and 4.6).
l Map it within a conceptual data model diagrams.

A term may describe a business concept which will be mapped to a Class, a

characteristic of a business entity which will be mapped to an attribute of a class,

and sometimes a term may describe the way a business object behaves. In that last

case, it will be mapped within a method of a finite state machine. As an example we

can take the following rule description:

Adjusters reject the invoice if any line item has a date of service older than 90 days
from the date of invoice.

From this rule statement, an analyst can build the following facts:

l Adjuster is an employee of the insurance company.
l Invoice is a medical invoice.
l A medical invoice has a date of invoice.
l A medical invoice has at least one line item.
l A line item describes a medical treatment.
l A medical treatment has a date of service.
l A medical treatment must have one unique procedure code, a quantity which is

at least one (and most likely a price but we do not know yet).

The creation of facts may generate new rules. Here we can add the following

business rules into the scope:

l If the claim is related to a loss, the date of loss has to be provided.
l The insured person must have a residency in the USA.
l The patient name, address, and status must be on the medical invoice.

It is clear that we can add a lot of facts to link terms in our model. And we

can spend months of documentation doing so. In Agile Business Rule Development,

104 4 Rule Harvesting

we prefer having working rules and light documentation. Such facts can be presented

by a set of diagrams, which will help us communicate with business users. Those

diagrams evolve later to class diagrams from which we can generate code. Diagrams

are always a good vehicle for communication. It is also important to make different

diagrams for different audiences, but to also maintain them in synchronous manner.

We propose to keep the conceptual model as a set of diagrams to communicate to the

business user. These diagrams evolve with the rule harvesting phase.

It is important to note that not all the rules can be implemented and deployed into

a software component. Some rules may end in a procedure manual delivered to the

worker to enforce a good business practice as defined by corporate policies.

4.4.2 Transforming Rules

The activity “Transform Rules” leads to modifying rule declarations so that they

become formal, atomic, and standalone elements. This is needed for understand-

ability and ease of implementation and maintenance. This activity also includes

understanding the rule patterns, eventually removing redundant rules, or resolving

overlaps among rules. This activity is also conducted during the implementation of

the rules, but it is started during the analysis, so we are detailing the approach in this

context. The key concept is to transform rules to an atomic level as much as

possible.

Rule conditions are true or false and should lead to one result. The rule analyst

has to clearly understand the Boolean logic.

Concept: Atomic Rule

A rule is atomic if it cannot be further decomposed without losing meaning.

Atomicity is desired for understandability, ease of maintenance and execution

efficiency.

The following rule statement can be decomposed into two rules. From

The insurance does not reimburse medical expenses incurred abroad if the
claim is presented more than one year after the expenses had been incurred,
or if the claimant has spent more than 182 days abroad within the past year.

to

– When the date of creation of the claim is more than one year after the date of
treatment of the medical expense then reject the medical expense.

– When the claimant spend more than 182 days abroad within the past year
then reject the claim.

4.4 Rule Analysis 105

Concept: Boolean Logic Summary
6

AND/Conjunction
The conjunction of two propositions is true when both propositions are true. The

truth table is:

AND A True False

B

True True False
False False False

Another notation is using the dot operator for AND so A.B is equivalent to A

AND B.

OR/Disjunction
Disjunction of two propositions is false when both propositions are false.

OR A True False

B

True True True
False True False

Another notation for disjunction is using the operator + for A OR B like A + B.

NOT/Negation

A NOT A

True False
False True

Implication
A!B, implication is a binary operation which is false when A is true and B is

false. A!B can be expressed as NOT A OR B.

A!B A True False

B

True True True
False False False

XOR or exclusive OR
Exclusive OR of two propositions is true just when exactly one of the propositions

is true:

XOR A True False

B

True False True
False True False

6See also http://en.wikipedia.org/wiki/Introduction_to_Boolean_algebra; http://www.internettu-

torials.net/boolean.asp.

106 4 Rule Harvesting

To refine rules to the atomic level, the rule analyst has to apply some transfor-

mation patterns. For example, when a rule is an inference or an action enabler, it

may be important to consider separating expressions linked with ANDs within the

action part of the rule (also named the right hand side).

This is due to the fact that a change in the data used as part of the conditions of a

rule may force the reevaluation of all rules using such data. We will detail the rule

engine’s RETE algorithm in Chap. 6. In the first schema nothing happens before the

end of the action. So if the action B makes the condition A false, C is executed when

it really should not.

When expressing an inference rule or an action enabler, do not allow ORs on the

left hand side of the rule (the condition part); break the rule.

De Morgan’s Law
De Morgan’s law represents rules in formal logic relating pairs of dual logical

operators in a systematic manner expressed in terms of negation:

NOT (A AND B) = NOT A OR NOT B

NOT (A OR B) = NOT A AND NOT B

De Morgan’s law can be used to improve rules during the rule transformation

activity.

A pattern of criteria organized such as:

IF condition_A THEN do (B) AND do(C) may be rewritten as two rules to

make them atomic

IF A THEN do (B)

IF A THEN do (C).

A pattern like:

IF A OR B THEN do(C) can be rewritten as two rules to make them atomic

IF A THEN do(C)

IF B THEN do(C).

This is a good practice when the conditions A and B are complex. A simple

condition like the age is 18 or 21 does not need to be separated into two rules.

Also the semantic of the OR has always to be assessed. It could be that the

subject matter expert means an exclusive OR. In that last case the rules are:

If A and Not B then do(C)

If B and Not A then do (C)

4.4 Rule Analysis 107

When expressing constraints (must, have to) and guidelines (should), try to

remove ANDs between conditions and clearly separate them in different rules.

Make sure that each rule contains only necessary conditions; do not over-

constrain the rule applicability. The rule analyst has also to look for redundant

rules and try to remove them. Redundant rules are duplicated rules, duplicated

through some transformations (renaming, inversion of conditions, etc.), and redun-

dancies among rules that create a common data value or a common truth value, or

initiate a common action.

Removing redundancy is simpler if rules are atomic, otherwise analyst may get

lost in the equivalence of complex logical formulas (e.g., If NOT (A AND B) is

equivalent to IF (NOT A) OR (NOT B)). There are subtle forms of redundancy:

IF A AND B THEN C is equivalent to IF (NOT C) THEN (NOT A) OR (NOT B).

Sometimes changing the order of conditions can help highlight identical rules: IF A

AND B THEN C is the same as IF B AND A THEN C. This looks obvious as

written like a mathematical expression, but depending on the rule language it may

be difficult to see at first reading.

Another step of the analysis is to remove inconsistent rules. Overlapping rules

are partially redundant because they are not semantically equivalent but they point

to problems: one rule may say IF A AND B THEN C, the other says IF A THEN C.

The question will be: is B really needed to infer C? One of the two rules should be

eliminated or modified to fix the inconsistency.

It is also possible to get semantically equivalent conditions with contradictory

conclusions: two rules like IF A THEN B; and IF A THEN NOT(B) are two

conflicting rules, probably due to two different sources of information for docu-

menting the decisions. Typically, this is symptomatic of the fact that we are missing

some necessary conditions in either rule (or both, e.g., IF A AND C THEN B; IF A

AND D THEN NOT(B)).

Another pitfall are rules that lead to the same conclusion based on contradictory

conditions: rules like IF A THEN B and IF NOT (A) THEN B. Logically, this

means that the conclusions should always be true. This is symptomatic of the fact

that the condition is not really relevant to the conclusion.

The analysis has to ensure the completeness of the rules. We may consider three

kinds of completeness:

A business policy like:

A driver must be 25 years old or older AND must have good credit rating
May be split into two constraints like:

Rule 1: A driver must be at least 25 years old

Rule 2: A driver must have good credit rating

The goal is to clearly separate the constraints. The action part of the rule will

most likely raise an issue. It may be more efficient to have all the issues the

business transaction is violating. Here we want to see the issues reported about a

bad credit and a young driver.

108 4 Rule Harvesting

l Make sure that all the possibilities are covered for a given rule pattern. If you

have a rule that says “loans for value greater than $250,000 should be approved

by the branch manager”, it does not tell us who must/can approve loans of value

less than $250,000.
l Make sure that all derived data in the object model has corresponding computa-

tion or inference rules. This involves computed attributes, qualifications (e.g.,

customer status, account type, etc.).
l Make sure that integrity and cardinality constraints are somehow represented.

Either in the object model or in rules.

The analysis phase is a good time to ask the business user how often the rule will

change, we call this rule volatility. Rules about risk computation, eligibility, under-

writing, or configuration may change over time. We notice that when a user does not

anticipate the rule changing, rules unplanned at the beginning are added over time.

Some rules may not change often but other rules in the same ruleset may. Moving the

“non changing” rules outside of the ruleset may have bad impacts on the ruleset

integrity. When looking at rule volatility, it is important to assess which factors

trigger rule changes and how new rules are defined for a given decision point.

Lastly, the rule analyst needs to understand the rule dependencies and rule

sharing goals. A rule R1 depends on a rule R2 if the enforcement of R2 results

into a situation where R1 is relevant (or needs to be enforced). A simple example is a

rule R2 which is creating new data or is modifying existing data that is tested by R1.

Rule sharing is a more complex concept to implement and may be linked

to the BRMS capability. The goal is to avoid to copy and paste the same logic

across rulesets. One ruleset can include a set of rules that are common to multiple

ruleset. For example, testing the age of a customer can be put in a common rulesets.

The other rulesets are referencing the common one, and rules are shared. A possible

side effect of rule sharing is rule overriding: a specific rule in one ruleset takes

precedence over another rule in a common ruleset. The overriding enforcement is

most likely done using some meta-properties attached to the rule.

Understanding dependencies help determine the likely “execution” sequence

of rules. The execution sequence is useful for rule analysis to detect undesirable

dependencies. For the implementation, the execution sequence is useful to under-

stand what the results will look like: some rule engine determines that sequence

automatically and on the fly (chaining). If we implement business rules in a

procedural fashion, we need to understand the execution sequence to enforce it.

Some of the undesirable dependencies include circular dependencies leading to

infinite loops.

4.4.3 Building Test Scenarios

Developing software without testing makes no sense in today’s world (we

hope!). Developing rules deployed in a rule engine helps developers to efficiently

4.4 Rule Analysis 109

support a Test Driven Development (TDD) approach. Writing tests before author-

ing the rule makes testing part of a validation feedback loop. During the harvest-

ing phase, the analysis team needs to develop test scenarios and data elements

to support the future rule writing and testing. The development of concrete

scenarios leads to the clarification of ambiguities, finds holes in the decision

processing, enhances rules decision coverage, and the overall quality. Implemen-

ted rules are software elements like methods and classes in object-oriented

development: we may define tests for each rule. Concrete scenarios may be

written as a story board. Start by a simple case and then add more data elements

to cover specific rule.

Here is an example of user story: Jack Bee living in California and customer of
WebInsurance for 3 years as a good driver. He filed a claim for a minor car
accident where his friend Mark, located on the right seat, was slightly injured at
the neck. Mark went to the hospital one day after the accident and he follows up
with his medical provider. The hospital and the medical provider are sending
invoices to Webinsurance. One medical invoice includes neck massage with a
date of treatment six months after the date of the accident. The invoice should be
rejected.

4.4.4 Verify Rules Against the Data Models

The rule analyst needs to continuously verify that business terms used in rule

statements are part of the logical data model as classes or attributes. The model

exposed to the rules needs to get data from data sources. If a concept is not in the

data, it has to be quickly handled and managed by the application architect. So this

activity of synchronizing the work done at the model level with the different

existing data models is a very important task of any business rule project. Most

of the time a concept has different names, but sometimes a new concept may force

adding a new column in a table.

With Test Driven Development (TDD) we write a single test before writing the

rule which fulfills that test. Basically, the rule writer executes the following

steps:

l Add test by specifying the data and expected results
l Run the tests to ensure that the new test does in fact fail
l Create or update the rule or rules so that they pass the new test
l Run the test suite again to verify the test now succeeds

The advantage of TDD is to write rules by small increments, which is safer

than writing a complete ruleset without testing. Another advantage is that it

helps design the code, the rules, and how exceptions are reported.

110 4 Rule Harvesting

4.5 Case Study: Rule Analysis

Back to the WebInsurance claim processing application, the rules in Tables 4.1

and 4.2 are analyzed and completed after discussions with the SMEs. The following

facts are added:

l The claim must reference one insurance policy.
l The insurance policy has at least one insured person.
l A patient is also called an involved party.
l An involved party is a legal entity involved in a loss; he could be the insured

person.
l An accident is a loss.
l A policy is an insurance policy.
l An insurance policy lists a set of coverage.
l A coverage has a unique coverage code.
l Coverage is the amount of protection against loss.
l A deductible is the amount the insured must pay when a loss occurs.
l An insurance policy has one effective date and one expiration date.
l Claim has a date of creation.
l The insured person has one or more properties covered by one policy.
l A medical invoice includes code to define the type of bill.
l A medical bill is synonymous as a medical invoice.
l A medical bill includes the patient information.
l A medical bill includes a control number (required number assigned by the

provider).
l A medical invoice is issued by one medical provider.
l A medical invoice includes a cover period.
l The cover period has beginning and ending dates of the period included in the bill.

From these facts, we can build the following conceptual data model. This model

is closed to a UML class diagram, but is used as a tool to communicate the business

concepts with the SMEs and the IT team. This is important to use this artifact to

present the data model used by the rules (Fig. 4.5).

Fig. 4.5 Claim conceptual data model (CDM)

4.5 Case Study: Rule Analysis 111

For the medical invoice or medical bill, the model looks like as shown in Fig. 4.6.

These diagrams are not complete, but we have enough elements to prototype

some rules. All these model artifacts help us build a common vocabulary with a

structure and syntax we can quickly leverage for our implementation.

4.6 Summary

Rule discovery should not be performed in one long session running for weeks to

produce only documentation. Rule harvesting starts at the beginning of the project

but is supported with the rule analysis and rule authoring, so that the work produces

executable rules and nonexecutable rules. There are cases where the business rules

have to be coded in the core application, in the data model structure, or in

components other than a rule engine. The rule documentation can indicate where

the rule is implemented or enforced. The rule description uses the language of the

business and not a technical language.

Rule Analysis is a very important activity in the ruleset development life cycle as

it prepares the rules for a successful implementation. Focusing on the data model,

the rule semantics and the process flow can help to determine where to implement

the business rules. Analysis should not be limited to paper work, but should also use

UML tools and even the rule IDE. This should not be a long activity as we are

proposing to quickly move to the next phase of rule prototyping. It is easier to find

issues related to rule expressiveness or the data model by implementing rules, not

by writing extensive documentation.

4.7 Further Reading

Barbara von Halle’s STEP methodology, presented in her first book “Business
Rules Applied: Building Better Systems Using the Business Rules Approach”
(2001), does a great job with rule discovery and analysis, both in terms of

Fig. 4.6 Invoice conceptual data model (CDM)

112 4 Rule Harvesting

identifying the different discovery and analysis activities and in proposing effective

techniques for performing them. The techniques presented here are largely based on
STEP.

Tony Morgan’s book “Business Rules and Information Systems: Aligning IT

with Business Goals” proposes three rule discovery roadmap families depending on

rule sources (SMEs, documents, and code), and much of our discussion of those

(sections 2.2.7, 2.2.8, and 2.2.9) is inspired from that book.

Two of the main contributors on decision management and decision service

approach are James Taylor and Neil Raden with their book “Smart Enough Sys-
tems: How to Deliver Competitive Advantage by Automating Hidden Decisions” –
Prentice Hall (2007).

The Object Management Group (http://www.omg.org) has defined the Semantic

of Business Vocabulary and Rules specification, which can be read at http://www.

omg.org/spec/SBVR/1.0/.

The OMG also specifies an important framework to define a business motivation

model, where the specification can be read at http://www.omg.org/spec/BMM/1.1/.

Detailed about the W3 “OWL Web ontology Language” (OWL) and Resource

Description Framework (RDF) can be found at http://www.w3.org/TR/owl-features/

and at http://www.w3.org/TR/2004/REC-owl-features-20040210/#ref-rdf-schema.

Conceptual data model is introduced at en.wikipedia.org/wiki/Conceptual_

schema and at http://www.agiledata.org/essays/dataModeling101.html.

4.7 Further Reading 113

Chapter 5

Prototyping and Design

Target audience
l (Must) architect, developer, (optional) project manager (high-

lights)

In this chapter you will learn
l How to prepare the rules for the implementation
l How to use an evaluation framework to decide where to imple-

ment the business rules
l How to build the object models used by the rules
l How to design the project structure and the related rule elements
l How to implement some rules to validate the analysis, find issues,

and communicate to the SME
l How to use some common rule design patterns to facilitate rule

implementation

Key points
l Start quickly to prototype rules to develop both rule projects and

the data model.
l Organize rule artifacts and think of reuse as soon as possible in

the project life cycle.
l Maintain strong communication with SME to address issues

about the model, the rule description, the rule scope, and the
context of execution.

5.1 Introduction

The purpose of the prototyping phase is to take a first complete pass through the

development process, confront the main design issues, and lay the groundwork for

future refinements. Prototyping is incremental and iterative: we start by “imple-

menting” a subset of the processes – or of the decisions within a single process to try

out a particular design. Subsequent prototyping cycles will refine the architecture

and expand the coverage of the prototype, functionality-wise.

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_5, # Springer-Verlag Berlin Heidelberg 2011

115

Note that a rule-engine execution of business rules is not a sine qua none

condition for the business rules approach, even though it is a highly desirable

one; for one thing, without the rule-engine execution of business rules, we lose

much of the IT agility that comes with the business rules approach. Thus, the first –

and probably most important – design decision to make during the prototyping

phase is to decide on the rule implementation. Generally speaking, we can imple-

ment business rules in five different ways: (a) at the data model level, (b) in the

application code, (c) in a process map, (d) in the graphical user interface (GUI) of

the application, or (e) using a rule engine. Section 5.2 explores the five alternatives,

and – surprise!! – the rule-engine solution is shown to be superior to the alter-

natives. The remaining prototyping activities assume that we have chosen a rule-

engine implementation but are independent of the business rule management

systems (BRMS) that is used for the implementation. Figure 5.1 shows the proto-

typing activities and their dependencies. Table 5.1 shows where each activity is

discussed. In this chapter, we focus on the process and will be content to highlight

the broad design issues. Chapters 7, 9, 12, and to a lesser extent, 14 and 16 will

revisit these design issues in far more detail.

In Sect. 5.6, we discuss prototyping for our case study, and we conclude in

Sect. 5.8.

Developer

Determine
Rule

Implementation

Build Rule
Projects

Build
Test Scenario

Prototype
Rules

Rule Projects
Rule Meta Data

Rule Project
Rule Artifacts

Design Data
Model

UML Class diagram

Java, XSD, SQL

Architect

TDD-Enhance
Models

Java / XSD

Get Stakeholder
Feedbacks

A
na

ly
si

s
T

ea
m

Rule
Developer

Fig. 5.1 Rule prototyping development activities

Table 5.1 Prototyping

activities
Activity Section

Determine rule implementation 5.2

Build data models 5.3

Build structures for development and execution 5.4

Develop unit tests for each rule 5.5

Author rules 5.5

Execute rules 5.5

Obtain SME feedback 5.7

116 5 Prototyping and Design

5.2 Determine Rule Implementation

The purpose of this activity is to determine the best way to execute the rules. When

we come out of the rule harvesting phase (see Chap. 4), it is still possible that some

rules will stay on paper and will never be implemented in a software component.

This includes rules used by human decision makers that require human judgment, or

that require data that is either not recorded electronically or, data that is recorded

but that is not usable. Of the ones that will be automated, there are many ways of

implementing them:

l At the data model-level. A number of business rules are about the structure of the
data – called structural assertion rules. A statement like “a mortgage application

must have a single primary borrower, and may have zero or many secondary

borrowers”, will be embodied into two classes, Borrower and Application, and

two associations. But beyond structural rules, we can also enforce some behav-
ioral rules at the time that objects (class instances) are created or persisted, by

triggering some dynamic checks (e.g., database triggers, embedded SQL code,

O/R mapping code, etc.).
l Within application code. This is the default and most common non-rule-oriented

implementation: complex decision logic is coded within functions/procedures/

subroutines, scripts, or within method bodies within the context of object-

oriented applications.
l Within business processes, within the context of a business process manage-

ment (BPM) tool/system. BPM tools address business process efficiency

issues, by focusing on the fundamentals of a business process, namely,

“who is involved”, “when they should be involved”, “what do they need to

do”. BPM tools support both human and automated actors. When defining

a business process, typical BPM tools enable us to define/attach business/

decision logic to tasks within the process, to the routing of work items

through the process flow, and to the semantics of the business data. In fact,

a number of BPM tools do come with some capabilities for defining business

logic declaratively or using some form of scripting logic. Thus, if an organi-

zation is already using BPM tools to implement and manage its business

processes, it might consider implementing all of its business rules through a

BRMS tool.
l Graphical user interface. In a number of web applications, the bulk of the

business rules concern data validation and input screen navigation, i.e., deciding

what screen/page to bring up next, depending on the data entered so far. Tra-

ditionally, such business rules are encoded using client-side scripting, or within

(web) server-side controller classes. Performing such data validations close to the

data source has its advantages, including responsiveness and avoiding unneces-

sary network traffic. We were hard-pressed, at times, to justify the overhead of

a full-blown BRMS/rule-engine solution, and this remains a serious contender

for some types of web applications.

5.2 Determine Rule Implementation 117

l Rule engine. This is the case when business rules are written by business users

in a declarative business-friendly language, are interpreted during run-time by

a rule engine, and are deployed and maintained separately from the core of

the application.

We argue that the rule-engine solution is the best overall general-purpose
approach to implementing automatable business rules. However, certain types of
rules such as structural assertion rules should be expressed within the data model.

There could also be compelling design/architectural reasons why some of the other

alternatives should be given serious considerations. An enterprise application

might, legitimately, combine approaches.

Being in the software/solution space, the choice of an implementation approach

should be dictated by architectural considerations/qualities. Thus, we shall assess

our alternatives along the typical architectural requirements that business places on

their IT architecture, namely:

l Adaptability corresponds to the ability to change the business logic easily. The

need for adaptability may come from short deadline constraints, frequent small

changes to the business logic (e.g., daily, or even hourly), or more substantial

changes that may occur weekly, monthly, or quarterly.
l Traceability refers to the ability to clearly relate what was implemented to what

was agreed upon between the business unit and IT. Traceability often implies that

the expression of business logic in running applications is understandable by all

parties (business and IT), as is, or through simple transformations.
l Auditability refers to the ability to trace from business motivation to execution of

the policy to better understand the logic behind a decision. Good traceability is a

necessary but not a sufficient condition for auditability.
l Reusability refers to the ability to share business logic across processes, or across

applications. For example, policy holder data validation rules would apply

indiscriminately to new business or policy renewal, and for car insurance under-
writing, as well as home insurance underwriting.

l Manageability refers to the ability to manage the life cycle of the business logic,
and in a way that is relatively independent from the life cycle of the application

core, which tends to be more stable/evolve less often. Manageability includes

issues of governance (discussed in Chaps. 16 and 17), development life cycle,

and maintenance.

In the following sections, we will assess each of the five implementation choices

along the five architectural qualities discussed above.

5.2.1 Implementing Rules Within the Data Model

Generally speaking, rules that define the structure of the data model, or that state

low-level semantic structural constraints, such as referential integrity constraints,

118 5 Prototyping and Design

should be implemented within the data model. This means within either the schema
definition or the object-relational (O/R) mapping, or at the level of the business

entities themselves. Examples of structural rules include rules defining the structure

of the business entities, like saying that attribute X applies to entity Y, or rules

setting constraints on relationship, like stating that a loan application could only

have two borrowers.

Table 5.2 shows how this solution measures up according to the five architec-

tural qualities discussed in the beginning of Sect. 5.2.

Table 5.2 Rule in data model assessment

Variable Potential assessment

Adaptability Very static implementation. A change in the constraints placed on the

object model may impact all the layers of the application, from the

logical data model to the persistence service, and all the way up to the

presentation layers. Change is managed through a full software release

life cycle. Thus:

Poor. There are some design patterns to develop a more flexible data model,

including the so-called Adaptive Object Modela pattern, but this pattern

has a number of disadvantages (e.g., type safety, consistency,

performance) and is seldom used for high-volume data.

Traceability UML class diagrams do not constitute a good communication medium with

business – and cannot express/visualize many structural constraints.

Business analysts prefer a simple entity model. Entity diagrams present a

higher-level representation of the domain model, but force the team to

maintain the link between the implementation and the business

representation.

Medium. Tools can help maintain the consistency of multiple data models

and provide some traceability of business rules with things such as

annotations, comments, or UML templates. Logical data models and

physical data models are most likely not generated automatically from the

same conceptual model. For efficiency considerations, the physical model

may end up diverging more or less significantly from the conceptual

model, breaking the traceability.

Auditability Fair. Configuration management tools, with a strict development process and

adhered to discipline in documenting any change in the model, can help

trace changes to the structural rules back to the business motivation.

Reusability Fair. Domain object models can be designed to be reusable. But in reality

each application needs its own view of the core enterprise business object

model. To avoid a lot of data transformations between applications, one

approach consists of using a canonical data model. Each implemented

application needs to design and build its own view of that model, using

XML Schema (XSD), a Java data model, or any other object-oriented

language. The use of a canonical object model within the context of an

enterprise service bus (ESB) would require performing data conversion

between models either at the service implementation level, or in the

mediation layer.

Manageability Good. Modern modeling tools, configuration management tools, and a

strictly adhered to development process help maintain the business logic.
aSee Joseph Yoder work at http://adaptiveobjectmodel.com/ and http://citeseerx.ist.psu.edu/

viewdoc/download?doi¼10.1.1.66.3382&rep¼rep1&type¼pdf

5.2 Determine Rule Implementation 119

5.2.2 Implementing Rules Within Application Code

Implementing business rules in application code is currently the most common

way IT developers implement business rules. The usual justifications are perfor-

mance and flexibility of the coding language, and what they perceive as a steep

learning curve for business rule technology. Using hardcoded if/then/else state-

ments is not very flexible, but in the hands of a top notch programmer it can be

very efficient and arguably faster than a rule engine. When the number of rules

grows to the hundreds or thousands, the code becomes complex, the business

logic becomes nearly unmanageable and increasingly difficult to maintain. Using

traditional software development life cycle (SDLC), changes to the business rules

have to be implemented by IT developers, which means change implementation,

unit testing, followed by QA testing, then promotion to production and deploy-

ment. Depending on the frequency and scope of changes, this process may be

heavy and may not be agile enough for most of the business rule changes

(see examples mentioned in Chap. 1).

Concept. An Adaptive Object Model helps to add flexibility to a domain object

model. The simplest version of this pattern links business concepts modeled as

Entity. Entity has a type, modeled using EntityType. Entities have attri-
butes or properties, which are implemented with the Property pattern. Each
property has a type, called PropertyType and each EntityType can then
specify the types of the properties for its entities.

With this model a developer can add attributes to an entity easily.

Entity coverage = …
Property benefit = new Property(“Benefit”);
benefit.setValue(someValue);
coverage.getProperties().add(benefit);

120 5 Prototyping and Design

We have often heard reluctant IT developers argue that their business rules

are computation intensive, and do not change that often, pleading for the more

efficient, and less flexible application code implementation. Consider the following

business rule:

Verify in each item the customer bought since he is
customer with us there is at least one article of type
T so that we can propose the new product Y with X % of
discount, except if the customer is from the state of
New York or New Jersey (no discount apply).

We can implement this in a method which loops on the articles bought by a

given customer and do the search. At a first glance, navigating a collection of

objects and testing multiple conditions on them are easy to implement using

the power of the programming language. The exceptions around the State can be

hardcoded in the rule, or, for more flexibility, a smart developer might use

some lookup table to get the list of nondiscounted states. Excluding another

state from the discount offer is then as simple as adding a row in the table. “Is

that (business logic) declarative/data-driven enough for you,” we hear. However,

if the business wants to add conditions on the product category, the custo-

mer profile, or the time of the year, the new logic requires the addition of if

statements in the code, driving a code change, and so a full software develop-

ment and release life cycle. This is not to say that all business logic should be

coded within rules; dispatching, orchestration, data manipulation, and the like

are better suited for an imperative (as opposed to declarative) implementation in

application code.

Table 5.3 shows how the implementation of business rules within application

code fares, relative to the five architectural qualities we mentioned earlier.

5.2.3 Implementing Rules in GUI

This is a special case of the previous one, but one that occurs often, and that

merits a separate discussion. This is the case where business rules are embedded

in the presentation tier. We will examine this within the context of the Model-

View-Controler (MVC). Recall that, within the context of the MVC pattern, the

model embodies the state of the interaction between the user and the application,

and it may refer to some domain objects. The view’s main responsibility is to

present an up-to-date graphical view of the model. The controller is responsible

for capturing user input, and translating into commands to be executed on

the model. It is also responsible for view content and flow, i.e., which elements

to include/display within a particular view, their data, and which view should

follow/come next, after another view. In this context, the logic of the controller

is often decision intensive. For example, we can have rules control the data

contents of widgets within a particular view. This is useful for applications that

5.2 Determine Rule Implementation 121

involve dynamic questionnaires or product configuration. An example of such a

rule is:

If the value of the selection on this page was <X> then add <Y> to the model
Similarly, a rule that controls the flow of pages could look like:

If the user visited page <X> and selected value <Y> in field <Z> then next
page is <R>

Both rules may be enriched with business type conditions based on data

available in the model. Many of the legacy web applications embed such (busi-

ness) rules in the controller class or in scripts within the view (e.g., java script of

the view). In terms of the architectural qualities discussed at the beginning of this

section, this solution compares to implementing rules within application code (see

Table 5.3).

Naturally, it is possible to implement controller rules using a rule engine – rule-

engine implementation is discussed last. This is particularly valuable for e-com-

merce web sites where marketing campaign can be put in place quickly by proposing

new products or new product features more dynamically. Typically, rule engines

would apply a set of decisions according to previously entered data and web

historical navigation. The actions of the rules could prepare some product or

marketing information to display in the web page. As a rule of thumb using a rule

engine in the controller is worthwhile if we need to change the logic over time, and

this logic needs to take into account a lot of cross checks and complex data

validations.

Table 5.3 Rules in application code assessment

Variable Potential assessment

Adaptability Poor. The need to change application code when a business rule changes is not

nearly as bad as changing the underlying data model (see Sect. 5.2.1) but is

still unpleasant. Indeed, while software application builds are more efficient

and less costly than before, deployment remains expensive, depending on the

complexity of the production environment.

Changing code under time pressure usually leads to poor quality.

Traceability Poor. The logic that underlies a business rule may be spread out between several

methods or procedures in the application code and is not encoded in a way that

business can understand. Strong code documentation practices and standards

can help, but do not solve the problem. For example the development team

may need to maintain a mapping table linking the business policy statement to

the components, classes, or methods that implement the corresponding

business rules.

Auditability Poor. Only a disciplined use of configuration management tools with a strict

development process, and an in-grained (or enforceable) change

documentation practice, can ensure that code changes can be traced back to the

corresponding business motivations. This is a lot of ifs.
Reusability Fair. If the business logic is implemented in a service layer with well-defined

interfaces, it may be possible to reuse the business rules.

Manageability Fair. Manageability depends on the good will – and disciplines – of developers,

who are expected to use configuration management tools and strictly adhere to

development practices. Even when such developers can be found, one has to

worry about personnel turnover, or offshore development.

122 5 Prototyping and Design

Our recommendation is to classify the business rules during the rule analysis,

assess the rule change dimension, start to implement where it is the most efficient and

makes more sense. Do not jump too quickly into the final design and conclusion. This

is why the prototyping phase is important: try and catch the best implementation.

5.2.4 Implementing Rules in Process Maps

Business process automation (BPA) is the technology used in lieu of, or in addition

to, manual processes to manage information flow within an organization. Business

process automation (BPA) is supposed to lower costs, reduce risk, and increase

consistency. In this context business rules embody the structure, operation, and

strategy of an organization’s business processes as well as the decisions within the

activities of those processes. Sometimes the business process definition is itself

considered as a business rule, as it embodies business decisions about how the process

should be done. We do not share this view: the OMG clearly separates the business

+

Data Validation

If data.reasons
includes exception

+

Process
Exception

YES

+

Coverage
Verification

NO

Fig. 5.2 Process map revisited

5.2 Determine Rule Implementation 123

process from the business rules, where the former is driven by the latter. For a business

process analyst, business rules involve routing of data, processing work items to a

work queue, a task, or a sub process, which will most likely be implemented as a

gateway in a process map.We have come across situations where some business rules

were implemented in the process flow as a graph of gateways. A rule like:

if a claim is for a car accident and there is no injured person then go to activity A, else if

there is an injured person and the injured person is an insured person then go to activity B,

else go to activity C.

Defined at the task relationship level, business rules are thus linked to the

structure of the process flow. Another example, a rule like the one given below

will most likely finish as a guard on a process map link.

if there is an exception in the claim processing, we want a supervisor to study the claim and

the accumulated reasons extracted by the process so far

Figure 5.2 illustrates such a process map.

In the example of Fig. 5.2, task 1 (Data validation) evaluates the data quality for

the claim. This task can build a lot of issues on the data quality. If the list includes

an exception or high priority issue, the process map will route to the “Process

Exception” task. This task can queue the work item to a supervisor’s queue with all

the data needed for investigation.

If we embed the business rules directly in the structure of a process map, any

changes to the business rules will require redefining and redeploying the process.

This could be quite problematic with long-running process. Changing a business

process is usually risky: we do not want to change things currently running that

involve a lot of parties and stakeholders. New policies, regulations, or business

strategies should affect the decision rules without having to change the core

business processes.

Table 5.4 Rule in process flow assessment

Variable Potential assessment

Adaptability Poor. Hard coding business rules in process maps is not efficient, and leads to

brittle and overly complex process maps.

If we combine the business process management (BPM) with the business

rule management systems (BRMS) approach, and delegate business rules

to process tasks – as opposed to process structure – we achieve great

adaptability.

Traceability Good. if we combine BPM with BRMS, we get excellent traceability.
Auditability Good. BPM tools typically have version control, and it is possible to trace

process map changes to business requirements. When we combine BPMS

and BPMS, we can take advantage of the versioning capabilities in both

tools, and link process map versions to ruleset versions.

Reusability Fair. Rules in a BPMmap are not really reusable outside of the context of the

process. However, rules defined in a task can be made reusable if they are

exposed as a service. Further, a process itself can be exposed as a service.

Manageability Good. Process logic will usually have a more stable life cycle, and it is

managed in the BPMS.

124 5 Prototyping and Design

Note, however, that there are a lot of tasks in a business process that are decision

rich, with a lot of business rules to execute within the task. Those rules can be

executed by a rule engine. The integration of BPM with BRM offers a unique set of

features that support agile business processes. Table 5.4 shows how the process map

implementation of business rules measures up relative to the five qualities we

discussed. We will discuss both standalone BPM, and the BPM–BRM combination

for decision-rich business processes.

5.2.5 Implementing Rules in a Rule Engine

Roughly speaking, a is an interpreter that takes two inputs, application data and

business rules, and that produces a decision embodied in new data, or in new values

of attributes for existing data. This is illustrated in Fig. 5.3. Chapter 6 discusses rule

engines and rule-engine technology in-depth, but for the purposes of the current

discussion, we will be content to illustrate the paradigm.

A key aspect of the rule-engine implementation is the fact that business rules are

treated as data by the rule engine. This implies two things: (a) as data, they can be

deployed separately from the application code, and better yet, (b) they can be read-
in during run-time. This is the key to the flexibility and adaptability of the approach.
Another key aspect of the rule-engine implementation is the fact that the executable
form of the rules, or a direct translation thereof, can be understood by business.

This is the key to the traceability and auditability of the approach. Table 5.5

evaluates the rule-engine implementation with regard to the five architectural

qualities we discussed above.

During our consulting engagements, we have often come across some business-

rules-approach-skeptics, who overplay the run-time performance argument,1 and

Rule engineBusiness
data

Business
rules

Read

modify

Fig. 5.3 A rule engine takes two inputs, a ruleset and business data, matches the rules to the

business data, and acts on it accordingly

1The word “interprets” as in “the rule engine interprets the ruleset” can scare off many an architect.

As we will see in Chap. 6, rule engines can execute tens of thousands of rules per second.

5.2 Determine Rule Implementation 125

downplay the flexibility argument “our rules do not change often; we can afford to

code them in application logic.” For example, a rule such as the one given below

may sound stable at first, with no possible variations.

If the status of the customer is gold and the product is <> then apply <> %
discount.

However, discussions with the business about the meaning of “Gold customer”

might identify other criteria that definitively change over time. A typical discussion

may look like: “A customer who spend more than <> amount of money . . . during
the last 6 months . . . well, except for product X where we only look at the last four

months because product X has been in the market for that long . . . and by the way,

customers in the states A, B, and D could not be part of the gold status because . . .
and did we mention that a customer must be 18 years old or older . . . and by the

way, customers working for our company or subsidiaries cannot be part of the gold

program”. Before you know it, we have gone through an entire ruleset, just to

capture this supposedly simple – and stable – piece of business logic.

Accordingly, our recommendation would be to use a rule engine to execute

rules, or more broadly, a business rules management system to manage the life cycle

and the execution of business rules. As shown in the previous sections, there are

certain kinds of rules (e.g., structural assertion rules) or situations (e.g., the need for

Table 5.5 Rule in rule engine

Quality Potential assessment

Adaptability Excellent. The rules can be changed quickly, off-line, and deployed, at the press of
a button, often while the business application is running (a hot deploy).
Obviously, rule governance processes need to be put in place to ensure orderly

rule maintenance.

Traceability Excellent. A key aspect of traceability is the fact that most rule engines (including
JRules) support a natural language-like, domain-specific language for

entering/authoring rules. This makes executable rules understandable to

business. By adding rule metadata, we can capture quite a bit more about the

business context or motivation of the rule.

Auditability Excellent. this is made possible thanks to a number of features in commercial

business rule management systems (BRMS) – including JRules, (a) powerful

tracing capabilities that enables us to trace the rules that matched a specific

business transaction, (b) rule reports, and (c) change management

functionalities. The JRules BRMS, discussed in Chaps. 8, 10, 11, 13, 15, and

17, supports all of these, and more.

Reusability Very good: Reusability is never an easy requirement to support, regardless of the

technology. Good reusability results from a proper modularization of business

logic along a hierarchy of decisions (decisions, and subdecisions) so that the

lower-level decisions can be reused across major decision points or business

processes. JRules supports a number of development and run-time rule

structuring mechanisms which enable us to package rules in a way that is

independent from their usage context (see Chaps. 10, 11, and 13).

Manageability Excellent. By definition, business rule management systems (BRMS) support

management functions. JRules supports a particularly rich set of management

functionalities, including rule and rule set versioning, rule life cycle

management, access control, and the like.

126 5 Prototyping and Design

a responsive, client-side data validation) where the other alternatives may be given

some consideration. However, by default, the recommendation is to use a rule-

engine implementation. As we have shown in Sect. 5.2.4, rule engines can be

combined with other technologies, such as business process management systems

(BPMS) to get the best of both worlds.

5.3 Build Models

Having chosen a rule implementation, the next step is to implement the code infra-

structure that will implement or use the rules identified during rule harvesting phase

(see Chap. 4). The code infrastructure consists of two pieces: (a) the data model code,

and (b) the application/service invocation code. With regard to the data model, within

the context of rule applications BRMSs will distinguish between two models, (a) a

physical or executable data model, implemented in the application’s implementation

language – Java, C#, etc. – or using XML Schema (XSD), and (b) a business view of

the physical data model, used to author rules; Sect. 9.2.1 talks about the different

requirements that we place in these languages, and how to keep them synchronized. In

this section, we focus on the physical/implementation data model, and discuss how to

build one during the prototyping cycle. However, as we show in Sect. 5.3.3, such a

model needs to evolve constantly during this phase to accommodate the needs of rule

authors as they write/prototype rules.

With regard to the application/service invocation code, we assume that the

various decision points of our business process will be exposed as decision services,
within the context of a service-oriented application. We will discuss some best

practices regarding the packaging of such services. Chapters 12 and 13 will revisit

this issue, in general, and within the context of JRules.

We start by discussing the implementation of the physical model in Java

(Sect. 5.3.1). Section 5.3.2 talks about XSD specifics. Section 5.3.3 addresses

model evolution during the prototyping phase.

5.3.1 Java Model

If the analysis model is available in UML format, most IDEs provide functionality

to generate an implementation of the model in a number of target languages or

technologies, including Java. Many IDEs will also offer the so-called round-trip

engineering, where changes to the Java code are immediately reflected back to the

UML model. Starting with a given UML model, it is recommended to generate the

Java code in different projects, by applying the separation of concerns principle.

For example, the data model definition should be kept separate from the definition

of service/controller classes, the former being widely shared between different

5.3 Build Models 127

applications within the same domain, whereas the latter are specific to individual

applications.

With regard to the application/invocation code, if we will deploy some of our

services as web services using XML document/literal as the main communication

style, the data model will need to be a mix of XSD and java model, with a mapping

between the two. We can also generate the XML version of the Java model directly

from the Java model by using the Java XML Binding API (JAXB 2.0) to annotate

the business classes.

For most application implementations, we recommend to use a meet-the-middle

approach for defining the web service interfaces: (a) use a bottom-up approach to

define the XSD schema from the java model that was so far implemented and tested,

and (b) use a top-down approach to define the web service contract (WSDL) first,

and then implement some mapping objects, if needed, in the service implementa-

tion to map between the WSDL schema and the java model. For example, the

WSDL interface for operations such as validateClaim, verifyCoverage and adjudi-

cateClaim, should refer to claims through a String identifier, and then use that

identifier internally to pull out the relevant data for the claim. This is preferable to

having the service consumer be responsible for preparing all the data for the service

provider. Not only the service consumer does not always have the “knowledge” of

the required data structure, but using full objects as parameters lead to large

messages. An exception to this model is when the consumer already has all the

data and is delegating some of its own processing to another service.2

5.3.2 XML Schema

Using XML schema to define the data model has a number of advantages over a

Java model, independent of the architecture of the application. From a data defini-

tion point of view, XSD has a richer set of constructs for expressing data extensions

and refinements. For example with XSD, we can specialize a data type by restrict-

ing it, i.e., by constraining the set of values that the elements and attributes can

take. Java has no equivalent for restriction: attributes are either inherited as is, or are

hidden.3

Within the context of a web-services-based SOA, it makes sense to use an XSD

implementation of the application data: indeed, the WSDL specification defines

data types using XSDs. Idem for the general case of a message-oriented architec-

ture: to the extent that application data will be shipped around in XML messages,

2This may sound like a common pattern, but it is not necessarily a good one from the point of view

of SOA: the resulting service is not reusable and is specific/dedicated to its consumer.
3We can mimic restriction/specialization by redefining the setters in subclasses to make sure that

only a specific subset of values is allowed. However, this would break polymorphism, and its

promise of object substitutability.

128 5 Prototyping and Design

we might as well define it directly in XML; this way, we will be dealing with a

single data model, and we will be saving on data marshaling and un-marshaling. We

have to be careful, though. There are a number of issues that we need to consider

when using XSD. The first one is related to the versioning of such a schema and the

complex management of version control and integrity between applications. The

second issue is related to the use of industry models. Some industries have defined

standard data models as set XSDs. For example, the telecommunications industry

has developed the SID Tele-Management Forum, the real estate finance industry

has developed MISMO, and the insurance industry has developed ACORD. Such

models provide excellent sources for business ontologies and can – and should –

be used as starting point for defining your own enterprise data model. However,

they should not be used as is to write rules. Indeed, they typically expose an

unnecessarily complex vocabulary to use for the rules, and business users will

typically reject it.

The third issue raised by the use of an XSD implementation of the data model is

the “decapsulation”: the data elements and the business logic that manipulate them

are implemented in different paradigms. This makes both reuse and testing more

difficult. For example, with a Java implementation, we can easily use a unit-testing

framework such as Junit to unit test our rules. This is more complicated and

cumbersome with an XSD implementation. In fact, projects end up using a mix

of Java and XSDs to define and manipulate data. Using JAXB2 we can generate

java beans from the XML schema, and so offer also the service interface based on

java objects.

5.3.3 Synchronize with the Data Models

During the prototyping phase, the data model will keep evolving. Rule authors will

keep coming up with data elements that are missing from one of the many layers of

data models starting with the underlying database, up the rule vocabulary. The

different layers and the relations between them will be discussed in general terms in

Sects. 7.6 and 9.2.1, and for the case of JRules, in Sects. 10.3 and 10.4.2. For the

purposes of this discussion, it suffices to say that we need constant communication

between the rule authors and IT to ensure rule author requests are handled dili-

gently. There will be some changes, however, which have important implications

and will not be resolved as quickly as everyone hopes for. For example, if a rule

requires a data element that is not even available in the database, then we could

have a serious problem. If the database is specific to the current application and is to

be built from scratch, then we can pretty much put in it whatever we need –

provided we know how to get it from external sources via other parts of the

application. If the database is shared with other applications – as will often be the

case – then we have a serious problem: Either the attribute is available somewhere

else within the legacy systems landscape, in which case we have to figure out ways

of efficiently pulling it out from those other sources, or it is a new data item that is

5.3 Build Models 129

not currently captured by the system, in which case we need to drop the business

rule for the time being and redesign the business logic.

In addition to issues with the data definition (tables, attributes), we will have

issues with data Values. Indeed, part of any business application is referential data

which may include lists of codes and enumerated domain values, which rule writers

use in the rules. It is important to properly design the way that data is defined and

accessed by both the application and the rule-authoring environment. If the organi-

zation uses a Master Data Management (MDM) product to manage the referential

data, we may need to be able to connect to the MDM from the rule-authoring

environment and from the running application, using the MDM API or services.

Accessing the referential data for rule authoring can be done statically, to

define the rule-authoring vocabulary – however that is defined – or dynamically,

by filling out specific pull-down lists in the rule editor. A static implementation is

simpler and more cost-efficient and is only appropriate when the referential data

changes rarely at well-defined milestones in the life cycle of the project or

application. If the referential data changes frequently, then a dynamic implemen-

tation is preferred. Depending on the BRMS product this can be easy or quite

cumbersome. To access the referential data during rule execution, we should

probably use a hybrid approach: reference data may be accessed dynamically, at

specific times (e.g., at server start-up, or some fixed regular schedule), and remain

cached in the application for rules to access them in the most efficient way; doing

one or more round trips to a MDM service during a ruleset execution may not be

such a good idea.

5.4 Building Structures for Rule Development and Execution

Before we start coding rules, we need to set-up the rule development infrastructure.

This infrastructure has to facilitate rule development, management, and packaging/

deployment, to an execution environment. Later chapters will explore all of these

issues in detail. In this section, we limit ourselves to describing the process and

highlighting the major issues. Section 5.4.1 will discuss the rule project structure. In

Sect. 5.4.2, we look at the issue of designing/defining rule metadata. Finally, we

look at orchestrating rule execution in Sect. 5.4.3.

5.4.1 Rule Project Structure

A rule project is a container for rule artifacts. Such artifacts include business and

technical rules, decision tables and decision trees, functions, variables, rule flows,

and ruleset parameters. Rule projects also help package and deploy rules for

execution. One of the issues that we face when moving from rule analysis to

prototyping is to decide how many rule projects we should have. The simplest

130 5 Prototyping and Design

design is to have one rule project per major decision point of the business process.

It will often be the case that several decision points may share the same set of rules.

To promote the reuse of those common rules, we may have to associate several

projects with a single decision point. Different BRMSs might make this more or

less easy. JRules’s support for project dependencies, and for configurable ruleset
extractors, gives rule architects plenty of degrees of freedom to structure rule

projects to accommodate the needs of rule authors during rule authoring, and to

make rule deployment and execution flexible. Rule project organization is more

thoroughly discussed in Sect. 9.4, where we focus on development-time organiza-

tion, in a tool-independent way, and in Sect. 10.2, where we focus on JRules’s rule

project organization features. For the purposes of this discussion, we will limit

ourselves to some general issues, and to the relationships between rule projects, and

projects related to relevant parts of the application.

The organization of rule projects and java projects follows the same pattern

as traditional project organization. We partition the work to avoid concurrent

updates as much as possible and define the structure to reflect business structure

or technical and deployment constraints. For example, if the application uses a

web tier it is important to isolate this project within a web project. Further, the

services can be packaged in one java project or per major service component.

The code which calls the rule engine is part of this project. Maybe one of the

interesting differences with n-tier application structure is the fact that we are

using separate projects to support the data model for the domain; it could be java

classes or XML schema definitions. This project is shared between the rule projects

and the application tiers and even among applications. The rule project structure

should strive to isolate the rules and the subset of the business object model used

by those rules in a separate rule project. Best practices for rule project organization

are discussed, in general terms, in Sect. 9.4.3, and for the case in JRules, in

Sect. 10.4.1.

Figure 5.4 shows an example project structure that adopts some of the basic best

practices, illustrated for our case study. In this case, we have three Java/nonrule

projects, which include the physical data model (the ClaimModel Java project), the

claim processing service implementation (project ClaimProcessing-core), and

the web application that invokes the service (project ClaimProcessing-webapp).

We have three separate rule projects, each handing a nontrivial decision step of the

business process, namely, validateClaim-rules, adjudicateClaim-rules, and verify-

Coverage-rules.

When designing the rule project structure, an architect needs to consider

the overall business context requirements. Indeed, looking at the big picture is

always a good thing. At the same time, it should not jeopardize the short-term

goals of getting a quick prototypical implementation, or delivery timeline for the

entire project, through some sort of analysis paralysis. And remember, if this is

your first rule project, getting the technology adopted at the enterprise level

requires unmitigated success at the project level – or a very dedicated CTO. That

being said, rule architects can consider some of the design drivers discussed in

Sect. 9.4.

5.4 Building Structures for Rule Development and Execution 131

5.4.2 Defining Rule Meta Data

During the project structure definition it makes sense to also address the life cycle of

the rules under scope and to define rule properties/metadata that the business team

may want to leverage during the rule management and the rule execution. The

common properties we use are:

l Rule ID, author, owner, status. To trace the rule maintenance process. The status

helps to manage the rule life cycle, for example, to avoid deploying rules under

development to production. The possible values for the status can be configured

and customized.
l Expiration date, effective date. To filter the rules according to a date and time.
l Business motivation, policy reference, requirement reference. To reference rules

back to the requirements, the business policies, or the specifications.
l Product reference, states, geographies. To manage rules per type of deployment

or other dimensions relevant to the business.

Properties such as rule effective date and expiration date can be used to filter out

the rules that do not apply to a given business event. Another example is the

geography or jurisdiction dimension, which can limit the applicability of a rule to

entities (customers, properties, etc.) that fall within their jurisdiction. This filtering

can happen either during ruleset packaging (e.g., effective and expiration date), or

during execution (e.g., jurisdiction). The following table elaborates on the char-

acteristics of those properties that the rule analyst can design for the future rule

management:

validateClaim-rules

R

adjudicateClaim-rules

R

ClaimModel

J

ClaimProcessing-
core

J

ClaimProcessing-
webapp

W

verifyCoverage-rules

R

Fig. 5.4 Example of projects organization

132 5 Prototyping and Design

P
ro
p
er
ty

n
am

e
T
y
p
e

V
al
u
es

D
es
cr
ip
ti
o
n

N
u
ll
ab
le

C
h
an
g
ea
b
le

U
se
fu
l
fo
r

d
ep
lo
y
m
en
t
o
r

ru
n
-t
im

e?

R
eq
u
ir
ed

R
u
le

ID
In
t
o
r
st
ri
n
g

U
n
iq
u
e
id
en
ti
fi
er

fo
r
th
e
ru
le
s

N
o

N
o

N
o

Y
es

B
u
si
n
es
sM

o
ti
v
at
io
n

S
tr
in
g

“”
L
in
k
th
e
ru
le

to
th
e
b
u
si
n
es
s

m
o
ti
v
at
io
n

Y
es

Y
es

N
o

N
o

P
o
li
cy
R
ef
er
en
ce

S
tr
in
g

“”
L
in
k
th
e
ru
le

to
a
b
u
si
n
es
s
p
o
li
cy

Y
es

Y
es

N
o

N
o

S
ta
tu
s

S
tr
in
g

N
ew

,
D
efi
n
ed
,
D
ep
lo
y
ab
le
,

D
ep
lo
y
ed
,
re
ti
re
d

S
u
p
p
o
rt
th
e
li
fe

cy
cl
e
o
f
th
e
ru
le

N
o

Y
es

Y
es

Y
es

R
u
le

O
w
n
er

S
tr
in
g

D
ep
ar
tm

en
t
te
am

–
n
o
n
am

ed
p
er
so
n

Y
es

Y
es

N
o

Y
es

E
x
p
ir
at
io
n
D
at
e

D
at
e

D
at
e
w
h
en

th
e
ru
le

w
il
l
n
o
t
b
e

ex
tr
ac
te
d

Y
es

Y
es

Y
es

N
o

E
ff
ec
ti
v
e
D
at
e

D
at
e

D
at
e
fr
o
m

w
h
en

th
e
ru
le

w
il
l
b
e

ex
tr
ac
te
d

Y
es

Y
es

Y
es

N
o

Ju
ri
sd
ic
ti
o
n

E
n
u
m
er
at
io
n

F
o
r
ex
am

p
le
,
C
al
if
o
rn
ia
,

N
ev
ad
a,
O
re
g
o
n
,

A
ri
zo
n
a,
U
ta
h

L
is
t
th
e
st
at
es

w
h
er
e
th
e
co
m
p
an
ie
s

h
av
e
b
ra
n
ch

o
ffi
ce
s
an
d
ca
n

in
su
re

p
er
so
n

Y
es

Y
es

Y
es

N
o

5.4 Building Structures for Rule Development and Execution 133

As you can tell from this table, some properties may be useful for deployment or

run-time. We say may because it depends on the BRMS being used, in general, and

the underlying rule engine in particular. For example, the rule status, which

indicates the status/state of a rule within its life cycle, may be useful to a deploy-

ment tool to determine which rules get deployed and which rules do not. Rule

jurisdiction, effective date, and expiration date can be used during run-time to

determine which rules apply to a given business event, based on its localization

and occurrence date. The JRules BRMS supports a flexible and customizable

ruleset extraction and deployment tool, which relies on user-defined queries to

select which rules of a given project are to be extracted and deployed for a particular

decision/ruleset. A number of other features enable us also to filter rule during run-

time based on their properties, including so-called dynamic rule selection, dis-
cussed in Chap. 11, and agenda filtering (see Chap. 6).

5.4.3 Orchestrating Rule Execution

The rule project structure discussed in Sect. 5.4.1 is aimed primarily at managing

rule development in a way that promotes an effective division of labor and rule

reuse. In this section, we focus on the run-time structure of a ruleset. While the rule

engines and the underlying production paradigm (see Chap. 6) do not require an

internal structure to the ruleset,4 the kinds of decisions that we map to a ruleset will

often involve a series of stable and well-defined subdecisions. In that case, it makes

sense to orchestrate/organize rule execution within the ruleset accordingly. Further,
some decisions may involve hundreds or even thousands of rules. By structuring

their execution within the ruleset, we ensure that only a subset of them will be

evaluated at any given point in the execution of the ruleset. Hence the concept of

ruleflow, which is supported by several BRMS, including JRules.

Rule flows typically consist of linked tasks, each of which contains a subset of

rules to execute. If we think of a ruleset as a library of simple functions, a ruleflow

can be thought of as a loosely structured main program. We say loosely structured
because the rules within a task of the rule flow are unordered and are considered as a

“bag of rules.” A ruleflow typically looks like a process flow with tasks, transitions

(guarded or not), starting and ending nodes, fork and join operators, and condition

nodes. But the scope is different from that of a process flow: tasks can only include

a set of rules, and the parameters needed to control their execution, with no external

call, work queue, or work item like we have in a workflow engine. The execution of

a ruleflow typically corresponds to single synchronous invocation of the rule

engine. Depending on the BRMS, ruleflows may also help improve execution

performance. In IBM WebSphere ILOG JRules, we can select different execution

4We can give a rule engine a “bag of rules” and it will sort its way through, thanks to rule

dependencies and rule chaining.

134 5 Prototyping and Design

algorithms for the different tasks of the ruleflow, taking advantage of the depen-

dencies that may exist – or not – between the rules of a given task. Chapter 11 will

explain JRules ruleflows, in far more detail, and will provide heuristics and best

practices for designing ruleflows. For the purposes of this chapter, we will simply

stress the following points:

l An initial rule flow design needs to take place during prototyping, prior to rule

authoring.
l The structure of the ruleflow has to make sense from a business point of view,

i.e., it has to reflect, somehow, the business structure of a (nontrivial) decision;

we should not code algorithms using ruleflows.
l At the same time, in terms of a granularity, a ruleflow corresponds to a single

invocation of the rule engine, and no heavy lifting (e.g., accessing external

resources) should take place within a ruleflow.

One technique for designing a rule flow relies on the life cycle of business
objects. Indeed, in those applications where the processing of some business objects

goes through a number of discrete and identifiable stages, it helps to build a finite
state machine (FSM) to model the evolution of the business entities through the

business process. For example, a claim typically goes through several processing
stages, from not-processed, to having its data validated (e.g., filtering out claims

with null or invalid required fields), to having its coverage validated (to ensure that

what is claimed is covered by the underlying policy), to being fully processed/

adjudicated. The transition from one processing stage to the next requires some

checks and verifications (i.e., rules) to be performed, and a specific outcome (e.g.,

pass versus fail). This can be readily modeled as an FSM. This FSM can serve as the

basis for designing the ruleflow.

Within a BPM–BRM approach, the use of FSM for the important business object

is a standard design approach. It is important to note, however, that FSMs are not

sufficient to describe the business process. Indeed, an FSM follows a unique path

whereas a business process can have multiple concurrent paths of execution.

Concept: Finite State Machine

In business application, FSM5 is used to design life cycle of business entities, as
it represents a number of finite states a business entity can have over time. A

state is materialized by a node in a graph. Actions change the state. A business

entity starts its life cycle on a start state, and then goes through transitions until it
reaches an end state. The arrows from a node represent the different actions the

business entity supports at the current state. A current state is determined by past

states and the events received. The UML notation includes state charts, which
are nothing but a (compact) variant of finite state machines, with things such as

state generalization and state aggregation.

5See also Wikipedia http://en.wikipedia.org/wiki/Finite-state_machine.

5.4 Building Structures for Rule Development and Execution 135

Figure 5.5 shows a sample – and realistic – rule flow for a risk assessment

ruleset. The flow starts by making some initialization, mostly to prepare for the rule

execution, and checking whether there is a risk assessment already available for this

customer. If not, the rule flow triggers an assessment process by going to the left

branch. If an assessment is available, it goes through a step by step evaluation of the

customer risk profile, where the customer is to be classified according to one of four

profiles. We start with the worse case, i.e., Profile D. Profile D includes rules about

government blacklisted persons, or bank blacklisted customers, high-risk benefici-

aries, etc. If a customer record does not match rules for profile D, they may match

rules for the subsequent profile. If a customer record fails to match any of the earlier

profiles, it will get assigned profile A, which is the best risk profile. This is a real-

life example that illustrates the concepts presented above.

More ruleflow design guidelines will be presented in Sects. 11.3 and 11.4.

5.5 Prototyping Rules

Prototyping rules is a very important step in ABRD as it enables us to stabilize

many of the design choices needed before we start tackling high-volume rule

authoring in the building phase. We first describe the purpose of rule prototyping,

and then discuss some rule coding patterns.

5.5.1 Purpose of Rule Prototyping

Rule prototyping enables us to:

1. Validate the data models. As mentioned in Sect. 5.3.3, regardless of how careful

we were with the data model coming out of the analysis phase, as we start

writing rules, we will invariably discover missing attributes – and sometimes,

classes – that we needed to add.

2. Validate the structures for rule development. This concerns rule project struc-

tures, rule metadata, and the rule flow. Indeed, by starting to input real rules,

we will get an idea about whether the rule project structure makes sense/is

Fig. 5.5 Rule flow for a risk assessment ruleset

136 5 Prototyping and Design

workable, about whether the rule metadata makes sense for all rules and,

conversely, whether we need more properties. It will also help us partially

validate the ruleflow by checking, among other things, if it enforces some of

the rule dependencies identified during analysis.

3. Identify and try out rule coding patterns. Generally speaking, the rules that come

out of rule analysis will map to a handful of rule types, such as constraints,
guidelines, action enablers, and the like. They will also map to some business
decision patterns. There are some well-documented type-specific patterns,

which will be presented in Sect. 9.3, and which are true and tested. However,

here we talk about business-specific patterns, which need to be identified,

formalized, and encoded in the prototyping phase, so that they may be used on

a wide scale during the building phase.

4. Set-up a unit-testing framework. More often than not, rule authoring starts well

before the rest of the application is developed. Rule authors need a way to test

rules that is independent of the full computational infrastructure of the applica-

tion. A test harness needs to be set-up for this purpose, which can feed business

data to a rule engine (or a rule service) for testing.

The first three goals require us to prototype a representative subset of the rules to
be developed during the “Building” phase. If our process involves claim data

validation, claim coverage verification, and claim adjudication, we should imple-

ment a representative subset of the data validation rules, another subset from the

coverage verification rules, and a third subset from the adjudication rules, e.g., to

tackle a particular use case. Selecting that representative subset requires a good

knowledge of the business rules within the domain, and should be done with the

help of business: they know which rules are more complex than others, and which

ones will exercise exotic corners of the data model – and thus, uncover missing

attributes or classes.

5.5.2 Some Useful Rule Patterns

In this section, we present two useful, domain-independent patterns. The first is

related to collecting the results of rule firings without corrupting the business

objects. The second is related to buffering rule actions until the ruleset finishes

executing. The third is related to testing for data quality first, before semantic data
validation.

5.5.2.1 Pattern 1: Providing Decision Explanations and Audits

In any ruleset making decisions or performing validations, it is a good practice to

provide accumulated explanations on the issues found or the decisions taken during

ruleset execution. The action part of the rule adds the issue to a collection of issues

5.5 Prototyping Rules 137

already found. The supporting model is simple and may look like that in Fig. 5.6,

with one Result object (ClaimProcessingResult) associated to the main business

entity – not shown in this Fig. 5.6, but assumed to be a Claim. The result object

includes a set of Issue’s, and issues can use reasons (ReasonCode) defined in a

central master data repository.

With this data model a business rule could look like:

if
 The day of loss of 'the claim' is before the effective date of 'the policy'
then
 add to 'the result' the issue : "claim date error" with a code "R02" and a descrip-
tion : "claim is before effective date of the policy";

5.5.2.2 Pattern 2: Delaying Rule Actions

There are situations when rule actions are supposed to trigger some process that we

do not wish to perform immediately, for a variety of reasons, including:

l Remoteness. Within the context of a remote rule execution service, executing the

desired actions would require remote calls.
l Exception handling. If any of the actions raises an exception, we want a caller-

specific exception handler.
l Transaction management and compensation. If a block of actions fails, we may

not want, or be able to perform an outright rollback: we may want to manage

which steps are allowed to stand, which are rolled back, and which steps are

compensated for.
l Override. We may want to be able to override the recommendation of the engine

if it conflicts with other information.

Fig. 5.6 Result data model

138 5 Prototyping and Design

For all of these reasons, the Command design pattern6 may be useful within the

context of rule actions. The Command pattern is used when the object which invokes a
command is not the same object that executes it. For example, in a cross-sell business

ruleset, the intent of the rules is to compute the best promotion, or actions for this given

customer, customer profile, and customer history. If the action ismeant to send an e-mail

or an SMS, we may not want to keep sending individual SMSs for each rule that fires:

we collect themessages during rule execution and then send them (or collate them) once

we come out of the engine. The command pattern elements are shown in Fig. 5.7.

The solution is to have the rules create a ConcreteCommand by using a Com-

mandManager in the action part of the rule. The execution of the command is

postponed to a later step of the application flow by an Invoker object. Using add

<> methods, the CommandManager creates instances of ConcreteCommand and

sets the Receiver object for that command, which is an object that will be notified

when the command is executed. The notification can be as simple as “I am done”, to

a full execution report. In turn, the Receiver can perform other actions to relay the

information, such as sending e-mails or messages to human actors. This is useful in

those cases where we have a human task in a work flow and we want the human to

act on the command created by the rule engine. In this case, the e-mail would contain

the relevant information the human will need, including, for example, links to

confirm certain actions. A further refinement of this pattern would buffer notifica-

tions to only forward the most relevant ones, or to send an aggregated notification

(e.g., e-mail) that covers all of the actions proposed by the actions of the rules.

5.5.2.3 Pattern 3: Test for Data Quality Before Business Logic

When the data that comes into the rule enginemay have quality issues, it is common to

prefix the business rules conditions with data quality checks to avoid null pointer

exceptions ormeaningless inferences. The following rule excerpts illustrate the pattern:

Fig. 5.7 Command pattern

if the procedure code is not null and the procedure code is equal to 55 and

6See detail http://en.wikipedia.org/wiki/Command_pattern.

5.5 Prototyping Rules 139

We are likely to find the condition “the procedure code is not null” at the

beginning of the action part of every rule of the current rule task of ruleset. This is

somewhat awkward as it mixes “computational” conditions with business condi-

tions, almost like saying “if the database connection is open and the credit score is

higher than 650 . . .”. Worse yet, it places an undue burden on rule authors to test

for data quality issues in every rule they write: they will have to know which fields

are nullable – legitimately – and which are not, and they have to be disciplined

about writing their conditions. In such cases, the recommended practice is to

separate data quality issues from business conditions that use the data. Thus, we

can leverage the rule flow to address the data quality tests at the beginning and

assume that these conditions are true in subsequent tasks – and in rules that go into

those tasks. This solution has its disadvantages, however: it makes the rules

somewhat contextual. As always, design is a trade-off: we have to choose our

pain.

5.6 Case Study

One of the first issues that we need to address during prototyping is the data model.

As explained in Sect. 5.3.3, it is in this phase that we concretely confront the data

model to the rules, to identify which data is missing, and to complete it. The

following table shows a sample of issues concerning the data model, and proposed

ways of addressing them.

Issue Action plan

Day of service for the bill detail is

missing.

Add the date attribute to the medical invoice and to the bill

detail.

Where are the medical procedure

codes defined?

They are defined in an external system accessible through a

data source. We need to cache them for the execution of

the rules, but also for the authoring of the rules (see

discussion in Sect. 5.3.3). For the time being, there are

only ten codes in scope for the rules, and thus, we can

handle them using a simple Java enumeration.

Claim and MedicalInvoice have

nontrivial life cycles.

Need to design FSMs to support them (see Sect. 5.4.3).

The reason codes we are adding to

explain the rejection of the

claim or of the medical invoice

should be defined in a central

repository.

Implement a central reference data or use a MDM product.

The reason codes can be defined during rule authoring,

but later be externalized in the reference data or MDM

repository. They should be accessible, programmatically,

from the rule authoring and rule execution environments.

Avoid coding treatment code in the

medical bill, use a treatment

object that can be also

populated from a predefined set

of treatments.

140 5 Prototyping and Design

As mentioned above, the major business entities such as Claim and Medical-

Invoice have nontrivial life cycles. We propose to define the following simple FSM

for the entity Claim, which we will enhance later in the project implementation

(Fig. 5.8).

After the start of processing, the claim may be canceled at any step which is

not represented in this FSM. A claim can be rejected if it has issues or during

validation if it violates hard constraint rules. The completion of the adjudication

step is to pay or not the claim, so the final state is to file the claim. The claimed

amount and the paid amount are kept for record. This FSM can serve as the

basis for the ruleflow. However, if we deem that the intermediate tasks involve

lots of decisions, and that we need to access external resources between two

tasks, then clearly, this FSM should not be implemented within a single ruleflow.

In our particular case, qualification, validation, and adjudication can involve

thousands of rules each, and represent major decisions each. Further, it is likely

that adjudication will require us to pull data out of external resources as we need to

look at procedure codes, payment and claim history, and the like. Hence, this is a

clear-cut case where the FSM is implemented outside of the rules. There are

multiple ways of implementing the FSM outside of the rules, including regular

Java code, a BPEL process, or a mix of the two. Either way, it is within the context

of this FSM that we would invoke a rule service to execute the rulesets appropriate

for each decision.

With regard to the rule organization, a first look at the “validate claim” ruleset/

decision point reveals two fairly distinct types of validations: validating the claim

Fig. 5.8 Claim simple state machine version 1

5.6 Case Study 141

itself, and in case of an accident with bodily injuries, the medical invoices linked to

the claim. These are clearly two different concerns, so we can design two rule

projects to support the two types of validations. Further, the two validation deci-

sions refer to two fairly distinct data models: one having to do with accident reports

and equipment damage and repair and the other to bodily injuries, medical proce-

dures, and health care providers. Thus, we can have two different Java projects to

define the business objects needed by the two decisions, and two additional projects

to support service definition and implementation.

5.7 Communicate Back to Business

The last step of the prototyping is to produce reports from the different rule projects,

collect test execution traces, if needed, and log any issues we may have found

during these steps. Showing executable rules with actual test cases to subject matter

experts (SME) has a much bigger impact than well-documented policies. Concrete

test scenarios and execution reports have the virtue of helping to identify issues

with the ruleset, in a palpable and nonambiguous manner, and it helps the various

stakeholders address these issues early on and fix them before going into the

building phase (see Chap. 4), or worse, during production.

5.8 Summary

Rule prototyping is a very important phase in the ruleset development life cycle as it

forces us to exercise the major design decisions early on and provides a quick value

to the various stakeholders. We presented the common activities that are part of this

phase, putting emphasis on (a) a data model driven by the business entities as

expressed by the rules and not a data model as defined by industry standards or

enterprise models (Sect. 5.3); (b) a development organization structure (Sect. 5.4)

that promotes separation of concerns, an effective division of labor, and reuse; and

(c) working and tested rules, understandable by the business users (Sect. 5.5). We

presented some generic best practices for all of these design decisions; more best

practices will be presented within the context of more in-depth discussions of the

design trade-offs, in general (Chaps. 7, 9, and 12), and for the case of JRules

(Chaps. 10, 11, and 13).

The deliverables of this prototyping phase are by no means throw-away artifacts:

we use the term prototyping only as recognition of the exploratory nature of some of

the design choices, and the inevitable refinement that will follow.

142 5 Prototyping and Design

5.9 Further Reading

l ABRD is an Eclipse Process Framework practice plugin readers may find at

http://www.eclipse.org/epf and within the practice library at http://www.eclipse.

org/epf/downloads/praclib/praclib_downloads.php
l The ACORD data model can be found at http://www.acord.org
l Explanations about the Adaptive Object Model pattern, by Joe Yoder, are

available at http://adaptiveobjectmodel.com/
l For an introductory definition of finite state machines, check http://en.wikipedia.

org/wiki/Finite-state_machine
l The Tele-management forum is actively maintaining a rich data model, SID, as

reference model for telecom service providers and vendors. Readers can see

more detail and download the model at http://www.tmforum.org/Information-

Framework/1684/home.html
l MISMO is accessible at http://www.mismo.org
l Test-driven development is covered in lots of books, but was developed by Ken

Beck in his book: Beck, K. Test-Driven Development by Example, Addison

Wesley, 2003

5.9 Further Reading 143

Part III

Foundations

Chapter 6

Rule Engine Technology

Target audience

l Developer (must); optional for anyone wishing to look under the
hood

In this chapter you will learn

l The history of rule-based decision making
l The principles of rule engines, and the implications of object-rule

systems
l The basics of the RETE algorithm
l The different rule engine execution algorithms

Key points

l Rule-based decision making has a long history and some cogni-
tive plausibility.

l Rules are treated as data processed by an interpreter – the rule
engine.

l In the production system ideal, the “intelligence” is in the rules
as opposed to the control mechanism of the engine, which should
remain simple.

l The JRules rule engine is a Java object that “reasons about”
Java application objects.

l The RETE algorithm makes the production system paradigm
computationally efficient.

l Decisions that do not require rule chaining can use simpler – and
an order of magnitude faster – execution algorithms.

6.1 Introduction

In this chapter, we explain rule engines and rule-based programming. We start by

briefly describing the history of rule-based programming, in Sect. 6.2. Rule-based

programming belongs to the family of production systems, which can be thought of as

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_6, # Springer-Verlag Berlin Heidelberg 2011

147

a programming paradigm in the same way that object-orientation is a programming

paradigm. By the same token, we go over some of the tenets of production systems
which find expression in some of the design guidelines for rule authoring, to be

covered in Chaps. 9 and 11. In Sect. 6.3, we describe the structure of a rule engine and

explain the basics of its inner workings. In particular, we go over the characteristics of

production systems in general (Sect. 6.3.1), and then talk about the JRules rule engine

(Sect. 6.3.2). Section 6.4 describes the three rule execution algorithms supported by

JRules, namely, a simplified version of the RETE algorithm, which is supported by all

the “modern” rule engines, the sequential algorithm, some version of which is

supported by some rule engines, and the Fastpath algorithm, which is specific to

the JRules rule engine. Truth be told, our (simplified) description of RETE and

sequential algorithms are also tainted by the way JRules does it, to support our

discussion of the choice of an execution algorithm in Chap. 11. We conclude in

Sect. 6.5. Material for further reading is provided in section on “Further Reading.”

Note that Sects. 6.2 and 6.3.1 owe much to the still current The Origin of Rule-
Based Systems in AI, by Randall Davis and Jonathan King (1984), two rule-based

system pioneers. However, any misinterpretations, inaccuracies, or gross simplifi-

cations are our own.

6.2 The History of Rule-Based Programming

Rule-based programming is part of a long tradition in computing called production
systems. Production systems can be seen as having three distinct lineages:

1. Mathematics and theory of computation, through work of Emil Post

(1897–1954) a Polish-born American logician who tried to design a universal

computation machine, not unlike Turing’s machine1

2. Cognitive psychology, as a way of modeling cognitive processes, including

recognition and problem solving tasks

3. Artificial intelligence applications, and more specifically, knowledge-based

ones, whose expertise is expressed declaratively as a set of if-then rules

It is not clear how much Post’s work influenced the use of production systems in

cognitive modeling and knowledge-based applications. However, it does provide a

somewhat stylized theoretical foundation for the paradigm.

As has been the case in other areas of artificial intelligence and cognitive

science, the two fields pursued two different objectives but mutually enriched

each other. Cognitive psychology is concerned with understanding human cognitive
processes. Cognitive psychologists develop models for such things as memory

1Post did not call his contraption a “machine,” but called it “worker” or “problem solver” (see Emil
Post, by Alasdair Urquhart, in Handbook of the History of Logic, vol 5: Logic from Russell to
Church, eds Dov M. Gabbay and John Woods, Elsevier, Amsterdam, pp. 429–478).

148 6 Rule Engine Technology

(short- and long term), recall, recognition, categorization, and various types of

problem-solving tasks such as planning, diagnosis, etc. Naturally, these models

need to be cognitively plausible, that is, they need to be able to mimic or explain
some observed behavior in psychological experiments, such as error rates or time

delays in performing certain tasks. Note that here we are not concerned about

structural plausibility of the models, that is, whether these models are good models

of the actual hardware (the brain, neurons, etc.), although much has been made

about neural networks, which happen to be biologically inspired.2

So what evidence do we have that our brain works like a rule engine interpreting

rules? Allen Newell (1973) has been able to model human behavior on some

cognitive tasks using a production system and task-specific rules. Further, if we

compare the performance of a novice to that of an expert, in any domain, we know
that novices solve problems from first-principles, whereas experts use rules that

they have developed through their practice. These “chunks” of knowledge can

typically emerge in one of two ways. First, they can emerge through repeated

co-occurrences of certain events whereby we establish some sort of causality – or

at least a strong correlation. For example, an experiencedmechanic will know, with

a high probability, that problem/symptom X with car model Y, or car model year Y,

is due to the wear of part Z: he or she has had to investigate so many instances of the

problem where part Z turned out to be the cause, that he or she can make the

connection with a high level of confidence. A very good mechanic or a quality
engineer will even know why part Z wears/breaks often (design, material, etc.), but

that is a different diagnostic task. If a groundhog sees its shadow on Groundhog

Day, it is going to be a long winter.3 An insurance underwriter “knows” (statistics

bore that out) that a young male driver is a high-risk one or that certain car models

are more prone to theft than others.

The other way that rules can emerge is through what cognitive psychologists

have sometimes called “chunking.” One example of chunking is “short-circuiting”

a long inference. What is the effect of raising interest rates on employment? Let us

see: it increases the cost of borrowing for consumers, and consequently they refrain
from borrowing to purchase stuff, and consequently inventory builds up, at current

production levels, and consequently companies shed unneeded workers.4 This may

reflect the reasoning of a (bright) freshman economy student, but an economist,

having gone through that inference before, will jump to the end result: raising
interest rates lowers employment.

2Mathematically speaking, a neural network can be thought of as a special kind of numerical
classifier. By varying the topology of the network and the behavior of the individual neurons/

nodes, we get different mathematical behaviors (convergence, types of classes that can be

identified/isolated, etc.).
3Check http://en.wikipedia.org/wiki/Groundhog_Day for this North American folklore.
4It also increases the cost of borrowing for companies, which cannot even expand in foreign

markets, and it makes interest-bearing investment products more attractive than stocks, which

further starves companies for capital, stunting their growth.

6.2 The History of Rule-Based Programming 149

Let us now look at how artificial intelligence adopted – and adapted – this

computational metaphor. Generally speaking, “artificial intelligence” applications

aim at providing solutions to problems that do not have known or computationally

tractable, algorithmic solutions. Traditionally, researchers have taken two general

approaches to solving such problems: either devise smart algorithms or design a

knowledge-based system that uses a general purpose problem solver that manip-

ulates a domain-specific “knowledge base.” The first generation of chess-playing

programs used the first strategy: a smart algorithm.5 Knowledge-based expert
systems, on the other hand, used the second approach, which has been used to

solve problems ranging from medical diagnosis (e.g., INTERNIST, MYCIN) to

mineral prospection (PROSPECTOR), to chemical analysis (DENDRAL), to hard-

ware design (X-CON), and many more application areas.

AI researchers, who were more concerned about the performance of their applica-

tions than they were about the cognitive plausibility of their creations, tweaked the

production system paradigm to a great extent, mixing complex rule formats, with

complex control and inference mechanisms, sometimes straying away from the

production system “ideal” (Davis and King 1984) However, because the expert

knowledge needs to be elicited from experts, and the results explained to experts

and novices alike, those same AI researchers have also contributed to cognitive

modeling by helping us understand how experts internalize and externalize their

expertise, and by developing models, techniques, and tools for knowledge extrac-
tion.6 In fact, the (business) rule discovery techniques of today are often business

adaptations of the knowledge engineering techniques developed by AI researchers.

Naturally, the rule-based applications of today are fairly different from the AI

applications of the 1980s. Traditional AI rule-based systems focused on knowledge

areas where expertise was rare, expensive, or inaccessible, and hence the focus on

advanced engineering and scientific domains. Rule-based business applications “bor-

row” the rule paradigm but for different reasons: they help externalize, share, and

maintain consensus business knowledge that, more often than not, is already known

and codified in the procedural code of legacy applications. Thus, both the business rules
and the controlmechanisms used to execute them tend to be rather simple.Asmentioned

in Chap. 1, rule-engine execution of business rules is but one aspect of the business rules
approach, the others being business knowledge sharing and management.

In the next section, we first describe the production system ideal, and then

describe the JRules rule engine, which is typical of rule engines operating on

objects, in the OOP sense.

5It is theoretically possible to develop a chess playing program that explores all of the legal moves

to pick ones that lead to checkmates . . . the problem is there are over 1043 legal chess positions and

it would take forever to explore them! AI researchers have developed approximate and smart
search algorithms that explore only a few moves ahead (and hence, approximate) and that know

how to focus on promising moves (hence smart). “Modern” chess playing programs also rely on a

database of classical openings and end games.
6The term “extraction” may be evocative of tooth extraction. Without the appropriate techniques,

the process can indeed be as painful to both the expert and the knowledge engineer.

150 6 Rule Engine Technology

6.3 Rule Engines

In this section, we first present the basic architecture of a production system, and

discuss some of its variants. In Sect. 6.3.2, we present the JRules engine.

6.3.1 The Basics of Production Systems

A production system is typically defined in terms of three components:

1. A set of rules, or ruleset
2. A database

3. An interpreter

The ruleset is an unordered set of rules, consisting of expressions of the type

LHS ! RHS, where LHS and RHS stand for left-hand side and right-hand side,
respectively. The database consists of a (typically) unordered set of elements, and

the interpreter is the processor that applies the rules to the database. The process

goes as follows: the interpreter matches the LHS parts of the rules of the ruleset
against the database, and if a match is found for a particular rule, that rule is

executed, which will typically modify the database. This process repeats as long as

matches can be found, and terminates only when no LHS of a rule matches the

current state of the database. This simple architecture belies a wide range of

production systems ranging in complexity from abstract symbol manipulation

machines to medical diagnosis expert systems (e.g., the MYCIN or INTERNIST

family) to circuit layout designers (X-CON) to the decision component of a claim

processing application or a mortgage underwriting system. What distinguishes

these systems?

1. The structure of objects of the database. These can range in complexity from

simple symbols (strings) to stateful, history-aware objects.

2. The structure of the rules, which can range in complexity from simple rewriting

(symbol transformation) rules to having access to the full power of a modern

programming language in both the LHS and RHS.

3. The functioning of the interpreter, and, more specifically, the algorithm and data

structures used by the interpreter to control the evaluation and execution of the

rules.

The JRules rule engine, to be discussed in Sect. 6.3.2, manipulates stateful,

history-aware Java objects using the full power of the Java language in both the

LHS and RHS of rules. It also supports a rich set of control structures and rule

execution algorithms, to be discussed in Sect. 6.4, and again in Chap. 11, when we

talk about ruleset orchestration. We will discuss these aspects in due time. For the

purposes of this section, we explore the basic functioning of a production system

using the simplest of rules and the simplest of databases.

6.3 Rule Engines 151

Figure 6.1 shows a simple production system where the database consists of a set

of strings (symbols) and the rules consist of string transformation (or rewriting)

rules. In this case, the three rules match strings in the database: the (rewrite) rule AB!
CD matches the string ABC (the first two letters), the rule BC ! DE matches the

same string ABC (the last two letters), and the rule CD ! EF matches the string

ACD (last two letters). The pair consisting of a rule and a matching string will be

called rule instance. In this case, we have three rule instances,<AB! CD, ABC>,

<BC!DE, ABC>, and< CD! EF, ACD>. To facilitate reading, we underlined

the matching substring in each rule instance.

This simple example raises a number of questions about the functioning of the

interpreter:

1. What order do we use to evaluate the rules on the database – and does it matter?

2. If a match is found, do we immediately execute the corresponding rule, or do we

continue exploring other rule-data matches until we are through with all the

rules, before we execute any rule; we refer to the latter as batching rule
execution.

3. If we choose to batch rule execution and we identify several rule instances,
which rule instance should we fire first – and does it matter which ordering we

use?

4. If we batch rule execution, do we perform a full <ruleset, database> scan after

each rule execution or do we wait until we complete executing the whole batch?

These are all parameters of the interpreter’s control strategy and different

production systems have used different combinations, except for the fourth

ACD → AEF

ABC → ADE

ABC → CDC

Interpreter

ACF

A B C

DE

FED

A CD

…

AB → CD

BC → DE

CD → EF

Ruleset

Database

Scan (1)

Execute (3)

Match (2)

Fig. 6.1 The typical production system process cycle: (1) scan, (2) match, and (3) execute

152 6 Rule Engine Technology

question: all true production systems perform a full ruleset–database scan after

each rule execution, whether rule execution is batched or not.7

Let us now go back to the first three questions. First, which order do we use to

scan rules? This matters only if we execute immediately the right-hand side of a rule
whose left-hand side is satisfied, that is, if we do not batch rules. In such a case, the
end result may be different, depending on the ordering used. Indeed, because each

rule changes the state of the database (by replacing a string by another), rule

execution order matters: a transformation can trigger another rule, that is, can

change the database in a way such that it matches the left-hand side of another

rule, or inhibit another rule, by changing the database in a way that fails the LHS of

another rule. Different production systems may use different scan-ordering

mechanisms. In our example, the two rule instances <AB ! CD, ABC> and

<BC ! DE, ABC> inhibit each other: if we apply the transformation AB ! CD

to ABC first, yielding the string CDC, the second one (BC ! DE) is no longer

applicable. Conversely, if we apply BC! DE to ABC first, yielding ADE, the rule

AB ! CD is no longer applicable.

With regard to the second question, that is, whether we execute a rule whose

LHS is satisfied immediately, or whether we complete a full ruleset–database scan

before we start executing rules, both strategies have been used in production

systems. We also know that they produce different results since each rule execution

modifies the state of the database, thereby influencing which rules match, or fail to

match, the current state of the database. Notice that the JRules rule engine uses rule

batching with the RETE algorithm, and immediate rule execution in the sequential

algorithm; the Fastpath algorithm uses a combination of the two.

With regard to the third question (rule execution ordering), note first that this

question is only relevant when we have rule batching, that is, when we perform a

full ruleset–database scan, before we start executing any rule. If a full scan

identifies several rule instances, called conflict set, we need an execution ordering

strategy – called conflict resolution strategy. Further, the choice of a strategy does

affect the end result. Referring back to the example of Fig. 6.1, a full ruleset–

database scan identified the rule instances <AB ! CD, ABD>, <BC ! DE,

ABC>, and <CD ! EF, ACD>. The question then is which transformation to

apply first; as we saw for the issue of scan ordering, the order matters, and the end

result will be different.

Different ordering strategies have been used, including rule priority, rule

recency, rule condition strength, and others. We will briefly explain them here;

we discuss the JRules engine conflict resolution strategy in the next section. With

rule priority, rules are assigned priority values which are used to order rule

instances within the conflict set. If rule AB ! CD had higher priority, it would

be executed first, and the string ABC would be transformed to CDC. Note that if we

7In RETE mode, the JRules rule engine is a true production system. However, in Sequential and

Fastpath mode, the rule engine does not perform a full ruleset–database scan after each rule

execution. More on the algorithms in Sect. 6.4.

6.3 Rule Engines 153

perform a full ruleset–database scan after this transformation (see the answer to the

fourth question above), we will identify a second match for the rule CD! EF, and

will end up with two rule instances corresponding to the same rule: <CD ! EF,

ACD>, which was already identified in the first scan, and <CD ! EF, CDC>,

which showed up as a result of executing the first rule. This is a fundamental feature
of true production systems: by performing a full ruleset–database scan after each
rule execution, we ensure that the conflict set is always current with respect to the
state of the database. This currency comes at an important cost: that of performing

a full ruleset–database scan after each rule execution. Thanks to his RETE algo-
rithm, Charles Forgy made sure that this cost is minimal; we will talk about a

simplified version of the RETE algorithm in Sect. 6.4.1.

Let us go back to our example and to the conflict resolution strategy: notice that

priority alone does not suffice in this case, since the two rule instances/matches

correspond to the same rule.8 One criterion that is often used in rule engines –

including JRules – is recency: If we have two rule instances in the conflict set, we

pick the one that was most recently added to it. In our example, recency means that

<CD ! EF, CDC> is executed first, followed by <CD ! EF, ACD>.

Rule condition strength is another criterion that has been used to break ties

between rule instances having the same priorities: we typically pick the rule with

the strongest condition first. The intuition behind this choice is to favor rules that use
“more knowledge” or “more information” about the current database, as their

actions are likely to be more “appropriate” to the situation at hand. Condition

strength can be defined in many ways. Given two rules R1: LHS1 ! RHS1 and

R2: LHS2! RHS2, we could say that LHS1 is stronger than LHS2 if the string LHS1
contains the string LHS2. For example, the rule ABC ! <some string> has a

stronger condition than either AB!<some string> or BC!<some string>.9 The

problem with such a definition is that not all rules can be ordered: for example, the

rules R1: ABC ! <some string> and R2: DE ! <some string> are not compara-
ble: neither string (ABC and DE) is included in the other. A weaker relation that just

looks at string length may be used instead. Note finally, that this relationship does

not eliminate the possibility of ties. Rule engines do need to break ties one way or

another, but they may not publish all of their tie-breaking rules as we are not

supposed to care – or count on a particular obscure strategy. For example, the

JRules engine documentation says that we should not care beyond recency: for all

practical purposes, beyond recency, we can consider the selection random.

The above discussion showed some of design dimensions for production sys-

tems, in general, and as it relates to the control strategy used by the interpreter. An

important characteristic – and advantage – of the production systems paradigm is

that “intelligence” is embodied in the rules, and to a lesser extent the database, as

8JRules supports the so-called dynamic priorities, which are rule instance–specific priorities. More

about this in Chap. 11 (see discussion about IRL).
9This definition also maps nicely to logical formulas: if A, B, and C are predicates, condition

strength corresponds to logical implication: ABC impliesAB (ABC!AB) and BC (ABC! BC).

154 6 Rule Engine Technology

opposed to the interpreter: a single and simple interpreter should be able to execute

rulesets in a variety of domains. Further, the “intelligence” of the rules should not

be embodied in fairly complex rules or in a set of intricately dependent rules:

individual rules should be simple and independent of other rules. Ideally, the

“intelligence” of the ruleset should emerge from the implicit interactions of simple

rules as they manipulate the same database.

Achieving rule set simplicity and modularity has always been a challenge,

including to some of the early AI pioneers who tweaked interpreters beyond

recognition to extract performance or additional inferencing behavior (see, e.g.,

Davis and King 1984). Closer to home, we have seen many business rule projects
where rule authors used every bell and whistle of the JRules product to reproduce an

essentially procedural decision process. We have seen rules with dozens of condi-

tions or with conditional logic in the action part. We have also seen cases where rule

authors implemented explicit and heavy-handed dependencies between rules, and/

or a very intricate orchestration (see Chap. 11).

How to avoid “overengineering” a production system, in general, and a ruleset,

in particular? Some of the methodological guidelines shown in the book help.

Proper rule discovery and analysis, discussed in Chaps. 3 and 4, play a central
role by producing rules that are business oriented, relevant, properly contextual-
ized, and atomic. Rule authoring best practices and design patterns, discussed in

Chap. 9, rule entry infrastructure design, discussed in Chap. 10, and rule authoring

in JRules, discussed in Chap. 11, should take care of the rest.

6.3.2 The JRules Rule Engine

In this section, we discuss the basics of the JRules rule engine. The letter J of JRules

stands for Java: the rule engine itself is a Java object, instance of the class

IlrContext, the ruleset is represented by a Java object (class IlrRuleset),
and what we have called database in Sect. 6.3.1 – called working memory in JRules –
consists of a bunch of plain old Java applications objects (POJOs). The JRules rule

engine uses what we called rule batching in Sect. 6.3.1, and hence, it uses a data

structure to hold the conflict set, called agenda. In this section, we will explain how
the rule engine operates on Java objects. We will show just enough of the API to

understand the basics: the full API will be presented in Chap. 13, which deals

specifically with deployment rules with JRules. The supported rule engine execu-

tion algorithms will be discussed in the next section. How to select an execution

algorithm and criteria for algorithm selection will be presented in Chap. 11. To

better understand the inner workings of the engine, we will show rules in the Ilog
Rule Language (IRL), which is the JRules rule execution language, and bears some

resemblance to Java; IRL is discussed more thoroughly in Chap. 11.

Consider the following Java class definitions for the classes Claim and Policy;
the reader can guess what the classes PolicyHolder and StatusType look

like (Fig. 6.2).

6.3 Rule Engines 155

Consider now the following two IRL rules big_claim and claim_
over_90_days_past_exp_date_policy. The first rule matches

claims that have an amount higher than $100,000; because of the amount involved,

such claims are referred to a human claim adjudicator. The second rule rejects claims

that were filed more than 90 days after the expiration of the policy. The line:

?myClaim: Claim(getAmount()> 100000);

In the rule big_claim represents the condition part of the rule. In IRL

terminology, it is called a simple class condition and it matches a Claim object

such that the result of calling getAmount() on it yields a value higher than

$100,000. The condition part of the second rule is more involved but does the same

thing. The action parts of the rules change the status of the matching claim (called?
myClaim in both rules) and apply the action “update ?claim;” that we

will explain shortly (Fig. 6.3).

Roughly speaking, to apply rules to Java application objects using a JRules rule

engine, we need to do the following:

1. Create the rule engine and load it with the ruleset.

2. Load up the working memory (database) of the rule engine. For the case of the

JRules engine, when using the default algorithm, loading the working memory

triggers an incremental scan/match of <ruleset, database>. The scan/match is

incremental since the scan is “focused” on the new data; more on this in

Sect. 6.4.1.

3. Perform an execute-scan-match cycle, until there are no more rules to execute.

4. Reset the rule engine for future use.

class Policy extends … {
private int policyNumber;
private Date beginDate;
private Date endDate;
private PolicyHolder holder;
…
// constructors
public Policy(int number,

PolicyHolder
holder) {…}
…
// getters and setters
public int getPolicyNumber()
{…}
…
}

class Claim extends … {
private Date claimDate;
private Policy policy;
private float amount;
private StatusType status;
private float payment;
…
// constructors
public Claim(Policy pcy,Date dte){…}
…
// getters and setters
public Date getClaimDate() {…}
…
// utility functions
public boolean filedAfter(Date dte)
{…}
public boolean filedMoreThanNumDays-
After(int numDays, Date dte){…}
…
}

Fig. 6.2 Sample class definitions

156 6 Rule Engine Technology

Wewill first show Java code that performs these four steps. Then, we will look at

what happens internally inside the rule engine.

Figure 6.4 shows a typical Java code sequence for performing these steps. To

simplify the first step, we will assume that the above two rules are packaged in an

old-style IRL text file called “myrules.irl”; Chap. 13 will show a more up-to-date

API for ruleset parsing and loading. With regard to the scan-match-execute cycle,

we should mention that the scan in JRules is triggered by either changes to the

working memory/database or changes to the ruleset. We change the working

memory by adding objects to it, modifying them, or removing them from it; we

change the ruleset by adding or removing rules, or changing their status. Finally, the

scan-match-execute cycle starts with the execute step (execute-scan-match).

Figure 6.5 illustrates what happens under the hood. The left-hand side of Fig. 6.5

shows the part of the call stack that concerns the method that contains the code of

Fig. 6.4.10 The call stack includes memory locations (variables) to hold the

addresses of the actual Java objects, which are allocated in the Java heap memory,
shown on the right-hand side of Fig. 6.5. The important instructions in Fig. 6.4 have

been numbered ([1]–[6]). Their effect is shown in Fig. 6.5 in terms of links created

([1]–[4]) and removed (links [5] and [6]).

The Java instruction [1] in Fig. 6.4 results into the creation of an IlrRuleset
object in the Java heap, and the setting of reference to it from the call stack (the

variable myRuleset. We will not go into the details of how the rules are

organized internally, which will be covered in Sect. 6.4. The construction of the rule

engine using the one-arg constructor (line [2] in Fig. 6.4) will create the rule engine

with an empty working memory (a collection of null pointers), an empty agenda

(a collection of null pointers), and the previously created ruletset ruleset object; the

corresponding links have been labeled [2]. The instruction numbered [3] in Fig. 6.4

rule big_claim {
when {
?myClaim: Claim(getAmount() > 100000);

} then{
?myClaim.setStatus(StatusType.MANUAL_REFERRAL);
update ?myClaim;

}
rule claim_over_90_days_past_exp_date_policy {

when {
?myClaim: Claim(filedMoreThanNumDaysAfter(90,

getPolicy().getEndDate()));
} then {

?myClaim.setStatus(StatusType.REJECTED);
update ?myClaim;

}

Fig. 6.3 Sample (Ilog Rule Language, IRL) rules

10Sometimes called activation record of the caller.

6.3 Rule Engines 157

obtains a local (to the calling context) reference to some claim object. Here, we do

not care how the claim object was created: the function getNextClaim()
could be returning a reference to an already existing Java object, or creating a Java

object itself by iterating over the results of a database query, or retrieving the next

message from a queue. The important thing to stress is that the Java objects that the

rule engine works on (i.e., the contents of its working memory) have an independent

life cycle from the rule engine.

When we insert an object into a rule engine (line [4] in Fig. 6.4), we do two

things: (1) add a reference to that object from the working memory of the engine,
and (2) while we are at it, perform a <ruleset, working memory> scan/match

sequence. If the newly inserted object contributes to some match, a new rule
instance, that is, a pair <rule, data tuple>, will be added to the agenda. Figure 6.5

illustrates the case where the newly inserted claim object (myClaim) matches

the rule big_claim. As a result, a new rule instance is added to the agenda,

// 1. Create the rule engine and load it with the ruleset

// We need to create a ruleset object first, and then construct
// the rule engine object with it

[1] IlrRuleset myRuleset = new IlrRuleset();
// begin -- old style ruleset loading and parsing
FileInputStream fis =

new FileInputStream(new File(“myruleset.ilr”));
if (! myRuleset.parseStream(fis)) {

// rules/ruleset file contains syntax error(s). Exit
System.out.println(“Ruleset parsing error(s): quitting”);
return;

}
// end -- old style ruleset loading and parsing

// Construct the rule engine with the ruleset object
[2] IlrContext myEngine = new IlrContext(myRuleset);

// 2. Load up the working memory (database) of the rule engine

// first, get a claim object from some incoming stream

[3] Claim myClaim = getNextClaim();

// Next, insert myClaim into the working memory of the engine

// This will perform a scan/match of the rules in the ruleset

[4] myEngine.insert(myClaim);

// 3. Perform the execute-scan-match cycle until there are no

// more rules

[5] myEngine.execute();

// 4. Reset the engine

[6] myEngine.reset();

Fig. 6.4 Excerpts from a Java program that uses a JRules engine

158 6 Rule Engine Technology

which can be thought of as a pair <rule, data>. The “rule” component points to

big_claim and the data component points to myClaim.

The call to execute (line [5] in Fig. 6.4) triggers a loop that looks as follows:

• while the agenda is not empty
– remove the rule instance at the top of the agenda
– execute the action part of the corresponding rule.

– perform a scan/match cycle of the <ruleset, working
 memory>.

Note that executing the action part of a rule can modify the working memory.

Indeed, we typically call Java methods that modify the state of the object(s)

matched by the condition part of the rule. In our example, both rules modify the

status attribute of the matching Claim object. Thus, we need to perform a

scan/match cycle after each rule execution. A consequence of this scan/match could

be the addition or removal of rule instances to/from the agenda. In the example of

Fig. 6.5, we show the effect of the execute() method as executing the action part of

the top (and unique) rule instance of the agenda.

Because a <ruleset, working memory> scan/match is costly – optimizations

explained in Sect. 6.4.1 notwithstanding – and because not all actions parts of rules

myRuleset

myEngine

myClaim

big_claim
claim_...

rulesetRule engine

WM

RSET

AGENDA

id
amount
date
…

Rule

Data

Java heap memory

Rule instance

claim

[6]

[1]

[2][2]

[4]
[4] [4]

[3]

[5]

[5]

Call stack

[2]
[2]

Fig. 6.5 What happens under the hood when using a Java rule engine

6.3 Rule Engines 159

modify the working memory, or modify it in a way that concerns rules, we only

perform a <ruleset, working memory> scan/match when we need to. The question

then is, how do we know that we need to perform a scan? Could the engine tell, by

looking at the code in the action part of the rule? Alas, it cannot: we should not let

the “setStatus()” name fool us: using the setter naming pattern in our code

is just a coding convention . We could write a method that follows the “setter”

naming pattern that does not change the object, and a method that changes the

object that does not follow this pattern. Hence, we need to tell the engine explicitly
that a scan is needed.11 That is the role of the IRL action “update ?
myClaim;” used in both rules.

The call to the method execute() returns when no rule instances remain

on the agenda. This signals that no rule matches the current state of the working

memory. This, in turn, means that we have “inferred” everything that could be

inferred from the starting state working memory, in one or several steps. The only

way then to “reload” the agenda is to insert new data into the working memory of

the engine, to remove existing data from working memory,12 or to modify existing

data (e.g., myClaim) from the calling Java application, and letting the engine
know about it.13

Finally, note that this behavior is specific to the RETE mode, which is the default

execution behavior of JRules rule engine, and the only mode that conforms to the

production systemmodel described in Sect. 6.3.1; we will explain in Sect. 6.4.1 how

the ruleset, working memory, and agenda are organized internally in RETE mode to

make this process efficient.

The execution mode notwithstanding, the behavior presented in this section is a

simplification of what will happen in your rule application:

l In the above description, application objects are provided to the engine through

an explicit insertion into the engine’s working memory, and the result of the rule

engine execution is implicitly embodied in the changes performed on those

objects by the action parts of rules. We will see in Chap. 11 ruleset parameters

11One possible alternative to having to request a scan by explicitly calling the “update” is to

instrument the code of the classes manipulated by the engine (e.g., the class Claim in our case) so

that the engine is notified whenever some attribute is modified. This is the technique used by

object-oriented databases, where persistent classes are instrumented so that whenever an attribute

of a java object is modified, the object instance is “dirtied,” triggering a save at the end of the

transaction. Such a solution would not work in our case for several reasons. First, this instrumen-

tation would add processing overhead to all the instances of a class, whether they are manipulated

by a rule engine or not. Second, it adds processing overhead to all object attributes, whether they
have a bearing on rules or not. However, let the reader be assured: this explicit notification is

transparent to business rule authors, as explained in Chap. 11.
12Indeed, assume we have a rule that says “if there is no claim over 1,000 then do such.” If the

working memory contains/references a claim worth 1,100, the rule will not match the current state

of the working memory. If I remove that claim, the rule will match.
13The IRL instruction “update?myClaim;” has a Java API equivalent, which can be called
from the Java calling context as in “myEngine.update(myClaim);”.

160 6 Rule Engine Technology

which provide a more elegant and scalable way of passing data back and forth to

the rule engine.
l In the above example, the rule engine is local to the business application that

needs it, and is manipulated directly through an explicit reference – the variable

myEngine. We refer to this as the embeddedmode. Most enterprise applica-

tions will access rule engine functionality as a service through an abstraction
layer that provides location transparency, scalability, load balancing, run-time

ruleset management (hot deployment, execution statistics, etc.), and other enter-

prise services. Chapter 7 will explore the design space for business rule applica-

tions in general. Chapter 12 will address the design space for rule deployment, in
a vendor independent way, and Chap. 13 will discuss the specifics of the JRules

product.

In some ways, this section provides the basic mechanics of a rule engine that

refers to native Java objects. Subsequent chapters will show how this scales up for

enterprise applications.

6.4 Engine Execution Algorithms

In this section, we explain the three engine algorithms supported by JRules. The

RETE algorithm, explained first, is supported, in one form or another14 by all rule

engines, and fully implements the production system paradigm explained in

Sect. 6.3.1. Some form of sequential algorithm is supported by most commercial

products. The sequential algorithm does not implement the full production system
model, but there are some classes of problems for which it produce the same result

as the RETE algorithm, but an order of magnitude faster. Here, we will introduce

the JRules sequential algorithm (Sect. 6.3.2). The sequential algorithm is applicable

to only certain kinds of problems, and imposes some restrictions on the kinds of

rules and rule constructs that can be used. The JRules Fastpath algorithm enables us

to relax some of those conditions, with a performance comparable to that of

sequential. The Fastpath algorithm will be discussed in Sect. 6.4.3.

6.4.1 The RETE Algorithm

We mentioned in Sect. 6.3.1 that an important aspect of production systems is

the fact that we perform a full scan <ruleset, database> after each rule execution.

A brute force <ruleset, working memory> scan would make rule engines too

14RETE is the name given to the original algorithm published by C. Forgy in his doctoral thesis.

Subsequent enhancements, introduced by Forgy and others, have been dubbed RETE II and RETE

II plus.

6.4 Engine Execution Algorithms 161

inefficient. The RETE algorithm proposes an organization of the ruleset and of the

database (working memory) that makes such<ruleset, working memory> scans far

more efficient. It does so by applying three techniques that dramatically reduce the

number of tests that need to be performed:

l It builds a complex index of rule conditions that takes advantage of similarities

between rule conditions to reduce the number of tests that need to be evaluated

for the entire ruleset. This index is called the RETE network.
l Because a<ruleset, working memory> scan is almost always triggered by a data

insertion into, or removal from, the working memory, or by the modification of

an object already in working memory, the RETE algorithm is able to precisely

identify those parts of the RETE network that need to be reevaluated.
l The network stores partial matches to further reduce the number of tests that

need to be performed.

We explain below the structure of the RETE network and the workings of the

rule engine. We will use a sample ruleset with three rules to illustrate the structure

of the RETE network.

Roughly speaking, the RETE network is a hierarchy with a single entry node and

several exit nodes, one per rule in the ruleset. The internal nodes of the hierarchy

represent the different tests embodied in the ruleset. Each working memory event

(insertion, modification, or removal of objects) is handled as a token entering the

hierarchy from the top, and traveling down the hierarchy as far as successful tests

will take it. Object insertion is treated as a positive token. Object removal is treated

as a negative token. Object modification may spawn both positive and negative
tokens.15 If a positive token reaches a leaf node (a rule node), a new rule instance is

added to the agenda. If a negative token reaches a leaf node, the corresponding rule
instance is removed from the agenda.

We will first illustrate the structure of the network with a single rule and then

show the effect of condition sharing between two rules. Figure 6.6 shows simplified

class definitions16 and Fig. 6.7 shows a sample IRL rule.

Assume now that we have inserted in working memory the following objects:

l C1 ¼ Claim(amount ¼ 110,000, policyNumber ¼ 123)
l C2 ¼ Claim(amount ¼ 120,000, policyNumber ¼ 456)
l C3 ¼ Claim(amount ¼ 1,500, policyNumber ¼ 789)
l P1 ¼ Policy(policyNumber ¼ 123, endDate ¼ 31/1/2011, holderSSN

¼ 111111111)

15Actually, even object insertion can spawn negative tokens, if some rule contains a not condition.
This will become clearer later in this chapter, and after we cover the IRL in Chap. 11.
16The simplification consists of (a) treating all attributes as public data members and (b) imple-

menting associations between objects through “foreign keys,” as opposed through direct object

pointers (e.g., Claim “points” to the Policy via the data member “int policyNumber”), to illustrate

more clearly joins. With regard to the public data members, we will see in Chap. 10 that JRules

does indeed treat getters/setters as “bean properties.”

162 6 Rule Engine Technology

l P2 ¼ Policy(policyNumber ¼ 456, endDate ¼ 30/6/2011, holderSSN

¼ 222222222)
l P3 ¼ Policy(policyNumber ¼ 789, endDate ¼ 30/6/2010, holderSSN

¼ 333333333
l PH1 ¼ PolicyHolder(ssn ¼ 111111111)

Figure 6.8 shows the resulting RETE network. The network has a root node,

which is the entry point for inserting objects into working memory. The first-level

nodes are type nodes, where we test the type of the object. Subsequent levels

correspond to single-object tests which are laid out in the same way they appear

in the rule. In this case, there is only one single-object test for the classes Claim
and Policy, and none for PolicyHolder. This part of the network is indeed a

tree and is called the discrimination tree. The objects that pass these single-object
tests make it to the so-called alpha nodes, which serve as inputs to the so-called

network of joins. In our example, the objects C1, C2, P1, P2, and PH1 make it

through the discrimination tree to the alpha nodes, while the objects C3 and P3 do not.

The network of joins, as its name suggests, applies the join conditions of the rules
that are compiled into the network. A join condition is a condition that involves

more than one object. In this case, they are “foreign key reference” type of

class Policy extends … {
public int policyNumber;
public Date beginDate;
public Date endDate;
public String holderSSN;
…

}

class PolicyHolder extends …{
public String ssn;
…
}

class Claim extends … {
public Date claimDate;
public int policyNumber;
public float amount;
public StatusType status;
public float payment;
…
}

Fig. 6.6 Simplified class definitions

rule big_claim_holder{
when {
?claim: Claim(amount > 100000; ?pNumber : policyNumber);
?policy: Policy(endDate.after(“31/12/2010”);

policyNumber == ?pNumber;
?ssnHolder : holderSSN);

?holder: PolicyHolder(ssn.equals(?ssnHolder));
} then {

out.println(?holder + ”’s high claim policy ends in 2011”);

}

Fig. 6.7 Sample Ilog Rule Language (IRL) rule

6.4 Engine Execution Algorithms 163

conditions, but they could be arbitrarily complex and may involve any combination

of attributes. Note that join conditions are applied only to those objects that have

passed the single-object conditions, that is, those objects that made through the

discrimination tree down to the alpha nodes – C1, C2, P1, P2, and PH1, in our case.

Note also that join conditions cascade in the same order in which they appear in

the rules.17 For example, the condition labeled “ssn.equals(?ssnHolder),” which

stands for ?holder.snn.equals(?policy.holderSSN, is only applied to those Policy

Claim Policy PolicyHolder

amount >
100 K

endDate>
31/12/2010

C1(110000,123)

C2(120000,456)

P1(123,31/1/2011,111111111)

P2(456,30/6/2011,222222222)

PH1(111111111)

policyNumber == ?pNumber

<C1(110000, 123), P1(123,31/1/2011,111111111)>

<C2(120000,456), P2(456,30/6/2011,222222222)>

ssn.equals(?ssnHolder)

<C1(110000,123),P1(123,31/1/2011,111111111),PH1 (111111111)>

BIG CLAIM HOLDER

discrimination
tree

Network
of joins

Rule
nodes

alpha
nodes

Fig. 6.8 The RETE network resulting from the single rule in Fig. 6.7

17The fact that “rule layout” influences the topology of the RETE network may be used to squeeze

out a (tiny) bit of performance. More on this in Chap. 13.

164 6 Rule Engine Technology

objects that are part of <Claim,Policy> pairs have already passed the first join
test. Thus, if we find a PolicyHolder object in the corresponding alpha node that

matches the Policy component of a<Claim, Policy> pair, we know that we have a

<Claim, Policy, PolicyHolder> triple that satisfies all of the conditions of the
rule; this is the case for the triple <C1, P1, PH1> in Fig. 6.8. The alpha nodes and

the outputs of the join nodes embody the ability of the RETE network to store

partial matches.

Consider now what happens if we insert a new object in working memory.

Assume that we insert a new policy holder, PH2 ¼ PolicyHolder(ssn

¼ 222222222). This insertion is treated as a positive token “dropped” from the

top of the network, and works its way through the various condition nodes.

Figure 6.9 shows the resulting network. Because there are no single-object condi-

tions on PolicyHolder’s, PH2 goes straight to the alpha node. And because the join

condition involving PolicyHolder is last in the network of joins, we only need to

“compare” PH2 to the Policy components of the pairs that passed the first join

condition (policyNumber ¼¼ ?pNumber). Thus, the insertion of PH2 required

applying a single join test (ssn.equals(?ssnHolder)) on two object pairs (<P1,

PH2> and <P2,PH2>). Compare that to a brute force approach which would

have generated all possible triples involving PH2 – nine in our case18 – and then

testing all the conditions on each triple.

We will now consider the case of an object modification. Assume that we change

the amount of claim C1 from $110,000 to $11,000. Now, C1 no longer satisfies the

condition (amount >100,000). Consequently, we need to pull out C1 from the

corresponding alpha node, and by extension, from all the tuples in which it was

involved. Because C1 was involved in a triple that satisfied all the conditions of rule

BIG_CLAIM_HOLDER (<P1,C1,PH1>), the corresponding rule instance will be

pulled out from the agenda (not shown in Fig. 6.9).

An object removal is handled in a similar fashion to the modification of C1

above: in such a case, we need not reevaluate any tests but simply pull out the object

from the alpha nodes, and any nodes further down in the join network that the object

(i.e., tuples containing it) may have passed.

Finally, the example in Fig. 6.9b illustrated a situation where an object state

change failed a previously satisfied rule. Naturally, the opposite can also happen: an
object that was previously “blocked” at either the discrimination tree or at some of

the join tests, may now pass some previously failed tests and “slide down” the

network, possibly leading to the creation of a new rule instance and its addition to

the agenda.

Let us now turn to another important characteristic of the RETE network, which

makes rule evaluation and execution: condition sharing. Condition sharing works

as follows: if two rules share some conditions, appearing in the same order, those
conditions/tests will appear once in the RETE network, and will serve both rules.

Consider the following two rule excerpts:

18Namely, < any of {C1,C2,C3}, any of {P1, P2, P3}, PH2>.

6.4 Engine Execution Algorithms 165

rule rule_one{
when {
?cl: Claim(amount > 1000; payment == 0; status == IP);
…

}
rule rule_two{

when {
?cl: Claim(amount > 1000; payment == 0; status == REJECT);
…

}

Claim Policy PolicyHolder

amount >
100 K

end Date>
31/12/2010

C1(110000,123)

C2(120000,456)

P1(123,31/1/2011,111111111)

P2(456,30/6/2011,222222222)

PH1(111111111)

policyNumber == ?pNumber

<C1(110000,123),P1(123,31/1/2011,111111111)>

<C2(120000,456),P2(456,30/6/2011,222222222)>

ssn.equals(?ssnHolder)

<C1(110000,123),P1(123,31/1/2011,111111111),PH1 (111111111)>

BIG CLAIM HOLDER

discrimination
tree

Network
of joins

Rule
nodes

alpha
nodes

a Insert
PH2(222222222)

PH2(222222222)

<C2(120000,456),P2(456,30/6/2011,222222222),PH2 (222222222)>

b modify C1 {amount = 11000}

Fig. 6.9 The effect of (a) object insertion and (b) object modification

166 6 Rule Engine Technology

Figure 6.10 shows excerpts from the discrimination tree of the resulting RETE

network. As we can see, both rules test Claim’s, first for “amount > 1000”,

and then, for “payment ¼¼ 0”. The two tests are then shared between the two

rules. Put another way, if the ruleset parser sees a rule “if A and B and C
then do X endif” and another “if A and B and D then do Y endif”, it
changes them into:

if A and B then
if C then

do X
endif
if D then

do Y
endif

endif

We finally consider the control or conflict resolution strategy of the JRules rule

engine.Wementioned in Sect. 6.3.1 some of the criteria typically used by rule engines,

namely, priorities, recency, and condition strength. JRules uses a hierarchy of criteria:

l Refraction. A rule instance that just fired is automatically removed from the

agenda, even if its condition part is still satisfied. If the condition part becomes

negative at some later point, the engine will “forget” it ever fired, and should it

become satisfied again, the rule instance can get back on the agenda. This

behavior actually makes sense for the majority of applications. If we want

a looping behavior, of the kind “while COND do X”, there is a way to

override the refraction principle.

Claim

amount >
1000

… …

payment
== 0

status ==
IP

status ==
REJECT

rule_two branchrule_one branch

Fig. 6.10 The effect of

condition sharing between

rules on the topology of the

RETE network

6.4 Engine Execution Algorithms 167

l Priority. Given several rule instances on the agenda, we pick the one that has the
highest priority.

l Recency. In case of a tie with priorities, we look for the rule instance that

involves the most recently modified object.
l Other. In case several same-priority instances of the agenda involve the most

recently modified object, the engine will use some additional internal, nonpublic

criteria.

In the early days, rule authors used to rely heavily on rule priorities to control the

sequence of rule execution. Priorities can become hard to maintain, and lead to

sloppy rule authoring.19 JRules now offers sophisticated ruleset orchestration
mechanisms (see Chap. 11), and the recommended practice is to stay away from

priorities, and only rely on ruleflows (see Chap. 11) and on the refraction principle.

As for the other criteria, rule authors should absolutely not integrate the recency
factor into their business logic, that is, they should not rely on recency to obtain the

appropriate behavior. However, while tracing or debugging a ruleset, it is helpful to

understand that recency comes into play in the ordering of the agenda. As for other,
there is no clue in the documentation as to what those might be.20

While the RETE algorithm has rendered the production system paradigm com-

putationally tractable, by being smart (selective) about the<ruleset,database> scan,

there are certain types of problems where, by virtue of the nature of the rules, such a

scan is not even needed. In such situations, we do not need the complexity of the

RETE network or the corresponding inference algorithm. A brute force method

might do a good job: that is the sequential algorithm discussed next.

6.4.2 The Sequential Algorithm

Assume that part of our claim processing business process, one step consists of a

data validation. A ruleset for data validation would typically consist of a bunch of

rules, each one of which validates a particular field or a particular combination of

fields. The rules will typically follow the BAL pattern:

if
<some claim field fails some condition>

then
set the decision of 'the claim'to: “INVALID”;
add to 'the claim'validation message: <violated condition>

19Intellectually lazy rule authors may rely too heavily on rule priorities, as a mechanism for

controlling rule execution, as opposed to relying on logical dependencies between rules.
20The other part used to be documented in the product. Since JRules 5, it was felt that JRules users

not only should not rely on other, but they should no longer even know what other is J.

168 6 Rule Engine Technology

We show below an example of such a rule.

if
the date of 'the claim'is more than 182 days old

then
set the decision of 'the claim'to "INVALID";
add to 'the claim'validation message:"Claim too old";

If we know that our rules are such that their action parts will not change the

database (working memory) in a way that affects other rules, then we know that a
one and only <ruleset, database> scan will be needed. Indeed, whichever <rule,
data tuple>matched on the first pass will not break after other rules have executed,
and conversely, whichever <rule, data tuple> failed to match on the first scan, will
not match after other rules executed. If that is the case, all of the machinery for

incremental <ruleset, database> scan are not needed and represent a pure over-

head, with no performance gains. Indeed, for these kinds of rulesets, even RETE’s

condition sharing (see Fig. 6.10) is unlikely to provide any benefit: typically,
different rules test on different attributes. Thus, we might as well use a brute

force method for matching all rules to all applicable data tuples, and be done with

it. This is the premise behind the sequential algorithm.

Figure 6.11 shows a high-level version of the sequential algorithm. It consists of

two nested loops: the outer loop iterates over the data and the inner loop over the

rules. Notice that we talk about tuple and not about single objects. Indeed, generally
speaking, rules match tuples of objects. In the example of Fig. 6.7, the rule

big_claim_holder matches triples <claim, policy, policy holder>.

The triple <claim, policy, policy holder> is called signature of the rule.
While there are still data tuples to process:

1. Take the next tuple

2. While there are still rules to apply

2.a Take the next rule

2.b Check the condition part of the rule to the tuple

2.c IF the condition part is satisfied THEN apply the action part

Using the initial contents of the working memory of the example in Sect. 6.4.1:

l C1 ¼ Claim(amount ¼ 110,000, policyNumber ¼ 123)
l C2 ¼ Claim(amount ¼ 120,000, policyNumber ¼ 456)
l C3 ¼ Claim(amount ¼ 1,500, policyNumber ¼ 789)

While there are still data tuples to process
 1 Take the next tuple
 2 While there are still rules to apply
 2.a Take the next rule
 2.b Check the condition part of the rule to the tuple
 2.c IF the condition part is satisfied THEN apply the action part

Fig. 6.11 Basic sequential algorithm

6.4 Engine Execution Algorithms 169

l P1 ¼ Policy(policyNumber ¼ 123, endDate ¼ 31/1/2011, holderSSN

¼ 111111111)
l P2 ¼ Policy(policyNumber ¼ 456, endDate ¼ 30/6/2011, holderSSN

¼ 222222222)
l P3 ¼ Policy(policyNumber ¼ 789, endDate ¼ 30/6/2010, holderSSN

¼ 333333333)
l PH1 ¼ PolicyHolder(ssn ¼ 111111111)
l PH2 ¼ PolicyHolder(ssn ¼ 222222222)

we can get 18 different triples, corresponding to the combinations Ci, Pj, PHk, for

i ¼ 1..3 and j ¼ 1..3, i.e., <C1, P1, PH1>, <C1, P2, PH1>, <C1, P3, PH1>, <C2,

P1, PH1>, . . ., <C3, P3, PH1>, then <C1, P1, PH2>, . . ., and <C3, P3, PH2>. In

JRules, the generation of these tuples is performed by a default tuple generator.
Because the same tuple will be submitted to all of the rules of the ruleset (the inner

loop of the algorithm of Fig. 6.11), the tuple generator needs to consider all of the
rules of the ruleset to generate a tuple structure that can accommodate all of the

rules. Naturally, the order of the classes in the tuple is immaterial, <C1, P1, PH1>
represents the same data as <P1, C1, PH1>, say. Thus, if all of the rules of the

ruleset have the same signature (tuple structure), tuple generation is simple. If the

rules have different signatures, then things get a bit more complicated.

Assume that we have three rules R1, R2, and R3, with signatures <Claim,

Policy>, <Claim, Policy, PolicyHolder>, and <Claim, Policy, ServiceAct21>,

respectively, and assume that we have on service act, SA1. The JRules default

tuple generator will generate quadruples with the signature <Claim, Policy, Policy

Holder, ServiceAct>. For a given quadruple, each rule will pick the subset of

elements it is interested in and apply the conditions to that subset. Thus, given a

quadruple <C1, P1, PH1, SA1>, rule R1 will extract the pair <C1,P1> and ignore

the rest, rule R2 will see the triple <C1, P1, PH1>, and ignore SA1, and rule R3 will

see the triple<C1, P1, SA1>, and ignore PH1. In other words, R1 sees it as<C1, P1,

*, * >, R2 sees it as <C1, P1, PH1, * >, and R3 sees it as <C1, P1, *, SA1>. This

behavior of the tuple generator is customizable, and an (advanced) user can replace
the default tuple generator by his or her own.

Note that the inner loop in Fig. 6.11 embodies the default behavior of the

sequential algorithm: we apply all of the rules to each tuple. There may be

situations where, for a given tuple, we are only interested in the first rule that

fires, after which we drop the tuple and move to the next. This is equivalent to

replacing the inner loop by:

2. While there are still rules to apply and no rule has yet fired
2.a Take the next rule

2.b Check the condition part of the rule to the tuple

2.c IF the condition part is satisfied THEN apply the action part

21ServiceAct represents an act (occurrence) of the service for which payment is claimed.

170 6 Rule Engine Technology

If the rules of the ruleset are validation rules that look for violations, and we are

only interested in a pass–fail decision, then this could be appropriate. Indeed, as

soon as a tuple fails a validation constraint, we drop it and move to the next. There

may also be situations where we are interested in the first n rule firings, after which
we drop the tuple and move to the next. Again, there may be validation applications

where we care about the first n violations, after which we throw out the tuple. This

again would lead to a slight change in the inner loop. As we will see in Chap. 11

when we talk about ruleset orchestration, these are actually user-configurable
parameters. In fact, the whole execution algorithm selection can be set at the

individual rule flow task level, as opposed to an entire ruleset (see Chap. 11).

Thus, within a given ruleset/decision, different steps (rule flow tasks), can use

different execution algorithms.

Where applicable, the sequential algorithm yields an order of magnitude
improvement in performance. This means that the same ruleset would execute

around ten times faster in sequential mode than in RETE mode. This enhancement

is due, in part, to the much simpler data structures managed by the engine in

sequential mode (no RETE network, no agenda), and in part, to the fact that the

engine uses Just In Time (JIT) bytecode generation in sequential mode. Indeed,

while the RETE mode interprets rule conditions and actions on the fly, in sequential
mode, the first time a rule is executed (on the first tuple), the corresponding Java

bytecode is generated, and executed from that point on.22 This means that the first

tuple will take a performance hit, due to the bytecode generation, but subsequent

tuples will run much faster.

However, all of these niceties do not come for free. Notwithstanding the fact that

the sequential algorithm works only for some types of problems (see above), there

are some important restrictions. First, all the rule constructs that rely on, or assume

the existence of, the working memory or the agenda, either do not work as intended

or cause run-time errors, altogether. For instance, constructs that use quantifiers

(there is no, there exists, the number of, etc.) or collections cause ruleset

compilation errors. For example, a rule that includes the condition “there is no

claim such that the policy holder was at fault” will cause a compilation error.23

Idem for rules that use dynamic priorities, that is, priorities that are variableswhose
values will only be known once the rule condition is evaluated (see Chap. 11).

Finally, more advanced rule engine functionality such as truth maintenance and

event processing are not supported.

22Two comments: (1) This JIT compilation is to be distinguished from the JIT compilations of Java

virtual machines whereby Java bytecode is compiled into native machine code if it satisfies some

criteria (e.g., frequent invocation, as is the case for Sun’s hotspot JVM). (2) The RETE mode also
supports a compiled mode, whereby the ruleset is “parsed” off-line to generate java bytecode; we
then talk about a compiled ruleset.
23Luckily, there is a way around that: if the “quantifier” is “scoped” on something other than the

working memory, the rule is OK (more information in Chap. 11 when we talk about the IRL, and in

the product documentation). Thus, whereas “there is no claim such that . . .” will cause a run-time

error, “there is no claim in the claims of the policy such that . . .” would work.

6.4 Engine Execution Algorithms 171

Amore annoying problem has to do with rulesets where rules have heterogeneous
signatures, such as the three rules R1, R2, and R3 that we used above to illustrate

tuple generation. The default tuple generator leads to multiple firings of the same
rule on the same data. For example, the quadruples <C1, P1, PH1, SA1> and <C1,

P1, PH2, SA1> will lead to two firings of the rule R1 on <C1,P1>, as it ignores the

third and fourth components of the tuples. This is anywhere from inefficient

(needlessly firing the same rule several times on the same data), to annoying

(e.g., recording the same violation message, say, for a given claim, several

times), to outright wrong (e.g., incrementing or decrementing a score several

times for the same reason). And no customer tuple generator can fix that: however

you generate your tuples, they need to have the union of the signatures, and the

engine will apply all of the rules to each tuple.

The Fastpath algorithm, discussed next, is also targeted to problems that do not

require rule chaining. It is a bit more complex, but (1) it addresses many of the

weakness of the sequential algorithm and (2) it has comparable performance to the

sequential algorithm – even better, on some kinds of rulesets.

6.4.3 The Fastpath Algorithm

The Fastpath algorithm is a hybrid between the RETE and the sequential algorithm.

It is sequential in the sense that:

1. It does not rely on, or manipulate, an agenda.

2. There is no rescanning of rules over data, after each rule firing.

The Fastpath algorithm resembles the RETE algorithm to the extent that rules are

compiled in a RETE network, and it manipulates a working memory.When an object

is inserted into working memory, it is processed in the same way it is with the RETE

algorithm, working its way through the network of single-object conditions (discrim-

ination tree, see Fig. 6.8), then join conditions, down to rule nodes, if a particular

tuple involving that object satisfies all of the conditions of a rule. The same process

happens for all data inserted into working memory. It is the call the “execute” (see

line [5] in Fig. 6.4) that distinguishes the RETE algorithm from the Fastpath

algorithm. The execution loop for the Fastpath algorithm looks as follows:

1. Order the rule nodes by decreasing order of static priority
2. While there are still rule nodes

2.a Take the next rule node

2.b While there are still tuples in that rule node

2.b.1 Take the next matching tuple

2.b.2 Execute the rule action part on that tuple

Whereas with the RETE algorithm, we create rule instances for all the tuples that
make it to rule nodes, and add them to the agenda, the Fastpath algorithm relies

solely on the static priority of rules and takes a single pass. Indeed, we do not

172 6 Rule Engine Technology

perform a <ruleset, working memory> scan after each rule execution (step 2.b.2).

We could think of the Fastpath algorithm as a sequential, single-pass RETE

algorithm.
Compared to the sequential algorithm, the Fastpath algorithm has many advan-

tages:

1. It can handle rules with heterogeneous signatures, much like the RETE algorithm.

2. It can handle rules with “working memory quantifiers” such as there is no, there

exists, the number of, and collections, without scoping (see footnote 26).

3. It does take advantage of shared conditions between rules, much like the RETE

algorithm, to speed up rule condition evaluations.

The Fastpath algorithm also has some disadvantages compared to the sequential

algorithm:

1. An up-front – albeit a one-time – cost of compiling the ruleset

2. A slower execution, on the average, than the sequential algorithm

While the Fastpath algorithm is slower, on the average, there are some situations

where it can be faster than the sequential algorithm: if our ruleset contains many
rules with shared conditions, the condition sharing that results from building the

RETE network will more than offset the overhead of managing a more complex

structure.

The Fastpath algorithm shares some of the same limitations as the sequential

algorithm:

1. No support for rule chaining

2. No support for dynamic priorities

3. No effect (or unexpected effects) of some of the working memory manipulation

actions such as insert, update, or retract

4. No support for some of the more advanced features of the rule engine, like event

management and truth maintenance

Section 11.4.3 will go into criteria for selecting one algorithm over another.

6.5 Summary and Conclusions

In this chapter, we went over the history and basics of rule engine technology, in

general, and for the case of JRules. We also presented the various rule execution

algorithms. The RETE algorithm, developed by Charles Forgy, has greatly con-

tributed to making the production system paradigm practical, and has been adopted,

in one form or another, by commercial and open-source rule engines alike. As we

showed in Sect. 6.4.2, many business decisions do not require rule chaining. In such
cases, we do not need the machinery of the RETE network, and we can use simpler

and more efficient execution algorithms. This is the case of the sequential algo-
rithm. Many commercial rule engines implement some form or another of a

6.5 Summary and Conclusions 173

sequential algorithm; we presented in Sect. 6.4.2 the JRules’s implementation. This

algorithm, which typically results in order of magnitude gains in execution speed,

comes at a cost: a number of more or less annoying restrictions on rule language

constructs and features. The kinds of decisions that do not require rule chaining are
not likely to suffer from these restrictions, but some will. In that case, we can use

the hybrid Fastpath algorithm, explained in Sect. 6.4.3.

Let us now put the issue of rule engines back into the perspective of the business

rules approach and business rule management systems (BRMSs). Rule engine

execution of business rules is an important aspect of the business rules approach,

but not the only one – or some would say, the most important one (see Chap. 1). An

organization that recognizes the rules that govern its business processes as a corpo-

rate asset that needs to be managed are able to attain most of the business benefits of
the business rules approach. Similarly, rule engines are important components of

business rule management systems (BRMSs), but not the only important ones. True,

back in the early days (early 1990s), commercial BRMSs consisted of little more than

rudimentary development environments and a library – in fact, some open-source

tools are still like that. As business rules moved from engineering applications to

more business-oriented applications, functionalities for rule management, testing,

deployment, and monitoring became increasingly important.

How important is the rule engine execution algorithm in the general scheme of

things? On some academic benchmark, the JRules rule engine can execute tens of

thousands of rules, per second, in RETE mode. Execution speed depends, natu-

rally, on the complexity of the rules, the complexity of the tests performed within

the rules (e.g., number comparisons versus string matching), the number of objects

in working memory, the extent of condition sharing between the rules, the use of

particular constructs within rules . . . and the hardware on which the benchmarks

ran! But rule execution speed is seldom an issue. In practice, materializing the data

that the engine will work on (loading objects from persistent storage, pulling

messages off a queue, etc.), and dematerializing the results is often the major

performance bottleneck. Using the sequential algorithm, where appropriate, will

divide rule execution time by ten . . . but will not do much about the time to load an

object from the database or pulling a message off a JMS queue. We need to keep

this in mind as we consider algorithm selection in Chap. 11.

6.6 Further Reading

This already cited paper by Randall Davis and Jonathan King remains a reference
on the origin of rule-based systems, and has been the main source for Sects. 6.2

and 6.3.1:

l Davis, R. and King, J. “The Origin of Rule-Based Systems in AI,” in Rule-Based
Expert Systems: The MYCIN Experiments of the Stanford Heuristic Program-
ming Project, eds B. Buchanan and E. Shorliffe, Addison-Wesley, Reading,

1984, pp. 20–52

174 6 Rule Engine Technology

Other chapters of the same book provide an insight into the technology during its

most effervescent years.

Readers with an academic or historical interest in the RETE algorithm can read

Charles Forgy’s original doctoral thesis on the topic:

l Charles Forgy, “On the efficient implementation of production systems.” Ph.D.

thesis, Carnegie-Mellon University, 1979

The Wikipedia entry for the RETE algorithm has more details about the RETE

algorithm than Sect. 6.4.1. In particular, it explains how quantifiers (universal,

existential) and ORed conditions are handled, and points to additional references.

InfoWorld publishes, with some regularity, the results of some academic bench-

marks using the latest versions of the best known commercial and open-source

engines (http://www.infoworld.com).

The JRules documentation provides more information about the parameters of

the various execution algorithms, and their customization and extension points.

6.6 Further Reading 175

Chapter 7

Issues in Designing Business Rule Applications

Target audience
l Application architect, software architect, developer

In this chapter you will learn
l The major design issues for early business rule management

systems
l An overview of the major architectural choices for a business

rules application
l An overview of the major design issues surrounding the integra-

tion of rule engines into business applications
l An overview of themajor design issues and best practices regarding

reengineering legacy applications to introduce business rules

Key points
l Business rule management is about more than authoring – and

managing – executable rules: we need to manage the early
deliverables (rule capture and analysis) and ensure proper trace-
ability through the various stages of ABRD.

l Business rule applications can come in many shapes and sizes:
rules are architecture-neutral.

l Most BRMSs offer many rule engine deployment options.
l The integration of rule-based decisioning into applications

depends, in part, on the architecture of the application, and in
part, on rule-specific architectural requirements.

l There are some proven patterns to reengineer the decisioning
aspect of a legacy application using rule engines.

7.1 Introduction

In this chapter, we go over the design space for enterprise applications that adopt

the business rules approach. We identify the main design dimensions, and for

each dimension, we identify the general design issues and outline broad solution

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_7, # Springer-Verlag Berlin Heidelberg 2011

177

strategies. We will revisit each of the dimensions in later chapters of the book to go

more in depth into the design problems, and where applicable, to describe the

solution patterns provided by, or made possible with, the JRules BRMS.

The first design dimension that we will consider is the Business Rules Man-

agement System space. Indeed, recall from Chap. 1 that at the core of the business

rules approach is the corporate-wide management of business rules, and at the

core of such a management is a business rules management system. Recall that a

business rules management system (BRMS) has two major functionalities, rule
management, and rule automation. Section 7.2 will focus on rule management

functionalities.

Because the architectural style of the business rule application influences the

way the application interacts with the rule automation component of the BRMS,

Sect. 7.3 will provide a very high-level view of the major architectural metaphors

for enterprise applications. Clearly, a handful of pages cannot do justice to such a

broad topic about which numerous, voluminous books have been – and continue to

be – written! The purpose of this section is more modest: to get some vocabulary

and some points of reference that we can refer to in our subsequent discussions.

Having talked about the architecture of the business application, we then discuss

the different design dimensions concerning the ways in which the business appli-

cation can access the rules, in Sect. 7.4. In particular, we will talk about two general

strategies for executing rules (a) by manipulating a rule engine directly, and (b) by

accessing a centralized rule execution service.

A number of projects that we ran into in our practice are reengineering projects

of existing applications. Minimally, such reengineering efforts involved externaliz-

ing business decisions using BRMS technology. In many cases, reengineering also

involves a redesign of the presentation and application layers, adding or renovating

modalities for interacting with the application. In such cases, the design is subjected

to a number of constraints, and some design choices will be made for us. We will

highlight the main issues and best practices in Sect. 7.5. We will summarize the key

findings of this chapter in Sect. 7.6 and suggest further readings in the section on

“Further Reading.”

7.2 Design Dimensions for Rule Management

7.2.1 Early Versus Late BRMS Tools

We mentioned in Chap. 1 that a business rule management system (BRMS)

provides functionalities for rule management and execution. While there are

many commercial – and open-source – business rule management systems, none

that we know of handle the entire lifecycle of rules, i.e., from rule capture all the

way to rule retirement. Historically, business rule management systems have

evolved from rule engine technology where the focus was on providing efficient

178 7 Issues in Designing Business Rule Applications

execution of rules written in fairly formal languages (see Chap. 6), and JRules was

no exception. The past decade has seen an increasing awareness of the importance

of rules as business assets that need to be managed and shared across the organiza-

tion, and management functionalities have been added to execution functionalities.

However, the focus remained on rules already coded in a formal business rule

language. We could call these late BRMS tools.

Independently, the past decade has seen the emergence of a number of early
BRMS tools that focus on the early phases of the rule lifecycle such as business

modeling, rule capture, analysis, management, vocabulary management, and so

forth. Such tools include BRS RuleTrack™1 or RuleXpress™.2 However, we know

of no product that does a good job throughout the entire rule lifecycle, i.e., from

business modeling all the way to execution, maintenance, and retirement. We also

know of no pair of products (“early” BRMS, “late” BRMS) that can be easily piped

together to handle the entire lifecycle. Accordingly, an organization that needs to

support the entire rule lifecycle will have to perform some kind of customization.

Because of the complexity of the features of late BRMS tools – formal rule

language parsing, translation, and execution – the recommended practice is then

to first select the late BRMS tool among available offerings that addresses our late

BRMS needs, which would be JRules in our case, and then select among the early

BRMS tools the one that would require the least customization or the simplest

bridge to our late BRMS tool. From our experience, what ends up happening, most

of the time, is that customers custom-build the early BRMS functionalities them-

selves on top of early CASE3 tools or some general office productivity tools such as

spreadsheet software, shared workspaces (e.g., Lotus Notes databases), etc.

The issue that we wish to address in this section is to identify the kinds of

functionalities that are needed for “early BRMS”, i.e., establish a list of require-

ments for “early BRMS”.

7.2.2 Requirements for an Early BRMS Tool

Business rules being a development artifact that results from applying a specific

development process, an early BRMS tool should:

l Support the representation of “early rules”, and the artifacts they depend on
l Support the processes inherent in early business rule management

1BRS RuleTrack is a product of Business Rule Solutions, http://www.BRSolutions.com.
2RuleXpress is a product of RuleArts, check http://www.RuleArts.com.
3CASE for Computer Assisted Software Engineering. Our use of the terms early BRMS and late
BRMS is actually borrowed from CASE terminology, where early CASE refers to functionalities

focusing on requirements and modeling, and late CASE focuses on design and coding. That

distinction concerning CASE is blurring with model-driven development as we now have powerful

CASE tools that can perform round-trip engineering from platform independent UML models all

the way to platform-specific Java (or C#) code, and back.

7.2 Design Dimensions for Rule Management 179

Figure 7.1 shows a metamodel of rules adapted from Morgan (2002). This

diagram shows the relationship between business rules, object models, process

models, and business intent. We can interpret this metamodel at two levels. At

the surface level, we can think of it as a way of designing rule templates. Figure 7.1
then tells us that a rule template must include, in addition to the name or text of the

rule itself, the following pieces of information: (1) the business motivation behind

the rule (business intent), (2) a list of the objects constrained by the rule, (3) the

process step(s) constrained by the rule, and (4) any business events (or other process

steps) triggered by the rule. Figure 7.2 shows a sample rule template.

Practically, this template can be implemented using an Excel spreadsheet, a local

database form (e.g., Access), or a web form accessing a common repository. We

have seen all three implementations at different customer sites.

Process element

Intention EventRule

Object
constrains

Applied through

constrains

triggers

acts-on
launches

Fig. 7.1 An ontology of rules (Simplified from Morgan 2002, p. 28)

Name AUTO_UW_Drivers_with_DUI

Author John Smith Creation date April 15, 2009

Rule text Driver must not have had DUI conviction within past 7 years

Business motiva-
tion

Do not underwrite
risk prone drivers

Processes con-
strained by rule

UW/Eligibility

Objects con-
strained by rule

Driver; Policy
Business events
triggered by rule

Fig. 7.2 A sample rule template based on the ontology of Fig. 7.1

180 7 Issues in Designing Business Rule Applications

The problem with such a representation is that it is static: the things that the

template refers to (objects, processes, events) can change, but their references will

not. For example, after the rule is written, somebody decides to refer to all potential

insurance holders as PolicyHolder, instead of Driver, HomeOwner, or Tenant.

This change will not be automatically propagated to the rule description, which will

then become obsolete. The solution, naturally, is to have the template refer to the

actual entities (objects, processes, business events), as opposed to referring to their

names. An example of such a tool is RuleXpress™ from RuleArts, which supports

rule capture, and term and fact modeling. An alternative consists of building a

bridge between a rule management tool, and a business/system modeling tool. For

example, in the above template, we can imagine having automatically filled pull-

down lists for the field “Objects constrained by rule”. The same applies for

“Processes constrained by rule” or “Business events triggered by rule”.

With regard to the rule capture and analysis process, Fig. 7.3 shows a simplified

process. This process, based on the STEP methodology (von Halle 2001), shows the

key tasks we adopted in ABRD (see Chap. 3), without the incrementality (tackling

one piece of a functional area at a time) and iteration (feedback loop). Nevertheless,

the process can tell us three things:

1. The various deliverables and artifacts that are needed

2. The different versions of each deliverable

3. The workflow

We will discuss the early BRMS artifacts and deliverables in Sect. 7.2.2.1. The

versioning and lifecycle management (workflow) of these artifacts and deliverables

will be discussed in Sect. 7.2.2.2.

7.2.2.1 Early BRMS Artifacts and Deliverables

With regard to the deliverables, the ontology of Fig. 7.1 has already established

the need to represent – and co-reference – process models, rules, and domain models.

Themain issue here is whether we need to have one or two – ormore – representations

Rule analysis

Rule captureDiscover initial requirements

Model
process

Document
decisions

Capture
rules

Document
rules

complete
domain model

Break rules
into atomic rules

Clean-up rule base
(redundancies, overlaps, etc.)

Document
rule dependencies

Fig. 7.3 A simplified process for rule capture and analysis

7.2 Design Dimensions for Rule Management 181

of rules, one as the output of rule capture, and another, as the output of rule analysis.

Consider the following Fannie Mae mortgage underwriting guideline4 found in the

underwriting manual:

Properties must have hazards insurance that protects against loss or damage from fire and

other hazards covered by the standard extended coverage endorsement. The policy should

provide for claims to be settled on a replacement cost basis. The amount of coverage should

at least equal the minimum of:

a) 100% of the insurable value of the improvements.

b) The principal balance of the mortgage (as long as it exceeds the minimum amount –

typically 80% – required to compensate for damage or loss on a replacement cost basis).

If we are performing rule capture from the underwriting manual (see rule capture

in Chap. 4), we would take this prose, and pretty much stuff it as is into the “Rule

text” field of the rule template shown in Fig. 7.2.5 If we put this rule through

analysis, it will be broken down and will result into a bunch of rules, including:

l The property MUST HAVE a hazards insurance that protects against loss or

damage from fire, flood, etc.
l The coverage amount of the hazards insurance policy of the property MUST BE

GREATER THAN 100% of the insurable value of the improvements.

These are the rules that will be handed to rule authors who will code them. So

now the question is, do we need both versions? We definitely need the atomic one

(output of analysis), because that is the appropriate input for rule authors. We

believe that it is important to keep the original version too, because that is the

version closest to the original business requirement, and it is important to keep it for

traceability purposes. Indeed, a policy manager who needs to validate – i.e., verify

conformance to business intent – the result of rule analysis needs to know where the

atomic rule comes from. For example, during analysis, one of the steps consists of

making rules atomic, which maps a discovery-level rule into several analysis-level

rules. The reverse can also happen. One of the tasks of rule analysis in STEP (von

Halle 2001) is the identification of rule patterns. If I find several rules that use the

age of the policy holder, and their credit score, to compute a risk factor, I would

probably group them in a single rule artifact, i.e., a decision table.
This raises several issues. While the two examples above are clear-cut, rule

analysis includes a number of less dramatic transformations that rules undergo. Do

we always need to have two versions of each rule, one as the output of capture, and

the other as the output of analysis? And if so, at what level should we perform rule

maintenance? Should we maintain rules at the “capture level”, and then percolate

the changes down, to analysis, or, should we simply perform maintenance at the

analysis level. Using our property hazards insurance example, let us say we change

the requirement on the percentage of the coverage from 100% of the insurable value

4The Fannie Mae underwriting manual calls it a guideline, but according to the classification of

rules discussed in Chap. 4, this rule represents a constraint, i.e., a must-have condition.
5We may massage the text using some of the linguistic templates described in Chap. 4.

182 7 Issues in Designing Business Rule Applications

of the improvements to 95%. Should we update the non-atomic version – and

update the atomic version accordingly – or should we update the atomic version

(analysis-level) directly, leaving the non-atomic one unchanged? This depends on

the type and form of the change request. If the change request concerns the entire

(non-atomic) rule, then we should update the non-atomic rule, and then percolate

the change down to the atomic ones. If the change request concerns only the

coverage percentage, then we do not need to update the non-atomic version: it

adds no value in terms of traceability. Figure 7.4 illustrates the various dependen-

cies that would be useful to record in an early BRMS tool.

7.2.2.2 Versioning and Lifecycle Management

An important issue in maintenance, in general, is that of versioning. A naive

versioning policy would create a different version each time a rule is modified.

However, such a policy would lead to a proliferation of versions, with no signifi-

cance to business. When first created, the attributes of a rule (fields in the rule

template) will either have default values or will be empty. The various attributes

may be edited at different times, and it does not make sense to treat each attribute

(field) modification as a new version. At the same time, it may be useful to keep a

history of the changes that took place for a given rule. Thus, a sensible versioning

policy would include a combination of history management functionality, which

keeps track of all changes to rules, meaningful or otherwise, and a deliberate

versioning mechanism, where the user chooses to tag a specific modification as a

version change.

Rule
(Capture)

Rule
(Capture)

Requirements Rule
(Analysis)

Rule
(Authoring)

Rule
(Analysis)

Rule
(Authoring)

Change
request

Change
request

Rule
(Analysis)

Rule
(Authoring)

Fig. 7.4 Managing dependencies within an early BRMS tool

7.2 Design Dimensions for Rule Management 183

Going back to Fig. 7.3, in addition to managing the various lifecycle deliver-

ables, an early BRMS must also manage the workflow. Rule capture and analysis

involves several tasks, each involving a set of actors playing different roles,

including policy managers, subject matter experts, rule (business) analysts, rule
stewards, etc. Chapter 16 of this book talks about rule governance in relation to

authored rules. However, the same concepts apply to “early rules”. In particular, an

early BRMS must support role-based access control, and implement a state-driven

management of rules.

7.2.3 Conclusion

In this section, we explored the kinds of functionalities that an early BRMS tool

should support. We identified some of the things that we need to represent about

rules, including their relationships to other modeling and analysis artifacts such as

process models (or use cases) and domain models. We also touched upon the need

to represent different lifecycle versions for rules to reflect the changes that they

undergo during capture and analysis. An early BRMS tool must also support the

process of capturing and analyzing rules, and we identified the need for managing

the workflow of the various lifecycle deliverables.

None of the early BRMS tools we looked at – or know of – support all of these

functionalities. Until such time that early BRMS tools support the required func-

tionalities and integrate seamlessly with a late BRMS tool such as JRules, we

recommend that organizations adopt and adapt existing technologies for document

management. While automation is often desirable, it usually comes at a high cost in

terms: (1) implementation effort and (2) reduced flexibility.

7.3 Design Options for a Business Rule Application

In this section, we explore some of the design dimensions for a business application

that implements business rules using BRMS technology, but without special con-

sideration for BRMS integration; that aspect will be treated in Sect. 7.4. Entire

books have been written about application design, in general, and about specific

architectures and technologies. Our goal is not to rival such treatises. Instead, we

simply aim at providing the reader with some terminology corresponding to some

cardinal points in the design space to anchor our discussion about rule integration

(see Sect. 7.4).

The architecture of an application is influenced bymany factors. The most salient

of these are (1) requirements, (2) constraints, and (3) previous experience. With

the regard to requirements, there is a whole bunch of them, including – fittingly

called – architectural requirements, which include a variety of development-level

qualities (modularity, various “abilities” such as portability, reusability, scalability,

184 7 Issues in Designing Business Rule Applications

evolvability, etc.), run-time qualities (performance, fault-tolerance, recoverability,

etc.), business requirements, which relate to qualities such as cost, time to market,

configurability (i.e., the ability to deliver easily configurable subsets of the func-

tionalities), organizational requirements (e.g., the ability to have components of the

system developed by geographically distributed teams), etc. Constraints include

things such as the obligation to adopt a particular architectural style or technology in

use at the organization – or, the prohibition to use a particular technology.6 Con-

straints can also include regulatory, industry-specific guidelines or requirements,

and so forth.

Luckily, little architectural design is done from first principles nowadays: we

draw on experiences, both our own and those of other architects, in the form of

various architectural styles or patterns. It is useful to think of application archi-

tectures in terms of architectural styles and technologies that adhere to, or support,
those styles.7 For the purposes of our discussion, we will limit ourselves to the most

common architectural styles, i.e., those appropriate for business applications that

are typically deployed in a modern enterprise environment. In terms of technolo-

gies, we will also limit ourselves to the most commonly used technologies in an

enterprise environment. Exotic, niche, or unproven architectural styles or technol-

ogies will not be considered.

Roughly speaking, when considering developing a business application, four

broad categories may be considered:

l Standalone applications. by this we mean an application that runs on the CPU of

the machine of the user that uses only those resources that are available on that

machine.
l Synchronous client–server applications. by this we mean an enterprise applica-

tion whereby the processing of business events takes place in at least two

processes – which typically reside in different CPUs – and follows a synchro-

nous call pattern, i.e., whenever a “client” tier player issues a command to a

“server” tier player, the client blocks waiting for the answer from the “server”.

Ajax notwithstanding,8 typical web and J2EE applications fit in this category,

except for asynchronous invocation patterns, discussed next.
l Message-oriented architectures. this is also the case where the processing of a

business event takes place in more than one process – and typically, more than

one machine. The difference with the previous category is that the communica-

tion between the system’s components is message-oriented and asynchronous.
l Service-oriented architectures. in such architectures, applications are seen as

orchestrations of services. Services are software components that satisfy a

number of properties, including the following four: (a) loose coupling, whereby

6We dealt with one customer who prohibited the use of J2EE technology.
7Some authors will talk about architectural metaphors. These basically mean the same thing,

except that architectural styles have a precise meaning in the academic literature.
8AJAX, for Asynchronous Javascript and XML, offers limited-scope a-synchronicity between web

clients and servers, and does not fit the asynchronous style discussed here.

7.3 Design Options for a Business Rule Application 185

they interact through publicly declared interfaces, with no hidden dependencies,

(b) implementation neutrality, whereby a service can be invoked the same way,

regardless of the way it is implemented, (c) late-bound composition, whereby
services can be composed on the fly/on-demand, and (d) coarse granularity,
whereby services implement business-level services.

In the remaining subsections, we look at these four families in a bit more detail.

For each family, we look at five criteria: (1) simplicity of implementation, (2)

performance, (3) scalability, (4) ease of deployment, and (5) ease of maintenance/

evolvability. Because the BRMS we talk about in this book – IBM WebSphere

ILOG JRules – is Java based, we will consider the Java flavors of the various

architectural families.

7.3.1 Standalone Applications

Within the context of the Java language, we talk about J2SE applications. Such

applications perform all of their processing locally on the user machine, accessing

local resources (a local database, the file system) for the bulk of their processing.

If you think about it, most of the applications running on your PC are standalone

applications. Your file explorer, word processor, spreadsheet software, non-web
e-mail client, or development IDE (Eclipse, NetBeans, VisualStudio) are just like

that.9 Such applications may, on occasion, access external resources. For example,

a licensed desktop application may access a remote license server on start-up. An

IDE may embed a version control system client which connects with the server

when it is time to check-in or check-out stuff, but most of the work is done on your

local workspace.10 An antivirus software may check for updates at start-up etc.

While this architecture seems appropriate for office software or operating system

utilities, is it adapted to business applications? Business applications usually access

business data, which tends to be voluminous and distributed. But there are some

situations where business applications can be developed as standalone, “desktop”,

applications. For example, a sales support application for traveling salespeople may

be developed as a standalone application that accesses a local product catalog with

prices schedules, and a nearly up-to-date inventory.11 We have worked with

insurance companies that developed desktop underwriting applications that their

brokers could run on their laptops while on the road, enabling them to provide

9By the way, so is your web browser – as an application. Whether it is Internet Explorer, or

Firefox, or Opera, or Safari, the executable is on your machine, and it executes on your machine.
10If the local workspace happens to reside on a remote disk, the operating system will make that

transparent to the IDE.
11For example, the salespeople may synchronize their local inventory database (on their PC) with

the corporate inventory database when they are back to their hotel at night.

186 7 Issues in Designing Business Rule Applications

quotes to potential policyholders offline without having to “wait to go back to the

office”. We have encountered a similar situation with mortgage brokers.

The standalone application style has one major advantage: simplicity! Standa-

lone applications also tend to be responsive: indeed, because all resources are local,

there is no network latency or database contention to deal with. By definition, they
are not scalable, but given the type of application – i.e., a single user, in interactive

mode – they often do not need to. In terms of deployment and maintenance, there

are a number of tools nowadays that make the initial deployment, and the deploy-

ment of consecutive updates, relatively painless.12

7.3.2 Synchronous Client–Server Architecture

This family of architectures covers a fairly broad spectrum, from a simple, run of

the mill, three-tier web application with a thin client, a web server, and a database to

a full four-tier application with a thin client, a web server, an app server, and an

enterprise information service (EIS) providing access to legacy data. Figure 7.5

shows a typology of J2EE-type client–server architectures.13

What the various flavors have in common is the client tier – web client or

standalone – and the EIS tier, which stands for a database or a legacy information

system that enables us to access enterprise data through an API. Between these two,

we can have a direct connection (e.g., between a standalone client and the EIS

resource), in which case we have a two-tier architecture, or a web container, or an

application server, for a three-tier architecture, or both, for a full-fledged four-tier

architecture. Naturally, if we have a (thin) web client, we minimally need a web

container – and a three-tier architecture. However, it is possible to have a rich client

Standalone
client

Web client

Web tier
Business

tier
EIS re-
sources

Fig. 7.5 Different client–server architectures

12Java Webstart, e.g., is about as simple as it gets.
13This diagram is borrowed from the J2EE literature. See for example http://java.sun.com/javaee.

7.3 Design Options for a Business Rule Application 187

connect to an application server, which, in turn, accesses data through an EIS

resource. Although there are legitimate-use cases for all of the above combinations,

we will focus on the most common ones: three-tier web applications, with a thin

web client, a web server tier, and EIS tier, and four-tier web applications, with a

business tier between the web tier and the EIS.

In a four-tier web application, we strive to separate the business logic from the

presentation and interaction logic of the application. The presentation and interac-

tion logic are embodied in the web tier, while the business logic (business entities,

non-modal business functions) is embodied in the business tier. The web tier itself

is commonly architected along some flavor of the model-view-controller pattern,
first developed within the context of Smalltalk’s GUI libraries, and later adapted to

the web context. Indeed, most of the web-development frameworks (Struts and

Struts2, Spring MVC, Ruby on Rails, Tapestry, etc.) implement some variation on

the model-view-controller. Figure 7.6 illustrates the principles behind the MVC.

The view component embodies the user interface (e.g., the HTML contents of a

web page) and represents (views) the current state of the model component, the

controller embodies the program that captures user input, and that translates it into

commands to be executed by the model component, and the model component

represents the application logic. The plain arrows show the references between the

components, while the dashed arrows represent the data and command flows

between them. A key aspect of the MVC is the fact that the model has no explicit

knowledge of the view or controller, which makes the application logic independent

of the presentation technology, enabling us to offer multiple views/presentations for

the same model. Another key aspect of MVC frameworks is the provision of view
and controller libraries, which enable web developers to develop views and con-

trollers by composing configurable library components, thereby enhancing the

Model

View Controller

data commands

User inputs

Update

Reference Data and control flow

Fig. 7.6 The principles behind the MVC pattern

188 7 Issues in Designing Business Rule Applications

productivity of the presentation layer development and its quality (e.g., consistent

look and feel).

Within the context of web applications, the view is typically some flavor of

HTML, and the controller is a user-coded or framework-generated servlet that acts

as an intermediary between the model and the view, with no direct reference or data

flow between the two, as is suggested by Fig. 7.6. As for the model component, it is

usually a façade for the business logic that records the current state of the applica-
tion/interaction and manages the application flow. Within the context of three-tier

applications, the business logic is packaged together with the model component of

the web application. Within the context of four-tier applications, the business logic

is packaged – and deployed – separately from the web component. In this latter

case, the invocation of business services by the model component of the MVC triad

may be delegated to a session bean-like interface, i.e., a proxy façade for business

services. Note that, within the context of a four-tier application, the web component

and the business tier component need not reside in different servers, and the

communication between the two need not be remote. However, they are packaged

and deployed separately.

It is beyond the scope of this section, chapter, and book, to explore the full-

design space for synchronous J2EE-style client–server applications. For the pur-

poses of the current discussion, we are interested in identifying the different places

within an application that business decisions may need to be taken, and correspond-

ingly, the different invocation sites for business rules. The latter aspects will be

discussed in Sect. 7.4.2.

7.3.3 Message-Oriented Architectures

A common problem faced by IT departments is that of integrating a variety of

mission critical applications developed using different technologies, running on

different platforms, and that were never meant to work together in the first place.

Message-Oriented Middleware (MOM) was developed to address this enterprise
application integration problem. With MOM, instead of remote procedure calls

between applications – which would be unworkable in this case – applications send

each other messages that contain a description of what needs to get done, along with

the data. Thus, if an online web-based order processing system wants to invoke a

mainframe batch inventory management system, it can send to it a message, for

every confirmed order, that contains the required inventory decrements. The main-

frame batch inventory management application can process the queued messages

when it kicks off at 3:00 a.m., along with the transaction logs coming from other

legacy applications.

The advantages of message-oriented integration are many, including:

l Interoperability. Producers and consumers of messages can agree on a technology-

neutral message format that abstracts the many differences that may exist in the

underlying programming languages, memory models, and function call semantics.

7.3 Design Options for a Business Rule Application 189

This makes it possible to interconnect applications developed with totally different

technologies. In the simple example above, the inventory management system

need not even be “working” when the online order processing system “makes the

call.”14

l Robustness. The MOM virtually guarantees message delivery. Indeed, the mes-

sages that are sent are persisted so that if the messaging channel or the receiver

fails, the messages can be recovered and put back on the queue until they are

consumed by the targeted destination. By comparison, no such guarantees exist

for remote procedure calls: the best a caller can do is to retry a failed call.15

l Loose coupling. The interacting applications are loosely coupled. Thus, we can

replace an application by another one that does the same job, in a different

location, and using a different technology. We can also add new functionality to

the system on the fly by having it “listen in” on the existing message channels to

consume existing messages without having to change.
l Scalability. In a traditional synchronous RPC call, the caller blocks until the call

completes. During this idle wait, the caller uses up system resources and cannot

process other business events/transactions. With MOM, an application can turn

around and process other transactions as soon as it sends a request concerning

the current transaction. When the receiver replies, the application can take up

with that transaction where it left off.

Because of these advantages, message-oriented integration has been applied

beyond its original niche of enterprise application integration (EAI) problems. In

particular, the Java Message Service (JMS) API, which provides a standard Java

API that enables Java programs to communicate with various messaging imple-

mentations, has been used to mediate interactions between Java components within

the context of J2EE applications. Here, interoperability is not much of an issue,16

but architects value loose coupling, robustness, and scalability. In particular,

messaging can be used within the context of a four-tier architecture (see the

previous section), either for the interactions between the web tier and the business

tier (e.g., using message-driven beans) or to implement some business services on

behalf of the business tier.

Again, for the purposes of this section and chapter, we will not explore the

full design space for message-driven architectures. We will be content to raise

the possibility of having the communication between rule “consumers” (i.e., busi-

ness application components) and rule “providers” (e.g., a rule execution serve)

mediated through a messaging framework or middleware.

14Contrast this with typical OO RPC calls: the caller and receiver processes need to be active for

the “call to be delivered”. In fact, part of CORBA’s lifecycle management services consists of

instantiating a server process whenever a client makes a call to a dead server object.
15This is often problematic because in the case of a RPC call, it is not always possible to tell when a

connection exception occurred during the request or the response. Unless we use a transactional

context, retrying a failed call may not be appropriate.
16The J2EE platform does offer other APIs to integrate with legacy EIS, e.g., JCA.

190 7 Issues in Designing Business Rule Applications

7.3.4 Service-Oriented Architectures

What is SOA? Is it a panacea that will revolutionize the way we develop software –

and some say, manage our businesses – or is it yet another marketing-driven IT fad

peddled by integrators and solution vendors. We believe it is neither. It is not

revolutionary – you know what we think of revolutions by now – but an evolution-

ary convergence of advances in middleware, software architecture, and “age old”

best IT practices. Like most new trends, its potential has been overhyped, and its

challenges have not been well-understood. But there is real substance, and its power

can be harnessed with proper methodology, reasonable expectations, and some

(appropriate) technology. We first discuss the principles underlying service-
oriented computing. Next, we discuss the historical influences of SOC. Finally,

we say a few words about service-oriented engineering.

7.3.4.1 Service-Oriented Computing Principles

The service-oriented computing (SOC) paradigm views the development of busi-

ness applications as the late-bound composition (orchestration) of loosely coupled,
implementation-neutral, coarse-grained software components called services.
Roughly speaking, a service is a collection of coherent/cohesive capabilities that

can address the needs of many consumers. A flight booking service would offer

functions/operations for searching for flights, booking flights, and canceling exist-

ing bookings. There has been much debate in the community about what constitutes

a service. Thomas Erl (2005), an SOA pioneer, identified eight characteristics of

services:

l Standardized (service) contracts. As software components, services define their

capabilities using a standard, implementation-neutral language.
l Loose coupling. The services are loosely coupled, and any dependencies are

explicitly stated in their service contracts.
l Abstraction. Whereas loose coupling refers to dependencies between services,

abstraction refers to dependencies between a service provider and a service

consumer. The consumer should not depend on the implementation details of

the service.
l Reusability. Services embody reusable functionality that can service many con-

sumers. In other work, we defined reusability as usefulness and usability (Mili

et al. 2002). Usefulness refers to how often the provided functionality is needed

while usability refers to how easy it is to use. Usability embodies many aspects,

including the existence of (standardized) service contracts (see above), as well as

discoverability, composability, and interoperability, discussed below.
l Autonomy. From the perspective of the consumer, services should be perceived

as self-contained components with total control over their resources and envi-

ronment. The consumer should be able to assume that the service needs no more

than the parameters specified in its service contract to do its job. Naturally,

7.3 Design Options for a Business Rule Application 191

behind the scenes, a service may in turn depend on other services. For example,

business services can depend on a layer of shared technical services.
l Statelessness. We can understand statelessness of services in two complemen-

tary ways. To be able to “service” many consumers, a service should not have to

rely on implicit state information about its consumers; all of the data needed to

service a particular consumer’s request should be explicitly passed as para-

meters. The second aspect of statelessness is related to multiple interactions

with the same consumer. This means that a consumer can invoke the operations

of the service as many times as they want, in any order they wish, and always

get the same result. In practice, of course, these two conditions are seldom

attainable – and not necessarily desirable. If I am using a flight booking service,

I sure hope that my interactions with the service have a lasting effect on the state

of the world: the creation of a booking in the booking database. Erl writes:

“Applying the principle of service statelessness requires that measures of realis-

tically attainable statelessness be assessed, based on the adequacy of the sur-

rounding technology architecture to provide state management delegation and

deferral options”.17

l Discoverability. This refers to the ability of services to document – and advertise

– their capabilities so that service consumers can find them. The documentation

of the capabilities of a service needs to be expressed in a domain language that is

distinct from the language used to express the service contract.
l Composability. This refers to dual capability of services to (a) be composed at

arbitrary levels of aggregation to form more complex services and (b) address

many needs. This, in turn, influences two design aspects of services: (a) the

modalities for interacting with the service and (b) the way the capabilities of the

service are distributed among its operations.

7.3.4.2 SOC Lineage

The above characteristics embody a number of design principles that have evolved

over the years, and that have found expression in a number of technologies. To

name a few:

1. Object-orientation. From OO, we inherit the idea of a service contract (the

public interface of a class), abstraction (information hiding), reusability, and to

some extent, autonomy (encapsulation). However, classes do not have the appro-

priate granularity to form the foundation of a SOC – too small, too dependent on

others.

2. Component-oriented development embodies many of the same principles that

underlie OO, but at a higher level of abstraction and granularity. In component-

oriented development, we have a burgeoning expression of autonomy, stateless-

ness, and discoverability.

3. Distributed applications, in general, and message-oriented architectures, in

particular, contribute remoteness, interoperability, and loose coupling. In fact,

192 7 Issues in Designing Business Rule Applications

as we will see shortly, these architectures often provide the computational

backbone for SOC.

4. Business process management, which makes a clear distinction between the

orchestration of a business process, and execution of the various tasks of the

process by separate applications.

5. Web services, which constitute one implementation of SOC, and thus, not

surprisingly, embody most of the above characteristics “out of the box”, in

part thanks to web service standards such as WSDL (service contracts) and

UDDI (discoverability).

From a technological point of view, SOAs tend to be message-oriented, and an

enterprise service bus typically constitutes its infrastructural backbone. Figure 7.7

shows a typical technological landscape of an SOA.

7.3.4.3 Service-Oriented Engineering

Now that we understand what an SOA is, and what it looks like, how do you build

one? What constitutes a good service? How can I (can I?) leverage existing IT

assets? And so forth. A pure service-oriented analysis would start from an abstract

description of some business functionality and decompose it into an orchestration

of services that satisfy the eight criteria mentioned above. To make sure that the so-

identified services are truly reusable and composable, we need to consider many
such business functionalities within a particular domain, i.e., we need to perform a

good domain analysis. There are many ways to decompose business functionalities,

Enterprise Service Bus : reliable asynchronous secure messaging

MQ
gateway

Mainframe &
legacy applications

JMS /
J2EE

Java
applications

Web
service

.NET
applications

Adapters

Enterprise
applications

Service
interfaces

Service
orchestration-based

application 1

Service
orchestration-based

application 2 Portal

Fig. 7.7 A typical technological landscape of an SOA, using an enterprise service bus (ESB)

(Adapted from Papazoglou et al. 2007)

7.3 Design Options for a Business Rule Application 193

including good old functional decomposition, process decomposition, goal-subgoal

decomposition (see, e.g., Huhns and Singh (2005)), or as Zimmermann et al. (2004)

have suggested, using Feature-Oriented Domain Analysis (FODA; Kang et al.

1990) to help with the identification of candidate services. A pure top-down

approach can only be part of the solution: we need to take into account and leverage
the existing IT assets to guide the service decomposition. Zimmermann et al.

referred to this as a “meet in the middle” approach. Actually, most domain engi-
neering methods do use a combination of analysis (top-down decomposition) and

synthesis (generalizing from existing applications within the domain) to arrive at a

good domain architecture (Mili et al. 2002). That being said, a number of authors

and practitioners recognize that slapping a web service interface onto a legacy

system does not make a good service. Indeed, legacy applications may fail many of

the essential/non-packaging related criteria mentioned above (autonomy, abstrac-

tion, statelessness, and composability), and some measure of reengineering is often

needed to make them good service citizens.

For the purposes of the current discussion, we will not delve any deeper into

SOA. We are interested in the role that rule-based decisioning can play within

service-oriented applications. Referring back to Fig. 7.7, we can see two places

where rule-based decisioning might take place: (a) within the context of individual

services (lower half of the diagram), or (b) within the context of the application

orchestration of services (workflow routing and management). Section 7.4.2 will

discuss the various rule engine deployment alternatives to accommodate these

decisioning needs.

7.4 Designing the Integration of Rules into Applications

If we adopt the business rules approach, business applications will delegate the

decision aspects of their processing to a rule engine (see Fig. 7.8). In this section,

we look at the design space for how a business application invokes the rule engine.

There are a number of design factors to consider, but the most obvious ones are: (a)

what does the calling application look like and (b) how the rules are deployed, in the

first place. The architecture of the calling application will typically be determined by a

number of factors not having to do with the use of business rules. Section 7.3 of this

chapter explored (summarily) the design space for enterprise applications; in this

section, we look at how a particular point in that space influences our integration.With

regard to rule engine deployment, roughly speaking, there are two broad options:

l Executing rules by manipulating rule engines directly as Java objects running

within the same JVM – typically within the same thread – as the calling business

application
l Executing rules by invoking a separately running – and typically remote – rule

execution service

194 7 Issues in Designing Business Rule Applications

A rule execution service typically offers a number of services, in addition to

executing rules on behalf of business applications. Those services will be discussed

in Sect. 7.4.1, and will serve for the comparison between the two deployment

options. Existing BRMSs offer one, the other, or both deployment options.17 The

issue then becomes, given an application architecture, which rule engine deploy-

ment to choose? Generally speaking, we would want to use the simplest deploy-

ment option that will do the job, and that will generally plead for the option

consisting of manipulating rule engines directly. However, other architectural

requirements, such as scalability and hot deployment, or rule management require-

ments, such as versioning, might plead for a rule execution service option.

We start this section by comparing the two engine deployment options

(Sect. 7.4.1). In Sect. 7.4.2, we talk about how the architecture of the calling

application influences the choice of a deployment options. Section 7.4.3 provides

a summary.

clerical task

Clerical task

Decision-rich task

Decision-rich task
Rule engine

Fig. 7.8 Business applications delegate decision-rich tasks to a rule engine

17JRules offers half a dozen variants of the rule execution service option, to be discussed in

Chap. 13.

7.4 Designing the Integration of Rules into Applications 195

7.4.1 Rule Engine Deployment Options

Generally speaking, there are two broad options for executing rules on behalf of a

business application. In the first option, illustrated in Fig. 7.9a, the business

application manipulates a rule engine and its required resources directly. Typically,

the rule engine is written in the same language as the business application (for

example Java) and lives in the same memory space and the same thread as the

Rule
Management

Development
rule repository

BRMS

rule engine

ruleset

Task1 Task2

Task3

call call

Business application

Ruleset
extraction

a

Rule management

Development
rule repository

BRMS

Business application

Task1

Task2 Task3

Execution
ruleset

repository

Ruleset
extraction

…
Rule

authoring

Rule
search

Rule execution
service interface

execute (rset, data)

Rule
analysis

…

b

Rule
automation

execute (rset, data)

Fig. 7.9 (a) Business applications execute rules by manipulating rule engines directly. (b) Ruleset

execution as a service provided by a rule execution server

196 7 Issues in Designing Business Rule Applications

calling application. In this case, the execution component of the BRMS is some-

what limited to a code library that can be integrated in calling business applications,

and the business application manages the lifecycle of the rule engine and its

required resources – typically, the ruleset, and any reference data the ruleset needs.

In the second option, illustrated in Fig. 7.9b, rule execution is offered as a service
to business applications offered by a rule execution server whereby a business

application may request the execution of a particular ruleset on a specific data set,

and get the result of the execution is return. In such situations, the rule execution

server is responsible for managing the lifecycle of the rule engine and its required

resources. The business application would use the rule execution service interface

to submit a ruleset execution request. A request would have to identify the ruleset,

and pass the data on which we wish to apply the rules. Typically, we would expect

the rule execution server to be an independently running service. Among other

things, this makes it possible to have a remote invocation of the rule execution

service.

Note that such a rule execution service does not necessarily fit the definition of a

service in the SOA sense (see Sect. 7.3.4.1). This aspect is thoroughly discussed in

Chap. 12, which explore rule engine deployment options in far more detail.

Figure 7.9b shows a plausible implementation for such a rule execution service.

We will have ample opportunity in the coming chapters to talk about JRules’s own

Rule Execution Server; in this section, we focus on what a rule execution service

might entail, in general. First, it makes sense to have an execution ruleset repository

that is separate from the development repository. A ruleset extraction tool generates

rulesets from the development repository. As rules are modified and versioned in

the development repository, new versions of the rulesets need to be created and

saved in the execution repository. Some form of ruleset versioning is typically

supported.

The rule automation component of the BRMS consists mainly of the ruleset

execution service, which accesses the execution repository and relies on a pool of

rule engines to service requests coming from possibly different business applica-

tions. Scalability is made possible by increasing the size of the rule engine pool.

The rule execution service approach (Fig. 7.9b) means that rulesets are

deployed, physically separately from the business application code: to invoke a

ruleset, we only need to know it by name. This means that we can update a ruleset

referenced by a business application without redeploying the business application

itself.18 In mission-critical 24/7 business applications, hot deployment of rulesets is
a must-have feature.

In summary, if we adopt the rule execution service, we can expect the following

services/features:

1. A central point of ruleset execution for different applications

2. As a corollary, the possibility of remote ruleset execution

18Meaning the application code archive (in Java, it could be a Java Archive, or jar, aWeb Archive,
or war, or an Enterprise Archive, or ear).

7.4 Designing the Integration of Rules into Applications 197

3. Separate physical deployment of rulesets19 from the executable code of business

applications

4. As a corollary, hot deployment of executable rulesets
5. The possibility for versioning executable rulesets
6. The possibility for scalability

The vendor solutions that offer ruleset execution as a service may offer different

combinations of these features. The JRules BRMS offers all of them.

Given all of these features, why would anyone bother using – or even considering

– the first approach? In fact, there are many reasons to forego these services and use

the simpler implementation approach. Indeed, these features come at a – sometimes

substantial – cost in terms of added complexity of deployment, of implementation,

and of use. For example, if a feature such as hot deployment or separate physical

deployment of rulesets is not critically needed, we forego the rule execution service

and choose to manipulate rule engines directly. The next two sections will explore

the various design trade-offs.

It should be noted that BRMS industry players have used the Java Community

Process to come up with a standard API – JSR94 – that abstracts differences

between BRMS vendors. In effect, this API also abstracts away differences in

deployment modes: the same API can be used whether we are manipulating a

rule engine directly or interacting with a rule execution service.20

7.4.2 Architecture of the Calling Application

The architecture of the calling business application has a great influence over the

way we integrate rule engines into the application. There are different factors to

consider, including:

1. The type of application we have: standalone, synchronous client–server, message-

oriented, or service-oriented

2. For client–server applications, the tier in which rules should be executed

3. Architectural requirements, e.g., application availability, connectivity to legacy

systems, and must-have or cannot-have technologies

In the remainder of this section, we will go over the different criteria and discuss

their impact on the choice of a deployment option.

19From, a deployment point of view, the business rules approach does enable us to treat business

logic as data that is separate from program code. However, with the first deployment approach that

data is often bundled with the program code in the same application code archive.
20As a consequence, the JSR94 API is too “verbose” in those cases where we are manipulating a

rule engine directly, and too “coarse” for those instances where we are using the API to invoke a

rule execution service. For example, JRules’s rule engine API is more “efficient” than JSR94, and

its rule execution server (RES) API offers finer control than JSR94.

198 7 Issues in Designing Business Rule Applications

7.4.2.1 The Types of Applications

For a standalone (desktop) application, it is hard to imagine scenarios where an

architect would choose to execute rules using a rule execution service. Remote

invocation would be too much of an overhead. Indeed, scalability is not an issue in

this case, and there is little benefit to be gained from a central point of execution of

rules – having already opted for a decentralized execution of the application itself. If

hot deployment of rulesets is an important requirement, we can imagine other ways of

distributing new rulesets and running different versions of rulesets. Most likely,

desktop applications can run offline and do not need the rulesets to be accurate to

the minute. Take the example of a traveling insurance broker who has a desktop quote

generation/underwriting application on their laptop. They can connect to home base

at night to load the latest version of the underwriting rules. Actually, the chances are

you have a similar application running on your laptop right now. Indeed, many

antivirus software packages work just this way: they work on your machine, but

they check regularly with home base to load the latest virus definitions, which are

nothing but rules, i.e., declaratively specified patterns of malicious code!

With client–server applications, both deployment options are plausible. Having

made the decision to use a client–server type of application, using a rule execution

service does not add undue complexity or overhead. The importance of features such

as hot deployment, ruleset versioning, or central point of execution makes the

difference. The same can be said about message-oriented architectures or service-

oriented architectures: both types of architectures come at the cost of added com-

plexity in terms of development, deployment, and execution, and executing rules

through a rule execution service does not represent undue complexity or overhead.

Note that JRules’s rule execution server (RES) supports a message-oriented

execution pattern built on top of the call-and-return rule (execution) sessions, which
integrates neatly with message-oriented architectures. Note also that the fact that

we adopt a service-oriented architecture does not necessarily mean that (a) only a

rule execution service makes sense or (b) in such an architecture, the rule execution

service would be one of the published services. With regard to the latter point,

SOA-type services tend to be coarse-grained business services whereas rule execu-

tion is more of a support or infrastructure service for the various business functions.

Further, it is difficult to optimize properties such as autonomy and statelessness

while maintaining a generic, clean service interface.

Finally, note that there are no absolutes. For every imaginable combination of

<application type, rule execution type>, there is a legitimate-use case that warrants

it. This is true for the application type, but also of the other criteria discussed in this

section.

7.4.2.2 Which Tier, for Client–Server Applications?

Client–server applications come in many flavors, illustrated in Fig. 7.5 (see

Sect. 7.3.2) and Fig. 7.10, shown below. One of the issues that designers face is

7.4 Designing the Integration of Rules into Applications 199

choosing the application tier at which rules can be invoked. In this section, we look

at the reasons – and implications – of invoking rules at a given tier, and how that

choice might influence the integration of rule execution in an application – i.e.,

direct engine manipulation versus rule execution service.

Business rules are part of the business logic, and the most natural place for

invoking rules in a multi-tier application is the application server tier. It is also the

most common one. There are situations, however, where rules may be invoked from

a different tier.

Let us go back to our claim processing application, and assume that claim entry

is done through a client side form. A first step in processing claims is data

validation. This can take many flavors. The simplest is data format validation,

i.e., ensuring that a date is a date or that a number contains no letters. This kind of

validation can usually be embedded in the input field controls: the prompt for a date

is a calendar! More complex validations include things such as checking the general

pattern for a social security number, or a claim ID, or a policy number, prior to

performing an actual lookup. Yet a more sophisticated validation will ensure that

birthdates do not predate 1850,21 say, or that a given zip code is indeed, located

within the state provided. Other validations will check that the policy number is not

only well formed, but also corresponds to an actual policy. And so forth.

This raises two questions. First, should the validation rules even be captured and

managed by the BRMS? If so, the second question is, at what point/tier should

the rules be invoked: should they be invoked at the client tier, at the web tier, the

application server tier, or the database/EIS tier? With regard to the first question, the

Standalone
client

Web client

Web
container

Application
server

EIS re-
sources

Rules can be in-
voked at any tier

Fig. 7.10 In a client–server application, rules can be invoked at any tier

21We have come across an insurer that was carrying a policy that was over a hundred years old.

Even though the initial policyholder deceased quite a while ago, the policy was converted in some

form of trust in the name of the beneficiaries.

200 7 Issues in Designing Business Rule Applications

rule classification proposed by the business rules group includes all of the previous
validations. Indeed, structural assertions cover all of the “data definition rules”.

However, such rules are not necessarily to be captured by the BRMS: some are

going to be implicit in data or class diagrams, and subsequently in database schemas

or class definitions. In our example, it is clear that rules related to data syntax, such

as the input format for dates and numbers, should not be captured in the BRMS.

How about the well-formedness of data values? If the rules are not trivial, then they

should probably be managed by the BRMS. How about referential integrity con-

straints?22 Integrity constraints can be specified and enforced at the database level

itself, but do we want to wait until we are about to commit a long and complex

transaction? This ties into the second question, discussed below.

We are back to the question of deciding the tier at which to invoke rules. For

simple validation rules, if the rules are not invoked at the client tier, it means that

the end user could potentially be filling out a long or multi-page input form, and

only finds out what is wrong after she or he submits the form for processing to the

other tiers. What should we do in this case? There are three possible solutions:

1. Implement such rules at the client side using a scripting language, i.e., outside of

a rule engine, or

2. Embed a rule engine on the client side, provided that the footprint of the basic

rule engine API is not too heavy, or

3. Break entry forms into shorter forms that are submitted to web or app server tier

to do a partial validation on the data entered on each sub-form, providing

medium responsiveness of the application.

The first solution is the simplest and the most pragmatic and it should be limited

to simple semantic23 data validation rules. The disadvantage of this solution is the

non-uniform treatment of a kind of rules both at development time – they will not be

managed by the BRMS24 – and at run-time – they will not be executed by rule

engines.

The second solution strikes a balance: semantic validation rules are created and

managed by the BRMS, but may use a different execution infrastructure from the

rest of the rules. In this case, we need to figure out how to update the client-side

rules, and the answer depends on how often rules need to be updated. Options

include redeploying the client with every new version of rules, or having clients

retrieve the latest version of rules from the BRMS, at start-up/initialization.

The third solution favors the uniformity of implementation: all rules are handled

on the server side, and the same execution infrastructure is used everywhere. There

22The requirement that a claim refer to an actual policy is an example of a referential integrity
constraint. In database terms, such a constraint can be specified by stating that a database table

column is a foreign key to another table.
23To us, it is clear that syntactic data validation rules are out of scope of the BRMS.
24They could still be managed by the same early BRMS as the other rules, but not in formal//

executable form.

7.4 Designing the Integration of Rules into Applications 201

is certainly value in such a solution, as uniformity is a much desired quality in

architecture. But so is pragmatism.

Note that rules can also be invoked at the database tier. Database management

systems enable us to specify and enforce integrity constraints that are triggered

when new data is committed to the database. To the extent that a DBMS supports

Java-stored procedures, we can augment the integrity constraint capabilities of

DBMSs with the full power of Java-based rule description languages and execution

engines. In fact, the Versata25 BRMS started out as a back-end BRMS. The problem

with embedding rules at the data tier level is that we have to wait until we commit a

potentially long transaction, before we find out if there is something wrong with

the data.

7.4.3 Additional Requirements

Our application may be subjected to requirements which can influence the deploy-

ment option chosen for rule engines. For example, for mission-critical 24/7 appli-

cations, we cannot shutdown the application to update the rules. This leaves us with

two options:

1. Execute rules as a service. New versions of rules can be deployed to the rule

execution service, and become available for execution immediately.

2. Embed the rule engine in the application, but figure out a way of updating

rulesets while the application is running. There are many ways of achieving

this. In one solution, our application can poll a given location (file system, URL,

etc.) for the latest version of a ruleset, and if it finds a ruleset that is more recent

than the currently running version, it loads it. We can also implement function-

ality that pushes a new version of a ruleset on a running business application

when that version becomes available.

The embedding solution would work, but it requires custom development and

adds complexity to the application. Thus, hot deployment of rules for 24/7 applica-

tions pleads for a rule execution service solution.

Another common requirement would be to run different versions of the same

ruleset, simultaneously. Take our insurance claim processing example. Our insur-

ance company may change the claim eligibility or adjudication rules at the begin-

ning of every year. Claims for medical services received starting January 1, 2009,

may use a different set of rules from that used for medical services performed

before January 1, 2009. Thus two claims CA and CB submitted on the same day –

say January 15, 2009 – will need to be processed with two different rulesets. Strictly

speaking, this can be accommodated using both deployment options. As mentioned

in Sect. 7.4.1, we would expect a rule execution service to support ruleset

25See http://www.versata.com.

202 7 Issues in Designing Business Rule Applications

versioning out of the box; in such a case, the calling application just needs to

specify which version of a particular ruleset it wants to execute. If, instead, we

choose to embed rule engines in our application, then the application needs to

manage the different ruleset versions, and the different rule engines that will run

them. Again, this is technically feasible, but at the cost of much added complexity

to the calling business application.

We ran into situations where a customer had a “no technology X” policy, which

would preclude the use of a rule execution service based on technology X. A Wall

Street company we worked with had a “no J2EE” policy, period.26 For the case of

JRules, this meant that we could not use the full-fledged J2EE version of JRules’s

Rule Execution Server (RES). Lighter versions of the RES could be used, however.

Chapter 13 deals specifically with deployment in JRules.

7.4.4 Summary

In this section, we summarize our analysis of the design drivers that influence the

choice of a deployment option for rule engines. Table 7.1 looks at general applica-

tion characteristics. As the previous discussion showed, there are no absolutes: the

“þ” and “�” signs should be interpreted as “tends to favor” and “tends to disfavor”.

Table 7.2 looks in more detail at client–server applications. Here, we look at

both the rule invocation tier and deployment option, based on the rule type.

Table 7.2 Influence of rule

type on rule invocation and

deployment for client–server

applications

Rule type Invocation

tier

Favored deployment

option

Syntactic data

validation

Client side Outside of the BRMS.

Client-side scripting

Simple semantic data

validation rules

Client side Client side embedded

rule engines

Other types of rules Application

server

Rule execution service

Table 7.1 Influence of application characteristics over rule engine deployment options

Deployment option Embeddedrule engine Rule execution service

Application type

Desktop application þ �
Client–server � þ
Hot deployment � þ
Executable ruleset versioning � þ

26It is pretty much a settled debate in the Java community that EJBs are an overkill for many

situations, and even more so for entity beans. Because there are alternatives to EJBs, even in those
situations where the full EJB services are needed (persistence, transactions, security), corporate

architects may be tempted by a no-exception policy. The alternative, a case by case analysis of

every project, would be too energy consuming!

7.4 Designing the Integration of Rules into Applications 203

7.5 Reengineering Existing Applications to Externalize

Business Rules

An overwhelming majority of the business rule projects we got involved in are

reengineering projects. In some instances, the use of business rules is the main

driver behind the reengineering effort. More often than not, business rules are

introduced as part of a general modernization of a legacy system. Two factors

influence the way we integrate the business rules, the scope of the reengineering

effort and, to a lesser extent, the driver for the reengineering effort, i.e., business

rules versus other considerations. The discussion in Sect. 7.4 was about rule engine

deployment options, namely, embedding rule engines versus rule execution service,

and rule invocation site, i.e., which tier for a multi-tier application, without worry-

ing about external constraints. In this section, we look at the kinds of constraints

that come from dealing with a legacy system.

Figure 7.11 shows a number of stereotypical reengineering scopes. Each scope

comes with different design degrees of freedom, and a different set of constraints.

A typical scenario consists of reengineering the presentation layer, as in going

from, say, a terminal-based application to a GUI application or a web client, or,

going from a browser-based web application to a mobile application. In this case,

the business objects remain unchanged, and so does the application/process layer.

Business rules seldom get introduced in this context.27 Another scenario will see

Presentation layer

Application / process layer

Business layer

Data access layer

Re-engineering the
presentation layer

Re-engineering the
presentation and
application layers

Re-engineering all
but the data access
layer

Re-engineering all but
the data access layer
for a particular
subsystem / subfunction

Fig. 7.11 Different reengineering scopes: different depths and breadths

27If we replace a thin client by a rich client, and introducing business rules to handle client-side

validation, say, then we are changing the application flow.

204 7 Issues in Designing Business Rule Applications

both the presentation layer and the application/process layer changed, leaving the

business layer and the data layer unchanged. This means that the business objects

remain unchanged, but everything else above them is changed. This corresponds to

reengineering recent legacy systems and covers many change scenarios, including

introducing new modalities for invoking the application’s functionality, as in going

from batch to interactive, or from RPC28 to message-oriented. It also includes more

fundamental paradigm changes, as in adding a workflow or service-oriented layer on

top of the existing business logic. Finally, notice that adding new functionality that

uses the same business objects will also make changes to the application layer and to

the presentation layer. Regardless of the change scenario, if we are to integrate

business rules in this case, they would be introduced at the application layer.

A third scenario will have us reengineer everything above the data layer. For all

practical purposes, this is similar to a new project: all of the application code is

developed from scratch, from the Java entity classes all the way to the presentation

layer. The only constraint here is that the new business objects will be populated by

the legacy data, which can reside in databases that can be accessed directly or in

other legacy systems through API.29 In this case, ruleset execution can be invoked

either from the application layer or from the business layer. Yet, a fourth scenario,

not illustrated in Fig. 7.11, will have us reengineer everything, from the data layer

and on up. This happens in situations where new or modified functionality requires

data that is not currently captured in the legacy databases.

Naturally, in practice, reengineering scenarios are combinations of these proto-

typical scenarios. We might reengineer different subsystems to different depths.

When we add new functionality, we might reuse the existing infrastructure to

various degrees/depths, depending on how close the existing infrastructure comes

to addressing the needs of the new functionality, but also depending on the time and

resources we have for the project, on the number of mission-critic al applications

that use the existing infrastructure, and so on and so forth.

It is beyond the scope of this chapter – or this book – to recommend best

practices for all possible situations. We will look at a couple of typical situations

that we encountered, and what they mean for integrating business rules.

7.5.1 Reengineering the Application Layer

This is the case where we are reengineering a recent legacy system that is already

implemented in object technology – typically, Java EE – to introduce business

rules. In the simplest of cases, the process flow does not change: we are simply

replacing programmed/in-lined business logic by a rule engine invocation.

Figure 7.12 illustrates this scenario, where we assumed that we are using a rule

28RPC: remote procedure call, the way synchronous distributed applications work.
29The Java Connector Architecture (JCA) makes this distinction, in theory, irrelevant.

7.5 Reengineering Existing Applications to Externalize Business Rules 205

+
va

lid
at

eD
at

a(
in

 c
la

im
 :

C
la

im
)

: b
oo

l
+

ch
ec

kE
lig

ib
ili

ty
(in

 c
la

im
 :

C
la

im
)

: b
oo

l
+

ch
ec

kC
ov

er
ag

e(
in

 c
la

im
 :

C
la

im
)

: b
oo

l
+

ad
ju

di
ca

te
(in

 c
la

im
 :

C
la

im
)

: d
ec

im
al

C
la

im
 H

an
d

le
r

-id
 :

in
t

-a
m

ou
nt

R
eq

ue
st

ed
 :

flo
at

-a
m

ou
nt

P
ai

d
: f

lo
at

C
la

im

-n
um

be
r

: i
nt

P
o

lic
y

-n
am

e
: s

tr
in

g
-s

sn
 :

st
rin

g
-a

dd
re

ss
 :

st
rin

g
-d

at
eO

fB
irt

h
: D

at
e

P
o

lic
yH

o
ld

er

-p
ro

ce
du

re
 :

st
rin

g
-c

ap
 :

flo
at

-y
ea

rT
oD

at
e

: f
lo

at

C
o

ve
ra

g
e

-d
es

cr
ip

tio
n

: s
tr

in
g

-t
yp

e
: i

nt
-d

at
eP

er
fo

rm
ed

 :
D

at
e

-c
os

t :
 d

ec
im

al

T
re

at
m

en
t

-c
la

im
s

-p
ol

ic
y

0.
. *

0.
.1

- tr
ea

tm
en

ts

1.
.*

0.
.1

1

-c
ov

er
ag

es
 -

po
lic

y

0.
.*

-p
ol

ic
ie

s
0.

.*

-p
ol

ic
y

ho
ld

er

1.
. *

bo
ol

ea
n

ch
ec

kE
lig

ib
ili

ty
(C

la
im

 c
la

im
)

{
 b

oo
le

an
 e

lig
ib

le
 =

 tr
ue

;
 f

or
al

l (
tr

ea
tm

en
t i

n
cl

ai
m

.tr
ea

tm
en

ts
){

if
(c

la
im

.p
ol

ic
y.

st
ar

tD
at

e
<

=
 tr

ea
tm

en
t.d

at
eP

er
fo

rm
ed

 <

=
 c

la
im

.p
ol

ic
y.

en
dD

at
e)

 {

fo

ra
ll

(c
ov

er
ag

e
in

 c
la

im
.p

ol
ic

y.
co

ve
ra

ge
s)

 {

 i

f (
...

)
...

.

}

el
se

 {
 p

rin
t(

"o
ut

si
de

 o
f p

ol
ic

y
co

ve
ra

ge
 p

er
io

d"
);

 e

lig
ib

le
 =

 fa
ls

e;
 }

} re
tu

rn
 e

lig
ib

ile
;}

+
va

lid
at

eD
at

a(
in

 c
la

im
 :

C
la

im
)

: b
oo

l
+

ch
ec

kE
lig

ib
ili

ty
(in

 c
la

im
 :

C
la

im
)

: b
oo

l
+

ch
ec

kC
ov

er
ag

e(
in

 c
la

im
 :

C
la

im
)

: b
oo

l
+

ad
ju

di
ca

te
(in

 c
la

im
 :

C
la

im
)

: d
ec

im
al

-r
ul

eS
er

vi
ce

 :
R

ul
eE

xe
cu

tio
nS

er
vi

ce

C
la

im
H

an
d

le
r

-id
 :

in
t

-a
m

ou
nt

R
eq

ue
st

ed
 :

flo
at

-a
m

ou
nt

P
ai

d
: f

lo
at

C
la

im

-n
um

be
r

: i
nt

P
o

lic
y

-n
am

e
: s

tr
in

g
-s

sn
 :

st
rin

g
-a

dd
re

ss
 :

st
rin

g
-d

at
eO

fB
irt

h
: D

at
e

P
o

lic
yH

o
ld

er

-p
ro

ce
du

re
 :

st
rin

g
-c

ap
 :

flo
at

-y
ea

rT
oD

at
e

: f
lo

at

C
o

ve
ra

g
e

-d
es

cr
ip

tio
n

: s
tr

in
g

-t
yp

e
: i

nt
-d

at
eP

er
fo

rm
ed

 :
D

at
e

-c
os

t :
 d

ec
im

al

T
re

at
m

en
t

-c
la

im
s

-p
ol

ic
y

0.
.*

0.
.1

-t
re

at
m

en
ts

1.
.*

0.
.1

1

-p
ol

ic
y

-c
ov

er
ag

es

0.
.*

-p
ol

ic
ie

s
0.

.*

-p
ol

ic
y

ho
ld

er

1.
. *

bo
ol

ea
n

ch
ec

kE
lig

ib
ili

ty
(C

la
im

 c
la

im
)

{

ru
le

E
xe

cu
tio

nS
er

vi
ce

.r
un

("
el

ig
ib

ili
ty

R
ul

es
et

",
cl

ai
m

);

re
tu

rn
 c

la
im

.e
lig

ib
ile

;
}

+
ru

n(
in

 r
se

t :
 s

tr
in

g,
 in

 d
at

a
: o

bj
ec

t)

R
u

le
E

xe
cu

ti
o

n
S

er
vi

ce

0.
.*

-e
xe

cu
tio

n
se

rv
ic

e

0.
.1

B
ef

or
e:

 b
us

in
es

s
lo

gi
c

co
de

d
di

re
ct

ly
 i
n

m
et

ho
d

bo
di

es
A

ft
er

:
bu

si
ne

ss
 l
og

ic
 d

el
eg

at
ed

 t
o

ru
le

 e
ng

in
es

--
a

ru
le

 e
xe

cu
ti
on

se

rv
ic

e
in

 t
hi

s
ca

se

A
pp

lic
at

io
n

la
ye

r

B
us

in
es

s
La

ye
r

F
ig
.
7
.1
2

R
ee
n
g
in
ee
ri
n
g
th
e
ap
p
li
ca
ti
o
n
la
y
er

to
in
tr
o
d
u
ce

B
R
M
S
te
ch
n
o
lo
g
y

206 7 Issues in Designing Business Rule Applications

execution service. Naturally, this is not the only deployment option: it is also

possible to embed the rule engine directly in the application code, for example, as

a data member of the ClaimHandler class, in lieu of the RuleExecutionService

delegate. We liken this scenario to an application of the GoF30 strategy pattern,
which externalizes a method that can have many implementations – the method

checkEligibility(Claim cl), or any of the methods of ClaimHandler for that

matter – by delegating it to an external strategy object – the rule Service data

member of ClaimHandler in this case. The difference from a classical application

of the strategy pattern is that, instead of having a hierarchy of strategy classes (rule

engines or rule execution services), we have a single class that is parameterized by

executable rulesets.

Within the context of a multi-tier client–server application, the application layer

would typically execute on the application server tier. For example, in a four tier

J2EE application, the ClaimHandler class could be a session been invoked from

within a JSP, in the web tier. In a lightweight three-tier web application, Claim-

Handler could be a POJO (plain old Java object) executing in the web tier. The

discussion in Sect. 7.4.3 regarding things such as hot deployment and the need to

run different versions of a ruleset applies to this case.

7.5.2 Reengineering the Business Layer

This is the more common scenario where business rules are introduced along object

technology to modernize or replace legacy mainframe applications. Figure 7.13

illustrates this scenario. Typically, we have an application with many functions, or a

system with many subsystems, that use the same database, and the goal is to

modernize one of the functions/subsystems. For that one function or subsystem,

business objects will be populated by data from the common database, and saved

back to that database once transactions are processed.

In this case, the new (or modified) functionality and the old one communicate

through the common data access layer, i.e., common databases or by accessing the

same legacy back office systems. For example, an insurance company may decide

to reengineer its claim processing function, while continuing to rely on its under-

writing and renewal legacy subsystems. The three subsystems may use the same

policy and customer database, which becomes the common integration point

between them, with no impact on either the existing databases or on the other

subsystems. However, the new – or reengineered – claim processing application

would create its own view of the business data and populate it from the common

data store.

From a software design point of view, this scenario imposes no constraints: the

fact that we are dealing with legacy databases has no bearing on the new (or

30GoF: Gang of Four, i.e., Gamma, Helm, Johnson, and Vlissides, authors of the landmark book on

Design Patterns: Elements of Reusable Design, published by Addison-Wesley, in 1994.

7.5 Reengineering Existing Applications to Externalize Business Rules 207

reengineered) application: the new business objects layer is tailored exclusively for

the new business function, with no external constraints. In particular, if the integra-

tion of business rules is the main reason for the reengineering effort, we can expect

the new object model to be fairly close to the business view of the data. Our

discussion of Sects. 7.4.2 and 7.4.3 applies in this case.

This idyllic picture can break down quickly, for several reasons. First, what we

represented in Fig. 7.13 as one abstract data access layer may, in fact, be a

collection of separate and overlapping databases. This creates headaches both to

load the new business objects from the legacy data and to save it back on those

databases. Further, the new – or modified – business function may use or create new

data that is not stored in the legacy databases. Assume, for example, that our health

insurance company finds out one day that smoking has been causally linked to

cancer or that the body mass index31 (BMI) is a good predictor of cardiovascular

health. With this new knowledge, we decide to collect this information for the

underwriting process to support underwriting rules. Assume now that consumer

focus groups find out that customers appreciate receiving detailed explanations

about how their claims are processed, or that regulatory agencies require insurers to

create an audit trail of their underwriting decisions. In either case, the new or

modified function will create new data that will need to be stored.

In either case, we find ourselves reengineering the data layer, which is discussed

next.

Common (legacy) data access layer

…

Legacy subsystems / subfunctions

Presentation

App / Srvc

Business

Presentation

App / Srvc

Business

Presentation

App / Srvc

Business

New or re-engineered
subsystem / subfunction

Fig. 7.13 Reengineering or adding a subsystem (subfunction) that uses the same data access layer

as legacy subsystems/business functions

31The Body Mass Index of an adult is defined as the weight (in kilograms), divided by the square of

height, in meters. A BMI of 18.5–25 is considered normal.

208 7 Issues in Designing Business Rule Applications

7.5.3 Reengineering the Data Layer

Adding data fields to existing databases is no small feat. First, at the level of the

database itself, this may involve quite a bit of work. For example, adding a “smoking

habit” or “BMI” field to a database means involves, minimally (a) defining a new

schema, (b) copying legacy data into the new schema, and (c) figuring out which

default values to use for legacy data. The latter is as much a business problem as it is

a data typing problem: in the absence of the BMI, should we assume a default value

of the normal range (18.5–25), or use the BMI average for a given population – or

the customer database – or use value “UNKNOWN,” and then make sure that the

business rules know how to handle “UNKNOWN”.

In a perfectly layered system/architecture, changes in the data – or data access –

layer would not percolate above the adjacent layer. However, perfectly layered

systems do not exist – rightfully so – and besides, what is the point of enriching the

data model if the data is not exposed through the business layer to the application

and presentation layers: I cannot provide values for the “smoking habit” or “BMI”

attributes if no corresponding field shows up in the web form I am filling out! Thus,

within the context of a shared data layer, we cannot modify the database to

accommodate one subfunction, without affecting the other subfunctions.

A common solution pattern consists of building a separate database to accom-

modate the new data fields. This is illustrated in Fig. 7.14. For the purposes of the

new subsystem or business function, we implement a new database. In this case,

there are two alternative designs:

1. We could expose the legacy database to the new functionality. Database views

notwithstanding, transaction processing would involve direct – and synchronous –

access to both the new and old databases. Typically, we would use the new

Legacy data access layer

…

Legacy subsystems / subfunctions

Presentation

App / Srvc

Business

Presentation

App / Srvc

Business

Presentation

App / Srvc

Business

New or re-engineered
subsystem / subfunction

New dabase

(A)

(B)

Fig. 7.14 Reengineering the data layer

7.5 Reengineering Existing Applications to Externalize Business Rules 209

database to store new entities and attributes, and keep using the old database to

read and write the legacy data. This is illustrated by the connection between the

new functionality and the legacy database (link labeled (A)) in Fig. 7.14.

2. We could hide the legacy database from the new functionality and embody the

legacy and new data in a single new database. The new database gets its legacy

data from the legacy database, and steps are taken to ensure the synchronization

between the two databases. This is illustrated by the connection between the new

database and the legacy data access layer (link labeled (B)).

The first approach has the advantage of a clean, sort of by-the-book design.

Database views may be used to offer a unified view of the data, providing for a

clean programming model. Further, the data is not duplicated, guaranteeing its

currency at all times. Figure 7.15a illustrates the idea. However, this solution has

major disadvantages, the most important of which is performance: an update requires

synchronous updates to two ormore databases, whichwould typically run on different

servers, which could be continents apart. The problem could be made worse if the

legacy data is exposed through a higher-level API32 as opposed to raw databases.

PolicyHolder

ID
firstName
lastName
smokingHabit
BMI
weight
height
ssn

PolicyHolder_New

PK ID

smokingHabit
BMI

PolicyHolder_Legacy

PK ID

firstName
lastName
ssn
weight
height

`

On the fly
join on ID

New / re-engineered
subsystem Legacy subsystem

Data as seen by new / re-
engineered subsystem

Data as seen by legacy
subsystems PolicyHolder_NEW

PK ID

firstName
lastName
ssn
height
weight
smokingHabit
BMI

PolicyHolder_LEGACY

PK ID

firstName
lastName
ssn
weight
height

New / re-engineered
subsystem

Legacy subsystem

Data as seen by new / re-
engineered subsystem

Data as seen by legacy
subsystems

Syn-
chronization
procedure
between

DBs

The new / re-engineered subsystem does
on the fly-joins (RDBMS or programmatically)

of new data with legacy data.

The new / re-engineered subsystem has a local
copy of the legacy data. However, a
synchronization procedure is needed.

a b

Fig. 7.15 Two strategies for integrating old data with new. (a) The new/reengineered subsystem

does on the fly-joins (RDBMS or programmatically) of new data with legacy data. (b) The new/

reengineered subsystem has a local copy of the legacy data. However, a synchronization procedure

is needed

32Relational DBMSs (e.g., Oracle) may support joins across databases//servers, and make those

reasonably efficient through built-in optimizations. Attempting to perform the join “programma-

tically” by first accessing the joined data sources through the JCA API, for example, would be far

more problematic from both a development and run-time performance perspective.

210 7 Issues in Designing Business Rule Applications

The second approach simplifies the programming model and addresses the

performance issue. However, it relies on data duplication, and we need to keep

the duplicates synchronized with the master copy. The latter means developing

tools and procedures to synchronize the new database with the legacy databases.

This is illustrated in Fig. 7.15b. There are many architectural patterns for doing this,

depending on (a) whether the legacy data is modified – as opposed to just read – by

the new or reengineered subsystem, (b) on how often the legacy data is changed by

either party (i.e., new versus legacy subsystems), and (c) how tolerant each party is

for out of date legacy data. For example, a new or reengineered claim processing

application may require all-time up-to-date information about total of claims paid

against a given policy, but may tolerate a 24 h delay in propagating changes to

policy holder contact information.

In practice, the second approach is often preferred, not only for performance

reasons, but also to ease the migration/modernization of other subfunctions. Indeed,

a key strategy in migrating a system incrementally consists of building the new data

stores incrementally and have both the old and the new operate in parallel until the

transition is completed, in which case we can unplug the old.

What does any of this mean to business rules? Regardless of which strategy is

used to support the new data requirements (Fig. 7.15a or b), there are few con-

straints imposed by the legacy system on the integration of business rules: for all

practical purposes, this can be treated pretty much as a new tabula rasa project, and
the design choices discussed in Sect. 7.4 (Sects. 7.4.2 and 7.4.3) regarding the

deployment model (rule engines versus rule execution service) and deployment tier

still apply. We will revisit this issue when we talk about business object models in

Chaps. 9 and 10.

7.6 Summary and Discussion

Your business process involves lots of business rules that evolve frequently. Your

boss (or his boss) sat through a smoothly delivered keynote speech by a self-

proclaimed business rule evangelist, whose fervor is matched only by his/her lack

of grasp of the technology. You attended a couple of flashy product demos, which

convinced you of the potential of the technology. Your organization/company has

thus bought into the business rules approach as a way of managing and automating

those business rules. You brought in a couple of vendors who showcased their ware,

trying to sell you on the idea that their product is plug and play – as long as you

purchase an additional n man-years in consulting. You brought in a couple of

integrators who made a sales pitch for their agile application delivery methodology,

which requires a room full of various ists and ers (business process analysts,

business analysts, domain specialists, configuration management specialists,

your-application-server specialists, managers, designers, developers, testers) to

get anything done. Your company selected a vendor, an integrator, and a business

function to implement with the business rules technology. Rule discovery and

7.6 Summary and Discussion 211

analysis teams have been assembled, trained, and may have already started collect-

ing and capturing business rules. You are the architect, eyes turn to you, “how do

we design this beast?”

The first thing to figure out is what this beast is, i.e., what is there to design?

Roughly speaking, there are three areas to tackle:

1. Designing rule management functionalities. We referred to this as early BRMS
functionalities (Sect. 7.2), to be distinguished from late BRMS functionalities,

which deal with rules written in a formal executable language. We addressed three

issues: (a) deciding what to represent/capture in the tool (rules, data models,

process models) and how to link it to external artifacts that may be managed by

external tools, (b) managing the (early phases of) rule lifecycle, and (c) versioning.

2. Designing the business application itself. Architectural design, at large, is

beyond the scope of this book. However, for the purposes of the discussion,

we presented a handful of common architectural patterns, and summarized their

pros and cons (Sect. 7.3).

3. Invoking rule engines from the business application. There are two main design

dimensions: (a) whether to embed a rule engine directly in the application or to

use a rule execution service, and (b) from which tier to invoke rules. The design

choices are influenced by many factors, including (a) the architecture of the

calling (business) application itself, (b) the need for hot deployment of rules, and

(c) the need for running different versions of rules, simultaneously. These issues

were discussed in Sect. 7.4.

Because BRMS technology is often adopted within the context of a reengineer-

ing effort, our design choices for both the business application and the engine

integration may be constrained by the legacy application. Those constraints depend

on the scope of the reengineering effort. We defined the reengineering scope in

terms of depth within the context of a layered architecture. In particular we looked

at three prototypical scenarios corresponding to (a) reengineering the application

layer, discussed in Sect. 7.5.1, (b) reengineering the business layer, discussed in

Sect. 7.5.2, and (c) reengineering the data layer, discussed in Sect. 7.5.3. We

showed, among other things, that our design choices are not much restricted if we

reengineer the business layer or the data layer. We will revisit these two scenarios in

Chaps. 9 and 10 when we talk about the difference – and mapping between – the

application’s actual implemented object model and the business object model
against which to write rules.

7.7 Further Reading

In this chapter, we touched upon many important design dimensions. However, we

barely scratched the surface.

Some of the issues discussed about early BRMS (Sect. 7.2) will find some

resonance in the literature about requirements management, where issues of

212 7 Issues in Designing Business Rule Applications

traceability and change management are of utmost importance. Actually, a number

of our customers have used requirements management tools such as IBM/Rational’s

RequisitePro™ or MKS’s Integrity™; the International Council on Systems Engi-
neering maintains a survey of requirements management tools (http://www.incose.

org/productspubs/products/rmsurvey.aspx).

With regard to application architecture (Sect. 7.3), we would not even know

where to start. Many generalist software engineering books include a brief over-

view of the various architectural styles discussed in Sect. 7.3. Sun/Oracle’s J2EE

documentation should be the starting point for what we called synchronous client–

server architectures (http://java.sun.com/j2ee/overview.html), to be complemented

with recent J2EE patterns books. Martin Fowler’s books, and his Addison Wesley’s

book series remain a good bet, for actionable architectural patterns that age well,

including Martin Fowler’s Patterns of Enterprise Application Architecture (Addi-
son Wesley, 2002, ISBN 0321127420) and Gregor Hohpe and Bobby Woolf’s book

Enterprise Integration Patterns (AddisonWesley, 2003, ISBN 0321200683), which

tackles message-oriented architectures. Thomas Erl’s SOA Patterns (Prentice-Hall,
2009, ISBN 0136135161) is a good source – if a verbose one – for an effective

introduction into SOA with lots of SOA best practices. IBM’s developer works portal

remains an excellent source for timely technical information regarding SOA and

webservices – a vendor’s bias notwithstandingJ.

Finally, there are a number of web resources, too numerous to mention, that

contain information about architecture. As is often the case, Wikipedia provides a

more than decent entry point into related topics.

7.7 Further Reading 213

Chapter 8

IBM WebSphere ILOG JRules

Target audience
l All

In this chapter you will learn
l The architecture of the JRules BRMS
l The concept of operations of the JRules BRMS
l An introduction into the various JRules rule artifacts
l An introduction into the various JRules modules

Key points
l JRules has a modular architecture, providing different compo-

nents that support different tasks or cater to different users.
l Business users and technical users author and manage business

rules using different environments, which are adapted to their
tasks and skill sets.

l JRules provides a domain-specific language for rule authoring

that has a modular/layered architecture.
l JRules embeds a powerful and easy to use rule unit testing

framework.
l JRules offers a rich set of functionalities for managing rule

execution.

8.1 Introduction

This chapter presents the IBM WebSphere ILOG JRules Business Rule Manage-

ment System, or JRules in short. JRules offers an important set of components and

capabilities to enable business users and developers to manage business rules

directly with various levels of implication, from limited review to complete control

over the specification, creation, testing, and deployment of business rules.

The description included in this chapter is based on the JRules 7 version of the

product. At the time of this writing, JRules is in its 14th year as a commercial

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_8, # Springer-Verlag Berlin Heidelberg 2011

215

product. JRules was initially developed by ILOG Corp, a software vendor founded
in 1987, and acquired by IBM in 2009. JRules is the third family of rule engine

(what they were called back then)/BRMS products, starting with a Lisp implemen-

tation, followed by a C++ implementation, in 1992. JRules has gone through a

number of major architectural changes around each major version number (JRules 3,

around 1999–2000, JRules 4, around 2002–2003, JRules 5, in 2005, JRules 6, in

2006, and JRules 7 in 2009). One of the most significant changes occurred around

JRules 6 where the old proprietary ILOG rule IDE1 was dropped, and its function-

alities split between two components, one destined for technical users, packaged as

an Eclipse/RAD plug-in, and one destined for business users, packaged as a Web

application. It was also starting with JRules 6 that earlier components and libraries

for EJB support and rule engine pooling were packaged into a JCA-compliant Rule
Execution Server (RES). JRules 7 shares the same basic architecture.

Section 8.2 provides a very quick overview of JRules, including the main

components, the way they are meant to work together (concept of operations),

and an overview of rule artifacts. Section 8.3 talks about Rule Studio (RS), which

the JRules module aimed at technical users. We provide a brief description of the

structure of rule projects, and of the various artifacts that we can create within Rule

Studio projects; Chaps. 10 and 11 will go into much greater detail. We talk about

Rule Team Server (RTS), the Web application aimed at business users, in Sect. 8.4.

The Rule Execution Server is described in Sect. 8.5; far more detail will be provided

in Chap. 13, where we talk about JRules’s support for ruleset deployment and

execution. We talk about Rule Solutions for Office (RSO) in Sect. 8.6, which consist
of Microsoft Office’s Word™ and Excel™ plug-ins that enable business users to edit

if–then rules and decision tables in Word documents and Excel spreadsheets,

respectively. We provide a summary in Sect. 8.7.

8.2 Business Rule Management System Main Components

The JRules BRMS platform is a collection of modules that operate in different

environments while working together to provide a comprehensive Business Rule

Management System. BRMS helps to manage business rule independently of the

business application.

As mentioned in Chap. 1, a BRMS enables business and IT to collaborate,

author, manage, and execute business rules. In addition to working on different

timelines, IT and business users need to work with different tools that reflect their

different skill sets and views of the application. Figure 8.1 shows the different

modules provided by JRules, along with the target users and the need they help to

fulfill. In the remainder of this section, we will provide a short overview of the

various components.

1Integrated Development Environment.

216 8 IBM WebSphere ILOG JRules

l Rule Studio (RS). Business rule application development starts in Rule Studio, an

Eclipse2-based Integrated Development Environment (IDE). Working in Rule

Studio, developers can set up the rule authoring environment, create business

rules and rule templates, author more complex technical rules, and design the

execution or rule flow. Rule Studio also provides tools for unit testing and

deploying rules to the target execution environment. Developers can store the

business rule artifacts using a source code control tool.
l Rule Team Server (RTS) is a Web-based application for rule authoring and

management, aimed at business users. Business users can work in Rule Team

Server both during application development and after the application is deployed

to production, as part of the application maintenance (see ABRD cycle “Imple-

mentation and Enhancement” in Chap. 3). Rule Team Server stores rule projects

in a rule repository which is typically persisted in a relational database.
l Rule Solutions for Office (RSO). For business users and rule authors who prefer

to work offline, Rule Solutions for Office supports rule authoring in Microsoft

Office 2007 products. In particular, we can edit if–then rules in Microsoft

Word™ documents and decision tables in Excel™ spreadsheets thanks to JRules

plug-ins. We can export rule artifacts from Rule Team Server to Word™/Excel™

files, edit the Word/Excel files, and upload them back into Rule Team Server.
l Rule Execution Server (RES). The rule engine module can be integrated into the

core business application using a low level API, or can be deployed as a monitored

Business Application

Rule Studio

Eclipse
Rule Engine

API

Rule Execution
Server

JEE
Rule Team

Server

WebApp

Rule
Developer

Rule
Architect

Rule
Author

Rule
Author

Rule Solutions
for Office
MSOffice

Rule
Repository

Ruleset
DB

Rule Execution
Server
Console
WebApp

Decision
Validation
Services

Fig. 8.1 IBM WebSphere ILOG JRules 7.1 Component View

2www.eclipse.org.

8.2 Business Rule Management System Main Components 217

component in a JEE container, the Rule Execution Server (see Sect. 7.4 for a

general discussion, and Chap. 13 for JRules – specific deployment options). RES

provides management, scalability, security, transaction support, and logging

capabilities on top of the rule execution. Using this deployment the business

application or more precisely the decision service within the application interacts

with the rule engine using rule session API. RES maintains a pool of rule engines

and ensures transaction propagation and security control. Coupled with RES is a

Web-based application called Rule Execution Server Console, used tomonitor and

manage the rule sets deployed within RES.
l Decision Validation Services (DVS) is a unit testing framework that enables rule

testing in Rule Studio and testing and simulation in Rule Team Server. Business

users, developers, and QA testers can use DVS to verify the behavior of the rules

in a rule set. The user can define scenarios in a data source such as Microsoft

2003 Excel spreadsheets. Scenarios can include the specification of expected test

results (e.g., variable or object attribute values), as well as an enumeration of the

rules or rule tasks that were executed in the process, to verify that the ruleset

behaved as expected. Business users can also define key performance indicators

(KPIs) to assess the rule set according to specific business metrics. With these

capabilities a business user can perform “what–if” analyses, where a reference

(“champion”) ruleset is compared to the newly updated ruleset (the “chal-

lenger”) during simulation testing. DVS is presented in Chap. 15.

8.2.1 The Concept of Operations

Once the first level of rule analysis is done, it is possible to quickly create rules

using Rule Studio. The Rule Studio environment has all the wizards to develop

object models, rule projects, rule flows, and other business rule artifacts. The object

(or data) model is in fact built around two layers: the logical layer, called Business
Object Model (BOM), is used as vocabulary for the rules, and one physical layer,

called the eXecutable Object Model (XOM) which corresponds to the implementa-

tion of the application objects in Java or XML. XOM choices were discussed in

Sect. 5.3, and will be discussed further in Chap. 13. BOM design issues were

discussed in general terms in Sect. 9.2.1 and Sect. 10.3.

Rule Studio is used by rule developers, rule architects, software developers, and

business analysts, depending on their technical skills. Note that while business

analysts are not meant to be technical, it has been our experience that many business

analysts have an IT background. At the very least, they are Excel specialists who

can do wonders with a spreadsheet. We have also met many who are IT specialists,

who are able to develop a simple database application, or even a simple Web

application. For such users, an Eclipse-based environment is not an issue.

In those cases where rule authoring is performed by non-technical business

analysts, developers need to publish rule projects created from within Rule Studio

to Rule Team Server to make it available for business users to begin rule authoring.

218 8 IBM WebSphere ILOG JRules

This enables developers and business users to collaborate on the same rules while

working in their separate environments. After the rule project has evolved in Rule

Team Server, developers can synchronize their copy of the rules with those stored

in the Rule Team Server rule repository. We recommend using this repository as the

reference or master during rule maintenance, and use the synchronization to Rule

Studio to work on deeper changes like the updates to object models, to the rule

project structure or to the rule flow. An additional synchronization mechanism is

available in Rule Team Server that allows business rules to be published as

Microsoft Word or Excel documents. After working with the rules in Word™ or

Excel™, rule authors can easily synchronize their updates back to the Rule Team

Server rule repository.

Within Rule Team Server (RTS), business analysts manage the rule elements by

using a set of capabilities to control the version, the configuration and the life cycle.

In RTS all users collaborate within a shared workspace and use locking to control

access to resources currently being edited. The definition of rule artifacts includes

properties (metadata) like the rule status property, or the effective date to control the
rule life cycle. RTS supports versioning of the various rule artifacts. Each time a

rule artifact is saved, a separate version is created. RTS supports also the concept of

a baseline which tags the current versions of all the artifacts within a rule project.

Baselines freeze the state of a project at a given moment in time. They are used

most often before a rule set deployment or to mark the end of a maintenance cycle.

Once the ruleset reaches a certain level of completeness, it can be deployed to a

Rule Execution Server. Figure 8.2 illustrates this process.

Business
Analyst

IT Staff

Rule Team Server

Rule Studio Rule Execution Server

Synchronize

Deploy

Build Project Structure
Build BOM entries
Define Parameters
Define Meta-Properties
Orchestrate rule execution
Write and test rules
Develop rule life cycle queries
Deploy to target RES
Synchronize with Team Server

Read, Update, Create rules elements
Deploy to target RES
Manage Rule life cycle
Manage rule set baseline
Define Rule Access permission
Manage test scenario and suite with DVS
Manage RuleDoc for RSO

Execute rules
Generate log

Rule Engine

Rule Solution for Office

Write Business Rules
Write Decision Tables
Manage rule life cycle

Business
Analyst

Dep
lo

y

Synchronize

Fig. 8.2 Concept of operations

8.2 Business Rule Management System Main Components 219

We detail later in this chapter how we build our claim validation rule projects

using Rule Studio, then how rule writer can leverage the features of Rule Team

Server to maintain the rule set. Let us start by looking at Rule Studio.

8.2.2 Rule Artifacts

JRules enables us to create different types of rule artifacts, depending on the

complexity of the business logic, on the regularity of its structure, and on its specific

use. Most business-oriented rule artifacts are based on a business-oriented, natural

language-like Business Action Language (BAL) . The BAL and the various artifacts

that use it are described at length in Sect. 11.2. For the purposes of this section and

chapter, we will give a preview of two BAL-based artifacts, action (if–then) rules,
and decision tables. Figure 8.3 shows an example of an action rule. Action rules

have four parts: definitions part, if part, then part, and else part. The Definitions part
is used to define variables local to the current business rule. The conditions of the

business rule are listed in the “if” part, and the actions to be performed are listed in

the then and else parts. As we later see (Sect. 11.2), all the parts are optional except
for the then part. The sample rule of Fig. 8.3 has no else part. The meaning of this

rule should be self-explanatory.

Another very useful format for representing rules is the decision table which

presents all the rules with similar conditions and similar actions in a tabular format:

columns represent conditions and actions, and each row represents an individual

rule. Decision tables provide an efficient representation when the rules need to test

ranges of possible values, enumeration values, and numerical attributes (Fig. 8.4).

Among other features, the decision table editor also helps identify gaps and overlaps

within rule conditions. In the table below, columns with a clear (white) background

represent conditions on the medical treatment procedure code, and the amount

invoiced for that treatment. Columns with a grey background represent action

columns.3 In this example, there is a single action that creates an audit request to

Definitions
set policy to the policy of 'the claim' where the status of this policy is not
closed;
if
 the day of loss of 'the claim' is after the expiration date of policy
then
 add to 'the result' the issue : "claim date error" with a code "R01" and a descrip-
tion : "claim is after expiration date of the policy";
 set 'the claim' has issue;

Fig. 8.3 A sample action rule: definitions <conditional binding> if < conditions> then
<actions>

3The decision table editor enables us to edit the graphical attributes of condition and action

columns.

220 8 IBM WebSphere ILOG JRules

evaluate the accuracy for the treatment. The three action subcolumns (“Descrip-

tion”, “Code”, and “Reason description”) correspond to different parameters of the

audit request to be created.

The reader may have noticed a warning icon near the header of the first condition

column (on procedure code of the treatment). This is warning the user that there are

some values from all the enumeration of procedure codes that are not listed/tested in

this table. This is a special case of a more general gap detection feature that decision
table authors can enable or disable. A related feature also detects overlaps between
the values listed in different rows. Depending on the business logic, this could be

problematic and may need to be fixed. The decision table editor supports other

features, discussed in Sect. 11.2.

Rules can also be expressed as decision trees which embody an asymmetric

structure using a tree of conditions, with the leaf (bottom) nodes representing the

action part. A path from the root/top of the tree to a leaf node represents a complete

if–then rule. Decision trees, scorecards, and technical rules will be discussed in

more detail in Chap. 11.

8.3 Rule Studio

Figure 8.5 presents the different activities and tasks each user role can execute

within Rule Studio (RS) and Rule Team Server (RTS).

Rule Architects use Rule Studio to design the structure of the Rule Project. A

rule project is a type of Eclipse project dedicated to the development of business

rules. Designing the rule project structure includes:

l The definition of its input/output parameters
l The definition of the different data models to use, namely, the Executable Object

Models (XOMs), and the Business Object Models (BOMs)
l The definition of the different queries used to search for rule elements in the

current project/workspace
l The creation of the hierarchy of rule packages, and finally
l The creation of the rule flow(s)

Fig. 8.4 Decision table

8.3 Rule Studio 221

As mentioned above, the XOM corresponds to the “physical” data model of the

application objects manipulated by the rule engine, i.e., either Java classes (objects)

or XML schemas (materialized as java objects). The Business Object Model

(BOM) embodies the business view of the data, and provides the vocabulary/

domain of discourse for writing the business rules, and is constructed as a view of

the executable object model (XOM). Chapter 9 explores the (different) require-

ments placed on the XOM and BOM, in general. Chapter 10 explores in depth the

BOM to XOM mapping in JRules.

Figure 8.6 shows the main window of Rule Studio. On the left, the Rule Explorer

view shows the different projects within the current workspace. The R above a

project icon/folder indicates that it is a rule project.

Rule Studio being Eclipse-based, the center view is used to display the different

editors. In this case, we have the rule flow editor. The view “Rule Project Map” at the
bottom helps to guide the developer through the various activities needed to create

and complete a rule project. The selectable items/links are shortcuts to various rule

project actions. A greyed out link (all but “Import XOM” and “Create BOM”)

represents an action whose prerequisites have not been fulfilled, and reflects depen-

dencies between the various components of a rule project. Some tasks are optional,

and a rule developer/architect can take many paths through the project map.

The different rule artifacts are represented by a definition which can be edited in
the central view, and properties or metadata used for its management. Section 5.4.3

showed examples of rule properties, and what they may be used for. Rule architects

can define custom rule properties through rule metamodel extensions, which are

defined in a two XML files.

In the remainder of this section, we will give a brief overview of the major tasks

performed within Rule Studio; the underlying design issues and best practices will

be discussed in far more detail in subsequent chapters. Specifically, we will discuss:

l Designing the rule project structure, in Sect. 8.3.1. This will be thoroughly

discussed in Sect. 9.4, in general terms, and in Sect. 10.2, for the case of JRules.
l Designing the business rule (meta) model, in Sect. 8.3.2. Rule properties support

many processes, including rule deployment, rule testing, and rule governance.

Integrate Rule
Engine In

Service Layer

Design
Rule Projects

Structure

Design
Data Model for

Rule

Orchestrate
Rule Execution

Author
Rules

Review
Rules

Test & Debug
Rules

Deploy
Rule Set

Author
Rules

Test & Debug
Rules

RuleApp

Rule Project
Rule Artifacts

Develop Data
Model

Java, XSD, SQL

Synchronize Rule
Project with RTS

D
ev

el
op

er
R

ul
e

A
rc

hi
te

ct
R

ul
e

W
rit

er

R
ul

e
S

tu
di

o
R

T
S

Fig. 8.5 Rule Studio and RTS rule authoring activities

222 8 IBM WebSphere ILOG JRules

The use of these properties will be discussed in more detail in Chap. 12

(deployment issues), Chap. 14 (testing issues), and Chap. 16 (governance), in

general, and for the case of JRules in particular, in Chap. 13 (deployment with
JRules), Chap. 15 (testing with JRules), and Chap. 17 (rule governance with
JRules).

l Designing the object models, in Sect. 8.3.3. This will be discussed in more detail

in Sect. 9.2.1, in general, and in Sect. 10.3, for the case of JRules.
l Orchestrating rule execution, in Sect. 8.3.4. This will be discussed more thor-

oughly in Sects. 11.3 (fundamentals) and 11.4 (best practices).
l Rule testing and deployment, discussed in Sect. 8.3.5. Chapters 12 and 14 will

explore deployment and testing issues, in general, and Chaps. 13 and 15 will

discuss deployment and testing within the context of JRules.

8.3.1 Designing the Rule Project Structure

A rule project is a container for rule artifacts, and the artifacts needed to create

them, execute them, and debug them. Section 10.2 will explore JRules rule project

structure in detail, where we go over the different contents of a project. General,

vendor-independent best practices for rule project organization will be discussed in

Sect. 9.4. Additional best practices that take advantage of the JRules-specific

Fig. 8.6 Rule Studio with ruleflow editor

8.3 Rule Studio 223

features will be presented in Sect. 10.4.1. For the purposes of this section and

chapter, we will provide a brief overview of all of the above.

The various types of rule project elements are illustrated in Fig. 8.7. They

include the Business Object Model (BOM), different types of rule artifacts (if–then

BAL rules, decision tables, decision trees, technical rules, etc.), artifacts for rule

execution orchestration (ruleset parameters, ruleflows), rule queries, and rule tem-

plates. Each element is persisted in a single file, or in a combination of files (e.g., the

BOM). The elements can thus be version-controlled using a file-based version

control software plugged into Eclipse (e.g., Subversion or CVS). BOM design

will be briefly introduced in Sect. 8.3.3 and explored in detail in Sect. 10.3. The

artifacts for rule execution orchestration will be introduced in Sect. 8.3.4 and

explored in detail in Sects. 11.3 and 11.4. In the remainder of this section, we

will talk briefly about the organization of rule artifacts with a rule project, give an

example of rule project organization, and talk briefly about rule queries and

templates.

Within a rule project, rules are organized within a hierarchy of packages. The

package hierarchy is typically designed to reflect the structure of the business

domain (e.g., product family, business process structure) and to accommodate the

Fig. 8.7 Rule project files

and folders

224 8 IBM WebSphere ILOG JRules

execution logic (e.g., a simple mapping to a ruleflow). As a good practice, it is

recommended that rule packages include rule artifacts only at the leaf level. This

has several advantages, including understandability, an easy mapping to the execu-

tion structure (rule flow, more on this in Sect. 11.3), and even more responsiveness

of Rule Studio during rule authoring.4

Templates enable us to define fill-in-the-blank rule artifacts. Indeed, it is possible
to define rule templates and decision table templates which are used to freeze some

parts of a rule, or decision table, and leaving only a few prompts (or cell values)

open for input/modification. Templates help enforce rule structure and rule consis-

tency. They come in handy in those cases where the people who are tasked with rule

entry and maintenance, are either non-IT savvy, or have a partial view/incomplete

context of the rules.

Another important element of a rule project is the rule query. JRules supports a
rich querying facility that uses a language similar to the Business Action Language
(called Business Query Language) that enables us to search on rule properties, rule
definitions, and rule semantics. The following query identifies the business rules
(i.e., all kinds of rules, except technical rules) that have status “Deployable.” This
query can be used as part of a ruleset extraction and deployment process (see Sect.
13.5.2, and Chap. 17).

Find all business rules
such that the status of each business rule is Deployable

The following query shows an example of a query on the definition of rules: it

looks for rules that refer to a specific BOM class; rule R “is using” BOM class C, if

the rule reads (definitions part, conditions part, or action parts), or modifies an

object of type C (action parts). This type of query could be part of some impact
analysis, e.g., to assess the impact of refactoring a class; more on BOM and XOM

refactoring in Sect. 10.3.4.

Find all business rules
 such that each business rule is using the BOM class
"abrd.claim.injury.Treatment"

As for the rule project organization, as discussed in Chap. 5, we recommend

mapping one decision point to a rule set and one rule set to a rule project.

Further, while a rule project is supposed to contain both rules and the BOM

needed to write them, we recommend separating the definition of the BOM from

the rules that use it so that different rule projects can refer to the same BOM. The

project hierarchy below shows what the project structure might look like for our

case study. The ClaimModel-BOM rule project includes the definition of the

4If the tool is configured to perform on-demand loading, this will reduce the number of rules

uploaded into the developer’s workspace as they navigate the project structure.

8.3 Rule Studio 225

BOM used by the rules, and it depends on the “ClaimModel” Java project

(XOM). The “validateClaim-rules”, “validateMedicalInvoice-rules”, “verify-

Coverage-rules”, and “adjudicateClaim-rules” rule projects contain the rules

needed for the tasks “validateClaim”, “validateMedicalInvoice”, “verifyCover-

age”, and “adjudicateClaim”, respectively. Sections 10.2 and 10.4 will go over the

design issues and rationale in more detail.

ClaimModel-BOM

R

validateClaim-rules

R

adjudicateClaim-rules

R

ClaimModel

J

validateMedicalInvoice-
rules

verifyCoverage-rules

R R

8.3.2 Designing the Business Rule Model

Rule artifacts have definitions (their contents), and a bunch of properties (metadata)

attached to them. These properties can be used for rule management (mostly) but

also for rule execution. The set of properties associated with rule artifacts constitute

the business rule model – sometimes also referred to as rule metamodel. Out of the
box, rules artifacts come with a set of predefined properties. Rule architects can add
more properties to the default rule (meta) model. In Sect. 5.4.2 (prototyping), we

presented a list of commonly useful rule properties, including properties that trace

rules back to their business motivation, or that restrict their applicability (e.g.,

jurisdiction, effectiveness period, etc.). Rule Studio supports the edition of the

business rule model using two XML files, a business rule model extension file

(*.brmx extension), which contains the definition of the new properties (name, type,

initial values, behavior upon copy, etc.), and a data extension file (*.brdx), which is
used to provide property values, for those properties that have an enumerated set of

values. Figure 8.8 below shows the Rule Studio wizard for editing the rule model

extension file. The figure shows that we are adding properties to three different

categories (classes), RuleArtifact, Rule, and BusinessRule. Properties added to

RuleArtifact will also be added to Rule, which is a kind of RuleArtifact (the other

kind being a Function, see Chaps. 10 and 11), and to BusinessRule, which is a kind

of Rule – the other kind being TechnicalRule. In turn, the (metamodel) class

BusinessRule groups action (if–then) rules, decision tables, and decision trees

(see Sects. 8.2.2, and 11.2). The reader may also notice that many of the properties

226 8 IBM WebSphere ILOG JRules

have predefined Java types (boolean, java.lang.String, java.util.Date), whereas the

“status” property has type Status and the “applicableState” property (as in United

States of America) has type SupportedStates. These two types are enumerations,

and their values are defined in the *.brdx file – not shown here.

We recommend defining such properties during the prototyping phase before we

embark on wholesale rule authoring, because adding property values later can be

anywhere from tedious to problematic.5 Also, it is during the prototyping phase that

we start thinking of the rule lifecycle, and of the properties needed to manage it.

Finally, we should take advantage of the intense and close communication between

business and IT during the prototyping phase to identify and address issues in a

timely fashion. Beware of the proliferation of properties, however: too many

properties for rule management mean an overly complex/over-engineered rule

lifecycle, and too many properties to control rule execution mean poorly contextu-

alized rules, and brittle rule orchestration.

Fig. 8.8 Rule model extension

5For example, a property such as “author” needs to be initialized at rule creation time, and must not

be modifiable. Adding it after a rule has been created can create headaches.

8.3 Rule Studio 227

8.3.3 Designing the Business Object Model

Recall that the Business Object Model (BOM) provides a business view of the

application object model specifically designed to write the application’s business

rules. The high-level language (Business Action Language) used to write the rule

uses a verbalized view of the BOM, called the business vocabulary. The BOM is

actually made of three layers that stand between the rules and the executable object

model (XOM) – for example, a set of Java classes:

l The BOM data model or interface, which is the middle layer, is stored in a file

with *.bom extension, contains the definition of BOM classes, with their public

attributes and functions, in a Java-like syntax.
l The vocabulary, which is a verbalization of the elements of the BOM data

model, puts a natural language-like coating on top of the BOM data model

that stands between the BOM data model and the rules. The vocabulary is built

so that rules can refer to a MedicalInvoice object as “a medical invoice” and to

the attribute dateOfCreation of a Claim as “the date of creation of the claim.”

The vocabulary is stored in a file with extension *.voc, and can be localized, i.e.,
we can have different vocabularies associated with the same BOM data model.

l The BOM to XOM mapping (stored in a *.b2x) file, shows how elements of the

BOM data model map to the underlying XOM/Java classes.

Figure 8.9 illustrates the three components of the BOM and their relationships to

rules (on top) and to the Java classes/XOM (bottom). Truth be told, only the

representation of the BOM data model is accurate. For presentation purposes, we

simplified the representation of the vocabulary and of the BOM to XOMmapping to

illustrate the concept. In fact, a BOM to XOM mapping such as the one represented

in Fig. 8.9 is assumed by default, and not explicitly stored; (much) more on this in

Sect. 10.3.

Rule Studio provides a BOM editor, which enables us to edit the three compo-

nents (BOM model, vocabulary, and BOM to XOM mapping) in a unified and

synchronized fashion. Figure 8.10 shows a partial view of the wizard (we do not

see the BOM to XOM editing prompts). A thorough explanation is provided in

Sect. 10.3.

There are two ways to build a BOM and to link it to a XOM:

l A bottom-up approach, where we start with the XOM (a Java project or a Java jar

file), and build a default BOM from it, using a default BOM to XOM mapping.

Roughly speaking, the default BOM to XOMmapping generates one BOM class

for each publicXOM class (Java class or XSD complex type), and maps all of the

publicmembers of the XOM class to corresponding members of the BOM class.6

This mapping is also pretty good at coming up with reasonable verbalizations,

6With the exception of getters and setters, which are mapped by default to attributes that are read

only (only getter present), write only (only setter present) or read/write (both accessors present).

228 8 IBM WebSphere ILOG JRules

provided that developers have followed standard coding/naming practices on the

Java (or XSD) side. The so-generated BOM can later be edited to modify the

defaults or to add new elements.
l A top-down approach, whereby the rule developer constructs the BOM class by

class using the BOM editor, adding data members, function members, and the

like, but with no corresponding XOM. Such a BOM can be used to author rules,

If

the date of creation of 'the claim' is after the day of loss
of 'the claim'plus 30 days
then

Java Model -XOM

package abrd.claim;

public class Claim extends abrd .claim.BaseBusinessObject {
 public readonly java.util.Date dateOfCreation;
 public abrd.claim.Location location;
 …
}
BOM - Data model

Java class abrd.claim.Claim -> BOM class abrd.claim.Claim
Java method abrd.claim.Claim.getDateOfCreation() -> BOM
readonly attribute abrd.claim.Claim.dateOfCreation
...

BOM to XOM mapping

concept.label
 claim
phrase.navigation
 {date of creation} of {this}
BOM-Vocabulary

Fig. 8.9 The BOM is a three-layer structure that bridges natural language-like (BAL) rules to Java

classes (XOM)

8.3 Rule Studio 229

but naturally, not to execute them. Once we have a XOM that we can hook up to,

we can associate it with the BOM, and synchronize the two.

The bottom-up approach is the more common of the two. Indeed, in most of the

projects we were involved with, the business rules approach is introduced as part of

a re-engineering effort – in which case the XOM already exists. Even with new

projects, it is often the case that by the time we have rules we can code, the XOM

will have already been built. However, we have used the top-down approach in a

number of projects where hesitant managers wanted a proof of concept/to see what

rules would look like, before embarking on business rules. In general we prefer

build the XOM from the conceptual data model representing the business entities

and their relationships in scope for the rule expression. The XOM is built only for

the rules component, in which case, the BOM was in some ways, the requirements

for the XOM, and needed to be built first. Whichever model gets built first, both

will evolve, and Rule Studio provides functionality for keeping them in sync

(see Sect. 10.3).

BOM design is a critical activity in business rule development. A well-designed

BOM results into an intuitive, unambiguous, and easy to use business rule vocabu-

lary. This helps make rule authoring, rule reviewing, and rule maintenance much

easier and much less error-prone. A complex BOM, one that exposes all the

complexity and relationships of an enterprise model, will make rule authoring

difficult and error prone. Similarly, a BOM that mirrors too closely the idiosyncra-

sies of the corresponding XOMwill result in awkward and hard to understand rules.

Chapter 10 will go into the details of BOM design, and BOM to XOMmapping and

will present best practices for both.

Fig. 8.10 BOM editor

230 8 IBM WebSphere ILOG JRules

8.3.4 Orchestrate Rule Execution

As explained in Sect. 5.4.3, whereas the rule project structure is concerned with the

development time organization of rules, rule orchestration is concerned with the

run-time execution sequence of rules. Also, while a rule engine (and the production

system paradigm) can deal with a “flat” ruleset that is a “bag of rules,” the decision

embodied in a ruleset can often be broken into a set of more elementary, and stable

sub-decisions. This is embodied in a ruleflow. Simply put, a ruleflow organizes rule

execution in terms of a flow of rule tasks, with transitions between them. The

transitions (flow links) can be conditional on some boolean expression being true.

Figure 8.6 showed what the rule editor looks like. Figure 8.11 shows a basic

example of a ruleflow for the data validation rule set for the Claim processing

application. The ruleset execution starts a task that verifies claim data. If the claim

has an issue, the processing terminates. Else, we go through three steps: (1)

completing data values, (2) performing the core validation rules, and (3) performing

some post-processing (e.g., preparing a validation report).

The ruleflow editor enables us to design the task flow, and to specify the task

bodies, i.e., specify which rules execute in each task. The recommended practice is

to assign one rule package to a rule task. This has several advantages, including: (1)

providing execution context for the rules being authored, and (2) simplifying rule-

flow maintenance. This also has an impact on the structuring of rules within

packages: the mapping to executable rule tasks add one more dimension that we

need to consider when we design the package structure. Section 9.4 will go into rule

package organization principles and drivers. Section 11.3 will go into a far more

detailed discussion of rule execution orchestration.

8.3.5 Ruleset Testing and Deployment

Continuing our process of Fig. 8.5, once the rule development infrastructure (rule

projects, business rule model, BOM, and orchestration) is completed, we can start

entering rules and unit-testing them. Rule testing can be performed using either

Junit, or the Decision Validation Services (DVS) component of JRules. Chapter 14

will explore testing issues in general. Chapter 15 will explore testing functionalities

of JRules, including DVS.

Fig. 8.11 Example of ruleflow

8.3 Rule Studio 231

The last recurring activity with Rule Studio is the deployment of the rule sets to

the target execution environment. Rule Studio enables us to package/extract rule-

sets, and deploy them. JRules supports two execution patterns for rulesets, and Rule

Studio offers functionalities for both:

l The embedded execution pattern using the rule engine API. this is the case where
the business application manages the rule engine object on its own, from creation,

to population with a ruleset, to invocation, to disposal. For this execution pattern,

we need to generate a ruleset archive by applying a ruleset extractor that builds
the ruleset archive from the contents of a rule project.7 The default extractor

grabs all of the rules of the project, but we can develop custom extractors that use

rule queries to filter which rules to include in the ruleset archive. For example, we

can extract only those rules that have status deployable.
l The decision service execution pattern. In this case, rulesets are bundled within

RuleApps and deployed to a Rule Execution Server that acts as a central rule

execution service for various parts of an application (different decision points in

a use case, different tasks of a workflow, or different activities of a BPEL

process) or various applications. Rule Studio supports a number of project

templates for (1) specifying ruleset bundles/RuleApps (which rulesets to include,

and for each ruleset, which project and which extractor), and (2) for specifying

Rule Execution Server configurations (host application server, URL, admin

credentials, etc.). RuleApps/ruleset bundles can be created and deployed directly,

using a live connection, to a rule execution server.

Chapter 13 will go into the details of rule deployment and execution function-

alities of JRules.

8.4 Rule Team Server

Rule Team Server (RTS) is aWeb-based rule management application that provides

a collaborative environment for authoring, managing, validating, and deploying

business rules. This is the workspace for business users with an intuitive point-and-

click interface that helps support the major use cases for business rule management.

Figure 8.12 shows the various activities that different user roles can perform within

Rule Team Server. We will provide a brief overview of the underlying functional-

ities in this chapter. More details will be provided in subsequent chapters. Rule

project synchronization with Rule Studio will be presented in Sect. 10.2.3. Access

control and permission management within Rule Team Server will be discussed in

Sect. 10.2.4 and Chap. 17. Deployment functionalities will be discussed in Chap. 13.

Testing functionality will be discussed in Chap. 15. Governance functionality will

be discussed in Chap. 17.

7And the rules projects it depends on . . . more on this in Chaps. 10 and 13.

232 8 IBM WebSphere ILOG JRules

Each installation of Rule Team Server manages a rule repository, consisting of a
bunch of rule projects persisted in a relational database. Recall from Sect. 8.2.1 that

rule projects are first “born” in Rule Studio and are brought into Rule Team Server

through Rule Studio’s publication and synchronization functionality. When we

populate Rule Team Server with Rule Studio projects, it is important to respect

project dependencies and publish a project before publishing the projects that refer

to it. As mentioned in Sect. 8.2.1, if rule authoring is to be done by non-technical

users who use Rule Team Server, its repository should be considered as the copy of

record. In this case, developers should regularly synchronize their Rule Studio

projects with Rule Team Server to update their local copy.
Upon logging into RTS, the “Home” tab presents the user with the list of projects

available in the repository. The user can select a project, and explore its contents in

the “Explore” tab. Figure 8.13 shows a example of the Explore tab for the “validate-

Claim-rules” project. The top-level folders of the project show “Business Rules”,

with the package hierarchy underneath, “Ruleflows”, “Templates”, “Simulations”,

and “Test Suites”, the latter two with a folder hierarchy that mirrors the rule

package hierarchy.8 The central view of the “Explore” tab shows the list of rules

in the “ClaimTiming” package, under the “Core” package.

Manage Rule
Version using

SCC

Upload
Rule Project to

Rule Team Server

Review
Rules

Author
Rules

Java, XSD, SQL

Rule Project
Rule Artifacts

Manage Version
Configuration of

Rule Set

Set Permission
Groups & Policies

Deploy
Rule Set

Synchronize
Back from Team

Server

Rule Project
Rule Artifacts

Set RES server
Configuration

Configure
Rule Repository

Define RuleDocs
Location

R
ul

e
S

tu
di

o

R
T

S
 A

dm
in

is
tr

at
or

R
ul

e
T

ea
m

 S
er

ve
r

R
ul

e
A

ut
ho

r

Fig. 8.12 Rule Team Server activities

8Note that this view of a rule project is customizable and is referred to as smart view. RTS users

can create smart views to present project elements in any order they want.

8.4 Rule Team Server 233

To view or edit the contents of a rule, the user can select the rule in a table such

as the one shown in the central view of Fig. 8.13, and then select the desired action

in the tool bar. Alternatively, the rule table includes iconic shortcuts to viewing

(magnifying glass) and editing a rule (pencil), left of the rule name in Fig. 8.13.

Note that RTS supports user and role-based access control/permission manage-

ment. By default, all users/roles can view and update project elements within the

projects of the repositing. When we activate permission management for a given

project, we can define user and role-based permissions to different users, or user

roles, to create, view, edit, and delete project elements. More on this in Sect. 10.2.4.

It is important to note that some project elements cannot be edited within RTS,

including rule flows, and the BOM, and for slightly different reasons:

l Safety. Both the BOM and ruleflows represent central infrastructure elements,

and we should not make them modifiable by users who may not have the skill or

authority to modify them.
l Partial information. The RTS manages a partial representation of the BOM.9

Accordingly, we are not able to assess the impact of BOM changes within RTS,

or to propagate them. Hence, any BOM changes need to take place within Rule

Studio, where they can be synchronized with the corresponding XOM, and

propagated to the vocabulary – and the rules.

This is one example of a situation where developers need to synchronize their

Rule Studio project versions with those in RTS, make the needed changes and

refactorings in Rule Studio, and then publish the modified project(s) back to RTS.

Figure 8.14 shows the detailed view of a rule (“claimWithin30d”), with its

properties/metadata shown on the left, and its “Content” (definition), “Tags”,

and “Documentation” shown on the right. The JRules 7 RTS offers two rule

editors: a single-form editor which edits rule contents and change documentation

in a single form with a “save” and “cancel” button, and a six-form wizard which

enables us to change everything about a rule (including metadata/properties, and

versioning policy). Note that each time the contents or the properties of a rule

Fig. 8.13 Rule Team Server Explore Tab to navigate a rule project

9The BOM to XOM mappings needs both the BOM and . . . the XOM! Which is not available in

RTS.

234 8 IBM WebSphere ILOG JRules

artifact are edited and saved, a new version of the artifact is created, according to

the versioning policy; the default policy increments the minor version number, but

we can force it to increment the major version number.

The Query Tab is used to create, edit, and run queries against the rule repository.

Recall from, Sect. 8.3.1 that JRules supports queries on rule artifacts, which can

search against the properties, contents (definition), and semantics of rules. Similar

querying facilities are available within RTS. There are small differences, however,

between the types of queries that we can run in RTS versus Rule Studio. For

example, some rule properties are only available in RTS, including the login

name of the RTS user who created or modified the rule.

Rule Team Server also supports the same ruleset deployment functionalities that

are available in Rule Studio, namely:

l Ruleset extraction and archival
l RuleApp definition and generation
l Rule Execution Server configuration management
l RuleApp deployment

These functionalities are accessible to users having the role RTS Configurator.
Regular RTS users (rule authors) can only deploy existing RuleApps to existing

server configurations. Figure 8.15 shows the result screen for a successful deploy-

ment of a RuleApp to a given Rule Execution Server installation (e.g., http://

localhost:8080/res).

Finally, when Decision Validation Services are installed, additional functional-

ity is enabled in Rule Team Server to allow policy managers to run tests and

simulations against their rules. Testing is based on test scenarios, which represent

the test data and the expected results. Test scenarios can be edited by business

users, as they are entered in Excel spreadsheets, where columns represent data

elements (object attributes), and each row representing a test case/scenario. The

format/layout of the Excel workbook is generated by DVS functionality based on

the ruleset parameters. Scenarios can be combined into test suites. Users can also

Fig. 8.14 Rule Team Server rule details view

8.4 Rule Team Server 235

define key performance indicators (KPIs) that are assessed along with the expected

results.

The DVS includes functionality to upload test data (Excel spreadsheet) and

rulesets to an execution environment called SSP (Scenario Service Provider). The

outcome of test execution is a report sent back to Rule Team Server, and displayed

in HTML format for review. Figure 8.16 illustrates the process. We will show how

to create test scenarios and test suites in Chap. 15.

8.5 Rule Execution Server

The Rule Execution Server (RES) is a managed, monitored execution environment

for deployed rulesets. Rule Execution Server handles the creation, pooling, and

management of rule sets in order to make rule invocation from the application code

more scalable. It natively supports ruleset sharing and rule engine pooling, with the

possibility to update rules at runtime. RES provides a management console, from

which we can deploy, manage, and monitor RuleApps.

Figure 8.17 shows the architecture of Rule Execution Server (RES). RES can be

thought of as two distinct components/stacks that share a database, and that

communicate via JMX:

l An execution stack, which includes the server-side components to invoke ruleset

execution (called rule sessions, along with factory/helper classes), an execution
unit (XU), which knows how to load a ruleset from the database, parse it, and

manage a pool engine pool to execute on behalf of business applications.

Business
Analyst

Rule Team Server
Rule Execution Server

Read, Update, Create rules
elements
Manage test scenario and suite
Run test suite

Execute rule
Generate
Report

Rule
Engine

Deploy
Rule Set-Scenario -
Expected Results

SSP

Execution Reports

Fig. 8.16 DVS Components View

Fig. 8.15 RuleApp deployment from Rule Team Server

236 8 IBM WebSphere ILOG JRules

l A management stack, which knows how to deploy rule apps/rulesets, persist

them in the database, manage their versions, and, (a) notify the execution stack

of the deployment of new or new versions of rulesets, and (b) collect execution

statistics from the execution unit (XU). The management stack includes a web
console, which enables us to perform all of these tasks, and to view management

information.

The two components are fairly distinct, and are packaged as separate archives. In

fact, in a cluster environment, they will not even be deployed to the same server

instances: the execution units will be “clustered”, whereas a single managed

component is deployed on a server outside of the cluster. Further, business applica-

tions that need to execute rulesets will only interact with the execution stack via

client-side execution components (i.e., rule sessions and rule session factories/

providers), unless they need to collect management information or execution

statistics.

Rule Execution Server supports hot deployment of rulesets. This means that we

can deploy new rulesets/RuleApps, or new versions of existing rulesets/RuleApps,

while the server is running and executing the current version of the rulesets, and
ensure that the new versions of the rulesets will be used for subsequent calls. This is

made possible thanks to the JMX communication between the management stack

(the JMX box in Fig. 8.17) and the execution stack (the execution unit (XU) box in

Fig. 8.17). In fact, there are two flavors of this hot deployment:

Execution Unit
(XU)

Persistence Layer

Execution components
(Rule session API)

Management Model
(MBeans)

Persistence Layer

Management
Console

JMX

Database
(ruleapps, rulesets,
decision warehouse)

Rule Team
Server

Rule
Studio

Ant
scripts

Management stack Execution stack

Managed
deployment

Raw (unmanaged)
deployment

Ruleset change notification &
Collection execution statistics

Fig. 8.17 An overview of the architecture and concept of operations of Rule Execution Server

8.5 Rule Execution Server 237

l What we might call an “eager” hot deployment, which will immediately parse

new versions of rulesets, and block any new incoming requests for that ruleset

until the new version is “installed”.
l What we might call a “lazy” hot deployment, which will not block new incoming

requests, and let them run with the current version of the ruleset, until the new

version is parsed and “installed”.

Most business contexts can live with the lazy approach, but some mission-

critical applications might require an eager approach.

Figure 8.17 also shows the different deployment paths. As mentioned earlier, we

can deploy RuleApps from Rule Studio or from Rule Team Server, using live

connections to the management component of RES. We can also execute batch ant

scripts to do the same thing. Again, there are two flavors:

l Scripts that communicate with the management model. This will ensure that

proper versioning is used, and that the proper notifications are sent to the

execution units.
l Scripts that access directly the database, without going through the management

model. These are simpler to set-up, and more efficient to execute, but may leave

the execution components in an inconsistent or out of date state.

Finally, note that there different deployment flavors of the Rule Execution Server.
While the general architecture suggests a full-fledged J2EE deployment, we can

have more lightweight configurations to accommodate the variety of execution

contexts that we can encounter:

l Full J2EE deployment, including the cluster deployment mentioned above. In

this case, the execution component is a full J2EE application, a JCA resource

adapter, where the execution components are EJB or POJO session beans. This is

the most scalable configuration, and one in which we can configure the pool size,

and the like.
l Web container deployment (e.g., Tomcat 6.x), in which case, we still enjoy the

services for JDBC data source management, JMX, and JNDI, and a full man-

agement stack deployed as a Web application. The execution component is using

a J2SE session.
l Pure Java SE deployment in which RES executes within the same JVM as the

calling application, and we need to embed a RES execution JAR within our

application. The rule engine pooling is available, but no transaction support and

security control.

Figure 8.18 shows the “Explorer” tab of the RES Web management console. It

requires a servlet container such as Tomcat 6.0 or other JEE application server like

WebSphere Application Server. The RES Console supports different user profiles

like administrator, monitor, or RuleApp deployer. Monitor role can update already

deployed RuleApp and access the reporting data. The RES console includes

features to manage RuleApp and ruleset, to run server diagnostics, to view server

logged events, and to manage reporting data in the Decision Warehouse. Decision

238 8 IBM WebSphere ILOG JRules

Warehouse delivers a set of features to trace, store, and view and query rule

execution activities. Indeed, each ruleset execution can generate traces, which

when persisted forms a decision history that can be consulted and used for auditing

purposes.

Chapter 13 will go into the details of RES API and explore the different views

that deployed rulesets can present to calling business applications. It will also

explore in more detail the functionalities of the decision warehouse.

8.6 Rule Solutions for Office

Rule Solutions for Office, or RSO, consists of a set of functionalities that enable us

to (1) publish rule artifacts from Rule Team Server to Microsoft Office 2007 Word

and Excel documents, (2) edit those rule artifacts with Word and Excel, and (3)

upload the new versions back into Rule Team Server to integrate them with the

main editing stream within Rule Team Server. Rule Solutions for Office leverages

the capabilities of the OpenXML-based file format used by Microsoft Office 2007.

We will provide a brief overview of the various functionalities.

To be able to publish Rule Team Server (RTS) projects into Microsoft Office

documents, an RTS administrator needs to create a so-called RuleDocs location.

This location is a URL to a shared disk on a server or a local directory on user

workstation. Once this is done, a rule author can publish a project to the predefined

location. They do so through the “Publish rules to RuleDocs” action in the “Project”
tab of RTS. This will prompt the user for, (a) the RuleDocs location, and (b) the

(sub) set of rules to publish. By default, that set/subset consists of all of the action

(if–then) rules, and all of the decision tables of the project. However, the user can

select which rules to include/exclude, individually, or by specifying a query.

Figure 8.19 shows the rule selection form in RTS. The user may choose to publish

Fig. 8.18 Rule Execution Server console – exploring the deployed RuleApp

8.6 Rule Solutions for Office 239

all of the action rules of a project to a single Word document, or to publish each

package to a separate Word document. The same is true for decision tables and

Excel documents.

The installation of RSO will modify Word and Excel, by adding new menu bar

buttons, new actions, and anew behavior. Figure 8.20 shows the so-called Rule-
Ribbon added to Word.

In Word, a RuleDoc includes a Write pane (the main editing frame in Word), a

View pane, and a Review pane. The Write pane is used to insert new rules or edit

existing ones. This pane supports a number of custom completions modes activated

with CTRL-SPACE, SPACE, TAB, and so forth. The review pane is used to check

the rules for errors and to activate or deactivate automatic syntax highlighting. The

View pane is used to show or hide the RuleDoc pane and Vocabulary panel. Each

business rule in a RuleDoc is stored within a content control that separates the

contents of the business rule from the surrounding text. In Fig. 8.21, the top-level

content control includes the name of the rule, its package hierarchy, while the Rule

Body content control includes the text of the rule.

Content controls react to user actions and act as custom editors within Word.

Completion assistants provide guidance while writing business rules by showing

the applicable vocabulary terms that can be used at this particular location of the

rule. This is illustrated in Fig. 8.22. They are similar to the code completion

Fig. 8.19 Publish rules to RuleDocs

Fig. 8.20 RSO word Rule Ribbon

240 8 IBM WebSphere ILOG JRules

assistants available in Rule Studio’s text-based rule editor (Intellirule). The content
control includes also a rule syntax checker, similar to Word’s standard spelling and

grammar checker, that enables users to check and correct business rules.

Once authoring is done within Rule Solution for Office, the rule writer can use

the Update rules from RuleDocs feature of Team Server to update RTS repository.

8.7 Summary

This chapter provided a brief overview of the IBM WebSphere ILOG JRules

BRMS. We described the overall architecture of the product, the concept of

operations, and then, for each component of the product, we identified the main

workflows and activities supported by the component and gave a brief overview of

those activities, throwing in some best practices along the way.

Fig. 8.21 Two content controls for one rule

Fig. 8.22 BOM – term navigation

8.7 Summary 241

Many of these activities and workflows will be revisited in the subsequent

chapters, namely:

l The design of rule project structures. General, product-neutral issues will be

discussed in Chap. 9, and JRules specifics in Sect. 10.2.
l The design of the Business Object Model (BOM). General issues, related to the

different requirements between the BOM and XOM, and relationships between

them, will be discussed in general terms in Sect. 9.2.1, and for the case of JRules

in Sect. 10.3.
l The rule artifacts will be presented in a product-independent way in Sect. 9.2.2;

JRules rule artifacts will be presented in Sect. 11.2.
l The orchestration of rule execution, will be discussed in Sects. 11.3 (founda-

tions) and 11.4 (best practices).
l Ruleset deployment and execution will be discussed, in general terms, in Chap. 12,

and with JRules specifics, in Chap. 13.
l Rule testing will be discussed in general terms, in Chap. 14, and with JRules

testing functionalities, in Chap. 15.
l Finally, everything related to rule governance will be discussed in general terms,

in Chap. 16, and for the case of JRules, in Chap. 17.

This is the only chapter of the book that is product/feature driven. The remainder

of the book is activity- or issue-driven, even for those chapters that deal with JRules
specifics. As the product evolves, some of the actions, menus, and screens shown in

this chapter may change. However, the major issues and activities should remain

the same, barring a profound change in the product architecture and concept of

operations.

8.8 Further Reading

This being a product-driven chapter, the reader is referred to the product documen-

tation for more technical information and tutorials, which is now public accessible

at http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp.

242 8 IBM WebSphere ILOG JRules

Part IV

Rule Authoring

Chapter 9

Issues in Rule Authoring

Target audience

l Business analyst, rule author (skip Sect. 9.2.1)

In this chapter you will learn
l The major issues in setting up a domain of discourse for business

rules
l The different languages for authoring rules
l Rule coding patterns for different classes of rules
l Principles and best practices for organizing rules during

development

Key points
l Business rules are written against a business-oriented view of the

data.
l High-end BRMSs offer a multitude of languages for expressing

business rules; choose the one that fits the business logic.
l Atomic rules are easier to write, to validate, and to maintain.
l There are proven ways of coding certain types of rules, which

rely on rules being atomic.
l Development-time organization of rules is a key aspect of rule

management.
l The structure of the domain and rule reuse opportunities are key

drivers for the development-time organization of rules.

9.1 Introduction

In this chapter, we look at the general issues surrounding rule authoring in a

technology-independent way. We look at three different aspects. First (Sect. 9.2),

we look at rule languages. In particular, we will address two sets of issues: (1) issues

related to the business vocabulary itself, that is, the business object model and (2)

issues related to the rule structures. In Sect. 9.3, we look at rule coding strategies

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_9, # Springer-Verlag Berlin Heidelberg 2011

245

based on a simple classification of rules. In Sect. 9.4, we deal with the organization

of rules during development: how to best organize rules during development so as

to reflect the structure of the domain and to optimize design time qualities such as

reusability, an effective division of labor, and the like. We conclude in Sect. 9.5.

9.2 Rule Languages

During the ABRD life cycle, business rules will be expressed in a variety of

languages that differ in terms of structure, formality, and vocabulary, depending

on how far along we are in the process and on the target audience for the rules.

Barbara von Halle talks about four different languages which correspond more or

less to four different phases of the rule life cycle (von Halle 2001):

l Business conversation language. This is the language used for the initial steps of
rule discovery (see, e.g., Chap. 4). This corresponds to the phrasing of rules “in

their native format”, that is, the way they are first extracted from their source, be

it a requirements document, a regulation, meeting minutes, a procedure manual,

etc. In this case, no special care is taken to structure the rules, or to disambiguate

their terminology, or to validate them. Validating the terminology is one of the

outcomes of rule discovery.
l Structured natural language. By the time we are done with rule discovery, and

ready to tackle rule analysis, rules are already encoded in some sort of structured

English – or whatever the language might be – using predefined linguistic
templates that correspond to the various rule categories. Section 4.2.1 proposed

a number of such templates for the various rule categories.
l Formal rule authoring language. This is the language used by business users to

author rules in a late BRMS. This language has to satisfy two conflicting criteria:
(1) being formal and unambiguous and (2) being intuitive and easy to use for a

business person. This language should be either executable as is or mechanically

translatable to a rule engine’s native language.
l Engine execution language. This is the language understood and executed by

rule engines.

Figure 9.1 places the four languages along the business rule life cycle.

Business
conversation

language

Structured
natural language

Formal
authoring
language

Execution
language

Analysis
phase

Execution
phase

Development
phase (author,
test, maintain)

Discovery phase

Fig. 9.1 Rule languages depending on lifecycle phase (Adapted from von Halle 2001)

246 9 Issues in Rule Authoring

Chapter 4 dealt with the business conversation language and the structured

natural language. In particular, we discussed OMG’s Semantics of Business
Vocabularies and Rules (SBVR) standard for defining domain-specific vocabul-

aries and business rules. In this chapter, we deal with the authoring and execution

languages.

When we talk about languages, it is customary to talk about the vocabulary of the
language, and the structure of the language, that is, the way that sentences are

composed using elements from the vocabulary. With rule languages, the vocabulary
is the business vocabulary, referred to as term and fact model in business rule

methodologies. The term and fact model is often, abusively, equated with a class

model, where terms correspond to classes and their attributes, and facts correspond to

associations between entities. While this is a good approximation, there are important

conceptual differences between the two. However, by the time we move into rule

authoring, the term and fact model is typically implemented by an object model that

embodies the business view of the data, that is, the business object model. In the

remainder of this section, we will first talk about the business object model and then

about the different rule languages.

9.2.1 The Domain of Discourse: Business Object Models

The business object model is an object model that reflects the business view of the

data. In this section, we talk about the desirable characteristics of a business object

model, ways in which it differs from the real (actually implemented) object model,

and ways to bridge the two.

A business object model is an object model; it represents the world as a set of

objects, having features, both structural (i.e., attributes) and behavioral (i.e., func-

tions), and having relationships between them. This model is business oriented in

that it reflects the point of view of a business community, as opposed to the point of
view of IT. Like with any model, the main desirable characteristics of a business

object model are:

l Soundness. It provides a correct rendition of the world being modeled. Practi-

cally, this means that the model has no errors. For example, if a particular kind of

policy cannot have more than one insured person, it should be reflected in the

model, such as in the cardinality of the association between InsurancePolicy and

InsuredPerson.
l Completeness. In this context, the completeness of the model means that it

represents every aspect of the modeled world that is relevant to the application

at hand. For example, if we need to reason about medical providers to adjudicate

claims, then we must have an adequate representation of medical providers in

relation to claims and medical invoices.

In short, everything that we need is in the model and everything that is in the

model is correct.

9.2 Rule Languages 247

A business object model that will be used as a basis for authoring business
rules by – potentially or ideally – business people needs to satisfy three additional

criteria:

l Specificity. The terminology of the model should follow closely that used by the

business community concerned by the model. If we are dealing with business

rules for health insurance claim processing, then we would be talking about

MedicalInvoice, MedicalInvoiceLineItem, MedicalProcedure, and the like.

If, on the other hand, we are dealing with car repair claims for car insurance,

then we would talk about RepairShopInvoice, RepairShopInvoiceLineItem,

RepairProcedure, and the like.
l Abstraction. The model should represent the information at the level of abstrac-

tion that is appropriate for authoring the business rules. For example, if business

rules talk about “claim amount”, then the business object model should have

an attribute amount for the class Claim, even if that information is to be

aggregated from other data elements.
l Relevance. Ideally, the model should only represent the information that is

relevant to a particular business function (e.g., a business process).

Note that “relevance” seems to contradict “completeness”. But the combination

of the two says, in essence, that our model needs to have everything I need for my

business function/area, and nothing more.

More interestingly, the last three criteria seem to contradict desirable properties

of a conceptual data model. Indeed, if you were a data architect tasked with the job

of designing a common data store to support a bunch of applications, you would

pretty much be given the opposite directives, that is,

l Genericity. Make sure that the model terminology abstracts the commonalities

between the various functional areas that use the central data store. For example,

if I am an insurance company that offers different insurance products, I would

want to use the generic term Policy to refer to both health and auto policies, and

ServiceInvoice to refer to invoices for both car body work, and, say, physical

therapy.
l Canonicity. Make sure that the conceptual data model contains the minimal

set of data elements from which all other data elements can be derived.

Practically, this means, for example, that we should not represent a property

amount for a Claim, if we can compute it from the individual service

invoices.

Genericity and canonicity contradict specificity and abstraction – and to a lesser

extent, relevance. We should then have two different models! The question then is

how to map one to the other!

Actually, we have known how to do this for as long as we have been doing

relational data modeling! To build the conceptual model, you were supposed to

collect the various views from the various users of your application, normalize

those views, and merge them to get the central, common data model. You can then

recreate those views using the relational database view mechanism!

248 9 Issues in Rule Authoring

Figure 9.2 illustrates this process. This is both a metaphor for the relationship

between the business object model and the underlying application object model,

and a description of some of the ways in which this mapping can work.

Let us go back to the beginning. The first generation of rule engines – then

known as expert system shells, see Chap. 6 – used their own exotic representations

of data that were inspired by knowledge representation languages such as frame
languages.1 As such, they did not integrate well with business information systems,

but that was OK, because they were typically used in desktop engineering applica-

tions such as designing circuit boards for the VAX family of computers or CAD/

CAM applications. Such applications could be characterized as having high proce-

dural expertise, high data structural complexity, but low data volume.

The specialized representation of data was a major factor in delaying the pen-

etration of expert system shells in business applications. Second-generation expert

system shells kept using their own exotic data representation languages, but were

able to load their fact base from relational databases. This scenario is illustrated in

Fig. 9.3; the reader may have noticed a similarity between this diagram and one of

the reengineering scenarios mentioned in Sect. 7.5.3 (reengineering the data layer).

With this second generation of BRMSs, the integration between the BRMS and

the business application is data driven: the two sides communicate only through

shared data stores. However, rule execution could not be integrated into high-

volume, end-to-end business processes. In particular, the BRMSs – called expert
system shells – did not offer a public API that could be invoked from business

Normalize View

Normalize Merge

A

AB

BC

ABC

B

C

View

Normalize View

Business
view 1

Business
view 2

Business
view 3

Fig. 9.2 Starting from the needs of different business (sub)communities, we derive a central data

model from which the business views can be regenerated

1A frame is data structure that represents a class where features are represented by slots which
have values as well as a bunch of procedures or demons attached to them. Such demons kick in (are
triggered) when a value is read, set, or modified.

9.2 Rule Languages 249

applications: they remained mostly desktop interactive applications that were

invoked independently/asynchronously of the business applications.

The current generation of BRMSs execute rules directly on the native applica-

tion objects, be they Java, Cþþ or C#. But how could they, if the rules are authored
using the business object model? Well, some BRMS tools do not make that

distinction: the same object model is used for authoring and execution. This is the

case with most of the open-source rule engines, including JESS, OPSJ, and

DROOLS.2 The leading commercial products – including JRules and FICO’s

Blaze Advisor – support two distinct models. If we think of the business object

model as a business view of the application’s Java (or Cþþ or C#) object model,

then we can translate rule references to the business object model into rule refer-

ences to the application’s object model. This translation can happen either during

rule authoring or during rule execution. The two scenarios are illustrated in Fig. 9.4.

Earlier versions of JRules supported authoring-time translation of rules from “rules

against business object model” to “rules against application object model”. Since

JRules 6, this translation happens during run-time. JRules’s business object model

to application object model mapping is very powerful, and can accommodate

substantial differences between the two models. The so-called BOM to XOM

mapping3 will be discussed in Chap. 10.

Run-time BOM to XOM mapping has a major advantage: “write rules once,

execute everywhere”. For example, if the BRMS at hand supports execution

Shared DB

Policy

PolicyHolder

PolicyData

1..*

0..*

holders

–data0..1
Claim

1
0..*

claims

Domain layer

Application / service layer

Presentation layer

Legacy business application

ClaimPolicy

1 0..*

claimsPolicyHolder

1..*0..*

holders

HealthPolicyCarPolicy MedicalClaim CarRepairClaim

1 0..*
claims

1 0..*
claims

A (physically) distinct
busines object model

Rule management and
execution

BRMS (expert system shell)

Fig. 9.3 Second-generation business rules management systems (BRMS) integrated with busi-

ness applications via shared database

2More recent versions of DROOLS support DSL rules which are expressed using a natural

language veneer on top of the application’s object model. We cannot say that it uses a different
object model: It simply uses a different terminology.
3BOM as in Business Object Model and XOM as in eXecutable Object Model.

250 9 Issues in Rule Authoring

language–independent BOM, the same rules could be executed against Java objects

or C# objects, say, which is precisely the case with JRules. More advantages will be

explained in Chap. 10.

9.2.2 Flavors of Rule Authoring Languages

Business rules come in many shapes and flavors. The most common form of a

business rule follows the familiar if-then pattern, but that is, by no means, the only

one. Common formats include:

l If-then rules
l Decision tables
l Decision trees
l Scorecards
l Custom languages

In this section, we talk about the various flavors and the type of problems that

they can accommodate.

9.2.2.1 If-Then Rules

If-then rules are the most common condition-action rules. The actual terminology

may differ (e.g., when-then or condition-action or, in French si-alors, etc.) but the

Authoring
environment

Rules on
BOM

Rules on
XOM

Rules on
XOM

Authoring-time
translation

execution-time
translation

deploy

Execution
environment

Authoring
environment

Rules on
BOM

deploy

Execution
environment

Rules on
BOM

Rules on
XOM

BOM to XOM mapping
done during authoring

BOM to XOM mapping
done during run-time

a b

Fig. 9.4 Different business object model (BOM) to execution object model (XOM) mapping

times

9.2 Rule Languages 251

if part represents a set of conditions on a tuple of objects, and the then part

describes the actions to take on the elements of the tuple. Generally speaking,

there are two flavors of if-then rules:

l So-called technical rule language, which uses syntax close to the host program-

ming language. For example, the following is a JRules technical rule:

rule GoodCustomer {
 property priority = 0;
 when{
 ?customer: Customer();

?order: Order(amount > 1000; isRushed();
customer == myCustomer);

} then {
System.out.println(“The customer :” + ?customer

+ “ is a good customer);
}

}

This rule matches a pair<?customer,?order> such that the order is worth more

than 1,000, is rushed, and is made by the customer, and for each such pair, prints

the description of the customer with the message shown, in the system standard

output stream. In this example, the classOrder has (public) attributesamount
and customer, and the Boolean function isRushed(). OPSJ has a

nearly identical syntax.4 Other languages such as JESS have their LISP lineage

still showing with the use of property-list notation for property values.
l Business-oriented language, what JRules calls business action language (BAL)

or what DROOLS refers to as domain-specific language (DSL) rules. These rules

use intuitive, natural language-like syntax. The same above rule written in

JRules’ BAL would look like:

Definitions
set ‘the order’ to an order;
set ‘the customer’ to the customer of ‘an order’;

If
the amount of ‘the order’ is more than 1000
and ‘the order’ is rushed

Then
print “The customer: “ + ‘the customer’ +

“ is a good customer”;

This syntax is more appropriate for rule authors who are business users, such

as business analysts or policy managers (see Chaps. 3 and 4). Such rules are

4Unsurprisingly, considering that an earlier version of JRules is based on an earlier version of

OPSJ, namely, OPS5.

252 9 Issues in Rule Authoring

typically translated by the BRMS tools into technical rules. In JRules, the

business action language may be seen as a rule entry language, which is

translated on the fly, by the rule editor itself, into the technical language.

Which language to use? Obviously, the business-oriented language makes rules

understandable and “authorable” by business, and is much preferred to the technical

rule language for business applications. However, the familiarity of the language

comes at a cost: business-oriented languages tend to be less powerful. How much

less? It depends. For example, in JRules, JESS or DROOLS, rule authors using the

technical language can use a fairly significant subset of the Java language in the

action part of rules, out of the box. With a business-oriented language, the con-

structs that can be used in either the condition part or the action part need to be

precodified; we will show this in the context of JRules in the next chapter. Also,

historically, language builders have managed, with varying degrees of success, to

introduce more complex constructs into business-oriented languages in a more or

less intuitive way. For example, the first versions of JRules’ BAL (JRules 3.x, circa

2001–2002) were much less powerful than the technical language. The languages

are now comparably powerful as far as business applications are concerned.

9.2.2.2 Decision Tables

Figure 9.5 shows an example of a decision table. The structure of the table is self-

explanatory. The left two columns represent conditions to be tested, and the last two
represent decisions or actions. The business logic described by the table could have
been described by nine separate rules, one per row. The first rule might say: “if the

driver is under 18 then do no underwrite”. The second might say: “if the age of

driver is between 18 and 25 and the number of demerit points is no more than 2

then underwrite and use the rate category B18-2”, and so forth. Business people

often represent decision logic in tables, even if they have never heard of the

business rules approach. Many of our first-time customers already had some of

Age Demerit points
Underwrite? Rate category

Min Max Min Max

≤ 18 No N /A

≤ 2

≥ 6 No N /A

- -

18 25

25 75

≤ 2

≥ 8 No N /A

≥ 75
≤ 6

Yes B18-2

2 6 Yes C18-8

Yes A25-2

2 8 Yes B25-8

Yes A75-6

>6 No N/A

Fig. 9.5 A sample decision table

9.2 Rule Languages 253

their business rules captured in Excel spreadsheets or Word tables. With business

rule methodologies, opportunities for organizing decision logic in tables arise

during rule analysis (see Chap. 4 and von Halle 2001). During this activity, we

identify recurrent patterns of rules and try to organize such rules in tables. Roughly

speaking, if we have a bunch of rules that test the same data elements (age and

demerit points in this example), and that take similar actions (underwrite or not, and

which rate category to use), then we have an opportunity for using a decision table.

Commercial BRMS tools support decision tables: they are intuitive and easy to

create, read, and maintain. JRules provides API for creating such tables program-

matically from external tabular data sources, and includes Microsoft Office plug-ins

to edit decision tables in Excel spreadsheets, and to synchronize them with the rule

authoring environment (Rule Team Server or RTS, see Chap. 8); other features will
be explained in the Chap. 10 .

9.2.2.3 Decision Trees

The kinds of situations that call for decision tables can also be handled by decision

trees. In fact, you may find that business people think in terms of decision trees, and

then express/encode the decision tree in the form of a table. A number of commer-

cial BRMS tools – including JRules – support the specification of decision logic as

decision trees. In a decision tree, each tree node represents a decision or test, and the
branches off that node represent alternative outcomes. The decision tree for the

table of Fig. 9.5 is shown below in Fig. 9.6.

Figure 9.6 shows only excerpts of the tree for the table in Fig. 9.5: it does not fit

in the page. This is a major weakness of decision trees, as a way of expressing

decision logic: while they may be visually appealing, they are fairly unpractical for

all but the most trivial decision problems.5

9.2.2.4 Scorecards

The example we used for decision tables and decision trees is a typical one in

applications that involve scoring actual or potential customers (applicants) to

decide whether to offer them the service, and under what conditions. In credit
scoring – and credit scorecards – the goal is to assign credit applicants a score, and

then deciding, based on where that score falls, whether to grant them the credit they

applied for, and if so, under what conditions. In insurance underwriting, we assign
potential insured a risk score and underwrite based on that score.

5JRules’ decision trees have a bunch of features to make the display more compact by folding/

unfolding subtrees or changing the direction of the display, top to bottom or left to right. But that

does not change the nature of the problem.

254 9 Issues in Rule Authoring

Let us consider a variation on the decision table in Fig. 9.5. The insurance risk
scorecard is shown in Fig. 9.7. Like in Fig. 9.5, we use two attributes, “age” and

“demerit points”. For each attribute, we assign a different score to a different value
range. The final decision is based on the sum of scores assigned to an applicant. In

this example, let us say that we underwrite the driver only when their cumulative

score is higher than 100. Thus, a driver under 18 would not be insured, regardless of

driving record. Also, any driver with more than six demerit points will not be

insured, regardless of their age. Young drivers (between 18 and 25) with two to six

demerit points will not be insured either, since their total score is 30 þ 60 ¼ 90,

which is less than 100.

Scorecards are convenient because a complex decision can be reduced – and

explained – in terms of a single cumulative score falling into a particular range.

On the surface, scorecards are similar to decision tables. However, there are

important differences in terms of power and usability, which will be discussed

in the next section. For the time being, let us just say that their design is part

science – mostly – part art. Indeed, the parameters of the scorecards are computed

using a combination of statistical analyses over historical data (the science) and

Attribute Value range Score Explanation

Age

≥ 75

Demerit
points

<18 0 Isn’t insurable

[18, 25] 30 Worst accident statistics

[25, 75] 55 Safest age range

45 Safe behavior but diminishing capacity

<2 75 Safe drivers

[2, 6] 60 A poor driver, but not a dangerous one

≥ 6 30 A dangerous driver

Fig. 9.7 An insurance underwriting scorecard

Driver’s age?

Demerit points?

<18 [18,25]

UW=True
Rate cat=B18-2

UW=True
Rate cat=C18-8

UW=False UW=True
Rate cat=B18-2

UW
Rate

≥ 6

UW=False

[2,6]<2

[25,75] ≥ 75

Demerit points?

<2 [2,8] ≥ 8

Fig. 9.6 Excerpts from the decision tree representing the decision logic in Fig. 9.5

9.2 Rule Languages 255

usability considerations such as simplicity of the model, number of attribute ranges,

etc. (Siddiqui 2006) (the art). Some commercial BRMSs, including JRules, support

scorecards, but they are found mostly in business intelligence (BI) and analytics tools.

9.2.2.5 Custom Languages

In Chap. 4, we presented different classifications of rules. Not all classes of rules

can be conveniently written as if-then rules, or variations thereof (e.g., decision

tables or decision trees). We just saw one such type: scorecards. Scorecards

have their own design tools and execution engines which differ from RETE

rule engines (see Chap. 6). While we can turn every type of rule into an if-then

rule – we will pretty much show how to do that in the next section – there are

situations where a custom language can make rule authoring more familiar to

the business users.

Assume that you are building an application for automatically filling out tax

returns. The majority of tax rules are computations. Using the rule templates

described in Sect. 4.2.1, a computation may be stated as:

The taxable income IS-COMPUTED -AS gross income + commissions – deductions

It would be convenient to be able to enter such a rule as is within a rule editor. In

this case, the rule editor would be a formula editor similar to the formula editor

available in Excel spreadsheets. This would be more natural than entering the rule as:

if <some trivial condition or no condition> then taxPayer.taxableIncome =
taxPayer.grossIncome + taxPayer.commissions – taxPayer.deductions

or its business-oriented language equivalent.

Through our consulting practice, we did develop custom rule entry languages for

some customers. JRules offers a rule language development framework called the

Business Rule Language Development Framework (BRLDF), which is a java

library for specifying the syntax of the custom rule language, and for translating

rules written in this syntax to some target language. Note that the rule editor itself

can be parameterized by the grammar of the language and its vocabulary – the

business object model. Finally, instead of developing a custom rule engine for rules

expressed as formulas, we translated user-entered formulas into if-then rules

similar to the one shown above, that were never shown to business users, but that

were the ones deployed. Figure 9.8 illustrates the approach.

When should you develop a custom rule language? This solution should only be

considered when:

l The full rule syntax represents an unnecessary burden, and an unbearably

awkward syntax for its target users.
l The cost of developing the custom rule language, the custom rule editor, and the

custom rule engine was minimal.

256 9 Issues in Rule Authoring

l You have reasonable assurance that future evolution of the BRMS you are using

will not invalidate your language.

Our advice, generally speaking, is to avoid customizing in all circumstances,

because your customizations can lock you into a particular version of the BRMS

product that you are using, preventing you from taking advantage of new features as

they come out. This applies to custom rule languages. If you get too creative, you may

go down toward unstable parts of the API, and find yourself, a couple of years down

the line, facing two painful choices: (1) continuing costly implementation and main-

tenance of custom features that have since become available in the BRMS product out

of the box or (2) bite the bullet and take up the costly effort of migrating your rule

assets – possibly rewriting some of them from scratch – to the new(est) version of the

product.6 We will come back to customization issues at the end of the book.

9.3 Rule Coding Strategies and Patterns

In this section, we propose some common rule coding patterns to handle common

rule classes. Section 4.2.1 proposed the following classification of so-called deci-

sion rules, as opposed to structural rules and process flow rules:

l Constraints
l Guidelines
l Action enablers
l Computations
l Inferences

A = B +
 C – D

Formula editor
built with BRLDF

Translate

Formula translated as a
JRules technical rule

JRules rule
engine

if A is undefined
then
A= B + C – D

Fig. 9.8 Developing a custom rule language

6The customization that we performed in this case is low risk: the custom rule language is

orthogonal to the predefined rule languages and editors, and “rules” (formulas) are translated

into the most stable part of the product, the technical rule language, which has evolved but

remained backward compatible all throughout the lifetime of the product (since 1997).

9.3 Rule Coding Strategies and Patterns 257

In Sect. 9.2.2, we reviewed the various languages that are typically provided by

BRMSs to express rules. In particular, we saw if-then rules, decision tables, decision

trees, scorecards, and custom languages. In this section, we look at how to express

the different types of rules using the available languages (Sects. 9.3.1–9.3.4). In

addition to the five categories mentioned above, we will consider risk-assessment

rules and compare scorecards to decision trees (Sect. 9.3.5). We will also look into

the issue of encoding business data as decision tables (Sect. 9.3.5).

9.3.1 Coding Constraints and Guidelines

Constraints express conditions that must be true for the business – or the application

supporting it – to behave according to business intent. The conditions can be either

on the system (or state of the business) as the whole or on individual business events

or transactions that come its way. Let us take one example of each.

l A constraint for underwriting drivers for a car insurance policy, on a single

driver:

it is necessary that the driver be over 18 and the driver have had no DUI7 convictions

within the last 2 years and the driver have a credit score at least equal to 650 and the driver

have 8 penalty points or less

l A constraint for claim processing, on the set of claims being handled by the

system at any given point in time:

it is necessary that for a given policy there is at most one claim being adjudicated by the

system at any given moment in time.

The first constraint ensures that we only underwrite mature, safe, and financially

sound drivers. The second constraint ensures that there would be no more than one

claim in the system being adjudicated: this means that if a claim C1 against policy P

is being adjudicated, we cannot adjudicate another claim C2 against the same policy

P until C1 is completed.8 The difference between the two constraints is immaterial

to the subsequent discussion, and so we will stick with the first kind.

The issue here is how to encode such a constraint using typical rule entry

languages. A naive encoding of this constraint in a business-oriented language

would go something like:

7DUI: Driving Under the Influence [of alcohol or drugs].
8The reason for this could be that the way we adjudicate a claim can influence the way we

adjudicate subsequent claims because of things like quotas, caps, and the like, and thus we need to

process each claim fully to update running tallies, etc.

258 9 Issues in Rule Authoring

if
the driver is over 18 and the driver has had no DUI convictions within the last 2 years
and the driver has a credit score at least equal to 650 and the driver has 8 or fewer
penalty points

then
mark the driver as eligible

There are at least two problems with this encoding. First, generally speaking,

constraints provide necessary conditions (it is necessary that) for a business event

to be processed successfully, not sufficient ones; in this case, there may be other

conditions for eligibility which are not expressed in this constraint, such as the

driver residing in a jurisdiction covered by the insurer, or not being presently

incarcerated, say! Thus, it is logically/semantically wrong to say that if these

conditions are satisfied, the driver is eligible.

Even if we had all of the necessary and sufficient conditions expressed into that

one constraint, with this rule, I have no way of telling which of the several

conditions a driver fails. Indeed, if the rule fails to fire for a particular driver, all

we know is that the driver either is under 18 or has had DUI convictions within the

last 2 years or has a credit score less 650 or has had more than eight penalty points,

but I cannot say which of the above conditions she/he failed. It is important, for both

auditing purposes, and for sound customer relationship management (CRM), to be

able to tell why a particular transaction was rejected or a particular service was

denied.

The third reason why this encoding is bad is maintenance. If we need to add a

requirement, such as jurisdiction, or remove one, such as credit score, we need to

modify an existing rule. From a maintenance point of view, that is not a good

practice: to the extent that that is possible, we would like our business logic

maintenance to be conservative (I conserve what I already have) and incremental
(small changes in requirements lead to small changes in the rule base).

A key element of the problem is the expression of the constraint in the first place:
it is not atomic! Recall from Sect. 4.2, a key step in rule analysis is making rules

atomic. “Yeah, sure”, we hear you saying, but this is where it comes to bite us. The

constraint above can be expressed as four separate constraints:

it is necessary that the driver be over 18

it is necessary that the driver have had no DUI9 convictions within the last 2 years

it is necessary that the driver have a credit score at least equal to 650

it is necessary that the driver have 8 penalty points or less

We can now encode each constraint through an if-then rule that identifies a

violation of the constraint, yielding four different rules:

9DUI: Driving Under the Influence [. . . of alcohol or drugs].

9.3 Rule Coding Strategies and Patterns 259

if
the driver is under 18

then
add to driver the ineligibility condition: “Driver under 18”

if
the driver has had a DUI conviction within the last 2 years

then
add to driver the ineligibility condition: “DUI convinction within last 2 years”

if
the driver has a credit score under 650

then

add to driver the ineligibility condition: “credit score under 650”
if

the driver has more than 8 penalty points
then

add to driver the ineligibility condition: “more than 8 penalty points”

If we put a policy (or driver) through these rules, each condition violation will

result into a rule firing, and a log that records the nature of the failure. A transaction

that satisfies all of the conditions will come in and out “untouched” by the rules.

This solves our problems:

1. The encoding is semantically sound: not matching these rules does not mean that

the transaction will pass; it may match other violation rules.

2. The reasons for failure are documented/itemized.

3. From a maintenance point of view, to add a condition, we add the corresponding

condition violation rule, and to remove a condition, we remove the corresponding

condition violation rule!

But “our business rules are much more complex than that”. Sure they are! Let us

first start with a constraint that is a disjunction (or) as opposed to a conjunction

(and). Consider the following simple constraint:

it is necessary that the driver be employed or the driver be retired with an indexed income

Mathematically speaking, this constraint is atomic: it cannot be broken any

further without changing its meaning. We could encode it with the rule:

if
the driver is not employed and the driver is not retired with an indexed income

then

add to driver the ineligibility condition: <some message>

What would be <some message> in this case? Because failing an or condition

means failing both of its branches, we could write “the driver is neither employed nor

retired with indexed income”. If we step back and think about what the constraint

means, it actually means that the driver has a steady income, and there are two ways

to have a steady income: either be employed or be retired with (cost-of-living)-

indexed income. A less literal – and perhaps more informative – message might then

say “the driver does not have a steady income”. As is often the case with disjunctive

260 9 Issues in Rule Authoring

(or ’ed constraints), the constraint expresses a quality and the elementary conditions

express different ways/modalities in which that quality can be achieved.

Let us now consider a yet more complex example that merrily combines con-

junctions (and’s) and disjunctions (or):

it is necessary that (the driver has been a US resident for more than two years and the driver

has had no DUI convictions within the last 2 years) or (the driver has been in the country for

less than two years and has nomoving violations)) and ((the driver has been a US resident for

more than two years and the driver has a credit score at least equal to 650) or (the driver has

been a US resident for less than two years and the driver has no pending collection claims))

There are two approaches to go about this one. One approach would recognize

that this constraint is about two qualities, the driver’s driving record, and the driver’s
credit track record. Each one of these two qualities has two modalities: one for

drivers who are long-time residents and one for drivers who are recent arrivals, with

no history/track record. Seeing it this way, we can change this constraint to two

inferences and two elementary constraints:

A good driving record is defined as (having resided in the US for more than two years and

having no DUI convictions in the last two years) or (having resided in the US for less than

two years and having no moving violation)

A good credit record is defined as (having been a US resident and having a credit score at

least equal to 650) or (having been a US resident for less than two years and having no

credit history and having no pending collection claims)

It is necessary that the driver have a good driving record

It is necessary that the driver have a good credit record.

We know how to handle the last two constraints. We will show in Sect. 9.3.3

how to encode the first two inferences.

A second, more mechanical way of handling the original constraint would break

it into a disjunction of conjunctions as in (A1 and A2. . . . and An) or (B1 and B2 . . .
and Bn) or . . ., etc. To transform any Boolean expression into a disjunction of

conjunctions, we use the following transformation rules:

l not (A and B) is equivalent to (not A) or (not B)
l not (A or B) is equivalent to (not A) and (not B)
l (A or B) and C is equivalent to (A and C) or (B and C).

If we transform the above constraint, we get:

it is necessary that

((the driver has been a US resident for more than two years and the driver has had no DUI

convictions within the last 2 years) and (the driver has been a US resident for more than two

years and the driver has a credit score at least equal to 650))

or

((the driver has been a US resident for more than two years and the driver has had no DUI

convictions within the last 2 years) and (the driver has been a US resident for less than two

years and the driver has no pending collection claims))

or

((the driver has been in the country for less than two years and has no moving violations)

and (the driver has been a US resident for more than two years and the driver has a credit

score at least equal to 650))

9.3 Rule Coding Strategies and Patterns 261

or

((the driver has been in the country for less than two years and has no moving violations)

and ((the driver has been a US resident for less than two years and the driver has no

pending collection claims))

The two grayed-out clauses can never be true, because they both include con-

tradictions: the driver has been a US resident for more than 2 years and the driver

has been a US resident for less than 2 years cannot both be true at the same time.

Thus, our simplified constraint can now be expressed as:

it is necessary that

(the driver has been a US resident for more than two years and the driver has had no DUI

convictions within the last 2 years and the driver has a credit score at least equal to 650)

or

(the driver has been in the country for less than two years and has no moving violations and

the driver has no pending collection claims)

Actually, a business analyst might intuitively frame this as “we have a rule for

long-time residents and a rule for recent residents”, and that would be the correct

interpretation, mathematically.

We can handle the last constraint in two stages. In the first stage, we check if the

driver satisfies either set of constraints independently. The first batch of rules will

say something like:

if
the driver has not been a US resident for more than two years

then
add to driver the failure condition for over 2 years: “resident less than 2 yrs”

if
the driver has a DUI conviction with last two years

then
add to driver the failure condition for over 2 years: “DUI conviction last 2 yrs”

if
the driver has a credit score less than 650

then

add to driver the failure condition for over 2 years: “low credit score”

The second batch will say:

if
the driver has been a US resident for more than two years

then
add to driver the failure condition for less than 2 years: “resident more than 2 yrs”

if
the driver has a moving violation

then
add to driver the failure condition for less than 2 years: “Moving violation”

if
the driver has pending collection claims

then

add to driver the failure condition for less than 2 years: “pending collection claims”

262 9 Issues in Rule Authoring

In this case, we maintain two lists of error codes: one for error codes for the case

of long-time (more than 2 years) residents and the other for error codes for the case

of recent (less than 2 years) residents. A seventh rule would wrap this up:

if
the driver has error codes for more than two years and the driver has error codes for
less than two years

then

mark the driver as ineligible because: <some message>

In the rejection letter/report, the driver would get an explanation saying that they

failed the “more-than- 2-years” rule for the reasons A and B, say, and they failed the

“less-than-2-years” rule for the reasons E and F.

Let us recap: in case a constraint contains an atrocious combination of and’s,

or’s, and not’s, which approach is better:

1. Organize the constraint as a combination (conjunction or and’s) of qualities,

each having several modalities (disjunctions or or’s), or

2. Turn the constraint into a disjunction of conjunctions, and treat each conjunction

as a separate constraint

It depends! If the constraint can naturally be written as a conjunction of dis-

junctions,10 and each disjunction corresponds to different modalities for an obvious

quality (e.g., driving record and good credit record), and the modalities for the

various qualities are independent,11 then the first approach is logically sound, and it

yields more intuitive rules. If, on the other hand, the constraint is inscrutable, then

we have no choice but to go for disjunctions of conjunctions and use the second

approach suggested here.

To sum the collected wisdom of this section:

1. Before you do anything, make your rules atomic. It has been our experience that
rule analysis, in general (Chap. 4), and making rules atomic, in particular, is not

always/often taken seriously. But that is OK! If you do not perform rule analysis

up front, you will have to do it in the process of actually coding the rules. Atomic

rules are easier to understand, easier to code, and easier to maintain.

2. To code a constraint, write rules to detect its violations, not its satisfaction. We

showed why with our first, rather simple, example of a conjunction of condi-

tions: we are able to document the precise reasons for which a transaction failed

a constraint.

3. Beware of logical illusions. We use the term “logical illusions” by analogy to

“optical illusions”. When we capture rules, we sometimes make unwritten

10Mathematically, we know that all Boolean expressions can be written as disjunctions of

conjunctions, but the dual is not true: not all Boolean expressions can be written as conjunctions

of disjunctions.
11Meaning, I could satisfy the “good driver” quality in any one of the or’ed ways, and I can satisfy

the “good credit” quality also in any one of the or’ed ways.

9.3 Rule Coding Strategies and Patterns 263

assumptions about the world which will come back and bite us. Indeed, we could

take a rule expression that looks right, transform it using logically sound (but not

always intuitive) transformations, and end up with a rule that looks (and feels)

wrong. What happened?Well, in many cases, it is those “unwritten” assumptions

that did not get transformed along with the rest of the rule, leaving a logical hole.

Finally, everything we said about a constraint applies to a guideline. For

the purposes of rule authoring, the only difference between a constraint and a

guideline is what you do in case it is violated: with a constraint, a violation typically

results into a failure of the current process. With a guideline, a violation typically

results into logging some observation or raising a flag, but the process continues.

9.3.2 Coding Computations and Inferences

Both computations and inferences assign values to attributes, under certain condi-

tions. With computations, the attribute is typically quantitative (numerical), and the

business rule consists of a formula that derives a value of the attribute from values of

other attributes and quantities.With inferences, the attribute is typically – but not always

– qualitative, and we assign a discrete value. We will consider examples of both.

An example of a computation is our taxable income rule from Sect. 9.2.2.5:

The taxable income IS-COMPUTED-AS gross income + commissions – deductions

Unless you build a custom entry language for such formulas (see Sect. 9.2.2.5),

computations are typically encoded using if-then rules. An encoding of this rule

could be:

if <some trivial condition or no condition> then taxPayer.taxableIncome =
taxPayer.grossIncome + taxPayer.commissions – taxPayer.deductions

or its business-oriented language equivalent. What we referred to as <trivial

conditions> could be conditions on the attributes “taxableIncome”, “grossIncome”,

“commissions”, and “deductions” being already set/computed, so that this rule

kicks in only when the input quantities have been computed. Other computation

rules are typically needed to compute the input quantities themselves (i.e., gross

income, commissions, and deductions).

With inferences, the value of the attribute typically depends on a combination

of values of other attributes, without being derivable via a mathematical formula.

They can be coded in a similar fashion. They are typically used for tiering. The
general pattern is:

if <some condition on other attributes or quantities> then set the value of <our attribute>
to <a constant value>

Assume that our insurance company wants to classify drivers as “high cost”,

“average cost”, and “low cost”. We would have a different rule for each value, as in:

264 9 Issues in Rule Authoring

if the driver made at most one claim in the past year, and they were not at fault then set
the profile to the driver to: LOW-COST

if the driver made one or two claims, and they were at fault in no more than one claim
then set the profile to the driver to: MEDIUM-COST

if the driver made three or more claims and they were at fault in at least one claim then
set the profile to the driver to: HIGH-COST

Inferences lend themselves nicely to decision tables, as the different values

typically depend on the same set of input attributes: the input attributes become

condition columns and the value of the inferred attribute makes the action column.

A special case of inference, risk scoring, will be discussed in Sect. 9.3.4.

9.3.3 Coding Action Enablers

Action enablers are defined as if <condition> then <action> rules, and so they

can readily be expressed as if-then rules. The only problem with action enablers is

that many other types of rules pass themselves off as action enablers. The reason is

that any of the above categories (constraints, guidelines, inferences, and computa-

tions) can be expressed as if-then rules. However, there are two main differences

between true action enablers, and other types of rules passing themselves off as

action enablers.12 First, there is the type of action being performed in the action part

of the rule. With computations and inferences, the action part sets the values of an

attribute. With constraints (or guidelines), the action part typically records the

failure of a particular condition. By contrast, with action enablers, the action part

launches a domain meaningful process, as opposed to a value setter. The second

major difference resides in the impact of firing an action enabler, as compared to

firing a constraint, say. Typically, an action enabler launches a secondary business

process, while the main process continues. By contrast, firing a constraint violation

rule puts an end to a business process – its happy path.

9.3.4 Coding Risk-Assessment Rules

Risk assessment is a common application area for so-called decision management

technologies in general, and business rules in particular. Credit risk is perhaps the

most common – and best known – of the application areas, but companies in many

12Mistaking an inference for an action enabler is not a problem, except for purists, but mistaking a

constraint for an action enabler can be a problem as it prevents the rule author from seeing the

general pattern – and from taking advantage of some of the rule patterns presented here.

9.3 Rule Coding Strategies and Patterns 265

industries, including financial services, insurance, retail, and various utilities use

risk scoring for a variety of purposes, including:

l Acceptance/rejection decisions. To decide whether to accept a customer’s appli-

cation for a particular product or service – called underwriting in insurance and

financial services
l Pricing. To decide what premium to charge a given customer, based on the risk

that they represent
l Troubleshooting. To identify existing accounts that are heading for trouble and

that may need to have the terms revised

Risk assessment is a two-step process. The first step consists of building a risk
model based on some historical data. The purpose of the model is to categorize

a given business transaction into one of several classes/bins, each characterized

by qualitatively different customer behavior. The second step of risk assessment

consists of operationalizing the risk model by making business decisions on

incoming business transactions based on the class within which they fall. In the

simplest case, the model classifies incoming transactions into an accept bin and a

reject bin. More complex models can have more graded answers such as going from

accept to accept with a higher premium, to accept with a higher premium and
additional guarantees, to manual referral,13 or to reject. Different scores can also

suggest different products, different terms for the same product, etc.

In Sect. 9.2.2, we saw two forms of decision models: (1) decision trees (or tables)

and (2) scorecards. Scorecards assign a score to a business entity/business event,

based on values of its attributes, and that score is later used to make a decision about

the business entity/business event. Decision trees, on the other hand, involve a

cascade of tests ultimately leading to a decision. In terms of decision power,

decision trees have one major advantage over scorecards: scorecards assume that

the attributes used for computing the score are independent. Consider the table in

Fig. 9.7: a scorecard assumes that the age of the driver is statistically independent of

the number of demerit points (penalties) that the driver has. We know that that is not

the case: young drivers’ temerity and lack of driving experience makes them more

prone to reckless driving, and thus to traffic tickets. A decision tree model makes

no such assumption: quite to the contrary, its asymmetry reflects dependencies

between attributes. In the example of Fig. 9.6, the partitions for the “number of

demerit points” depend on the age range; in fact, for a given age range, we do not

even look at the number of demerit points.

On the minus side, decision tree models lack gradualness: a driver who is 1 day

short of a pivotal date will not make it, regardless of the other qualities she/he

might have which could normally compensate. This is less of a problem with

scorecards.

13Manual referral refers to a situation where an automated system is not “confident enough” to

make a decision on its own (based on the encoded business rules), and the application (for a loan or

an insurance) is sent to a human decision maker.

266 9 Issues in Rule Authoring

Scorecards have an additional “business” advantage over decision trees: a

decision can be explained in simple terms (“sorry, we require a score of more

than 600, and you have only 560”) without revealing the detailed mechanics of the

decision itself; knowledge of the detailed mechanics of a decision may lead to . . .
hum . . . data manipulation.14

There are other decision models out there, such as neural networks, which are

also numerical classifiers. A major problem with neural networks is that the

decisions are totally opaque . . . including to the organization administering the

decision! We know that they work – when they do – but we cannot characterize, in a

readable, intuitive fashion, the kinds of business entities or events that belong to

each category (“rejected”, “accepted”, etc.).

It is beyond the scope of this chapter – and book – to go into risk scoring in more

depth. For our purposes, suffice to say that we have two alternatives, namely

scorecards and decision trees, whose parameters are determined using statistical

analyses of historical data, and they each have their own strengths and weaknesses,

both in terms of predictive performance and in terms of explanation power.

9.3.5 Encoding Business Data Tables

While decision tables are useful and intuitive, not every business data table would

make a good rule decision table. We have encountered many situations where

customers maintain some of their reference business data in tables, and consider

moving the data to decision tables. Two common examples are product configura-

tion tables and pricing tables.

Let us say you are a local phone service company offering a variety of phone-

based services, some of them are bundled, with optional features, required features,

incompatible features, and the like. Figure 9.9 shows excerpts of what such a table

would look like. The column “BUS or RES” refers to whether the product is

available to residential versus business customers, “Pulse versus Tone dialing”

specifies the type of line on which the service/product is offered (e.g., some services

require a digital/tone dialing line), and “visit premises required” specifies whether a

visit to the customer’s premises is required to activate the service.

How would this table be used? Imagine a CRM application used by call center

operatorswho field calls fromprospective customers. Either a customer calls to order a

specific feature, in which case the call center agent checks that the customer satisfies

the requirements (BUS vs RES, and Pulse vs tone dialing), and either accepts or

denies the order. Alternatively, the call center agent could try to convince the

customer to order the required product to be able to acquire the service. For example,

a customer calls to order call blocking, the agent asks them whether they have tone

dialing, the customer says no, and the agent convinces the customer to switch to the

14For example, applicants “manipulating” some of their attributes for the purposes of passing the

underwriting process (about income, savings, etc.).

9.3 Rule Coding Strategies and Patterns 267

more expensive tone dialing to be able to receive the “call blocker” service. As for

the last two columns, they may be used to inform the prospective customer and to

prompt the call center agent to schedule a visit to their premises if one is required.

The question now is, should we build a decision table from the product table,15

considering that such product tables typically run in the thousands or tens of

thousands of rows/rules, one for each product, option, and feature, and combina-

tions thereof? There are two underlying questions:

l Can the BRMS handle tables of such size?
l Is it the most efficient way of handling the creation, maintenance, and referen-

cing the product table?

The answer to the first question depends on the BRMS. JRules has no built-in

limitations on the size of decision tables, but the decision table editor, a Java GUI

application may suffer with large tables. As for the second question, the answer is

probably no. Forget the tools, and let us step back and think about the tenets of the
business rules approach, as opposed to any particular implementation; if the goal is to

externalize business logic in a way that business can understand and to separate it from

the application code, then implementing the business logic as a database table – or

Excel spreadsheet – that is referenced by the CRM application is consistent with the

approach.16 Further, the “rule maintenance” is easy and familiar to business users.

Product
code

Pulse vs
tone
dialing

Installation
delay

Visit
premises
required

RES Pulse;
Tone

2 business
days

Yes

No

RES;
BUS

Tone 1 business
day

Tone 2 business
days

No

Description BUS
or
RES

LFW Consumer
unlimited lifeline

ZBNSY Call blocker RES;
BUS

ZBNCN Caller ID and
number

B1W Business
measured local service

BUS Pulse;
Tone

2 business
days

Yes

… … … … … …

… … … … … …

Fig. 9.9 A sample product table that can be used to drive a customer relationship management

(CRM) application

15Actually, probably two tables: the first, with columns <product code, BUS vs RES, Pulse vs

Tone>, which describes the prerequisites and can be used for order selection, and the second,

<product code, installation delay, visit premises> to be used for order processing.
16This solution has one disadvantage: the business rules of the application would not all be under
the same roof; some business rules will be managed by the BRMS, while others will be managed

by external databases. Mature organizations can develop a common portal through which they can

access both a BRMS and other data sources.

268 9 Issues in Rule Authoring

Another common example is pricing tables. A pricing table can be thought of as

a decision table, where we have one row per product variant, one condition column

per product characteristic, and one action column containing the price. As with the

table of Fig. 9.9, such tables will typically have dozens if not hundreds of columns,

and thousands if not tens of thousands of rows, each representing a specific

combination of product features and options. Within any given row, only a small

fraction of columns have non-null values, corresponding to that specific product.

Should we implement such tables with decision tables? Again, the answer is no, for

reasons similar to the ones we mentioned for the product table in Fig. 9.9. But this

begs for the question as to how tables got this big in the first place. Actually, the

answer to this question often provides also an answer as to how to make such tables

usable and maintainable: often they result from joining different product tables

together, based on a unique product ID, leading to a multiplication of the number of

rows, and an accumulation of columns most of which have empty values for any

given row. By “unjoining” such tables, we are able to recover a set of smaller, and

more manageable tables, which can be used in sequence to finally find the specific

product combination for which a price is sought. Our experience has been that our

customers loathe such an exercise in price table reengineering, because errors have

an immediate impact on the top line! Yet, we often found that such an effort is

necessary to make such tables manageable, regardless of which technology we

choose to implement them!

9.4 Organizing Rules During Development

Now that we have gone over the ingredients for rule authoring, we look into the

issue of how we organize our rules during development, that is, within the manage-

ment stack of a BRMS. Why is this issue, and what choices do we have? Consider

our case study of MyWebInsurance Corp., which sells a number of insurance

products, including health insurance. The functional area we looked at so far

deals with business rules for claim processing. Claim processing is but one of

many business processes that deal with health insurance policies; underwriting and

policy renewal are two other processes. Underwriting involves a number of tasks

including data validation, eligibility, tiering,17 and pricing. Policy renewal may also

include eligibility, tiering and (re)pricing. The rules for renewal eligibility may be

similar in some respects to the rules for underwriting eligibility, but different in

others. For example, rules concerning the credit risk of the policy holder may be

similar, but the rules concerning health condition will be different: MyWebInsur-

ance may decline to underwrite a policy of a particular type for some types of

existing medical conditions, the first time around, but may have no choice but to

17In this context, tiers are categories. For example, policy holders may be assigned a risk

qualification with three tiers in it, low risk, medium risk, and high risk. Tiering, then, refers to
the process of assigning a policy holder to a tier.

9.4 Organizing Rules During Development 269

renew the policy if a condition of one such type manifests itself, or is diagnosed

while the policy is in effect. Similarly, if MyWebInsurance also sells life insurance,

some of the validation rules for underwriting may be similar to the ones for health

insurance, for example, rules about the personal data of the policy holder, their

occupation, and so forth, and different from those in health insurance regarding, for

example, coverage options. The issue we deal with in this section is how to organize

the various rulesets during development to manage their development effectively.

First (Sect. 9.4.1), we present the main structuring dimensions of rules during

development. In Sect. 9.4.2, we discuss what we mean by “manage their develop-

ment effectively”, that is, we discuss a set of design criteria for a development-time

organization of rules. We present best practices in Sect. 9.4.3.

9.4.1 Rule Structures

When we develop large software, the different components of the software may be

divided in different projects. A project reflects a somewhat self-contained set of

artifacts that depend on each other. For example, within the context of a client-

server application, the client part may be developed in one project whereas the

server part is developed in another project. When a given component is too big for a

project, we can divide it in several projects that build upon each other: a first project

presents the foundations of the component. Then, new projects build upon that

foundation layer to implement elementary services. Then other projects implement

processes that orchestrate such elementary services, and so forth. Within a project,

software artifacts may be further divided into packages. Within a team develop-

ment context, with several applications being developed in parallel, the projects

related to a given application may be stored in a repository, and thus, a development

organization might have several active repositories. Figure 9.10 shows the various

development structures that we mentioned, and their relationships.

This repository! project! package structure makes sense not only for regular

software, such as Java classes, but also for business rules. In fact, a number of

business rules management systems – including JRules – use this hierarchy of

structures to organize rules: a rule repository may include a number of rule projects,
which in turn, can include a number of rule packages. Rule packages contain rules,
and can be nested at will. Typically, rule projects will include or refer to other

artifacts that may be needed to author rules, including some sort of a domain-specific

::Repository ::Project ::Package-repository

1

-projects

0..*

-project

1

-packages

0..*
1

-sub-packages

0..*

-depends on00...**

Fig. 9.10 A hierarchy of containers for regular software development artifacts

270 9 Issues in Rule Authoring

language (DSL) for the functional area of the project, etc. Also, rules will have

some metadata attached to them. Typical metadata might include the usual

administrative properties, such as name, author, creation date, last modification
date, or version number. It might also include properties related to the business

aspects of the rule, such as jurisdiction, effective date, expiration date, and the

like. Figure 9.11 illustrates this organization. The ongoing discussion will refer

to this organization.

9.4.2 Design Drivers for an Effective Organization of Rules

Having defined the available structures to organize rules in the previous section (see

Fig. 9.11), let us now go back to our MyWebInsurance Corp, and try to figure out

how to organize the rules into repositories, projects, and packages, given its product

portfolio, the various business processes that it wishes to automate, the similarities

and differences between the business rules relevant to the various decisions. To

make the decision/design process easier, this section looks at the various factors

that have an influence on the organization of rules during development. We will

propose best practices in Sect. 9.4.3.

There are two major design drivers that influence the organization of rules

during development. The first – and probably strongest – driver is the problem
domain. Indeed, we expect the structure of the product portfolio and the business

processes to be reflected somehow on the way that rules are captured and managed

during development. The second strongest driver for organizing rules deals with

development-time qualities such as rule reuse, a good division of labor in the likely

case where several people are authoring rules, rule maintenance, and so forth. It has

been our experience that two additional drivers, albeit weaker ones, also influence

the organization of rules, but only cursorily: the application landscape, in terms of

how many applications will use the rules, and where they live, and run-time

qualities, in terms of predictability and performance. For the purposes of this

discussion, we will limit ourselves to the first two – and strongest – drivers.

-repository

1

-projects

0..*

-project

1

-packages

0..*
1

-sub-packages

0..*

-depends on00..**

::RuleProject ::RulePackage::RuleRepository

::RuleArtifact

-container1

-rules0..*

::RuleMetadata -properties

1..* 1

Fig. 9.11 The development-time representation of rule artifacts

9.4 Organizing Rules During Development 271

9.4.2.1 The Problem Domain

MyWebInsurance, like most insurance companies, offers a wide range of insurance

products. Figure 9.12 shows excerpts from its product portfolio. We expect the

organization of our rules to somehow reflect the structure of the product portfolio,

with AUTO insurance rules (car insurance, motorcycles, recreational vehicles, etc.)

being captured, organized, and managed separately from, say, home flood insurance

rules or identity theft rules!

But then, for every product, we might have several business processes to

automate with business rules, such as underwriting, renewal, claim processing,

and so forth. Similarly, we would expect the underwriting rules to be captured,

organized, and managed as one set, distinct from, say, the claim processing rules –

some of which we have seen in the previous chapters.

For a given business process, we would typically have many tasks, and the

business rules relevant to each task would also be fairly distinct: for example, a

number of document-processing applications start with a data validation step,

which checks that social security numbers are well formed, that birthdates are

indeed dates, that such dates are plausible (e.g., no claimant born before 1850 or

in the future), and this happens before any product- or process-specific logic takes

places, such as eligibility, pricing, adjudication, etc. Each one of these process steps

embodies a cohesive set of rules that should be organized together.

Then, there is the issue of jurisdiction: for a given <product, process, step>
combination, the business rules may also depend on the jurisdiction. Eligibility or

pricing rules may depend on the jurisdiction, for example, the state/province, or

county, or even zip code! Thus, we would want to group the rules for a given

<product, process, step, jurisdiction> combination together! Figure 9.13 shows the

full range.

A first-cut – and somewhat naive – solution would map this hierarchical structure

to the hierarchy of Fig. 9.11. For example, we could map a product line to a repository,

Personal Lines

AUTO HOME OTHER

CAR HO Condo Flood Valuable
items

Identity
theft

Group

Commercial Lines

…Health

…
… Renters

Insurance

Fig. 9.12 An insurance product folio

272 9 Issues in Rule Authoring

have one project per business process, and within each project use one top-level

package for process step, and then use sub-packages to accommodate jurisdictions.

In practice, this would not work very well because the product landscape tends to be

more complex. First, we would have more layers in the product taxonomy. Second,

products tend to consist of bundles or packages of more elementary products or

features. Third, processes themselves can be fairly complex, with several nesting

levels. Fourth, there might be other variability dimensions in the products, the

underlying processes, or the corresponding rules, including effectiveness periods of

the rules – think of it as time jurisdiction – customer type, and so forth.18 Thus, with

the repository !project ! package structure, we quickly run out of dimensions!

Not to mention the other factors that we have not talked about yet.

Personal Lines

AUTO HOME OTHER

CAR HO Renters Condo Flood Valuable
items

Identity
theft

Group

Commercial Lines

Insurance

…Health

… …

Data
validation

Eligibility

IL IN MI

UW Claim
processing

Data
validation

Eligibility

IL IN MI

Fig. 9.13 The full range of business rule families

18Some of these variability dimensions can be handled within the rules themselves. For example,

the rules that are applicable to Illinois (IL) can have a condition that says “and if the policy holder

is a resident of Illinois”. There is a tradeoff between how much context to put in the rules

themselves (explicitly), how much to embody in the organization of rules (implicit). Making

context explicit is “safer” and provides for a simple strategy of extracting rules for execution: “get

them all”, they will filter themselves out. By contrast, having the context embodied in the

organization requires a more elaborate strategy for extracting the rules relevant to a particular

execution. We will come back to this issue later when we talk about the way run-time qualities
influence development time organization of rules.

9.4 Organizing Rules During Development 273

9.4.2.2 Development-Level Qualities

In a nutshell, the organizational structure of rules should make it “easy” to work

with rules during development. This means many things:

1. Understandability of the structure. The structure should make sense to the rule

author. A rule author who needs to enter a new rule that talks about age

requirements for holders of a recreational vehicle policy needs to know where

the repository ! project ! package hierarchy she/he should insert the rule. If

the structure reflects business context, it should make it that much easier to know

where to add the rule – or where to find a rule that needs modification. Actually,

if the organization structure of the rules follows the structure of the problem

domain, as discussed above, it would provide the necessary business context.

However, as mentioned above, the repository ! project ! package structure

alone cannot handle the complexity of the problem domain, let alone other

factors, to be covered next.

2. Reusability. Some business rules are reusable across products, across business

processes, or across jurisdictions. We should be able to define such rules in one

place, and then reuse them for the appropriate products, processes, or jurisdic-

tions. This requirement means several constraints on the structure of rules. First,

a hierarchical repository ! project ! package structure that mirrors the struc-

ture of the problem domain cannot work, since projects cannot be shared

between repositories, and packages cannot be shared between projects or

between higher-level packages. Second, the packaging of rules should enable

us to separate reusable rules from non-reusable ones. For example, it should be

possible to separate eligibility rules for policy holders for car insurance, in

general, from those that are prevalent in, say, Indiana. However, the structure

should still be understandable, so that the rule author who wishes to enter a rule

for a particular <product, process, step, jurisdiction> combination will know

where to go.

3. An effective division of labor. When several people are authoring rules – as is

often the case – we need to be able to divide up the work in such a way that the

rule authors can work independently and consistently. At a fairly coarse level, we
know that rules for AUTO would probably end up in a different repository

altogether from health insurance, say. However, we may need to have different

people working on eligibility rules for home owners, for different jurisdictions –

say Indiana versus Michigan. This pleads for having the Indiana rules in a

different package, say, from the Michigan rules, provided that the BRMS supports

package-level locking. Generally speaking, given the level of granularity of

locking afforded by the BRMS, the organization of rules should make it possible

to separate the things that rule authors can – or should – work on independently.

The granularity of locking only ensures that different rule authors can work

independently but does not ensure that their work will be consistent. For example,

JRules supports rule-level locking, and so technically, it is possible to have

different rule authors working on rules anywhere in the project package hierarchy.

274 9 Issues in Rule Authoring

However, it is not a good idea to have two rule authors modify rules within the

same low-level package. Because the rules of a low-level package are likely to be

executed together, they provide the execution context. Thus, a rule author A who

is modifying rule Ra that is part of package P needs to know that the other rules of

the package remain the same while he modifies his rule.

4. A simple mapping to a rule execution structure. Eventually, from all of the rules

that we will be authoring in the development repository, we will need to pull out

different subsets – referred to earlier as rulesets – that we will be ultimately fed

to individual rule engines to implement the decision-making capability of a

particular business process step. This raises two issues. First, what should be the

level of granularity of the decision that we handle in a single ruleset, or

equivalently, in a single rule engine invocation? Second, given a chosen level

of granularity, how easy would it be to pull out the rules that make up that ruleset

(or, equivalently, that are relevant to a particular decision) from the develop-

ment-time organization of rules? For the time being, we are not going to worry

about the first issue, because we cannot have a useful discussion that is indepen-

dent of the JRules BRMS; we will revisit this issue in subsequent chapters. To

illustrate the second issue, let us assume that our BRMS can only extract the

contents of a rule project, in an all-or-nothing fashion. This means that any

decision/rulesets would have to be implemented with one or several projects, as

we cannot pick and choose the packages or rules within a project that we needed

for a particular decision. If my decision is “eligibility for Indiana drivers”, that

means that I should have a dedicated project just for eligibility rules for Indiana

drivers. And if there are eligibility rules for drivers that are applicable across

jurisdictions, they should be in a separate project all by themselves. This simple

example illustrates how deployment considerations can trump a number of other

criteria in choosing a development-time organization for rules.19

In the end, the development-time structure that we adopt will be the result of all

these influences. The next section will present some useful structuring patterns.

9.4.3 Best Practices

In the previous section, we identified the design drivers for a good organization of

rules during development. The purpose of this section is to attempt to turn the

previous analyzes toward something that will help you design your development-

time organization of rules. Obviously, a lot depends on the complexity of the

problem at hand. If you are a business rules expertise center for a major insurance

company tasked with the job of designing the organization of rules for the entire

19Luckily, JRules has a very flexible extraction strategy for rulesets, to be discussed in later

chapters, but earlier versions of the product (JRules 3, 4, and 5) had more restricted out-of-the box

ruleset extractors, and one had to use a nontrivial API to extract the desired rules out of a project.

9.4 Organizing Rules During Development 275

corporation, then you have your job cutout for you. If you are at the other end of

spectrum developing your first business rule application for a particular process and

a specific product variant, then your job is going to be a lot easier. The previous

discussion provides you with the vocabulary to frame the problem, and that is more

than half the battle. In the remainder of this section, we will present some best

practices.

9.4.3.1 Think It Through

The most precious piece of advice – one whose simplicity sometimes disappoints

our customers – is to actually sit down and analyze the rules landscape using the

design parameters we discussed earlier.

You know your problem:

l You know how complex your business is
l You know how much of it you will need to tackle in the short, mid, and long

term, and how much of that you can afford to worry about in the short term
l You know if there are opportunities for rule reuse in your business
l You know how many people will likely end up developing and maintaining the

rules
l You know which BRMS you will be using, what structuring mechanisms it

provides, besides the basic repository! project! package hierarchy, and what

ruleset extraction strategies are supported
l Etc.

You should start by mapping out the domain first, and then bring in the other

factors.

The design team should necessarily involve business people and technical

people. Business people bring to the table their knowledge of the product portfolio

(e.g., various types of insurance policies), of the business processes, and will know

the similarities and variabilities between the rules. The technical people bring to the

table their knowledge of the BRMS and its relevant features.

9.4.3.2 Package Nesting Patterns

A desirable feature of any organization – of rules or other types of artifacts – is its

consistency. This manifests itself at all levels of the repository ! project !
package hierarchy: repositories should have similar scopes, the projects within a

given repository should follow one of a handful of project types/templates, and the

organization of packages should be consistent within a given project. In this

paragraph, we present some package structuring patterns.

l Specialization nesting pattern. In this pattern, the parent package groups

rules relevant to some concept, and the sub-packages group rules relevant to

276 9 Issues in Rule Authoring

specializations of the concept. An example of this pattern is shown across

where the specialization is based on the product. For example, if <Product X> is

the product family “HOME” and <task Y> is “policy holder eligibility”, we get:

<Product X> <Task Y> rules

<Product X> <Task Y> rules

<Product X> <Task Y> rules

<Product X> <Task Y> rules

…

HOME policy holder eligibility

Home Owners policy holder eligibility

Renters policy holder eligibility

Condo policy holder eligibility

…

l Process–subprocess/task nesting pattern. In this case, the parent package groups
rules relevant to a particular process or task, and the sub-packages groups rules

specific to subtasks of the process.

<Process X> rules

<Sub-process X1> rules

<Sub-process X2> rules

<Sub-process Xi> rules

…

Process X

Task 1

Task 3 Task 2

9.4 Organizing Rules During Development 277

A sample instance of this pattern is shown below:

Policy underwriting rules

Data validation rules

Eligibility rules

Error reporting rules

l Jurisdiction–sub-jurisdiction pattern. In this case, the parent package groups the
rules that concern a particular jurisdiction, whereas the sub-packages group the

rules for sub-jurisdictions, as shown across. An instance of this pattern from

our insurance example is shown below:

<Jurisdiction X> <Task Y> rules

<Subjurisdiction X1> <Task Y> rules

<Subjurisdiction X2> <Task Y> rules

<Subjurisdiction Xn> <Task Y> rules

…

Driver eligibility rules

Illinois driver eligibility rules

Indiana driver eligibility rules

Michigan driver eligibility rules

Figure 9.14 shows instances of the three patterns across the sample insurance

domain discussed in Sect. 9.4.2.

9.4.3.3 Use Metadata to Supplement the Repository ! Project ! Package

Hierarchy

Regardless of how many levels of nesting we use for rule packages, the repository

! project! package has one serious limitation: it is a hierarchy, that is, a rule can
be found in only one place. Rule metadata enables us to mesh the hierarchical

dimensions with other cross-cutting dimensions. This implicitly assumes that the

process of extracting rules for execution will rely on the values of rule properties to

decide whether a given rule is relevant to a given decision or not. For example, we

278 9 Issues in Rule Authoring

could have a single rule package that contains all driver eligibility rules for car

insurance, for all jurisdictions. However, we use a multi-valued rule property called

“jurisdiction” that takes a single state (say “Michigan”), a set of states (say,

“Illinois, Michigan”), or “ALL_STATES” as values. If we have a car insurance

policy to underwrite, and the driver lives in “Michigan”, then we can pull out all

of the driver eligibility rules, those that are applicable to “Michigan”.20

9.4.3.4 Always Favor Structure over Computation

This piece of advice is somewhat a counterweight to the previous one. Reliance on

metadata to organize rules during development means more reliance on program-

ming to extract rules out of the development repository. We have seen situations

AUTO

Data
validation

Personal Lines

HOME OTHER

CAR HO Renters Condo Flood Valuable
items

Identity
theft

Group

Commercial Lines

Insurance

…Health

……

Data
validation

Eligibility

IL IN MI

UW Claim
processing

Eligibility

IL IN MI

specializat-
ion

Process /
task

Juris-
diction

Fig. 9.14 Some package nesting patterns

20Should we pull out rules with “Jurisdiction” ¼ “ALL_STATES” when the driver lives in

“Michigan”? Probably, but that means that we need to have a policy about how to handle rules

with different jurisdictions that conflict. For example, the “ALL_STATES” rule may require a

minimum age of 20, whereas the “Michigan” rule requires a minimum age of 22. If the driver is 21,

is she/he eligible or not? JRules has a mechanism for rule overriding, which we will talk about in

Chap. 10.

9.4 Organizing Rules During Development 279

where customers had fairly complex – and convoluted procedures – for extracting

the rules that are relevant to a business decision (a ruleset) from the development

repository. This complexity has two main disadvantages:

l It means that the development-time organization of rules bears no resemblance

to the run-time organization of rules. In particular, rules that appear in the same

package may not execute together, and conversely, rules that may belong to

remote branches of the repository ! project ! package hierarchy may end up

executing together. This is not helpful to rule authors who need to have some

idea about the execution context of the rules they write.
l An important piece of business knowledge is buried in obscure procedures.

Indeed, figuring out which business rules are relevant to which decision should

be relatively straightforward for someone who is navigating the development

repository; it should not be buried into – clever – but obscure code.

Through our consulting practice, we often hear customers say “oh no, our

problem is more complex than that”, implying, in essence, that it resists any attempt

to rationalize the structure. And so they end up with a poorly thought-out rule

structure, but half a dozen rule attributes used by complex rule extraction proce-

dures. Not so, we say: try harder!

9.5 Summary and Discussion

In our practice, we are sometimes disheartened when customers assign rule author-

ing to the more junior members of a business rules project team. Rule authoring is

important: it is a key step in the business rules approach, and is as least as critical to

the success of a business rules project as any other step, from capture (Chap. 4), to

analysis (Chap. 4) to integration (Chaps. 7 and 11), to testing (Chap. 13), or

governance (Chap. 15). (Good) rule authoring is also hard: in order to use the

technology to its fullest potential, there are a number of design dimensions to pay

attention to. First, there is the problem of setting up the rule authoring environment.

Roughly speaking, this involves two aspects: (1) setting up the language(s) for

coding rules and (2) setting up the development-time organization of rules. Setting

up rule languages is concerned with the design and implementation of a business-

oriented view of our application data. We showed in Sect. 9.2.1 the relationship

between the business view of the data and the actual implementation of application

data. We explored in Sect. 9.2.2 the various rule artifacts that we can use to express

business logic.

Having “set the table” for authoring rules, it is now time to take those rules

identified and analyzed during rule capture and analysis (Chap. 4), and turn them

into formal, executable rules. This transition is far from trivial. Indeed, coming out

of analysis, rules are mostly declarative, stating whatmust be, but not how it comes

to be. Thankfully, there are proven rule coding patterns, appropriate for each

rule category identified in Chap. 4, namely, constraints, guidelines, computations,

280 9 Issues in Rule Authoring

inferences, and action enablers. Patterns for these types of rules were presented in

Sects. 9.3.1–9.3.3. We have also looked at two special cases of business rules, risk

scoring (discussed in Sect. 9.3.4) and business data such as product tables and

price tables (discussed in Sect. 9.3.5).

The organization of rules during development is a key factor in the success of a

business rules effort. A good organization makes use of rule development, mainte-

nance, and management that much easier. It can also simplify rule deployment. We

saw in Sect. 9.4.2 the various design drivers for the organization of rules, and

presented organization patterns and best practices in Sect. 9.4.3.

9.6 Further Reading

While fluency in Boolean logic is not required – the patterns shown in Sect. 9.3.1

should cover all you will need – interested readers can check any introductory

mathematics college textbook. Alternatively, Wikipedia’s entry for Boolean alge-

bra (http://en.wikipedia.org/wiki/Introduction_to_Boolean_algebra) provides a

very good and broad introduction into the topic, even including a reference to a

recent introductory textbook.

As mentioned in Sects. 9.2.2.4 and 9.3.4, risk scoring is an important application

area for the broader decision management area, which includes business rules as

well as business intelligence, analytics, etc. As mentioned in Sect. 9.2.2.4, building

risk-scoring models is part art part science, and the book Credit Risk Scorecards:
Developing and Implementing Intelligent Credit Scoring by Naeem Siddiqui

(Wiley, 2006, ISBN 9780471754510) presents the state of the art from a vendor

(SAS Institute) that specializes in analytics, in understandable business terms.

9.6 Further Reading 281

Chapter 10

Rule Authoring Infrastructure in JRules

Target audience
l Developer, rule author, business analyst (may skip 3.3)

In this chapter you will learn
l The structure of rule projects in JRules
l The different components of a rule project
l Rule project relationships and their importance in modularizing

rule development
l The Business Object Model (BOM), which is used for rule author-

ing, and how to build it from the application (or executable)
object model

l Best practices for organizes organizing rules, and the artifacts
they depend on, in rule projects

l Best practices for the design of a stable and flexible BOM

Key points
l Getting the rule project structure right is an important first step in

rule authoring.
l Rule project dependencies can be used to modularize rule devel-

opment and to maximize the reuse of rule artifacts.
l The BOM to XOM mapping is a powerful mechanism for obtain-

ing a vocabulary that embodies business needs from an applica-
tion model geared towards IT needs.

l The BOM update and refactoring capabilities of Rule Studio
enable us to selectively propagate some changes from the XOM
to the BOM, and to shield the BOM – and rules – from the others.

10.1 Introduction

In Chap. 9, we explored the design space for rule authoring, in a technology-

independent way, and proposed patterns and best practices for authoring. In this

chapter and next, we present the JRules rule authoring artifacts, languages, and

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_10, # Springer-Verlag Berlin Heidelberg 2011

283

tools. This chapter focuses on the rule authoring infrastructure, i.e., the rule project
structure, and the set-up of the rule authoring vocabulary; the next chapter focuses

on the rule authoring per se. This chapter is by no means a user-manual into the

JRules rule authoring infrastructure tools. Instead, we focus on some of the design

dimensions that were discussed in Chap. 9 that relate to the business object model

and to rule organization, but within the context of the JRules product. We start by

presenting the concept of a rule project in JRules (Sect. 10.2), and the Eclipse-based
project dependency relationships, which provide a powerful modularization mech-

anism. The Business Object Model is presented in Sect. 10.3. In particular, we stress
the layered structure of the BOM that enables us to (a) separate the business view of

the data from the implementation view – the BOM to XOM mapping, (b) separate

the terminology from the semantics – the notion of vocabulary, and (c) shield rules
from (most) refactoring in the implementation model, while propagating changes in

the terminology. Best practices for project organization and BOM design are

presented in Sect. 10.4. We conclude in Sect. 10.5. Material for further reading is

presented in section on “Further Reading.”

10.2 Rule Projects

Referring back to Sect. 9.4.1, a rule project contains a set of rule artifacts (if-then

rules, decision tables, decision trees, etc.) grouped in rule packages, and the elements

needed to define them, chief among them, the business object model (BOM). In

JRules, projects are first created in Rule Studio (RS), which is an Eclipse-based rule

authoring environment with the power – and extensibility – of the Eclipse platform

(see Chap. 8). Typically, this is a job for developers who know JRules, as opposed to

your typical business analysts or policy managers. Indeed, as we will show later, the

definition and the customization of the business object model (BOM) requires a good

knowledge of the Java language and a good knowledge of the ILOG rules technical

language – or IRL – and we will explain why. In addition to setting the BOM, a rule
architect would typically design the higher levels of the package hierarchy, create

some rule templates to be used by rule authors for rule authoring, write some impact

analysis or deployment queries, and design the execution behavior of the ruleset

(ruleset parameters, ruleflow, etc.). We call this the rule entry infrastructure. Once
the rule entry infrastructure is set, the developer hands the project over to a rule author

for authoring the rules. Depending on a number of factors – discussed in Sect. 10.2.4 –

rule authors may work with the Rule Studio environment, or within Rule Team Server
(RTS), the web-based rule authoring environment. To make the project available to

Rule Team Server (or RTS), the developer instantiates a remote connection to RTS

from Rule Studio, and uploads the project to RTS. Later on, changes can be made to

the project in either environment, and so the two versions will need to be synchro-

nized. Figure 10.1 illustrates this.

We first start by discussing the structure of rule projects by going over the

different artifacts that they can contain and their relationships. In particular, we

284 10 Rule Authoring Infrastructure in JRules

would go over the business object model (BOM) without delving into the details

since the BOMwill be discussed more thoroughly in Sect. 10.3 of this chapter. Next

(Sect. 10.2.2), we talk about dependencies between rules projects. Section 10.2.3

presents best practices about organizing rules in projects. Synchronization between

Rule Studio and Rule Team Server will be discussed in Sect. 10.2.4.

10.2.1 The Structure of Rule Projects in Rule Studio

Roughly speaking, a rule project contains rules grouped in packages plus a bunch of

other things needed to define them. Rule projects are a special case of Eclipse

projects and consist of the following components:

l Rule artifacts, grouped in packages
l The Business Object Model
l Rule queries
l Rule templates

10.2.1.1 Rule Artifacts

JRules supports all the rule artifacts discussed in Sect. 9.2.2, and more:

l Business Action Language (BAL) rules, which are rules written in a natural

language-like format; the Business Action Language (BAL) will be discussed in

Sect. 11.2.3
l Technical rules, which are rules written in the native execution format;1 the

technical rule language – IRL, for ILOG rule language – will be discussed in

Sect. 11.2.2
l Decision tables, discussed in Sect. 11.2.4

Rule Studio Rule Team Server

Synchronize

Fig. 10.1 Rule projects are first born in Rule Studio before they can be shipped to Rule Team

Server

1Almost. More on this later.

10.2 Rule Projects 285

l Decision trees, discussed in Sect. 11.2.5
l Scorecards, discussed in Sect. 11.2.6
l IRL Functions, which can be thought of as IRL macros used internally by the

rule engine; the IRL language is described in Sect. 11.2.1
l Ruleflows, which are procedural constructs used to orchestrate the evaluation

and execution of rules
l Ruleset variables, which represent variables that can be referenced from within

rules and ruleflows
l Ruleset parameters, which are used to pass data to the rule engine (and back)

from outside applications

Ruleflows, ruleset variables, and ruleset parameters will be discussed in

Sect. 11.3.

10.2.1.2 Business Object Model

With the exception of ruleset parameters, which are defined as rule project proper-
ties, all of the rule artifacts are organized in a hierarchy of packages under the

“rules” folder. The Business Object Model (BOM) represents the business view of

the data, and it consists of a set of Business Object Model entries (BOM entries).

Figure 10.2 shows a single BOM entry, called “claim processing BOM.” Each

BOM entry is associated with an eXecution Object Model (XOM), which is the

native format for the actual objects manipulated by the rule engine. In Sect. 9.2.1,

we described the relationship between the business view of the data and the

physical view as analogical to that between a relational view, and the physical

model view. With JRules, this analogy is a fairly accurate one; we will talk about

Technical rule

Decision table

Decision tree

BAL rule

IRL function

Ruleset variable

BOM entry

Query

Rule template

Ruleflow

Fig. 10.2 A screenshot of a sample Rule Studio project

286 10 Rule Authoring Infrastructure in JRules

the BOM in Sect. 10.3 of this chapter. For the purposes of this section, suffice it to

say that typically each BOM entry maps to – and references – an eXecution Object
Model (XOM). Execution object models typically consist of the set of Java classes
contained in JAR file, or the set of Java classes contained in an Eclipse Java project

within the same workspace as the rule project. In the latter case, the rule project has

a project dependency or reference to a Java project.

In JRules, the BOM is the vocabulary or domain of discourse for the rule

artifacts mentioned above: BAL rules, technical rules, decision tables, decisions

trees, ruleset variables, IRL functions, etc. Different artifacts use different views of
the BOM. For example, technical rules and IRL functions use the “raw format” of

the BOM, whereas BAL rules and decision tables, for example, use the natural

language-like veneer on top the raw format; this will be discussed in Sect. 10.3.

10.2.1.3 Rule Queries

Rule projects also contain rule queries. One can write queries on the rules of a

project2 based on:

l Their metadata. Rule properties include things such as the rule name, its author,

its effective date (date at which the rule comes into effect), its expiration date

(date at which a rule expires), its development status (e.g., one of “new,”

“defined,” “validated,” “rejected,” “deployable,” and “retired”), its jurisdiction

(e.g., a particular state or county), etc.3

l The (business) object model elements they reference/modify. For example, all the

rules that reference the “age” attribute of the policy holder or that modify the

“payment” field of the claim.
l Their semantics. For example, rules that might be triggered by a particular

boolean condition, or that trigger another rule.

Queries have many uses in JRules, including:

l Reporting. Producing various reports on the contents of a project (e.g., rules

authored by X).
l Impact analysis. For example to assess the impact of modifying or replacing a

particular BOM element (a class, an attribute, an operation) by finding those

rules that reference it.
l Logical analysis. To compute logical relationships between rules, for analysis

and validation (semantic queries).

2If a rule project depends on another rule project, the domain of the query will be extended to

include the rules included in that project. And so on (recursively). More on project dependencies in

Sect. 10.2.2.
3JRules comes with a predefined set of rule properties, but developers can extend the rule model
and add organization or application-specific metadata.

10.2 Rule Projects 287

l Ruleset deployment. As mentioned in Chap. 8, JRules makes a clear distinction

between the development-time organization of rules – rule projects – and the run-

time organization of rules – rulesets. JRules provides a default mapping between

the two that packages the contents of a project into a ruleset. With queries, we can

filter which rules actually get deployed into the ruleset: example criteria include

development status (e.g., only validated rules are deployed), jurisdiction, effec-

tive/expiration date, etc. We talk about rule set extractors in Chap. 12.

Rule queries are written in the Business Query Language (BQL), which is very

similar to the Business Action Language (BAL).4

10.2.1.4 Rule Templates

Rule templates are fill-in-the-blank rules that rule authors can use to author rules,

instead of starting with an empty rule. Figure 10.3 shows the example of a template

for rules that reject claims because of invalid data. In this example, rule authors

need only write the condition part, which corresponds to a data validation constraint

violation; the action part is pretty much completed where only the message argu-

ment (the string “Data is invalid: . . .”) needs to be edited.

Rule templates are not only convenient, but they can be used as safeguards to

make sure that business rule authors do not mess up the business logic. For

example, our processing logic may rely on the fact that data validation rules set

the value of a particular data member of class Claim to signal a data validation

constraint violation. We have to make sure that all the rules that detect validation

errors properly set that data member. Using a rule template that builds in that action

Fig. 10.3 A rule template

4On some level, a rule is like a query: the condition part ‘queries’ the working memory for tuples

of objects satisfying some conditions, and the action part applies some actions to the result.

288 10 Rule Authoring Infrastructure in JRules

would do the trick. In the template of Fig. 10.3, we put into the rule action part two

actions that set the appropriate data member to the appropriate data value – what the

action “reject the claim” actually does behind the scenes5 – and logs the rule firing.

In this case, it so happens that those two actions are frozen, i.e., they cannot be

removed from rules generated from the template; the rule template editor enables us

to freeze or unfreeze selected parts of the rule template, down to the function

argument level. In the remainder of Sect. 10.2, and the subsequent sections, we

will revisit various rule project constituents that we discussed here.

While rule projects can only be created in Rule Studio, they can be modified in

either Rule Studio, or in Rule Team Server, the web-based rule authoring environ-

ment (see Chap. 8). To edit a rule project in Rule Team Server (RTS), we need to

first publish it from Rule Studio to Rule Team Server (see Sect. 10.2.4). After

logging in to Rule Team Server, we can edit project elements there. We will revisit

this in Sect. 10.2.3, but for the time being, we can think of the two projects (the RS

version and the RTS version) as equivalent.6

10.2.2 Rule Project Dependencies

We mentioned in the previous section that rule projects typically contain the

definition of a business object model (BOM), and that the BOM is typically derived
from Java class definitions contained in JAR file, or in a Java project within the

same workspace. JRules enables us also to define dependencies between rule

projects. If a rule project RPA references a rule project RPB, then:

l The BOM defined in RPB is visible within RPA, meaning that we can write rules

that refer to the BOM of RPB.
l The ruleset parameters defined in RPB are accessible within RPA, meaning that

we can refer to them in the rule artifacts of RPA.
l The ruleset variables defined in RPB are accessible with RPA by using an import

statement.
l The rule artifacts defined in RPB are accessible within RPA. In particular (a)

templates defined within RPB can be used within RPA, (b) rule queries defined in

RPB can be used to define ruleset extractors in RPA, (c) rule packages defined

within RPB can be assigned to rule tasks within RPA, (d) rule flows defined

within RPB can be assigned as flow tasks rule tasks within RPA, and (e) rules in

RPB can override rules that are in project RPA.
l Queries defined in RPB can be run on the artifacts of RPB alone, or be extended

to artifacts in RPA.

Within Rule Studio, project dependencies are limited to the rule projects within

the same workspace. They are editable through the project’s properties under

5More about this in Sect. 10.3.
6Not true, but an acceptable first approximation.

10.2 Rule Projects 289

“Project references,” like any Eclipse project. Figure 10.4 shows a screenshot of the

corresponding property editor. In this case, we have 11 projects in this workspace,

and the project “sample rule project” (our RPB above) references project “Claim

Proc BOM” (our RPA above). Within Rule Team Server, project dependencies are

limited to projects within the same repository, and only users with role “Config-

urator” and above can edit a project’s dependencies.7

One of the subtle implications of rule project dependencies is the notion of BOM
path, similar to the concept of class path with Java code. Indeed, because the BOM
of a project RPA is made visible to project RPB if RPB references RPA, potential

conflicts could arise if the same entity – a BOM class – is defined in both the BOM

of RPA and the BOM of RPB. Hence, the notion of a BOM path. For each project,

JRules defines a default BOM precedence, which an author can edit. The default

precedence rules of BOM entries are:

l Within a single project with no external references, BOMs appear by order of

definition, with the most recent BOM entry showing last.
l Within a given project, dynamic BOM entries, i.e., BOM entries generated from

XSDs, appear before BOM entries that are built from Java XOMs.
l If project RPB references project RPA, then the BOM entries of RPA appear

before the locally defined BOM entries.

Fig. 10.4 Adding project references to a rule project

7This means that a regular rule author cannot edit projects’ dependencies, and that is a good thing,

because of the subtle implications on rule writing (BOM visibility, variable visibility, etc.).

290 10 Rule Authoring Infrastructure in JRules

These rules apply recursively, to a dependency chain of any length. Users can

override these defaults by moving BOM entries up and down the BOM path (see

Fig. 10.5).

With the BOM path of Fig. 10.5, if some class com.mywebinsurance.model.

Claim is present in both the BOM of the rule project “Claim Proc BOM,”

and in the locally defined “local claim processing BOM,” it is the

definition found in the project “Claim Proc BOM” that will be taken.8

Rule project dependencies enable us to modularize our rule development, and to

get an effective division of labor. Section 10.4.1 will present best practices about

organizing rules in different related projects.

10.2.3 Synchronizing Projects Between Rule Studio and Rule
Team Server

As mentioned above, projects are first born in Rule Studio. However, Rule Studio is

not an appropriate tool for your typical business rule author (policy manager), for
three reasons:

l Its GUI metaphors are more geared towards developers, and relate little to

business metaphors.
l Its computational requirements often exceed the capabilities of the desktop (or

laptop) of the typical business user.

Fig. 10.5 BOM path

8This is counter-intuitive to inheritance, where locally defined structures and behavior prime over

inherited ones.

10.2 Rule Projects 291

l It is a dangerous tool to put in the hands of business users, who may inadver-

tently break the structure of a rule project and the underlying business logic.

Hence Rule Team Server (RTS) differs from Rule Studio (RS) in two major ways:

l Some rule project elements are not editable in RTS, for two main reasons: (a)

safety, to maintain the integrity of the project, and (b) because the information

needed to edit the element is not available RTS. Examples of (a) include rule-
flows, ruleset parameters, the business object model (BOM), and the BOM path.

Examples of (b) include the BOM, again, as well as customizable features that

require Java code.
l A (far) more granular access control to the elements of a rule project. Whereas

RS controls access to projects and project elements through access control

mechanisms of the underlying source code management (SCM) tool (ClearCase,

Subversion, MKS, etc.), RTS combines a coarse-grained role-based access,

which controls which roles have access to which functionalities, with a fine-

grained permission management, to manage read/write access to the rule arti-

facts of a project.

There are a number of other minor functional differences, some of which were

explained in Chap. 8.

Implementation-wise, RS and RTS use different representations of projects and

project elements:

l RS uses a file-based representation of project elements. Typically, we have one

file per artifact, be it a BAL rule, a technical rule, a decision table, a decision

tree, a scorecard, a rule flow, a variable set, a function, etc. Aggregate artifacts

are represented a directory that includes a file that represents the aggregate

metadata, and the actual contents of the aggregate, as files or subdirectories

included therein. Figure 10.6 shows part of the file hierarchy for our sample

project. Hence access to these artifacts is managed through the underlying

source code control system.
l RTS uses database persistence. Roughly speaking, RTS uses different tables to

represent different types of artifacts9 and the relationships between them. Con-

current access to these artifacts is thus managed through the database locking

mechanism.

JRules provides functionality for exporting a project from RS to RTS. This

functionality makes a remote connection from RS to a running instance of RTS and

either creates a fresh new project in RTS to receive the exported RS, or synchro-

nizes the current state of the RS project with the most current state of the

corresponding RTS project.

Figure 10.7 shows a screenshot of the project synchronization wizard. In this

particular case, we are synchronizing our “sample rule project” between RS and the

9We don’t have a table for each rule project element types as similar element types are represented

by the same table, but have one attribute distinguish between them.

292 10 Rule Authoring Infrastructure in JRules

Fig. 10.6 RS represents rule projects using the file system. The right-hand side shows the contents

of “claim eligibility” directory, which represents the “claim eligibility” rule package

Fig. 10.7 Synchronizing the RS “sample rule project” with the instance of RTS running at http://

localhost:8080/teamserver

10.2 Rule Projects 293

instance of RTS. To create a new project on RTS, we need to connect to RTS as an

administrator. But to simply synchronize an RS project with an existing RTS

project, regular user (policy manager) privileges suffice.

Having exported an RS project to RTS, the two projects will typically continue

to evolve independently, and will go out of sync. When we synchronize the two

versions, the synchronization functionality will perform a three-way comparison

between (a) the current version of the RS project, (b) the current version of

the RTS project, and (c) the initial version of the project in RTS. Indeed, the

initial version of the project in RTS corresponds to the one point in time where

the two versions were synchronized. Figure 10.8 shows a screenshot of the

synchronization view.

Figure 10.8 illustrates cases where:

l A rule was added to the RTS version: case of rule “jurisdiction not covered,” in

package “claim eligibility/policy holder eligibility.”
l A rule was added to the RS version: case of rule “claim date,” added to package

“data validation/claim data validation.”
l A rule was deleted from RTS version: case of rule “tin length” in package “data

validation/policy holder data validation.”
l A rule was changed concurrently in both RS and RTS, and the changes are

conflicting: the case of rule “policy holder age” in package “data validation/

policy holder data validation.” In this case, RS puts side to side the two versions,

and does a text compare, highlighting the parts that were changed.

Users of the Eclipse environment will recognize the familiar look and semantics

of source code management (SCM) plug-ins, when a developer tries to check in

their local copy of a project in the corresponding SCM repository. Roughly

speaking, in those cases where the change is one-sided, the user has the option of

either accepting the change, or rejecting it. In the case of conflict, the user can

selectively combine changes coming from either side, if she/he wishes to. The

Rule added to RTS version

A rule added to RS

Rule deleted from RTS

Rule with conflicting changes done in RS and RTS
(shown above)

Fig. 10.8 A case where synchronization yields several changes in both RS and RTS versions

294 10 Rule Authoring Infrastructure in JRules

example of Fig. 10.8 shows three conflicting changes within the rule “policy

holder age.”10

While JRules offers functionality to synchronize projects between RS and RTS,

an organization needs to put in place a set of processes, both manual, and auto-

mated, to prevent development chaos; having to resolve conflicting changes

between two versions of rules should not be a way of rule project life. The first

question that we ask is: notwithstanding the initial creation of a rule project, do we

really need to have projects edited in both environments. The answer lies in which

environment is being used for creating and maintaining rules, which depends on

who is responsible for maintaining the rules. We have encountered three typical

scenarios.

Business users are responsible for creating and maintaining the rules, and they
use RTS. This is the textbook scenario of usage of the tool set. In this case,

developers create the project(s) in RS, export them to RTS, and let the business

users edit the projects there. At first glance, there should be no reason in this

scenario for the version that resides in RS to change. Thus, when developers

synchronize the RS projects with the RTS versions,11 they should not encounter

any conflicts. However, even in this case, there are going to be cases where the RS

projects need to be updated. First, recall that the BOM and the ruleflow are not

editable in RTS. Thus, if either needs to be changed, we can only implement the

change in RS. Second, there are cases where rule testing identifies a problem with a

ruleset that cannot be identified through tracing. In such cases, we need debugging

of the kind that is available only in RS, and a developer may have to correct the

problem (i.e., edit the rule).

So what we do in those cases where we do have to change a project in RS? The

safest – and coarsest – solution consists of freezing the project in RTS by making it

not editable there,12 then synchronizing RS with RTS to bring the most recent

version from RTS to RS, then making the desired changes in RS, then synchroniz-

ing the projects again to export the change to RTS, then releasing the project in

RTS. This solution will work in all cases. However, it makes an RTS project

unavailable for editing for the time it takes the make the needed changes within

RS. This may be justifiable if we are making a change to the BOM, for two reasons:

(a) to take advantage of RS’s refactoring functionality and (b) to prevent the

business users from using the old BOM. Idem for the ruleflow, as it provides the

execution context for the rules, and rule authors need it to be current.

10Actually, in this case only the one about the threshold birthdate for the policy holder is

substantive. The others are due to small – non essential – differences in serialization format

between the two environments.
11One reason we may want to do that is if deployment to the Rule Execution Server (RES) of the

development, testing, QA, or production environment is performed from RS as opposed to from

RTS, which is the recommended practice.
12We can do that by removing a user group from the groups of users who have the right to access

the project. By doing so, the project no longer shows up in their project selection in RTS.

10.2 Rule Projects 295

If the change that we need to make in RS concerns a single or a handful of rules,

then we can make our “freezing” in RTS more selective, as opposed to freezing an

entire project. An administrator can log into RTS and lock those rules that are being

debugged for the duration of the debugging, to release them later, possibly with

changes.

Whatever the case, to prevent conflicts between changes made in RS and RTS,

we serialize those changes in time so that, at any given point in time, a project is

being edited only in one environment. This is a combination of (a) JRules basic

functionality (synchronization, RTS permissionmanagement, RTS locking), and (b)

a human process that uses this functionality. Adherence to the human process is,

naturally, crucial and is part of rule governance, to be discussed in Chaps. 15 and 16.

IT developers are responsible for creating and maintaining the rules, and they
use RS. While one of the goals of the business rules approach is to have business

take over the creation and maintenance of rules, the complete take over from rule

discovery all the way to rule coding does not always happen, on the initial

development of the business application, or in subsequent rule maintenance

mode. Many customers that we encountered prefer to leave rule authoring and

unit testing to IT.13 In this case, developers use RS to author and maintain rules.

However, rules are available for business to view within RTS, in a read-only mode.

This scenario is easy to handle: developers simply synchronize the RS project with

RTS whenever they have a new stable version (or “release”) of the RS project to

share with business.

Business is responsible for creating and maintaining the rules, and they use RS.
We also encountered this scenario in many situations where business units have in

their midst what we call “technical business analysts” who are, typically, ex-

developers who are quite comfortable with Rule Studio’s interaction metaphors.

This scenario is no different from the previous one and presents no challenges.

10.2.4 Managing Multiple Users

Whether we are using RS or RTS to author and maintain rules, we need to manage

multiple users creating and modifying rules within the same environment. As

mentioned in the previous section, RS uses a file representation of rule project

elements, and manages the different versions of rule project elements through the

connectivity of RS to a source code management system. By contrast, RTS uses a

database to store rule project elements, and manages concurrent access through the

database. In the remainder of this section, we will first summarize the concept of

operations of source code management software, and see how those apply to rule

projects. We will then discuss the many access control features of RTS.

13We have also encountered situations where IT developers are transferred, administratively, from

the IT department over to business units where they report to a manager within the business unit.

296 10 Rule Authoring Infrastructure in JRules

In Rule Studio, coordination between multiple users is managed by the underly-

ing source code management software. There a number of source code management

applications, both commercial, such as SourceSafe, ClearCase, MKS, or Perforce,

as well as open source ones, such as CVS, Subversion, and others. There are two

general approaches to handling multiple users, pessimistic locking, of the kind done
by databases, where only a single user has write access to a particular resources, and

optimistic locking, which is a euphemism for no-locking at all. This strategy is

optimistic because it makes the optimistic hypothesis that users will work on

different parts, and thus, there will be no need to lock entire projects, say, if one

just wants to change a rule. If the “optimistic hypothesis” turns out to be wrong,

then we deal with it with conflict resolution, as illustrated for the case of synchro-

nization between RS and RTS.

The tools mentioned above differ in functionality, but most use optimistic lock-

ing. This model is illustrated in Fig. 10.9. Different users work on their own local

copies of rule projects, which they synchronize regularly with the state of a

common repository. To have access to a given rule project, a user needs to be

registered within the SCM and be granted access to the repository containing that

project. The first time they access the project, they typically check-out a particular
version of the project from the repository, to get a local copy on their machines or

private workspace. They can then work off-line from the SCM repository making as

many changes as they wish. If they want to make their work available to others – or

simply to back it up – they check-in their work. This creates a new version of the

project in the repository. If other users have checked out the same version as the

current user and have already checked-in their changes, then the tool performs

the kind of comparisons we showed in the previous section. If a user judges that

there are irreconcilable differences between the version of the project that they want

Common
code

repository

s
e
r
v
e
r

c
l
i
e
n
t

c
l
i
e
n
t

…

Local
copy of
user 1

Local
copy of
user 2

Fig. 10.9 The concept of operations of source code management software plug-ins to RS

10.2 Rule Projects 297

to check in, and the latest version in the repository, they can then start a new

development branch.
Note that the model illustrated in Fig. 10.9 applies to the case where the client

component of the SCM is well-integrated with the Rule Studio, i.e., as an Eclipse

plug-in. If that is not the case, then the client module and the local copy in Fig. 10.9

trade places: we can use a separate command-line SCM client interface to check-in

and check-out projects, and use RS on the local copy, totally unaware of the SCM.

This model is workable but is less user-friendly and more brittle.14 However, if

there are no Eclipse plug-ins – or if the existing ones are buggy – we have no

alternative.

A common complaint about traditional SCMs is the lack of granularity of

their access control mechanism. Some tools grant read or write access in an all-

or-nothing fashion: to the entire repository, or none. Others, such as subversion,

will support access control to the path level: enabling a particular group of users to

access only some subdirectories of the repository in a read or write fashion. Either

way, the permissions being file-based, this means two restrictions:

l We cannot grant a user or user group access to certain kinds of artifacts and not

others. For example, if a user has read/write access to a rule package, they can

modify everything in that package, including rules, ruleflows, functions, variable

sets, and so forth.
l For a given artifact, the access is all or nothing: either the user can modify both

the contents and the metadata, or they cannot modify either.

If we have business users working with RS, this can be a problem.

RTS’s access control mechanism is much more fine-grained than can be afforded

with RS and SCM software. First of all, RTS supports role-based access, where

users belong to roles, and the roles that a user has determine what functionality the
user has access to. The tool comes with four default roles, which can be customized

to the needs of the organization:

l rtsUser. This role corresponds to the typical rule authors. They can browse

projects, create rule folders (packages) and various rule artifacts, query projects,

analyze them, produce rule reports, export/import rules and decision tables to

Microsoft Office documents,15 and (re)deploy existing rule apps with the most

current version of the project.
l rtsConfigurator. In addition to rtsUser functionalities, this role also has

access to project and environment configuration functionalities, including: (a)

managing project baselines, (b) editing project dependencies, (c) generating

14SCM files deal in files: they do not know about rule projects, rule packages, and the like, and

thus, performing a (text) file-based reconciliation of two rule project versions is typically tedious

and error prone.
15JRules includes Office plug-ins that enables to edit rules in Word documents, and decision tables

in Excel spreadsheets. See Chap. 8.

298 10 Rule Authoring Infrastructure in JRules

ruleset archives, (d) editing ruleset extractors, (e) editing RES server configura-

tions, and (f) editing/managing ruleapps.
l rtsAdministrator. In addition to rtsConfigurator functionalities, it

includes functionalities for (a) enabling and configuration of project-level secu-

rity, (b) running diagnostics on the current RTS, and (c) configuring the current

installation of RTS (schema, persistence locale, message file, etc.).
l rtsInstaller. It has access to the installation functionalities for RTS.

Any RTS user has to be a member of one of these four groups, plus, as the case

may be, other site or domain-specific groups. For example, MyWebInsurance may

decide to create three groups, policyUnderwriting, claimProcessing,
and tester, where rule authors working on policy underwriting will be members

of both rtsUser and policyUnderwriting, rule authors working on claim

processing will be members of both rtsUser and claimProcessing, and
testers will be members of both rtsUser and tester. An RTS user who creates

a rule artifact can assign the artifact to one of the groups of which she or he is a

member. We discuss below the use of groups.

By default, RTS does not enforce project level security: all users of all

groups can access all the projects of the repository. However, an administrator

(rtsAdministrator group) can enforce security for a specific project, and

specify which groups have access to the project. Figure 10.10 shows a screenshot of

the set-up form.

Having defined the groups that can access the project, we can specify what kind

of access. This is done through permissions. A permission is specified through four

parameters:

l The specific action. Create, view (read), update, delete.
l The value. Can be yes or no for create, and yes, group, or no for the view, update

and delete.

Fig. 10.10 Enforcing security for a particular project

10.2 Rule Projects 299

l The type. Refers to the type of project artifact for which we want to specify

the permission. Types include: Action Rule, Technical Rule, Decision Table,

Decision Tree, Template, etc., or the wild card (“*”), which means all types.
l Property. Refers to a property of the selected type, and the wildcard (“*”) to

mean all properties of the selected type.16

The last two parameters describe the scope of the permission. For example, to

allow the viewing of all the artifacts of a project, we define the permission: <View,

Yes, *, - >. To allow the update of the “status” attribute of a decision table, we

define the permission <Update, Yes, Decision Table, Status>. To allow the

deletion of action rules created by members of the same group, we write <delete,

Group, Action Rule, – >. Figure 10.11 shows five permissions defined for the

“Eligibility” group on our “sample rule project.” Effectively, members of this group

can view all the artifacts of the project (first permission), create action rules, delete

action rules created by other members of the group, update all the aspects of an

action rule (content and metadata), and update the “status” attribute of decision

tables – but nothing else.

How about creating a decision table, or changing the “effective date” of a

decision tree? Once we enforce security for a given project, all the actions become

forbidden, unless explicitly allowed. Hence, with these permissions, it is not

possible to create a decision table or to update the “effective date” of a decision

tree. Further, more specific permissions override less specific ones. For example,

the result of the two permissions: <Update, No, Technical Rule, *> and <Update,

Yes, Technical Rule, Status> means that I cannot update any aspect of a Technical

Rule, except for its status property.17 The tool enables us to view the effective
permissions based on the ones that were explicitly defined, where it shows all of the
defaults and takes into account the overrides.

Fig. 10.11 Examples of five permissions

16When the selection of a property does not make sense or when “all” is implied by default, the

property parameter takes the value “-.”
17In this case, the permission <Update, No, Technical Rule, *> may not even be needed, as what

is not explicitly allowed is not permitted by default . . . unless we have a more generic permission

such as <Update, Yes, *, - > that we want to override for Technical Rules. And so forth.

300 10 Rule Authoring Infrastructure in JRules

In terms of managing concurrent access to project artifacts, RTS automatically

write-locks a project element whenever a user starts editing that element. The write-

lock is released when the element is saved. An RTS user can also explicitly write-

lock an element, and hold the lock even after the current session terminates. The

write-lock can be released by the same user or by an administrator.

10.3 The Business Object Model

The Business Object Model embodies the business view of the application data. It

represents the domain of discourse for rule authoring. A lot of the artistry in setting
up rule authoring deals with the confection of the BOM. We start with the basics of

the BOM in Sect. 10.3.1. Section 10.3.2 deals with the BOM to XOM mapping

in more depth. In particular, we show how to recreate a differentiated business

object model from a generic and stripped down execution object model (see

discussion in Sect. 9.2.1). Because execution object models will likely evolve

during the development phase and lifetime of an application.

10.3.1 The Basics of the BOM

The Business Object Model embodies the domain of discourse for business rules. It

represents the link or bridge between the implementation of the application data –

what we call eXecutable Object Model, or XOM – and the business rules. Roughly

speaking, the BOM consists of a three layers:

l The vocabulary, which is the collection of natural language-like expressions that
we use to write rules, such as “the date of <the claim>” or “the age of <the

policy holder>”
l The business object model itself, which is an object model defined in terms of

packages, classes, attributes, methods, and associations
l The BOM to XOM mapping, which describes how the BOM maps to the actual

XOM

Figure 10.12 illustrates the three layers and the relationships between them, and

to the rules, on one end, and to the XOM, on the other. Typically, the starting point

for building a BOM is a XOM, and the typical XOM is a set of Java classes

packaged as a Java project, a class directory, or a JAR file. JRules has a utility

that builds a default BOM based on the XOM, i.e., default values for the three layers

mentioned above. We will explain what those defaults are when we explain the

relationships between the various layers.

Let us start from the middle: the business object model looks like a regular object

model, with nested packages (com.mywebinsurance.claimprocessing), a bunch of

classes which, in turn, have attributes and methods. The PolicyHolder BOM class

10.3 The Business Object Model 301

appears to have four public data members, “age,” “birthDate,” “name,” and “tin,”

for “tax identification number” which, for the case of individuals, consists of their

social security number; we will worry about the constructor later.

In Java, to write a condition about the age of a PolicyHolder, one would write

something like:

if (myPolicyHolder.age < 18) {…}

In the example of Fig. 10.12, we are using the JRules Business Action Language
(BAL, see Sect. 10.4.2) which uses natural language-like “paraphrases” of the

various elements of the BOM. With the BAL, the default reference to an attribute

ATT of some class CLS is through a phrase “the {ATT} of {this}”
where {ATT} refers to the name of the attribute, and {this} will be replaced

by an object variable name of the type CLS. The collection of such phrases is called

the vocabulary of the BOM. The vocabulary file is like a property file where the key

refers to the BOM model element, and the value refers to the phrase template. The

following are excerpts from the vocabulary file for our claim processing BOM:

Rules

Vocabulary

(business) object model

BOM to XOM mapping

XOM

the age of <policy holder>

B
O

M

Fig. 10.12 The structure of the BOM and how it links natural language-like rules to (Java)

application objects

302 10 Rule Authoring Infrastructure in JRules

…
com.mywebinsurance.claimprocessing.PolicyHolder.age#phrase.navigatio
n = {age} of {this}
…
com.mywebinsurance.claimprocessing.PolicyHolder.tin#phrase.action =
set the tin of {this} to {tin}
com.mywebinsurance.claimprocessing.PolicyHolder.tin#phrase.navigatio
n = {tin} of {this}
…

Note that we have a single entry for the “age” attribute, corresponding to

navigation, i.e., to read/get the value of the attribute. Because the “tin” attribute

is read/write, we have both a “navigation” phrase (getter) and an “action” phrase

(setter). Generally speaking, the vocabulary file will have one or two entries for

every attribute or every BOM class, which correspond to reading or writing the

value of the attribute. It will also have one entry for the class itself to define the

term. The good news is that JRules generates the vocabulary automatically, and

does a pretty good job at it, provided that the BOM – and the XOM – use

recommended naming conventions; more on this in Sect. 10.3.2.

Let us now turn to the bottom half of Fig. 10.12, i.e., the relationship between the

BOM and the underlying XOM. If we look more closely at the PolicyHolder
BOM class, and compare it to the Java class, we notice three main differences:

l In the BOM PolicyHolder class, the attributes “name” “birthDate”

and “tin” are public whereas in the Java PolicyHolder class, they are

private.
l The Java PolicyHolder class has getter/setter functions for those private

attributes whereas the BOM PolicyHolder class has no such functions.
l The BOM PolicyHolder class has an “age” attribute which does not appear

in the Java PolicyHolder class.

The first two differences are related: in the process of building a BOM class for a

Java class, JRules ignores the data and function members that are not public.
However, it assumes that the Java class uses the Java Beans naming convention,

and thus, if the Java class has functions that follow either of (or both) the two

patterns:

TypeT getSomeName();

void setSomeName(TypeT value);

the corresponding BOM class will have a read (or write, or read/write) attribute

called someName.

The “age” attribute illustrates the power and flexibility of the BOM to XOM

mapping: we can define an attribute in the BOM class that is not physically stored in

the Java class, but that is computed on the fly based on some actual physical

attribute. Hence, if business rule authors like to think in terms of age, we can

provide them with an “age” attribute in the BOM PolicyHolder class, as long as

10.3 The Business Object Model 303

we provide a way of computing it from the actual/physical data stored in the Java

PolicyHolder class. That mapping is illustrated in Fig. 10.12 by the expression:

return DateUtil.getAge(this.birthdate.toDate(),DateUtil.now());

which is entered as the “BOM to XOM mapping” for the “getter” of the “age”

attribute, where DateUtil is a custom Java utility class that manipulates dates. More

powerful mappings will be discussed in Sect. 10.3.3.

The structure described so far corresponds to a single BOM entry. Each BOM

entry consists of three distinct files corresponding to the three layers shown in

Fig. 10.12. In the example of Fig. 10.12, we have a BOM entry called “claim

processing model” consisting of three files:

l “claim processing model_en.voc”. It is the vocabulary file.

Notice the “_en” suffix in the file name, which represents the locale. Indeed, we

can have different vocabularies associated with a BOM based on the locale.
l “claim processing model.bom”. It represents the model itself

represented in a java interface-like textual format. The following shows excerpts

from that file. In addition to the Java signatures of the various attributes,

methods, and constructors, the file may contain other BOM-specific properties

such as domains and categories, to be explained in Sect. 10.3.5.

package com.mywebinsurance.claimprocessing;

…

public class PolicyHolder {

public java.util.Date birthDate;

public string name;

public string tin;

public PolicyHolder();

}
…

l “claim processing model.b2x”. It groups in a single file all the

custom BOM to XOMmappings for the current model entry. We will come back

to this in Sect. 10.3.3.

A typical project BOM would consist of several BOM entries.
We can build a BOM entry in Rule Studio (RS) in one of two ways:

l From scratch, by manually adding packages, classes, data, and function mem-

bers using various RS (Eclipse) wizards. In this case, we have to do everything

manually (1) specify the names of the various model elements (packages,

classes, attributes, methods, and constructors), (2) their Java types, where appli-

cable, (3) generate their verbalizations, and (4) specify the BOM to XOM

mappings.
l From an existing XOM, which can be either a Java project within the same work-

space, or an external Java jar file or class directory, or an XML schema – referred

304 10 Rule Authoring Infrastructure in JRules

to as a dynamic XOM. In either case, Rule Studio analyzes the XOM, and then

creates BOM elements from that XOM. Thanks to the BOM entry creation wizard,

Rule Studio will perform 90% of the job with a few selections and clicks, using

default verbalizers and default BOM to XOM mappings. A user can later edit the

BOM to override some defaults or add virtual elements to the BOM, such as the

“age” attribute mentioned above (more on that in Sect. 10.3.3).

Which method is preferred? Clearly, if you already have the target XOM, then

you should build the BOM (entry) from the existing XOM. However, there are

situations where one would want to start authoring rules before the underlying

implementation code has been completed, and there one would build the BOM from

scratch. These issues will be discussed in Sect. 10.4.2.

10.3.2 Verbalization

Verbalization is the process of assigning a term or phrase to a BOMmodel element,

e.g., as in assigning the phrase “the {age} of {this}” to the attribute

“age” of the BOM class PolicyHolder. Rule Studio has a default “verbalizer” that

can verbalize the elements of an entire BOM entry, in one batch, or single BOM

elements (classes, attributes, and methods), one by one. Developers can override

the default verbalization for a given model element. Default verbalization follows

simple rules that we explain below.

First, we look at the verbalization of identifiers. The rules are illustrated in

Table 10.1.

In particular, if we adopt the Java nomenclature for spelling multi-word identifiers

– capitalizing the first letter of every word, with the possible exception of the first –

the verbalizer will actually separate out the individual words.

Consider now the verbalization of attributes. First, the name of the attribute

is verbalized to generate what JRules calls a subject, which is then used to generate
a navigation phrase (a getter expression) and an action phrase (a setter action).

Table 10.2 illustrates the default verbalizations for non-boolean attributes.

Notice that the name of the attribute in the navigation and action phrases appears

in a template form (i.e., between curly brackets) between it is editable. For example,

a BOM developer may choose to use the term “date of birth” instead of “birth date,”

and adjust the plural to “dates of birth” (as opposed to the default “date of births”).

The figure across shows the wizard for editing terms. This wizard knows a bit

Table 10.1 Verbalization of

identifiers
Identifier Its default verbalization

lowercasename lowercasename

UPPERCASENAME UPPERCASENAME

UpperFirstLetter upper first letter

upperFirstLetter upper first letter

lowerSECOND lower SECOND

10.3 The Business Object Model 305

about the English language so that the indefinite singular form for “age” is “an

age” and not “a age,” and the plural of “bankruptcy” is “bankruptcies” and not

“bankruptcys.”

The verbalization of boolean attributes is different and is illustrated in Table 10.3.

The last example shows an instance where the default verbalization does not

work: both the navigation and action phrases need to be edited to get rid of the extra

“is” (underlined in the table).

Finally, JRules enables us also to verbalize methods, as those may be used within

conditions – those that return values – or actions of rules – those that return void.

The parameters of such functions then become data prompts for the rule author.

Assume that our class PolicyHolder has a method with signature:

void addAccident(Date d, Responsibility resp);

Table 10.2 Verbalization of non-boolean attributes

Attribute Verbalization

(subject)

Navigation/action phrases Examples

Name name {name} of {this} the name of “my
policy holder”

set the name of
{this} to
{name}

set the name of “my
policy holder” to
"John";

birthDate birth
date

{birth date} of
{this}

the birth date of
“my policy holder”
. . .

set the birth date
of {this} to
{birth date}

set the birth date
of “my policy
holder” to 13/4/
1991;

306 10 Rule Authoring Infrastructure in JRules

where Responsibility is an enumerated type with the values AT_FAULT and

NO_FAULT. The default verbalization for this method is the ugly:

{this}.addAccident({0},{1})

Notice here {0} and {1} that stand for the first and second positional

parameters of the function (date and responsibility of the accident, respectively),

and that become data prompts for the rule authors using this action. In a rule, this

action would appear as follows:

'my policy holder'.addAccident(21/8/2009,“AT_FAULT”);

Not exactly business user friendly. We can change the verbalization template to

the following:

add a {1} accident to {this} on {0}

where {1} stands for the second parameter of the function,18 i.e., the responsibility,

{this} stands for the policy holder, and {0} stands for the first positional parameter,

i.e., the date. This action will then appear in a rule as follows:

add a “AT_FAULT” accident to 'my policy holder' on 21/8/2009;

Table 10.3 Verbalization of boolean attributes

Attribute Verbalization

(subject)

Navigation/action phrases Examples

approved approved {this} is approved “my claim” is
approved

make it {approved}
that {this} is
approved

make it true
that “my claim”
is approved;

isRejected rejected {this} is rejected my claim” is
rejected

make it {rejected}
that {this} is
rejected

make it true
that “my claim”
is rejected;

hasBeenPaid has been
paid

{this} is has been
paid

“my claim” is has
been paid

make it {has been
paid} that
{this} is has
been paid

make it true
that “my claim”
is has been
paid;

18We can all thank Java, C++, C, or the assembly language for this numbering convention,

depending on how far back you want to go J.

10.3 The Business Object Model 307

This is part of the artistry that goes into setting up the verbalizations for the BOM

elements, and that can make rule authoring – and reading – more intuitive and more

business friendly. The person responsible for configuring the BOM (business

analyst or rule developer) needs to be familiar with the “vocabulary” and phrasing

used by business to mimic it as closely as possible in the BOM.

10.3.3 BOM to XOM Mapping

We introduced the BOM to XOMmapping in Sect. 10.3.1 and explained how it acts

as a bridge between the business view of the data (BOM) and the actual implemen-

tation of the business data (XOM). Recall also that Rule Studio enables us to create

a BOM entry from a XOM such as a Java project, a Java jar file, or an XML schema.

The BOM creation utility uses a default BOM to XOM mapping, which we can

override or customize. We will first talk about the default mapping, and then talk

about custom BOM to XOM mappings.

Table 10.4 shows the main default mappings for a Java XOM. Anything that is

not public does not appear in the BOM.When we build a BOM entry from a specific

XOM, Rule Studio does not store these default mapping in the B2X file (BOM to

XOM), which starts out empty. The B2X file is only used to store custom mappings.

We now explore some typical uses for the BOM to XOM mapping. Our first

example of Fig. 10.12 showed one case of custom BOM to XOM mapping. In that

example, we added an “age” attribute to the PolicyHolder BOM class, that did not

exist in the Java PolicyHolder class, but that was computed from the “birthDate”

attribute. Generally speaking, the Rule Studio BOM editors enables us to manually

add data and function members to a BOM class that have no equivalent in the

corresponding XOM, provided that we supply the BOM to XOM mapping for that

Table 10.4 Default Java XOM to BOM mappings

Java construct BOM construct

Package Package

Public class Class

Public interface Interface

public Type attName; public Type attName;

public Type getAttName() public readonly Type attName;

with no corresponding setter

public void setAttName(Type arg) public writeonly Type attName;

with no corresponding getter

A getter/setter pair get/setAttName(Type a) public Type attName;

A non-getter/setter public function A similar public function

Public constructor constructor

An “extends” relationship between Java

classes or interfaces

An “extends” relationship between corresponding

Java classes or interfaces

An “implements” relationship between a

class and an interface

An “implements” relationship between the

corresponding BOM class/interface

308 10 Rule Authoring Infrastructure in JRules

data or function member. We call those virtual data or function members. For a

virtual data member, the BOM to XOM editor enables us to specify a “getter” and/

or a “setter” expression, depending on whether the data member is readonly,

writeonly, or read/write. Below, we reproduce parts of the BOM to XOM editor

for the “age” attribute, shown in Fig. 10.12. This fragment is part of the BOM class

data member editor, for the attribute “age.”

In this case, because the “age” attribute is computed, it is read only, and we only

specify the getter.

10.3.3.1 Virtual Functions

We can also specify virtual functions, i.e., functions that exist only in the BOM. If

such a function returns a non-void value, it will appear in the condition part; if it

returns a void, it will appear in the action part. Assume now that a claim is only

eligible if it has been filed less than 180 days after the expense was incurred, for an

ongoing policy, and less than 90 days after the expiration of the policy, for an

expired policy. We could add a boolean function to the BOM class Claim with the

following signature:

boolean filedMoreThanNDaysAfterDate(int nDays, Date aDate);

We can then specify how to compute such a function in the BOM to XOM

mapping, as shown below. The variables nDays and aDate refer to the

arguments of the function, with types int and java.util.Date, respec-

tively. The pseudo-variable this refers to a Claim, and the dot reference

this.date, to the date of the claim.19

19So which object model do we refer to in the BOM to XOM mapping? Logically, this should be

the XOM, as we are showing how BOM elements map to XOM elements. In practice, we can refer

to the BOM, and to any Java object model referenced in the rule project, included but not limited to

the XOM. Thus to access the attribute “date” of Claim, I can use either “myClaim.date” or

“myClaim.getDate().”

10.3 The Business Object Model 309

This function can then be verbalized as follows:

{this} was filed more than {0} days after {1}

And used in a rule:

In this rule, {this} was substituted by the variable “the claim,” the first

argument {0} was set to 90, and the second argument {1}, which is a date, was

replaced by the end date of “the claim.” Incidentally, the second rule

action (log that this rule has fired on . . .) is itself a virtual

function of the BOM class Claim with the signature:

void logRuleFiringWithMessage(String message)

The verbalization:

log that this rule has fired on {this} with message {0}

and the BOM to XOM mapping:

This mapping is a bit more complex, and illustrates some advanced features of

the BOM to XOMmapping and of the IRL language. First, rule{this} refers to

a claim. In the first line, we are initializing an array of Object’s with {this}

310 10 Rule Authoring Infrastructure in JRules

(the claim). In the second line, we are building the string that represents a claim

by making what looks like a reflective call to some one-argument function called

“printClaim” (sort of a custom toString()method), and that is exactly what

it is: the method invokeFunction(String functionName,
Object[] args) is an IlrContext (the class that represents rule

engines) method that invokes an IRL function called functionName with

the argumentsargs. We described IRL functions briefly in Sect. 10.2.1 as macro-

like functions defined within rule projects. Such functions can be used within the

action parts of IRL rules (covered in Sect. 11.2.1), function task bodies (see Sect.

11.3.2), within the initial actions and final actions of ruleflow tasks (Sect. 11.3.2),

within other IRL functions, or within BOM to XOM mappings. In all the places

but BOM to XOM mappings, these functions would be invoked normally, as in

“printClaim(my_claim);.” However, within the BOM to XOM

mapping, they need to be invoked reflectively.20 This code fragment shows also

the use of two predefined IRL variables: context, which refers to the engine

currently executing this piece of code, and ?instance, which refers to the

rule instance currently executing.21 The latter enables us to access the rule name,

the tuple of objects for which the rule fired, the priority of the rule instance on the

agenda, etc., which makes it possible to write generic – and detailed – rule logging

capabilities, as the rule above illustrates.

10.3.3.2 Virtual Classes

We now turn our attention to virtual classes. A virtual class is a class that exists

only in the BOM with no direct equivalent in the XOM. As with virtual attributes

and methods, we only need to specify what XOM (Java) class this BOM class maps

to. First, let us explore a scenario where you would want to create a virtual class,

and then we will show how to define such a virtual class.

We have shown in Sect. 9.2.1 the requirements that we place on BOM and on

XOM. In particular, we identified specificity as a desirable property of the BOM and

genericity as a desirable property of the XOM. Assume that our business people

created the model shown in Fig. 10.13 on paper, before handing it over to IT to

implement. This model distinguishes between an AUTO policy and a Health policy

and makes a distinction between a medical claim and a car repair claim.

Upon closer inspection of the attributes of the various classes (not shown in this

figure), an object designer, or a data architect, might find this model unnecessarily

differentiated, and might decide to implement the model shown in Fig. 10.14,

instead. In this model, both kinds of policies are represented by the same class

20The BOM to XOM mapping is used by the engine during run-time. Further, IRL functions can

refer to BOM virtual functions. If we allow IRL functions to be called normally within the BOM to

XOM mapping, we could end up with an arbitrarily long – and potentially circular – translation

sequence from BOM to XOM.
21The Java type for ?instance is ilog.rules.engine.IlrRuleInstance.

10.3 The Business Object Model 311

Policy, which now has an attribute called policyType. Common policy

attributes are represented in the class Policy itself, whereas policy type-specific

attributes are represented in a PolicyData object. Idem for the Claim class.

If we create a BOM from this XOM, rule authors will not have the concept of

a “health policy” or of a “car policy,” but they can talk about a “policy” whose

policyType equals “HEALTH_POLICY” or “CAR_POLICY.”

Virtual classes allow us to (re)create the BOM classes HealthPolicy and

CarPolicy even though there is a single underlying XOM class, Policy.
Figure 10.15 shows the BOM editor for classes. We are defining the class

HealthPolicy as a class from the package com.mywebinsurance.
claimprocessing and specifying its execution name (see (1) marker

on figure) as com.mywebinsurance.claimprocessing.

-policyType

PolicyPolicyHolder

PolicyData

1..* 0..*

holders

1

-data1

-claimType

Claim

1 0..*

claims

ClaimData

1

-data1

Fig. 10.14 The actual implemented XOM

ClaimPolicy

1 0..*

claimsPolicyHolder

1..*0..*

holders

HealthPolicyCarPolicy MedicalClaim CarRepairClaim

1 0..*claims
1 0..*

claims

Fig. 10.13 The business view of the application data (“BOM on paper”)

312 10 Rule Authoring Infrastructure in JRules

Policy. However, a HealthPolicy is not any Policy: it is a policy whose

“tester” expression (see (2) marker) returns true:

return("HEALTH_POLICY" .equals(this.policyType));

where the variable this refers to a Policy.
Having defined the class HealthPolicy, we now wish to use it within rules,

and test its data members, such as startDate, endDate, like any regular

Policy, i.e., we wish to inherit the data and function members of the . . . BOM
class Policy. To do that, we need to specify the BOM class Policy as a

superclass of HealthPolicy (see marker (3)). Figure 10.16 illustrates the

required steps to define the virtual class HealthPolicy.
Note that, unlike with Java classes, BOM classes do support multiple inheri-

tance: I can specify two or more BOM superclasses for any given BOM class. We

will come back to this feature when we talk about best practices.

10.3.3.3 Dynamic XOM

Finally, we talk about dynamic XOMs, and more specifically, the XSD-based XOM.

In short, JRules enables us to write and execute rules about XML data. This means

two things:

l At rule definition time. The BOM is defined from an XML schema as opposed to a
set of Java classes.

l At rule execution time. The rule engine can manipulate a generic and efficient

run-time representation of XML data through the same object-based API that is

used to access Java objects. This object-based API abstracts away the way

objects are created, and their attributes read and set.

(3)

(1)

(2)

Fig. 10.15 BOM editor for BOM classes. To define a virtual BOM class, we need to (1) specify its

execution name (i.e., corresponding XOM class), (2) specify what conditions instances of the

XOM class need to satisfy (tester), and (3) specify its BOM superclasses

10.3 The Business Object Model 313

Table 10.5 shows the basics of the XSD-based BOM to XOMmapping. Roughly

speaking, XSD’s complex types map to classes, where the type’s<element>s

and attributes map to read/write BOM class data members, and the built-in XSD

types map to the corresponding Java types. If an <element> has a maxOccurs

higher than one, than the element is mapped to a java.util.Vector, with a BOM

annotation that specifies the element type.

Table 10.6 shows excerpts from an XSD, and the corresponding excerpts from

the BOM classes. For the sake of presentation, in the BOM column, the package

names were omitted from the class names, with an ellipsis shown instead (“. . .”).
The reader will notice that all BOM classes in this case inherit from the default

IlrXmlObject, which is the actual implementation class for XML data (more on

this below). The XSD types string, float, and int map to the Java types

java.lang.String, float, and int, respectively. The XSD date type maps

to the ILOG type ilog.rules.xml.types.IlrDate, which knows how to

convert back and forth to a java.util.Date. Notice also how the Policy XSD

+getStartDate() : Date
+setStartDate(in date : Date) : void
+getEndDate() : Date
+setEndDate(in date : Date) : void

-policyType : String
-startDate : Date
-endDate : Date

Policy

-policyType : String
-startDate : Date
-endDate : Date

Policy

0..*

-execution name

1

BOM to XOM mapping (default)

HealthPolicy

0..*

-execution name
1

BOM to XOM mapping (custom)

(1): Specifying Policy as the
execution name for HealthPolicy

(3): Specifying Policy as the
superclass of HealthPolicy

BOM world XOM world

Fig. 10.16 Steps to specialize a BOM class with a virtual BOM class

Table 10.5 The basics of the XSD to BOM mapping

XSD BOM element

Complex type BOM class

XSD element or attribute Read/write BOM attribute

An XSD element with maxOccurs >1 A java.util.Vector attribute with a collection domain

of the element type (i.e., a multi-valued attribute)

Built-in XSD simple types Corresponding java types

Extension and restriction BOM class inheritance

Restricted simple types Corresponding Java type with a literals domain

314 10 Rule Authoring Infrastructure in JRules

elements insured and coverages mapped to java.util.Vector instance vari-

ables, with a domain that is of the appropriate element type (PolicyHolder
and Coverage, respectively); we will talk about domains in Sect. 10.3.5 of this

chapter.22

Table 10.6 The basics of the XSD to BOM mapping

Excerpts of an XSD schema Excerpts of the corresponding BOM

<xs:complexType
name="PolicyHolder">

<xs:sequence>
<xs:element name="name"

type="xs:string"/>
<xs:element name="tin"

type="xs:string"/>
…
</xs:sequence>

</xs:complexType>

<xs:complexType name="Coverage">
<xs:sequence>
<xs:element name="procedure"

type="Procedure"/>
<xs:element name="deductible"

type="xs:float"/>
<xs:element name="yearlyCap"

type="xs:float"/>
<xs:element name="totalToDate"

type="xs:float"/>
</xs:sequence>

</xs:complexType>

<xs:complexType name="Policy">
<xs:sequence>
<xs:element name="number"

type="xs:int"/>
<xs:element name="startDate"

type="xs:date"/>
<xs:element name="endDate"

type="xs:date"/>
<xs:element name="policyHolder"

type="PolicyHolder"/>
<xs:element name="insured"

type="PolicyHolder"
minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="coverage"
type="Coverage"
minOccurs="1"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

public class PolicyHolder extends
ilog.rules.xml.IlrXmlObject

// some custom properties
property …

{
…
}

public class Coverage extends
ilog.rules.xml.IlrXmlObject

// some custom properties
property …

{
…
}

public class Policy extends
ilog.rules.xml.IlrXmlObject

// some custom properties
property …

{public int number
property // custom properties

public …IlrDate startDate
property // custom properties

public …IlrDate endDate
property // custom properties

public …PolicyHolder policyHolder
property // custom properties

public …Vector insuredList
domain 0,* class …PolicyHolder
property // custom properties

public …Vector coverageList
domain 1,* class …Coverage
property // custom properties

… // plus some other stuff
}

22This feature of JRules has been around since 2002, i.e. prior to JDK 1.5 (which came out in the

fall of 2004) which introduced support for genericity, and the handling of collections has remained

unchanged for backward compatibility reasons.

10.3 The Business Object Model 315

Notice that the classes PolicyHolder, Coverage, and Policy exist only

in the BOM; during run-time, the underlying XML data – that conforms to the XML

schema – will be represented by instances of the IlrXmlObject class, regardless

of the BOM class. Indeed, unlike JAX-RPC, JAXB, or JAX-WS frameworks,

JRules does not generate Java classes for the corresponding XML schema complex

types; we can think of the XSD-mapped classes as virtual classes with an execution
class IlrXmlObject.

For now, suffice it to say that if your application manipulates business data

that comes in an exotic, self-describing, and evolving data format, you too could

develop support for your exotic format, at both rule definition time (BOM to XOM

mapping) and at rule execution time.

10.3.4 Refactoring

To use a common cliché, the only constant in today’s business applications is

change. The BOM has a pure layered architecture where each layer depends only

on the layer just below it (see Fig. 10.17). Eclipse’s refactoring functionality has

been extended by the JRules plug-in to propagate changes in a given layer to the

layer just above it. In this section, we review the different kinds of changes, and the

available functionalities to propagate them through the layered structure of

Fig. 10.17.

10.3.4.1 Changes to the XOM

A stable XOM is an elusive goal in many rule projects, especially ones where both

the business layer (i.e., business entities) and the business rules are within scope of

the development or modernization effort. We might as well live with it, considering

Rules

Vocabulary

(business) object model

BOM to XOM mapping

XOM

BOM

Fig. 10.17 The BOM’s

layered architecture enhances

the rules’ resilience to change

316 10 Rule Authoring Infrastructure in JRules

that Rule Studio enables us to cope with the most common situations. If we build

a BOM from a XOM (see Sects. 10.3.1 and 10.3.3), whenever we change the

XOM, we can ask the tool to update the BOM accordingly. This is done by selecting

the corresponding BOM entry, and selecting the action “BOM Update” in the

contextual menu. This will compare the current state of the XOM to the current

state of the BOM, and (a) identify the differences, and (b) propose actions to bridge

those differences. Figure 10.18 shows the interface of Rule Studio’s BOM – XOM

synchronization wizard. The top part shows, side by side, the XOM and the BOM.

The class Coverage (left-hand side) has a warning sign, which indicates that it is not

consistent with the corresponding BOM version. The list of differences is shown in

the lower pane – here just one indicating that the attribute “description” of the XOM

class Coverage could not be found in the corresponding BOM class. For each

difference identified, the tool proposes one or more (generally two) actions that

can be performed to bridge the difference. In this case, the tool proposes to update

the BOM class – and thus, add the attribute “description” to it.
Let us now consider the typical changes to the XOM, and how they could be

handled:

1. Additions. If we add XOM elements, when we re-synchronize the BOM with the

XOM, the tool offers to propagate those additions to the BOM. This works for

both the addition of XOM classes and the addition of function or data members

to existing XOM classes. This will have no effect on existing BOM or rules.

2. Removals. If we remove a XOM element, be it a class or a member of a class, the

BOM update wizard will note that the corresponding BOM element has been

“orphaned” and will offer to either delete it or to “deprecate it.” We could also

do nothing. If we do nothing, Rule Studio will complain that the now-orphaned

BOM element has no XOM corresponding element, in which case, we should

use the BOM to XOM mapping to map it to other existing XOM elements.

Deprecating it means that we set the property “deprecated” of the BOM element

to true, which will flag rules that use it with “deprecated” warnings.23 This will

also stop making the element available in the pull-down lists or code completion

Fig. 10.18 An example of the “Update BOM” wizard, for BOMs created from a XOM

23You may need to “clean” the project for the warnings to show up.

10.3 The Business Object Model 317

feature of the rule editor. We still have to use the BOM to XOMmapping to map

the orphaned BOM element to something. If we delete the BOM element . . . we
better make sure that the element is not used in any rule, first.24

3. Renaming. If we rename a XOM element, depending on where it is performed,

the changed can be propagated automatically throughout the BOM, or will have

to be done manually:

– Renaming done through Eclipse’s refactoring menu. This is possible if the
XOM is a Java project included in the same workspace as the project

containing the BOM. In this case, Eclipse’s refactoring functionality will

propagate the renaming to (a) the BOM, by renaming the corresponding

BOM element, and (b) the vocabulary, by changing the corresponding key in
the vocabulary file, but leaving the value, i.e., the actual verbalization,

unchanged. Figure 10.19 shows an example of rename refactoring, which

is propagated all the way to the key part of the vocabulary file.

– Renaming done manually. This would be the case for any XOM that is not a
Java project within the same workspace, such as an XSD XOM, or a Java

XOM supplied as a jar file, or a bunch of .class files. In this case, the “BOM

Update” facility will note an addition to the XOM, corresponding to the new

name, and a removal from the XOM, corresponding to the old name. We can

handle it either by renaming the BOM element manually, which will propa-

gate it to the vocabulary (see below, BOM changes), or by using the BOM to

XOM mapping to map the BOM element with the old name to the XOM

element with the new name.

Fig. 10.19 Renaming a Java (XOM) method through Eclipse’s refactor will propagate the change

to the .bom and vocabulary file, without affecting the rules that use the member

24Rule queries and Eclipse search functionality enable us to ascertain that. We could also first

deprecate the element then see if any rules generate “deprecated” warnings, and if none do, we

could then safely delete it.

318 10 Rule Authoring Infrastructure in JRules

4. More complex refactorings. In this case, Eclipse’s refactor menu will not do the

trick, as the tool gets confused. Instead, we should use the “BOM Update”

functionality to propagate some of the changes, and fix the rest manually.25

5. Non-semantics preserving changes. If we change the type signature of a method

(e.g., number or types of parameters), then we use “BOM Update,” and it should

be treated as an addition and a removal. In some cases, it may be appropriate to

map the old BOM method to the new XOM method using the BOM to XOM

mapping. For example, if the new XOM method has an additional parameter,

perhaps that parameter has a reasonable default value, and we can keep the old

BOM method, but as a virtual method. This would need to be handled on a case-

by-case basis.

The important thing to note from this analysis is that in any of the above change

scenarios, the rules are shielded by the changes to the XOM, as the change is

absorbed in the various intervening layers between the XOM and the rules.

10.3.4.2 Changes to the BOM

Most changes to the BOM originate from the XOM and were discussed above. The

changes that do originate from the BOM correspond to the addition, modification,

or removal of virtual BOM elements:

1. Additions of virtual BOM elements. This is, for the most part, non-problematic,

except in those cases where the new BOM element has the same verbalization as

an existing BOM element.

2. Modification of a virtual BOM element.Renamings have no effect as the vocabulary

absorbs the change. As mentioned earlier and illustrated in Fig. 10.19, the vocabu-

lary file assigns BOM element phrases that will appear in rules, in a key ¼ value.

Renaming the BOM element will only modify the key part, as illustrated in

Fig. 10.19, leaving the verbalization – and the rules – unchanged. More substantial

changes can break existing rules. For example, if we modify the signature of a

virtual method, its verbalization will need to change to account for the additional/

fewer parameters, which will be propagated to the rules that use it (see below). This,

in turn, will break those rules.

3. Removal. See the discussion above regarding removal, and removal versus

deprecation.

25For example, if we move a data member and its accessors up the hierarchy of classes, the right

thing to do would be to move the corresponding public data member up the BOM hierarchy.

However, the tool cannot do that on its own: the “BOM Update” will enable us to add the member

to the superclass, but will not remove it from the original class, and will not complain about it since

it does have a XOM equivalent. However, if the data member is used in a rule, the rule editor

will complain about an “ambiguous sentence,” meaning that two data members have the same

verbalization.

10.3 The Business Object Model 319

10.3.4.3 Changes to the Vocabulary

If we make a change to the verbalization of a BOM element, and save the BOM,

Rule Studio will prompt the user to confirm the verbalization modification as it may

affect existing rules. If the user accepts to proceed, a refactoring menu is presented

to the user, showing the various rules that use that BOM element/its verbalization

with the before and after text. The user has then the options of (1) rejecting the

change (save), or (2) accepting it and propagating it to all concerned rules or a

subset thereof.

Notice that the propagation of verbalization changes to rules will only work if the
rule is syntactically correct to start with. If the rule is wrong, the result can be

unpredictable: in the best case, the change will not be propagated and the rule will

remain wrong. In the worst case, you lose parts of the rule text.

10.3.5 Enhancing the Rule Authoring Experience

JRules offers a set of bells and whistles that make life easier for rule authors. We

will present two important ones, categories and domains.

10.3.5.1 Categories

Any self-respecting BOMwill have dozens of classes and hundreds if not thousands

of members. While editing rules, the number of drop-downs that are provided to

rule authors is likely to be overwhelming. However, any given rule will typically

address only one facet of the data. In our claim processing example, a rule about the

eligibility of a given procedure will be concerned with coverages attached to the

policy, and not about personal or credit data about the policy holder. JRules offers

a way to filter those BOM elements that show up in rule editors based on the

categories assigned to the BOM elements and the categories assigned to rules.

Figure 10.20 illustrates the relationship between BOM elements, categories,

and rules.

Categories are defined at the project level. By default, a rule project starts with a

single category “Any,” and all BOM elements and rules are assigned the category

“Any.” Thus, by default, rules will pull in all the BOM elements. Assume that we

add the categories “Claim eligibility” and “Claim adjudication” to the project.

We can then assign the category “Claim eligibility” to those BOM elements that

we think are relevant to assessing the eligibility of a claim, and “Claim adjudica-

tion” to those BOM elements that we think are relevant to adjudicating the claim.

Naturally, some BOM elements will be relevant to both areas, and can have both

categories. In this case, the class Claim is relevant to both and will have both

categories. Figure 10.21 shows the Rule Studio wizard for assigning categories to a

BOM class.

320 10 Rule Authoring Infrastructure in JRules

When we define a rule, we can also edit its category filter, which uses a similar

wizard to that of Fig. 10.21 to assign one or more categories to the rule. In so doing,

we determine the subset of BOM elements that are selectable – and thus usable – in

the rule. The default category “Any” plays the role of a wildcard: a BOM element

with category “Any” is available to all rules, regardless of their category filters, and

a rule with category filter “Any” will have access to the entire BOM.26 Table 10.7

illustrates the semantics of the category filter.

Fig. 10.21 Assigning categories to a BOM class

CategoryBOM Element Rule

0..* 1..* 1..* 0..*

Fig. 10.20 The relationship between BOM elements, categories, and rules

Table 10.7 Semantics of category filters

BOM element BE_1 BE_2 BE_3 BE_4 BE_5

Categories Eligibility Adjudication Eligibility,

Adjudication

Any

Rule Category filter

Rule_1 Eligibility Visible Not Visible Visible Not

Rule_2 Adjudication Not Visible Visible Visible Not

Rule_3 Eligibility,

Adjudication

Visible Visible Visible Visible Not

Rule_4 Any Visible Visible Visible Visible Not

26It is technically possible to assign no category to a BOM element, which makes it unavailable for

rule authoring, altogether.

10.3 The Business Object Model 321

Notice that when we assign a category to a class, it is not “inherited” by members

of the class. This may sound counter-intuitive but in the above example, while the

Claim class itself is relevant to both claim eligibility and adjudication, some of

its members will be relevant to only eligibility while others will be relevant to only

adjudication.

10.3.5.2 Domains

The BOM uses Java types, regardless of its origin, be it a Java XOM or an XSD

XOM. Pre-Java 5, if we wanted to represent the state component of a US address, say,

we had two choices: (1) use the Java String type for the java attribute, but then control

what values can be assigned through the input forms, or (2) use what is called the

(pre-JDK 5) Java enumeration pattern with a class State as illustrated below.

public class State {
private String stateCode;
private String stateName;

// getters
…

private State(String code, String name){
stateCode = code;
stateName = name;

}

public final static State AL = new State("AL","ALABAMA");
…
// 50 states later
public final static State WY = new State("WY","WYMONING");

}

JRules enables us to restrict the set of values that a BOM attribute, a BOM

function parameter, or a BOM function return value can take using domains. With

domains, when a rule author is prompted to enter a value for that attribute/parame-

ter/return value, they will get a dropdown list of the domain values, as illustrated in

Fig. 10.22. Here, the “decision” attribute of a Claim, a String, has been restricted to

the values shown using a literal domain, i.e., a domain whose values are explicitly

enumerated.

Generally speaking, JRules enables us to define five kinds of domains:

1. Literal domains. In this case, the values are enumerated. This works for scalar

types and for String. This will also work for actual Java 5 (and beyond)

enumerations: if a BOM attribute or function parameter or return value is a

Java enum, then it will have a literal domain consisting of the elements of the

enumeration.

322 10 Rule Authoring Infrastructure in JRules

2. Bounded domains. For numerical types, where we can specify a range of values.

3. Static references. This corresponds to our State example above. If our Java class

uses the enumeration pattern illustrated below, Rule Studio will automatically
create a domain that includes all of the public static final data members for each

attribute, parameter or return value. We can later edit that domain to remove

values. For example, with the State class above, any BOM attribute, parameter,

or function return value will have a domain consisting of all the enumerated

states. That domain can later be edited to remove or put back states.

4. Collection domains. If a BOM data member or a function parameter or a

function return value is a Java collection (Vector, ArrayList, List, etc.),

we can define a collection domain on that attribute/parameter/return value

by specifying the type of the elements of the collection. For example, the class

Policy has an attribute called coverageList, with the java type

java.util.Vector, we can specify a collection domain on cov-
erageList by stating that its elementType is com.mywebinsurance.
claimprocessing.Coverage. Naturally, if your Java 5 (and beyond)

class used the generic type variety for the vector, i.e., Vector<com.
mywebinsurance.claimprocessing.Coverage>, then Rule Studio

will add the collection domain automatically, with the appropriate element type.

With pre-JDK 5 collections, we have to add them explicitly.

5. Other.We can specify custom domains in cases that do not fit the above patterns,

using an esoteric notation.

Domains are useful for three reasons: (a) convenience to rule authors, (b)

maintaining data value integrity, and (c) support for powerful rule constructs with

the Business Action Language, discussed in Sect. 10.4.2.

Notice that Rule Studio supports the dynamic computation of domains. Con-

sider a domain that enumerates the possible medical procedures. That list will

likely be updated as new medical procedures are developed every day. We would

want that domain to be updated automatically whenever new procedures are added

so that rule authors will automatically get the most up-to-date list of procedures to

Fig. 10.22 The “decision” attribute of Claim has type String, but with a domain {“ELIGIBLE”,”-

INELIGIBLE”,”INPROGRESS”,”INVALID”,”PAID”,”VALID”}

10.3 The Business Object Model 323

write their rules. It is possible to set-up dynamic domains in both Rule Studio

and Rule Team Server, which get initialized at the beginning of each session with

the tool.

10.4 Best Practices

In this section, we present best practices related to the organization of rule projects,

and to the design of the BOM.

10.4.1 Best Practices for Organizing Rule Projects

We just saw in Sect. 10.2.4 how JRules deals with multiple users accessing and

updating the same rule projects, in both the RS and RTS environments. While both

RS and RTS support multiple users concurrently accessing the same rule project, a

rule project does represent an easily manageable modularization boundary, in both

RS and RTS. As such, it can be used as a unit for work for an effective division of

labor. However, when we are trying to divide up work between the members of a

team, we need to be concerned about both (a) enabling team members to work

separately on things that are within their exclusive jurisdiction, with no interference

from others, and (b) enabling them to share the things that are common to their

work. This is where project dependencies, discussed in Sect. 10.2.2, come in handy.

Figure 10.23 illustrates the idea. The common rules are defined in a separate

A rules B rules

C
om

m
on

ru
le

s

Common
rules

A rules B rules

Fig. 10.23 Using project dependencies to better modularize rule projects that share some rules

324 10 Rule Authoring Infrastructure in JRules

project, and are thus (a) made accessible to both projects, and (b) maintained

separately from them.

Project dependencies also come in handy for building and maintaining BOMs.

Because different decisions/rulesets may use the same BOM, we should define the

BOM in a separate project and have projects for rules that depend on that BOM

refer to that project. Going one step further, we could also use project dependencies

and the notion of a BOM path (see Sect. 10.2.2) to build the BOM incrementally.

For example, in the case of MyWebInsurance, we use rules for new policy under-

writing, rules for policy renewal, and rules for claim processing. All three decision

areas refer to a Policy and the PolicyHolder’s basic data. Policy underwriting

and policy renewal would also refer to the PolicyHolder’s DrivingRecord and

CreditProfile. On the other hand, policy renewal and claim processing refer to

Claim’s, past (for renewal) and present (for claim processing). We could thus a first

rule project with no rules in it but just the basic common BOM, i.e., containing

Policy and PolicyHolder. Other BOM-only rule projects are then created to add

process-specific BOMs. And so forth. Figure 10.24 illustrates this idea.

The example of Fig. 10.24 is just another variation of Fig. 10.2: when have two

or more rule projects that overlap (BOM-wise or rule-wise, or ruleflow-wise, etc.),

we separate the common parts from the exclusive parts and put each in a project

where the projects with the exclusive parts refer to the project with the common

parts. Figure 10.25 shows the full pattern.

BOM-only project
with common classes

BOM-only project with
extensions for claim

processing

Rules-only project for
policy renewal

Rules-only project for
claim processing

Rules-only project for
new policy underwriting

BOM-only project with
extensions for new
policy underwriting

BOM-only project
with extensions for

policy renewal

Fig. 10.24 Using project dependencies to build specialized BOM by leveraging commonalities

10.4 Best Practices 325

We will talk about rule execution orchestration in more detail in Sect. 11.3. For

the time being, suffice it to say that an orchestration-only rule project is a rule

project that defines a ruleflow, which is a process flow for rule execution where each

task of the process flow typically runs the rules contained within a rule package.

Thus, an orchestration-only project would define a rule flow that sequences the

execution of rules (rule packages) defined in the rules-only layer. This enables us to

reuse the same set of rules for different processes. For example, the same policy

data validation rules could be used for both new policy underwriting and for policy

renewal. Thus, such rules would be defined in one rule project, which could be

referenced by two orchestration-only rules that pull those rules in for both pro-

cesses. We will revisit this topic briefly in Sect. 11.3.

10.4.2 Best Practices for the Design of the BOM

The clear separation that JRules draws between the actual implementation of

application data (the XOM) and the business view of it (the BOM) is a very

powerful feature. It provides “rule architects” with lots of degrees of freedom,

Core BOM

Specialized BOMs

R R R

R RRRR

R RRR

BOM-only
rule project
layer

Rule-only
rule project
layer

Orchestration
-only rule
project layer

Fig. 10.25 A recommended three-layer rule project structure

326 10 Rule Authoring Infrastructure in JRules

and, alas, too much creativity. As with many features of the product, they should be

used wisely, and we should show restraint in ringing all of the bells and blowing all

of the whistles. In this section, we present some best practices.

10.4.2.1 Best Practice 1: Build Your BOM from Interfaces

If you are doing anything remotely OO or Java, there are a bazillion reasons to

program to interfaces, as opposed to classes, and most authors hammer that

message, and most frameworks rely on such a separation. We will give you a few

more reasons to separate interfaces from implementations, by showing you the

benefits of building your BOM based on interfaces, as opposed to based on the

classes that implement them.

Recall that when you build a BOM from XOM, the BOM builder ignores all of

the XOM elements that are not public: any model element that is private, protected,

or package is ignored. Second, implementation classes will typically have business
functions, but will also included many utility methods that provide services to the

business functions, or that implement non-business infrastructural services (saving,

loading, serializing, logging, etc.). Such methods will only clutter the BOM, and we

know that they will not be needed to write rules. Thus, business interfaces will
contain all of the necessary and sufficient elements you will need in the BOM.27

Then there is the issue of nomenclature. Business interfaces (typically/should)

use implementation neutral terminology. A policy is called Policy and not Policy-

Bean, or PolicyImpl or PolicyTransferObject, or PolicyDAOImpl, or PolicyDAO-

BeanObserver, or PolicyDAOImplFacade. As we saw above in Sect. 10.3.2, the

Rule Studio BOM builder does a pretty good job of verbalizing your classes. If you

use the names used in your implementation classes, they are likely to be polluted by

initials of the authors, prefixes or suffixes of the various frameworks that you are

using, markers of the coolest design pattern you just read about, etc.

But the strongest argument of all is the applicability of your rules. Assume that

you build your BOM from the classes shown in Fig. 10.26. Here we assume that

PersonalAutoPolicy deals with vehicles used exclusively for personal activ-
ities whereas CommercialAutoPolicy deals with vehicles used exclusively

for business activity. The BOM classes will mirror this structure. If you write a rule

about a AutoPolicy, and you hand your rule engine an PersonalAuto-
Policy, the rule will be evaluated on that policy and will fire if applicable.

Idem for CommercialAutoPolicy. You would also typically have rules spe-

cific to PersonalAutoPolicy and others specific to CommercialAuto-
Policy. Assume now that MyWebInsurance decides to create a novel auto

insurance product that combines the features of a personal and business auto policy:

we will call it DualUseAutoPolicy. This kind of insurance will share some

27Naturally, provided they are properly designed.

10.4 Best Practices 327

characteristics with PersonalAutoPolicy and others with Commercial-
AutoPolicy. We would also want to reuse the corresponding rules about

PersonalAutoPolicy and about CommercialAutoPolicy. With Java

classes, this would not be possible: the DualUseAutoPolicy class can

inherit from either PersonalAutoPolicy or CommercialAutoPolicy,
but not both. And thus, we would be able to reuse either the relevant rules about

PersonalAutoPolicy or the ones about CommercialAutoPolicy, but
not both. With Java interfaces, we can define a java interface DualUseAuto-
Policy that extends both PersonalAutoPolicy and CommercialAuto-
Policy, the BOM classes (interfaces in this case) will mirror that structure, and

rules specific to either PersonalAutoPolicy or CommercialAuto-
Policy, will apply to DualUseAutoPolicy.28

10.4.2.2 Best Practice 2: Too Much of a Good Thing . . .

The layered architecture of the rule authoring stack of JRules provides a very clean

abstraction mechanism. This enables us to limit the impact of the changes we make

to the different layers (see Fig. 10.12). This is important because when we start

identifying and coding rules, we frequently identify new data requirements,

typically new business attributes or actions that rule authors need to write rules

-number
-startDate
-endDate

AutoPolicy

CommercialAutoPolicy PersonalAutoPolicy

DualUseAutoPolicy

?

a b

+getNumber()
+get / setStartDate()
+get / steEndDate()

«interface»
AutoPolicy

«interface»
CommercialAutoPolicy

«interface»
PersonalAutoPolicy

«interface»
DualUseAutoPolicy

With classes, a DualUseAutoPolicy can inherit rules about
either CommercialAutoPolicy or PersonalAutoPolicy, not both

With interfaces, we can

Fig. 10.26 Building the BOM from interfaces yields more robust and more reusable rules

28OK, maybe you do not want all of the rules that are specific to either PersonalAutoPolicy
or CommercialAutoPolicy to apply to DualUseAutoPolicy’s and that is OK, because

the tool allows you to pick and choose (see Sect. 10.5 about rule orchestration).

328 10 Rule Authoring Infrastructure in JRules

(e.g., new attributes). In general, if the application object model has been thought

out thoroughly, most of the data and functionality will be present in the XOM in a

“raw” form: then, it is just a matter of computing the required attributes from the

existing ones (e.g., computing age from birth date), or implementing virtual func-

tions that provide a convenient shorthand for some XOM functionality. Either way,

the new data and function requirements will be defined in the BOM to XOM

mapping. Naturally, there will be cases when the required data or functionality is

not present in any shape of form. In that case, we need to make changes to the

XOM. But as the project progresses through the various iterations of ABRD (see

Chaps. 3 to 5), and as the application goes into maintenance mode, the XOM should

become fairly stable.

At what point does the BOM to XOM mapping become too much of a good

thing? As mentioned in Chap. 8, the BOM and the XOM need to satisfy different

sets of requirements: the BOM needs to be close to the business, at the expense of

some redundancy, and the XOM needs to be “canonical,”29 at the expense of some

readability.

First, by design, given a well-designed XOM, all of the virtual BOM elements will

be more or less redundant with other elements. The convenience of having a BOM

element to express every nuance and relationship between concepts comes at a price:

1. The possible confusion between close BOM concepts

2. The conceptual overhead of learning a rich vocabulary

For example, assume that some rules need to reason about service acts that cost

more than some value. We could either add a virtual method to the class Claim
that does just that:

Collection<ServiceAct> getServiceActsCostingMoreThan(float cost);

with the verbalization:

the service acts of {this} that cost more than {0};

and code the “cost filter” in the BOM to XOMmapping by iterating over the service

acts of the claim, and returning those that cost more than the argument. Or,

assuming that the service acts of a Claim are verbalized as “the service acts of

{this},” we could code the “cost filter” directly in the rule language (see BAL in

Sect. 10.4.2) as in:

set 'costly service acts' to all service acts in the service acts of
'my claim' where the cost of each service act is at least 500;

29That is, it contains a minimum number of “orthogonal” concepts that can accommodate the most

data or functionality needs.

10.4 Best Practices 329

Editing the BOM to accommodate new rules should be an exceptional occur-
rence, especially in rule maintenance mode; we should not have to edit the BOM –

and add one virtual function – for every condition any business user or policy

manager can think of. Alas, we have seen many customer projects where the BOM

grows linearly with the rule set . . .
There is another reason why one should not put too much in the BOM to XOM

mapping. Unlike Java code, which source-code management software handles quite

well (class/file-level versioning, class member granularity for merging conflicting

versions, documenting changes), the BOM to XOM mappings are all lumped into

a single file, with coarse-grained versioning, and little or awkward visibility to

developers. This makes it into the least manageable part of your code. Of course,

there are legitimate uses for virtual functions and the BOM to XOM mapping, and

once an application has gone into production, we certainly do not want to deploy a

new version of the application (the XOM) each time some rule needs a new

computed attribute or a new convenience method. Between application/Java code

releases, we should use all the tricks of the book. However, with each planned code

release, we should take the time to revisit the virtual BOM elements and their BOM

to XOM mappings and assess whether they should be pushed back to the XOM. If
the virtual BOM element embodies significant and generally useful business logic,
then that element and its BOM to XOM mapping should be pushed back to the

XOM at the next opportunity. Computing an age from a birth date does not

represent significant business logic – it is rather trivial. Computing the compound

yearly interest rate of a loan based on the daily interest rate – or vice-versa – is

significant and generally useful, i.e., useful to other parts of the business application
besides the rule service.

10.4.2.3 Best Practice 3: Do Not Be Too Creative

Consistency is a highly desirable property in software: you choose an architecture, a

design, a pattern, a coding style, a nomenclature, a file structure pattern, what have

you, and you apply it uniformly. Consistency is desirable because it makes software

understandable, maintainable, scalable, etc., and its components reusable, portable,

and all around adorable. Consistency comes at a cost: whichever pattern you choose

(architectural, design, coding, structuring, naming, etc.), it will not be optimal in
every situation, or for every component or part of your software. If you choose your

patterns carefully, they will be optimal or near optimal most of the time. For the

remaining cases, live with the awkwardness or sub-optimality: it is a small price to

pay for the resulting consistency!

This general principle applies also to the BOM and the vocabulary. Do not be too

creative. Take the example of verbalization. Rule Studio generates decent to good

verbalizations, 95% of the time.30 It also knows a bit about grammar. Do not tweak

30Less if you use lousy naming patterns – or none at all – in your XOM/Java code.

330 10 Rule Authoring Infrastructure in JRules

verbalizations to death so that your rules will read like English: they will not and

they do not need to. We are not writing poetry: the rules need to be understandable

and precise, not necessarily perfectly constructed English sentences or pleasant to

the ear. Consistency makes learning the BOM and the vocabulary much easier, and

the resulting rules less error-prone.

10.5 Discussion

In this chapter, we discussed rule projects and the Business Object Model.

Together, they provide the basics of the rule authoring infrastructure. They also

play a crucial role in the quality and the manageability of the rules. A poor BOM

design can lead to rules that are barely better than programming code. A poor BOM

design can also lead to rules that are brittle, i.e., that are not properly shielded from

non-essential changes taking place on the XOM side. A poor rule project design can

lead to an inefficient and chaotic division of labor between rule developers. It can

also lead to poor rule reuse and sharing and to nightmarish rule maintenance. It is

critical to get those designed right before rule authoring can start. Naturally, the

BOM will most likely continue to evolve during rule authoring and maintenance,

but we have to get the basic architecture of the BOM right before we start. The

design guidelines and best practices provided in this chapter should give you a head

start.

The design tasks, skills, and decisions described in this chapter fall within the

purview of the rule architect. A typical rule writer does not have the skill, and

should not be given the responsibility, of designing rule project structure and the

various BOMs. Chapter 11 will address rule writer-specific tasks and skills within

the context of JRules.

10.6 Further Reading

As this chapter is JRules specific, additional sources of information can be found in

the product documentation and on IBM’s support site for Websphere Ilog JRules.
More information about the rule engine execution algorithms can be found in Chap.

6 and its references. The web site http://www.agilebrdevelopment.com, which is

dedicated to this book, contains complementary information.

10.6 Further Reading 331

Chapter 11

Rule Authoring in JRules

Target audience
l Business analyst, developer, rule author

In this chapter you will learn
l The different rule entry languages and rule artifacts, namely,

technical rules, action rules, decision tables, decision trees, and
scorecards

l How to build your custom rule language
l How to orchestrate rule execution with ruleset parameters and

ruleflow
l How to optimize rule execution by selecting the appropriate rule

execution algorithm for a given rule task

Key points
l The Ilog Rule Language (IRL) is the foundation upon which other

languages and rule artifacts are built.
l Action rules, decision tables, decision trees, and scorecards are

translated into/executed as IRL technical rules.
l Be aware of the possibility to develop your own rule language

(with the Business Rule Language Development Framework), but
resist the temptation to.

l Refer to your application objects through ruleset parameters.
l Use ruleflows to orchestrate rule execution. They provide a high-

level control mechanism and a context for rule execution.
l Ruleflows offer opportunities for speeding execution through run-

time rule selection, and algorithm selection.

11.1 Introduction

In Chap. 10, we explored the rule authoring infrastructure in JRules, where we

focused on rule projects and the business object model. Rule projects and rule project
dependencies enable us to modularize rule development in such a way as to facilitate

the sharing and reuse of rule artifacts across different functional areas. The business

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_11, # Springer-Verlag Berlin Heidelberg 2011

333

object model represents the business view of the application data – be it Java classes

or XML data. It is defined through a powerful (BOM to XOM) mapping language in

much the same way that relational database views are defined using the underlying

database, by filtering irrelevant properties, defining computed attributes, or introdu-

cing so-called virtual classes that mean something to business but that are not

supported in the underlying application model (Java or XSD). In particular, we saw

how the architecture of the BOM and the BOM to XOM mapping is able to absorb a
wide range of changes to the underlying application model (Java or XSD), without

affecting the existing rules. If it is the rules that we want to rephrase, a vocabulary
refactoring functionality propagates vocabulary changes to the rules that use them.

In this chapter, we first explore the different kinds of rule languages (the ILOG
Rule Language, or IRL, and the Business Action Language, or BAL) and rule artifacts
that use them, namely, technical rules (IRL), action rules (BAL), decision tables
(BAL), decision trees (BAL), and scorecards (IRL). We also provide an overview of

a framework for developing rule languages. In Sect. 11.3, we discuss rule execution

orchestration, where the focus is on organizing the execution of rules during run-time.

We will talk about ruleset variables and parameters and about ruleflows, which are

process flows whose tasks consist of groups or rules. Ruleflows enable us, among

other things, to statically select the algorithm to use to execute for a particular rule

task, and to dynamically select the rules that execute within a particular task. Best

practices are presented in Sect. 11.4. We conclude in Sect. 11.5.

11.2 Rule Artifacts

In this section, we give a brief overview of the various rule artifacts. Space

limitations do not allow us to delve too deeply into any of the artifacts or languages

covered; the tutorials and reference manuals included in the product documentation

do a much better job at that! Our purpose is to provide the reader with a roadmap of

the rule artifacts, and the relationships between them.

With this in mind, it makes sense to start with the IRL language, or ILOG Rule
Language, which is the ancestor of all of the languages and artifacts,1 and technical
rules which are if-then rules written using IRL. IRL is also the only language that the

rule engine understands, and every other language or artifact has to map to IRL. We

then talk about the Business Action Language, which references the business vocabu-
lary as opposed to the BOM elements directly, and action ruleswhich are if-then rules
written inBAL.Wenext talk about decision tables anddecision trees, which are higher-

level rule aggregates written using the BAL. Scorecards represent yet another high-

level artifact typically used in risk assessment or credit worthiness applications. Finally,

we briefly talk about the business rule language development framework, which is a

flexible framework for developing rule languages, of which the BAL is an instance.

Figure 11.1 shows the different kinds of languages, artifacts, and relations between

them. Ruleflows will be discussed in Sect. 11.3 about rule execution orchestration.

1The first full-fledged ILOG Rule Language was based on the rule language OPS5 (see Chap. 6).

334 11 Rule Authoring in JRules

11.2.1 IRL and Technical Rules

As shown in Fig. 11.1, the ILOG Rule Language is the base language for rule

artifacts of JRules, including, but not limited to, if-then “technical rules”. Histori-

cally, IRL was synonymous with if-then rules, and so we will start with the subset of

IRL that concerns if-then rules, called technical rules as opposed to action rules
which are written using the BAL. Let us first start with a simple example.

rule YoungDriver {
 property priority = 0;
 when {

 ?driver: Driver(age < 25);
 } then {

 System.out.println(“Found a young driver:” + ?driver);
 }

 }

A rule has a name (YoungDriver), some metadata/properties (property
priority ¼ 0), an if/when/condition part (when{?driver: Driver
(age < 25);}), and a then/action part (then {System.out.
println(“Found a young driver:” + ?driver);}). This

rule will fire for those instances of class Driver found in working memory,

whose age attribute is smaller than 25. For each such driver, the rule will print the

string “Found a young driver:” followed by the output of the toString()
method on that object. The expression Driver(age < 25) is called a class
condition, where the class name is Driver, and the condition is age < 25

Ilog Rule
Language (IRL)

Business Action Language
Business Rule Language

Develop Framework

Action RulesTechnical Rules

translates-into

written-in

written-in

Decision tablesDecision treesScorecardsRuleflows

written-in
translates-into

written-in

translates-into
translates-into

translates-into

translates-into

Your language?

la
ng

ua
ge

s
ar

tif
ac

ts

Fig. 11.1 The rule language landscape in JRules

11.2 Rule Artifacts 335

whereage in this case refers to a public data member of the classDriver. The

expression’“?driver : . . .” is a variable binding, where ?driver is the

variable name. In this case,?driverwill be bound to an instance ofDriver
that matches the condition age < 25, and becomes referencable in subsequent

conditions or actions of the rule. The action part of the rule shows some vanilla-

flavor Java. Indeed, we can use pretty much any Java expression in the action part,

with the following limitations:

1. The underlying object model (“vocabulary”) is the BOM and not the XOM. This

means that only the classes that are part of the BOM are “referencable.”2 For

example, if the underlying Java class Driver has a pair of getter/setter

for attribute age, in IRL, we set the value of age using the dot notation

(?driver.age ¼ 24), i.e., by manipulating the BOM class, as opposed

to using the setter (?driver.setAge(24)). Further, we can refer to

virtual classes and virtual class members (see Sect. 10.3.3), which do not exist in

the real world (Java).

2. The definition of complex types (classes, interfaces, enums) is not supported, but

who would do such a thing in the action part of a rule, anyway.

3. Some exotic expressions are not supported, e.g., the instantiation of anonymous

Java classes.

Consider now this next rule:

rule big_claim_over_90_days_past_exp_date_policy {
 property effectiveDate = java.util.Date(“1/1/2010”);
 property expirationDate = java.util.Date(“12/31/2010”);
 property status = “development”;
 when {

?myPolicy: Policy(?bDate: beginDate; ?eDate: endDate);
?claim: Claim(amount > 1000; date.before (?bDate) ||

date.moreThan(90,?eDate);
policy == ?myPolicy);

 } then {
 ?claim.status = Claim.REJECTED;
update ?claim;

 System.out.println(?claim+ “ is rejected because …” +
?myPolicy);

 }
}

2When we build a BOM entry from a Java project, we not only “import” the classes from that

project, but we also “import” commonly useful classes from the Java library including basic types,

collections, java.util.Date, java.util.Calendar, etc. These additional classes constitute what JRules

calls the boot bom. Empty BOM entries actually are not empty: they contain the boot bom. The
default boot bom can be changed.

336 11 Rule Authoring in JRules

More often than not, rules have effectiveness periods during which they are in

force. Rules can expire if they are replaced by new rules, or if they embody a time-

limited policy such as limited-duration promotional campaigns and such. The

property status is used to assign a development status to a rule. Indeed, like

other software artifacts, rules will undergo a development lifecycle starting with

the coding of the rule (status ¼ 00development00) to its testing, from

which a rule can either be rejected or promoted to production. A rule that is in

productionmay return to development, for debugging or maintenance, or retirement –

if it is superseded by new rules. We will talk about rule governance in Chaps. 16

and 17.

Consider now the condition part of the rule. This rule has two class
conditions which are considered to be ANDed. The first class condition

(?myPolicy: Policy(. . .);) is actually no condition: It will

match any Policy object in working memory, and will bind the values of

its beginDate and endDate attributes to the variables ?bDate and

?eDate. The second class condition on Claim consists of three test/condi-

tions, also considered to be ANDed: (a) a condition on the amount (amount >
1000), (b) a condition on the date of the claim, which says that the

date of the claim is either prior to the beginning of the policy or is more

than 90 days past ?eDate, i.e., more than 90 days past the endDate
of ?myPolicy (date.before (?bDate) || date.mor-
eThan(90,?eDate)), and (c) a condition tying ?myPolicy to

?claim. The last condition (policy ¼¼ ?myPolicy) ensures that,

should the working memory of the engine contain several policies and several

claims, the rule only matches < ?claim,?myPolicy > pairs that are

related. In JRules-speak, the last two conditions are called join conditions because
they relate two objects together.

The action part of this rule shows three statements. The first and third statements

look like regular Java. The second statement (update ?claim) tells the engine

to reevaluate the rules involving the object ?claim. Indeed, the engine needs to

be told explicitly which objects may have changed in a way that might match new

rules, or invalidate existing ones.3

Let us take a first shot at the grammar for technical rules, using a mixture of

EBNF4 and regular expressions:

3Recall the discussion in Sect. 6.3.2 regarding the engine notification. The good news is that BAL

rule authors do not need to worry about this, because this behavior can be configured at the BOM

level. Indeed, we can set up a particular data member setter (or void function member) to

automatically trigger an update when used in the action part of a rule. We will come back to

this in the next section when we talk about BAL to IRL translation.
4EBNF stands for Extended Backus-Naur Form. People familiar with Yacc or ANTLR will

recognize the syntax. Things that are supposed to appear as-is (language keywords) appear

between quotes. Things that are optional appear between square brackets ([optional]). Groups of

things that can appear zero or more times appear as (. . .)*.

11.2 Rule Artifacts 337

• TECHNICAL RULE ::= “rule” RULE_NAME “{“ (RULE_PROPERTY)*
“when {” CONDITIONS “} then {” ACTIONS “}}”

• RULE_PROPERTY ::= “property” PROP_NAME “=” PROP_VALUE “;”
• CONDITIONS ::= CONDITION (CONDITION)*
• CONDITION ::= CLASS_CONDITION | EXISTS_COND | NOT_COND |

COLLECTION_COND | EVALUATE_COND | WAIT_COND
• CLASS_CONDITION ::= [VAR_NAME “:”] SIMPLE_CLASS_COND “;”
• SIMPLE_CLASS_COND ::= CLASS_NAME “(“ TEST_BIND_LIST “)”

[SCOPE_EXPRESSION]
• SCOPE_EXPRESSION ::= “from” SINGLE_OBJ_EXPRESSION | “in”

COLLECTION_OBJ_EXPRESSION
• TEST_BIND_LIST ::= TEST_OR_BINDING (“;” TEST_OR_BINDING)*
• TEST_OR_BINDING::= TEST | BINDING
• NOT_COND ::= “not” SIMPLE_CLASS_COND “;”
• EXISTS_COND ::= “exists” SIMPLE_CLASS_COND “;”
• EVAL_COND ::= “evaluate(“ TEST_BIND_LIST “);”
•

•

COLLECTION_COND ::= [VAR_NAME “:”] “collect”
SIMPLE_CLASS_COND [“where(“ TEST_BIND_LIST “)”] “;”
ACTIONS ::= ACTION (ACTION)*

Wewill say a few words about the different types of conditions. This will help us

understand the BAL to IRL translations, to be discussed in the next section.

Consider the following condition:

rule no_expensive_claims_in_WM {
 when {not Claim(amount > 1000);}

then {System.out.println(“No expensive claims in WM”);}
}

The condition part is satisfied if there are no claims in working memory worth

more than 1,000. Similary, the rule:

rule there_are_expensive_claims_in_WM {
when {exists Claim(amount > 1000);}
then {System.out.println(“there are expensive claims in

WM”);}
}

will fire once if there exist claims worth more than 1,000. In particular, if there

are one or a hundred such claims, the rule will still fire only once. Contrast that with

rule found_an_expensive_claims_in_WM {
when {Claim(amount > 1000);}
then {System.out.println(“found expensive claim in WM”);}

}

which will fire for every claim in working memory that is worth more than 1,000.

338 11 Rule Authoring in JRules

Consider now the following rule:

rule policy_with_no_expensive_claims {
 when {

?myPolicy: Policy();
not Claim(amount > 1000) in ?myPolicy.getClaims();
} then {
System.out.println(“Policy with expensive claims”);
}

}

In this case, we look for a policy in working memory, and check that there are no
claims, for that policy (in ?myPolicy.getClaims()) that are worth

more than 1,000. The expression “in ?myPolicy.getClaims()” cor-

responds to what we referred to in the grammar asSCOPE_EXPRESSION. We

use in when the scope is a collection (?myPolicy.getClaims()) and
from when the scope is a single object.

Let us now illustrate an example of COLLECTION_CONDITION.

Consider the following rule:

rule policy_with_more_than_3_at_fault_claims {
 when {

?myPolicy: Policy();
?claims: collect Claim(amount > 1000;
 responsibility == AT_FAULT) in ?myPolicy.getClaims()

where (size() > 3);
 } then {
 System.out.println(?myPolicy + “ had more than 3 ” +

“at-fault claims worth more than 1000”);
 }

}

In this case, the variable ?claims will contain a collection5 of the claims of

?myPolicy that are worth more than 1,000, with AT_FAULT responsibil-

ity. The “where” clause indicates conditions on the collection, in this case

(size() > 3).

We conclude our overview of IRL by an illustration of the evaluate condi-

tion. The evaluate condition is a convenience construct that enables us to group

variable bindings and tests outside of a class condition. For example, the rule

big_claim_over_90_days_past_exp_date_policy
shown above can be written as follows using an evaluate:

5The exact type is ilog.rules.engine.IlrCollection, which is a dynamic
collection in the sense that objects will be automatically removed from the collection as soon as

they no longer satisfy the conditions that got them in.

11.2 Rule Artifacts 339

rule big_claim_over_90_days_past_exp_date_policy {
 property effectiveDate = java.util.Date(“1/1/2010”);
 property expirationDate = java.util.Date(“12/31/2010”);
 property status = “development”;
 when {

?myPolicy: Policy();
 ?claim: Claim();
evaluate(?bDate: ?myPolicy.beginDate;

?eDate : ?myPolicy.endDate;
 ?claim.amount > 1000;
 ?claim.date.before(?bDate)||
 ?claim.date.moreThan(90,?eDate);
 ?claim.policy == ?myPolicy);

 } then {
 …

 }
}

In other words, we took all of the bindings and tests out of the class conditions,

and grouped them in the (external) evaluate condition. The Boolean value of an

evaluate is the conjunction of the individual tests contained within. In fact, the

technical rules generated from BAL rules look like this (more about the BAL to IRL

translation in the next section). Note that, considering that the conditions clauses of

a rule are ANDed, the evaluate enables us to write disjunctions between tests

that are part of different class conditions.

In this section, we skimmed the surface of the IRL language. There are a number

of rule-specific constructs that can be used within the condition and action parts of a

rule that we did not talk about:

1. Constructs for event management: The IRL (and the JRules rule engine) enables us

to reason about time and events. For example,we canwrite a rule that says “if event

A occurred, wait 5 s for event B to occur, if it does, do X, if you time out, do Y.”

2. Constructs for truth maintenance: There are situations where rules create objects

fromwithin their action parts when their condition part is satisfied. Consider the e

xample of amonitoring application that creates anAlarm or aServiceRequest
object when some parameter of the system or device being monitored goes out of

range.With normal rules, if the parameter in question returns to its normal range,

the Alarm or ServiceRequest remains in working memory and will be

processed. If we want the Alarm or ServiceRequest to be retracted if the

conditions return to normal, we use specific constructs within the rule.6

6Called logical conditions and logical assert. The system maintains some sort of a reference-count

of justifications for Alarm (or ServiceRequest) objects, and we need to redefine the

equalsmethod on the classAlarm (orServiceRequest) accordingly. More can be

found in the product documentation.

340 11 Rule Authoring in JRules

3. Constructs for working memory management within the action part of rules.

Actually, we saw one: the update keyword. There is the insert, retract,
modify, and update refresh. All of these have equivalent methods in the

IlrContext class. More about these constructs can be found in the product

documentation.

4. The else clause in rules. Indeed, IRL rules can have an else clause, but with a

special meaning: the “else action part” is executed when all the conditions but

the last evaluate statement yield true.7

Finally, as mentioned above, the IRL is not just for writing technical rules: It is also

used to write functions and ruleflows. We will talk about ruleflows in Sect. 11.3.2.

11.2.2 BAL and Action Rules

When we deliver trainings, we lose developers at about this point. They tune out

and start playing with IRL exploring the limits of the language, raising their heads

only to ask questions. Alas, for all its power – we have only scratched the surface –

the IRL is not appropriate for business consumption. Business cannot understand

IRL rules, cannot relate them to business logic, and cannot own them, by taking

over rule development and maintenance; if we code business rules in IRL, we defeat

the major tenets of the business rules approach. The Business Action Language
(BAL) enables all of the above.

The basic structure of a BAL action rule is illustrated below. A typical BAL rule

has three parts:

1. A definitions part, to declare rule variables to be referenced in the condition
part, the action part, or subsequent definitions

2. An if part, which consists of a Boolean expression that typically uses the

variables of the rule

3. A then part, consisting of one or several actions that typically use the variables

of the rule, ending with a semi colon (“;”)

7We would not explain it any further, especially that we strongly recommend not using else,

because it makes rules error prone and the ruleset hard to maintain.

11.2 Rule Artifacts 341

As mentioned earlier, when we talked about the BOM, BAL rules, much like

IRL rules, refer to elements of the BOM. However, whereas IRL rules refer directly
to the BOM elements using a Java-like object notation, BAL rules refer to BOM

elements through their verbalizations. We show below the corresponding IRL

translation.8

 rule claim_date {
 property status = "new";
 when {
 current_claim: Claim();
 evaluate (current_claim.fileMoreThanXDaysAfter(90,

current_claim.policy.startDate.toDate()));
 } then {
 current_claim.decision = "INELIGIBLE";
 update current_claim;
 current_claim.logRuleFiringWithMessage("Claim filed
too late");
 }
 }

The BAL definition of the variable “current claim” yielded the simple class

condition, with an object binding:

current_claim: com….Claim();

and the condition of the if part ended up in a single evaluate statement. This is

the general translation pattern from BAL to IRL. Lest we oversimplify:

1. definitions become simple class conditions.

2. The conditions of the if part get lumped into a single evaluate statement.

3. The BAL then part maps to the (IRL) then when part.

Two points are worth noting. First, the reader may have noticed the “update
current_claim;” action shown in the IRL translation. This action was

inserted in the action part of the rule after the assignment of a new value to the

decision attribute of the BOM class Claim, because that attribute had the

“Update object state” option checked. Second, the BAL to IRL

translator replaced the white space in the variable name (“current claim”) by
an underscore (current_claim) to make the variable name IRL/Java

compliant.

In the remaining paragraphs, we will talk briefly about definitions and variables,

the condition part, and the action part. Before we do that, we will present the

high-level structure of the language in a similar notation to the grammar of the IRL

shown in the previous section:

8In this and subsequent IRL translations, we omitted class package names for presentation

purposes. Just be aware that the real IRL code shows fully qualified class names in class

conditions.

342 11 Rule Authoring in JRules

• BAL_RULE ::= [DEFINITION_PART] [CONDITION_PART]
ACTION_PART [ELSE_PART]

• DEFINITION_PART ::= “definitions” DEFINITION “;”
(DEFINITION”;”)*

• CONDITION_PART ::= “if” CONDITION ((and | or)
CONDITION)*

• ACTION_PART ::= “then” ACTION“;”(ACTION ”;”)*
• ELSE_PART ::= “else” ACTION“;”(ACTION ”;”)*

Notice that:

1. Only the action part is required in a BAL rule; everything else is optional. Thus,

the following is a valid BAL rule.

2. A BAL rule can have an else part. As with the case of IRL, we discourage the

use of the else, and for similar reasons.

3. The conditions of the condition part can be combined freely using the logical

operators and and or.

We will further expand on the different components as we talk about them.

Definitions and variables. To write conditions and actions on objects, we need to
refer to them through variables. In BAL (and IRL), there are three different kinds

of variables:

1. Rule variables. These are variables defined in the rule itself through the DEFI-
NITIONS part of the rule. Such variables have rule-scope: They are only visible

within the rule, and only live while the rule is being executed.9 In particular,

the names of these variables need only be unique within the context of a single

rule; several rules can use the same variable name (e.g., “current claim”).
2. Ruleset variables. These are variables that are defined at the rule project level.

They are visible within all of the rules of a project, and they live during one

ruleset execution.

3. Ruleset parameters. These variables are also defined at the rule project level, and
are visible within all of the rules of a project. They are used to pass data in and

out of the engine during ruleset execution.

The difference between ruleset variables and rule parameters is like that

between the local variables and parameters of a function.

9The lifetime issue is a bit more complex: It spans the evaluation of the condition part and the

lifetime of the rule instance, if one is created. See Chap. 6.

11.2 Rule Artifacts 343

We will talk about ruleset variables and parameters in Sect. 11.5. Here we focus

on rule variables. The syntax for a rule variable definition can be described as

follows:

• DEFINITION ::= “set” VAR_NAME “to”VAR_VALUE [“where”
BOOLEAN_EXPRESSION]

• VAR_VALUE ::= CONSTANT | REFERENCED_VAL| ANON_OBJ_VALUE |
ANON_OBJ_COLL

• REFERENCED_VAL ::= VAR_NAME | ATTRIBUTE REFERENCED_VAL
• ANON_OBJ_VALUE ::= BOM_TYPE [SCOPE]
• ANON_OBJ_COLL ::= “all” BOM_TYPE [SCOPE]

The following illustrates the first three types of definitions:

The first definition corresponds to setting a variable to a constant. The next three

correspond to setting a variable to an anonymous object value (ANON_OBJ_
VALUE), with three variants: (a) simplest, (b) with scope, and (c) with scope and

test. The last three definitions correspond to REFERENCED_VAL . The first

(0expensiveserviceactcost0) illustrates the case where we create
a variable to hold the value of a scalar attribute. The last two (0current
policy0 and 0young policy holder0) show the case of a

variable that holds the value of an attribute that is a domain object, without

and with a condition. The following shows the IRL translation for the first five

definitions:

evaluate (THRESHOLD_EXPENSIVE_ACT : 1000);
 current_claim: Claim();
 claimed_service_act: ServiceAct() in

current_claim.serviceActList;
 expensive_service_act: ServiceAct(?this.cost >= (float)
THRESHOLD_EXPENSIVE_ACT) in current_claim.serviceActList;

evaluate (expensive_service_act_cost :
expensive_service_act.cost);

The reader will notice that variables that are of scalar type are defined using

a binding (VAR_NAME 00:00 VAR_VALUE) embedded within an evaluate.
The middle three are defined using simple class conditions, with or without

embedded tests, and with or without scope (in current_claim.some-
Attribute).

344 11 Rule Authoring in JRules

We now illustrate the definition of collection variables:

And we show below the resulting IRL:

some_claim: Claim();
all_claims_in_WM: collect Claim();
some_claim_service_acts: collect ServiceAct() in

 some_claim.serviceActList;
expensive_service_acts: collect

ServiceAct(?this.cost >= 1000) in
some_claim.serviceActList;

What can you do with collections? You can test the contents of a collection or its

size, in the condition part, or iterate over its elements to apply a bunch of actions, in

the action part. We will illustrate both uses in the subsequent discussion.

The condition part. Roughly speaking, the condition part of a rule consists of a

logical combination of individual conditions using the logical operators and and or.
In turn, each “top-level” condition can itself be a single Boolean term or a logical

formula, with operators and’s, or’s, and parentheses. This is embodied in the next

four grammar productions (rules).

• CONDITION_PART ::= “if” CONDITION ((and | or)
CONDITION)*

• CONDITION ::= BOOLEAN_TERM | BOOLEAN_TERM (and | or)
CONDITION

•

•

BOOLEAN_TERM ::= BOOLEAN_TEST | “(“ CONDITION “)”
BOOLEAN_TEST ::= COMPARISON | PREDICATE | SET_MEMBERSHIP |
COLLECTION_TEST |
Next, we will show examples of the various Boolean tests.10

comparisons

Set membership

Predicate

Collection conditions

10Please do not write rules like this one at home J: This rule breaks every rule writing guideline

we mentioned in Chap. 9. It is only meant to illustrate various syntactic constructs.

11.2 Rule Artifacts 345

With the exception of collection conditions (COLLECTION_TEST),
which we will address shortly, we build Boolean tests by selecting an object

(a variable) or the attribute of an object, then a comparison operator (or a predicate)

appropriate for that object, and then an operand of the appropriate type. In the rule

above (which is utterly non-sensical), we show three comparisons. The first com-

pares a numerical data member (total claimed of 'current claim')
to a constant (1,000). The second compares a date attribute (thebirthdate
ofthepolicyholderofthepolicyof 'current claim')
to a constant date (1/1/1990), while the third compares a date attribute (the
date of 0current claim0) to another date attribute (the start date
of the policy of 0current claim0). The case of a predicate is illu-

strated by the condition 0current claim0 was filed more than 90
days after <some date>. The SET_MEMBERSHIP case

is illustrated by the condition the decision of 0current claim0 is
not one of {"VALID"‚ "ELIGIBLE"}. Set membership tests (is not
oneof andisoneof) are available for all types (simple types, object types)

and the values of the set can be enumerated literally, as in this example, or given as

a collection variable.

Let us look now at the collection conditions. The BAL offers several types of

conditions on collections, which may be described using the following grammar:

• COLLECTION_TEST ::= QUANTIFIED_COLLECTION_TEST |
COLLECTION_SIZE_TEST | COLLECTION_CONTENT_TEST

• QUANTIFIED_COLLECTION_TEST ::= QUANTIFIER [NUMBER]
OBJ_TYPE [scope] [“where” COLLECTION_ELEMENT_TEST]

• QUANTIFIER::= “there are” | “there are at least” | “there
are at most” | “there are more than” | “there are less
than” | “there is no” | “there is at least one” | “there
is one” | “there is at most one”

• COLLECTION_SIZE_TEST ::= “the number of” OBJ_TYPE [scope]
[“where” COLLECTION_ELEMENT_TEST] COMP_OPERATOR NUMBER

• COLLECTION_CONTENT_TEST ::= COLLECTION_NAME (“contain” |
“does not contain”) OBJECT

Behind the scenes (IRL), all of these conditions map to an IRL COLLEC-
TION_CONDITION, but with different tests on the collection size (QUAN-
TIFIED_COLLECTION_TEST and COLLECTION_SIZE_TEST)
and collection contents (COLLECTION_CONTENT_TEST). The rule above
shows two examples, using the “there are at least” and “there is no”
forms. The following shows the IRL equivalent11:

11We simplified the underlying IRL to make it more readable, by: (a) removing class package

names, (b) reducing the number of extraneous parentheses, and (c) simplifying/faking the way

Date constants are handled.

346 11 Rule Authoring in JRules

when {
 current_claim: Claim();
 service_act: ServiceAct() in current_claim.serviceActList;
 var$_$0: collect Coverage(?this.percentCapUsedUp >= 95) in

 current_claim.policy.coverageList;
 var$_$1: collect
 Coverage(?this.procedure.equals(service_act.procedure))

in current_claim.policy.coverageList;
evaluate (
 current_claim.totalClaimed > 1000

 && current_claim.decision !in {"VALID","ELIGIBLE"}
 && (current_claim.policy.policyHolder.birth-

Date.compareTo(new IlrDate(1990,1,1)) > 0
 || (current_claim.fileMoreThanXDaysAfter(90,

current_claim.policy.endDate)
 || current_claim.date.compareTo(

current_claim.policy.startDate) < 0
)

 || var$_$0.size() >= 5
 || var$_$1.size() == 0

)
);

}then {
…

 }

The reader will notice that all of the conditions of the if part of the BAL rule

ended up in the single evaluate statement.

There is more to BAL conditions than what we just covered. Our goal in this

section is to show the “philosophy” of the BAL language. The full language

reference is available in the product documentation.

BAL Actions. BAL actions are fairly straightforward. They can be of five

different types:

• ACTION ::= SIMPLE_ACTION | FOREACH_COMPOUND_ACTION
• SIMPLE_ACTION ::= ATTRIBUTE_SETTER | VOID_FUNCTION_ACTION

| VARIABLE_SETTER | SYSTEM_ACTION
• ATTRIBUTE_SETTER ::= “set” ATTRIBUTE_EXPRESSION “to”

ATTRIBUTE_VALUE
• VARIABLE_SETTER ::= “set” VAR_NAME “to” VAR_VALUE
• FOR_EACH_COMPOUND_ACTION ::= “for each” OBJ_TYPE [

“called” VAR_NAME “,”] in COLLECTION “:” “-“ SIMPLE_ACTION
(“-“ SIMPLE_ACTION)*

The previous rule examples illustrated ATTRIBUTE_SETTER (e.g.,

“set the decision of 0current claim0 to "INELIGIBLE";”),
SYSTEM_ACTION (e.g., “print "illustrating conditions";”),
and VOID_FUNCTION_ACTION (e.g., “log that this rule
has fired on 'current claim' with message "Claim filed
too late";”). The next rule illustrates the compound statement.

11.2 Rule Artifacts 347

and the (simplified) IRL equivalent:

when {
current_claim: Claim(?this.decision.equals("ELIGIBLE"));
service_acts: collect ServiceAct() in

current_claim.serviceActList;}
then {

foreach (ServiceAct my_service_act in service_acts) {
my_service_act.payment = my_service_act.cost;
printMessage("the procedure"+ my_service_act.procedure +

"was paid in full"));
}
current_claim.decision = "PAID";
update current_claim;
printMessage("illustrating for each");

}

The BAL is used in many other places, besides action rules. It is used to write

preconditions, condition and action columns in decision tables (to be discussed

next), preconditions, node conditions and actions in decision trees (Sect. 11.2.4), as

well as in many places in ruleflows (function tasks, initial and final actions in all

ruleflow tasks, transition guards, and rule selection, see Sect. 11.3.2).

11.2.3 Decision Tables

As mentioned in Sect. 9.2.2.2, when we have several rules whose conditions test on

the same set of attributes and whose actions perform the same actions (modulo

some parameter values), it pays to organize those rules in a decision table, both
during rule analysis (see Chap. 4) and during rule authoring. JRules supports

decision tables, like most BRMS. Figure 11.2 shows a decision table that sets the

parameters of a coverage (deductible and yearly cap), based on the procedure

covered, and on the type of policy (individual versus group policy). This table

has four columns, two conditions columns, labeled “Covered Procedure” and

“Policy Type”, and two action columns, labeled “Deductible” and “Yearly Cap”.

Each line of the table corresponds to a rule. Here, we selected the line number 6,

which corresponds to the case where the procedure is ECG (Electro-CardioGram),

the policy type is “GROUP”. In this case, the deductible is $20, and the yearly cap is

$125 (per insured). As shown in the screenshot, by selecting a particular row of the

348 11 Rule Authoring in JRules

decision table, Rule Studio brings up a tool tip consisting of the BAL equivalent of

the rule represented by that row.

Let us first get some vocabulary. Notice that for each value of “Covered Proce-

dure”, we have two possible values of “Policy Type”. Each value of “Policy Type” is

considered as a branch of the corresponding value of “Covered Procedure”. The set of
covered procedures {“PHYSICAL CHECK-UP”, “BLOOD TEST”, ECG, “X-RAY”,

and “CAT SCAN”} is said to represent a partition of the domain of procedures.

Similarly, the set {INDIVIDUAL, GROUP} is said to represent a partition of the

domain of the attribute “policyType” of the class Coverage. This table is called

symmetrical because the same partition of “Policy Type” is used for all the values

of “Covered Procedure”. We now show how the table is defined.

Figure 11.3a shows the wizard for defining condition columns. A condition

column enables us to enter a Boolean condition similar to the kinds of conditions

we enter in a BAL action rule. The condition should be fully specified except for

one (or several) value(s), which needs to be specified in the cells of the columns. In

this case, the condition is “the procedure of coverage is <a
procedure>”, and we need only specify <a procedure> in the cells

of the column. The column has an editable title. We can also specify conditions that

column cell values must satisfy – in addition to being of the appropriate type, which

is guaranteed by the table editor. Similarly, for the second condition column, the

test is “the policy type of policy is <a policy type>.”

Figure 11.3b shows the wizard for defining action columns. The action corre-

sponds to any valid action we can insert in the action part of a rule (see previous

section), with the exception of FOR_EACH_COMPOUND_ACTION (see

previous section). Depending on the parameters of the action, the action column can

have two or more subcolumns. In this case, the action is a setter that takes a single

value. The second action column is defined in a similar way: The action is “set
the yearly cap of coverage to <a number>.” Notice that we

can specify a default value for an action parameter. We can also specify additional

Fig. 11.2 A sample decision table

11.2 Rule Artifacts 349

constraints on the cell values, in a way similar to values in condition columns.

Finally, we can make an action column invisible.12

The reader may wonder where the variables that are referenced in the condition

and action columns (coverage and policy) come from. The answer is:

preconditions of the table. Generally speaking, preconditions are used to define

variables and to enter conditions that hold true for all of the columns of the table.

Figure 11.4 shows a screenshot of the tab used to define preconditions.

We will not discuss all of the wizardry of the decision table editor. However, a

few features are worth mentioning:
l JRules performs different kinds of verifications and analyses on decision tables,

and the results of these analyses can be presented as “Info”, “Warning”, or “Error”:

– Symmetry. A table is said to be symmetrical if for each condition column i,
the same partition of values for that column is used consistently for all the

values of column i-1. As mentioned above, the table shown in Fig. 11.2 is

symmetrical because the same partition {“INDIVIDUAL”, “GROUP”} for

“Policy Type” is used for the values of “Covered Procedure.”

– Overlap. This refers to the case where the values “within a partition”

overlap.13 In the table of Fig. 11.2, we would have had an overlap if, for

Wizard for defining a condition column

a b

Wizard for defining an action column

Fig. 11.3 Wizards for defining condition and action columns. (a) Wizard for defining a condition

column and (b) wizard for defining an action column

12This is useful in those situations where (a) all the cells have the same value, or (b) the action

takes no arguments – and thus no values to enter – or (c) the action represents a non-business tasks

that business rule authors should not care about.
13This is a misnomer because mathematically speaking, the partition of a set S is a set of non-
overlapping subsets of S whose union equals S.

350 11 Rule Authoring in JRules

example, row 5 had both “INDIVIDUAL” and “GROUP”, and row 6 had

“GROUP”. If that were the case, when procedure¼“ECG” and policy type¼
“GROUP”, we would hit both rows 5 and 6 of the table. This is not a logical
error, but more often than not, overlaps result from data entry errors.

– Gaps. Gaps are best illustrated with a numerical (range) condition column

(not used here). Assume that we have a condition column based on age

ranges. If our condition had age ranges [0,18], [18,30], and [65,100], then

one might wonder about the age range [30,65]: What happens in such

situations? Again, this is not a definite logical error per se, but, more often

than not, indicative of a data entry error.
l JRules can enforce locking different aspects of the table:

– Preconditions. Making sure that the preconditions part is not editable.

– Number of columns. We can prevent the addition and removal of condition

columns, action columns, or both.

– Condition column contents. For each condition column, we can selectively

lock the tests (preventing users from changing the column test, or column cell

overrides), the partitions, i.e., how many different values in the partition, or

the values themselves. In our case, if we lock the partition of column “Policy

Type”, it means that we can have exactly two cells/branches for every

procedure, but the table author can select which values to enter in each

cell. If we lock the values for the column, it means that values themselves

are not editable, i.e., nothing about the column can be changed.

– Action column contents. With action columns, we can lock the action, the
status, or the values.

l JRules supports the graphical customization of the table. Indeed, we can change

the background color, text color, text font, text style, and text size, for column

headers, condition columns, and action columns (separately).

JRules supports a bunch of other features for data entry (e.g., splitting cells,

merging cells, inserting the values of a BOM domain, etc.) that make life easier for

table authors.

Looking under the hood, decision tables are actually encoded as . . . a bunch of

IRL rules, one per row! The following shows the beginning of the IRL file for the

table of Fig. 11.2. The rule coverage_parameters_0 represents the

first row of the table, i.e., row 0. There are 10 such rules, each one corresponding to

a different combination of procedure and policyType values.

Fig. 11.4 Defining preconditions for a table

11.2 Rule Artifacts 351

// begin DT coverage parameters
// -- begin rule 'coverage parameters 0'
rule coverage_parameters_0 {
 property ilog.rules.dt = "coverage parameters";
 property ilog.rules.group = "coverage_parameters";
 property status = "new";
 when {
 policy: com.mywebinsurance.claimprocessing.Policy();
 coverage: com.mywebinsurance.claimprocessing.Coverage()
in policy.coverageList;
 evaluate ((((coverage.procedure.equals("PHYSICAL CHECK-
UP"))) && ((policy.policyType.equals("INDIVIDUAL")))));
 } then {
 coverage.deductible = 15;
 coverage.yearlyCap = 150;
 }
}

// -- end rule 'coverage parameters 0'
// -- begin rule 'coverage parameters 1'
rule coverage_parameters_1 {
…

At first glance, this may not sound like the most efficient implementation.

Indeed, the table format “leads us to believe” that conditions are shared between

different rows and the tests are performed only once. For example, the first and

second rows of the table share the same value for procedure, i.e., “PHYSICAL
CHECK-UP”, but if each row is represented by a separate rule, then we lose the

condition sharing. Actually, not so! Recall from Chap. 6 that the RETE algorithm

ensures that if two rules start with the same condition, that condition will be shared

and it will be evaluated only once for both of them. Hence, once the ruleset

containing this table is parsed and the RETE network is built from it, conditions

will be shared, as suggested by the table.

As mentioned in Chap. 9, JRules provides API for creating decision tables

and decision trees – to be discussed next – from tabular data,14 including csv

(comma-separated values) files, Excel spreadsheets, and relational data bases. A

few years back (2005), in one project for a Wall Street financial services company,

we used decision tables to encode rules that figure out which kinds of financial

transactions for specific types of foreign customers were subject to IRS reporting

and withholding.15 Our input from “business” was a bunch of Excel spreadsheets

14Check root package ilog.rules.dt, and more specifically, ilog.rules.dt.model.
15The Internal Revue Service expects all US entities (corporations, individuals) to file for taxes

every year, and it has the necessary authority and . . . hum . . . leverage to make sure they comply.

With foreign entities, because it lacks such “leverage”, it requires that a percentage of their gains

on each transaction be preemptively withheld (typically 30%, but sometimes 15% or 10%) or

reported . . . unless, of course . . . (a few hundred rules and exceptions based on type of entity,

country of origin, existence of treaties, type of transaction, etc.).

352 11 Rule Authoring in JRules

prepared by tax accountants. After a minor clean-up, we were actually able to load

up the spreadsheets using the API, saving countless hours of data entry, but more

importantly, getting rid of a major source of errors. Since JRules 7.x, there is out of

the box functionality (Rule Solutions for Office) to export decision tables from Rule

Team Server (RTS) as Excel 2007 spreadsheets, and to import them back after

editing.

11.2.4 Decision Trees

The same kinds of situations that call for decision tables can also be handled by

decision trees. As mentioned in Chap. 9, you may find that business people

actually think in terms of decision trees, but encode the decision tree in the

form of a table. With JRules decision trees, they can encode them the way they

see them. However, there are situations where decision tables would be too rigid.

Going back to our example decision table, it may the case that, (a) for some
procedures, we actually do not care about the type of policy as the same deduct-

ible and yearly cap apply whether the policy is INDIVIDUAL or GROUP, and (b)

for some others, the deductible and yearly cap do not only depend on the type of

policy, but also depends on the number of insured. To encode such a situation with a

decision table, we will need three condition columns but some columns will have

empty values. Here, a decision tree comes in handy as different branches of the three
can have different tests and different depths. Further, a decision tree allows different
rule/action nodes to have different sets of actions; doing the same with decision

tables would require some acrobatics. Figure 11.5 shows such a decision tree where

we have branches of depth 1, 2, and 3. Each leaf node (box) represents the action part

of a rule whose condition part consists of the path leading to that node. As was the

case with decision tables, behind the scenes, decision trees are actually encoded as

Fig. 11.5 A sample decision tree for computing coverage parameters

11.2 Rule Artifacts 353

separate IRL rules. With regard to condition sharing, as explained for the case of

decision tables, because of the structure of the RETE network (see Chap. 6),

common conditions will indeed be shared between the different rules. In fact, the

encoding of the rules of the decision tree in the RETE network mirrors the decision

tree!

As is the case with decision tables, JRules enables us to check for gaps and

overlaps between the different branches of the tree. In terms of GUI wizardry to

create decision trees, the reader is referred to the product documentation. We will

mention, however, that the decision tree editor enables us to fold rule nodes

or entire tree branches, and to turn the tree sideways, with the root on the left

side of the panel, and the branches going rightward. Both of these tricks enable

us to somehow manage the expansive nature of decision trees: more often than not,

the decision table format is much more compact than the decision tree format.

However, business users love the visuals: They fit nicely in PowerPoint pre-

sentationsJ.

11.2.5 Score Cards

In the insurance and financial services sector, an important rule-rich business

process is underwriting. Simply speaking, underwriting consists of assessing

the eligibility of an actual or potential customer to receive a product or service.

An important aspect of underwriting is risk scoring. You use risk scoring when the

underwriting is a multi-criteria decision – as it often is. In such a case, no single

criterion is eliminatory, but the accumulation of factors, positive or negative, can tip

the balance one way or the other. With risk scoring, you assign a single score to the

(potential) customer based on a set of criteria. If the score falls below a certain

threshold, the product or service is denied. Else, it is granted.

JRules supports scorecards through a product add-on called Scorecard Modeler.
Figure 11.6 shows an example of a scorecard for policy underwriting. In this

fictitious example, we assign a score to a (potential) policy holder based on four

criteria: (a) the age, (b) the number of claims when the policy holder was at-fault in

the past 3 years, (c) the number of claims of the policy holder in the past 3 years,

regardless of responsibility, and (d) the number of years of driving experience. The

higher the score, the better (i.e., lower) the risk. The first three columns assign the

score per se. The last two are used to customize what is called reasoning strategy, to
be discussed below. For the driver’s age, we assign different scores to different age

ranges: the highest the risk, the lower the score. Drivers between the ages of 25 and

75 are considered to possess the best mix of qualities (e.g., sobriety, reflexes). With

regard to the number of claims, at-fault or in general, the smaller the number of

claims, the higher the score. With regard to the driving experience, the longer the

experience, the higher the score. With this scorecard, a driver who is 30 years old,

with one at-fault claim and one not at-fault claim, and 11 years of driving experience,

354 11 Rule Authoring in JRules

would get a total score of: 50 (for age) þ 40 (at-fault claims) þ 60 (claims in

general) þ 50 (driving experience), for a total of 200. A 23-year-old driver, with

no claims, and 5 years of driving experience would get: 20 (for age) þ 100 (at-fault

claims) þ 100 (claims) þ 30 (driving experience), for a total of 250.

Which driver to accept (or reject), if any? As mentioned in Chap. 9, all of the

parameters of the scorecard, including which attributes to use for scoring, how

many ranges to use for each attribute, what are the bounds for each range, what

score to use for each range, how to compute the overall score (simple sum versus

weighted sum), and what the decision threshold should be, are determined by

statistical models.16 For example, MyWebInsurance may have a policy to under-

write only those drivers who have less than 5% chance of making a claim worth

more than $5,000 within the first year. Statistical score models will tell, among the

many things mentioned above, what the threshold score should be.

With regard to the reasoning, Scorecards make it possible to not only return

an overall score, but to also return reason codes to explain a particular score.

Scorecard Modeler maintains lists of reason codes that can be used within a

particular scorecard. In the most trivial approach, we could use one reason code

per row of the scorecard, and ask that all reason codes be returned. Most business

applications do not care about that level of precision. Instead, business may find it

useful to identify those attributes that have unusually (or damningly) low scores.

Scorecard Modeler offers a number of “knobs” to tune the reasoning strategy:
We can specify a maximum number of reason codes, and doing so, we need to

specify criteria for determining which reason codes to return in case we have

Fig. 11.6 A sample scorecard

16As is the case with statistical models, it is part science (mostly), part art. Note that the JRules

Scorecard Modeler does not support those statistical analyses: They need to be done using other

tools such as the SAS Enterprise Miner™.

11.2 Rule Artifacts 355

more candidates than the maximum, and how to order them. Possible criteria for

figuring out which reason codes to include: (a) reason code priority (they have one),

(b) deviation relative to maximum score, (c) deviation based on expected score, or

(d) custom reasoning strategy. For deviation, we can take positive deviation, or

negative deviation or both. In the example of Fig. 11.6, we used negative deviation
relative to expected score, meaning that we return reason codes for the attributes

ranges that are farthest below the expected score. The fourth column of the scorecard

shows the expected score. With regard to the ordering, we can start with reason codes

corresponding to the highest deviation (i.e., worst outliers) or smallest. There are also

rules for handling duplicates. And so forth.

If we look under the hood of a Scorecard, we find four IRL rules, one per attribute,

that look like the rule below.17 This rule, which is not meant for human consumption,

sets the reasoning parameters in the action part, and assigned scores for the different

ranges of the attribute in the action part using “if” statements.

// -- begin rule 'riskScoring_1'
rule riskScoring_1 {

property ilog.rules.group = "riskScoring";
 property status = "new";
 when {

 scorecard: Scorecard() from riskScoring;
 PolicyHolder() from theClaim.policy.policyHolder;
evaluate (scorecard.rejection == null);

 } then {
 scorecard.name = "riskScoring";
 scorecard.scoringStrategy = "Sum";
 scorecard.reasoningStrategy = "Deviation based on ex-

pected score";
 scorecard.reasonOrderBy = "Descending deviation";
 scorecard.reasonFilterBy = "Negative deviation";
// -- other reasoning strategy parameters

 …
if(theClaim.policy.policyHolder.numberAtFaultClaimsLas

tThreeYears < 1) {
 scorecard.setScore("numberAtFaultClaimsLastThree-

Years", 100);
 scorecard.setReasonCode("numberAtFaultClaimsLast-

ThreeYears","NO AT FAULT CLAIMS");
}
if(theClaim.policy.policyHolder.numberAtFaultClaimsLas

tThreeYears in [1, 3[) {
 scorecard.setScore("numberAtFaultClaimsLastThree-

Years", 40);
 }
 …

17We greatly simplified the actual IRL to make it readable. The actual IRL has more actions, and

some of the functions have more parameters.

356 11 Rule Authoring in JRules

The business logic implemented by Scorecard can easily be implemented by

individual (business-friendly) BAL action rules, one per attribute, per range, such

as the following:

We could also use one decision table per attribute. The scorecard solution

has the advantage of conveniently grouping the various scoring rules into one

place, and presenting them in a visually intuitive/appealing fashion. It also

enables us to conveniently customize the scoring calculation and manipulate

reason codes.

11.2.6 The Business Rules Language Development Framework

In Chap. 4, we presented different classifications of rules. Not all classes of rules

can be conveniently written as if-then rules. While we can turn every type of rule

into an if-then rule, there are situations where a custom language can make rule

authoring more familiar to the business users. Let us revisit the example we

mentioned in Sect. 9.2.2.5. Assume that you are building an application for filling

out tax returns. The majority of tax rules are computations. Using the rule templates

described in Sect. 4.1, a computation may be stated as:

The taxable income I S-COMPUTED-AS gross income + commission–s deductions

It would be convenient to be able to enter such a rule as is within a rule editor. In

this case, the rule editor would be a formula editor similar to the formula editor

available in Excel spreadsheets. This would be more natural than entering the rule as:

if <some trivial condition or no condition> then taxPayer.taxableIncome =
taxPayer.grossIncome + taxPayer.commission–s taxPayer.deductions

or its business-oriented language equivalent.

JRules offers a rule language development framework called the Business Rule
Language Development Framework (BRLDF), which is a java framework for

specifying the syntax of the custom rule language, and for translating rules written

in this syntax to some target language. If the target language is JRules IRL, then we

can reuse the entire rule development and execution infrastructure for our new

language. Figure 11.7 illustrates the approach.

11.2 Rule Artifacts 357

In Chap. 9, we discussed situations under which it is justifiable to build a custom

rule language. In this section, we provide a high-level description of how to do it

with the JRules BRLDF. In the BRLDF, a rule language is defined by three

components:

1. An abstract syntax. This syntax defines the structure of the language in a

notation similar to the EBNF-like notation we used to describe the IRL and

the BAL. In this case, the syntax is defined in an XML schema. We show below

excerpts of the abstract syntax for our formula editor. The types prefixed with

namespace “brl” are ones reused from the definition of the BAL.

<complexType name="T-equation">
 <sequence>
 <element name="left-hand-var" type="brl:T-local-var"/>
 <element name="right-hand-side"type="T-formula"/>
 </sequence>
</complexType>
<complexType name="T-formula">
 <choice>

 <element name="value" type="brl:T-local-var"/>
 <element name="expression" type="T-operation"/>
</choice>

</complexType>
<complexType name="T-operation">

<sequence>
 <element name="left-op" type="T-local-var"/>
 <element name="operator" type="brl:T-operator"/>
 <element name="right-op" type="T-expression"/>
</sequence>

</complexType>
etc

2. A concrete syntax. This syntax defines the graphical properties of the constructs
of our language. This is where we specify the textual patterns (actual tokens), the
text styles, the tool tips, prompts, whether there is a newline after a particular

element, etc. We also specify the classes that process our language (see the next

element). The concrete syntax is given in a properties file format. We illustrate

the format in the excerpts below.

A = B +
 C – D

Formula editor
built with BRLDF

Translate

Formula translated as a
JRules technical rule

JRules rule
engine

if A is undefined
then
A = B + C – D

Fig. 11.7 Developing a custom rule language

358 11 Rule Authoring in JRules

Define the text pattern of 'if-then-else'
<T-equation>.text = <left-hand-side>=<right-hand-side>
<T-equation>.style = keyword
Specify the parser/translator (see below) IRL
<T-equation>.translatorClass = MyTranslator
<T-equation>.codeGeneratorExtender.irl = MyCodeGenerator
Specify graphical properties of elements
<T-equation>.<left-hand-var>.toolTip = Pick a variable
<T-equation>.<left-hand-var>.label = left-hand-side
…

3. Parsers/translators, which parse sentences of our language into an intermediate

form and then translate/generate a target language. These are Java classes built

using the parsing and translation framework that is part of the BRLDF. As

mentioned above, to be able to reuse the rule deployment and execution infra-

structure, it is a good idea to translate rules written using our custom language

into IRL. In the above example, the class MyTranslator parses rules and

generates the abstract syntax tree, whereas the class MyCodeGenerator reads

such a tree and generates IRL.

Having defined the language, we now need to integrate it into the authoring

environments, i.e., Rule Studio and Rule Team Server. This, in turn, involves three

things:

1. Defining a new rule class that represents the new type of rules within these

development environments. This is the class that defines which properties such

rules can have. This is done through the rule extension model, in both RS and RTS.
2. Making sure that the language definition is available to the environment: that

includes the files used to define the abstract syntax and the concrete syntax, and

the Java classes that implement the parser and IRL translator. In RS, this is done

through a specific plug-in.18 In RTS, the whole thing is packaged in a jar file, and

the RTS archive is repackaged to include the language jar file.

3. Customize the rule editors (Guided Editor and Intellirule) to handle the new

language. Luckily, the rule editors are parameterized by the rule language, and

thus, not much needs to be done for the customization.

Notice that the BAL language itself is developed using the BRLDF. In fact, the

files that contain the abstract syntax and the concrete syntax are public and editable.

Further, the parsers and translators for the BAL are part of the public API. This

means three things:

1. If all you need is to change the ordering of BAL constructs or some of keywords,

then you could simply edit the abstract syntax and concrete syntax files, with no

programming involved.

18If you must know, we need to create an Eclipse plug-in project using the extension point

ilog.rules.studio.brl.languages.

11.2 Rule Artifacts 359

2. If you need to add a new kind of definition, condition, or action, then all you

need to do is to define the abstract and concrete syntax for the new construct in

the corresponding files, and code the corresponding parser and translator for

abstract syntax tree nodes that represent the new construct.

3. If your language is too different from the BAL, you could still reuse many of the

artifacts used to build the BAL, which have been conveniently modularized: (a)

a component that handles bindings (variable definitions), (b) a component that

handles conditions, and (c) a component that handles actions.

In our experience, developing a custom rule language is rarely justified, in terms

of business need, development cost, and maintenance risk. Luckily, thanks to the

incremental approach of the BRLDF, we can often address the most pressing BAL

irritants/shortcomings using low-cost, low-impact modifications of the BAL.

11.3 Rule Execution Orchestration

In Chap. 6, we presented the principles behind rule engines and rule engine

execution. Recall from Chap. 6 that an engine maintains three memory areas: (a)

a ruleset consisting of a set of rules that embody a computation, decision, or action

that the engine implements, (b) a working memory, containing (or referring to) the

objects that the ruleset will be applied to, and (c) an agenda that maintains a list of

so-called rule instances, which are candidate rules for firing. We saw earlier in this

chapter the development infrastructure in JRules, namely, rule projects and the

BOM, and we just covered the different rule artifacts.

What we know from Chap. 5 (prototyping) and Chap. 8 (an introduction to JRules)

is that, simply speaking, a rule project – a development artifact – ismapped to a ruleset –
a run-time concept. What we know from Chap. 6 is that the rules of a ruleset are treated

as an indiscriminate “bag of rules” where all of the rules are evaluated on all of the

objects in workingmemorywith no underlying structuring or sequencing, except for the

ordering on the agenda. This leaves a couple of key questions to address:

1. How to get data into the rule engine – and its working memory – in the first

place, especially within the context of a rule execution service, as we discussed
in Sect. 7.5.1. This introduces the notion of a ruleset signature, and more

specifically, the notion of ruleset parameters.
2. How to structure the execution of rules within a ruleset. While each ruleset is

meant to implement a single business decision, such a decision will typically be

broken down into a set of sub-decisions that need to be executed in a particular

sequence. In fact, the structure of these sub-decisions may be a guiding principle

in the organization of rules during development, as illustrated in Sects. 7.4.2 and

7.4.3. This is the notion of ruleflow that we hinted at in many places in the

previous chapters (Chaps. 5, 6, 7, and 8).

We can think of these two aspects as the execution infrastructure of a rule project.

360 11 Rule Authoring in JRules

In this section, we address these two aspects in detail. First, we talk about ruleset

parameters: What they are, how to create them, and how to use them, both inside

and outside the rule engine. Incidentally, we will also talk about ruleset variables.
Section 11.5.2 introduces the basics of ruleflows: what they are, and how to create

them. Section 11.5.3 will discuss advanced ruleflow concepts, namely, run-time

selection of the contents of rule tasks, and algorithm selection.

11.3.1 Ruleset Parameters and Variables

If we think of ruleset as a function, ruleset parameters are parameters of that function:

1. They have a name and a type.

2. They have a direction: in, out, or inout.
3. They are visible anywhere within the “function”, and can be referenced by name.

4. Their lifetime depends on the calling scope.

While this is a fairly accurate analogy, some qualifications are in order. Of course,

in Java, methods have a single out parameter, which is the return value,19 and all of

their parameters are inout because Java passes variables by reference. With rulesets,

the distinction between in and inout parameters makes sense within the context of a

remote invocation of the rule engine. Let us first show how to define ruleset para-

meters, and then show how they can be referencedwithin the rules of a project, at rule
development time, and by the rule engine calling application, at rule execution time.

To the extent that rule projects map to rulesets, ruleset parameters are defined at

the rule project level. Figure 11.8 shows a screenshot of the wizard for defining

Fig. 11.8 Wizard for defining ruleset parameters

19Of course, we could have several out parameters in Java . . . if we aggregate them in a single

return object.

11.3 Rule Execution Orchestration 361

ruleset parameters. In this case, we have a single parameter, which is the Claim

object, and it is inout. Incidentally, that is the only in object we need because it is

the root of an object hierarchy that contains the various service acts, and the policy,

which in turn points to the policy holder, its coverages, etc. It is the only out object
we need because the decision and the total payment are stored in the claim object

itself, and the itemized payment amounts are stored in the ServiceAct objects. Note

that a ruleset parameter has a verbalization which enables us to refer to it in rules.

First, we look at how data is passed to the engine using ruleset parameters, as

opposed to through the working memory; the full API will be discussed in Chap. 13.

The following shows how data is passed through insertion into working memory,

and how the result of rule execution is retrieved.

// initialize the rule engine (load and compile ruleset:
// see chapter 12 for details
IlrContext myEngine = …;
// get next claim object and insert into working memory
Claim myClaim = fetchNextClaim();
myEngine.insert(myClaim);
// Execute the rules. See chapter 6 for details
myEngine.execute();
// Check the outcome by examining the decision attribute
String decision = myClaim.getDecision();
if (“PAID”.equals(decision))
 System.out.println(“The Claim “+myClaim+” was paid in
the amount “ + myClaim.getTotalPaid());

Now with the ruleset parameter:

// initialize the rule engine (same as above)
IlrContext myEngine = …;
// get next claim object and pass as parameter value
Claim myClaim = fetchNextClaim();
IlrParameterMap inputs = new IlrParameterMap();
inputs.setPatameterValue(“theClaim”,myClaim);
myEngine.setParameters(inputs);
// Execute the rules, and collect the inout/out params
IlrParameterMap outputs = myEngine.execute();
Claim modClaim =(Claim)outputs.getObjectValue(“theClaim”);
// Check the outcome by examining the decision attribute
String decision = modClaim.getDecision();
if (“PAID”.equals(decision))
 System.out.println(“The Claim “+modClaim+” was paid in
the amount “ + modClaim.getTotalPaid());

There are a couple of subtle differences between the two “data passing” modes.

In the first case, the calling application relies on the fact that the engine lives in the

same JVM, and hence the variablemyClaim stays current: Upon returning from

362 11 Rule Authoring in JRules

the call “myEngine.execute();” the variable myClaim will reflect

whichever changes were made by the rules. With the parameters, the calling

application does not rely on the fact that the engine lives in the same JVM,

and will retrieve the modified value of myClaim into a separate variable

modClaim. This makes the second approach more scalable in the sense of

being remotable. In fact, the Rule Execution Server (RES) API, to be discussed in

Chap. 13, relies on ruleset parameters to pass data back and forth.20

We now look at how ruleset parameters are referenced in rules. As mentioned

above, ruleset parameters are visible within all the rule of the project, and can thus

be referenced within rules. Going back to our “claim date” BAL rule from

Sect. 11.2.2, we can now write the rule without a definitions part:

And if we look at the IRL:

rule claim_date {
property status = "new";
when {

 com.mywebinsurance.claimprocessing.Claim() from theClaim;
 evaluate (theClaim.fileMoreThanXDaysAfter(90,

theClaim.policy.startDate.toDate()));
 } then {
 theClaim.decision = "INELIGIBLE";
 ?context.updateContext();
 theClaim.logRuleFiringWithMessage("Claim filed too late");
 }
}

If we compare this IRL to that produced for the original rule (Sect. 11.2.2), we

see a couple of differences:

1. In the earlier rule (Sect. 11.2.2), we looked for the claim object in working

memory, whereas, here, the claim object is scoped within the ruleset parameter.

2. If we look at the action part, the rule in Sect. 11.2.2 includes an update on the

claim object, namely: ‘update current_claim;0 whereas the above
rule does an update on the rule engine itself (“?context.update-
Context()”).

20This is a somewhat abusive simplification, but it will do for now: (1) the API for manipulating

XML data (XML XOM) is slightly different, for both working memory insertion, and parameter

passing, (2) with inout parameters, for the case of local invocation (same JVM, as in the example

above) the variable passed as inout will reflect the changes made by rule execution (no need to

fetch the new value from outputs), and (3) the RES API does enable us to pass data that is to be

inserted in working memory.

11.3 Rule Execution Orchestration 363

Recall that ‘update some_object;’ causes the rule engine to reevalu-

ate all of the rules relevant to some_object, which is the mechanism that

underlies rule chaining. However, what if the object is not in working memory, as is

the case with ruleset parameters? Technically, ruleset parameters are treated as data

members of the rule engine object itself21 and thus, whenever a ruleset parameter is

modified, the BAL to IRL translator throws in ‘?context.update
Context()0 whose effect is to reevaluate all of the rules that concern . . . the
ruleset parameters!

Finally, note that passing a data object as a ruleset parameter does not insert it
into working memory. Thus, the original form of the rule “claim date”, where we

defined a rule variable in the definitions part, would not work. Indeed, the class

condition:

…
current_claim: Claim();
…

Would fail because there would not be any Claim object in working memory!

So what do we do? We have three alternatives:

1. Rewrite the rule . . . naah!
2. Find a way of inserting ruleset parameters into working memory so that “work-

ing memory-style” rules continue to work. There are several more or less elegant

techniques of doing this that do not involve the Java code; we will see one such
technique when we talk about ruleflows (Sects. 11.5.2 and 11.5.3).

3. Design the signature of the ruleset (i.e., the ruleset parameters) before we start

writing rules, and then write rules that refer to those parameters. This is the

recommended practice. We will come back to this and other practices in section

on “Further Readings”.

We now talk about ruleset variables. If ruleset parameters are to rulesets what
function parameters are to functions, then ruleset variables are to rulesets what

function-scope local variables are to functions: they are visible everywhere in the

ruleset/rule project, and they keep their values during the invocation of the ruleset;

we could not say “their lifetime spans a ruleset invocation”, because ruleset variables

actually survive a ruleset invocation, and even keep their values from one invocation t

o the next. . . unless we clean them using “myEngine.cleanRuleset
Variables();”, or the more drastic “myEngine.reset();”.

Like with ruleset parameters, ruleset variables can be referenced in both rule

conditions and rule actions. We typically use ruleset variables to hold intermediary

results of the “reasoning” of the rule engine that we wish to pass from one rule to

another, with no other place to store them. A fairly common use is to implement

routing logic with ruleflows, to be discussed next. For the time being, we simply

show the mechanics of defining ruleset variables. Figure 11.9 shows the wizard for

21And in a distant past (Rules C++), they were.

364 11 Rule Authoring in JRules

defining ruleset variables. Ruleset variables are defined through variable sets. We

can have several variables sets within the same project, but only one per package.

However, the variables are accessible in all the packages of the project.

11.3.2 Ruleflows: Basics

A ruleflow is a way of organizing the execution of the rules of a rule project/ruleset in

terms of groups of related rules. It is a process flow whose tasks consist – mostly – of
the execution of groups of related rules. As mentioned in the introduction of this

section, while a ruleset is meant to implement a single business decision, that decision

is typically complex enough that it can be broken down into more elementary

decisions. This breakdown was actually presented as one of the criteria for organizing

rules during development (Sects. 7.4.2 and 7.4.3). The basic idea is that the rules of a

ruleset are broken down into subsets distributed among the tasks of the ruleflow, and

they will be evaluated in the sequence embodied in the ruleflow. Another way of

putting it: the ruleflow becomes sort of the “main program” of the ruleset.

Figure 11.10 shows the different types of components of a ruleflow. Much like a

Java function, a ruleflow has a single entry point and one or more end points. There

are three types of tasks in a ruleflow:

1. Function tasks, which include some imperative IRL or BAL code to execute,

i.e., the kind of code we would find in the action part of a rule (IRL or BAL) or

in IRL functions. Function tasks are typically used as the starting tasks of a

ruleflow to perform required initializations. For example, we could use a func-

tion task to insert ruleset parameters in working memory!

2. (Simple) rule tasks, which contain a bunch of rules and rule packages that will be
evaluated – and fired, if applicable – when the processing reaches that particular

task.

3. Flow tasks, which consist of the execution of a nested ruleflow. Indeed, some

complex decisions may require two or more levels of decomposition, and some

tasks of the main ruleflow may consist of executing another ruleflow.

The three types of tasks can have initial actions and final actions, which consist

of imperative IRL or BAL code to be executed upon entering or exiting the task.

Ruleflow tasks are linked to each other and to the start and end nodes using

transitions. Transitions can be guarded, i.e., they can be crossed only when certain

conditions are satisfied. Those conditions are Boolean expressions that can

reference variables that have rule project (ruleset) scope, i.e., either global Java

Fig. 11.9 Wizard for defining ruleset variables

11.3 Rule Execution Orchestration 365

variables,22 ruleset variables or ruleset parameters. We can have several transitions

coming out of the same task. If we have n transitions, n � 1 should be guarded, and

the nth should be tagged with the else. When several transitions come out of a task,

we can use a branch node for better visuals, even though it is not strictly necessary.
Ruleflows can have forks and joins. Because there is no parallel execution of

ruleflows, forks simply tell that there is no precedence between the branches of

the fork. However, under the hood, the branches are serialized.

Figure 11.11 shows what a claim processing ruleflow might look like. The

initialization function task does, indeed, insert the ruleset parameter theClaim into

working memory so that rules that refer to a claim in working memory (i.e., non-

scoped class condition) would still work. Both the data validation step and the

eligibility step are complex and require ruleflows of their own. Hence, the claim

processing ruleflow (Fig. 11.11a) references a data validation ruleflow (not shown)

and the claim eligibility ruleflow (Fig. 11.11b).

In this ruleflow, we only check the eligibility of the claim if the data is valid, and

we only adjudicate if the claim is eligible. This need not be the case. For example,

we could choose to check eligibility even if some data fields are erroneous or do not

A start node. There
can be only one start
node per ruleflow

A function task. Con-
tains IRL or BAL im-
perative code

A transition

A branch node

A guarded
transition

A rule task. Contains
rules and rule pack-
ages

A fork

A flow task-
references an-
other (nested)
ruleflow

A join

An exit node. There
can be several per
ruleflow

Fig. 11.10 The components of a ruleflow

22For example, public static class data members.

366 11 Rule Authoring in JRules

make sense. Deciding which way to go is often a combination of computational

constraints and business considerations. For example, in an automated system

where throughput is important, we may decide to throw out a claim as soon as it

Fig. 11.11 Claim processing ruleflow. (a) Claim processing main flow and (b) claim eligibility

ruleflow

11.3 Rule Execution Orchestration 367

fails any of the data validation tests or any of the eligibility criteria. If there are

problems past the first failure point, we will not know. However, a claims service

representative may need to provide a complete diagnosis for a rejected claim for

legal reasons, or for customer relationship management reasons: Tell the customer

what to fix for their corrected submission, once and for all, instead of asking for yet

another piece of documentation as the claim passes the various eligibility criteria.

For the sake of brevity, we will not show the Rule Studio wizards for creating

and editing ruleflows. However, we discuss the corresponding IRL (Fig. 11.12).

We will comment the structure of the IRL, here displayed in multi-column

format for compactness. The top pane shows the definition of the main ruleflow,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

use claim_eligibility;
use data_validation;
flowtask claim_processing {
property mainflowtask = true;
body {

 claim_processing#data_initialization;
 claim_processing#data$_$validation;

if (data_validation.dataValid) {
 claim_processing#claim$_$eligibility;

if ((theClaim.decision.equals("ELIGIBLE"))) {
 claim_processing#claim_adjudication;
 goto _node_5;
 } else { goto _node_5; }
 } else {
 _node_5 : claim_processing#reporting;
 }
 }
};

19

20
21
22
23
24

25
26
27
28
30
31
32
33
34
35
36

functiontask
claim_processing#data_initiali
zation {
body {
insert theClaim;

 }
};

flowtask
claim_processing#data$_$valida
tion {
body {

 data_validation;
 }
};

ruletask
claim_processing#reporting {
algorithm = default;
ordering = dynamic;
body {

 reporting.*
 }
};

ruletask
claim_processing#claim_adjudic
ation {
algorithm = default;
ordering = dynamic;
body {

 claim_adjudication.*
 }
};

flowtask
claim_processing#claim$_$eligi
bility {
body {

 claim_eligibility;
 }
};

Fig. 11.12 The IRL equivalent to the “claim processing” main ruleflow

368 11 Rule Authoring in JRules

“claim processing.” The IRL construct for ruleflows is flowtask (line

3). A ruleflow/flowtask has a bunch of properties (line 4) and a body (lines 5–17).

The body looks like any good old main program, even using a GOTO! Each

statement in the body references a task, including the (function) task “data
initialization” (line 6), the (flow) task “data_validation”
(line 7), etc. Transition guards show up as simple if-then-else statements. The first

transition (line 8) tests on a ruleset variable called “data_valid” defined

within the rule package “data validation.” The second guarded transi-

tion (line 10) tests on the value of the decision attribute of the ruleset

parameter “theClaim.”

Now that we have looked at the “main program”, let us look at the “subroutines”,

i.e., the definitions of the various tasks. Lines 19–23 show the definition of

the function “data_initialization”: It consists of a single IRL

statement: “insert theClaim.” In turn, the flowtask “claim_pro-
cessing#data$_$validation”23 is defined as invoking “data_
validation” in its body, which is the name of the nested ruleflow. This

externally defined entity is actually declared in line 2, with the statement

“use data_validation.” The flowtask “claim_processing #
claim$_$eligibility” (shown in second column) is defined in a

similar fashion.

Consider now the ruletasks “claim_processing#reporting”

(lines 30–36) and “claim_processing#claim_adjudica-
tion” (shown in second column). Their bodies are supposed to contain names

of rules or rule packages. The notation “reporting.*” is similar to Java’s

import convention: The “*” means all of the contents of the package “report-
ing”, including rules, and subpackages. The act of determining the body contents

of a rule task is called rule selection, as in selecting the rules that will be evaluated

and executed within the rule task. For these two cases, we talk about static rule
selection, meaning that the body of a rule task is determined statically, at ruleflow

development time. We can also have run-time rule selection, to be discussed in the

next section.

Rule tasks also show two properties, “algorithm” and “ordering.” Within

a ruleflow, we can use a different rule execution algorithm for each task. In fact, a

ruleset that contains a ruleflow behaves as different rulesets, one per task, and the rule
engine behaves as a bunch of rule engines, each with its own ruleset and agenda, but

they share working memory.24 We will discuss algorithm selection in the next

section, and best practices for algorithm selection in section on “Further Reading”.

23JRules enables us to use variable names that contain spaces. However, internally, it replaces

spaces by “_” . . . and “_” by “$_$”.
24We insist on the term behaves as because internally, it is the same ruleset object and the same

rule engine, except that different subsets of the ruleset will be activated as we move from one rule

task to another.

11.3 Rule Execution Orchestration 369

11.3.3 Ruleflows: Advanced Concepts

In this section, we talk about two features of ruleflows, run-time rule selection, and
algorithm selection. Rule selection deals with the selection of the rule contents of a

rule task. This selection is typically done at ruleflow development time where we

pick a set of rules or packages to execute in the rule task. JRules enables us to

compute the body of a rule task at run-time, and we will show how. As mentioned

above, within a ruleflow, we can select a different rule execution algorithm for each

rule task, and for each algorithm, we can specify additional parameters. We will

show how to do that, and discuss situations where each algorithm is appropriate.

11.3.3.1 Run-Time Rule Selection

Figure 11.13 shows the Rule Studio wizard for selecting rules. From the property

sheet of a rule task, we can select the “Rule Selection” which shows two panels. The

top panel shows the list of rules and rule packages in the rule task. Initially empty,

we can edit it by pressing the “Edit . . .” button which brings up the wizard shown on
the left of Fig. 11.13. In the “Select Rules” wizard, we get, on the left hand side, the

list of all rules and rule packages included in the current project and in the projects
that the current project depends on. We can move rules and packages from the left

to the right, and back, using the familiar >, �, <, and � buttons. Once we press

the “OK” button, the contents of the right list become the body of the rule task.

If we leave it at that, that is going to be the body of the rule task. In the example

of Fig. 11.13, we are looking at the rule task “claim adjudication”

from the “claim processing” ruleflow (see Fig. 11.11a). Here, we

selected the rule package called “claim adjudication.” Note that

this does not mean that all of the rules of the package “claim adjudica-
tion” will be evaluated/executed in this ruletask: Indeed, the ruleset extractor

might actually filter out some rules from that package based on development status

(e.g., only validated rules) or based on effective and expiration date. Thus, during

run-time, this task will have all of the rules of the package “claim adjudi-
cation” that were extracted by the ruleset extractor.

Fig. 11.13 The Rule Studio wizard for rule selection

370 11 Rule Authoring in JRules

As we mentioned above, we can also make run-time rule selection, which acts as

an additional rule filter. Let us first consider a business scenario that requires run-time

rule selection. Business policies and rules change regularly – one of the motivations

for using the business rules approach! Insurance companies will update their rules

regularly based on market trends, marketing studies, new actuarial studies, changing

regulations, etc.When new rules come into effect, they usually have an effective date.

If they are meant to replace older rules, the older rules will be made to expire on that

date. However, new rules will generally apply only to new business. Existing con-

tracts will continue to be honored according to the old rules. For example, if we

decide to change the yearly cap on a particular procedure, the new cap will apply to

new policies, or to existing policies at renewal time but will not apply retroactively to
existing policies that are still in effect. So how dowe handle that? One solution would

have us use different rulesets, one per effectiveness period. When a claim comes in,

we check the start and expiration dates of the policy, and select the ruleset to use

accordingly. The yearly cap for procedure X is updated on January 20. The yearly cap

for procedure Y is updated on February 18. The list of approved providers is updated

on March 5 . . . you get the idea: We will end up with numerous rulesets, and a

cumbersome and error-prone ruleset dispatching mechanism. This is the business

case for run-time rule selection: Our rule packages may contain rules with different

effectiveness periods. However, for a given claim, we will select which of those rules

to use, based on the effectiveness period of the policy of the claim.

Figure 11.14 shows the corresponding run-time rule selection filter. The BAL

expression compares the “effective date” and “expiration
date” of the rule to the “start date” and “end date” of the policy

of the claim. Naturally, we can use any run-time property of a rule25 and any

property of the business data manipulated by the ruleset. Because the set of rule

properties (metadata) is extensible, the possibilities are endless. For example,

thanks to so-called hierarchical properties (properties whose values fit in a hierar-

chy), we can imagine filters based on the jurisdiction of the rule, and the place of

Fig. 11.14 The dynamic run-time rule selection filter

25The properties of a rule can be either extractable, in which case they are available in the run-time
representation of rules, or non-extractable, in which case they are development time-only proper-

ties. The extractability of a rule property is a true/false attribute than can be set in rule model
extensions. See Chap. 17 for more information about extending the rule metamodel.

11.3 Rule Execution Orchestration 371

residence of the policy holder. For example, California and US-wide rules will

apply to a policy held by a San Francisco resident, whereas Michigan rules will not.

Figure 11.14 above shows a radio button labeled “Static BAL”. So what is static
BAL run-time rule selection filter? A dynamic BAL run-time rule selection filter is

run each time the control flow reaches the rule task, i.e., each time the rule task is

executed. In our case, that is the behavior we want, because our ruleset will be run

with a different claim each time. By contrast, a static BAL run-time rule selection
filter is applied only the first time the rule task is executed and the body of the task

will remain constant throughout the lifetime of the ruleset object. There are not that

many use cases where a static BAL run-time rule selection filter is appropriate.

Figure 11.15 shows the IRL for the rule task “claim adjudication”. By comparing

it with the IRL in Fig. 11.12, the reader may notice that the package “claim_
adjudication.*” now represents the scope of the rule task, and the body

consists of the filter. The filter is like a Boolean function that takes a rule as an

argument, and return true if the rule should be included, and false otherwise. The

scope determines the set of rules over which this filter will be applied?

Had we picked the static BAL button (Fig. 11.14) instead, the keyword dyna-
micselect would be replaced by the keyword select. And had

we picked the button “IRL” (Fig. 11.14), we would have had to enter the body

block, and would have had the leisure to pick either dynamicselect or

select. We could even have used a different signature for the filter (static or

dynamic) which takes no arguments and returns an array of rules to include in the

rule task, in one shot, which makes the computation of the body more efficient.

Indeed, dynamic run-time rule selection does have a performance cost, and if we are

not careful, we can make it prohibitively costly.

11.3.3.2 Algorithm Selection

As mentioned above, we can select a different execution algorithm for each task

within a ruleflow. JRules offers three execution algorithms, discussed in Chap. 6:

ruletask claim_processing#claim_adjudication {
algorithm = default;
ordering = dynamic;

 scope {
 claim_adjudication.*,
 }

body = dynamicselect (?rule) {
 return ((?rule.?effectiveDate.compareTo(

 theClaim.policy.endDate.toDate()) < 0
&& ?rule.?expirationDate.compareTo(
 theClaim.policy.startDate.toDate()) > 0));

 }
};

Fig. 11.15 IRL for a rule task with a dynamic run-time rule selection

372 11 Rule Authoring in JRules

1. The RETE algorithm, which is the default algorithm. This is the most powerful

of the three, and it supports rule chaining (see Chap. 6).

2. The sequential algorithm, which applies the rules of a ruleset/task to the data of

the working memory sequentially. Thus, for a given object tuple <object1,

object2, . . . ,objectn>, each rule is evaluated only once, if at all. This leads to

a more efficient execution, but does not support rule chaining and has other

limitations, to be discussed later.

3. The fastpath algorithm, which combines characteristics of the RETE algorithm

and of the sequential algorithm. It does not support rule chaining, but it does not
have many of the sequential algorithm limitations.

Figure 11.16 shows the algorithm selection wizard. In addition to the algorithm

selection, we have two additional properties, with three potential values each:

1. Exit criteria, which defaults to “None” but can take the value “Rule” or

“RuleInstance.” None means that we let the engine fire all of the

rules that are satisfied. With RuleInstance, as soon as the engine fires

any rule instance, we stop the execution and exit. WithRule, we let the engine

fire all of the instances of highest priority rule, and then exit.

2. Ordering, which defaults to . . . “Default” but which can take the values

“Literal” or “Priority.” Default refers to the use of dynamic
priorities to order the execution of rules. Priority means that rules are

executed according to their static priorities, and Literal means that rules

are executed according to their order of appearance in the task body (yuk!).

We can also enter some advanced properties in a textual format. One such

property is firinglimit which can take any positive integer value, to

mean how many rules of a particular task can fire before the task is terminated.

A firinglimit¼0 means no limit, i.e., we let the algorithm run its course

to the end. Generally speaking, the value None for “Exit Criteria” means

firinglimit¼0, and the value RuleInstance or Rule (depend-

ing on the execution algorithm) means firinglimit¼1.

Note that not all combinations of values are legal. For example, Default
ordering is not legal for the sequential algorithm, because the sequential algorithm

Fig. 11.16 The rule task algorithm selection wizard

11.3 Rule Execution Orchestration 373

does not support dynamic priorities: we will get a ruleset parsing error.26 Further,

not all the legal combinations make sense. For example, the combinations

<Algorithm¼RetePlus, Ordering¼Literal or Priority, Exit Criteria ¼ anything>
are legal but would yield a RETE algorithm with no agenda or rule chaining. Why

bother? We will discuss below the legal combinations that do make sense. The

reader can consult the product documentation for the more exotic combinations.

For the RETE algorithm. As mentioned above, only the Default value

makes sense here. With regard to the exit criteria, if we use “None”, we let the

“while agenda not empty” loop discussed in Chap. 6 run its course until the agenda

is empty. If “Exit Criteria” is RuleInstance, the “while agenda not empty”

loop actually stops after the first rule instance is executed. This exit criterion might

be needed for a rule task that contains rules that detect violations of eligibility or

validation constraints: If all we are interested in is the pass/fail decision, then we

can exit at the first violation, i.e., the first rule instance. With “Exit Criteria” equal to

Rule, we take the first rule instance (i.e., the top of the agenda), and fire it and all
of the other instances of the same rule that are on the agenda. Often, all of the other

instances of the same rule will have the same priority as the first one, and will be

“right behind” on the agenda. But there are situations where that would not be the

case: For example, when that rule uses dynamic priorities – and thus, different

instances will have different priorities – or when there are other rules on the agenda

with the same priority – in which case other criteria such as recency (see Chap. 6)

come into play.

For the sequential algorithm. As mentioned above, the Ordering property

can be either Literal or Priority in this case. With Literal, for

each data tuple, the rules are applied in the other in which they (or the packages that

contain them) are listed in the rule task body. With Priority, the rules are

applied according to their static priority. Regarding the Exit Criteria
property, None means that all of the rules will be applied, RuleInstance
does not make sense (because we have no agenda), and Rule means that as soon

as a rule is fired, we drop the current data tuple, and take the next one.

For the fastpath algorithm. Because this algorithm does not rely on an agenda,

the Ordering property can be either Literal or Priority, with

the same behavior as with the sequential algorithm. Regarding the Exit
Criteria property, None means that all of the rules will be applied. Using

RuleInstancemeans that as soon as a rule instance is fired, we end the task.

With Rule, we execute all of the instances of the first rule, based on the ordering

property, and then we exit the task.

In this section, we discussed algorithm selection, and discussed the various

parameters. We will discuss criteria for selecting one algorithm versus the other

in Sect. 11.6.3.

26We will be able to extract the ruleset, but when we load it into a ruleset object, we get a ruleset

parsing error.

374 11 Rule Authoring in JRules

11.4 Best Practices

In this section, we review some best practices regarding rule authoring and rule

execution orchestration.

11.4.1 Best Practice 1: Design the Signature First

We saw in Sect. 11.5.1 how the use of ruleset parameters can change the way

rules reference application objects, and ultimately, where rules will fire on

not. Adding ruleset parameters after people have written rules can require some

acrobatics:

1. Rewriting rules so that they now refer to the ruleset parameters

2. Add rules or ruletasks to insert ruleset parameters in working memory

It is better to start right, from the beginning. We will talk shortly about how to

pick the correct signature.

The same is true with ruleflows: It is better to start designing the structure of the

ruleflow before rule authoring starts. Indeed, we recommend that the rule architect

design the high-level package structure of the rule project (see Sect. 9.4.3 for some

design patterns) and the ruleflow, before rule authors start writing rules. This way,

rule authors will write rules within the context of a predefined and carefully

designed development structure (rule package hierarchy), and that structure is

pre-mapped to the execution structure (ruleflow) through rule task rule selection.

Indeed, when we write a rule, it helps to know the context under which the rule will

be executed, i.e., the point in the process, what things are already assumed to be

true, etc.

Regarding the ruleset signature, which data items should I pass back and forth

between the calling application, and the rule engine? Actually, there are two aspects

to this question, the business data contents, and the computational data structure.

With regard to the business contents of the parameters . . . business knows! Policy
analysts know which information they need for policy underwriting, policy

renewal, or for claim processing. For each one of these processes, there is, naturally,

the main document or transaction (e.g., policy application, claim), but also a bunch

of ancillary or supporting data (see Fig. 11.17).

For example, for policy underwriting, we would want to know about the policy

(which risks are to be covered, deductibles, restrictions), but we may also want to

know about the (potential) policy holder credit file. For claim processing, in

addition to the claim itself, we may want to get the policy itself, to see which

coverages are included, but perhaps also some historical data about past claims,

etc. Only business knows the sources of information they draw upon to make

decisions.

11.4 Best Practices 375

Having decided on the business contents of the data, the question now is how to

structure it to pass it back and forth. We illustrate the issue with the model in

Fig. 11.18. In this particular case, from the Claim object, we can access all of the

information about the service acts, the policy, the coverages, and the policy holder.

Hence, passing the Claim object is enough: The policy can be accessed as “the
policy of the claim”, the service acts can be accessed as “a service
act in the service acts of the claim”, etc. If we need the past

claims, then we have several alternatives:

1. If we need the aggregated data from the past claims (e.g., total amount, number

over a three year period, etc.), then those can be stored at the Policy object as

attributes.

2. If we need the actual individual claims, then, either the Policy object points

back to the claims made against it, in which case the main Claim object

suffices, or we need to pass the set of past claims, separately, as a ruleset

parameter.

Similar issues will arise regarding the decision output. Generally speaking, if the

“rule team” has some control over the XOM, we can custom tailor the XOM (e.g.,

adding collection attributes to point from a Policy to past claims) to make the

ruleset signature simpler.

Fig. 11.17 The business signature of a ruleset

-name : string
-birthDate : Date
-ssn : string

PolicyHolder

-number : int
-startDate : Date
-endDate : Date

Policy

-policies

0..*

-holder1..*

-id : int
-date : Date

Claim

-claims

0..*

-policy1

-procedure : string
-deductible : decimal
-yearlyCap : decimal

Coverage

-policy

1

-coverages1..*

-date : Date
-procedure : string
-provider : string
-cost : decimal

ServiceAct

-claim

0..1
-acts1..*

Fig. 11.18 A model of the data needed to make a decision

376 11 Rule Authoring in JRules

11.4.2 Best Practice 2: Rulesets and Ruleflows

One of the design issues that will come up has to do with the granularity of the

ruleflow. At the highest level, we have a business process that involves a number of

decisions. At the lowest level, we have individual business rules. JRules provides

with rulesets and ruleflows as a way of structuring rule executions. The question

then becomes:

1. What should be the granularity of a ruleset?

2. Having chosen a ruleset granularity, how far down should we decompose the

decision implemented by a ruleset using ruleflows?

Let us answer the ruleset question first, and then we will tackle ruleflows.

Chapters 3 and 4 argued that decision points within a business process are

candidates for a ruleset. However, we did not talk about the granularity of the

business process. Because business processes can themselves be nested, we had not

answered the question entirely. Let us consider our case study. Figure 11.19 shows

claim processing, at three levels of detail. At the highest level, we have the entire

business process from the reception of the claim in paper format to actual payment.

Starting with the process in the left, the first task consists of entering the claim data

into the system, possibly scanning and archive receipts, etc. The next task consists

Date eligibility

Procedure eligibility

Provider eligibility

Beneficiary eligibility

Report

Claim Data Validation

Claim Eligibility

Claim Adjudication

Report

Enter Claim Data

Claim Processing

Payment

Report

Fig. 11.19 The claim processing, at three levels of detail

11.4 Best Practices 377

of processing the claim, and if the claim is deemed payable, then we go through

payment, and then report. The claim processing task itself can be broken down into

data validation, eligibility, and adjudication. In turn, claim eligibility can be broken

down into data eligibility, beneficiary eligibility, procedure eligibility, and provider

eligibility.

So the question is which of the three processes should be a ruleset, if any?

Generally speaking, a process or task should be a candidate for a ruleset if it satisfies

two sets of criteria:

1. Business criteria:

– The process or task should be decision intensive, i.e., it should involve

business rules.

– The process or task should embody a cohesive decision, i.e., have a single

identifiable, business meaningful outcome.

2. Computational criteria:

– The process or task should represent a short-lived, synchronous activity.
– The process or task should not involve any heavy-lifting, e.g., accessing a

legacy EIS, or making a remote connection.

The business criteria are self-explanatory. The computational criteria are justified

by the fact that ruleset execution requires a single, synchronous rule engine invoca-

tion (the method execute()). Indeed, we would not want a rule engine

invocation to last minutes, hours, or days, and lock the resources (claim object,

policy object, etc.) while the engine is running. Second, we would not want to be

dealing with exceptions raised by the external resources (e.g., a SQL exception, a

database connection timeout, a deadlock, a remote method invocation timeout, etc.)

within a ruleset execution because they are at worst, unrecoverable, and at best, leave

the engine in an inconsistent state, making the entire rule engine invocation suspect.

Going back to our example (Fig. 11.19), both the claim processing process

(middle one) and the claim eligibility process (right one) satisfy all the criteria,

and are potential candidates for a ruleset. However, the top-level process does not:

l It is debatable whether we could call it decision intensive: Two tasks out of three
are clerical and do not involve decisions (data entry and payment).

l It fails both computational criteria: It is not a short-lived process as it involves an
external manual task (data entry, archiving), and it does involve accessing

external resources, for both data entry and payment.27

Having eliminated the top process as a candidate for a ruleset, we can now worry

about the next two.

27Data entry typically involves saving the data entered in the database, but also, pulling out the

policy object from the database. Payment requires either printing checks or making automatic

transfers by accessing a banking system.

378 11 Rule Authoring in JRules

If we choose to make “claim processing” a ruleset – as we have assumed in this

chapter – then the internal process will be implemented using a ruleflow. One could

also imagine deciding otherwise. In real life, the process labeled “claim processing”

will likely require thousands of rules. Further, while data validation is generally

relatively simple (e.g., checking individual property values), claim eligibility will

involve lots of rules, and lots of data. If a claim fails data validation, we would have

loaded all of the business data (policy, policy holder, past claims, etc.) for nothing.

An architect might then choose to implement the “claim processing” process

(middle of Fig. 11.19) in Java – or in BPEL or in some workflow engine – and

then implement data validation, claim eligibility, and claim adjudication as

separate rulesets.

Having decided on the granularity of the ruleset, now the question becomes:

How fine-grained should be our ruleflows? Considering that a ruleflow is a piece of

hardcoded procedural logic, the procedural logic needs to be business-oriented, so
that it makes sense to the people writing rules, and it should be stable so that we do
not have to frequently redesign the ruleflow. Indeed, the high-level package struc-

ture of a rule project and the ruleflow embody the architecture of the rule project

and of the corresponding ruleset. We should not implement computational algo-

rithms or replicate procedural code using ruleflows: We should let the engine do its

job with the built-in inference mechanisms. For example, you know that you have

gone too far if each rule task contains a handful of rules.

11.4.3 Best Practice 3: My Kingdom for an Algorithm

Chap. 6 explained the various rule engine execution algorithms. Section 11.5.3.2

of this chapter explained the different parameters of the various rule task execu-

tion algorithms, and how to set them. In this section, we present criteria for

selecting an execution algorithm and its associated parameters for a particular

task.

If you do nothing, the default execution algorithm for rule tasks is the RETE

algorithm. As mentioned earlier, this is the most powerful of the three execution

algorithms, and it supports all of the IRL constructs, including exists, not, truth
maintenance, and event-based reasoning. This execution mode supports rule chain-
ing. In the context of a ruleflow, rule chaining for a rule task means that the firing

of a rule within that task can trigger the firing of another rule within the same task.

Let us first refresh our memory about what rule chaining means. Consider the

“procedure eligibility” task, in Fig. 11.19. A procedure is considered eligible if (a) it

is covered by the policy and (b) it is justified. Assume that this is written using two

rules as follows:28

28Note that the current BOM does not support these rules. They are used for illustration purposes.

11.4 Best Practices 379

Rule 1 - coverage:
definitions

set 'a service act' to a service act in the service acts
of 'the claim';

if
there exists a coverage in the coverages of the policy of

'the claim' where the procedure of this coverage
is the procedure of 'a service act' ,

then
 set the status of 'a service act' to "COVERED" ;

Rule 2 – justification:
definitions

set 'a service act' to a service act in the service acts
of 'the claim' where the status of this service act is
"COVERED";

if
there exists a prescription in the documents of

'the claim' where the procedure of this prescription
is the procedure of 'a service act' ,

then
 set the status of ' a service act' to "JUSTIFIED" ;

The justification rule (Rule 2) will only be triggered for those service acts that

have the status “COVERED.” If Rule 1 and Rule 2 are in the same task, only the

RETE algorithm will ensure that if Rule 1 is executed for a particular service act,

then Rule 2 will be evaluated and potentially triggered. Indeed, both the sequential

algorithm and the fastpath algorithm will take a single pass at the rules, and if Rule
2 happens to be looked at before Rule 1 (see discussion in Chap. 6, and the rule

ordering parameter in Sect. 11.5.3.2), we will never be able to establish that a

service act is eligible!

Because the RETE algorithm is the least efficient of the three algorithms, we

have to consider whether we need it for a particular task. Two sets of reasons would

compel us to use the RETE algorithm:

1. The decision logic. The above example illustrated a case where rule chaining

was needed for the proper execution of rules. Other cases include truth mainte-

nance and event-based reasoning, which also require the RETE algorithm.

2. The use of or reliance on working memory or agenda constructs in rules. This
means constructs like dynamic priorities, which are not supported in either

sequential or fastpath. It also means unscoped29 exists, not and collections,

and their BAL equivalents, which are not supported by the sequential algorithm,

and insert, update and retract, which will have unexpected or unpre-

dictable behavior30 in sequential and fastpath.

29That is, without the in/from constructs.
30For example, in RETE mode, when an object is insert’ed, all of the rules that concern it will

be evaluated. In sequential and fastpath mode, the new object may or may not be considered

380 11 Rule Authoring in JRules

The two factors are not independent: business logic can also dictate the kind of

IRL construct we use. For example, while we can refrain from using unscoped

exists or not – by scoping them using in/from constructs!—it may be far

more awkward, for a particular application, to implement the business logic without

insert or retract, say.
If you have established that, for a particular task, the business logic does not

require the RETE algorithm, and if the rules that do go into that task do not use

the IRL constructs mentioned above, then we should aim for the more efficient

alternatives, the sequential or fastpath algorithm. Which one should you use? As it

turns out, this is not only a question of efficiency, but it is also a question of

correctness. Indeed, if the rules within a rule task do not have a homogeneous
signature, the sequential algorithm will not behave correctly.

Informally, the signature of a rule is the tuple of objects on which the

rule applies. Formally, the signature of an IRL rule is the set of simple class
conditions of the rule. At the BAL level, it is the set of object variables of the
rule – including object ruleset parameters, object ruleset variables, and object
local variables.31 In the example above, the rules Rule 1 (coverage) and Rule

2 (justification) have the same signature: {Claim, ServiceAct}. By contrast,

the signature of the following rule is {Claim,PolicyHolder,ServiceAct}.

Rule 3 – different signature:
definitions

set 'a service act' to a service act in the service acts
 of 'the claim;

set 'a policy holder' to apolicy holder in the insureds
of the policy of 'the claim;

if
 …

Recall from Chap. 6 that the default tuple generator used by the sequential

algorithm (see Chap. 6) takes the union of the signatures of the rules within the task
to generate the tuples. Thus, if Rule 3 were in the same rule task as Rule 1 and Rule

2, the tuple generator will use the signature {Claim, PolicyHolder, Servi-
ceAct} as the structure for the tuples. Given the objects claim_1, ser-
viceAct_1, serviceAct_2, policyHolder_1,
policyHolder_2, the tuple generator will generate the tuples: T1 ¼
<claim_1, policyHolder_1, serviceAct_1>, T2 ¼
<claim_1, policyHolder_1, serviceAct_2>, T3 ¼

depending on the tuple enumerator used by the sequential algorithm or the rule ordering algorithm

used by fastpath.
31Object local variables are variables defined using the form “set <var name>to a <object type>
[scope expression].” A variable that represents the value of an attribute (regardless of its type) is

not mapped to an IRL class condition.

11.4 Best Practices 381

If the rules within a task do have the same signature, then it becomes a matter of

performance. Recall that the fastpath algorithm does build a RETE network from

the rules; it is just that takes a single pass at the rules. Compiling the rules of the task

into a RETE network does have a cost. The benefit is the underlying condition

sharing. Thus, if the rules of the task have numerous randomly ordered conditions,

the fastpath algorithm will incur the RETE network construction costs, without the

benefit of condition sharing: We should use the sequential algorithm. If the rules

share some conditions, then the fastpath algorithm is preferred.

We summarize our preliminary discussion in the decision process of Fig. 11.20.

This decision process needs to be qualified. In particular, the need for the RETE

algorithm and for WM or agenda constructs can, in some cases, be eliminated, or

reduced in scope. This is illustrated with a couple of examples below.

Most underwriting decisions – be they for mortgage or insurance – involve two

distinct phases: (a) a risk assessment phase, which assigns a risk score to the

customer application (for a loan or an insurance policy) and (b) a decision phase,

which consists of assigning a recommendation (typically, accept, reject, or send for

manual referral) based on that score. The underwriting decision itself does require
rule chaining between risk assessment rules and decision rules. However, if we
break the underwriting decision into two tasks, then the ruleflow built-in control

flow will enforce that rule chaining. This is illustrated in Fig. 11.21. With this

decomposition, instead of selecting a single algorithm for the task “Policy under-

writing” (left ruleflow), we can now select different algorithms for the rule tasks

“Risk scoring” and “Decision”. Typically, risk scoring rules compare attributes to

predefined ranges and increment or decrement a cumulative score, and they do not

require rule chaining. The same is true for decision rules which typically compare a

single risk value, or a set of score, to predefined thresholds and assign a decision

with justifications. Thus, we should be able to use the sequential or fastpath

algorithm for each of the two tasks taken separately – provided that the IRL/BAL

constructs that are used in the rules allow it!

While this is a useful heuristic, it should be used sparingly: We should resist the

temptation of slicing business decisions into finely granular, sequential decisions,

<claim_1, policyHolder_2, serviceAct_1>, and T4 ¼
<claim_1, policyHolder_2, serviceAct_2>. For each

tuple, we will apply Rule 1, Rule 2, and Rule 3, sequentially; if a rule has a smaller

signature than the tuple, we “project” the tuple on the signature of the rule,meaning

that the extra objects are ignored. This means that Rule 1, for example, will be

evaluated twice on the pair<claim_1,serviceAct_1>, first while we

processT1 and a second timewhile we process the tupleT3. The same is true for the

pair <claim_1, serviceAct_2>, which will be evaluated twice by

Rule 1, once for T2 and a second time for T4. The same is true for Rule 2. Having a

rule execute several times on the same tuple of objects within a single run can be

anywhere from inefficient to outright wrong.Hence, if the rules within a task do not

have the same signature, the sequential algorithm should not be considered.

382 11 Rule Authoring in JRules

just to get rid of rule chaining. Do not lose from sight the guidelines provided in

Sect. 11.4.2 regarding the granularity of ruleflows.

With regard to the IRL or BAL constructs that are problematic or forbidden in

sequential/fastapath, by adhering to a few stylistic guidelines, we can live without

most of them – and never miss them again. For example, we can refrain from using

unscoped exists, not, and collections in IRL, or their BAL equivalents. In

particular, by using ruleset parameters to communicate business data to the engine

and by refraining from inserting objects in working memory – as is the recom-

mended practice, see Sects. 11.3.1 and 11.4.1 – we have no choice but to use the

scoped versions of exists, not, and collections: Rules would not work other-

wise, regardless of the execution algorithm!

Does business
logic require

RETE

Select (keep) RETE

[Yes] [No]

Rules need
WM or agenda

constructs

[Yes]

Use sequential algorithm

[No]

Rules have
same signature?

Use fastpath

[No] [Yes]

Rules have
randomly ordered

tests?

[Yes] [No]

Fig. 11.20 A first-cut rule task execution algorithm selection process

11.4 Best Practices 383

This discussion raises two issues. First, technically, it is always possible to write
the business rules so that they can execute in sequential or fastpath . . . as it is

possible to write them in Java or assembly language! The question is:How much of
a price are we willing to pay for efficiency. Keep in mind that business rules are

supposed to become the communication language between business and IT. If that

language is tweaked to the point that the business logic is no longer recognizable by

a business person, be it a mortgage specialist, for a mortgage underwriting applica-

tion, or a network operator, for an alarm filtering and correlation application, then

we defeated the purpose of the business rules approach.

The second issue is related to the interplay between rule authoring and algorithm

selection. If we design the ruleflow before we write the rules – as is the recommended

practice, see Sects. 11.4.1 and 11.4.2 – then we will not know which algorithm to use

for each rule task, until the rules are written. This erodes, a bit further, the separation

of concerns between the development time concerns surrounding rule authoring and

the run-time concerns. In particular, it raises the question of how much a rule author

needs to know about the execution context of the rule that she or he is writing, for that

rule to execute correctly and efficiently. This is a valid concern, but as we showed for
the case of problematic IRL/BAL constructs, we can achieve quite a bit with a good

preliminary design (Sects. 11.4.1 and 11.4.2), and a few stylistic guidelines, which

can be enforced through the use of rule templates.

11.4.4 Best Practice 4: Do You Really Need a Custom Language?

We showed in Sect. 11.4.6 the JRules Business Rules Language Development
Framework or BRLDF for short, a framework for developing custom rule authoring

languages. The BRLDF, which has evolved over a dozen or so years, has a nice

Policy underwriting

Issue quoteIssue rejection letterSend manual referral

Risk scoring

Issue quoteIssue rejection letterSend manual referral

Decision

Underwriting
requires chaining
between scoring

and decision

The chaining is
implemented by

the ruleflow’s built-
in control flow

Fig. 11.21 By breaking a decision into two, we may obviate the need for rule chaining

384 11 Rule Authoring in JRules

modular design, and provides a nice separation between the abstract syntax of a

language from its concrete syntax. It also provides a clean separation between

parsing and code generation. The BRLDF also enables us to build a language

incrementally by modifying an existing language. This provides for localized and

low-cost customization of existing languages. This makes it particularly easy to

customize or extend the BAL, which is built using the BRLDF.

That being the case, do you really need a separate rule language? Now? The

answer is probably no, and almost certainly not now. In Chap. 9, we argued that a

new rule language is justified only when the following conditions, reframed within

the context of JRules, are satisfied:

l The BAL syntax represents an unnecessary burden, and an unbearably awkward

syntax for the rule authors.
l The cost of developing the custom rule language, the custom rule editor, and the

custom rule engine was minimal.
l You have reasonable assurance that future evolution of JRules will not invalidate

your language.

With regard to the second condition, the BRLDF design ensures that the cost of

developing the language is indeed minimal, if we build it by extending or reusing

parts of the BAL. However, how could we have a reasonable assurance that future

evolution of the product will not invalidate your custom rule language? And if so,

for how long? JRules is one of the most mature – if not most mature – BRMSs on

the market. And yet, historically, it underwent major modernizations every few

years. A case in point is the change between JRules 5 and JRules 6, which came out

in late 2005/early 2006. In JRules 5, BAL rules are persisted in the form of their

abstract syntax trees, serialized in XML format. In JRules 6, BAL rules are

persisted in BAL text format. JRules 6.x and 7.x include utilities that know how

to read the old representation format (XML-based abstract syntax trees) and how to

convert them to the new format. However, these utilities understand, out of the box,

only the standard BAL syntax.32 This means a set of painful choices:

1. Refrain from upgrading to the newest product version, thereby foregoing valu-

able additional functionalities, bug fixes, or architectural enhancements.

2. Manually migrate your existing rules into the new version of JRules.

3. Develop your own migration utilities.

Note that both choice two and three imply that you upgrade your implementation

of the custom language into the new version of JRules/BRLDF.

Different customer circumstances have at one point or another dictated each

of the three choices. We can certify that they were all painful, and we do not

recall a case where it was candidly felt that the customization added-value was,

with hindsight, worth the initial language development effort (minimal) and the

32Well. They can also handle simple extensions like specifying value editors or specializing tokens

of the language, but they cannot handle different grammatical structures.

11.4 Best Practices 385

migration pain (major). So how do customers get talked – or talk themselves – into

building risky custom languages? Two reasons: (a) uneducated or unreasonable

user requirements, and (b) an eager development organization. Indeed, if JRules is

brought into an organization to replace another niche BRMS-like product, business

users may insist on (and get) keeping every single nicety – or idiosyncracy – of the

niche-product it is replacing, even when there are better or cleaner way of doing it

in the generalist JRules. This could mean recreating an idiosyncratic rule entry

language.33 Second, developers are often eager to please because developers . . .
love to develop: Any opportunity to delve into the more exotic parts of the API is a

welcome relief from the often repetitive development tasks. Project managers and

technical leads should know when to call off the party and say no.

As for the timing, while we believe that there is seldom a good time to develop a

custom rule entry language, doing it on your first major rule project is definitely the

wrong time. Project teams have enough to deal with on the first release of a rule-

based application; they should not overburden themselves with “cosmetic” or nice-

to-have features. And besides, the requirements for such a language can only be

determined through practice.

11.5 Discussion

There is a lot more to what we collectively referred to as “rule authoring” than

actually coding individual rules. Rule execution orchestration involves a number of

complex design decisions that impact rule authoring, rule deployment, and rule

execution. In this chapter, we identified these design decisions, described the design

space, and discussed some best practices.

Designing rule execution orchestration falls within the purview of the rule
architect and is of no concern to rule writers. As illustrated for the case of algorithm
selection, the rule architect needs a deep understanding of the business logic, a deep

understanding of the BAL, IRL, and an understanding of rule engine mechanics.

Similarly, ruleset signature requires good business logic knowledge and software

architecture knowledge.

As this chapter and last showed, the rule architect has a central role in rule

authoring, management, and execution. He also needs a variety of skills straddling

three different areas: business, java, and JRules. From our experience, customers

often misunderstand this role and assign its tasks to individuals who lack one – and

sometimes two – skill sets, or worse yet, assign different tasks to different indivi-

duals. This typically leads to suboptimal or incoherent designs.

Our experience has also been that customers underestimate the skill level

required of rule writers. In most projects, we have been to where IT is responsible

for authoring and maintaining rules, it was often the most junior members of the

33We can call it a domain-specific language to make it more acceptable J.

386 11 Rule Authoring in JRules

team that got to write rules. That is a shame because good rule authoring requires a

deep understanding of the business logic, an awareness of the rule coding patterns

discussed in Chap. 9, and a mastery of the business action language (BAL) and its

derivatives. A junior IT person would typically lack at least one of the skill sets.

As with any other technology, quality is not inevitable. Get the wrong people,

and you get the wrong results. If this is your first business rules project, get the

wrong people, and not only do you get the wrong results, but you also learn the

wrong lesson – and set back business rule adoption in your organization by a few

years.

11.6 Further Reading

As this chapter is JRules specific, additional sources of information can be found in

the product documentation and on IBM’s support site forWebsphere Ilog JRules at
http:/publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp.

More information about the rule engine execution algorithms can be found in

Chap. 6 and its references. The Web site www.agilebrdevelopment.com, which is

dedicated to this book, contains complementary information.

11.6 Further Reading 387

Part V

Rule Deployment

Chapter 12

Issues in Deploying Rules

Target audience
l Application architect, developer, business analyst

In this chapter you will learn
l Technology and deployment issues to consider when planning

your integration, like transaction support, scalability, data
access, ruleset deployment

l How to manage the ruleset life cycle
l How to implement rule execution as a decision service using web

service, SCA and JMS

Key points
l Access to the data model used by the rules can impact perfor-

mance and should be part of the decision service implementation
not the ruleset.

l Data model definitions are different: there is one for messaging
and service contract level; one for the rule execution, and one for
persistence in the database.

l Parallel processing of rule execution is a common implementation
in business application to support scalability and hot deployment.

l Ruleset parameters should not be exposed as generic service, but
behind a service interface which specify the business intent of the
different decision service operations.

12.1 Introduction

In this chapter, we present the common issues around rule deployment, the ruleset

packaging and life cycle, and the decision service integration. We start, in

Sect. 12.2, by looking at the major deployment and integration considerations an

application architect is considering when looking at rule engine technology: trans-

action support, scalability, data access, and rule hot deployment. The main reason

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_12, # Springer-Verlag Berlin Heidelberg 2011

391

for that comes from the fact that business rule applications are transactional,

processing business data under performance constraints: care and strong architec-

ture are needed. In Sect. 12.3, we describe the concept of decision service, covering

details on the different integration technology to use to support the implementation

and the communication with such business services. Communication between the

application and the rule engine can be implemented in a variety of ways; using

standard or proprietary API, we present the Java Specification Request 94 (JSR94)

API, which defines how a Java program can access a rule engine without using a

proprietary API.

Section 12.4 reviews the design and the management of the ruleset life cycle and

how to deploy ruleset to the different physical environments. Deployment includes

packaging the rules in an executable format and making them available to the rule

engine in the target environment. A ruleset is a set of rules that can be executed by

the rule engine to produce decisions. The questions to consider are how to select the

rules as part of the ruleset and how to support a life cycle that controls the quality of

this piece of code. We conclude in Sect. 12.5.

12.2 Integration and Deployment Considerations

When defining and designing the rule engine integration as well as the rules

deployments, the architect has to study at least the following requirements: trans-

action support, scalability, data access, and ruleset hot deployment. We present in

this section those requirements in more details.

12.2.1 Transaction Support

Most of business applications using a rule engine are transforming the business data

exposed to the rule engine by modifying attributes of business entities, adding new

entities, etc. This processing may be done as part of a transaction. The rule engine

has to be a good citizen in the support of transactions. Transactions are a means of

guaranteeing that changes made to a data source are completed accurately, respect-

ing the ACID1 properties:

1A is for ATOMICITY, C for CONSISTENCY, I for ISOLATION, and finally D for DURABILITY.

392 12 Issues in Deploying Rules

For a rule-based application, the action part of a rule can modify any object

within the graph of objects in its working memory. Those objects may come from

a data source. The architect needs to take into account if the call to the rule

execution is in the context of a transaction or not and consider if modified data

objects must be persisted back to the data source by the ruleset. We recommend

that transactions should not be started within a rule or rule flow. It is better to let

the calling client create a transaction and propagate the changes when the rule

execution is completed. The client code makes the decision of rolling back or

committing the transaction, depending on the rule execution results. Managing

transactions within the ruleset is more complex because it requires that the rule

flow include an initial action to start any transactions, separate tasks to manage

exceptions and trigger rollbacks, and final steps to commit the transaction.

Transaction support should be provided by the application server and be transparent

to the rule engine and rules. The transaction manager allows resource enlistment

and may conduct the two-phase commit or recovery protocol with the resource

managers.

The business method, which uses a rule session, can be part of an existing

transaction. Depending on the type of deployment, it may be possible to specify

the value of the transaction attribute within some deployment descriptor. The value

specifies how the method call should react to the transaction: from never (the

method must not be called with a transactional context) to mandatory (the method

Concept: The ACID Properties

ATOMICITY The transaction should be completed or rolled-back completely and

unambiguously. In the event of a failure of any operation, effects of all

operations that make up the transaction should be undone, and data

should be rolled back to its previous state.

CONSISTENCY A transaction should preserve all the invariant properties (such as integrity

constraints) defined on the data. Upon completion of a successful

transaction, the data should be in a consistent state.

ISOLATION Each transaction should appear to execute independently of other

transactions that may be executing concurrently in the same environment.

DURABILITY The effects of a completed transaction should always be persistent.

Concept: There are two types of transactions:

l Distributed transactions, which support multiple resources in a coordinated

manner
l Local transactions, which begin and commit transactions to a single resource

manager

Two-phase commits ensure that the resource manager parts of the transaction

either commit all or abort all changes made.

12.2 Integration and Deployment Considerations 393

requires a transaction). Modern application servers make it easier to define and work

with transactions, but do not eliminate the activity of designing which components

handle transaction origination and completion. In some extreme cases, rule engines

may execute rules with a longer processing time than other method calls, so it is

important to specify the maximum duration for the transaction timeout depending on

the time required to process the rules. It is good practice to constantly monitor the

time for rule execution so you can tune the transaction timeouts or evaluate the

impact of newly deployed rules.

12.2.2 Scalability

The second architecture assessment and design consideration is related to scalabil-

ity. Scalability is the property of the application or the system to support a growing

amount of transaction to process without impacting dramatically the performance.

When looking at business applications, which use rule engines, there are various

factors which can impact performance: the number of objects used in the fact

model, the number of rules, the number of concurrent callers, the type of access

to external data sources, the type of objects used to present the data, and so on. From

the rule execution point of view, some business applications may use rulesets with a

large number of rules (around 20,000 rules) and need to fire rules with an average of

100 ms. Scalability can be achieved by looking at the data access, the hardware

configuration, the rule engine deployment, and the design of the application. One of

the most important factors for rule execution is the data access, which we will detail

in the next section.

Adding hardware can improve scalability. There are two models of extension:

vertical, by adding resource such as CPU or memory to the current server, or

horizontal by adding new servers. Vertical extension involves using multiple rule

engines in parallel ready to serve the next transaction. Rule engine pooling is a

design pattern used to support creating rule engines and rulesets in advance,

managed in a pool and used on demand. Globally speaking, designing a scalable

architecture can be achieved through resource pooling and parallel execution for

CPU-intense activities. When the rule engine fires rules, it consumes CPU resources,

so we may want to execute them in parallel by using different threads of execution.

Pooling is efficient to manage a regular flow of requests with little change in the

number of requests. When a “spike” in requests occurs, some requests may be put on

hold waiting to get access to a rule engine ready for processing. This may not be an

issue to run the application for 95% of the time. In the other cases more hardware

resources may be required to avoid issues when a spike occurs.

Ruleset parsing costs time, so caching already created ruleset objects is manda-

tory when performance is important. Executable rules have a large memory foot-

print of around 6 KB per rule, so vertical scaling may quickly reach the limitation of

the underlying CPU architecture. For example, on a 32-bit CPU, the size of the

ruleset is constrained to 4 GB of memory.

394 12 Issues in Deploying Rules

Leveraging a multi-core or multi-CPU architecture helps to support a mix of

vertical and horizontal extension and improve the rule engine pooling execution.

Pooling specifies a maximum number of rule engines (linked to the number of

cores), which can serve client requests in parallel. Ruleset pooling is an important

implementation to support enterprise application, and most of the BRMS vendors

provide such support. Some open source solutions have a big weakness in this

domain. If you choose to use JSR94 to interact with your rule engine, verify that the

vendor’s JSR94 implementation supports ruleset pooling and hot deployment. You

could implement your own pooling mechanism using the open source project,

“Apache Commons Pool API.2” Basically, the goal is to keep the ruleset object,

which is costly to create, in the pool as a keyed generic object. But there are some

design and implementation constraints to carefully address which can take a lot of

time to fine tune.

When a lot of business objects must be processed in a short period of time, the

design to separate the processing between engines works well. The dispatching of

the business transaction can be driven by type of data where each data type is

processed with a different rule engine by using a dispatcher function to route the

objects to the appropriate ruleset (Fig. 12.1).

When designing the business application, it is important to evaluate what data

elements can be dispatched to different rule engines. The idea is to find a discrimi-

nator attribute and then partition the data accordingly. Most of the time, business

transactions are independent of each other, but there are still design considerations

to look at: a shared collection of reference data can represent a challenge when

dealing with multiple threads. The results may be unpredictable if not implemented

properly. Most rule engines and ruleset objects on the market are thread safe, but the

data elements accessed by the rules must also be thread safe. This is more a design

and implementation constraint on the data model when concurrent and parallel

executions are important.

Pool of engines

Dispatching
FunctionBusiness Transactions

Fig. 12.1 Dispatching function in front of rule engine selection

2See the apache project at http://commons.apache.org/pool/.

12.2 Integration and Deployment Considerations 395

Horizontal extension is accomplished by adding servers. Still there is a need to

dispatch the transactions to different server depending on the current server pay-

load. Detailing such architecture is out of scope of this book. This is a complex

problem to tackle, and software and hardware vendors propose different solutions

to support scalability at the server level.

The scalability support has to be considered at the design phase; the different

deployment strategies have to be evaluated at the early phase of the development.

The architect needs to consider how each deployed decision service (see Sect. 12.4)

performs when the load increases. We recommend conducting systematic tests to

evaluate the service when the load is light, medium, heavy and when load varies

over time. The tests measure the response time and throughput for the different test

scenarios. The tools used are basic: count the number of requests sent to the engine

over time and the time to respond. The graphs of response time or throughput

against the selected parameters present some inflexion points within the curve. At

this level, the application has reached resource conflicts that require some attention

and tuning. By using a few rules, you can simulate the behavior of a ruleset contain-

ing thousands of rules before rule authoring is completed. Still the best load testing

is to use actual rules and actual data. The performance results are directly linked to

the type of data and rules used. So the closer we are to the production data set the

better.

Concept: Thread Safety

An execution thread is the smallest unit of processing that can be scheduled by

an operating system. The Java3 virtual machine allows an application to run

multiple threads of execution concurrently. On the server side, a servlet is

executed in the context of a thread. When using EJB, Web services, SOAP

over HTTP, Restful services, JMS, to expose a decision service, a thread of

execution is running the rule engine.

Thread-safe programming is only necessary if you have data that can be

modified by more than one thread at a time. Normally, if two threads try to

change shared data, developer should not hope that the first thread is able to

finish with the data before the second one begins to modify it. This situation is

called racing. Most stateless implementations of decision service using rule

engine do not share data. Reference data are exceptions, they could be updated

in parallel of rule engine processing, if the data in the data source is changed.

Most of rule applications use a rich data graph; therefore, the architect needs to

assess the data model against thread safety requirements.

3See Java Thread API at http://download-llnw.oracle.com/javase/6/docs/api/packagejava.lang.

396 12 Issues in Deploying Rules

12.2.3 Data Access

Data access represents the real, recurring issue to consider when developing

business rule application. Recall from Chap. 6 that a rule engine is accessing a

data graph within the condition and action parts of each rule. In this section, we try

to present the different problems of data access, loading the data, and changing the

structure definition of the data, and present some possible solutions.

A Java rule engine manipulates Java objects. These objects are referenced within

the working memory, are read within the condition part of the rule, and are modified

in the action part. Loading the data means transforming data read in a database into

Java objects (or Java beans). In a worst case scenario, the engine may need to load

the data elements from a data store, deployed somewhere, at each condition

evaluation. In reality, we will use proven technology to support loading, caching,

and mapping the data to Java Objects. The Java Persistence API, JPA,4 is such

technology, for example. Still, poor performance of the object to data mapping layer

can dramatically impact rule processing. During the authoring step, we assume the

data elements are present, but in the deployment environment there are cases where

it may not be true. Lazy data loading is such a case. For example, if we test on a

coverage code for a given policy with conditions such as: if the coverage of the policy
is code 32 <. . .> then <action>. When the policy is loaded from a data source but

not the Coverages (lazy loading), the rule condition does not match or the rule engine

may need to wait for the data to come depending on the O/Rmapping implementation

and configuration.

Even in pure XML document processing, the data model may need to be

completed by loading some reference data before calling the rule execution.

Those reference data are mapped in Java object and cached locally to the rule

engine.

A solution is to load all the related data before calling the rule execution. This is

a common pattern when using a rule engine. One of the advantages of this approach

is to efficiently manage any exception, which may happen when loading data,

outside of the rule execution. It may be difficult and complex to manage the load

data issue and recovery in the context of the rule. Also the rule processing perfor-

mance will be better as the data are ready for the rules; there is no wait time to get the

data from data sources at the rule level.

There are cases where the amount of data to load is important but only valid for

10% of the business transaction to process. We may not want to penalize all

transactions for the sake of making 10% efficient. This is a common case on

reference data, like medical procedure codes or other business related codes. The

worst implementation loads the data at each business event. So caching of such

reference data may be a better choice. In that case, we have to be sure the reference

data graph is thread safe. This problem of data loading is not exclusive to databases,

it also applies when accessing legacy application content on mainframe using a

4See specification at Java Persistence API: http://www.jcp.org/en/jsr/detail?id¼317.

12.2 Integration and Deployment Considerations 397

message-oriented middleware, or accessing a web service. As JEE design encourages

the use of local objects as much as possible, the same pattern applies here: the rule

engine performs far better if its fact model is local. Latency can come from different

sources: Network latency for remote method invocation, complex computations on

the service side to return the data to the caller, database response time, and any

combination of the three. Overall we need to be sure that any data referenced in the

condition part of a rule is present for rule evaluation. If we do not consider this

carefully, the performance for the rule processing may degenerate and the rules may

not fire.

The second issue is related to the change to the data definition. In Java, class

definitions must be loaded in the classpath to be available to the engine, which

means any change to the data model forces a deployment of new JARs. Even if rules

are hot deployed, when a change in the rule is linked to a change in the data model,

the data model JAR must be redeployed first and then the rules. Otherwise, rule

execution will generate exceptions or not process as expected.

To support the two previous issues, a solution is to use XML documents for

getting data to the rule engine and XSD to define the structure of the data. XSDs are

more flexible to change. They can be deployed to a central server and accessed with

a unique URL. If the client code sends a noncompliant XML document, the XML

parser detects it. Otherwise the rule using the new attribute will not fire, which may

cause a functional problem. Using an XML binding approach, the deployment is

linked to the BRMS product used and may offer the advantage of a pure dynamic

data model definition if the XML binding is used to define the fact model for

authoring the rules and also used during rule execution to map XML document to

Java objects. There is no need to use an external static binding. The performance

may be less optimized, but, as of today, there are many business applications that

are using this approach.

Another solution is to leverage the Service Data Object (SDO)5 specification to

access dynamic data objects from heterogeneous, loosely coupled data sources

(Fig. 12.2). SDO is an interesting solution when considerable variation in data

amounts and data definitions are expected. Data definition generates tedious rule

refactoring, so any solution where the rules can leverage a stable data model has

to be privileged. The decision service and the rules use the SDO API to access the

data. The access point is the DataObject, which provides flexible graph data

structures to navigate to the objects needed by the rules. DataObject includes

properties that can be simple type, one-to-one, or one-to-many references to other

DataObject. SDO can read data from databases, XML, and any other resources

depending of the implementation used. This implementation is the role of the Data

Access Service component (DAS). The client code, like a rule-based decision

service, accesses the data using the SDO context which manages the data graph

and the change summary graph. The change summary graph highlights the changes

5See SDO specification at http://www.osoa.org/display/main/service+data+objects+home.

398 12 Issues in Deploying Rules

made on the data objects, which is persisted back by the DAS. This feature is

interesting when the data loaded relies on optimistic concurrency.

Apache Tuscany SDO6 is an open source implementation for the SDO specifi-

cation. There are also commercial products that support this API. The type defini-

tion can be set by APIs or come from an XSD. Within an SOA deployment,

business objects are usually defined using XSDs. The XSD can be used to set the

SDO data types. Below is an example for the Claim type, which has one Policy, and

one-to-many InvolvedPerson. The definition comes from the claim-model.xsd. The

code to access the claim and other related object looks like:

// First get a SDO context using Tuscany SDOUtil implementation
HelperContext scope = SDOUtil.createHelperContext();
// get the types definition for our model using XSD
loadTypesFromXMLSchemaFile(scope, "claim-model.xsd");
// use a factory to create DataObject
DataFactory dataFactory = scope.getDataFactory();
// create our first data object: the claim using the type as define in the claim mod-
el.xsd, using the same namespace
DataObject claim = dataFactory.create("http://abrd.claim","Claim");
// set some attributes on the claim using the API
claim.setInt("id",305);
claim.setDate("dateOfLoss",new Date());
// create a one to one relationship between claim and policy
DataObject policy = dataFactory.create("http://abrd.claim","InsurancePolicy");

policy.setString("policyNumber","P012345");

claim.setDataObject("policy", policy);

Each DataObject has a type that can be defined, as in the example above, using

XSD, or as static Java class or dynamically using the SDO API. Once we get a SDO

context, we can load the type definitions from a XSD, and use the data factory to

create an instance of the data object. The association between objects is managed

using a containment relationship. In every data graph, a data object has a unique

parent which is a container: for example, the property “policy” within the Claim is a

container, used to traverse the graph of objects.

Data
Access
Service

Database

XML

Web service

Object

Data Graph

Decision
Service

Change
Records

Fig. 12.2 SDO components

6http://tuscany.apache.org/.

12.2 Integration and Deployment Considerations 399

The Data Access Service is a major component of SDO as it is responsible for

accessing the data source and to provide a graph of DataObject to the client

application. DAS works with configuration files which supplies information for

data source connection, SQL query to use and database schema information. DAS

executes SQL Queries and returns results as a graph of Data Objects. It reflects any

changes made to a graph of Data Objects back to the data source.

Classical applications use both static and dynamic definition within the data

model. Most likely an architect uses static Java beans to represent data coming from

local database, RMI communication with serialized objects between Java compo-

nents and XSD to define messages exchanged between heterogeneous applications

using web service or JMS as communication vehicle. Tuscany SDO7 or SDO vendors

provide tools to generate Java interface, implementation class, and factory from the

type defined in a XSD. The framework authorizes in that case a mix of static and

dynamic management of the data model.

12.2.4 Ruleset Hot Deployment

One of the goals for adopting a BRMS is to be able to deploy the rules without

stopping the business application (operation known as “hot deployment”). The rules

are provided to the application as data. For example in the case of a Java applica-

tion, rules are not part of the classpath and loaded as other JAR8 files at application

start-up. The rules are treated as external data parsed and loaded into the server

memory. This capability sometime scares architects and production operation

managers; this is why we want to elaborate on this capability.

The BRMS can use a database or a file system in the rule execution environment

to store the executable ruleset. In Java SE you can use the file system, but in Java

EE, a database is a more likely choice to comply with security standards. The

ruleset is loaded from the data source and parsed so that the engine can execute the

rules. Rulesets can be cached and shared between engines. Parsing the ruleset

consumes CPU time, because the rule engine builds the RETE Network from the

rule declarations. The larger the number of rules, the greater the time to parse. The

integration of the rule engine into the application server has to take into account

ruleset caching and support a listening mechanism to get new events when a new

version of a given ruleset is available within the data source. Multiple rulesets can

be deployed to the same rule execution server. Hot deployment can be an efficient

feature when the engine processes business transactions in a stateless mode. The

engine uses the latest version of the rules. This is mostly the case for data validation

ruleset. It becomes more sensitive on underwriting or eligibility rules when audits

may occur asking for reasons why the system refused or accepted any given business

7See SDO Apache project in http://tuscany.apache.org/sdo-overview.html.
8Java Archive: based on the zip compression format a Java archive groups all the java artifacts

needed to a java application. At start-up, a java application load a set of jars files so it can execute.

400 12 Issues in Deploying Rules

transaction. In that case the audit function may need to replay the transaction with

an old version of the ruleset.

Hot deployment can be an issue when there are a lot of business transactions to

process in parallel. It may be interesting to evaluate when the business application is

less demanding and schedule the ruleset update within that time window. The only

possible deployment, without impacting dramatically the response time to process a

business transaction, is to use parallel execution, with at least two rule engines

serving the same business service. The loading and parsing of the ruleset has to be

done in a separate thread of execution with a lower priority than the rule engine

threads. The parsing of rules takes more time than rule execution, so between the

start of the loading and parsing tasks the rule engine will process many business

transactions. When the new ruleset is ready, the next call to get a rule engine from

the pool is linking the new ruleset to the engine. This is true when the processing is in

stateless mode as each rule invocation does not maintain any engine internal states,

and so can reset the engine or create a new engine instance. For stateful processing,

it is more complex since the service needs to understand when the rule execution is

completed, and cleans the rule engine states, before getting a new engine linked to

the new ruleset. This can take longer if the stateful conversation requires multiple

interactions. The conversation needs to maintain some context of execution; to be

sure the next call is using the same “old” ruleset and not the new one.

A few BRMS products on market have this capability. The database used in

execution environment has to be different than the one managing the rule authoring

environment. The ruleset life cycle is different than the rule life cycle. The two

repositories have different purpose.

Some BRMS, like IBMWebSphere JRules, propose using a second database as a

rule repository to store versions and configuration management elements as well as

rule artifacts. At a high level, the deployment involves the following components

(Fig. 12.3).

Rule Set
Repository

Rule Authoring
Environment Rule

Repository
Rule Artifact

Rule Execution
Environment

Rule Set

Rule Set
Business

Transaction

Business Analyst-
Rule Author

Administrator

Fig. 12.3 Deployment components

12.2 Integration and Deployment Considerations 401

l Rule authoring environment to support rules development activities
l Rule repository to store the rule artifacts
l Ruleset repository to save a packaged rules to the execution environment
l A server to execute the rules and host the rule engines

Deployment may be driven by business analysts, but controlled by production

administrators. The BRMS supports the tagging of rules and rulesets to control the

deployed entities. Some security and role enforcement may also be necessary when

rules are deployed in sensitive environments or to control access to each ruleset.

12.3 Decision Service Integration

In this section, we present why the decision service approach is important and how

to support its integration in the IT architecture. SOA is about exposing reusable

business services, and implementing some of these services with BRMS technology

brings agility within the IT architecture. The business service taking decision is

named in the industry “decision service.” In a broader way, James Taylor9 is

presenting a lot of best practices on his blog10 about decision management. The

design of a decision service should follow the same SOA best practices for business

services implementation; one of these is the definition of the request/response data

structure, or service contract, which represents a partial view of the fact model used

by the rule engine. It is frequent to consider the objects inserted in the working

memory of the rule engine to infer decision,11 as input parameter to the operation

exposed in the service contract, but in fact this approach has some major draw-

backs. The major one is to ask the consumer of the rule service to send all the data,

which may not be feasible, and violate the loosely coupled argument of SOA:

adding new elements in the fact model involves changing the service contract (data

definition), which by side effect enforces changing all the client applications. Better

to design coarse grained business interface, and let the service responsible to load

its data set. We think this is better to expose business interface and then use rule

engine for the implementation without exposing any ruleset signature to the calling

processes or application code. Business interfaces are more stable, coarse grained,

and loosely coupled, all important characteristics for a sustainable SOA and lever-

aging best practices for SOA. Another common issue is related to the need of

getting access to internal utility objects: most of rule processing needs some helper

classes to facilitate writing efficient rules, those helper classes or internal technical

service classes should not be exposed to the external world as part of the service

definition, but be added in the working memory or parameter of the rule engine. For

9http://www.smartenoughsystems.com/ and the book from James Taylor and Neil Raden, “Smart
Enough Systems: How to Deliver Competitive Advantage by Automating Hidden Decisions.”
10http://jtonedm.com/.
11See Chap. 6 for detail on those concepts.

402 12 Issues in Deploying Rules

example, some utility classes can be required to simplify the access to the data

model by the business analyst: a complex enterprise model can include hundreds of

classes, with thousands of attributes, which deliver the vocabulary to write rules

against. The more complex the vocabulary, the less effective is the rule authoring

task. Helper classes help to abstract some concepts and offer a more accessible

vocabulary.

One of the real problems of interface design resides in the data model and

parameters the service operation needs to receive. There are a lot of best practices

in the industry on how to design web services and the data model: top-down starting

by the WSDL and XSDs, bottom-up starting by existing Java interface or classes,

and a mix of the two called meet in the middle. We will not detail yet another

approach, but what is important to note is that rule engines, in the Java world, use

Java classes as a data model. The real value of Java against XSD is that we can use

good programming practices to enforce the use of immutable objects as part of our

data model, add behavioral methods to the Java class to support complex computa-

tion and all classical object-oriented programming practices. We can use the Java

Annotations to generate mapping to persistence layer, web services definition, and

XSD/XML document from our data model. Developers have full control on the

functions to add to class. Most of the time a data model in Java is easier to unit test,

and with an IDE such as Eclipse, the refactoring of classes is a real benefit as it is

almost impossible to design a good data model to be used as rule fact model upfront.

Using a pure XSD approach, when executing the development cycle XSD to Java

back to XSD does not generate the same code and schemas. So refactoring may be

more cumbersome.

For the service definition we will, most likely, have two models: one using simple

types and the minimum data definition so that client code can reuse the service more

easily. This data model is part of the request–response structure. Client code does not

have to load the data for a service. For example, in the claim processing, the client

caller sends a claim identifier and other important data like policy number, insured

person identifier . . . then the business service takes care to prepare the data for the

rule engine by loading all the necessary related data. Another important consideration

is to look at the reference data, and other business objects not provided by the caller,

but still required by the rule engine. Such data can come as enumerations or more

complex data graphs and may have a more static definition. By static we mean that it

does not change often within the scope of the ruleset life cycle. Loading such data is

accomplished within the implementation of the business operation using some Data

Access Object,12 or Data Access Service or other patterns. Reference data like

product code, medical procedure code, and decision-rejection code used by the rule

are more static and are cached behind technical services. The business operation

implementation is calling such services and sends the data as reference to the rule

engine. A classical example is related to the reason codes used as the action part of

12See Sun Core J2EE Patterns – Data Access Object at http://java.sun.com/blueprints/corej2eepatterns/

Patterns/DataAccessObject.html.

12.3 Decision Service Integration 403

eligibility rules. The rule accumulates issues in the result processing, and each issue

can use predefined reason code and reason description. Those codes can be defined,

as reference data, in a central repository of a Master Data Management product.

12.3.1 Service Implementation

On the service implementation side, Java developers can integrate the Rule Engine

at the API level to access rule engines. For the claim processing, we can implement

a Java interface for all the decision services we want to support on the Claim. This

interface may be defined as below:

package abrd.claim.services;
 import insurance.claim.Claim;
 import insurance.claim.Result;

 public interface ClaimProcessing {
 public Result validateClaim(Claim claim);
 public Result validateMedicalInvoice(MedicalInvoice medicalInvoice);

 public Result adjudicateClaim(Claim claim);
 public Result verifyCoverage(Claim claim);
 }

In fact this interface can be exposed as a web service using the JAX-WS annota-

tions, which helps automatic generation of server and client codes. The service

operation defined in the interface calls one ruleset. In the claim processing example,

we have the validate claim, the adjudicate claim, or the verify coverage operations;

each operation uses a different ruleset with different parameters. When using a web

service definition, there is no difference between a decision service and another

business service: the client should not know it is using a rule engine.

In short, the algorithm of a business operation may look like: (1) get the input

parameter, (2) load complementary data, (3) prepare the ruleset parameters, (4)

execute the rules, (5) get the result from the rules execution, and (6) prepare the

output parameters and return. If the business service needs to support stateful

execution, we need to add some working memory management before calling the

rule execution as a step 3, but also offers a set of operations at the interface level

to terminate the session by the client. This is the client which manages the life

cycle of the transaction. Most business applications are not using a stateful

processing; there is no real need to keep states on the same business transaction

between different invocations. The context can be propagated between service

operations, without maintaining state at the operation level. States are part of the

context carried on.

In the case of the claim processing, the client has access to the claim number, the

policy number, and the customer name, so the business services are based on those

simple information. Our previous interface definition is using a complex model the

client needs to prepare for us. We keep the first interface definition using Claim and

404 12 Issues in Deploying Rules

MedicalInvoice Java classes for possible pure Java application integration, but we

also offer web service access using a second interface using simple type and let the

implementation prepare the data for the rules:

@WebService
public interface ClaimProcessing implements java.rmi.Remote {
 @WebMethod(operationName = "validateClaim", action = "urn:executeValidateClaim")
 public ClaimProcessingResult validateClaim(String claimNumber);

 @WebMethod(operationName = "adjudicateClaim", action = "urn:executeAdjudicateClaim")
 public ClaimProcessingResult adjudicateClaim(String claimNumber);

 ..

}

Using a top-down approach a developer designs the WSDL upfront by reusing

existing XSDs to define the messages exchanged between clients and the service,

including all the related business objects used in the message payload. When the

types are more complex, it is possible to leverage a JAXB implementation and the

“Java XML binding schema to Java” compiler, XJC tool, to generate the Java

classes for those business objects. When designing input parameters to a business

operation, it is important to be independent of the needs of a single client business

process. The service has to be designed for reuse.

Rules can call web services in their action part, but it is not recommended. It is

important to use synchronous RPC like communication to prevent blocking the rule

execution. It is recommended to often check the performance of the web service to

ensure efficient execution of rules. In most ruleset we try to avoid calling external

service as the management of error, retry, and fault compensation are difficult to do

in the action part of a rule.

12.3.2 Messaging Deployment

There are a lot of business applications which use message-oriented middleware

(MOM) to communicate with other applications. It is the technology of choice for

asynchronous processing of messages. One of the principal arguments to use asyn-

chronous communication is when the caller or message producer does not need an

immediate response from the consumer of the message. In the case of rule engine

processing, the caller is expecting a direct response from the rule execution so the

synchronous approach is the simplest and most common deployment. Some solution

architects propose MOM and ESB as the mean to perform communication inter-

changes between applications. An ESB provides more features of interest for IT

architecture. For a Java rule-based system, the simplest integration with a MOM or an

ESB is to use the Java Message Service API. JMS defines the interfaces to create, to

send, to read, and to publish messages. It supports both publish–subscribe and point-

to-point messaging.

12.3 Decision Service Integration 405

The two approaches can be used when the consumer/receiver is a rule engine. It

is common to use a queue communication approach when we externalize some of

the mainframe core functions to a rule engine. Instead of maintaining the under-

writing business rules in COBOL code, it may be interesting to use a BRMS for this

function and change the legacy application to post the transactional business data to

a queue so that a decision service can apply the new rules. The message payload is

an XML document, which includes in its message header some ReplyTo queue

reference so that the rule engine can post results to another queue. In fact it is not

directly the engine which is doing the direct retrieval or sending of message but the

implementation of the business service. Same approach as previous section. The

XML to Java binding can be done in the implementation of this service, as well as

retrieving some other reference data or business objects.

In event processing and event driven architecture, the publisher of events does

not know who the consumers are. The publish–subscribe model can be used and the

rule engine processes the events: a typical application is to filter events to keep only

those of interest or correlate events to derive patterns or even decisions. The event

publisher pushes data to subscribers which process it without any call back.

12.3.3 Service Component Architecture

Service implementation can leverage the Service Component Architecture as an

efficient approach to develop and compose business applications. Every SCA applica-

tion is built from one or more components. Components encapsulate business logic.

Components can be combined into larger structures called composites or assem-

blies. An SCA composite is typically described in an associated XML configuration

file called Service Component Description Language (SCDL). One of the main

goals of SCA is to clearly separate the communication details from the business

logic: the protocols and quality of service are wired at execution time; the developer

focuses on defining reusable services supporting business functions. Figure 12.4 is

an example of a simple assembly for a subparty of our claim application. The main

Concepts. In point to point messaging, a sender application addresses each

message to a specific JMS queue, and the receiving clients extract messages

from that queue. Queues retain all messages sent to them until the messages are

consumed or until the messages expire. Each message has one consumer, and

there is no timing dependency between the sender and receiver.

In publish/subscribe messaging, publisher applications address messages

to a JMS topic, on which subscriber applications listen to messages. The JMS

implementation takes care of distributing the messages arriving from a topic’s

multiple publishers to its multiple subscribers. Topics retain messages only as

long as it takes to distribute them to the current subscribers.

406 12 Issues in Deploying Rules

component is the ProcessClaimComponent, which offers a unique interface to the

external “world.” It has references to the three other components. From this

example, we can clearly see how a rule engine through its Java Interface can be

integrated as a component within a composite.

The composition of SCA component supports different language of implemen-

tation. As we focus on Java, we use the SCA Java programming model which relies

on annotations to wire the application at runtime. Using @Service annotation, we

expose method as a service interface by simply annotating the class. Here is an

example of the main component class:

@Service(ProcessClaimService.class)
public class ProcessClaimImpl implements ProcessClaimService {
 private ValidateClaimService validateClaimService;
 private VerifyCoverageService verifyCoverageService;
 private ClaimManagementService claimManagement;
 public String processClaim(String claimNumber) {

 // omitted implementation
 }
 @Reference
 public void setValidateClaimService(ValidateClaimService validateClaimService) {..

Fig. 12.4 SCA composite diagram

12.3 Decision Service Integration 407

The @Reference helps to inject at runtime the reference to the validateClaim-

Service. A fragment of the composite file looks like:

<sca:component name="ProcessClaimComponent">
 <sca:implementation.Java class="abrd.claimprocessing.bserv.ProcessClaimImpl"/>
 <sca:service name="ProcessClaimService">
 <sca:interface.Java interface="abrd.claimprocessing.api.ProcessClaimService"/>
 </sca:service>
 <sca:reference name="validateClaimService" target = "ValidateClaimCompo-
nent/ValidateClaimService"/>
…
 </sca:component>
 <sca:component name="ValidateClaimComponent">
 <sca:implementation.Java class="abrd.claimprocessing.bserv.ValidateClaimImpl"/>
 <sca:service name="ValidateClaimService">
 <sca:interface.Java interface = "abrd.claimprocessing.api.ValidateClaimService"/>
 </sca:service>

 </sca:component>

SCA makes reuse of business service much easier. A business function is imple-

mented as a composite and can be easily integrated in other composites. The binding

mechanism (access to component) makes it simpler to expose a service using

JMS, SOAP, Java, RMI . . . The implementation of a service can be in different

languages from BPEL and Java, for example it could be in a scripting language like

Ruby.

12.3.4 Embedding Rule Engines Using Low-Level Rule Engine
API: JSR94

Decision service implementation can leverage a neutral API to access rule engine.

We present in this section the JSR94,13 an industry standard that defines how Java

programs deployed in JSE or JEE can acquire and interact with a rule engine. The

goal of this specification aims to make the client code for simple rule-based

applications less dependent on rule engine vendor-specific classes. The basic

interactions with a rule engine are typically parsing the rules in scope of a ruleset,

adding object references to one engine, firing the rules, and getting results from the

engine.

JSR94 defines a ruleset as a rule execution setwhich can be loaded from external

resources like URIs, Input streams, XML streams, and readers. A rule execution set

is a collection of rules. Another important JSR94 concept is the rule session, which

is a runtime connection between a client and a rule engine. A rule session is

associated with a single rule execution set, consumes rule engine resources and

must be explicitly released when the client no longer requires it. Sessions can be

stateless or stateful.

13The JSR 94 specification can be found at http://jcp.org/aboutJava/
communityprocess/review/jsr094/index.html.

408 12 Issues in Deploying Rules

The client code may run on server layer like a servlet controller, in a service tier

part of an EJB or POJO, or in a standalone JSE JVM. The Javax.rules API

divides interaction with rule engines into administrative and runtime interactions.

The basic operations supported by JSR94 are:

l Acquiring a rule session for a registered rule execution set
l Deploying and un-deploying rulesets into a rule engine instance
l Querying simple metadata about a ruleset
l Executing a ruleset in either a stateful or stateless mode

The next sections provide more details for each operation.

12.3.4.1 The Client Code for Runtime Execution

From the client’s point of view, the interaction with a rule engine uses rule sessions.

But the first part is to get an instance of the rule engine implementation. The service

provider manager helps to get a rule service provider which in turn helps to get rule

runtime and rule administration implementations. Every specific implementation

exposes a unique identifier for the service provider URL, below is an example using

JRules service provider.

// Get the rule service provider from the provider manager
Class.forName(IlrRuleServiceProvider.class.getName());

RuleServiceProvider serviceProvider = RuleServiceProviderManager.getRuleServicePro

vider(“ilog.rules.bres.jsr94”);

l For the reference implementation the URL is org.jsp.jsr94.ri.
RuleServiceProvider

l For JRules the URL is ilog.rules.bres.jsr94.IlrRule-
ServiceProvider, and the service provider name is ilog.
rules.bres.jsr94

l For JBoss-drools the URL is org.drools.jsr94.rules.
RuleServiceProviderImpl and the service provider name is

http://drools.org

The code above is used for JSE deployment, for JEE environment runtime

clients should resolve the RuleRuntime and RuleAdministrator
services directly using JNDI lookup.

Concepts. Stateless executes a rule execution set with a list of input objects in

one call.

Stateful is designed to maintain a long time conversation between the client

and the engine and provides mechanism to assert/retract input object to the

session.

12.3 Decision Service Integration 409

Javax.naming.InitialContext initialContext = new InitialContext();

RuleRuntime ruleRuntime =

(RuleRuntime) PortableRemoveObject.narrow(

initialContext.lookup("org.jcp.jsr94.ri.RuleRuntime"),RuleRuntime.class);

In JSE, we can load those URL references from a properties file or a file

descriptor to avoid hard coding. The next step is to get a rule engine runtime.

// Get a RuleRuntime and invoke the rule execution.

RuleRuntime ruleRuntime = serviceProvider.getRuleRuntime();

The RuleRuntime interface exposes the method to create a rule session given a

previously registered RuleExecutionSet URI. It is possible to execute

the rule engine in stateless or stateful mode using different type of rule session. We

need to specify the URI for the rule execution set and the session type. The code

looks like:

StatelessRuleSession statelessRuleSession = (StatelessRuleSession) ruleRun-
time.createRuleSession (ruleExecutionSetURI, rulesessionProper-
ties,RuleRuntime.STATELESS_SESSION_TYPE);

The second parameter is optional and is used to add some additional properties to

the session. In JRules, it is used to give the references to the ruleset parameters and

to specify if the RuleSession is a J2SE Plain Old Java Object (POJO14) rule

session or a J2EE POJO rule session:

Map rulesessionProperties = new HashMap();

rulesessionProperties.put("claim", claim);

rulesessionProperties.put("policy", policy);

A stateless rules session exposes a stateless rule execution API to an underlying

rules engine with two different methods to call the execution of the rule:

public Java.util.List executeRules(Java.util.List objects)

 throws InvalidRuleSessionException,Java.rmi.RemoteException

and

public Java.util.List executeRules(Java.util.List objects, ObjectFilter filter)throws

InvalidRuleSessionException,Java.rmi.RemoteException

14POJO is an acronym for Plain Old Java Object and is used to emphasize that a given object is an

ordinary Java Object, not a special object like an Enterprise JavaBean.

410 12 Issues in Deploying Rules

The list of objects set as parameters will be inserted in the engine’s working

memory. The list returned includes all the objects created by the executed rules. The

only things we can retrieve with JSR94 from an execution are the objects in the

working memory. The second API uses a filter of objects the client code can supply

to select those objects that should be returned from the rule engine.

12.3.4.2 Filtering Objects

To filter out objects from the list of returned objects from the rule execution call.

The client code needs to provide an implementation of the ObjectFilter interface.

The implementing class overwrites the filter(Object) callback methods that allow

filtering out objects as desired. Here is a simple filter class that removes any claim

which does not have a policy attached to it.

public class MyObjectFilter implements ObjectFilter {

@Override

 public Object filter(Object obj) {

 if (obj instanceof Claim) {

 Claim claim = (Claim)obj;

 if (claim.getPolicy() == null)

 return obj;

 }

 return null;

 }

12.3.4.3 Get Rule Execution Set Meta Data

RuleRuntime can also be used to get the list of URIs that currently have rule

execution set registered with them using the API:

List listURIs=ruleRuntime.getRegistrations();

The other object involved is the RuleExecutionSetMetadata
interface which exposes metadata about a Rule Execution Set to runtime clients of

a RuleSession like the name, URI, and description of the rule execution set.

RuleExecutionSetMetadata metadata = statelessRuleSession
.getRuleExecutionSetMetadata();

metadata.getName();
metadata.getDescription();
metadata.getUri();

12.3 Decision Service Integration 411

12.3.4.4 Stateful Session

Client code can use a stateful session to conduct long running conversation with the

engine and control the working memory with new facts. Input Objects can be

progressively added to the StatefulRuleSession through the

addObject method. Output Objects can be progressively retrieved though

the getObject method.

StatefulRuleSession statefulRuleSession = (StatefulRuleSession) getRuleRuntime()

.createRuleSession(ruleExecutionSetURI, getProperties(claim, medicalIn-

voice),RuleRuntime.STATEFUL_SESSION_TYPE);

//first call the normal execution

statefulRuleSession.executeRules();

Handle hdl = statefulRuleSession.addObject(claim);

statefulRuleSession.executeRules();

Objects that have been added to the StatefulRuleSession must be

removed and updated using the removeObject and updateObject
methods. A client must test for the existence of an added Object using the con-
tainsObject method. The removeObject, updateObject,
and containsObjectmethods must all use aJavax.rules.Han-
dle implementation (such as IlrRuleSessionHandle) instances to

refer to and identify Object instances. Handles are used to ensure that Object
instances can be unambiguously identified in the event of multiple class loaders

being used or the StatefulRuleSession being serialized. The addObject method

returns a Handle instance for an Object added to a StatefulRuleSession, so that it

can be used in the remove API, for example.

In JRules, Ruleset parameters and objects added to the RuleSession
when it is created are uniquely identified by an instance of the IlrRuleSes-
sionHandle class.

12.3.4.5 Administrate Rule Execution Set

Administrative tasks supported by the API Javax.rules.admin include

instantiating the rule engine and loading rules. To get the rule administrator, we use

the service provider such as:

RuleAdministrator ruleAdministrator = serviceProvider.getRuleAd-
ministrator();

The RuleAdministrator allows RuleExecutionSet instances to be registered against

a URI for use from the runtime API, as well as methods to retrieve a RuleExecu-

tionSetProvider and a LocalRuleExecutionSetProvider implementation. The Rule-

ExecutionSetProvider interface defines methods to create a RuleExecutionSet from a

number of Serializable sources.

412 12 Issues in Deploying Rules

LocalRuleExecutionSetProvider ruleExecutionSetProvider = ruleAdministra-

tor.getLocalRuleExecutionSetProvider(null);

RuleExecutionSet ruleSet = ruleExecutionSetProvider.createRuleExecutionSet(input-

Stream, null);

ruleAdministrator.registerRuleExecutionSet(ruleSet.getName(),

 ruleSet,null);

The use of the local rule execution set provider is interesting to send a local

execution set to a remote engine using serialization and marshaling. The API get

(Local)RuleExecutionSetProvider takes an argument of type Map, which is docu-

mented as “additional properties” and used for setting the JNDI properties. The

source for the rule can come from non-Serializable resources, such as binary

InputStreams or character-based Readers. Registering the execution set to a URI

helps to create session to an execution set. The rules registered using the rules

admin API are the only rules accessible to the runtime clients.

The following code gets the name and description of the execution set deployed:

ruleSet.getDescription();

ruleSet.getName();

getName() in the case of JRules Rule Execution Server deployment returns the

ruleset path. From the ruleset, we can get all the rules in a list and then for each rule

its name and description.

In JRules, Rule.getName() returns a string which specify the language name and

the name space for this rule, like for example “IRL/validation/max-
imum_amount-brl.irl.”

The rule.getDescription() returns the rule in the language of the rule engine

vendor.

12.4 Ruleset Deployment

In this section, we describe the generic deployment process and ruleset life cycle,

and how rulesets may be loaded into execution environment using a notification

mechanism leveraging different protocols. Independent of the BRMS product used,

the deployment process includes at least the following steps: (1) extract the

rules in scope for the execution, (2) package the rule elements into a ruleset –

a deployable artifact, (3) deploy the ruleset to the target environment, (4) notify

the engine of a new ruleset, (5) let management stack inside the rule execu-

tion environment loading the ruleset, (6) trigger the engine API to parse the

ruleset, and (7) send business transactions to fire the rules. Figure 12.5 illustrates

this flow.

12.4 Ruleset Deployment 413

12.4.1 Building the Ruleset

When the BRMS is using a rule repository supporting a meta-model, the first step of

extracting the rules in scope of a ruleset is driven by using some sort of queries. In a

rule repository, rules are grouped by rule project or rule group. The mapping

between a ruleset and a rule project is most likely one to one. But the extraction

can take care of the lower level rule life cycle to extract only the version of rule

which can go in a ruleset: the ones tested successfully for example. On top of this

fine grained life cycle, the development team may have to put in place some ruleset

life cycle (Fig. 12.6). The main motivation is to control what goes to production and

understand what version of the rules was used on a given business transaction.

Depending on the application scope, this can be as simple as tagging a given set of

rules with a version number or as complex as to have environments involving

Building Validated Production

Retired

Fig. 12.6 Ruleset life cycle

Rule Set
Repository

Rule
Repository

1. Extract rules

2-Package Rule set

3-Deploy rule set

4-Notify Rule Engine

5-Load rule set

6-Parse Rule set

7-fire rule

Rule Authoring
Environment

Rule Execution
Environment

Fig. 12.5 Rule deployment process

414 12 Issues in Deploying Rules

branching and complex version management, controlled with some formal business

process. The simplest ruleset life cycle has four main consecutive stages: Building,
Validated, Production, and Retired.

The Building stage, which is the longest and most important one, is controlled

by the rule governance processes. We will detail one possible change process in

Chap. 16. It is important to note that a new version of a ruleset restarts the life cycle,

because we want to control it from the beginning even if a few changes occur. The

existing ruleset in production may be retired when a new version is deployed.

The decision to retire or not can be linked to the business requirement as sometime

the rulesets have to be kept in parallel in production.

The ruleset life cycle can also be linked to the deployment strategy used by the

architect. In SOA, decision services are using rulesets which need to be versioned

and synchronized with the schema definitions used as model for the request–

response messages. Any new version of the XML schema should enforce executing

regression tests on each ruleset. This is not a major activity, but it needs to be

integrated in the change process. Depending on the BRMS used, we may need to

add properties to a ruleset to log the version definition of the schema used for the

data model, or let the build process guaranty the integrity between the different

artifacts.

Step 3 is making the physical deployment, where it is possible to use a staging

approach and promote the ruleset from one platform to the others. The criteria to

select the different servers can be based on the test data, the scope of processing, the

decision services used, etc. The choice of target execution server can be configur-

able by the end user and selectable from the rule authoring environment. The list of

configurable environments is based on the user profile. A traditional approach,

leveraging the components as in Fig. 12.3, is to use four platforms:

l One development environment with a rule execution server is accessible by the

development team and mostly used for testing, component integration tests, and

nonregression tests. The rulesets are built from the rule repository using scripts

and deployed on demand or deployed on a daily basis as part of the continuous

integrated built process. The actors are the developers and rule authors.
l One preproduction/QA test platform – used for functional tests and system

integration test (to validate the quality of the application and the rulesets

deployed within the decision services). The actors are the Quality Assurance

testers.
l One production platform administered with security control and tools to get rule

execution reports. The actors are the production administrators with the role of

rule administrator, and the rule writers responsible to maintain the rules in a

controlled environment.
l One what-if simulation platform used as a mirror or partial mirror of the

production platform and used by the business user to try some new policy

implementation, new business intelligence partitioning, or algorithm. Ruleset

can be deployed to this platform by the business users. The actors can be

developers and business users.

12.4 Ruleset Deployment 415

The ruleset development flow, from extraction to deployment tasks, needs to be

described with the exact involvement of the different actors, different applications,

and different executable platforms. Depending on the BRMS product, some tools

need to be added to automate the processing of ruleset deployment. In the develop-

ment environment, the team can use continuous built process with automatic ruleset

extraction and deployment to the execution server. We will detail in next chapter

some tools and processes for JRules.

12.4.2 Loading the Ruleset in Execution Server

For the steps 4 and 5, there are different patterns to pull the ruleset from the

database. The notification of step 4 can be driven by a JMX implementation

where the deployment tool, a JMX console, notifies each rule engine deployed

that new ruleset is deployed to the ruleset repository. On the server side, the JMX

support is using an MXBean which implements a management interface. The

remote methods exposed can include operations that specify which version of the

ruleset is part of the data source. When a JMX console calls this method with a new

version of the ruleset, the method of the MXBean implementation loads the new

rulesets in background without stopping the current rule processing. Once the

ruleset is parsed, the ruleset cache is updated. One other solution is based on an

automatic checking by the engine to verify if there is a new ruleset in its data source

to read. This implementation can use a watchdog which reads at specific time

intervals a table in the data source to evaluate if there is a new ruleset to parse.

Finally, we have seen some other solutions based on JMS publish–subscribe model.

The decision service is a subscriber waiting on a predefined JMS topic to get a

message about new ruleset notification. This message includes the name and

version of the ruleset to load. Once the message is received, the subscriber loads
the ruleset from the data source and refreshes its own ruleset cache. The publisher
component, which is part of an administration application, sends the information to

this topic when a new ruleset was saved to the execution server database. The use of

JMS topic is interesting, as it permits to have multiple rule engines as listener to

ruleset notification.

With JMS or JMX mechanisms, it is possible to hot deploy rules without

stopping the core business application, which also means that the next business

transaction to process is using the new version of the deployed rules.

Associated to the deployment process is the support of different version of

rulesets in the execution environment and the ability to rollback. It is common to

maintain different version of rulesets in the execution server. The decision service

can pick up the appropriate ruleset according to meta properties attached to it,

like expiration and validation dates, ruleset version number, geography location,

line of business, etc. The dispatching function within the decision service looks

at one of the business transaction attribute (discriminant) and selects the ruleset

accordingly.

416 12 Issues in Deploying Rules

The problem of rule validity and ruleset validity is not as simple as it may look

and may involve multiple different supporting implementations. Some leading

BRMS offer selection of the rules at runtime, which may be a better choice than

having to do it at the ruleset packaging. One rule of thumb is to evaluate the number

of elements we may have to select from: the larger the number is, the worse the

management will be. Over time if the number of rulesets the dispatcher needs to

manage is increasing above, let say to, ten, the developer needs to reconsider the

concurrent versioning and add complementary management capabilities.

Using time boxed iterations, with a clear development and scope goal, helps to

drive the rule implementation. The rule authors have a short time period to execute

the authoring, validation of the rules. Each rule has its own life cycle to support a

fine grain control (See details in Chap. 16). When using a lower level control for the

rule life cycle, each rule writer needs to “commit” his changes by promoting the

rule to Defined status. The next steps control the rule testing and integration into

the ruleset. Once ready, the ruleset is tagged with a version number and built using

the rules ready for production. The rule extraction process needs to take into

account previously deployed “production” rules while the authors are working on

future versions of those rules: it should not take the “under authoring” rules. This is

not a simple implementation and is linked to the BRMS capabilities.

12.5 Summary

We reviewed the common requirements related to rule deployment within IT

architecture. BRMS provides the capability to hot deploy the business logic, the

ruleset, without stopping the business application. Because the rules parsing can

take time, a ruleset pooling mechanism has to be in place in the rule execution

server to support scalability requirements and parallel execution. Rulesets have a

different life cycle than the rules, which requires using different repositories, one

for authoring and one for rule execution. The deployment process has to support the

two environments to provide a simple and comprehensive platform.

Parallel execution is possible, and data analysis can partition the processing

between different engines. This is a common practice used when performance is a

major requirement.

The integration of a rule engine into the core application should be hidden from

the client by using a business service interface. The implementation may leverage a

neutral API (JSR94) to communicate with the engine, but we do not recommend it

until there is a rule interchange standard to exchange rule definition between

different rule vendors. The decision service design is based on business services

and not on pure ruleset signature. The different technologies of deployment like

web service, SCA component or JMS, are presented and represent a good solution

within SOA and EDA.15 The architect has to work on the data availability, and how

15Event Driven Architecture.

12.5 Summary 417

the rule engine gets access to a complete graph of object-oriented data. We pre-

sented SDO as a generic data model, adding flexibility to the data model: a good

complement to the rule technology. A mix of XML document processing, with

Java to XML binding technologies, are the common patterns of deployment within

BPM suite and SCA implementation.

In the next chapter, we discuss how ILOG JRules supports ruleset deployment.

12.6 Further Reading

JSR94 is specified at jcp.org/en/jsr/detail?id¼94.

One of the main contributors and decision management and decision service

approach are James Taylor, and Neil Raden with their book “Smart Enough

Systems: How to Deliver Competitive Advantage by Automating Hidden Deci-

sions” – Prentice Hall (2007).

To know more about Service component architecture, readers can point their

web browser to the Open Service Oriented Architecture collaboration website at

http://www.osoa.org/pages/viewpage.action?pageId¼46.

Java threading is covered in depth in Paul Hyde’s book “Java Threading
Programming.” Publisher Sams (1999).

JPA is covered by Mike Keith and Merrick Schincariol in their book: “Pro JPA 2:
Mastering the Java™ Persistence API (Expert’s Voice in Java Technology)” –

Publisher Apress (2009).

SDO specification can be read at http://www.osoa.org/display/main/service+

data+objects+home.

418 12 Issues in Deploying Rules

Chapter 13

Deploying with JRules

Target audience
l Application architect, software architect, developer

In this chapter you will learn
l How rulesets are packaged as part of a RuleApp
l What are the ruleset versioning capabilities
l How to manage a RuleApp in Rule Team Server and in Rule

Execution Server
l How to use the Rule Engine API, the JSR 94 or the Rule Execu-

tion Server rule session API to integrate rule engine processing
into your application

l How to use a rule engine using JMS deployment
l The concept of Transparent Decision Service
l How to identify which rules executed using the Decision Ware-

house capability
l How to develop queries to select the rules you want to have in

your ruleset

Key points
l The main deployment unit when using the rule execution server is

the RuleApp, which can be created and managed by a business
user within rule team server.

l JRules offers a very flexible API to integrate the rule engine into

the business application leveraging JEE or J2SE deployment
model.

l Rule execution server is simple to use and delivers the rich set of

features to manage a ruleset in production and scale vertically.
l Business users use Rule Team Server to author but also deploy

rules to the different RES.
l Rulesets can be exposed as services, but for most business appli-

cation deployed in SOA a decision service is part of reusable
business services therefore better deigned with a meaningful
interface and implemented using Java using the RES API.

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_13, # Springer-Verlag Berlin Heidelberg 2011

419

13.1 Introduction

In this chapter, we present the different deployment possibilities offered by IBM

WebSphere ILOG JRules. We first go over a quick review of the concepts of

operation (see also Sect. 8.2 for more details), with an emphasis on RuleApps,

which are the deployable artifacts to the rule execution server. In Sect. 13.3, we talk

about deploying rule application using the rule engine API. In particular, we review

the classes for rule engine, rulesets, and various utilities that support rule execution

tracing and debugging. In Sect. 13.4, we describe rule deployment using JRules’

Rule Execution Server (RES), whereby rulesets are deployed as services that can be
invoked by applications. Different RES configurations are discussed, depending on

the needs of the business application. We review pure Java integration, JMS, and

SCA. In Sect. 13.5, we address the deployment of Rule Team Server. We conclude

in Sect. 13.6.

13.2 Reminder on the Concepts of Operation

JRules has two authoring environments from where we can deploy rules: Rule

Studio and Rule Team Server (RTS). As seen in Chap. 5, developers use Rule

Studio to build the project structure, to develop the Business Object Model, to

organize the flow of execution, and to implement rules. From Rule Studio, they also

define the different configurations they may want to use for the ruleset deployment.

Basically, we can deploy rules to a rule engine embedded in a business application or

to a managed rule execution environment, which offers a richer set of application

management features. The choices between the two depend on the application require-

ments. In SOA, an architect may leverage the JEE container to support service

binding, security, transaction support, pool for connections to the different data

sources, and so forth. Therefore, the natural deployment leverages the Rule Execution

Server (RES) component, which is a Java Connector Architecture implementation.

The alternative is to use an embedded deployment in whichwe package the engine jars

with the application and we deploy and execute the ruleset (as ruleset archive) on a

single JVM. This last approach uses the lower level API to access the rule engine and

the ruleset archive: a packaging for the rules (see Sect. 13.3.1 later). There is a third

deployment using the RES in J2SE, which we present in Sect. 13.4.1.

Figure 13.1 illustrates the tasks a developer has to perform within Rule Studio to

prepare for an embedded integration.

The right side of Fig. 13.1 presents a potential application packaging, including

the domain data model, the application logic (business service interfaces and

implementations), the rule engine, and the ruleset. The domain data model is

most likely a Java model accessed through a data access object layer, so it can be

packaged as a standalone reusable jar: dom.jar. The business logic code uses the

rule engine and the ruleset API, which is in the jrules-engine.jar.

420 13 Deploying with JRules

The embedded integration is not recommended when the requirements for

management of rules and rulesets are becoming crucial. IT developers will most

likely re-implement most of the features supported by the rule execution server, like

database persistence for the ruleset, management stack to control the life cycle of

the ruleset, rule processing statistics and logging mechanism, transaction support,

security control, engines pooling, etc. When the application needs to support

multiple rulesets, parallel execution, or is processing data within a transactional

context, we must leverage the services of a JEE container. Rule Execution Server,

deployed on an application server as a Java Connector Architecture1 resource

adapter (RA), supports transaction management, security controls, and rule engine

pooling.

In RES, there are multiple patterns to invoke a ruleset: using java object (POJO),

local or remote EJBs, web service protocols, or as JMS listener using a Message

Driven Bean. We will detail the RES subcomponents and the activities to deploy a

ruleset in Sect. 13.4.

At the lowest level, a Ruleset is packaged as a rule archive which is a jar

including rule files,2 meta data files such as the reference to BOM, the ruleset

signature description, and the exported rule properties. If we use the rule engine

API we have to parse the rule archive before calling the rule execution. This parsing

has to be performed only at the application initialization. When using the Rule

Execution Server, the rule archive is packaged within a RuleApp and transparently

parsed at the first call for rule execution.

A RuleApp contains one or more rulesets. In Fig. 13.2, the ClaimProcessing-

RuleApp has four rulesets with rules and one with the BOM entries.

In Rule Studio, RuleApps are managed inside projects. A RuleApp project

includes XML descriptors to describe the rule project dependencies, the ruleset

path, and a list of ruleset archive files. As a good design approach, a RuleApp

should include rulesets that share the same domain object model and are in the

IT Staff

Rule Studio

Build Rule Project with all rule
elements
Package Domain OM
Integrate Rule Engine API with core
app
Export ruleset archive
Deploy jars

JVM
BizApp.jar

BRE
Rule Set

Dom.jar

App-logic.jar

Fig. 13.1 Packaging a rule application

1Java Connector Architecture: http://java.sun.com/j2ee/connector/reference/industrysupport/index.

html.
2One irl (ILOG Rule Language) file per rule. The format is a text file with IRL syntax.

13.2 Reminder on the Concepts of Operation 421

same application context. From a RuleApp project, the developer can perform

all the pure administration activities like versioning, deployment, adding

management properties, export, and so forth. Figure 13.3 shows the Rule

Studio RuleApp editor for the claim processing RuleApp, which includes

three rulesets, “adjudicateClaimrules”, “verifyCoveragerules”, and “validate-

Claimrules.”

Each ruleset in a RuleApp can be invoked using a ruleset path. A ruleset path

includes the reference of the RuleApp name and the ruleset name inside the

RuleApp. The following ruleset path/ClaimProcessing-RuleApp/validateClaim-

rules refers to the current version of both RuleApp and ruleset. A path such as/

ClaimProcessing-RuleApp/1.0/validateClaimrules/2.1 references specific versions

Fig. 13.2 RuleApp and Ruleset archives

Fig. 13.3 RuleApp editor

422 13 Deploying with JRules

for both elements. Using the ruleset path it is possible to use different versions of a

ruleset within the calling client code. The API supports opening a session with the

rule execution server and to specify the ruleset path to use.

The following simple practice can be applied to control the version number of

the ruleset:

l Increase the X of X.Y version number for each major release of the ruleset
l Increase the Y of X.Y version number to manage subversion deployment

If we change the business logic in any way in one of our rule projects, we have to

upgrade the RuleApp archive to take the modifications into account. It is possible

for a business analyst using Rule Team Server to author rules and to deploy

RuleApps directly to a Rule Execution Server (Using the Configure Tab). In

RTS, a business user can create baseline, which can be seen as a tag applied to

each rule to deploy, and then he can deploy the RuleApp to the target execution

environment. Figure 13.4 presents RuleApps management screen with the set of

buttons to drive the deployment of a RuleApp.

It is important to use the correct RuleApp and ruleset names when defining

the RuleApp in RTS: they have to be the same as the ones specified in the

ruleset path as seen in previous section. If not the rule execution will not find

the rulesets.

Finally, the Rule Execution Server has also a web interface used by administra-

tor to manage the deployed ruleset archives and RuleApps. It is also possible to

perform basic monitoring, to view execution statistics, and to deploy, change, and

manage business rules without stopping the server. The information provided is rich

as we can see the rules deployed in ILOG Rule Language format and the rules that

were executed for given input data.3 The central panel displays the content and

status of a ruleset (Fig. 13.5).

We will detail the RES Console capabilities when detailing the new decision

warehouse function in Sect. 13.4.4.

Fig. 13.4 Rule App management in RTS

3A new capability called Decision Warehouse, see product documentation at http://publib.boulder.

ibm.com/infocenter/brjrules/v7r1/index.jsp.

13.2 Reminder on the Concepts of Operation 423

13.3 Integration with JRules Engine

In this section, we cover the integration of JRules engine using the different API

offered, engine and ruleset API in Sect. 13.3.1; JSR94 in Sect. 13.3.2. Using this

kind of integration may be a realistic use case when none of the out of the box

features supported by the rule execution server are needed by the application.

13.3.1 Deploying with the Rule Engine API

When we execute rules using the engine and ruleset API, we deploy and execute a

ruleset archive in a single Java Virtual Machine. The rule engine API is packaged as

jar and added to the classpath of the application. The client code using the rule

engine needs to load the ruleset archive from its data source, to parse it, to

instantiate a rule engine, to prepare the data as ruleset parameters or as facts inserted

into the working memory, to execute the rules, and finally to process the result.

As it takes some time to build the RETE Network and other internal objects, the

operation of loading and parsing the ruleset should be done only the first time the

application is started. The basic API used includes the class IlrContext for

the rule engine, IlrRuleset for the ruleset, plus some helper classes to load

and parse ruleset archive. The following code sample presents a class called

ProcessClaimImplWithJrules with a constructor preparing the rulesets by loading

the archive, parsing it, and creating the IlrRuleset object.

Fig. 13.5 Ruleset view as deployed in RES

424 13 Deploying with JRules

public class ProcessClaimImplWithJrules implements ProcessClaim {

// ruleset name…

protected String validateClaimRsName = "validateClaim-rules.jar";

protected static IlrRuleset validateClaimRuleset;

// constructor

public ProcessClaimImplWithJrules(){

JarInputStream is;

try {

 is = new JarInputStream(new FileInputStream(new File(validate-

ClaimRsName)));

 // prepare a Ruleset archive loader

IlrRulesetArchiveLoader rulesetloader = new IlrJarArchiveLoader(is);
 // then a parser

IlrRulesetArchiveParser rulesetparser = new IlrRulesetArchiveParser();
 validateClaimRuleset = new IlrRuleset();
 rulesetparser.setRuleset(validateClaimRuleset);

 // finally parse to create the ruleset

 rulesetparser.parseArchive(rulesetloader);

 …

Parsing the ruleset archive can generate errors; it is therefore recommended to stop

if an error occurs. Building IlrRuleset may take time so we need to avoid

creating it at each rule execution call, for example, by using a factory and static variable

protected with the singleton pattern. The last part of the class supports the implementa-

tion of the businessmethods. It needs to get an engine instance, sets the input parameters,

optionally initializes the workingmemory, executes the rules, and finally gets the output

parameters. Below is an example of code for the validateClaim operation:

public Result validateClaim(Claim claim) {

// Create the engine with a reference to the ruleset

ilog.rules.engine.IlrContext context = new IlrContext(validateClaimRuleset);
// Initialize the input parameters

IlrParameterMap inputs = new IlrParameterMap();
inputs.setParameter("validateClaim", claim);

inputs.setParameter("validateResult",new Result());

context.setParameters(inputs);

// Initialize the working memory

 context.insert(claim.getPolicy());

// Execute the ruleset

IlrParameterMap outputs = context.execute();
// Get the result

Result rOut=(Result)outputs.getObjectValue("validateResult");
// Clean the context

 context.retractAll();

 context.end();

 return rOut;

 }

13.3 Integration with JRules Engine 425

The engine API is simple and is enough to support a lot of basic applications.

Other transaction heavy applications should leverage the RES API, which we will

detail in Sect. 13.4. But first, let us look at how JRules is supporting JSR94.

13.3.2 JSR94: JRules Specifics

As introduced in the previous chapter, the JSR 94 offers the advantage of interact-

ing with a rule engine without any knowledge of the underlying product API. As of

this writing, the value of using JSR94 is questionable until there is an agreed format

to exchange rules between different engine vendors. W3C is working on defining a

standard called Rule Interchange Format or RIF.4 For more detailed explanations of

the JSR94 API, see Sect. 12.3.4.

JSR-94 delegates its processing using JRules rule sessions deployed in a Java archive

file named jrules-res-jsr94.jar. The JSR-94 interface is implemented with the Rule

Execution Server and not with the rule engine API, which is an additional layer added

on top of the engine, in order to have a common interface for J2SE and J2EE executions.

For JRules, it is not mandatory to deploy a ruleset with the JSR-94 management

API to execute this ruleset. The ruleset is already being deployed to RES and the

client code uses the JSR94 run time API to load object and execute rules. The

Uniform Resource Identifier (URI) used should be a valid ruleset path including

ruleappname/rulesetname. This also means we need to deploy a RuleApp archive to

get access to the rule execution set with JSR94.

For creating a rule execution set, the input stream has to point to a XML ruleset

descriptor which looks like:

<?xml version="1.0" encoding="UTF-8"?>

<rule-execution-set>

 <!-- The value attribute could be a valid path or a valid URL on a RuleApp ar-

chive file -->

 <location value="res_data/validateClaim-rules.jar"/>

</rule-execution-set>

It defines the path to your RuleApp archive file, generated by Rule Studio. The

client code needs to create a service provider, which in the case of JRules should use

the following URL:

// Get the rule service provider from the provider manager

Class.forName(IlrRuleServiceProvider.class.getName());

RuleServiceProvider serviceProvider = RuleServiceProviderManager.getRuleServicePro

vider(“ilog.rules.bres.jsr94”);

4See detail at W3C URL: http://www.w3.org/2005/rules/wiki/RIF_Working_Group.

426 13 Deploying with JRules

13.3.3 Monitoring and Tracing Rule Execution

As part of the integration there is a need to be able to trace and monitor execution of

the rules. RES supports monitoring of rule execution out of the box. We will detail

this in Sect. 13.4. When using the low-level API, it is still possible to attach a

monitoring tool to get events from the rule engine when it processes business data.

We can attach a notification observer using the engine API connectTool(engine-

Observer).

// create a rule engine – with a ruleset

IlrContext context = new IlrContext(validateClaimRuleset);

//add the observer
context.connectTool(new EngineObserver());

The observer is an extension of the ilog.rules.engine.IlrToolAdapter class or

an implementation of the IlrTool interface; some callback methods can be over-

ridden to trace the execution. For example, the method notifyBeginInstance is

invoked in RETE mode when the engine executes a rule, so we can log the name

of the rule.

public class EngineObserver extends IlrToolAdapter {
….
 public void notifyBeginInstance(IlrRuleInstance instance) {
 logger.info(instance.getRuleName());
 }

In production environment, logging has to be designed with care. We will most

likely prepare the minimum information during the rule processing and use an

asynchronous call to send the message to a messaging queue for future processing

done by a listener. Such heavy processing include saving the information to a

database. The goal is to avoid impacting the performance of the rule engine.

Asynchronous calls do not block the caller and make the receiver take care of the

logging and of the persisting of the events into a data source.

13.3.4 Resource Pooling

As discussed in the previous chapter, it is possible to pool rule engines for parallel

processing. JRules offers this capability out of the box using JCA connection

pooling inside the RES. Even in a J2SE deployment, the JRules implementation

(in jar jrules-res-execution.jar) of the JCA API is using engine pooling. The pool

size can be configured using a XML descriptor file named ra.xml.

13.3 Integration with JRules Engine 427

13.4 Deploying with the Rule Execution Server

In this section, we review the most important capabilities of RES in the context of

application integration and ruleset deployment. We start by presenting RES archi-

tecture as a JCA resource adapter, detailing the rule engine pooling and the ruleset

deployment. Then we review the RES session API to use to call for rule execution

in application server or a J2SE application. We detailed the JMS deployment in

Sect. 13.4.2 and the SCA deployment in Sect. 13.4.3. We present in Sect. 13.4.5 the

concept of transparent decision service (TDS) as the simplest way to demonstrate

smooth integration. Finally in Sect. 13.4.4 we present the decision warehouse

feature, used to monitor the rule execution with RES.

RES can be deployed as a centralized service, executing multiple rulesets on the

requests of multiple clients. It can also be packaged within a unique business

application (WAR or EAR) and only visible by the code of this application. This

packaging does not mean we cannot reuse rulesets, in fact the business services can

be reused and are callable using Web Service, SCA, JMS, local Java call, or RMI

depending on the communication choices. RES is based around a modular archi-

tecture that can be deployed as a set of Java Plain Old Java Objects (POJOs) running

in a J2SE JVM, hosted using Apache Tomcat, or run within a full Java EE

compliant application server.

RES is a resource adapter of the Java Connector Architecture. JCA is designed to

provide a unified way to access external resources from Enterprise Information

System (EIS), instead of having proprietary adapters for each external system. JCA

enables an EIS vendor to provide a standard resource adapter for its EIS (Fig. 13.6).

By plugging into an application server, the resource adapter collaborates with the

JEE-App Server- Services

Connection
Mgr

Transation
Mgr

Security
Mgr

Container
Component

Contract

System
Contracts

Application Component
(POJO, EJB, Servlet)

Resource Adapter

CCI

EIS

ERP System CRM

Fig. 13.6 JCA basic architecture

Source: java-sun JCA 1.5 specification

428 13 Deploying with JRules

server which provides the underlying mechanisms for transactions, security, and

connection pooling mechanisms.

Considering a rule engine as an EIS may look strange, at first, as a rule engine

does not access EIS per say, but the goal of this implementation is to leverage the

contracts provided by the JEE container such as transaction, security, and connec-

tion management without reinventing those services. Resource adapters implement

two things: the Common Client Interface (CCI) used to expose the high level JCA

API to the caller, and the implementation of the functionality expected using

underlying EIS resource.

There are two main types of contracts that a resource adapter (RA) implements

in order to get compliant with the JCA:

l The application level contract defines what the RA needs to support so compo-

nents within the JEE container can communicate to the EIS.
l The system level contracts: which are connection management, transaction

management, and security management.

Connection management provides a connection factory and connection interface

based on the CCI. It pools the connections to the EIS to improve performance. A

rule engine is attached to a connection. So rule engine pooling is linked to

connection pooling. Transaction management allows EIS resources to be included

in the transaction initiated by the container’s transaction manager. The RAmanages

a set of shared EIS resources to participate in a XA or local transaction. Finally,

security management secures access to the EIS through user identification, authen-

tication, and authorization and uses communication security protocols.

The resource adapter in JRules is named eXecution Unit (XU) and aims to handle

the low-level details of initializing and invoking the rule engine. It adds amanagement

layer used to access resource adapter, resources such as connections to a ruleset data

source and exposing configuration and run time data. An XU is packaged as an

independently deployable unit called a resource adapter archive (RAR) .

There is only one XU deployed (.rar) per Application Server instance. Figure 13.7

illustrates a classical deployment within a JEE container. The clients are decision

services, which are using the rule session factory and the rule session to access the

rule engine. The implementation of a session is getting SPI connection from a pool

managed by the JEE container (JCA pool).

The XU provides scalability by using context pooling and ruleset caching: Each

IlrContext is linked to an SPI connection, which the application server

caches within the JCA pool. In fact due to the transaction support requirement,

asynchronous ruleset parsing, and hot ruleset deployment use cases, one JCA SPI

connection is associated to a set of IlrContext.

The IlrRuleset is shared between engines and kept in memory until

there is no more IlrContext using it (SPI connection reference). At the end

of an execution, the server may decide to put the SPI connection back into the JCA

pool. In this case, the associated IlrContext will be reset and ready for

another execution. In the case of XML binding usage, the dynamic classes are

attached to the ruleset and are therefore made available directly to the XU. For Java

implementations, all the classes are passed to the XU by the rule session class

13.4 Deploying with the Rule Execution Server 429

loader. In Fig. 13.7, we can imagine the decision service as packaged within aWAR

or an EAR. If we deploy it in Tomcat 6 for example, we use the J2SE packaging

which includes jrules-res-session.jar and the JCA API: j2ee_connector-1_5-fr.jar.

The same data source must be used for the management and execution stacks. To do

so we get a ra.xml file from <jrules-home>/executionserver/bin and add it to the

classpath. This file will override the default_ra.xml descriptor provided in the

jrules-res-execution.jar. When we use a data base to persist RuleApps we need to

change some of the properties in this file, like thepersistenceType, and

the persistenceProperties.
The last important component of RES is the management model. When deploy-

ing a ruleset using the RES Console, this one saves rulesets to a data source, and

signals changes to the management stack of RES using the JMX5 protocol. The

management model is based on the JMX Mbeans specification and is used to

deploy, to manage, and to monitor the execution resources of Rule Execution

Server. The various MBeans of the RES model are the runtime proxies of each

entity within the model. There are three Mbeans deployed in each managed server:

l The IlrJmxModelMBean is the root of the Rule Execution Server

management model. It controls every RuleApp deployed on Rule Execution

Server. This MBean performs actions such as adding and removing references to

the RuleApps contained within the model.

JEE-App Server

Rule Execution Server

RES DB

Decision
Service

RuleSet

RuleSet

Other
Service

Connection
Manager

Transaction
Mgr

Security
Mgr

BPEL
Service

System Contracts

JCA Pool

SPI connection
RuleSetEngine

P
E
R
S
I
S
T
E
N
C
E

JCA-Res Adp

Session
Management

JMX-Mbean
Server

Business Tier

Decision
Service

Fig. 13.7 Rule Execution Server as resource adapter

5See http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/ for details.

430 13 Deploying with JRules

l The IlrJmxRuleAppMBean is a management entity that controls a

deployed RuleApp. This MBean performs actions such as adding and removing

references to the rulesets contained within a RuleApp.
l The IlrJmxRulesetMBean is the management entity that represents

the execution resources for the Execution Unit (XU). This MBean exposes some

runtime metrics of the execution. These metrics are computed from the various

data collected on each XU in a cluster. It exposes an API to set the resources and

properties that are used at execution time and provides a “hot” deployment entry

point to update the rules at execution time.

The XU reads rulesets from the persistent layer whenever it needs to, that is,

when the application server has removed a cache entry from the JCA connection

pool, or when a new ruleset was deployed to the data source and the XU receives a

JMX notification message.

13.4.1 Using RES Session API

When using a Rule Execution Server, the implementation of a business interface is

leveraging the rule session object to communicate with the rule engine. Starting

with JRules 6.0 rule sessions use a factory interface to allow clients to obtain

management session, stateless, or stateful execution sessions. The factory repre-

sents the entry point to communicate with the RES. The code used to get a rule

session factory has to specify if we use a POJO, J2EE, or J2SE sessions. Most of the

time when deployed into a JEE container, it is simpler to use a Plain Old Java

Object approach and create a POJO factory as a singleton within the business

service implementation. We recommend defining the rule session factory as the

singleton design pattern: during the first call to a ruleset, the RES creates the XU

resource like the connection pool, loads the classes, and parses the ruleset. Using a

singleton enforces that each subsequent call will only execute the rules and not the

ruleset parsing. Using an factory instance enforces parsing the ruleset at each call.

The factory has different implementation depending of the type of deployment.

The following table summarizes each possible implementation:

Concept: Singleton
Singleton6 is a design pattern to restrict the instantiation of a class to one unique

object. In Java, this restriction applies within the classloader and uses the “static”

keyword to declare the unique instance.

6See Wikipedia detailed definition at http://en.wikipedia.org/wiki/Singleton_pattern.

13.4 Deploying with the Rule Execution Server 431

Name Description Comment

J2SE Session

Factory

Used in pure J2SE environment. The rule session implementation

provided by this factory does not

support transactions.

It is thread safe.

POJO Session

Factory

Session used for JEE deployment. No

EJB support.

Simplest interaction with the engine.

EJB3 Session

Factory

Used by EJB code to get access to a rule

session with JNDI lookup. The

sessions are EJB session obtained

from the JNDI namespace.

Pure EJB pattern, but with transparent

life cycle.

Rule sessions help execute the rules in stateless or stateful mode. Most business

applications are using stateless, stateful mode is rarely used. The stateful mode aims

to maintain a long runtime communication model with the engine in particular to

control the working memory and to keep object references at each execution call.

The implementation of a stateful mode is a bit more complex as it forces developers

to manage the full life cycle of the engine and its working memory. A rule session

provides the class loader for the Java XOM and therefore will almost certainly be

packaged in every client application. This class is dependent on the application

server used. So copy the jar file from <jrules-home>/j2ee/<application-server>/

jrules-res-session-<appserver>.jar and package it with your application ear.

A decision service, which uses the RES API, follows the same pattern already

seen before: Get a session, set the parameters, call the rule execution, parse the

results, and return the result to the caller. The session request is open using a

canonical path to the ruleset under execution. The path includes the reference to the

RuleApp and ruleset:

// Create a session request object

IlrSessionRequest sessionRequest = factory.createRequest();
sessionRequest.setRulesetPath(IlrPath.parsePath(“/ClaimProcessingRuleApp/Validate
ClaimRules”));

// … Set the input parameters for the execution of the rules

Map inputParameters = new HashMap();

inputParameters.put("validateClaim", claim);

inputParameters.put("validateResult",new Result());
sessionRequest.setInputParameters(inputParameters);

try {

 // Create the stateless rule session.

 session = factory.createStatelessSession();
 // Execute rules

 IlrSessionResponse sessionResponse = session.execute(sessionRequest);

 // get result

 result=(Result) sessionResponse.getOutputParameters().get("validateResult");

…

This code is best written in Rule Studio using the java client for RuleApp wizard,

and then integrated into the decision service implementation. If we need to use a

stateful session, some care has to be taken to reuse the factory, the rule session, and

other objects to avoid losing the stateful management of the working memory.

432 13 Deploying with JRules

The choice of session type is linked to the deployment strategy of each decision

service. When the service is deployed within the same server as the RES, a local

rule session can be used. The POJO or EJB rule sessions are the possible choices to

interact with the RES. The use of EJB session is relevant to support transaction

propagation and security requirements. The session is coming from one of the

possible session factory. Below is an example of EJB3 rule session factory to use

within the decision service code:

IlrSessionFactory factory = new IlrEJB3SessionFactory();

// work on the session request the same way as code above …

IlrStatelessSession session = factory.createStatelessSession()

When the client code is remote to the RES, remote EJB can be used, or Message

Driven Bean. For remote EJB, the IlrEJB3SessionFactory has a simple API to set a

remote flag to get remote session. Message Driven Bean represents one of the most

common deployments when we need to integrate with Enterprise Service Bus,

legacy application connected with IBM WebSphere MQ or any asynchronous

event architecture.

13.4.2 JMS Deployment

As detailed in the previous chapter, Message-Oriented Middleware is the technol-

ogy of choice for asynchronous processing of messages. JRules Rule Execution

Server delivers an out of the box Message Driven Beans (MDB) (IlrRule
ExecutionBean) to invoke the XU within the onMessage() call using a

simple session and then posts the execution results to a JMS destination. The MDB

with the rule session are packaged as an EAR file and deployed in the JEE

container. This implementation may be useful for event driven application or

with mainframe application integration. The JMS message needs to include the

ruleset path and a status property. The message body has to include the ruleset

parameters using key-value pairs. The client code posting messages to a topic or a

queue needs to specify the ruleset path it wants to execute. This strongly coupled

integration between the client and the rule service is not a common usage of JMS.

Most of the architectures which are leveraging message-oriented middleware or

ESB use a loosely coupled approach where clients post messages without any

knowledge of what the consumer is. So if we need to implement an Event Driven

Architecture decision service which can be used with messaging communication

we may need to leverage our own MDB implementation which will hide the fact

we are using a rule set. The onMessage() method can do the unmarshalling of the

JMS message payload into a Java data model and then can synchronously call

the business service responsible to process the business objects. The outcome

of the decision services can be processed by a publisher class back to the JMS

layer. Queue or topic listener needs to get references to the business service

13.4 Deploying with the Rule Execution Server 433

implementations and to the publisher so that it can send the result back to a topic for

future processing. Figure 13.8 illustrates a design where the decision service

implemented following the concepts presented in previous section can be re-used

with the JMS communication without a lot of work.

13.4.3 SCA Component

Another interesting wizard within Rule Studio is used for generating RuleApp

client code with all the needed artifacts to deploy the rule execution as a Service

Component Architecture (SCA) component. One of the main goals of SCA is to

clearly separate the communication details from the business logic: the protocols

and quality of service are wired at execution time, the developer focuses on defining

reusable services and components supporting the business functions to develop. By

looking at the generated java code, there is no difference with standard RES client

implementation (see Sect. 13.4.1); the only difference is coming from the compos-

ite descriptor used to define the SCA component. The component statement in the

composite file may look like:

<component name="ClaimProcessingComponent">

 <implementation.java class="claimProcessing.server.ClaimProcessingImpl"/>

</component>

Before release 7.1.1 of JRules, the wizard leveraged the Apache Tuscany7 Java

runtime on client side to call the service. In later releases of JRules, the SCA

Decision Service

Result ValidateClaim(Claim)

RES
BRE

Rule Set
Decision Service Impl RES API

Result Claim

Domain Object Model

Listener
onMessage()

Publisher
sendMessage()

Fig. 13.8 JMS – Rule engine deployment

7http://tuscany.apache.org.

434 13 Deploying with JRules

implementation used is the one coming from the IBM WebSphere SCA feature

pack. Most likely a business application will not use the RuleApp exposed “as is” as

a SCA component but will use a business service as façade for the rule execution. In

that case, the generated client code can be used as a starting point for the imple-

mentation of such a business service. The caller of an SCA component needs to get

a SCADomain instance by specifying the composite descriptor, then get the service

reference, and finally call the business method (e.g., validateClaim).

// Create a Tuscany runtime

SCADomain scaDomain = SCADomain.newInstance ("ClaimProcessing.composite");

ClaimProcessing service = scaDomain.getService(

 ClaimProcessing.class,"ClaimProcessingComponent");
// prepare objects like the claim … then call the execution using the decision

service API

service.validateClaim(theClaim);

For WebSphere SCA feature pack8 the access to the service is done using the

service manager like:

com.ibm.websphere.sca.ServiceManager.INSTANCE.locateService
("ClainProcessingComponent");

13.4.4 Monitoring and Decision Warehouse

When an administrator wants to monitor the rule execution, he can use the Rule

Execution Server Console which is a web application deployed to a servlet con-

tainer like Tomcat or WebSphere Application Server. The RES Console includes

the JMX MBean server used to receive rule execution statistics. The application

server needs to support JMX, JNDI, and JDBC data sources. In a J2SE deployment

if we want to have the monitoring capabilities we need to have the RES Console and

the RES-XU in the same JVM.

One of the first monitoring functions is to verify the server status. In the RES

Console, the Diagnostic tab allows the execution of a set of predefined tests and to

present color coded results. The tests address connection, resource adapter infor-

mation, rule app and ruleset status, etc. (see Fig. 13.9).

In Fig. 13.9, the XU lookup and XU MBean are yellow because we did not

execute a ruleset yet. The XU MBean is created when the XU connector is created.

The XU connector is created when a connection is requested so a rule session

opened.

8See details at http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/sca/.

13.4 Deploying with the Rule Execution Server 435

As part of the monitoring capabilities in JRules v7.x is a new feature called

Decision Warehouse (Decision Validation Service add-on) which stores the rule

execution results in a data source. The type of data persisted may vary depending on

the application, but it is possible to get the list of rules fired, the rule tasks executed

for a given transaction, and the content of the ruleset parameters. When the ruleset

is deployed from rule team server, it is possible to get within the trace, hyperlinks

back to the corresponding rule in RTS repository. This capability helps to quickly

assess for a given business transaction what were the conditions which made the

rule fire. Using the Decision Warehouse tab of the Rule Execution Server Console,

we can search the rule execution trace by specifying search criteria. Figure 13.10

presents this capability.

It is interesting to note from Fig. 13.10 that the first rule execution took more

processing time (328ms), as the RES was parsing the ruleset. The detail of the

decisions made on the last claim processed gives us information about the claim

sent, the path of execution within the ruleset with the rules fired. Figure 13.11

presents such results.

To configure the Decision Warehouse, we need to enable the ruleset execution

monitoring by setting the monitoring.enabled ruleset property to

true. It is possible to use Rule Studio, Rule Team Server, or Rule Execution

server to set such property. RES offers a simple Add Property command inside the

ruleset View. This command supports predefined property (Fig. 13.12).

Usually developers will want to set those properties at the rule project level in

Studio by using the rule project property and the ruleset property menu. When the

rule flow defines a task that uses the sequential or Fastpath algorithm, we need to

Fig. 13.9 Rule Execution Server diagnostic report

436 13 Deploying with JRules

add another ruleset property called: sequential.trace.enabled.
Lastly as we may want to trace what the inputs and outputs were and as such we

may need to setruleset.bom.enabled property to true. If the ruleset is

based on an XSD XOM, the input/output parameters are stored as XML documents.

If the ruleset is based on a Java XOM, the toString() method of the ruleset parameter

(s) type stores the content. Using toString we can limit the information persisted to

improve the performance.

The Decision Warehouse stores its results to different data sources. It is impor-

tant to properly design how to organize the data sources and partition the traces

according to the different decision services the application is supporting. It is also

possible to add our own DAO to store the information in another database;

therefore, a business user can run Business Intelligence report from it. The product

documentation details all of these and provides some customization samples.

13.4.5 Transparent Decision Service

We have seen quite often the term Decision Service in previous chapters. In a

SOA, it is a service which is making a business decision on business data. Such

Fig. 13.10 Search Decision Warehouse

13.4 Deploying with the Rule Execution Server 437

services are most often supported by a business ruleset executed by a rule engine.

In IBM WebSphere JRules, there is also the concept of transparent decision

service (TDS). The term transparent means we can define the decision logic

externally using a rule repository without having to dig into application code to

understand the rules. The Rule Execution Server can expose a ruleset automati-

cally as a web service as soon as it uses an XSD as executable model (or is limited

to using basic java types). The interface definition is based on the ruleset para-

meters, which are defined according to the nature of the business decisions to

Fig. 13.12 Ruleset properties set in RES Console

Fig. 13.11 A rule execution report from Decision Warehouse

438 13 Deploying with JRules

make, and should not be dependent on the needs of a single business process. TDS

is accessed using SOAP and can offer an easy deployment within a SOA. As we

explained in previous chapters, the design of reusable service consumers want to

reuse enforces respecting a set of best practices like loosely coupled, coarse-

grained interfaces, simple data model a client can create and send to the service

provider, keep the business meaning, and the service provider responsible for his

processing like loading the data. A ruleset supports one operation of a business

service: service end point groups operations over a single place, an URL, over a

single protocol; therefore, a ruleset has to be one operation within a packaged

business service. For efficient rule processing, the data needed by the rules need to

be present, a good design practice is to let the service have the responsibility of

loading the data it needs and not ask the client to send the complete data set. This

is truly relevant with reference data. This is not to say we need to load the data

within the ruleset, but before calling the rules. Loading of the data in a ruleset may

be an attractive solution but has a lot of drawbacks. In particular, when we need to

support transaction initiation or propagation, the call to load the data can occur at

the beginning of the rule flow; but if there are exceptions or a time out, the

management of such events is more complex to support in rules than in traditional

code. Finally, most of the ruleset processing needs some reference to other

technical service to access them for getting reference data, or other business

objects. Those services should be hidden to the caller.

There are two types of TDS in JRules: the hosted and the monitored:

l A hosted transparent decision service (HTDS) is a ruleset deployed as a Web

service. It is installed and integrated on the same application server as the Rule

Execution Server. It includes a JMX MBean and is packaged as an EAR (for

example jrules-res-htds-WAS7.ear for Websphere) or as a WAR for Apache

Tomcat 6 (named DecisionService.war). This web application defines some web

service servlet and HTTP listeners which process SOAP requests and route the

message payload (XML document) to the ruleset. Any ruleset is mapped to the

following URL:

http://<hostname>:<httpport>/DecisionService/ws/<NameOfTheRuleApp>1.0

/<NameOfRuleSet/ 1.0?WSDL

The objects defined in the BOM and the ruleset parameters are used to

generate the WSDL file. When the BOM was created by using XSD, HTDS is

very easy to set. The WSDL binding is using SOAP over HTTP with a Docu-

ment/literal style. A developer can import this WSDL and generate the client

code with tool such as Apache axis wsdl2 java.
l A monitored transparent decision service (MTDS) resides on the same applica-

tion server, but is not integrated with RES. It is generated from Rule Studio as a

web app using the wizard: New > Client Project for RuleApps > Web Service.

There are two projects created by this wizard. One client project which includes

the client code calling the web service. And the other one the server side project

13.4 Deploying with the Rule Execution Server 439

which includes the web service definition using the reference implementation of

JAX-WS so it is not supported in all application servers. MTDS manage rulesets

that use an XML schema or a Java XOM with any object types (not limited to

basic java types).

Starting with the server side generated code, the generated project includes

java files, ant script, Execution Unit configuration file (ra.xml), and other xml

descriptors to create the web service (web.xml, application server specific

deployment descriptor). Using the ant targets, we can generate a war file for

the application and deploy it to the target application server. Each rule project

part of the Rule App is exposed as a WebMethod using a signature like

<RuleSetName>Result execute<RuleSetName> (<Rule
SetName>Request request). The operation results and request are

mapped to wrapper objects which include references to the ruleset parameters.

For example, the ValidateClaimRuleRequest has a reference to the Claim

(Fig. 13.13).

The implementation of the web method is using the RES API to set the para-

meters and to call the rule execution. The Java objects used for the data model must

respect the JavaBean specification. The generated code can be used to implement

the business services we need to code and exposed as reusable service. At the

interface definition level we are not specific to rule execution. The service method

can be renamed to better serve business operations. If we need to hook up some

reference to other services needed by the rules, we can do so in the implementation

class. The listener class can be reused to offer statistic reports in the RES Console.

The client code is also an excellent starter code to implement some simulator or

functional test framework.

Decision Service
@WebService
RuleappNameRunner

@WebMethod
Result executeRuleSetName
(Request)

RES

BRE Rule Set

Decision Service Impl RES API

Result RequestServletContextListener

WSDL
Domain Object Model

Fig. 13.13 Monitored TDS generated components

440 13 Deploying with JRules

13.5 Rule Team Server

In this section, we present the deployment of rule team server web application

within the IT architecture and how to leverage the data source mapping to support

multiple rule repositories with one web application. Then, in Sect. 13.5.2, we briefly

present the concept of queries, an element used to control the ruleset packaging.

13.5.1 Physical Deployment

As a management application, the war file does not need to be deployed on the same

node and server as the rule execution server. It is better to deploy it on a different

server, because it can use resources that may impact the performance of the rule

processing. The deployment follows traditional Web App deployment using a

database: we need to configure the JNDI data source reference and specify in the

web descriptor which JNDI name to lookup. Rule team server is also delivered with

an Installation Manager which helps to deploy the DB schema when the database

does not exist. It is important to note that when you are using a different rule meta

model the database schema is different. This is easily done by loading the XML

files describing the extension model into RTS (Fig. 13.14).

All the rule projects within RTS share the same meta properties; therefore, if

there is a need to have different extension model, architect may need to define

different rule repository data sources. By default, the data source used is jdbc/
ilogDataSource. If we want to specify a different data source, we have to

pass it as a request parameter in the URL, for example, http://localhost:8080/

teamserver?datasource¼jdbc/otherteamserverds.

This capability is also used to support different development branches: one data

source is used as trunk and other for other releases. We will detail that in Chap. 17.

It is also possible to define one data source per group of users or line of business:

finance and marketing teams may have two rule repositories clearly separated but

one RTS deployed.

Fig. 13.14 Add custom rule properties in Rule Team Server

13.5 Rule Team Server 441

As part of the physical deployment is the support of “single sign on” integration

for getting users information like userid, group, and password from a central

directory service. RTS can be deployed in an application server and will leverage

the container contract as RTS uses the JAAS API to retrieve user’s data. The

important configuration to complete before running RTS is the group definition

and assignment of the user to one of the four groups of RTS: rtsAdministrator,

rtsConfigManager, rtsUser, and rtsInstaller.

Finally as RTS is the main component to control the rule project, it is important

to avoid duplicating rule repositories between multiple platforms. It is possible to

manage the ruleset deployment to different RES platforms from one central

deployed RTS. This is the simplest and most efficient deployment. The second

pattern is to use one RTS per target platforms, as most IT environment includes at

least development, test, UAT, production, we can have unnecessary deployed RTS.

Rulesets are deployed to the different deployed RES. Finally, another common

deployment is to use two RTS, one for all the rule authoring done by the business

user, used to deploy ruleset to any execution platforms except production. And one

in production managed by IT and mostly used to support rule ‘hot fix’, exclusively

deploy to production RES. It is this last RTS instance that will be used for ruleset

deployment to production server.

13.5.2 Queries

Queries are an important element of the Ruleset deployment. Using query and

ruleset extractors, we can control the ruleset deployment for different purposes

(e.g., test, simulation, and production) and platforms. Common dimensions used

in business are the effective date and expiration date for some business entities

like a product, a pricing campaign, a medicine availability, a loan eligibility, . . .
Business rules defining constraints on those entities have to follow the effective

and expiration dates patterns. With a ruleset extractor, business users may extract

only the rules valid at a given time, or can search for rules in a given status.

Queries can be added to RTS repository by any type of user with the create query

permission. We will detail in Chap. 17 the fine grained permission management

RTS provides. Figure 13.15 presents a query developed to extract rules ready for

production.

Once the queries are defined, a RTS administrator can define extractors using the

feature Configure> Edit Ruleset Extractors. An extractor is defined using a name, a

query, and a validator (Fig. 13.16).

Extractors are then used in the creation of the ruleset archives by specifying the

extractor name. By default all the rules are extracted to the archive (Fig. 13.17).

With queries and extractors we can package rulesets as intended for the different

purposes platform dependant like test, simulation, and production, or time-oriented,

or any business needs.

442 13 Deploying with JRules

13.6 Summary

We reviewed the concepts of operation of JRules and detailed the RuleApp

element, which includes one to many rulesets and which represents the deployable

unit to the rule execution server. RES supports monitoring of rule execution, with

Fig. 13.15 Query to get rules ready for production

Fig. 13.16 Manage ruleset extractors in RTS

Fig. 13.17 Ruleset archives built using extractor

13.6 Summary 443

the option to persist the trace in a decision warehouse. To support vertical scalabil-

ity, the RES leverages the JCA connection pool, so parallel executions are possible

as soon as the server has multiple CPUs or Cores. Ruleset parsing takes time at the

first call, but once parsed a ruleset stays in the RES cache for future processing.

When using a Java XOM, the ruleset parsing needs the class information as part of

the classloader of the class using the rule session API. Most decision service, even if

exposed as web service, should leverage a java layer, which implements the

business service and completes the work of preparing the data graph for the rule

processing. It is important to recall that lazy loading of data may make the rule’s

conditions not evaluate as true: for example, a collection of objects may not be

loaded, and so a test with the in operator will fail. The decision service uses a

stateless processing, sending all the data in one call. The deployment mode can

include different patterns from JMS, for message processing, to pure POJO or EJB.

As a new programming model, SCA is also supported, and SCA component

implemented in Java, uses the RES API to call the rule execution. Finally, we

covered the rule team server deployment, where a set of features help the business

analyst to deploy the RuleApp to RES.

13.7 Further Reading

For more technical information and tutorials, the product documentation is acces-

sible at http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp.

Service component architecture presentation can be read at IBM developerworks

web site at http://www.ibm.com/developerworks/library/specification/ws-sca/, and

the specification is accessible at the Open service oriented architecture portal http://

www.osoa.org/display/main/service+component+architecture+home.

The rule interchange format recommendation is part of the semantic web work

done at W3C. and aims to provide interoperability between rule based systems,

reader can access the description of this recommendation at http://www.w3.org/

blog/SW/2010/06/22/w3c_rif_recommendation_published.

The SCA support pack for WebSphere Application Server can be studied at

http://www-01.ibm.com/software/webservers/appserv/was/featurepacks/sca/.

444 13 Deploying with JRules

Part VI

Rule Testing

Chapter 14

Issues with Rule Testing and Performance

Target audience
l Application architect, software architect, developer, business

analyst, nontechnical audiences can skip Sect. 14.6

In this chapter you will learn
l The rule testing approach and how it fits into the different testing

phases used in traditional software development
l How to use a test-driven approach to implement business rules
l How using SCA can help build the application and a test frame-

work by iterations
l How performance could be impacted by business rules applica-

tion, and what to look for during design and testing activities
l Testing does not end once in production, especially with rule-

based applications
l What is rule semantic consistency checking, and what the differ-

ent search patterns are
l The problem of tracing and logging

Key points
l Adopting a test-driven development helps to implement the rules

by first looking at their intent. Testing business rules is about
business, so the test has to be designed to prove the impact to the
business.

l The test framework should be light and not too rigid on the

assertion of the expected results, as some results are computation
driven.

l Performance tests should measure all the potential bottlenecks,

like the messaging layer, the data conversion, the data access,
and the rule execution. Rule engines are optimized to run fast,
and sometimes data access is the issue.

l As in database, join operations are costly.

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_14, # Springer-Verlag Berlin Heidelberg 2011

447

l Testing activities remain important during the maintenance of the
application.

l Inconsistencies in a ruleset may happen over time, but they have
to be corrected as soon as possible. Some BRMS offer consistency
checking features to search for rules never selected, rules that
make other rules redundant, rules with equivalent conditions . . .

14.1 Introduction

In this chapter, we address rule testing, rule execution performance, continuous

testing, consistency checking, and tracing. In Sect. 14.2, we first start by discussing

rule testing issues, including: unit testing of rules, functional testing (FT), compo-

nent testing, regression testing, and performance testing. Next in Sect. 14.3, we

address one common question architects often ask about rule engine performance,

and how to assess the end-to-end performance testing. We examine performance

from many perspectives: issues of data creation, issues of the size of the working

memory of the rule engine, and efficient rule writing. Section 14.4 presents the need

for testing even after being in production as the business rules may change

overtime. One of the main value proposition of a BRMS is to be able to maintain

the business logic outside of the application and being able to change it as often as

the business needs: this velocity does not mean we do testing only in the develop-

ment phase, but we need to test during maintenance as well. In Sect. 14.5, we

discuss the difficult issue of semantic consistency checking of rules. Semantic

consistency checking looks at things such as rule redundancy or overlap, and

distinguishing between legitimate or natural inconsistencies and overlaps, and

illegitimate, i.e., erroneous ones. Next, we look at the issue of rule tracing and

debugging, and we conclude in Sect. 14.7.

14.2 Rule Testing

Externalizing business rules as standalone artifacts helps to test the business logic of

the application earlier than in traditional applications. We present unit testing in

Sect. 14.2.1, which represents the first major testing activity started as soon as the

ABRD prototyping phase. We propose to adopt a test-driven development (TDD) as,

through our many years of experience, it helped us to implement code and rules the

most efficient way. In Sect. 14.2.2, we explain how to leverage SCA to develop a

component testing framework, which tests the ruleset with all its related components.

In Sect. 14.2.3, we present how functional testing applies to rulesets and where Key

Performance Indicators (KPIs) may be compared to “reasonable comfort range.”

Finally in Sect. 14.2.4, we present regression testing to ensure long-term quality

control. Let us start by reviewing the general needs and approaches for testing.

448 14 Issues with Rule Testing and Performance

The business rules approach enforces the definition of the data set used to test

each individual rules as early as the rule harvesting phase. This data set helps to

build test scenarios. The goals of a test are: first to ensure the business requirements

(business policies) are supported, and second to ensure that rule updates do not

cause any functional regression issues, in any part of the system. As a good practice,

the test suite has to ensure that newly updated decisions are consistent and cover

enough cases imagined by subject matter experts (SMEs), so that they are confident

to deploy the updated business logic to production. Decisions made by the rule

engine usually have a contractual value and organizations cannot afford to be

wrong. Developing test cases is time consuming and often relies on the support

of an SME, but it is a necessary and critical step that has to be done.

Testing with a BRMS involves helping the business users decide between

different policy implementation alternatives. Business rules testing fits well into

the traditional testing phases such as unit testing, component testing, functional

testing, system testing, performance testing, and user acceptance testing. Any

business application using the business rules approach should have a testing

framework to validate the rule changes made over time. When well designed,

such a framework can run automatically and can be used in simulations. Simula-

tions represent another testing technique used by the business users to assess the

performance of the rules according to business metrics or key performance indica-

tors (KPIs). The testing framework has to be flexible enough to allow the definition

of KPIs and to compare results to those metrics. This testing technique is commonly

named champion/challenger technique and can rely on the use of a database (DB) of

actual cases. Let us start by explaining how to unit test rules.

14.2.1 Unit Testing

Wikipedia defines Unit testing as: “Unit testing is a method by which individual

units of source code are tested to determine if they are fit for use. A unit is the

smallest testable part of an application. In procedural programming a unit may be

an individual function or procedure.”1 In business rules programming, a unit is a

single business rule, tested in the context of the ruleset, so with other rules. During

the ABRD prototyping and implementation phases, the development team should

adopt a Test-Driven Development (TDD)2 approach to test the ruleset.

1See Wikipedia at http://en.wikipedia.org/wiki/Unit_testing.
2There is a lot of content over the web, and books on TDD, one of the first is B Kent “Test-Driven

Development by Example”, Addison Wesley, 2003, and obviously at http://en.wikipedia.org/wiki/

Test-driven_development.

14.2 Rule Testing 449

Unit testing in java is well supported by using JUnit.3 A JUnit test case class is

mapped to a rule package and then declares test methods per condition within a rule.

It is also a good practice to create one java project per ruleset under test to include

all the test cases and data set. Let us take as an example the implementation of the

following claim adjudication policy (Fig. 14.1).

We are using the same data model as defined in the previous chapters. Starting

with the test cases, we implement a JUnit class TestDolTreatmentClaim. This test

method to validate the previous rule may start by creating a claim, setting some

specific values to the claim and any related elements accessible from the claim, then

executes the rule, and finally asserts the expected results. The code looks like as

shown in Fig. 14.2.

It is good practice to start adding some mockup classes to build the basic data set

to use across test cases (a class like DataMockup.createClai-
mAndPolicy()) and then overwrite the attributes needed to make the rule

fire. The assertEquals and validateResult methods make the

assertion of the test a success or not. To know if the test succeeded may depend on

the ruleset logic. When using the decision pattern, the assertion can look at the list

of decisions to see if the expected decision was created.

Concept: Test-Driven Development

Introduced by the extreme programming methodology, TDD means that the

development of new functionality starts by implementing tests for that function-

ality before coding. The test focuses on the intent of the code, which increases

the value by designing an efficient API and functionality. This concept applies

well for rule authoring. As the rule is not yet coded, the test execution against an

existing ruleset has to fail. Once the rule is written and the ruleset deployed to the

unit testing environment, the test should succeed. A unit test is usually built with

the following structure: preparing the test data, executing the rule against that

data, and using assertion statements to compare the response with the expected

results.

Concept: Decision Pattern

Decision pattern uses a DecisionResponse class, returned by the decision ser-

vice, which includes a list of decisions done by the rules. Rule taking decision

adds a Decision instance to this list. The Decision class defines all the data

needed for the downstream processing. When the application uses a workflow

engine, the decisions may need to be reported to a human actor. In that case the

Decision includes a message, which is presented to the end user. Most of the

time the Decision includes some predefined reason code, which are defined

externally to the business rule, for example, in a master data management.

3See www.junit.org.

450 14 Issues with Rule Testing and Performance

It is also possible to get the rule name or unique identifier in the execution

trace of the rule to evaluate the success of the test. This is a good alternative to

ease the maintenance of the unit test base by avoiding an adjustment each time

the rules change. The assertion can validate that the rule has fired (or not) as

expected based on its conditions, rather than checking if the expected actions

have occurred. This can be achieved by analyzing the rule report. This way the

successful unit test does not make assumptions on the actions induced. As time

goes by, the need and frequency to change or adapt the test case becomes less

frequent, since only changing the condition part of the rule can produce different

test results.

Once the test is defined, we can write the rule in the rule editing environment.

When the rule is complex or when this is the first time we implement such rule,

we may want to add conditions one at a time to simplify rule debugging. When

we already have rules with similar conditions, it is easy to copy and paste the

conditions that we know are working. Here is an example of rule in JRules rule

language.

Definitions
set accidentClaim to aclaim from 'the claim' where the type of 'the claim'

is Accident ;
set billLineItemtoamedicalbilldetailinthe medical line items

of 'the medical bill' ;
set treatment to a treatment from the treatment of billLineItem

where the procedure code of this treatment is AMBULANCE_TRANSPORT ;
if

the date of service of treatment is after 'the claim's date of loss
then

add to 'the result' an audit request : "Audit Medical Bill"with a code "R534"
and a description : "Ambulance Transportation after date of loss" ;
set the status of 'the medical bill' to HASISSUE ;

public void testAmbulanceTransport() {
Claim claim = DataMockup. createClaimAndPolicy();
claim.setType(Claim.ACCIDENT);
claim.setDayOfLoss(DateUtilities.makeDate(2007,11, 27));// DOL is 2007,11, 27
MedicalBill invoice = DataMockup.createMedicalBill(claim);
Treatment t2 = new Treatment();
t2.setDescription("Ambulance Transport");
t2.setProcedureCode(MedicalProcedureCode. AMBULANCE_TRANSPORT);
MedicalBillDetail bd2 = new MedicalBillDetail(2,t2,1, 999.00,
DateUtilities. makeDate(2007,11,28)); // not the same day as DOL
invoice.addMedicalLineItem(bd2);

int nbRules=executeRules(claim, invoice);
assertEquals (StatusValue.HASISSUE,invoice.getStatus());
validateResult("Audit Medical Bill","Ambulance Transportation after date of loss");

Fig. 14.2 Unit test method in JUnit

When the claim is related to a car accident the company does not reimburse for ambulance transport
done at a different date of the date of loss. Any such ambulance transport in the medical invoice is
waived and a notification is sent to the insurer.

Fig. 14.1 A business policy to implement

14.2 Rule Testing 451

We may complete the test by adding a test method with a date of service for the

ambulance transport on the same day as the Day of Loss and verify that the invoice

does not have an issue (Fig. 14.3).

For unit testing, it is important to use a lightweight environment with as few

dependencies as possible. Finally, each unit test class can be used for automatic

regression testing. An Ant script can execute all the JUnit classes as part of the build

process: this is to ensure the ruleset is still valid over time.

As we just described, unit tests are created and executed by software developers

as the data model and other service layer classes are added to the system during the

creation of the first rules. Later on the unit testing framework evolves to support

functional testing and in that case the main actor may become the business analyst.

Leveraging Java to develop unit test cases and a unit testing framework is

common even in the case of pure XML document processing. A natural approach

is to develop one XML document per test method; but it may quickly evolve to a

complex environment with interdependent elements. Therefore, using a pure

Java implementation is often more flexible. In fact, it is possible to mix the

two, using some XML documents which represent complete data set for the input

requests sent to the service. These documents can be parsed to create java beans

using JAXB or SDO implementation, and then the unit test method updates some

of the attribute of the beans to trigger the right rules. In the code sample above,

the DataMockup class can be replaced by a XML document reader, which

prepares a claim, policy, and any medical invoices attached to the claim. The

choice of the approach is linked to the use of an XML centric data for the

application architecture or not. When the IT development team has already a set

of XML documents representing real data, it makes sense to try to incorporate

such a data set in the test environment. But one of the best practices around unit

testing is to try making a framework as simple as possible and test as much as

possible in isolation. The less we depend on complex XML documents, the better

and more stable this environment will be. Using a TDD approach to develop the

rules allows for a lot of refactoring on both the data model and the rules.

Depending too strongly on a rigid XSD may lead to less effective rules writing

and consume more development time. It is fine to start with a java model, and

then generate the XSDs to expose the decision service as web service. It is also

important to recall that some rules may need access to other services or logic, not

accessible through the mapping in the XML document received as input to the

decision service.

public void testAcceptAmbulanceSameDol() {
..

Treatment t2 = new Treatment();
t2.setProcedureCode(MedicalProcedureCode.AMBULANCE_TRANSPORT);
// the same day as DOL
t2.setDateOfService(DateUtilities.makeXmlDate(2007,11, 27,00,00));
..
int nbRules = executeRules(claim,invoice);
assertEquals(StatusValue.RECEIVED,invoice.getStatus());

}

Fig. 14.3 Second test method

452 14 Issues with Rule Testing and Performance

14.2.2 Component Testing

A ruleset by its nature is complex enough to be considered as a component. To reuse

John D. McGregor’s4 ideas from his paper about component testing, the penalty of a

nonworking ruleset is far greater than the cost of testing it since business rules have

business impact by design. So all the unit tests we defined in the previous section

are aimed to test the component as a standalone element. In this section, the ruleset

is deployed in its target decision service, and the goal is to test the other components

it works with. Suppose that the decision service is accessing some data source

through a service layer, we now want to remove any scaffolding code we had in the

unit test environment and integrate the components together to verify the rulesets

are performing as expected. Using the definition used in SCA, an application is an

assembly of components. A component implementation delivers some business

logic exposed in one or more services. The testing framework assembly is built by

using an incremental approach by adding component after component in the

assembly. The component testing starts by adding the service layer that uses the

ruleset, like the ClaimProcessing-Core, and tests at the interface

level. So the test now sends claimId and medicalInvoice using the

operation defined in the ClaimProcessingInterface. As the rules

need to access data, it is still possible to use the mockup for some data elements that

are not available yet and wire the appropriate service implementation when it is

ready. Figure 14.4 illustrates this approach using a SCA composite diagram. The

“Process Claim Component” is using the component to support the adjudicate and

validate claim rules.

Some of the data set used for the unit tests can be reused in the component

testing. Most likely the component testing is executed on a development server

where all the components are deployed from the build server, and some specific test

suites are executed on the assembly. We can still use JUnit for component testing;

the difference is based on the granularity of the component interface, and the type of

data used. The example below uses the primary key of the claim to get a claim

stored in an external data source.

@Test
public void testValidateClaim(){

// we are at the interface level now and the component implementation
ProcessClaim pc= new ProcessClaimImpl();

// take a claim that is after the expiration date of the policy
ClaimProcessingResult cpr=pc.validateClaimByNumber("CL002");

The processClaim implementation encapsulates how data is retrieved. The test

assumes the data is present and loaded from the datasource.

4See http://www.cs.clemson.edu/~johnmc/joop/col3/column3.html.

14.2 Rule Testing 453

14.2.3 Functional Testing

Functional testing (FT) addresses the validation of the system at its highest inter-

faces to verify it is compliant to the functional requirements of the application.

Functional verification attempts to answer the question “Does this proposed design

do what is intended?” without knowledge on how the system is built. With a

business rules approach we need to evaluate how the components involved after

the execution of the rules are reacting, and how the final results are exposed to the

end users. The testers need to select valid and invalid inputs to send to the system

according to the use case description or business process description. The output is

then compared to expected results. Most of the functional tests should focus on the

business requirements and how to prove the system brings value to the business. It

is the responsibility of the business team to provide test scenarios and realistic data

sets. As the business logic is externalized to a ruleset, it may be easier to see the

impact on the business key performance indicators when the logic changes. The

functional tests for the rules can be supported by a specific tooling or framework.

Functional testing occurs after some iterations of the software development. The

system needs to get enough high-level functionality to be testable. Some project

managers define functional testing as the starting step of the alpha release.

When developing functional test suites, the results of the test cases executed are

not expected to be accurate; however, they have to be within an established

“reasonable comfort range” to be qualified as passed. The definition of the “reason-

able comfort range” is established by the business SMEs and is the sole pass/fail

criteria for test cases in this phase. Later on when all the functions of the application

Fig. 14.4 SCA component view

454 14 Issues with Rule Testing and Performance

are validated, the test cases are looking for more accurate expected results as agreed

with the SMEs.

Functional tests also need to address the error cases and how the system reacts to

erroneous data. The preparation of test cases can be initiated during the require-

ments phase and for a rule-based application during the rule harvesting phase.

Functional testing uses a different execution environment with a more complete

data set. Most of the time, the FT servers are deployed in a QA platform. For rule

functional testing, it may be possible to design a framework where business analysts

define their own data set using tool like Excel or XML document editor. The

developers have to prepare this environment. The simplest framework leverages

data persisted in a data base to represent the data set for the major classes of test

cases: some data represent the standard customers, and some the ones with pro-

blems. This framework can leverage tools like JUnit (or extensions like HTTPUnit)

to modify the data loaded from the different data sources, trigger the tests, and look

at the results. Most modern applications have graphical user interfaces which are

more difficult to test, but tools exist to record actions on the graphical component

and user interactions so the test scenarios can be replayed. Some tools can also be

used at the communication protocol level to replay the sequence of messages

exchanged between the web browser and the application. The framework has to

facilitate automated testing.

In the context of a BRMS deployment, it is important to notice the existence of

two FT life cycles supporting both the business and IT teams working together on

the rules and the application code at the same time. Indeed, rules are usually

developed in parallel to the IT development activities, and are deployed multiple

times during a single IT release cycle. To keep a fast development pace the FT

framework should isolate the ruleset testing from the core application testing.

This can also be supported by a good design of the underlying data model used by

the rules. As business users are not expected to be proficient in Java or XML, the

rule testing framework should provide an interface allowing them to enter the test

data. Usually, the selected interface is a tool using worksheet like Microsoft

Excel. Some test templates are provided as empty Excel spreadsheets requesting

the author to fill data in cells corresponding to the data model. Instances of such

excel files are the test cases. It is important to establish what the expected results

of the tests are. At this stage, focus should not be on the detailed values of

attributes, as it may not be realistic, but on the intent of the business rules. For

example in a pricing computation ruleset, the combination of possible values is

unrealistic to compute as an expected result. What is more important is that the

premium price is set, the discount is computed as a separate value, applied to the

premium, and the value outcome of the rule processing stays in a range expected

by the business. For example, it does not make sense to get discount pricing above

a given threshold.

Furthermore, the test base (set of all the test cases) should provide sufficient

coverage of the rules to be considered complete and verify all the functions

implemented through business rules. The coverage is usually expected to meet

100%, meaning that for any business rule implemented, there exists at least one test

14.2 Rule Testing 455

case that triggers it. The coverage analysis is conducted by consolidating all the lists

of rules fired for all the test cases, compared against all the rules deployed.

14.2.4 Regression Testing

Regression testing for applications using business rules engine is a very important

feature to support a continuous quality control of the ruleset. Over time, the

software logic will change with the update of the rule base, so we need to ensure

the application is still running as expected. Any type of testing needs to support

automated testing to make the developers, business analysts, and testers more

confident on the application quality, and to make them know when the application

breaks. Regression testing is most likely part of the software build process, where

the code is extracted from the configuration management system, compiled, pack-

aged, and then executed in front of a set of test case suites. The suite of tests for

nonregression may include all the rule unit test and functional test suites defined

previously. As the testing process needs to be automatic, developers need to take

care to leave the system stable at each test execution. When using JUnit, developers

should leverage methods executed before and after the test to prepare and clean the

environment for each test case.

As it is included in the build process, we need to ensure that the extraction of the

rules from the rule repository and the packaging into a ruleset can be automated.

Some BRMS products offer a headless mode to extract the rule and build a ruleset.

Error reports have to be clear and accessible. One scenario is to set up automatic

alarms and emails sent to the lead developers when failures occur to ensure the tests

which fail are immediately investigated.

The maintenance of the regression tests can be time consuming when the changes

in the ruleset are extensive. Regression tests need to compare the outcome of the

current execution with the previous run. Any change may be an issue. There are cases

in business rules applications where the change is expected. For example in a risk

management application, changing a rule will impact the risk rating, so simply

comparing the risk rating with a static value will make the test fail. Requirements

change, so the tests to compare the expected value have to be modified in the test

cases. When computing a complex and changeable value, it is unrealistic to test for a

given risk value. The test should compare to a range of acceptable values to avoid

false-failing.

14.3 Performance Testing

The performance of a decision service based on rules execution varies based on

an important number of factors the application can deal with. In this section, we

first review the logical steps a decision service is going through and use each

456 14 Issues with Rule Testing and Performance

step as potential measurement probe. It gives a good framework to test perfor-

mance. In Sect. 14.3.1, we present the different dimensions impacting rule

performance, and where traditionally bottlenecks may appear. Section 14.3.2

addresses how data are loaded before executing rules using different loading

strategy, which may impact performance or ruleset result. We then present, in

Sect. 14.3.3, the issues rule designer will have when loading data in the action

or the condition part of a rule. Section 14.3.4 summarizes how the rule imple-

mentation itself can impact performance and how to avoid common errors.

Finally in Sect. 14.3.5, we present some important rule language operators, or

keyword, that may impact the inference capability of the engine and then the

performance.

The main variables, impacting rule engine performance, include the number of

objects used for the rule execution, the number of rules within one ruleset, the

number of concurrent callers, the type of access to external data sources, the type of

objects used to present the data, the possibility to run in parallel . . . to list a few. The
processing of a decision service, which uses a rule engine, includes the following

steps:

l Prepare the data in the context of the service: this could include parsing a XML

document, loading data from different data sources, or accessing cached data
l Prepare the parameters to send to the rule engine using the rule session API
l Call the rule execution
l The rule engine fires the rules until there are no more rules in its agenda
l Get and process the results
l Clean the previously loaded data, if needed, to avoid memory consumption
l Close resources
l Return the results to caller

Figure 14.5 illustrates the end-to-end flow from a client, like a process engine,

calling the decision service using a web service deployment.

When assessing performance, it is important to get the metrics for the following

information: the marshalling and unmarshalling of the data before sending over the

JSE

Managed Server

Rule Execution
Server

RES DB

Decision Service

RuleSet RuleSet

Other
Service

JMS

Logs

T1 T2, T10 T3, T9 T4, T8 T5 T6 T7

HTTP

SOAP

Marshalling
Load
Data

Rule
Fire

Client-test

Marshalling
Load
Data RuleApp

Fig. 14.5 Time stamp of a typical web service decision service

14.3 Performance Testing 457

network at the client and server level, the communication time to transfer data

between the two components, and then the time to execute the rules. To achieve

this, we may need to use the following time stamps:

Time

stamp

Description

T1 Start of the client tester. Use System.currentTimeMillis() or nano

T2 End of test data creation – can be one to n transactional data elements

T3 End of marshalling data for transmitting – sending message to the wire (e.g., a web

service call using SOAP over HTTP, or a JMS send message)

T4 Time to cross the wire on the network using the communication protocol selected

T5 End of unmarshalling of the data

T6 End of ruleset parameter preparation like loading complement data set, call the rule

execution

T7 End of the rule execution

T8 End of marshalling the response

T9 End of communication

T10 End of unmarshalling the response and processing it

All these time stamps can be managed in memory and persisted to log files on a

shared disk at the end of the processing or managed asynchronously by another

thread of execution. Logging should have a minimum impact on this overall

process; 1% performance impact is the maximum a business application can

tolerate. This may look obvious but all the timers need to be synchronized or

there is a mechanism to “normalize” the measures by applying a delta between

time stamps. The report can be presented graphically to evaluate where the system

is taking the most time.

When assessing the performance, it is important to evaluate if the total rule

service processing time is significant relative to overall performance goals and, if

so, to determine which of the above steps are consuming significant processing

time. This process helps to get the global picture, but it is always easy to isolate the

rule processing and get rule performance test assessed as early as possible in the

application development. Performance testing has to address the different workload

patterns: stress workload when the number of business transactions is sent over the

average expected workload during a long period of time, peak workload when the

number of transactions increases for a short period of time, and the nominal

workload.

14.3.1 Multiple Performance Dimensions

There are multiple dimensions to look at when assessing performance for an

application using a rule engine: the data access, the rules implementation, the rule

engine deployment architecture (J2SE, JEE, ESB, pooling, messaging), the inte-

gration, the infrastructure, and hardware. Figure 14.6 shows the potential bottle-

necks. The first one may come from the using of a messaging queue and persistence

458 14 Issues with Rule Testing and Performance

of the message to support failover. The second is the marshaling or unmarshaling of

the input/output parameters of the decision service. It is common to see a huge

XML document sent as payload to the web service call, creating unnecessary data

conversion. Loading the complementary data from a database can also expose some

performance issue. A bad design of tracing and logging of the rule execution can

also impact the overall performance. A call to another service may also do so.

Finally, the rules by themselves can be a source for performance issue. The actual

rule engine technology itself is an unlikely source of performance issues. The use of

the technology by the developer is usually the culprit.

For the hardware, the always changing server capacity like increasing the

memory or the CPU type and adding new server helps to increase the performance

or support load increases. The network is usually less of an issue although for one

of our projects, we recently had to assess why a decision service was executing

slowly. After investigation, we discovered the database was not physically close to

the rule execution server, but in Singapore, connected over a slow network

connection. From our experience, the data access is usually the largest bottleneck

among the factors affecting the performance and scalability of an application. The

amount of time spent on data access is dependent on how the data is accessed.

Despite the improvements on the underlying technology, database still takes a lot

of time to read and process data. To try and minimize this impact, it is sometimes

possible to read and cache data locally for the processing of the rules. An ESB can

be used to retrieve a complete data set in the form of a message. Another source of

performance issues can be located around the unmarshalling of the input and

marshalling of the response. When addressing data access it is important to recall

that rule conditions are applied to the data model, so the data needs to be present.

To access related objects part of an association (the coverage of the policy), the

rules will take more time to process if the application is doing a round trip to a data

base: if the engine needs the policy and coverage objects to make its decision, then

Managed Server

JMS

Logs

HTTP

SOAP

DataBase

Rule Engine
RES DB

Decision Service

RuleSet RuleSet

Other
Service

Marshalling Load
Data

Execute
Rule

Prepare Data

Fig. 14.6 Potential bottlenecks for decision service execution performance

14.3 Performance Testing 459

it would be better if both the claim object, the policy object, and all the coverage

objects were materialized as java objects and fed to the engine.

14.3.2 Patterns of Data Materialization

There are at least two patterns for the materialization of data: the eager one is

loading the data prior to the rule execution. This is a conservative approach which

assumes that we figure out upfront which data is relevant, load it, feed it to the

engine, and save it after the decision step. On the other hand, the lazy approach

loads only data elements we know are mandatory (the claim), and the rules by

accessing the data graph will force the loading of the rest of the data and the

materialization in java objects. This last operation is performed by the O/R

mapping layer, such as Hibernate or the SDO DAS (see Chap. 12). We need to

take into consideration the conventional design practice used in persistence frame-

works where using lazy loading is usually more efficient. When using rule engines

we do not want to be accessing the DB to evaluate conditions or actions as it will

impact the performance: the engine is blocked on nonessential, nonrule related

tasks. In the context of a ruleset, it is also quite challenging to handle JDBC

exceptions properly. It is important to know that lazy loading can lead to some

strange behavior: for example, a lazy loading of Policy just loads the policy object

and not its associated Coverages. A call to myPolicy.getCoverages() goes into the

database, gets the Coverages, creates Java objects, and returns them. A reasonable

caching strategy might cache the list of Coverages, and so a second call to

getCoverages() returns the same set of objects. A simplistic cache strategy

might flush the cache if the list of Coverages changes and recreates new java

objects all over again. Because those new objects will have a different memory

address (identity), refraction in the rules will not work, and the engine will fire the

same rules that fired on the previous copies, on the new copies.

14.3.3 Accessing Data from Within the Rules

At a pure rule engine processing level, the rule execution is impacted by the number

of rules and the number of objects referenced by the engine. During the implemen-

tation phase, it is possible to isolate the ruleset and perform stress tests to under-

stand the impact of the ruleset design. The predictability of response times is

important to be able to guarantee quality of service of the applications and to

plan computing resources accordingly. As a starting point to any performance

investigation, we recommend to clearly identifying which dependencies the ruleset

has on the data loading and to external web services. It is common to have to access

data from multiple sources in parallel. Does the rule access some Service Data

Object using a DAS and other DAO? How are enumerated data or other master data

460 14 Issues with Rule Testing and Performance

accessed? Do the rules call web services and for what purpose? Is it a synchronous

call blocking the rule to get the response? The eager design approach may be

possible in most applications, but sometimes a trade off is needed to minimize

impact on the ruleset performance for 10% of the cases where the data may not be

present, and adapting a load on demand may be suitable. This can be done by using

a first part of the ruleset (or by splitting the ruleset) to evaluate if a complement of

data is needed. If not the flow of execution goes to the main stream, if yes the flow

goes to an exceptional path used to load the remaining data set, and applies the

appropriate business rules. Also using this approach, it is possible to avoid execut-

ing a lot of rules if data are definitively not present.

If we invoke a nontrivial service, in either the condition part or the action, we will

have three issues to contend with: latency, error handling, and transactional support.

Latency represents the time to execute a round trip from the caller to the receiver.

Slow service calls lock engines in nonproductive cycles. This could become a

serious problem if the call to the remote service is done in the rule condition

where a test can be invoked very often. On the action side, the best practice is to

avoid calling the service directly, but to postpone the call after the rule execution.

This is possible if the action does not trigger other rules (rule chaining). The error

handling in a ruleset may leave the engine in an inconsistent state. A call to a remote

service can be impacted by a potential network timeout, communication error,

locked resources, or an execution error on the server. Finally, handling transactions

within single service invocations, or across multiple service invocations, is hard enough

in general, so it is even harder from within the condition part or action part of a rule.

The action part of the rule may most likely change the states of the business

objects, but we may need to avoid calling the DAO or service layer from the rule to

persist the updates back to the data sources. It is preferable to leave this step until

after the complete execution of the rules. The rule execution is one method part of

the overall transaction. Transactions should not be initiated by the ruleset, mostly

because it is not so obvious to manage a roll back, in case of exception or failure.

14.3.4 Pattern Matching Performance

A rule engine uses pattern matching to evaluate which rule conditions match the

object referenced in its working memory. So the larger the number of objects in

the working memory, the more time the engine spends evaluating the candidate

rules. Even if the RETE algorithm was designed to handle a relatively small

number of rules with a large number of objects, it takes time to process the pattern

matching. When the rules share some conditions the RETE network will be able to

share nodes and so will be more efficient when processing facts. At the rule level

to improve performance, we can try to limit the number of conditions within a

rule. Depending on the rule engine implementation, it is also possible to reduce

the time to search for eligible rules by writing rules with the most discriminating

condition as first test.

14.3 Performance Testing 461

When some conditions are processing complex evaluation, it may be interest-

ing to split the work into different rules. Recently in one of the projects, we had to

implement a complex lookup between lists of object and return a Boolean value if

one element of one list was part of the other. Depending on the rules design, it

may be possible to isolate this long processing search in one rule and then keep the

result in a variable, so that the other rules look only at the fact that the variable

was set to a given value. The underlying code of any method used in a lot of

conditions needs to be optimized as much as possible. Sometimes it is possible to

return a previously cached result to avoid executing the complex search for the

same input parameters.

We have seen some rule implementations using test statements in the then or else

part of the rule. The developer was implementing business rules like a procedure.

This has to be avoided as much as possible. The left-hand side of a rule is processed

much faster by the RETE than the right hand side. Actions should execute as

quickly as possible. Do not perform long running tasks inside the rule engine if

they can be avoided. One solution is to delegate to some service which can do their

process in a separate thread asynchronously.

14.3.5 Some Guidelines on Keywords

By using some language keyword like update, insert, retract, or modify . . . within
the action part of the rule, one can force the reevaluation of the RETE tree. This is

always a costly operation, so update,modify, insert, or retract really have to be used
only when we want to infer decisions. When beginning with rule engine program-

ming, this is a capability the developer likes to use and abuse. There is usually no real

Concept: Discriminating Condition

This is a condition in a rule that tests an attribute against a constant or static

value and avoids going over looking at a collection. For example, a rule which

looks at a coverage with a specific procedure code on a pending claim must first

assess the claim is not pending, to avoid navigating through the collection if the

claim is in any state that is not Pending.

If

the claim is pending and

there is a coverage in the coverages of the policy of the claim where the procedure code is 34

and …

instead of

If

there is a coverage in the coverages of the policy of the claim where the procedure code is 34

and the claim is pending

462 14 Issues with Rule Testing and Performance

need for it. So depending on the rules there are other solutions to avoid such

reevaluation. When the rule engine offers an efficient rule flow mechanism, it is

possible to organize the flow of processing such that some facts are “inherited” by

the previous rule tasks. This avoids duplicating conditions and avoids RETE reeval-

uation. For example, the beginning of the rule flow can include a task to verify that

all the attributes we need later in the other rules are present by testing against null, or

size greater than zero, etc. If one of such rule fires at the beginning of the ruleflow, it

makes sense to stop the processing and avoid going through all rules. The remaining

rules do not need to perform the same tests again, leading to improved performance.

It is recommended to avoid using the “not” condition as it involves looking

through all the objects of a given type in the working memory. When the number of

objects is important, it may take time. But as most business decision services today

are processing one business event at a time, the search for objects of the same type

is very limited, and using a not is not an issue.

In the telecom industry, there are applications which are looking at a lot of objects

of the same type to evaluate the presence of an event. Examples of such application

include alarm filtering and correlation, network element management, or call data

record processing. In this execution pattern, the rule engine needs to leverage

specific capabilities to efficiently manage this huge amount of objects to process.

Below is an example of such a rule combining a pattern matching on an alarm

instance and the nonpresence of its “derived alarms”:

If
alarm1 : Alarm(status equals alive);

Not Alarm(alarm1.ID equals parentID);

Then

Retract alarm1;

Such a rule uses joins between facts and retraction of reference in working

memory to force rule evaluation. When the number of alarms is important, this kind

of rule can require a lot of time to execute. The rule engine algorithm has to be

optimized to take this pattern into account. This is even truer if we add time

operators like within the last minute. Then a time window has to be managed,

which adds to the complexity of processing.

14.4 Continuous Testing

Part of the content presented in this section is coming from the work done by Pierre

Berlandier,5 Senior Technical Staff Member – BRMS Solution Architect at IBM,

who authorized us to publish it. In traditional IT software application development,

5See one of his article at on rule repository structure http://www.ibm.com/developerworks/web-

sphere/library/techarticles/1003_berlandier/1003_berlandier.html.

14.4 Continuous Testing 463

the test activity starts during the elaboration phase of the project (RUP phases) and

peaks during the construction. Most of the time, once in production, application

testing is reduced to a minimum, only focusing to ensure nonregression of issues

fixed or added features (Fig. 14.7).

The participants to the test activity tend to be the IT QA group members and

developers. They follow carefully crafted test plans that are the result of analyz-

ing the business requirements. The business user is not usually involved. When

using a rule approach, and BRMS software, the development life cycle is

completed by a “change time” phase, started when the application is in produc-

tion. Available for its end users, but continuously adapted to support deployment

of new business policies. The new implementation of business rules needs

testing, completed by the traditional nonregression test. This means the test

activity remains important during the maintenance of the application as illu-

strated in Fig. 14.8.

The stakeholders are the same as during the rule harvesting phase and stay

actively engaged during the development and the maintenance. Business people

are key to the design of new test cases that should be run about new or updated

policies. It is often the case that the business users are performing testing them-

selves.

Change management is a serious challenge to support, as each change is compa-

rable to a mini-project that has to be executed in a short amount of time and may be

triggered on short notice: we often see notice as short as 2 days before the deployment

of the updated business logic. During this period, the full development cycle must be

executed: from analysis to design, to implementation, and most importantly testing.

As testing of business rule is about business, it is often difficult to find test staff

with the business knowledge. This is one of the most critical challenges to address

when deploying efficient testing strategy. SMEs are very important to define the test

data, and test cases, and to decide on the appropriate coverage required. External

groups, like QA teams, may not have a clear understanding of the policy being tested.

This is particularly true when the time to deploy the new business policy is short.

Even sometimes the SMEs owner of the rule project may not fully understand

themselves the extent of the change, or how to handle some specific cases, or conflicts

Fig. 14.7 Traditional test workload over time

464 14 Issues with Rule Testing and Performance

among decisions. As new policies get added or refined, the ruleset becomes more

complex and less easy to test. Given the short time allocated to the implementation of

a business policy change, there may be little time to spend on good rule design. This

means, for example, not using rule templates when we should, or using ad hoc

implementation such as using rule priorities, or not creating/reorganizing the proper

rule packages or rule tasks in the rule flow when refactoring will help to evaluate the

conflicts. This leads to testing and debugging that is harder and harder to perform.

This issue can be mitigated by performing a regular rule repository refactoring

exercises to keep the repository clean, documented, and understandable.

l Unit testing
l Checking the internal consistency of a rule set

– Inspection

– Automated tools

– Through testing
l Regression testing

14.5 Semantic Consistency Checking

Within a ruleset, inconsistencies between rules can arise when the business users

adds, updates, or deletes rules. Possible inconsistencies within business rules

include redundancies, contradictions, or missing rules as well as the inability for

a rule to be executable. Inconsistencies have to be corrected as early as possible

to avoid quality issues. Consistency checking is a feature that verifies whether

rules are semantically consistent. Inconsistencies can be found in a single rule or

between rules within a ruleset. Running consistency checking analysis allows

developers and subject matter experts to check the current quality of the rule

under development. It is a very useful feature the development team can leverage

during the ABRD phases of harvesting, prototyping, building, and enhancing. To

support automatic evaluation of the inconsistencies, the business rules need to be

expressed in a structured language. So only a BRMS platform with a structured

Fig. 14.8 Test activity workload with managed business rule

14.5 Semantic Consistency Checking 465

rule language can support the search for inconsistencies among a large set of rules.

The validation operation searches all reachable states the fact model can have after

the evaluation of the business rules and builds the different paths of rules execution

to evaluate which rules may impact others, and the ones required to fire to reach a

given state.

Rule inconsistencies includes the analysis of rules never selected by the rule

engine, rules that never apply, rules that may cause domain violation, rules that

make other rules redundant, rules in conflict with others or itself, and rules with

equivalent conditions. It is a common requirement in business rule application to

ensure the business user is looking at all the possible cases and to evaluate

conflicting decisions. The amount of permutations and tests to search for incon-

sistencies is a nontrivial problem. The BRMS needs to use heuristics or a dedicated

search engine to support this capacity efficiently. The following table details the

different inconsistencies:

Rule never

selected

Rules are part of a branch of execution never reachable. For example, when

using a rule flow to control the flow of execution, a rule not part of one rule

task will never be selected for execution. Same logic applies if a rule task

is not in a rule flow. In some BRE implementation, it may be difficult to

catch this problem: the rule includes some property to define in which rule

task it belongs to. The rule flow is decoupled from this semantic, and worse

the application code is defining the rules part of the application. Searching

for inconsistency forces looking at three different logics in different

languages.

Rule never

applies

When conditions are linked with the wrong operator like and/or. For example,

using and instead of or: Testing if the status of the claim is open and the
status of the claim is rejected . . . will never be true.

When conditions are inversing the value of a numerical range, like amount is
between 100.00 and 20.00

Domain violation If a rule contains an action that tries to assign a value that is not within the

allowable domain values.

Equivalent

conditions

Rules have equivalent conditions when the conditions have the same meaning

and the actions may not be in conflict. This type of inconsistency may come

when we add decision table with conditions testing numerical values and

there is already some existing rules with such condition.

Redundant rules Two rules are redundant if they have the same actions, and conditions of one

rule are included in condition of the other. One pattern could be:

R1: if C1 . C2 . C3 then A1

R2 if C1 then A1

Conflicting rules Rules are in conflict if they are modifying the same attribute on an object with

different values.

R1 if C1 then O.a ¼ v1

R2 if C2 then O.a ¼ v2

This may be correct, but it may also generate a conflict. This is difficult to catch

as this kind of assignment can be done in a complex method called by the

rule.

Overlaps and gaps in conditions are two other considerations a rule analysis tool

can evaluate. A gap represents a hole in a series of possible discrete values. There

are two types of attributes the rule can look at: enumerations or numerical. Suppose

466 14 Issues with Rule Testing and Performance

an enumerated attribute can take the values {E1, E2, E3}. The business will often

test a subset of possible values (if a ¼¼ E1 if a ¼¼ E2) and will not

take into account the other cases. This could be evaluated during the authoring of

the rule by a rule developer who completes his analysis; this can easily be discov-

ered using decision table. For numerical attribute, the gap can come from testing

range of values:

10; 000< a< ¼ 14; 000

15; 000< a< ¼ 20; 000

What happens between 14,001 and 15,000?

Overlaps for numerical value can come by adding a test 13,000 < a <¼15,000

where some values are overlapping. An efficient BRMS will identify these potential

problems.

14.6 Tracing and Logging Rule Applications

The rule engine execution should support the generation of traces about the rules

fired and not-fired, the execution duration, and the value of input and output facts

used for the tests. The level of trace is linked to the level of testing. The business

users want to understand if a rule is executed on a given set of data or want to

understand why a rule did not fire. The execution can also report on the chaining

between rules: The rules have dependency when the action of one rule makes the

conditions of the second rule evaluated positively. Some rule engines create events

when an object is asserted in the working memory, when a rule is added to the

agenda, and when a rule is executed. When the engine supports ruleflows natively,

it can also report on the path executed in the rule flow. Using the events or callback

methods, it is easy to develop a log and trace mechanism. If the engine does not

provide such capabilities, the business user may need to add a trace in the rule

action, adding, for example, the rule reference to a logger. The most difficult part is

to get the list of rules not fired when the engine does not send events when a rule is

added to the agenda.

Logging and tracing can become a challenge when performance is important.

Tracing impacts the performance. The most complex designs involve starting some

thread to manage the logging outside of the main processing. At the session level,

the input and output parameters are sent to this thread for filtering and processing.

The output can include some specifics trace of the rules fired. The thread can be a

client to another server processing the traces asynchronously so that the minimum

resources are used on the rule execution server. It is important to properly design

what kind of information we need to trace. A complete graph of objects is most

likely irrelevant.

14.6 Tracing and Logging Rule Applications 467

AppServ-2AppServ-1

BizApp.ear

RuleLoggingService

Rule Sevice

BRE
Rule Set

Data model IN / OUT

JMS

Queue

LoggingServer

ruleExecTracesDB
JMS

The tracing can also be done in different environments. The production environ-

ment usually is not using any trace but a preproduction environment can.

14.7 Summary

Testing is sometime not appreciated by developers, but it is a main activity which

may be fun. Starting by developing the test before the rule helps to focus on the

intent and expected results for the rule. Unit testing frameworks should be light

and support refactoring of the data model used by the rules. In the first phase of a

ruleset development, the tests ensure the ruleset keeps growing without impact-

ing the overall business goals and the quality expected. When the ruleset reaches

a certain level of development, the data model is stable enough; the business

analyst can author both rules and test scenarios to validate the rulesets against a

suite of data sets. His goal is to validate the functional aspect of the ruleset. The

data set can include key performance indicator, so that the ruleset execution

results can be compared to find the best combination of rules. All the test

suites developed for unit testing, functional test, and component test can be

combined to build a nonregression testing platform, used to continuously assess

the ruleset quality overtime. This is a very important element to ensure the

ruleset, modified on a regular basis once in production, keep the quality and

intents of its design.

Performance testing helps to identify where the end-to-end decision service may

have bottlenecks or performance issue. Multiple time stamps are needed to assess

data conversion, data mapping, data access, and rule execution. Efficient rule

authoring should be done to always think about the best possible implementation

and to avoid unnecessary pattern matching or join operations.

Quality of a ruleset includes verifying on a regular basis the inconsistencies that

may occur overtime. A BRMS may offer such capabilities, with for example,

JRules which offers an efficient consistency checking search engine.

Finally when rules are in production, the business team wants to understand what

decisions are applied on a given business transaction. The tracing and logging can

include complex settings, but to be efficient should not impact the performance of

the main processing but still gives efficient information. Simply putting traces in a

468 14 Issues with Rule Testing and Performance

file does not represent a long-term viable solution. Decision warehouse receiving

asynchronously the main trace element, including the list of rules executed, is an

elegant alternative. Chapter 15 presents testing with JRules.

14.8 Further Reading

l An introduction to the test-driven development may be read at http://en.wikipe-

dia.org/wiki/Test-driven_development.
l Wikipedia also details the concept of unit test at http://en.wikipedia.org/wiki/

Unit_testing.
l The book from B Kent “Test-Driven Development by Example”, Addison

Wesley, 2003.
l JUnit is one of the most used testing framework in the “Java world”. The

documentation and code can be found at http://www.junit.org/.
l The java architecture for XML binding specification and documentation is at

http://www.oracle.com/technetwork/articles/javase/index-140168.html.
l John D McGregor at http://www.cs.clemson.edu/~johnmc/joop/col3/column3.

html details the component testing, needs, and approach.
l Pierre Berlandier explores different alternatives for structuring ruleset, which

can impact both performance and management. See http://www.ibm.com/

developerworks/websphere/library/techarticles/1003_berlandier/1003_berlandier.

html.

14.8 Further Reading 469

Chapter 15

Rule Testing with JRules

Target audience
l Developer, software architect

In this chapter you will learn
l How testing is supported in ILOG JRules 7.1
l How to verify during authoring phase the rule consistency
l How to tune the rule execution performance

Key points
l Rule analysis uses a search engine, which helps to find incon-

sistencies among a ruleset, like rule never selected, wrong oper-
ator, redundant rules . . .

l Searching for inconsistencies within a ruleset is an important
capability to improve the ruleset quality.

l Semantic queries help to search for rules impacting others.
l Decision Validation Service offers the capability for the business

users to test the ruleset in isolation and execute simulation: tests
compared using key performance indicator.

l For each ruleset, assess with business users the need of using
DVS.

l Business users use RTS and DVS together to update, rules, data
set, scenarios, and to execute the suite of scenarios against a
given ruleset.

l Performance of a rule engine is impacted by the number of rules,
number of conditions in the rules, and the number of objects
inserted in the working memory.

l Most business applications do not have performance problem.
When needed, it is always possible to perform some tuning to
improve performance.

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_15, # Springer-Verlag Berlin Heidelberg 2011

471

15.1 Introduction

In this chapter, we look at the rule testing and simulation capabilities of JRules, and

important steps to validate the functional quality of the ruleset before deploying

into a production server. As part of the quality control, there are some static analysis

capabilities to assess potential rule gaps, conflicts, and inconstancies. In Sect. 15.1,

we start by discussing JRules functionality for semantic consistency checking.

Next, in Sect. 15.2, we present testing including unit testing and the new component

called the Decision Validation Services (DVS), which is used by business users to

define and perform functional tests. Finally in Sect. 15.3, we talk about performance

tuning with JRules, using things such as (a) ruleset variables and parameters, (b) JIT

compilation, (c) rule engine algorithms, and (d) automatic rule rewriting. We

follow the natural flow in which those concerns arise and how they are solved by

product capabilities during the ruleset development.

15.1.1 Semantic Consistency Checking

As seen in Chap. 14, the search for inconsistencies among business rules addresses

the evaluation of rules that are not selectable and rules that make other rules

redundant or in conflict. In Rule Studio, a dedicated “view” called “Rule Analysis”

is used to perform consistency checking on a ruleset. This feature uses a dedicated

search engine to generate reports which list all inconsistent or missing rules. Each

report includes links to the conflicting rules; it is then easy to complete the

investigation by browsing to the rules. The tool may use a custom rule extractor

to consider only rules in scope for the analysis. For example, we can take into

account only the rules in a given status to avoid analyzing rules still under

development. The analysis can run in the background (at each rule save) or on

demand. The user can select which constraints to apply to the search. The right

panel in the screen of Fig. 15.1 presents the different “Analysis Options.”

The report of Fig. 15.1 outlines rules never selected because they belong to rule

packages that are not part of any rule task in a rule flow, rules which could not be

evaluated as conditions are in conflict: the rule named BadOperator uses the AND

operator instead of the OR when testing on the same attribute:

if
the status of 'the claim' is CANCELED and
the status of 'the claim' is REJECTED

then
add the issue : "Claim Canceled or rejected" to 'the result' ;

Another rule assigns a value out of the range, range specified in the BOM

enumerated domain:

472 15 Rule Testing with JRules

if
 <some condition>

then
 set the sub type of 'the claim' to 6; // the range was set as [1..4]

It is important to note that all those verifications are done on the BOM classes.

Enumerated domains need to be prepared carefully to avoid wrong results. The

search for redundant rules is an interesting capability. The two following rules are

reported as redundant:

name MedicalBillAccepted
definitions

set bill to amedical bill where the status of this medical bill
 is Accepted;
if
 the status of 'the claim' is ADJUSTED
then
 set the status of 'the claim' to PAID ;

name MedicalBillAcceptedRedundant
definitions

set bill to a medical bill where the status of this medical bill
 is Accepted;
then

 set the status of 'the claim' to PAID ;

Fig. 15.1 Rule analysis report

15.1 Introduction 473

The second rule has a larger set of conditions than the first one making it

redundant. This pattern can easily occur when we add decision tables in an existing

ruleset. Figure 15.2 brings in redundancies and conflicts with our two previous rules.

Row 3 is redundant with the second rule above as the test claim.status ¼¼
UNPAID does not bring any new semantic. Rows 1 and 4 are in conflict with the

second rule above as they are assigning different values to the same attribute (the

status of the claim) in their action part. Finally, the conditions of our first rule and

the row 2 of the decision table have the exactly same conditions for different

actions.

Obviously, this example is a purely academic but aims to show multiple types of

conflict in one decision table. It is interesting to use this capability on real rulesets to

evaluate the quality of the ruleset and maybe to reduce the number of rules. This

tool helps the rule writer ask the right questions on his rule coverage. Rule Team

Server (RTS) has the same capability. We recommend using all the available

checks, but incrementally setting all the constraints forces the search engine to

take more time to find solutions. The user can select some constraints and then

updates the rules before doing a more complete run. Searching for inconsistency

within a ruleset is an important capability to improve the ruleset quality. The user

may decide to keep the rule as-is, ignoring the result. Also sometimes the results do

not provide a valuable evaluation. It is important to remember that such capacities

are still under research in the software industry. JRules is a unique product on the

market to deliver such a search engine.

– Using the rule engine API

– Using the rule execution server

15.1.2 Semantic Queries

Starting with V7.0 Rule Studio offers some predefined queries to search for rules

that are impacted by the execution of other rules, or rules which impact the

execution of other rules. Suppose we have a rule which looks at the status of the

claim like:

Fig. 15.2 A conflicting decision table

474 15 Rule Testing with JRules

if
any of the following conditions is true:

- the status of 'the claim' is PAID
- the status of 'the claim' is ADJUSTED

then
add the issue : "Claim processed" to'the result' ;

Wewant to search for rules that may enable this rule: rules that may set the status

to Paid or Adjusted in their action part. We can implement the following query:

Find all rules such that each rule may enable “PreProcessing.ClaimDataAvail-
ability.reject AlreadyProcessedClaim” to get such rules. The returned results list

one by one the rules having action enabling condition of the selected rule

(Fig. 15.3).

The same applies to identify rules enabled by the one selected. The query looks

like: Find all business rules such that each business rule may be enabled by “Pre-
Processing.ClaimDataAvailability.rejectAlreadyProcessedClaim”. Finally, the query:
find all ruleflows such that each ruleflow may select “Core.Claim Timing.dolBefor-
eEffectiveDate” evaluates what are the ruleflows selecting a given rule. This is a

useful query when we have multiple rule projects sharing rules.

15.1.3 Rule Coverage

Often IT solution architects want to understand how all the possible combinations

of rule conditions are covered in the ruleset. The conditions of the rules are using a

limited set of business variables or terms, which can take an integer value, enum-

erated value, or string. The perceived problem is to get around all possible permu-

tations and possible assignments the variables can take to build the ruleset. Most of

the time users do not want to cover all the potential conditions and let the system

use default values. Obviously advanced BRMS is helping to address this problem

with some gap analysis and rule analysis capabilities. We discussed the rule

analysis capabilities of JRules in the previous section. The decision table editor in

JRules helps to address gaps and overlaps between conditions. Figure 15.4 shows

Fig. 15.3 Semantic query and its result

15.1 Introduction 475

the medical procedure code, the amount billed by the medical provider and com-

putes the amount not covered by the insurance company.

The first column is testing against the procedure code. This attribute is con-

strained by an enumerated domain. The warning triangle icon on the top of the

column specifies that there are some missing values not covered in the row of the

decision table. This could be fine . . . or not . . . depending on the use case, but it is

still valuable information for the rule author. The Unit column is a numerical

attribute, and the warning icon specifies there are overlapping cells. On the rows

1 and 2 the zigzag graphics specify if a row has gaps or overlaps. With these

capabilities, we can design and implement effective decision tables. By their

structure, decision tables help address the coverage of conditions versus the possi-

ble values. The otherwise rule language keyword helps to assign a default value

when a rule author does not want to test all possible values. It has to be used with

care as it is translated as a negation of all tests in the same column, generating a

complex rule to evaluate during rule execution.

Another way to ensure control over the coverage is to organize the rule package

hierarchy by using business dimensions: the first level of rule package can represent

some classification based on business process, or ownership, or geography . . .
Subdecomposition may include, for example, product definition. In that case,

looking at the package hierarchy, it is easy to see the missing products.

15.2 Rule Testing

In this section we review how to support unit test and functional test with JRules.

We cover in depth the Decision Validation Service component as a major feature

for testing in Sects. 15.2.2 and 15.2.3.

15.2.1 Unit Test

The unit test approach was discussed in Chap. 14. JRules offers a tool to listen to

events generated by the rule engine when using the RETE algorithm. The default

class is IlrToolAdapter and represents a set of API used as callbacks for the engine

to notify of events occurring during execution. It is possible to extend this class to

process events like tracing when the engine executes a rule. The class EngineObserver

does this tracing.

Fig. 15.4 Decision table gaps, overlaps . . .

476 15 Rule Testing with JRules

public class EngineObserver extends IlrToolAdapter {
 …
 public void notifyBeginInstance(IlrRuleInstance instance) {

// invoked when the engine executes a rule instance
// with the Rete Plus algorithm
logger.info("Engine execute rule:"+instance.getRuleName());

 }

This class is linked to the rule engine using the connectTool method:

public void buildEngine() throws IlrBadContextException, IlrToolConnectionException {
 engine = new IlrContext(ruleset);

engine.connectTool(new EngineObserver());
}

Using the EngineObserver with the unit test described in Chap. 13, we get the

following:

abrd.claim.tool.test.EngineObserver notifyBeginInstance
INFO: Engine execute rule:reviewMedicalTreatment.IdentifyAmbulanceTransport

The EngineObserver class can be enhanced to store the list of all rules fired;

therefore, a JUnit test method can look at the list and looks up the expected rule.

Looking at the name of the rule fired is helpful, but it is also important to verify

the result of the rule execution on the business objects. This is true for

computation rules where it is unrealistic to look at all potential computations

the rules can do to search for the expected result, but it is more important to

evaluate the intent of the computation and verify the results are within ranges

that make sense instead of looking at a discrete value. Another pattern is to

accumulate the decisions made by the rule in a list and search within the list for

things expected.

Most of the details of unit testing were done in Chap. 14. JRules offers wizards to

generate code to execute rules using JUnit API and an engine runner to facilitate

rule debugging. To support functional testing defined by both developers and

business user, JRules offers a new capability called the Decision Validation

Service.

15.2.2 Decision Validation Service

Decision Validation Services (DVS) goals are to provide a set of features to test a

ruleset by isolation and to offer a simulation capability business users can use to

perform “what-if” analysis. As a testing tool DVS can be used in Rule Studio to test

and debug rulesets. But it is also integrated into Rule Team Server and aims to

15.2 Rule Testing 477

verify that implemented rules lead to the expected business results. Designed as a

business user tool, test scenarios are defined in Microsoft Excel worksheets, and

version controlled in team server. Each scenario includes all the data needed to test

rules and expected result to accept the test is successful or not. A scenario can be

enhanced by defining Key Performance Indicators (KPIs) and in that case used to

run simulations. Simulations aim to evaluate the rule changes against business

metrics. If the metrics are better, the rules improve the business. With the same

platform, it is possible to execute both quality assurance test suites and what-if

simulation. Excel is one source to define test data, but it is possible to define test

scenarios and data elements in an external data source such as a database. A

classical use case is to leverage the historical business transactions stored in a

data warehouse. For example, in a claim processing application, we may want to

assess a ruleset against claims from last calendar year. Accessing such a data source

is accomplished using custom code, implementing a Scenario Provider, which

builds and manages scenarios (see Sect. 15.2.3.1).

The Excel worksheets set data for each input parameter using a tabular format. In

fact the data model does not need to be flat. It is possible to have a graph of objects.

The cell definitions in the worksheet can reference other cells in another worksheet.

This is an interesting capability to define some reusable data definition like a

“good” customer, a bank account, a “bad” claim In Fig. 15.5, there are two

claims defined in a “claim” worksheet. The “claim 2” references an insurance

policy named “insurance policy 1”. This reference is the name in another worksheet

of the insurance policy data set. This relationship between data authorize reusing

data element in different scenario.

The data model has to be simple and small to be manageable. Scenario repre-

sents suites of test cases used to validate the behavior of the rules. The data structure

as defined in the Excel can be a subview of the BOM as defined in the rule project:

most likely the user does not need to have access to all the attributes of all the BOM

classes to define the test cases. The greater the amount of data elements to define in

Excel, the less usable it becomes. There is a trade off to find, and a DVS scenario

definition in Excel is built by iterations, adding new scenario, new data elements,

and adding new rules to the ruleset. At the beginning of the implementation, the

rules may use a very limited number of conditions on a very limited dataset. The

Excel can be simple. Over time, adding new rules covering more data elements,

forces adding columns to each worksheet. Rule Team Server is the main front end

Fig. 15.5 Data entered in cells, and referencing other cell

478 15 Rule Testing with JRules

for the business users to manage test scenarios. Once defined locally on his

computer, the user can upload the Excel file in rule team server. Like any other

rule artifacts, test scenarios are version managed in the rule repository (Fig. 15.6).

Before going into the details of setting up DVS, and how to customize it, there

are some major considerations the project team needs to assess:

l Why business users want to test a given ruleset?
l If IT and business users are working together to develop the rules, why not IT

developing test suites, and explain results to business, so rules can be updated

accordingly?
l Should we use DVS for all the rulesets?
l Do we need to define scenario from existing data, in an external datasource?
l Do we need to perform simulation, what-if analysis on all the rulesets?
l At what point in the development process do we need to enforce a systematic use

of DVS?
l What are the KPI for each ruleset? Are we able to define them? If there is no KPI,

there is no need for simulation.

Forgetting to look at such questions may lead to a wrong usage of DVS and poor

results.

15.2.2.1 Enabling DVS

There are multiple components working together to make DVS an integrated test

environment. At the execution server layer, there is a server side application, called

Scenario Service Provider1 (SSP) used to execute the rules against the scenarios it

received and to provide a report on the execution. The scenarios can be executed

remotely from either Rule Studio or Rule Team Server. To enable remote execution

the Execution Object Model (XOM) has to be packaged with the SSP and deployed

on an application server. When using a pure XML binding approach, this repackaging

Fig. 15.6 Test suite managed in rule team server (RTS)

1See the jrules-ssp-WAS7.ear for WAS or testing.war for Tomcat in dvs/applicationservers folder.

15.2 Rule Testing 479

is not mandatory, as the XOM reference is part of the BOM, part of the ruleset.

Figure 15.7 illustrates the integration in the “testing.war” of the ssp component, the

RES session API jars, and the domain object model jar (e.g., the ClaimModel.jar).

When using an Excel-based testing environment, there are a number of steps to

follow to put in place this DVS framework:

l Verify that the needed BOM classes support DVS.
l Modify any BOM constructors for classes where we want the business user to

enter data for mandatory attributes. For example, we can consider the claim

number as a mandatory element, so we need a claim constructor with one string

argument to set the claim number.
l Generate the Excel test scenario template.
l Populate the worksheet with data which make the rule’s conditions true.
l In Rule Studio verify locally the DVS execution by using dedicated eclipse “run

configuration.”
l Repackage the SSP (only if using a java XOM).
l From Rule Studio, verify the remote execution sending scenario to the remote

SSP.
l Synchronize the rule project into RTS.
l Let business users use Rule Team Server to manage scenarios, rules and execute

them remotely on the SSP.

To allow the business user to run the tests in Rule Team Server, we must enable

Decision Validation Services in Rule Studio: to do so we first need to verify the

BOM supports DVS: this is done by using the menu Decision Validation Scenario

> check Project on the rule project to use (e.g., ValidateClaim-Rules project). A list

Testing.war

RES

BRE Rule Set

SSP RES API

Input-
ruleset

parameter

Output
ruleset

parameter

Domain Object Model

Fig. 15.7 Scenario Service Provider (SSP) packaging for Tomcat deployment

480 15 Rule Testing with JRules

of errors may appear in the DVS Project Validation view. Removing errors may

involve changing some BOM elements or unenabling attributes in scope for DVS

(Fig. 15.8).

The first common set of errors may come from the class constructor. A XOM

class may have multiple constructors; therefore, in the Member tab of the BOM

editor, we need to check “DVS constructor” check box for the constructor method

we want to use during the scenario definition and rename the arguments of the

constructor to give a meaningful name to column headings (see Fig. 15.9). Some

warnings may come from the fact that we are using generic names for the para-

meters of constructor in the BOM class, renaming such parameters in the BOM

constructor helps to maintain the test suite. Other errors may come from the absence

of class definition in the BOM. For example, when using a java XOM created from

an XML schema, using Java for XML Binding (JAXB), the data can be an

XMLGregorianCalendar, it may be more suitable to use java.util.Date to support

dates. As a best practice, you should limit using generated java beans as your XOM,

it may be relevant for java object carry on only data element, but a more complex

business entity may have his own Java class, which includes getters/setters and

behavioral methods. Such business entities are really what the business user wants

to write rules on and populate data for.

Third, we can generate the test suite Excel file using the menu Decision Validation

Scenario > Generate Excel Scenario File Template. In one of the wizard steps, the

user needs to pick up the proper DVS format (Excel 2003, Excel 2003 tabbed, . . .).
Most of the time when the model is complex, the Tabbed format is needed. Each class

is mapped to one worksheet. Each public attribute of a BOM class is represented in

one column. It is possible using a toggle (named Ignore for DVS) in the attribute

definition to avoid having the column generated for that attribute. Each worksheet

between the scenario tab and the Expected Result tab is used to define reusable data

for tests. The scenario tab includes the input parameters of the ruleset. Each row of the

scenario represents one test case and must contain all the necessary data required to

fire the rules. Each scenario has a unique ID and a description field to enter the intent

of the test.

Fig. 15.8 Decision Validation Services (DVS) project validation view. A must fix list of issues

15.2 Rule Testing 481

The “expected result” tab includes a table with columns to test the expected value

for each attribute of the IN_OUT orOUT ruleset parameters. For example, wewant to

verify for scenario 1 the status of the claim and the error attribute of the result object

(Fig. 15.10).

The link between the sheets containing the scenarios and their expected results

or execution details is made by the name entered in the respective Scenario ID

columns. Note that it is important to set the ruleset parameter direction properly

(IN, OUT, IN_OUT): when a parameter is never modified in the rule, keep it as IN.

An incorrect setting may force to set some data elements not required for the tests,

and adding unnecessary complexity to the test scenario definition.

Fig. 15.9 Enable a BOM class constructor to be used by Decision Validation Services (DVS)

Fig. 15.10 Expected result for each scenario

482 15 Rule Testing with JRules

To complete the scenario definition, there is a tab called “Expected Execution
Details”, which can be used to specify the list of rule names expected to fire, the

rule task names executed. No value in a cell enforces skipping this assertion.

It is possible to test for multiple values. Each value needs to be in the same

column but in different rows. Figure 15.11 tests if the list of rules fired contains one

of the possible rules: dolBeforeEffectibeDate and claimBeforeEffectiveDate.

Finally, it is important to fine-tune which data elements we want to expose in the

Excel file to support efficient business scenarios. Refactoring of Excel files may

involve cumbersome copy and paste. The developer needs to leverage the work done

during the harvesting phase to define what the business user is expecting in terms of

functional testing. The Excel format is used when the object model is simple, and the

number of scenarios limited to 1,000. When the data model is more complex or the

scenarios need to get historical data, it is possible to develop a scenario provide class

to load those data or enrich the scenario. The DVS API is designed to support such

an implementation. Also it is important to note that even with a complex BOM level,

it is possible to have a simple data model for testing. When starting a project, the

DVS can include a few data elements, really used within the conditions of the rules.

The other elements could be ignored. This simplifies dramatically the Excel file.

Getting the business user accustomed to it. The DVS ignore flag can be set to true for

each BOM class/attribute we do not want to export in Excel. We propose to use an

incremental approach to develop this Excel file and to add data elements over time,

when new rules added to the ruleset are testing it.

15.2.2.2 Executing DVS Configuration

From Rule Studio to execute the test cases declared in the test suite, we need to

create a “Run Configuration”. This is done using the Run>Open Run Dialog
command and by creating a new configuration under the DVS Excel File node.

We need to specify the rule project under test, the Excel file for the test suite, and

any other parameters such as the DVS configuration (Fig. 15.12).

To run locally, developers specify the local execution in the DVS configuration

tab (Fig. 15.12). Local execution means one instance of the Scenario Service

Provider is created locally to parse the scenario definitions, to prepare the data for

test, to execute the rules, and to generate reports. Figure 15.13 illustrates this

integration of executing SSP in the Eclipse JVM.

Fig. 15.11 Test attribute within multiple possible values

15.2 Rule Testing 483

The execution generates traces in the console view and in an external report file. This

HTML report includes, for each test scenario executed, the status of the test according

to the expected values set in the test suite Excel file (Fig. 15.14). From this file, it is

possible to get the stack trace for exceptions generated by the DVS environment.

It is possible to debug a DVS execution in Studio. After setting some breakpoints

in the rule flow or in the action part of the rule, we can use the DVS configuration in

Debug mode.When using DVS some care has to be done. When the decision service

implementation has some logic to prepare the data, like setting the claim reference

to the result object, loading the insurance policy from a database, this logic is not

part of the XOM packaged by the SSP, but even if it was, it is not called by the SSP

component. Developer has to implement this logic in a custom scenario provider

(see Sect. 15.2.3). It is common to use a custom scenario provider to complete the

data set definition. You can also add ILR code in the initialization of the ruleset to do

the binding. This problem is common and happens as soon as there is some logic in

the service implementation to prepare the data for the rule execution.

To run the tests remotely from either Rule Studio or Rule Team Server, we must

deploy the Execution Object Model (XOM) to the Scenario Service Provider (SSP)

(Fig. 15.15).

Using Decision Validation Scenario >Repackage XOM for Remote DVS Test-

ing wizard, we create a new DVS project to persist all the needed DVS artifacts and

Fig. 15.12 Decision Validation Services (DVS) rule studio test using Excel file

484 15 Rule Testing with JRules

Rule Studio

Prepare BOM for DVS

Read, Update, Create rules

Manage test scenario and suite

Run test suite locally or remotelyIT Staff

Execute rule

Generate Report

SSP

BRE Ruleset

Fig. 15.13 Developer using Decision Validation Services (DVS) in studio

Fig. 15.14 Decision Validation Services (DVS) execution report

15.2 Rule Testing 485

to package and deploy new ear or war files for the target execution environment

(Fig. 15.16).

A readme.html file highlights the steps to follow to deploy the new ear/war. The

workspace now includes a DVS project that contains a build.xml Ant file, which

defines the Ant targets to repackage the SSP .war (ear) file. It may be important to

review the settings in this Ant script to avoid dragging unnecessary jars, like, for

example, the asm* jars, when you do not use the sequential algorithm in your

Business
Analyst

Rule Team Server Rule Execution Server

Read, Update, Create rules
elements

Manage test scenario and suite

Run test suite remotely Rule EngineExecution Reports

Execute rule

Generate Report
SSP

Deploy
Rule Set-Scenario-
Expected Results

Fig. 15.15 Business user using Decision Validation Services (DVS) in rule team server (RTS) and

executing scenario on RES

Fig. 15.16 Repackaging a new Decision Validation Services (DVS) deployment

486 15 Rule Testing with JRules

ruleset. Also ensure the latest version of the ruleset is deployed to the same RESDB

as the one used by the SSP. The SSP is using a ra.xml as other RES client

applications. The last step is to deploy the new generated archive to the target

application server. This repackaging is needed only if there is a change in the XOM.

15.2.2.3 Business User Using RTS

The business user manages the scenario and simulation from RTS. Using RTS
Compose tab, he/she can create new test suites or simulations. A step-by-step

“wizard” drives the user to enter a set of properties, to select the rules in scope of

the ruleset, to specify which type of scenario to use, and finally to enter any

documentation or versioning information. As RTS is controlling versioning of

rulesets and rules, it is possible to select a specific baseline for testing. When

using a DVS format using Excel, the creation of the test suite uploads the Excel

file and saves it into the rule repository: it becomes managed the same way as other

rules artifact using (see Fig. 15.17) the edit, copy, lock, history functions. . . .
From this panel, it is possible to execute the test suite to a remote RES/SSP

server and get reports on the execution. The Run command generates the ruleset,

deploys it to SSP, with the data elements defined in the Excel files, and gets the

report back as an HTML page (Fig. 15.18).

Simulation has Key Performance Indicators (KPIs) to compare test executions.

KPIs define how the performance of a simulation is calculated and how it is

presented in the simulation report. We can use multiple KPIs for each simulation.

KPIs are defined in a DVS Project, in Rule Studio, by adding class definition in a

DVS Format. DVS formats are used to customize the scenario and are available

both in RTS and Studio. KPIs are interesting when business users use real historical

data (e.g., the claims of last calendar year). Measuring business KPI on pure test

data does not bring much value. The selection of the KPIs has to be made with care

as we may need to take into consideration a time dimension: for example, the

number of claims adjudicated per day. This kind of metric for a claim processing

application is interesting to measure the quality and efficiency of the automatic rule

processing. The more claims the system can cover with accuracy, the less people

Fig. 15.17 Decision Validation Services (DVS) test suite in team server

15.2 Rule Testing 487

are involved. The Decision Warehouse (DWH) may also be used to extract data

elements for simulations. In production, KPIs are not packaged with the applica-

tions, but using decision warehouse, it is possible to design such KPI by analyzing

the recent executed business transactions triggering decisions.

When a business analyst has issues and cannot figure it out by himself, he can

package the DVS elements as an archive so a developer can do some debugging in

Studio. The DVS archive contains the ruleset under test, the description of the DVS

formats used, and the Excel scenario files if any. In Rule Studio, developers can

import this archive and then defines a run configuration to analyze the issues found

by the business user.

15.2.3 DVS Customization

Customization of data elements used for validating a ruleset is common in JRules

deployment; even if the out of the box features based on Excel prevail. The major

needs are around, accessing historical data, defining KPIs, and developing scenarios

based on complex data graph or complex searches for expected results, or working

on XML document as a source of data. Some decision service implementations load

data eagerly before calling the rules; this logic is not available to DVS without

developing code. This logic can be implemented in a Scenario Provider class, which

acts as a factory of DVS scenario. Implementation of scenario providers or KPIs is

done in a DVS format. DVS formats are managed in a DVS project in Rule Studio.

Figure 15.19 illustrates the definition of ClaimDB format used to support the

Fig. 15.18 Decision Validation Services (DVS) report in team server

488 15 Rule Testing with JRules

implementation of a scenario provider used to load the n last claims from a

database, but also to define a KPI to measure the number of claims validated against

the total of claim processed.

15.2.3.1 Defining a Custom Scenario Provider

When the data model used to write rules is too complex to be handled by Excel

only, or when the test data already exists in an external data source such as a

database, we need to implement a Custom Scenario Provider. The IlrScenarioPro-

vider interface defines three methods to implement: one to compute the number of

scenarios contained in the provider, a second one to return a scenario at a specific

index, and third to close the scenario provider to clean memory. The scenario

provider has also an initialize callback method used to create the scenarios and

cache them in the provider. The cache includes a list of scenarios. The scenario is an

implementation of the IlrScenario interface. One default implementation called

IlrScenarioImpl is a simple JavaBean used to populate a scenario. The method

setInputParameters(Map<string,object>) adds the ruleset parameters we can pre-

pare for each scenario in the context of a given ruleset. This last statement implies

the scenario is linked to one ruleset only. If DVS has to support multiple ruleset,

there will be multiple scenario providers. It is possible to combine the use of Excel

and data source to build scenarios. For example, we can load the reference of a

claimId from an Excel file defined by the business user and load the complete graph

of objects to contain the claim, the insurance policy, the coverage, the current

medical invoices attached to the claim, and define them as the input parameters

within the scenario. This logic is done in the initialization method. The get scenario

by index method returns one of the scenarios cached. The scenario provider is used

by the SSP to get access to the scenario, get the ruleset parameters, and use them to

execute the rules. For the expected result, the scenario has a reference to an

Fig. 15.19 Decision Validation Services (DVS) format

15.2 Rule Testing 489

IlrTraceTester implementation. This interface defines a test method used by the SSP

to assess if the test is successful giving the execution context, and the rule session

request and response instances. Accessing the session response object helps to get

access to the output results and to tests, for example, the status of the claim or the

list of issues created by the rules.

It is also possible to extend an existing scenario provider like the IlrEx-
cel2003ScenarioProvider, which reads a scenario suite fromMicro-

soft Excel 2003 file. Extending this class helps to mix the out of the box capabilities of

DVS and add custom data management before calling the rule execution.

With a custom service provider, it is possible to mix the decision warehouse

(DWH) and DVS (see Fig. 15.20): We can trace the decisions made in production on

the main business transactions and persists them in a custom data base (ruleExec-

TraceDB). The custom DAO, dwhDao, stores the elements we want to replay and

keep statistics on. It could be the claimId, the medicalInvoiceId, and the list of the

names of the executed rules, the list of issues reported, or the list of audit reports

created by the rules. From this data base, it is possible to load back the data in the

DVS scenario provider to build DVS scenario.

BizApp.ear

Testing.war

RES

BRE
Rule Set

SSP
RES
API

resDB

Application
DB

Application Server

Simulation Server

xom.jar

scenarioProvider.jar

Application Server

ruleExec
TracesDB

RES

BRE
Rule Set

RES
API

xom.jar

dwhDao.jar

Production Server

Fig. 15.20 Decision warehouse and Decision Validation Services (DVS) together

490 15 Rule Testing with JRules

15.2.3.2 Adding KPIs

Rule Studio helps to write KPIs by generating template codes that implement the

necessary Java classes. The first class is the implementation of interface IlrKPI,

which defines methods called by the SSP when it runs scenario. The method helps

compute custom metrics for a set of scenarios. We have one implementation of this

interface per type of KPI we want to report to. The important methods are:

l Initialize, to initialize some internal data structure and attribute. The implemen-

tation received the context of execution of the tests.
l onScenarioBegin, invoked by the test runner before the ruleset is executed. This

method is called for each scenario defined in the suite.
l onScenarioEnd, invoked by the runner after the ruleset has been executed. This

method is called for each scenario defined in the suite.
l getKPIResult, invoked once after all scenarios have been run, it is used to prepare

for the report.

The logic in ScenarioEnd is able to access the RES session request and response

objects. From the response and request, we can assess what was done on our data

elements and compute metrics like the number of invalid claims or claims in a given

status. The code below computes the percent of claims not validated, so that this KPI

can be attached to the validate claim ruleset:

public class ValidatedClaimKPI implements IlrKPI {
 // keep the total number of claim processed
 protected int totalCount;
 // count count claim not validated
 protected int totalNotValidated;
 /**

* Return the % of claims not validated.
*/

public IlrKPIResult getKPIResult() throws IlrKPIException {
 IlrKPIResultInteger result = new IlrKPIResultInteger();
 result.setKPIClassName(this.getClass().getName());

float percent = 0;
if (totalCount != 0) {

percent = totalNotValidated / (float)totalCount * 100;
}
result.setValue((int) percent);
return result;

}
…

public void onScenarioEnd(IlrScenario scenario, IlrSessionRequest request,
IlrSessionResponse response) throws IlrKPIException {

// Get the claim as processed by rules
Claim claim = (Claim)response.getOutputParameters().get("claim");

if ((claim.getStatus() != StatusValue.VALIDATED)) {
totalNotValidated++;

}
 }
…

15.2 Rule Testing 491

Linked to the KPI is a renderer class to display the metrics in RTS. It is not

mandatory to implement such a renderer as some default renderers exist to present

numerical values. All those classes can be added to the SSP archive and to RTS

archive. Some Ant tasks are predefined and generated by the rule studio wizard to

help us in the repackaging.

15.3 Performance Tuning

In this section, we cover the different capabilities JRules offers to improve the rule

execution. For a long time, researchers in the software industry tuned the rule

execution algorithms to improve the execution performance. JRules offers an exten-

sive set of capabilities in this area. Rule writing can improve the performance or

impact it. The same applies for a data model design. We suppose here that the data

elements are all present to the rule engine, and we focus in this section on the unique

capabilities of JRules to improve the rule execution time.

15.3.1 Ruleset Parsing

As stated before ruleset parsing is the most costly operation in business rule

application, so it has to be done at the initialization of the application. In JRules,

ruleset archive includes the rule in a scripting language called IRL, the model

definition within the BOM, and the potential mapping between the BOM elements

and the executable model (the B2X). When deployed in RES, the parsed ruleset is

kept in a cache, so that multiple calls to the rule execution do not force the parsing

of the ruleset. The ruleset is also shared between different rule sessions to allow, if

the hardware has multiple CPUs, parallel executions. When the number of rules is

important, the time to parse becomes longer.

When hot deployment is a mandatory requirement, the parsing of the ruleset has

to be done in parallel of the execution in a separate thread. In fact to respect JEE

specification, the implementation code uses the JSR237 API.2 Once the ruleset is

ready, the cache of rulesets is updated to support the new rules. The Rule Execution

Server offers the pooling of rule engines, but the parsing of the ruleset is done at the

first call if the ruleset is not in memory. So it is recommended to call for a first

execution during the initialization of the decision services. This can be done in the

constructor of the service using some basic data set. JRules 7.0 offers a new API to

enforce ruleset parsing at the creation of the session factory:

2JSR-237 specifies the Work Manager API, which hides the thread API, and leverage in an

application server, the contract of the container to manage the pool of thread, and the thread life

cycle. The Work Manager API defines Work as a unit of work, which we want to execute

asynchronously, which is the case for ruleset parsing.

492 15 Rule Testing with JRules

IlrSessionFactory sessionFactory = new IlrPOJOSessionFactory();

sessionFactory.createManagementSession().loadUptodateruleset (IlrPath.parsePath

("/ClaimProcessingRuleApp/ValidateClaimrules"));

As RES execution units leverage the JCA connection pool to pool rule engines, it

is possible when the last connection referencing a ruleset is released that the ruleset

itself is garbage collected. When a new call arrives on this ruleset, a new parsing

occurs. To avoid this problem, the connection factory supports setting timeout

parameters. The configuration is linked to the application server used. With Web-

Sphere Application Server, the settings of the connection pools include the param-

eter Unused timeout to specify the interval in seconds after which an unused or idle

connection is discarded, or the parameter Aged timeout to specify the interval in

seconds before a physical connection is discarded (setting it to zero makes the

active physical connection remaining in the pool indefinitely). Settings are config-

ured using the administration console of the application server.

There is another case of possible ruleset parsing, when the number of ruleset

deployed in one instance of RES is greater than the number of JCA connections

configured for the execution unit. The least frequently used rulesets may be released

and so need to be reparsed at the next call. The pool size can be set in the resource

adapter descriptor (ra.xml).

<config-property>
 <config-property-name>defaultConnectionManagerProperties</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>pool.maxSize=10</config-property-value>
</config-property>

The growing size of one ruleset may require changing these settings and even

changing the physical deployment of the rulesets. As a ruleset uses a lot of memory

(around 4k bytes per rule), it may be possible to reach some memory limit. In this

case, it is recommended to reallocate rulesets among different servers. When one

ruleset gets parsedmore than once, it might be because the cached ruleset was garbage

collected due to a max pool limitation, and the fact that this ruleset is rarely used.

When using hot deployment, it is possible to configure the execution unit to

parse the ruleset asynchronously, letting current client applications submit business

transaction while a new version of the ruleset is parsed. To set this capability, we

need to modify the following parameter in the ra.xml. (The default is set to false)

<config-property>
 <config-property-name>asynchronousRulesetParsing</config-property-name>
 <config-property-type>java.lang.Boolean</config-property-type>
 <config-property-value>true</config-property-value>
</config-property>

15.3 Performance Tuning 493

The creation of the rule engine is also expensive as it builds the various internal

structure needed by the RETE algorithm like the working memory, the agenda, the

alpha nodes, and the list of tuples coming out of RETE network join nodes . . . Rule
engine pooling avoids redoing this processing at each invocation. In RES, the

engine creation is performed at the first creation of the rule session.

To conclude this discussion, to avoid performance issue for some rule execution,

the architect has to take into account the management of the ruleset to avoid

unnecessary ruleset parsing, avoid blocking client requests when there is a new

ruleset being parsed, and prepare the ruleset before the first call. Using the RES

console, it is possible to find out how many free connections are in the pool, which

rulesets are parsed, the memory allocation . . . Using the Server Info tab, we need to
change the Log level to debug, and then go to the execution unit to view its dump.

15.3.2 Execution Algorithms

JRules has different algorithms for the rule execution. One is an enhanced version

of the RETE algorithm called the RetePlus, which is designed to optimize the

evaluation of a large number of rules across a large number of objects. Tests are

filtered by relevance such that irrelevant tests do not need to be evaluated. Tests can

be shared between rules that use similar tests so that they do not need to be

reevaluated for all the rules. As seen in Chap. 6, RETE is the algorithm of choice

when the rule action is updating the state of the object in working memory or is

inserting new facts in working memory. This is the case for alarm filtering and

correlation, and correlation of business events applications.

When there is no need for inference, we can use a stateless processing for the

pattern matching. JRules offers the sequential mode algorithm which compiles

rules at initialization and processes objects using the pattern matching on basic

rule condition. This algorithm is efficient when there are an important number of

rules using some static priority and few objects as parameters. There is no working

memory in this mode of execution. The operators exist, not, collect do not work in

sequential mode, as they work on objects in working memory.

The third execution mode, FastPath, combines the Rete and the sequential mode

to match objects against a large number of rules. It detects semantic relations

between rule tests during the pattern matching process. The difference with

RETE is that when a rule is evaluated for execution it is immediately executed,

and its action is not propagated back to the reevaluation of the possible rules. It fits

well in application processing rules in stateless mode with a very large number of

rules that individually perform simple discriminations or light join tests.

The settings of the algorithm are configured in the properties of a rule task, and

so apply to all rules in the task. Each task can have different algorithm (Fig. 15.21).

There are different dimensions to look atwhen selecting the algorithm.Compliance

and validation rules are looking at few objects and generate some yes/no evaluation or

compute a list of issues to process later on. FastPath or Sequential aremore adapted for

494 15 Rule Testing with JRules

such applications. Applications which maintain communication with the rule engine,

by inserting object reference to the working memory, require the use of RetePlus. The

same choice applies if the rules are inserting/updating/retracting objects in working

memory; this mode of processing is a better fit for RETE. The product documentation

presents a useful table to look at the dimensions and the algorithm capability.

Regardless of the algorithm used, the number of conditions and actions in the

ruleset may impact the rule execution performance. A large number of tests against

a large number of objects are far slower than fewer tests. When using the RETE, a

large number of conditions increase the size of the RETE network. Each node in the

RETE network maintains a bunch of lists. The network’s size means that any object

change (insert/update/retract) will provoke many evaluations and increase memory

consumption. It is often possible to avoid modifying the working memory in the

rule to improve performance.

JRules supports dynamic bytecode generation to speed up the evaluation of the

tests for rules in RetePlus execution mode. Rule tests can be translated directly into

Java bytecode and integrated into the application to improve performance of the

rules. Depending upon the rules, bytecode generation can improve processing

performance of the engine by a factor ranging from 4 to more than 10 by bypassing

Java introspection. The generated bytecode calls Java members directly in the rule

tests, and so the more complex the rules and the more objects there are in working

memory, the bigger the gain. Dynamic bytecode generation also reduces the

activity of the garbage collector at run time, thereby enhancing performance. To

use the JIT feature, the value of the rule engine property, ilog.rules.engine.useJIT,

must be set to true. With sequential algorithm, rule actions are compiled directly

into java bytecode, and so rules will execute will the same speed as native java

code. For this to work, the bcel.jar needs to be part of the classpath and JRules needs

to have the permission to create a class loader. Under certain environments like

Java EE containers, this permission may not be granted by default, and the rule

engine may throw a security exception.

Fig. 15.21 Setting algorithm on a rule task

15.3 Performance Tuning 495

15.3.3 Rule Execution Improvement

As stated in previous chapters, inserting object references into the engine working

memory has a processing cost. JRules offers the concept of ruleset parameters to

avoid inserting objects not needed in pattern matching. The language operators

from and in reduces the number of objects on which pattern matching is done. The

following rule uses a pattern matching against line item object in working memory:

If
 There is one line item where the status of this line item is not closed
<..>
then
…

The rule filters out the line itemnot closed and applies other conditions and actions on

them. One rule instance per match is added to the agenda. The second rule below uses

the ruleset parameters invoice and its collection of medicalBillLineItems. The pattern

matching is local to the rule. The rule fires for each line item not closed in this collection.

Definitions
Set lineItem to a line item in the medical bill details of the invoice where the status of this
line item is not closed.
If
…
then

To improve rule execution performance, it is possible to modify the conditions

of the rule to reduce the time to do the pattern matching. For example, we can order

the test by putting the most discriminant tests at first. One recent example on

processing wireless data usage illustrates this concept: there are three categories

of roaming: region, domestic, and international. The data usage record is tested on a

lot of attributes. The most discriminant is the roaming indicator. Putting test on it at

the front of the rule avoids doing unnecessary tests:

If
 The roaming indicator of the data usage record is International and the data usage is above 50 and
…
Performs better than

If
the data usage is above 50 and … and The roaming indicator of the data usage record is
International and …
But suppose that we need to add a test on the price plan name. As price plan name has a unique value, then a condition
on such data element is more discriminant, and a rule like,

If
The price plan is “iphone 3G 100MB” and the roaming indicator of the data usage record is
International and the data usage is above 50 and …
performs better than the two above.

Another possible improvement is to control the pattern matching used to

evaluate the conditions on object. JRules proposes the concept of finders.

496 15 Rule Testing with JRules

Finders allow speeding up the execution of rules by providing the engine with

specific java code, which performs more efficient pattern matching. Finders are

used when rules perform a lot of navigations within object relations, using

language keywords such as from, in, or collect. The following rule fires each

time there are an Account and a CashEvent in the working memory with the

same accountID. As we may have hundred of CashEvents for a given account,

we want to avoid putting all the cash events in the working memory and perform

some costly joins.

when {
 account : Account(balance > 0);
 creditcards: collect (new CashEventCollector())

CashEvent(type equals EventType.CREDITCARD;
 accountID equals account.ID;

 amount < 0)
 where (size()>0);

}then {
average = -creditcards.getAverageAmount(account.currency);

Finders are declared in a rule engine configuration file, which is processed by the

engine during its initialization.

 {
 "accurate abrd.model.finance.FinderFinancialEventImpl.findByAccountID(accountID)"
 };
};

node abrd.model.finance.CashEvent
{
 element useHashers = false;
 element useEquals = true;
 element useFinders = true;
 element finders =

The configuration above provides a list of Finders for the class CashEvent.

Any reference to a CashEvent such as CashEvent(accountID equals value) in a

rule condition will use the finder’s method specified in this declaration. In this

case, the method findByAccountID(accountID) returns a list of CashEvent where

the attribute accountID is equal to the value given as parameter. The list of

Finders is used to optimize the rules when the useFinders property is set

to true. As a list, the value of this property is an array of string. The collect
keyword is used in the condition part of a rule to create a collection of object

matching the condition in the where statement: The collection object CashE-

ventCollector stores instances of the class CashEvent that matches the condi-

tions: type is a creditcard and accountID is the same as the account id of the
account in working memory and the amount on the cash event is negative (debit).

15.3 Performance Tuning 497

The collection object is bound to a variable for the scope of the rule: cred-
itcards. The expression in parenthesis is optional, but if provided, must

return a collector object that implements three public methods: addEle-
ment, updateElement, and removeElement. The CashEvent-

Collector subclass the IlrDefaultCollector class and adds two methods used in

the action part of the rule to compute the average amount of all the CashEvent in

the collection and total amount. The collect statement may contain a list of

tests on the collection object in the where part of the statement. The finder

mechanism is derived from the relation mechanism. This feature allows naviga-

tion through the object model using the keywords from and in. Relations are

typically used for two reasons: to improve the expressiveness and readability of

rules by making them using relations that are naturally defined in the object

model, and to improve the performance of the rules by making the pattern

matching occur only on a reduced number of objects retrieved using special

lookup methods provided by the application.

The rule engine can be configured by setting properties in a file named engine.

conf and by giving the path to this file in the engine configuration tab of the ruleset

properties (Fig. 15.22).

Such configuration can be different per ruleset and is extracted as part of the

ruleset archive. The rule engine at its instantiation reads the content of the file to set

the engine’s internal algorithms.

Fig. 15.22 Engine configuration for a given ruleset

498 15 Rule Testing with JRules

15.4 Summary

Testing and performance tuning are important activities of a business rule applica-

tion. Testing gives the assurance of quality before deploying new business logic,

and with enhanced BRMS such capability can be used by business users. Web-

Sphere ILOG JRules offers a comprehensive suite of features to develop test

scenarios and execute them. Adding key performance indicators and the same

data set can be used to perform business simulation. Finally, rule execution

performance can be impacted by different variables, from the rule writing itself to

the algorithm used by the engine. The data model design is also in important

elements. JRules offers a lot of options to fine-tune the performance. All those

capabilities explain why this product is the leader on the market.

15.5 Further Reading

For more technical information and tutorials, the product documentation is acces-

sible at http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp.

JSR237 is about the Work Manager for Application Servers, where the specification

is accessible at http://jcp.org/en/jsr/detail?id¼237.

For the Just in time compiler reader can access en.wikipedia.org/wiki/Just-in-time_

compilation.

J2EE Connector Architecture portal provides all the information about JCA and is

accessible at http://java.sun.com/j2ee/connector/.

15.5 Further Reading 499

Part VII

Rule Governance

Chapter 16

Rule Governance

Target audience
l All

In this chapter you will learn
l What are the needs for a rule governance process and how to

develop it on top of a BRMS platform
l How to put in place a business rule management group
l What are the tasks, work products, and guidelines to efficiently

manage rule changes

Key points
l Define in the early phase of the projects how the rules will be

maintained
l Design a simple life cycle for rule artifacts and validate it with

the business rule writer
l Design a change process to support quick deployment of business

rules from elicitation to production

16.1 Introduction

In this chapter, we present one of the most important factors of a successful BRMS

deployment at the enterprise level: rule governance. We start, in Sect. 16.2, by

presenting the requirements around rule governance, as they have to be considered

differently because of the type of communication between business and IT, and the

frequency of ruleset changes. In Sect. 16.3, we highlight a simple method to set up

rule governance processes in an organization, present different rule life cycles, and

detail some of the activities to define rule governance within the organization as a

framework the IT team can use. In Sect. 16.4, we detail some of the potential

subprocesses as part of the rule change process definition.

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_16, # Springer-Verlag Berlin Heidelberg 2011

503

When a BRMS approach is introduced, the business rule management ownership

moves from the IT team to the business unit team. In this context, ownership means

“leading the change” since the control can still be shared between IT and business.

Project teams need to develop formal processes to support this transition. Those

processes are integrated in the rule governance process definition, itself integrated

into the IT governance. Business rules are exposed, separated, stated in formal terms,

and managed for change against formal governance processes that involve both

business and IT. The traditional software maintenance methodology does not apply

the same way for a BRMS approach. In the traditional approach, the IT Devel-

opment–IT QA pair represents the usual bottleneck in which all the business policy

updates and new business requirements have to go through. Sometimes the cycle for

implementing changes is so long that it cannot be completed in a timely manner.

For example, a marketing campaign defining new product bundles needs them to be

available on the market quickly to beat or react to competition. A BRMS helps to

reduce the bottleneck, but unregulated updates coming from different sources, with

different goals and different knowledge levels of the system can alter the integrity

and quality of each decision services controlled by the business rules.

The rule governance processes are keys to support the ABRD1 cycles and

especially the Enhancing phase. This chapter describes how to set up the rule

governance processes in an organization. The next chapter addresses how to

support rule governance within JRules.

16.2 Need for Governance

The main goal of rule governance is to ensure an efficient maintenance of all the

decision services deployed, through an optimal collaboration between business, IT,

and other stakeholders. It adds discipline to the communication and the change

management of the business policies. Even when controls are put in place, the

development methodology remains more agile than the traditional waterfall

approach. In Sect. 16.2.1, we present where rule governance should be attached

to within the organization, then continue by defining where to start from, in 16.2.2

and present, in 16.2.3, the main subprocesses defining the rule governance. Under-

standing such requirements help to drive the process definitions.

16.2.1 IT and Business Governance

Rule governance has to be defined in the context of IT governance, at the same level

of focus as the SOA or BPM governance, but with a strong involvement of the

1See Chap. 3 on Agile Business Rule Development.

504 16 Rule Governance

business to take ruleset ownership, initiate changes, and drive the changes. When

delivering an agile architecture, IT leverages four main approaches: service

oriented, central management of reference data and main business entities,

externalization of the business logic, and orchestration of work and services.

Each approach applies his own governance, and because IT is responsible of the

production systems and a change initiated by the business may impact multiple

components in the IT architecture, BPM and rule governances are allocated to

this organization. In the scope of rules, there are two classes of change: one

affecting a rulesets, one affecting the data model used by the rules. With a

BRMS, it is easy to have the business team be able to support the change from

the initiation to the deployment of the ruleset; on the other hand, the data model

change may have impact on the data source, service contract, data referential,

even process variables.

Deploying a service requires strict governance to avoid duplicating services or

having services not really reusable. Managing reference data has been following

strict data governance for a long time. Business process management improves the

execution of the processes, and to support continuous measurements and improve-

ments, needs to be controlled and governed. Finally business rule changes, which

occur the most frequently in this architecture, also has to follow strict governance to

avoid duplicating the business logic changes and to efficiently apply the business

rule programming model.

16.2.2 How to Start Developing Rule Governance

The flexible points of a business process or of business services are supported by

using the business rule approach; therefore, change management should focus on

business rules more than service and process governance. The governance pro-

cesses definition follows the same approach as other business process modeling

efforts. It can be developed iteratively, should help facilitate the communication

between the project’s actors, and should help orchestrate the rule change manage-

ment within a business rule management system. The idea is to start simple, involve

IT and business stakeholders in the process design, define key performance indi-

cators to measure the process efficiency, and monitor the process execution during

the ruleset maintenance phase. The process definition does not include a complex

set of activities, but we do expect between 10 and 15 major activities. Some steps

can simply consist of documentation, while others may be an executable process

supported by a workflow engine. After a first implementation, the project team can

fine-tune the processes and add controls and activities. The processes can be defined

in the scope of one application before being extended at the enterprise level. Once

development is completed, it is important to start working on developing the best

practices as they have to be incorporated in the governance.

16.2 Need for Governance 505

16.2.3 What Are the Main Processes in Rule Governance?

Rule governance processes support the following subprocesses:

l Rule change process
l Rule authoring
l Rule testing
l Rule deployment
l Rule execution monitoring

Understanding the term governance is important here, as we want to clearly state

how changes to the decision logic are supported, what the goals are, the actors,

inputs and outputs, resources that the processes use, and demonstrate how the

process is applied, and how they evolve over time to support new business con-

straints.

16.3 Defining Rule Governance

In this section, we detail some of the activities the team needs to follow to

implement rule governance processes. We propose these activities as a framework

that an organization can use to set up governance.

Organizations may not have a formal process to manage the business policies and

executable business rules, or maybe they use simple steps in the standard software

development methodology, which are not representative of a complete governance

process. To develop the rule governance processes, we propose to follow the acti-

vities in Fig. 16.1.

In this section, we discuss how to create a rule management group, how to

identify stakeholders, assigning ruleset ownership, and finally, defining the rule life

cycle.

Create the
Business

Rule
Management

Group

Identify
Process

Stakeholders

Assign Roles
Responsibilities
For Each Ruleset

Document
Governance
Processes

Define
Rule Life

Cycle

Governance
Processes

Map

Org Chart

Build &
Deploy

Processes

Monitor
Processes

Define
Ruleset Life

Cycle

Rule Life
Cycle

RuleSet
Life Cycle

Executable
Processes

BAM -KPI

B
R

 T
ea

m

Fig. 16.1 Activities to develop rule governance processes

506 16 Rule Governance

16.3.1 Create the Business Rules Management Group

We recommend first creating a team responsible for the definition of the gover-

nance processes. The mission of this group can be stated as follows: “Support the

specification, organization, authoring and quality of the business rules to benefit

the organization’s business goals”. To achieve this mission, the group needs to

include people playing different roles, such as rule analyst, rule architect, rule

author, rule tester, and rule administrator. If the company uses a business process

management approach to develop its business applications, it may make sense to

have the rule management team be part of a BPM center of excellence (CoE), if one

exists. Business process and business rules have very different life cycles, so

merging authority must be controlled. We have observed that business rule gover-

nance has to be enforced earlier than business process governance. A ruleset

changes more often than the business process that call it; therefore, it makes

more sense to start defining the rule governance processes earlier. Also, business

process governance focuses on monitoring the process and finding some small

improvements over time. Process updates may occur every 6 months up to once a

year. Business rule changes can happen every day, driven by multiple factors, like

competition, regulations, marketing, etc. These different impacts on the business

may be better supported by having two separate governance groups: one for BPM,

one for BRM.

The BRM group facilitates collaboration between the business groups who own

the business processes and business policies and the IT team responsible for the

operational decision logic and processes. Defining such a group requires looking at

the organizational structure of the company. Dimensions such as number of busi-

ness units, types, and frequencies of changes that are applied to the application, and

the number of decision services may impact the structure and the size of the team

and also the scope of the governance processes. The greater the number of business

units involved, the stronger the need for a mediation entity.

16.3.1.1 Complexity of Changes

Changes can range from simple, like a change to a variable or a threshold, adding

new conditions or actions, to more complex logic changes such as adding a new

product definition or adding new rule flow within an existing decision service.

Changes to the domain data model or adding new decision services are most likely

considered complex as they involve a complete development cycle with more

activities. The more complex the changes, the greater the need for a knowledgeable

group to manage the change. The more frequent the rules changes, the stronger the

need for a centralized entity that can schedule, coordinate, and prioritize the

changes.

16.3 Defining Rule Governance 507

16.3.1.2 Roles

The roles found in this rule management team are:

l Rule steward. Develops and maintains a comprehensive management plan for

the group activities and drives the definition of the rule governance processes.

He leads the change management review board.
l Rule architect. Ensures that the overall rule management organization makes

sense from an application segmentation perspective. He defines the data model

for rules and the decision service definition.
l Rule analyst. Assists the business to define and manage the rules they own.

Improves the quality of the rules by using best practices.
l Rule author or writer. Ensures rules are executable and with quality.
l Rule tester. Validates the quality of the rule implementation, as specified in the

change request, and according to other quality standards established in the

company.
l Rule administrator. Controls the deployment of the ruleset into the different

executables servers and environments. He controls the versioning policy.

A more complete description of these roles, responsibilities, and competencies

can be found in the Eclipse Process Framework – Agile Business Rule Develop-

ment practice plug-in. It is important to consider that this group can grow from

existing resources and different roles can be performed by the same person. The

team can take on more responsibilities as the architecture grows to include more

decision services, and more applications use these services.

16.3.2 Identify Stakeholders

When identifying stakeholders, start by documenting the current organization

model with all the departments-groups exposed to the BRMS operations, such as

rule definition, ownership, authoring, validation, execution, and monitoring. The

groups can be internal to the company or external as partners, channels, or sub-

sidiaries.2

In the past, we were exposed to projects where business rule engines are in the

cashier machines deployed in each distribution shop of the company. The rules

define marketing campaign and deliver local coupons to customers. The rules are

defined at the corporate level but also at the local shop manager level. In this

2You can read as a complement the extensive work done on stakeholder analysis by Eric

Charpentier and reported in his blog at http://www.primatek.ca/blog/2009/11/01/business-rules-

governance-and-management-part-iv-stakeholders/ and the associated white paper which can be

found at http://www.primatek.ca/blog/white-papers/.

508 16 Rule Governance

scenario, strict controls of the rule authoring, ruleset quality are important dimen-

sions to consider.

Obviously, the scope of governance processes and the organization model may

not be so radical, but in a global economy it is common to work with remote teams.

It is important to understand the relationship between the groups and how the

information flows operate. A special focus on the decision process and escalation

procedure is needed. Who owns, sponsors, and arbitrates the changes in the system.

Once the organization description is completed, we can focus on adapting the

organization model to support new role definitions and responsibilities with the

goal to support the rule change process. Table 16.1 illustrates some possible groups

that are usually impacted by the rule governance processes.

If the business rules management group does not exist as a separate entity, its

members are usually associated with the IT department as they have the software

development skills, which are important to manage rule change process. Some

organizations have a change control board mechanism in place where change

requests are reviewed and decisions are made to authorize, postpone, or reject the

implementation of the changes.

To represent the organization map, we can use different models from organiza-

tion charts to team–location–role diagrams. But as agile practitioners, simple

diagrams are usually enough, and using a top-down view may be a good approach,

including swim lanes and high-level communication flows. Figure 16.3 illustrates

Table 16.1 Rule governance group – role – process involvement

Group Role Process involvement

Business unit –

line of

business

Owner of the rules Originates the change requests and reviews

the progress along the rule development

lifecycle

Interested in rule execution

metrics

Defines KPIs for process monitoring

Business rule

management

Responsible for the ruleset

maintenance and supports

new rule initiatives

Performs the rule updates

May also perform changes to the underlying

object models

IT development Responsible for the application

development and

maintenance

Performs major modifications to the

application code, integration with rule

engine, with data sources and developing

the different data models

IT QA Responsible for validating the

application and ruleset.

Verify that the functional

and performance quality are

conserved

Creates and updates test cases to adjust test

coverage

Executes nonregression and performance

tests

IT production

management

Responsible for managing the

production platform

Manages the deployment process after

receiving the request to deploy a ruleset

Monitors the execution of the rules, and may

perform some analysis to understand

which rules were executed for a given

business event

16.3 Defining Rule Governance 509

the role mapped by swim lanes, and activities exchanging information between the

lanes.3

As an example, our fictive insurance provider company has headquarters in

California and branch offices in each state where the company insures persons

and properties. We simplify the organization of an insurance company by high-

lighting the principal roles/stakeholders we need to support in the rule governance

processes. The left side is the business hierarchy with functional and geography

hierarchy. It could be a matrix organization with dotted line reporting (Fig. 16.2).

On the right side is the IT team with development, QA, and production platform

management teams. As we can see, there is no official role for supporting a business

rules approach. The current support is split between multiple IT responsibilities,

making changes to a business rule quite long.

We propose that the business rules management group should report to the CIO

and show, in Table 16.2, a set of roles played by the team members.

VP – Insurance Business

Claim Processing
Director

SME Claim
Processor

SME Claim Fraud

SME Adjuster

CIO

Development
Director

QA
Director

Production
Management

Director

Architect

Developer

Tester

Platform manager

State Operation
Director

Claim processor

Fig. 16.2 Simple organization chart

3For more information about swim lanes, communication flow, see the BPMN specification at

http://www.bpmn.org.

510 16 Rule Governance

Figure 16.3 illustrates how this rule management group sits between business

and IT teams to support the business policy implementation. The line of business

defines business requirements for applications deployed in the IT architecture.

IT implements those requirements in different applications. On the right side, the

traditional issue management with business and IT addressing together the issues

with a dedicated process and escalation procedures. As the business rules change

IT

+

Define
New Business

Policies

+

Monitor
Process

(Dashboard)

+

Support
Escalation

+

Support
New Policies

Implementation

+

Define
Business

Requirements for
IT Applications

+

Implement
IT Application

+

Manage-Monitor
IT

Platform
+

Manage
Resolve
Issues

+

Manage
Resolve

BR Issues
Issue Report

R
ul

e
M

an
ag

em
en

t G
ro

up
Li

ne
 O

f B
us

in
es

s

Fig. 16.3 Middle man group

Table 16.2 Team member roles and attributes

Role Description Attributes

Rule steward Manage the rule management group Years of experience in

management

Years of experience in BRMS

Rule analyst Perform the analysis of rules and business

terms used, and evaluate the

implementation complexity and effort

Years of experience in BRMS

Rule writer Author the rule Years of experience in BRMS

Can be the rule analyst

Rule tester Test the rule Years of experience in QA and

test

Rule administrator Deploy the rules and monitor rule execution Years of experience in BRMS

Business policies

owner

Business knowledge of the business policies

to implement

Business knowledge,

contributor to business

execution and metrics

Change board

manager

Team of business and IT managers

responsible to support the escalation

procedure for change requests involving

deep changes in the application or its

architecture

Escalation process, and

project management

competencies

16.3 Defining Rule Governance 511

cycle is different than traditional implementation, it is important to put in place this

rule management group as a mediator for quick turnaround time and implementa-

tion. Finally in modern architecture, the business uses a business activity monitor-

ing dashboard to assess the performance of the executable business processes

supported by a set of applications or services within the IT architecture.

The arrows represent the communication channels. The BRM group focuses on

efficiently supporting business policy implementation and associated changes. As

technical and analysis competencies are needed, it makes sense for this group to

report to IT.

16.3.3 Ruleset Owning Groups

In a BRMS approach, a ruleset is owned by a business unit or business department.

Giving clear ownership to business is a major dimension to make rule governance

work. Ownership requires allocating decision authority to the experts of the

domain, which helps get the implementation right the first time without losing

any information between the different translation layers used in a traditional

approach. It also helps reduce the time to implement the changes in the decision

logic, as the business user can make the change. The association between rulesets

and owning groups may be listed in a table format so that:

l A ruleset map can be defined, to present a cartography of the difference decision

services.
l Corresponding groups can be defined in the permission control mechanism

within the IT servers, to manage the access permissions on the ruleset content.

In contrast to the actor and organization chart defined in the previous section,

this table explicitly lists the individual owner names as the official go-to person to

contact in relation with the associated ruleset. Table 16.3 represents the ruleset map

for the claim processing application and is built from the decision point table

developed during the earlier activities of the project. For rulesets with a large

number of rules, the table may need to include an additional level of granularity

lower than the decision points, in which case, you can use a hierarchy of rule

packages, and define the mapping at the rule package level.

Table 16.3 Ruleset – role map

Ruleset Responsible group Owner Rule

analyst

Rule

author

Rule

reviewer

validateClaim Claim processor John A John A Mike Antony B

validateMedicalInvoice Claim processor John A Mark Mike Antony B

verifyCoverage Policy team Julie B Julie B Mike Carol A

adjudicateClaim Adjudication team Mathew B Mathew B Bill Carol A

claimFraudAssessment Fraud team Joe C Mark Mark Carol A

512 16 Rule Governance

16.3.4 Rule Life Cycle

The definition of the rule life cycle can range from extremely simple (such as the

one presented on Fig. 16.4) to very intricate. The trade-off is between control and

overhead, i.e., having a rich set of statuses to precisely track the rule during its life

cycle leads to a possibly heavy and time-consuming process to move a rule from

creation to deployment. Note that a complex rule life cycle implies a reasonable

commitment to accurately maintain the rule statuses, and not all projects (or all

teams within a project) have the bandwidth and/or the discipline to follow the

maintenance process. If half of the project maintains the rule life cycle properly and

the other half of the teams ignores it, the benefit is lost for all, and frictions will

eventually surface in the team. The questions of whether the project and its

members are committed to maintaining the rule life cycle, understanding its con-

straints, and viewing each of its details as valuable to the project, have to be asked

candidly and answered honestly. This may lead to the adoption of different life

cycles for different rulesets.

The main needs that drive the design of a rule life cycle are linked to quality

control and traceability of the actions performed on the rules. The development

team wants to understand the status of the rules and who the owners of the current

and next actions are. Rules have to be tested and validated, after which they can be

deployed to production. These are the minimum steps of this life cycle. It is also

possible to manage the target environments where the rules can go. Quite often we

use a staged environment with at least development, preproduction, and production

platforms. In a BRMS, the rule life cycle is controlled by adding meta-property to

rule elements. A common implementation is to use a status property and a finite

state machine implementation using, for example, java code integrated into the

BRMS. When change to the status drives events and activities that need to be

processed by human, the use of a workflow solution may be added to the imple-

mentation. The status change triggers the execution of mini processes with human

tasks, used for example to control the update to the rules is done according to

quality standards.

The simple life cycle illustrated in Fig. 16.4 can be implemented with the

following set of statuses:

l New. The rule is created and can be modified by its owner.
l Defined. The rule has been defined and is currently in test.
l Deployable. The rule can be part of a ruleset deployable and deployed in

production platform.

New Defined Deployable

Fig. 16.4 Simple rule life cycle

16.3 Defining Rule Governance 513

The two main actors of this cycle are the rule writer and the rule tester. The rule

writer promotes the rule from new to defined once finished with his edits. The rule

tester promotes the rule to deployable status to authorize deployment to production.

The rule tester can be a human or an automatic step in case of automatic nonregres-

sion validation. A more complete life cycle adds more control over the test state.

l Rejected. The rule has been tested unsuccessfully.
l Validated. The rule has been tested successfully.

The state diagram in Fig. 16.5 uses the following roles to control the state

changes:

l Rule Author/Writer. End user of the BRMS application
l Rule Admin. Administrator of the ruleset
l Rule Tester. A human or an automatic process to test the rule quality

We may need to note that when a rule is created, the status is New. It can be

reverted back to the New status by the rule writer for further update after it has been

either Validated, Rejected, or deemed Deployable. To avoid complex transitions

and a new state, a rule can be set Active or Inactive at any state. The implementation

is done by adding an inactive property as part of the meta-model attached to the rule.

Retiring a rule that was Deployablemeans the rule admin needs to set it as inactive.

Once Deployable if the rule writer needs to change the rule, he can create a new

version and change its status to New. The rule has to re-enter a full life cycle. For

auditability reasons, a rule once promoted to Deployable is never deleted. It is

retired or set as Inactive.
This life cycle can be used as a starting point for most of rule management

requirements but can be adapted to fit other use cases. Within a given rule project

not all rules are in the same status; therefore, there is a need to extract and build the

ruleset with only relevant rules. For example: no rule in New state or all rules have

to be in Deployable.
There is one issue to consider with any rule life cycle: the ruleset integrity.

Suppose a user wants to change aDeployable rule without creating (copy and paste)
a new rule by changing its status back to New. Any new extraction of the ruleset to

production, taking into account some predefined extraction configuration, will not

take any rules in New or Defined rules; therefore, the previously Deployable rule

New Defined Deployable

Rejected

Validated

Rule
Writer

Rule
Writer

Rule Tester

Rule TesterRule
Writer

Rule Admin

Rule Admin

Fig. 16.5 Classical life cycle

514 16 Rule Governance

will not be part of the production ruleset any more, exposing the ruleset integrity.

One option is to use a clever ruleset builder tool which looks up the last version of a

rule that was in production and adds it to the ruleset. Another way is to have this

tool forbidding deploying the ruleset in case there is a rule meeting the “back to

new” state. This can also be enforced by the change process: the process can forbid

extracting a new ruleset until the rule comes back to Deployable status.

16.4 Rule Change Process

The maintenance and modification of a rule-based system, like any other software

application, should be controlled through a change management process. What

makes a rule-based system unique is that the business owners of the application not

only initiate the change process (in this case by identifying the need for a business

policy change), but may also implement many of the changes themselves by

directly updating the rules. Combining the rule life cycle and a change management

process, we can finely control the rule-based application. It is important that rule

governance be established, practiced, and refined during the early phases and

iterations of the project so that it will be ready and refined enough for production.

The entry point of the process is a change to a business policy or an update of

current rules (Fig. 16.6).

The initiator can be the IT group (fixing an issue) or the line of business (change

requested on an existing rule or to add new policy). We can clearly imagine the

business user entering the description of the change in a web-based interface. It can

be a simple entry form screen to enter the change description with other attributes

such as the rule project name, rule reference in the rule repository, the target date to

deploy in production, the business motivation, etc. The system stores the change

request (CR) in a database, makes some data validation, and then notifies the

reviewers. Any data issue is reported immediately to the user. As part of the rule

management group, the rule analyst can scope the change and perform some impact

analysis. There are mostly three types of outcomes from the first scope review:

(1) the change is simple: proceed, (2) the change is not feasible: reject and assess

with the team how to make it more simple, and (3) the change is possible, but is

costly or may impact a lot of components. A deeper review has to be performed by a

change management committee. The committee can accept or reject the change.

An accepted change request goes to the rule authoring, rule testing, and deploy-

ment subprocesses. The change request can be seen as a business object with state

which can take one of the following values: Submitted, Rejected, Under-estimation,
Under-implementation, Under-test, Completed, and Cancelled. During the process,
the completion of all major activities is recorded to the change request. The change

management board reviews the change request and the implementation to ensure

good traceability and quality control. Part of the review is the verification that all

rules and code are included in a version control repository. When the result of the

review does not meet the quality standards, the development team and the rule

16.4 Rule Change Process 515

management group may have to iterate over the changes. When everything is

cleared, they promote the changes from the development system to the test system.

This involves moving not only any modified code and possibly database table

changes, but also deploying the modified rulesets to the test application server.

The responsibility of the QA testing group is to ensure that the modifications

made to the rules and any associated code perform as expected and do not

negatively impact the rest of the system. To this end, the QA tester verifies the

test scenarios newly created by the business user and adds them to the set of

nonregression tests. At the tester’s discretion, unit tests, ruleset tests, and system

integration tests may be added to ensure that the changes work together with the

entire system. All tests that are added or modified by the QA testing group should be

added to the suite of regression tests. Once all tests have been updated, the suites of

tests are run and the results analyzed. If there is a problem with the changed rules or

code, the tester works with the business user or developer to fix the issue.

Once the QA group has ensured that the rule and code changes satisfy the change

request and do not negatively impact the rest of the system, the change request is

updated and forwarded to the reviewer group. They will take the final decision to

promote the ruleset and other related changes to production. The deployment to

production process can be executed. This step is performed by the IT administrator

group, responsible of the management of the production platform. This last group

can even be part of another company, an outsourcing capability, which adds

complexity to the deployment steps. As a side note, deploying BRMS within

Initiate
Change
Request

Persist
CR

+

Execute
Rule Testing

+

Conduct
Change Board

Review

Complex

Change
Request

Scope Rate

Simple

Validate
CR

Notify
Reviewer

Evaluate
Scope / Impact

+

Execute
Rule

Authoring

Reject

Document
Decision

Approved
?

Reject

Approved

+

Execute
Rule Deployment

P
ol

ic
y

O
w

ne
r

S
ys

te
m

R
ul

e
A

na
ly

st
R

ul
e

S
te

w
ar

d
R

ul
e

W
rit

er
R

ul
e

T
es

te
r

R
ul

e
A

dm
in

Fig. 16.6 Rule change process

516 16 Rule Governance

a company that uses business process or operation outsourcing can represent a real

challenge and may break the value proposition of the BRMS: quick, agile change to

the business logic. First the BRMS may not be accepted by the outsourcing

provider, as it adds flexibility, where both the IT architecture and the provider’s

business model are driven by rigid change process. Second, even if the line of

business team enforces the use of BPM and BRMS products to add agility to their

own business, the outsourcing provider may take a lot of time and procedure to

deploy the change in production; countering the productivity of such products.

Governance processes should help to overcome this antinomy.

16.4.1 Scope of Change

At the ruleset level, we can anticipate three types of potential changes to a ruleset:

l Change to the rule
l Change to the data model used by the rules
l Change to the ruleset structure like the sequencing of rule flow, or the rule

selection, or the ruleset parameters

A rule change includes adding rules, updating existing rules, but also, with a

more dramatic impact, deleting rules. Deleting a rule that was previously in

production has to be analyzed in depth. Usually, the rule will be retired, not deleted.

The ruleset analysis evaluates if a rule replaces the deleted one, or if the conditions

are evaluated in the context of another rule, or if the actions are generated by

another rule. All those considerations can make the deletion possible or not.

The second type of change is to change the sequencing of the rules, for example,

by refactoring the rule flow. This is a deeper change that needs to be evaluated with

care, as some rules in a given rule task may leverage the facts that other decisions

created in previous tasks of the rule flow. (For example, assigning default value, or

testing the presence of fields.) Changing the order of a task can have major impacts.

A rule flow structure has to be as static as possible to avoid complex rulesets that

will be difficult to maintain. A decision service is used by multiple clients. The

contract of the service has to describe the parameters structure, documented in a

WSDL, but also the semantic description of the type of decision the service is

making. Deleting a rule, rule task, or changing the sequencing of the rule flow may

impact this contract. Clients could be impacted. Quite often, architects design a

ruleset to manage the different types of contexts of execution by using different

branches of the rule flow. Adding a different type of client may lead to add a new

branch. From an SOA point of view, some practitioners use rule engines to support

the variability of the service. While it is true that the capability to easily change the

implementation of the logic is more easily done with business rules, it is always a

good practice to ask why we have to do that. When the rule flow diagram starts to

look like a bowl of spaghetti, it may be a good time to consider refactoring and

splitting the services into multiple pieces.

16.4 Rule Change Process 517

Another type of change consists in adding a ruleset parameter or changing the

type of one parameter. As the ruleset should not be exposed “as is” with a WSDL

but hidden behind a business service, this change may not have a major impact in

terms of SOA governance: the service contract stays the same, only the ruleset

signature changes. A change to the signature of the ruleset will have an impact on

the rules: the modified parameter may be directly accessed in the rule conditions.

This could lead to a change in a lot of rules. Adding new parameter is less of an

impact to the ruleset, as to infer decisions on the parameter, the rule writer has to

write new rules, not update existing ones.

Finally, the last type of change is linked to the data model used by the rules. As

mentioned before, the executable model (XSD or Java model) is maintained by the

development group. Adding classes or attributes has an impact on the object, on the

object-relational mapping, on the data source, and on the service contract. We do

not want to detail the different patterns of how to change a data model without

impacting an application, there are a many books on this subject, describing how to

apply refactoring techniques to the data model. The data layer used by the rules is

not more stable than a database or XML schema. It is common to add a new

attribute to a class, so a rule author can write condition on this new business

term. Also in a powerful BRMS, it is possible to add business concepts that are

not mapped to any data element. They are used for computation or to infer new

facts. A typical dynamic implementation is to add a new variable–value pair in a

hash map, and then use a getter to access the value in a rule condition. In any case, a

developer has to be assigned to make the change prior to the rule writer modifying

the rules. The rule author, developer, and database administrator make the neces-

sary updates to the development system to implement the change, unit test it, and

report on the test results. Changes to the data model are usually made in the context

of a release. It is the responsibility of the rule author to create and modify unit test

cases to test the rule changes. These test cases can eventually be added to the

regression tests maintained by the QA testing group.

16.4.2 Rule Authoring Subprocess

The rule writer is performing the following activities in loop: develops unit tests to

assess the rule outcome, executes the tests to verify they failed, authors the rule, and

executes the tests, until all tests succeed. As we are in maintenance mode, it makes

sense to enforce a systematic review with the business users to ensure that the new

rules accurately reflect the business intent. It may be needed to iterate on the

authoring and testing of the rule until the business users are confident.

The unit tests should report if the rules with a Defined status were fired or not.

Only rules that were fired with the expected result should be promoted to Validated.
The ones which have not been fired should be kept in theDefined status or moved to

the Rejected status. This approach works well when the rule testing coverage is

good. Assessing the test suite against the list of rule fired helps to increase the

518 16 Rule Governance

coverage. All the rules part of the ruleset to be extracted should have a status of

Defined, Validated, or Deployable. Once the rules are validated by tests and

reviewed successfully, the status can change to Validated.

16.4.3 Rule Testing Subprocess

The steps of this process are simple. Once a ruleset is ready for test, the following

subprocess can be executed by the QA group (Fig. 16.7).

The process includes two tasks for maintaining the rule life cycle. It is important

for the QA team to take into consideration the change request description and

business intent, so that testers can add functional test cases to the test suites. The

ruleset has to pass successfully the previous nonregression test suites and the new

functional tests added in scope of this change request. If one test fails, the rule tester

needs to reject the rules that are part of the change request, and the rule author has to

be notified to quickly update the problem rules.

16.4.4 Rule Deployment Subprocess

The purpose of this process is to control how a ruleset is deployed to the different

servers. As described in the ruleset life cycle section above, it is common to use at

least three platforms in the context of this subprocess: development, test, and

production. The actors are the testers, the platform administrator, and the business

analyst – rule writer. As mentioned before, the business user is not directly

deploying rulesets to the production platform, only the person with rule adminis-

trator role does it. The rule deployment subprocess is seen differently depending on

the actor executing it. Developers, testers, business users, and administrators do not

use the same steps and tools to deploy their rules. From the rule governance point of

view, we want to address the traceability and auditability requirements of the

deployment phase only for the production platform. Testing and development can

+

Execute
Regression

Test
+

Add
Functional
TestCases

Execute
Functional

Tests

Document
Results

Promote
Rules -

Validated
Test Passed

Notify
Reviewers

Test
Report

RuleSet Change
Request

All Tests
Successful

?

Reject
Rules -

Rejected

Test Suite

Test Failed

Change
Request

Q
A

 T
ea

m

Fig. 16.7 Rule testing process

16.4 Rule Change Process 519

be less restrictive. Developers and testers usually use a more ad-hoc process mostly

based on their own way of managing the code integrity on their platform. The entry

point is a notification received from the test group that the ruleset is ready for

deployment. The rule administrator starts by promoting the rules to the Deployable
status, then the ruleset is tagged, and versioned. Tagging and versioning is linked to

the BRMS product or can be supported within a configuration management and

version control tool. The other activities of the process are simple: deploy the

ruleset, verify that the deployment was successful, and then notify the process

stakeholders (Fig. 16.8).

The activity of verifying the deployment may include some dry test of the newly

deployed ruleset. The last step is to notify through email or event to warn the

business users and reviewers that the new ruleset is in production.

16.5 Summary

Rule governance is a major activity that can determine the success of a BRMS

deployment within the business and IT groups. From our experience, the companies

that were successful in having business users maintain the business logic of the

application embraced a rule governance approach during the first or second projects

using the BRMS platform. The first project proves the value proposition of a

BRMS, educates the development team to implement using business rule logic,

and confirms the capabilities of simple change management. By the second project

or decision point implementation, the team has to leverage a common methodology

and best practices found during the first project. This is the beginning of a center of

excellence responsible of designing the rule governance processes. As the number

of applications using business rules grows, the processes are applied systematically.

The rule governance processes, the rule management group, the change board review,

can be supported by a dedicated group or a community of practices. We have

+

Promote
Rules

Deployable
+

Tag rules
with version

Deploy
Rule set

Verify
Deployment

Notify
Reviewers

RuleSet

Change
Request

Change
Request

Rule
Repository

R
ul

e
ad

m
in

Fig. 16.8 Rule deployment process

520 16 Rule Governance

observed that during the first 2 years of adopting a BRMS, the rule management

group is a more efficient organizational model to support the management of the

different rulesets. The processes highlighted in this chapter are simple and efficient

for most stakeholders and can be supported by a simple web application, with little

customization of the BRMS platform. The next chapter describes how to support

such rule governance processes within JRules.

16.6 Further Reading

ABRD, as a practice library, is accessible at http://www.eclipse.org/epf/downloads/

praclib/praclib_downloads.php and as published version at http://epf.eclipse.org/

wikis/epfpractices/ going under practices > Additional practices > Agile Business

Rule Development

Business process modeling practice is covered within the BPMN specification

accessible at http://www.bpmn.org

IT governance is extensively presented at http://en.wikipedia.org/wiki/Corporate_

governance_of_information_technology

Reader can access a deep analysis on business rule governance, done by Eric

Charpentier, an independent consultant on business rule management technology,

on his blog http://www.primatek.ca/blog/2009/11/01/

16.6 Further Reading 521

Chapter 17

Rule Governance with JRules

Target audience
l Developer, software architect

After reading this chapter, you will be able to
l Understand the product features relevant to the rule governance
l Define your own change management process using BPM prod-

uct and Rule Team Server

Key points
l Rule Team Server is the platform of choice to support rule

governance.
l RTS security control and behavior may be easily adapted using

configuration and open API.
l Link the rule life cycle process to a change request management

for a fine-grained control.
l With rule governance the business user initiates the rule change

but may also perform the rule authoring and the ruleset deployment.

17.1 Introduction

In this chapter, we describe how to apply the concepts presented in Chap. 16 using

JRules components. In Sect. 17.2, we start by presenting how Rule Team Server is

the component of choice to support rule governance. RTS features like the status

rule property, the baseline concept, and open API to control the rule life cycle are

designed to support flexible rule change management process. In Sect. 17.3, we

detail how this process can be supported within RTS, using a business process

approach. The choice of using Rule Team Server to support rule governance is

natural, as it has all the capabilities to control rule versioning, ruleset packaging,

and ruleset deployment with control. As of version 7.1, there is still some customi-

zation to add, for a company to support an end-to-end rule change management

process, from change request to ruleset deployment, integrating a fine-grained rule

life cycle. We explain the needs and how to support such customization.

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_17, # Springer-Verlag Berlin Heidelberg 2011

523

17.2 JRules and Rule Governance

The concept of operations introduced with Rule Studio and Rule Team Server

suggests a clear separation of roles and development environments to author rules:

Developers use Rule Studio to create the rule project foundation and all the related

elements, such as rule flows, ruleset parameters, meta-properties, BOM definition,

and rule templates, and to prototype rules. The business analysts use Rule Team

Server to author the rules once the project structure and the BOM are stable. The

developer uses Rule Studio to perform the following activities:

l Create the rule projects
l Define the BOM, the vocabulary, and the B2X mapping
l Define ruleset parameters
l Create the main rule flow and subflows
l Implement and test technical and business rules
l Test rule execution using unit test projects
l Define the rule model extension to support some functional requirements and the

rule life cycle
l Build rule templates from some rules
l Synchronize with Rule Team Server

He then completes the work by defining in rule team server the different user

roles, the ruleset ownership and access control, and the rule life cycle control. Some

of this work is done by doing product configuration; some need code implementa-

tion and integration. It is easy to extend capability within RTS and redeploy a new

version. Rule governance is a new field and needs an agreed-upon best practices

before becoming product feature, and in most cases, it is linked to the company’s

way to manage change in its IT: each has his own view of controlling rule change

management. The first configuration is about defining roles, we detailed that in next

section. In Sect. 17.2.2, we will review the rule life cycle, and how to enforce a

strict control linked to the user’s role. Section 17.2.3 presents how RTS supports

the ruleset life cycle with the concept of baseline and presents some versioning

strategy rule governance team can apply. Finally in Sect. 17.2.4, we present the

parallel development of next application release when ruleset in production are in

maintenance.

17.2.1 Defining Roles in Rule Team Server

Any user of Rule Team Server must belong to at least one of the groups:

rtsAdministrator, rtsConfigManager, or rtsUser.1 A rule author will be part of

1There is the rtsInstaller role, but we do not need to detail it in this book, the product documenta-

tion provides explanation on it.

524 17 Rule Governance with JRules

rtsUser. User roles are defined in the application server configuration file or user

registry. From this first setting, the set of feature a given user can access are

different. All the rule authors are rtsUser, and one could be administrator to have

full control on the rule repository. The configuration manager user can access

any configuration features like, for example, the ruleApp management, RES

server and ruleset extractor definition, the rule solution for office location

definition
As a standard practice, we add to those groups at least one group per line of

business, responsible of one or more rulesets. For example, for the claim processing

application, each group of users responsible of a ruleset (like adjudicator, processor,

and fraud) is mapped to a permission role like processor, adjudication, and fraud.

We can fine-grain access control by specifying dedicated groups for pure “read

only” users, using a suffix like “-ro” (e.g., validation-ro). So a given user like

“Mike” (see file example below) is a rtsUser but also a member of the

processor groups and has write access to rule repository elements. A person can

be part of multiple groups, which may be the rule steward from the rule manage-

ment group (e.g., see Carol profile below).

Using Apache Tomcat 6.0,2 groups and users are defined in tomcat-user.xml file,

and we may set the following role definitions:

<role rolename="adjudication "/>

<role rolename="adjudication-ro"/>

<role rolename="fraud"/>

…

<user username="bill" roles="rtsUser, adjudication, writer"/>

<user username="mike" roles="rtsUser, processor, writer"/>

<user username="carol" roles="rtsUser, validation, fraud,adjudica-
tion, tester"/>

When the groups are defined in the application server, a RTS administrator

must first add those groups as reference in the rule repository,3 and then enforce

using security for the different rule projects of the rule repository. This operation

is done using the “Edit Project Security” feature. When the security is set on the

rule project, a RTS user may see in the home page only the projects he can

access.

2Each application server has its own way to support security definition. JRules Rule Execution

Server and Team Server are packaged for different application servers. A specific document

explains how to install the components to the different app server.
3Use the step “Setup Group” in the installation manager (Configure > installation manager).

17.2 JRules and Rule Governance 525

17.2.2 Rule Life Cycle

In Rule Studio, the rules do not need to follow a strict lifecycle or if needed only the

simplest one using two first steps likeNew andDefined. The governance really
starts to apply formaintenance of the ruleset in production. It may be sooner when the

project wants to add rule governance in scope of the user acceptance test, which is

making sense to ensure a more complete quality assurance. Using such a life cycle,

we would recommend publishing the rules to RTS only if rules are Defined.
From there, the business analysts may take the lead on the ruleset development and

may use a more complex rule life cycle. In this chapter, we use the more “classical”

rule life cycle presented in previous chapter.

As seen in Chap. 8, the meta properties are defined in Rule Studio and

uploaded to Rule Team Server using the installation manager. The status property
is used to control the rule like cycle. The RTS user interface does not enforce

control to the modifications of the status property: any role with write access to

the rule project may change the value of this property. To enforce fine-grained

control, RTS offers the integration of custom session controller to redefine the

interactive behavior of RTS. The API interface ilog.rules.team-
server.model .IlrSessionController defines a set of

methods to check if the current user has the permission to create, delete, or update

an element of the rule repository. The session controller may filter the list of

possible status values the user can choose based on his role. This is achieved by

the getPossibleValues(. . .) method, which returns a list of values,

for example as a list of String. This method has first to verify whether the input

parameter is the status property, if the rule element is newly created return the

possible values of New or Defined, otherwise get possible allowed status by looking

at the user’s role. In Fig. 17.1, a rule tester may only access the status Rejected
and Validated; therefore, the list returns the two corresponding string. The code

may look like as shown below and uses the session to get the detail of the selected

element (the rule) and its value:

New Defined Deployable

Rejected

Validated

Rule
Writer

Rule
Writer

Rule Tester

Rule Tester
Rule

Writer Rule Admin

Rule Admin

Fig. 17.1 Classical rule life cycle

526 17 Rule Governance with JRules

public List<?> getPossibleValues(IlrElementHandle element,
org.eclipse.emf.ecore.EStructuralFeature feature)

throws IlrObjectNotFoundException {
// we want to focus only on the status property.

if (!isStatusPropertyCandidate(element, feature)) {
return super.getPossibleValues(element,feature);

}

// Fetch the current status value

IlrElementDetails elementDetails = session.getElementDetails

(element);

List<String> list = new ArrayList<String>();
// If the element is created then return the initial value for the

status

if (element.isNew()) {
list.add("New");

list.add("Defined");

} else {
// search for possible values by looking at user role

for (int i = 0; i < roles.length; i++) {
String role = roles[i];

if (session.isUserInRole(role)) {
getStatusPossibleValuesByRole (role, elementDe-

tails.getRawValue(feature)+"",list);

..

}

return list;

The session includes the current user’s roles so it is easy to test if the roles like

admin, tester, writer, or rtsAdministrator is one of the user’s roles. The core of the

permission logic is in the method getPossibleValueByRole, which

is a list of test on current value and role:

private void getStatusPossibleValuesByRole (String role, String cur-
rentValue,List<String> list){

if (currentValue == null) {
list.add("New");

list.add("Defined");

return;
}

if (currentValue.equalsIgnoreCase("New")) { // any role
list.add("New");

list.add("Defined");

return;
}

17.2 JRules and Rule Governance 527

if (currentValue.equalsIgnoreCase("Rejected")) { // any role
list.add("New");

list.add("Rejected"); // stay on the same status

return;
}

if (currentValue.equalsIgnoreCase("Validated")) {
list.add("New");// any role

list.add("Validated");

if(role.equalsIgnoreCase("admin")) {
list.add("Deployable");

}

return;
}

if (currentValue.equalsIgnoreCase("Defined")) {
list.add("New");// any role

list.add("Defined");

if (role.equalsIgnoreCase("admin")||
role.equalsIgnoreCase("tester")) {

list.add("Rejected");

list.add("Deployable");

}

return;
}

if (currentValue.equalsIgnoreCase("Deployable")) {
if (role.contains("admin")){

list.add("New");

list.add("Deployable");

}….

Obviously, this implementation suffers from hardcoded roles and status values;

it may be more appropriate to use external file to define the transition between status

values according to role. Our goal was to present the intent and how it works.

As a good practice, it is better to subclass the default implementation (the Ilr-
DefaultSessionController) of the interface ilog.rules.
teamserver.model.IlrSessionController, so that we

can keep the default behavior but enhance only the methods we want to change to

support our own governance. When applying fine-grained permission management on

rule elements, the method checkUpdate is called to check current permissions

before committing a change to the element given as parameter. The DefaultSession-

Controller has a reference to the current user session, the class is ilog.rules.
teamserver.model.IlrSession. Any connection (remote client or

web UI) to the RTS service layer creates a IlrSession instance. This is an important

528 17 Rule Governance with JRules

interface to know as soon as you want to customize RTS. There are a lot of samples in

the product documentation to explain how to use the RTS public API. The session

offers some capabilities to assess on which repository element the user did the last

action. The code to access the status property looks like:

public void checkUpdate(IlrElementHandle element,

IlrElementDetails details,…

details = this.session.getElementDetailsForThisHandle(element);

//If we are checking a BusinessRule...

if (details ! = null && details.isInstanceOf("BusinessRule")) {

// Get the status of the rule

String status = (String) details.getPropertyValue("status");

A permission management sample4 presents in details how to limit what are the

possible values a user can set to the status property depending of his own role. We

will see later in this chapter how to use the same controller to prepare an event to

notify another application, like a workflow engine, that some works are done on a

business rule. The most interesting event, for example, is to report a change to a rule

life cycle. For example, we want to create a work item for the tester-user work

queue when the rule is set as defined.

17.2.3 Ruleset Baseline and Versioning

The second most important life cycle to control is the ruleset life cycle. Once a

project is created within Rule Team Server, any changes to the rules are kept within

the rule repository. When a project element is created, it is given the version

number following a pattern like major_digit.minor_digit. The first digit is called

the major version number and the second digit is called the minor version number.

Major number can be used to support a release plan: each new release enforces

increasing the major number. Minor number is used for update within a release.

When rule authors make a modification to a project element, the minor version

number is automatically increased by 1 (e.g., to version 1.1) except if he specifies

that he wants to increase the major version number instead. Only the current version

of an element can be edited or deleted. Previous versions can only be consulted.

Previous versions can also be restored so that they become the current version.

To do so the user needs to go to the History of the rule, select the version to restore,

and then click the button “Restore Version.”

4See WebSphere ILOG JRules BRMS V7.1 > Samples > Rule Team Server samples > Rule

Team Server business rule management extension samples > Permission management sample.

17.2 JRules and Rule Governance 529

RTS uses the concept of baseline to “tag” the rules that are part of a project. This

could be compared to the tagging operation done on the trunk with a conventional

SCM tool. Baselines correspond to a snapshot of the state of a project at a given

moment in time. A project can contain many baselines. When a baseline is frozen

we cannot edit any of its project elements. Baselines are normally created and

maintained by the user with the Configuration Manager role. Creating a baseline is
simple: in the project tab, use the manage baseline section. It is recommended to

follow a naming convention for the baseline name. We use name that represents the

intent of the baseline, for example, specify the target platform for deployment when

the baseline is for deployment. Once created it is possible to see using the history

view what version of a rule is used in what baseline. This may be helpful for tracing

back rules. Below the current version is 1.1, and version 1.0 is part of the ruleset4-

test baseline. A baseline can only contain one version of an element (Fig. 17.2).

At any time, it is possible to display the differences between two rule versions to

evaluate the changes done by the different users.

The baseline feature should support most use cases of rule management to control

the ruleset integrity: any changes to the rule project that need to be deployed to the

rule execution server can be part of a new baseline, used to build the ruleset. Any

baseline created is frozen, which means a user cannot modify its contents by default.

There are a set of features to support unfreezing an existing baseline to update the

rules and then update back the baseline for future deployment. This approach works

well whenwe can isolate the change to the rule and do not have other users modifying

the rule project in parallel. This has to be the best practice, when there is a need to

deliver a fix to a ruleset by applying the unfreeze-update baseline approach.

There is one important thing to avoid losing work done on the rule project

after a baseline was done, and someone is trying to restore an old baseline, for

example, to fix a rule in that baseline. When we restore a baseline, Rule Team

Server creates a new version of all the project elements found in that baseline,

which are copies of the designated version, and makes these the current state of

the project.

Before the baseline restore, the repository may look like:

time

Rules in base-
line 1

Updated or
new rules

Fig. 17.2 Rule history – a rule part of a baseline

530 17 Rule Governance with JRules

After the baseline restore operation, the current version of the rules are the one in

the second blue rectangle, the rules in green are not easily accessible.

Rules in base-
line 1

Updated or
new rules

Rules in base-
line 1

The basic approach is to first baseline the current state of the rule project,

Rules in base-
line 1

Rules in
baseline 2

Rules in base-
line 1

Rules in
baseline 2

restore the previous one, work on the rules, unfreeze-update the baseline, extract

a ruleset, and deploy the hot fix. Then the last operation is to restore the last created

baseline (e.g., baseline 2) so the rule repository is back to his state before the fix.

The process needs to be well coordinated so that everybody is aware that, for the

duration of the update, the current RTS version of the project is in fact an historical

version.

A special baseline called the “recycle bin” contains project elements

that are deleted from the current state of the project. This “recycle bin” is

used to restore the deleted element.

When we deploy from RTS to any RES, RTS automatically adds a RuleApp

property to the generated RuleApp called ilog.rules.teamserver.
baseline with a value set to the deployment baseline created in RTS. An

administrator can use the RES console to view this property to correlate the

contents of the deployed RuleApp with a baseline in RTS. Baselines are used to

control the integrity of the ruleset over the development life cycle and to provide

traceability over which environment the ruleset was deployed. Before deploying to

the test or production environments, the rule administrator has to create a baseline.

Once agreed upon the rulesets are deployed to the production environment as well

as the simulation environment if any. Recall, from Chap. 15, that business user can

use a simulation environment to perform “what-if ” analysis over a subset of

production data, to continuously improve the quality of the ruleset, by comparing

KPIs. The source of truth becomes the rule repository managed by the production

RTS. The business users are executing the rule change process in this environment.

The administrator of the environment deploys the ruleset on demand to the different

rule execution servers of the production.

When building a baseline, it is important to consider implementing different

queries to extract the rules targeted for the different environments. Table 17.1 lists

the possible queries to support different ruleset extraction patterns taking into

account the rule life cycle as defined in Fig. 17.1.

17.2 JRules and Rule Governance 531

As a complement of query definition, we can develop queries to change the

status of the rules. The following is an example of query changing the status

property of a rule from Defined to Validated.

Find all rules

such that the status of each rule is Defined

Do set the status of each rule to Validated

17.2.4 Deeper Changes

When the project team is working in parallel, for example, to support implementa-

tion of the next application release and the business team is working on the ruleset

maintenance of current release, change management is more complex. For the next

release, the development team may work on changing the underlying data model,

prepare new rulesets, but most likely is not changing existing rulesets. Business

user uses RTS to do so. In traditional software development, parallel development

is covered by sophisticated configuration management tool using the concept of

branching. A main branch (also named trunk) holds the development of next release

where code elements are versioned. The maintenance of the code deployed in

production is done in another branch. To avoid going too far in the detailed of

SCM tool in this book, most of the time the code modified in one branch to fix a

production issue, for example, may be merged back to the new code for the next

application release. This is still rare, as most of the time, an issue can wait for the

next release. But in the case of ruleset maintenance, the updated rules are not to fix

issues, but to adapt the business logic, so merging has to happen.

There is no concept of branches in RTS, so any merging operation needs to be

performed manually. In fact those merging operation are linked to the modification

of the BOM and the XOM. A BOM refactoring may impact existing rules. The

Table 17.1 Extraction query

Goal Query

Extractallrulesfor
development

Find all rules
such that the status of each

rule is one of { Deployable ,
Validated , Defined }

Extractalltherules
for final testing
before production

Find all rules
such that the status of each

rule is one of { Validated ,
Deployable }

Extractallrulesfor
the production

Find all rules
such that the status of each

rule is one of { Deployable }

532 17 Rule Governance with JRules

practice is having the developer synchronizing from RTS to Studio before doing the

BOM update and then once rules are modified, synchronized back to RTS. The side

effect is to not have any person modifying the rules in RTS rule repository during

these operations because the rules use the old BOM and may not work with the

modified BOM. Any change to the BOM can only take minutes, so it should be easy

to apply such practices without impacting the overall team. This is the “out of the

box” experience and works well in most case. Still there are requests, sometime, to

support a multiple branches approach as we do in classical software development

using a SCM tool.

As of today, RTS rule repository does not support managing different

branches, but there are some approaches the team can use. The simplest mecha-

nism, to manage multiple branches of a same project both in Rule Studio and

RTS, is to use one distinct RTS data source per project branch, as illustrated in

Fig. 17.3.

The developer starts by creating the different project branches using the source

code control system, for example, release-2.0 and release-1.0. Then he imports the

rule projects on each branch in Rule Studio in separate Eclipse workspaces so that

there is no conflict in the rule UUIDs. The next step is to configure RTS and create

different data sources per branch; this is done using the installation manager of RTS

and using different database URL. The last operation is an export of each project

from Rule Studio to the appropriate RTS data source (URL_1 and URL2). Business

users and developers work as usual on the selected branch by choosing the appro-

priate data source for RTS (different URL). When there is a need to integrate all the

change done on a branch, the RTS rule project corresponding to the branch should

be synchronized back with the Rule Studio project, and the SCM should be used

to perform the merge with the trunk. The main advantage of this solution is that

there is no need for product customization, either on RTS or Rule Studio. All the

Rule
Repository
Release 1.0

Rule
Repository
Release 2.0

Rule Author

URL_1

Developer

Rule Team
Server

URL_2
Rule Studio

SCM

Fig. 17.3 Two data sources for two branches

17.2 JRules and Rule Governance 533

features needed are available out of the box. The process can support complex

cases involving BOM and rule flow changes, and it keeps the integrity of JRules’

concept of operations: business users keep performing their work using RTS only

while IT supports major project updates (BOM, rule flow) through Rule Studio. The

disadvantages involve having multiple RTS database for each branch that needs

concurrent development, and users need to be careful about using the proper data

source or workspace that corresponds to the project branch they intend to work on.

A little discipline overcomes this issue.

Another mechanism to support branching is to use different rule projects for the

same decision service: the team is working on adjudicateClaim-rulesR2 in parallel

of the business team working on adjudicateClaim-rulesR1. When the merge opera-

tion is triggered, the developer can synchronize the previous release back from RTS

to Rule studio and use SCM and diff tools (“Team Synchronize” perspective in

eclipse) to evaluate and report the changes to the next release. Once merged the

ruleset is propagated back to RTS. This approach can be error prone and need some

care when merging the changes.

17.3 The Rule Change Management Process

In this section, we propose to make the rule change process, outlined in the

previous chapter,5 actionable using JRules and a BPM product. We are not

presenting a specific BPM product; we rather present how to leverage the two

technologies to implement the process and we highlight some of the implemen-

tation pattern for the integration between Rule Team Server and BPM product.

The choice to combine the two types of product is driven by the fact that the rule

change process includes a set of human activities like the ruleset update, the

change review, the rule testing, and the ruleset deployment, which could be auto-

mated by an executable process.

When starting from a blank page, designing a business process starts by looking at

the main business entities and their life cycle. In this case, the main business object

may be a change request (ChangeRequestBO) to let the business user,

initiator of the change, logs all the information about the intent, business motivation

of the change, the rule project name, and any rule name when the change applies to

existing rule. The structure of the change request is defined to handle the parameters

entered by the different actors of the process. We could use the definition as shown

in Fig. 17.4.

We can use a basic life cycle for the change request including the following

states: initiated, under review, under implementation, under test, deployable,
closed, canceled, and rejected. The rule change process should have activities

5See Sect. 17.3 – Fig. 17.6.

534 17 Rule Governance with JRules

which support this life cycle. Figure 17.5 presents the beginning of the executable

process. It is incomplete, but we use it to present the main concepts of this section.

17.3.1 Process Implementation

There are multiple ways to implement the rule change process using a BPM

product: a pure human centric process, where the change request progresses in

Fig. 17.4 Change request

business entity

Fig. 17.5 Beginning of the executable rule change management process

17.3 The Rule Change Management Process 535

the flow of pure human tasks. Each actor of the process receives a work assignment,

performs the work using the needed tool(s), like rule team server, and then comes

back to the work queue to notify the running process that his work is completed.

The implementation can support custom screens to drive the information gathering

and the communication with the user. Such communication can include description

of the rule analysis, the explanation of the work done on the rule repository, the test

report, and the status of the deployment to production. There is no integration with

rule team server. This could be a first version of the process as it has no integration.

The second type of process uses a more integrated approach where the rule life

cycle is coupled with the change request life cycle. RTS may send events when the

rule changes state. The process can correlate such events to assess if the activity is

completed, so it can continue the process flow. We will detail how RTS can send

event in Sect. 17.3.3.

For any process approach, the business policy owner may use a web-based

user interface to initiate the process, by clicking on “Create business rule

change request” link within one page of the enterprise portal. Basically, each

time a rule change process is started a process instance is created and exists

until reaching a termination node. The process is long-running process, and so

process instances are persisted in process data store. When the process is started

and is waiting for a human action, the user, responsible to perform the activity,

will receive a work item assigned to his work queue. The work queue is also

accessible using a web UI and offers a set of actions to complete the task. In the

rule change process, each actor of the process receives the request in his “My

tasks” area and performs the expected activities: author rules, review change

request, review test report, etc. . . . An example of such an entry form is shown

in Fig. 17.6.

The information about the change request may even include the reference to the

rule in the rule repository. Rule Team Server uses the concept of permanent link to

Fig. 17.6 Enter change request

536 17 Rule Governance with JRules

uniquely reference rule element in the rule repository. This capability is accessible

using helper classes,6 and the links may be exposed within a custom user interface,

for example, coupled with the change request form: the list of rules, the user may

select, comes from RTS (see Sect. 17.3.3). As an alternate, the simplest UI will have

a rule name entry field, which the user will manually fill.

Once initiated the change request needs to be analyzed to assess the scope of

the change and to evaluate the cost of the implementation. In the case of the

business rule application, normally the impact is very limited, and the analysis

should not take long. Nevertheless the change request information should include

all the needed information so the assessment activity can be done quickly. The

business analyst role should document the assessment as part of the change

request, by editing the potential impact. The scope assessment task below is

showing the different paths (proceed, reject, and cancel) the rule analyst can

take. Using an agile approach, aiming to use minimal documentation, if the

change is obvious, just referencing the impacted rules should be sufficient as of

documentation (Fig. 17.7).

Fig. 17.7 Assess scope task

6See JRules API documentation class IlrPermanentLinkHelper.

17.3 The Rule Change Management Process 537

The rule authoring may be a subprocess to support complex process definition,

or just a human task which will be completed when the rule author will specify it

using his work queue. To update rules, a rule author can open a session with Rule

Team Server, update the rules, and once done, completes his activity in his work

queue so that the process instance continues to the next activity. Figure 17.8

illustrates this chaining of activities. BPMN specifies to use a message flow when

the process is going through swim lane: this can be illustrated as the rule tester is

receiving a message on his work queue.

17.3.2 RTS and Workflow Integration

What is interesting is to integrate the rule life cycle and the ruleset life cycle with

the process activities. For example, when a rule author once completing his rule

update, changes the rule status to Defined the process instance can be notified of

such event. When all the rules listed in the change requests are implemented, the

process can continue to route the change request to the next performer, for example,

a rule tester. If not all the rules are yet Defined, the authoring task is not completed,

and the process may trigger timer to generate message or escalation procedure to

wake up the person supposed to perform the rule modification.

The “update rule” activity ends when the rule author specifies the task is com-

pleted. In our integration, we want to control that all the rules listed as part of the

change request are in Defined state. Rule Team Server is then an event generator,

consumed by the workflow engine. The event includes information about the rule and

its status. A simple components view may look like as shown in Fig. 17.9.

Update Rule

ChangeRequestBO

Validate Ruleset

R
ul

e
T

es
te

r
R

ul
e

A
ut

ho
r

Fig. 17.8 Extract from the rule change process map

538 17 Rule Governance with JRules

17.3.3 Getting Rule Status Modification Event from RTS

The purpose of this section is to present how RTS can generate event when, for

example, the rule status property changes. This capability can be use to generate

intermediate events the business process engine may listen. RTS provides an

extension point to customize the behavior of the user interaction with the reposi-

tory, with the class IlrDefaultSessionControler. This class

offers a set of operations we can override. To create an event when the status

property is changed we want to look at two methods, onCommitElement
and elementCommitted. There are code samples in the product docu-

mentation with explanation of the API.

The onCommitElementmethod is called before committing an element

to the repository, so we can use it to get the previous status. The element-
Committed is called just after an element has been committed to the rule

repository and can be used to get the updated status and to prepare and send an

event. Both methods need to use their parameters to access the element committed

and have access to the RTS session (teamserver.model.IlrSession), which allows

connecting to RTS service layer with all the information on the current user. The

session is an important object to understand as it is used to connect to RTS and

provides all the information on the current project, baseline, and element under

work. The elements of the rule repository are represented using a meta model,

which is based on Eclipse Model Framework EMF. Without going too much into

the detail, each method needs to access the element committed and use both the

session and the meta model to access to the element property like a “status”

property. As the session has information on the name of the rule, the name of the

project, it is easy to build an event from this information. For the fun, here is an

example of code with inline comments to explain the code intent:

Rule Author

CR Inititator

Rule Team
Server

UI Workflow Engine

Rule
Repository

Process
Storage

Fig. 17.9 Integration RTS – BPM – component view

17.3 The Rule Change Management Process 539

public void elementCommitted(
IlrCommitableObject cobject,

IlrElementHandle newHandle) throws IlrObjectNotFoundException {
// initialization code not shown

MyEventClass anEvent = ….

// start by verifying we are working with element as defined in team

server model

Object detail = session.getElementDetails(newHandle);

if (!(detail instance of IlrModelElement)) return;

// the element needs to be a business rule – use the session for that

EClass eclass = newHandle.eClass();

if (!session.getBrmPackage().getBRLRule().isSuperTypeOf(eclass))

return ;

IlrModelElement element = (IlrModelElement) detail;

//retrieve information from this element likename, uuid

anEvent.setCommitterName(element.getLastChangedBy());

anEvent.setCommittedElementName(element.getName());

anEvent.setCommittedElementUUID(element.getUuid());

//The project name comes from the session

IlrRuleProject project = session.getWorkingBaseline().getProject();

anEvent.setProjectName(project.getName());

The last piece of code is used to access the “status” property.

EClass eClass = (EClass) element.eClass();

EStructuralFeature f;

// Retrieve all properties for the class and search for the ‘status’

EList<?> eAllStructuralFeatures = eClass.getEAllStructuralFeatures();

for (int j = 0; j < eAllStructuralFeatures.size(); j++) {

f = eClass.getEStructuralFeature(j);

if ("status".equalsIgnoreCase(f.getName())) {

break;

}

}

// get the value of the status property

Object object = elementDetails.getRawValue(f);

anEvent.setValueOfStatusProperty(object.toString());

The last part of the code could send the event to a JMS queue or topic so a

consumer or subscriber can process it.

17.3.4 Getting the List of Rules from RTS

The session is interesting as it can be used to remote connect to RTS. So any java

code can connect to RTS to access rule repository information. For example, a Web

540 17 Rule Governance with JRules

UI can get the list of rules in a rule project so the user can populate fine-grained

information in the change request. In this section, we propose a basic code to do so.

The code uses a remote session created from a factory using the server URL, the

jdbc datasource used for the rule repository, the userid and password to connect to

team server. This code could have different input parameter, like the project name,

and is returning a list of strings, representing each unique rule name.

// Connect to Rule Team Server

IlrSessionFactory factory = new IlrRemoteSessionFactory();

factory.connect(login, password, serverUrl, datasource);

session = factory.getSession();

// Get the project by name

IlrRuleProject ruleProject = (IlrRuleProject) IlrSession-

Helper.getProjectNamed(session, projectName);

// Open the current baseline

baseline = IlrSessionHelper.getCurrentBaseline(session, ruleProject);

session.setWorkingBaseline(baseline);

Then to search for an element in the repository, there is a helpful function on the

session object called findElements. This method uses some search criteria which is

based on the Business Query Language (BQL), we saw in previous chapters and in

Sect. 17.2.3. So getting the list of business rules is using two lines of code:

IlrSearchCriteria criteria = new IlrDefaultSearchCriteria("Find all busi-

ness rules");

List listOfRules = session.findElements(

criteria,

IlrModelConstants.ELEMENT_DETAILS);

The objects within the list are IlrElementSummary, which includes methods to

access name and properties of the element:

IlrElementSummary ruleSummary = (IlrElementSummary) listO-

fRules.get(i);

String ruleName = ruleSummary.getName();

String status=(String)ruleSummary.getPropertyValue("status");

String[]paths=IlrSessionHelper.getPath(session, ruleSummary,

baseline);

The IlrSessionHelper is a utility class, which helps to access elements within the

session. Here we get the path to the rule, so that we can build a string including the rule

package path and the rule name like VerifyAccidentLocation/SupportedCountries.

The API is rich and permits to do interesting things for fine controlling the rule

governance processes. We do not see a lot of teams doing so, as rule governance is

still a new practice in the field.

17.3 The Rule Change Management Process 541

17.4 Summary

Rule governance is easily supported with the JRules components such as rule team

server using existing features. Sometimes light configuration or customization

needs to be done when the IT wants to enforce control over the rule life cycle.

We also presented a potential integration with a workflow engine using a light-

weight version using only human activities, and one using a light integration with

rule team server to receive event when the rule status change. Using BPM to define

an executable rule change process makes perfectly sense when company has both

products in their portfolio. The justification to start a big project on that may be

difficult to justify, when IT budgets are under constraints, but with human centric

product it is a question of days to put in place such process.

17.5 Further Reading

For more technical information and tutorials, the product documentation is acces-

sible at http://publib.boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp

542 17 Rule Governance with JRules

Part VIII

Epilogue

Chapter 18

Epilogue

18.1 It Is About People, Process, and Technology

To borrow a much-used IT cliché, successful business rule application development

relies on a combination of people, process, and technology.

l It is about people. Sure it is! Software development gurus have been saying it for

decades. But what do they mean? It is about people as in knowledgeable, skillful,
communicative, productive, positive, team player, kind of people. HR knows

that, IT people know that, project managers know that, and productivity studies

have borne that out for decades. In this book, we identified a number of roles and

responsibilities, identified the required skills (Chap. 3), and strove to provide

those skills through a combination of problem/issue analysis and solution pat-

terns. It is also about the people the software is intended to serve, i.e., the

business people, who try to provide value to customers while making money

in the process, and the end-customer. We have been told, many times over, that

we need to involve “the business” and the “users” in our software development

projects to make sure that we address their needs – and that they use the

software. We knew that that made sense, but we were not sure what we could

have them do or review during our projects, beyond supplying the requirements

at the very beginning and testing the software at the very end. The agile methods

have been saying it too. But what possibly could I meet them about in the between

while architects are architecting and developers are coding? It is the business

rules! And because we are delivering rulesets incrementally, they will remain

engaged throughout the project . . . we are almost saying that the business rules

approach is a prerequisite for the business-people-involvement aspect of agility.
l It is about the process. Naturally, we need to have in place systematic, repro-

ducible processes to harness the people’s knowledge, skills, and work towards

achieving the desired outcome. Process does not contradict agility; in fact, we

talk about agile processes! To borrow from Barry Boehm and Richard Turner’s

(2003) book title, finding the right dosage between agility and discipline is a

balancing act. That is what we tried to with ABRD. ABRD is disciplined about

creating opportunities for, and managing, communications between the various

project stakeholders, in the various cycles, with greater frequency and intensity

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4_18, # Springer-Verlag Berlin Heidelberg 2011

545

during the rule harvesting (Chap. 3) and rule prototyping (Chap. 4) cycles. It is

agile because it is incremental and iterative. It is also agile because of what
happens during these interactive workshops.

l It is about the technology. Of course, technology matters. We have yet to get

involved in a project that failed because of technology. However, technology can
make your life easier. Technology is the medium within which the various

solutions take shape. A good technology either provides the solution for you,

out of the box, or provides the proper ingredients for you to implement the

solution on your own. A BRMS that is missing some basic fundamental feature

or that has an awkward API will have you divert a significant amount of

resources just to implement the basic infrastructure.

18.2 Success – and Failure – Factors

In this section, we provide some parting advice regarding success factors, as well as

project risks. Unsurprisingly, most have to do with people, including their commit-
ment, motivation, discipline, and skills.

l Management commitment. If you are starting out with the business rules

approach, management commitment is critical, as it is with any important

transformation that you try to implement within the organization. From our

experience, anyone manager or decision maker above you, working against
the approach – or against you – can derail your project, even if decision makers

above them are committed. It takes lots of political skill to make sure that all
issues have appropriate visibility along the command chain so that lack of

support – or outright hostility – gets addressed at the management level.
l Explain the impact of rule automation. Many rule projects consist of automating

currently manual decision processes using a BRMS. You need to get the buy-in

of the subject matter experts, from whom you will elicit the business rules. The

SMEs will undoubtedly, and understandably, feel threatened by the project, and

you need to address those concerns up-front.1 This is as much a project manage-

ment issue as it is an HR issue.
l Know when to listen and when to lead. The importance of listening to business

needs cannot be overstated. Business analysis is as much as people’s skill as it is

a technical/process skill. That being said, you need to know when to lead. This is
true for requirements, in general, and even more so with business rules. A case in

point: you will often find that decades of nonbusiness-oriented implementation of

business rules have had a corrupting influence on SMEs and business analysts, who

can no longer think of terms of business qualities, business decisions, or business

1We had one customer whose rule harvesting efforts were derailed by noncooperative SMEs.

While there was an element of work displacement involvement, almost caricatural project

management was largely to blame.

546 18 Epilogue

terminology, but will speak in terms of arcane codes, weird processes, and byzan-

tine terminology. It is OK to disagree with business – and show them a better way.
l Do not let architects run your project. Architecture is important; in fact four

chapters of this book are about architecture. However, the business rules

approach is not just another architectural style. Sure, treating business logic as

data that can be packaged and deployed separately from the other code is

valuable. But the business rules approach is about much more than that. We

have worked with a customer that was an early adopter of the business rules

approach, and that had a corporate business rules expertise center, and a great

team of extremely competent architects and developers. In fact, some used to

joke about their heavy IT focus, which served them well in other areas: “we are

not a<product> company, but a software company that sells<product>”. They

spent lots of resources and ingenuity on tooling and infrastructure, but fairly

little on business analysis. As far as we are concerned, they did not treat business

rules as business assets, but considered them still as IT assets.
l Remember the rules, you know, the if-then things? This is a corollary of the

previous point and manifests itself in many ways. We have seen customers

simply translate business logic expressions from their legacy implementation

language into rule languages of their BRMS – JRules in this case. Again, that is

(almost) totally missing the point. In this case, the business rules are barely

rules, in the production system sense (see Sect. 3.1), and not business oriented.

They are not understandable by “normal” business people, they are highly

procedural – as opposed to declarative – strongly coupled, and very hard to

maintain. Another manifestation of this lack of emphasis on the rules is the task
assignment within the project. As mentioned in Chap. 11, we have seen many

customers that assign rule authoring to their most junior staff. The thinking goes

“they are young: they can pick up a new [programming?] language in no time”.

That is unfortunate because learning a rule language is the easy part. Good rule

authoring requires a deep understanding of the business logic and knowledge of

the rule coding patterns (see Chap.9). A junior person is likely to lack both.
l Do not let developers write the rules. This is a tough one. One of the objects –

and tenets – of the business rules approach is to empower business to take over

the ownership and management of business rules. Part of that empowerment is

rule authoring. In practice, business teams often lack the resources to take over

rule authoring and maintenance, both in terms of headcount and in terms of

skills. Thus, they more than willingly let IT handle the authoring and mainte-

nance part.2 While this is an acceptable transitional arrangement for the first

project release, we should make sure that, ultimately, business takes over. This
does not necessarily mean retraining barely computer-literate policy managers;

it can also happen by moving IT people over to the business side. This results

into a cleaner separation of responsibilities between business and IT and will

pave the way for a gradual takeover of business rules by business.

2And handle the fallout, in case of project failure.

18.2 Success – and Failure – Factors 547

18.3 Where to from Here

We wish we had a crystal ball that could tell us where the technology is headed

within the next decade and beyond. Failing that, we can at least project from the

trends that we have seen emerge over the past decade:

l It is about business empowerment. IT, which had long been perceived as an

enabling technology for business excellence, has become, of late, a bottleneck

for business agility. The lag time between business decisions and their IT

support has simply become intenable. A number of technologies of the past

dozen or so years have aimed at empowering business to implement business

changes directly. Whether we are talking about business rules or business
process management, in both cases we are exposing business logic in a way

that business can express, can understand, and ultimately, can implement. This

changes a number of things about the way we do business and the way we do IT,

and is key to better business – IT alignment. From a people and process point of

view, business will continue its move to the front and center of IT development,

with IT moving to a supporting role. From a technological point of view, it will

take continued innovation to expose, out of the increasing complexity and

overwhelming clunkery of IT systems, intuitive, unambiguous, and safe business
abstractions that business can manipulate. The role of IT is then to provide the

illusion of simplicity, with enough safeguards to ensure security. That is no

small feat.
l It is all in the data. This overloaded motto means several things. Being able to

express business logic as data is a key paradigm in empowering business. Lest

we oversimplify, we would expect business (policy setters, rule makers) to think

in terms of desired outcomes, while IT thinks in terms of procedures. In some

fundamental way, a rule engine reads statements of desired outcomes, expressed

as declarative business rules, and transforms them into a decision-making

procedure. Similarly, a workflow engine reads a description of a workflow

process, in terms of tasks and dependencies between tasks, and turns it into a

process. We can also read “it is all in the data” in relation to analytics. Organiza-

tions have been capitalizing on production data to extract valuable business

information, some of it in the form of business rules; we have to look at business

rules under the broader perspective of decision management and integrate the

analytics stream into the ABRD methodology.
l It is all about the cloud. We can think of the cloud as the ultimate dematerializa-

tion of enterprise IT infrastructure along the physically bound – dematerialized

spectrum, starting with monolithic applications on the physically bound end of

the spectrum, to distributed applications, to service-oriented applications, to

cloud computing. In this book, we have talked about deploying rules to a rule
execution service, but with the implicit assumption that that service is proprie-

tary and internal to an organization. But how about BraaS, or business rules as a

service? Actually, that has been happening for decades! FICO’s credit scoring is
business rules as a service. Banks, government agencies, retailers, and utilities

548 18 Epilogue

submit personal identification information for prospective customers and get a

rule-driven credit report. In addition to this, one-shoe-fits-all credit report, FICO

also develops custom credit reports for some of its corporate customers. An

interesting feature of credit rating agencies (FICO, Equifax, Transunion,

Experian, etc.) is that the data they use to compile those reports is based on

raw data submitted by those same banks, government agencies, retailers, utili-

ties, and so forth. Can this business model be replicated for mortgage under-

writing, insurance policy underwriting, or claim processing? What are the

implications on data privacy, competitive financial information, and proprietary

business rules? Interesting questions to ponder.

18.3 Where to from Here 549

Bibliography

This bibliography reflects the age we live in: we draw our information not only from traditional

publications and media (books, professional, and academic journal articles), but mostly from

information available on the web. Hence the different categories:
l Books. These are good old paper books.
l Articles and papers. These include professional, trade, or academic publications.
l Web sites. Here we grouped web-bound organized sources of information, including blogs,

conference web sites, technologies (e.g., WS-BPEL, EPF, J2EE, etc.), trade or standards

organizations (e.g., OMG, the Business Rules Group), and on-line, or mixed-media (paper

and on-line) publications.
l Documents. Although these are mostly available on the web, they do not represent elaborate

sources of information like the many portals we find under web sites.
l Tools. We list some of the tools that are relevant to the book.

Books

l Kent Beck, Test-Driven Development by Example, Addison Wesley, 2003
l Barry Boehm and Richard Turner, Balancing Agility and Discipline: A Guide for the Perplexed,

Addison-Wesley (2003)
l Thomas Erl, Service-Oriented Architecture: Concepts, Technology & Design Prentice Hall/

PearsonPTR (2005). ISBN 0-131-85858-0
l Thomas Erl, SOA Patterns, Prentice-Hall (2009) ISBN 0136135161
l Charles Forgy, “On the efficient implementation of production systems”. Ph.D. Thesis, Carnegie-

Mellon University, 1979
l Martin Fowler, Patterns of Enterprise Application Architecture, Addison Wesley, 2002, ISBN

0321127420)
l Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, Design Patterns: Elements

of Reusable Design, published by Addison-Wesley, 1994
l Barbara von Halle, Business Rules Applied, John Wiley & Sons, 2001, ISBN 0-471-41293-7
l Gregor Hohpe and Bobby Woolf’s book Enterprise Integration Patterns (Addison Wesley,

2003, ISBN 0321200683)
l Ivar Jacobson, Grady Booch and James Rumbaugh, The Unified Software Development

Process, Addison-Wesley (1999). ISBN 0-201-57169-2
l Mike Keith and Merrick Schincariol, Pro JPA 2: Mastering the Java™ Persistence API

(Expert’s Voice in Java Technology), Apress (2009)
l Hafedh Mili, Ali Mili, Sherif Yacoub, and Edward Addy, Reuse-Based Software Engineering:

Techniques, organizations, and controls, John Wiley & Sons, 2002, ISBN 0-471-39819-5

J. Boyer and H. Mili, Agile Business Rule Development,
DOI 10.1007/978-3-642-19041-4, # Springer-Verlag Berlin Heidelberg 2011

551

l Tony Morgan, Business Rules and Information Systems: Aligning IT with Business Goals,

Addison-Wesley, 2002, ISBN 0-201-74391-4
l Ronald G. Ross, Principles of the Business Rules Approach, AddisonWesley, 2003, ISBN 0-201-

78893-4
l Naeem Siddiqui, Credit Risk Scorecards: Developing and Implementing Intelligent Credit

Scoring by John Wiley & Sons (2006), ISBN 9780471754510
l James Taylor, and Neil Raden, Smart Enough Systems: How to Deliver Competitive Advantage

by Automating Hidden Decisions, Prentice Hall (2007)

Articles and Papers (Professional Journals, Trade Magazines, etc.)

l Barbara von Halle, “What Exactly Are Business Rules”, in The Business Rule Revolution:
Running Business the Right Way, von Halle & L. Goldberg eds, Happy About Info, 2006, ISBN

1-600005-013-1
l Randall Davis & Jonathan J. King, “The Origin of Rule-Based Systems in AI”, chapter 2 in

Rule-Based Expert Systems: The MYCIN Experiments of the Stanford Heuristic Programming

Project, eds B. Buchanan & E. Shorliffe, Addison-Wesley, 1984, pp. 20–52
l Alasdair Urquhart, “Emil Post”, in Handbook of the History of Logic, vol 5: Logic from

Russell to Church, Dov M. Gabbay and John Woods Eds, pp. 429–478
l Allen Newell, 1973, “Production systems: Models of control structures”. In Visual Information

Processing, ed. W. G. Chase, pp. 463–526. New York: Academic Press.
l Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, Frank Leymann, “Service-Ori-

ented Computing: State of the Art and Research Challenges”, IEEE Computer, nov. 2007,

pp. 38–45
l Michael Huhns & Munindar P. Singh, “Service-Oriented Computing: Key Concepts and

Principles”, IEEE Internet Computing, Jan/Feb 2005, pp. 75–81
l Olaf Zimmermann, Pal Krogdahl & Clive Gee, “Elements of Service-Oriented Analysis and

Design”, http://www.ibm.com/developerworks/webservices/library/ws-soad1/
l Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, A.Spencer Peterson,

Feature-Oriented Domain Analysis (FODA) – Feasibility Study, CMU/SEI-90-TR-21, Soft-

ware Engineering Institute, Nov, 1990

Web Sites

l Blogs: there are too many, high quality, informative blogs on business rules. Here we list the

ones we referenced in specific parts of the book:
l Pierre Berlandier explores different alternatives for structuring ruleset which can impact

both performance and management. See http://www.ibm.com/developerworks/websphere/

library/techarticles/1003_berlandier/ 1003_berlandier.html
l Eric Charpentier reported in his blog at http://www.primatek.ca/blog/2009/11/01/business-

rules-governance-and-management-part-iv-stakeholders/
l John D McGregor at http://www.cs.clemson.edu/~johnmc/joop/col3/column3.html details

the component testing, needs, and approach
l James Taylor on Everything Decision Management at http://jtonedm.com/

l Conferences: there are many many academic conferences on a variety of areas related to

business rules, including the main AI conferences (AAAI, IJCAI, ICTAI, etc), that would be

too numerous to mention. Here we simply list the two main indutrial conferences on business
rules:

552 Bibliography

l The business rules forum (http://www.businessrulesforum.com) is an annual conference for

people interested in the business rules approach and is a good opportunity for learning

about new product features and cutting-edge thinking
l Rule Fest (http://www.rulefest.org)

l Technologies
l ABRD is an Eclipse Process Framework practice plugin readers may find at http://www.

eclipse.org/epf and within the practice library at http://www.eclipse.org/epf/downloads/

praclib/praclib_downloads.php
l BPEL-WS http://www.oasis-open.org/committees/tc_home.php?wg_abbrev¼wsbpel
l Business Process Modeling Notation, at http://www.bpmn.org
l DAO (Sun Core J2EE Patterns - Data Access Object), at http://java.sun.com/blueprints/

corej2eepatterns/Patterns/DataAccessObject.html
l Eclipse Process Framework (http://www.eclipse.org/epf)
l IBM WebSphere ILOG JRules product documentation can be found at http://publib.

boulder.ibm.com/infocenter/brjrules/v7r1/index.jsp
l The java architecture for XML binding (JAXB) specification and documentation is at http://

www.oracle.com/technetwork/articles/javase/index-140168.html
l Java Connector Architecture, http://java.sun.com/j2ee/connector/
l Java 2 Enterprise Edition (J2EE), http://java.sun.com/j2ee/overview.html
l Java Management Extensions (JMX) at http://java.sun.com/javase/technologies/core/mntr-

mgmt/javamanagement/
l Java Persistence API (JSR 317), http://www.jcp.org/en/jsr/detail?id¼317
l Java Runtime API for Rule Engines (JSR 94) specification http://jcp.org/about

Java/communityprocess/review/jsr094/index.html
l The latest of the Java Thread API is documentated at http://download-llnw.oracle.com/

javase/6/docs/api/
l OpenUp http://epf.eclipse.org/wikis/openup/
l Object pooling, Apache project for Commons pool at http://commons.apache.org/pool/
l Resource Description Framework (RDF): http://www.w3.org/TR/2004/REC-owl-features-

20040210/#ref-rdf-schema
l Rule Interchange Format http://www.w3.org/blog/SW/2010/06/22/w3c_rif_recommenda

tion_published
l SID, a reference model for telecom service providers and vendors, can be downloaded from

the web site of the tele-management forum, at http://www.tmforum.org/InformationFrame

work/1684/home.html
l The Service Component Architecture (SCA):

l The specification is available at http://www.ibm.com/developerworks/library/specification/

ws-sca/
l A forurm is hosted by the Open Service Oriented Architecture collaboration (OSOA),

at http://www.osoa.org/display/main/service+component+architecture+home
l Apache Tuscany open source implementation of the SCA specification at http://tuscany.

apache.org/
l Service Data Objects:

l Specification at http://www.osoa.org/display/main/service+data+objects+home
l SDO Apache tuscany project in http://tuscany.apache.org/sdo-overview.html

l Unified Process (UP): http://en.wikipedia.org/wiki/Unified_Process
l Web Ontology Language (OWL) http://www.w3.org/2004/OWL/
l Work Managener for Application Servers (JSR-237), details at http://jcp.org/en/jsr/detail?

id¼237
l Trade/industry/standard organizations

l The Business Rule Group web site: http://www.businessrulesgroup.org/defnbrg.shtml

Bibliography 553

l MISMO is a “technology standards development body for the residential and commercial

real estate finance industries, . . . wholly owned subsidiary of the Mortgage Bankers

Association,” http://www.mismo.org
l The Object Management Group (http://www.omg.org) has a number of active standards

related to business rules, a number of which are based on (more readable) submissions of

the business rules group
l On-line and mixed-media publications

l http://intelligent-enterprise.informationweek.com
l http://www.information-management.com/channels/decision_management.html
l http://www.kmworld.com
l http://www.bptrends.com
l InfoWorld publishes, with some regularity, the results of some academic benchmarks using

the latest versions of the best known commercial and open-source engines (http://www.

infoworld.com)

Documents (standards, web documents, etc.)

l OMG, Semantics of Business Vocabulary and Business Rules, SBVR v1.0, January 2008
l The ACORD data model can be found at http://www.acord.org
l The Business Rules, Group, The Business Motivation Model: Business Governance in a

Volatile World, release 1.3, September 2007
l Withholding of Tax on Nonresident Aliens and Foreign Entities, Publication 515 (rev. Aril

2008), Department of the Treasury, Internal Revenue Service
l Test-driven development: http://en.wikipedia.org/wiki/Test-driven_development
l Semantics of Business Vocabulary and Business Rules (SBVR), v1.0 http://www.omg.org/

spec/SBVR/1.0/PDF
l Business Motivation Model V 1.0, Object Management Group
l The Business Rules Group, “Defining business rules – What are they really?”, http://www.

businessrulesgroup.org/first_paper/br01c3.htm
l For an introductory definition of finite state machines, check http://en.wikipedia.org/wiki/

Finite-state_machine
l A good introduction to the RETE network that explores more advanced concepts like the

handling of ORs and negations. See http://en.wikipedia.org/wiki/Rete_algorithm
l Adaptive Object Model pattern, by Joe Yoder, see http://adaptiveobjectmodel.com/
l Introduction to boolean algebra:

l http://en.wikipedia.org/wiki/Introduction_to_Boolean_algebra
l http://www.internettutorials.net/boolean.asp.

l The GOF Command pattern is included in the GOF book, but alo explained in http://en.

wikipedia.org/wiki/Command_pattern

Tools

In this section, we list the tools that we either referred to in the book or that are relevant. In

particular, we listed some of the commercial BRMSs (Blaze Advisor, PegaRules , Corticon) and

some open source/free ones (DROOLS, JESS). There are many more that we did not list. This list

is given for illustration purposes only. We also listed other tools that were referred to in the book,

including Junit, and some early BRMS tools (see Chap. 7).

554 Bibliography

l Blaze Advisor, by FICO (http://www.fico.com/en/Products/DMTools/Pages/FICO-Blaze-

Advisor-System.aspx)
l Corticon, http://www.corticon.com/
l DROOLS, the Jboss open source BRMS, http://jboss.org/drools/
l JESS, an open-source Java Expert System Shell, from Sandia National Laboratories, at http://

herzberg.ca.sandia.gov/jess/
l IBM WebSphere ILOG JRules (or JRules, in short), presented in this book, http://www-01.ibm.

com/software/websphere/products/business-rule-management/
l JUnit, the unit testing framework mentioned many times in the book, is available at http://

www.junit.org/
l PegaRules, by Pega Systems, at http://www.pega.com/products/decision-management/business-

rules
l International Council on Systems Engineering maintains a survey of requirements manage-

ment tools (http://www.incose.org/productspubs/products/rmsurvey.aspx)
l BRS RuleTrack is a product of Business Rule Solutions, http://www.BRSolutions.com
l RuleXpress is a product of RuleArts, check http://www.RuleArts.com
l Versata, http://www.versata.com

Bibliography 555

Index

A

ABRD. See Agile business rule development

Abstraction, 191

ACID, 392

Action enabler coding pattern. See Rule coding
patterns

Action enabler rule, 265

Action part, 341

Action phrase, 305. See also JRules business

object model

Action rules, 341

grammar, 342

Actions, 347

Adaptive object model, 120

Agile alliance manifesto, 51

Agile business rule development, 49

activities, 52

build models, 127

build structures for rule development

and execution, 130

communicate back to business, 142

define rule metamodel, 132

deployment, 56

design rule execution flow, 134

design rule project organization,

130, 269

determine rule implementation, 117

end to end testing, 56

rule analysis, 52, 73, 100

rule authoring, 53, 54

rule deployment, 53

rule design, 52

rule discovery, 52, 54, 73, 74

rule prototyping, 136

rule validation, 53

approach, 52

customization, 65

cycles

building, 55

enhancing, 56

harvesting, 53

integrating, 56

prototyping, 54, 115, 448

rule harvesting, 73

delivery process, 58

guidance, 58

iterations, 73

principles, 50

roles, 58, 61

business analyst, 61

rule administrator, 64

rule analyst, 61

rule architect, 62

rule writer, 63

subject matter expert, 64

structure, 59

tasks, 58

usage scenarios, 65

work products, 58, 64

business process description, 64

decision point table, 54, 64, 75

decision service, 56

executable rules, 55

rule execution flow, 134

rule metamodel, 132

rule project organization, 130, 269

unit test cases, 55

use cases description, 64

Agile rule maintenance, 45

Agile software development, 49, 50

AI. See Artificial intelligence
Alarm filtering and correlation, 463. See also

Business rules approach

Algorithm selection, 372

decision framework, 383

AOM. See Adaptive object model

557

Apache Tuscany SDO, 399

Artificial intelligence, 148, 150

expert system, 150

knowledge-based system, 150

Atomicity, 393

Automated underwriting systems. See Business
rule, application; Business rules

approach

Autonomy, 191

B

BAL. See Business action language

BOM. See Business object model; JRules

Boolean logic, 106

BPEL. See Business process execution
language

BPM. See Business process management

BPM center of excellence, 507

BPM governance, 504

BQL. See Business query language

BRLDF. See Business rule language
development framework

BRM group. See Rule management group

Building test scenarios, 109

Build ruleset, 414

Business action language, 334, 341

action part, 341

actions, 347

collection condition, 346

condition part, 341, 345

definitions part, 341, 343

grammar, 342

IRL translation, 342

Business analyst, 61

Business conversation language, 246

Business event. See Business rule
Business modeling, 53. See also Agile business

rule development, cycles

Business motivation model, 7, 76

Business object lifecycle, 135

Business object model, 247, 286, 301

BOM design

bottom-up, 228

top-down, 229

BOM path, 290

BOM sharing, 325

BOM to XOM mapping, 228, 301, 308

custom mapping, 309

virtual class, 311, 313

virtual function, 309

Business policy, 76

Business process description, 64

Business process execution language, 67

Business process management, 49, 193

Business query language, 225, 288, 541

Business rule

action enabler coding pattern, 265

application, 13

architecture, 177, 184

BRMS integration, 184

code, 15

deployment, 15

design options, 184

integration options, 177

J2EE application, 187

legacy data access layer, 208

maintenance, 16

message-oriented architecture, 185, 189

off-line, 187

re-engineering legacy application, 177,

204

re-engineering the application layer,

205

re-engineering the business layer, 207

re-engineering the data layer, 209, 249

rule engine integration, 194

run-time, 15

service-oriented architecture, 185, 191

standalone application, 185, 186

synchronous client-server application,

185, 187

atomic rule, 105, 259

behavioral rule, 7

business perspective, 6

category filter, 321

classification, 75

action enabler, 265

computation, 264

constraint, 258

guideline, 264

inference, 264

risk assessment rule, 265

coding pattern, 257

computation coding pattern, 264

constraint coding pattern, 257

custom rule language, 256, 357

definition, 5, 76

guideline coding pattern, 264

implementing in application code, 117, 120

implementing in GUI, 117, 121, 201

implementing within BPM/workflow tool,

117, 123

implementing within the data model, 117,

118

implementing with rule engines, 118, 124

inference coding pattern, 264

information system perspective, 6

lifecycle, 50, 337

558 Index

lifecycle versions, 184

maintenance and release cycle, 17

metadata, 337

motivations, 8

ontology, 180

rule template, 180

structural rule, 7, 77

Business rule language development

framework (BRLDF), 256, 334, 357

abstract syntax, 358

BAL customization, 360

concrete syntax, 358

parsers, 359

parsing and translation framework, 359

rule extension model, 359

translators, 359

Business rule management system, 13, 49,

178, 270

late business rule management

system, 179

rule automation, 13, 15

rule management, 13

rule repository, 14

Business rules approach, 12, 13, 24

applications, 27

engineering applications, 28

financial services applications, 33

history, 27

insurance applications, 38, 43

methodology, 16

motivations, 24

re-engineering legacy applications, 21

target domains, 44

Business rules classification, 75, 77

action enabler, 78

compliance rule, 80

constraint, 78

correlation rule, 80

event condition action rule (ECA), 78

guideline, 78

inference rule, 79

operation rule, 76, 77

rating rule, 80

routing rule, 78

stateful rule, 80

structural rule, 76, 77

transformation rule, 79

Business rules expertise center, 19, 20

Business rules methodology, 16, 24

analysis and design, 23

authoring, 23

coding, 23

maintenance, 24

methodology matrix, 22

requirements, 22

Business rules modeling. See Rule discovery
Business transaction dispatching, 395

Business vocabulary, 76, 247

C

Car insurance. See Business rules approach
Categories, 320

Category filter, 321

CEP. See Complex event processing

Change management committee, 515

Change request, 534

Claim. See Claim processing

Claim adjudication, 41. See also Business rules
approach

Claim conceptual data model, 111

Claim eligibility. See Claim processing

Claim processing, 41. See also Business rules

approach

Claim validation. See Claim processing

Class condition, 337

Client-server application

J2EE, 189

web tier, 188

Client-server architecture, 187

J2EE, 187

Cognitive plausibility, 149

Cognitive psychology, 148

Collection condition, 339, 346

Command design pattern, 139

Common Client Interface, 429

Complex event processing, 79

Compliance rule, 80

Component-oriented development, 192

Component test, 453

Composability, 192

Computation coding pattern. See Rule coding
patterns

Computation rule, 264

Condition part, 341, 345

Conflicting rule, 466

Conflict resolution strategy, 153

rule condition strength, 153

rule priority, 153

rule recency, 153

Consistency, 393

Consistency checking, 465, 472

Constraint coding pattern. See Rule coding
patterns

Constraint rule, 258

necessary conditions, 259

Construction, 59

Continuous testing, 463

Control strategy, 152, 154

Correlation rule, 80

Credit scoring, 254

Index 559

D

Data access, 397

Data Access Object, 403

Data Access Service, 398

Database, 151

Data graph, 398

Data materialization, 460

Data model, 54, 100

DataObject, 399

Decision model, 266

decision tree, 267

gradualness, 266

neural network, 267

scorecard, 2367

Decision pattern, 450

Decision point, 54, 64, 73, 84

claim adjudication, 96

claim validation, 96

table, 54, 64

example, 95, 96

Decision service, 128, 402

Decision table, 220, 253, 334, 348

action column, 348

branch, 349

condition column, 348

condition sharing, 352

gaps, 351

IRL translation, 351

locking, 351

overlap, 350

partition, 349

preconditions, 350

symmetrical table, 349

symmetry, 350

Decision tree, 221, 254, 334, 353

action node, 353

branch, 353

condition sharing, 354

gaps, 354

overlaps, 354

rule node, 353

Decision validation service, 231, 472, 477

configuration, 483

DVS constructor, 481

DVS format, 488

expected result, 481

IlrScenarioProvider, 489

key performance indicator, 478, 491

scenario, 478

scenario service provider, 479, 489

Decision warehouse, 436, 488, 490

Define rule discovery roadmap, 84

Definitions part, 341, 343

De Morgan’s law, 79. See also Boolean logic

Design pattern, 139

Command design pattern, 139

strategy design pattern, 207

Discoverability, 192

Discriminating condition, 462

Discrimination tree, 163

Disjunction, 261

Disjunction of conjunctions, 261, 263

Domains, 322

analysis, 194

bounded domain, 323

collection domains, 323

literal domain, 322

static references, 323

violation, 466

Durability, 393

DVS scenario. See Scenario
Dynamic run-time rule selection, 372

IRL code, 372

Dynamic XOM, 313

E

EAI. See Enterprise application integration

Early BRMS. See Early business rule

management system

Early business rule management system, 177

artifacts and deliverables, 181

requirements, 179

rule analysis process, 184

rule capture process, 184

rule governance, 184

rule lifecycle management, 184

rule representation, 182

rule versioning, 183

traceability, 182

ECA. See Event condition action rule

Eclipse model framework, 539

Eclipse process framework, 50, 57

composer, 50, 57

Effective and expiration dates patterns, 442

Elaboration, 59

Eligibility rules. See Business rules approach
EMF. See Eclipse model framework

End to end testing, 56

Engine.conf, 498

Enterprise application integration, 189

Enterprise service bus, 193

Enterprise unified process

production, 464

EPF. See Eclipse process framework

EPF composer. See Eclipse process framework,

composer

560 Index

Equivalent condition, 466

Evaluate, 339

Evaluate condition, 339

Event condition action rule, 78

Event driven architecture, 406

Event management, 340

Executable rules, 55

Execution object model, 250

Expert systems, 27, 150

Extreme programming, 50

F

Fact, 104

Fastpath algorithm, 153, 172, 174, 494

heterogeneous rule signature, 173

Feature-oriented domain analysis, 194

Finder, 497

Finite state machine, 135

FODA. See Feature-oriented domain analysis

Formal rule authoring language, 246

FSM. See Finite state machine

Functional testing, 454

G

Generic ruleset deployment process, 413

Governance, 506

Guideline coding pattern. See Rule coding
patterns

Guideline rule, 264

H

Health insurance. See Business rules approach
Heterogeneous rule signature, 170, 172

Hot deployment, 237, 400

I

If-then rule, 251

business rule language, 252

technical rule language, 252

ILOG Rule Language, 155, 334, 335

class condition, 337

collection condition, 339

evaluate condition, 339

event management, 340

grammar, 337

join condition, 337

scope expression, 339

truth maintenance, 340

variable, 336

variable binding, 336

working memory management, 341

IlrContext, 424

IlrRuleset, 424

IlrToolAdapter, 476

IlrXmlObject, 316. See also JRules business

object model

Implementation data model, 127

Inception, 59

Incremental software development, 50

Inference coding pattern. See Rule coding
patterns

Inference rule, 264

Insurance, 38

Internal revenue service, 36. See also Business

rules approach

Interoperability, 189

Interpreter, 151

Investment banking. See Business rules
approach

IRL. See ILOG Rule Language

IRS. See Internal revenue service
Isolation, 393

Iterative software development, 50

J

Java architecture for XML binding, 481

Java connector architecture, 420

Java message service, 190

Java Persistence API, 397

JAXB. See Java architecture for
XML binding

JIT. See Just In Time

JMS. See Java message service

Join condition, 337

JPA. See Java persistence API
JRules

BRMS, 216

business action language, 220

business object collection

domains, 323

business object model, 228, 301

architecture, 302

best practices, 326, 328, 330

BOM to XOM mapping, 301, 308

bounded domains, 323

build BOM from XOM interfaces, 327

building from a XOM, 304–305

building from scratch, 304

categories, 320

custom BOM to XOM mapping, 309

default BOM to Java XOM mapping,

308

default BOM to XSD XOM mapping,

314

default verbalization, 305, 306

domains, 322

dynamic XOM, 313

favor consistency over nuance, 330

Index 561

literal domains, 322

method verbalization, 306

refactoring, 316

refactoring BOM changes, 319

refactoring verbalization changes, 320

refactoring XOM changes, 316

static references, 323

use BOM to XOM mapping sparingly,

328

verbalization, 305, 306

virtual class, 311, 313

virtual function, 309

vocabulary, 301

XML Schema-based XOM, 313

decision validation service, 218

executable object model, 218

module, 216

rule artifacts, 285, 334

action rules, 341

Business Action Language, 334, 341

decision table, 334, 348

decision tree, 334, 353

scorecard, 334, 354

technical rules, 334, 335

rule authoring infrastructure, 284

rule engine, 155

agenda, 155

API, 155

concept of operations, 156

control strategy, 167, 168

Fastpath algorithm, 172, 174

IlrContext, 155

IlrRuleset, 155

inserting an object, 158

RETE algorithm, 162, 173

sequential algorithm, 168, 173

updating an object, 160

working memory, 155

rule execution server, 197, 217, 232, 236

rule extension model, 226

rule project, 284

dependencies, 289, 324

managing multiple users, 296

map, 222

organization best practices, 324

project security, 299

project synchronization, 291

references, 289

RTS locking, 301

RTS permission management, 300

RTS project security, 299

Rule Studio project, 285

Rule team server project, 292

source code management, 297

synchronization best practices, 295

synchronization conflicts, 294

Rule Solutions for Office, 217, 239

rule studio, 217, 221

rule team server, 217, 232

JRules BOM. See JRules, business object
model

JSR 94, 198, 408

JRules support, 426

object filtering, 411

rule administrator, 412

rule runtime, 410

rule service provider, 409

session, 412

JUnit, 450

Just In Time, 171

bytecode generation, 171

K

Keywords

insert, 462

modify, 462

not, 463

retract, 462

update, 462

Knowledge-based system, 150

Knowledge engineering, 150

Knowledge representation language, 247

L

Late business rule management system, 179

Loan-to-value ratio, 35. See also Business rules
approach

Loose coupling, 190, 191

LTV. See Loan-to-value ratio

M

Master data management, 50, 130

MDM. See Master data management

Message-oriented architecture, 185, 189

interoperability, 189

loose coupling, 190

robustness, 190

scalability, 190

Message-oriented middleware, 189, 405

Mockup, 450

Model-view-controller, 188

web application, 189

MOM. See Message-oriented middleware

Mortgage underwriting. See Business rules
approach

MVC. See Model-view-controller

562 Index

N

Navigation phrase, 305. See also JRules,

business object model

Network of joins, 163

O

OAA. See Object-oriented analysis

Object-oriented analysis, 103

Ontology Web Language, 76

OpenUp, 50, 59

phases

construction, 59

elaboration, 59

inception, 59

transition, 59

Open XML, 239

Optimistic locking, 297. See also JRules, rule

project

Orchestration of rule execution, 54, 360

best practices, 375, 379

design the signature first, 375

execution algorithm selection, 379

rule flow, 360

rule flow granularity, 377

ruleset parameters, 360

OWL. See Ontology Web Language

P

Pattern matching, 461, 496

Performance test, 456

Performance variables, 458

Permanent link. See Rule Team Server

Physical deployment, 415

Point to point messaging, 406

Policy underwriting, 38. See also Business

rules approach

Policy underwriting system, 40. See also
Business rules approach

Pool size, 493

Potential performance bottlenecks, 459

Preventive maintenance. See Business rules
approach

Production system, 147, 151

control strategy, 152

database, 151

interpreter, 151

principles, 151

ruleset, 151

Project structure design, 54, 270

Prototyping, 54

activities

build Java models, 127

build models, 127

build structures for rule development

and execution, 130

build XML data models, 128

communicate back to business, 142

define rule metamodel, 132

design rule execution flow, 134

design rule project organization, 130

determine rule implementation, 117

rule prototyping, 136

synchronize rules with data models, 129

work products

rule coding patterns, 137

rule execution flow, 134

rule metamodel, 132

rule project organization, 130

unit testing framework, 137

Publish/subscribe messaging, 406

Q

Query, 442

R

Racing, 396

Rating rule, 80

Rational unified process, 59

RDF. See Resource description framework

Redundant rule, 466

Refactoring, 316

BOM changes, 319

verbalization changes, 320

XOM changes, 316

Referential data access, 130

Refraction, 167. See also JRules, rule engine

Regression test, 456

Resource adapter descriptor, 493

Resource description framework, 76

RETE algorithm, 153, 154, 161, 173, 381, 494

RETE network, 162, 164

condition sharing, 165, 167

discrimination tree, 163

network of joins, 163

object insertion, 165

object modification, 165

object removal, 165

Reusability, 191

Risk assessment. See also Business rules

approach

financial services, 34

insurance, 40

rule, 265

Risk model, 266

Risk scoring, 254

Robustness, 190

Index 563

RTS. See Rule team server

Rule administrator, 64, 508

Rule analysis

activities

analyze rule descriptions and fact

models, 100

check rules completeness, 108

identifying rule patterns, 105

make rules atomic, 105

object oriented analysis, 103

remove redundant rules, 108

resolve inconsistent rules, 108

term and fact analysis, 104

transforming rules, 105

sample process, 181

Rule analyst, 61, 508, 515

RuleApp, 232, 421

Rule architect, 62, 508

Rule author, 508, 514, 518

Rule authoring, 54, 245

infrastructure, 283

language, 251

vocabulary, 284

Rule automation, 44

Rule-based programming, 147

history, 147, 148

Rule capture

sample process, 181

Rule change process, 535

Rule coding patterns, 137, 257

action enabler coding pattern, 265

computation coding pattern, 264

constraint coding pattern, 258

delay rule actions, 138

encoding business data, 267

encoding pricing tables, 269

encoding product tables, 268

explain decisions, 137

guideline coding pattern, 264

inference coding pattern, 264

rule maintenance, 259

test for data quality first, 139

Rule coverage, 475

Rule developer, 51

Rule discovery, 73

activities, 80

define rule discovery roadmap, 84

execute rule discovery roadmap, 88

gather the related documents, 86

plan rule discovery, 87

review business process map, 82

review decision points table, 82, 86

formal rule language, 90

roadmap

analysis technique, 81

automated analysis, 85

business event-driven, 82

business mission-driven, 82

business process driven, 82, 83, 96

data analysis driven, 82

discovering rules from code, 92

discovering rules from documents, 91

discover rules from SMEs, 90

document the business rules, 92

interactive analysis, 85

rule sources, 81

static analysis, 85

use case driven, 82

rule languages, 88

use case approach, 82

work products, 75

architecture description, 75

business process description, 75

data model, 75

decision points table, 75

object model, 97

workshop, 54

RuleDocs, 239

Rule engine

cognitive plausibility, 149

conflict resolution strategy, 153

control strategy, 154

deployment, 194, 196

business tier, 201

client tier, 201

EIS tier, 202

embedded rule engine, 196

impact of architecture of application,

198

options, 194, 196

rule execution service, 197

web tier, 201

which tier in a multi-tier application,

199

embedded rule engine, 196

execution algorithms, 161, 369

algorithm selection, 372

exit criteria, 373

Fastpath algorithm, 172, 174

ordering, 373

parameters, 373

performance, 174

RETE algorithm, 162, 173

sequential algorithm, 168, 173

Fastpath algorithm, 153

integration options, 177

564 Index

pooling, 395

principles, 147

RETE algorithm, 153

rule execution algorithms, 161

rule execution service, 197

sequential algorithm, 153

Rule execution language, 246

Rule execution server, 197

console, 238, 423

execution unit (XU), 429

invocation pattern, 431

JMS support, 433

management model, 430

monitoring, 427

ra.xml, 430

resource adapter (RAR), 428 (see also
Resource adapter)

service component architecture, 434

Rule execution service

hot deployment, 198

remote ruleset execution, 197

ruleset versioning, 198

scalability, 198

separate ruleset deployment, 198

Rule execution set, 408

Rule flow, 134, 136, 231, 334, 360, 365

branch node, 366

flowtask, 365, 369

fork, 366

function tasks, 365

IRL translation, 368

join, 366

rule execution algorithm, 369

rule selection, 370

rule task, 365

run-time rule selection, 369, 371

tasks, 365

transition, 365

Ruleflows. See Rule flow
Rule governance, 504

activities, 506

change request, 515

identifying stakeholders, 508

organization map, 509

processes, 506

roles, 508, 511

RTS roles, 524

rule change, 517

rule management group, 509

status property, 526

Rule harvesting, 73

activities

building test scenarios, 109

verify rules against the data models, 110

Rule implementation criteria

adaptability, 118

auditability, 118

manageability, 118

reusability, 118

traceability, 118

Rule inconsistency, 465

Rule language, 246

authoring language, 247

best practices, 384

business conversation language, 246

business object model, 247

business vocabulary, 247

custom languages, 256

decision table, 253, 334, 348

decision tree, 254, 334, 353

do you really need a custom language, 384

execution language, 246, 247

formal rule authoring language, 246

if-then rule, 251

scorecard, 254, 334, 354

structured natural language, 246

Rule life cycle

classical, 514

definition, 513

rule team server, 526

simple, 513

Rule management, 44

asynchronous, 17

group, 511

organization, 17, 18

business rules expertise center, 19, 20

synchronous, 17

Rule metamodel. See JRules
Rule never applies, 466

Rule never selected, 466

Rule orchestration, 231

Rule package, 270

Rule priority, 153, 168

Rule project, 130, 270, 284

dependencies, 289

JRules rule project, 284

managing multiple users, 296

ruleset parameters, 360, 361

Rule project organization, 131, 270, 284, 289

best practices, 324

design drivers, 271

problem domain dimension, 272

promoting BOM sharing, 325

promoting rule reuse, 324

separating orchestration from rules, 326

Rule project organization pattern

Index 565

Rule project organization pattern (cont.)
effective division of labor, 274

favor structure over computation, 279

jurisdiction containment pattern, 272, 278

metadata dimension, 278

process decomposition pattern, 272, 277

product and service portfolio, 272

product specialization pattern, 276

reusability, 274

simple mapping to execution

structure, 275

understandability, 274

Rule project security, 299

Rule project structure, 284, 285

Rule Studio, 285

Rule project synchronization, 291, 294

best practices, 295

Rule property, 132, 225

Rule query, 225, 287

Rule recency, 168

Rule repository, 233, 270

Rule selection, 369

at runtime, 417

Rule session, 408

Ruleset, 151

archive, 232

deployment using JMX, 416

extraction, 134

extractor, 232

map, 512

parameter, 360, 361

passing data to the engine, 362

rule references, 363

path, 422

project

variables, 364

versioning, 416

Rules never selected, 472

Rule steward, 508

Rule task, 231

algorithm selection, 372

dynamic run-time rule selection, 372

fastpath algorithm, 373

RETE algorithm, 373

rule execution algorithm, 369

rule selection, 369, 370

run-time rule selection, 369, 371

run-time rule selection filter, 371

sequential algorithm, 373

static rule selection, 369

static run-time rule selection, 372

Rule team server, 298

baseline, 530

data source, 533

deployment, 441

parallel release development, 532

permanent link, 536

permission management, 529

recycle bin, 531

role-based access control, 298

rule studio synchronization, 533

session, 528

session controller, 526, 528

workflow engine integration, 538

Rule template, 180, 225, 288

freezing parts, 289

Rule tester, 508, 514

Rule tracing, 467

Rule unit testing, 476

Rule vocabulary, 228

Rule writer, 63

Run-time rule selection, 370

dynamic, 372

filter, 371

hierarchical properties, 371

static, 372

S

SBVR. See Semantics of business vocabulary

and business rules

Scalability, 190, 394

horizontal, 396

vertical, 394

Scenario

DVS, 478, 488, 490

service provider, 236, 479, 480

SCM. See Source code management

Scope expression, 339

Scorecard, 266, 334, 354

credit scoring, 254

decision model, 355

IRL translation, 356

reason codes, 355

reasoning, 355

reasoning strategy, 355

risk scoring, 254

Semantic query, 474

Semantics of business vocabulary and business

rules, 75, 247

Sequential algorithm, 153, 168, 169, 173, 494

default tuple generator, 381

heterogeneous rule signature, 170, 172, 382

JIT bytecode generation, 171

parameters, 170

restrictions, 171

tuple generator, 170

566 Index

Service, 191

Service characteristics, 191

Service component architecture, 406, 448

components, 406, 434

composite, 407, 453

Service data object, 398, 452, 460

Service definition, 403

bottom-up, 404

meet in the middle, 403

top-down, 405

Service-oriented analysis, 193

Service-oriented architecture, 128, 185, 191

enterprise service bus, 193

Service-oriented computing, 191

abstraction, 191

autonomy, 191

composability, 192

discoverability, 192

influences, 192

loose coupling, 191

reusability, 191

standardized contracts, 191

statelessness, 192

Service-oriented engineering, 193

domain analysis, 194

meet in the middle approach, 194

SME. See Subject matter expert

SOA. See Service-oriented architecture

SOC. See Service-oriented computing

Software development lifecycle, 51

Software process engineering, 57. See also
Eclipse process framework

Source code management, repository, 297

SSP. See Scenario service provider

Standalone application, 185, 186

Standardized contracts, 191

Stateful rule, 80

Stateful session, 409

Statelessness, 192

Stateless session, 409

Static rule selection, 369

Static run-time rule selection, 372

Strategy pattern, 207

Structured natural language, 246

Subject. See JRules business object model

Subject matter expert, 51, 64

Synchronous client-server application,

185, 187

T

Task

final actions, 365

initial actions, 365

Tax reporting and withholding. See Business
rules approach

TDD. See Test driven development

Technical rules, 334, 335

Telecommunications network management.

See Business rules approach
Term, 104

Term and fact analysis, 104

Test driven development, 55, 110, 450

Test goals, 449

Test scenario, 235

Thread safety, 396

Train car maintenance. See Business rules
approach

Transaction, 392

Transition, 59

Transparent decision service, 438

Truth maintenance, 340

Tuple generator. See Sequential algorithm
Two-phase commits, 393

U

Underwriting rules. See Business rules
approach

Unit test cases, 55

Unit testing, framework, 137

Use cases description, 64

V

Verbalization, 305. See also JRules, business

object model

Virtual class, 311, 313. See also Business

object model, BOM to XOM

mapping

Virtual function, 309. See also Business object

model, BOM to XOM mapping

W

Web service, 128, 193

Web Service Description Language, 128

WebService Java annotation, 405

Working memory, 155

WSDL. See Web Service Description

Language

X

XML schema-based XOM, 313

XML schema description, 128, 129

XSD. See XML schema description

XSD-based BOM to BOM mapping, 314

Index 567

	Cover
	Agile Business Rule Development
	ISBN 9783642190407
	Foreword I
	Foreword II
	Preface
	Why Business Rules
	Why an Agile Business Rule Development Methodology
	Why This Book
	Why JRules
	How to Read This Book

	Acknowledgments
	Contents
	Part I: Introduction
	Chapter 1: Introduction to Business Rules
	1.1 What Are Business Rules?
	1.1.1 Business Rules Are About the Business
	1.1.2 Business Rules Concern Both the Structure and the Behavior of the Business

	1.2 Motivations for the Business Rules Approach
	1.3 How Do Business Rule Applications Differ from Traditional Business Applications?
	1.4 Why Do We Need a New Methodology?
	1.5 Summary and Conclusions
	1.6 Further Reading

	Chapter 2: Business Rules in Practice
	2.1 Introduction
	2.2 Engineering Applications
	2.2.1 Alarm Filtering and Correlation
	2.2.2 Train Cars Preventive Maintenance

	2.3 Financial Services
	2.3.1 Mortgage Underwriting
	2.3.2 Tax Reporting and Withholding

	2.4 Insurance
	2.4.1 Policy Underwriting
	2.4.2 Claim Processing

	2.5 Conclusion
	2.6 Further Reading

	Part II: Methodology
	Chapter 3: Agile Business Rule Development
	3.1 Introduction
	3.2 Core Principles of the ABRD Methodology
	3.2.1 A Cycle Approach
	3.2.2 Cycle 1: Harvesting
	3.2.3 Cycle 2: Prototyping
	3.2.4 Cycle 3: Building
	3.2.5 Cycle 4: Integrating
	3.2.6 Cycle 5: Enhancing

	3.3 Eclipse Process Framework
	3.3.1 OpenUp
	3.3.2 ABRD Structure
	3.3.3 ABRD Roles
	3.3.3.1 Business Analyst
	3.3.3.2 Rule Analyst
	3.3.3.3 Rule Architect
	3.3.3.4 Rule Writer
	3.3.3.5 Subject Matter Expert
	3.3.3.6 Rule Administrator

	3.3.4 ABRD Work Products

	3.4 Usage Scenario for ABRD
	3.5 Summary and Conclusions
	3.6 Further Reading

	Chapter 4: Rule Harvesting
	4.1 Introduction
	4.2 Rule Discovery
	4.2.1 Classification of Business Rules
	4.2.2 Discovery Activities
	4.2.2.1 Review Decision Point Table or Business Process Map
	Use Case Approach
	Business Process Modeling Approach

	4.2.2.2 Define Discovery Roadmap
	4.2.2.3 Gather the Related Documents
	4.2.2.4 Studying Decision Point
	4.2.2.5 Organize Rule Discovery
	4.2.2.6 Execute Rule Discovery Roadmap
	4.2.2.7 Discovering Rules from SMEs
	4.2.2.8 Discovering Rules from Documents
	4.2.2.9 Discovering Rules from Code
	4.2.2.10 Documenting the Business Rules

	4.3 Rule Discovery: Case Study
	4.4 Rule Analysis
	4.4.1 Analyze Rule Descriptions and Fact Models
	4.4.2 Transforming Rules
	4.4.3 Building Test Scenarios
	4.4.4 Verify Rules Against the Data Models

	4.5 Case Study: Rule Analysis
	4.6 Summary
	4.7 Further Reading

	Chapter 5: Prototyping and Design
	5.1 Introduction
	5.2 Determine Rule Implementation
	5.2.1 Implementing Rules Within the Data Model
	5.2.2 Implementing Rules Within Application Code
	5.2.3 Implementing Rules in GUI
	5.2.4 Implementing Rules in Process Maps
	5.2.5 Implementing Rules in a Rule Engine

	5.3 Build Models
	5.3.1 Java Model
	5.3.2 XML Schema
	5.3.3 Synchronize with the Data Models

	5.4 Building Structures for Rule Development and Execution
	5.4.1 Rule Project Structure
	5.4.2 Defining Rule Meta Data
	5.4.3 Orchestrating Rule Execution

	5.5 Prototyping Rules
	5.5.1 Purpose of Rule Prototyping
	5.5.2 Some Useful Rule Patterns
	5.5.2.1 Pattern 1: Providing Decision Explanations and Audits
	5.5.2.2 Pattern 2: Delaying Rule Actions
	5.5.2.3 Pattern 3: Test for Data Quality Before Business Logic

	5.6 Case Study
	5.7 Communicate Back to Business
	5.8 Summary
	5.9 Further Reading

	Part III: Foundations
	Chapter 6: Rule Engine Technology
	6.1 Introduction
	6.2 The History of Rule-Based Programming
	6.3 Rule Engines
	6.3.1 The Basics of Production Systems
	6.3.2 The JRules Rule Engine

	6.4 Engine Execution Algorithms
	6.4.1 The RETE Algorithm
	6.4.2 The Sequential Algorithm
	6.4.3 The Fastpath Algorithm

	6.5 Summary and Conclusions
	6.6 Further Reading

	Chapter 7: Issues in Designing Business Rule Applications
	7.1 Introduction
	7.2 Design Dimensions for Rule Management
	7.2.1 Early Versus Late BRMS Tools
	7.2.2 Requirements for an Early BRMS Tool
	7.2.2.1 Early BRMS Artifacts and Deliverables
	7.2.2.2 Versioning and Lifecycle Management

	7.2.3 Conclusion

	7.3 Design Options for a Business Rule Application
	7.3.1 Standalone Applications
	7.3.2 Synchronous Client-Server Architecture
	7.3.3 Message-Oriented Architectures
	7.3.4 Service-Oriented Architectures
	7.3.4.1 Service-Oriented Computing Principles
	7.3.4.2 SOC Lineage
	7.3.4.3 Service-Oriented Engineering

	7.4 Designing the Integration of Rules into Applications
	7.4.1 Rule Engine Deployment Options
	7.4.2 Architecture of the Calling Application
	7.4.2.1 The Types of Applications
	7.4.2.2 Which Tier, for Client-Server Applications?

	7.4.3 Additional Requirements
	7.4.4 Summary

	7.5 Reengineering Existing Applications to Externalize Business Rules
	7.5.1 Reengineering the Application Layer
	7.5.2 Reengineering the Business Layer
	7.5.3 Reengineering the Data Layer

	7.6 Summary and Discussion
	7.7 Further Reading

	Chapter 8: IBM WebSphere ILOG JRules
	8.1 Introduction
	8.2 Business Rule Management System Main Components
	8.2.1 The Concept of Operations
	8.2.2 Rule Artifacts

	8.3 Rule Studio
	8.3.1 Designing the Rule Project Structure
	8.3.2 Designing the Business Rule Model
	8.3.3 Designing the Business Object Model
	8.3.4 Orchestrate Rule Execution
	8.3.5 Ruleset Testing and Deployment

	8.4 Rule Team Server
	8.5 Rule Execution Server
	8.6 Rule Solutions for Office
	8.7 Summary
	8.8 Further Reading

	Part IV: Rule Authoring
	Chapter 9: Issues in Rule Authoring
	9.1 Introduction
	9.2 Rule Languages
	9.2.1 The Domain of Discourse: Business Object Models
	9.2.2 Flavors of Rule Authoring Languages
	9.2.2.1 If-Then Rules
	9.2.2.2 Decision Tables
	9.2.2.3 Decision Trees
	9.2.2.4 Scorecards
	9.2.2.5 Custom Languages

	9.3 Rule Coding Strategies and Patterns
	9.3.1 Coding Constraints and Guidelines
	9.3.2 Coding Computations and Inferences
	9.3.3 Coding Action Enablers
	9.3.4 Coding Risk-Assessment Rules
	9.3.5 Encoding Business Data Tables

	9.4 Organizing Rules During Development
	9.4.1 Rule Structures
	9.4.2 Design Drivers for an Effective Organization of Rules
	9.4.2.1 The Problem Domain
	9.4.2.2 Development-Level Qualities

	9.4.3 Best Practices
	9.4.3.1 Think It Through
	9.4.3.2 Package Nesting Patterns
	9.4.3.3 Use Metadata to Supplement the Repository Project Package Hierarchy
	9.4.3.4 Always Favor Structure over Computation

	9.5 Summary and Discussion
	9.6 Further Reading

	Chapter 10: Rule Authoring Infrastructure in JRules
	10.1 Introduction
	10.2 Rule Projects
	10.2.1 The Structure of Rule Projects in Rule Studio
	10.2.1.1 Rule Artifacts
	10.2.1.2 Business Object Model
	10.2.1.3 Rule Queries
	10.2.1.4 Rule Templates

	10.2.2 Rule Project Dependencies
	10.2.3 Synchronizing Projects Between Rule Studio and Rule Team Server
	10.2.4 Managing Multiple Users

	10.3 The Business Object Model
	10.3.1 The Basics of the BOM
	10.3.2 Verbalization
	10.3.3 BOM to XOM Mapping
	10.3.3.1 Virtual Functions
	10.3.3.2 Virtual Classes
	10.3.3.3 Dynamic XOM

	10.3.4 Refactoring
	10.3.4.1 Changes to the XOM
	10.3.4.2 Changes to the BOM
	10.3.4.3 Changes to the Vocabulary

	10.3.5 Enhancing the Rule Authoring Experience
	10.3.5.1 Categories
	10.3.5.2 Domains

	10.4 Best Practices
	10.4.1 Best Practices for Organizing Rule Projects
	10.4.2 Best Practices for the Design of the BOM
	10.4.2.1 Best Practice 1: Build Your BOM from Interfaces
	10.4.2.2 Best Practice 2: Too Much of a Good Thing
	10.4.2.3 Best Practice 3: Do Not Be Too Creative

	10.5 Discussion
	10.6 Further Reading

	Chapter 11: Rule Authoring in JRules
	11.1 Introduction
	11.2 Rule Artifacts
	11.2.1 IRL and Technical Rules
	11.2.2 BAL and Action Rules
	11.2.3 Decision Tables
	11.2.4 Decision Trees
	11.2.5 Score Cards
	11.2.6 The Business Rules Language Development Framework

	11.3 Rule Execution Orchestration
	11.3.1 Ruleset Parameters and Variables
	11.3.2 Ruleflows: Basics
	11.3.3 Ruleflows: Advanced Concepts
	11.3.3.1 Run-Time Rule Selection
	11.3.3.2 Algorithm Selection

	11.4 Best Practices
	11.4.1 Best Practice 1: Design the Signature First
	11.4.2 Best Practice 2: Rulesets and Ruleflows
	11.4.3 Best Practice 3: My Kingdom for an Algorithm
	11.4.4 Best Practice 4: Do You Really Need a Custom Language?

	11.5 Discussion
	11.6 Further Reading

	Part V: Rule Deployment
	Chapter 12: Issues in Deploying Rules
	12.1 Introduction
	12.2 Integration and Deployment Considerations
	12.2.1 Transaction Support
	12.2.2 Scalability
	12.2.3 Data Access
	12.2.4 Ruleset Hot Deployment

	12.3 Decision Service Integration
	12.3.1 Service Implementation
	12.3.2 Messaging Deployment
	12.3.3 Service Component Architecture
	12.3.4 Embedding Rule Engines Using Low-Level Rule Engine API: JSR94
	12.3.4.1 The Client Code for Runtime Execution
	12.3.4.2 Filtering Objects
	12.3.4.3 Get Rule Execution Set Meta Data
	12.3.4.4 Stateful Session
	12.3.4.5 Administrate Rule Execution Set

	12.4 Ruleset Deployment
	12.4.1 Building the Ruleset
	12.4.2 Loading the Ruleset in Execution Server

	12.5 Summary
	12.6 Further Reading

	Chapter 13: Deploying with JRules
	13.1 Introduction
	13.2 Reminder on the Concepts of Operation
	13.3 Integration with JRules Engine
	13.3.1 Deploying with the Rule Engine API
	13.3.2 JSR94: JRules Specifics
	13.3.3 Monitoring and Tracing Rule Execution
	13.3.4 Resource Pooling

	13.4 Deploying with the Rule Execution Server
	13.4.1 Using RES Session API
	13.4.2 JMS Deployment
	13.4.3 SCA Component
	13.4.4 Monitoring and Decision Warehouse
	13.4.5 Transparent Decision Service

	13.5 Rule Team Server
	13.5.1 Physical Deployment
	13.5.2 Queries

	13.6 Summary
	13.7 Further Reading

	Part VI: Rule Testing
	Chapter 14: Issues with Rule Testing and Performance
	14.1 Introduction
	14.2 Rule Testing
	14.2.1 Unit Testing
	14.2.2 Component Testing
	14.2.3 Functional Testing
	14.2.4 Regression Testing

	14.3 Performance Testing
	14.3.1 Multiple Performance Dimensions
	14.3.2 Patterns of Data Materialization
	14.3.3 Accessing Data from Within the Rules
	14.3.4 Pattern Matching Performance
	14.3.5 Some Guidelines on Keywords

	14.4 Continuous Testing
	14.5 Semantic Consistency Checking
	14.6 Tracing and Logging Rule Applications
	14.7 Summary
	14.8 Further Reading

	Chapter 15: Rule Testing with JRules
	15.1 Introduction
	15.1.1 Semantic Consistency Checking
	15.1.2 Semantic Queries
	15.1.3 Rule Coverage

	15.2 Rule Testing
	15.2.1 Unit Test
	15.2.2 Decision Validation Service
	15.2.2.1 Enabling DVS
	15.2.2.2 Executing DVS Configuration
	15.2.2.3 Business User Using RTS

	15.2.3 DVS Customization
	15.2.3.1 Defining a Custom Scenario Provider
	15.2.3.2 Adding KPIs

	15.3 Performance Tuning
	15.3.1 Ruleset Parsing
	15.3.2 Execution Algorithms
	15.3.3 Rule Execution Improvement

	15.4 Summary
	15.5 Further Reading

	Part VII: Rule Governance
	Chapter 16: Rule Governance
	16.1 Introduction
	16.2 Need for Governance
	16.2.1 IT and Business Governance
	16.2.2 How to Start Developing Rule Governance
	16.2.3 What Are the Main Processes in Rule Governance?

	16.3 Defining Rule Governance
	16.3.1 Create the Business Rules Management Group
	16.3.1.1 Complexity of Changes
	16.3.1.2 Roles

	16.3.2 Identify Stakeholders
	16.3.3 Ruleset Owning Groups
	16.3.4 Rule Life Cycle

	16.4 Rule Change Process
	16.4.1 Scope of Change
	16.4.2 Rule Authoring Subprocess
	16.4.3 Rule Testing Subprocess
	16.4.4 Rule Deployment Subprocess

	16.5 Summary
	16.6 Further Reading

	Chapter 17: Rule Governance with JRules
	17.1 Introduction
	17.2 JRules and Rule Governance
	17.2.1 Defining Roles in Rule Team Server
	17.2.2 Rule Life Cycle
	17.2.3 Ruleset Baseline and Versioning
	17.2.4 Deeper Changes

	17.3 The Rule Change Management Process
	17.3.1 Process Implementation
	17.3.2 RTS and Workflow Integration
	17.3.3 Getting Rule Status Modification Event from RTS
	17.3.4 Getting the List of Rules from RTS

	17.4 Summary
	17.5 Further Reading

	Part VIII: Epilogue
	Chapter 18: Epilogue
	18.1 It Is About People, Process, and Technology
	18.2 Success - and Failure - Factors
	18.3 Where to from Here

	Bibliography
	Books
	Articles and Papers (Professional Journals, Trade Magazines, etc.)
	Web Sites
	Documents (standards, web documents, etc.)
	Tools

	Index

